
ARTIFICIAL INTELLIGENCE LAB USING PYTHON (LC-RA-316G)

DEPARTMENT OF ROBOTICS AND AUTOMATION
DRONACHARYA COLLEGE OF ENGINEERING

KHENTAWAS, FARRUKH NAGAR, GURUGRAM (HARYANA)

LABORATORY MANUAL

B.Tech. Semester- VI

ARTIFICIAL INTELLIGENCE LAB USING PYTHON

Subject code: LC-RA-316G

Prepared by: Checked by: Approved by:

Dr. Ritu Pahwa Mrs. Dimple Saproo Name : Prof. (Dr.) Isha Malhotra

Sign.: ……………………. Sign.: …………………. Sign.: ………………….

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Table of Contents

1. Vision and Mission of the Institute

2. Vision and Mission of the Department

3. Programme Educational Objectives (PEOs)

4. Programme Outcomes (POs)

5. Programme Specific Outcomes (PSOs)

6. University Syllabus

7. Course Outcomes (COs)

8. CO- PO and CO-PSO mapping

9. Course Overview

10. List of Experiments

11. DOs and

12. General Safety Precautions

13. Guidelines for students for report preparation

14. Lab assessment criteria

15. Lab Experiments

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Vision and Mission of the Institute

Vision:

To impart Quality Education, to give an enviable growth to seekers of learning, to groom them

as World Class Engineers and managers competent to match the expending expectations of the

Corporate World has been ever enlarging vision extending to new horizons of Dronacharya

College of Engineering

Mission:

M1: To prepare students for full and ethical participation in a diverse society and encourage
lifelo i.e., Education &

Help.
M2: To impart high-quality education, knowledge and technology through rigorous academic

programs, cutting-edge research, & Industry collaborations, with a focus on producing
engineers& managers who are socially responsible, globally aware, & equipped to address
complex challenges.

M3: Educate students in the best practices of the field as well as integrate the latest research
into the academics.

M4: Provide quality learning experiences through effective classroom practices, innovative
teaching practices and opportunities for meaningful interactions between students and

faculty.
M5: To devise and implement programmes of education in technology that are relevant to the

changing needs of society, in terms of breadth of diversity and depth of specialization.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Vision and Mission of the Department

Vision:

To be a globally recognized leader in robotics and automation education, research, and
innovation, empowering students to excel in a technologically advanced world.

Mission:

M1: To provide high quality education and training in robotics and automation, equipping
students with the knowledge, skills, and attitudes necessary for successful careers in the field.

M2: To foster a culture of innovation and entrepreneurship, encouraging student and faculty to
develop and apply cutting-edge technologies in robotics and automation

M3: To conduct impactful research and development activities, addressing real-world
challenges and advancing the field of robotics and automation

M4: To promote ethical practices, environmental sustainability and social responsibility in the
deployment of technologies

M5. To collaborate with industry, academia and research organizations to create opportunities
for industry-driven projects, internships, and placements ensuring the relevance of our
programs and enhancing industry readiness or our graduates

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Programme Educational Objectives (PEOs)

PEO1- ANALYTICAL SKILLS:

Using a solid foundation in mathematical, scientific, engineering, and current computing

principles, formulate, analyse, and resolve engineering issues in real-world domain.

PEO2- TECHNICAL SKILLS:

 Apply artificial intelligence theory and concepts to analyse the requirements, realise

technical specifications, and design engineering solutions.

PEO3- SOFT SKILLS:

Through inter-disciplinary projects and a variety of professional activities, demonstrate

technical proficiency, AI competency, and foster collaborative learning and a sense of

teamwork.

PEO4- PROFESSIONAL ETHICS:

Excel as socially responsible engineers or entrepreneurs with high moral and ethical

standards, competence, and soft skills that will enable them to contribute to societal

demands and achieve sustainable advancement in emerging computer technologies.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineer ing
fundamentals, and an engineering specialization to the solution of complex engineer ing
problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineer ing
problems and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

PO4: Conduct investigations of complex problems : Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data,
and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professiona l
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilit ies
and norms of the engineering practice.

PO9: Individual and teamwork: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to comprehend
and write effective reports and design documentation, make effective presentations, and
give and receive clear instructions.

P11: Project management and finance: Demonstrate knowledge and understanding of the

member and leader in a team, to manage projects and in multidisciplinary
environments.

P12: Life-long learning: Recognize the need for and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technologica l
change.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Identify the needs, analyze, design and develop simple robotic systems and programs for

diverse applications in real time.

PSO2: Design, select and integrate appropriate automation and robotic subsystems for mult i-

domain engineering and integrate software applications tools.

PSO3: Develop impactful engineering solutions by using research-based knowledge and

research methods in the fields of advanced robotics and other relevant fields.

PSO4: Evaluate existing engineering elements and processes, identifying areas for

improvement. Propose innovative robotic and automation solutions to enhance the performance

and efficiency of conventional systems.

PSO5: Identify suitable sensing, interfacing, control, actuation, and communica tion
technologies to integrate various subsystems. Develop robots capable of analyzing data and

implementing automated solutions through seamless connectivity between different components

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

University Syllabus

Lab 1: Implementation of toy problems
Lab 2: Developing agent programs for real world problems
Lab 3: Implementation of constraint satisfaction problems
Lab 4: Implementation and Analysis of DFS and BFS for an application
Lab 5: Developing Best first search and A* Algorithm for real world
 problems
Lab 6: Implementation of minimax algorithm for an application
Lab7: Implementation of unification and resolution for real world
 problems.
Lab 8: Implementation of knowledge representation schemes - use cases
Lab 9: Implementation of uncertain methods for an application
Lab 10: Implementation of block world problem
Lab 11: Implementation of learning algorithms for an application
Lab 12: Development of ensemble model for an application
Lab 13: Expert System case study
Lab 14: Implementation of NLP programs
Lab 15: Applying deep learning methods to solve an application.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Course Outcomes (COs)

Upon successful completion of the course, the students will be able to:

CO1: Apply various AI search algorithms (uninformed, informed, heuristic, constraint
 satisfaction,).
CO2: Understand the fundamentals of knowledge representation, inference.
CO3: Understand the fundamentals of theorem proving using AI tools.
CO4: Demonstrate working knowledge of reasoning in the presence of incomplete and/or
 uncertain information.

CO5: Apply AI techniques and technologies to solve real world business problems.

CO-PO Mapping

CO-PSO Mapping

*3-HIGH
*2-MEDIUM
*1-LOW

CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1 3 2 1 1 2 3 2

CO2 1 2 3 1 2 3

CO3 3 3 3 2 3 2

CO4 1 1 2 2 2 2

CO5 2 3 3 3 3 2 3 2 2 2 3

CO 1.8 2 1.2 1.6 1.6 1 1.2 1 1.4 1.2 0.8 1.2

CO PSO1 PSO2 PSO3 PSO4

CO1 3 1

CO2 1 2 2

CO3 3 1

CO4 2 2 1 1

CO5 1 3 3 3

CO 2 1.4 1.2 1.2

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Course Overview

Artificial Intelligence Lab Manual for is designed to meet the course and
program requirements of university B.Tech III year students of CSE (AI&ML).
The concept of the lab work is to give brief practical experience for basic lab skills
to students. It provides the space and scope for self-study so that students can come
up with new and creative ideas.

 who come with proper preparation
should be able to perform the experiments without any difficulty.

The pre-requisite is having a basic working knowledge of Python. Python is
a general purpose, high-level programming language; other high-level languages
you might have heard of C++, PHP, Java and Python. Virtually all modern
programming languages make us of an Integrated Development Environment
(IDE), which allows the creation, editing, testing, and saving of programs and
modules. Python uses both processes, but because of the way programmers interact
with it, it is usually considered an interpreted language. Practical aspects are the
key to understanding and conceptual visualization of Theoretical aspects covered
in the books. Also, this course is designed to review the concepts of Data Structure,
studied in previous semester and implement the various algorithms related to
different data structures.

Students are expected to come thoroughly prepared for the lab. General
disciplines, safety guidelines and report writing are also discussed. We hope that
lab manual would be useful to students of CSE, IT, ECE and BSc branches and
author requests the readers to kindly forward their suggestions / constructive
criticism for further improvement of the work book.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

List of Experiments mapped with Cos

Minimum System requirements:

 Disk space: 1 GB.

 Operating systems: Windows* 7 or later, macOS, and Linux.

 Python* versions: 2.7.X, 3.6.X.,3.8.X and Python (Jupyter)

Sr.
No.

Title of the Experiment CO
Covered

1. PROGRAM 1: Introduction of various python libraries used
for machine learning.

CO1, CO3

2. PROGRAM 2: Write a Program to implement Uninformed
Search Technique: Breadth First Search

CO1, CO3

3. PROGRAM 3: Write a Program to implement Uninformed
Search Technique: Depth First Search

CO1, CO3

4. PROGRAM 4: Write a Program to implement Informed
Search Technique: A* Algorithm

CO1, CO3,
CO4

5. PROGRAM 5: Write a Program to implement Informed
Search Technique: AO* Algorithm

CO1, CO3

6. PROGRAM 6: Write a Program to implement Local Search
Technique: Hill Climbing Algorithm

CO1, CO3,
CO4

7. PROGRAM 7: Write a Program to implement Game Playing
Algorithms: Minimax and Alpha Beta Pruning

CO1, CO3,
CO4

8. PROGRAM 8: Chatbot in Python CO2, CO4,
CO5

9. PROGRAM 9: Program to Implement N-Queens Problem
using Python

CO2, CO4,
CO5

10. PROGRAM 10: Program to Implement Missionaries -
Cannibals Problems using Python

CO2, CO4,
CO5

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

DOs

1. Login-on with your username and password.

2. Log off the Computer every time when you leave the Lab.

3. Arrange your chair properly when you are leaving the lab.

4. Put your bags in the designated area.

5. Ask permission to print.

1. Do not share your username and password.

2. Do not remove or disconnect cables or hardware parts.

3. Do not personalize the computer setting.

4. Do not run programs that continue to execute after you log off.

5. Do not download or install any programs, games or music on computer in Lab.

6. Personal Internet use chat room for Instant Messaging (IM) and Sites is strictly
 prohibited.

7. No Internet gaming activities allowed.

8. Tea, Coffee, Water & Eatables are not allowed in the Computer Lab.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

General Safety Precautions

Precautions (In case of Injury or Electric Shock)

1. To break the victim with live electric source, use an insulator such as fire wood or plastic to

break the contact. Do not touch the victim with bare hands to avoid the risk of electrifying
yourself.

2. Unplug the risk of faulty equipment. If main circuit breaker is accessible, turn the circuit off.

3. If the victim is unconscious, start resuscitation immediately, use your hands to press the chest
 in and out to continue breathing function. Use mouth-to-mouth resuscitation if necessary.

4. Immediately call medical emergency and security. Remember! Time is critical; be best.

Precautions (In case of Fire)

1. Turn the equipment off. If power switch is not immediately accessible, take plug off.

2. If fire continues, try to curb the fire, if possible, by using the fire extinguisher or by covering
 it with a heavy cloth if possible, isolate the burning equipment from the other surrounding
 equipment.

3. Sound the fire alarm by activating the nearest alarm switch located in the hallway.

4. Call security and emergency department immediately:

Emergency: Reception

Security: Main Gate

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Guidelines to students for report preparation

All students are required to maintain a record of the experiments conducted by them. Guidelines
for its preparation are as follows: -

1) All files must contain a title page followed by an index page. The files will not be signed by
 the faculty without an entry in the index page.

 pages.
3) For each experiment, the record must contain the following

(i) Aim/Objective of the experiment
(ii) Pre-experiment work (as given by the faculty)
(iii) Lab assignment questions and their solutions
(iv) Test Cases (if applicable to the course)
(v) Results/ output

Note:
1. Students must bring their lab record along with them whenever they come for the lab.
2. Students must ensure that their lab record is regularly evaluated.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Lab Assessment Criteria

An estimated 10 lab classes are conducted in a semester for each lab course. These lab classes
are assessed continuously. Each lab experiment is evaluated based on 5 assessment criteria as
shown in following table. Assessed performance in each experiment is used to compute CO
attainment as well as internal marks in the lab course.

Grading
Criteria

Exemplary (4) Competent (3) Needs
Improvement
(2)

Poor (1)

AC1:
Pre-Lab written
work (this may be
assessed through
viva)

Complete procedure
with underlined
concept is properly
written

Underlined concept
is written but
procedure is
incomplete

Not able to write
concept and
procedure

Underlined concept
is not clearly
understood

AC2:
Program Writing/
Modeling

Unable to
understand the
reason for errors/
bugs even after they
are explicit ly
pointed out

Assigned problem
is properly
analyzed, correct
solution designed,
appropriate
language
constructs/ tools are
applied

Assigned problem
is properly analyzed
& correct solution
designed

Assigned problem
is properly analyzed

AC3:
Identification &
Removal of
errors/ bugs

Able to identify
errors/ bugs and
remove them

Able to identify
errors/ bugs and
remove them with
little bit of guidance

Is dependent totally
on someone for
identification of
errors/ bugs and
their removal

Unable to
understand the
reason for errors/
bugs even after they
are explicit ly
pointed out

AC4:
Execution &
Demonstration

All variants of input
/output are tested,
Solution is well
demonstrated and
implemented
concept is clearly
explained

All variants of input
/output are not
tested, However,
solution is well
demonstrated and
implemented
concept is clearly
explained

Only few variants of
input /output are
tested,
Solution is well
demonstrated but
implemented
concept is not
clearly explained

Solution is not well
demonstrated and
implemented
concept is not
clearly explained

AC5:
Lab Record
Assessment

All assigned
problems are well
recorded with
objective, design
constructs and
solution along with
Performance
analysis using all
variants of input
and output

More than 70 % of
the assigned
problems are well
recorded with
objective, design
contracts and
solution along with
Performance
analysis is done
with al l variants of
input and output

Less than 70 % of
the assigned
problems are well
recorded with
objective, design
contracts and
solution along with
Performance
analysis is done
with al l variants of
input and output

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

LAB EXPERIMENTS

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

 # PROGRAM 1: Introduction of various python libraries used for machine learning.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM 2: Program to implement Uninformed Search Technique: Breadth First Search

Source Code:

graph = {

 '5' : ['3','7'],

 '3' : ['2', '4'],

 '7' : ['8'],

 '2' : [],

 '4' : ['8'],

 '8' : []

}

visited = [] # List for visited nodes.

queue = [] #Initialize a queue

def bfs(visited, graph, node): #function for BFS

 visited.append(node)

 queue.append(node)

 while queue: # Creating loop to visit each node

 m = queue.pop(0)

 print (m, end = " ")

 for neighbour in graph[m]:

 if neighbour not in visited:

 visited.append(neighbour)

 queue.append(neighbour)

Driver Code

print("Following is the Breadth-First Search")

bfs(visited, graph, '5')

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Step-by-step algorithm for Breadth-First Search:

 Initialize a queue to keep track of nodes to visit.
 Enqueue the starting node into the queue.
 Initialize a set to keep track of visited nodes, and add the starting node to the set.
 While the queue is not empty, repeat steps 5-7.
 Dequeue the first node from the queue.
 For each neighbor of the dequeued node that has not been visited yet, add it to the

visited set and enqueue it into the queue.
 If the goal node is found, return it. Otherwise, continue to step 4.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM 3: Program to implement Uninformed Search Technique: Depth First Search

Source Code:

graph = {

 '5' : ['3','7'],

 '3' : ['2', '4'],

 '7' : ['8'],

 '2' : [],

 '4' : ['8'],

 '8' : []

}

visited = set() # Set to keep track of visited nodes of graph.

def dfs(visited, graph, node): #function for dfs

 if node not in visited:

 print (node)

 visited.add(node)

 for neighbour in graph[node]:

 dfs(visited, graph, neighbour)

Driver Code

print("Following is the Depth-First Search")

dfs(visited, graph, '5')

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Step-by-step algorithm for Depth-First Search:

 Initialize a stack to keep track of nodes to visit.
 Push the starting node into the stack.
 Initialize a set to keep track of visited nodes, and add the starting node to the set.
 While the stack is not empty, repeat steps 5-7.
 Pop the top node from the stack.
 For each neighbor of the popped node that has not been visited yet, add it to the visited

set and push it onto the stack.
 If the goal node is found, return it. Otherwise, continue to step 4.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM 4: Program to implement Informed Search Technique: A* Algorithm

Source Code:
class Node():

 def __init__(self, parent=None, position=None):
 self.parent = parent
 self.position = position

 self.g = 0
 self.h = 0
 self.f = 0

 def __eq__(self, other):
 return self.position == other.position

def astar(maze, start, end):
 """Returns a list of tuples as a path from the given start to the given end in the given
maze"""

 # Create start and end node
 start_node = Node(None, start)
 start_node.g = start_node.h = start_node.f = 0
 end_node = Node(None, end)
 end_node.g = end_node.h = end_node.f = 0

 # Initialize both open and closed list
 open_list = []
 closed_list = []

 # Add the start node
 open_list.append(start_node)

 # Loop until you find the end
 while len(open_list) > 0:

 # Get the current node
 current_node = open_list[0]
 current_index = 0
 for index, item in enumerate(open_list):
 if item.f < current_node.f:
 current_node = item
 current_index = index

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

 # Pop current off open list, add to closed list
 open_list.pop(current_index)
 closed_list.append(current_node)

 # Found the goal
 if current_node == end_node:
 path = []
 current = current_node
 while current is not None:
 path.append(current.position)
 current = current.parent
 return path[::-1] # Return reversed path

 # Generate children
 children = []
 for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: #
Adjacent squares

 # Get node position
 node_position = (current_node.position[0] + new_position[0],
current_node.position[1] + new_position[1])

 # Make sure within range
 if node_position[0] > (len(maze) - 1) or node_position[0] < 0 or
node_position[1] > (len(maze[len(maze)-1]) -1) or node_position[1] < 0:
 continue

 # Make sure walkable terrain
 if maze[node_position[0]][node_position[1]] != 0:
 continue

 # Create new node
 new_node = Node(current_node, node_position)

 # Append
 children.append(new_node)

 # Loop through children
 for child in children:

 # Child is on the closed list

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

 for closed_child in closed_list:
 if child == closed_child:
 continue

 # Create the f, g, and h values
 child.g = current_node.g + 1
 child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] -
end_node.position[1]) ** 2)
 child.f = child.g + child.h

 # Child is already in the open list
 for open_node in open_list:
 if child == open_node and child.g > open_node.g:
 continue

 # Add the child to the open list
 open_list.append(child)

def main():

 maze = [[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

 start = (0, 0)
 end = (7, 6)

 path = astar(maze, start, end)
 print(path)

if __name__ == '__main__':
 main()

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

// A* Search Algorithm

1. Initialize the open list

2. Initialize the closed list put the starting node on the open list (you can leave its f at zero)

3. while the open list is not empty

a) find the node with the least f on the open list, call it "q"
b) pop q off the open list
c) generate q's 8 successors and set their parents to q
d) for each successor

i) if successor is the goal, stop search
ii) else, compute both g and h for successor successor.g = q.g + distance
between successor and q successor.h = distance from goal to successor (This
can be done using many ways, we will discuss three heuristics- Manhattan,
Diagonal and Euclidean Heuristics) successor.f = successor.g + successor.h
iii)if a node with the same position as successor is in the OPEN list which has a
lower f than successor, skip this successor
iv) if a node with the same position as successor is in the CLOSED list which
has a lower f than successor, skip this successor otherwise, add the node to the
open list end (for loop)

 e) push q on the closed list end (while loop)

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM 5: Program to implement Informed Search Technique: AO* Algorithm

Source Code:
def Cost(H, condition, weight = 1):
 cost = {}
 if 'AND' in condition:
 AND_nodes = condition['AND']
 Path_A = ' AND '.join(AND_nodes)
 PathA = sum(H[node]+weight for node in AND_nodes)
 cost[Path_A] = PathA

 if 'OR' in condition:
 OR_nodes = condition['OR']
 Path_B =' OR '.join(OR_nodes)
 PathB = min(H[node]+weight for node in OR_nodes)
 cost[Path_B] = PathB
 return cost

Update the cost
def update_cost(H, Conditions, weight=1):
 Main_nodes = list(Conditions.keys())
 Main_nodes.reverse()
 least_cost= {}
 for key in Main_nodes:
 condition = Conditions[key]
 print(key,':', Conditions[key],'>>>', Cost(H, condition, weight))
 c = Cost(H, condition, weight)
 H[key] = min(c.values())
 least_cost[key] = Cost(H, condition, weight)
 return least_cost

Print the shortest path
def shortest_path(Start,Updated_cost, H):
 Path = Start
 if Start in Updated_cost.keys():
 Min_cost = min(Updated_cost[Start].values())
 key = list(Updated_cost[Start].keys())
 values = list(Updated_cost[Start].values())
 Index = values.index(Min_cost)

 # FIND MINIMIMUM PATH KEY
 Next = key[Index].split()
 # ADD TO PATH FOR OR PATH

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

 if len(Next) == 1:

 Start =Next[0]
 Path += '<--' +shortest_path(Start, Updated_cost, H)
 # ADD TO PATH FOR AND PATH
 else:
 Path +='<--('+key[Index]+') '

 Start = Next[0]

 Path += '[' +shortest_path(Start, Updated_cost, H) + ' + '

 Start = Next[-1]
 Path += shortest_path(Start, Updated_cost, H) + ']'

 return Path

H = {'A': -1, 'B': 5, 'C': 2, 'D': 4, 'E': 7, 'F': 9, 'G': 3, 'H': 0, 'I':0, 'J':0}

Conditions = {
'A': {'OR': ['B'], 'AND': ['C', 'D']},
'B': {'OR': ['E', 'F']},
'C': {'OR': ['G'], 'AND': ['H', 'I']},
'D': {'OR': ['J']}
}
weight
weight = 1
Updated cost
print('Updated Cost :')
Updated_cost = update_cost(H, Conditions, weight=1)
print('*'*75)
print('Shortest Path :\n',shortest_path('A', Updated_cost,H))

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Working of AO algorithm:
The AO* algorithm works on the formula given below :
f(n) = g(n) + h(n)
where,

 g(n): The actual cost of traversal from initial state to the current state.

 h(n): The estimated cost of traversal from the current state to the goal state.

 f(n): The actual cost of traversal from the initial state to the goal state

Step-1: Create an initial graph with a single node (start node).

Step-2: Transverse the graph following the current path, accumulating node that has not yet

been expanded or solved.

Step-3: Select any of these nodes and explore it. If it has no successors then call this value-

FUTILITY else calculate f'(n) for each of the successors.

Step-4: If f'(n)=0, then mark the node as SOLVED.

Step-5: Change the value of f'(n) for the newly created node to reflect its successors by

backpropagation.

Step-6: Whenever possible use the most promising routes, If a node is marked as SOLVED

then mark the parent node as SOLVED.

Step-7: If the starting node is SOLVED or value is greater than FUTILITY then stop else

repeat from Step-2.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM 6: Program to implement Local Search Technique: Hill Climbing Algorithm

Source Code:

import random

def randomSolution(tsp):
 cities = list(range(len(tsp)))
 solution = []

 for i in range(len(tsp)):

 randomCity = cities[random.randint(0, len(cities) - 1)]
 solution.append(randomCity)
 cities.remove(randomCity)

 return solution

def routeLength(tsp, solution):
 routeLength = 0
 for i in range(len(solution)):
 routeLength += tsp[solution[i - 1]][solution[i]]
 return routeLength

def getNeighbours(solution):
 neighbours = []
 for i in range(len(solution)):
 for j in range(i + 1, len(solution)):
 neighbour = solution.copy()
 neighbour[i] = solution[j]
 neighbour[j] = solution[i]
 neighbours.append(neighbour)
 return neighbours

def getBestNeighbour(tsp, neighbours):
 bestRouteLength = routeLength(tsp, neighbours[0])
 bestNeighbour = neighbours[0]
 for neighbour in neighbours:

 currentRouteLength = routeLength(tsp, neighbour)
 if currentRouteLength < bestRouteLength:
 bestRouteLength = currentRouteLength
 bestNeighbour = neighbour
 return bestNeighbour, bestRouteLength

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

def hillClimbing(tsp):
 currentSolution = randomSolution(tsp)
 currentRouteLength = routeLength(tsp, currentSolution)
 neighbours = getNeighbours(currentSolution)
 bestNeighbour, bestNeighbourRouteLength = getBestNeighbour(tsp, neighbours)

 while bestNeighbourRouteLength < currentRouteLength:
 currentSolution = bestNeighbour
 currentRouteLength = bestNeighbourRouteLength

 neighbours = getNeighbours(currentSolution)
 bestNeighbour, bestNeighbourRouteLength = getBestNeighbour(tsp, neighbours)

 return currentSolution, currentRouteLength

def main():

 tsp = [
 [0, 400, 500, 300],
 [400, 0, 300, 500],
 [500, 300, 0, 400],
 [300, 500, 400, 0]
]

 print(hillClimbing(tsp))

if __name__ == "__main__":
 main()

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Algorithm for Simple Hill Climbing:
Step 1: Evaluate the initial state, if it is goal state then return success and Stop.
Step 2: Loop Until a solution is found or there is no new operator left to apply.
Step 3: Select and apply an operator to the current state.
Step 4: Check new state:
If it is goal state, then return success and quit.
Else if it is better than the current state then assign new state as a current state.
Else if not better than the current state, then return to step2.
Step 5: Exit.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM 7: Program to implement Game Playing Algorithms: Minimax and Alpha Beta

 Pruning

Source Code

a) MiniMAx Algorithm

import math

def minimax (curDepth, nodeIndex,
 maxTurn, scores,
 targetDepth):

 # base case : targetDepth reached
 if (curDepth == targetDepth):
 return scores[nodeIndex]

 if (maxTurn):
 return max(minimax(curDepth + 1, nodeIndex * 2,
 False, scores, targetDepth),
 minimax(curDepth + 1, nodeIndex * 2 + 1,
 False, scores, targetDepth))

 else:
 return min(minimax(curDepth + 1, nodeIndex * 2,
 True, scores, targetDepth),
 minimax(curDepth + 1, nodeIndex * 2 + 1,
 True, scores, targetDepth))

Driver code
scores = [3, 5, 2, 9, 12, 5, 23, 23]

treeDepth = math.log(len(scores), 2)

print("The optimal value is : ", end = "")

print(minimax(0, 0, True, scores, treeDepth))

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Algorithm:

1. Construct the complete game tree
2. Evaluate scores for leaves using the evaluation function
3. Back-up scores from leaves to root, considering the player type:
4. For max player, select the child with the maximum score
5. For min player, select the child with the minimum score
6. At the root node, choose the node with max value and perform the corresponding move

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Source Code

b) Alpha Beta Pruning Algorithm

Initial values of Alpha and Beta
MAX, MIN = 1000, -1000

Returns optimal value for current player
#(Initially called for root and maximizer)
def minimax(depth, nodeIndex, maximizingPlayer,
 values, alpha, beta):

 # Terminating condition. i.e
 # leaf node is reached
 if depth == 3:
 return values[nodeIndex]

 if maximizingPlayer:

 best = MIN

 # Recur for left and right children
 for i in range(0, 2):

 val = minimax(depth + 1, nodeIndex * 2 + i,
 False, values, alpha, beta)
 best = max(best, val)
 alpha = max(alpha, best)

 # Alpha Beta Pruning
 if beta <= alpha:
 break

 return best

 else:
 best = MAX

 # Recur for left and
 # right children
 for i in range(0, 2):

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

 val = minimax(depth + 1, nodeIndex * 2 + i,
 True, values, alpha, beta)
 best = min(best, val)
 beta = min(beta, best)

 # Alpha Beta Pruning
 if beta <= alpha:
 break

 return best

Driver Code
if __name__ == "__main__":

 values = [3, 5, 6, 9, 1, 2, 0, -1]

 print("The optimal value is :", minimax(0, 0, True, values, MIN, MAX))

Algorithm:

1. Define the initial values for alpha and beta as negative and positive infinity, respectively.
2. Begin the recursive search through the tree, starting at the root node.
3. If the current node is a leaf node, evaluate its value and return it.
4. If the current node is a maximizing node, then set alpha to the maximum of alpha and the

value returned from its child node.
5. If alpha is greater than or equal to beta, then prune the remaining child nodes and return

alpha.
6. If the current node is a minimizing node, then set beta to the minimum of beta and the

value returned from its child node.
7. If beta is less than or equal to alpha, then prune the remaining child nodes and return

beta.
8. Recurse to the next level of the tree, continuing with steps 3 to 7 until the entire tree has

been searched.
9. Return the final value of alpha or beta depending on whether the root node is a

maximizing or minimizing node.

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM 8: Chatbot in Python

1. $ pip install chatterbot
2. $ pip install chatterbot_corpus
3. $ pip install git+git://github.com/gunthercox/ChatterBot.git@master
4. $ pip install --upgrade chatterbot_corpus
5. $ pip install --upgrade chatterbot
6. # importing the required modules
7. from chatterbot import ChatBot
8. from chatterbot.trainers import ListTrainer
9. # creating a chatbot
10. myBot = ChatBot(
11. name = 'Siya',
12. read_only = True,
13. logic_adapters = [
14. 'chatterbot.logic.MathematicalEvaluation',
15. 'chatterbot.logic.BestMatch'
16.]
17.)
18. # training the chatbot
19. small_convo = [
20. 'Hi there!',
21. 'Hi',
22. 'How do you do?',
23. 'How are you?',
24. 'I\'m cool.',
25. 'Always cool.',
26. 'I\'m Okay',
27. 'Glad to hear that.',
28. 'I\'m fine',
29. 'I feel awesome',
30. 'Excellent, glad to hear that.',
31. 'Not so good',
32. 'Sorry to hear that.',
33. 'What\'s your name?',
34. ' I\'m Sakura. Ask me a math question, please.'

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

35.]
36. math_convo_1 = [
37. 'Pythagorean theorem',
38. 'a squared plus b squared equals c squared.'
39.]
40.
41. math_convo_2 = [
42. 'Law of Cosines',
43. 'c**2 = a**2 + b**2 - 2*a*b*cos(gamma)'
44.]

File: my_chatbot.py

1. # using the ListTrainer class
2. list_trainee = ListTrainer(myBot)
3. for i in (small_convo, math_convo_1, math_convo_2):
4. list_trainee.train(i)

OUTPUT:

starting a conversation
>>> print(myBot.get_response("Hi, there!"))
Hi
>>> print(myBot.get_response("What's your name?"))
I'm SIYA. Ask me a math question, please.
>>> print(myBot.get_response("Do you know Pythagorean theorem"))
a squared plus b squared equals c squared.
>>> print(myBot.get_response("Tell me the formula of law of cosines"))
c**2 = a**2 + b**2 - 2*a*b*cos(gamma)

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM 9: Program to Implement N-Queens Problem using Python

Python program to solve N Queen

Problem using backtracking
global N

N = 4
def printSolution(board):
for i in range(N):
for j in range(N):
print board[i][j],
print

A utility function to check if a queen can
be placed on board[row][col]. Note that this
function is called when "col" queens are
already placed in columns from 0 to col -1.
So we need to check only left side for
attacking queens
def isSafe(board, row, col):
Check this row on left side
for i in range(col):
if board[row][i] == 1:
return False
Check upper diagonal on left side
for i, j in zip(range(row, -1, -1), range(col, -1, -1)):
if board[i][j] == 1:
return False
Check lower diagonal on left side
for i, j in zip(range(row, N, 1), range(col, -1, -1)):
if board[i][j] == 1:
return False
return True
def solveNQUtil(board, col):
base case: If all queens are placed
then return true
if col >= N:
return True
Consider this column and try placing
this queen in all rows one by one
for i in range(N):
if isSafe(board, i, col):
Place this queen in board[i][col]

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

recur to place rest of the queens
if solveNQUtil(board, col + 1) == True:
return True
If placing queen in board[i][col
doesn't lead to a solution, then
queen from board[i][col]
board[i][col] = 0
if the queen can not be placed in any row in
this colum col then return false

return False
This function solves the N Queen problem using
Backtracking. It mainly uses solveNQUtil() to
solve the problem. It returns false if queens
cannot be placed, otherwise return true and
placement of queens in the form of 1s.

note that there may be more than one
solutions, this function prints one of the
feasible solutions.
def solveNQ():
board = [[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]
]
if solveNQUtil(board, 0) == False:
print "Solution does not exist"
return False
printSolution(board)
return True
driver program to test above function
solveNQ()

Output:
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

PROGRAM 10: Program to Implement Missionaries-Cannibals Problems using Python

'' mclib.py '''
class MCState :
MC is missionaries and cannibals
def __init__(self, state_vars, num_moves=0, parent=None):
self.state_vars = state_vars
self.num_moves = num_moves
self.parent = parent
decorator
@classmethod
def root(cls):
return cls((3,3,1))
def get_possible_moves(self):
''' return all possible moves in the game as tuples
possible moves:
1 or 2 mis
1 or 2 cannibals
1 mis, 1 can
'''
moves = [(1, 0), (2, 0), (0, 1), (0, 2), (1, 1)]
return moves
def is_legal(self):
missionaries = self.state_vars[0]
cannibals = self.state_vars[1]
could have done tuple unpacking too:
missionaries, cannibals, boat = self.state_vars
if missionaries < 0 or missionaries > 3:
return False
elif cannibals < 0 or cannibals > 3:
return False
return True
alternate
if 0 <= missionaries <= 3 and 0 <= cannibals <= 3
return True

def is_solution(self):
if self.state_vars == (0,0,0):
return True
return False
def is_failure(self):
missionaries = self.state_vars[0]
cannibals = self.state_vars[1]
boat = self.state_vars[2]

could have done tuple unpacking too:
missionaries, cannibals, boat = self.state_vars
missionaries on right side AND more cannibals than missionaries
if missionaries > 0 and missionaries < cannibals:
return True
to make this easier to understand, I will create temporary variables

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

but we could just substitute the math and skip the variables
missionaries_on_left = 3 - missionaries
cannibals_on_left = 3 - cannibals
if missionaries_on_left > 0 and missionaries_on_left < cannibals_on_left:
return True
if you replace the math in, you get:
#if 3 - missionaries > 0 and 3 - missionaires < 3 - cannaibals
which leads to:
#if missionaries < 3 and cannibals < missionaries:
if we make it here, we aren't in a failed state!
return False
def get_next_states(self):
using possible move, get next states
moves = self.get_possible_moves()
all_states = list()
mis_right, can_right, raft_right = self.state_vars
if raft is on right, subtract move from these numbers
if raft is on left, add these move numbers to these numbers
for move in moves:
change_mis, change_can = move
if raft_right == 1: ## mis_right = 3; can_right = 3, raft_right = 1
new_state_vars = (mis_right-change_mis, can_right-change_can, 0)
else :
new_state_vars = (mis_right+change_mis, can_right+change_can, 1)
notice the number of moves is increasing by 1
also notice we are passing self to our child.
new_state = MCState(new_state_vars, self.num_moves+1, self)
if new_state.is_legal():
all_states.append(new_state)
return all_states
def __str__(self):
return "MCState[{}]".format(self.state_vars)
def __repr__(self):
return str(self)

def search(dfs=True):
this is the stack/queue that we used before
from collections import deque
create the root state
root = MCState.root()
we use the stack/queue for keeping track of where to search next
to_search = deque()
use a set to keep track fo where we've been
seen_states = set()
use a list to keep track of the solutions that have been seen
solutions = list()
start the search with the root
to_search.append(root)
safety variable for infinite loops!
loop_count = 0
max_loop = 10000

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

while the stack/queue still has items
while len(to_search) > 0:
loop_count += 1
if loop_count > max_loop:
print(len(to_search))
print("Escaping this super long loop!")
break
get the next item
current_state = to_search.pop()
look at the current state's children
this uses the rule for actions and moves to create next states
it is also removing all illegal states
next_states = current_state.get_next_states()
next_states is a list, so iterate through it
for possible_next_state in next_states[::-1]:
to see if we've been here before, we look at the state variables
possible_state_vars = possible_next_state.state_vars

we use the set and the "not in" boolean comparison
if possible_state_vars not in seen_states:
if possible_next_state.is_failure():
#print("Failure!")
continue
elif possible_next_state.is_solution():
Save it into our solutions list
solutions.append(possible_next_state)
#print("Solution!")
continue
the state variables haven't been seen yet
so we add the state itself into the searching stack/queue
IMPORTANT
which side we append on changes how the search works
why is this?
if dfs:
to_search.append(possible_next_state)
else :
to_search.appendleft(possible_next_state)
now that we have "seen" the state, we add the state vars to the set.
this means next time when we do the "not in", that will return False
because it IS in
#seen_states.add(possible_state_vars)
seen_states.add(possible_state_vars)
finally, we reach this line when the stack/queue is empty (len(to_searching==))
print("Found {} solutions".format(len(solutions)))
return solutions
sol_dfs = search(True)
sol_bfs = search(False)
current_state = sol_dfs[0]
while current_state:
print(current_state)
current_state = current_state.parent

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

print("--")
current_state = sol_dfs[1]
while current_state:
print(current_state)
current_state = current_state.parent

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

print("--")
current_state = sol_bfs[0]
while current_state:
print(current_state)
current_state = current_state.parent
print("--")
current_state = sol_bfs[1]
while current_state:
print(current_state)
current_state = current_state.parent
Found 2 solutions
Found 2 solutions
MCState[(0, 0, 0)]
MCState[(1, 1, 1)]
MCState[(0, 1, 0)]
MCState[(0, 3, 1)]
MCState[(0, 2, 0)]
MCState[(2, 2, 1)]
MCState[(1, 1, 0)]
MCState[(3, 1, 1)]
MCState[(3, 0, 0)]
MCState[(3, 2, 1)]
MCState[(3, 1, 0)]
MCState[(3, 3, 1)]
--
MCState[(0, 0, 0)]
MCState[(0, 2, 1)]
MCState[(0, 1, 0)]
MCState[(0, 3, 1)]
MCState[(0, 2, 0)]
MCState[(2, 2, 1)]
MCState[(1, 1, 0)]
MCState[(3, 1, 1)]
MCState[(3, 0, 0)]
MCState[(3, 2, 1)]
MCState[(3, 1, 0)]
MCState[(3, 3, 1)]
--
MCState[(0, 0, 0)]
MCState[(0, 2, 1)]
MCState[(0, 1, 0)]
MCState[(0, 3, 1)]
MCState[(0, 2, 0)]
MCState[(2, 2, 1)]
MCState[(1, 1, 0)]
MCState[(3, 1, 1)]
MCState[(3, 0, 0)]

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

MCState[(3, 2, 1)]
MCState[(2, 2, 0)]
MCState[(3, 3, 1)]
--
MCState[(0, 0, 0)]
MCState[(1, 1, 1)]
MCState[(0, 1, 0)]
MCState[(0, 3, 1)]
MCState[(0, 2, 0)]
MCState[(2, 2, 1)]
MCState[(1, 1, 0)]
MCState[(3, 1, 1)]
MCState[(3, 0, 0)]
MCState[(3, 2, 1)]
MCState[(2, 2, 0)]
MCState[(3, 3, 1)]

Artificial Intelligent Lab (LC-RA-316G)

Department of RAE 2022-23

This lab manual has been updated by

Dr. Ritu Pahwa

(ritu.pahwa@ggnindia.dronacharya.info)

Cross checked by

HoD / EEE & ECE

