
Unit -2

Artificial Intelligence

NPTEL Links (Unit-2)

S.No Topics (Associated with Unit -

2)

NPTEL Video Link:

1 Knowledge Representation and

Logic

https://nptel.ac.in/cour

ses/106/105/10610507

7/

2 Interface in Propositional Logic

3 First Order Logic

4 Reasoning Using First Order

Logic

5 Rule Based System

https://nptel.ac.in/courses/106/105/106105077/
https://nptel.ac.in/courses/106/105/106105077/
https://nptel.ac.in/courses/106/105/106105077/

NPTEL Links (Unit-2)

S.No Topics (Associated with Unit

-2)

NPTEL Video

Link:

6 Rule Based Systems II

https://nptel.ac.in/co

urses/106/105/1061

05077/

7 Semantic Net

8 Reasoning in Semantic Net

9 Frames

https://nptel.ac.in/courses/106/105/106105077/
https://nptel.ac.in/courses/106/105/106105077/
https://nptel.ac.in/courses/106/105/106105077/

Knowledge Representation
● Knowledge representation (KR) is an important

issue in both cognitive science and artificial
intelligence.
− In cognitive science, it is concerned with the way

people store and process information and
− In artificial intelligence (AI), main focus is to store

knowledge so that programs can process it and
achieve human intelligence.

● There are different ways of representing
knowledge e.g.
− predicate logic,
− semantic networks,
− extended semantic net,
− frames,
− conceptual dependency etc.

● In predicate logic, knowledge is represented in
the form of rules and facts as is done in Prolog.

Semantic Network

 Formalism for representing information
about objects, people, concepts and
specific relationship between them.

 The syntax of semantic net is simple. It is a
network of labeled nodes and links.
− It’s a directed graph with nodes corresponding

to concepts, facts, objects etc. and
− arcs showing relation or association between

two concepts.
 The commonly used links in semantic net

are of the following types.
- isa  subclass of entity (e.g., child hospital is

subclass of hospital)
- inst  particular instance of a class (e.g., India

is an instance of country)
- prop  property link (e.g., property of dog is

‘bark)

Representation of Knowledge in
Sem Net

 “Every human, animal and bird is living
thing who breathe and eat. All birds can fly.
All man and woman are humans who have
two legs. Cat is an animal and has a fur. All
animals have skin and can move. Giraffe is
an animal who is tall and has long legs.
Parrot is a bird and is green in color”.

Representation in Predicate Logic
● Every human, animal

and bird is living thing
who breathe and eat.

 X [human(X) 
living(X)]

 X [animal(X) 
living(X)]

 X [bird(X)  living(X)]
● All birds are animal

and can fly.
 X [bird(X)  canfly(X)]
● Every man and

woman are humans
who have two legs.

 X [man(X)  haslegs(X)]
 X [woman(X) 

haslegs(X)]
 X [human(X)  has(X,

legs)]

● Cat is an animal and
has a fur.

 animal(cat)  has(cat,
fur)

● All animals have skin
and can move.

 X [animal(X)  has(X,
skin)  canmove(X)]

● Giraffe is an animal
who is tall and has
long legs.

 animal(giraffe) 
has(giraffe, long_legs) 
is(giraffe, tall)

● Parrot is a bird and is
green in color.

 bird(parrot) 
has(parrot,
green_colour)

Representation in Semantic Net
 Semantic Net

 breathe, eat

 Living_thing prop

 isa isa

two legs isa fly

Human Animal Bird

 isa isa inst isa inst

 prop green

Man Woman Giraffe Cat Parrot

 prop prop prop

 inst fur

john skin, move tall, long legs

Inheritance

● Inheritance mechanism allows knowledge to be stored at
the highest possible level of abstraction which reduces the
size of knowledge base.
− It facilitates inferencing of information associated with semantic

nets.

− It is a natural tool for representing taxonomically structured
information and ensures that all the members and sub-concepts of a
concept share common properties.

− It also helps us to maintain the consistency of the knowledge base
by adding new concepts and members of existing ones.

● Properties attached to a particular object (class) are to be
inherited by all subclasses and members of that class.

Property Inheritance Algorithm

Input: Object, and property to be found from Semantic Net;

Output:Yes, if the object has the desired property else return
false;

Procedure:

● Find an object in the semantic net; Found = false;

● While {(object ≠ root) OR Found } DO
 { If there is a a property attribute attached with an object then

 { Found = true; Report ‘Yes’} else

 object=inst(object, class) OR isa(object, class)

 };

● If Found = False then report ‘No’; Stop

Coding of Semantic Net in Prolog
Isa facts Instance facts Property facts

isa(living_thing, nil).

isa(human, living_thing).

isa(animals, living_thing).

isa(birds, living_thing).

isa(man, human).

isa(woman, human).

isa(cat, animal).

inst(john, man).

inst(giraffe, animal).

inst(parrot, bird)

prop(breathe, living_thing).

prop(eat, living_thing).

prop(two_legs, human).

prop(skin, animal).

prop(move, animal).

prop(fur, bird).

prop(tall, giraffe).

prop(long_legs, giraffe).

prop(tall, animal).

prop(green, parrot).

Inheritance Rules in Prolog

Instance rules:
instance(X, Y) :- inst(X, Y).
instance (X, Y) :- inst(X, Z), subclass(Z,Y).
Subclass rules:
subclass(X, Y) :- isa(X, Y).
subclass(X, Y) :- isa(X, Z), subclass(Z, Y) .
Property rules:
property(X, Y) :- prop(X, Y).
property(X, Y) :- instance(Y,Z),

property(X, Z).
property(X, Y) :- subclass(Y, Z),

property(X, Z).

Queries

● Is john human?

● Is parrot a living
thing?

● Is giraffe an aimal?
● Is woman subclassof

living thing
● Does parrot fly?

● Does john breathe?
● has parrot fur?

● Does cat fly?

?- instance(john, humans).
Y

?- instance (parrot,
living_thing).
Y

?- instance (giraffe,
animal).Y

?- subclass(woman,
living_things).
Y

?- property(fly, parrot). Y
?- property (john, breathe).

 Y
?- property(fur, parrot). N
?- property(fly, cat).

 N

Knowledge Representation using
Frames

● Frames are more structured form of packaging knowledge,
− used for representing objects, concepts etc.

● Frames are organized into hierarchies or network of frames.
● Lower level frames can inherit information from upper level

frames in network.
● Nodes are connected using links viz.,

− ako / subc (links two class frames, one of which is subclass of other
e.g., science_faculty class is ako of faculty class),

− is_a / inst (connects a particular instance of a class frame e.g., Renuka
is_a science_faculty)

− a_part_of (connects two class frames one of which is contained in
other e.g., faculty class is_part_of department class).

− Property link of semantic net is replaced by SLOT fields.

Cont…
● A frame may have any number of slots needed for describing

object. e.g.,
− faculty frame may have name, age, address, qualification etc as slot

names.
● Each frame includes two basic elements : slots and facets.

− Each slot may contain one or more facets (called fillers) which may
take many forms such as:
 value (value of the slot),
 default (default value of the slot),
 range (indicates the range of integer or enumerated values, a slot can

have),
 demons (procedural attachments such as if_needed, if_deleted,

if_added etc.) and
 other (may contain rules, other frames, semantic net or any type of

other information).

Frame Network - Example

university

a_part_of

department hostel

a_part_of is_a

faculty nilgiri hostel

ako

science_faculty

is_a

renuka

Detailed Representation of Frame
Network

frame0

f_name: university

phone: (default: - 011686971)

address : (default - IIT Delhi)

frame1 frame2

f_name : department f_name : hostel

a_part_of : frame0 a_part_of : frame0

programme : [Btech, Mtech, Ph.D] room : (default - 100)

frame11 frame21

f_name: faculty f_name : nilgiri

a_part_of : frame1 is_a : frame2

age : range (25 - 60) phone : 0116862345

nationality: (default - Indian)

qual: (default - Post graduate)

frame12 frame13

f_name : science faculty f_name : renuka

ako : frame11 is_a : frame12

qual : (default - M.Sc) qual : Ph.D

age: 45

adrress: Janak Puri

Description of Frames

● Each frame represents either a class or an instance.
● Class frame represents a general concept whereas

instance frame represents a specific occurrence of
the class instance.

● Class frame generally have default values which
can be redefined at lower levels.

● If class frame has actual value facet then decedent
frames can not modify that value.

● Value remains unchanged for subclasses and
instances.

Inheritance in Frames

● Suppose we want to know nationality or phone of an
instance-frame frame13 of renuka.

● These informations are not given in this frame.

● Search will start from frame13 in upward direction till we get
our answer or have reached root frame.

● The frames can be easily represented in prolog by choosing
predicate name as frame with two arguments.

● First argument is the name of the frame and second argument
is a list of slot - facet pair.

Coding of frames in Prolog

frame(university, [phone (default, 011686971),
 address (default, IIT Delhi)]).

frame(deaprtment, [a_part_of (university),
 programme ([Btech, Mtech, Ph.d]))]).

frame(hostel, [a_part_of (university), room(default, 100)]).

frame(faculty, [a_part_of (department), age(range,25,60),
nationality(default, indian), qual(default, postgraduate)]).

frame(nilgiri, [is_a (hostel), phone(011686234)]).

frame(science_faculty, [ako (faculty),qual(default, M.Sc.)]).

frame(renuka, [is_a (science_faculty), qual(Ph.D.), age(45),
address(janakpuri)]).

Inheritance Program in Prolog

find(X, Y) :- frame(X, Z), search(Z, Y), !.

find(X, Y) :- frame(X, [is_a(Z),_]), find(Z, Y), !.

find(X, Y) :- frame(X, [ako(Z), _]), find(Z, Y), !.

find(X, Y) :- frame(X, [a_part_of(Z), _]), find(Z, Y).

● Predicate search will basically retrieve the list of slots-facet
pair and will try to match Y for slot.

● If match is found then its facet value is retrieved otherwise
process is continued till we reach to root frame

Extended Semantic Network

● In conventional Sem Net, clausal form of logic can not
be expressed.

● Extended Semantic Network (ESNet) combines the
advantages of both logic and semantic network.

● In the ESNet, terms are represented by nodes similar
to Sem Net.

● Binary predicate symbols in clausal logic are
represented by labels on arcs of ESNet.
− An atom of the form “Love(john, mary)” is an arc labeled as

‘Love’ with its two end nodes representing ‘john’ and ‘mary’.

● Conclusions and conditions in clausal form are
represented by different kinds of arcs.
− Conditions are drawn with two lines and conclusions are

drawn with one heavy line .

Examples

● Represent ‘grandfather’ definition

 Gfather(X, Y)  Father(X, Z), Parent(Z, Y) in
ESNet.

 Z

 Father Parent

X Y

 Gfather

Cont…Example

• Represent clausal rule “Male(X), Female(X) 
Human(X)” using binary representation as “Isa(X,
male), Isa(X, female)  Isa(X, human)” and
subsequently in ESNet as follows:

 male

 Isa Isa

 X human

 Isa

 female

Inference Rules in ESNet

● Inference rules are embedded in the representation
itself.

● The inference that “for every action of giving, there is
an action of taking” in clausal logic written as

 “Action(E, take)  Action(E, give)”.

ESNet Action

 E take

 Action

 E give

Cont…

● The inference rule such as “an actor of taking action
is also the recipient of the action” can be easily
represented in clausal logic as:
− Here E is a variable representing an event where an action

of taking is happening).

 Recipient(E, Y)  Acton(E, take), Actor (E, Y)

ESNet Action

E take

 Recipient

 Actor

Y

Example
Represent the following clauses of Logic in ESNet.
 Recipient(E, Y)  Acton(E, take), Actor (E, Y)
 Object (e, apple).
 Action(e, take).
 Actor (e, john) .

 apple

 Object

 e E Recipient

 Actor Action Actor

 Action

 john take Y

Contradiction

• The contradiction in the ESNet arises if we
have the following situation.

 Part_of

 P X

 Isa

 Part_of

 Y

Deduction in ESNet

● Both of the following inference mechanisms are available in
ESNet.
− Forward reasoning inference (uses bottom up approach)

 Bottom Up Inferencing: Given an ESNet, apply the
following reduction (resolution) using modus ponen
rule of logic ({A  B, B} then A).

− Backward reasoning inference (uses top down approach).

 Top Down Inferencing: Prove a conclusion from a given
ESNet by adding the denial of the conclusion to the
network and show that the resulting set of clauses in
the network is inconsistent.

Example: Bottom Up Inferencing

Given set of clauses

Isa(X, human)  Isa(X, man)

Isa(john, man).

Inferencing

Isa(john, human)

 human

 Isa

 X

 Isa

 man

 john Isa

 Here X is bound to john

 human

 Isa

 john

Example: Top Down Inferencing

Given set of clauses

Isa(X, human)  Isa(X, man)

Isa(john, man).

Prove conclusion

Query: Isa(john, human)

 denial of query

 human

 Isa

 X

 Isa

 man

 john Isa

 human

 Isa

 X

 Isa Isa

 man

 john Isa

Cont…

 human X = john

 Isa

 Isa

 john

Contradiction or Empty network is

generated. Hence “Isa(john, human)”

is proved.

Logic and Deduction

• Logic is used to formalize deduction

• Deduction = derivation of true statements (called conclusions)
from statements that are assumed to be true (called
premises)

• Natural language is not precise, so the careless use of logic
can lead to claims that false statements are true, or to claims
that a statement is true, even though its truth does not
necessarily follow from the premises
=> Logic provides a way to talk about truth and correctness in a

 rigorous way, so that we can prove things, rather than make
 intelligent guesses and just hope they are correct

Why Propositional Logic?

• Propositional logic is a good vehicle to introduce
basic properties of logic; used to:

– Associate natural language expressions with semantic
representations

– Evaluate the truth or falsity of semantic
representations relative to a knowledge base

– Compute inferences over semantic representations

• One of the simplest and most common logic

– The core of (almost) all other logics

What is Propositional Logic?

• An unambiguous formal language, akin to a
programming language

– Syntax: Vocabulary for expressing concepts
without ambiguity

– Semantics: Connection to what we're reasoning
about

• Interpretation - what the syntax means

– Reasoning: How to prove things

• What steps are allowed

TECHNICAL SOLUTIONS

36

SYNTAX

37

Syntax

• Logical constants: true, false

• Propositional symbols: P, Q, S, ...

• Wrapping parentheses: (…)

• Atomic formulas: Propositional Symbols or logical constants

• Formulas are either atomic formulas, or can be formed by combining
atomic formulas with the following connectives:

  ...and [conjunction]

  ...or [disjunction]

 →...implies [implication / conditional]

 ↔..is equivalent [biconditional]

  ...not [negation]

Syntax (cont’)

• A sentence (well formed formula) is defined as
follows:
– A symbol is a sentence

– If S is a sentence, then S is a sentence

– If S is a sentence, then (S) is a sentence

– If S and T are sentences, then (S  T), (S  T), (S  T), and (S ↔ T) are
sentences

– A sentence results from a finite number of applications of the above
rules

Syntax – BNF Grammar

Sentence  AtomicSentence | ComplexSentence

AtomicSentence  True | False | P | Q | R | ...

ComplexSentence  (Sentence)

 | Sentence Connective Sentence

 |  Sentence

Connective   |  | → | ↔

Ambiguities are resolved through precedence    → ↔

or parentheses

 e.g.  P  Q  R  S is equivalent to ( P)  (Q  R))  S

 Syntax – Examples

• P means “It is hot.”

• Q means “It is humid.”

• R means “It is raining.”

• (P  Q)  R

“If it is hot and humid, then it is raining”

• Q  P

“If it is humid, then it is hot”

•  p   q

• (p  q)

• (p  q)  r

• p  q  r

• ((( p)  q)  r)

 (( r)  p)

• ( (p  q)  q) 

r

• (( p)  ( q)) 

( r)

• Etc.

SEMANTICS

42

Semantics

• Interpretations

• Equivalence

• Substitution

• Models and Satisfiability

• Validity

• Logical Consequence (Entailment)

• Theory

Semantics – Some Informal Definitions

• Given the truth values of all symbols in a sentence, it can be “evaluated”
to determine its truth value (True or False)

• A model for a KB is a “possible world” (assignment of truth values to
propositional symbols) in which each sentence in the KB is True

• A valid sentence or tautology is a sentence that is True under all
interpretations, no matter what the world is actually like or how the
semantics are defined (example: “It’s raining or it’s not raining”)

• An inconsistent sentence or contradiction is a sentence that is False under
all interpretations (the world is never like what it describes, as in “It’s
raining and it’s not raining”)

• P entails Q, written P ⊧ Q, means that whenever P is True, so is Q; in other
words, all models of P are also models of Q

Interpretations

• In propositional logic, truth values are assigned to the atoms
of a formula in order to evaluate the truth value of the
formula

• An assignment is a function

v : P → {T,F}

 v assigns a truth value to any atom in a given formula (P is the
set of all propositional letters, i.e. atoms)
Suppose F denotes the set of all propositional formulas. We
can extend an assignment v to a function

v : F → {T,F}

 which assigns the truth value v(A) to any formula A in F. v is
called an interpretation.

Interpretations (cont’)

• Example:
– Suppose v is an assignment for which

 v(p) = F, v(q) = T.

– If A = (¬p → q) ↔ (p V q), what is v(A)?

 Solution:

 v(A) = v((¬p → q) ↔ (p V q))

 = v(¬p → q) ↔ v(p V q)

 = (v(¬p) → v(q)) ↔ (v(p) V v(q))

 = (¬v(p) → v(q)) ↔ (v(p) V v(q))

 = (¬F → T) ↔ (F V T)

 = (T → T) ↔ (F V T)

 = T ↔ T

 = T

Equivalence

• If A,B are formulas are such that

v(A) = v(B)

 for all interpretations v, A is (logically) equivalent to B:

A ≡ B

• Example: ¬p V q ≡ p → q since both formulas are true in all
interpretations except when v(p) = T, v(q) = F and are false for
that particular interpretation

• Caution: ≡ does not mean the same thing as ↔ :
– A ↔ B is a formula (syntax)

– A ≡ B is a relation between two formula (semantics)

Theorem: A ≡ B if and only if A ↔ B is true in every interpretation; i.e. A
↔ B is a tautology.

Equivalence and Substitution –
Examples

• Examples of logically equivalent formulas

• Example: Simplify
– Solution:

Models and Satisfiability

• A propositional formula A is satisfiable iff v(A) = T in some interpretation
v; such an interpretation is called a model for A.
– A is unsatisfiable (or, contradictory) if it is false in every interpretation

• A set of formulas U = {A1,A2,…,An} is satisfiable iff there exists an
interpretation v such that v(A1) = v(A2) =…= v(An) = T; such an
interpretation is called a model of U.

– U is unsatisfiable if no such interpretation exists

• Relevant properties:

– If U is satisfiable, then so is U − {Ai} for any i = 1, 2,…, n

– If U is satisfiable and B is valid, then U U {B} is also satisfiable

– If U is unsatisfiable and B is any formula, U U {B} is also unsatisfiable

– If U is unsatisfiable and some Ai is valid, then U − {Ai} is also unsatisfiable

Validity

• A is valid (or, a tautology), denoted ⊧ A, iff v(A) = T, for all interpretations v

• A is not valid (or, falsifiable), denoted ⊭ A if we can find some
interpretation v, such that v(A) = F

• Relationship between validity, satisfiability, falsifiability, and
unsatisfiability:

Validity (cont’)

• Examples:

– Valid (tautology):

– Not valid, but satisfiable:

– False (contradiction):

• Theorem:

 (a) A is valid if and only if ¬A is unsatisfiable

 (b) A is satisfiable if and only if ¬A is falsifiable

Logical Consequence (i.e. Entailment)

• Let U be a set of formulas and A a formula. A is a (logical)
consequence of U, if any interpretation v which is a model of
U is also a model for A:

U ⊧ A

• Example:
If some interpretation v is a model for the set

 , it must satisfy

but in this interpretation, we also have

Theory

• A set of formulas T is a theory if it is closed under logical
consequence. This means that, for every formula A, if T ⊧ A,
then A is in T

• Let U be a set of formulas. Then, the set of all consequences
of U

T(U) = {A | U ⊧ A}

 is called the theory of U.
The formulas in U are called the axioms for the theory T(U).

INFERENCE

54

Inference Methods

• Several basic methods for determining
whether a given set of premises
propositionally entails a given conclusion

– Truth Table Method

– Deductive (Proof) Systems

– Resolution

Truth Table Method

• One way of determining whether or not a set of premises logically entails
a possible conclusion is to check the truth table for the logical constants of
the language

• This is called the truth table method and can be formalized as follows:

– Step 1: Starting with a complete truth table for the propositional constants,
iterate through all the premises of the problem, for each premise eliminating
any row that does not satisfy the premise

– Step 2: Do the same for the conclusion

– Step 3: Finally, compare the two tables; If every row that remains in the
premise table, i.e. is not eliminated, also remains in the conclusion table, i.e. is
not eliminated, then the premises logically entail the conclusion

Example

• Simple sentences:
– Amy loves Pat: lovesAmyPat

– Amy loves Quincy: lovesAmyQuincy

– It is Monday: ismonday

• Premises:
– If Amy loves Pat, Amy loves Quincy:

 lovesAmyPat  lovesAmyQuincy

– If it is Monday, Amy loves Pat or Quincy:

 ismonday  lovesAmyPat  lovesAmyQuincy

• Question:
– If it is Monday, does Amy love Quincy?

 i.e. is ismonday  lovesAmyQuincy entailed by the premises?

Step 1: Truth table for the premises
lovesAmyP

at

lovesAmyQu

incy

ismonday lovesAmyPa

t 

lovesAmyQu

incy

ismonday 

lovesAmyPa

t 

lovesAmyQu

incy

T T T T T

T T F T T

T F T F T

T F F F T

F T T T T

F T F T T

F F T T F

F F F T T

Step 1: Eliminate non-sat
interpretations

lovesAmyP

at

lovesAmyQu

incy

ismonday lovesAmyPa

t 

lovesAmyQu

incy

ismonday 

lovesAmyPa

t 

lovesAmyQu

incy

T T T T T

T T F T T

T F T F T

T F F F T

F T T T T

F T F T T

F F T T F

F F F T T

Step 2: Truth table for the conclusion

lovesAmyP

at

lovesAmyQu

incy

ismonday ismonday 

lovesAmyQuincy

T T T T

T T F T

T F T F

T F F T

F T T T

F T F T

F F T F

F F F T

Step 2: Eliminate non-sat
interpretations

lovesAmyP

at

lovesAmyQu

incy

ismonday ismonday 

lovesAmyQuincy

T T T T

T T F T

T F T F

T F F T

F T T T

F T F T

F F T F

F F F T

Step 3: Comparing tables

• Finally, in order to make the determination of logical entailment, we
compare the two rightmost tables and notice that every row remaining in
the premise table also remains in the conclusion table.

– In other words, the premises logically entail the conclusion.

• The truth table method has the merit that it is easy to understand

– It is a direct implementation of the definition of logical entailment.

• In practice, it is awkward to manage two tables, especially since there are
simpler approaches in which only one table needs to be manipulated
– Validity Checking

– Unsatisfability Checking

Validity checking

• Approach: To determine whether a set of sentences

 {j1,…,jn}

 logically entails a sentence j, form the sentence

 (j1  … jn  j)

 and check that it is valid.

• To see how this method works, consider the previous example and write
the tentative conclusion as shown below.

(lovesAmyPat  lovesAmyQuincy)  (ismonday  lovesAmyPat  lovesAmyQuincy)

 (ismonday  lovesAmyQuincy)

• Then, form a truth table for our language with an added column for this
sentence and check its satisfaction under each of the possible
interpretations for our logical constants

Unsatisfability Checking

• It is almost exactly the same as the validity checking
method, except that it works negatively instead of
positively.

• To determine whether a finite set of sentences {j1,…,jn}
logically entails a sentence j, we form the sentence

 (j1  … jn  j)
 and check that it is unsatisfiable.

• Both the validity checking method and the satisfiability

checking method require about the same amount of work
as the truth table method, but they have the merit of
manipulating only one table

Example – A truth table
p q r p 

q

p 

r

p  r

 q

(p  q) 

(p  r)

 (p  r

 q)

p  r

 q

(p  q) 

(p  r)

 (p  r

 q)

T T T T T T T T T

T T F T F T T F T

T

F

T F T T T F T

T F F F F F T F T

F T T T T T T T T

F T F T T T T T T

F F T T T T T T T

F F F T T T T T T

Deductive (proof) systems

• Semantic methods for checking logical entailment have the merit of being
conceptually simple; they directly manipulate interpretations of sentences

• Unfortunately, the number of interpretations of a language grows
exponentially with the number of logical constants.
– When the number of logical constants in a propositional language is large, the number

of interpretations may be impossible to manipulate.

• Deductive (proof) systems provide an alternative way of checking and
communicating logical entailment that addresses this problem
– In many cases, it is possible to create a “proof” of a conclusion from a set of premises

that is much smaller than the truth table for the language;

– Moreover, it is often possible to find such proofs with less work than is necessary to
check the entire truth table

Schemata

• An important component in the treatment of proofs is the notion of a
schema

• A schema is an expression satisfying the grammatical rules of our language
except for the occurrence of metavariables in place of various subparts of
the expression.
– For example, the following expression is a pattern with metavariables j and y.

 j  (y  j)

• An instance of a sentence schema is the expression obtained by
substituting expressions for the metavariables.
– For example, the following is an instance of the preceding schema.

 p (q  p)

Rules of Inference

• The basis for proof systems is the use of correct rules of inference that can
be applied directly to sentences to derive conclusions that are guaranteed
to be correct under all interpretations

– Since the interpretations are not enumerated, time and space can often be
saved

• A rule of inference is a pattern of reasoning consisting of:

– One set of sentence schemata, called premises, and

– A second set of sentence schemata, called conclusions

• A rule of inference is sound if and only if, for every instance, the premises
logically entail the conclusions

E.g. Modus Ponens (MP)
j  y

j

y

raining  wet

raining

wet

wet 

slippery

wet

slippery

p  (q  r)

p

q  r

(p  q)  r

p  q

r

• I.e. we can substitute for the

metavariables complex sentences

• Note that, by stringing together

applications of rules of inference, it is

possible to derive conclusions that

cannot be derived in a single step. This

idea of stringing together rule

applications leads to the notion of a

proof.

Axiom schemata

• The implication introduction schema (II), together with Modus Ponens,
allows us to infer implications

 j  (y  j)

• The implication distribution schema (ID) allows us to distribute one
implication over another

 (j  (y  c))  ((j  y)  (j  c))

• The contradiction realization schemata (CR) permit us to infer a sentence
if the negation of that sentence implies some sentence and its negation

(y  j)  ((y  j)  y)

(y  j)  ((y  j)  y)

Axiom schemata (cont’)

• The equivalence schemata (EQ) captures the meaning of the ↔ operator

(j ↔ y)  (j  y)

(j ↔ y)  (y  j)

(j  y)  ((y  j)  (y ↔ j))

• The meaning of the other operators in propositional logic is captured in
the following axiom schemata

(j  y) ↔ (y  j)

(j  y) ↔ (j  y)

(j  y) ↔ (j  y)

• The above axiom schemata are jointly called the standard axiom schemata
for Propositional Logic
– They all are valid

Proofs

• A proof of a conclusion from a set of premises is a
sequence of sentences terminating in the
conclusion in which each item is either

(1) a premise,
(2) an instance of an axiom schema, or
(3) the result of applying a rule of inference to earlier items in sequence

• Example:
1. p  q Premise
2. q  r Premise
3. (q  r)  (p  (q  r)) II
4. p  (q  r) MP : 3,2
5. (p  (q  r))  ((p  q) (p  r)) ID
6. (p  q)  (p  r) MP : 5,4
7. p  r MP : 6,1

Proofs (cont’)

• If there exists a proof of a sentence j from a set D of premises and the
standard axiom schemata using Modus Ponens, then j is said to be
provable from D, written as

D ⊢ j

• There is a close connection between provability and logical entailment (⊧):
A set of sentences D logically entails a sentence j

if and only if j is provable from D

• Soundness Theorem:

 If j is provable from D, then D logically entails j.

• Completeness Theorem:

 If D logically entails j, then j is provable from D.

Proofs (cont’)

• The concept of provability is important because it suggests how we can
automate the determination of logical entailment

– Starting from a set of premises D, we enumerate conclusions from this
set

– If a sentence j appears, then it is provable from D and is, therefore, a
logical consequence

– If the negation of j appears, then j is a logical consequence of D
and j is not logically entailed (unless D is inconsistent)

– Note that it is possible that neither j nor j will appear

Resolution

• Propositional resolution is an extremely powerful rule of inference for
Propositional Logic

• Using propositional resolution (without axiom schemata or other rules of
inference), it is possible to build a theorem prover that is sound and
complete for all of Propositional Logic

• The search space using propositional resolution is much smaller than for
standard propositional logic

• Propositional resolution works only on expressions in clausal form
– Before the rule can be applied, the premises and conclusions must be converted to this

form

Clausal Forms

• A clause is a set of literals which is assumed (implicitly) to be a
disjunction of those literals
– Example:

• Unit clause: clause with only one literal; e.g. {¬q}
• Clausal form of a formula: Implicit conjunction of clauses
• Example:

 Abbreviated notation:
• Notation:

– l-literal, lc-complement of l
– C-clause (a set of literals)
– S-a clausal form (a set of clauses)

Resolution – Properties of Clausal
Forms

(1) If l appears in some clause of S, but lc does not appear in any
clause, then, if we delete all clauses in S containing l, the new
clausal form S' is satisfiable if and only if S is satisfiable

 Example: Satisfiability of

 is equivalent to satisfiability of

(2) Suppose C = {l} is a unit clause and we obtain S' from S by
deleting C and lc from all clauses that contain it; then, S is
satisfiable if and only if S' is satisfiable

 Example: is satisfiable iff

 is satisfiable

Resolution – Properties of Clausal Forms (cont’)

(3) If S contains two clauses C and C', such that C is a subset of
C', we can delete C‘ without affecting the (un)satisfiability of S

 Example: is satisfiable iff

 is satisfiable

(4) If a clause C in S contains a pair of complementary literals l, lc,
then C can be deleted from S without affecting its
(un)satisfiability
Example: is satisfiable iff

 is such

Converting to clausal form

Theorem: Every propositional formula can be transformed into an equivalent formula in CNF
1. Implications:

j1  j2  j1  j2

j1  j2  j1  j2

j1 ↔ j2  (j1  j2)  (j1  j2)
2. Negations:

j  j

(j1  j2)  j1  j2

(j1  j2)  j1  j2

3. Distribution:
j1  (j2  j3)  (j1  j2)  (j1  j3)
(j1  j2)  j3  (j1  j3)  (j2  j3)
(j1  j2)  j3  j1  (j2  j3)
(j1  j2)  j3  j1  (j2  j3)

4. Operators:
j1 ...  jn  {j1,...,jn}
j1  ... jn  {j1}...{jn}

Example

• Transform the formula

(p → q) → (¬q → ¬p)

 into an equivalent formula in CNF

 Solution:

Resolution Rule

• Suppose C1,C2 are clauses such that l in C1, lc
in C2. The clauses C1 and C2 are said to be
clashing clauses and they clash on the
complementary literals l, lc

 C, the resolvent of C1,C2 is the clause

 C1 and C2 are called the parent clauses of C.

Resolution Rule (cont’)

• Example:

 The clauses

 clash on

 C1,C2 also clash on so, another way to find
a resolvent for these two clauses is

Resolution (cont’)

• Theorem: Resolvent C is satisfiable if and only if the parent
clauses C1,C2 are simultaneously satisfiable

• Resolution Algorithm:
 Input: S – a set of clauses
 Output: “S is satisfiable” or “S is not satisfiable”

1. Set S0 := S
2. Suppose Si has already been constructed
3. To construct Si+1, choose a pair of clashing literals and clauses C1,C2 in

S (if there are any) and derive
 C := Res(C1,C2)
 Si+1 := Si U {C}
1. If C is the empty clause, output “S is not satisfiable”; if Si+1 = Si ,

output “S is satisfiable”
2. Otherwise, set i := i + 1 and go back to Step 2

Resolution (cont’)

• Example: Show that (p → q) → (¬q → ¬p) is a valid formula
Solution: We will show that

¬*(p → q) → (¬q → ¬p)+

 is not satisfiable.
(1) Transform the formula into CNF:

 (2) Show, using resolution, that
1.
2.
3. C is the empty clause

• A derivation of the empty clause from S is called a refutation of S

Resolution (cont’)

• Theorem: If the set of a clauses labeling the leaves of a
resolution tree is satisfiable, then the clause at the root is
satisfiable

• Theorem (Soundness): If the empty clause is derived from a
set of clauses, then the set of clauses is unsatisfiable

• Theorem (Completeness) If a set of clauses is unsatisfiable,
then the empty clause can be derived from it using resolution
algorithm

ILLUSTRATION BY LARGER
EXAMPLE

86

Problem Example

• For each of these sets of premises, what relevant
conclusion or conclusions can be drawn? Explain the rules
of inference used to obtain each conclusion from the
premises.

 (a) “If I eat spicy foods, then I have strange dreams.” “I have
strange dreams if there is thunder while I sleep.” “I did not
have strange dreams.”

 (b) “I am dreaming or hallucinating.” “I am not dreaming.”
“If I am hallucinating, I see elephants running down the
road.”

 (c) “If I work, it is either sunny or partly sunny.” “I worked
last Monday or I worked last Friday.” “It was not sunny on
Tuesday.” “It was not partly sunny on Friday.”

Solution (a)
(a) “If I eat spicy foods, then I have strange dreams.” “I have strange

dreams if there is thunder while I sleep.” “I did not have strange
dreams.”

• The relevant conclusions are: “I did not eat spicy food” and
“There is no thunder while I sleep”.

• Let the primitive statements be:
– s, ‘I eat spicy foods’
– d, ‘I have strange dreams’
– t, ‘There is thunder while I sleep’

• Then the premises are translated as: s → d, t → d, and ¬d.
• And the conclusions: ¬s, ¬t.
• Steps Reason
1. s → d premise
2. ¬d premise
3. ¬s Modus Tollens to Steps 1 and 2
4. t → d premise
5. ¬t Modus Tollens to Steps 4 and 2.

Solution (b)
(b) “I am dreaming or hallucinating.” “I am not dreaming.” “If I

am hallucinating, I see elephants running down the road.”
• The relevant conclusion is: “I see elephants running down

the road.”.
• Let the primitive statements be:

– d, ‘I am dreaming’
– h, ‘I am hallucinating’
– e, ‘I see elephants running down the road’

• Then the premises are translated as: d ∨ h, ¬d, and h → e.
• And the conclusion: e.
• Steps Reason
1. d ∨ h premise
2. ¬d premise
3. h rule of disjunctive syllogism to Steps 1 and 2
4. h → e premise
5. e Modus Ponens to Steps 4 and 3

Solution (c)
(c) “If I work, it is either sunny or partly sunny.” “I worked last Monday or I

worked last Friday.” “It was not sunny on Tuesday.” “It was not partly
sunny on Friday.”

• There is no single relevant conclusion in this problem, its main difficulty
is to to represent the premises so that one is able infer anything at all.
One possible relevant conclusion is: “It was sunny or partly sunny last
Monday or it was sunny last Friday.”.

• Let the primitive statements be:

– wm, ‘I worked last Monday’

– wf , ‘I worked last Friday’

– sm, ‘It was sunny last Monday’

– st, ‘It was sunny last Tuesday’

– sf , ‘It was sunny last Friday’

– pm, ‘It was partly sunny last Monday’

– pf , ‘It was partly sunny last Friday’

• Then the premises are translated as: wm ∨ wf , wm → (sm ∨ pm), wf →
(sf ∨ pf), ¬st, and ¬pf .

• And the conclusion: sf ∨ sm ∨ pm.

Solution (c) – Method 1

• Steps Reason

1. wf → (sf ∨ pf) premise

2. ¬wf ∨ sf ∨ pf expression for implication

3. ¬pf → (¬wf ∨ sf) expression for implication

4. ¬pf premise

5. ¬wf ∨ sf modus ponens to Steps 3 and 4

6. wf → sf expression for implication

7. wm ∨ wf premise

8. ¬wm → wf expression for implication

9. ¬wm → sf rule of syllogism to Steps 8 and 6

10. wm ∨ sf expression for implication

11. ¬sf → wm expression for implication

12. wm → (sm ∨ pm) premise

13. ¬sf → (sm ∨ pm) rule of syllogism to Steps 11 and 12

14. sf ∨ sm ∨ pm expression for implication.

Solution (c) – Method 2 (Use the rule of resolution)

• Steps Reason
1. wf → (sf ∨ pf) premise
2. ¬wf ∨ sf ∨ pf expression for implication
3. ¬pf premise
4. ¬wf ∨ sf rule of resolution to Steps 2 and 3
5. wm ∨ wf premise
6. wm ∨ sf rule of resolution to Steps 4 and 5
7. wm → (sm ∨ pm) premise
8. ¬wm ∨ sm ∨ pm expression for implication
9. sf ∨ sm ∨ pm rule of resolution to Steps 7 and 8

Rule-Based Deduction Systems

The way in which a piece of knowledge is expressed by a

human expert carries important information,
example: if the person has fever and feels tummy-pain then she

may have an infection.
In logic it can be expressed as follows:

 x. (has_fever(x) & tummy_pain(x)  has_an_infection(x))

 If we convert this formula to clausal form we loose the

content as then we may have equivalent formulas like:

 (i) has_fever(x) & ~has_an_infection(x)  ~tummy_pain(x)
 (ii) ~has_an_infection(x) & tummy_pain(x) 

~has_fever(x)

 Notice that:

– (i) and (ii) are logically equivalent to the original sentence
– they have lost the main information contained in its

formulation.

Forward production
systems

• The main idea behind the
forward/backward production systems
is:
– to take advantage of the implicational

form in which production rules are
stated by the expert

– and use that information to help
achieving the goal.

• In the present systems the formulas
have two forms:
– rules
– and facts

Forward production systems

• Rules are the productions stated in implication form.
– Rules express specific knowledge about the problem.
– Facts are assertions not expressed as implications.
– The task of the system will be to prove a goal formula with

these facts and rules.
– In a forward production system the rules are expressed as F-

rules
– F-rules operate on the global database of facts until the

termination condition is achieved.
– This sort of proving system is a direct system rather than a

refutation system.

• Facts
– Facts are expressed in AND/OR form.
– An expression in AND/OR form consists on sub-expressions of

literals connected by & and V symbols.
– An expression in AND/OR form is not in clausal form.

Rule-Based Deduction Systems
Steps to transform facts into AND/OR form for forward

system:
1. Eliminate (temporarily) implication symbols.
2. Reverse quantification of variables in first disjunct

by moving negation symbol.
3. Skolemize existential variables.
4. Move all universal quantifiers to the front an drop.
5. Rename variables so the same variable does not

occur in different main conjuncts
- Main conjuncts are small AND/OR trees, not necessarily

sum of literal clauses as in Prolog.

EXAMPLE
 Original formula: u. v. {q(v, u) & ~[[r(v) v p(v)] &

s(u,v)]}
 converted formula: q(w, a) & {[~r(v) & ~p(v)] v

~s(a,v)}

Forward production systems

All variables appearing on the final expressions are assumed to be universally
quantified.

Conjunction of two
main conjuncts Various variables in conjuncts

Rule-Based Deduction Systems: forward production
systems F-rules

Rules in a forward production system will be applied to the AND/OR graph
to produce new transformed graph structures.

We assume that rules in a forward production system are of the form:
L ==> W,
where L is a literal and W is a formula in AND/OR form.
• Recall that a rule of the form (L1 V L2) ==> W is equivalent to the pair

of rules: L1 ==> W V L2 ==> W.

[barks(fido) & bites(fido)] v ~dog(fido)

barks(fido) & bites(fido) ~dog(fido)

barks(fido) bites(fido)

noisy(fido)

~terrier(fido)

~terrier(z) noisy(z)

goal nodes

R1

R2

{fido/z}

{fido/z}

OR node AND node

•Dog(Fido)

•barks(Fido)

•Not
terrier(Fido)\

•Noisy(Fido)

•NOT Dog(Fido)

•Not
terrier(Fido)\

We have to prove
that there is X
that is noisy.
X=Fido

Or we have to prove that
there is X that X is not a
terrier

prove that: “there exists
someone who is not a terrier
or who is noisy.”

We cannot
prove this
branch but we
do not have to
since one
branch of OR
was proven by
showing Fido

forward production systems

Steps to transform the rules into a free-quantifier
form:

1. Eliminate (temporarily) implication symbols.
2. Reverse quantification of variables in first disjunct by

moving negation symbol.
3. Skolemize existential variables.
4. Move all universal quantifiers to the front and drop.
5. Restore implication.

All variables appearing on the final expressions are assumed
to be universally quantified.

E.g. Original formula: x.(y. z. (p(x, y, z))  u. q(x,
u))

 Converted formula: p(x, y, f(x, y))  q(x, u).

Skolem
function

Restored
implicati
on

Rule-Based Deduction Systems

A full example:

• Fact: Fido barks and bites, or Fido is not a dog.

• (R1) All terriers are dogs.

• (R2) Anyone who barks is noisy.

Based on these facts, prove that: “there exists
someone who is not a terrier or who is noisy.”

Logic representation:

 (barks(fido) & bites(fido)) v ~dog(fido)

 R1: terrier(x)  dog(x)

 R2: barks(y)  noisy(y)

 goal: w.(~terrier(w) v noisy(w))

forward production systems

goal

AND/OR Graph for the ‘terrier’ problem:

Rule-Based Deduction Systems: forward production systems

[barks(fido) & bites(fido)] v ~dog(fido)

barks(fido) & bites(fido) ~dog(fido)

barks(fido) bites(fido)

noisy(fido)

~terrier(fido)

~terrier(z) noisy(z)

goal nodes

R1 applied in reverse

R2 applied forward

{fido/z}

{fido/z}

OR node AND node

From facts to goal

B-Rules
We restrict B-rules to expressions of the form: W ==> L,

where W is an expression in AND/OR form and L is a literal,

and the scope of quantification of any variables in the implication is the
entire implication.

Recall that W==>(L1 & L2) is equivalent to the two rules: W==>L1 and
W==>L2.

An important property of logic is the duality between assertions and
goals in theorem-proving systems.

Duality between assertions and goals allows the goal expression to be
treated as if it were an assertion.

Conversion of the goal expression into AND/OR form:

1. Elimination of implication symbols.

2. Move negation symbols in.

3. Skolemize existential variables.

4. Drop existential quantifiers. Variables remaining in the AND/OR
form are considered to be existentially quantified.

Goal clauses are conjunctions of literals and the disjunction of these
clauses is the clause form of the goal well-formed formula.

Backward production systems

Example 1 of formulation of Rule-Based Deduction
Systems

1. Facts:
 dog(fido)
 ~barks(fido)
 wags-tail(fido)
 meows(myrtle)
Rules:
 R1: [wags-tail(x1) & dog(x1)] 

friendly(x1)
 R2: [friendly(x2) & ~barks(x2)] 

~afraid(y2,x2)
 R3: dog(x3)  animal(x3)
 R4: cat(x4)  animal(x4)
 R5: meows(x5)  cat(x5)

Suppose we want to ask if there are a cat and a
dog such that the cat is unafraid of the
dog.

 The goal expression is:

 x. y.[cat(x) & dog(y) & ~afraid(x,y)]

We treat the goal
expression as an
assertion

x. y.[cat(x) & dog(y) & ~afraid(x,y)]

dog(fido)

[cat(x)

R
2

meows(x5=myrtle)

x=x5

dog(y) ~afraid(x,y)]

R5

Y=Fido

[friendly(x2) ~barks(x2)

~barks(x2=fido)

wags-tail(x1) dog(x1)]

X1=Fid
o

dog(fido)

R1

R2

wags-tail(fido)

X1=Fid
o

Rule-Based Deduction Systems

2. The blocks-word situation is described by the following
set of wffs:

 on_table(a) clear(e)

 on_table(c) clear(d)

 on(d,c) heavy(d)

 on(b,a) wooden(b)

 heavy(b) on(e,b)

The following statements provide general knowledge about
this blocks word:

 Every big, blue block is on a green block.

 Each heavy, wooden block is big.

 All blocks with clear tops are blue.

 All wooden blocks are blue.

Represent these statements by a set of implications having
single-literal consequents.

Draw a consistent AND/OR solution tree (using B-rules) that
solves the problem: “Which block is on a green block?”

Homework:

formulation of Rule-Based
Deduction Systems

HOMEWORK Problem 2.
Transformation of rules and goal:

Facts:

 f1: on_table(a) f6: clear(e)

 f2: on_table(c) f7: clear(d)

 f3: on(d,c) f8: heavy(d)

 f4: on(b,a) f9: wooden(b)

 f5: heavy(b) f10: on(e,b)

Rules:

 R1: big(y1) ^ blue(y1)  green(g(y1)) Every big, blue block is on a
green block.

 R2: big(y0) ^ blue(y0)  on(y0,g(y0)) “ “ “ “ “ “ “ “
“

 R3: heavy(z) ^ wooden(z)  big(z) Each heavy, wooden block is big.

 R4: clear(x)  blue(x) All blocks with clear tops are blue.

 R5: wooden(w)  blue(w) All wooden blocks are blue.

Goal:

 green(u) ^ on(v,u) Which block is on a green block?

HOMEWORK PROBLEM 3. Information
Retrieval System

– We have a set of facts containing personnel data for a
business organization

– and we want an automatic system to answer various
questions about personal matters.

• Facts

 John Jones is the manager of the Purchasing
Department.

 manager(p-d,john-jones)

 works_in(p-d, joe-smith)

 works_in(p-d,sally-jones)

 works_in(p-d,pete-swanson)

 Harry Turner is the manager of the Sales Department.

 manager(s-d,harry-turner)

 works_in(s-d,mary-jones)

 works_in(s-d,bill-white)

 married(john-jones,mary-jones)

Rule-Based Deduction Systems

Rules

 R1: manager(x,y)  works_in(x,y)

 R2: works_in(x,y) & manager(x,z)  boss_of(y,z)

 R3: works_in(x,y) & works_in(x,z)  ~married(y,z)

 R4: married(y,z)  married(z,y)

 R5: [married(x,y) & works_in(p-d,x) 
insured_by(x,eagle-corp)

With these facts and rules a simple backward production
system can answer a variety of questions.

Build solution graphs for the following questions:

1. Name someone who works in the Purchasing
Department.

2. Name someone who is married and works in the sales
department.

3. Who is Joe Smith’s boss?

4. Name someone insured by Eagle Corporation.

5. Is John Jones married with Sally Jones?

pers
on

place

pers
on

In this company
married people should
not work in the same
department

Planning

• Planning is fundamental to “intelligent” behavior. E.g.

 - assembling tasks - route finding

 - planning chemical processes - planning a report

• Representation

 The planner has to represent states of the world it is
operating within, and to predict consequences of
carrying actions in its world. E.g.

 initial state: final state:

a

b c
d

on(a,b)
on(b,table)
on(d,c)
on(c,table)
clear(a)
clear(d)

on(a,b)
on(b,c)
on(c,d)
on(d,tabl
e)
clear(a)

a

b

d

c

Planning

• Representing an action

 One standard method is by specifying sets of preconditions and effects,
e.g.

 pickup(X) :

 preconditions: clear(X), handempty.

 deletlist: on(X,_), clear(X), handempty.

 addlist: holding(X).

Planning

• The Frame Problem in Planning
• This is the problem of how to keep track in a

representation of the world of all the effects that an
action may have.

• The action representation given is the one introduced by
STRIPS (Nilsson) and is an attempt to a solution to the
frame problem
– but it is only adequate for simple actions in simple worlds.

• The Frame Axiom
• The frame axiom states that a fact is true if it is not in

the last delete list and was true in the previous state.
• The frame axiom states that a fact is false if it is not in

the last add list and was false in the previous state.

Planning

• Control Strategies
– Forward Chaining

– Backward Chaining

 The choice on which of these
strategies to use depends on
the problem, normally
backward chaining is more
effective.

Planning

Example:
Initial State
 clear(b), clear(c), on(c,a), ontable(a), ontable(b), handempty
Goal
 on(b,c) & on(a,b)

Rules

R1: pickup(x) R2: putdown(x)
 P & D: ontable(x), clear(x), P & D: holding(x)
 handempty A: ontable(x), clear(x), handempty
 A: holding(x)

R3: stack(x,y) R4: unstack(x,y)
 P & D: holding(x), clear(y) P & D: on(x,y), clear(x), handempty
 A: handempty, on(x,y), clear(x) A: holding(x), clear(y)

c

a b

a

a

c

b

Planning

on(c,a)
clear(c)
handempty unstack(c,a)

 putdown(c)

pickup(b)

 stack(b,c)

pickup(a)

 stack(a,b)

holding(c)

clear(a)

clear(c)

handempty
ontable(b)
clear(b)

holding(b)

handempty

on(b,c)

clear(b)

ontable(a)

holding(a)

on(a,b
)

TRIANGLE TABLE {unstack(c,a), putdown(c), pickup(b), stack(b,c), pickup(a), stack(a,b)}

0

1

2

3

4

5

6

c

a b
d a

c

b

Conditio
ns for
action

go
al

{unstack(c,a), putdown(c), pickup(b), stack(b,c), pickup(a), stack(a,b)}

Initial situation

next situation

Ques 1: Describe how the two SCRIPS rules pickup(x) and stack(x,y) could be
combined into a macro-rule put(x,y).

What are the preconditions, delete list and add list of the new rule.

 Can you specify a general procedure for creating macro-rules components?

Ques 2: Consider the problem of devising a plan for a kitchen-cleaning robot.

 (i) Write a set of STRIPS-style operators that might be used.

When you describe the operators, take into account the following considerations:

 (a) Cleaning the stove or the refrigerator will get the floor dirty.

 (b) The stove must be clean before covering the drip pans with tin foil.

 (c) Cleaning the refrigerator generates garbage and messes up the

 counters.

 (d) Washing the counters or the floor gets the sink dirty.

 (ii) Write a description of an initial state of a kitchen that has a dirty stove,
refrigerator, counters, and floor.

(The sink is clean, and the garbage has been taken out).

Also write a description of the goal state where everything is clean, there is no trash,
and the stove drip pans have been covered with tin foil.

Assignment Questions (Unit -2)

Assignment Questions (Unit -2)

Ques 3: Explain the following types of Knowledge:

i. Domain Specific Knowledge

ii. Common Sense Knowledge
Ques 4. Explain the inferencing rules in propositional logic. Solve the following

problemwith the help of these rules:

Test the validity of following argument:

“If milk is black, then every cow is white. If every cow is white then, it has four legs. If

every cow has four legs, then every buffalo is white and brisk. The milk is black.

Therefore, the buffalo is white”.

Ques 5: Explain Rule based deduction system, in detail.
Ques 6. Define probability. Differentiate between conditional and Unconditional

Probability

