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Knowledge Representation 
● Knowledge representation (KR) is an important 

issue in both cognitive science and artificial 
intelligence.  
− In cognitive science, it is concerned with the way 

people store and process information and  
− In artificial intelligence (AI), main focus is to store 

knowledge so that programs can process it and 
achieve human intelligence.  

● There are different ways of representing 
knowledge e.g. 
− predicate logic,  
− semantic networks,  
− extended semantic net,  
− frames,  
− conceptual dependency etc.  

● In predicate logic, knowledge is represented in 
the form of rules and facts as is done in Prolog.  



Semantic Network  

 Formalism for representing  information  
about objects, people, concepts and 
specific relationship between them.  

 The syntax of semantic net is simple. It is a 
network of labeled nodes and links. 
− It’s a directed graph with nodes corresponding 

to concepts, facts, objects etc. and  
− arcs showing relation or association between 

two concepts.  
 The commonly used links in semantic net 

are of the following types.  
- isa    subclass of entity (e.g., child hospital is 

subclass of hospital) 
- inst   particular instance of a class (e.g., India 

is an instance of country) 
- prop    property link (e.g., property of dog is 

‘bark) 



Representation of Knowledge in 
Sem Net 

 “Every human, animal and bird  is living 
thing who breathe and eat.  All birds can fly. 
All man and woman are humans who have 
two legs. Cat is an animal and has a fur. All 
animals have skin and can move. Giraffe is 
an animal who is tall and has long legs. 
Parrot is a bird and is green in color”.  



Representation in Predicate Logic 
● Every human, animal 

and bird is living thing 
who breathe and eat.   

 X [human(X)  
living(X)]  

 X [animal(X)  
living(X)] 

 X [bird(X)  living(X)] 
● All birds are animal 

and can fly.  
 X [bird(X)  canfly(X)] 
● Every man and 

woman are humans 
who have two legs.  

 X [man(X)  haslegs(X)] 
 X [woman(X)  

haslegs(X)] 
 X [human(X)  has(X, 

legs)] 

● Cat is an animal and 
has a fur.  

 animal(cat)  has(cat, 
fur) 

● All animals have skin 
and can move.  

 X [animal(X)  has(X, 
skin)   canmove(X)] 

● Giraffe is an animal 
who is tall and has 
long legs.  

 animal(giraffe)  
has(giraffe, long_legs)  
is(giraffe, tall) 

● Parrot is a bird and is 
green in color.  

 bird(parrot)  
has(parrot, 
green_colour) 
 



Representation in Semantic Net 
  Semantic Net 

         breathe,  eat 

    Living_thing  prop   

    isa    isa   

two legs      isa     fly 

Human   Animal  Bird 

     isa  isa            inst       isa                          inst 

           prop   green 

Man  Woman Giraffe  Cat  Parrot 

                 prop        prop                     prop 

    inst          fur 

john   skin, move  tall, long legs 

 

 

 



Inheritance 

● Inheritance mechanism allows knowledge to be stored at 
the highest possible level of abstraction which reduces the 
size of knowledge base.  
− It facilitates inferencing of information associated with semantic 

nets.  

− It is a natural tool for representing taxonomically structured 
information and ensures that all the members and sub-concepts of a 
concept share common properties.  

− It also helps us to maintain the consistency of the knowledge base 
by adding new concepts and members of existing ones.  

● Properties attached to a particular object (class) are to be 
inherited by all subclasses and members of that class. 



Property Inheritance Algorithm 

Input: Object, and property to be found from Semantic Net; 

Output:Yes, if the object has the desired property else return 
false; 

Procedure: 

●   Find an object in the semantic net;   Found = false; 

●   While {(object ≠ root) OR Found } DO 
 {  If there is a a property attribute attached with an object then  

  {  Found = true;  Report ‘Yes’}   else  

  object=inst(object, class) OR isa(object, class) 

 }; 

●   If Found = False then report ‘No’;   Stop 

 



Coding of Semantic Net in Prolog 
Isa facts Instance facts Property facts 

 

isa(living_thing, nil). 

isa(human, living_thing). 

isa(animals, living_thing). 

isa(birds, living_thing). 

isa(man, human ). 

isa(woman, human). 

isa(cat, animal). 

 

inst(john, man). 

inst(giraffe, animal). 

inst(parrot, bird) 

 

prop(breathe, living_thing). 

prop(eat, living_thing). 

prop(two_legs, human). 

prop(skin, animal). 

prop(move, animal). 

prop(fur, bird). 

prop(tall, giraffe). 

prop(long_legs, giraffe). 

prop(tall, animal). 

prop(green, parrot). 

 

 



Inheritance Rules in Prolog 

Instance rules:  
instance(X, Y) :- inst(X, Y). 
instance (X, Y) :- inst(X, Z), subclass(Z,Y).  
Subclass rules: 
subclass(X, Y) :- isa(X, Y). 
subclass(X, Y) :- isa(X, Z), subclass(Z, Y) .  
Property rules: 
property(X, Y) :- prop(X, Y). 
property(X, Y)      :- instance(Y,Z), 

property(X, Z). 
property(X, Y)      :- subclass(Y, Z), 

property(X, Z).  
 



Queries 

● Is john human?
  

● Is parrot a living 
thing? 

● Is giraffe an aimal? 
● Is woman subclassof 

living thing 
● Does parrot fly?

  
● Does john breathe? 
● has parrot fur?

  
● Does cat fly? 

  
  

?- instance(john, humans). 
Y 

?- instance (parrot, 
living_thing).                    
Y 

?- instance (giraffe, 
animal).Y 

?- subclass(woman, 
living_things).             
Y 

?- property(fly, parrot).  Y 
?- property (john, breathe).

  Y 
?- property(fur, parrot).  N 
?- property(fly, cat). 

  N 
 
 



Knowledge Representation using 
Frames 

● Frames are more structured form of packaging knowledge, 
− used for representing objects, concepts etc.  

● Frames are organized into hierarchies or network of frames.  
● Lower level frames can inherit information from  upper level 

frames in network.  
● Nodes are connected using  links viz.,  

− ako / subc (links two class frames, one of which is subclass of other 
e.g., science_faculty class is  ako of faculty class),  

− is_a / inst ( connects a particular instance of a class frame e.g., Renuka 
is_a science_faculty)  

− a_part_of  (connects two class frames one of which is contained in 
other e.g., faculty class is_part_of department class).  

− Property link of semantic net is replaced by SLOT fields. 



Cont… 
● A frame may have any number of slots needed for describing 

object. e.g.,  
− faculty frame may have name, age, address, qualification etc as slot 

names.   
● Each frame includes two basic elements : slots and facets.  

− Each slot may contain one or more  facets (called fillers) which may 
take many forms such as:   
 value (value of the slot),  
 default (default value of the slot),  
 range (indicates the range of integer or enumerated values, a slot can 

have),  
 demons (procedural attachments such as if_needed, if_deleted, 

if_added etc.) and  
 other (may contain rules, other frames, semantic net or any type of 

other information).  

 



Frame Network - Example 

university

a_part_of

department hostel

a_part_of is_a

faculty nilgiri hostel

ako

science_faculty

is_a

renuka



Detailed Representation of Frame 
Network 

frame0

f_name: university

phone: (default: - 011686971)

address : (default - IIT Delhi)

frame1 frame2

f_name : department f_name : hostel

a_part_of : frame0 a_part_of : frame0

programme : [Btech, Mtech, Ph.D] room : (default - 100)

frame11 frame21

f_name: faculty f_name : nilgiri

a_part_of : frame1 is_a : frame2

age : range (25 - 60) phone : 0116862345

nationality: (default - Indian)

qual: (default - Post graduate)

frame12 frame13

f_name : science faculty f_name : renuka

ako : frame11 is_a : frame12

qual : (default - M.Sc) qual : Ph.D

age: 45

adrress: Janak Puri



Description of Frames 

● Each frame represents either a class or an instance.  
● Class frame represents a general concept whereas 

instance frame represents a specific occurrence of 
the class instance.  

● Class frame generally have default values which 
can be redefined at lower levels.  

● If class frame has actual value facet then decedent 
frames can not modify that value.  

● Value remains unchanged for subclasses and 
instances.  
 



Inheritance in Frames 

● Suppose we want to know nationality or phone of an 
instance-frame frame13 of renuka. 

● These informations are not given in this frame.  

● Search will start from  frame13 in upward direction  till we get 
our answer or have reached root frame.   

● The frames can be easily represented in prolog by choosing 
predicate name as frame with two arguments.  

● First argument is the name of the frame and second argument 
is a list of slot - facet pair.   

 



Coding of frames in Prolog 

frame(university, [phone (default, 011686971),    
  address (default, IIT Delhi)]). 

frame(deaprtment, [a_part_of (university),   
 programme ([Btech, Mtech, Ph.d]))]). 

frame(hostel, [a_part_of (university),  room(default, 100)]). 

frame(faculty, [a_part_of (department), age(range,25,60), 
nationality(default, indian), qual(default, postgraduate)]). 

frame(nilgiri, [is_a (hostel), phone(011686234)]). 

frame(science_faculty, [ako (faculty),qual(default, M.Sc.)]). 

frame(renuka, [is_a (science_faculty), qual(Ph.D.),  age(45), 
address(janakpuri)]). 

 



Inheritance Program in Prolog 

find(X, Y) :- frame(X, Z), search(Z, Y), !. 

find(X, Y) :- frame(X, [is_a(Z),_]), find(Z, Y), !. 

find(X, Y) :- frame(X, [ako(Z), _]), find(Z, Y), !. 

find(X, Y) :- frame(X, [a_part_of(Z), _]), find(Z, Y). 

 

● Predicate search will basically retrieve the list of slots-facet 
pair and will try to match Y for slot.  

● If match is found then its facet value is retrieved otherwise 
process is continued till we reach to root frame 



Extended Semantic Network 

● In conventional Sem Net, clausal form of logic can not 
be expressed.  

● Extended Semantic Network (ESNet) combines the 
advantages of both logic and semantic network.  

● In the ESNet, terms are represented by nodes similar 
to Sem Net.  

● Binary predicate symbols in clausal logic are 
represented by labels on arcs of ESNet. 
− An atom of the form “Love(john, mary)” is an arc labeled as 

‘Love’ with its two end nodes representing ‘john’ and ‘mary’.  

● Conclusions and conditions in clausal form are 
represented by different kinds of arcs.  
− Conditions are drawn with two lines        and conclusions are 

drawn with one heavy line          .  



Examples 

● Represent ‘grandfather’ definition  

 Gfather(X, Y)  Father(X, Z), Parent(Z, Y) in 
ESNet.  

 

       Z 

     Father            Parent 

 

X       Y 

    Gfather 

 

 



Cont…Example 

• Represent clausal rule “Male(X), Female(X)  
Human(X)” using binary representation as        “Isa(X, 
male), Isa(X, female)  Isa( X, human)”  and 
subsequently in ESNet  as follows: 

               male 

      Isa            Isa   

      X  human 

                       Isa 

   female 

 



Inference Rules in ESNet 

● Inference rules are embedded in the representation 
itself.  

● The inference that “for every action of giving, there is 
an action of taking” in clausal logic written as   

  “Action(E, take)  Action(E, give)”.  

 

ESNet    Action 

    E   take 

 

   Action 

    E   give 

 

 

 



Cont… 

● The inference rule such as “an actor of taking action 
is also the recipient of the action” can be easily 
represented in clausal logic as:   
− Here E is a variable representing an event where an action 

of taking is happening). 

     Recipient(E, Y)  Acton(E, take), Actor (E, Y) 

ESNet              Action  

E    take  

   Recipient 

        Actor 

 

 

Y 

 



Example 
Represent the following clauses of Logic in ESNet. 
 Recipient(E, Y)  Acton(E, take), Actor (E, Y) 
 Object (e, apple). 
 Action(e, take). 
 Actor (e, john) . 

    apple     

     

   Object  

   e   E            Recipient 

 Actor          Action                Actor 

  Action 

         

       john           take   Y 

      

 



Contradiction 

• The contradiction in the ESNet arises if we 
have the following situation. 

 

                     Part_of 

         P                             X   

                     

                               Isa 

               Part_of              

                    Y          

                                                                    

        



Deduction in ESNet  

● Both of the following inference mechanisms are available in 
ESNet.  
− Forward reasoning inference (uses bottom up approach) 

 Bottom Up Inferencing: Given an ESNet, apply the 
following reduction (resolution) using modus ponen 
rule of logic ({A  B, B} then A).  

− Backward reasoning inference  (uses top down approach). 

 Top Down Inferencing: Prove a conclusion from a given 
ESNet by adding the denial of the conclusion to the 
network and show that the resulting set of clauses in 
the network is inconsistent. 



Example: Bottom Up Inferencing 

 

Given set of clauses 

 

Isa(X, human)  Isa(X, man) 

Isa(john, man). 

Inferencing 

 

Isa(john, human) 

  
         human    

             Isa 

                     

      X 

                  Isa 

         

                                           man 

   

 john  Isa             

 

 Here X is bound to john 

  
         human    

               

                     

        Isa     

 

                    

                    john 

               

 

   

 



Example: Top Down Inferencing 
 

Given set of clauses 

 

Isa(X, human)  Isa(X, man) 

Isa(john, man). 

Prove conclusion 

 

Query: Isa(john, human)  

                                         denial of query 

  
         human    

             Isa 

                     

      X 

                  Isa 

         

                                           man 

   

 john  Isa             

    
             human    

             Isa 

                     

      X 

     Isa                 Isa 

         

                                           man 

   

 john  Isa             

 



Cont… 

 

    
             human    X = john 

             Isa 
                     

        Isa       

    

           john                          
  

 

Contradiction or Empty network is 

generated. Hence “Isa(john, human)” 

is proved. 

 



Logic and Deduction 

• Logic is used to formalize deduction 

• Deduction = derivation of true statements (called conclusions) 
from statements that are assumed to be true (called 
premises) 

• Natural language is not precise, so the careless use of logic 
can lead to claims that false statements are true, or to claims 
that a statement is true, even though its truth does not 
necessarily follow from the premises 
=>  Logic provides a way to talk about truth and correctness in a 

 rigorous way, so that we can prove things, rather than make 
 intelligent guesses and just hope they are correct 



Why Propositional Logic? 

• Propositional logic is a good vehicle to introduce 
basic properties of logic; used to: 

– Associate natural language expressions with semantic 
representations 

– Evaluate the truth or falsity of semantic 
representations relative to a knowledge base 

– Compute inferences over semantic representations 

• One of the simplest and most common logic 

– The core of (almost) all other logics 

 



What is Propositional Logic? 

• An unambiguous formal language, akin to a 
programming language 

– Syntax: Vocabulary for expressing concepts 
without ambiguity  

– Semantics: Connection to what we're reasoning 
about  

• Interpretation - what the syntax means  

– Reasoning: How to prove things  

• What steps are allowed  
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Syntax 

• Logical constants: true, false  

• Propositional symbols: P, Q, S, ...   

• Wrapping parentheses: ( … ) 

• Atomic formulas: Propositional Symbols or logical constants 

• Formulas are either atomic formulas, or can be formed by combining 
atomic formulas with the following connectives:  

  ...and   [conjunction] 

  ...or   [disjunction] 

 →...implies   [implication / conditional] 

 ↔..is equivalent  [biconditional] 

     ...not   [negation] 



Syntax (cont’) 

• A sentence (well formed formula) is defined as 
follows:  
– A symbol is a sentence 

– If S is a sentence, then S is a sentence 

– If S is a sentence, then (S) is a sentence 

– If S and T are sentences, then (S  T), (S  T), (S  T), and (S ↔ T) are 
sentences 

– A sentence results from a finite number of applications of the above 
rules 

 



Syntax – BNF Grammar 

Sentence   AtomicSentence | ComplexSentence 

AtomicSentence  True | False | P | Q | R | ... 

ComplexSentence  (Sentence ) 

        | Sentence Connective Sentence 

        |  Sentence 

Connective     |  | → | ↔ 

 

Ambiguities are resolved through precedence    → ↔  

or parentheses 

  e.g.  P  Q  R  S is equivalent to  ( P)  (Q  R))  S 



 Syntax – Examples  

• P means “It is hot.” 

• Q means “It is humid.” 

• R means “It is raining.” 

• (P  Q)  R  

“If it is hot and humid, then it is raining” 

• Q  P  

“If it is humid, then it is hot” 

 

 

•  p   q 

• (p  q) 

• (p  q)  r  

• p  q  r  

• ((( p)  q)  r) 

 (( r)  p) 

• ( (p  q)  q)  

r 

• (( p)  ( q))  

( r) 

• Etc. 
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Semantics 

• Interpretations 

• Equivalence  

• Substitution 

• Models and Satisfiability 

• Validity 

• Logical Consequence (Entailment) 

• Theory 



Semantics – Some Informal Definitions 

• Given the truth values of all symbols in a sentence, it can be “evaluated” 
to determine its truth value (True or False) 

• A model for a KB is a “possible world” (assignment of truth values to 
propositional symbols) in which each sentence in the KB is True 

• A valid sentence or tautology is a sentence that is True under all 
interpretations, no matter what the world is actually like or how the 
semantics are defined (example: “It’s raining or it’s not raining”) 

• An inconsistent sentence or contradiction is a sentence that is False under 
all interpretations (the world is never like what it describes, as in “It’s 
raining and it’s not raining”) 

• P entails Q, written P ⊧ Q, means that whenever P is True, so is Q; in other 
words, all models of P are also models of Q 

 



Interpretations 

• In propositional logic, truth values are assigned to the atoms 
of a formula in order to evaluate the truth value of the 
formula 

• An assignment is a function 

v : P → {T,F} 

 v assigns a truth value to any atom in a given formula (P is the 
set of all propositional letters, i.e. atoms) 
Suppose F denotes the set of all propositional formulas. We 
can extend an assignment v to a function  

v : F → {T,F} 

 which assigns the truth value v(A) to any formula A in F. v is 
called an interpretation. 

 

 

 



Interpretations (cont’) 

• Example: 
– Suppose v is an assignment for which  

    v(p) = F, v(q) = T. 

– If A = (¬p → q) ↔ (p V q), what is v(A)? 

 Solution: 

    v(A) =  v((¬p → q) ↔ (p V q)) 

   =  v(¬p → q) ↔ v(p V q) 

   =  (v(¬p) → v(q)) ↔ (v(p) V v(q)) 

   =  (¬v(p) → v(q)) ↔ (v(p) V v(q)) 

   =  (¬F → T) ↔ (F V T) 

   =  (T → T) ↔ (F V T) 

   =  T ↔ T 

   =  T 

 



Equivalence 

• If A,B are formulas are such that 

v(A) = v(B) 

 for all interpretations v, A is (logically) equivalent to B: 

A ≡ B 

• Example: ¬p V q ≡ p → q since both formulas are true in all 
interpretations except when v(p) = T, v(q) = F and are false for 
that particular interpretation 

• Caution: ≡ does not mean the same thing as ↔ : 
– A ↔ B is a formula (syntax) 

– A ≡ B is a relation between two formula (semantics) 

Theorem: A ≡ B if and only if A ↔ B is true in every interpretation; i.e. A 
↔ B is a tautology. 

 



Equivalence and Substitution – 
Examples  

• Examples of logically equivalent formulas 

 

 

 

 

 

• Example: Simplify  
– Solution: 



Models and Satisfiability 

• A propositional formula A is satisfiable iff  v(A) = T in some interpretation 
v; such an interpretation is called a model for A. 
– A is unsatisfiable (or, contradictory) if it is false in every interpretation 

• A set of formulas U = {A1,A2,…,An} is satisfiable iff there exists an 
interpretation v such that v(A1) = v(A2) =…= v(An) = T; such an 
interpretation is called a model of U. 

– U is unsatisfiable if no such interpretation exists 

• Relevant properties: 

– If U is satisfiable, then so is U − {Ai} for any i = 1, 2,…, n 

– If U is satisfiable and B is valid, then U U {B} is also satisfiable 

– If U is unsatisfiable and B is any formula, U U {B} is also unsatisfiable 

– If U is unsatisfiable and some Ai is valid, then U − {Ai} is also unsatisfiable 

 

 



Validity 

• A is valid (or, a tautology), denoted ⊧ A, iff v(A) = T, for all interpretations v 

• A is not valid (or, falsifiable), denoted  ⊭ A if we can find some 
interpretation v, such that v(A) = F 

• Relationship between validity, satisfiability, falsifiability, and 
unsatisfiability: 

 



Validity (cont’) 

• Examples: 

– Valid (tautology): 

– Not valid, but satisfiable: 

– False (contradiction): 

• Theorem: 

 (a) A is valid if and only if ¬A is unsatisfiable 

 (b) A is satisfiable if and only if ¬A is falsifiable 

 



Logical Consequence (i.e. Entailment) 

• Let U be a set of formulas and A a formula. A is a (logical) 
consequence of U, if any interpretation v which is a model of 
U is also a model for A:  

U ⊧ A 

• Example: 
If some interpretation v is a model for the set 

          , it must satisfy 

 

but in this interpretation, we also have 

 

 



Theory 

• A set of formulas T is a theory if it is closed under logical 
consequence. This means that, for every formula A, if    T ⊧ A, 
then A is in T 

• Let U be a set of formulas. Then, the set of all consequences 
of U 

T(U) = {A | U ⊧ A} 

 is called the theory of U.  
The formulas in U are called the axioms for the theory T(U). 
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Inference Methods 

• Several basic methods for determining 
whether a given set of premises 
propositionally entails a given conclusion 

– Truth Table Method 

– Deductive (Proof) Systems 

– Resolution 

 

 



Truth Table Method 

• One way of determining whether or not a set of premises logically entails 
a possible conclusion is to check the truth table for the logical constants of 
the language 

• This is called the truth table method and can be formalized as follows:  

– Step 1: Starting with a complete truth table for the propositional constants, 
iterate through all the premises of the problem, for each premise eliminating 
any row that does not satisfy the premise 

– Step 2: Do the same for the conclusion 

– Step 3: Finally, compare the two tables; If every row that remains in the 
premise table, i.e. is not eliminated, also remains in the conclusion table, i.e. is 
not eliminated, then the premises logically entail the conclusion 



Example 

• Simple sentences: 
– Amy loves Pat: lovesAmyPat 

– Amy loves Quincy: lovesAmyQuincy 

– It is Monday: ismonday 

• Premises: 
– If Amy loves Pat, Amy loves Quincy:  

  lovesAmyPat  lovesAmyQuincy 

– If it is Monday, Amy loves Pat or Quincy: 

  ismonday   lovesAmyPat  lovesAmyQuincy 

• Question: 
– If it is Monday, does Amy love Quincy?  

 i.e. is ismonday  lovesAmyQuincy entailed by the premises? 

 



Step 1: Truth table for the premises 
lovesAmyP

at 

lovesAmyQu

incy 

ismonday lovesAmyPa

t    

lovesAmyQu

incy 

ismonday   

lovesAmyPa

t  

lovesAmyQu

incy 

T   T  T T T 

T   T F T T 

T   F T F T 

T  F F F T 

F  T T T T 

F  T F T T 

F  F T T F 

F  F F T T 



Step 1: Eliminate non-sat 
interpretations 

lovesAmyP

at 

lovesAmyQu

incy 

ismonday lovesAmyPa

t    

lovesAmyQu

incy 

ismonday   

lovesAmyPa

t  

lovesAmyQu

incy 

T   T  T T T 

T   T F T T 

T   F T F T 

T  F F F T 

F  T T T T 

F  T F T T 

F  F T T F 

F  F F T T 



Step 2: Truth table for the conclusion 

lovesAmyP

at 

lovesAmyQu

incy 

ismonday ismonday   

lovesAmyQuincy 

T   T  T T 

T   T F T 

T   F T F 

T  F F T 

F  T T T 

F  T F T 

F  F T F 

F  F F T 



Step 2: Eliminate non-sat 
interpretations 

lovesAmyP

at 

lovesAmyQu

incy 

ismonday ismonday   

lovesAmyQuincy 

T   T  T T 

T   T F T 

T   F T F 

T  F F T 

F  T T T 

F  T F T 

F  F T F 

F  F F T 



Step 3: Comparing tables 

• Finally, in order to make the determination of logical entailment, we 
compare the two rightmost tables and notice that every row remaining in 
the premise table also remains in the conclusion table.  

– In other words, the premises logically entail the conclusion. 

• The truth table method has the merit that it is easy to understand 

– It is a direct implementation of the definition of logical entailment.  

• In practice, it is awkward to manage two tables, especially since there are 
simpler approaches in which only one table needs to be manipulated 
– Validity Checking 

– Unsatisfability Checking 

 



Validity checking 

• Approach: To determine whether a set of sentences  

 {j1,…,jn}  

 logically entails a sentence j, form the sentence  

 (j1  … jn  j)  

 and check that it is valid. 

• To see how this method works, consider the previous example and write 
the tentative conclusion as shown below. 

(lovesAmyPat  lovesAmyQuincy)  (ismonday  lovesAmyPat  lovesAmyQuincy) 

 (ismonday  lovesAmyQuincy)  

• Then, form a truth table for our language with an added column for this 
sentence and check its satisfaction under each of the possible 
interpretations for our logical constants 



Unsatisfability Checking 

• It is almost exactly the same as the validity checking 
method, except that it works negatively instead of 
positively.  

• To determine whether a finite set of sentences {j1,…,jn} 
logically entails a sentence j, we form the sentence  

 (j1  … jn  j)  
 and check that it is unsatisfiable. 

 
• Both the validity checking method and the satisfiability 

checking method require about the same amount of work 
as the truth table method, but they have the merit of 
manipulating only one table 



Example – A truth table 
p q r p  

q 

p  

r 

p  r 

 q 

(p  q)   

(p  r)  

 (p  r 

 q)  

p  r 

 q 

(p  q)   

(p  r)  

 (p  r 

 q) 

T   T  T T T T T T T 

T   T F T F T T F T 

T   

F 

T F T T T F T 

T  F F F F F T F T 

F  T T T T T T T T 

F  T F T T T T T T 

F  F T T T T T T T 

F  F F T T T T T T 



Deductive (proof) systems 

• Semantic methods for checking logical entailment have the merit of being 
conceptually simple; they directly manipulate interpretations of sentences 

• Unfortunately, the number of interpretations of a language grows 
exponentially with the number of logical constants.  
– When the number of logical constants in a propositional language is large, the number 

of interpretations may be impossible to manipulate. 

• Deductive (proof) systems provide an alternative way of checking and 
communicating logical entailment that addresses this problem  
– In many cases, it is possible to create a “proof” of a conclusion from a set of premises 

that is much smaller than the truth table for the language;  

– Moreover, it is often possible to find such proofs with less work than is necessary to 
check the entire truth table 

 



Schemata 

• An important component in the treatment of proofs is the notion of a 
schema 

• A schema is an expression satisfying the grammatical rules of our language 
except for the occurrence of metavariables in place of various subparts of 
the expression.  
– For example, the following expression is a pattern with metavariables j and y. 

 j  (y  j) 

• An instance of a sentence schema is the expression obtained by 
substituting expressions for the metavariables.  
– For example, the following is an instance of the preceding schema. 

 p (q  p) 

 



Rules of Inference 

• The basis for proof systems is the use of correct rules of inference that can 
be applied directly to sentences to derive conclusions that are guaranteed 
to be correct under all interpretations 

– Since the interpretations are not enumerated, time and space can often be 
saved 

• A rule of inference is a pattern of reasoning consisting of:  

– One set of sentence schemata, called premises, and  

– A second set of sentence schemata, called conclusions 

• A rule of inference is sound if and only if, for every instance, the premises 
logically entail the conclusions 

 



E.g. Modus Ponens (MP) 
j  y 

j 

y 

 

raining  wet 

raining 

wet 

 

wet  

slippery 

wet 

slippery 

 

p  (q  r) 

p 

q  r 

 

(p  q)  r 

p  q 

r 

 

• I.e. we can substitute for the 

metavariables complex sentences 

• Note that, by stringing together 

applications of rules of inference, it is 

possible to derive conclusions that 

cannot be derived in a single step. This 

idea of stringing together rule 

applications leads to the notion of a 

proof. 



Axiom schemata 

• The implication introduction schema (II), together with Modus Ponens, 
allows us to infer implications 

 j  (y  j) 

• The implication distribution schema (ID) allows us to distribute one 
implication over another 

 (j  (y  c))  ((j  y)  (j  c)) 

• The contradiction realization schemata (CR) permit us to infer a sentence 
if the negation of that sentence implies some sentence and its negation 

(y  j)  ((y  j)  y) 

(y  j)  ((y  j)  y) 

 



Axiom schemata (cont’) 

• The equivalence schemata (EQ) captures the meaning of the ↔ operator 

(j ↔ y)  (j  y) 

(j ↔ y)  (y  j) 

(j  y)  ((y  j)  (y ↔ j)) 

• The meaning of the other operators in propositional logic is captured in 
the following axiom schemata 

(j  y) ↔ (y  j) 

(j  y) ↔ (j  y) 

(j  y) ↔ (j  y) 

• The above axiom schemata are jointly called the standard axiom schemata 
for Propositional Logic 
– They all are valid 

 



Proofs 

• A proof of a conclusion from a set of premises is a 
sequence of sentences terminating in the 
conclusion in which each item is either  

(1) a premise,  
(2) an instance of an axiom schema, or  
(3) the result of applying a rule of inference to earlier items in sequence 

• Example: 
1. p  q      Premise 
2. q  r      Premise 
3. (q  r)  (p  (q  r))    II 
4. p  (q  r)     MP : 3,2 
5. (p  (q  r))  (( p  q) (p  r))  ID 
6. (p  q)  (p  r )    MP : 5,4 
7. p  r      MP : 6,1 

 
 



Proofs (cont’) 

• If there exists a proof of a sentence j from a set D of premises and the 
standard axiom schemata using Modus Ponens, then j is said to be 
provable from D, written as  

D ⊢ j 

• There is a close connection between provability and logical entailment (⊧): 
A set of sentences D logically entails a sentence j  

if and only if j is provable from D 

 

• Soundness Theorem:  

  If j is provable from D, then D logically entails j. 

• Completeness Theorem: 

  If D logically entails j, then j is provable from D. 

 

 



Proofs (cont’) 

• The concept of provability is important because it suggests how we can 
automate the determination of logical entailment 

– Starting from a set of premises D, we enumerate conclusions from this 
set 

– If a sentence j appears, then it is provable from D and is, therefore, a 
logical consequence 

– If the negation of j appears, then j is a logical consequence of D 
and j is not logically entailed (unless D is inconsistent) 

– Note that it is possible that neither j nor j will appear 

 



Resolution 

• Propositional resolution is an extremely powerful rule of inference for 
Propositional Logic 

• Using propositional resolution (without axiom schemata or other rules of 
inference), it is possible to build a theorem prover that is sound and 
complete for all of Propositional Logic 

• The search space using propositional resolution is much smaller than for 
standard propositional logic 

• Propositional resolution works only on expressions in clausal form 
– Before the rule can be applied, the premises and conclusions must be converted to this 

form 

 

 



Clausal Forms 

• A clause is a set of literals which is assumed (implicitly) to be a 
disjunction of those literals 
– Example: 

• Unit clause: clause with only one literal; e.g. {¬q} 
• Clausal form of a formula: Implicit conjunction of clauses 
• Example:  

 
  
 Abbreviated notation: 
• Notation: 

– l-literal, lc-complement of l 
– C-clause (a set of literals) 
– S-a clausal form (a set of clauses) 

 



Resolution – Properties of Clausal 
Forms 

(1) If l appears in some clause of S, but lc does not appear in any 
clause, then, if we delete all clauses in S containing l, the new 
clausal form S' is satisfiable if and only if S is satisfiable 

 Example: Satisfiability of 

    is equivalent to satisfiability of 

(2) Suppose C = {l} is a unit clause and we obtain S' from S by 
deleting C and lc from all clauses that contain it; then, S is 
satisfiable if and only if S' is satisfiable 

 Example:     is satisfiable iff 

      is satisfiable 

 

 



Resolution – Properties of Clausal Forms (cont’) 

(3) If S contains two clauses C and C', such that C  is a subset of 
C', we can delete C‘ without affecting the (un)satisfiability of S 

 Example:     is satisfiable iff 

      is satisfiable 

(4) If a clause C in S contains a pair of complementary literals l, lc, 
then C can be deleted from S without affecting its 
(un)satisfiability 
Example:     is satisfiable iff 

      is such 



Converting to clausal form 

Theorem: Every propositional formula can be transformed into an equivalent formula in CNF 
1. Implications: 

j1  j2    j1  j2 

j1  j2    j1  j2 

j1 ↔ j2    (j1  j2 )  (j1  j2) 
2. Negations: 

j    j 

(j1  j2 )    j1  j2 

(j1  j2 )    j1  j2 

3. Distribution: 
j1  (j2  j3 )    (j1  j2)  (j1  j3 ) 
(j1  j2)  j3    (j1  j3 )  (j2  j3) 
(j1  j2)  j3    j1  (j2  j3) 
(j1  j2)  j3    j1  (j2  j3) 

4. Operators: 
j1 ...  jn    {j1,...,jn} 
j1  ... jn    {j1}...{jn} 



Example 

• Transform the formula  

(p → q) → (¬q → ¬p) 

 into an equivalent formula in CNF 

 Solution: 

 

 



Resolution Rule 

• Suppose C1,C2 are clauses such that l in C1, lc 
in C2. The clauses C1 and C2 are said to be 
clashing clauses and they clash on the 
complementary literals l, lc 

 C, the resolvent of C1,C2 is the clause 

 

  C1 and C2 are called the parent clauses of C. 

 

 



Resolution Rule (cont’) 

• Example:  

 The clauses 

 

 clash on  

 

 C1,C2 also clash on       so, another way to find 
a resolvent for these two clauses is 

 

 

 



Resolution (cont’) 

• Theorem: Resolvent C is satisfiable if and only if the parent 
clauses C1,C2 are simultaneously satisfiable 

• Resolution Algorithm: 
 Input: S – a set of clauses 
 Output: “S is satisfiable” or “S is not satisfiable” 

1. Set S0 := S 
2. Suppose Si has already been constructed 
3. To construct Si+1, choose a pair of clashing literals and clauses C1,C2 in 

S (if there are any) and derive 
   C := Res(C1,C2) 
   Si+1 := Si U {C} 
1. If C is the empty clause, output “S is not satisfiable”; if Si+1 = Si , 

output “S is satisfiable” 
2. Otherwise, set i := i + 1 and go back to Step 2 

 



Resolution (cont’) 

• Example: Show that (p → q) → (¬q → ¬p) is a valid formula 
Solution: We will show that  

¬*(p → q) → (¬q → ¬p)+ 

 is not satisfiable. 
(1) Transform the formula into CNF: 

 

 

 

 

 (2) Show, using resolution, that 
1.   
2.   
3.            C is the empty clause 

•  A derivation of the empty clause from S is called a refutation of S 



Resolution (cont’) 

• Theorem: If the set of a clauses labeling the leaves of a 
resolution tree is satisfiable, then the clause at the root is 
satisfiable 

• Theorem (Soundness): If the empty clause is derived from a 
set of clauses, then the set of clauses is unsatisfiable 

• Theorem (Completeness) If a set of clauses is unsatisfiable, 
then the empty clause  can be derived from it using resolution 
algorithm 
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Problem Example 

• For each of these sets of premises, what relevant 
conclusion or conclusions can be drawn? Explain the rules 
of inference used to obtain each conclusion from the 
premises. 

 (a) “If I eat spicy foods, then I have strange dreams.” “I have 
strange  dreams if there is thunder while I sleep.” “I did not 
have strange dreams.” 

 (b) “I am dreaming or hallucinating.” “I am not dreaming.” 
“If I am hallucinating, I see elephants running down the 
road.” 

 (c) “If I work, it is either sunny or partly sunny.” “I worked 
last Monday or I worked last Friday.” “It was not sunny on 
Tuesday.” “It was not partly sunny on Friday.” 



Solution (a) 
(a) “If I eat spicy foods, then I have strange dreams.” “I have strange  

dreams if there is thunder while I sleep.” “I did not have strange 
dreams.” 

• The relevant conclusions are: “I did not eat spicy food” and 
“There is no thunder while I sleep”. 

• Let the primitive statements be: 
– s, ‘I eat spicy foods’ 
– d, ‘I have strange dreams’ 
– t, ‘There is thunder while I sleep’ 

• Then the premises are translated as: s → d, t → d, and ¬d. 
• And the conclusions: ¬s, ¬t. 
• Steps  Reason 
1. s → d  premise 
2. ¬d   premise 
3. ¬s   Modus Tollens to Steps 1 and 2 
4. t → d  premise 
5. ¬t   Modus Tollens to Steps 4 and 2. 

 



Solution (b) 
(b) “I am dreaming or hallucinating.” “I am not dreaming.” “If I 

am hallucinating, I see elephants running down the road.” 
• The relevant conclusion is: “I see elephants running down 

the road.”. 
• Let the primitive statements be: 

– d, ‘I am dreaming’ 
– h, ‘I am hallucinating’ 
– e, ‘I see elephants running down the road’ 

• Then the premises are translated as: d ∨ h, ¬d, and h → e. 
• And the conclusion: e. 
• Steps  Reason 
1. d ∨ h  premise 
2. ¬d   premise 
3. h   rule of disjunctive syllogism to Steps 1 and 2 
4. h → e  premise 
5. e   Modus Ponens to Steps 4 and 3 

 



Solution (c) 
(c) “If I work, it is either sunny or partly sunny.” “I worked last Monday or I 

worked last Friday.” “It was not sunny on Tuesday.” “It was not partly 
sunny on Friday.” 

• There is no single relevant conclusion in this problem, its main difficulty 
is to to represent the premises so that one is able infer anything at all. 
One possible relevant conclusion is: “It was sunny or partly sunny last 
Monday or it was sunny last Friday.”. 

• Let the primitive statements be: 

– wm, ‘I worked last Monday’ 

– wf , ‘I worked last Friday’ 

– sm, ‘It was sunny last Monday’ 

– st, ‘It was sunny last Tuesday’ 

– sf , ‘It was sunny last Friday’ 

– pm, ‘It was partly sunny last Monday’ 

– pf , ‘It was partly sunny last Friday’ 

• Then the premises are translated as: wm ∨ wf , wm → (sm ∨ pm), wf → 
(sf ∨ pf ), ¬st, and ¬pf . 

• And the conclusion: sf ∨ sm ∨ pm. 

 



Solution (c) – Method 1 

• Steps   Reason 

1. wf → (sf ∨ pf )   premise 

2. ¬wf ∨ sf ∨ pf   expression for implication 

3. ¬pf → (¬wf ∨ sf )  expression for implication 

4. ¬pf    premise 

5. ¬wf ∨ sf   modus ponens to Steps 3 and 4 

6. wf → sf   expression for implication 

7. wm ∨ wf   premise 

8. ¬wm → wf   expression for implication 

9. ¬wm → sf   rule of syllogism to Steps 8 and 6 

10. wm ∨ sf   expression for implication 

11. ¬sf → wm   expression for implication 

12. wm → (sm ∨ pm)  premise 

13. ¬sf → (sm ∨ pm)  rule of syllogism to Steps 11 and 12 

14. sf ∨ sm ∨ pm   expression for implication. 



Solution (c) – Method 2 (Use the rule of resolution) 

• Steps   Reason 
1. wf → (sf ∨ pf )  premise 
2. ¬wf ∨ sf ∨ pf  expression for implication 
3. ¬pf    premise 
4. ¬wf ∨ sf   rule of resolution to Steps 2 and 3 
5. wm ∨ wf   premise 
6. wm ∨ sf   rule of resolution to Steps 4 and 5 
7. wm → (sm ∨ pm)  premise 
8. ¬wm ∨ sm ∨ pm  expression for implication 
9. sf ∨ sm ∨ pm  rule of resolution to Steps 7 and 8 

 



Rule-Based Deduction Systems 
 
The way in which a piece of knowledge is expressed by a 

human expert carries important information,  
example: if the person has fever and feels tummy-pain then she 

may have an infection.  
In logic it can be expressed as follows: 
  
  x. (has_fever(x) & tummy_pain(x)  has_an_infection(x)) 
 
   If we convert this formula to clausal form we loose the 

content as then we may have equivalent formulas like: 
 
        (i) has_fever(x) & ~has_an_infection(x)  ~tummy_pain(x)  
        (ii) ~has_an_infection(x)  & tummy_pain(x)  

~has_fever(x)  
 
  Notice that: 

– (i) and (ii) are logically equivalent to the original sentence 
– they have lost the main information contained in its 

formulation. 



Forward production 
systems  

• The main idea behind the 
forward/backward production systems 
is: 
–  to take advantage of the implicational 

form in which production rules are 
stated by the expert  

– and use that information to help 
achieving the goal. 

• In the present systems the formulas 
have two forms:  
– rules  
– and facts 



Forward production systems 

• Rules are the productions stated in implication form.  
– Rules express specific knowledge about the problem. 
– Facts are assertions not expressed as implications. 
– The task of the system will be to prove a goal formula with 

these facts and rules.  
– In a forward production system the rules are expressed as F-

rules  
– F-rules operate on the global database of facts until the 

termination condition is achieved.  
– This sort of proving system is a direct system rather than a 

refutation system. 
 

• Facts 
– Facts are expressed in AND/OR form.  
– An expression in AND/OR form consists on sub-expressions of 

literals  connected by & and V symbols. 
– An expression in AND/OR form is not in clausal form. 



Rule-Based Deduction Systems 
Steps to transform facts into AND/OR form for forward 

system: 
1. Eliminate (temporarily) implication symbols. 
2. Reverse quantification of variables in first disjunct 

by moving negation symbol. 
3. Skolemize existential variables. 
4. Move all universal quantifiers to the front an drop. 
5. Rename variables so the same variable does not 

occur in different main conjuncts 
- Main conjuncts are small AND/OR trees, not necessarily 

sum of literal clauses as in Prolog. 
 
EXAMPLE 
       Original formula:  u. v. {q(v, u) & ~[[r(v) v p(v)] & 

s(u,v)]} 
       converted formula: q(w, a) & {[~r(v) & ~p(v)] v 

~s(a,v)} 

Forward production systems 

All variables appearing on the final expressions are assumed to be universally 
quantified. 

Conjunction of two 
main conjuncts Various variables in conjuncts 



Rule-Based Deduction Systems: forward production 
systems F-rules 

Rules in a forward production system will be applied to the AND/OR graph 
to produce new  transformed graph structures.  

We assume that rules in a forward production system are of the form:   
L ==> W,  
where L is a literal and W is a formula in AND/OR form.  
• Recall that a rule of the form (L1 V L2) ==> W is equivalent to the pair 

of rules: L1 ==> W V L2 ==> W. 
 

[barks(fido) & bites(fido)] v ~dog(fido) 

barks(fido) & bites(fido) ~dog(fido) 

barks(fido) bites(fido) 

noisy(fido) 

~terrier(fido) 

~terrier(z) noisy(z) 

goal nodes 

R1 

R2 

{fido/z} 

{fido/z} 

OR node AND node 

•Dog(Fido) 

•barks(Fido) 

•Not 
terrier(Fido)\ 

•Noisy(Fido)  

 

•NOT Dog(Fido) 

•Not 
terrier(Fido)\ 

We have to prove 
that there is X 
that is noisy. 
X=Fido 

Or we have to prove that 
there is X that X is not a 
terrier 

prove that: “there exists 
someone who is not a terrier 
or who is noisy.” 

We cannot 
prove this 
branch but we 
do not have to 
since one 
branch of OR 
was proven by 
showing Fido 



forward production systems 

Steps to transform the rules into a free-quantifier 
form: 

1. Eliminate (temporarily) implication symbols. 
2. Reverse quantification of variables in first disjunct by 

moving negation symbol. 
3. Skolemize existential variables. 
4. Move all universal quantifiers to the front and drop. 
5. Restore implication. 
 

All variables appearing on the final expressions are assumed 
to be universally quantified. 

 

E.g.   Original formula:     x.(y. z. (p(x, y, z))   u. q(x, 
u))  

         Converted formula:   p(x, y, f(x, y))  q(x, u). 
 

Skolem 
function 

Restored 
implicati
on 



Rule-Based Deduction Systems 

 

A full example: 

• Fact: Fido barks and bites, or Fido is not a dog. 

• (R1) All terriers are dogs. 

• (R2) Anyone who barks is noisy. 
 

Based on these facts, prove that: “there exists 
someone who is not a terrier or who is noisy.” 

 

Logic representation: 
 

     (barks(fido) & bites(fido))  v  ~dog(fido) 

 R1:  terrier(x)  dog(x) 

 R2:  barks(y)  noisy(y) 
 

     goal:     w.(~terrier(w) v noisy(w)) 

forward production systems 

goal 



AND/OR Graph for the ‘terrier’ problem: 

Rule-Based Deduction Systems: forward production systems 

[barks(fido) & bites(fido)] v ~dog(fido) 

barks(fido) & bites(fido) ~dog(fido) 

barks(fido) bites(fido) 

noisy(fido) 

~terrier(fido) 

~terrier(z) noisy(z) 

goal nodes 

R1 applied in reverse 

R2 applied forward 

{fido/z} 

{fido/z} 

OR node AND node 

From facts to goal 



B-Rules 
We restrict B-rules to expressions of the form:  W ==> L,  

where W is an expression in AND/OR form and L is a literal,  

and the scope of quantification of any variables in the implication is the 
entire implication.  

Recall that W==>(L1 & L2) is equivalent to the two rules: W==>L1 and 
W==>L2. 

An important property of logic is the duality between assertions and 
goals in theorem-proving systems.  

Duality between assertions and goals allows the goal expression to be 
treated as if it were an assertion. 

 

Conversion of the goal expression into AND/OR form: 

1. Elimination of implication symbols. 

2. Move negation symbols in. 

3. Skolemize existential variables. 

4. Drop existential quantifiers. Variables remaining in the AND/OR 
form are considered to be existentially quantified. 

 

Goal clauses are conjunctions of literals and the disjunction of these 
clauses is the clause form of the goal well-formed formula. 

Backward production systems 



Example 1 of formulation of Rule-Based Deduction 
Systems 

1. Facts: 
 dog(fido)  
 ~barks(fido) 
 wags-tail(fido) 
 meows(myrtle) 
Rules: 
 R1: [wags-tail(x1) & dog(x1)]  

friendly(x1) 
 R2: [friendly(x2) & ~barks(x2)]  

~afraid(y2,x2) 
 R3: dog(x3)  animal(x3) 
 R4: cat(x4)  animal(x4) 
 R5: meows(x5)  cat(x5) 
 

Suppose we want to ask if there are a cat and a 
dog such that the cat is unafraid of the 
dog. 

 The goal expression is: 

  x. y.[cat(x) & dog(y) & ~afraid(x,y)] 

We treat the goal 
expression as an 
assertion 

x. y.[cat(x) & dog(y) & ~afraid(x,y)] 

dog(fido) 

[cat(x) 

R
2 

meows(x5=myrtle) 

x=x5 

dog(y) ~afraid(x,y)] 

R5 

Y=Fido 

[friendly(x2) ~barks(x2) 

~barks(x2=fido) 

wags-tail(x1) dog(x1)] 

X1=Fid
o 

dog(fido) 

R1 

R2 

wags-tail(fido) 

X1=Fid
o 



Rule-Based Deduction Systems 

2. The blocks-word situation is described by the following 
set of wffs: 

 on_table(a)  clear(e) 

 on_table(c)  clear(d) 

 on(d,c)  heavy(d) 

 on(b,a)  wooden(b) 

 heavy(b)  on(e,b) 

The following statements provide general knowledge about 
this blocks word: 

 Every big, blue block is on a green block. 

 Each heavy, wooden block is big. 

 All blocks with clear tops are blue. 

 All wooden blocks are blue. 

Represent these statements by a set of implications having 
single-literal consequents.  

Draw a consistent AND/OR solution tree (using B-rules) that 
solves the problem: “Which block is on a green block?” 

Homework:   

formulation of Rule-Based 
Deduction Systems 



HOMEWORK Problem 2. 
Transformation of rules and goal: 

Facts: 

 f1:  on_table(a)  f6:  clear(e) 

 f2:  on_table(c)  f7:  clear(d) 

 f3:  on(d,c)                f8:   heavy(d) 

 f4:  on(b,a)                f9:   wooden(b) 

 f5:  heavy(b)              f10:  on(e,b) 

Rules: 

     R1:   big(y1) ^ blue(y1)   green(g(y1))    Every big, blue block is on a 
green block. 

     R2:   big(y0) ^ blue(y0)  on(y0,g(y0))          “   “   “      “     “  “  “   “       
“ 

     R3:   heavy(z) ^ wooden(z)  big(z)        Each heavy, wooden block is big. 

     R4:   clear(x)  blue(x)                           All blocks with clear tops are blue. 

     R5:   wooden(w)  blue(w)                     All wooden blocks are blue. 

Goal:   

     green(u) ^ on(v,u)                Which block is on a green block? 



HOMEWORK PROBLEM 3. Information 
Retrieval System 

– We have a set of facts containing personnel data for a 
business organization  

– and we want an automatic system to answer various 
questions about personal matters. 

• Facts 

 John Jones is the manager of the Purchasing 
Department.  

  manager(p-d,john-jones) 

  works_in(p-d, joe-smith) 

  works_in(p-d,sally-jones) 

  works_in(p-d,pete-swanson) 

 Harry Turner is the manager of the Sales Department. 

  manager(s-d,harry-turner) 

  works_in(s-d,mary-jones) 

  works_in(s-d,bill-white) 

  married(john-jones,mary-jones) 



Rule-Based Deduction Systems 

Rules 

 R1:  manager(x,y)  works_in(x,y) 

 R2:  works_in(x,y) & manager(x,z)  boss_of(y,z) 

 R3: works_in(x,y) & works_in(x,z)  ~married(y,z) 

 R4: married(y,z)  married(z,y) 

    R5: [married(x,y) & works_in(p-d,x)  
insured_by(x,eagle-corp) 

 

With these facts and rules a simple backward production 
system can answer a variety of questions.  

Build solution graphs for the following questions: 

1. Name someone who works in the Purchasing 
Department. 

2. Name someone who is married and works in the sales 
department. 

3. Who is Joe Smith’s boss? 

4. Name someone insured by Eagle Corporation. 

5. Is John Jones married with Sally Jones? 

pers
on 

place 

pers
on 

In this company 
married people should 
not work in the same 
department 



Planning 

• Planning is fundamental to “intelligent” behavior. E.g. 

 - assembling tasks              - route finding 

 - planning chemical processes - planning a report 

• Representation 

 The planner has to represent states of the world it is 
operating within, and to predict consequences of 
carrying actions in its world. E.g. 

 initial state:        final state:   

a 

b c 
d 

on(a,b) 
on(b,table) 
on(d,c) 
on(c,table) 
clear(a) 
clear(d) 

on(a,b) 
on(b,c) 
on(c,d) 
on(d,tabl
e) 
clear(a) 

a 

b 

d 

c 



Planning 

• Representing an action 

 One standard method is by specifying sets of preconditions and effects, 
e.g. 

 

 pickup(X) : 

  preconditions: clear(X), handempty. 

  deletlist:   on(X,_), clear(X), handempty. 

  addlist: holding(X). 

 



Planning 

• The Frame Problem in Planning 
• This is the problem of how to keep track in a 

representation of the world of all the effects that an 
action may have. 
 

• The action representation given is the one introduced by 
STRIPS (Nilsson) and is an attempt to a solution to the 
frame problem 
–  but it is only adequate for simple actions in simple worlds.  
 

 
 
 

• The Frame Axiom 
• The frame axiom states that a fact is true if it is not in 

the last delete list and was true in the previous state.  
• The frame axiom states that a fact is false if it is not in 

the last add list and was false in the previous state. 
 



Planning 

• Control Strategies 
–  Forward Chaining 

–  Backward Chaining 
  

 The choice on which of these 
strategies to use depends on 
the problem, normally 
backward chaining is more 
effective. 

 



Planning 

Example: 
Initial State   
 clear(b), clear(c), on(c,a), ontable(a), ontable(b), handempty    
Goal 
 on(b,c) & on(a,b) 
 

Rules 
 

R1:  pickup(x)    R2:  putdown(x) 
   P & D: ontable(x), clear(x),         P & D: holding(x) 
           handempty         A:  ontable(x), clear(x), handempty 
   A:  holding(x)    
 
R3:  stack(x,y)   R4:  unstack(x,y) 
   P & D: holding(x), clear(y)       P & D: on(x,y), clear(x), handempty 
   A:  handempty, on(x,y), clear(x)        A:  holding(x), clear(y) 
     
   
 

c 

a b 

a 

a 

c 

b 



Planning 

on(c,a) 
clear(c) 
handempty  unstack(c,a) 

 putdown(c) 

pickup(b) 

 stack(b,c) 

pickup(a) 

 stack(a,b) 

holding(c) 

clear(a) 

clear(c) 

handempty 
ontable(b) 
clear(b) 

holding(b) 

handempty 

on(b,c) 

clear(b) 

ontable(a) 

holding(a) 

on(a,b
) 

TRIANGLE TABLE       {unstack(c,a), putdown(c), pickup(b), stack(b,c), pickup(a), stack(a,b)} 
 

0 

1 

2 

3 

4 

5 

6 

c 

a b 
d a 

c 

b 

Conditio
ns for 
action 

go
al 

{unstack(c,a), putdown(c), pickup(b), stack(b,c), pickup(a), stack(a,b)} 
 

Initial situation 

next situation 



Ques 1: Describe how the two SCRIPS rules pickup(x) and stack(x,y) could be 
combined into a macro-rule put(x,y).  

What are the preconditions, delete list and add list of the new rule. 

 Can you specify a general procedure for creating macro-rules components? 

 

Ques 2: Consider the problem of devising a plan for a kitchen-cleaning robot. 

 (i) Write a set of STRIPS-style operators that might be used.  

When you describe the operators, take into account the following considerations: 

  (a) Cleaning the stove or the refrigerator will get the floor dirty. 

  (b) The stove must be clean before covering the drip pans with tin foil. 

  (c) Cleaning the refrigerator generates garbage and messes up the  

        counters. 

  (d) Washing the counters or the floor gets the sink dirty. 

 (ii) Write a description of an initial state of a kitchen that has a dirty stove, 
refrigerator, counters, and floor.  

(The sink is clean, and the garbage has been taken out).  

Also write a description of the goal state where everything is clean, there is no trash, 
and the stove drip pans have been covered with tin foil.  

Assignment Questions (Unit -2) 



Assignment Questions (Unit -2) 

Ques 3: Explain the following types of Knowledge:  

i. Domain Specific Knowledge 

ii. Common Sense Knowledge  
Ques 4. Explain the inferencing rules in propositional logic. Solve the following 

problemwith the help of these rules: 

Test the validity of following argument: 

“If milk is black, then every cow is white. If every cow is white then, it has four legs. If 

every cow has  four legs, then every buffalo is white and brisk. The milk is black. 

Therefore, the buffalo is white”.  

Ques 5: Explain Rule based deduction system, in detail.  
Ques 6. Define probability. Differentiate between conditional and Unconditional 

Probability  


