
Combinational Circuits 

  



What is Combinational Circuits? 

• A Combinational Circuit is a combination of 
Logic gates, the output depends upon the 
current value of the inputs.  





Examples of Combinational Circuits 

 Addition: 
 Half Adder (HA). 

 Full Adder (FA). 

 BCD(Decimal) Adder. 

 Subtraction: 
 Half Subtractor. 

 Full Subtractor. 

 Multiplication: 
 Binary Multipliers. 

 Comparator: 
 Magnitude Comparator. 

 



 Multiplexers 

 Demultiplexers 

 Encoders 

 Decoders 

 Converters 

• Binary to Gray Code 

• Gray to Binary Code 

• Binary to BCD Code 
 

 

Examples of Combinational Circuits 



Two types of questions come in the exam 

based on Combinational Circuit: 

1.Designing of a combinational Circuit 

2.Analysis of Combinational Circuit 

 



Designing Combinational Circuits 

 In general we have to do following steps: 

1. Problem description 

2. Input/output of the circuit 

3. Define truth table 

4. Simplification for each output 

5. Draw the circuit 



Half Adder 
 Adding two single-bit binary values, X, Y produces a sum S 

bit and a carry out C-out bit.    

 This operation is called half addition and the circuit to 
realize it is called a half adder. 
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Half Adder Truth Table 

Inputs Outputs 

S(X,Y) = S (1,2) 

S  =  X’Y +  XY’ 

S  =  X  Y 

 

C-out(x, y) = S (3) 

C-out  =  XY 
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Full Adder 

 Adding two single-bit binary values, X, Y with a carry input bit 
C-in  produces a sum bit  S  and a carry out C-out bit.  

X 

0 

0 

0 

0 

1 

1 

1 

1 

Y 

0 

0 

1 

1 

0 

0 

1 

1 

S 

0 

1 

1 

0 

1 

0 

0 

1 

C-out 

   0 

   0 

   0 

   1 

   0 

   1 

   1 

   1 

C-in 

  0 

  1 

  0 

  1 

  0 

  1 

  0 

  1 

Full Adder Truth Table 

Inputs Outputs 

  Full 

 Adder 

X Y 

S 

C-in C-out 



Full Adder 
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Full Adder Truth Table 

S(X,Y, C-in) = S (1,2,4,7) 

C-out(x, y, C-in) = S (3,5,6,7) 
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Sum S 

C-in 

X 

0 

   

1 

00       01       11        10 

Y 

C-in 

XY 

0 

1 

2 

3 

6 

7 

4 

5 

1 

1 1 

1 

C-in 

X 

0 

   

1 

00       01       11        10 

Y 

C-in 

XY 

0 

1 

2 

3 

6 

7 

4 

5 

1 

1 1 1 

Carry C-out 

S =  X’Y’(C-in) + XY’(C-in)’ + XY’(C-in)’ + XY(C-in) 

S =  X    Y    (C-in)  

C-out =  XY + X(C-in) + Y(C-in) 



Full Adder Circuit Using AND-OR 
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Full Adder Circuit Using two half - Adders 

 
 
 
 
 
 
 
 
Half Adder -1 

 
 
 
 
 
 
 
 
 
Half Adder -2 



Binary adder 

• Binary adder that produces the arithmetic 
sum of binary numbers can be constructed 
with full adders connected in cascade, with 
the output carry from each full adder is 
connected to the input carry of the next full 
adder in the chain 

• Note that the input carry C0 in the least 
significant position must be 0.     

 



Binary Adder 

C0= 0 



Binary Adder 

• For example to add A= 1011 and B= 0011 

         subscript i:    3     2    1     0 

        Input carry:    0    1     1     0      Ci 

           Augend:         1    0      1     1     Ai 

        Addend:         0    0     1     1    Bi  

                        -------------------------------- 

         Sum:            1     1     1    0     Si 

  Output carry:      0      0     1    1     Ci+1             



DECIMAL/BCD ADDER 



Assignment 

• Explain half Adder and full Adder? Expalin Full 
Adder using Half adders? 



 
Subtractors 



Combinational Arithmetic 
Circuits 

 Addition: 
 Half Adder (HA). 

 Full Adder (FA). 

 Binary Adder 

 BCD(Decimal) Adder. 

 Subtraction: 
 Half Subtractor. 

 Full Subtractor. 

 Multiplication: 
 Binary Multipliers. 

 Comparator: 
 Magnitude Comparator. 

 



Combinational Arithmetic 
Circuits 

 Multiplexers 

 Demultiplexers 

 Encoders 

 Decoders 
 

 
 

 

 



Half Subtractor 
 Subtracting a single-bit binary value Y from anther X  (I.e.  X 

-Y ) produces a difference bit  D  and a borrow out  bit B-out.    

 This operation is called half subtraction and the circuit to 
realize it is called a half subtractor. 
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Half Subtractor Truth Table 

Inputs Outputs 

D(X,Y) = S (1,2) 

D  =  X’Y +  XY’ 

D  =  X  Y 

 

B-out(x, y, C-in) = S (1) 

B-out  =  X’Y 
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Binary Arithmetic Operations 
Subtraction 

 Two binary numbers are subtracted by subtracting each pair of 

bits together with borrowing, where needed. 

 Subtraction Example: 

 

                                              0  0  1  1  1  1  1  0  0   Borrow 

                 X      229                  1  1  1  0  0  1  0  1 

                 Y  -    46         -        0  0  1  0  1  1  1  0 

                         183                   1  0  1  1  0  1  1  1 



Full Subtractor 
 Subtracting two single-bit binary 

values, Y, B-in  from a single-bit value 
X produces a difference bit  D  and a 
borrow out B-out bit. This is called full 
subtraction. 
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Full Subtractor Truth Table 

S(X,Y, C-in) = S (1,2,4,7) 

C-out(x, y, C-in) = S (1,2,3,7) 

Inputs Outputs 
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Borrow  B-out 

S =  X’Y’(B-in) + XY’(B-in)’ + XY’(B-in)’ + XY(B-in) 

S =  X    Y    (C-in)  

B-out =  X’Y + X’(B-in) + Y(B-in) 



Full Subtractor Circuit Using 
AND-OR 
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Full Subtractor Circuit Using XOR 
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An n-bit subtracor used to subtract an n-bit number Y from another  

n-bit number X  (i.e  X-Y) can be built in one of two ways: 

 

 By using n full subtractors and connecting them in series, creating a borrow 
ripple subtractor: 

 Each borrow out B-out from a full subtractor at position j is connected 
to the borrow in B-in of the full subtracor at the higher position j+1. 

 

 By using an n-bit adder and  n inverters: 

 Find two’s complement of Y by: 

  Inverting all the bits of Y using the n inverters. 

 Adding 1 by setting the carry in of the least significant position to 1 

 The original subtraction (X - Y)  now becomes an addition of X to 
two’s complement of  Y  using the n-bit adder. 

 

n-bit Subtractors 



Binary Subtractor 

• The subtrcation A – B can be done by taking 
the 2’s complement of B and adding it to A 
because A- B = A + (-B) 

• It means if we use the inveters to make 1’s 
complement of B (connecting each Bi to an 
inverter) and then add 1 to the least 
significant bit (by setting carry C0 to 1) of  
binary adder, then we can make a binary 
subtractor. 



4 bit 2’s complement Subtractor 

= 1 



Adder Subtractor 

• The addition and subtraction can be combined 
into one circuit with one common binary 
adder (see next slide).  

• The mode M controls the operation. When 
M=0 the circuit is an adder when M=1 the 
circuit is subtractor. It can be don by using 
exclusive-OR for each Bi and M. Note that 1 ⊕ 
x = x’ and 0 ⊕ x = x  





Checking Overflow 

• Note that in the previous slide if the numbers 
considered to be signed  V detects overflow. V=0 
means no overflow and V=1 means the result is 
wrong because of overflow 

• Overflow can be happened when adding two 
numbers of the same sign (both negative or positive) 
and result can not be shown with the available bits. 
It can be detected by observing the carry into sign bit 
and carry out of sign bit position.  If these two carries 
are not equal an overflow occurred. That is why 
these two carries are applied to exclusive-OR gate to 
generate V.  



block diagram 
and 

truth table 

4-variable K-map 
for each of the 4 
output functions 

A2 A1 B2 B1 P8 P4 P2 P1 
0 0 0 0 0 0 0 0 
  0 1 0 0 0 0 
  1 0 0 0 0 0 
  1 1 0 0 0 0 
0 1 0 0 0 0 0 0 
  0 1 0 0 0 1 
  1 0 0 0 1 0 
  1 1 0 0 1 1 
1 0 0 0 0 0 0 0 
  0 1 0 0 1 0 
  1 0 0 1 0 0 
  1 1 0 1 1 0 
1 1 0 0 0 0 0 0 
  0 1 0 0 1 1 
  1 0 0 1 1 0 
  1 1 1 0 0 1 
 

Design example: 2x2-bit 
multiplier 
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K-map for P8 K-map for P4 

K-map for P2 K-map for P1 

Design example: 2x2-bit 
multiplier (cont’d) 
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P1 = A1B1 



Assignment-  

• Explain half Subtractor and Full Subtractor. 



 
Magnitude Comparator 



Magnitude Comparator 

• It is a combinational circuit that compares two 
numbers and determines their relative magnitude 

• The output of comparator is usually 3 binary 
variables indicating:      A>B  

                                              A=B 

                                              A<B 

• For example to design a comparator for 2 bit binary 
numbers A (A1A0) and B (B1B0) we do the following 
steps: 



Comparators 
• For a 2-bit comparator we have four inputs A1A0 and B1B0 and three 

output E ( is 1 if two numbers are equal),  G (is 1 when A > B) and L (is 1 
when A < B) If we use truth table and KMAP the result is 

• E=  A’1A’0B’1B’0 + A’1A0B’1B0 + A1A0B1B0 + A1A’0B1B’0 

         or E=(( A0 ⊕ B0) + ( A1 ⊕ B1))’  (see next slide) 

• G = A1B’1 + A0B’1B’0 + A1A0B’0 

• L= A’1B1 + A’1A’0B0 + A’0B1B0 
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Truth Table 
A0 A1 B0 B1 E L G 

0 0 0 0 1 0 0 

0 0 0 1 0 1 0 

0 0 1 0 0 1 0 

0 0 1 1 0 1 0 

0 1 0 0 0 0 1 

0 1 0 1 1 0 0 

0 1 1 0 0 1 0 

0 1 1 1 0 1 0 

1 0 0 0 0 0 1 

1 0 0 1 0 0 1 

1 0 1 0 1 0 0 

1 0 1 1 0 1 0 

1 1 0 0 0 0 1 

1 1 0 1 0 0 1 

1 1 1 0 0 0 1 

1 1 1 1 1 0 0 



Magnitude Comparator 

• From the truth table: 
E = (0,5,10,15) 
    = A1’A0’B1’B0’ + A1’A0B1’B0 + A1A0’B1B0’ +A1A0B1B0 



Magnitude Comparator 

• A>B  means    A1   B1 Y1     
                             ------------ 
                             0    0     0 
                             0     1    0 
                             1     0    1 
                             1    1     0 
 if A1=B1 (X1=1) then A0 should be 1 and B0 should be 0 
                            A0    B0   Y0 
                             ------------ 
                              0    0    1 
                              0     1    0 
                              1     0    0 
                              1    1    0 
 For A> B:  A1 > B1 or A1 =B1 and A0 > B0 
It means  Y= A1B’1 + X1A0B’0 should be 1 for A>B 



Magnitude Comparator 

• For B>A  B1 > A1  

                    or 

                   A1=B1 and B0> A0 

     z= A’1B1 + X1A’0B0 

•   The procedure for binary numbers with more than 2 bits can 
also be found in the similar way. For example next slide shows 
the 4-bit magnitude comparator, in which 

(A= B)    = x3x2x1x0 

(A> B)    = A3B’3 + x3A2B’2 + x3x2A1B’1+ x3x2x1A0B’0 

(A< B)   =  A’3B3 + x3A’2B2 + x3x2A’1B1+ x3x2x1A’0B0 

      





we'll need a 4-variable Karnaugh map  
for each of the 3 output functions 

Design example: two-bit 
comparator 

block diagram 
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A B < C D 

A B = C D 

A B > C D 
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0 0 0 0 0 1 0 
  0 1 1 0 0 
  1 0 1 0 0 
  1 1 1 0 0 
0 1 0 0 0 0 1 
  0 1 0 1 0 
  1 0 1 0 0 
  1 1 1 0 0 
1 0 0 0 0 0 1 
  0 1 0 0 1 
  1 0 0 1 0 
  1 1 1 0 0 
1 1 0 0 0 0 1 
  0 1 0 0 1 
  1 0 0 0 1 
  1 1 0 1 0 
 

and 
truth table 



A' B' D  +  A' C  +  B' C D 

B C' D'  +  A C'  +  A B D' 

LT = 

EQ = 

GT = 

K-map for EQ K-map for LT K-map for GT 

Design example: two-bit 
comparator (cont’d) 
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= (A xnor C) • (B xnor D) 

LT and GT are similar (flip A/C and B/D) 

A'B'C'D'  +  A'BC'D  +  ABCD  +  AB'CD’ 

Canonical PofS vs minimal? 



two alternative 
implementations of EQ 
with and without XOR 

XNOR is implemented with  
at least 3 simple gates 

A B C D 

EQ 

EQ 

Design example: two-bit 
comparator (cont’d) 



Assignment 
Explain 2-bit comparator. 



 
Code Converter 



Binary to Gray Code Converter 









Steps to design the converter 

1. Design a converter by the following procedures:  

a. Write down the truth table of both input and output bits of the 
converter. 

b. Apply Karnaugh Map to look for the minimized logic expression for the 
output bits. 

c. Implement the logic gates by using Circuit Maker.  

Example: 

For Binary to Gray Code Converter, binary bits are input and gray code 
bits are output. So first write the truth table for binary bits and gray code. 
Then k-map for the all bits of gray code, find the simplified expression for 
each bit of gray code. Then design the logical circuit. 



Truth Table 



K-Map for each bit of Gray code 











Gray to Binary Converter 



Truth Table 

Dec G3 G2 G1 G0 B3 B2 B1 B0 

0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 1 

3 0 0 1 1 0 0 1 0 

2 0 0 1 0 0 0 1 1 

6 0 1 1 0 0 1 0 0 

7 0 1 1 1 0 1 0 1 

5 0 1 0 1 0 1 1 0 

4 0 1 0 0 0 1 1 1 

12 1 1 0 0 1 0 0 0 

13 1 1 0 1 1 0 0 1 

15 1 1 1 1 1 0 1 0 

14 1 1 1 0 1 0 1 1 

10 1 0 1 0 1 1 0 0 

11 1 0 1 1 1 1 0 1 

9 1 0 0 1 1 1 1 0 



K MAP For B3 
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K MAP For B2 
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K MAP For B1 
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K MAP For B0 
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012G3  0 GGGB 
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Assignment 

Design the Converter for 

1. Binary to BCD 

2. BCD to Gray 

3. BCD to Binary 

4. BCD to Excess 

 



 
Analysis of Combinational Circuits 



Designing Combinational Logic Circuits 

•A logic circuit having 3 inputs, A, B, 
C will have its output HIGH only 
when a majority of the inputs are 
HIGH. 

Step 1  Set up the truth table 
 
Step 2   
Write the AND term for each case 
where the output is a 1.  
 

 
 

 

 



Sum-Of-Products Form 

• SOP is useful in simplification and design 

• Two or more AND terms OR together 

–Ex: ABC+ABC 

–the inversion sign cannot cover more than 
one variable (ABC) 

• Another general form for logic expressions is 
sometimes used in logic-circuit design. It called 
product-of-sum (POS) 

• Consist 2 or more OR terms that are AND together. 

- Ex: (A+B+C)(A+C) 

 

 

 



Analysis of Logic Circuits 
• First obtain one expression for the circuit, then try to simplify. 

• Example: 

 

 

 

 

 

 

 

• Two methods for simplifying: 
- Algebraic method (use Boolean algebra theorems) 

- Karnaugh mapping method (systematic, step-by-step approach) 

 

 

 



Algebraic Simplification 

1. Put the original expression into SOP form by repeated 
application of DeMorgan’s theorems 

2. Once in SOP form, check for common factors and factor 
whenever possible. 

Example: 

 



 
Step 3   Write the SOP form the output 

Step 4   Simplify the output expression  

 



Step 5  Implement the circuit 

 



Karnaugh Map (K-Map) Method 

• K Map shows the relationship between inputs & outputs 

• Horizontally & vertically adjacent squares differ only in one 
variable. 

 

 

 

 

 







Looping is a process combining the squares which contain 1s.  

The output expression can be simplified by looping.  







Rule for loops of any size 

 When a variable appears in both 
complemented & uncomplemented form 
within a loop, that variable is eliminated from 
the expression. Variables that are the same for 
all squares of the loop must appear in the final 
expression. 

 



Complete Simplification Process 
1.Construct the K map and place 1s and 0s in the squares according to the 

truth table.  

2.Loop the isolated 1s which are not adjacent to any other 1s. (single loops) 

3.Loop any pair which contains a 1 adjacent to only one other 1. (double 
loops) 

4.Loop any octet even if it contains one or more 1s that have already been 
looped. 

5.Loop any quad that contains one or more 1s that have not already been 
looped, making sure to use the minimum number of loops. 

6.Loop any pairs necessary to include any 1s that have not yet been looped, 
making sure to use the minimum number of loops. 

7.Form the OR sum of all the terms generated by each loop. 

 

 





 “Don’t-Care” Conditions are certain input conditions for which 
there are no specified output levels. “Don’t-care” conditions 
should be changed to either 0 or 1 to produce K-map looping 
that yields the simplest expression. 

 



Filling K-Map from Output Expression 

When the desired output is presented as a  
Boolean expression instead of a truth table,  
the K map can be filled by using the following  
steps: 
1. Get the expression into SOP form if it is not already so. 
2. For each product term in the SOP expression, place a 1 in 

each K-map square whose label contains the same 
combination of input variables. Place a 0 in all other 
squares. 
 



• Don’t care condition can come about for several reasons: 

– In some situations certain input combination can 
never occur and so there is no specified output for 
these condition. 

• Whenever don’t care conditions occur, we must decide which 
x to change to 0 and which to 1 to produce the best K-map 
looping (i.e the simplest expression) 



Example 



Example 

A BCD counter produces a four bit output  

representing the BCD code for the number of pulses  

hat have been applied to the counter input. For  

example, after 4 pulses have occurred, the counter  

outputs are DCBA= 01002 = 410. The counter resets to  

0000 on the tenth pulse and starts counting over  

again. In other words, the DCBA output will never  

represent a number greater than 10012=910. Design  

the logic circuit that produces a HIGH output  

whenever the count is 2,3, or 9. Use K mapping and  

take advantage of the don’t care conditions. 



Summary 

• Compared to the algebraic method, the K-map 
process is a more orderly process requiring 
fewer steps and always producing a minimum 
expression. 

• For the circuits with large numbers of inputs 
(larger than four), other more complex 
techniques are used. 

 



 
Exclusive-OR and Exclusive-NOR Circuits 

 
Exclusive-OR (XOR) produces a HIGH output whenever 

the two inputs are at opposite levels.  
 



Exclusive-NOR (XNOR) produces a HIGH output 

 whenever the two inputs are at the same level. 





XNOR gate may be used to simplify circuit  

implementation. 



 
Parity Generator and Checker 

 



• A transmitter can attach a parity bit to a set of data bits 
before transmitting the data bits to a receiver. The receiver 
will detect any single bit errors that may have occurred during 
the transmission. 

• In figure (a) the set of data to be transmitted is applied to the 
parity-generator circuit, which produces the even-parity bit, P, 
at its output. This parity bit is transmitted to the receiver 
along with the original data bits, making a total of five bits. 

• In figure (b) these five bits (data+parity) enter the receiver’s 
parity-checker circuit, which produces an error output, E that 
indicates whether or not a single-bit error has occurred. 



 
Enable/Disable Circuits 

 



 
Enable/Disable Circuits cont. 

 Ex. 1(Fig.a): Design a logic circuit that will allow a 

signal to pass to the output only when control inputs B 

and C are both HIGH; otherwise, the output will stay 

LOW. 

Ex. 2(Fig.b): Design a logic circuit that will allow a 

signal to pass to the output only when one, but not 

both, of the control inputs are HIGH; otherwise, the 

output will stay LOW. 



 
Basic Characteristics of Digital ICs 

 • Digital ICs (chips): a collection of resistors, diodes and 
transistors fabricated on a single piece of semiconductor 
materials called substrate. 

• Dual-in-line package (DIP) is a common type of packages. It 
contains two parallel rows of pins. 

 

 



• Digital ICs are often categorized according to 
their circuit complexity as measured by the 
number of equivalent logic gates on the 
substrates. 6 levels of complexity: 

   SSI, MSI, LSI,VLSI, ULSI,GSI. 

• SSI – having a small number of gates 



 
Multiplexer/De-multiplexer 



Mux/Demux Vocabulary 

MULTIPLEXER (aka DATA SELECTOR)- circuit that can select one of a number 
of inputs and pass the logic level of that input to the output. 

DEMULTIPLEXER (aka DATA DISTRIBUTOR)- circuit that depending on the status 
of its select inputs will channel its data input to one of several outputs. 

SELECT INPUTS (aka ADDRESS LINES)- used by the mux to determine which data 
inputs will be switched to the output. 

linesselectNlinesinputi f N 2



Example of a Combinatorial Circuit: 
                                       A Multiplexer (MUX) 

Consider an integer ‘m’, which is 
constrained by the following relation:   
                                  m = 2n,     where m and n are both integers. 
• A m-to-1 Multiplexer has  

• m Inputs:  I0, I1, I2, ................ I(m-1)  
• one Output: Y 
• n Control inputs: S0, S1, S2, ...... S(n-1) 
• One (or more) Enable input(s) 

  such that Y may be equal to one of the inputs, depending upon 
the control inputs. 

 
 



BASIC TWO-INPUT MULTIPLEXER 

S OUTPUT

0 Z=I0

1 Z=I1

DATA

INPUTS

I1

I0

S

SELECT INPUT

SISIZ 
10



 

Example: A  4-to-1 Multiplexer  

4:1 MUX 

I0 

A 4-to-1 Multiplexer: 

I1 

I2 

I3 

S0 S1 

Y 

1 output 

n control inputs 

2n    inputs 

Enable (G) 



FOUR-INPUT MULTIPLEXER 

S0S1

I0

I1

I2

I3 S1 S0 OUTPUT

0 0 Z=I0

0 1 Z=I1

1 0 Z=I2

1 1 Z=I3



MULTIPLEXER LOGIC DIAGRAM 
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74151

MUX
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SELECT LINES

Z
_

Z

•Takes one of many inputs and funnels it to an output Z. 

•Take the selector lines convert to a decimal number and this is the 
input funneled to the output. 

•Strobe is active low enable 
S2 S1 S0 E Z

0 0 0 0 I0

0 0 1 0 I1

0 1 0 0 I2

0 1 1 0 I3

1 0 0 0 I4

1 0 1 0 I5

1 1 0 0 I6

1 1 1 0 I7



MULTIPLEXER APPLICATIONS 

•DATA ROUTING 

•PARALLEL-TO-SERIAL CONVERSION 

•OPERATION SEQUENCING 

•IMPLEMENT LOGIC FUNCTION OF A TRUTH 
TABLE 



LOGIC FUNCTION GENERATION 

C B A Z

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1
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S
0
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I
5

I
6

I
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ABCCBACBAZ 
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DEMULTIPLEXER  



DEMULTIPLEXER LOGIC DIAGRAM 
•Logic circuit that depending on the status of its select inputs will funnel 

its data input to one of several data outputs. 

•Separate enable inputs (useful for cascading decoders) into AND gate 
which must be high to enable the decoder outputs. 

A
2

A
1

A
0

74138

DEMUX

1-OF-8 DECODER

SELECT LINES

E

1E

2E

3E

0O

1O

2O

3O

4O

5O

6O

7O

0 0 1 RESPOND TO INPUT CODE A2A1A0

1 X X DISABLED –ALL HIGH

X 1 X DISABLED –ALL HIGH

X X 0 DISABLED –ALL HIGH

1E 2E 3E OUTPUTS



LOGIC FUNCTION GENERATION 

A
2

A
1

A
0

74138

1E

2E

3E

ABC

+5

0O

1O

2O

3O

4O

5O

6O

7O

f(ABC)

C B A f

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B X

0 0 1

0 1 1

1 0 1

1 1 0

NAND- any low in gives a high out 



DEMULTIPLEXER 
 



DEMULTIPLEXER  
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OTHER COMBINATIONAL LOGIC 
CIRCUITS 

 DECODERS 
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DECODER  

•A decoder is a logic circuit that accepts a set of inputs that 
represents a binary number and activates only the output 
that corresponds to the input number. 

•In other words, a decoder circuit looks  at its inputs, 
determines which binary number is present there, and 
activates the one output that  corresponds to that  number ; 
all other outputs remain inactive 
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In its general form, a  decoder has N input lines to handle N 
bits and form one to 2 N output lines to indicate the presence 

of one or more N-bit combinations. 

The basic binary function  

•An AND gate can be used as the basic decoding element  

 because it produces a HIGH output only when all inputs are  

 HIGH 

 

Refer next slide for example 
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Decoding logic for the binary code 1001 with an active-HIGH output. 
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General decoder diagram 

# There are 2N possible input combinations, from A0 to AN1.  

For each of these input combinations only one of the M outputs will be active HIGH (1), 
all the other outputs are LOW (0). 
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•      If an active-LOW output (74138, one of the output will 
low and the rest will be high) is required for each decoded 
number, the entire decoder can be implemented with  

1. NAND gates 
2. Inverters 

 
•       If an active-HIGH output (74139, one of the output will 

high and the rest will be low) is required for each decoded 
number, the entire decoder can be implemented with  

• AND gates 
• Inverters 
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2-to-4-Line Decoder  
(with Enable input)-Active LOW output (1)... 
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2-to-4-Line Decoder  
(with Enable input)-Active LOW output (2) 

• The circuit operates with complemented outputs 
and a complement enable input. The decoder is 
enabled when E is equal to 0.  

• Only one output can be equal to 0 at any given 
time, all other outputs are equal to 1. 

• The output whose value is equal to 0 represents 
the minterm selected by inputs A and B 

• The circuit is disabled when E is equal to 1. 
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3-8 line decoder (active-HIGH) 
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•This  decoder can be referred  to in several ways. It can be 
called a 3-line-to- 8-line decoder, because it has  three input 
lines and eight output lines.  

•It could also be called a binary-octal decoder or converters 
because it takes a three bit binary input code and activates 
the one of the eight outputs corresponding to that code. It is 
also referred to as a 1-of-8 decoder, because only  1 of the 8 
outputs is activated at one time. 
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Logic diagram of 74138 (Example of a 3Bit Decoder) 
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Truth table of 74138 (Example of a 3 8 Bit Decoder) 

active-LOW 
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74138 (Example of a 3 8 Bit Decoder) 

• There is an enable function on this device, a LOW level on 

each input E’1, and E’2, and a HIGH level on input E3, is 

required in order to make the enable gate output HIGH.  

 

• The enable is connected to an input of each NAND gate in the 

decoder, so it must be HIGH for the NAND gate to be enabled. 

 

• If the enable gate is not activated then all eight decoder 
outputs will be HIGH regardless of the states of the three 
input variables A0, A1, and A2 . 
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Example of a 5 to 32 Bit Decoder 
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Logic symbol for a 4-line-to-16-line (1-of-16) decoder . 
74HC154 
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4-line-to-16 line Decoder constructed with two 3-line-to-8 line 
decoders (1)... 
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4-line-to-16 line Decoder constructed with two 3-line-to-8 line 
decoders (2) 

• When w=0, the top decoder is enabled and the 
other is disabled. The bottom decoder outputs 
are all 0’s , and the top eight outputs generate 
min-terms 0000 to 0111. 

• When w=1, the enable conditions are reversed. 
The bottom decoder outputs generate min-
terms 1000 to 1111, while the outputs of the top 
decoder are all 0’s. 
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Application example 

A simplified computer I/O port system with a port address decoder with only four address 
lines shown. 
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•Decoders are used in many types of applications. One example is in computers for I/O 
selection as in previous slide 
 
•Computer must communicate with a variety of external devices called peripherals by sending 
and/or receiving data through what is known as input/output (I/O) ports 
 
•Each I/O port has a number, called an address, which uniquely identifies it. When the 
computer wants to communicate with a particular device, it issues the appropriate address 
code for the I/O port to which that particular device is connected . The binary port address is 
decoded and appropriate decoder output is activated to enable the I/O port 
 
•Binary data are transferred within the computer on a data bus, which is a set of parallel lines 
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BCD -to- Decimal decoders 

•The BCD- to-decimal decoder converts each BCD code into 
one of Ten Positionable decimal digit indications. It is 
frequently referred as a 4-line -to- 10 line decoder  

•The method of implementation is that only ten decoding 
gates are required because  the BCD code represents only the 
ten decimal digits 0 through  9.  

•Each of these decoding functions is implemented with NAND 
gates to provide active -LOW outputs.  If an active HIGH 
output is required, AND gates are used for decoding 



135 Logic diagram of BCD - decimal decoder 
(Active LOW output) 
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Output Waveform for BCD Decoder 
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A Decoder Application - Counter -decoder combination used to provide timing and sequential 
operations (1)... 
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A Decoder Application - Counter -decoder combination used to provide 
timing and sequential operations (1)... 

•Decoders are used whenever an output or a group  of 
outputs is to be activated only on the occurrence of 
specific combination of input levels. These input levels are 
often provided by the outputs of a counter or register.  

•When the decoder inputs come  from a counter  that is 
being continually pulsed, the decoder outputs will be 
activated sequentially, and there can be used as timing or 
sequencing signals to turn device on or off at specific 
times 



139 

BCD-7segment decoders/drivers 

Most digital equipment has some means 
for displaying information in a form that 
can be understood by the user. This 
information is often  numerical data but 
also be alphanumeric. 

One of the simplest and most popular 
methods  for displaying numerical digits 
uses a 7-segment configuration to form 
digital characters 0 to 9 and some times 
the hex characters A to F 
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One common arrangements uses light-emitting diodes (LED's) 
for each segment. By controlling the current thru each LED, 
some segments will be light and others will be dark so that 
desired character pattern will be generated 

Figure shows the segment 
pattern that are used to 
display the various digits. For 
example, to display a “6” the 
segments a,c,d,e,f and g are 
made bright while segment 
b is dark 
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7-segment decoder 

•A BCD-7 segment decoder/driver is used to take four-bit BCD 
input and provide the outputs that will pass current through 
the appropriate segments to display the decimal digit.  

•The logic for this decoder is more complicated than the logic 
of decoders of earlier case, because each output is activated 
for more than one combination of inputs. 
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74LS47 ( BCDtoSevenSegment Decoder) 
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Lamp Test (LT) 
 
•When LT = Low, BI/RBO = HIGH then all of the 7 segments in 
display are turned zero, LT is used to verify that no segments 
are burned out 
 
Zero Suppression (BI, RBI, RBO) 
 
•Zero suppression is a feature used for multi digit displays to 
blank out unnecessary zeros. 
 
Example: 
In a 6-digit display the number 6.4 may be displayed as 
006.400 if the zeros are not blanked out 
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•Leading Zero Suppression  

 Blanking the zeros at the front of a numbers  
 
•Trailing Zero Suppression 
Blanking the zeros at the back of the number 
 
Only nonessential zeros are blanked, the number 030.080  
will be displayed as 30.08 (the essential zeros remain) 
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7-segment display 

• There are two types of 7segment LED 
displays;  

• A) common - anode  
• B) common  cathode 
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In commonanode, the anode of all of the LEDs are tied together to positive of 
the power supply (Vcc) as shown 

Common Anode  
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Common Cathode 

• In commoncathode, the cathode of all of the LEDs are tied 
together to ground as shown. 

GND 
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Combinational Logic Circuit Implementation using a Decoder  
 

• Any combinational logic circuit with n inputs 
and m outputs can be implemented with an n-
to-2n-line decoder and m OR gates. 

• Procedure: 
– Express the given Boolean function in sum of min-terms 

– Choose a decoder to generate all the min-terms of the 
input variables. 

– Select the inputs to each OR gate from the decoder 
outputs according to the list of min-term for each function. 
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Combinational Logic Circuit Implementation using 
a Decoder -  An example (1) 

• From the truth table of the full adder,  
 

 
 
 
 
 
 
 
 
 

• the functions can be expressed in sum of min-terms. 
  S(x,y,z) = Sm(1,2,4,7) 
               C(x,y,z) = Sm(3,5,6,7) 
            where S indicates sum, m indicates min-term and the number in brackets  

indicate the decimal equivalent 
    
   

x y Z C S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
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Combinational Logic Circuit Implementation using a 
Decoder -  An example (2) 

Since there are three inputs and a total of eight 
min-terms, we need a 3-to-8 line decoder. 

• The decoder generates the eight min-terms 
for x,y,z 

• The OR gate for output S forms the logical sum 
of min-terms 1,2,4, and 7. 

• The OR gates for output C forms the logical 
sum of min-terms 3,5,6, and 7 
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Combinational Logic Circuit Implementation using a Decoder -  
example (3) 

Implementation of a Full Adder with a Decoder 



Encoders 
 



Encoder 

•An encoder is a combinational logic circuit that essentially 

performs a “reverse” of decoder functions.  

•An encoder accepts an active level on one of its inputs, 

representing  digit, such as a decimal or octal digits, and 

converts it to a coded output such as BCD or binary.  

•Encoders can also be devised to encode various symbols and 

alphabetic characters.  

•The process of converting from familiar symbols or numbers 

to a  coded format is called encoding. 



•Most decoders accept an input code and produce a HIGH 

•( or a LOW)  at one and only one output line. In otherworlds ,  

a decoder identifies, recognizes, or detects a particular code. 

The opposite of this decoding process is called encoding and is 

performed by a logic circuit called an encoder. 

•An encoder has a number of input lines, only one of which 

input is activated at a given time and produces an N-bit output 

code,depending on which input is activated. 



General encoder diagram 



Logic circuit for octal-to binary encoder [8-line- 
3-line ] 



A low at any single input will produce the output binary code corresponding to that 

input. For instance , a low at A3’ will produce O2 =0, O1=1 and O0 =1, which is 

binary code for 3. Ao’ is not connected to the logic gates because the encoder  

outputs always be normally at 0000 when none of the inputs is LOW 

Truth table for octal-to binary encoder [8-line- 3-line ] 



Design of 4-input Priority Encoder  
( 4-line-to 2 line priority encoder) (1)... 

• A priority encoder is an encoder that includes the priority 
function 

• If two or more inputs are equal to 1 at the same time, the 
input having the highest priority will take precedence. 

• Truth Table of a 4-input Priority Encoder:  
          Inputs    Outputs 
D0  D1 D2 D3  x y V 
0  0 0 0  X      X 0 
1  0 0 0  0 0 1 
X  1 0 0  0 1 1 
X  X 1 0  1 0 1 
X  X X 1  1 1 1 



Design of 4-input Priority Encoder  
( 4-line-to 2 line priority encoder) (2)... 

• In addition to two outputs x, and y, the truth table has a 
third output designated by V, which is a valid bit indicator 
that is set 1 when one or more inputs are equal to 1. If all 
inputs are 0, there is no valid input and V is equal to 0. 

• X’s in the output column indicate don’t care conditions, 
the X’s in the input columns are useful for representing a 
truth table in condensed form. 

• The higher the subscript number, the higher the priority 
of the input. Input D3 has the highest priority, so 
regardless of the values of the other inputs, when this 
input is 1, the output for xy is 11 (binary 3) 



Design of 4-input Priority Encoder  
( 4-line-to 2 line priority encoder) (3)... 

              V=D0+D1+D2+D3 

K-Maps for 4-input Priority Encoder 



Design of 4-input Priority Encoder  
( 4-line-to 2 line priority encoder) (4) 

Logic Diagram for 4-input priority encoder 



Decimal-BCD priority encoder 

•Encoder will produce  a BCD output corresponding to the 

highest-order decimal digit input that is active and will ignore 

any other lower order active inputs. 

•For instance if the input 6 and the 3  are active, the output 

will be 1001, which is the inverse value of BCD output 0110 

(which represents decimal 6) 



74147 decimal-BCD priority encoder 

When A9’ is low, the output is 0110, which is 

inverse of 1001 ( eq to 9 in BCD) 



Decimal- BCD switch decoder 

The output of the decoder are inversed to produce the normal 

BCD value 



The OctaltoBinary Priority Encoder-

Example 

• The 74LS148 is a priority encoder that has eight 
active LOW inputs and three activeLOW binary 
outputs    

 

• To enable the device, the EI (enable input) must 
be LOW. It also has the EO (enable output) and 
GS (group signal output) for expansion purposes. 



The OctaltoBinary Encoder 



The OctaltoBinary Encoder 

•         ActiveLOW enable input, a HIGH on the input forces all outputs 
to their inactive state (HIGH). 

 

•         ActiveLOW enable output, the output pin goes LOW when all 
inputs are inactive (HIGH) and  is LOW. 

 

•         ActiveLOW group signal output, this output pin goes LOW 
whenever any of the inputs are active (LOW) and  is LOW. 



  The 74LS148 can be expanded to a 16lineto4line encoder by 
connecting the EO of the higherorder encoder to the EI of the 
lowerorder encoder and negativeORing the corresponding 
binary outputs as shown 

The 16 to4 Encoder 



The 16 to4 Encoder 



Application example 

A simplified keyboard encoder. 



•When one of the keys is pressed, the decimal digit is encoded to the 

corresponding BCD code 

 

•The keys are represented by 10 push-button switches, each with a pull-up 

resistor to V+. The pull-up resistor ensures that the line is HIGH when a key is 

not depressed.  

 

•When a key is depressed, the line is connected to ground, and a LOW is applied 

to the corresponding encoder input. 

 

•The zero key is not connected because the BCD output represents zero when 

none of the other keys is depressed 

 

•The BCD complement output of the encoder goes into a storage device, and 

each successive BCD code is stored until the entire number has been entered 



Assignment  

Design a single encoder for following functions. 
F1 = Σm(1, 3, 7, 15) 
f2 = Σm(4,6,8,10) 


