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Unit –IV 
Implementation of Discrete Time Systems 

Multirate Digital Signal Processing:  
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Content 
 Implementation of Discrete Time Systems:  
• Block diagrams and signal flow graphs for FIR and IIR systems 
• Direct form, Cascade form 
• Frequency Sampling Structures and Lattice structures for FIR systems 
•  Direct form, Cascade form, Parallel form, and Lattice and Lattice- 

Ladder Structures for IIR systems 
• Representation of fixed point and floating point numbers,  
• Finite word length effects,  
• Parametric and non-parametric spectral estimation.  
• Applications of Digital Signal Processing  
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Multirate Digital Signal Processing 

• Introduction to multirate digital signal processing 

• Multi rate structures for sampling rate conversion 

• Multistage decimator and interpolator 

•  Polyphase decomposition 

• Digital Filter Banks. 
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Example 

• Block diagram representation of 
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Block Diagram Representation 
• LTI systems with rational system 

function can be represented as 
constant-coefficient difference equation 

• The implementation of difference 
equations requires delayed values of 
the 
– input 
– output 
– intermediate results  

• The requirement of delayed elements 
implies need for storage 

• We also need means of  
– addition 
– multiplication 
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Direct Form I 

• General form of difference equation 

 

 

• Alternative equivalent form 
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Direct Form I 

• Transfer function can be written as 

 

 

 

 

Direct Form I Represents 
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Alternative Representation 

• Replace order of cascade LTI systems 
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Alternative Block Diagram 

• We can change the order of the cascade systems 
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Direct Form II 

• No need to store the same data 
twice in previous system 

• So we can collapse the delay 
elements into one chain 

• This is called Direct Form II or the 
Canonical Form 

• Theoretically no difference between 
Direct Form I and II 

• Implementation wise  
– Less memory in Direct II 
– Difference when using finite-precision 

arithmetic 
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Signal Flow Graph Representation 

• Similar to block diagram representation 
– Notational differences 

• A network of directed branches connected at nodes 
 
 
 
 
 
 

• Example representation of a difference equation 
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Example 

• Representation of Direct Form II with signal flow 
graphs 
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Determination of System Function from Flow Graph 
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Basic Structures for IIR Systems: Direct Form I 
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Basic Structures for IIR Systems: Direct Form II 

Digital Signal Processing 16 



Basic Structures for IIR Systems: Cascade Form 

 

• General form for cascade implementation 

 

 

•  More practical form in 2nd order systems 
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Example 
 
 
 
 

• Cascade of Direct Form I subsections 
 
 
 
 

• Cascade of Direct Form II subsections 
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Basic Structures for IIR Systems: Parallel Form 

• Represent system function using partial fraction expansion 

 

 

 

• Or by pairing the real poles 
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Example 

• Partial Fraction Expansion 

 

 

 

• Combine poles to get 
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Transposed Forms 

• Linear signal flow graph property: 
– Transposing doesn’t change the input-output relation 

• Transposing: 
– Reverse directions of all branches 

– Interchange input and output nodes 

• Example: 

 

 

 
– Reverse directions of branches and interchange input and output 
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Example 

 
 
 
 
 
 
 
 

• Both have the same system function or difference equation 
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Basic Structures for FIR Systems: Direct Form 

• Special cases of IIR direct form structures 
 
 
 
 
 
 

• Transpose of direct form I gives direct form II  
• Both forms are equal for FIR systems 

 
 
 
 
 
 

• Tapped delay line 
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Basic Structures for FIR Systems: Cascade Form 

 

• Obtained by factoring the polynomial system function 
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Structures for Linear-Phase FIR Systems 

• Causal FIR system with generalized linear phase are symmetric: 

• Symmetry means we can half the number of multiplications 

• Example: For even M and type I or type III systems: 
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Structures for Linear-Phase FIR Systems 

• Structure for even M 
 
 
 
 
 
 
 

• Structure for odd M 
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                        Attraction of DSP comes from key advantages such as : 
 
 *  Guaranteed accuracy:  (accuracy is only determined by the number of bits used)  
 *  Perfect Reproducibility:  Identical performance from unit to unit 
  ie.   A digital recording can be copied or reproduced several times with no  
         loss in signal quality  
 *  No drift in performance with temperature and age  
 *  Uses advances in semiconductor technology to achieve: 
   (i) smaller size  
   (ii) lower cost  
   (iii) low power consumption  
   (iv) higher operating speed  
 *  Greater flexibility:  Reprogrammable , no need to modify the hardware  
 *  Superior performance  
  ie. linear phase response can be achieved  
   complex adaptive filtering becomes possible 
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 Disadvantages of DSP 
 * Speed and Cost   
    DSP techniques are limited to signals with relatively low bandwidths  
    DSP designs can be expensive, especially when large bandwidth signals  
    are involved.  
     ADC or DACs are either to expensive or do not have sufficient  
          resolution for wide bandwidth applications. 
 * DSP designs can be time consuming plus need the necessary resources  
        (software etc) 
 *  Finite word-length problems  
          If only a limited number of bits is used due to economic considerations  
          serious degradation in system performance may result.  
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 The use of finite precision arithmetic makes it necessary to 
quantize filter calculations by rounding or truncation.  

 

 Roundoff noise is that error in the filter output that results 
from rounding or truncating calculations within the filter. 

  

 As the name implies, this error looks like low-level noise at 
the filter output 
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Application Areas 

Image Processing       Instrumentation/Control Speech/Audio         Military 

Pattern recognition         spectrum analysis            speech recognition         secure communications 

Robotic vision         noise reduction                 speech synthesis           radar processing 

Image enhancement       data compression              text to speech               sonar processing 

Facsimile          position and rate  digital audio                   missile guidance 

animation            control  equalization 

 

 

Telecommunications  Biomedical  Consumer applications 

Echo cancellation  patient monitoring  cellular mobile phones 

Adaptive equalization  scanners   UMTS  

ADPCM trans-coders  EEG brain mappers  digital television  

Spread spectrum  ECG Analysis  digital cameras 

Video conferencing  X-Ray storage/enhancement  internet phone  

        etc. 
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Multirate Digital Signal Processing 

Basic Sampling Rate Alteration Devices 

• Up-sampler - Used to increase the sampling 
rate by an integer factor 

• Down-sampler - Used to decrease the 
sampling rate by an integer factor 
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Up-Sampler 

Time-Domain Characterization 

• An up-sampler with an up-sampling factor 
L, where L is a positive integer, develops an 
output sequence          with a sampling rate 
that is L times larger than that of the input 
sequence x[n] 

• Block-diagram representation 
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Up-Sampler 

• Up-sampling operation is implemented by inserting          
equidistant zero-valued samples between two consecutive 
samples of x[n]  

• Input-output relation 
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Up-Sampler 

• In practice, the zero-valued samples inserted by the up-
sampler are replaced with appropriate nonzero values using 
some type of filtering process  

• Process is called interpolation and will be discussed later 
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Down-Sampler 
Time-Domain Characterization 

• An down-sampler with a down-sampling 
factor M, where M is a positive integer, 
develops an output sequence y[n] with a 
sampling rate that is (1/M)-th of that of the 
input sequence x[n] 

• Block-diagram representation 
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Down-Sampler 

• Down-sampling operation is implemented by keeping every M-
th sample of x[n] and removing            in-between samples to 
generate y[n] 

• Input-output relation 

                    y[n] = x[nM] 
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Basic Sampling Rate Alteration Devices 

• Sampling periods have not been explicitly shown in the block-
diagram representations of the up-sampler and the down-
sampler  

• This is for simplicity and the fact that the mathematical theory 
of multirate systems can be understood without bringing the 
sampling period T or the sampling frequency       into the 
picture 
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Down-Sampler 

• Figure below shows explicitly the time-
dimensions for the down-sampler 
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Up-Sampler 

• Figure below shows explicitly the time-dimensions for the up-
sampler 
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Basic Sampling Rate Alteration 

Devices 

• The up-sampler and the down-sampler are linear 
but time-varying discrete-time systems 

• We illustrate the time-varying property of a down-
sampler 

• The time-varying property of an up-sampler can be 
proved in a similar manner 
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Basic Sampling Rate Alteration 

Devices 
• Consider a factor-of-M down-sampler defined by 

• Its output                           for an input                               is then 
given by 

 

• From the input-output relation of the down-sampler we obtain 
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Up-Sampler 

Frequency-Domain Characterization 

• Consider first a factor-of-2 up-sampler 
whose input-output relation in the time-
domain is given by 
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Up-Sampler 

• In terms of the z-transform, the input-
output relation is then given by 
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Up-Sampler 

• In a similar manner, we can show that for a 
factor-of-L up-sampler 

 

• On the unit circle, for             , the input-
output relation is given by 
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Down-Sampler 

Frequency-Domain Characterization 

• Applying the z-transform to the input-output 
relation of a factor-of-M down-sampler 

 

 we get 

 

 

• The expression on the right-hand side cannot 
be directly expressed in terms of X(z) 
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Down-Sampler 

• To get around this problem, define a new 
sequence            : 

 

 

• Then 
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Down-Sampler 

• Now,             can be formally related to x[n] 
through        

 

 where 

 

• A convenient representation of c[n] is given 
by 

 

 where 
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Down-Sampler 

• Taking the z-transform of                                   and 
making use of 

 

  

 we arrive at  
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Down-Sampler 

• Consider a factor-of-2 down-sampler with 
an input x[n] whose spectrum is as shown 
below 

 

 

 

• The DTFTs of the output and the input 
sequences of this down-sampler are then 
related as 

Digital Signal Processing 49 

)}()({
2

1
)( 2/2/   jjj eXeXeY



Down-Sampler 

• Now                                                    implying that the 
second term                     in the previous equation is 
simply obtained by shifting the first term                  
to the right by an amount 2 as shown below 
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Down-Sampler 

• The plots of the two terms have an overlap, and hence, in 
general, the original “shape” of           is lost when x[n] is 
down-sampled as indicated below 
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Down-Sampler 

• This overlap causes the aliasing that takes place due to under-
sampling 

• There is no overlap, i.e., no aliasing, only if  

 

• Note:               is indeed periodic with a period 2, even though 
the stretched version of              is periodic with a period 4 

Digital Signal Processing 52 

2/0)(  forjeX

)( jeX

)( jeY



Down-Sampler 

• For the general case, the relation between the DTFTs of the 
output and the input of a factor-of-M down-sampler is given 
by 

 

 

•                         is a sum of M uniformly shifted and stretched 
versions of              and scaled by a factor of 1/M 
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Down-Sampler 

• Aliasing is absent if and only if 

 

 as shown below for M = 2 
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Cascade Equivalences 

• A complex multirate system is formed by an interconnection 
of the up-sampler, the down-sampler, and the components 
of an LTI digital filter 

• In many applications these devices appear in a cascade form 

• An interchange of the positions of the branches in a cascade 
often can lead to a computationally efficient realization 
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Cascade Equivalences 

• To implement a fractional change in the sampling rate we 
need to employ a cascade of an up-sampler and a down-
sampler 

• Consider the two cascade connections shown below 
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Cascade Equivalences 

• A cascade of a factor-of-M down-sampler and a factor-of-L up-
sampler is interchangeable with no change in the input-output 
relation:  

 

 if and only if M and L are relatively prime, i.e., M and L do not 
have any common factor that is an integer   k > 1 
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Cascade Equivalences 

• Two other cascade equivalences are shown 
below 
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Filters in Sampling Rate 

Alteration Systems 
• From the sampling theorem it is known that a the sampling 

rate of a critically sampled discrete-time signal with a 
spectrum occupying the full Nyquist range cannot be reduced 
any further since such a reduction will introduce aliasing 

• Hence, the bandwidth of a critically sampled signal must be 
reduced by lowpass filtering before its sampling rate is 
reduced by a down-sampler 
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Filters in Sampling Rate 

Alteration Systems 

• Likewise, the zero-valued samples introduced by an up-
sampler must be interpolated to more appropriate values for 
an effective sampling rate increase 

• We shall show next that this interpolation can be achieved 
simply by digital lowpass filtering 

• We now develop the frequency response specifications of 
these lowpass filters 
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Filter Specifications 

• Since up-sampling causes periodic repetition of the basic 
spectrum, the unwanted images in the spectra of the up-
sampled signal           must be removed by using a lowpass 
filter H(z), called the interpolation filter, as indicated below 

 

 

• The above system is called an interpolator 
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Filter Specifications 

• On the other hand, prior to down-sampling, 
the signal v[n] should be bandlimited to     
                          by means of a lowpass 
filter, called the decimation filter, as 
indicated below to avoid aliasing caused by 
down-sampling 

 

• The above system is called a decimator 
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Interpolation Filter Specifications  

• Assume x[n] has been obtained by sampling a continuous-
time signal          at the Nyquist rate 

• If                 and              denote the Fourier transforms of          
and x[n], respectively, then it can be shown 

 

 

• where     is the sampling period 

Digital Signal Processing 63 

)(txa

)(txa

)( jXa

)( jeX








 
 



 oo

)(
T

kjj
X

T
eX

k
a

j  21

oT



Interpolation Filter Specifications 

• In practice, a transition band is provided to ensure the 
realizability and stability of the lowpass interpolation filter H(z) 

• Hence, the desired lowpass filter should have a stopband edge 
at                 and a passband edge       close to      to reduce the 
distortion of the spectrum of x[n] 
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Interpolation Filter Specifications 

• If       is the highest frequency that needs to be preserved in 
x[n], then 

 

• Summarizing the specifications of the lowpass interpolation 
filter are thus given by 
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Decimation Filter Specifications 

• In a similar manner, we can develop the  specifications for the 
lowpass decimation filter that are given by 
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Filters for Fractional Sampling Rate Alteration 

• A fractional change in the sampling rate can be achieved by 
cascading a factor-of-M decimator with a factor-of-L 
interpolator, where M and L are positive integers 

• Such a cascade is equivalent to a decimator with a decimation 
factor of M/L or an interpolator with an interpolation factor of 
L/M 
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Filters for Fractional Sampling 

Rate Alteration 

• There are two possible such cascade connections as 
indicated below 

 

 

 

• The second scheme is more computationally efficient since 
only one of the filters,             or               , is adequate to 
serve as both the interpolation and the decimation filter 

Digital Signal Processing 68 

L )(zHuM )(zHd

L )(zHu M )(zHd

)(zHu )(zHd



Filters for Fractional Sampling 

Rate Alteration 

• Hence, the desired configuration for the 
fractional sampling rate alteration is as 
indicated below where the lowpass filter 
H(z) has a stopband edge frequency given 
by 
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Digital Filter Banks 
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• The digital filter bank is set of bandpass  

filters with either a common input or a  

summed output 

• An M-band analysis filter bank is shown  

below 



Digital Filter Banks 
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• The subfilters Hk (z) in the analysis filter  

bank are known as analysis filters 

• The analysis filter bank is used to  

decompose the input signal x[n] into a set of  

subband signals vk [n] with each subband  

signal occupying a portion of the original  

frequency band 



Digital Filter Banks 
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• An L-band synthesis filter bank is shown  

below 

• It performs the dual operation to that of the  

analysis filter bank 



Digital Filter Banks 
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• The subfilters Fk (z) in the synthesis filter  

bank are known as synthesis filters 

• The synthesis filter bank is used to combine 

k 

belonging to contiguous frequency bands) 

into one signal y[n] at its output 

a set of subband signals v̂ [n] (typically 



Uniform Digital Filter Banks 
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n 
h0[n]zn H0 (z)   

• A simple technique to design a class of  

filter banks with equal passband widths is  

outlined next 

• Let H0 (z) represent a causal lowpass digital  

filter with a real impulse response h0[n]: 

• The filter H0 (z) is assumed to be an IIR  

filter without any loss of generality 



Uniform Digital Filter Banks 
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 
 0 2 

s p  

• Assume that H0 (z) has its passband edge p  

and stopband edge s around /M, where M  

is some arbitrary integer, as indicated below 

M 



Uniform Digital Filter Banks 
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• Now, consider the transfer function Hk (z) 

whose impulse response hk[n] is given by 

hk[n]  h0[n]e j 2kn/M  h0[n]W kn , M 

0  k  M 1 

where we have used the notation WM  e j 2/M 

• Thus, 
  n k n Hk (z)  n hk[n]z  n h0[n]zWM  , 

0  k  M 1 



Uniform Digital Filter Banks 
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• i.e., 

Hk (z)  H0 (zW k ), 0  k  M 1 M 

• The corresponding frequency response is  

given by 

Hk (e j)  H0 (e j(2 k /M ) ), 0  k  M 1 

• Thus, the frequency response of Hk (z) is  

obtained by shifting the response of H0 (z)  

to the right by an amount 2k/M 



Uniform Digital Filter Banks 
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• The responses of Hk (z) , Hk (z) , . . . , Hk (z) 

are shown below 



Uniform Digital Filter Banks 
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• Note: The impulse responses hk[n] are, in  

general complex, and hence |Hk (e j)| does  

not necessarily exhibit symmetry with  

respect to  = 0 

• The responses shown in the figure of the  

previous slide can be seen to be uniformly  

shifted version of the response of the basic  

prototype filter H0 (z) 



Uniform Digital Filter Banks 

Digital Signal Processing 80 

obtained is called a uniform filter bank 

• The M filters defined by 

M 

could be used as the analysis filters in the  

analysis filter bank or as the synthesis filters  

in the synthesis filter bank 

• Since the magnitude responses of all M  

filters are uniformly shifted version of that  

of the prototype filter, the filter bank 

Hk (z)  H0 (zW k ), 0  k  M 1 



Uniform DFT Filter Banks 

Digital Signal Processing 81 

Polyphase Implementation 

• Let the prototype lowpass transfer function  

be represented in its M-band polyphase  

form: 

 0 l  
M 1 l  M 
l0 

z E (z ) H (z)  

 
 
n0 n0 

n h0[l  nM ]zn , el[n]z  E l(z)   

where E l(z) is the l-th polyphase  

component of H0 (z): 

0  l   M 1 



Uniform DFT Filter Banks 
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• In deriving the last expression we have used 

• Substituting z with zW k in the expression 

 M k z W 
l 0 l  M 

1 l  kl  M kM E (z W ) H (z)  

M 

for H0 (z)we arrive at the M-band polyphase 

decomposition of Hk (z): 

M  

l 0 M l   M 1 z lW k lE (zM ), 0  k  M 1 

M the identity W kM  1 



Uniform DFT Filter Banks 
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• The equation on the previous slide can be  

written in matrix form as 

.... 
M M M k 

W 
k 

W 
2k 

H ( z)  [1 

 
 
 
 

  
 

W 
( M 1)k ]  

 
 

z( M 1)EM 1( z M ) 

2 M 
1 z 

1
E (z 

M ) 

E0 ( z M ) 

0  k  M  1 

z E
.2 

( z ) 

.. 



Uniform DFT Filter Banks 
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• All M equations on the previous slide can  

be combined into one matrix equation as 

M D 
 1 

• In the above D is the M  M DFT matrix 

 
 
 
 

 

 
( z M ) M 1 

2 M 
1 z 

1
E (z 

M ) 

E0 ( z M ) 

z E
.2 

( z ) 

.. 
  
 
 

 z( M 1)E 

  

 

 

 

 

 

 

 
 
 

2   

1 

1 1 1 1 

1) 

M M M 

M M M 

M 1 

W 2( M  W 4 W 2 

W ( M 1)   W 1 W 2 

 
( z) 

H ( z)   1 

H1( z) 

H0 ( z)  

M.. . 

M 

. . 

M 

. . 
. 
. 

... 

... 

... 

1 W ( M 1) W 2( M 1)... W ( M 1) 

... 
2 

.  . 
H 



Uniform DFT Filter Banks 
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• An efficient implementation of the M-band  

uniform analysis filter bank, more  

commonly known as the uniform DFT  

analysis filter bank, is then as shown below 



Uniform DFT Filter Banks 
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• The computational complexity of an M-band  

uniform DFT filter bank is much smaller than  

that of a direct implementation as shown  

below 



Uniform DFT Filter Banks 
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• Following a similar development, we can  

derive the structure for a uniform DFT  

synthesis filter bank as shown below 

Type I uniform DFT 
synthesis filter bank 

Type II uniform DFT 



Uniform DFT Filter Banks 
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IIR transfer function H0 (z) 

• The above equation can be used to  

determine the polyphase components of an 

 

 

 

 
 

 

 
 
 
 

M 
( z ) M 1 z( M 1)E 

z E1(z ) 1 M 

E0 ( z M ) 

 1  

  

  
 H ( z)  

HM 1( z) 

H1( z) 
0 

 
 

M 
D  H

.2 ( z)  
.. 

z2E
.2 ( z M ) 

.. 

• Now Ei (zM ) can be expressed in terms of 


