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Digital Signal Processing



unit -1V
Implementation of Discrete Time Systems
Multirate Digital Signal Processing:



Content

*** Implementation of Discrete Time Systems:

Block diagrams and signal flow graphs for FIR and IIR systems
Direct form, Cascade form
Frequency Sampling Structures and Lattice structures for FIR systems

Direct form, Cascade form, Parallel form, and Lattice and Lattice-
Ladder Structures for IR systems

Representation of fixed point and floating point numbers,
Finite word length effects,

Parametric and non-parametric spectral estimation.
Applications of Digital Signal Processing



*»*Multirate Digital Signal Processing

* Introduction to multirate digital sighal processing
* Multi rate structures for sampling rate conversion
* Multistage decimator and interpolator

* Polyphase decomposition

* Digital Filter Banks.



Example

* Block diagram representation of yln]=ayln-1]+a,y[n - 2]+ byx[n]




Block Diagram Representation

LTI systems with rational system o]
function can be represented as )
constant-coefficient difference equation

The implementation of difference

equations requires delayed values of xq[n]

the

— input

— output ﬁ -
— intermediate results x[n] ax|n|

The requirement of delayed elements
implies need for storage

We also need means of ol -1 -
— addition x|n] x[n-1]
— multiplication




Direct Form |
Zaky[n k| = Zb x[n - k]
* General form of dlfference equatlon

yln]- ; ay[n -k|= kgoka[n - K]

by vin]

x[n]
e Alternative equival

x[n—1]




Direct Form |

* Transfer function can be writtenas  Hz)= =5

)= M) - b

N S Il
~
'—l

1-Yaz*
\ k=1 J y
M vin|= )» b.Xx[n-k
Viz) - H, (2X(z) - (z bkzij(z) = gghedn-u
Direct Form | Represents \ vinl= 2 i —kl+ vhl
V() = Hy(eV(e) =| ——— V(o
1-> az™




Alternative Representation

* Replace order of cascade }_TI syster’qs

Hiz) = H, (@, (2) = (zsz 1

wh] - kZN;akw[n _ K]+ x|

W)= HeK) = — - X@) )= b k]




Alternative Block Diagram

w [n]
-

* We can change the order o ™" : !

wln] - kiaw[n K]+ x[n] o
vl = >-bwln K]




Direct Form Il

No need to store the same data
twice in previous system

So we can collapse the delay
elements into one chain

This is called Direct Form Il or the
Canonical Form

Theoretically no difference between
Direct Form | and Il

Implementation wise

— Less memory in Direct I

— Difference when using finite-precision
arithmetic

x[n]

yln]



Signal Flow Graph Representation

e Similar to block diagram representation

— Notational differences Node j
A network of directed branches connected at n el

wyln]

Node &k

bi::;jmxxxx\\\5 Sink

v[n] node

Source
node

Q\a :

x|n| Ltlu]

* Example representation of a difference equation



* Representation of Direct Form Il with signal flow
graphs

wln] by Wy n = aW4[n] + X[n]
+ > -
x[n] + y[n] W2 _n_ = Wl [n]
Example ) sll N ws[n] = bow, [n]+ b,w,[n]
< N > W, [N] = Wz[n — 1]
Source | Sink yn = W3 [n]
noui 0 bg node 5

w, [n] = aw,[n - 1]+ x|n]
wy 1] ws 1] fi’__u 11-'3£!?] Y[n] — I:)Owl [n] + blwl [n - 1]

> o
x|[n] y[n]
:’._l
e h‘]




Determination of System Function from Flow Graph

4wl o wln) wy[n] = w,[n] - x[n]
W, n = aw, n]
T e
waln] =1 walnl y[n] = w,[n]+w,[n]
W, (z) = W,(z) - X(2) aX(z)zt -
me-ange = o) Y@z -a
W, (z) = W, (z) + X(z) W, () = Xz (1 - a)— X(z) 1-az™
W, (z) = W, (z)z* ) 1-o0z™ hin] = o™ uln - 1] - «"*u[n]
Y(2)= W,(2)+ W,(z)  Y(@)=W,(2)+W,()



Basic Structures for |IR Systems: Direct Form |
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Basic Structures for |IR Systems: Direct Form |l

- - 0
x|n| - v|n]
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Basic Structures for IIR Systems: Cascade Form

M, M,

11 (1 - sz‘l)H (1 - gkz‘1X1 - gZz‘l)
Hz) = A <

1] (1 — ckz‘l)H (1 — dkz‘1X1 — dl’iz‘l)

k=1 k=1
* General form for cascade implementation

M,

-1 -2

* More practical form in 2" order systems

wq|n| vyln] wo 1] Va|n| wa|n| ya|n|




H(z) = 1+2z'+27° - (1 + 2‘1X1 +z‘1)
©1-0.752%+0.1252%  (1-0.5z2%1 - 0.25z7")
Example hezt)  fez?)

- (1-0.5z")(1-0.25z27")

0.5 0.25

e Cascade of Direct Form | subsections

e (Cascade of Direct Form Il subsections



Basic Structures for IIR Systems: Parallel Form
K A Bkl—ekz_l
)= 3,0 3 Z(l—dk(21X1—dl’§)zl)

_Ck k=1

* Represent system functlon using partial fraction expansion




Example ). tr2z'+z? 55 0
PIE He)- 1-0.7527+0.12527 © (1-0.527) {1-0.252")

e Partial Fraction Expansion

Yoo

-1
Hz)=8+-— /82
1-0.7527" +0.1257

x|n| y|n]
".'_I
e Combine o ——

¥
=




Transposed Forms

* Linear signal flow graph property:
— Transposing doesn’t change the input-output relation

* Transposing: 1 i
— Reverse directions of all branches H(z) = 1-az™
— Interchange input and output nodes

 Example:
J"’[”] L I[H] .‘#[H] Z—l J"’[”]

i
o

— Reverse directions of branches and interchange input and output

ylnl



Example

x|n|

Transpose

x|n| y|n] y|n]

T

yln]=a,yln - 1]+ a,y[n — 2]+ b,x|n]+ b,x|n - 1]+ b,x|n - 2]

Both have the same system function or difference equation



Basic Structures for FIR Systems: Direct Form

Special cases of IR direct form

x|n|

Transpose of direct form | gives direct form Il
Both forms are equal for FIR systems

Tapped delay line  x[7]



Basic Structures for FIR Systems: Cascade Form
Hz) = > hln " = T oy +byz ™t +byz?)
* Obtained by factoring the polynomial system function

!;J[] l !;J[]g bD.‘H}.‘

y|n]




Structures for Linear-Phase FIR Systems
h|M —n| = hn] n=0,1,....M (typelor III)

h[M - n] = -h|n] n=0,1,...,M (typellorIV)
e Causal FIR system with generalized linear phase are symmetric:

 Symmetry means we can half the number of multiplications
 Example: For even M and type | or type Il systems:

vln] = kioh[k]x[n K] = /z hlkxn - K]+ M/ 2K -M/2]+ S hlkpxfn - K]

k=M/2+1

Il
S~

M

2-1 M/2-1

kix[n —k]+hM/2xn-M/2]+ Z(;h[M —kx[n —M +K]

il yg

M/2-

S~

jl—‘-

kix[n - k]+x[n-M+k])+hM/2xn-M/2]

~
Il
o



Structures for Linear-P

1 -1
Z Z

hase FIR Systems

e Structure for even M

e Structure for odd M




Attraction of DSP comes from key advantages such as :

Guaranteed accuracy: (accuracy is only determined by the number of bits used)
Perfect Reproducibility: Identical performance from unit to unit
ie. A digital recording can be copied or reproduced several times with no
loss in signal quality
No drift in performance with temperature and age
Uses advances in semiconductor technology to achieve:
(i) smaller size
(ii) lower cost
(iii) low power consumption
(iv) higher operating speed
Greater flexibility: Reprogrammable, no need to modify the hardware
Superior performance
ie. linear phase response can be achieved
complex adaptive filtering becomes possible



Disadvantages of DSP
* Speed and Cost
DSP techniques are limited to signals with relatively low bandwidths
DSP designs can be expensive, especially when large bandwidth signals
are involved.
ADC or DACs are either to expensive or do not have sufficient
resolution for wide bandwidth applications.
* DSP designs can be time consuming plus need the necessary resources
(software etc)
* Finite word-length problems
If only a limited number of bits is used due to economic considerations
serious degradation in system performance may result.



= The use of finite precision arithmetic makes it necessary to
guantize filter calculations by rounding or truncation.

* Roundoff noise is that error in the filter output that results
from rounding or truncating calculations within the filter.

= As the name implies, this error looks like low-level noise at
the filter output



Image Processing
Pattern recognition
Robotic vision
Image enhancement
Facsimile

animation

Telecommunications
Echo cancellation
Adaptive equalization
ADPCM trans-coders
Spread spectrum
Video conferencing

Application Areas

Instrumentation/Control Speech/Audio Military
spectrum analysis speech recognition secure communications
noise reduction speech synthesis radar processing
data compression text to speech sonar processing
position and rate digital audio missile guidance

control equalization
Biomedical Consumer applications

patient monitoring

scanners

EEG brain mappers

ECG Analysis

X-Ray storage/enhancement

Digital Signal Processing

cellular mobile phones
UMTS

digital television
digital cameras
internet phone

etc.

30



Multirate Digital Signal Processing

Basic Sampling Rate Alteration Devices

* Up-sampler - Used to increase the sampling
rate by an integer factor

* Down-sampler - Used to decrease the
sampling rate by an integer factor

Digital Signal Processing
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Up-Sampler

Time-Domain Characterization

* An up-sampler with an up-sampling factor
L, where L is a positive integer, develops an
output sequence Xu[n]with a sampling rate
that is L times larger than that of the input
sequence x[n]

* Block-diagram representation

x[n] —1 L — x,[n]

Digital Signal Processing 32



Up-Sampler

* Up-sampling operation is implemented by inserting L —1
equidistant zero-valued samples between two consecutive
samples of x[n]

* Input-output relation Xu[n]:{x[n/L], n=0+L,£2L,-

0, otherwise

Digital Signal Processing
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Up-Sampler

* |n practice, the zero-valued samples inserted by the up-
sampler are replaced with appropriate nonzero values using

some type of filtering process
* Process is called interpolation and will be discussed later

Digital Signal Processing
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Down-Sampler
Time-Domain Characterization

* An down-sampler with a down-sampling
factor M, where M is a positive integer,
develops an output sequence y[n] with a

sampling rate that is (1/M)-th of that of the
input sequence x[n]

* Block-diagram representation

x[n] —1{| M —— yIn]

Digital Signal Processing
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Down-Sampler

* Down-sampling operation is implemented by keeping every M-
th sample of x[n] and removing | -1 in-between samples to
generate y[n]

* |[nput-output relation

yln] = x[nM]

Digital Signal Processing
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Basic Sampling Rate Alteration Devices

e Sampling periods have not been explicitly shown in the block-
diagram representations of the up-sampler and the down-
sampler

* This is for simplicity and the fact that the mathematical theory
of multirate systems can be understood without bringing the

sampling period T or the sampling frequency R into the
picture

Digital Signal Processing 37



Down-Sampler

* Figure below shows explicitly the time-
dimensions for the down-sampler

X[n] = x,(nT) —

| M

Input sampling frequency

—— y[n] =X, (nMT)

Output sampling frequency
- 1

M T

Digital Signal Processing
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Up-Sampler

* Figure below shows explicitly the time-dimensions for the up-
sampler

X[n] = xa(nT)—» T L —— Vy[n]
:{xa(nT/L), n=0,+L,+2L,...

0 otherwise
Input sampling frequency Output sampling frequency
1 | 1

Digital Signal Processing
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Basic Sampling Rate Alteration
Devices

* The up-sampler and the down-sampler are linear
but time-varying discrete-time systems

 We illustrate the time-varying property of a down-
sampler

* The time-varying property of an up-sampler can be
proved in a similar manner

Digital Signal Processing
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_)C—)\/JCL—):)
* Consider a factor-of-M down-sampler defined by
* Its output y[n] = x[n M] for an input X[n]=X[n—ng] is then y;[n]
given by yi[n]=x[Mn]=x[Mn—ng]

* From the input-output relation of the down-sampler we obtain
y[n—ng]=x[M (n—ng)]
= X[Mn—Mng] = y[n]

Digital Signal Processing 41



Up-Sampler

Frequency-Domain Characterization

* Consider first a factor-of-2 up-sampler
whose input-output relation in the time-
domain is given by

_IX[n/2], n=0,x2,£4,...
X”[n]_{ 0, otherwise

Digital Signal Processing
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Up-Sampler

* |[n terms of the z-transform, the input-
output relation is then given by

X, (2)= ixu[n]z_”z ix[n/Z]z_In

N=—0o0 N=—0o0
N even

=3 x[m] 22" = X (%)

M=—0o0

Digital Signal Processing
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Up-Sampler

* In a similar manner, we can show that for a
-0Of- - L
factor-of-L up-sampler x (7)=x(z")

 On the unit circle, for z = ejw, the input-
output relation is given by

Xu(®1?) =X (&™)

Digital Signal Processing
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Down-Sampler

Frequency-Domain Characterization

* Applying the z-transform to the input-output
relation of a factor-of-M down-sampler

y[n]= x[Mn]
we get -
Y(z)= Y x[Mn]z "

N=—o0

 The expression on the right-hand side cannot
be directly expressed in terms of X(z)

Digital Signal Processing
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C =

Down-Sampler

* To get around this problem, define a new
sequence X .[N]:

| _IX[n], n=0,+M,+2M,...
th[n]—{ 0, otherwise
* Then
Y(2)= Y x[Mn]z "= ¥ X [Mn]z""
N=—00 N=—00

= S X lk1z M = X, (MM
k=—

Digital Signal Processing
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Down-Sampler

* Now, Xint[N] can be formally related to x[n]
through iy [n]= c[n]-x[n]

L n=0,£tM,x2M.,.

where c[n]= {O otherwise

* A convenient representation of c[n] is given
by 1 M -1
= Z W
i Y !
where Wi, =e —j2z/M

Digital Signal Processing
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Down-Sampler

* Taking the z-transform of X.[n]=c[n]-X[n] and

making use of 1M1
C[n]ZM PRV
k=0

we arrive at o 1 » (M-
Xin(2)= Yclnpnlz "= 3 [zwﬁ“]xmz-”
N=—o0 Nn=—oo \ k=0
1 M — 00 B 1 M -1 B
== 3| Sxnwz " ==Y X(zWMk)
M o\ ne—wo M 2o

Digital Signal Processing
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Down-Sampler

* Consider a factor-of-2 down-sampler with
an input x[n] whose spectrum is as shown
below

NN

 The DTFTs of the output and the input
sequences of this down-sampler are then

related as Y (o) = ;{X (ei®/2) 4 X (—ei®/2)y

Digital Signal Processing
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Down-Sampler

* Now X (—el®/2) = X (e)(®=2m)/2) implying that the
second term X (—el®/2)in the previous equation is
simply obtained by shifting the first term X (e i®/2)
to the right by an amount 27t as shown below

X(-el®”?)

‘.". 1 Fal
0 T < om
Aliasing Aliasing

Digital Signal Processing 50



Down-Sampler

* The plots of the two terms have an overlap, and hence, in
general, the original “shape” of X (eJ"D) is lost when x[n] is
down-sampled as indicated below

Digital Signal Processing
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Down-Sampler

* This overlap causes the aliasing that takes place due to under-
sampling

 Thereis no overlap, i.e., no aliasing, only if
X(el®)=0 for w>n/2

« Note: X (ejm)is indeed periodic with a period 27, even though
the stretched version of Y (eJ®)is periodic with a period 47

Digital Signal Processing
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Down-Sampler

* For the general case, the relation between the DTFTs of the
output and the input of a factor of-M down-sampler is given

by Y(ejw)__ Zx(ej((x) 2k) /M
M ko
. Y(ej‘”) is a sum of M uniformly shifted and stretched

versions of X (eJ®)and scaled by a factor of 1/M

Digital Signal Processing
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Down-Sampler

e Aliasing is absent if and only if

X (e1®)

=0 for | >n/M

as shown below for M =2

X (e1®)

=O for | > /2

/\ /\ ANWS

—'rr—:rnr 0 m2

X(ejm

X(=el®'%)
i " ", } :_-"{ } ‘."".. UJ
-7 J T 21

2v(’®)

J’E)

Digital Signal Processing
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Cascade Equivalences

* A complex multirate system is formed by an interconnection
of the up-sampler, the down-sampler, and the components
of an LTI digital filter

* |In many applications these devices appear in a cascade form

* An interchange of the positions of the branches in a cascade
often can lead to a computationally efficient realization

Digital Signal Processing
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lTl

Cascade

—r A&

quival

(D

Nneces

U )

* To implement a fractional change in the sampling rate we
need to employ a cascade of an up-sampler and a down-
sampler

e Consider the two cascade connections shown below

x[n]—{ M —{t L — Yy,[n]

x[n]—1 L — M |— y,[n]

Digital Signal Processing



Cascade Equivalences

e A cascade of a factor-of-M down-sampler and a factor-of-L up-

sampler is interchangeable with no change in the input-output
relation:

if and only if M and L are relatively prime, i.e., M and L do not
have any common factor that is an integer k> 1

yi[n] = y[n]

Digital Signal Processing 57



lIvalences

(t—

 Two other cascade equivalences are shown
below

Cascade equivalence #1

x[n]—1] M — H(z) —V,[n]

= x[nN]—HE"Y—| M Yy,[n]

Cascade equivalence #2

x[n]—1 L — H(@EY—Y,I[n]
= x[n]— H(z)—1L VY,[n]

Digital Signal Processing
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Fllters in Sampling Rate

Alteration Systems

* From the sampling theorem it is known that a the sampling
rate of a critically sampled discrete-time signal with a
spectrum occupying the full Nyquist range cannot be reduced

any further since such a reduction will introd
* Hence, the bandwidth of a critically samplec

reduced by lowpass filtering before its samp
reduced by a down-sampler

Digital Signal Processing

uce aliasing

signal must be
Ing rate is
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Filters in Sampling Rate
Alteration Systems

* Likewise, the zero-valued samples introduced by an up-
sampler must be interpolated to more appropriate values for
an effective sampling rate increase

* We shall show next that this interpolation can be achieved
simply by digital lowpass filtering

 We now develop the frequency response specifications of
these lowpass filters

Digital Signal Processing
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Fllter Specifications

* Since up-sampling causes periodic repetition of the basic
spectrum, the unwanted images in the spectra of the up-
sampled signal X,[N] must be removed by using a lowpass
filter H(z), called the interpolation filter, as indicated below

x[n]—{1 L

x[n]

H(@)

— y[n]

* The above system is called an interpolator

Digital Signal Processing
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Fllter Specifications

* On the other hand, prior to down-sampling,
the signal v[n] should be bandlimited to
w/ <z /M by means of a lowpass

filter, called the decimation filter, as
indicated below to avoid aliasing caused by

down-sampling

X[n]— H(@)

 The above system is cal

— y[n]

M

ed a decimator

Digital Signal Processing
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Interpolation Filter Specification

U2

m

* Assume x[n] has been obtained by sampling a continuous-
time signal Xa(t) at the Nyquist rate X (jQ)

« If X(e)?)and Xa(t) denote the Fourier transforms of
and x[n], respectively, then it can be shown

X(eja))—kzx [JC()TI-JZﬂ'k)

Q)
* wherel, is the sampling period

Digital Signal Processing
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Interpolation Filter Specifications

* |n practice, a transition band is provided to ensure the
realizability and stability of the lowpass interpolation filter H(z)

* Hence, the desired lowpass filter should have a stopband edge
atw, = 7/ Land a passband edge @y close to @, to reduce the
distortion of the spectrum of x[n]

Digital Signal Processing 64



Interpolation Filter Specifications

* If @, isthe highest frequency that needs to be preserved in

x[n], then o, = /L

 Summarizing the specifications of the lowpass interpolation
filter are thus given by

H (el = L, w<a./L

0, 7/L<|w|<x

Digital Signal Processing
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e L]

Decimation Filter Specifications

* |[n a similar manner, we can develop the specifications for the
lowpass decimation filter that are given by

-

L |w<aw./M

H(e!”) :%\O, /M <|lw <7

Digital Signal Processing
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it for Frac

(D
O

[

SD

ctional Sampling Rate Alteration

* A fractional change in the sampling rate can be achieved by
cascading a factor-of-M decimator with a factor-of-L
interpolator, where M and L are positive integers

* Such a cascade is equivalent to a decimator with a decimation

factor of M/L or an interpolator with an interpolation factor of
L/M

Digital Signal Processing
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Fllters for Fractional Sampling
Rate Alteration
 There are two possible such cascade connections as
indicated below

—H;@—~{l ML —mH,@O—

—1L mH @O~ H @D =l M~
 The second scheme is more computationally efficient since

only one of the filters,H,(z) orHy4(z) , is adequate to
serve as both the interpolation and the decimation filter

Digital Signal Processing
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Rate Alteration

* Hence, the desired configuration for the
fractional sampling rate alteration is as
indicated below where the lowpass filter
H(z) has a stopband edge frequency given

Digital Signal Processing
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Digital Filter Banks

 The digital filter bank is set of bandpass
filters with either a common input or a
summed output

» An M-band analysis filter bank is shown

below

x[n] )

— vﬂ[n]

Lo

— vl[n]

Hy @

Digital Signal Processing

—* vy, [n]
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Digital Filter Banks

 The subfilters Hy (z) In the analysis filter
bank are known as analysis filters

» The analysis filter bank is used to
decompose the input signal x[n] into a set of
subband signals vi[n] with each subband
signal occupying a portion of the original
frequency band

Digital Signal Processing
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Digital Filter Banks

* An L-band synthesis filter bank I1s shown

below

Poln] = Fo2)

P Inl = Fy(2)

j yin]

v, _[nl = F,_,(2

-

o It performs the dual o
analysis filter bank

Digital Signal Processing

neration to that of the
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Digital Filter Banks

 The subfilters F(z) In the synthesis filter
bank are known as synthesis filters

 The synthesis filter bank Is used to combine
a set of subband signals Vk[n] (typically
belonging to contiguous frequency bands)
Into one signal y[n] at its output

Digital Signal Processing
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Uniform Digital Filter Banks

« Asimple technique to design a class of

filter banks with equal passband widths is
outlined next

* Let Hp (z) represent a causal lowpassdigital
filter with a real impulse response hg[n]:

Ho(2) = 2 holn]z™"
* The filter Hy (z) Is assumed to be anlIR
filter without any loss of generality

Digital Signal Processing
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Uniform Digital Filter Banks

 Assume that Hq (z) has its passband edge wp
and stopband edge wsaround /M, where M
IS some arbitrary integer, as indicated below

Hy

Jl——

(VT\ T 21

(Dp_ﬂ: g
M

Digital Signal Processing
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Uniform Digital Filter Banks

* Now, consider the transfer function H, (z)
whose impulse response hi[n] is givenby

h[n] = ho[n]eJ2mkM = ho[n]W 4",
0<k<M-1
where we have used the notationWy, =e~127/M
* Thus,
Hy (2) = 2z o hk[n]z ™" = [n](le\,I )
O < k <M-1

Digital Signal Processing
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Uniform Digital Filter Banks

* l.e.,
Hy (z) = Ho (W), 0<k<M -1

* The corresponding frequency response IS
given by
Hy (el®) = Hg(ele—2nkiM)) "0 <k <M -1

» Thus, the frequency response of Hy (z) Is
obtained by shifting the response of Hg (2)
to the right by an amount 2xk/M

Digital Signal Processing 77




Uniform Digital Filter Banks

* The responses of H, (z) , H (2), ..., H(2)
are shown below

Hy

E: |ﬁh.j|$
I =S +
L]

78



Uniform Digital Filter Banks

* Note: The impulse responses hy[n] are, In
general complex, and hence |H, (el®)|does
not necessarily exhibit symmetry with
respecttom =0

» The responses shown In the figure of the
previous slide can be seen to be uniformly
shifted version of the response of the basic
prototype filter Hg (2)

10 Digital Signal Processing
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Uniform Digital Filter Banks

* The M filters defined by
Hi (z) =Hg(zZW(%), 0<k<M-1
could be used as the analysis filters in the

analysis filter bank or as the synthesis filters
In the synthesis filter bank

 Since the magnitude responses of all M
filters are uniformly shifted version of that
of the prototype filter, the filter bank
obtained is called a uniform filter bank

Digital Signal Processing
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Uniform DFT Filter Banks

Polyphase Implementation

* Let the prototype lowpass transfer function
be represented In its M-band polyphase

form: -
Ho(2) = Zl ;2 E @)

where E(z) Is the I-th polyphase
component of Hy (2):

E(2) :Z;@:Om[n]z‘” = Z:]O:O holl + nM]Z‘”
0<I<M-1

Digital Signal Processing
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Uniform DFT Filter Banks

» Substituting z with zZWg§ in the expression
for Hg (z)we arrive at the M-band polyphase
decomposition of Hy (z2):

M=1 —lirs—
H (@) =300 2 Wi By (2Mwih
= >tz wyE (M), 0<k<M -1

* In deriving the last expression we have used
the identity WM =1
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* The equation on the previous slide can be
written In matrix form as

Eo(zM)

2 g (z)

—k -2k —(M -1)k
HE@) =1 Wy Wy e Wy )

M

_| zM _1)|.5|v| (M )“
0<k<M -1
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 All M equations on the previous slide can
be combined into one matrix equation as

[ H (2) 1 |1 1 1 = 1 | EO(ZM)
03’ e —2 ~(M -1 1 (M
H1(2) L Wy Wip? e WM 2B (z™)
HZ(Z) =11 W|\7|2 W|\7|4 L WMZ(M_l) Z_ZEZ(ZM )
[H |\/|=—1(Z)J ' —:(M—l) —2:(|v|—1) | " (M-1)2 g
1 Wy Wi e Wy, -_| AM-1)E M—l(ZM)“

o _J
Y

—1
M D
e |Inthe above D isthe M x M DFT matrix
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 An efficient implementation of the M-band
uniform analysis filter bank, more
commonly known as the uniform DFT
analysis filter bank, Is then as shown below

Ta

xn] Eg(z™)

al

E (zM)

il

EE(Z M)

T

;—*EM_l(zM)|—>

M-point IDFT

) vﬂ[n]

¥ 1[.u]

o vz[n]

— vy, ]
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» The computational complexity of an M-band
uniform DFT filter bank Is much smaller than
that of a direct implementation as shown

below
afn] 2)

— vﬂ[n]

— v][n]

N

H,, @
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 Following a similar development, we can
derive the structure for a uniform DFT
synthesis filter bank as shown below

Yoln] » Eozh) @l
—1
<
= e Ech [
A 71

A =

1:2[11]—b .g- > EE(ZL) _,é)
~ z_l
?
{:L_l[n]—* > EL_l(ZL)_I

Type | uniform DFT
synthesis filter bank

;D[n]—b > RU(ZL) — 3
—1
4
{:1[11]* E > lezL) —%
= 1
o =
volnl = E " R,zhH) —%
? £
~ E_l
{;L—l[”]_" > RL—I':ZL)

Type Il uniform DFT
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» Now E; (zM ) can be expressed in terms of

Iio(ZMI\ZI - Ho(z)
2 Eq(z) 1 H1(2)
7%E ,(zM) =M D HIZ(Z)
LZ_(M—l)E-M_l(ZM )l_ _HM _1(2)—

* The above equation can be used to
determine the polyphase components of an
lIR transfer function Hq (2)
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