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Preface

This book was developed based on our teaching of undergraduate and gradu-
ate level courses in digital signal processing over the past severa years. In this
book we present the fundamentals of discrete-time signals, systems, and modern
digital processing algorithms and applications for students in electrical engineer-
ing. computer engineering. and computer science. The book is suitable for either
a one-semester or a two-semester undergraduate level course in discrete systems
and digital signal processing. It isaso intended for use in a one-semester first-year
graduate-level course in digital signal processing.

It isassumed that the student in electrical and computer engineering has had
undergraduate courses in advanced calculus (including ordinary differential equa-
tions). and linear systems for continuous-time signals. including an introduction
to the Laplace transform. Although the Fourier series and Fourier transforms of
periodic and aperiodic signas are described in Chapter 4, we expect that many
students may have had this materiat in a prior course,

A balanced coverage is provided of both theory and practical applications.
A large number of wel designed problems are provided to help the student in
mastering the subject matter. A solutions manual is available for the benefit of
the instructor and can be obtained from the publisher.

The third edition of the book covers basically the same material as the sec-
ond edition, but is organized differently. The major difference is in the order in
which the DFT and FFT algorithms are covered. Based on suggestions made by
several reviewers, we now introduce the DFT and describe its efficient computa-
tion immediately following our treatment of Fourier analysis. This reorganization
has also allowed us to eliminate repetition of some topics concerning the DFT and
its applications.

In Chapter 1 we describe the operations involved in the analog-to-digital
conversion of analog signals. The process of sampling a sinusoid is described in
some detail and the problem of aliasing is explained. Signa quantization and
digital-to-analog conversion are also described in general terms, but the analysis
is presented in subsequent chapters.

Chapter 2 is devoted entirely to the characterization and analysis of linear
time-invariant (shift-invariant) discrete-time systems and discrete-time signals in
the time domain. The convolution sum is derived and systems are categorized
according to the duration o their impulse response as a finite-duration impulse
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response (FIR) and as an infinite-duration impulse response (I1R). Linear time-
invariant systems characterized by differenceequations are presented and the so-
lution of difference equations with initial conditions is obtained. The chapter
concludes with a treatment of discrete-time correlation.

The z-transform is introduced in Chapter 3. Both the bilateral and the
unilateral z-transforms are presented, and methods for determining the inverse
z-transform are described. Use of the z-transform in the analysis of linear time-
invariant systemsisillustrated, and important properties of systems. such as causal-
ity and stability. are related to z-domain characteristics.

Chapter 4 treats the analysis of signals and systems in the frequency domain.
Fourier series and the Fourier transform are presented for both continuous-time
and discrete-time signals. Linear time-invariant (LTI) discrete systems are char-
acterized in the frequency domain by their frequency response function and their
response to periodic and aperiodic signals is determined. A number of important
types of discrete-time systems are described, including resonators. notch filters.
comb filters, all-pass filters, and osciliators. The design of a number o simple
FIR and IIR filters is aso considered. In addition, the student is introduced to
the concepts of minimum-phase, mixed-phase. and maximum-phase systems and
to the problem of deconvolution.

The DFT. its propertiesand its applications. are the topics covered in Chap-
ter 5. Two methods are described for using the DFT to perform linear filtering.
The use of the DFT to perform frequency analysis of signals is also described.

Chapter 6 covers the efficient computation of the DFT. Included in this chap-
ter are descriptions of radix-2, radix-4, and sphit-radix fast Fourier transform (FFT)
algorithms, and applications of the FFT algorithms to the computation of convo-
lution and correlation. The Goertzel algorithm and the chirp-z transform are
introduced as two methods for computing the DFT using linear filtering.

Chapter 7 treats the redlization of IR and FIR systems. This treatment
includes direct-form. cascade, parallel, lattice, and lattice-ladder realizations. The
chapter includes atreatment of state-space analysis and structures for discrete-time
systems. and examines quantization effects in a digital implementation of FIR and
IR systems.

Techniques for design of digital FIR and IIR filters are presented in Chap-
ter 8. The design techniques include both direct design methods in discrete time
and methodsinvolving the conversion of analog filters into digital filters by various
transformations. Also treated in this chapter is the design of FIR and IIR filters
by least-squares methods.

Chapter 9 focuses on the sampling of continuous-time signals and the re-
construction of such signals from their samples. In this chapter. we derive the
sampling theorem for bandpass continuous-time-signals and then cover the AID
and D/A conversion techniques, including oversampling A/D and D/A converters.

Chapter 10 provides an indepth treatment of sampling-rate conversion and
its applications to multirate digital signal processing. In addition to describing dec-
imation and interpolation by integer factors, we present a method of sampling-rate
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conversion by an arbitrary factor, Several applications to multirate signal process-
ing are presented. including the implementation of digital filters, subband coding
of speech signals, transmultiplexing. and oversampling A/D and D/A converters.

Linear prediction and optimum linear (Wiener) filters are treated in Chap-
ter 11. Also included in this chapter are descriptions of the Levinson-Durbin
algorithm and Schiir algorithm for solving the normal equations, as well as the
AR lattice and ARMA lattice-ladder filters.

Power spectrum estimation is the main topic o Chapter 12. Our coverage
includes a description of nonparametric and model-based (parametric) methods.
Aiso described are eigen-decomposition-based methods, including MUSIC and
ESPRIT.

At Northeastern University, we have used the first six chapters of this book
for a one-semester (junior level) course in discrete systems and digital signal pro-
cessing.

A one-semester senior level course for students who have had prior exposure
to discrete systemscan use the material in Chapters 1 through 4 for a quick review
and then proceed to cover Chapter 5 through 8.

In afirst-year graduate level course in digital signal processing, the first five
chapters provide the student with a good review of discrete-time systems. The
instructor can move quickly through most of this material and then cover Chapters
6 through 9. followed by either Chapters 10 and 11 or by Chapters 11 and 12.

We have included many examples throughout the book and approximately
500 homework problems. Many of the homework problems can be solved numer-
ically on a computer, using a software package such as MATLAB®©. These prob-
lems are identified by an asterisk. Appendix D contains a list of MATLAB func-
tions that the student can use in solving these problems. The instructor may also
wish to consider the use of a supplementary book that contains computer based
exercises, such as the books Digital Signal Processing Using MATLAB (P.W.S.
Kent. 1996) by V. K. Ingle and J. G. Proakis and Computer-Based Exercises for
Signal Processing Using MATLAB (Prentice Hall, 1994) by C. S. Burrus et a.

The authors are indebted to their many faculty colleagues who have provided
vauable suggestions through reviews of the first and second editions d this book.
These include Drs. W. E. Alexander, Y. Bresler, I. Deller, V. Ingle, C. Keller,
H. Lev-Ari, L. Merakos, W. Mikhael, P. Monticciolo, C. Nikias, M. Schetzen,
H. Trussell, S. Wilson, and M. Zoltowski. We are also indebted to Dr. R. Price for
recommending the inclusion of split-radix FFT algorithmsand related suggestions.
Finally, we wish to acknowledge the suggestions and comments of many former
graduate students, and especialy those by A. L. Kok, J. Lin and S. Srinidhi who
assisted in the preparation of severa illustrationsand the solutions manual.

John G. Proakis
Dimitris G. Manolakis






| ntroduction

Digital signal processing is an area of science and engineering that has developed
rapidly over the past 30 years. This rapid development is a result of the signif-
icant advances in digital computer technology and integrated-circuit fabrication.
The digital computers and associated digital hardware of three decades ago were
relatively large and expensive and, as a consequence. their use was limited to
general-purpose non-real-time (off-line) scientific computations and business ap-
plications. The rapid developments in integrated-circuit technology, starting with
medium-scale integration (MSI) and progressing to large-scale integration (LSI).
and now, very-large-scale integration (VLSI) of electronic circuits has spurred
the development of powerful. smaller. faster. and cheaper digital computers and
special-purpose digital hardware. These inexpensive and relatively fast digital cir-
cuits have made it possible to construct highly sophisticated digital systems capable
of performing complex digital signal processing functions and tasks, which are usu-
aly too difficult and/or too expensive to be performed by analog circuitry or analog
signal processing systems. Hence many o the signal processing tasks that were
conventionally performed by analog means are realized today by less expensive
and often more reliable digital hardware.

We do not wish to imply that digital signal processing is the proper solu-
tion for al signal processing problems. Indeed, for many signals with extremely
wide bandwidths, real-time processing is a requirement. For such signals, ana-
log or, perhaps, optical signal processing is the only possible solution. However,
where digital circuits are available and have sufficient speed to perform the signal
processing, they are usualy preferable.

Not only do digital circuits yield cheaper and more reliable systems for signal
processing, they have other advantages as well. In particular, digital processing
hardware allows programmabl e operations. Through software, one can more easily
modify the signal processing functions to be performed by the hardware. Thus
digital hardware and associated software provide a greater degree of flexibility in
system design. Also, there is often a higher order of precision achievable with
digital hardware and software compared with analog circuits and analog signal
processing systems. For all these reasons, there has been an explosive growth in
digital signal processing theory and applications over the past three decades.
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In this book our objective is to present an introduction of the basic analysis
tools and techniques for digital processing of signals. We begin by introducing
some of the necessary terminology and by describing the important operations
associated with the process of converting an analog signal to digital form suitable
for digital processing. As we shal see, digital processing of analog signals has
some drawbacks. First, and foremost. conversion of an analog signal to digital
form, accomplished by sampling the signal and quantizing the samples. results in a
distortion that prevents us from reconstructing the original analog signal from the
guantized samples. Control of the amount of this distortion is achieved by proper
choice of the sampling rate and the precision in the quantization process. Second,
there are finite precision effects that must be considered in the digital processing
of the quantized samples. While these important issues are considered in some
detail in this book, the emphasis is on the analysis and design of digital signa
processing systems and computational techniques.

1.1 SIGNALS, SYSTEMS, AND SIGNAL PROCESSING

A signal is defined as any physical quantity that varies with time, space. or any
other independent variable or variables. Mathematically, we describe a signal as
afunction of one or more independent variables. For example. the functions
si(r) = 5t
sa(1) = 2072
describe two signals. one that varies linearly with the independent variable 1 (time)

and a second that varies quadratically with t. As another example, consider the
function

(1.1.1)

stx.y) = 3x 4 2xy + 1057 (11.2)
This function describes a signal of two independent variables x and y that could
represent the two spatial coordinates in a plane.

The signals described by (1.1.1) and (1.1.2) belong to a class of signals that
are precisely defined by specifying the functional dependence on the independent
variable. However, there are caseswhere such afunctional relationship isunknown
or too highly complicated to be of any practical use.

For example, a speech signal (see Fig. 1.1) cannot be described functionally
by expressionssuch as (1.1.1). In general, a segment of speech may be represented
to a high degree of accuracy as a sum of several sinusoids of different amplitudes
and frequencies, that is, as

N

> Ay sin2r F (0 +6,(0) 1.1.3)

i=1
where {A; (1)}, {F; ()}, and {8;(r)} are the setsof (possibly time-varying) amplitudes,
frequencies, and phases, respectively, of the sinusoids. In fact, one way to interpret
the information content or message conveyed by any short time segment of the
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speech signal is to measure the amplitudes. frequencies, and phases contained in
the short time segment of the signal.

Another example of a natural signal is an electrocardiogram (ECG). Such a
signal providesa doctor with information about the condition of the patient's heart.
Similarly, an electroencephalogram (EEG) signal provides information about the
activity of the brain.

Speech, electrocardiogram. and electroencephalogram signals are examples
of information-bearing signals that evolve as functions of a single independent
variable. namely. time. An example of a signal that is a function of two inde-
pendent variables is an image signal. The independent variables in this case are
the spatial coordinates. These are but a few examples of the countless number of
natural signals encountered in practice.

Associated with natural signals are the means by which such signals are gen-
erated. For example. speech signals are generated by forcing air through the vocal
cords. Images are obtained by exposing a photographic film to a scene or an ob-
ject. Thus signal generation is usually associated with a system that responds to a
stimulus or force. In a speech signal. the system consists of the vocal cords and
the vocal tract, also called the vocal cavity. The stimulus in combination with the
system is called a signal source. Thuswe have speech sources, images sources. and
various other types of signal sources.

A system may also be defined as a physical device that performs an opera-
tion on a signal. For example, a filter used to reduce the noise and interference
corrupting a desired information-bearing signal is called a system. In this case the
filter performs some operation(s) on the signal, which has the effect of reducing
(filtering) the noise and interference from the desired information-bearing signal.

When we pass a signal through a system, as in filtering. we say that we have
processed the signal. In this case the processing of the signal involves filtering the
noise and interference from the desired signal. In general, the system is charac-
terized by the type of operation that it performs on the signal. For example. if
the operation is linear, the system is called linear. If the operation on the signal
is nonlinear, the system is said to be nonlinear, and so forth. Such operations are
usually referred to as signal processing.
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For our purposes. it is convenient to broaden the definition of a system to
include not only phvsical devices. but also software realizations of operations on
asignal. In digital processing of signals on a digital computer. the operations per-
formed on asignal consist of a number of mathematical operations as specified by
asoftware program. In thiscase, the program represents an implementation of the
system in software. Thus we have a system that is realized on a digital computer
by means of a sequence of mathematical operations: that is, we have a digital
signal processing system realized in software. For example. adigital computer can
be programmed to perform digital filtering. Alternatively, the digital processing
on the signal map be performed by digital hardware (logic circuits) configured to
perform the desired specified operations. In such a realization, we have a physical
device that performs the specified operations. In a broader sense, a digital system
can be implemented as a combination of digital hardware and software. each of
which performsits own set of specified operations.

This book deals with the processing of signals by digital means. either in soft-
ware or in hardware. Since many of the signals encountered in practice are analog.
we will also consider the problem of converting an analog signal into a digital sig-
nal for processing. Thus we will be dealing primarily with digital systems. The
operations performed by such a system can usually be specified mathematically.
The method or set of rules for implementing the system by a program that per-
forms the corresponding mathematical operations is called an algorithm. Usually.
there are many ways or algorithms by which a system can be implemented, either
in software or in hardware. to perform the desired operations and computations.
In practice, we have an interest in devising algorithms that are computationally
efficient, fast. and easily implemented. Thus a major topic in our study of digi-
tal signal processing is the discussion of efficient algorithms for performing such
operations as filtering, correlation, and spectral analysis.

1.1.1 Basic Elements of a Digital Signal Processing
System

Most of the signals encountered in science and engineering are analog in nature.
That is. the signals are functions of a continuous variable. such as time or space.
and usualy take on values in a continuous range. Such signals may be processed
directly by appropriate analog systems (such as filters or frequency analyzers) or
frequency multipliers for the purpose o changingtheir characteristics or extracting
some desired information. In such a case we say that the signal has been processed
directly in its analog form, as illustrated in Fig. 1.2. Both the input signa and the
output signal are in analog form.

Analog Analog Analog

input ————  signal ——— output
signal processor signal

Figure12 Analog signal processing.
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Analog Digital Analog
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input output
signal signal

Figure 1.3 Block diagram o a digital signal processing system.

Digital signal processing provides an alternative method for processing the
analog signal, as illustrated in Fig. 1.3. To perform the processing digitally, there
is a need for an interface between the analog signal and the digital processor.
This interface is called an analog-ro-digital (A/D) converter. The output of the
A/D converter is a digital signal that is appropriate as an input to the digital
processor.

The digital signa processor may be a large programmable digital computer
or a small microprocessor programmed to perform the desired operations on the
input signal. It may also be a hardwired digital processor configured to perform
a specified set of operations on the input signal. Programmable machines pro-
vide the flexibility to change the signal processing operations through a change
in the software. whereas hardwired machines are difficult to reconfigure. Conse-
quently, programmable signa processors are in very common use. On the other
hand, when signal processing operations are well defined, a hardwired implemen-
tation of the operations can be optimized. resulting in a cheaper signal processor
and, usualy, one that runs faster than its programmable counterpart. In appli-
cations where the digital output from the digital signal processor is to be given
to the user in analog form. such as in speech communications, we must pro-
vide another interface from the digital domain to the analog domain. Such an
interface is called a digital-to-analog (D/A) converter. Thus the signa is pro-
vided to the user in analog form. as illustrated in the block diagram of Fig. 1.3.
However, there are other practical applications involving signal analysis, where
the desired information is conveyed in digital form and no D/A converter is
required. For example, in the digital processing of radar signals, the informa-
tion extracted from the radar signal, such as the position of the aircraft and its
speed, may simply be printed on paper. There is no need for a D/A converter in
this case.

1.12 Advantages of Digital over Analog Signal
Processing

There are many reasons why digital signal processing of an analog signal may be
preferable to processing the signa directly in the analog domain, as mentioned
briefly earlier. First, a digital programmable system allows flexibility in recon-
figuring the digital signal processing operations simply by changing the program.
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Reconfiguration of an analog system usually implies a redesign of the hardware
followed by testing and verification to see that it operates properly.

Accuracy considerations also play an important role in determining the form
of thesignal processor. Tolerancesin analog circuit components make it extremely
difficult for the system designer to control the accuracy of an analog signal pro-
cessing system. On the other hand. a digital system provides much better control
o accuracy requirements. Such requirements, in turn, result in specifying the ac-
curacy requirementsin the A/D converter and the digital signal processor, in terms
of word length, floating-point versus fixed-point arithmetic, and similar factors.

Digital signals are easily stored on magnetic media (tape or disk) without de-
terioration or loss of signal fidelity beyond that introduced in the A/D conversion.
As a consequence, the signals become transportable and can be processed off-line
in aremote laboratory. The digital signal processing method also allowsfor the im-
plementation of more sophisticated signal processing algorithms. It is usually very
difficult to perform precise mathematical operations on signals in analog form but
these same operations can be routinely implemented on a digital computer using
software.

In some cases a digital implementation o the signa processing system is
cheaper than its analog counterpart. The lower cost may be due to the fact that
the digital hardware is cheaper. or perhaps it is a result of the fiexibility for mod-
ifications provided by the digital implementation.

As a conseguence of these advantages, digital signal processing has been
applied in practical systems covering a broad range of disciplines. We cite, for ex-
ample, the application of digital signal processing techniques in speech processing
and signal transmission on telephone channels, in image processing and transmis-
sion, in seismology and geophysics. in il exploration, in the detection of nuclear
explosions. in the processing of signals received from outer space. and in a vast
variety of other applications. Some of these applications are cited in subsequent
chapters.

As dready indicated, however, digital implementation has its limitations.
One practica limitation is the speed of operation of A/D converters and digita
signal processors. We shall see that signals having extremely wide bandwidths re-
quire fast-sampling-rate A/D converters and fast digital signa processors. Hence
there are analog signals with large bandwidths for which a digital processing ap-
proach is beyond the state of the art of digital hardware.

1.2 CLASSIFICATION OF SIGNALS

The methods we use in processing asignal or in analyzing the response of a system
to a signa depend heavily on the characteristic attributes o the specific signd,
There are techniques that apply only to specific families of signals. Consequently,
any investigation in signal processing should start with a classificationof the signals
involved in the specific application.
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1.2.1 Multichannel and Multidimensional Signals

As explained in Section 1.1, a signal is described by a function of one or more
independent variables. The value of the function (i.e., the dependent variable) can
be a real-valued scalar quantity, a complex-valued quantity. or perhaps a vector.
For example. the signal
s1(ry = Asin3mt

is a real-valued signal. However, the signa

$2(1) = Ae’>" = Acos3mt + jAsin3m:
is complex valued.

In some applications, signals are generated by multiple sources or multiple
sensors. Such signals. in turn. can be represented in vector form. Figure 1.4 shows
the three components of a vector signal that represents the ground acceleration
due to an earthquake. This acceleration isthe result of three basic types of elastic
waves. The primary (P) waves and the secondary (S) waves propagate within the
body of rock and are longitudinal and transversal, respectively. The third tvpe
of elastic wave is caled the surface wave. because it propagates near the ground
surface. If si(r). k = 1. 2. 3. denotes the electrical signa from the kth sensor as a
function of time. the set of p = 3 signals can be represented by a vector S:(r). where

s1(1)
Sa(r) = | s2(1)
Sg(l)

We refer to such a vector of signals as a multichannel sSgnal. In electrocardiogra-
phy. for example. 3-lead and 12-lead electrocardiograms (ECG) are often used in
practice. which result in 3-channel and 12-channel signals.

Let us now turn our attention to the independent variable(s). If the signal is
a function of a single independent variable. the signal is called a one-dimensional
signal. On the other hand. asignal is called M-dimensional if its value is a function
of M independent variables.

The picture shown in Fig. 1.5 isan example of a two-dimensional signal. since
the intensity or brightness /(x. y) at each point is a function of two independent
variables. On the other hand. a black-and-white television picture may be rep-
resented as /(x, y.I) since the brightness is a function of time. Hence the TV
picture may be treated as a three-dimensional signal. In contrast. a color TV pic-
ture may be described by three intensity functions of theform 7. (x. y. 1), Io(x. y. 1),
and /y(x. y.1), corresponding to the brightness of the three principal colors (red.
green, blue) as functions of time. Hence the color TV picture is a three-channel.
three-dimensional signal, which can be represented by the vector

I(x,y.1)
Ix, y.1) = [Ig(x. ¥, 1):|
Ip(x, ¥, 1)

In this book we deal mainly with single-channel, one-dimensional real- or
complex-valued signals and we refer to them simply as signals. In mathematical
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Figure 14 Three components of ground acceleration measured a few kilometers
from the epicenter of an earthquake. (From Earthquakes. by B. A. Bold. ©1988
by W. H. Freeman and Company. Reprinted with permission of the publisher.)

terms these signals are described by a function of a single independent variable.
Although the independent variable need not be time, it iscommon practice to use
t as the independent variable. In many cases the signal processing operations and
algorithms developed in this text for one-dimensional. single-channel signals can
be extended to multichannel and multidimensional signals.

1.2.2 Continuous-Time Versus Discrete-Time Signals

Signals can be further classified into four different categories depending on the
characteristics of the time (independent) variable and the values they take.
Continuous-time signals or analog signals are defined for every value of time and
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v

Figure 5 Example d a two-dimensional signal.

they take on values in the continuous interval (a.b). where a can be —oc and b
can be co. Mathematically. these signals can be described by functions of a con-
tinuous variable. The speech waveform in Fig. 1.1 and the signals x; (t)= cosmt,
x2(t) = eV, —oc <t < oc are examples of analog signals. Discrete-time signals
are defined only at certain specific values of time. These time instants need not be
equidistant. but in practice they are usualy taken at equally spaced intervals for
computational convenience and mathematical tractability. The signal x(z,) = e/,
n=20, f1,f2, ... provides an example of a discrete-time signal. If we use the
index n of the discrete-time instants as the independent variable, the signal value
becomes a function of an integer variable (i.e., a sequence of numbers). Thus a
discrete-time signal can be represented mathematically by a sequence of real or
complex numbers. To emphasize the discrete-time nature of a signal. we shall
denote such a signal as x(n) instead of x(r). If the time instants t, are equally
spaced (i.e., t, = nT), the notation x(nT) is also used. For example, the sequence

oo Jos ifn=0
x(m) = 0. otherwise a.2n

is a discrete-time signal, which is represented graphically as in Fig. 1.6.
In applications. discrete-time signals may arise in two ways.

1. By selecting values of an analog signal at discrete-time instants. This process
is called sampling and is discussed in more detail in Section 1.4. All measur-
ing instruments that take measurements at a regular interval of time provide
discrete-time signals. For example, the signal x(n) in Fig. 1.6 can be obtained
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by sampling the analog signal x(r) = 0.8, + > 0 and x(z) = 0.+ < 0 once

every second.

2. By accumulating a variable over a period of time. For example. counting the
number of cars using agiven street every hour. or recording the value of gold
every day, results in discrete-time signals. Figure 1.7 shows a graph of the
Wolfer sunspot numbers. Each sample of this discrete-time signal provides
the number of sunspots observed during an interval of 1 year.

1.2.3 Continuous-Valued Versus Discrete-Valued Signals

The values of a continuous-time or discrete-time signal can be continuous or dis-
crete. If asigna takes on al possible values on a finite or an infinite range. it
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figure 1.7 Wolfer annual sunspot numbers (1770-1869).
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is said to be continuous-valued signal. Alternatively, if the signal takes on values
from afinite set of possible values, it issaid to be a discrete-valued signal. Usually,
these values are equidistant and hence can be expressed as an integer multiple of
the distance between two successive values. A discrete-time signal having a set of
discrete valuesiis called a digital signal. Figure 1.8 shows a digital signal that takes
on one of four possible values.

In order for a signal to be processed digitally, it must be discrete in time
and its values must be discrete (i.e., it must be a digital signal). If the signa to
be processed is in analog form, it is converted to a digital signal by sampling the
analog signal at discrete instants in time. obtaining a discrete-time signal. and then
by quantizing its values to a set of discrete values, as described later in the chapter.
The process of converting a continuous-valued signal into a discrete-valued signal.
called quantization. is basically an approximation process. It may be accomplished
simply by rounding or truncation. For example. if the allowable signal values
in the digital signal are integers, say O through 15, the continuous-value signal is
quantized into these integer values. Thusthe signal value 8.58 will be approximated
by the value 8 if the quantization process is performed by truncation or by 9 if
the quantization process is performed by rounding to the nearest integer. An
explanation of the analog-to-digital conversion processis given later in the chapter.

Figure 18  Dagital signal with four different amplitude values

1.2.4 Deterministic Versus Random Signals

The mathematical analysis and processing of signals requires the availability of a
mathematical description for the signal itself. This mathematical description, often
referred to as the signal model, leads to another important classification of signals.
Any signal that can be uniquely described by an explicit mathematical expression,
a table of data, or a well-defined rule is called deterministic. This term is used to
emphasize the fact that al past, present. and future values of the signal are known
precisely, without any uncertainty.

In many practical applications, however, there are signals that either cannot
be described to any reasonable degree of accuracy by explicit mathematical for-
mulas, or such adescription is too complicated to be of any practical use. The lack
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o such arelationship implies that such signals evolve in time in an unpredictable
manner. We refer to these signals as random. The output of a noise generator,
the selsmic signal of Fig. 1.4, and the speech signa in Fig. 1.1 are examples of
random signals.

Figure 1.9 shows two signals obtained from the same noise generator and
their associated histograms. Although the two signals do not resemble each other
visually, their histograms reveal some similarities. This provides motivation for

4] 200 400 600 800 1000 1200 1400 1600
(@)

Figure 19 Two random signals from the same signal generator and their his-
tograms.
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Figure 1.9 Continued

the analysis and description of random signals using statistical techniques instead
of explicit formulas, The mathematical framework for the theoretical analysis of
random signals is provided by the theory of probability and stochastic processes.
Some basic elements of this approach, adapted to the needs of this book. are
presented in Appendix A.

It should be emphasized at this point that the classification of a real-world
signal as deterministic or random is not always clear. Sometimes. both approaches
lead to meaningful results that provide more insight into signal behavior. At other
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times. the wrong classification may lead to erroneous results. since some mathe-
matical tools may apply only to deterministic signals while others may apply only
to random signals. This will become clearer as we examine specific mathematical
tools.

1.3 THE CONCEPT OF FREQUENCY IN CONTINUOUS-TIME AND
DISCRETE-TIME SIGNALS

The concept of frequency is familiar to students in engineering and the sciences.
This concept is basic in. for example, the design of a radio receiver, a high-fidelity
system. or a spectral fitter for color photography. From physics we know that
frequency is closely related to a specific type of periodic motion called harmonic
oscillation. which is described by sinusoidal functions. The concept of frequency
is directly related to the concept of time. Actually, it has the dimension of inverse
time. Thus we should expect that the nature of time (continuousor discrete) would
affect the nature of the frequency accordingly.

1.3.1 Continuous-Time Sinusoidal Signals

A simple harmonic oscillation is mathematically described by the following
continuous-time sinusoidal signal:

Xq(t) = Acos(Q2t +6). —oc <t < o¢ (1.3.1)

shown in Fig. 1.10. The subscript a used with x(r) denotes an analog signa. This
signa is completely characterized by three parameters: A is the amplitude of the
sinusoid. €2 is the frequency in radians per second (radis), and 6 is the phase in
radians. Instead of 2, we often use the frequency F in cycles per second or hertz

(Hz). where
Q=2nF (1.3.2)
In terms of F. (1.3.1) can be written as
x,(t) = Acos@rnFr+6), —x <t < (1.3.3)

We will use both forms. (1.3.1) and (1.3.3), in representing sinusoidal signals.

x,(t) = A cos(2mFt + 6)

+—T,=1F
FA
ﬂ Acos 8
v 0 \/ \ t
Figure 1.10 Example of an analog

sinusoidal signal.
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The analog sinusoidal signal in (1.3.3) is characterized by the following prop-
erties:

Al. For every fixed value of the frequency F, x,(r) is periodic. Indeed. it can
easily be shown, using elementary trigonometry, that

Xalt + T) = x4 (1)

where T, = 1/F is the fundamental period of the sinusoidal signal.

A2. Continuous-time sinusoidal signals with distinct (different) frequencies are
themselves distinct.

A3. Increasing the frequency F results in an increase in the rate of oscillation
of the signal, in the sense that more periods are included in a given time
interval.

We observe that for F = 0. the value 7, = oc is consistent with the fun-
damental relation F = 1/7,. Due to continuity of the time variable :, we can
increase the frequency F. without limit, with a corresponding increase in the rate
of oscillation.

The relationships we have described for sinusoidal signals carry over to the
class of complex exponential signals

xa(1) = A&+ (1.3.4)

This can easily be seen by expressing these signals in terms of sinusoids using the
Euler identity

e*/% = cos¢ £ jsing (1.3.3)

By definition, frequency is an inherently positive physical quantity. This
is obvious if we interpret frequency as the number of cycles per unit time in a
periodic signal. However. in many cases, only for mathematical convenience, we
need to introduce negative frequencies. To see this we recall that the sinusoidal
signal (1.3.1) may be expressed as

xa(1) = Acos(Qu + 6) = g e/ e 4 »;1 A (1.3.6)

which follows from (1.3.5). Note that a sinusoidal signal can be obtained by adding
two equal-amplitude complex-conjugate exponential signals, sometimes called pha-
sors, illustrated in Fig. 1.11. As time progresses the phasors rotate in opposite
directions with angular frequencies + radians per second. Since a positive fre-
guency corresponds to counterclockwise uniform angular motion, a negative fre-
quency simply corresponds to clockwise angular motion.

For mathematical convenience, we use both negative and positive frequencies
throughout this book. Hence the frequency range for analog sinusoids is —co <
F < co.
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\Q
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,/Q Figure 1.11 Representation of a cosine
function by a pair of complex-conjugate
exponentials (phasors).

1.3.2 Discrete-Time Sinusoidat Signals

A discrete-time sinusoidal signal may be expressed as
x(n) = Acos(wn +8). —o¢c < n < o (1.3.7)

where n isan integer variable. called the sample number. A is the amplitude o the
sinusoid. w is the frequency in radians per sample. and ¢ is the phase in radians.
If instead of « we use the frequency variable f defined by

w=2rf (1.3.8)
the relation (1.3.7) becomes
x(n)=Acosrfn+0).—x <n <oc (1.3.9

The frequency 7 has dimensions of cycles per sample. In Section 1.4. where
we consider the sampiing of analog sinusoids, we relate the frequency variable
f of a discrete-time sinusoid to the frequency F in cycles per second for the
analog sinusoid. For the moment we consider the discrete-time sinusoid in (1.3.7)
independently of the continuous-time sinusoid given in (1.3.1). Figure 1.12 shows
a sinusoid with frequency « = /6 radians per sample (f = Tli cycles per sample)
and phase 6§ = /3.

x{n) = A cos{wn + 8)

1} [1 il [ ﬂ ”
Figure 112 Example of a discrete-time

-A sinusoidal signal {w = = /6 and & = n/3).
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In contrast to continuous-timesinusoids. the discrete-time sinusoids are char-
acterized by the following properties:

B1. Adiscrete-time sinusoid is periodic only if irs frequency fisa rational number.

By definition, a discrete-time signal x(») is periodic with period N(N > 0) if

and only if
xtnt N)=x(m) foraln (1.3.10)
The smallest value of N for which (1.3.10) is true is called the fundamental period.

The proof of the periodicity property issimple. For a sinusoid with frequency
fo to be periodic, we should have

cos{2m fy( N +n) + 8} = cos(2x fun +4)
This relation is true if and only if there exists an integer k such that
2n fyN = 2kx

or, equivalently.
k
fu=ﬁ (1.3.11)
According to (1.3.11). a discrete-time sinusoidal signal is periodic only if its fre-
quency fy can be expressed as the ratio of two integers (i.e.. fy is rational).

To determine the fundamental period N of a periodic sinusoid. we expressits
frequency fy asin (1.3.11)and cancel common factors so that k and N are relatively
prime. Then the fundamental period of the sinusoid is equal to N. Observe that a
small change in frequency can result in a large change in the period. For example,
note that f; = 31/60 implies that N, = 60, whereas f> = 30/60 results in N> = 2.

B2. Discrete-time sinusoids whose frequencies are separated by an integer multiple
of 27 areidentical.

To prove this assertion. let us consider the sinusoid cos(won *6). It easily
follows that

cos|(wg + 271 + 6] = cos(wyn + 270+ 8) = cos(won +6) 1.3.12)
Asaresult. al sinusoidal sequences
xp(n) = Acos(an + 6), k=0.1.2,... (1.3.13)
where
Wy = wy + 2k, -T<wy<m

are indistinguishable (i.e., identical). On the other hand, the sequences of any two

sinusoids with frequenciesin the range ~7 < w < = or -% <f < % are distinct.

Consequently, discrete-time sinusoidal signals with frequencies |w} < n or |f] < %



18 Introduction Chap. 1

are unique. Any sequence resulting from a sinusoid with a frequency |w| > 71, Or
Ifl> % isidentical to asequence obtained from asinusoidal signal with frequency
lw] < m. Because of thissimilarity. we call the sinusoid having the frequency |w| >
7 an alias of a corresponding sinusoid with frequency {w|{ < 7. Thus we regard
frequencies in therange -1 < w < 1, Or ._% <f < 1 as unique and al frequencies
lwl > 7, or |f| > % as aliases. The reader should notice the difference between
discrete-time sinusoids and continuous-time sinusoids, where the latter result in
distinct signals for €2 or F in the entire range —oc < Q < oc Or —x¢ < F < o,

B3. The highest rate  oscillation in a discreterime sinusoid is artained when
w=x {orw=-n)or, equivalently, f =1 (or f = —1).

To illustrate this property, let us investigate the characteristics of the sinu-
soidal signal sequence

x{n) = COS wyn

when the frequency varies from 0 to 7. To simplify the argument, we take values
of wy =0, 11/8, 7/4, 7/2. 1 corresponding to f = 0. %. 1. 4. 1. which result in
periodic sequences having periods N = oc. 16, 8, 4, 2. as depicted in Fig. 1.13. We
note that the period of the sinusoid decreases as the frequency increases. In fact,

we can see that the rate of oscillation increases as the frequency increases.

x{n)
wy=0

2
Xl wy==
("1) 0 s

x(n) wozg x(n) |wp=mx

LLITLLL . T
VPP AT

Figure 113 Signal x(n) = cosayn for various values of the frequency wo.
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To see what happens for 7 < wp < 2n. we consider the sinusoids with
frequencies w; = @y and w» = 27 — wy. Note that as w; varies from 7 to 2. w-
varies from = to 0. it can be easily seen that

x1(n) = Acoswin = Acoswon
xa(n) = AcOSwin = A Cos(2r — wyn (1.3.14)
= Acos{—won) = x1(n)

Hence w- is an alias of w;. If we had used a sine function instead of a cosine func-
tion, the result would basicaly be the same, except for a 180" phase difference
between the sinusoids x;(n) and x2(n). In any case. as we increase the relative
frequency wy of a discrete-time sinusoid from = to 2x. its rate of oscillation de-
creases. For w~= 27 the result is a constant signal. as in the case for «, = O.
Obviously. for wy = 7 (or f = 1) we have the highest rate of oscillation.

As for the case of continuous-time signals. negative frequencies can be in-
troduced as well for discrete-time signals. For this purposc we use the identity

A A o <
x(n) = Acos(wn +0) = 3 plten* 4 5 ot (1.3.1%

Since discrete-time sinusoidal signals with frequcncics that arc scparated by
an integer multiple of 2 areidentical. it follows that the frequencies in any interval
w) < w < w; + 27 constitute all the existing discrete-time sinusoids or complex
exponentials. Hence the frequency range for discrete-time sinusoids is finite with
duration 2. Usually, we choose theranee 0 < w <27 or -7 <w <70 < f < L
~1 < £ = 5. which we cal the fundamental range.

1.3.3 Harmonically Related Complex Exponentiais

Sinusoidal signals and complex exponentials play a major role in the analysis of
signals and systems. In some cases we deal with sets of harmonically related com-
plex exponentials (or sinusoids). These are sets of periodic complex exponentials
with fundamental frequencies that are multiples of a single positive frequency.
Although we confine our discussion to complex exponentials. the same proper-
ties clearly hold for sinusoidal signals. We consider harmonically related complex
exponentials in both continuous time and discrete time.

Continuous-time exponentials. The basic signals for continuous-time.
harmonically related exponentials are

sp(t) = ¥ = /T For k=0 %1 +2.... (1.3.16)

We note that for each value of k. si(t) is periodic with fundamental period
1/(kFy) = T,/k or fundamental frequency kFy. Since a signa that is periodic
with period 7, /k is also periodic with period £(7,/k) = T, for any positive integer
k, we see that al of the s;(r) have acommon period of 7,. Furthermore, according
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to Section 1.3.1. Fy is allowed to take any value and all members of the set are
distinct. in the sense that if k; # k;. then sy (1) # si2(2).

From the basic signals in (1.3.16) we can construct a linear combination of
harmonically related complex exponentials of the form

%< =<
(=) asty= Y ot (1.3.17)
k=~oc k=—oc

where ¢, k = 0, £1. £2.... are arbitrary complex constants. The signa x,(r)
is periodic with fundamental period 7, = 1/F,. and its representation in terms
of (1.3.17) is called the Fourier series expansion for x,(s). The complex-valued
constants are the Fourier series coefficients and the signal s,(r) is called the kth
harmonic of x,(t).

Discrete-time exponentials.  Since a discrete-time complex exponential is
periodic if its relative frequency is a rational number. we choose £, = 1/N and we
define the sets of harmonically related complex exponentials by

spln) = ed 2RI, k=0.£1.22 ... (1.3.18)
In contrast to the continuous-time case. we note that

span = e ZNUE NN — I3 () = s ()
This means that. consistent with (1.3.10), there are only AN distinct periodic complex
exponentials in the set described by (1.3.18). Furthermore. all members of the set
have a common period of N samples. Clearly, we can choose any consecutive h'
complex exponentials, say from k = ng tok = nq+ N — 1 to form a harmonically
related set with fundamental frequency f, = 1/N. Most often. for convenience.
we choose the set that corresponds to ny = 0. that is, the set

si(m) =Nk =0.1.2.... N =1 (1319
As in the case of continuous-time signals, it is obvious that the linear com-
bination
N-1 N—1 .
x(n) =Y cusilm) =y cpelTh (1.320)
k= =

results in a periodic signal with fundamental period N. As we shall see later.
this is the Fourier series representation for a periodic discrete-time sequence with
Fourier coefficients {c;}. The sequence s;(n} is called the kth harmonic of x{(n).

Example 1.3.1
Stored in the memory of a digital signal processor isone cycle o the sinusoidal signal

. {2mn
= -— 48
x(n) sm( N + )

where 8 = 2zg/N, where g and N are integers.
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(a) Determine how this table of values can be used to obtain values of harmonically
related sinusoids having the same phase.

(b) Determine how this table can be used to obtain sinusoids of the same frequency
but different phase.

Solution
(a) Let x;(n) denote the sinusoidal signal sequence

) (EmIk )
xny=sin| ——+46
N

Thiss a sinusoid with frequency f, = A/N. which is harmonically related to
x(n). But x;(n) may be expressed as

. l:27r(kn) ]
xfnl = sin Y + 6

x(kn)

Thus we observe that 1 (0y = x(0). x. (1) = x (k). x(2) = x(2k). and so on.
Hence the sinusoidal sequence x;(n) can be obtained from the table of values
of x(n) by taking every kth value of a{n). beginning with x(0). In this manner we
can gencrate the vatues of dl harmonically related sinusoids with frequencies
fi =k/N fork=0.1..... N-1

(b) We can control the phasc ¢ of the sinusoid with frequency fi = k/N by taking
the first value of the sequence from memory location ¢ = 6N /2r . where ¢ is
an integer. Thus the iniual phasc # controls the starling location in the table
and we wrap around the table cach time the index (kn) exceeds N.

1.4 ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERSION

Most signals of practical interest, such as speech. biological signals, seismic signals.
radar signals, sonar signals. and various communications signals such as audio and
video signals, are analog. To process analog signals by digital means, it is first
necessary to convert them into digital form. that is, to convert them to a sequence
of numbers having finite precision. This procedure is called analog-to-digital (A/D)
conversion, and the corresponding devices are called A/D converters (4DCs).

Conceptually, we view A/D conversion as a three-step process. This process
isillustrated in Fig. 1.14.

1. Sampling. This is the conversion of a continuous-time signal into a discrete-
time signal obtained by taking "samples" of the continuous-time signa at
discrete-time instants. Thus, if x,(z) is the input to the sampler, the output
isx,(nT) = x(n), where T is called the sampling interval.

2 Quantization. This is the conversion of a discrete-time continuous-valued
signal into a discrete-time, discrete-valued (digital) signal. The value of each
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A/D converter
T
X (t xtn) x(n) 01011
r"lL_— Sampler n Quantizer qi Coder T
: ! |
} | | 1
| | | |
Analog Discrete-time Quantized Digital
signal signal signa signal

Figure1.14 Basic parts of an analog-to-digital (A1D) converter.

signa sample is represented by a value selected from a finite set of possi-
ble values. The difference between the unquantized sample x(n) and the
quantized output x,(n) is called the quantization error.

3. Coding. In the coding process. each discrete value x,(n) is represented by a
b-bit binary sequence.

Although we model the AID converter as a sampler followed by a quantizer
and coder. in practice the AID conversion is performed by a single device that
takes x,(r) and produces a binary-coded number. The operations of sampling and
quantization can be performed in either order but. in practice. sampling is always
performed before quantization.

In many cases of practical interest (e.g.. speech processing) it is desirable
to convert the processed digital signals into analog form. (Obviously. we cannot
listen 10 the sequence of samples representing a speech signa or see the num-
bers corresponding to a TV signal.) The process of converting a digital signal
into an analog signal is known as digital-to-analog (D/A) conversion. All DIA
converters " connect the dots" in a digital signat by performing some kind of inter-
polation, whose accuracy depends on the quality of the D/A conversion process.
Figure 1.15 illustrates a simple form of D/A conversion. called a zero-order hold
or a staircase approximation. Other approximations are possible. such as linearly
connecting a pair of successive samples (linear interpolation), fitting a quadratic
through three successive samples (quadratic interpolation). and so on. Is there an
optimum (ideal) interpolator? For signals having alimited frequency content (finite
bandwidth), the sampling theorem introduced in the following section specifies the
optimum form of interpolation.

Sampling and quantization are treated in this section. In particular, we
demonstrate that sampling does not result in a loss of information, nor does it
introduce distortion in the signal if the signal bandwidth isfinite. In principle, the
analog signal can be reconstructed from the samples, provided that the sampling
rate is sufficiently high to avoid the problem commonly called aliasing. On the
other hand, quantization is a noninvertible or irreversible process that results in
signd distortion. We shall show that the amount of distortion is dependent on
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Amplitude

’ L 1 { N
0 2T 4T 6T 8T
Time

Figure 1.15 Zero-order hold digital-to-analog (DIA) conversion.

the accuracy. as measured by the number of bits. in the AID conversion process.
The factors affecting the choice of the desired accuracy of the AID converter are
cost and sampling rate. In general. the cost increases with an increase in accuracy
and/or sampling rate.

1.4.1 Sampling d Analog Signals

There are many ways to sample an analog signal. We limit our discussion to
periodic or uniform sampling. which is the type of sampling used most often in
practice. This is described by the relation

x(n) = x,(nT). —x <n<oc (1.4.2)

where x(n} is the discrete-time signal obtained by *taking samples" of the analog
signal x,(r) every T seconds. This procedure is illustrated in Fig. 1.16. The time
interval T between successive samples is called the sampling period or sample
interval and itsreciprocal 1/T = F; iscalled the sampling rate (samplesper second)
or the sampling frequency (hertz).

Periodic sampling establishes a relationship between the time variablest and
n of continuous-time and discrete-time signals, respectively. Indeed, these vari-
ables are linearly related through the sampling period T or, equivalently, through
the sampling rate F; = 1/7, as

1 =nT = F (1.4.2)

Asaconsequenced (1.4.2), there exists a relationship between the frequency
variable F (or ) for analog signals and the frequency variable f (or w) for
discrete-time signals. To establish this relationship. consider an analog sinusoidal
signa d the form

x,(1) = Acos(2r Fr +6) (1.4.3)
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A

Analog X1 xtn) = x,(nT) Discrete-rime
in F=UT signal
Sampier
{0 a(n) e, D
R { / x(n) = x,(nT)
Vs
0| i 0l 123456789 n
! T2T 5T 9T i=nT

Figure116 Penodic sampling of an analog signal

which, when sampled periodicaly at arate . = 1/7 samples per second. yields

xonT)y=x(n) = AcosRr FnT +6)
) (1.4.4)

I

ACOS(ZmIF e
F,

s

If we compare (1.4.4) with (1.3.9). we note that the frequency variables F
and 7 are linearly related as

(1.4.5)

ofm

or, equivaently, as
w=QT (1.4.6)

The relation in (1.4.5) justifiesthe name relative or normalized frequency, which is
sometimes used to describe the frequency variable f . As (1.4.5) implies, we can use
f todetermine the frequency F in hertz only if the sampling frequency F; isknown.
We recall from Section 1.3.1 that the range of the frequency variable F or 2
for continuous-time sinusoids are
—oc < F <0

14.7)

—o0 < 2 < 0o

However, the situation is different for discrete-time sinusoids. From Section 1.3.2
we recall that

(1.4.8)

By substituting from (1.4.5) and (1.4.6) into (1.4.8), we find that the frequency
of the continuous-time sinusoid when sampled at a rate £, = 1/7 must fal in
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the range
1 F\ 5
__:_._‘SFE_};:L (149)
27 2 2 2r
or, equivalently.
e aF <Q<nF =1 (1.4.10)
T T

These relations are summarized in Table 1.1.

TABLE 1.1 RELATIONS AMONG FREQUENCY VARIABLES

Continuous-time signals Discrete-time signats
Q=2aF w=21f
radians 1y, radians cvcles
sec -~ He

sample  sampic
w=QT. f=f/F >
N -7 <w =T
“terel
CR=w/TF=f"F
N

—X < §2 <X ~7/T =
—-x < Fax —-F2/2 =

From these relations we observe that the fundamental difference between
continuous-time and discrete-time signals is in their range of values of the fre-
quency variables F and f. or & and w. Periodic sampling of a continuous-time
signal implies a mapping of the infinite frequency range for the variable F (or $2)
into afinite frequency range for the variable f (or w). Since the highest frequency
in a discrete-time signal isw =m or f = % it follows that. with a sampling rate
F,, the corresponding highest values of F and & are

F £ 1
max = K = 545

2 (14.11)
Qmax =ﬂFv=F

Therefore. sampling introduces an ambiguity. since the highest frequency in a
continuous-time signal that can be uniquely distinguished when such a signal is
sampled at a rate F; = 1/T IS Fmax = F;/2, Of Qmax = 7 F,. T0 see what happens
to frequencies above F;/2, let us consider the following example.

Example 1.4.1

The implications of these frequency relations can be fully appreciated by considering
the two analog sinusoidal signals
x1(1) = cos2r(10)

(1.4.12)
x2(1) = cos 2 (50)
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which are sampled at a rate F; = 40 Hz. The corresponding discrete-time signals or
sequences are

xi1(n) = cos2m (B)n = COs 1,1
40 2 (1.4.13)
Xa(n) = cos2nw (§> n = cOs iln
N 40 2

However. cos5mn/2 = cos(2rn + nn/2) = cosnn/2. Hence xa(n} = x,(n). Thus the
sinusoidal signals are identical and. consequently, indistinguishable. If we are given
the sampled values generated by cos(m/2)n, there is some ambiguity as to whether
these sampled values correspond to x;(z) or xa(z). Since x»(r) yields exactly the same
values as x{r) when the two are sampled at F, = 40 samples per second. we say that
the frequency > =50 Hz is an dias of the frequency £, = 10 Hz at the sampling
rate of 40 samples per second.

It isimportant to note that 7> is not the only aliasof F;. In fact at the sampling
rate of 40 samples per second. the frequency 3 = 90 Hz is also an dlias of Fy, asis
the frequency F; = 130 Hz. and so on. All of the sinusoids cos2x(F) +40k)r. k = 1.
2.3.4.... sampled at 40 samples per second. yield idenrical values. Consequently.
thev arc al aliases of £; = 10 Hz.

In general. the sampling of a continuous-time sinusoidal signal
X{1) = Acos(2m For + 8) (1.4.14)
with a sampling rate £, = 1/7 results in a discrete-time signal
x(n) = Acos(2r fon + 6) (1.4.15)

where f, = Fy/F, is the relative frequency of the sinusoid. If we assume that
—F./2 < Fy < F,/2. the frequency fo of x(n) isin the range —% < f, < £, which is
the frequency range for discrete-time signals. In thiscase, the rélationship between
Fy and f; is one-to-one, and hence it is possible to identify (or reconstruct) the
analog signal x,(7) from the samples x(n).

On the other hand, if the sinusoids
x,(1) = AcosQr Fy1 + 6) (1.4.16)
where
Fi= Fo+kF,. k=%£1.£2,... (1417
aresampled at arate F;, itisclear that the frequency F; isoutside the fundamental
frequency range — F,/2 < F < F,/2. Consequently, the sampled signal is

x(n) =x,(nT) = Acos (Zn@n +9)

5

i

Acos2anFy/F, +6 +2mkn)
Acos(2m fon + 6)

il
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which is identical to the discrete-time signal in (1.4.15) obtained by sampiing.
(1.4.14). Thus an infinite number of continuous-time sinusoids is represented by
sampling the same discrete-time signal (i.e.. by the same set of samples). Con-
sequently, if we are given the sequence x(n). an ambiguity exists as to which
continuous-time signal x.{+) these values represent. Equivalently, we can say that
the frequencies £ = Fy+kF,, —oo < k < oo {k integer) are indistinguishable from
the frequency Fy after sampling and hence they are aliases of Fy. The relationship
between the frequency variables of the continuous-time and discrete-time signals
isillustrated in Fig. 1.17.

An example of aliasing is illustrated in Fig. 1.18. where two sinusoids with
frequencies Fy = % Hz and F, = —% Hz yield identical samples when a sampling
rate of F; = 1 Hz is used. From (1.4.17) it easily follows that for £ = -1, Fp =
F +F.,=(—%+]) HZ:% Hz.

-
g

tIt—

Figure 1.17 Relationship between the continuous-time and discrete-time fre-
quency variables in the case of periodic sampling.

Amplitude
=3

Figure 118 Illustration of aliasing.
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Since F, /2. which corresponds to w = x. isthe highest frequency that can be
represented uniquely with a sampling rate F;. it is a simple matter to determine
the mapping d any (alias) frequency above F,/2 (w = =) into the equivalent
frequency below F,/2. We can use F,/2 or w = n as the pivotal point and reflect
or "fold" the alias frequency to the range 0 < w < 7. Since the point of reflection
is F;/2 (0 = m), the frequency £./2 (w = =) iscaled the folding frequency.

Example1.4.2
Consider the analog signal
x, (1) = 3c0s100x

(a) Determine the minimum sampling rate required to avoid aliasing.

(b) Suppose that the signal is sampled at the rate F. = 200 Hz. What is the
discrete-time signal obtained after sampling?

(c) Suppose that the signal issampled a therate F, =75 Hz. What is the discrete-
time signal obtained after sampling'!

(d) What is the frequency 6 < F < F,/2 of asinusoid that yields samples identical
to those obtained in part (c)?

Solution

(a) Thefrequency of the analog signa is F = 50 Hz. Hence the minimum sampling
rate required to avoid aliasingis f. = 100 Hz.

(b) If thesignal issampled at F. = 200 Hz. the discrete-time signal is

L 100~ LT
x(n) = 3¢o$ 200 n = 3Cos En
(¢) If the signal issampled at £, =75 Hz. the discrete-lime signai is
100 4
x(ny = 3cos 75” n = 3cos -;n
= 3cos (271 - 2—_{1)n
ol
2:
= 3cos —;n

(d) For the sampling rate of F, =75 Hz, we have
F=fF=75f
The frequency of the sinusoid in part (c) is f = 3. Hence
F=25Hz
Clearly. the sinusoidal signal
¥4(t) = 3cos2n Fr
3cos S0t

sampled at £, = 75 samples/s yields identical samples. Hence £ =50 Hz is an
aliasof F= 25 Hzfor the sampling rate F, =75 Hz.

1l
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1.4.2 The Sampling Theorem

Given any analog signal. how should we select the sampling period T or. equiv-
alently, the sampling rate F,? To answer this question, we must have some in-
formation about the characteristics of the signal to be sampled. In particular, we
must have some general information concerning the frequency conten: of the sig-
nal. Such information isgenerally available to us. For example, we know generally
that the major frequency components of a speech signal fall below 3000 Hz. On
the other hand, television signals. in general, contain important frequency com-
ponents up to 5 MHz. The information content of such signals is contained in
the amplitudes. frequencies. and phases of the various frequency components, but
detailed knowledge of the characteristics of such signals is not available to us prior
to obtaining the signals. In fact. the purpose of processing the signals is usualy to
extract this detailed information. However. if we know the maximum frequency
content of the general class of signals (e.g.. the class of speech signals. the class
of video signals, etc.). we can specify the sampling rate necessary to convert the
analog signals to digital signals.

Let ussuppose that any analog signal can be represented as a sum of sinusoids
of different amplitudes. frequencies, and phases. that is.

N
o)=Y A cosnFirt8) (1.4.18)
p=1

where N denotes the number of frequency components. Al signals, such as speech
and video, lend themselves to such a representation over any short time segment.
The amplitudes, frequencies, and phases usually change siowly with time from one
time segment to another. However. suppose that the frequencies do not exceed
some known frequency. say Fmax. FOr example, Fmax = 3000 Hz for the class
of speech signals and Fmax = 5 MHz for television signals. Since the maximum
frequency may vary slightly from different realizations among signals of any given
class (e.g., it may varv slightly from speaker to speaker). we may wish to ensure
that Fnax does not exceed some predetermined value by passing the analog signal
through a filter that severely attenuatesfrequency components above Fuax. Thus
we are certain that no signa in the class contains frequency components (having
significant amplitude or power) above Fmax. In practice, such filtering is commonly
used prior to sampling.

From our knowledge of Fnay. We can select the appropriate sampling rate.
We know that the highest frequency in an analog signal that can be unambigu-
ously reconstructed when the signal is sasmpled at a rate F, = 1/T is F;/2. Any
frequency above F,/2 or below —F;/2 results in samples that are identical with a
corresponding frequency in therange — F,/2 < F < F,/2. To avoid the ambiguities
resulting from aliasing, we must select the sampling rate to be sufficiently high.
That is, we must select F;/2 to be greater than Fm.x. Thusto avoid the problem
of aiasing, F; is selected so that

Fe > 2Fmax (1.4.19)
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where Frax is the largest frequency component in the analog signal. With the
sampling rate selected in this manner, any frequency component. say |F;| < Fmax.
in the analog signal is mapped into a discrete-time sinusoid with a frequency

1 y
< F_l (1.4.20)

or, equivalently,
—nT <w=27fi<nw (1.4.21)

Since, if | = % or Jw| = m isthe highest (unique) frequency in a discrete-time signal,
the choice of sampling rate according to (1.4.19) avoids the problem of aliasing.
In other words, the condition F; > 2Fnax ensures that al the sinusoidal compo-
nents in the analog signal are mapped into corresponding discrete-time frequency
components with frequencies in the fundamental interval. Thus al the frequency
components of the analog signal are represented in sampled form without ambi-
guity, and hence the analog signal can be reconstructed without distortion from
the sample values using an " appropriate™ interpolation (digital-to-analog conver-
sion) method. The "appropriate” or ideal interpolation formula is specified by the
sanpl i ng theorem.

Sampiing Theorem. If the highest frequency contained in an analog signal
x,(t) iS Fnay = B and the signal issampled at a rate F, > 2Fy. = 2B. then x,(r)
can be exactly recovered from its sample values using the interpolation function

Sin2x Bt

1.4.22
271 B: ( )

glt) =

Thus x,(r) may be expressed as

W= x (%)g (r - %) (1.4.23)

n=—0G

where x,(n/F;) = x,(nT ) = x(n) are the samples of x,(r).

When the sampling of x,(r) is performed at the minimum sampling rate
F, = 2B, the reconstruction formula in (1.4.23) becomes

R n\ sin2r B(t —n/2B)
Xa(I)— Z Xa (ﬁ)m (1424)

n==0c

The sampling rate Fy = 2B = 2Fna, is caled the Nyquist rate. Figure 1.19 illus-
trates the ideal D/A conversion process using the interpolation function in (1.4.22).

As can be observed from either (1.4.23) or (1.4.24), the reconstruction of x,(r)
from the sequence x(r) is a complicated process, involving a weighted sum of the
interpolation function g(r) and itstime-shifted versionsg(r—nT) for —oo < n < oo,
where the weighting factors are the samples x(r). Because of the complexity and
the infinite number of samples required in (1.4.23) or (1.4.24), these reconstruction
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XA sample of x,(7+

!
W Figure 1.19 Ideal D:A conversion
(n~2)T (n—=1T T n+ T

{interpolation)
formulas are primarily of theoretical interest. Practical interpolation methods are
given in Chapter 9.
Example 1.4.3
Consider the analog signal
x,(1) = 3c08 5307t + 108in 30051 = cos 100x7
What is the Nyquist rate for thissigna'.
Solution The frequencies present in the signal above arc
F, = 2 Ha. F> = 150 Hz. F. =50 Hz
Thus F,., = 150 Hz and according to (1.4.19).
F. > 2Fp. = 300 Hz
The Nyquist rate1s Fn = 2Fma. Hence
Fp =300 Hz

Discussion It should be observed that the signal component 10 sin 30077, sampied at
the Nyquist raie Fx = 300, resultsin the samples 10sin w#. which are identically zero.
In other words. we are sampling the analog sinusoid at its zero-crossing poinrs. and
hence we miss thissignal component completely. Thissituation would not occur if the
sinusoid is offset in phase by some amount 8. In such a case we have 10sin(300z: +6)
sampled at the Nyquist rate F» = 300 samples per second, which yields the samples

10sin(rn +6) = 10(sinmncost + cosmnsing)

10sinf cosn

(=1)"10siné

It

Thusif 6 # 0 or =, the samples of the sinusoid taken at the Nyquist rate are not all
zero. However, we still cannot obtain the correct amplitude from the samples when
the phase é is unknown. A simple remedy that avoids this potentially troublesome
situation is to sample the analog signal at a rate higher than the Nyquist rate.

Example 1.4.4
Consider the analog signal
Xo(1) = 3¢0s2000m! + 5sin 60007t + 10 cos 12.0007 ¢
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(a) What is the Nyquist rate for this signal?
(b) Assume now that we sample this signal using a sampling rate F, = 5000

samplesis. What is the discrete-time signal obtained after sampling?

(c) What is the analog signal v, () we can reconstruct from the samples if we use

ideal interpolation?

Solution
(a) The frequencies existing in the analog signal are

(b

-

Fi =1 kHz. F, = 3kHz. F3 =6 kHz
Thus F,, = 6 kHz. and according to the sampling theorem.
Fo > 2Fn = 12 kHz
The Nyquist rate is
Fn =12 kHz

Since we have chosen F; =5 kHz. the folding frequency is
F
~24‘ =25kHz

and this is the maximum frequency that can be represented uniquely by the
sampled signal. By making use of (1.4.2) we obtain

n
ctn) = x,(nTY=x, | —
x(n) x,(nT) (F_.)

= 3cos2x(3)n + 5sin2x (2 + 10cos 2n(§n
= 3cos2a(in +5sin2x (1 — Hn +10cos 27(1 + £)n
= 3cos2n(3)n +55in2n(—%)n +10cos 27 (1)n
Finally. we obrain
x(n) = 13cos 2x(H)n = Ssin2n(3)n

The same result can be obtained using Fig. 1.17. Indeed. since F, = 5 kHz.
the folding frequency is F;/2 = 25 kHz. This is the maximum frequency that
can be represented uniquely by the sampled signal. From (1.4.17) we have
Fy, = F. — kF,. Thus F, can be obtained by subtracting from F; an integer
multiple of F; such that - F./2 < F, < F;/2. The frequency F, isless than £, /2
and thus it is not affected by aliasing. However, the other two frequencies are
above the folding frequency and they will be changed by the aliasing effect.
Indeed.

F, = R~ F,=-2kHz
F, = F,— F,=1kHz

From (1.4.5) it followsthat f; = f. f = —~%. and £ = {, which arein agreement
with the result above.
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(c) Since only the frequency components at | kHz and 2 kHz are present in the
sampled signal. the analog signal we can recover is

V(1) = 13¢0s 2000t — 5 sin 40007 ¢

which is obviously different from the original signal x,(r). Thisdistortion of the
original analog signal was caused by the aliasing effect. due to the low sampling
rate used.

Although aliasing is a pitfall to be avoided. there are two useful practical
applications based on the exploitation of the aliasing effect. These applications
are the stroboscope and the sampling oscilloscope. Both instruments are designed
to operate as aliasing devices in order to represent high frequencies as low fre-
quencies.

To elaborate. consider a signal with high-frequency components confined to
a given frequency band B; < F < B:. where B> — By = B is defined as the
bandwidth of the signal. We assume that B << By < B:. This condition means
that the frequency components in the signal are much larger than the bandwidth
B of the signal. Such signals are usually called passband or narrowband signals.
Now. if this signal is sampled at a rate F, > 2B. but F, << By. then dl the fre-
quency components contained in the signal will be aliases of frequencies in the
range 0 < F < F,/2. Consequently. if we observe the frequency content of the
signal in the fundamental range 0 < F < F, /2. we know precisely the frequency
content of the anal og signal since we know the frequency band B, < F < B~ under
consideration. Consequently. if the signal is a narrowband (passband) signal. we
can reconstruct the original signal from the samples, provided that the signal is
sampled at a rate F, > 2B. where B is the bandwidth. This statement constitutes
another form of the sampling theorem. which we call the passband formin order
to distinguish it from the previous form of the sampling theorem. which applies in
general to all types of signals. The latter is sometimes called the baseband form.
The passband form of the sampiling theorem is described in detail in Section 9.1.2.

1.4.3 Quantization of Continuous-Amplitude Signals

Aswe have seen. adigital signal is asequence of numbers (samples) in which each
number is represented by a finite number of digits (finite precision).

The process d converting a discrete-time continuous-amplitude signal into a
digital signal by expressing each sample value as a finite (instead of an infinite)
number of digits, is called quantization. The error introduced in representing the
continuous-valued signal by a finite set of discrete value levelsiscalled quantization
error or quanrization noise.

W e denote the quantizer operation on the samples x(n) as Q[x(n)] and let
x4(n) denote the sequence of quantized samples at the output of the quantizer.
Hence

xg(n) = Q[x(n)]
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Then the quantization error is a sequence e, (n) defined as the difference between
the quantized value and the actual sample value. Thus

eq(n) = x,(n) — x(n) (1.4.25)

We illustrate the quantization process with an example. Let us consider the
discrete-time signal

09", n>0
0, n<Q

x(n) =

obtained by sampling the analog exponential signa x,(r) = 0.9', + > 0 with a
sampling frequency F, =1 Hz (see Fig. 1.20(a)). Observation of Table 1.2. which
shows the values of the first 10 samples of x(n), reveals that the description of the
sample value x{n) requires n significant digits. It is obvious that this signa cannot

1.0 0\

0.8 -
0.6
0.4 4

0.24

— T
T=1sec

x,{1) =09

A1) )

T ég Levels of

" quantization
08 e

0.7
Range of 0.6 P
the 05 —~t
quantizer .4 —
0.3
0.2
Q.1

Quantization
step

— D |—

(b)

Figure1.20 Illustration of quantization.
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TABLE 1.2 NUMERICAL ILLUSTRATION OF QUANTIZATION WITH ONE
SIGNIFICANT DIGIT USING TRUNCATION OR ROUNDING

xin) Xy tnd q;(n):.qun) = x{n}

n  Discrete-time signal  (Truncation)  (Rounding) (Rounding)
0 1 1.0 1.0 0.0

1.9 0.9 0.9 0.0
2 0.81 (.8 0.8 ~0.01
3 0.729 0.7 0.7 ~0.029
4 0.6561 0.6 0.7 0.0439
5 0.59049 0.5 0.6 0.00951
6 0.53144] 0.5 0.3 —0.031441
7 0.4782969 0.4 0.5 (10217031
8 0.43046721 04 0.4 —.03046721
9 (1.387420489 0.3 0.4 0.012579511

be processed by using a calculator or a digital computer since only the first few
samples can be stored and manipulated. For example, most calculators process
numbers with only eight significant digits.

However. let us assume that we want to use only one significant digit. To
eliminate the excess digits. wc can either simply discard them (rruncation) or dis-
card them H, rounding the resulting number (rounding). The resulting quantized
signals x,(n) are shown in Table 1.2. We discuss only quantization by rounding,
although it is just as easy to treat truncation. The rounding process is graphically
illustrated in Fig. 1.20b. The values allowed in the digital signal are called the
quantization levels. whereas the distance A between two successive quantization
levels is called the quantization step size or resolution. The rounding quantizer
assigns each sample of x(n) to the nearest quantization level. In contrast. a quan-
tizer that performs truncation would have assigned each sample of x(n) to the
quantization level below it. The quantization error e, (n) in rounding is limited to
the range of — A/2 to A/2, that is,

(1.4.26)

<e(n) <

N D>
o] >

In other words, the instantaneous quantization error cannot exceed haf of the
quantization step (see Table 1.2).

If xmin @nd xmax represent the minimum and maximum value of x(n) and L
is the number of quantization levels, then

Xmax — *min
A= 1 (1.4.27)
We define the dynamic range of the signal as xmax — Xmin- |n our example we
have xmax = 1, xmin = 0, and L = 11, which leads to A = 0.1. Note that if the
dynamic range isfixed, increasing the number of quantization levels, L resultsin a
decrease of the quantization step size. Thus the quantization error decreases and
the accuracy of the quantizer increases. In practice we can reduce the quantization
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error to an insignificant amount by choosing a sufficient number of quantization
levels.

Theoretically, quantization d analog signals aways results in a loss of in-
formation. This is a result of the ambiguity introduced by quantization. Indeed,
guantization is an irreversible or noninvertible process (i.e., a many-to-one map-
ping) since all samples in a distance A /2 about a certain quantization level are
assigned the same value. This ambiguity makes the exact quantitative analysis of
quantization extremely difficult. This subject is discussed further in Chapter 9,
where we use statistical analysis.

1.4.4 Quantization of Sinusoidal Signals

Figure 1.21 illustrates the sampling and quantization of an analog sinusoidal signal
xa(¢) = AcosS2yt using a rectangular grid. Horizontal lines within the range of the
quantizer indicate the allowed levels of quantization. Vertical lines indicate the
sampling times. Thus, from the original analog signal x.() we obtain a discrete-
time signal x(n) = x,(nT) by sampling and a discrete-time, discrete-amplitude
signal x,(rnT") after quantization. In practice, the staircase signa x,(s) can be
obtained by using a zero-order hold. This anaysisis useful because sinusoids are
used astest signalsin A/D converters.

If the sampling rate £, satisfiesthe sampling theorem, quantization is the only
error in the A/D conversion process. Thus we can evaluate the quantization error

. Amplitude
o Tic Discretization
Discretization
Quantization
Level
| I
Original Analog Signal \

44 x(1
N N M
7 SR 74 I

9 P -——

~ / (D A Quantization
) ‘ { . Step
Qﬂuanulwd \ vo““’“‘ of Zero-Order f
0 P Hold D/A Converter
x/nT) 5 - x0) Range of the
-A Quant
~24 /

Nr\ //

—4A

Amplitude

0 T P g T T 5T 6T T 8T 9T
Time

Figare 121 Sampling and quantization of a sinusoidal si gl .
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by quantizing the analog signal x.(r) instead of the discrete-time signal x(n) =
x,(nT). Inspection of Fig. 1.21 indicates that the signal x,(s) is almost linear
between quantization levels (see Fig. 1.77). The corresponding quantization error
e,(1) = x,(1) — x,(1) is shown in Fig. 1.72. In Fig. 1.22. t denotes the time that
x4(1) stays within the quantization levels. The mean-square error power 7, is

/. 17,
P o= — ~(1dl = — =(t)d 1.4.28
Y= 57 [r(l]([) ! T/(: e (nydr ( )
Since ¢, (1) = (A/27)r. —7 <1 < 71.we have
1 [F/AY 5 A2
P == — ) rdr = — 1.4.29
¢ r/(, (27) ra 12 ( )

If the quantizer has b bits of accuracy and the quantizer covers the entire range
2A. the quantization step is A = 2A/2". Hence

A®/3
)= % (1.4.30)
The average power of the signal x,(7) is
o= L " acosouiar = A 1431
‘“ﬁn (A COs (,1)”»»—2— (1.4.51)

The quality of the output of' the AID converter is usually measured by the signal-
to-quantization noise ratio (SQNR). which provides the ratio of the signal power
to the noise power:

SONR = il =

¢
Expressed in decibels (dB). the SQNR is
SQNR(dB) = 10log,, SQNR = 1.76+ 6.026 (1.4.32)

This implies that the SQNR increases approximately 6 dB for every bit added to
the word length. that is, for each doubling of the quantization levels.

Although formula (1.4.32) was derived for sinusoidal signals, we shall see in
Chapter 9 that asimilar result holdsfor every signal whose dynamic range spans the
range of the quantizer. This relationship is extremely important because it dictates

i i | el
e M I

L2

(S RIROS)

(2) ®)

Figure 122 The quantization error e,(r) = x,{r) — x4(r).
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the number o bits required by a specific application to assure a given signal-to-
noise ratio. For example. most compact disc players use a sampling frequency
of 44.1 kHz and 16-bit sample resolution, which implies a SQNR of more than
9% dB.

1.4.5 Coding of Quantized Samples

The coding process in an A/D converter assigns a unique binary number to each
quantization level. If we have L levels we need at least L different binary numbers.
With a word length of b bits we can create 2? different binary numbers. Hence we
have 2* > L. or equivalently, b > log, L. Thus the number of bits required in the
coder is the smallest integer greater than or equal to log, L. In our example it can
easily be seen that we need a coder with b = 4 bits. Commercially available A/D
converters map be obtained with finite precision of b = 16 or less. Generally, the
higher the sampling speed and the finer the quantization. the more expensive the
device becomes.

1.4.6 Digital-to-Analog Conversion

To convert a digital signal into an analog signal we can use a digital-to-analog
(D/A) converter. Asstated previously, the task of a D/A converter isto interpolate
between samples.

The sampling theorem specifies the optimum interpolation for a bandlim-
ited signal. However, this type of interpolation is too complicated and. hence
impractical, as indicated previously. From a practical viewpoint. the simplest D/A
converter is the zero-order hold shown in Fig. 1.15. which simply holds constant
the value of one sample until the next one is received. Additional improvement
can be obtained by using linear interpolation as shown in Fig. 1.23 to connect
successive samples with straight-line segments. The zero-order hold and linear
interpolator are analyzed in Section 9.3. Better interpolation can be achieved by
using more sophisticated higher-order interpolation techniques.

In general, suboptimum interpolation techniques result in passing frequencies
above the folding frequency. Such frequency components are undesirable and are
usually removed by passing the output of the interpolator through a proper analog

Origingl signal

Linear interpolation {with T-second delay)

; = ¢ Figure 123 Linear point connector

i 1 1 1 1
T 2T 31 4T 5T 6T 7T (with 7-second delay).
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filter, which is called a postfilier or smoothing filter. Thus D/A conversion usualy
involves a suboptimum interpolator followed by a postfilter. D/A converters are
treated in more detail in Section 9.3.

1.4.7 Analysis of Digital Signals and Systems Versus
Discrete-Time Signals and Systems

We have seen that a digital signal isdefined asafunction of an integer independent
variable and its values are taken from a finiteset of possible values. The usefulness
of such signals is a consequence o the possibilities offered by digital computers.
Compurers operate on numbers. which are represented by a string of 0's and 1's.
The length of thisstring (word length) isfixed and finite and usualy is 8. 12. 16. or
32 bits. The effects of finite word length in computations cause complications in
rhe analysis of digital signa processing systems. To avoid these complications. we
neglect the quantized nature of digital signals and systems in much of our anaysis
and consider them as discrete-time signals and systems.

In Chapters 6. 7. and 9 we investigate the consequences of using a finite word
length. Thisisan important topic. since many digital signal processing problems are
solved with small computers or microprocessors that employ fixed-point arithmetic.
Consequently. one must Jook carefully at the problem of finite-precision arithmetic
and account for it in the design of software and hardware that performs the desired
signal processing tasks.

1.5 SUMMARY AND REFERENCES

In thisintroductory chapter we have attempted to provide the motivation for digital
signal processing as an alternative to analog signal processing. We presented the
basic elements of a digital signal processing system and defined the operations
needed to convert an analog signal into a digital signal ready for processing. Of
particular importance is the sampling theorem. which was introduced by Nyquist
(1928) and later popularized in the classic paper by Shannon (1949). The sampling
theorem as described in Section 1.4.2 is derived in Chapter 4. Sinusoidal signals
were introduced primarily for the purpose of illustrating the aliasing phenomenon
and for the subsequent development d the sampling theorem.

Quantization effects that are inherent in the AID conversion of asignal were
also introduced in this chapter. Signal quantization is best treated in statistical
terms. as described in Chapters 6, 7. and 9.

Finally. the topic of signal reconstruction, or D/A conversion, was described
briefly, Signal reconstruction based on staircase or linear interpolation methods is
treated in Section 9.3.

There are numerous practical applications of digital signal processing. The
book edited by Oppenheim (1978) treats applications to speech processing, image
processing, radar signal processing, sonar signal processing, and geophysical signal
processing.
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PROBLEMS

Classify the following signals according to whether they are (1) one- or muilti-

dimensiona: (2) single or multichannel, (3) continuous time or discrete time, and

(4) analog or digital (in amplitude). Give a brief explanation.

(a) Closing prices of utility stocks on the New York Stock Exchange.

(b) A color movie.

(c) Position of the steering wheel of a car in motion relative to car's reference frame.

(d) Position of the steering wheel of a car in motion relative to ground reference
frame.

(e) Weight and height measurements of a child taken every month.

Determine which of the following sinusoids are periodic and compute their funda-

mental period.

(2) cos0.01zn (b) cos (7' %) (c) cos3xn (d) sin3n (e) sin (rr %20—")

Determine whether or not each of the following signals is periodic. in case a signa
is periodic, specify its fundamental period.

(8) x.(r) = 3cos(5r + x/6)

(b) x(n) = 3cos(5n + 7 /6)

(c) x(n) =2exp[j(n/6 —m)}

(d) x(n) = cos(n/8) cos(mn/8)

(e) x(n)=cos(rn/2) — sin{wn/8) +3cos(mn/d + 7/3)

(a) Show that the fundamental period N, of the signals

si(n) = R k01,2,

isgiven by N, = N/GC D(k. N), where GCD is the greatest common divisor of k
and N.

{b) What is the fundamental period of thisset for N = 7?

(c) What isit for N = 16?

15 Consider the following analog sinusoidal signal:

1.6

x,(1) = 3sin(100m1)

(a) Sketch thesigna x,(r) for 0 <r < 30 ms.

(b) The signal x,.(r) is sampled with a sampling rate £, = 300 samples/s. Determine
the frequency o the discrete-timesignal x(n) = x,(rT), T = 1/F;. and show that
it is periodic.

{¢) Compute the sample values in one period o x(n). Sketch x{n) on the same
diagram with x.(r}. What isthe period of the discrete-time signal in milliseconds?

(d) Can you find a sampling rate F, such that the signa x{r) reaches its peak value
of 37 What is the minimum F; suitable for this task?

A continuous-time sinusoid x,(r) with fundamental period T, = 1/F, issampled at a

rate F, = 1/7T to produce a discrete-time sinusoid x(n) = x,(nT).

(@) Show that x(n) isperiodic if T/T, = k/N (i.e., T/T, isarational number).

(b) If x(n) is periodic, what is its fundamental period 7, in seconds?
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(c) Explain the statement: x(») is periodic if its fundamental period 7,. in seconds.
is equal to an integer number of periods of v, (7).
1.7 An analog signal contains frequencies up to 10 kHz.
(a) What range of sampling frequencies allows exact reconstruction o this signa
from its samples.'
(b) Suppose that we sample this signal with a sampling frequency F, = 8 kHz. Ex-
amine what happens to the frequency 7, =5 kHz.
(c) Repeat parr (b) for a frequency F» =Y kHz.
18 An analog electrocardiogram (ECG) signal contains useful frequencies up to 100 Hz.
(a) What is the Nvquist rate for this signal?
(b) Suppose that we sample thissignal at a rate of 250 samples/s. What is the highest
frequency that can be represented uniquely at this sampling rate?
19 An analog signal x,(r) = sin(480xr) + 3sin(720x1) is sampled 600 times per second.
(a) Determine the Nyquist sampling rate for x,(r).
(b) Determine the folding frequency.
(c) What are the frequencies. in radians. in the resulting discrete time signal x(»)?
(d) If x(n) is passed through an ideal DIA converter. what is the reconstructed signal
v (1)?
1.10 A digital communication link carries binary-coded words representing samples of an
input signal

x, 01y =3c0s6007r = 2 cos 18001

The tink is operated at 10.000 bits/s and cach input sample is quantized into 1034
different voltage levels.
(a) What is the sampling frequency and the folding frequency?
(b) What is the Nvquist rate for the signal x,(1)?
(c) What are the frequencies in the resulting discrete-time signal x(n)?
(d) What is the resolution A?

1.11 Consider the simple signal processing system shown in Fig. P1.l1l. The sampling
periods of the A/D and D/A convertersare 7 =5 ms and 7' = 1 ms, respectively.
Determine the output v,(r) of the system. if the input is

X, (1) = 3c0s1007: ~ 2sin 2507+ (r in seconds)

The postfilter removes any frequency component above /2.

X0 A/D x(n) Y0
. D,/A Postfilter ——
T T
Figure PLI1

1.12 (a) Derive the expression for the discrete-time signal x(r) in Example 1.4.2 using the
periodicity properties of sinusoidal functions.
(b) What is the analog signal we can obtain from x(n) if in the reconstruction process
we assume that F; = 10 kHz?
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LW The discrete-timesignal x(n) = 6.35cos(x/10)a isquantized with a resolution (a) & =
0.1 or (b) A = 0.02. How many bhits are required in the A/D converter in each case?
1.14 Determine the hit rate and the resolution in the sampling of a seismic signal with
dynamic range of 1 volt if the sampling rate is F, = 20 samples/s and we use an 8-hit
A/D converter? What is the maximum frequency that can be present in the resulting
digital seismic signa?
1.15* Sampling of sinusoidal signals: aliasing Consider the following continuous-time si-
nusoidal signal

x,(1) = sin 2 Fyt, —00 <1 < 00

Since x,{r) isdescribed mathematically. itssampled version can be described by values
every T seconds. The sampied signal is described by the formula

. F
x{n) = x,(nT) = sin2nw -F—_(ln. -0 <n <C

where F; = 1/T is the sampling frequency.
(a) Plot the signal x(n), 0 <n <99 for F, =5 kHz and F, = 0.5.2. 3. and 45 kHz.
Explain the similarities and differences among the various plots.
(b) Suppose that Fy = 2 kHz and F, =50 kHz.
(1) Plot the signa x(n). What is the frequency f, of the signal x(n)?
(2) Plot the signal v{n) created by taking the even-numbered samples of x(n).
Is this a sinusoidal signal? Why? If so, what is its frequency?
1.16* Quantization error in A/D conversion of a sinuoidal signal Let x,(n) be the signal
obtained by quantizing the signal x{n) = sin 2= fyn. The quantization error power P,
is defined by

1 N1 1 Nl
P, = 5 Zez(n) =% Z[x,,(n) - x(m}

n=l) n=0

The "quality" of the quantized signal can be measured by the signal-to-quantization
noise ratio (SQNR) defined by

SONR = 10log, &
P‘f

where P, is the power of the unquantized signal x(n).

(a) For fo = 1/50 and N = 200, write a program to quantize the signa x(n), using
truncation, to 64, 128. and 256 quantization levels. In each case plot the signals
x(n), x4(n), and e(n) and compute the corresponding SQNR.

(b) Repeat part (a) by using rounding instead of truncation.

(¢) Comment on the results obtained in parts (a) and (b).

(d) Compare the experimentally measured SQNR with the theoreticall SQNR pre-
dicted by formula (1.4.32) and comment on the differences and similarities.



Discrete-Time Signals and
Systems

In Chapter 1 we introduced the reader to a number of important types of signals
and described the sampling process by which an analog signal is converted 10 a
discrete-time signal. In addition. we presented in some detail the characteristics
of discrete-time sinusoidal signals. The sinusoid is an important elementary signal
that serves as a basic building block in more complex signals. However. there are
other elementary signals that are important in our treatment of signal processing.
These discrete-time signals are introduced in this chapter and are used as basis
functions or building blocks to describe more complex signals.

The major emphasis in this chapter is the characterization of discrete-time
systems in general and the class o linear time-invariant (LTI) systems in particular.
A number of important time-domain properties d LTI systems are defined and
developed. and an important formula. called the convolution formula, is derived
which allows us to determine the output of an LTI system to any given arbitrary
input signal. In addition to the convolution formula. difference equations are in-
troduced as an alternative method for describing the input-output relationship o
an LTI system, and in addition. recursive and nonrecursive realizations d LTI
systems are treated.

Our motivation for the emphasis on the study d LTI systemsistwofold. First.
there is a large collection o mathematical techniques that can be applied to the
analysis of LTI systems. Second. many practical systems are either LTI systems
or can be approximated by LTI systems. Because of its importance in digital
signal processing applications and its close resemblance to the convolution formula.
we also introduce the correlation between two signals. The autocorrelation and
crosscorrelation of signals are defined and their properties are presented.

2.1 DISCRETE-TIME SIGNALS
Aswe discussed in Chapter 1. a discrete-time signal x(n) is a function o an inde-

pendent variable that is an integer. It is graphically represented asin Fig. 2.1. It
is important to note that a discrete-time signal is not defined at instants between
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x(n)

-0.8 ~0.8

Figure 21 Graphical representation of a discrete-time signal.

two successive samples. Also, it isincorrect to think that x(n) isequal to zeroif n
isnot an integer. Simply, the signal x(n) is not defined for noninteger values of n.

In the sequel we will assume that a discrete-time signd is defined for every
integer valuen for —oc < n < oc. By tradition. we refer to x (n) as the "'nth sample”
o the signa even if the signal x(n) is inherently discrete time (i.e., not obtained
by sampling an analog signal). If, indeed. x(n) was obtained from sampling an
analog signal x,(r), then x(n) = x,(nT), where T is the sampling period (i.e., the
time between successive samples).

Besides the graphical representation o a discrete-time signal or sequence as
illustrated in Fig. 2.1. there are some alternative representations that are often
more convenient to use. These are:

1. Functiona representation, such as

1, forn=1,3
x{n) = l4. forn=2 (2.1.1)
0, elsewhere

2. Tabular representation, such as
-2 -1 01 2 3
xm |- 0 00 1 41
3. Sequence representation

n

An infinite-duration signal or sequence with the timeorigin (n = 0) indicated
by the symbol t is represented as

x{n)=1{...0.0.1.4,1.0,0,...) (2.1.2)
T
A sequence x(n), which is zero for n < 0. can be represented as
x(n)=1{0,1,4.1.0.0....) (2.1.3)
il

The time origin for a sequence x(n), which is zero for n < 0, is understood to be
the first (leftmost) point in the sequence.
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A finite-duration sequence can be represented as
xm =1{3.-1.-25.04.-1) 2.1.4)

whereas a finite-duration sequence that satisfies the condition x(z) = O for « < 0
can be represented as

x(n) = (0.1.4.1) (2.1.5)
+

The signal in (2.1.4) consists of seven samples or points (in time). so it is called or
identified as a seven-point sequence. Similarly. the sequence given by (2.1.5) isa
four-point sequence.

2.1.1 Some Elementary Discrete-Time Signals

In our study of discrete-time signats and systems there are a number of basicsignals
that appear often and play an important role. These signals are defined below.

1. The unit sample sequence is denoted as §(n) and is defined as

1. forn=0
0. forn#0

In words. the unit sample sequence is asignal that is zero everywhere. excepr
at n = 0 where its value is unity. This signal is sometimes referred t¢ as a
unir impulse. In contrast to the analog signal §(r). which is also called a
unit impulse and is defined to be zero everywhere except 1 = 0. and has unir
area. the unit sample sequence is much less mathematically complicated. The
graphical representation d §(x) is shown in Fig. 2.2.

2. The unit step Sigd is denoted asu(n) and is defined as

Sy = 2.1.6)

_J1, forn=0 "
uin) = lo. forn <0 217
Figure 2.3 illustrates the unit step signal.
3. The unit ramp signal is denoted as «,(n} and is defined as
_|n forn=0 ”
u,(n)zlo. forn < 0 (2.1.8)

Thissignal is illustrated in Fig. 2.4.

&(n)

Figure2.2 Graphical representation of

~2-10 1 234 - n  the unit sample signal.
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u(n)

— . Figure 2.3 Graphical representation of
343 67

n  the unit step signal.

u(n)

T I { Figure 24 Graphical representation of
n  the unit ramp signal.

4. The exponential signal isa sequence of the form
x(n)=a' for all n (2.1.9)

If the parameter a isreal, then x(n) isa real signal. Figure 2.5illustrates x(n)
for various values of the parameter a.

When the parameter a is complex valued. it can be expressed as
a=re
where r and 0 are now the parameters. Hence we can express x(n) as

x{n) = rteltn

= r"(cos@n + j sinon) 2110

0<a<] a>1 x(n)

Figure 2.5 Graphical representation of exponential signals.
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Since x(z) is now complex valued. it can be represented graphically by plotting
the real part

xpin) =r"cosén (2.1.11)
as a function of n. and separately plotting the imaginary part
xnj=r"sinén (2.1.12)

as a function of ». Figure 2.6 illustrates the graphs of xg(n) and x,(n) for r = 0.9
and ¢ = 71/10. We observe that the signals xz () and x;(n) are a damped (decaying
exponential) cosine function and a damped sine function. The angle variable ¢
is simply the frequency of the sinusoid. previously denoted by the (normalized)
frequency variable w. Clearly. if r = |. the damping disappears and xz(n). x;(n),
and x(n) have a fixed amplitude. which is unity.

Alternatively. the signal x(n) given by (2.1.10) can be represented graphically
by the amplitude function

lx(n)| = Atn) =r" (2.1.13)

and the phase function
_xn) = g¢n) =6n (2.1.14)

Figure 2.7 illustrates A(n) and ¢n) for r = 0.9 and ¢ = 7/10. We observe that
the phase function is linear with ». However. the phase is defined only over the
interval —r < ¢ < 7 or. equivalently. over theinterval 0 < ¢ < 2x. Consequently.
by convention ¢¢x) is plotted over the finite interval —7 <@ <7 or 0 <6 < 2x.
In other words, we subtract multiplies of 2n from ¢(x) before plotting. In one
case. ¢ (n) is constrained to the range —7 < ¢ < 7 and in the other case ¢(n) is
constrained to the range 0 < ¢ < 27. The subtraction of multiples of 27 from ¢(n)
is equivalent to interpreting the function ¢(n) as ¢ (n), modulo 271 The graph for
@(n). modulo 2x. is shown in Fig. 2.7b.

2.1.2 Classification of Discrete-Time Signals

The mathematical methods employed in the analysis of discrete-time signals and
systems depend on the characteristics of the signals. In this section we classify
discrete-time signals according to a number of different characteristics.

Energy signals and power signals. The energy E of a signal xin} is
defined as

E= )Y IximP (2.1.15)

n=—oc
We have used the magnitude-squared values of x(n). so that our definition applies
to complex-valued signals as well as reai-valued signals. The energy of a signal can
be finite or infinite. If E isfinite (i.e., 0 < E < 00), then x(n) is caled an energy
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signal. Sometimes we add a subscript x to E and write E, to emphasize that E, is

the energy o the signal x ).
Many signals that possess infinite energy. have a finite average power. The
average power of a discrete-time signal x(n) isdefined as

Z x(n))? (2.1.16)

n=—A

b= wh—l:ll "N

If we define the signal energy of x(») over the finite interval —N <n < N as

N
Ey = }: o 2.1.17)

n=—N

then we can express the signal energy E as

E= lim Ey (2.1.18)

N—x

and the average power of the signal x(n) as

P = ii .
Jim 2N+1E (2.1.19)
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Clearly, if E isfinite. P = 0. On the other hand. if E isinfinite. the average
power P may be either finite or infinite. If P isfinite (and nonzero), the signd is
called apower signal. The following example illustrates such a signal.

Example 211

Determine the power and energy of the unit step sequence. The average power of
the unit step signal is

1 .
P =1 -
A 2N 11 >_wim

o him ML LN
T Nex2N+1  Nwx 2+ 1/N

1
2
Consequently. the unit step sequence is a power signal. Its energy is infinite.

Similarly, it can be shown that the complex exponential sequence x(n) =
Ae’™" has average power A°. so it is a power signal. On the other hand, the unit
ramp sequence is neither a power signal nor an energy signal.

Periodic signals and aperiodic signals. As defined on Section 1.3, a
signal x(n) is periodic with period N(N > 0) if and only if

x(nt Ny =xn) for dl » (2.1.20)

The smallest value of N for which (2.1.26) holdsis called the (fundamental) period.
If there is no value of N that satisfies (2.1.20). the signal is caled nonperiodic or
aperiodic.

We have already observed that the sinusoidal signal of the form

x{n) = ASN2x fon (2.1.21)
is periodic when f; is a rational number, that is, if f, can be expressed as
k
fo= ~ (2.1.22)

where k and N are integers.

The energy of aperiodic signa x(n) over asingle period, say. over the interval
0 <r <N -1 isfiniteif x(n) takes on finite values over the period. However, the
energy o the periodic signal for —ec < n < oo isinfinite. On the other hand, the
average power o the periodic signd isfinite and it is equal to the average power
over asingle period. Thusif x(n) is a periodic signal with fundamental period N
and takes on finite values, its power is given by

l N-1
P=— 2 1.
~ gﬂ e ()| (2.1.23)

Consequently, periodic signals are power signals,
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Symmetric (even) and antisymmetric (odd) signals. A real-valued sig-
na x(r) is caled symmetric (even) if

x(—n) = x(n) (2.1.24)
On the other hand. a signal x(n) is called antisvmmetric (odd) if
x(—nj = —x(n) (2.1.25

We note that if x(») is odd, then x(0) = 0. Examples of signals with even and odd
symmetry are illustrated in Fig. 2.8.

We wish to illustrate that any arbitrary signal can be expressed as the sum
two signal components. one of which is even and the other odd. The even signa
component is formed by adding x(n) to x(—r) and dividing by 2. that is.

x.(n) = %[.\'(n} + x(—mj] (2.1.26)

xum

* TT
JERNREEE
42321001 234 n
@)
x{n)

T

—s—a-3-2-1 lo! I } J
{ 12345 n

(b)

Figure 28 Example of even (a) and odd (b) signals.
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Clearly, x.(n) satisfies the symmetry condition (2.1.24). Similarly, we form an odd
signal component x,(n) according to the relation

xa(n) = 3[x(n) — x(—m)] (2.1.27)

Again, it is clear that x,(n) satisfies (2.1.25); hence it isindeed odd. Now, if we
add the two signal components, defined by (2.1.26) and (2.1.27), we obtain x(n),
that is,

x{nt) = x.(n) + x,{n) (2.1.28)
Thus any arbitrary signal can be expressed as in (2.1.28).

2.1.3 Simple Manipulations of Discrete-Time Signals

In this section we consider some simple modifications or manipuiations involving
the independent variable and the signal amplitude (dependent variable).

Transformation of the independent variable (time). A signal x(n) may
be shifted in time by replacing the independent variable n by n — k. where k isan
integer. If k isa positive integer, the time shift results in a delay o the signal by
k units of time. If k is a negative integer, the time shift results in an advance of
the signa by (] units in time.

Example2.L2

A signal x{n) is graphically illustrated in Fig.2.9a. Show a graphical representation
of the signalsx(n — 3) and x(n +2).

Solution The signal x(n — 3) isobtained by delaying x(n) by three unitsin time. The
result isillustrated in Fig. 2.9b. On the other hand, the signal x(n + 2) is obtained by
advancing x(r) by two unitsin time. The result is illustrated in Fig. 2.9c. Note that
delay corresponds to shifting a signal to the right, whereas advance implies shifting
the signal to the Ieft on the time axis.

If the signal x(n) is stored on magnetic tape or on a disk or, perhaps, in the
memory of a computer, it is a relatively ssimple operation to modify the base by
introducing a delay or an advance. On the other hand, if the signal isnot stored but
is being generated by some physical phenomenon in real time, it is not possible
to advance the signa in time, since such an operation involves signal samples
that have not yet been generated. Whereas it is always possible to insert a delay
into signal samples that have already been generated, it is physically impossible
to view the future signal samples. Consequently, in real-time signa processing
applications, the operation of advancing the time base of the signal is physically
unrealizable.

Another useful modification of the time base is to replace the independent
variable n by —n. The result of this operation is afolding or a reflection of the
signal about the time origin n = 0.
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xin)
4
Ll l ] I
-4-3-2-10 1 2 3 4 n
()
x(n=3)
| ' l | ’ l
[-ioi234 567 n
{b)
x(n+1)
4'
6mf4 321 0 | 2 . Figure 2.9 Graphical representation of
a signal, and 1ts dclaved and advanced
) versions.
Example213

Show the graphical representation of the signal x(—n) and x{—n +2). where x(n} is
the signal illustrated in Fig. 2.10a.

Solution The new signa v(n) = x(—n} isshown in Fig. 2.10b. Note that »(0) = x(0).
v{l) = x(=1). v(2) = x(=2), and so on. Also. v(—=1} = x(1), ¥(-=2) = x(2), and so on.
Therefore. v(n) is simply x(n} reflected or folded about the time origin n = 0. The
signal v(n) = x(—n +2) issimplv x(—n) delaved by two units in time. The resulting
signal 1s illustrated in Fig. 2.10c. A simple way to verify that the result in Fig. 2.10c
is correct is to compute samples, such as ¥ = x{(2). ¥(1} = x(1), ¥(2) = x(0).
¥(—=1) = x(3). and so on.

It is important to note that the operations o folding and time delaying (or
advancing) a signal are nor commutative. If we denote the time-delay operation
by TD and the folding operation by FD. we can write

TDux(n)] = x(n —k) k>0
FD[x(n)] = x(—n)

(2.1.29)

Now
TD(FD[x(n)]} = TD[x{(—n)] = x(—n + k) (2.1.30)
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x(n)

Al

=3-2-1 {0

4 5

III,]

~4-3-2-1 |0

a

4 n

()

Hn)=x(—m+2)

Fgure 2.10 Graphical illustration of
(c) the folding and shifting operations.

whereas
FD(TDy[x(n)]} = FD[x(n — k)] = x(~n — k) (2.1.31)

Notethat because thesignsd n and k in x{n—k) and x(—n+k) aredifferent, there-
sult isa shift of the signals x(rn) and x(—n) to the right by k samples, corresponding
toa time delay.

A third modification of the independent variable involves replacing n by un,
where g is an integer. We refer to this time-base modification as time scal ing or
down-sampling.

Example 2.L4

Show the graphical representation of the signal y(n} = x(2r), where x(n) isthe sgnal

illustrated in Fig. 2.11a.

Solution We note that the signal y(n) is obtained from x(a) by taking every other
sample from x(n), starting with x(0). Thus y(0) = x(0), y(1) = x(2), y(2) = x(4), ...
and y(-1) = x(~2), y(-2) = x(—4), and so on. In other words, we have skipped
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xini

(ay

v = x(2n)

(hi

Figure 211 Graphical illustration of down-sampling operation

the odd-numbered samples in a(n) and retained the even-numbered samples. The
resulting signal is illustrated in Fig. 2.11b.

If the signal 1 (#) was originally obtained by sampling an analog signal x, (7).
then x(n) = x,(nT), where T is the sampling interval. Now. v(n) = x(2n) =
x,(2Tn}. Hence the time-scaling operation described in Example 2.1.4 isequivalent
to changing the sampling rate from 1/7 to 1/2T. that is. to decreasing the rate by
afactor of 2. Thisisa downsampling operation.

Addition, multiplication,and scaling of sequences. Amplitude modifi-
cationsinclude addition, multiplication, and scaling of discrete-time signals.

Amplitude scaling of a signal by a constant A is accomplished by multiplying
the value d every signal sample by A. Consequently, we obtain

vin) = Ax(n) -—X <N<o¢

. The sum of two signals x;(») and x>(») isa signa v(n), whose value & any
Instant jsequal to the sum o the values d these two signals at that instant. that is.

_\'(n)=x1(n)+,r3(n) —_5 < n <X
The product of two signas issimilarly defined on a sample-to-sample basis as

yim)y=x{nx(n) ~oCc<H <00
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2.2 DISCRETE-TIME SYSTEMS

In many applications o digital signal processing we wish to design a device or
an agorithm that performs some prescribed operation on a discrete-time signal.
Such a device or algorithm is called a discrete-time system. More specifically, a
discrete-timesystem is a device or algorithm that operates on a discrete-time signal,
called the input or excitation. according to some well-defined rule. to produce an-
other discrete-time signal called the output or response of the system. In general,
we view a system as an operation or a set of operations performed on the input
signal x(n) to produce the output signal v(n). We say that the input signal x(n) is
transformed by the systern into a signal y(»), and express the general relationship
between x(n) and v(n) as

vin) = T[x(n)] (2.2.1)

where the symbol 7" denotes the transformation (also called an operator), or pro-
cessing performed by the system on x(n) to produce y(n). The mathematical
relationship in (2.2.1) is depicted graphically in Fig. 2.12.

There are various ways to describe the characteristics of the system and the
operation it performs on x(n) to produce »(n). In this chapter we shall be con-
cerned with the time-domain characterization of systems. We shall begin with
an input-output description of the system. The input-output description focuses
on the behavior at the terminals of the system and ignores the detailed internal
construction or realization of the system. Later. in Section 7.5. we introduce the
state-space description of a system, In this description we develop mathemati-
cal equations that not only describe the input-output behavior of the system but
specify its internal behavior and structure.

2.2.1 Input-Output Description of Systems

The input-output description of a discrete-time system consists d a mathematical
expression or a rule, which explicitly defines the relation between the input and
output signals (input-output relationship). The exact internal structure of the sys
tem is either unknown or ignored. Thus the only way to interact with the system is
by using itsinput and output terminals (i.e., the system is assumed to be a "black
box" to the user). To reflect this philosophy. we use the graphical representa-

Ll Al

xn) Discrete-time vin)
. stem
Input signal S Output signal
a excitation o response

Figure2.12 Block diagram representation of a discrete-time system.
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tion depicted in Fig. 2.12, and the general input-output relationship in (2.2.1) or,
aternatively, the notation

x(n) > y(n) 2.2.2)

which simply means that y(n) is the response d the system 7 to the excitation
x(n). The following examples illustrate several different systems.

Example 221
Determine the response o the following sytems to the input signal
=Wl 3=n=3
Tim) = [0, otherwise

(a) ¥(n) =x(n)

(b) yny=x(n-1)

(c) yimy=x(n+1)

@ ¥y =ixtn+h+xmtxin-1)]

(e) ¥(n) =max{x(nt1). x(n), x(n - 1)}

M ym=3,__ s=xtmytxn-1)+xn-2)+... (2.2.3)

Solution  First. we determine expiicitly the sample values d the input signal
x(n)y=1{...0.3.2,1,0.1.2.3.0...}
+

Next. we determine the output of each system using its input-output relationship.

(a) In this case the output is exactly the same as the input signal. Such a system is
known as the identity system.
(b) This system simply delays the input by one sample. Thus its output is given by

x(n)=1(..,0,3.2.1.0,1,2.3.0....)
A

(c¢) In this case the system "advances" the input one sample into the future. For
example, the value of the output at time » = 0 is ¥(0) = x(1). The response d
this system to the given input is

x(n)=1(..,0,3.2.1,0.1.2.3,0... .}
?

(d) The output of this system at any time is the mean value of the present, the
immediate past, and the immediate future samples. For example, the output at
timern=0Iis

¥(0) = {x(-D) +x(0) + x()] = {1 + 0+ 1] = 3
Repeating this computation for every value of n, we obtain the output signa

yimy=1{...01.%21%121%1.0..)
?
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(e) Thissystem selects as its output at time » the maximum vaiue of the threenput
samples x(n — 1), x{n), and a(n + 1). Thus the response o this system to the
input signal xt(a) is

vin)=140.3.3.3.2.1.2.3.3.3.0... }
1

(f) This system is basically an accumuiaior that computes the running sum o all
the past input values up to present time. The response of this system to the
given input is

) =1{....0.3.5,6.6,7.9.12.0... .}

We observe that for several of the systems considered in Example 2.2.1 the
output at time n = ny depends not only on the value of the input at n = ng [i.e..
x(ng)]. but also on the values of the input applied to the system before and after
n = ng. Consider. for instance, the accumulator in the example. We see that the
output at time n = a; depends not only on the input at time » = ny. but also on
x(n) at timesn =ny — 1. np — 2. and so on. By a simple algebraic manipulation
the input-output relation of the accumulator can be written as

n n-1
yn) = AZ x{k) = _Z x{k) 4+ x{n) 224
=— k==

= y(n—1)+x)

which justifies the term accumularor. Indeed. the system computes the current
value of the output by adding (accumulating) the current value of the input to the
previous output value.

There are some interesting conclusions that can be drawn by taking a close
look into this apparently simple system. Suppose that we are given the input signal
x(n) forn = ng. and we wish to determrne the output v(n) of thissystem for n = nq.
Forn=ng net1..... (2.2.4) gives

ving) = y(ng— 1)+ x(ng)
ving+ 1) = ving) +x(ng+ 1)

and so on. Note that we have a problem in computing v(ng). since it depends on
y(no —1). However.

ne—1

ving—1) = Z x(k)
h=—nc
that is. ¥(no — 1) "summarizes" the effect on the system from all the inputs which
had been applied to the system before time ng. Thus the response of the svstem
forn = np to the input x(n) that isapplied at time 1, is the combined result of this
input and al inputsthat had been applied previously to the system. Consequently.
y(n}, n > ng is not uniquely determined by the input x(») for n > no.
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The additional information required to determine y(n) for n > ny is the initial
condition y(ng = 1). This value summarizes the effect o al previous inputs to the
system. Thus the initial condition y(ng — 1) together with the input sequence x ()
for n > ng uniquely determine the output sequence y(n) for n > no.

If the accumulator had no excitation prior to n, the initial condition isy(ng—
1) = 0. In such a case we say that the system isinitialy relaxed. Since y(ng—1) = 0,
the output sequence y(n) depends only on the input sequence x(n} for n > nq.

It is customary to assume that every system is relaxed at » = —co. In this
case, if an input x{n) isapplied at n = —co, the corresponding output y(n} issolely
and uni quel y determined by the given input.

Example 2.2.2

The accumulator described by (2.2.3) is excited by the sequence x{n) = nu(n). De-
termine its output under the condition that:

(8) It isinitially relaxed [ie., ¥(~1) = 0].
(b) Initialy. y(~1) = 1.

Solution The output of the system is defined as

i: x(k) = ): x(k)-*-Z":x(k)

k=—oc k=-oc k=0

V=D + Y k)
k=0

]

y(n)

"

But

"

1
Zﬂbz n(n; )

k={i

(a) If the system isinitially relaxed. ¥(=1) =0 and hence
(ny = 2t D
¥y = —
(b) On the other hand, if theinitial condition is y(-1) = 1, then
nn+1) nP4n+2

T -T2 nz0

>0

vin)=1+

222 Block Diagram Representation of Discrete-Time
Systems

It is useful at this point to introduce a block diagram representation o discrete-
time systems. For this purpose we need to define some basic building blocks that
can be interconnected to form complex systems.

An adder. Figure 213 illustrates a system (adder) that performsthe addi-
tion of two signal sequences to form another (the sum) sequence, which we denote
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x,(n}
—
vin) = x(r) + x;(n)
———/ Figure 2.13 Graphical representation
xalm o an adder.

as v(n). Note that it is not necessary to store either one of the sequences in order
to perform the addition. In other words, the addition operation is rnemoryless.

A constant multiplier. This operation is depicted by Fig. 2.14, and simply
represents applying a scale factor on the input x(z). Note that this operation is
also memoryless.

x{n} 7 Vi) = ax(n! Figure 2.14 Graphical representation
d "a constant multuplier.

A signal multiplier. Figure 2.15 illustrates the multiplication of two sig-
nal sequences to form another (the product) sequence, denoted in the figure as
v(n). Asin the preceding two cases, we can view the multiplication operation as
memoryless.

xin) /—\ yny=x(nlx,in)
X

N

Figure 2.15 Graphical representaton
xa2inm) of a signal multiplier.

A unit delay element. The unit delay isaspecial system that simply delays
the signal passing through it by one sample. Figure 2.16 illustrates such a system.
If the input signal is x(n). the output is x(n — 1). In fact, the sample x(n — 1) is
stored in memory at timen — 1 and it is recalled from memory at time »n to form

y(ny=x(n—-1)

Thus this basic building block requires memory. The use of the symbol z7! to
denote the unit of delay will become apparent when we discuss the;-transform in
Chapter 3.

x(n) yin)y=x(n—1)
— - Figure 2.36 Graphical representation
d the unit delay element.

A unit advance element. In contrast to the unit delay. a unit advance
moves the input x(n) ahead by one sample in time to yield x¢n +1). Figure 2.17
illustrates thisoperation, with the operator : being used to denote the unit advance.
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x(n) yn)y=x(n+1) ) )
Figure2.17 Graphical represenration

of the unit advance element.

We observe that any such advance is physically impossible in real time, since. in
fact, it involveslooking into the future of the signal. On the other hand. if we store
the signal in the memory of the computer, we can recall any sample at any time.
In such a nonreal-time application, it is possible to advance the signal x{x) in time.

Example 2.2.3
Using basic building blocks introduced above. sketch the block diagram representa-
tion of the discrete-time system described by the input-output relation.
¥(n) = %y(n -1+ %x(n) + %x(n -1 (2.2.5)
where x{n) is theinput and v(n) is the output o the system.
Solution According to (2.2.5), the output y(a) is obtained by multiplving the input
x(n) by 0.5, multiplying the previous input x(n~1) by 0.5. adding the two products. and
then adding the previous output v(n = 1) multiplied by }. Figure 2.18a illustrates this
block diagram realization of the system. A simple rearrangement of (2.2.5). namely,
yiny = ivin — 1)+ Yxn) + x(n = 1) (2.2.6)

leads to the block diagram realization shown in Fig. 2.18b. Note that if we treat “the
system" from the "viewpoint™ of an input—output or an external description. we arc
not concerned about how the system is realized. On thc other hand. if we adopt an

Black box
@ yin
0.25 :
(a)
........................... Black box ...
x(n) 0.5
- ] @ @ vin)
. _—‘
: 0.25
(b)

Figure 218 Block diagram realizations of the system y(n) = 0.25y(n — 1) +
0.5x(n) +0.5x(n = 1).
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internal description of the system. we know exactly how the system building blocks
are configured. In terms of such a realization. we can see that a svstem is relaxed at
time n = ng if the outputs of all the delays existing in the system are zero at n = ny
(i.e.. dl memory is filled with zeros),

2.2.3 Classification of Discrete-Time Systems

In the analysis as well as in the design of systems, it is desirable to classify the
systems according to the general properties that they satisfy. In fact, the mathe-
matical techniques that we developin thisand in subsequent chapters for analyzing
and designing discrete-time systems depend heavily on the general characteristics
o the systems that are being considered. For this reason it is necessary for us
to develop a number of properties or categories that can be used to describe the
general characteristics of systems.

We stress the point that for a system to possess a given property, the property
must hold for every possible input signal to the system. If a property holds for
some input signals but not for others. the system does not possess that property.
Thus a counterexample is sufficient to prove that a svstem does not possess a
property. However, to prove that the system has some property. we must prove
that this property holds for every possible input signal.

Static versus dynamic systems. A discrete-time system is called static
or memoryless if its output at any instant n depends at most on the input sample
at the same time, but not on past or future samples of theinput. In any other case.
the system is said to be dynamic or to have memory. If the output of a system at
time n is completely determined by the input samples in the interval fromn — N
to n(N > 0), the system is said to have memory of duration N. If N = 0. the
system is static. If 0 < N < oo, the system is said to have finite memory. whereas
if N = oc, the system issaid to have irfinite memory.

The systems described by the following input-output equations

¥{n) = ax(n) (2.2.7)
¥(n) = nxtn) Tox3(n) (2.2.8)

are both static or memoryless. Note that there is no need to store any of the past
inputs or outputs in order to compute the present output. On the other hand. the
systems described by the following input-output reiations

y(n) = x(m +3x(n - 1) (2.2.9)

y(n) =Y xin—k) {2.2.10)
k=0

yimy =3 xtn—k (22.11)
k=0

are dynamic systems or systems with memory. The systems described by (2.2.9)
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and (2.2.10) have finite memory, whereas the system described by (2.2.11) has
infinite memory.

We observe that static or memoryless systems are described in general by
input-output equations of the form

y(n) = T[x(n), n) (2.2.12)
and they do not include delay elements (memory).

Time-invariant versus time-variant systems. We can subdivide the gen-
eral class of systems into the two broad categories, time-invariant systems and
time-variant systems. A system is called time-invariant if its input-output charac-
teristics do not change with time. To elaborate, suppose that we have a system 7
in arelaxed state which, when excited by an input signal x(»n), produces an output
signa y(n). Thus we write

y{n) = Tlx(n)] (2.2.13)

Now suppose that the same input signal is delayed by k units of time to yield
x(n—k), and again applied to the same system. If the characteristics of the system
do not change with time, the output of the relaxed system will be y(n» —k). That is,
the output will be the same as the response to x(r). except that it will be delayed
by the same & units in time that the input was delayed. This leads us to define a
time-invariant or shift-invariant system as follows.

Definition. A relaxed system 7 is rire invariant or shift invariant if and
only if
x(n) > y(n)
implies that
x(n = k) = y(n - k) (2.2.14)
for every input signal x(r) and every time shift k

To determine if any given system is time invariant, we need to perform the
test specified by the preceding definition. Basically, we excite the system with an
arbitrary input sequence x(r), which produces an output denoted as y(n). Next
we delay the input sequence by same amount £ and recompute the output. In
general, we can write the output as

v(n, k) = T[x(n — k)]

Now if this output y(n, k) = »(n — k), for al possible values d &, the system is
time invariant. On the other hand, if the output y(n, k) # ¥(n — k), even for one
value of k, the system is time variant.
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o Figure 2.19 Examples d a
time-invariant (a) and some time-variant
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Example 2.24

Determine if the svstems shown in Fig. 2.19 are time invariant or time variant.

Solution

(a) This system 1s described by the input-output equations
vy = Txm)]=xtni—xn-1) (2.2.15)

Now if the tnput is delayed by & units in time and applied 1o the svstem, it is
clear from the block diagram that the output will be

virnky=xtn-k—xtn—-k-1) (2.2.16)

On the other hand. from (2.2.14) we note that if we delay v(n) by & units in
time. we obtain

Vin—k)=x(n—k)—x(n =k -1 (2.2.17)

Since the right-hand sides o (2.2.16) and (2.2.17) are identical, it follows that
vin. k) = v(n — k). Therefore, the system is time invariant.
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(b) The input-output equation for this system is
y(n) = T{x{n)] = nx{n) (2.2.18)
The response of this system to x{n = k) is
y(n, k)= nx(n —k) 2.2.19)
Now if we delay y(r) in (2.2.18) by k units in time, we obtain
y(n —k) = (n~k)x(n ~ k)

(2.2.20)
= nx(n — k) ~ kx(n — k)
This system is time variant, since y(n. k) # y(n — k).
(c) This system is described by the input-output relation
y(n) = T[x(n)} = x(—n) (2.2.21)
The response of this system to x(n — k) is
y(n k)= T[x(n = k)] = x(=n —K) 2.2.22)
Now, if we delay the output y(n), as given by (2.2.21}. by & units in time, the
resuit will be
yn —k) = x(—~n k) (2223
Since y{n, k) # v{n — k), the system is time variant.
(d) The input-output equation for this system is
y(n) = x(n) cOs won (2.2.24)

The response of this system to x(n — k) is
v(n, k) =x(n — k) cos wyn (2.2.25)

If the expression in (2.2.24) is delayed by k units and the result is compared to
(2.2.25), it isevident that the system is time variant.

Linear versus nonlinear systems. The general class of systems can aso
be subdivided into linear systems and nonlinear systems. A linear system is one
that satisfies the superposition principle. Simply stated, the principle of superposi-
tion requires that the response of the system to a weighted sumof signais be equal
to the corresponding weighted sum of the responses (outputs) o the system to each
d theindividua input signals. Hence we have the following definition d linearity.

Definition. A relaxed T system islinear if and only if
Tlaix1(m) + aax2(n)] = a1 T[x1(M)] + @2 T [x2(n)] (2.2.26)

for any arbitrary input sequences x;(n) and xz2(z), and any arbitrary constants a;
and a3.

Figure 220 givesa pictorid illustration of the superposition principle.
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Figure2.20 Graphical representation of the superposition principle. 7 is linear
it and only if vin) = v'(m)

xs(n)

The superposition principle embodied in the relation (2.2.26) can be sepa-

rated into two parts. First, suppose that @ = 0. Then (2.2.26) reduces to
'T[alx;(n)] =u;7[x|(n)] =aiyiin) (2.2.27)
where
yi(n) = Tlx(n)]

The relation (2.2.27) demonstrates the multiplicative or scaling property of a linear
system. That is, if the response of the system to the input x,(n) is y;(n). the
response to ajx;{n) issimply a;yi(n). Thus any scaling of the input results in an
identical scaling of the corresponding output.

Second, suppose that a; = a2 =1 in (2.2.26). Then

Tlai(n) + x2(m)] = Tx ()] + Tlxy(n)]
=y + wmn)
This relation demonstrates the additivity property of alinear system. The additivity
and multiplicative properties constitute the superposition principle asit applies to
linear systems.

The linearity condition embodied in (2.2.26) can be extended arbitrarily to
any weighted linear combination of signals by induction. In general, we have

(2.2.28)

M-1 M-l
X0 = )" aun(n) = vm) = Y an(n) (2229
k=1 k=1

where
Yi(n) = Tlxi(n)] k=1,2,....M-1 (2.2.30)
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We observe from (2.2.27) that if a; = 0, then y(#») = 0. In other words. a re-
laxed, linear system with zero input produces a zero output. If asystem produces
a nonzero output with a zero input, the system may be either nonrelased or non-
linear. If a relaxed system does not satisfy the superposition principle as given by
the definition above, it is called nonlinear.

Example 2.2.5

Determineif the systems described by the following input-output equations arc linear
or nonlinear.

(a) ¥(r) = nx(n} (b) ¥(n) = x(n?) (¢) ¥(m) = x*(n)
(d) w(n)=Ax(n)+ B (e) v(n) = ¥

Solution
(a) For two input sequences x;(n) and x;(n). the corresponding outputs arc

yi(n) = nxy(m)

(2231
ya{n) = nxa(n)
A linear combination of the two input sequences results in the output
win = Tlax(n) 4+ aax20n} = afayx, () + eaxatn))
(2232

= agnx{n) + anxa(n)

On the other hand. a linear combination of the two outputs in (2.2.31) results
in the output

ayyvy(n) + axya(n) = aynx(n) + a>nxa(n) (2.2.35

Since the right-hand sides of (2.2.32) and (2.2.33) are identical. the system is
linear.

(b) Asin part (a). we find the response of the system to two separate input signals

xi(n) and x;(n). The result is

yi(n) = x(n?)

. (2.2.34)
() = xptn”)
The output of the system to a linear combination d x,(n) and xa(n) is
wi(n) = Tlayx(n) + azx2(n)] = ayx; (n®) + azxa(n?) {2.2.35)
Finally. alinear combination d the two outputs in (2.2.36) viclds
ayyi(n) + azy2(n) = a1xy () + axxa () (2.2.36)

By comparing (2.2.35) with (2.2.36). we conclude that the system is linear.

(c) The output of the system is the square o the input. (Electronic devices that
have such an input-output characteristic and are called square-law devices.)
Fromour previous discussion it is clear that such a system is memoryless. We
now illustrate that this system is nonlinear.
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The responses of the system to two separate input signals are
y{n) = IJZ(H)
. (2.2.37)
ya(n) = x3(n)
The response of the system to a linear combination of these two input signalsis

yiln) = Tlayxi(n) +agxz(n)]

{arxi () + azxa(m)}? {2.2.38)

afx,:(n) + 2ayarxp(n)xa(n) + a%.r::(n)
On theother hand. if the system islinear, it would produce alinear combination
of the two outputs in (2.2.37). namely.

ayyi(my Fazva(m) = ayxj () + axxion (2.2.39)
Since the actual output of the system. as given by (2.2.38). 15 not equal Lo
(2.2.39). the system is nonlinear.

Assuming that the system is excited by x;(n}) and x:(n) separately. we obtain
the corresponding outputs

(d

=

vi(n) = Axy(my+ B
(2.2.40)
y2{n) = Axa(n}+ B

A linear combination of x,{n) and x;(n} produces the output
vilm)y = Tlapx () + azxa(m))

= Alayxi(n) + azxain)f + B (2.2.41)

= Aax;(n)+ aAx:in) + B
On the other hand. if the system were linear, its output to the linear combina-
von of x;(n} and x2(n) would he alinear combination of v;(n} and y:(n). that is.

a vi(n) +axv(n) =a)Axy(n) + a1 B + axAxa(n) +a: B (2.2.42)

Clearly. (2.2.41) and (2.2.42) are different and hence the system fails to satisfy
the linearity test.

The reason that this system fails to satisfy the linearity test is not that the
system is nonlinear (in fact. the system 1s described by a linear equation) hut
the presence of the constant B. Consequently. the output depends on both the
input excitation and on the parameter B # 0. Hence. for & # 0. the system 1s
not relaxed. If we set B = O, the system is now relaxed and the linearity test is
satisfied.

Note that the system described by the input—output equation

¥in) = "™ (2.2.43)
is relaxed. If x(n) = 0. we find that ¥(n) = 1. This is an indication that the
system is nonlinear. This, in fact. is the conclusion reached when the linearity
test. is applied.

(e

N

Causal versus noncausal systems. Webegin with the definition of causal
discrete-time systems.
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Definition. A system is said to be causal if the output of the system at any
time n [i.e.. ¥{n)] depends only on present and past inputs [i.e., x(n), x(n — 1),
x(n=2,...], but does not depend on future inputs [i.e., x(x +1), x(n +2),...]. In
mathematical terms, the output of a causal system satisfiesan equation of the form

yin) = Flx(n). x{n — 1), x(n = 2),.. ] (2.2.44)
where £[.] is some arbitrary function.

If a system does not satisfy this definition, it is called noncausal. Such a
system has an output that depends not only on present and past inputs but also
on future inputs.

It is apparent that in real-time signal processing applications we cannot ob-
servefuture values of thesignal, and hence a noncausal system is physically unreal-
izable (i.e., it cannot be impiemented). On the other hand, if the signa is recorded
so that the processing is done off-line (nonreal time), it is possible to implement
a noncausal system, since al vaiues of the signal are available at the time of pro-
cessing. This is often the case in the processing of geophysical signals and images.

Example22.6

Determine if the systems described by the following input-output equations are causal
or noncausal.

(@) y(m) =x(n) _x(n-1) (b) ¥(n) = ZL_xx(k) (¢c) ¥{n) = ax(n)
W) yimy=xm)+t3xinta) (o) »imy=x(n?) (O yn) = x(2n)
(g) v(n) =x(-n)

Solution The systems described in parts(a), (b), and (c) are clearly causal, since the
output depends only on the present and past inputs. On the other hand, the systems
in parts (d). (e),and (f) are clearly noncausal, since the output depends on future
values of the input. The system in (g) is also noncausal, as we note by selecting, for
example, n = — 1, which yields y(~1) = x(1). Thus the output at » = — 1depends
the input at n = 1, which istwo units of time into the future.

Stable versus unstable systems. Stability is an important property that
must be considered in any practical application of a system. Unstable systems
usually exhibit erratic and extreme behavior and cause overflow in any practical
implementation. Here, we define mathematically what we mean by a stable system,
and later, in Section 2.3.6. we explore the implications of this definition for linear,
time-invariant systems.

Definition.  An arbitrary relaxed system issaid to be bounded input—bounded
output (BIBO) stable if and only if every bounded input produces a bounded
output.

The conditions that the input sequence x(r) and the output sequence y(n) are
bounded istranslated mathematically to mean that there exist some finite numbers,
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sav M, and M,. such that
()l < M, < o vin) < M, «x (2.2.45)
for al n. If. for some bounded input sequence x(n), the output 1s unbounded
(infinite), the system is classified as unstable.
Example 2.2.7
Consider the nonlinear system described by the input-output equation
Yo === xm
As an input sequence we select the hounded signal
xiny = Céwun)
where C is a constant We also assume that v{—11 = 0. Then the output sequence 18
vi)=C. yh=C. y=C' ... vim=C"
Clearly. the output is unbounded when 1 < IC| < ac. Thercfarc. the svstem is BIBO
unstable, since a bounded input sequence has resulted in an unbounded output.

2.2.4 Interconnection of Discrete-Time Systems

Discrete-time systems can be interconnected to form larger svstems. There are
two basic ways in which systems can be interconnected: in cascade (series) or in
parallel. These interconnections are illustrated in Fig. 2.21. Note that the two
interconnected systems are different.

In the cascade interconnection the output of the first system is

witn) = T[xim) (2.2.46)
x(n) ‘ T, Yoty T, vim
_,I ,,,,,,,,,,,,,,,,,
(a)
p yitn)
i 1

Figure 221 Cascade (a) and parallel
(b) {b) interconnections of systems.
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and the output of the second system is
¥ = By
= T(Ti[x(m])

We observe that systems 7; and 7z can be combined or consolidated into a single
overal system

(2.2.47)

T.=NT (2.2.48)
Conseguently, we can express the output of the combined system as
¥(n) = T{x(m)]
In general, the order in which the operations 7; and 7z are performed is
important. That is,
Th#TT
for arbitrary systems. However. if the systems 7; and 7; are linear and time
invariant, then (a) 7; is time invariant and (b) 271 = Ti7;, that is, the order in
which the systems process the signal is not important. 7:7; and 7,7, yield identical

output sequences,
The proof of (a) follows. The proof of (b) isgiven in Section 2.3.4. To prove
time invariance, suppose that 7; and 7; are time invariant; then

x(n —k) I vin- k)
and

yvi(n — k) Z, yin —k)
Thus

x(n—k) I8 vt — k)

and therefore, 7 istime invariant.
In the parallel interconnection, the output of the system 7; is y1(n) and the
output of the system 7; is y2(n). Hence the output of the parallel interconnection is

¥3(n) = yi1(n) + ya(n)

= Tilxm)] + = (n)]

= (T + T)[x(m)]

= Tp[x(m]
where 7, =T + T.

In general, we can use parallel and cascade interconnection of systems to

construct larger, more complex systems. Conversely, we can take a larger system
and break it down into smaller subsystems for purposes of analysis and imple-

mentation. We shall use these notions later, in the design and implementation of
digital filters.
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2.3 ANALYSIS OF DISCRETE-TIME LINEAR TIME-INVARIANT
SYSTEMS

In Section 2.2 we classified systems in accordance with a number of characteristic
properties or categories. namely: linearity. causality. stability. and time invariance.
Having done so. we now turn our attention to the analysis of the important class
of linear, time-invariant (LTI) systems. In particular. we shall demonstrate that
such systems are characterized in the time domain simply by their response to a
unit sample sequence. We shall also demonstrate that any arbitrary input signal
can be decomposed and represented as a weighted sum of unit sample sequences.
As a consequence of the linearity and rime-invariance properties of the system,
the response of the system to any arbitrary input signal can be expressed in terms
of the unit sample response of the system. The general form of the expression
that relates the unit sample response of the system and the arbitrary input signal
to the output signal. called the convolution sum or the convolution formula. is also
derived. Thus we are able to determine the output of any linear. time-invariant
system to any arbitrary input signal.

2.3.1 Techniques for the Analysis of Linear Systems

There are two basic methods for anatyzing the behavior or response of a linear
system to a given input signal. One method is based on the direct solution of the
input-output equation for the system. which, in general. has the form

vin) = Flvin = 1 y(n = 2).....¥(n = Nyox(n)oxin = 1).. ., x(n — M)]

where F[-] denotes some function of the quantities in brackets. Specificaly, for
an LTI system. we shall see later that the general form of the input-output rela-
tionship is
N M
vin) = _Zﬂk}'(" - k) +Zbkx(n -~ k) (2.3.1)

k=1 k=0

where {a;} and (b} are constant parameters that specify the system and are in-
dependent of x(n) and v(n). The input-output relationship in (2.3.1) is called
a difference equation and represents one way to characterize the behavior of a
discrete-time LTI system. The solution of (2.3.1) is the subject o Section 2.4.

The second method for analyzing the behavior of a linear system to a given
input signal is first to decompose or resolve the input signal into a sum of ele-
mentary signals. The elementary signals are selected so that the response of the
system to each signal component is easily determined. Then, using the linearity
property of the system, the responses d the system to the elementary signals are
added to obtain the total response of the system to the given input signal. This
second method is the one described in this section.
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To elaborate, suppose that the input signal x(n) is resolved into a weighted
sum of elementary signal components {x,(n)} so that
x(n) = qu,;(n) (2.3
k
where the {c;} are the set o ampiitudes (weighting coefficients) in the decom-
position of the signal x(n). Now suppose that the response of the system to the
elementary signa component x.{n) is y:(n). Thus.

viln) = Tlxe(m)] (2.3.3)

assuming that the system is relaxed and that the response to cyx; (n) IS¢ vi(n). as
a consequence of the scaling property of the linear system.
Finaly, the total response to the input x(n) is

y(n) = Tlx(n)] = [z CiXp (n)}

=Y aTlxim] (2.3.4)

= Z vl
L

In (2.3.4) we used the additivity property o the linear system.

Although to a large extent, the choice of the elementary signals appcars to
be arbitrary, our selection is heavily dependent on the class of input signals that
we wish to consider. If we place no restriction on the characteristics of the input
signals. its resolution into a weighted sum o unit sample (impulse) sequences
proves to be mathematically convenient and completely general. On the other
hand, if we restrict our attention to a subclass of input signals, there may be
another set of elementary signals that is more convenient mathematically in the
determination o the output. For example. if the input signal x(n) is periodic
with period N, we have already observed in Section 1.3.5 that a mathematically
convenient set of elementary signalsisthe set of exponentials

x(n)=e“"  k=01.....N-1 (2.3.5)
where the frequencies (w;} are harmonicaly related, that is,

2
wk=(7”)k k=0.1..... N—1 (2.3.6)

Thefreguency 27 /N iscalled the fundamental frequency, and al higher-frequency
components are multiples of the fundamental frequency component. This subclass
of input signals is considered in more detail later.

For the resolution of the input signal into a weighted sum of unit sample
sequences, we must first determine the response of the system to a unit sam-
ple sequence and then use the scaling and multiplicative properties of the linear
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system to determine the formuia for the output given any arbitrary input. This
development is described in detail as follows.

2.3.2 Resolution of a Discrete-Time Signal into Impulses

Suppose we have an arbitrary signal x(~) that we wish to resolve into a sum of unit
sample sequences. To utilize the notation estabiished in the preceding section. we
select the elementary signals xx(n) to be

xp(n) =8(n—k) (2.3.7)

where k represents the delay of the unit sample sequence. To handle an arbitrary
signal x(n) that may have nonzero values over an infinite duration. the set of unit
impulses must also be infinite. to encompass the infinite number of detavs.

Now suppose that we multiply the two sequences xin) and 8(n — k). Since
8(n — k) is zero everywhere except at n = k. where its value is unity. the result
of this multiplication is another sequence that is zero everywhere except at n = &,
where its value is x(k), asillustrated in Fig. 2.22. Thus

x(n)én — k) = x(k)é(n — k) (2.3.8)

x(n)

rorr Iy [211[1 SIREETE
1 1—2—10113 111; n
(2) x(k}
bin-k) 1
0 k n
(b)
x(k) $(n—k)

k

0 l n

(e x(k)

Figure222 Multiplication of a signal x(n) with a shifted unit sample sequence.
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is a sequence that iszero everywhere except at n = k. where its value isx(k}. If we
were to repeat the multiplication o x(n) with §(r — m), where m is another delay
(m # k), the result will be a sequence that is zero everywhere except at n = m,
where its value is x{m). Hence

x{(m¥s(n —m) = x(m)d(n —m) .39

In other words, each multiplication of the signal x(n) by a unit impulse at some
delay k. [i.e., S(n—Kk)]. in essence picksout the single value x (k) of the signal x(n)
at the delay where the unit impulse is nonzero. Consequently, if we repeat this
multiplication over al possible delays, —o¢ < k < oo, and sum all the product
sequences, the result will be a sequence equal to the sequence x(n), that is,
x(n) =Y x(kys(n —k) (2.3.10)
k=—oc
We emphasize that the right-hand side of (2.3.10) is the summation o an
infinite number of unit sample sequences where the unit sample sequence é(r — k)
has an amplitude value of x(k). Thus the right-hand side of (2.3.10) gives the
resolution of or decomposition of any arbitrary signal x(n) into a weighted (scaled)
sum of shifted unit sample sequences.

Example 2.3.1
Consider the special case of a finite-duration sequence given as

x(n)y=1{2.4.0.3)
T

Resolve the sequence x{r) into a sum o weighted impulse sequences.

Solution  Since the sequence x(n) is nonzero for the time instantsn = -1, 0. 2. we
need three impulses at delays k = — 1.0, 2. Following (2.3.10) we find that

x{n) = 28(n + 1) + 48(n) + 38(n - 2)

2.3.3 Response of LTl Systems to Arbitrary Inputs: The
Convolution Sum

Having resolved an arbitrary input signal x(n) into a weighted sum of impulses,
we are now ready to determine the response of any relaxed linear system to any
input signal. First, we denote the response ¥(n, k) of the system to the input unit
sample sequence at n = k by the special symbol h(n. k), —oc < k < cc. That is,

yir kY= hin k) =T[s(n — k)] (2.3.11)

In (2.3.11) we note that n is the time index and k is a parameter showing the
location of the input impulse. If the impulse at the input is scaled by an amount
¢ = x(k), the response o the system is the correspondingly scaled output, that is,

ceh(n, k) = x(k)h(n, k) (2.3.12)
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Finally, if the input is the arbitrary signal xin) that is expressed as a sum of
weighted impulses. that is.

x(ny = Z x(k)d(n — k) (2.3.13)
k==
then the response of the system to x(n) is the corresponding sum of weighted
outputs. thar is.

vl = Tlxm] = T[ Z xtkysin —k]]

k=—2
X
= Y xBT[strn— k) (23.14)
k=—n
X
= Z x{kyhn. k)
k=—-"x

Clearly. (2.3.14) follows from the superposition property of linear systems. and is
known as the superposition summation.

We note that (2.3.14) is an expression for the response of a lincar system to
any arbitrary input sequence x(x). This expression is a function of both x(») and
the responses /i(n. k) of the system 1o the unit impuises §tn — k) for —x < k < =.
In deriving (2.3.14) we used the linearity property of the system bur nor its time-
invariance property. Thus the expression in (2.3.14) applies to anv relaxed linear
(time-variant) system.

If. in addition. the system is time invariant. the formula in (2.3.14) simplifies
considerably, In fact. if the response of the LTI system to the unit sample sequence
6(n) is denoted as hn). that 1s.

hin) = T[é(m)] (2.3.15)

then by the time-invariance property. the response of the system to the delayed
unit sample sequence d(n — k) is

hin —k) = T[&(n - k)] (2.3.16)
Consequently. the formula in (2.3.14) reduces to
X
vy =y xtkyh(n — k) (2317
=—0

Now we observe thar the relaxed LTI system is completely characterized by a
single function A(n), namely. its response to the unit sample sequence &(n). In
contrast. the general characterization of the output o a rime-variant, tinear sys
tem requires an infinite number of unit sample response functions, #(n,K). one for
each possible delay.

The formula in (2.3.17) that gives the response y(n) of the LTI system as a
function of the input signal x(n) and the unit sample (impulse) response h(n) is
called a con -olution sum Wesay that the input x(z) isconvolved with the impulse
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response h(n) to yield the output y(r). We shall now explain the procedure for
computing the response v(n). both mathematically and graphically, given the input
x(n} and the impulse response k(r) of the system.
Suppose that we wish to compute the output of the system at some time
instant, say n = ng. According to (2.3.17), the response at n = ng is given as
¥no) = > x(k)h(ng — k) (2.3.18)
==
Our first observation is that the index in the summation isk, and hence both the
input signal x(k) and the impulse response h(ny — k} are functions of k. Second,
we observe that the sequences x (k) and h{ng — k) are multiplied together to form
a product sequence. The output y(ng) is simply the sum over al values of the
product sequence. The sequence h(ng — k) is obtained from k(k) by, first, folding
h(k) about k = 0 (the time origin), which results in the sequence h(- k). The
folded sequence isthen shifted by n, to yieid A(ng — k). To summarize, the process
of computing the convolution between x(k) and 4 (k) involves the following four

steps.

1 Folding. Fold A(k) about & =0 to obtain h(- k).

2. Shifting. Shift h(- k)by ng to the right (left) if o is positive (negative), to
obtain h(ng — k).

3. Muliiplication. Multiply x(k) by A(np — k) to obtain the product sequence
Uno (k) = x(k)h(np — k).

4. Summation. Sum all the values of the product sequence v, () to obtain the
value of the output at time n = nq.

We note that this procedure results in the response of the system at a sin-
gle time instant, say n = no. In general, we are interested in evaluating the
response of the system over al time instants —o0 < n < oo. Consequently,
steps 2 through 4 in the summary must be repeated, for al possible time shifts
-0 < n < OC.

In order to gain a better understanding of the procedure for evaluating the
convolution sum, we shall demonstrate the process graphicaly. The graphs will
aid usin explaining the four steps involved in the computation of the convolution

sum.
Example232
The impulse response d a linear time-invariant sysem is
h(n) = [1.%. 1, -1} (2.3.19)

Determine the reponse d the sysem to the input sgnd
x(n)=1{1,2.3,1} (2.3.20)
t



78

Discrete-Time Signals and Systems ~ Chap. 2

Solution  We shall compute the convolution according to the formula (2.3.17). but
we shall use graphs d the sequences to aid usin the computatron. In Fig. 2.23a we
illustrate the input signal sequence x(4} and the impulse response /(%) of the system,
using k as the time index in order to be consistent with (2.3.17).

The first step in the computation of the convolution sum 1s 1o fold ~(k). The
folded sequence #(~k) is illustrated in Fig. 2.23b. Now we can compute the output
at n = 0. according to (2.3.17). which is

YO =Y x(hih(—k) (2.3.21)

k=—ox
Since the shift n = 0., we use 4 (—k) directly without shiftingit. The product sequence

vp(k) = x(kYh(=k) (2.3.22)

0 v , q
U “\o\(\\\\\i
Fold
Product
h

. olk)
(—k) | sequence
2 . *
‘ 2
2t T
-1012 k -1012 k
{; {d)
Shift
! (k) Product
i 1=k 4 sequence
2 I
1Ak
do12 k 012 k
(c)
Jh(—l—k) v (k) Product
sequence
T 2
_ 1
ettt
JEEE k 012 x
(dy

Figure2.23 Graphical computation of convolution.
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isalso shown in Fig. 2.23b. Finaly, the sum of al the terms in the product sequence
yields
YO =Y k=4
A=—ox
We continue the computation by evaluating the response of the system at n = 1
According to (2.3.17).
o
V1) = Z x(Oh(1 — k) (2.223)
h=—oc
The sequence h(l —k) issimply the folded sequence /(—k) shifted to the right by one
unit in time. This sequence isillustrated in Fig. 2.23¢c. The product sequence

vk = x(kYh(l - k) (2.3.24)

is aso illustrated in Fig. 2.23c. Finaly. the sum of al the values in the product
sequence yields
o

v(l) = Z vk) =8

=0

In a similar manner. we obtain v(2) by shifting #(—k) two units to the right,
forming the product sequence w;(k) = x(k)h(2 — k) and then summing all the 1erms
in the product sequence obtaining v(2) = 8. By shifting h(—k) farther to the right.
multiplying the corresponding sequence. and summing over al the values of the re-
sulting product sequences. we obtain ¥(3) = 3. y(4) = -2. v(5) = - 1. For n > 5, w¢
find that y(n) = 0 because the product sequences contain all zeros. Thus we have
obtained the response y(n) for n > 0.

Next we wish to evaluate y(n) for n < 0. We begin with » = —1. Then

o

vl = Y k(-1 k)

k=—oc

_,
38}
%)
o
N

Now the sequence h{—1 — k) is simply the folded sequence k(—k) shifted one time
unit to the left. The resulting sequence isillustrated in Fig. 2.23d. The corresponding
product sequence is also shown in Fig. 2.23d. Finally, summing over the values of the
product sequence. we obtain

vi-1)=1

From observation of the graphs of Fig. 2.23, it is clear that any further shifts of
h(-1 = k) to the left always results in an all-zero product sequence. and hence

=0 forn=<-2

Now we have the entire response of the system for —o¢ < n < =¢. which we
summarize below as

ym)=1{...0.0,1.4.8.8,3,~2.-1.0.0.... ) (23.26)
1
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In Example 2.3.2 we illustrated the computation of the convolution sum.
using graphs of the sequences to aid us in visualizing the steps involved in the
computatnon procedure.

Before working out another example. we wish to show that the convolu-
tion operation is commutative in the sense that it is irrelevant which of the two
sequences is folded and shifted. Indeed. if we begin with (2.3.17) and make a
change in the variable of the summation. from i to m, by defining a new index
m=n — k. then k =n —m and (2.3.17) becomes

yimy= 3 x(n—mhim) 2327

m=—oC

Since m is a dummy index. we may simply replace m by k so that

oc
yn) = Z x(n — k) (k) (2.3.28)

=

The expression in (2.3.28) involves leaving the impulse response A{k) unaltered.
while the input sequence is folded and shifted. Although the output »(n} in (2.3.28)
isidentical to (2.3.17). the product sequences in the two forms d the convolurion
formula are not identical. In fact. if we define the two product sequences as

v (k) = x(Kh(n — k)
wa (k) = x(n — k)h(k)
it can be easily shown that
Un (k) = wy(n — k)

and therefore.

o

Y = Y vtk = i wan ~ &)

k=-oc k=—oc
since both sequences contain the same sample values in a different arrangement.

Example 2.3.3

Determine the output v(n) of a relaxed linear time-invariant system with impulse
response

hiny=a"uin), la| <1
when the input is a unit step sequence. that is,
x(n) = u(n}

Solution In this case both h(n) and x{n) are infinite-duration sequences. We use
the form d the convolution formula given by (2.3.28) in which x(k) is folded. The
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Figure 224 Graphical computation of convolution in Example 2.3.3

sequences h(k), x(k). and x(—k) are shown in Fig. 2.24. The product sequences vy (k).
v(k), and vy (k) corresponding to x(—k)h(k), x(1 — k)h(k). and xi2 — k)h(k) are illus-
trated in Fig. 2.24c, d. and e. respectively. Thus we obtain the outputs

v =1

y(1)

v(2)

l1+a

1+a+a

It
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Clearly, for » > 0, the output is
vin) = l+a+a’+-- +a"
1-— an+1 (2329)

l1—a
On the other hand. for » < 0. the product sequencesconsst o dl zeros. Hence
yin) =0 n<0
A graph d the output v(») isillustrated in Fig. 2.24f for thecase 0 < a < 1.
Note the exponential rise in the output as a function d ». Since ja} < 1. the final
vaue d the output asn gpproaches infinity is

v(oc) = tlim y(n) = (2.3.30)
ot |

—4a

To summarize, the convolution formula provides us with a means for com-
puting the response of arelaxed, linear time-invariant system to any arbitrary input
signal x(n). It takes one of two equivalent forms, either (2.3.17) or (2.3.28), where
x(n) is the input signa to the system. h(n) is the impulse response o the system,
and y(n) is the output of the system in response to the input signal x(n). The
evaluation of the convolution formula involves four operations. namely: folding
either the impulse response as specified by (2.3.17) or the input sequence as spec-
ified by (2.3.28) to yield either h(- k)or x{—k). respectively, shifting the folded
sequence by » units in time to yield either h(n — k) or x(» — k). multiplying the
two sequences to yield the product sequence, either x(k)k(n — k) or x(n — k)h(k),
and finally summing all the values in the product sequence to yield the output v(n)
o the system at time n. The folding operation is done only once. However, the
other three operations are repeated for dl possible shifts —oc < n < oo in order
to obtain y(n) for —oo < n < .

2.3.4 Properties of Convolution and the Interconnection
of LT} Systems

In this section we investigate some important properties of convotution and in-
terpret these propertiesin terms of interconnecting linear time-invariant systems.
We should stress that these properties hold for every input signal.

It is convenient to simplify the notation by using an asterisk to denote the
wnvolution operation. Thus

¥y =xmxhm = Y x(hin —k) (2.3.31)
In this notation the sequence following the asterisk [i.e., the impulse response k(x)]
isfolded and shifted. The input to the system is x(n). On the other hand, we aso
showed that

oc

y()y=hmxx(m = Y h(k)x(n—k) (23.32)
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xen) xin) h(n) [_—] ¥n)

Figure 225 Interpretation of the commutanve property of convolution.

In thisform of the convolution formula. it is the input signal that isfolded. Alter-
natively. we may interpret this form of the convolution formula as resulting from
an interchange of the roles of x(n) and h(n). In other words, we may regard x(n)
as the impulse response of the system and A(n) as the excitation or input signal.
Figure 2.25 illustrates this interpretation.

We can view convolution more abstractly as a mathematical operarion be-
tween two signal sequences. say x(n) and (), that satisfies a number of properties.
The property embodied in (2.3.31) and (2.3.32) is called the commutative law.

Commutative law
x()xh(n) = hin) * x(n) (2.3.33)

Viewed mathematically. the convolution operarion also satisfies the associa-
tive law. which can be stated as follows.

Associative law
[y = b)) = hatn) = x () * [y (n) % ha(n)] (2.3.34)

From a physical point of view. wc can interpret x(n) as the input signa to
a linear time-invariant system with impulse response /,(n). The output of this
system, denoted as yi(n}, becomes the input to a second linear time-invariant
system with impulse response #.(n). Then the output is

v(n) = vi(n) *ha(n)

= [x(n) x hy(n)] * ha(n)
which is precisely the left-hand side of (2.3.34). Thus the left-hand side of (2.3.34)
corresponds to having two linear time-invariant systems in cascade. Now the right-
hand side of (2.3.34) indicates that the input x(») isapplied to an equivalent system
having an impulse response. say #(r). which is equal to the convolution of the two
impulse responses. That is.

h(n) = hi(n) x ha(n)
and

v(n) = x(n) x h(n)
Furthermore, since the convolution operation satisfies the commutative property,
one can interchange the order o the two systems with responses 4;(r) and ks (n)

without altering the overall input-output relationship. Figure 2.26 graphicaly il-
lustrates the associative property.
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*m) ¥ X hny = )
h B ——
it ’ 2 > hy(n) * hytn)

(a)
x(n) v{n) x(n) ¥(n)
N Ty gy N
(b)

Figore 226 Implications of the associative (&) and the associative and commuta-
tive (h) properties of convolution.

Example 23.4

Determine the impulse response for the cascade of two linear time-invariant systems
having impulse responses

hy(n) = (3)"un)
and
ha(m) = (3)u(n)

Solution To determine the overall impulse response d the two systemsin cascade,
we simply convolve h,(n) with h,(r). Hence

hin) = D mikdha(n — k)

k=—oc
where h2(n) isfolded and shifted. We define the product sequence
va(k) = hi(kYha(n — k)
@t
which is nonzero for k > 0 andn —k > 0 or n > k > 0. On the other hand, for n < Q,
we have v, (k) = 0 for dl &, and hence

hin)=0,n <0

I

For n > k > 0. the sum of the values of the product sequence v, (k) over al & yields
hin) = Y (b
k=0

=@ T
= dret-n
= dre-drlazo
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The generalization of the associative law to more than two systemsin cascade
follows easily from the discussion given above. Thus if we have L linear time-
invariant systems in cascade with impulse responses i (n). ka(r).....h (n). there
is an equivalent linear time-invariant system having an impulse response that is
equal to the (L — 1)-foid convolurion of the impulse responses. That is.

hny=hi(n}x ha(n) % - - = hy(n) (2.3.35)

The commutative law implies that the order in which the convolutions are per-
formed is immaterial. Conversely, any linear time-invariant system can be decom-
posed into a cascade interconnection of subsystems. A method for accomplishing
the decomposition will be described later.

A third property that is satisfied by the convolution operation is the distribu-
tive law, which may be stated as follows.

Distributive law
x(my* [hi(m) + hatm)] = x(n) = hy(n) + x(n) « hain) (2.3.36)

interpreted physically. this law implies that if we have two linear time-
invariant systems with impulse responses /,(n) and #:(n) excited by the same
input signal x(x). the sum of the two responses is identical to the response of an
overall sysiem with impulse response

hiny = hy(n) + han)

Thus the overall system is viewed as a parallel combination of the two lincar
time-invariant systems as illustrated in Fig. 2.27.

The generalization of (2.3.36) to more than two linear time-invariant sys
tems in paratiei follows easily by mathematical induction. Thus the interconnec-
tion of L linear time-invariant systems in parallel with impulse responses #;(n).
ha(m).. ... ke () and excited by the same input x(n) is equivalent to one overall
system with impulse response

L
hin) = Zhi(") (2.3.37)
=1

Conversely. any linear time-invariant system can be decomposed into a parallel
interconnection of subsystems.

xtn) x(m xin} hin) = Vin)
| <> —
Byin}+ Asln

Figure 2.27 Interpretation of the distributive property of convolution: two LTI
systems connected in parallel can be replaced by a single system with k(n) =
hi(n)+ ha(n).
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2.35 Causal Linear Time-Invariant Systems

In Section 2.2.3 we defined a causal system as one whose output at time n depends
only on present and past inputs but does not depend on future inputs. In other
words, the output of tho system a some time instant n, say n = no, depends only
on values of x(r) for n < ng.

In the case of a tinear time-invariant system, causality can be translated
to a condition on the impulse response. To determine this relationship, let us
consider a linear time-invariant system having an output at time n = ng given by

the convolution formula
o

ying) = 3 htk)xing — k)
Suppose that we subdivide the sum into two sets of terms. one set involving present
and past values of the input {i.e.. x(n) for n < ng) and one set involving future
values of the input [ie., x(n), n > ny). Thus we obtain

oC —1
Yo) = Y hkxtno —ky+ 3 htk)x(ng = k)

k=0 b= -0
= [h(O)xng) + h(Lx(ng — 1) + h(2)x(ng = 2) + - -]
+[h(=x(ng+ 1)+ h(=Dx(ng +2) + -+ -]

We observe that the terms in the first sum involve x(ng), x{ng — 1)...., which are
the present and past values o the input signal. On the other hand. the termsin
the second sum involve the input signal components x (o +1), x(ng+2)..... Now,
if the output at time n = n; isto depend only on the present and past inputs, then,
clearly. the impulse response of the system must satisfy the condition

himy=0 n<0 (2.3.38)

Since h(n) is the response of the relaxed linear time-invariant system to a unit
impulse applied at n = 0, it follows that h(n) = 0 for n < 0 is both a necessary
and a sufficient condition for causaity. Hence an LTT system is causal if and only
i its impulse response is zero for negative values of n.

Since for a causal system, h(n) = 0 for n < 0. the limitson the summation of
the convolution formula may be modified to reflect this restriction. Thus we have
the two equivalent forms

Yy =Y h(k)x(n —k) (2.3.39)
k=0
= Y x(kh(n —k) (2.3.40)
k==

As indicated previously, causality is required in any real-time signal process-
ing application, since at any given time n we have no access to future values of the



Sec. 2.3 Analysis of Discrete-Time Linear Time-invariant Systems 87

input signal. Only the present and past vatues of the input signal are available in
computing the present output.

It is sometimes convenient to cal a sequence that iszero for n < 0. a causal
sequence, and one that is nonzero for » < 0 and » > 0. a noncausal sequence. This
terminology means that such a sequence could be the unit sample response d a
causal or a noncausal system. respectively.

If the input to a causal linear time-invariant system is a causal sequence [i.c..
if x(n) =0 for n < 0]. the limits on the convolution formula are further restricted.
In this case the two equivalent forms of the convolution formula become

Yo =y hk)x(n — k) (2341
k=0

n
= x(kyrin — k) (2.342)
k=0
We observe that in this case, the limits on the summations for the two alternative
forms are identical. and the upper limit is growing with time. Ciearly. the response
of a causal system to a causal input sequence is causal. since v(n) =0 for n < 0.

Example 2.3.5
Dcterminc the unit siep response of' the linear time-invariant system with impulse
response
hin) = a"uin} lat <1

Solution  Since the input signal isa unit step. which isacausal signal. and the system
isalso causal. we can usc one of the special formsof the convolution formula. either
(2.3.41) or (2.3.42). Since x(n) =1for r > 0.(2.3.41) issimpler to use Because of the
simplicity of this problem. one can skip the steps involved with sketching the folded
and shifted sequences. Instead. we use direct substitution of the signals sequences in
(2.3.41) and obtain
vin) = Zu‘
k=1

1 —a™!

1-a
and v(n) = 0 for n < 0. We note that this result is identical to that obtained in Ex-
ample 2.3.3. In this simple case. however. we computed the convolution algebraically
without resorting to the derailed procedure outlined previously.

2.3.6 Stability of Linear Time-invariant Systems

Asindicated previously, stability isan important property that must be considered
in any practical implementation of a system. We defined an arbitrary relaxed
system as BIBO stable if and only if its output sequence y(n) is bounded for every
bounded input x{x).
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If x(n) is bounded, there exists a constant M, such that
fx(n)] < M < o0
Similarly, if the output is bounded, there exists a constant M, such that
lv(n)| <« M, < o0
for aln.
Now, given such a bounded input sequence x(n) to a linear time-invariant
system, let usinvestigate the implications of the definition of stability on the char-
acteristics of the system. Toward this end, we work again with the convolution

formula
2]

yimy= Y htk)x(n—k)

k=~0c

If we take the absolute value of both sides of this equation. we obtain
oC
MOIES l 2 hk)x(n = k)

Jk=—0c
Now, the absolute value of the sum of terms is dways less than or equal to the
sum of the absolute values of the terms. Hence

el < 3 1hm)ix(n - k)|
k=—oc
If the input is bounded, there exists a finite number M, such that |x(n)| < M,. By
substituting this upper bound for x(n) in the equation above. we obtain

o
ly(ml < M, 3 1hk)]
k=—0C
From thisexpression we observe that the output is bounded if the impulse response
o the system satisfies the condition

o0
Sh= Y kbl < o0 (2.343)
k=-0oc
That is, a linear rime-invariant system is stable if itsi npul se response is absolutely
summable. Thiscondition isnot only sufficient but it is also necessary to ensure the
stability of the system. Indeed, we shall show that if S, = oo, there is a bounded
input for which the output is not bounded. We choose the bounded input

h*{-n)

2,
x(n) = 1 [ (n) #0

O, h(n) = 0

where &*(n) is the complex conjugate d h(n). It issufficient to show that there is
one value of n for which y(r) is unbounded. For » =0 we have

o0

hk
YO = Y x(-bhty = 3 'lh((k’)" S

k=—0c k=—c0

Thus, if S, = c0, a bounded input produces an unbounded output since y(0) =
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The condition in (2.3.43) implies that the impulse response h(n) goes to zero
as n approaches infinity. As a consequence, the output o the system goes to zero
as n approaches infinity if the input is set to zero beyond n > ng. To prove this.
suppose that [x(n); < M, forn < ny and x(n) =0for n = ng. Then, at n = no + N.
the system output is

N1 x
(g + N) = }: h(k)x(ng+ N — k) + Zh(k)x(no +N =&
=—x k=N

But the first sum is zero since x(n) = 0 for n > ng. For the remaining part, we
take the absolute value of the output. which is

s | <
Yo+ Nt = 13" htkxing + N = k)| < 3 1K) x(ng + N — k)]

k=N | k=w

< M.y Ihtk)]
k=N

Now, as N approaches infinity.

™
Nh—Ian;-—: |hin)i=20

and hence
hm !A'.‘(Hg] + N)! = 0
N
This result implies that any excitation at the input to the system. which is of afinite
duration. produces an output that is "transient” in nature: that is its amplitude
decays with time and dies out eventually. when the system is stable.
Example 2.3.6
Determine the range of values of the parameter a for which the linear time-invariant
system with impulse response
hiny = a"utn)
is stable

Solution First. we note that the system is causal. Consequently. the lower index on
the summation 1n (2.3.43) begins with & = 0. Hence

~ x
Yol = lat =1+ e+ laf +

k=0 =

Clearly, this geometric series converges to

o l
Z ko
lal T 1~lal

k=0
provided that |a < 1. Otherwise. it diverges. Therefore, the systemisstableif || < 1.
Otherwise. it is unstable. In effect, h(n) must decay exponentially toward zero asn
approaches infinity for the system to be stable.
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Example 2.3.7

Determine the range of values of a and & for which the linear time-invariant system
with impulse response
a", n>0
him) = [b". n<0
is stable.
Solution Thissystemis noncasual. The condition on stability given by (2.3.43) yields

}:wwn-E:mr+§:wr

n=—0C n=—oG

From Example 236 we have already determined that the first sum converges for
lal < 1. The second sumcan be manipulated as follows:

1 1 1
" —[1+—=t+ =+
Z:” Z:m" w( FIRTE )

B
1-8
where g = 1/ib] must be less than unity for the geometric series to converge. Conse-
quently. the system is stable if both |a < 1 and |b| > 1 are satisfied.

=BA+p+p+ )=

2.3.7 Systems with Finite-Duration and Infinite-Duration
Impulse Response

Up to this point we have characterized a linear time-invariant system in terms of
its impulse response A(n). It is aso convenient, however, to subdivide the class
o linear time-invariant systems into two types, those that have a finite-duration
impulse response (FIR) and those that have an infinite-duration impulse response
(IIR). Thus an H R system has an impulse response that is zero outside of some
finite time interval. Without loss of generality, we focus our attention on causal
H R systems, so that

him) =0 n<O0Qandnz=>M
The convolution formula for such a system reduces to

M-l
=Y hx(n - k)
k=0

A useful interpretation of this expression isobtained by observing that the output
at any timen issimply awa_Ehted linear combination of the input signal samples
x{n), x(n = 1),...,x(n — In other words, the wstem simply weights, by
the values of the impulse response h(k), k =0, I,...,M — 1, the most recent
M signal samples and sums the resulting M products. In effect, the system acts
as a window that views only the most recent M input signal samples in forming
the output. It neglects or simply "forgets™ all prior input samples [i.e., x(n — M),
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x(n—=M =1)....]. Thuswe say that an FIR svstem has a finite memory of length-M
samples.

In contrast. an IR linear time-invariant system has an infinite-duration im-
pulse response. Its output. based on the convolution formula. is

vy =3 hik)xin = k)
k=0

where causality has been assumed, although this assumption is not necessary. Now,
the system output is a weighted [by the impulse response 4 (k)] linear combination
of the input signa samples x(n), x(n — ). x(n = 2), ... Since this weighted sum
involves the present and al the past input samples, we say that the system has an
infinite memory.

We investigate the characteristics of FIR and IIR systems in more detail in
subsequent chapters.

2.4 DISCRETE-TIME SYSTEMS DESCRIBED BY DIFFERENCE
EQUATIONS

Up to this point we have treated linear and time-invariant systems that are char-
acterized by their unit sample response A(n). In turn. h(x) allows us to determine
the output y(m) of the system for any given input sequence x(») by means of the
convolution summation.

) = Z hitk)xin — k) (2.4.1)
k=—or

In general. then. we have shown that any linear time-invariant system is char-
acterized by the input-output relationship in (2.4.1). Moreover, the convolution
summation formula in (2.4.1) suggests a means for the realization of the system.
In the case of FIR systems, such a realization involves additions. multiplications.
and a finite number of memory locations. Consequently. an FIR system is readity
implemented directly, as implied by the convolution summation.

If the system is IIR. however, its practical implementation as implied by
convolution is clearly impossible. since it requires an infinite number of mem-
ory locations. multiplications. and additions. A question that naturally arises.
then, is whether or not it is possible to realize IIR systems other than in the
form suggested by the convolution summation. Fortunately. the answer is ves.
there is a practical and computationally efficient means for implementing a
family of 1R systems. as will be demonstrated in this section. Within the gen-
eral class of IIR systems. this family of discrete-time systems is more con-
veniently described by difference equations. This family or subclass of IIR
systems is very useful in a variety of practical applications, including the imple-
mentation of digital filters, and the modeling of physical phenomena and physical
systems.
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2.4.1 Recursive and Nonrecursive Discrete-Time Systems

As indicated above, the convolution summation formula expresses the output of
the linear time-invariant system explicitly and only in terms of the input signal.
However, this need not be the case, as is shown here. There are many systems
where it is either necessary or desirable to express the output of the system not
only in terms of the present and past values of the input, but aso in terms of the
already available past output values. The following problem illustrates this point.

Suppose that we wish to compute the cumulative average of a signal x(n) in
the interval 0 < k < n, defined as

1 n
v(n) = — gx(k) n=01,... (2.4.2)

Asimplied by (2.4.2). the computation of »(n) requires the storage of al the input
samples x (k) for 0 < k < n. Since n isincreasing, our memory requirements grow
linearly with time.

Our intuition suggests, however, that v(n) can be computed more efficiently
by utilizing the previous output value v(n — 1). Indeed, by a simple algebraic
rearrangement of (2.4.2), we obtain

n—1

D xh) + x(m)

k=0

(n + Dv(n)

Il

ny(n — 1) + x(n)

and hence
n 1

yin) = ’H_l,\’(r1—1)-+-n+1
Now, the cumulative average v(n) can be computed recursively by multiplying the
previous output value y(n — 1) by n/(n + 1), multiplying the present input x(n) by
1/(n T 1), and adding the two products. Thus the computation of y(n) by means
of (2.4.3) requires two multiplications, one addition. and one memory location, as
illustrated in Fig. 228. This is an example of a recursive system. In general, a
system whose output y(r) at time n depends on any number of past output values
y(n — 1}, ¥(n — 2),... iscdled a recursive system.

(D)
L

x{n) (2.4.3)

¥n)

@
4
ro

Figure 2.28 Realization of arecursivecumulative averaging system.
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To determine the computation of the recursive system in (2.4.3) in more
detail. suppose that we begin the process with » =0 and proceed forward in time.
Thus. according to (2.4.3). we obtain

F0) = x ()

(D) = $v(0) + 3x(D)

1
2
2

¥2) = s¥v(Lh+ %x(Z)

3

and so on. If one grows fatigued with this computation and wishes 10 pass the
problem to someone else at some time. say # = ng. the only information that one
needs to provide his or her successor is the past value y(ng — 1) and the new input
samples x(n), x(n + 1), ... Thus the successor begins with

no
ving) = ——v(ng— 1) + x(ng)
ng+ 1

ny+ 1

and proceeds forward in time until some time. say » = n;. when he or she be-
comes fatigued and passes the computational burden to someone else with the
information on the value v{»; — 1). and S0 on.

The point wc wish to make in thisdiscussion is that if one wishes to compute
the response (in this case. the cumulative average) of the system (2.4.3) to an input
signal x(n) applied at n = n,;. we need the value v(n, — 1} and the input samples
x(m) for n = ny. The term ving — 1) is called theintid condition for the system in
(2.4.3) and contains al the information needed to determine the response of the
system lor n > n, to the input signal x(n). independent of what has occurred in
the past.

The following example illustrates the use of a (nonlinear) recursive system
to compute the square root of a number.

Example 2.4.1 Sguare-Root Algorithm

Many computers and calculators compute the square root of a positive number A.
using the iterative algorithm

1 A
Sp = 3 (s,,_l + &.-1) n=0.1

where s_, is an initial guess (estimate) of +/A. As the iteration converges we have
s, % 5,_1. Then it easily followsthat s, = +A.
Consider now the recursive system

y(n)= % [y(n -1+ y(‘;(i)l)} (2.4.4)
which is redlized as in Fig. 2.29. If we excite this system with a step of amplitude
A [ie.. x(n) = Au(n)] and use as an initia condition ¥(~1) an estimate of /A, the
response y(n} of the system will tend toward +/'4 as  increases. Note that in contrast
to the system (2.4.3), we do not need to specify exactly the initia condition. A rough
estimate is sufficient for the proper performance of the system. For example. if we
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ry|—

»n)

w7 o
S

vn—-1)

¥n -1

Figure229 Realization d the squareroot system.

le A =2and y(—1) = 1, we obtain y(0) = % y(1) = 1.4166667. v(2) = 1.4142157.
Similarly, for ¥(—1) = 1.5, we have y(0) = 1.416667, v(1) = 1.4142157. Compare
these values with the /2. which is approximately 1.4142136.

We have now introduced two simple recursive systems, where the output v(n)
depends on the previous output value ¥{n — 1) and the current input x¢n). Both
systems are causal. In general, we can formulate more complex causal recursive
systems, in which the output y(x) is a function of several past output values and
present and past inputs. The system should have a finite number of delays or,
equivaently, should require a finite number of storage locations to be practicaly
implemented. Thus the output of a causal and practicaly realizable recursive
system can be expressed in general as

)= Fly(n - 1), y(n-2)...., yr—=N),x(n), x(n—=1),..., x(n—M)] (2.4.5)
where F[-] denotes some function of its arguments. This is a recursive equation
specifying a procedure for computing the system output in termsof previous values

of the output and present and past inputs.
In contrast, if y(n) depends only on the present and past inputs, then

¥(n) = Flx(n), x(n — 1),...,x(n — M)] (2.4.6)

Such asystem iscalled nonrecursive. Wehasten to add that the causal FIR systems
described in Section 2.3.7 in terms of the convolution sum formula have the form
o (2.4.6). Indeed, the convolution summation for a causal FIR system is

M
yn) =Y hlkxin —k)

k=0
=h(Ox(m)+ h(Dx(r -1 +--- + h(M)x(n — M)
= Flx(n),x(n = 1),...,x(n — M))

where the function F{-] issimply a linear weighted sum of present and past inputs
and the impulse response values h{r), 0 < n < M, constitute the weighting coef-
ficients. Consequently, the causal linear time-invariant FIR systems described by
the convolution formula in Section 2.3.7, are nonrecursive. The basic differences
between nonrecursive and recursive systems are iltustrated in Fig. 2.30. A simple
inspection of thisfigure revealsthat the fundamental difference between these two
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x(n)

Flxtn). xin — 1), Xinl
.xn = My
(a}
xtn Flytn =11 ....¥n - N Ma)
X, ... x(n = M)
1
i
-t
|
|
| Figure 230 Basic form for a causal
and realizable (a) nonrecursive and
(b (h) recursive system.

systems is the feedback loop in the recursive system. which feeds back the output
of the system into the input. This feedback loop contains a delay element. The
presence of thisdelay iscrucial for the realizability of the system. since the absence
of this delay would force the system to compute v in terms of v(n}. which is
not possible for discrete-time systems,

The presence of the feedback loop or. equivalently. the recursive nature of
(2.4.5) creates another important difference between recursive and nonrecursive
systems. For example, suppose that we wish to compute the output viny) of a
system when it is excited by an input applied at time n = 0. If the svstem is
recursive. to compute v(ng). we first need to compute al the previous values y¢0),
y(I)...., v(ng — 1). In contrast. if the system is nonrecursive. we can compute the
output v(ng) immediately without having v(no — 1), »(np — 2)..... In conclusion,
the output of a recursive svstem should be computed in order [i.e.. y{0). v(1).
¥(2)....]. whereas for a nonrecursive system. the output can be computed in any
order [i.e.. ¥(200h. v(15). v(3). »(300). etc.]. This feature is desirable in some
practical applications.

2.4.2 Linear Time-Invariant Systems Characterized by
Constant-Coefficient Difference Equations

In Section 2.3 we treated linear time-invariant systems and characterized them
in terms of their impulse responses. In this subsection we focus our attention
on a family of linear time-invariant systems described by an input-output rela-
tion called a difference equation with constant coeffficients. Systems described
by constant-coefficient linear difference equations are a subclass of the recursive
and nonrecursive systems introduced in the preceding subsection. To bring out
the important ideas, we begin by treating a simple recursive system described by
afirst-order difference equation.
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Mn)

Figure 231 B ock diagram realization
of a simple recursive system.

Suppose that we have a recursive system with an input-output equation
y(n) =ayin —1)+x(n) (2.4.7)

where a isa constant. Figure 2.31 shows a block diagram realization of the system.
In comparing this system with the cumulative averaging system described by the
input-output equation (2.4.3), we observe that the system in (2.4.7) has a constant
coefficient (independent of time), whereas the system described in (2.4.3) has time-
variant coefficients. As we will show, (2.4.7) is an input-output equation for a
linear time-invariant system, whereas (2.4.3) describesa linear time-variant system.

Now, suppose that we apply an input signal x(n) to the system for n > 0.
We make no assumptions about the input signal for » < 0, but we do assume
the existence of the initial condition y(-1). Since (2.4.7) describes the system
output implicitly, we must solve this equation to obtain an explicit expression for
the system output. Suppose that we compute successive values of y(n) for n > 0,
beginning with y(0). Thus

y(0) = ay(-1) + x(0)
y(1) = ay(0) T x(1) = a?y(-1) T ax(©) + x(1)
¥(2) = ay(1) 4 x2) = @’ v(—=1) + a’x(0) + ax(1) + x{2)

y(n) = ay(n — 1) + x(n)
=a"t Yy +a"xO) +a" Tx(D) + -+ ax(n ~ 1) + x(n)
or, more compactly,

yn) = a™ly(-1) + Za"x(n —k) n>0 (2.4.8)
k=0

The response y(r) of the system as given by the right-hand side of (2.4.8)
consists Of two parts. The first part, which contains the term y(—1), is a result of
the initial condition y(~1) of the system. The second part is the response of the
system to the input signal x(n).

If the system is initially relaxed at time » = 0, then its memory (i.e., the
output of the delay) should be zero. Hence y(—1) = 0. Thus a recursive system is
relaxed if it starts with zero initial conditions. Because the memory of the system
descri bes, in some sense, its "'state,” we say that the system is at zero state and
its corresponding output is called the zero-state response or forced response, and
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is denoted by v,.(n). Obviously. the zero-state response or forced response of the
system (2.4.7) is given by

V(i) = Zakx(n -k n>0 (2.4.9)
k=0
It is interesting to note that {2.4.9) is a convolution summation involving the
input signal convolved with the impulse response

himy = a"u(n) (2.4.10

We also observe that the svstem described by the first-order difference equation
in (2.4.7) is causal. As a result. the lower limit on the convolution summation in
(2.4.9)isk = 0. Furthermore. the condition y(—1) = 0 implies that the input signal
can be assumed causal and hence the upper limit on the convolution summation
in (24.9) isn. since x(n — k) = 0 for k£ > n. In effect. we have obtained the result
that the relaxed recursive system described by the first-order difference equation
in (2.4.7). is a linear time-invariant IIR system with impulse response given by
(2.4.10).

Now. suppose that the system described by (2.4.7) isinitially nonrelaxed {i.c..
»(~1) # 0] and the input x(x) = O for all n. Then the output of the svstem with
zero input is called the zero-input response or natural response and is denoted by
vyi0m). From (2.4.7). with a(n) =0 for —> < n < oc. we obtain

Vi) = a”*'_\'(—l) n>0 2411

We observe that a recursive svstem with nonzero initial condition 1s nonrelaxed
in the sense that it can produce an output without being excited. Note thar the
zero-input response is due to the memory of the system.

To summarize. the zero-input response is obtained by setting the input signal
to zero. making it independent of the input. It depends onty on the nature of the
system and the initial condition. Thus the zero-input response is a characteristic of
the system itself, and it is al'so known as the natural or free response of the system.
On the other hand, the zero-state response depends on the nature of the sysiem
and the input signal. Since this output is a response forced upon it by the input
signal. it is usually called the forced response of the system. In general. the total
response of the system can be expressed as v(n) = v,i(n) + Vas(n).

The system described by the first-order difference equation in (2.4.7) is the
simplest possible recursive svstem in the general class of recursive systems de-
scribed by linear constant-coefficient difference equations. The general form for
such an equation is

N M
yin) = — ZGU’(" —k)y+ Zbkx(n —k) (2.4.12)

k=1 k=0
or, equivalently,

N M
S avin—k =) bx(n—k  a=1 (2.4.13)
k=0 =0
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The integer N is caled the order of the difference equation or the order of the
system. The negative sign on the right-hand side of (2.4.12) is introduced as a
matter of convenience to alow us to express the difference equation in (2.4.13)
without any negative signs.

Equation (2.4.12) expresses the output of the system at time n directly as
a weighted sum of past outputs yv(z — 1), ¥(n — 2)..... v(n — N) as wel as past
and present input signals samples. We observe that in order to determine v(n)
for n > 0, we need the input x(n) for dl » > 0, and the initia conditions y{-1),
y(=2)..... v(—=N). In other words, the initial conditions summarize al that we
need to know about the past history of the response of the system to compute
the present and future outputs. The general solution of the N-order constant-
coefficient difference equation is considered in the following subsection.

At this point we restate the properties of linearity, time invariance, and
stability in the context of recursive systems described by linear constant-coefficient
difference equations. As we have observed. a recursive system may be relaxed or
nonrelaxed. depending on the initial conditions. Hence the definitions of these
properties must take into account the presence of the initial conditions.

We begin with the definition of linearity. A system is linear if it satisfies the
following three requirements:

1 The tota response is equal to the sum of the zero-input and zero-state re-
sponses lie.. y(n) = y;(n) + y,.(m)].

2 The principle of superposition applies to the zero-state response (zero-state
linear).

3. The principle of superposition applies to the zero-input response (zero-input
linear).

A system that does not satisfy all three separate requirementsis by definition
nonlinear. Obviousty, for a relaxed system, y;;(n) = 0, and thus requirement 2,
which is the definition of linearity given in Section 2.2.4, is sufficient.

We illustrate the application of these requirements by a simpte example.

Example 242
Determine if the recursive system defined by the difference equation

viny =avin — 1) + x(n)
is linear.

Solution By combining (2.4.9)and (2.4.11), we obtain (2.4.8).which can be expressed
as

¥(n) = yai(n) + yus(n)

Thus the first requirement for linearity is satisfied.
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To check for the second requirement, let us assume that x{n} = ¢ x;(n) +
caxatn}. Then (2.4.9) gives

Yulh) = Za"[qxl(n — k) +caxan — k)]
k=l
" n
= ¢ Za‘x;(n —k)+cn Za‘.x:(n —k)
k=0 k=0

A

.
= ooy )+ eyl (n)

Hence »,(n1 satisfies the principle of superposition. and thus the system is zero-state
linear.
NoH' let us assume that ¥(—1) = ¢;y(=1) + cay2(—1). From (2.4.11) we obtain

vatmy = @ o mi=1) + cavat=1]
= ca™ ! (=1 + a" =T
= e+ el o)

Hence the system is zero-input linear.
Since the system satisfies all three conditions lor linearity. it is linear

Although it is somewhat tedious, the procedure used in Example 2.4.2 to
demonstrate linearit!; for the system described by the first-order difference equa-
tion. carriesover directly to the general recursive systems described by the constant-
coefficient difference equation given in (2.4.13). Hence. a recursive system
described by the linear difference equation in (2.4.13) also satisfies dl three con-
ditions in the definition of linearity, and therefore it is linear.

The next question that arises is whether or not the causal linear svstem
described by the linear constant-coefficient difference equation in (2.4.13) is time
invariant. This is fairly easy. when dealing with systems described by explicit
input-output mathematical relationships. Clearly. the system described by (2.4.13)
is time invariant because the coefficients a; and b, are constants. On the other
hand. if one or more of these coefficients depends on time. the system is time
variant. since its properties change as a function of time. Thus we conclude that
the recursive system described by a linear constant-coefficient difference equation is
linear and time invariant.

The final issue is the stability of the recursive system described by the linear.
constant-coefficient difference equation in (2.4.13). In Section 2.3.6 we introduced
the concept of bounded input-bounded output (BIBO) stability for relaxed sys-
tems. For nonrelaxed systems that may be nonlinear, BIBO stability should be
viewed with some care. However. in the case of a linear time-invariant recursive
system described by the linear constant-coefficient difference equation in (2.4.13),
it suffices to state that such a system is BIBO stable if and only if for every
bounded input and every bounded initial condition, the total system response is
bounded.
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Example 2.43
Determine if the linear time-invariant recursive system described by the difference
equation given in (2.4.7)is stable.
Solution Let us assume that the input signal x(n) is bounded in amplitude, that is,
jx(n)] = M, < oo for dl n > 0. From (2.4.8) we have

| n

|
Za‘x(n—k)!, n=>0
|

k=0

)| < (@™ y(=D)| +

< lal™ =DM, Y ial, n=0
k={}

1- }aI"“

T M 20

1A

" [y (=1)| + M,

If n is finite, the bound M, is finite and the output is bounded independently of the
value of a. However. as n — oo, the bound M, remains finite only if |aj < 1 because
le|* — Gasr — . Then M, = M, /(1 — |al).

Thus the system is stable only if la| < 1.

For the simple first-order system in Example 2.4.3. we were able to express
the condition for BIBO stahility in terms of the system parameter a, namely a| < 1.
We should stress, however, that this task becomes more difficult for higher-order
systems. Fortunately, as we shall see in subsequent chapters, other smple and
more efficient techniques exist for investigating the stability of recursive systems.

2.4.3 Solution of Linear Constant-CoefficientDifference
Equations

Given a linear constant-coefficient difference equation as the input-output rela
tionship describing a linear time-invariant system, our objective in this subsection
is to determine an explicit expression for the output y{n). The method that is
developed is termed the direct method. An alternative method based on the z-
transform is described in Chapter 3. For reasons that will become apparent later,
the z-transform approach is caled the indirect method.

Basically, the goal isto determine the output y(n), n > 0, d the system given
a specific input x(n), » > 0, and a set of initia conditions. The direct solution
method assumes that the total solution is the sum of two parts:

y(n) = yn(n) + yp(n)
The part yx{n) is known as the homogeneous or complementary solution, whereas
yp(n) is called the particular solution.

The homogeneous solution of a difference equation. We begin the
problem of solving the linear constant-coefficient difference equation given by
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(2.4.13) by assuming that the input x(n} = 0. Thus we will first obtain the solution
to the homogeneous difference equation

N
Y axtn—k =0 (2.4.14)
A=}

The procedure for solving a linear constant-coefficient difference equation
directly is very similar to the procedure for solving a linear constant-coefficient
differential equation. Basicaly, we assume that the solution is in the form of an
exponential, that is.

yaln) =" (2.4.15)

where the subscript h on y(») is used to denote the solution to the homogeneous
difference equation. If we substitute this assumed solution in {2.4.14), we obtain
the polynomia equation

I%
Z au\."“A =0

k=0

NG +adN T e T tavoiatan) =0 (2.4.16)

The polynomial in parentheses is called the characteristic polvnomial of the
system. In general, it has N roots, which we denote as ;. x. .... Ay. The roots
can bereal or complex valued. In practice the coefficientsai. as. .. ., ay are usualy

real. Complex-valued roots occur ascomplex-conjugate pairs. Some o the N roots
may be identical. in which case we have multiple-order roots.

For the moment, let us assume that the roots are distinct, that is, there are
no multiple-order roots. Then the most general solution to the homogeneous
difference equation in (2.4.14) is

_"Mn)=C]).’; +C2k"2+"'+CN)~’;‘V (2.4.17

where C,. Ca2..... Cy are weighting coefficients.

These coefficients are determined from the initial conditions specified for the
system. Since the input x(n} = 0. (2.4.17) can be used to obtain the zero-input
response of the system. The following examplesillustrate the procedure.
Example2.4.4

Determine the homogeneous solution d the system described by the first-order dif-

ference equation

v(m) +avin—1)=x(n) (2.4.18)

Solution  The assumed solution obtained by setting x(n) =0 is
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When we substitute this solution in (2.4.18), we obtain [with x{n) = 0]
Mg =0

P+ a) =0

A= —a
Therefore, the solution to the homogeneous difference equation is
yp(n) = C&" = C(=a))" (2.4.19)

The zero-input response of the system can be determined from (2.4.18) and
(2.4.19). With x(n) =0, (2.4.18) yields

y(0) = —ai¥(-1)
On the other hand. from (2.4.19) we have
w®=C
and hence the zero-input response of the system is
yalm) = (=a)"™'v(=1)  nz0 (2.4.20)

With a = —a,, this result is consistent with (2.4.11) for the first-order system, which
was obtained earlier by iteration of the difference equation.

Example 2.4.5

Determine the zero-input response of the system described by the homogeneous
second-order difference equation

yr) =3y(n—-1)—4y(n-2)=0 (2.4.21)

Solution First we determine the solution to the homogeneous equation. We assume
the solution to be the exponential

yaln) = A"
Upon substitution of this solution into (2.4.21). we obtain the characteristic equation
o3t —4ant = g
22 -3 -4 =0

Therefore, the roots are 1 = -1, 4, and the general form of the solution to the
homogeneous equation is

C]Nl' +C2l’i

Yi(n)
(2.4.22)

Ci(=D)"+ G@r"

The zero-input response of the system can be obtained from the homogenous
solution by evaluating the constants in (2.4.22), given the initial conditions y(—1) and
y(~2). From the difference equation in (2.4.21) we have

¥(0) = 3y(~1) + 4y(-2)

y(1) = 3¥(0) + 4y(-1)
= 3[3y(-1) + 4y(-2)} + 4y(-1)
= 13y(-1) + 12y(-2)
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On the other hand. from (2.4.22) we obtain
Y0 = C 4G
vilv = —Cy +4C;
By equating these two sets of relations, we have
Cr+C: = 3v(=1)+4v(-2)
=Gy +4C = 13v(—D+12v(=2)
The solution o these two equations s
Cr = =iyt iv-2)
G = v+ $x(=2)
Therefore. tho zero-input response of the svstem is
van) = [—iv(=11= iv(=D}=1)
) ) (2.4.23)
HEv=D+ Bv=D)4y a2 0
For example, if v(=2)=0 and y(=1)=5. then ¢, = —1. (> = 16. and hence

vty = (=1y 4 4y n>0

Thesc examplesillustrate the method for obtai ning the homogeneous solution
and the zero-input response of thesystem when the characteristic equation contains
distinct roots. On the other hand, il the characteristic equation contains multiple
roots. the form of the solution given in (2.4.17) must be modified. For example. if
4 isa root of multiplicity m. then (2.4.17) becomes

() = MY + Condli + Canall + - + Cpn™ 41

(2.4.24)
+ Conpt My yy + -+ Oy

The particular solution of the difference equation. The particular so-
lution y,(n) is required to satisfy the difference equation (2.4.13) for the specific
input signal x(n). n = 0. In other words, y,(n) is any solution satisfying

N M
Y a,n-k =3 bxn—k)  ag=1 (2.4.25)
k=0 k=0

To solve (2.4.25). we assume for y,(n), a form that depends on the form of the
input x{n). The following example illustrates the procedure.

Example 246
Determine the particular solution o the first-order difference equation
vin) tarvin - 1) = x(n). jay| < 1 (2.4.26)
when the input x(r) is a unit step sequence. that is,

x(n) = u(n)
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Selution  Since the input sequence x(xn) is a constant for n > 0. the form of the solu-
tion that we assume is also a constant. Hence the assumed solution of the difference
equation to the forcing function x¢n). called the particular sol ution of the difference
equation. is

yp(n) = Ku(n)

where K is a scale factor determined so that (2.4.26) is satisfied. Upon substitution
of this assumed solution into (2.4.26). we obtain

Kuin)y+a Kuln — 1) = u(n)

To determine K. we must evatuate this equation for any n > 1. where none of the
terms vanish. Thus

It
—

K+a K
1
1+a
Therefore, the particular solution to the difference equation is

u(n) (2.4.27)

W=

In this example, the input x{n). n > 0. is a constant and the form assumed
for the particular solution is also a constant. If x(n) iS an exponential, we would
assume that the particular solution is also an exponential. If x{n) were a sinusoid,
then y,(n) would also be a sinusoid. Thus our assumed form for the particular
solution takes the basic form of the signal x(n). Table 2.1 provides the general
form of the particular solution for several types of excitation.

Example 24.7
Determine the particular solution of the difference equation
¥y =ivin—1)— Iv(n - 2) + x(n)

when the forcing function x(n) = 2".n > 0 and zero elsewhere.

TABLE 2.1 GENERAL FORM OF THE PARTICULAR
SOLUTION FOR SEVERAL TYPES OF INPUT

SIGNALS
Input Signal. Particular Solution,
x{n) yoln)
A (constant) K
AM" KM"
AnM Kon* + kn#-14 F Ky
A'M An(K”nM+K!"M—l+'“+KM)
_LACOSO)O" l Ky coswon T Ky sinwon
A sin wyn
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Solution The form o the particular solution is
yplny = K2° n>0
Upon substitution o v,(n) into the difference equation, we obtain
K2Zu(ny = 1K u(n - 1) = LK2°2u(n - 2)+ 2"uin)

To determine the value d &, we can evaluate this equation for any n > 2, where
none of the terms vanish. Thus we obtain

4K = 22K) - 1K +4
and hence k = ¥. Therefore, the particular solution is

ypm =% a=0

We have now demonstrated how to determine the two components d the
sotution to a difference equation with constant coefficients. These two components
are the homogeneous solution and the particular solution. From these two com-
ponents, we construct the total solution from which we can obtain the zero-state
response.

The total solution of the difference equation. The linearity property of
the linear constant-coefficient difference equation allows us to add the homoge-
neoussolution and the particular solution in order to obtain the total solution. Thus

¥(n) = yp(n) + yp(n)

The resultant sum y(n) contains the constant parameters { C,)embodied in the
homogeneous solution component yx(r). These constants can be determined to
satisfy theinitial conditions. The following example illustrates the procedure.

Example2.4.8
Determine the total solution yin). » > 0. to the difference equation
¥(n) +ayy(n —1) = x(n) (2.4.28)
when x(n) is a unit step sequence [i.e., x(n) = u(n)) and y(~1) is the initial condition.
Solution From {2.4.19) d Example 2.4.4, the homogeneous solution is
yi(n) = C(—a))"
and from (2.4.26) d Example 2.4.6,the particular solution is

ypln) = 1—:“—‘

Consequently, the total solution is

= C(=a;)" + L
y(n) = C(—ar) T+a

n20 (2.4.29)

where the constant C is determined to satisfy the initial condition y(—1).
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In particular, suppose that we wish to obtain the zero-srate response of the
system described by the first-order difference equation in (2.4.28). Then we set

v(—=1)=0. To evaluate C. we evaluate (2.4.28) at n = 0 obtaining
v +ay=hr =1
0 =1

On the other hand, (2.4.29) evaluated at n = 0 yields

\’(O) =C + ;._
1+a
Consequently.
1

Ct+ —70
| ta

=1
j— a
1+a
Substitution for € into (2.4.29) yields the zero-state responsc o the svstem
1- (—a }n-ﬂ
Yaln) = B +‘:] n =

If we evaluate the parameter C in {2.4.29) under the condrtion that v(—1) # (. the
total soiution will include the zero-input responsc as well as the zero-state responsc
o the svstem. In this case (2.4.28) viclds

v +avi=1) =1
Yy = —apvi=1 41
On the other hand. (2.4.29) yields
]

viy=c+
1+a
By equating these two relations. we obtain
1
ct = —ay(=1)+ |
1+a
C = —al\~(—])+ l

| +ay
Finally, if we substitute this value of C into (2.4.29).we obtain

1 = (=a)™!
" = (—a; V" ~1 el 0
yin) = (a)" (=D = — "z (2.4.30)

yaln} + ya(n)

We observe that the system response as given by (2.4.30) is consistent with
the response v(n) given in (2.4.8) for the first-order system (with a = —a,). which
was obtained by solving the difference equation iteratively. Furthermore. we note
that the value of the constant C depends both on the initial condition y(-1) and
on the excitation function. Consequently, the value of C influences both the zero-
input response and the zero-state response. On the other hand, if we wish to
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obtain the zero-state response only, we simply solve for C under the condition
that y(—1) =0, as demonstrated in Example 2.4.8.

We further observe that the particular solution to the difference equation can
be obtained from the zero-state response of the system. Indeed, if |a;} < 1, which
is the condition for stahility of the system, as will be shown in Section 244, the
limiting value of y,(n) asn approachesinfinity, is the particular solution, that is,

)'p(n) = "l_i‘n&yu(n) o= I—+—‘H

Since this component of the system response does not go to zero as n approaches
infinity, it is usualy called the steady-state response of the system. This response
persists as long as the input persists. The component that dies out as n approaches
infinity is called the transient response of the system.

Example24.9

Determine the response v{r), n > 0, of the system described by the second-order
difference equation

v(n)=3v(n—=1)—4v(n—2) = x(n) + 2x(n = 1) (2.4.31)
when the input sequence is
x{n) = 4"u(n)

Solution We have already determined the solution to the homogeneous difference
equation for this system in Example 2.4.5. From (2.4.22) we have

w(n) = C(=1)" 4+ C(4)" (2.4.32)

The particular solution to (2.4.31) is assumed to be an exponentia sequence of the
same form as x(n). Normally, we could assume a solution of the form

Yp(n) = K(4) u(n)

However, we observe that y,{(n) is already contained in the homogeneous solution,
so that this particular solution is redundant. Instead, we select the particular solution
to be linearly independent of the terms contained in the homogeneous solution. In
fact, we treat thissituation in the same manner as we have already treated multiple
rootsin the characteristic equation. Thus we assume that

¥p(n) = Kn(4)"u(n) (2.4.33)
Upon substitution of (2.4.33)into (2.4.31), we obtain
Kn(@)"u(n) - 3K(n — 1)(4)" 'u(n - 1) — 4K (n — 2)(4)"2uin — 2)
= (4)u(n) + 28y 'u(n — 1)

To determine K, we evaluate this equation for any n > 2, where none d the
unit step terms vanish. To simplify the arithmetic, we select » = 2, from which we
obtain kK = £. Therefore,

Yoln} = $n(d) u(n) (2.4.34)
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The total solution to the difference equation is obtained by adding (2.4.32) to
(2.4.34).Thus
vim = G-+ G@yrt i@ nz0 (2.4.35)

where the constants €, and C- are determined such that the initial conditions are
satisfied. To accomplish this, we return to (2.4.31).from which we obtain

v(0) = 3v(-D+4y(=2)+1

y(1) = 3v(0)+4y(—-1)+ 6

Lvi—) +12yv(~2)+ 9

On the other hand. (2.4.35)evaluated at » =0 and n = 1 yields
¥0 = C+C;
¥y = —Cy+4C + &

We can now equate these two sets of relations to obtain C; and C». In so doing. we
have the response due to initial conditions y(~1) and y(—2) (the zero-input response).
and the zero-state or forced response.

Since we have already soived for the zero-input response in Example 2.4.5. we
can simplify the computations above by setting v(—1) = v(—2) = 0. Then we have

]

C+C=1
—C+40+ ¥ =9
Hence C, = —5’_; and ¢, = Z—i‘ Finally, we have the zero-state response to the forcing
function x(n) = (4)"u(n) in the form
Yult) = = (=1 + B4 + End)y az0 {2.4.36)

The total response d the svstem. which includes the response to arbitrary initial
conditions. is the sum of (2.4.23) and (2.4.36).

2.4.4 The Impulse Response of a Linear Time-Invariant
Recursive System

The impulse response of a linear time-invariant system was previously defined as
the response of the system to a unit sample excitation [i.e., x(n} = §(n)]. In the
case of a recursive system, A(n) is ssmply equal to the zero-state response of the
system when the input x{n) = §(n) and the system is initialy relaxed.

For example, in the simpie first-order recursive system given in (2.4.7}, the
zero-state response given in (2.4.8), is

Yulny =Y dxin—k) (24.37)
k=0

With x(n) = é(n) issubstituted into {2.4.37), we obtain

Z a*8(n — k)
k=0

=a n>0

1

¥zs(n)
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Hence the impulse response of the first-order recursive system described by
(24.7)is

h(n) = a"u(n) (2.4.38)
as indicated in Section 2.4.2.

In the general case of an arbitrary, linear time-invariant recursive system. the
zero-state response expressed in terms of the convolution summation is

Yas(nt) = Zh(k)x(n -k a=z0 (2.4.39)
=0

When the input is an impulse [i.e.. x(n) = &(n)]. (2.4.39) reduces to

Yzs(n) = h(n) (2.4.40)
Now, let usconsider the problem of determining the impulse response i (n) given a
linear constant-coefficient difference equation description of the system. In terms
of our discussion in the preceding subsection, we have established the fact that the
total response of the system to any excitation function consists of the sum oi two
solutions of the difference equation: the solution to the homogeneous equation
plus the particular solution to the excitation function. In the case where the exci-
tation is an impulse, the particular solution is zero. since x(n) = {} for n > 0. that is.

)'p(") =0

Consequently, the response of the system to an impulse consists only of the solu-
tion to the homogeneous equation, with the (C,) parameters evaluated to satis(v
the initial conditions dictated by the impulse. The following example illustrates
the procedure for obtaining k(n) given the difference equation for the system.
Example 2410

Determine the impulse response h(r) for the system described by the second-order
difference equation

v(n) = 3y(n - 1)—4y(n—2):x(n)+2x(n -1 (2.4.41)

Solution We have dready determined in Example 2.4.5 that the solution to the
homogeneous difference equation for this system is

wm) =1t GE r=z0 (2.4.42)

Since the particular solution iszero when x(n) = 5(n). theimpulseresponsed the sys
tem isSmply given by (2.4.42), where C; and C; must be evaluated to satisfy (2.4.41).
Forn =0and n =1, (2.4.41)yields

¥0) =1
y1) =3y0)+2=5

where we have imposed the conditions y(—1} = ¥{-2} = 0. since the system mug he
relaxed. On the other hand, (2.4.42) evaluated at n = 0 and n = 1 yields

y0) = C+@
y) = -C, +4C,
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By solving these two sets of equationsfor C; and C,. we obtain
Cy = -%_ C, =

e

Therefore, the impulse response o the system is
Riny = [=1(=1)" + £y Juin)

We make the observation that both the simple first-order recursive system
and the second-order recursive system have impulse responses that are infinite in
duration. In other words, both of these recursive systems are |IR systems. In
fact, due to the recursive nature of the system, any recursive system described by
a linear constant-coefficient difference equation is an IIR system. The converse
is not true, however. That is, not every linear time-invariant IIR system can be
described by a linear constant-coefficient difference equation. In other words,
recursive systems described by linear constant-coefficient difference equations are
a subclass of linear time-invariant IR systems.

The extension of the approach that we have demonstrated for determin-
ing the impulse response of the first- and second-order systems. generalizes in a
straightforward manner. When the system is described by an Nth-order linear
difference equation of the type given in (2.4.13), the solution of the homogeneous
equation is

.
yuln) =y Ceny
k=1

when the roots {x;} of the characteristic polynomial are distinct. Hence the impulse
response of the system isidentical in form, that is,

N
hn) =y Ciif (2.4.43)
k=1

where the parameters {C,} are determined by setting the initial conditions y(—1} =
L.z y(=N)=0.

Thisform d h(n) alowsusto easily relate the stability of a system. described
by an Nth-order difference equation, to the values of the roots of the characteristic
polynomial. Indeed, since BIBO stability requires that the impulse response be
absoluteiy summable, then, for a causal system, we have

oc oc N N o0
Yo =33 Cnp| < YICH Y Il
n=0 n=0 | k=1 k=1 n=0
Now if ji,| < 1 for dl k, then
oc
Y it < oo
n=0

and hence
Y lh(n)] < oo
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On the other hand, if one or more of the |A«| = 1, h(n) is no longer absolutely
summable, and consequently. the system is unstable. Therefore, a necessary and
sufficient condition for the stability of a causal 1R system described by a linear
constant-coefficient difference equation, isthat dl roots of the characteristic poly-
nomial be less than unity in magnitude. The reader may verify that this condition
carries over to the case where the system has roots of multiplicity m.

25 IMPLEMENTATION OF DISCRETE-TIME SYSTEMS

Our treatment of discrete-time systems has been focused on the time-domain char-
acterization and analysis of linear time-invariant systems described by constant-
coefficient linear difference equations. Additional analytica methods are devel-
oped in the next two chapters, where we characterize and analyze LTI systems in
the frequency domain. Two other important topics that will be treated later are
the design and implementation of these systems.

In practice, system design and implementation are usually treated jointly
rather than separately. Often, the system design is driven by the method of
implementation and by implementation constraints, such as cost. hardware lim-
itations, size limitations, and power requirements. At this point, we have not
as yet developed the necessary analysis and design tools to treat such complex
issues. However, we have developed sufficient background to consider some ba-
sic implementation methods for realizations of LTI systems described by linear
constant-coefficient difference equations.

2.5.1 Structures for the Realization of Linear
Time-Invariant Systems

In this subsection we describe structures for the realization of systems described
by linear constant-coefficient difference equations. Additional structures for these
systems are introduced in Chapter 7.

As a beginning, let us consider the first-order system

y(m) = —aiv{n — 1) + bpx(n) + byx(n — 1) (2.5.1)

which is realized asin Fig. 2.32a. This redlization uses separate delays (memory)
for both the input and output signal samples and it iscalled adirect form | structure.
Note that thissystem can be viewed as two linear time-invariant systems in cascade.
Thefirst is a nonrecursive, system described by the equation

v(n) = byx(n) + bix(n - 1) (25.2)
whereas the second is a recursive system described by the equation
y(n) = —ayy(n — 1) + v(n) (2.5.3)

However, as we have seen in Section 2.34, if weinterchange the order d the
cascaded linear time-invariant systems, the overall system response remains the
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same. Thus if we interchange the order of the recursive and nonrecursive systems,
we obtain an alternative structure for the realization of the system described by
(2.5.1). The resulting system is shown in Fig. 2.32b. From this figure we obtain
the two difference equations

win) = —aqqwin—1)+x(n (2.54)

bow{n) + bywn — 1} (2.3.5)

which provide an alternative algorithm for computing the output o the system
described by the single difference equation given in (2.5.1). In other words. the
two difference equations (2.5.4)and (2.5.5) are equivalent to the single difference
equation (2.5.1).

A close observation of Fig. 2.32 reveals that the two delay elements contain
the same input win) and hence the same output win — 1). Consequently. these
two elements can be merged into one delay, as shown in Fig. 2.32c. In contrast

12
L
n s

o8]
h

y(n)

x(n) [ SN RN NLE
+ +

R

i a

(a)

x(n) /‘\ uin} by N
- + —

by
win — 1y win—- 1)
(b
x{n) /—\ win) /‘\ vin)
+ +
o by N
—a by
win — 1)

{c)

Figure 232 Stepsin converting from the direct farm | realization in (a) to the
direct form I1 realization in (C).
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to the direct form | structure, this new realization requires only one delay for
the auxiliary quantity w(n), and hence it is more efficient in terms of memory
requirements. It is caled the direct form ILstructure and it is used extensively in
practical applications.

These structures can readily be generalized for the genera linear time-
invariant recursive system described by the difference equation

N M
y(n) =~ Zaky(n — k) + Zbkx(n —k) (2.5.6)

k=1 k=0
Figure 2.33 illustrates the direct form | structure for this system. This structure
requires M + N delays and N+ & + 1 multiplications. It can be viewed as the
cascade of a nonrecursive system

M
v(n) = Y bxin = k) 2.5.7)
=0
and a recursive system
N
¥ == aytn -k +om) 2.5.8)

k=1

By reversing the order of these two systems as was previously done for the
first-order system, we obtain the direct form I structure shown in Fig. 234 for

x(n) by /;\ v(n) /:\
N

by -a

Fire233 Direct form | structure of the system described by (25.6).
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w(n) by

1

—a win-1) b

—ds

x(n) { + } ¥n}

D%

—dy

by

—ay - win — M) by L

-G -0

—ln_

| —an win — N)

Figure2-34 Direct form I1 structurefor the system described by (2.5.6).

N > M. This structure is the cascade of a recursive system

N
win) = —-Za;w(n ~k)+ x(n) (2.5.9)
k=)
followed by a nonrecursive system
M
¥ =Y baw(n — k) (2.5.10)
k=0

We observe that if N > M. thisstructure requires a number of delays equa to
the order N of the system. However, if M > N, the required memory is specified
by M. Figure 2.34 can easily by modified to handle this case. Thus the direct form
11 structure requires M + N + 1 multiplications and max({M, N} delays. Because it
requires the minimum number of delays for the realization of the system described
by (2.5.6), it is sometimes called a cononi ¢ f orm
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A special case o (2.5.6) occurs if we set the system parameters a, = O.
k =1,..., N. Then the input-output relationship for the system reduces to

M
¥m) =3 bex(n=k) 2.5.11)
k=0

which is a nonrecursive linear time-invariant system. This system views only the
most recent M +1 input signal samplesand, prior to addition, weights each sample
by the appropriate coefficient &, from the set {5:}. In other words. the system
output is basically a weighted novi ng average of the input signal. For this reason
it is sometimes called a novi ng average (MA) system. Such a system is an FIR
system with an impulse response h(k) equal to the coefficients b,. that is.

o b, O<k=M
h(l‘)_[O, otherwise

n

(2.5.12)
If wereturn to (2.5.6) and set M = 0, the general linear time-invariant system
reduces to a "purely recursive” system described by the difference equation

N
yin)=— Zat)'(n — k) + bpx(n) (2.5.13)
k=1
In this case the system output is a weighted linear combination of N past outputs
and the present input.
Linear time-invariant systems described by a second-order diffcrence egua-
tion are an important subclass of the more general systems described by (2.5.6)
or (2.5.10) or (2.5.13). The reason for their importance will be explained later
when we discuss quantization effects. Suffice to say at this point that second-order
systems are usually used as basic building blocksfor realizing higher-order systems.
The most general second-order system isdescribed by the difference equation
y(n) = —ayy(n —1) —ayv(n — 2) + byx(n)
(2.5.14)
+ byx(n ~ 1) + byx(n — 2)
which is obtained from (2.5.6) by setting N = 2 and M = 2. The direct form II
structure for realizing this system is shown in Fig. 2.35a. If we set a; = a» = 0.
then (2.5.14) reduces to

y(n) = box(n) + byx(n — 1) + byx(n — 2) (2.5.15)

which is a specia case of the FIR system described by (2.5.11). The structure
for redizing this system is shown in Fig. 2.35b. Findly, if we set b, = s =0
in (2.5.14), we obtain the purely recursive second-order system described by the
difference equation

y(r) = —a1y{n — 1) —apy{n — 2) + box(n) (2.5.16)

which is a special case of (2.5.13). The structure for realizing this system is shown
in Fig. 2.35¢c.
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xm C\ 2o /;\ ¥(n)
T Y
o =2
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X [ [
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il O m yin}
N T :
I

Figure 2.35 Structures for the realization of second-order systems. (a) general
second-order system; (b) FIR system: (c) " purely recursive system”

2.5.2 Recursive and Nonrecursive Realizations of FIR
Systems

We have already made the distinction between FIR and IIR systems, based on
whether the impulse response h(n) of the system has a finite duration, or an infi-
nite duration. We have also made the distinction between recursive and nonrecur-
sive systems. Basicaly, a causal recursive system is described by an input-output
equation o the form

yim = Flyn=1),..., y(n—N).x(n),....x(n — M)] (25.17)

and for a linear time-invariant system specificaly, by the difference equation

N

M
Yim == aymn -k + Y bixin — k) 2.5.18)
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On the other hand, causal nonrecursive systems do not depend on past values o
the output and hence are described by an input-output equation of the form

v(n) = Fixtn), x(n - 1), ..., x(n—M)] (2.5.19)
and for linear time-invariant systems specifically, by the difference equation in
(2.5.18)witheg; =0fork=1,2,...,N.

In thecase of FIR systems, we have already observed that it isalways possible
to realize such systems nonrecursively. In fact, witha; =0, k =1,2,..., N, in
(2.5.18), we have a system with an input-output equation

M
y(n) = Zbkx(n —k) (2.5.20)
k=0

This is a nonrecursive and FIR system. As indicated in (2.5.12), the impulse
response o the system is smply equal to the coefficients (#,). Hence every FIR
system can be realized nonrecursively. On the other hand, any FIR system can
also be realized recursively. Although the general proof of this statement is given
later, we shall give a simple example to illustrate the point.

Suppose that we have an FIR system of the form

1 M

X (n) = M—ﬂ;x(n —l\) (2.521)
for computing the moving average of asignal x(n). Clearly. thissystem isFIR with
impulse response

1
hin) = M_+1 O<n<M

Figure 2.36 illustrates the structure of the nonrecursive realization of the system.
Now, suppose that we express (2.5.21) as

1 X
y(n) = M+1§.r(n—1—k)

1

+M+1

[x(n) ~x(n—1-M)]

yin - 1T ﬁ[x(n) —x(n—1-M)] (2.5.22)

ato]

L
M+1

Figure 2.36 Nonrecursive realization of an FI R moving average system.
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Now, (2.5.22) represents a recursive realization of the FIR system. The structure
of thisrecursive realization o the moving average system isillustrated in Fig. 2.37.

In summary. we can think of the terms FIR and IR asgeneral characteristics
that distinguish a type of linear time-invariant system. and o the terms recursive
and nonrecursive as descriptions of the structures for realizing or implementing
the system.

X(")
—_— !

- 1)

Figure 237 Kccursive realization of an FIR moving average system.

2.6 CORRELATION OF DISCRETE-TIME SIGNALS

A mathematical operation that closely resembles convolution is correlation. Just
as in the case of convolution. two signal sequences are involved in correlation.
In contrast to convolution. however. our objective in computing the correlation
between the two signals is to measure the degree to which the two signals are
similar and thus to extract some information that depends to a large extent on
the application. Correlation of signats is often encountered in radar. sonar. digital
communications, geology. and other areas in science and engineering.

To be specific. let us suppose that we have two signal sequences x(n} and
v(n) that we wish to compare. In radar and active sonar applications. x(n) can
represent the sampled version of the transmitted signal and v(») can represent the
sampled version o the received signa at the output of the analog-to-digital (AID)
converter. If atarget is present in the space being searched by the radar or sonar.
the received signd v(n) consists o a delayed version of the transmitted signal.
reflected from the target. and corrupted by additive noise. Figure 2.38 depicts the
radar signal reception problem.

We can represent the received signa sequence as

y(n) =ax(n - D) + w(n) (2.6.1)

where « is some attenuation factor representing the signa loss involved in the
round-trip transmission of the signal x(n), D is the round-trip delay, which is
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Figure 2.38 Radar target detection.

assumed to be an integer multiple of the sampling interval, and w(n) represents
the additive noise that is picked up by the antenna and any noise generated by the
electronic components and amplifiers contained in the front end of the receiver.
On the other hand, if there is no target in the space searched by the radar and
sonar, the received signa y(x) consists of noise alone.

Having the two signal segquences, x(r), which is called the reference signal or
transmitted signal, and y{x), the received signal, the problem in radar and sonar
detection is to compare y(n) and x(n) to determine if a target is present and, if
S0, to determine the time delay D and compute the distance to the target. In
practice, the signal x(n — D) is heavily corrupted by the additive noise to the point
where a visual inspection of y(r) does not reveal the presence or absence of the
desired signdl reflected from the target. Correlation provides us with a means for
extracting this important information from y(n).

Digital communications is another area where correlation is often used. In
digital communications the information to be transmitted from one point to an-
other is usually converted to binary from, that is, a sequence of zeros and ones,
which are then transmitted to the intended receiver. To transmit a0 we can trans-
mit the signal sequence xo(n) for0 < n _( L -1 and to transmit a 1 we can transmit
the signal sequence x;(n) for 0 <n < L — 1, where L issome integer that denotes
the number of samples in each of the two sequences. Very often, x;(n} is selected
to be the negative of xp(n). The signa received by the intended receiver nay be
represented as

yimy=xn)twm =01 O=nslL-1 (26.2)

where now the uncertainty is whether xo(n) or x;(n) is the signal component in
y(n), and w(n) represents the additive noise and other interference inherent in
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any communication system. Again. such noise has its origin in the electronic
components contained in the front end of the receiver. In any case, the receiver
knows the possible transmitted sequences xo(n) and x;(n) and isfaced with the task
of comparing the received signal v(n) with both x¢(n) and x; (r) to determine which
of the two signals better matches y(r). This comparison process is performed by
means of the correlation operation described in the following subsection.

2.6.1 Crosscorrelation and Autocorrelation Sequences

Suppose that we have two real signal sequences x(n) and y(n) each of which has
finite energy. The crosscorrelation of x(n) and y(n) is a sequence r,,(/), which is
defined as

o
rey= Y xmyn—1)  1=0.%1%2 ... (2.6.3)

n=-2C

or, equivalently. as

o
Py =Y x(n+Dwny  I=0£1.%2, ... 2.6.4)
n=—0oC
Theindex | is the (time)shift (orlug) parameter and the subscripts xy on the cross
correlation sequence ., (/) indicate the sequences being correlated. The order of
the subscripts, with x preceding y. indicates the direction in which one sequence
is shifted. relative to the other. To elaborate, in (2.6.3). the sequence x(n) is left
unshifted and »(n) is shifted by | units in time, to the right for 1 positive and to
the left for | negative. Equivalently, in {2.6.4), the sequence v(n) is left unshifted
and x(n) isshifted by | units in time. to the left for | positive and to the right for
| negative. But shifting x(n) to the left by { units relative to v(n) is equivalent
to shifting v(n) to the right by 1 units relative to x(n). Hence the computations
(2.6.3) and (2.6.4) yield identical crosscorrelation sequences.
1f we reverse the roles of x(n) and y(n) in (2.6.3) and (2.6.4) and therefore
reverse the order d the indices xy. we obtain the crosscorrelation sequence

oc

re)= 3 ymxn -1 2.6.5)
or, equivaently, B
re() = i y(n + Dx(n) (2.6.6)
By comparing (2.6.3) with (2.6.6) or (_ZTEOSCA) with (2.6.5), we conclude that
ree(l) = rypc (=) (2.6.7)

Therefore, r, (/) is simply the folded version of r,,(/), where the foiding is done
with respect to! = 0. Hence, ry, (1) provides exactly the same information as r,, (i),
with respect to the similarity of x(n) to y(n).
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Example 26.1
Determine the crosscorrelation sequence r,, (1) of the sequences

x(n) ={...0.0.2.-1.3.7.1.2. -3.0.0. .. }}
1

yin)y=1{...001.-1.2.-2.4.1.-2.5.0.0...}
i

Solution Let us use the definition in (2.6.3) to compute r,, (/). For | =0 we have

o

a0 = Y x(my(n)
The product sequence vy(n) = x(n)v(n) is

vo(n) = {...,0.0.2.1.6.-14.4,2.6.0.0...}
t

and hence the sum over al values oi » is
re(®y =7
For | > 0. we simptly shift »(n) to the right relative to x(s) by | units. compute

the product sequence w(n) = x(m)y(n = {). and finaly. sum over all values of the
product sequence. Thus we obtain

re (1) =13, re(2) = -18. ro(3) = 16. ro(d)r = -7
re(5) =3, rey(6) = =3, ra(y =0, 1>7

For! < 0, weshift ¥(n) to theleft relative to x(n) by { units. compute the product
sequence v;{n) = x(n)¥(n —1), and sum over al vaues of the product sequcncc. Thus
we obtain the values of the crosscorrelation sequence

re(—1) =0, reo(=2) =33, re(=3)=—14, re(—4) = 36
riy(=5) =19, ro(—6) = =9, re(=7) = 10 re(y=01<-§
Therefore. the crosscorrelation sequence of x(r) and v{n) is

re () = {10, -9,19, 36, —14.33,0,7, 13, -18,16. ~7. 5, -3}
t

The similarities between the computation of the crosscorrelation of two se-
guences and the convolution of two sequences is apparent. In the computation of
convolution, one of the sequences is folded, then shifted, then multiplied by the
other sequence to form the product sequence for that shift, and finaly, the values
of the product sequence are summed. Except for the folding operation. the com-
putation of the crosscorrelation sequence involves the same operations: shifting
one of the sequences, multiplication of the two sequences, and summing over al
values of the product sequence. Conseguently, if we have a computer program
that performs convolution, we can use it to perform crosscorrelation by providing
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as inputs to the program, the sequence x(n) and the folded sequence y(—n). Then
the convolution of x(r) with yv(—n) yields the crosscorrelation r..(!). that is,
rr)‘(!) =x(I} * y(=0) (2.6.8)

In the special case where y(n) = x(n), we have the autocorreiation of x(n),
which is defined as the sequence

oC

ra(l) = Z x(m)x(n — 1) (2.6.9)
or, equivaently, as
ral= 3" x(n+Dx(n) (2.6.10)

In dealing with finite-duration sequences, it is customary to express the auto-
correlation and crosscorrelation in terms o the finite limitson the summation. In
particular, if x(n) and ¥(n) are causal sequences of length ~ [i.e., x(n) = y(n) =0
for n <0 and n = NJ, the crosscorrelation and autocorrelation sequences may be
expressed as

N—lk|—1

re(l) = Z x(myy(n = 1) (2.6.11)
and
N=lkj—1
re)= Y xmx-D 26.12)
wherei =1,k =0forl >0,andi =0,k =1forl<0O.

2.6.2 Properties of the Autocorrelation and
Crosscorrelation Sequences

The autocorrelation and crosscorrelation sequences have a number of important
properties that we now present. To develop these properties. let us assume that
we have two sequences x{n) and y(n) with finite energy from which we form the
Itnear combination,

ax(n) + by(n —1}

where a and b are arbitrary constants and | is some time shift. The energy in this
signal is

X oc oc
Y laxm by —DP = a* Y xi(n) + b2 > -0
+2ab Y x(my(n—1) (2.6.13)

= a%rx(0) + b2ryy(0) + 2abr,, (1)
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First, we note that r..(0) = E. and r,,(0) = E,, which are the energies of
x(n) and v(n), respectively. It is obvious that

a*ree (0) + B7ryy (0) + 2abre, (1) > 0 (2.6.14)
Now, assuming that b # 0, we can divide (2.6.14)by b? to obtain

roe(0) (%)2 +2r () (%) +7y5(0) 2 0

We view this equation as a quadratic with coefficients r.,(0), 2r,,(!), and ry(0).
Since the quadratic isnonnegative, it follows that the discriminant of this quadratic
must be nonpositive, that is,

42 () = rer(O)ryy (@] < 0

Therefore, the crosscorrelation sequence satisfies the condition that

\r.r)'(l)\ < vV Tax (O)rn(o) =V E, E'y (2615)

In the special case where y(n) = x(n). (2.6.15) reduces to
Iree (] < ree(0) = E; (2616)

This means that the autocorrelation sequence of asignal attains its maximum value
at zero lag. This result isconsistent with the notion that a signal matches perfectly
with itself at zero shift. In the case of the crosscorrelation sequence, the upper
bound on its values s given in (2.6.15).

Note that if any one or both of the signals involved in the crosscorrelation
are scaled, the shape of the crosscorrelation sequence does not change, only the
amplitudes of the crosscorrelation sequence are scaled accordingly. Since scaling
is unimportant. it is often desirable, in practice, to normalize the autocorrelation
and crosscorrelation sequences to the range from -1 to 1. In the case of the
autocorrelation sequence, we can simply divide by r..(0). Thus the normalized
autocorrelation sequence is defined as

Tee(l)

pux(l) = ) (2.6.17)
Similarly, we define the normalized crosscorrelation sequence
L0 (2.6.18)

er\'(I) =
: Vex 0y (0)
Now o« (/)] < 1 and |px (I} < 1, and hence these sequences are independent of
signal scaling.
Finally, as we have already demonstrated, the crosscorrelation sequence sat-
isfies the property

rx,v(l) = ryx(_I)
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With y(n) = x(n), this relation results in the following important property for the
autocorrelation sequence
r.l.! (,) = r.r,l (—I) (2'6'19)

Hence the autocorrelation function is an even function. Consequently, it suffices
to compute r.. (/) for I > 0.
Example 2.63

Compute the autocorrelation d the signal

x(n)y=a"u(n),0<a <1
Solution  Since x(n) is an infinite-duration signal. its autocorrelation also has infinite
duration. We distinguish two cases.
If 1 > 0. from Fig. 2.39 we observe that

- = a
ra{l) = Zx(n)x(n ~1)= Zu"u"’/ =q! Z(a:)"
n=l n={ =l
Since a < 1. the infinite series can erges and wc obtain
1
Tl =7 a1z 0

For / < () we have

x N
N 1
— - - - _ ~1 Iy -
)= Zx(n).\(n h=u Zm y T "?a | <0
=0 n=0r
But when | is negative. « ' = . Thus the two relations for », (73 can be combined
into the following expression:

1 -

Feo(N) = a' -x <! <o¢ (2.6.20)

| —a
The sequence r.. (/) is shown in Fig. 2.42(d). We observe that

Fao(=1)y = r ()

and
L0y = _‘_ﬂ
re (0) =
Therefore, the normalized autocorrelation sequence is
0 .
prc(ly = racl =a" - <l <X (2.6.21)
Fer (O

2.6.3 Correlation of Periodic Sequences

In Section 2.6.1 we defined the crosscorrelation and autocorrelation sequences of
energy signals. In this section we consider the correlation sequences of power
signals and, in particular, periodic signals.

Let x(n) and v(n) be two power signals. Their crosscorrelation segquence is
defined as

M

1
Fal) = Jim e Y xmyn =D (2.6.22)

=-M
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Figure 239 Computation of the autocorrelation d the signal x{n) = a".
O<a<l

If x(r) = y(n), we have the definition of the autocorrelation sequence of a
power signal as
ree() = Ilm —+— x(n)x(n—=1) (2.6.23)
u;M
In particular,if x(n) and y(n) are two periodic sequences, each with period N,
theaveragesindicated in (2.6.22) and (2.6.23) over theinfiniteinterval, areidentical
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to the averages over a single period, so that (2.6.22)and (2.6.23) reduce to
N-1

1
e == ; x(myv(n —1) (2.6.24)
and
1 N-1
rel) = & gx(n)x(n - (2.6.25)

It is clear that r,, (1) and r..(!) are periodic correlation sequences with period N.
The factor 1/~ can be viewed as a normalization scale factor.

In some practical applications, correlation is used to identify periodicities in
an observed physical signal which may be corrupted by random interference. For
example. consider a signal sequence v(x) of the form

v(n) = x(n) + wn) (2.6.26)

where x(n) is a periodic sequence d some unknown period N and w(n) represents

an additive random interference. Suppose that we observe M samples of v{n). say

0<n=<M-1 where M => N. For al practica purposes, we can assume that

viny=0forn < 0 and n > M. Now the autocorrelation sequence o v{n). using
the normalization factor of 1/M, is

1 M-1
)= — v(n)vin —1 2,627
= ; )y =) (2.6.27)

If we substitute for v(») from (2.6.26) into (2.6.27) we obtain

M-
ra() = ]ﬁ Z[X(n) +wm}lx(n — 1) +win —1)]

n=0

1 M=
ﬁ Zx(n)x(n -1

n=0

I

1
+ o ;[x(n)w(n 1) + win)x(n = 1)] (2.6.28)

] M=l
+Rl_ gw(n)w(n )

= () + P {l) + Fype (D) + 1y (1

The first factor on the right-hand side of (2.6.28) is the autocorrelation se-
guence of x@). Since x(n) is periodic, its autocorrelation sequence exhibits the
same periodicity, thus containing relatively large peaks at / = 0, N, 2N, and so
on. However. as the shift / approaches M, the peaks are reduced in amplitude
due to the fact that we have a finite data record of M samples so that many of the
products x(n)x(n — ) are zero. Consequently, we should avoid computing ry, (/)
for large lags, say, | > M /2.



Sec. 2.6 Correlation of Discrete-Time Signals 127

The crosscorrelations .., (/) and r, (!) between the signal x(#) and the ad-
ditive random interference are expected to be relatively small as a result of the
expectation that x(n) and w{n) will be totally unrelated. Finaly. the last term on
the right-hand side o (2.6.28) is the autocorrelation sequence d the random se-
guence w(n). This correlation sequence will certainly contain a peak at | = 0. but
because of its random characteristics, r,. (/) is expected to decay rapidly toward
zero. Consequently, only r.. (/) is expected to have large peaks for | > 0. This
behavior alows Us to detect the presence o the periodic signal x(n) buried in the
interference w(n) and to identify its period.

An example that illustrates the use of autocorreiation to identify a hidden
periodicity in an observed physical signal is shown in Fig. 2.40. This figure illus-
trates the autocorrelation (normalized) sequence for the Wolfer sunspot numbers
for 0 < 1 < 20, where any value of / corresponds to one year. These numbcrs are
given in Table 2.2 for the 100-year period 1776-1869. There is clear evidence in
thisfigure that a periodic trend exists, with a period of 10 to 11 years.

Example 2.6.3

Suppose that a signal sequence x(n) = sin(m/S)n, lor 0 < n < 99 is corrupted by
an additive noise sequence w:(n), where the values of the additive noise arc sclected
independently from sample to sample. from a uniform distribution over the range

TABLE 2.2 YEARLY WOLFER SUNSPOT NUMBERS

1770 101 1795 21 1820 16 1845 4
1771 82 1796 16 1821 7 1846 62
1772 66 1797 6 1822 4 1847 98
1773 35 1798 4 1823 2 1848 124
1774 31 1799 7 1824 8 1849 96
1775 7 1800 14 1825 17 1850 66
1776 20 1801 34 1826 36 1851 64
1777 92 1802 45 1827 50 1852 54
1778 154 1803 43 1828 2 1853 39
1779 125 1804 48 1829 67 1854 Al
1780 85 1805 42 1830 71 1855 7
1781 68 1806 28 1831 48 1856 4
1782 38 1807 10 1832 28 1857 23
1783 23 1808 8 1833 8 1858 55
1784 10 1809 2 1834 13 1859 94
1785 24 1810 0 1835 57 1860 96
1786 83 1811 1 1836 122 1861 77
1787 132 1812 5 1837 138 1862 59
1788 131 1813 12 1838 103 1863 44
1789 118 1814 14 1839 86 1864 47
1790 90 1815 35 1840 63 1865 El]
1791 67 1816 46 1841 37 1866 16
1792 60 1817 41 1842 24 1867 7
1793 47 1818 30 1843 11 1868 37

1794 41 1819 24 1844 15 1869 74
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Figure 240 Identification of periodicity in the Wolfer sunspot numbers: (a) an-

nual Wélfer sunspot numbers: (b) autocorrelation sequence.

(=A/2,A/2), where A is a parameter of the distribution. The observed sequence is
y(n) = x(n)+w(n). Determinethe autocorrelation sequence r,,(n) and thus determine
the period of the signal x(n).

Solution The assumption isthat the signal sequence x(») hassome unknown period
that we are attempting to determine from the noise-corrupted observations {v(a)}.
Although x{(r) is periodic with period 10, we have only a finite-duration sequence of
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length M = 100 [i.e.. 10 periods of x(m)]. The neise power level P, mn the sequence
wn) s determined by the parameter A. We simply state that £, = A°/12. Thesignal
power level is P, = l Therefore. the signal-to-noise ratio (SNR) is defined as

Usually. the SNR is expressed on a logarithmic scale in decibels (dB) as 10log,
(P /P

Figure 2.41 illustrates a sample d a noise sequence win). and the observed
sequence v{n) = xin) + win) when the SNR = 1 dB. The autocorrelation sequence

w(n)

(b) SNR=1dB

ra{n)

(e
Figure2.41 Use d autocorrelation to detect the presence d a periodic signal corrupted by
noise.



130

win)

rwin)

Discrete-Time Signals and Systems Chap. 2

(a)

(b) SNR=5dB

(c)

Figure 242 Use of autocorrelation to detect the presence of a periodic signal
corrupted by noise.

ry(f) isillustrated in Fig. 2.41c. We observe that the periodic signal x(n), embedded
in y(n), results in a periodic autocorrelation function r., (/) with period N = 10. The
effect of the additive noise is to add to the peak vaue a | = 0. but for { # 0, the
correlation sequence r,,,(!) = 0 as a result of the fact that values of w(rn) were gen-
erated independently. Such noise is usually called white noise. The presence of this
noise expiains the reason for the large peak at / = 0. The smaller, nearly equal peaks
at | = £10, 2£20,... are due the periodic characteristics of x(n).

Figure 2.42 illustrates the noi se sequence w(r), the noise-corrupted signal y(r),
and the autocorrelation sequence r,, () for the same signal, within which is embedded
asignal at asmalier noise level. In thiscase, the SNR = 5dB. Even with thisrelatively
small noise level, the periodicity of the signa is not easily determined from observa
tion of y(n). However, it is clearly evident from observation of the autocorrelation

sequence ry,(n).

2.6.4 Computation of Correlation Sequences

As indicated on Section 2.6.1, the procedure for computing the crosscorrelation
sequence between x(n) and y(n) involves shifting one of the sequences, say x(n).
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to obtain x(n — I). multiplying the shifted sequence by y(n) to obtain the prod-
uct sequence y(n)x(n — 1). and then summing al the values of the product se-
quence to obtain r, (/). This procedure is repeated for different values of the
lap !. Except for the folding operation that is involved in convolution. these ba-
sic operations for computing the correlation sequence are identical to those in
convolution.

The procedure for computing the convolution is directly applicable to com-
puting the correlation of two sequences. Specificaly, if we fold v(n) to obtain
y(—n), then the convolution of x(#) with »(—nr) isidentical to the crosscorrelation
o x(n}y with ¥(n). That is.

e () = x(n) * y(—=R)|p=y (2.6.29)

As a consequence. the computational procedure described for convolution can be
applied directly to the computation of the correlation sequence.

We now describe an agorithm that can be easily programmed to compute
the crosscorrelation sequence o two finite-duration signas x(n), 0 = n < N — |,
and vin),0<n<M-1

The algorithm computes r,. (/) for positive lags. According to the relation
re(=1) = ry, (/). the values of r,, (/) for negative lags can be obtained by using the
same algorithm for positive iags. and interchanging the roles of x(n) and v(n). We
observe that if M < N, r.(/) can be computed by the relations

M—1+1
xtmyin -1, 0=l =N-M
ro{l) = (2.6.30)
x(n)yin =1). N- M<!/=N- 1
n=i
On the other hand. if M > N, the formula for the crosscorrelation becomes
N-1

I =) xmyn-1) 0<l=<N-1 (2.631)
=/

The formulas in (2.6.30) and (2.6.31) can be combined and computed by means
of the following simple algorithm illustrated in the flowchart in Fig. 2.43. By
interchanging the roles of x(n) and y(n) and recomputing the crosscorrelation
sequence. we obtain the valuesof r,(!) corresponding to negative shifts 1.

If we wish to compute the autocorrelation sequence r., (1), we set y(r) = x(n)
and M = N in (2.6.31). The computation of r..{) can be done by means o the
same agorithm for positive shifts only.

2.6.5 Input-Output Correlation Sequences
In this section we derive two input-output relationships for LTI systems in the

"correlation domain." Let us assume that a signa x(n) with known autocorrela-
tion r,. () is applied to an LTI system with impulse response &(n), producing the
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fe—=1+1

r{‘,(l) — rx).(l) +x(n)vin — 1)

Store rx_,(l}, =01,

ok — 1

Figure 243 Flowchart for software
implementation o crosscorrelation.
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output signal

Nn) = h(n) xx(n) = Z hikyx(n — k)

k=—oc
The crosscorrelation between the output and the input signa is
rocll) =y * x(=1) = h(l) = [x(1) x x(=1}]
or
Foclly = () *rec(l) (2.6.32)

where we have used (2.6.8) and the properties of convolution. Hence the crosscor-
relation between the input and the output of the system is the convolution of the
impulse response with the autocorrelation of the input sequence. Alternatively.
r.. (1) may be viewed as the output of the LTI system when the input sequence is
re (1. Thisisillustrated in Fig. 2.44. If we replace | by —/ in (2.6.32). we obtain

ro(l)y = h(=D xro ()

The autocorrelation of the output signal can be obtained by using (2.6.8) with
x(n) = v(n) and the properties of convolution. Thus we have

rodl)y = y() = v(=h
[y = x ()] * [h(=1) * x(—=1)]
(R % B(=D)] * [x(1) * x (=]

[

(2.6.33)

= ran (D) % rec(D)

The autocorrelation ry; (/) of the impulse response h(n) existsif the system isstable.
Furthermore. the stability insures that the system does not change the type (energy
or power) of the input signal. By evaluating (2.6.33) for | = 0 we obtain
o
0 = Y run (e (k) (2.6.34)
k=~oc

which provides the energy (or power) of the output signa in terms of autocorre-
lations. These relationships hold for both energy and power signals. The direct
derivation of these relationshipsfor energy and power signals, and their extensions
to complex signals. are left as exercises for the student.

Input LTI Output
SYSTEM
ruln) hin) ro(n

Figure 2.44 Input-output relation for
S crosscorrelation ryz(n).
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2.7 SUMMARY AND REFERENCES

The major theme of this chapter is the characterization of discrete-time signals and
systems in the time domain. Of particular importance is the class of linear time-
invariant (LTI) systems which are widely used in the design and implementation
o digital signal processing systems. We characterized LTI systems by their unit
sample response #(n) and derived the convolution summation, which is a formula
for determining the response y(n) of the system characterized by h(x) to any given
input sequence x(n).

The class of LTI systems characterized by linear difference equations with
constant coefficientsis by far the most important of the LTI systemsin the theory
and application o digital signal processing. The general solution o a linear dif-
ference equation with constant coefficients was derived in this chapter and shown
to consist o two components: the solution of the homogeneous equation which
represents the natural response of the system when the input is zero, and the par-
ticular solution, which represents the response of the system to the input signal.
From the difference equation. we also demonstrated how to derive the unit sample
response o the LTI system.

Linear time-invariant systems were generally subdivided into FIR (finite-
duration impulse response) and IR (infinite-duration impulse response) depend-
ing on whether h(n) has finite duration or infinite duration, respectively. The
realizations of such systems were briefly described. Furthermore, in the redliza
tion of FIR systems, we made the distinction between recursive and nonrecursive
realizations. On the other hand, we observed that | IR systems can be implemented
recursively, only.

There are a number of texts on discrete-time signals and systems. We men-
tion as examples the books by McGillem and Cooper (1984), Oppenheim and Will-
sky (1983), and Siebert (1986). Linear constant-coefficient difference equationsare
treated in depth in the books by Hildebrand (1952) and Levy and Lessman (1961).

The last topic in this chapter, on correlation of discrete-time signals, playsan
important role in digital signal processing, especially in applications dealing with
digital communications, radar detection and estimation, sonar, and geophysics. In
our treatment of correlation sequences, we avoided the use of statistical concepts.
Correlation issimply defined as a mathematical operation between two sequences,
which produces another sequence, called either the crosscorrelation sequence when
the two sequences are different. or the autocorrelation sequence when the two se-
quences are identical.

In practical applications in which correlation is used, one (or both) of the
sequences is (are) contaminated by noise and, perhaps, by other forms of interfer-
ence. In such a case, the noisy sequence is called a random sequence and is char-
acterized in statistical terms. The corresponding correlation sequence becomes a
function of the statistical characteristics of the noise and any other interference.

The statistical characterization of sequences and their correlation is treated in
Appendix A. Supplementary reading on probabilistic and statistical concepts deal-
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ing with correlation can be found in the books by Davenport (1970). Helstrom
(1990). Papoulis (1983).and Peebles (1987).

PROBLEMS

21 A discrete-time signal x(n) is defined as

1+2, -3=nz-1
x("]:!]. O0=<n<3
[ 0, elsewhere
(a) Determine its values and sketch the signal x(n).
(b) Sketch the signals that result if we:
(1) First fold x{n) and then delay the resulting signal by four samples.

(3) First delay xtr) by four samples and then fold the resulting signal-
(¢) Sketch the signal x{—n +4).

(d) Compare the results in parts (h) and (c) and derive arule for obtaining the signal
x(—n + k) from x(n).

(e) Can vou express the signal x(a) in terms of signals é(n) and u(n)?

22 A discrete-time signal x(a) 1s shown in Fig. P2.2. Sketch and label carcfully each of
the following signals.

xiny

—— e
e 3
F——e
Eaa—1

w et

& —eto|—

n  Figure P22

(a) x(n =2) (b)xd—n) (c)x(n+2) (d)x{mu(Z-n)
(e) x(n — 1)d(n = 3} (F) x{n®) (g) even part of x(n)
(h) odd part d x(n)

23 Show that
(a) 8(m) =u(m) —uin -1
W) uim=73, __ 8tkh=3 8n-Kk

24 Show that any signal can be decomposed into an even and an odd component. Is the
decomposition unique? |llustrate your arguments using the signal

x(m)=1{2.3.4.5.6}
t

2 Show that the energy (power) of areal-valued energy (power) signa 1s equal to the
sum of the energies (powers) o its even and odd components.
26 Consider the system

yin) = Tx(m)] = x(n?)

(a) Determine if the system is time invariant.
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(b) Toclarify the result in part (a) assume that the signa
1. 0<n<3
x(n) = {0, elsewhere
is applied into the system.
(1) Sketch the signal x(n).
(2) Determine and sketch the signal y(r)} = T[x(n)).
(3) Sketch thesignal y;(n) = y(n — 2).
(4) Determine and sketch the signal x;(n) = x(n — 2).
(5) Determine and sketch the signal v;{n) = T[x2(m).
(6) Compare the signals y2{r) and y{r — 2). What is your conclusion?
Repeat part (b) for the system

y(n) =x(n) —x(n—-1)

Can you use this result to make any statement about the time invariance of this
system? Why?
(d) Repeat parts (b) and (c) for the system

¥y =T[x(n)] = nx(n)

=S

A discrete-time system can be
(1) Static or dynamic
(2) Linear or nonlinear
(3) Time invariant or time varying
(4) Causa or noncausal
(5) Stable or unstable

Examine the following systems with respect to the properties above.

(@) ¥(r) = cos[x(n)]

m) ym =30 xth)

(c) y(n) = x(n) cos(won)

(d) y(n) =x(-n+2)

(e) y(n) = Trun|x(n)], where Trun[x(n)] denotes the integer part of x{r), obtained
by truncation

(f) v(n) = Round[x(n)]. where Round[x (n)] denotes the integer part of x(n) obtained
by rounding

Remark: The systems in parts (e) and (f) are quantizers that perform truncation and

rounding, respectively.

() v(n) = |x(n)]

() ¥(n) = x(nu(n)

@ ym =x(nm)taxn+1)

§) y(n) =x(2n)

x(m), ifx(n)>0

0, if x(n) <0

M y(n) =x(-n)

(m) y(n) = sign[x(n)]

(n) The ideal sampling system with input x,{r) and output x{n) = x,(nT), —cc <
n < oo

k) y(n) =

2.8 Two discrete-time systems 7; and 7; are connected in cascade to form a new system

7T asshown in Fig. P2.8. Prove or disprove the following statements.
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29

210

21

212

Figure P2.8

(a) If Ty and T; are linear. then 7 islinear (i.e.. the cascade connection of twao linear
systems is linear).

(b) If 7) and 7; are time invariant. then 71s time invariant.

(¢} If 7, and 7> are causal. then 7 is causal.

(d) If 7; and 7; are linear and time invariant. the same holds for 7.

(e) If 7y and 7; are linear and time invariant. then interchanging their order does not
change the system 7.

(f) Asin part (€) except that 7;. 7= are now time varying. (Hint: Use an example.)

(g} If 7; and 7> are nonlinear, then 7 is nonlinear.

(h) If 7, and 7> are stable. then 7 is stable.

(i) Show by an example that the inverse of parts (c) and (h) do not hold in general.

Let 7 be an LTI. relaxed. and BIBO stable system with input x¢n) and output v(n).

Show that:

(a) If x(n) is periodic with period N [i.c.. x(n) = x(n T N} for al r = 0]. the output
v(n) tends 1o a periodic signal with the same period.

(b) If a(n)is bounded and tends 10 a constant. the output will also tend to a constant.

(c) If x{n) is an energy signal. the output y(x) will also be an energy signal.

The following input-output pairs have been observed during the operation of alime-

invariant system:

) = 11.0.2) < vy = {0, 1.2)
1

L.

-

xatn) = 0.0.3} < vatn) = (0,1.0,2)
1 1

x3(n) = {0.0,0.1} <= ws(n) = {1.2,1)
1 1

Can you draw any conclusions regarding the linearity of the system. What is the
impulse response of the system?

The following input-output pairs have been observed during the operation of a linear
system:

) = {(=1.2.1} <2 y) = {1.2. =1.0.1}
t t

xa(m) = {1, =1, =1} v wn) = {-1,1.0.2}
1 1

x3(n) = {0.1, 1}« y3n) = {1,2.1)
t 1

Can you draw any conclusions about the time invariance of this system?

The only available information about a system consists of ¥ input-output pairs, of
signals yi(n) = T{x;(m}.i =1,2..... N.
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(a2) What is the class of input signals for which we can determine the output, using
the information above, if the system is known to be linear?
(b) The same as above, if the system is known to be time invariant,
2.13 Show that the necessary and sufficient condition for arelaxed LTI system to be BIBO
stable is

oC
D I < My < 00

for some constant A,.
214 Show that:
(@) A relaxed linear system is causal if and only if for any input x{(n) such that

x(n)y=0forn <ng= y(r)=0  forn <ang
(b) A relaxed LTI system is causal if and only if
h(n) =0 forn<0

2.15 (a) Show that for any real or complex constant a, and any finite integer numbers M
and N, we have

N aM — gh+ ]
70":!_? 1fa;é1
n=M IN-M+1, fa=1

(b) Show that if |a] < 1, then

= 1
"Z;ﬂ =1—a

216 (a) If y(n) =x(n) x h(n). show that 3. =3, >, where > = Z‘l—w"(")‘
(b) Compute the convolution y(r) = x(n) « h(n) of the following signals and check
the correctness of the results by using the test in ().
@) x(n) = (1,2,4), h(m) = {1,1,1, 1. 1}
(2) x(n) ={1,2, -1}, h(n) = x(n)
(3) x(m) = {0.1.-2,3, =4).h(m) = {1, 1. 1. 1)
(4) x(n) = {1,2.3.4.5). h(n) = (1)
(5) x(n) = {1, ~2,3} h(n) = Ig, 0.1.1.1,1)
t

(6) x{n) =1{0,0,1,1,1,1), k(n) = {1, -2. 3}
1 t
(7) x(n) =1{0.1,4, -3}, h(n) = (1.0, -1, -1}
1 1
(8) x(n) ={1,1,2), h(n) = u(n)
t
™ x(n) ={1,1.0,1,1), h(n) = {1. -2, -3, 4}
t t
(10) x(n) ={1,2,0,2,1}h(n) = x(n)
t
(11) x(n) = (})"win), hin} = (})"u(n)

2,17 Compute and plot the convolutions x(n) * h(n) and h(n) xx(n) for the pairs of signals
shown in Fig. P2.17.
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|,nm | him
6
| T?o
1 e ? . T ‘ | .‘ .
L l 1 L1l
03123 n 0123456 n
x(n} ta) h(n)
* 6
1
A e,
0123 n -3-2-10123 n
(b
xtn) hn)
1 . |
LT L
3456 n ~4-3 n
xin} e hin)
] ‘ 1
111 11
2345 n —2-1 n
dy Figure PZ.17

218 Deciermine and sketch the convolution vin) of the signals
1
x(n) = I . U=n=6

0.  elsewhere
; _]1. -2<ng2
in) = {U. elsewhere

(a) Graphicaly
(b) Analytically
219 Compute the convolution y{r} of the signals

(n)_{a". —3<n<3

=10, elsewhere
1. 0<n<4d

hin) = lO, elsewhere

220 Consider the following three operations.
(a) Multiply the integer numbers: 131 and 122.
(b) Compute the convolution of signals: (1.3.1)=*{1,2.2}.
(c) Multiply the polynomials: 1+3: +: and 1+ 2z +2:.
(d) Repeat part (a) for the numbers 1.31 and 12.2.
(e) Comment on your results.

221 Compute the convolution v(n) = x(n) * h(n) o the following pairs of signals.
(@) x(n) = a"u(n), h(n) = "u(ny when a# band whena=b

1. n=-2.0.1
(b) x(n)=12, n=-1
0, elsewhere

hin)=8(n)—8n—1)Ftom-4)Ts(r -5
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(©) xtm)=um+1)—un -4)—8(n -5)

h(n} = [u(n +2) = u(n - 3)]. (3= |n|)

(d) x(n) =u(n)—uin -5)

hn) =u(n —2)—u(r — 8 +u(n — 11) — u(n - 17)

232 Let x(n) be the input signal to a discrete-time filter with impulse response k; (r) and
let yi(n) be the corresponding output.
(a) Compute and sketch x(n) and »:(n) in the following cases. using the same scale

(b)
(c)

()
(e)

in al figures.

x(n) = {1.4,2,3.5.3.3.4,5.7.6,9)

hi(n) = (1.1}

ho(n) = (1,2.1}

hs{n) = % %l

ha(m) = {}. 1.4}

hsny = {1. -1 1)
Sketch x(n}. yi1(n), y2(n) on one graph and x(n). ¥s3(n). va(n). vs(n} on another
graph

What is the difference between vi(n) and v2(n). and between vs(n) and y4(n)?
Comment on the smoothness of v2(#) and y4(n). Which factors affect the smooth-
ness?

Compare y4tr) with vs(n). What is the difference? Can you explain it?

Let ho(n) = {}. —3}. Compute ve(n). Sketch x(n), y2(m). and v (n) on the same
figureand comment on the results,

223 The discrete-time system

yimy=nayn =1 +x(n) n=0

isat rest [i.e., ¥(=1) =0]. Check if thesystem islinear timeinvariant and BIBO stable.
224 Consider the signa y(n) =a"u(n),0 <a < 1.

(a)

(b)

(c)

Show that any sequence x{r) can be decomposed as

x(n) = Z ayln —k)
H==0C
and express ¢; in terms of x(n).
Use the properties of iinearity and time invariance to express the output y(n) =
T{x(m)] in terms of the input x(n) and the signa g(n) = T[y(n)]. Where 7[-] is
an LTI system.
Express the impulse response h(n) = T[8(n)] in terms of g(n).

2.25 Determine the zero-input response of the system described by the second-order dif-
ference equation

x(n)=3y(n—=1)—4y(n —-2)=0

2.26 Determine the particular solution of the difference equation

y(n)y = f‘,,\'(’l -1 - ,l,)’(n —2) + x(n)

when the forcing function is x(n) = 2"u{n).
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2.27 Determinc the response vtn). n > 0. of the system described by the second-order
difference equation
vin) =3vin = 1) —dyin -2y =x(n) +2xin - 1)
to the input x(r) = 4"u(n).
228 Determine the impulse response of the following causal system:
yin) —3vin— 1) —4vn - =x(m) T 2x(n—1)

229 Let x(n}. Ny < u < N» and h{n), M, < n < M> be two finite-duration signals.

(a) Determine the range L, < n < L. o their convolution, in terms of N,. Ny, M,
and M.

(b) Determine the limits of the cases of partial overlap from the left. full overlap,
and partial overlap from the right. For convenience. assume that #(n) has shorter
duration than x(n).

(c) Illustrate the vahdity of your results by computing the convolution of the signals

) 1. -2<n=x4

vin) = l()‘ elsewhere
2. -l=<sn=x?2

hin) = {0. elsewhere

230 Determinc the impulse response and the unit step response of the svsiems described
by the difference equation
(a) y(n) = 0.6x(n = 1) = 0.O8y(n = 2) + x(n)
(b) vimy=07vn — 11 = 01xtn = 2) T 2xtny —x(n = 2)

231 Consider a svstcm with impulse response

(3. U=nzx4

0. elsewhere

Determinc the input x(n for 0 < n < S that will generate the output sequence

¥(n)=(1.2.25.3.3.3.2.1.0... }
~

hin) = [

232 Consider the interconnection of LTI systems as shown in Fig. P3.32.
(a) Express the overall impulse response in terms of & (n). h2(n), hz(rn), and hs(n).
(b) Determine h{xn) when
hyn) = {344

hatn) = hatn) = (n T Lhu(n)

rat—

ha(n) = 6(n = 2)

hatn)

xi(m) 1 »n)
—  hym ®—’
hsln) ha(n) —T

Figure P2.32
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(c) Determine the response of the system in part (b) if
x(n)=8(n+2}+38(n—1)—45(n - 3)
233 Consider the system in Fig. P2.33 with hA(r) = a"u(n), -1 < a < |. Determine the
response y(n) of the system to the excitation
x(n) = u(n T 5) — utn — 10

h(n)

x(m} »(n)
+

] e

Figure P233

2.34 Compute and sketch the step response of the system
M-

1
vim) = — Y xtn-k)

k=0

235 Determine the range of values of the parameter a for which the linear time-invariant
system with impulse response

a". nz0.neven
hin) = {0. otherwise
is stable.
236 Determine the response of the system with impulse response
h(n) = a"uin)
to the input signal
x(n) = u(n) — utn — 10)
(Hinz: The solution can be obtained easily and quickly by applying the linearity and
time-invariance properties to the result in Example 2.3.5.)
237 Determine the response of the (relaxed) system characterized by the impulse response
h(n) = (3)"u(n)
to theinput signa
1, 0<n<10
x(m) = {0, otherwise
238 Determine the response of the (relaxed) system characterized by the impulse response
h(ny = ()"utn)
to the input signals
(a) x(n)=2"(n)
(b) x(n) =u{—n)
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23 Three systems with impulse responses A,(n) = §(n) — &(n = 1), ha(n} = hn). and
h3(n) = u(n). are connected in cascade.
(@) What is the impulse response. #.(n). d the overall system”
(b) Does the order o the interconnection affect the overall system?

240 (a) Prove and explain graphicaly the difference between the relations
x(Mé(n —ngl = x(ny)d(n —ny)  and  x(n) ¥&(n — ne) = x{n = ny)

(b) Show that a discrete-time system, which is described by a convolution summation.
is LTI and relaxed,
(c) What is the impulse response of the system described by »(n) = x(n — ng)?
241 Two signals s(n) and v{r) are related through the following difference equations

sty +aystn—11+ - +ays(n — N} = byu(n)

Design the block diagram realization of:
(a) The system that generates s(n) when excited by v(n).
(b) The system that generates v(n) when excited bv s{n).
(c) What is the impulsc response of the cascade interconnection of systems in parts
(a) and (b)?
2.42 Compute the zere-state response of the system described by the difference equation

v+ ivin = 1y = x(n) + 2x(n = 2)
to the input
ximy=1{1,2.3.4.2.1}
+

by solving the difference equation recursively.

243 Determine the direct form 1I realization for each of the following LTI systems
(a) 2v(m) + vin—1)=4v(n-3) = x(n) +3x(n-35)
(b) y(n)=x(n)—xin=1+2x(n=2)=3x(n-41

244 Consider the discrete-time system shown in Fig. P2.44.

xtn) 7N N vm)

§

o) —

Figure 2 44

(a) Compute the 10 first samples o its impulse response.

(b) Find the input-output relation.

(c) Apply theinput x{r) = {1. 1. 1....} and compute thefirst 10 samples of the output.
t
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(d) Computethefirst 10samples o the output for the input given in part (c) by using
convolution.
(e) Isthe system causal? Is it stable?

245 Consider the system described by the difference equation
y(n) = ay(n — 1) + bx(n)
(a) Determineb in terms of a so that

Z": hin) =1

(b) Compute the zero-state step response s(n) of the system and choose b so that
s(o0) =1.
(c) Compare the values of b obtained in parts (a) and (b). What did you notice?
2.46 A discrete-time system is reaiized by the structure shown in Fig. P2. 46.
(2) Determine the impulse response,
(b) Determine arealization for itsinverse system, that is, the system which produces
x{n) as an output when v{r) is used as an input.

x(n) ,/:\ 2 m .
08

247 Consider the discrete-time system shown in Fig. P2. 47

Figure P2.46

x(n)

)

FireP247

(a) Compute thefirst six values d the impulse response o the system.
(b) Compute the first six values of the zero-state step response d the system.
(c) Determine an analytica expression for the impulse response of the system.
2.48 Determine and sketch the impulse response of the following systems for n = O,
1,....9.
(a) Fig, P2.48(a).
(b) Fg. P2.48(b).
(c) Fig. P2.48(c).
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Figure P2.48

(d) Classify the svstems above as FIR or |IR.
(e) Find an explicit expression for the impulse response of the system in part (c).

249 Consider the systems shown in Fig. P2.49.
(a) Determine and sketch their impulse responses A;(n). hz(n), and hx(n).
(b) Isit possible to choose the coefficients of these systems in such a way that

hy(n) = ha(n) = hs(n)

250 Consider the system shown in Fig. P2.50.
(a) Delermine its impulse response h(n).
(b) Show that k(n) isequal to the convolution of the following signals.

hin) = s(m)tom -1
hy(n) = ($)"uln)
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x(n)

x(n)

x(n)

o iy, ¥(n}

[ -]
S

B
e

2/

Figure P2.49

S ey T 2

yn)

o —

Figure P2.50

2.51 Compute the sketch the convolution v,(r) and correlation r,(n) sequences for the
following pair of signals and comment on the results obtained.
(a) x;(n) ={1.2.4} himy=1{1.1.1.1.1}
t t

ol

(b) x2(my={0.1.-2.3, =4} mym ={}.1.2.1. 1)
t t
(©) x3(m)=1(1.2.3.4) hitn) = (4.3.2,1)
t t
(d) x4(n) =1{1.2,3,4) ha(n) =(1.2,3.4)
t t
252 The zero-state response of a causal LTI system to the input x(n) = {1,3,3,1) IS

¥(n) =11,4.6,4,1}. Determine itsimpulse response. t
t
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2.53

2.54

256

257

259

Prove by direct substtution the equivalence of equations (2.5.9) and (2.5.10), which
describe the direct form II structure. to the relation (2.5.6). which describes the direct
form | structure.

Determine the response y(n). n = 0 of the system described by the second-order
difference equation

vin) —dyin— D +4y(n —2)=x(n) —x(n -1}
when the input is

x(n) = (—=1)"u(n)

and the initial conditions arc v(—1) = v(-=2) = 0.
Determine the impulse response 4(n) for the system described by the second-order
difference equation

vy —dyin— b +dvin -2y =x(my —xin - D

Show that any discrete-time signal x(r) can be expressed as

a
wmy= Y e —xtk = Du(n = &)
k=
where wn - A) is a unit siep delayed by & unuts in time, that is,
1. n=k
utn =) = l 0. otherwise

Show that the output d an LTI system can he expressed in terms of its unit step
response s(n) as follows.

S
yin} = Z |stk) —sth = D]x(n — &)
f=—x

o

D [xtk) = xtk = Dstn — k)

k=—x

Compute the correlation sequences . (/) and ¢, (/) for the following signal sequences.
) mp—N<n<nm=+N
{ 8 otherwise
1. -N<n<N
yin) = {0. otherwise

Determine the autocorrelation sequences of the following signals.
(a) xtmy=1{1.2.1.1}
il

x(n)

(b) ¥(n)=1{1.1.2.1}

What 1s your conclusion?

260 What is the normalized autocorrelation sequence of the signal x(») given by

~-N<n=N

x(n) = { 1,
“lo. otherwise
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261 An audio signa s(r) generated by a loudspeaker is reflected at two different walls

2.62*

with reflection coefficients r, and r,. The signal x(7) recorded by a microphone close
to the loudspeaker, after sampling. is

x(n) = s(r)+ ris(n — k) + ras(n — k)

where k, and k; are the delays of the two echoes.

(a) Determine the autocorrelation r..(!) of the signa x(n).

(b) Can we obtain r, ra, k3, and k; by observing r,, (/)?

(c) What happens if r, =07

Time-delay estimation in radar Let x,(r) be the transmitted signal and v,(r) be the
received signal in a radar system, where

Yolt) = ax,(t — 1g) + v,(2)

and v.(¢) is additive random noise. The signals x,(s) and y,{r) are sampled in the
receiver, according to the sampling theorem, and are processed digitally to deter-
mine the time delay and hence the distance o the object. The resulting discrete-time
signals are

x(n) = x,(nT)
v(n) = y,(nT) =ax,{nT - DT)+ 1, (nT)
2 ax(n — D)+ vin)

(a) Explain how we can measure the delay D by computing the cresscorrelation r,, (1).
(b) Let x(n) be the 13-point Barker sequence

x(n} = (+1,+1, 41, 41, +1, =1, =1, +1. +1, =1, +1, =1, 41}

and v(n) be a Gaussian random sequence with zero mean and variance a’! =0.01.
Write a program that generates the sequence v(n), 0 < n < 199 for a = 0.9 and
D = 20. Plot the signals x{n), y(n), 0 < n < 199.

Compute and plot the crosscorrelation r,. (/). 0 < / < 59. Use the plot to estimate
the value d the delay D.

(d) Repeat parts (b) and (c) for e? =0.1and a? = 1.

(e) Repeat parts (b) and (c) for the signal sequence

(¢

~

x(n) = {-1,-1,-1,+1,+1, +1. 41, -1,
+1, -1, +1. 41, -1, -1, +1)
which is obtained from the four-stage feedback shift register shown in Fig. P2.62.

Output
0— -1

1 — +1

° Modulc-2 adder

—_ register.

Figure 6 Linear feedback shift
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Note that x(n) is just one period of the periodic sequence obtained from the
feedback shift register.

(f) Repeat pans (b) and (c) for a sequence of period N =27 — 1, which is obtained
from a seven-stage feedback shift register. Table 2.3 gives the stages connected
to the modulo-2 adder for (maximal-length) shift-register sequences of length
N=2"-1.

TABLE 23 SHIFT-REGISTER
CONNECTIONS FOR GENERATING
MAXIMAL-LENGTHSEQUENCES

m  Stages Connected to Modulo-2 Adder

ro o=
—

1.2
3 1.3
4 1.4
5 1.4
6 16
7 1.7
8 1.5,6,7
9 1.6
10 1.8
1] 1,10
12 1.7.9. 12
13 [ 10, 11,13
14 1.5.9.14
15 1. 15
16 1.5, 14, 16
17 1. 15

2.63* Implementation of LTI svstems Consider the recursive discrete-time svstem described
by the difference equation

vin) = —a,v(n — 1) —aav(n — 2} + byx(n)

where ¢; = —0.8. u; = 0.64. and b, = 0.866.

(a) Write a program to compute and plot the impulse response #{r) of the system
for 0 < n < 49.

(b) Write a program to compute and plot the zero-state step response s(n) of the
system for 0 < n < 100.

(c) Define an FIR system with impulse response Arr (n) given by

h(n), 0=<n=<19

h =
mIR(n) 0. elsewhere

where h(n) is the impulse response computed in part (a). Write a program to
compute and plot its step response.

(d) Compare the results obtained in parts (b) and (c) and explain their similarities
and differences.
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2.64* Writeacomputer program that computes the overall impulseresponse A(n) of thesys-
tem shown in Fig. P2.64for 0 < n < 99. Thesystems 7;, Tz, T3, and 7. are specified by

Tiihn) = (1 it e
T:hyn) = {1,1,1,1,1)
T

Ty = dam) Fixtn - 1)t ix(n - 2)
Ta:y(n) = 0.9y — 1) — 0.81y(n = 2)F v(n) T v(r - 1)
Plot k{n) for 0 < n < 99.

—

x(n) u(m)

+ ‘ T, yin)

T y3(n)
N

Figure P22 64



The Z-Transform and Its
Application to the Analysis of
LTI Systems

Transform techniques are an important tool in the analysis of signals and lin-
ear time-invariant (LTI) svstems. In this chapter we introduce the :z-transform.
develop its properties. and demonstrate its importance in the analysis and charac-
terization of linear time-invariant systems.

The :-transform plays the same role in the analysis of discrete-time signals
and LTI systems as the Laplace transform does in the analysis of continuous-time
signals and LTI svstems. For example. we shall see that in the z-domain (complex
z-plane) the convolution of two time-domain signalsis equivalent to multiplication
of their corresponding ;-transforms. This property greatly simplifies the analysis
of the response of an LTI system to various signals. In addition. the z-transform
provides us with a means of characterizing an LTI system, and its response to
various signals, by its pole-zero locations.

We begin this chapter by defining the z-transform. Its important properties
are presented in Section 3.2. In Section 3.3 the transform is used to characterize
signds in terms of their pole-zero patterns. Section 3.4 describes methods for
inverting the :-transform of a signal so as to obtain the time-domain representa-
tion of the signa. The one-sided :-transform is treated in Section 3.5 and used
to solve linear difference equations with nonzero initial conditions. The chapter
concludes with a discussion on the use of the z-transform in the analysis of LTI
systems.

3.1 THE Z-TRANSFORM

In this section we introduce the z-transform of a discrete-time signal, investigate
its convergence properties, and briefly discuss the inverse z-transform.
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3.1.1 The Direct z-Transform

The z-transform of a discrete-time signal x(») is defined as the power series

o
X(z) = Z x(m)z™" (3.1.1)
n=-—0oC
where z is a complex variable. The relation (3.1.1) is sometimes called the direct
ztransform because it transforms the time-domain signa x(n) into its complex-
plane representation X {(z). The inverse procedure [i.e., obtaining x(n} from X (z)]
is called the inverse ztransform and is examined briefly in Section 3.1.2 and in
more detail in Section 3.4.
For convenience, the z-transform of a signal x(n) is denoted by

X(z) = Z{x(n)) (3.1.2)
whereas the relationship between x(») and X (z) is indicated by
x(n) <= X(2) (3.1.3)

Since the :-transform is an infinite power series, it exists only for those values o
z for which this series converges. The region of convergence (ROC)d X (z) is the
set of al values of z for which X (z) attains a finite value. Thus any time we cite
a z-transform we should aso indicate its ROC.

We illustrate these concepts by some simple examples.
Example 3.1.1

Determine the;-transforms o the followingfi ni re-durati onsignals.

(@) n(m = (1.2.5.7.0. 1)
(b) x(m)=11.2.5.7.0. 1}

© x3(m) =1{0,0.1.2.5.7.0. 1}

(d) x4(n)=1{2.4.5.7.0.1)
i

(e) xs(n) =8(n)
() x(n)=8(r—-k),k>0
® mm=snth,k>0

Solution From definition (3.1.1), we have

(@ Xi(z) = 14 2z7' +5:-2+ 73+ -5, ROC: entire z-plane except z =0

(b) Xa(z) = 22+ 2:+5+7:71 + 73, ROC: entire:-plane except z =0and z = oo
(© Xy(z) = 22T 2:2+5:7+7:F =7, ROC: entire z-plane except z = 0

(d) Xyz) = 222+ 4z +5+7;-1+:-3 ROC: entire z-planeexcept z =¢ and z = @
(e) Xs(z) = 1[i.e.. 8(n) «— 1], ROC: entire z-plane

(f) Xe(x) = z*[i.e.. 8(n — k) < z7*].k > 0, ROC: entire z-plane except z =0
@) X+(2) = Z[i.e, 8(n T k) < 7], k > 0, ROC: entire z-plane except z= oo
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From this example it is easily seen that the ROC of afinite-durationsigna
is the entire z-plane, except possibly the points z = ¢ and/or z = co. These points
are excluded, because z*(k > 0) becomes unbounded for z = oo and z™*(k > 0)
becomes unbounded for z; = 0.

From a mathematical point of view the z-transform is simply an alternative
representation of a signal. Thisis nicely illustrated in Example 3.1.1, where we
see that the coefficient of z=", in a given transform, is the value of the signal at
time n. In other words. the exponent of z contains the time information we need
to identify the samples of the signal.

In many cases we can express the sum o the finite or infinite series for the
z-transform in a closed-form expression. In such cases the z-transform offers a
compact alternative representation d the signal.

Example 3.1.2
Determine the z-transform of the signal
x(n) = (§)"u(n)
Solution The signal x(») consists of an infinite number of nonzero values
xm = (LGP
The z-transform of x(n) is the infinite power series
X@ =1+ + 27+ e+
= i(}-)":"‘ = i(%:“)“
ne=() n=l)

Thisis an infinite geometric series. We recall that

]+A+A2+A3+...=1—l—; if |A] <1

Consequently. for |3z7'| < 1. or equivalently, for |z! > 1. X(2) converges to

X = ——— ROC: |z| > }
-3z

Weseethat in this case. the r-transform provides a compact alternative representation
o the signal x(n).

Let us express the complex variable z in polar form as
z=re (3.1.4)

where r = |z] and 6 = x.z. Then X(z) can be expressed as

o

X(2D)ympere = Z x(n)yr~"e=/on



154 The z-Transform and Its Application to the Analysis of LTI Systems ~ Chap. 3

In the ROC o X(z). [X(z)| < oc. But
IX()] = | D xtmr e
n;—oc -

Z Ixtn)r e~ /%" = Z lx(myr=|

n=-oc n=-C

(3.1.5)

1A

Hence | X (z)| isfinite if the sequence x(n)r=" is absolutely summable.

The problem of finding the ROC for X(z) is equivalent to determining the
range of values of r for which the sequence x(n)r~" is absolutely summable. To
elaborate, let us express (3.1.5) as

X)) < Z Ix(n)r_"l-FZ pm ;

= =t (3.1.6)

" 1()1).
Zm nr \+Z -

n= n=ll

x(n}*

A

1A

If X (z) converges in some region of the complex plane. both summations in (3.1.6)
must be finite in that region. If the first sum in (3.1.6) converges. there must exist
values of r small enough such that the product sequence x(—n)r".1 < n < oc. is
absolutely summable. Therefore. the ROC for the first sum consists of al points
in a circle of some radius r;. where r; < =, as illustrated in Fig. 3.1a. On the
other hand, if the second sum in (3.1.6) converges. there must exist values of r
large enough such that the product sequence x(n)/r". 0 < n < X, is absolutely
summable. Hence the ROC for the second sum in (3.1.6) consists of al points
outside a circle of radius r > r;. asillustrated in Fig. 3.1b.

Since the convergence of X(z) requires that both sumsin (3.1.6) be finite. it
follows that the ROC of X(z) is generally specified as the annular region in the
z-plane, r» < r < r;. which is the common region where both sums are finite. This
region isillustrated in Fig. 3.1c. On the other hand. if - > r,. there isno common
region of convergence for the two sums and hence X (z) does not exist.

The following examples illustrate these important concepts.

Example3.1.3
Determine the z-transform o the signal

” _ e
x(n) =a"uln) = {0~

Solution From the definition (3.1.1) we have

X()= ia":’" = i(a:‘l)”
a=0 n=0

If lez=!| < 1 or equivalently, |zi > jel, this power series converges to 1/(1 — az™').
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Im(2)

Re(z)

Region of convergence for

2 (—n) rrl

n=1

(a)

Im(z)

Re(z)

7747
z-plane
%A % Region of conver gence for

= Jx0n
DI
n=0

z-plane

Re(z)

¢

Region of convergence for X(2)!
rperern

Ve
%
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Figure 31 Region d conver gence for
X {(z) and itscorrespondi ng causal and
anticausal components.
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Im(z)

Re(2)
Figure 32 The exponential signal x(n) = e"u(#) (a). and the ROC of s z-
transform (b).
Thus we have the z-transform pair
. 1
x(n)y =ca"un) +— X(z)= 1—_;: ROC: {z| > |aj 3.1.7)

The ROC is the exterior d a circle having radius ja|. Figure 32 showsa graph d the
signal x(n) and its corresponding ROC* Note that. in general. a need not be real.
If we set a =11in (3.1.7). we obtain the z-transform d the unit step signal

ROC: |z > 1 (3.1.8)

xm)=u(n) <= X0 = 75
Example 3.1.4

Determine the z-transform of the signal
0, n>0

x(n) = —a"u(-n-1)= [
—-a". n<-1

Solution From the definition (3.1.1) we have

X(z) = 2' (—a"): " = —i(a“:)’
i=1

A=~oC
where / = — n. Using the formula
A+ A4 A4 = Al +A+A +..)= A

- A
when |A} < 1 gives

X(3) = ———
provided that la~'z| < 1 Or, equivalently, |z < jee}. Thus
1
— RCC. iz < || (3.1.9)
1-az-!

The ROC is now the interior of acircle having radius jaj. T S is shown in Fig. 3.3.

x(n) = —a"u(—n— 1) «—i X(z) = -
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Im(z)
x(n)

@

(a) (b)

Figure 33 Anticausal signal x{n) = —e"u(—n = 1) (a), and the ROC of its =-
transform (b).

Examples 3.1.3 and 3.1.4 illustrate two very important issues. The first con-
cerns the uniqueness o the z-transform. From (3.1.7) and (3.1.9) we see that
the causal signal ¢"u{n) and the anticausal signal —o”u(—n — 1) have identica
closed-form expressionsfor the:-transform, that is,

Zi{e"u(n)} = Z{~a"u(-n - 1)) = _t
1—ez”!

This implies that a closed-form expression for the z-transform does not uniquely
specify the signal in the time domain. The ambiguity can be resolved only if
in addition to the closed-form expression, the ROC is specified. In summary. a
discrete-time signal x(n) is uniquely determined by its z-transform X(z) and the
region of convergence of X(z). In thistext the term “z-transform™ is used to refer
to both the closed-form expression and the corresponding ROC. Example 3.1.3
also illustrates the point that the ROC of a causal signal is the exterior of a circle
of some radius r» while the ROC of an anticausal signal is the interior of a circle of

some radi us r;. The following example considers a sequence that is nonzero for
—00 < n < 00.

Example 3.15
Determine the z-transform of the signal
x(n) =a"u(n) + b "u(-n~1)
Solution From definition (3.1.1) we have

oc

X{2) = th":”' + i b = Zx:(uz"})" + i(b'lz)’
n=0 I=1

=0 A=-0C
The first power series converges if laz-!| < 1 or |z| > |e|. The second power series
convergesif [57'z) < 1 or |z} < |b}.
In determining the convergence o X (z), we consider two different cases.
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Case 1 |b} < ja): 1n thiscase the two ROC above do not overlap, as shown
in Fig. 3.4(a). Consequently, we cannot find values of z for which both power series
converge simultaneously, Clearly, in this case, X (z) does not exist.

Case?2 |b) > |a|: Inthiscase thereisaringin the z-plane where both powver
series converge simultaneously, as shown in Fig. 3.4(b). Then we obtain

1 1
X&) = 10 "0
“"~b_a el (3.1.10)
- ath-z—ab:!

The ROC of X(z) is je| < [z] < |bl.

This example shows that if rhere isa ROC for an infinite durarion rwo-sided
signal, ir is aring (annular region) in rhe z-plane. From Examples 3.1.1, 3.1.3,3.1.4,
and 3.1.5. we see that the ROC of a signa depends on both its duration (finite
or infinite) and on whether it is causal, anticausal, or two-sided. These facts are
summarized in Table 3.1.

One specia case df a two-sided signal is a signal that has infinite duration
on the right side but not on the left [i.e., x(n) = 0 for n < ny < 0]. A sec-
ond case is a signal that has infinite duration on the left side but not on the

im(z)

Z-plane
16l
- — Re(z)
il
/ bl < lael
X(z) does not exist

{ 7,

Im(z)

Refz)

ROC for X(z)
Figue34 ROCfa z-transform in
Example 3.1.5.
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TABLE 3.1 CHARACTERISTIC FAMILIES OF SIGNALS WITH THEIR
CORRESPONDING ROC

Signal ROC
Finite-Duration Signals
Causal 7/
Entire z-plane
T T 11, except ¢ =
0 7
Anticausal ) 7
Entirez-plane
! T except 2= oo
0 n 7/
Two-sided
7 _
T Entirez-plane
. SARAAET except 2=0
0 A and 7 =00
Infinite-Duration Signals
Causal
z %
Mire T
0 n %
Anticausal
Izt
+1] I <n
Q n
Two-sideq,
L
ry<ld<r
1]

U

right [i.e., x(n) = 0 forn > n; > 0]. A third specia case is a signa that has
finite duration on both the left and right sides [i.e.. x(n) = 0 forn < np < 0
and n > ny > 0]. These types of signals are sometimes called right-sided, left-
sided, and finite-duration two-sided, signals, respectively. The determination of the
ROC for these three types of signals is left as an exercise for the reader (Prob-
lem 3.5).

Finally, we note that the z-transform defined by (3.1.1) is sometimes referred
to as the two-sided or hilateral z-transform, to distinguish it from the one-sided or



160 The z-Transform and Its Application to the Analysis of LTI Systems Chap. 3

unilateral z-transform given by

X" = xtm:z" (3.1.11)

=0

The one-sided :-transform is examined in Section 3.5. In this text we use the
expression :-transform  exclusively to mean the two-sided :-transform defined by
(3.1.1). The term "two-sided" will be used onty in cases where we want to resolve
any ambiguities. Clearly, if x(n) iscausa [i.e., x(n) = 0 for n < 0], the one-sided
and two-sided z-transtorms are equivalent. In any other case. the! are different.

3.1.2 The Inverse z-Transform

Often, we have the z-transform X (z) of a signal and we must determine the signal
sequence. The procedure for transforming from the z:-domain to the time domain
is caled the inverse z-transform. An inversion formula for obtaining x(n) from
X (z) can be derived by using the Cauchy integral theorem, which is an important
theorem in the theory of complex variables.

To begin, we have the :-transform defined by (3.1.1) as

o
Xoy= Y xth)™ (3.1.12)
h=—n
Suppose that we multiply both sides of (3.1.12) by :*~! and integrate both sides

over a closed contour within the ROC of X (z) which rncloses the origin. Such a
contour isillustrated in Fig. 3.5. Thus we have

20

ayei= g — (fy-n—t—k g

Siéxm dh_ﬁ > xtkh ' d: (3.1.13)
k=-x

where C denotes the closed contour in the ROC of X (z). taken in a counterclock-

wise direction. Since the series converges on this contour. we can interchange

the order of integration and summation on the right-hand side of (3.1.13). Thus

imtz)

Figure 35 Contour C for integral in
(3.1.13).
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(3.1.13) becomes

ﬁX(z)z"'ldz = Z x(k)Séz"'l"‘d: (3.1.14)

k=-oc

Now we can invoke the Cauchy integral theorem, which states that

1 n—1—k _ 1. k=n
ey 4 dz-[o’ k#n
where C is any contour that encloses the origin. By applying (3.1.15), the right-
hand side of (3.1.14) reduces to 2z jx(n) and hence the desired inversion formula

x(n) = L.SéX(z)z"‘l dz (3.1.16)
2nj

Although the contour integral in (3.1.16) provides the desired inversion for-
mula for determining the sequence x(n) from the z-transform, we shall not use
(3.1.16) directly in our evaluation of inverse z-transforms. In our treatment we deal
with signals and systems in the z-domain which have rational i-transforms (i.e., z-
transforms that are aratio of two polynomials). For such z-transformswe developa
simpler method for inversion that stems from (3.1.16) and employs a table lookup.

(3.1.15)

3.2 PROPERTIES OF THE Z-TRANSFORM

The:-transform is a very powerful tool for the study of discrete-time signals and
systems. The power of this transform is a consequence of some very important
properties that the transform possesses. |n this section we examine some of these
properties.

In the treatment that follows, it should be remembered that when we combine
severa z-transforms, the ROC of the overall transform is, at least, the intersection
of the ROC of the individua transforms. This will become more apparent later,
when we discuss specific examples.

Linearity. If
xi(n) <> X1(2)
and )
x2(n) «— X5(2)
then
x(n) =aix1(n) F ayxa(n) < X(z2) = a1 X1(2) +a:X5(2) 3.2.1)

for any constants a; and a;. The proof of this property followsimmediately from
the definition of linearity and isleft as an exercise for the reader.

The linearity property can easily be generalized for an arbitrary number of
signals. Basically, it implies that the z-transform of a linear combination of signals
is the same linear combination of their z-transforms. Thus the linearity property
helps us to find the z-transform of a signal by expressing the signal as a sum of
elementary signals, for each of which, the z-transform is already known.
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Example 3.21
Determine the:-transform and the ROC of the signal

x(n) =[3(2") = 4(3") Ju(m)
Solution If we define the signals
xi{n) =2"u(n)
and
x24ny = 3"u(n)
then x(n) can be written as
x(n) = 3x;(n) — dxa2(n)
According to (3.2.1). its:-transform is
X(2) = 3X,(z) - 4X2(2)
From (3.1.7) we recall that

ROC: |z| > le| (3.2.2)

a"u(n} -

1
1-az™!

By setting « =2 and a= 3in (3.2.2). we obtain
xiin) = 2'u(n) — X (z) =

m ROC: |z| > 2

. N 1
xa(n) = 3"uin) «— X2(2) = 1_—3:_1
The intersection of the ROC of X,(z) and X2(z) is{z| > 3. Thusthe overall transform
X(z)is

ROC: |zl > 3

3 4
X(:=1———--—— ROC: |z| > 3

-2t 13

Example 3.2.2
Determine the i-transform of the signals

(a) x(n) = (coswyn)uin)
(b) x(n) = (sinwonu(n)

Solution
(a) By using Euler's identity, the signal x(n) can be expressed as
x(n) = (coswpn)u(n) = Je'*u(n) T Le=iovnu(n)
Thus (3.2.1) implies that
X(@ = 1zZ{erum) T Lzieimmum)
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If we set a = e*/“0(ja| = le*/**{ = 1) in (3.2.2). we obtain
1

() T ROC: |z > 1
and
e~y (n) «— =y ROC: |z] > 1
Thus
X(2) = d 1 ! ROC: iz} > 1

=21 g1+ 2T —eTmgT
After some simple algebraic manipulationswe obtain the desired result. namely.

1 -z cosawy

1_2:--' coswy F =2 ROC: [zI > 1 (3.2.3)
-« 0 T2

(coswymu(n) «—
(b) From Euler’s identity,

1
x(n}) = (Sin ey du(n) = .ﬂ[frw«wu(n) — g remu(n)]

Thus
1 1 1 ‘
X() = Z (1 el v g—ﬂm;-l) ROC: [zt > |
and finally.
. . c7hsinay
. an
(Snapn)u{n) «— =2 Tcosan ¥ o ROC: |z] > 1 (3.2.4)

Time shifting. If
x(n) < X(z)
then

2.9

‘ad

x(n—k) <= X (2) (

The ROC of z7*X(z) is the same as that of X(z) except for : =0 if ¥ > 0 and
:=o0oif k <0 Theproof d this property followsimmediately from the definition
of the z-transformgiven in (3.1.1)

The properties of linearity and time shifting are the key features that make
the z-transform extremely useful for the analysis o discrete-time LTI systems.

Example 3.2.3

By applying the time-shifting property, determine the z-transform o the signals xz{n|
and x3(») in Example 3.1.1 from the z-transform of x, (r).

Solution It can easily be seen that

x2{n) = x1(n +2)
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and
xi{n) = xy(n = 2)
Thus from (3.2.5) we obtain
X ="X@=7%12 t5t7:70+:73
and
Xa() =X (@ =t 2 st S T

Note that because of the multiplication by z?, the ROC of X,(z) does not include the
point : = oc. even if it is contained in the ROC of X,(z).

Example 3.2.3 provides additional insight in understanding the meaning o

the shifting property. Indeed, if we recall that the coefficient of ;=" is the sample
value at time n. it is immediately seen that delaying a signal by k(¢ > 0) samples
[i.e.. xtn) — x{n — k)] corresponds to multiplying al terms of the:-transform by
z~*. The coefficient of z=" becomes the coefficient of z=+*.

Example 3.2.4

Determine the transform of the signa

1, 0z=n=sN-1
0. elsewhere
Solution We can determine the:-transform d this signa by using the definition
(3.1.2). Indeed,

X = { (3.2.6)

i N, ifz=1
X=) 1l :7=14z"% g™ 178 (3.2.7
gt g ifz#1

Since x(n) has finite duration. its ROC is the entire z-plane, except : =0.
Let us also derive this transform by using the linearity and time shifting prop-
erties. Note that x(n) can be expressed in terms of two unit step signals

x(n) =u(n) —u(n - N)
By using (3.2.1) and (3.2.5) we have

X2y =Z{un)} — Ziun - N} =(1 - :"N)Z[u(n)} (3.2.8)
However. from (3.1.8) we have
1
Z{u(n)) = I—T RCOC: izl > 1

which. when combined with (3.2.8), leads to (3.2.7).

Example 3.2.4 helps to clarify a very important issue regarding the ROC

of the combination of several z-transforms. If the linear combination o several
signals hasfinite duration, the ROC of its z-transform is exclusively dictated by the
finite-duration nature of this signal, not by the ROC of the individua transforms.

Scaling in the z-domain. If

x(n) PN X{2) ROC.r <zl <r:
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then )
a"x(n) < X(a'z)  ROC: a|r < |zl < lalr; (3.2.9)

for any constant a, real or complex.
Proof: From the definition (3.1.1)

o x
Z{a"x(m) = 3 a"x(mz"= Y x(m)@ ™
n=-oc n=—0c
= X(a'2)

Since the ROC of X(z) isr < |z} < r2. the ROC of X(a~'z) is
rn < |a']z| <r
or
lalry < |z| < lalr:
To better understand the meaning and implications of the scaling property,
we express a and z in polar form as a = rge/®, = = re/“, and we introduce a new
complex variable w = ¢~'z. Thus Z{x(n)} = X(z) and Z{a"x(n)) = X (w). It can

easily be seen that
w=alz= (—]—r> o e
ro

This change of variables results in either shrinking (if ro > 1) or expanding (if
ro < 1) the z-plane in combination with a rotation (if wg # 2kx ) of the z-plane
(seeFig. 3.6). Thisexplainswhy we have achange in the ROC of the new transform
where |a| < 1. The case |a| = 1, that is a = e/* is of special interest because it
corresponds only to rotation of the z-plane.

Example 3. 25

Determine the z-transforms of the signals

(a) x(n) =a"(coswyn)u(n)
(b) x(n) = a”(sin wynu(n)

z-plane w-plane
Im(z) Im(w}
) w=alz w
r
w w—wy
0 Retz) 0 Re{w)

Figure 3.6 Mapping of the z-plane to the w-plane via the transformation w =
a1z, a=rpe/™,
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Solution
(@) From (3.2.3) and (3.2.9) we easilv obtain
-]
a' (cos wymiuin} ! “1‘ COSex — N la (3.2.10
I — 2az7 cosan + a-27°
(b) Similarly. (3.2.4) and (3.2.9) vield
a=lg
& (sinaqnu(n) «— 4 Smen — 2> al (3.2.11)
1 —2uz-'coSwy - a~z—
Time reversal. |f
) = X(2) ROC:ry < |zl < r
then
: _ 1 1
x(—n) ~—— X(z7) ROC: — < |z| < — (3.2.12)
rmn n
Proof. From the definition (3.11). we have
™ o~
Zix(—n)} = Z X(=n):7" = Z .\'(I)(:")” = XY
n=—L ==~

where the change of variable / = —n s made. The ROC of X(z7") is
. 1
r < |:'1f < ry orequivalently — < |7] < —
ra ¥y
Note that the ROC for x(n) is the inverse of that for x(—n). This means that if zg
belongs to the ROC of x(n). then 1/z, isin the ROC for x(—n).

An intuitive proof of (3.2.12) is the following. When we fold a signal. the
coefficient of 27" becomes the coefficient of z". Thus. folding a signd is equivalent
to replacing = by =" in the z-transform formula. In other words. reflection in the
time domain corresponds to inversion in the z-domain.

Example 3.2.6

Determine the z-transform of the signal

x{ny=u{~n)

Solution 1t is known from {3.1.8) that

1

w(n) T ROC: I >1
By using (3.2.12), we easily obtain
: 1
u(—n) «— 1— ROC:|: <1 (3.2.13)

Differentiation in the z-domain. If

x(n) < X(2)
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then
nx(n) «— —zg--= {3.2.14)

Proof. By differentiating both sides o (3.1.1), we have
dx oC o
de) 3 xmm T = =7 Y )"
< n==0C n=—0C
—z']Z{nx(n)]
Note that both transforms have the same ROC.

Example 327
Determine the:-transform d the signa

x(n) = na"u(n)

Solution The signal x(n) can be expressed as nx,(n). where x,(n) = a"u(n). From
(3.2.2)we have that

xyn) = a"uln) «— X\(2) = T= a1 ROC: [z} > |a|
Thus, by using (3.2.14).we obtain
. axi(z --!
na'u(n) < X2y = -8 = oo g (32.15)

dz (A-az)?
If weseta=1in(3.2.15), wefind the z-transform of the unit ramp signal

-1
nu(n) «— (1__‘.-1)2 ROC: iz} > 1 (3.2.16)

Example 3.2.8
Determine the signal x(n) whose z-transform is given by

X(@=log+az!) )z} > laf
Solution By taking the first derivative of X(z), we obtain

dX@ _ -az’?
dz  1+4az!

Thus

_AX@o o 1 2 > Jal
r4 dz =az 1= (‘3)2_1 Z a

The inverse z-transform of the term in brackets is (—=a)". The multiplication by
z~! implies a time delay by one sample (time shifting property), which results in
(—a)"'u(n — 1). Finaly, from the differentiation property we have

nx(n) =a(—a)" lu(n — 1)
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or

xmy = (=1 L - 1)
n

Convolution of two sequences. |f
x1(n) <= Xi(2)
x2(n) <= X5(2)
then
x(n) = xi(n) * x2(n) < X(2) = X1(2)X2(2) (3.217
The ROC of X(z) is, at least, the intersection of that for X;(z) and X.(z).
Proof The convolution of x;(n) and x»(n) is defined as

oc

x(n) = Y xk)xs(n = k)

ka0
The:-transform o x(n) is

X(z) = i x(n)z™" = i l: i x1 (k) xa(n —k)} "

== n=—x | k=—ox
Upon interchanging the order of the summations and applying the time-shifting
property in (3.2.5). we obtain

X@= 3 mk}[ i x2(n —k):-"]

k=—2c =—05C

= X200) Y 1k = X)X (2)

k=—o0C
Example 329
Compute the convolution x(r) of the signals
x{n) = {1.-2,1)
o) = {1. 0<n<s
0. elsewhere
Solution From (3.1.1), we have
Xy =1-2:"1+;72
Xy = 14+ vz 2423 4744+ 7F
According to (3.2.17), we carry out the multiplication of X(z) and X,(z}. Thus
X@=X@X=1-z"~2%+77
Hence
x(n) = {#. -1,0,0,0,0,-1,1}
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The same result can also be obtained by noting that

X = @-z:7

1—:¢
X)) = T
Then
_ o w7
X(o=(-ha~-H=17z2 1o ht

The reader is encouraged to obtain the same result explicitly by using the convolution
summation formula (time-domain approach).

The convolution property is one of the most powerful properties of the --
transform because it converts the convolution of two signals (time domain) to
multiplication of their transforms. Computation of the convolution of two signals.
using the z-transform, requires the following steps:

1. Compute the z-transforms of the signals to be convolved.
X1(2) = Z{x (m)
(time domain - z-domain)
X2(2) = Z{xa(m)}
2. Multiply the two z-transforms.
X(2) = X1(2)X2(2) (z-domain)

3. Find the inverse z-transform of X (z).
x(n)=Z""{X(2)}]  (2-domain — time domain)

This procedure is, in many cases, computationally easier than the direct eval-
uation of the convolution summation.

Carrdation of two sequences. If
1) < X1(2)
x2(n) <= X5(2)

then

oC

o) = Y ximxn =) <> Rypn(2) = X9 Xa2(z ) (3.2.18)

n=-—0oc

Proof : We recall that

Fax (D) =x1() * x (=D
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Using the convolution and time-reversal properties, we easily obtain
Ry () = Z{x (D} Zix(=0) = X1 () X27h

The ROC of R,,..(z) is at least the intersection of that for X;(z) and X2(z7").

As in the case of convolution, the crosscorrelation o two signals is more
easily done via polynomial multiplication according to (3.2.18) and then inverse
transforming the result.

Example 3.2.10
Determine the autocorrelation sequence of the signal
x(M=ga"un). -l <a<l
Solution  Since the autocorrelation sequence of a signal is its correlation with itself,
(3.2.18) gives
Ro(2)=Z{re (Dl = X (X (7Y
From (3.2.2) we have

1

X() ROC: |z| > ja| (causal signal)

=1c az™!
and by using (3.2.15). we obtain
1
X = e ROC: |z| < 2z (anticausal signal)
1-a: fa]
Thus
1 1 1

R, (2) = 1—-ag:-'1—a: = 1 _a(: +:-1)+az

ROC: ja} < |z| < l—
la

Since the ROC of R..(z) isaring. r..{!} isa two-sided signal, even if x(n) 1s causal.
To obtain r,,(/), we observe that the z-transform of the sequence in Exam-
ple 3.1.5with b = 1/a is simply (1 - a?)R..(z). Hence it follows that

1
T (D) = l_a:a‘” —oc <l <o

The reader is encouraged to compare this approach with the time-domain solution of
the same problem given in Section 2.6.

Multiplication of two sequences. If
x(n) < X1(2)
xa(n) < X(z)
then
z 1 2 -1
x(n) = x1(Mxz(n) <> X(2) = —OX; () X2 (-) v ldy (3.2.19)
2mj v

where C isaclosed contour that encloses the origin and lies within the region of
convergence common to both X;(v) and X2(1/v).
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Proof. The z-transform of xs(n) is
oc o

X@) = Z x(mz ™" = Z x(mxa(n)z™"

n=—0C n=—0C

Let us substitute the inverse transform

1.
x1(n) = %ﬁ;é)ﬁ(u)v""dv

for x3(n) in the z-transform X(z) and interchange the order of summation and
integration. Thus we obtain

X(z) = %Séx,(u) L_me") (s)—] vy

The sum in the bracketsissimply the transform X,(z) evaluated at z/v. Therefore,

1 Z -1
X(@) = Ejﬁéxl(”m (;) v ldy

which is the desired result.
Toobtain the ROC of X (z) we note that if Xq(v) convergesfor ri < |v] < ry,
and X{z) convergesfor ry < |z] < ra,, then the ROC of Xa(z/v) is

ry < ]:l < My
l.‘

Hence the ROC for X(z) isat least
ryra < |zl < rudow (3.2.20)

Although this property will not be used immediately, it will prove useful later,
especidly in our treatment of filter design based on the window technique, where
we multiply the impulse response of an IR system by a finite-duration **window"
which serves to truncate the impulse response of the IIR system.

For complex-valued sequences x:(#) and x2(n) we can define the product
sequence as x(n) = xi(n)xj(n). Then the corresponding complex convolution
integral becomes

. < I 1 * i -1
x(n) = x1(n)x3(n) «— X(z) = 7 ﬁX](v)Xz (v‘) vodv (3.2.21)
The proof of (3.2.21) is left as an exercise for the reader.

Parseval's relation. If x,(n) and x2(n) are complex-valued sequences, then

oc

1
3 ximxsn) = L_ﬁxl(v)x; (—) vldv (3.222)
W= 2nj v*
provided that ryry < 1 < rra,. where ryy < |z} < riw and ry < |z] < ru are the
ROC of X(z) and X»(z). The proof o (3.2.22) follows immediately by evaluating
X{(z)in (3221 at z=1.
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The Initial Value Theorem. If x(n) iscausal {i.e.. x(r) =0 for»n < 0}. then
23

=]

x{0y = lim X (2} (3.
I—=x

Proof: Since x(n) is causal, (3.1.1) gives
xX
X@ =) xmz™" =x0 +xz" + x4
n=0
Obviously, asz — 0. z7" — 0 since n > 0 and (3.2.23) follows.

All the properties of the z-transform presented in thissection are summarized
in Table 3.2 for easy reference. They are listed in the same order as they have
been introduced in the text. The conjugation properties and Parseval's relation
are left as exercises for the reader.

We have now derived most of the z-transforms that are encountered in many
practical applications. These z-transform pairs are summarized in Table 3.3 for
easy reference. A simple inspection of this table shows that these :-transforms
are al rational functions (i.e., ratios of polynomialsin z='). As will soon become
apparent, rational z-transforms are encountered not only as the ;-transforms of
various important signals hut also in the characterization of discrete-time linear
time-invariant systems described by constant-coefficient difference equations.

3.3 RATIONAL Z-TRANSFORMS

Asindicated in Section 3.2, an important family of z-transforms are those for which
X(z) is a rational function. that is. a ratio of two polynomials in z=' (or z). In
this section we discuss some very important issues regarding the class of rational
z-transforms.

3.3.1 Poles and Zeros

The zeros of a z-transform X (z) are the values of z for which X (z) = 0. The poles
of a z-transform are the values of 7 for which X(z) = o. If X(z) is a rational
function, then

M
bz
X(~)———N(”_bﬂ+”12"+“-+bm‘”_§ (3.3.1)
YT D) ap+aiz 4 +anzs¥ X 3.

k=0
If ap # 0 and by # 0. we can avoid the negative powers of : by factoring out the
terms boz~* and apz~" as follows:
N@iz) bt M 4+ (b /bo)zM N+ 4 b /bo
D) aoz N ¥ + (ar/ag)z¥1 + - + aw/ag




TABLE32 PROPERTIESOF THE Z-TRANSFORM

Property Time Domain z-Domain ROC
Notation x(n) X(z2) ROC: r; < |zt < 1y
xi(n) X1(2) ROC,
xz2(n) X;(z) ROC,
Linearity ayx; (n) + azx(n) o X1(2) + @ X2 (2) At least the intersection of ROC,
and ROGC,
Time shifting x{n —k) X That of X(z), except z =01if k >0
and z=o00if k <0
Scaling in the z-domain  a"x(n) X(a ') lalry < |zl < la|r,
Time reversal x(—n) Xz ™ — <z < =
Conjugation x*(n) X*(z") Ir{IOC &
Real part Re{x(m)} HX@+ X)) Includes ROC
Imaginary part Im{x(n)) Hx@ - x29)] Includes ROC
Differentiation in the nx(n) —zdx(z, ry <zl <n
z-domain dz
Convolution x(n) * x3(n) X 1(2)X2(2) At least, the intersection of ROC,
and ROC,
Correlation Fan) = x1() # x3(~1)  Ryyu(@) = X1 (@) X20z™H At least, the intersection of ROC of

Initia value theorem

Multiplication

Parseval's relation

If x(n) causal

xy(m)x2(n)

x() = ]im X(2)

1 =0 . |
f;jék’](l})k’} (;) v dy

- 1
le (Mx;(n) = mﬁxl(v)}(;(l/u‘)v"du

Xi(z2) and X2(z™")

At least rury < |z| < rira
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TABLE 3.3 SOME COMMON Z-TRANSFORM PAIRS

Signal. x(n) -Transform, X(z) ROC
1 &(n) 1 All =
1
2 uin) ::T 2l > 1
3 = |21 > lal
" P — 21> la
auin) o
" o’ izl > fal
4 na"u(n) m > la
1
5 —a"u({—n—1) F— Izl < lal
1-az
6 : 1 ac” 121 < fal
~na"u(-n - 1) T=a 1) NER
1- "' COSwy
7 (cos won)u(n) 1—2:-"cosap * 20 Il > 1
27 sinay
8 (sin won)u(n) T2 Tcosan T2 izl > 1
1—az! s ~
9 (a"cos wynjuin) az cosy 1z} > lal
1 —2azhy +a%:?
:~'dn .
10 (2" simwomuin) a o 21 > la

1—2a:-' cosay + 42272

Chap. 3

Since N(z) and D(z) are polynomialsin :, they can be expressed in factored form as
N@) by _yn (2—20)2—22) - (2= 2u)
(z=pi¥z—=p2)--- (2= pn)

T Do a

(33.2)

where G = by/ag. Thus X (z) has M finite zeros at z = z, 22...., zs (the roots of

the numerator polynomial), A finite poles at z = p1, pa...

., p~ (the roots of the

denominator polynomial), and |¥ — M| zeros (if N > M) or poles (if ¥ < M) at
the origin z = 0. Poles or zerosmay also occur at z = co. A zero exists at z = oo if
X(o00) =0and apoleexistsat z = oo if X(00) = oo. If we count the polesand zeros
at zero and infinity, wefind that X(z) hasexactly the same number of polesas zeros.

We can represent X(z) graphicaly by a pole-zero plor (or pattern) in the
complex plane, which shows the location of poles by crosses (x) and the location
of zerosby circles (o). The multiplicity of multiple-order polesor zeros isindicated
by a number close to the corresponding cross or circle. Obviously, by definition,
the ROC of a z-transform should not contain any poles.
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Example 33.1
Determine the pole-zero plot for the signal

x(n) = a"u(n) a>0

Solution From Table 3.3 we find that

1 .
X(:)=1~a:—1 =:; ROC: |z| > a
Thus X(z) has one zero at z; = 0 and one pole at p; = a. The pole-zero plot is
shown in Fig. 3.7. Note that the pole p; = « is not included in the ROC since the
z-transform does not converge at a pole.

7

/ ) Re(z)

Figure 37 Pole-zero plot for the

causal exponential signal 1 (1) = a™win)
Example 3.3.2
Determine the pole-zero plot for the signal
x(n) = l“ OsnsM-1
0, elsewhere
where a > 0.

Solution From the definition (3.1.1) we obtain

M-i
- 1—(az)¥ M —a
X(z)= Y = =
@ ;(a ) 1—az-! iz~ a)

Since a > 0, the equation z¥ =aM has M roots at

2 = ae/tmM k=0,1.....M~1

The zero zo = a cancels the pole a ; = a. Thus
C—-z)2~22)-- (2 —2Zm-1)

zM—l
which has M =1 zerosand M — 1 poles, located as shown in Fig. 38 for M = 8. Note
that the ROC is the entire z-plane except z = 0 because of the M — 1 poles located
at the origin.

X(@) =
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Im(z}

M-1 % lz=a
\\‘O/J Re(z)

Clearly. if we are given a pole-zero plot, we can determine X (z), by using
(3.3.2), to within a scahng factor G. This s illustrated in the following example.

Figure 38 Pole-zero pattern for
the finite-duration signal x(n) = a'
O=n<M-1la>0).form =38

Example 3.3.3
Determine the z-transform and the signal that corresponds to the pole-zero plot of
Fig. 3.9.
Solution There are two zeros (M = 2) at z; = 0, z» = I cosay, and two poles(N =2)
at py =re!™. po = re”/“. By substitution d these relationsinto (3.3.2), we obtain
G(:fzx)(:—z;) -G 2(z = rcosay) ROC: (2] > 1
(Z—pz = p2) (2= ret)(z —re=/a)

After some simple algebraic manipulations, we obtain

X =

1-rz""cosay
I—2rz ' cosay +riz-?

From Table 3.3 we find that
x(n) = G(r" cos wyn)u(n)

ROC: |z| > r

X)) G

From Example 3.3.3, we see that the product (z — py)(z — py) results in a
polynomial with real coefficients, when p; and p, are complex conjugates. In

Im(z)

Re(z)

Figure 39 Pole-zero pattern for
Example 3.3.3.
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general, if a polynomial has real coefficients, its roots are either real or occur in
complex-conjugate pairs.

As we have seen. the z-transform X (z) isa complex function of the complex
variable : = Re(:) T jIm(z). Obviously. {X(z)|, the magnitude of X(z). is a real
and positive function of z. Since z represents a point in the complex plane, |X{(z2)|
is a two-dimensiona function and describes a "surface." This is illustrated in
Fig. 3.10(a) for the :-transform

X(z)

—-1 _ =2
= ~ ~ 333
1+1.2732:71 4 0.81;72 G3-3)

< IIX[:)[

Figure310 Graph of [X(z)f for the
z-transform in (3.3.3). [Reproduced with
permission from Introduction 0 Systems
Analysis. by T. H. Glisson. © 1985 by
McGraw-Hill Book Company.]
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which has one zero at z; = 1 and two poles at p;, pa = 0.9¢*/7/4, Note the
high peaks near the singularities (poles) and the deep valey close to the zero.
Figure 3.10(b) illustrates the graph of |X(z) for z = e/®.

332 Pole Location and Time-Domain Behavior for
Causal Signals

In this subsection we consider the relation between the z-plane location of a pole
pair and the form (shape) of the corresponding signal in the time domain. The dis
cussion is based generally on the collection of z-transform pairs given in Table 33
and the results in the preceding subsection. We deal exclusively with real, causal
signals. In particular, we see that the characteristic behavior of causal signalsde-
pends on whether the poles of the transform are contained in the region |z| < 1,
or in the region [z] > 1, or on the circle |z] = 1. Since the circle [z]| = 1 hasa
radius of 1, it is called the unir circle.

If areal signa has a z-transform with one pole, this pole has to be real. The
only such signal is the real exponential

x(n) =a"u(n) «— X{(z) = ROC: |z] > |a|

=1
2

having one zero at z; = 0 and one pole at p»; = a on the real axis. Figure 311
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Figure 311 Time-domain behavior of a single-real pole causal signal as a function
of the location of the pole with respect to the unit circle.
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illustrates the behavior of the signa with respect to the location of the pole rel-
ative to the unit circle. The signa is decaying if the pole is inside the unit
circle, fixed if the pole is on the unit circle, and growing if the pole is out-
side the unit circle. In addition, a negative pole results in a signa that alter-
nates in sign. Obviously, causal signals with poles outside the unit circle be-
come unbounded, cause overflow in digita systems, and in general, should be
avoided.
A causal real signa with a double real pole has the form

x(n) = na"u(n)

(see Table 3.3) and its behavior isillustrated in Fig. 3.12. Note that in contrast to
the single-pole signal, a double real pole on the unit circle results in an unbounded
signal.

Figure 3.13 illustrates the case of a pair of complex-conjugate poles. Accord-
ing to Table 3.3, this configuration of poles results in an exponentially weighted
sinusoidal signal. The distance r of the poles from the origin determines the enve-
lope of the sinusoidal signal and their angle with the real positive axis, its relative
frequency. Note that the amplitude of the signal is growing if r > 1, constant if
r = 1 (sinusoidal signals), and decaying if r < 1.

x(n)

Figure 3U Time-domain behavior of causal signalscorrespondingto a double (m = 2) real
pole, asa Function d the pole location.
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Figure 313 A pair d complex-conjugatepoles corresponds to causal signals with
oscillatory behavior.

Findly, Fig. 314 shows the behavior of a causa signa with a double pair of
poles on the unit circle. This reinforcesthe corresponding resultsin Fig. 312 and
illustratesthat multiple poles on the unit circle should be treated with great care.

To summarize, causal real signalswith simple real poles or Ssmple complex-
conjugatepairs of poles, which are inside or on the unit circle are dways bounded
in amplitude. Furthermore, a signal with a pole (or a complex-conjugate pair
of poles) near the origin decays more rapidly than one associated with a pole
near (but inside) the unit circle. Thus the time behavior of a signd depends
strongly on the location of its poles relative to the unit circle. Zeros also a-
fect the behavior o a signa but not as strongly as poles. For example, in the
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Figure 3.13 Causal signal corresponding to a double pair of complex-conjugate
poles on the unat circle.

case of sinusoidal signals, the presence and location of zeros affects only their
phase.

At this point. it should be stressed that everything we have said about causal
signals appliesas well to causal LTI systems, since their impulse response is a causal
signal. Hence if a pole of a system is outside the unit circle, the impulse response
o the system becomes unbounded and. consequently, the system is unstable.

3.3.3 The System Function of a Linear Time-Invariant
System

In Chapter 2 we demonstrated that the output of a (relaxed) linear time-invariant
system to an input sequence x(n) can be obtained by computing the convolution
o x(n) with the unit sample response of the system. The convolution property.
derived in Section 3.2. allows us to express this relationship in the z-domain as
Y2y = HOX@) (3.34)

where Y (z) Is the z-transform df the output sequence v(r). X () is the z-transform
of the input sequence x(n) and H(:) is the z-transform of the unit sample response
R(n).

If we know h{r) and x(n). we can determine their corresponding z-transforms
H(z) and X(z), muliply them to obtain Y(z), and therefore determine v{n) by
evaluating the inverse:-transform of Y (z). Alternatively, if we know x(n) and we
observe the output v(n) of the system. we can determine the unit sample response
by first solving for () from the relation

¥(z2)
: = =— ﬂ.3.5
H(z) X (3.3.9)
and then evaluating the inverse z-transform of H(z).

Since

oC

H@= Y hm:™" (3.3.6)
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itisclear that H(z) represents the z-domain characterization of a system, whereas
h(n) is the corresponding time-domain characterization of the system. In other
words, H(z) and k(n) are equivalent descriptions of a system in the two domains.
The transform H(z) is called the system function,

Therelation in (3.3.5) isparticularly useful in obtaining H(z) when the system
is described by a linear constant-coefficient differenceequation of the form

N M
yn) =— Z agy(n — k) + Z bix(n — k) 3.37)

k=1 k=0
In this case the system function can be determined directly from (3.3.7) by com-
puting the z-transform of both sides of (3.3.7). Thus, by applying the time-shifting
property, we obtain

N M
Y@ ==Y at@z ™+ ) bX@)

k=1 =0

N M

Y2 (1 + Zm:“) = X (me*)

k=1 k=0
M
th:_k

Y(2) x=0

X &M
1+ Zakz""
k=1
or, equivalently,
M
bz ™*
Hz = —=2 (3.3.8)

N
1+ Z P
k=1

Therefore, a linear time-invariant system described by a constant-coefficient dif-
ference equation has a rational system function.

This is the general form for the system function of a system described by a
linear constant-coefficient difference equation. From this general form we obtain
two important special forms. First, if a, =0for 1 <k < N, (3.3.8) reduces to

M
H) =Y bzt
=0

1 - M-k
s Z bz
k=0
In this case, H(z) contains M zeros, whose values are determined by the
system parameters (&;}, and an Mth-order pole at the origin z = 0. Since the
system contains only trivial poles (at z = 0) and M nontrivial zeros, it is called

(3.3.9)
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an al-zero sysrem. Clearly. such a system has a finite-duration impulse response
(FIR), and it is called an FIR system or a moving average (MA) system.
On the other hand. if &, = 0 for 1 < k < M. the system function reduces to

by

N

H() =

(3.3.10)

In this case H(z) consists of N poles. whose values are determined by the system
parameters {a;} and an Nth-order zero at the origin z = 0. We usually do not
make reference to these trivial zeros. Consequently. the svstem functionin (3.3.10)
contains only nontrivial poles and the corresponding system is called an all-pole
system. Due to the presence of poles. the impulse response of such a system is
infinite in duration, and hence it is an |IR system.

The general form of the system function given by (3.3.8) contains both poles
and zeros. and hence the corresponding system is called a pole-zero system. with
N poles and M zeros. Poles and/or zeros at - = 0 and : = oc are implied but are
not counted explicitly. Due to the presence of poles, a pole-zero system is an IIR
system.

The following example illustrates the procedure for determining the system
function and the unit sample response from the difference equation.

Example 3.3.4

Determine the system function and the unit ssmple response d the system described
by the difference equation

yim) = v(n = 1) + 2x(m)

Solution By computing the z-transform of the differenceeguation. we obtain
Y =1:7F@) + 2X ()

Hence the system function is

Y(2) 2
— = H() =
X(2) © =1z

This system has a pole a z = } and a zero at the origin. Using Table 33 we obtain
the inverse transform

h(n) = 2(3)"u(n)

Thisis the unit sample response d the system.
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We have now demonstrated that rational z-transforms are encountered in
commonly used systems and in the characterization of linear time-invariant sys-
tems. In Section 3.4 we describe several methods for determining the inverse
z-transform of rational functions.

3.4 INVERSION OF THE Z-TRANSFORM
Aswe saw in Section 312, the inverse z-transform is formally given by
1 n—1
x(n) = Eﬂ—jﬁx(z)z dz (3.4.1)

where the integral is a contour integral over a closed path C that encloses the
origin and lies within the region of convergence of X (z). For simplicity, C can be
taken as acircle in the ROC of X(z) in the z-plane.

There are three methods that are often used for the evaluation of the inverse
z-transform in practice:

1 Direct evaluation of (3.4.1), by contour integration.
2 Expansion into a series of terms, in the variables z, and z7'.
3 Partial-fraction expansion and table lookup.

3.4.1 The Inverse z-Transformby Contour Integration

In this section we demonstrate the use of the Cauchy residue theorem to determine
the inverse z-transform directly from the contour integral.

Cauchy residuetheorem. Let f (z) be afunction of the complex variable
z and C be aclosed path in the z-plane. If the derivative df (z)/dz exists on and
inside the contour € and if f (z) has no poles at z= zg, then

1 L f@ [ fl), ifzisinsideC
2 R o= {0, if 2 isoutside C (34.2)
More generally, if the (k +1)-order derivative of f (2) exists and f (z) has no poles
at z = zg, then
1 d7f) N
517 (—i_(Z)—)kdz = T T |, TRETEC a4
PeE 0, if 20 isoutside C

The values on the right-hand side of (3.4.2) and (3.4.3) are called the residues of
the pole at z = zo. The resultsin (3.4.2) and (3.4.3) are two forms of the Cauchy
residue theorem.

We can apply (3.4.2) and (3.4.3) to obtain the values of more general contour
integrals. To be specific, suppose that the integrand of the contour integral is
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P(z) = f(2)/g(z). where f (z) has no poles inside the contour C and g(z) is a
polynomial with distinct (simple) roots zy, z2, . ... zy inside C. Then

f@ 1 Ai(2)
—_— d = ~
277; € g(2) 27r] [Zl —Z,:l

AR
4.4
Ymhes cso
=3 Aia)
=1

where
AR =G@-wPO=(k- w)w (3.4.9)
82}
Thevalues (A (z;)} areresiduesaof the corresponding polesat z = z;.i =1.2, ...,n

Hence the value of the contour integral is equal to the sum of the residues of dl
the poles inside the contour C.

We observe that (3.4.4) was obtained by performing a partial-fraction expan-
sion o the integrand and applying (3.4.2). When g(z) has multiple-order roots
as well as simple roots inside the contour, the partial-fraction expansion, with ap-
propriate modifications. and (3.4.3) can be used to evaluate the residues at the
corresponding poles.

In the case of the inverse ,--transform. we have

1
x(n) = ;ﬂ—jggX(:):"'ld:

> [residue of X(z)z""" at z = z:) (3.4.6)

all poles {z:i inside C
= Z(: - A-J)X(Z)Zn_]l:z:.

provided that the poles {z;} are simple. If X(z)z"~! has no poles inside the contour
C for one or more values of n, then x(n) = 0 for these values.

The following example illustrates the evaluation of the inverse z-transform
by use o the Cauchy residue theorem.
Example 34.1

Evaluate the inverse z-transform of

X(@) =

|z > lai

-1
using the complex inversion integral.
Solution  We have

V= 1 il di= 1 "dz
xtn T Rl-ar T I fr-a

where C is a circle at radius greater than laj. We shall evaluate this integral using
(3.4.2) with f (z) = z". We distinguish two cases.
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L If n =0, f(z) has only zeros and hence no polesinside C. The only poleinsde
CisZ = a. Hence
x(n} = flzo)=a" nz0

2 If n <0, f(z) = z» hasan nth-order pole a z = 0, which is also inside C. Thus
there are contributions from both poles. For » = -1 we have

1 1 1 1
*-1= ZHJﬁZ(Z—G)dZ_ z—a

+-} 0
If n = -2, we have

d 1
x(=2)= %ﬁj—ﬁzza—a-dz—dz z—a

=0

=a

1
2

=) “lz
74 "-'-ﬂ') =0

By continuing in the same way we can show that x(n) = 0 for n < 0. Thus

x{n) = a"u(n)

3.4.2 The Inverse z-Transform by Power Series
Expansion

The basic idea in this method is the following: Given a z-transform X (z) with its
corresponding ROC, we can expand X (z) into a power series of the form

X@)= Z 2" (347

h=-~00

which converges in the given ROC. Then, by the uniqueness of the z-transform,
x(n) = c, for al n. When X(z) is rational, the expansion can be performed by
long division.

To illustrate this technique, we will invert some z-transforms involving the
same expression for X(z), but different ROC. This will also serve to emphasize
again the importance of the ROC in dealing with z-transforms.

Example 3.4.2

Determine the inverse z-transform o

1
Xy 1= 151057
when
(@) ROC: Iz > 1
(b) ROC: Iz| < 0.5
Solution

(a) Snce the ROC isthe exterior of a circle, we expect x(n) to be a causa signal-
Thus we seek a power series expansion in negative powers d z. By dividing
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the numerator of X{z) by its denominator. we obtain the power series

1 ; _—
Xe= =l i e T e B By

_ [ 3 H
TSI

ST

By companng this relation with (3.1.1), we conclude that

xmy =137 %8 %)

Note thar in each step d the long-division process. we eliminate the lowest-
power term of ,-.

(b) 1in this case the ROC is the interior of a circle. Consequently, the signal x(»)
is anticausal. To obtain a power series expansion in positive powers of z. we
perform the long division in the following way:

2204628 £ 1424 4307 + 6220+
B et

Lot

1-3:427
3- -2
3: -9 + 627
70— 627
77 =217 + 1421
1528 — 1424
15:% — 4524 + 305°
3124 — 3077

Thus
1

TS 227+ 62 + 142 + 302 + 6227 +
-~ 57+ 327"

X(zy=
In thiscase x(n) = 0 for n > 0. By comparing thisresult to (3.1.1). we conclude
that
x(n) ={-62.30.14.6.2.0.0}

s

We observe that in each step of the long-division process, the lowest-power
term of z is eliminated. We emphasize that in the case of anticausal sig-
nals we simply carry out the Long division by writing down the two poly-
nomials in "reverse” order (i.e.. starting with the most negative term on the
left).

From this example we note that. in general, the method of long division will
not provide answers for x(r) when n is large because the long division becomes
tedious. Although, the method provides a direct evaluation of x(n), a closed-form
solution is not possible, except if the resulting pattern is simple enough to infer
the general term x(n). Hence this method is used only if one wished to determine
the values of the first few samples of the signal.
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Example 343
Determine the inverse z-transform of
X(z) =logl+az™") |z > lal
Solution Using the power series expansion for tog(1 + x). with |x| < 1, we have
o (_1)n+lanz-n
TR

LES

Thus
)
n
n<{

Expansion of irrational functionsinto power series can be obtained from tables.

x(n) =

3.4.3 The Inverse z-Transform by Partial-Fraction
Expansion

In the table lookup method, we attempt to express the function X (z) as a linear
combination

X@Q=aXiotexo+  FtexXe@ (3.4.8)
where X;(z),.... Xk (z) are expressions with inverse transforms xi(n), ..., xg(n)
available in a table of z-transform pairs. If such a decomposition is possible,
then x(n), the inverse z-transform of X (z). can easily be found using the linearity
property as

x(n) = apxy(n) Feoxa(m) F oo Fagxe(n) (3.4.9
This approach is particularly useful if X(z) isarational function, asin (3.3.1). With-
out loss of generality, we assume that ap = 1, so that (3.3.1) can be expressed as
Nz bo+bizt 4 +byc™
X(Z) = — =

D) l4aiz7l+- +ayz¥

Note that if ag 5 1, we can obtain (3.4.10) from (3.3.1) by dividing both numerator
and denominator by ag.

A rational function of the form (3.4.10)iscalled proper if ay # 0 and M < N.
From (3.3.2) it follows that this is equivalent to saying that the number of finite
zeros is less than the number of finite poles.

An improper rational function (M = N) can aways be written as the sum of
a polynomia and a proper rational function. This procedure is illustrated by the
following example.

(3.4.10)

Example 3.44
Express the improper rational transform
14370+ Bp=2 4 13
T+ 5+ 1o
in terms of a polynomial and a proper function.

X(2) =
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Solution  First. we note that we should reduce the numerator so that the terms =2
and ;- are eliminated. Thus we should carry out the long division with these two
polynomials written in reverse order. We stop the division when the order of the
remainder becomes :~'. Then we obtain
1.=1
X(o=1 +2:7! + M‘ﬁ
&3 e

In general, any improper rational function (M > N) can be expressed as

= %E:_—: =C0+6‘1:—1 4oy M +% (3.4.11)
The inverse ;-transform of the polynomial can easily be found by inspection.
We focus our attention on the inversion of proper rational transforms, since any
improper function can be transformed into a proper function by using (3.4.11).
We carry out the development in two steps. First, we perform a partia frac-
tion expansion o the proper rational function and then we invert each of the
terms.
Let X (z) be a proper rationa function. that is,
NG@  botbis 4 by

X)) = — =
© D(z) l+aiz~t+ - +anz=¥

X(z)

(3.4.12)

where
ay # 0 and M < N

To simplify our discussion we eliminate negative powers of z by multiplying both
the numerator and denominator o (3.4.12) by z*, This results in
X() = b“:N:b‘:N_l ot byt (3.4.13)
M@V tan
which contains only positive powersof z. Since N > M. the function
X(@ _ b A bV 4 byt M
: Mtah i+ +ay
is aso aways proper.

Our task in performing a partial-fraction expansion is to express (3.4.14)
or, equivaiently, (3.4.12) as a sum of simple fractions. For this purpose we first
factor the denominator polynomial in (3.4.14) into factors that contain the poles
P1, pz.o..., py O X(2). We distinguish two cases.

(3.4.14)

Distinct poles. Suppose that the poles pi, p2. .... py are dl different (dis-
tinct). Then we seek an expansion of the form

X(z A A A
X _ A A A (3.4.15)
2 I=-M IR = PN
The problem is to determine the coefficients Ay, Az, ..., Ax. There are two ways
to solve this problem, asillustrated in the following example.
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Example3.45
Determine the partial-fraction expansion of the proper function
1
J=— 3.4.1
X =1 5705 G416
Solution  First we eliminate the negative powers, by multiplying both numerator and
denominator by z2. Thus

pvs

Y= a5 105
The poles of X(z) are p; =1 and p; = 0.5. Consequently, the expansion of the form
(3.415)is
X 2 A A,

(3.4.17)

A very simple method to determine A; and A; is to multiply the equation by the
denominator term (z — 1)(z — 0.5). Thus we obtain

1= -054, T -1DA; (3.4.18)
Now if we set z = p; = 1in (3.4.18), we eliminate the term involving A;. Hence
1=(1-05)4,

Thus we obtain the result A; = 2. Next we return to (3.4.18) and set z = p; = 0.5,
thus eliminating the term involving 4,, so we have

0.5 = (0.5~ 1A,

and hence A; = — 1. Therefore, the result of the partial-fraction expansion is

—_— - (3.4.19)

The examplegiven above suggeststhat we can determinethe coefficients A,
Az, ..., Ax. by multiplying both sides of (3.4.15) by each of the terms (z = p),
k=1,2,...,N, and evaluating the resulting expressionsat the correspondingpole
positions, p1, p2.-.., py- Thus we have, in general,

- X — pr)A - A
@-pPX@) _G—p) 1+“_+Ak+__.+(z AN (3.4.20)
z bl 1} z—pN
Consequently, with z = p, (3.4.20) yieldsthe kth coefficient as
A= G PHXQ@ k=1,2,....N (3.421)
2 =Py
Example 346
Determine the partial-fraction expansion of
_ 1+2z7!
X@) = I—:FTO."F (3.4.22)
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Solution To eliminate negative powers of: in (3.4.22), we multiply both numerator
and denominator by z*. Thus

X +1
< T TIIv0s
The poles d X (z) are complex conjugates
p=3+ f_%
and
pr= % L z
Since py # p2. we seek an expansion o the form (3.4.15). Thus
‘Xﬁ 41 _ Ay As

= = +
b4 C-p¥z-p2} - P
Toobtain 4; and A:, we use the formula {3.4.21). Thus we obtain

Ao GmepX@ 4 iyl
Ve > - I-m —_l+'l_.l+'l—5—j5
N =p Ple=py 1T JTT 1T

(2 = p)X() c+1 §-ii+1 L s
A::————.- =_— =].,_ T l=§+ji
- =p2 it =p 2 /3 2 73

The expansion (3.4.15) and the formula(3.4.21) hold for both real and com-
plex poles. The only constraint is that al poles be distinct. We also note that
Ay = A7]. 1t can be easily seen that this is a consequence of the fact that p, = p;.
In other words, cornpiex-conjugate polesresult in complex-conjugare coef fi ci entsin
the partial-fraction expansion. This simple result will prove very useful later in our
discussion.

Multiple-order poles. If X(z) hasa poledf multiplicity !, that is, it contains
in its denominator the factor (z — px)'. then the expansion (3.4.15) is no longer
true. In this case a different expansion is needed. First, we investigate the case of
adouble pole (i.e., | = 2).

Example 34.7
Determine the partial-fraction expansion o

X = m (3.4.23)
Solution  First, we express (3.4.23)in terms of positive powers of z, in the form
X _ -
T G+ he-17
X(z) hasasimple pole at p; = -1 and a double pale p, = p; = 1. In such acase the
appropriate partial-fraction expansion is
X(2) 1z Ay Az Az

z =(z+1)(z—1)2=z+1+z—1+(z—1)2 G424

The problem is to determine the coefficients A1, 4,, and As.
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We proceed asin the case of distinct poles. To determine A;, we multiply both
sides of (3.4.24) by (z + 1) and evaluate the result at ; = —1. Thus (3.4.24) becomes
(z+ )X z+1 z+1
A+ A+ ——
- 1+z-—1 2+(2w1)2A3
which, when evaluated at z = -1, yields
A = (z+ DX(2)

=1
z T4

==]
Next. if we multiply both sides of (3.4.24) by (z = 1)%, we obtain
@-1)X@ -1
z T oz+1

Now, if we evaluate (3.4.25) at z = 1, we obtain As. Thus
_ - 1
- z 2

The remaining coefficient A2 can be obtained by differentiating both sides d
(3.4.25) with respect to ; and evaluating the result at z = 1. Note that it is not

necessary formally to carry out the differentiation of the right-hand side o (3.4.25),
since dl terms except A, vanish when we set z = 1. Thus

d [ (z-1YX(2) 3
= — | ———v—— == 4.
A dz [ z =1 4 (34.26)

A+ (z - 1A + Ay (3.4.25)

Az

=1

The generalization of the procedure in the example above to the case of an
Ith-order pole(z — pi) is straightforward. The partial-fraction expansion must
contain the terms

A A Al
- p + C—po? " +(z'.“m)'
The coefficients {Ai} can be evaluated through differentiation as illustrated in
Example 3.4.7 for i = 2

Now that we have performed the partial-fraction expansion, we are ready to
take the final step in the inversion of X(z). First, let us consider the case in which
X (2) contains distinct poles. From the partial-fraction expansion (3.4.15), it easily
follows that

1
X@) = Mg 4

+o4A
1 ZI—PZZ_] N

m (3.4.27)
The inverse z-transform, x(n) = Z~!'{X(z)}, can be obtained by inverting each
term in (3.4.27) and taking the corresponding linear combination. From Table 33
it followsthat these terms can be inverted using the formula

L (pe)"uln), i(f R%C: le; I)ml

o _ causal signals

z [1—m-l] =\ —Gwrut-n =1, it ROC: Izl < pil (3.4.28)
(anticausal signals)
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If the signal x(n) is causal, the ROC is iz| > pmax., Where ppa.x = max|(|pl.
ipale. ... Ipx1}. In this case al termsin (3.4.27) result in causal signal components
and the signal x(r) is given by

x(ny= (A pf+ Aaph + - F Anplun) (3.4.29)

If al poles are real. (3.4.29) is the desired expression for the signal x(n). Thus a
causal signal, having a z-transform that contains real and distinct poles. is a linear
combination of real exponentia signals.

Suppose now that al poles are distinct but some of them are complex. In
this case some o the terms in (3.4.27) result in complex exponential components.
However. if the signal x(n) is real. we should be able to reduce these terms into
real components. If x(n} is real, the polynomials appearing in X (z) have real co-
efficients. In this case. as we have seen in Section 33. if p, isa pole, its complex
conjugate p; isalso apole. Aswasdemonstrated in Example 3.4.6, the correspond-
g coefficients in the partial-fraction expansion are also complex conjugates. Thus
the contribution of two complex-conjugate poles is of the form

xln) = [Adp) T AL Tuin) (3.4.30)

These two terms can be combined to form a real signal component. First.
we express A, and p; in polar form (i.c., amplitude and phase) as

Ay = |Aple!™ (3.4.31)
o= relt (34.32)

where «, and g; are the phase components of A; and p;. Substitution of these
relations into (3.4.30) gives

Xp(n) = IAklrf[e’(ﬁ‘"w” + e-;(ﬂ.nw.)]u(n)

or. equivalently,

xi(n) = 2|Air cos(Ben + ai)u(n) (3.4.33)
Thus we conclude that
z7 ( Ay A ) = 2| A |l cos(Ben + e duln) (34.39)
1—pz! 1-piz] K * g o

if the ROCis |z} > |pi|=rs.

From (3.4.34) we observe that each pair of complex-conjugate poles in the
z-domain results in a causal sinusoidal signal component with an exponential en-
velope. The distance r; of the pole from the origin determines the exponential
weighting (growing if ri > 1, decaying if ri < 1, constant if r, = 1). The angle o
the poles with respect to the positive real axis provides the frequency of the sinu-
soidal signa. The zeros, or equivalently the numerator of the rational transform.
affect only indirectly the amplitude and the phase of x,(#) through A,.

In the case of multipie poles. either real or complex, the inverse transform
of terms of the form A/(z — p,)" is required. In the case of a double pole the
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following transform pair (see Table 3.3) is quite useful:

-1
z I(T:pZP_"]_)El =np"u(n) (3.4.35)

provided that the ROC is |z| > |p|. The generalization to the case of poles with
higher multiplicity is left as an exercise for the reader.
Example 348
Determine the inverse z-transform of
1
X = —_—
@ = 15105
if
(a) ROC: Izl > 1
(b) RCC: |z) <05
(c) ROC:05< |z} <1

Solution This is the same problem that we treated in Example 3.4.2. The partial-
fraction expansion for X (z) was determined in Example 3.4.5. The partia-fraction
expansion of X (z) yields
2 1
X = -lj - 1—_(}T (3.4.36)
To invert X(z) we should apply (3.4.28) for p; = 1 and p. = 0.5. However, this
requires the specification of the corresponding ROC.

(a) In case when the ROC is |z} > 1, the signa x(n) is causal and both terms in
(3.4.36) are causal terms. According to (3.4.28).we obtarn

x(n) = 2(1)"u(n) — (0.5)"u(n) = (2 - 0.5"u(n) (3.4.37)
which agrees with the result in Example 3.4.2(a).

(b) When the ROC is |z{ < 0.5, the signa x(n) is anticausal. Thus both terms in
(3.4.36) result in anticausal components. From (3.4.28) we obtain

x(n)=[- 2+ (0.5 Ju{—r - 1) (3.4.38)

(c) Inthiscasethe ROCO0.S5 < |zt < 1isaring. which implies that the signal x(n} is
two-sided. Thus one of the terms corresponds to a causal signal and the other

to an anticausal signal. Obviously, the given ROC is the overlapping of the

regions |z| > 0.5 and |z} < 1. Hence the pole p; = 0.5 provides the causal part
and the pole p; =1 the anticausal. Thus

x(n) = =2(1)"u(-=n - 1) = (0.5)"u(n) (3.4.39)

Example 3.4.9
Determine the causal signa x(n) whose z-transform is given by

HES
X = ———%
@ 1-z"14+0.5z2
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Solution In Example 3.4.6we have obtained the partial-fraction expansion as
X)) = L + _._A:—
T 1ozt 1= pazt!

where

and
p=pi=1+j1

Since we have a pair of complex-conjugate poles, we should use (3.4.34). The
polar forms of A, and p, are

me-m.m
2

A =
n o= Ee’""‘
Hence
xin) =10 — Cos(-——71 565" )u(n}
()
Example 3.4.10
Determine the causal signal x(»#) having the :-transform
X() = !
TTatha -
Solution From Example 3.4.7 we have
VR S ST SR SRS S
W= T It T Ias oy

By applying the inverse transform relations in {3.4.28) and (3.4.35). we obtain

Lty Sutmy+ 2nutm = |21 <2 47wy
x(n)—z(—)u(n)+4un) 2nun_ 2 713

3.4.4 Decomposition of Rational z-Transforms

At this point it is appropriate to discuss some additional issues concerning the
decomposition of rational z-transforms, which will prove very useful in the imple-
mentation of discrete-time systems.

Suppose that we have a rational z-transform X (z) expressed as

szz“‘ 1_[(1 — 52!

X(2) = —= = by*2 (3.4.40)

14+ Zakz_k 1_[(1 —pz Y
=1 k=1
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where, for simplicity, we have assumed that @ = 1. If M > N [ie., X(2) is
improper], we convert X (z) to asum of a polynomial and a proper function

M-N
X@) =) azr™+ Xp() (3.4.41)
k=0

If the poles of Xp(z) are distinct, it can be expanded in partial fractions as

|
Xpr(z] =A .1_—_r +A +---+AN

1
P12 2 = p 1= pyzl (3.4.42)
Aswe have already observed, there may be some complex-conjugate pairs of
polesin {3.4.42). Since we usually deal with real signals, we should avoid complex
coefficientsin our decomposition. Thiscan be achieved by grouping and combining
terms containing complex-conjugate poles, in the following way:

A A" A—Ap'z7l4+ A* — A*pz7!
1-pz! * T—pz1  1- pzl —prz7 1 + pp*z?
(3.4.43)
_ b+ byz~!
T l+4aizl az?
where
by = 2Re(A), ay = -2 Re(p)
(3.4.44)

by =-2 Re (Ap*), a; = |p|?
are the desired coefficients. Obviously, any rational transform of the form (3.4.43)
with coefficients given by (3.4.44), which is the case when a? — 4a, < 0, can be
inverted using (3.4.34). By combining (3.4.41}, (3.4.42), and (3.4.43) we obtain a
partial-fraction expansion for the z-transform with distinct poles that contains real
coefficients. The general result is

é’\ by , vé-.‘-'w bok +b1kz_]
+
g 14 g4z! 1 +apz~! +anz?

k=1

M-N
X@ =) azt+ (3.4.45)
k=0
where X, + 2%, = N. Obvioudly, if A = N, the first term is just a constant,
and when M < N, this term vanishes. When there are also multiple poles, some
additional higher-order terms should be included in (3.4.45).

An alternative form is obtained by expressing X (z) as a product of simple
terms as in (3.4.40). However, the complex-conjugate poles and zeros should be
combined to avoid complex coefficients in the decomposition. Such combinations
result in second-order rational termsof the following form:

A -zzHl-gz)  1+buz? +bus™?
(1= pez7M1 = pfz=Yy  l4apz !l +ayz?

(3.4.46)
where
bix = —2Re(zi), ay = —2Re(py)

_ ; _ ) (3.4.47)
by = |l axy = |pl
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Assuming for simplicity that M = N, we see that X(z) can be decomposed in the
following way:

K -1 K: -1 -2
1+ biz 1+ bz~ + byz
[ d I % (3.4.48)

X(Z) = b()
o Ve j L +apct + azz7?

where ¥ = X, +2K,. We will return to these important formsin Chapters 7 and 8.

35 THE ONE-SIDED Z-TRANSFORM

The two-sided :-transform  requires that the corresponding signals be specified
for the entire time range —> < n < oo. This requirement prevents its use for
a very useful family of practica problems, namely the evaluation of the output
d nonrelaxed systems. As we recall. these systems are described by difference
equations with nonzero initial conditions. Since the input is applied at a finite
time, say nq. both input and output signals are specified for n > ng, but by no
means are zero for n < ngy. Thus the two-sided z-transform cannot be used. In this
section we develop the one-sided z-transform which can be used to solve difference
equations with initial conditions.

3.5.1 Definition and Properties

The one-si ded or unilateral z-transform of asigna x(n) is defined by

Xt@ =) xm 3.5.1)

n=(
We also use the notations Z*{x(n)} and
xin) < X*(2)
The one-sided z-transform differs from the two-sided transform in the lower
limit of the summation, which is aiways zero, whether or not the signal x(n) iszero

forn < 0 (i.e., causal). Due to thischoice of lower limit, the one-sided z-transform
has the following characteristics:

1 It does not contain information about the signal x(r) for negative values of
time (i.e., for n < 0).

2 It isuni que only for causal signals, because only these signals are zero for
n <0.

3. The one-sided z-transform X*(z) of x(n) is identical to the two-sided z-
transform of the signal x(m)u(rn). Since x{(n)u{n) is causal, the ROC of its
transform, and hence the ROC of X*(z), is dways the exterior of a circle.
Thus when we deal with one-sided z-transforms, it is not necessary to refer
to their ROC.
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Example 35,1
Determine the one-sided ztransform of the signals in Example 3.1.1.
Solution From the definition (3.5.1), we obtain

x(n) = {;, 2,57.0.1) <5 X =142 45724 720 42

xin) = {1,2,:,7,0,1} S X =5+7" +7

x3(n) = ((T}. 0,1,2,5,7,0.1) <> X{ (=22 + 2270 + 524 + Te S 4 27
xin) = (2.4, 2 7,01} <5 X7 (@ =5+ + 27

xs(n) = 8(n) <> X(2) =1
(n)e=dn—k), k>0 X7(@) =z

x1(m) = 8(n Tk). k>0<i>x7*(z)=0

Note that for a noncausal signal, the one-sided :-transform is not unique. Indeed,
X3(2) = X (2) but x2(n) # x4(n). Also for anticausal signals, X*(z} is always zero.

Almost all propertieswe have studied for the two-sided z-transform carry over to
the one-sided z-transform with the exception d the shifting property.

Shifting Property
Case k: Tune Delay If

x(n) <> X*(2)

then )
xn = k) <5 X @+ Y x-m"] k>0 (3.52)

n=}

In case x(n) iscausal, then
x(n~k) €= 774 X*(2) (3.5.3)
Proof. From the definition (3.5.1) we have

-1 oS
7+ [Z x(hzt + ZX(l)z":l
=0

=t

—k
=z [): x(hz! + X*(z)}

Z*{x(n — k)

I=—1
By changing the index from 7 to n = —¢, the result in (3.5.2) is easily obtained.
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Example 352
Determine the one-sided :-transform of the signals

(a) x(n) =a"u(n)
(b) x1(n) = x(n - 2) where x(n) = a"

Solution
(a) From (3.5.1) we easily obtain
X' = T
(b) We will apply the shifting property for k = 2. Indeed. we have
Z*xtn = 2)) = 2 [X7T(@) F a1z T x(-2)F7]
= 72X a1z Hx(=2)

Since xi—1) = a~'. x{(-2) =42, we obtain

2

J:—l . a~?

X7 +a”

S le

The meaning o the shifting property can be intuitively explained if we write (3.5.2)
as follows:

ZHxtn — k) = =k +x(=k+ Dz 4 x (=D
+ 275X k>0

Toobtain x(n —k)(k > 0) from x(n), we should shift x(n) by k samples to the right.
Then k "new" samples, x(=k), x(—k+1)..... x(—1), enter the positive time axis
with x (—k) located at time zero. The first term in {3.5.4) standsfor the z-transform
o these sampies. The "old" samples of x(n — k) are the same as those of x(n)
simply shifted by k samples to the right. Their z-transform is obviously z*X*(z),
which is the second term in (3.5.4).

(3.5.4)

Case 2 Time advance If
x(n) <— X7 (2)
then

k-1
x(n+ k) < * [X'*’(z) — Ex(n)z_"] k>0 (3.5.5}

n=0
Proof. From (3.5.1) we have
oC oo
Zxn+ b)) =) xn+hz =24 sz
n=0 l=k
where we have changed the index of summation fromn tol=nrn +k. Now, from
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(3.5.1) we obtain
X" = Zx(l)w-’ Zx(l):’ + Zx(l)"'
i=0

By combining the last two relations, we easily obtain (3.5.5).
Example 35.3

With z(n), as given in Example 3.5.2, determine the onesided :-transform d the

signal

xan) = x(n+2)
Solution We will apply the shifting theorem for k = 2. From (3.5.5). with k = 2, we
obtain
Z*tx(n +2)) = X7 () — x(0)2F - x(1)z
But x(0) =1, x(1) = a. and X*(z) = 1/(1 —az™"). Thus

ZHx(n+2)) = —:Z—az
l—a

The case of a time advance can be intuitively explained as follows. To obtain
x(n+k), k > 0, we should shift x (r) by k samplesto theleft. As aresult, the samples
x(0). x(1), ..., x(k — 1) "leave" the positive time axis. Thus we first remove their
contribution to the X*(z), and then multiply what remains by z* to compensate
for the shifting of the signal by k samples.

The importance o the shifting property lies in its application to the solution
o difference equations with constant coefficients and nonzero initial conditions.
This makes the one-sided z-transform a very useful tool for the analysis of recursive
linear time-invariant discrete-time systems.

An important theorem useful in the analysis of signals and systems is the
final value theorem.

Final Value Theorem. If
x(n) <> X*(0)
then
nlln;sox(n) = Ei_’,‘}(z - DX*2) (3.5.6)

The limit in (3.5.6) exists if the ROC of (z = 1)X*(z) includes the unit circle.

The proof of this theorem is left as an exercise for the reader.

This theorem is useful when we are interested in the asymptotic behavior of
asigna x(n) and we know its z-transform, but not the signal itself. In such cases,

especidly if it is complicated to invert X*(z), we can use the final value theorem
to determine the limit of x(n) as n goes to infinity.
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Example 35.4
The impulse response of a relaxed linear time-invariant system is 4(n) = a"u(n).
ja} < 1. Determine the value d the step response of the system asn — oo.
Solution The step response of the system is
¥{n) = h(n) * x(n)
where
x(n) = u(n)

Obviously, if we excite a causal system with a causal input the output will be causal.
Since k(n), x(n), v(n) are causal signals, the one-sided and two-sided z-transforms are
identical. From the convolution property (3.2.17) we know that the z-transforms of
h(n) and x(n) must be multiplied to yield the z-transform of the output. Thus

1 1 7

= ROC: [z] > |a}

Y = e = " o he- a)

Now
(z-1 )1=_,_Qu\ ROC: |z] > |e]
Since e} < 1 the ROC of (z = 1)¥(z) includes the unit circle* Consequently, we can
apply (3.5.6) and obtain
- 1

lim y(n) = lim —— = ——
e —iz—0a l-@

3.5.2 Solution of Difference Equations

The one-sided z-transform is a very efficient tool for the solution d difference
equations with nonzero initial conditions. It achieves that by reducing the dif-
ference equation relating the two time-domain signals to an equivaent algebraic
equation relating their one-sided z-transforms. This equation can be easily solved
to obtain the transform o the desired signal. The signa in the time domain is
obtained by inverting the resulting z-transform. We will illustrate this approach
with two examples.

Example 3.5.5

The well-known Fibonacci sequence d integer numbers is obtained by computing
each term asthe sum of the two previousones. Thefirst few termsd the sequence are

1,1,2,3.5.8,...
Determine a closed-form expression for the nth term o the Fibonacci sequence.

Solution Let y{n) be the nth term of the Fibonacci sequence. Clearly, y(n) satisfies
the difference equation

yn) =yln -1} + y(n —2) (3.5.7)
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with initial conditions
v = v +x=2)=1 (3.5.8a)
) =y +¥=h=1 (3.5.8b)

From (3.5.8b) we have y(-1) = 0. Then (3.5.8a) gives ¥(—2) = 1. Thus we have to
determine v(n). n > 0, which satisfies (3.3.7), with initial conditions v(-1) = 0 and
¥(=2)=1.

By taking the one-sided :-transform of (3.5.7) and using the shifting property
(3.5.2). we obtain

Y@ = [T + v (D) 4 [2TYT@) + v(=2) + v(=1zT]

or
+ — 1 -

Y [:J—ﬁ—__l“q-z g

where we have used the fact that v(—1) =0 and y(-2) = 1.
We can invert Y*(z) by the partial-fraction expansion method. The poles of

Y*(z) are

(3.5.9)

1+5 1-V5
2 m=—
and the corresponding coefficicnts are A, = pl/\/? and A» = —/)3/\/—5. Therefore.

) )_lil+~/§<1+«/§ ”kl"‘/g<l—‘/§>”}“(n)
YWEITA 2 ) 245 2

Z

P=

or, equivalently.

y(n) = —% (%)IM [(] + \/g)"“ - (l - ﬁ)nl] uin) (3.5.10)
i

Example 3.5.6
Determine the step response of the system
yin) =avin — 1)+ x(n) —l<a<l (3.5.11)
when the initial condition is ¥(-1) = 1.
Solution Bv taking the one-sided :-transform of both sidesd (3.5.11), we obtain
Yy =elr @ =Dt Xt
Upon substitution for v(~1) and X*(z) and solving for Y*(z). we obtain the result
=t (1_a:—11)(1 — (3.5.12)
By performing a partial-fraction expansion and inverse transforming the result. we
have

r+1

yin) = o™ u(n) +

uin)
- (3.5.13)

= -1—(1 — a™?)u(n)
l—«a
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36 ANALYSIS OF LINEAR TIME-INVARIANT SYSTEMS IN THE
I-DOMAIN

In Section 3.4.3 we introduced the system function of a linear time-invariant sys-
tem and related it to the unit sample response and to the difference equation
description of systems. In this section we describe the use of the system func-
tion in the determination of the response of the system to some excitation signal.
Furthermore, we extend this method of analysis to nonrelaxed systems. Our atten-
tion is focused on the important class of pole-zero systems represented by linear
constant-coefficient difference equations with arbitrary initial conditions.

We also consider the topic of stability of linear time-invariant systems and
describe a test for determining the stability of a system based on the coefficients
o the denominator polynomial in the system function. Finally, we provide a
detailed analysis of second-order systems, which form the basic building blocks in
the realization of higher-order systems.

3.6.1 Response of Systems with Rational System
Functions

Let us consider a pole-zero system described by the general linear constant-
coefficient difference equation in (3.3.7) and the corresponding system function
in (3.3.8). We represent H(z) as a ratio of two polynomials B(z)/A(z), where
B(z) is the numerator polynomial that contains the zeros of H(z), and A(z) isthe
denominator polynomial that determines the poles of H(z). Furthermore, let us
assume that the input signal x(») has a rational z-transform X (z) of the form
N(z)
XD=%0 (3.6.1)
Thisassumption isnot overly restrictive, since, asindicated previously, most signas
of practical interest have rational z-transforms.

If the systemisinitialy relaxed, that is, theinitial conditions for the difference
equation are zero, y(—1) = y(=2) = .-- = y(~N) = 0, the z-transform of the
output of the system has the form

B(z)N(z)

¥Y{2) = H()X(2) 2000 (3.6.2)
Now suppose that the system contains smple poles pi, p2. ..., pr and the z-
transform of the input signal contains poles 41, g2. ... ,qL, Where px # g for al
k=1 2..,Nad m=1,2,...,L. In addition, we assume that the zeros of
the numerator polynomials B(z) and N(z) do not coincide with the poles {p:} and
{q:}, so that there is no pole—zero cancellation. Then a partial-fraction expansion
o Y(z) yields

Y(2) = 21 pz_l Zl_m_l (3.63)
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The inverse transform o Y(z) yields the output signa from the system in the form

y(n) = Z Ax(p)"u(n) + E Oxlgu)"u(n) (3.6.4)
k=]

We observe that the output sequence y(r) can be subdivided into two parts. The
first part is a function of the poles {p«} of the system and is called the natural
response o the system. The influence of the input signal on this part of the
response is through the scale factors {A,}. The second part of the response is a
function of the poles {g:} of the input signal and is called the forced response of
the system. The influence of the system on this response is exerted through the
scale factors { Q]

We should emphasize that the scale factors {4} and {Q.} are functions of
both sets of poles {py} and {¢gi}. For example, if X(z) = 0 so that the input is
zero, then Y(z) = 0, and consequently. the output is zero. Clearly, then, the
natural response of the system is zero. This implies that the natural response of
the system is different from the zero-input response.

When Xx{z) and H(z) have one or more poles in common or when X{(z)
and/or H (z) contain multiple-order poles, then Y (z) will have multiple-order poles.
Consequently, the partial-fraction expansion of Y (z) will contain factorsof the form
1/ - pz™H%, k =1, 2,...,m, where m is the pole order. The inversion of these
factors will produce terms of the form #*~!p!" in the output v(») of the system, as
indicated in Section 34.2.

3.6.2 Response of Pole-Zero Systems with Nonzero
Initial Conditions

Suppose that the signal x(n) is applied to the pole-zero system at n = 0. Thus
the signal x(n) isassumed to be causal. The effectsof all previous input signasto
the system are reflected in the initiad conditions y(-1), y(=2),...,. v(—=N). Since
the input x(n) is causal and since we are interested in determining the output y{(n}
for n = 0, we can use the one-sided z-transform, which allows us to deal with the
initial conditions. Thus the one-sided z-transform of (3 4.7) becomes

N
Yo =-Yy a7 [Y+(z) + Z y(=m)7" } + Z bzt X*(2) (363
k=1

n=1

Since x(n) iscausal, we can set X*(z) = X(z). Inany case (3.6.5) may be expressed

M N k
Ebkz'k Zakz"‘z:y(—n)z"

Y+ = X(z) - =—3=
1+ Zakz -k 1+ Zakz"‘ (3.6.6)
k=1
= HOX() + 2R

A(z)
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where
k

N
No(2) = — Zakz"‘ Z}’(-n)z" (3.6.7)
k=1

n=1
From (3.6.6) it is apparent that the output of the system with nonzero initia
conditions can be subdivided into two parts. The first is the zero-state response of
the system, defined in the z-domain as
Yo(2) = H(2)X(2) (3.6.8)
The second component corresponds to the output resulting from the nonzero initial
conditions. This output is the zero-input response of the system, which is defined

in the z-domain as
No(2)

A(D)
Hence the total response is the sum of these two output components, which can
be expressed in the time domain by determining the inverse z-transforms of Yy(z)
and Y (z) separately, and then adding the results. Thus

y(n) = y;(n) + yzi{n) (3.6.10)

Since the denominator of ¥, (z), is A(z), its poles are py. pa..... pn. Conse-
guently, the zero-input response has the form

(3.6.9)

Y @)=

N
Yalm) = Y Di(p)"uln) 3.6.11)
k=1

Thiscan beadded to (3.6.4) and the termsinvolving the poles { p;} can be combined
to yield the total response in the form

N L
Yy =Y Ap(pe)win) + Y Qulqe)"uin) (3.6.12)

k=1 k=1
where, by definition,
A=At D, (3.6.13)

This development indicates clearly that the effect of the initia conditions
is to alter the natural response of the system through modification o the scale
factors {A,}. There are no new polesintroduced by the nonzero initial conditions.
Furthermore, there is no effect on the forced response of the system. These
important points are reinforced in the following example.
Example 361

Determinethe unit step response o the system described by the difference equation

y(r) = 09y(n — 1) = 0.81y(n — 2)+ x(n)
under the following initial conditions:

@ y(-D=y-2)=0
b)) y-D=y-2)=1
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Solution The system function is

1
H@ = 1-09z-1+081:-2

This system has two complex-conjugate poles at
p1 =093 pr = 0.9e7 /73
The:-transform of the unit step sequenceis

XO= 15

Therefore,

1
(1 =0.9ei7Bz-1)(1 = 0.9¢-inAz-1)(1 — z-1)
_ 0.542 - j0.049  0.542 4 j0.049 1.099
T 1-09em8;71 T 1 - 09e-imBgmt ] — z-

and hence the zero-state response is

Vasln) = [1099 +1.088(0.9y cos (3n 5,2'-)] win)

Yo2) =

(a) Since the initial conditions are zero in this case, we conclude that y(n) = yy(n).
(b) For the initial conditions y¥(—1) = v(-2) = 1, the additional component in the
~transform  is
Noy _ 0.09— 0.81z71
A 1-09z" +0.81:2
0.026 + j0.4936  0.026 — j0.4936

T TZ09em Pt | 1-09e-/mAz

Conseguently, the zero-input response is

Yilz) =

¥z (n) = 0.988(0.9)" cos (%n + 87°) uln)
In this case the total response has the z-transform

Y(2) = Yul2) + Yal2)
_ 1099 | 0568+ j0.445  0.568 — j0.445
1—z71 1-09e78z-1 " 1 -09¢-/7737-1
The inverse transform yields the total response in the form

(1) = 1.099u(n) + 1.44(0.9)" cos (%n ¥ 386) ()

3.6.3 Transient and Steady-State Responses

Aswe have seen from our previousdiscussion,the responseof a system to a given
input can be separated into two components, the natural response and the forced
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response. The natural response of a causal system has the form

N
Yor(m) = Y Ac(p)'u(n) (3.6.14)
k=1
where {p}, k =1, 2,..., N are the poles of the system and {A;} are scale fac-
tors that depend on the initia conditions and on the characteristics of the input
sequence.

If ipx| < Lfor al k, then, yar(n} decays to zero asn approaches infinity. In
such a case we refer to the natural response of the system as the transient response.
The rate at which y(n) decaystoward zero depends on the magnitude of the pole
positions. If al the poles have small magnitudes, the decay is very rapid. On the
other hand, if one or more poles are located near the unit circle, the corresponding
terms iN y,,(n) Will decay slowly toward zero and the transient will persist for a
relatively long time.

The forced response of the system has the form

L
Yieln) =Y Qx(gi)"u(n) (3.6.15)

k=1
where {g:), k = 1, 2,...,L are the poles in the forcing function and {0} are
scale factors that depend on the input sequence and on the characteristics of the
system. If alf the polesdf the input signal fall inside the unit circle, yi{n) will decay
toward zero as n approaches infinity, just as in the case of the natural response.
This should not be surprising since the input signal is also a transient signal. On
the other hand, when the causal input signal isa sinusoid, the poles fall on the unit
circle and consequently, the forced response is also a sinusoid that persists for all
a > 0. In this case, the forced response is caled the steady-state response o the
system. Thus, for the system to sustain a steady-state output for n = 0, the input

signal must persist for all n > 0.

The following example illustrates the presence of the steady-state response.

Example 3.6.2

Determine the transient and steady-state responses of the system characterized by
the difference equation

y(n)=05y(n - 1)+ x(n)

when the input signal is x(n) = 10cos(rn/4)u(n). The system is initially at rest (i.e.,
it isrelaxed).

Solution The system function for this system is

1
H@ = 155
and therefore the system has a pole at z = 0.5. The z-transform of the input signal is
(from Table 3.3)
10(1 — (1/v2)z7!
X(g = 200 =( /YD
1~v2z7 + 22
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Consequently.
Y(z) = HIDX(©)
~ 1001 = (1/v2):™)
(1= 05711 — /™41 — em 2771
.63 6.78¢ 71357 6.78¢/27
B T B W e B ISP RV e
The natural or transient response is
Var(n) = 6.3(0.5) u(n)
and the forced or steady-state response is
vieln) = [6.787B7 (gi7i%y + 6786/ =iy (m)

= 13.56cos (%n - 28.7*) u(n)

Thus we see that the steady-state response persists for al » > 0. just as the input
signal persists for dl n = 0.

3.6.4 Causality and Stability

As defined previously. a causal linear time-invariant system is one whose unit
sample response h(n) satisfies the condition

hin) =0 n<0

We have also shown that the ROC of the :-transform of a causal sequence is the
exterior of acircle. Consequently. a linear timeinvariatir system is causal if and
only if the ROC o the svstem function is the exterior of a circle of radius » < oo,
including the point = = .

The stability o alinear time-invariant system can also be expressed in terms
o the characteristics of the system function. As we recall from our previous
discussion, a necessary and sufficient condition for a linear time-invariant system
to be BIBO stable is .

Z lh(n)] < oc

In turn, thiscondition implies that H{z) must contain the unit circle within its ROC.
Indeed, since
o
H@) =) hmz™
it follows that B
oC o
H@I< Y thimz™ = Y lhm)llz™"|
n=-x n=—0C

When evaluated on the unit circle (i.e., |z| = 1),

H@I< Y thn)
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Hence, if the system is BIBO stable, the unit circle is contained in the ROC of
H(z). The converseisalso true. Therefore, alinear time-invariant system is BIBO
stable if and only if the ROC of the system function includes the unit circle.

We should stress, however, that the conditions for causality and stability are
different and that one does not imply the other. For example, a causal system
may be stable or unstable, just as a noncausal system may be stable or unstable.
Similarly, an unstable system may be either causal or noncausal, just as a stable
system may be causal or noncausal.

For a causal system, however, the condition on stability can be narrowed
to some extent. Indeed, a causal system is characterized by a system function
H(z) having as a ROC the exterior of some circle of radius r. For a stable
system, the ROC must include the unit circle. Consequently, a causa and sta-
ble system must have a system function that converges for [z] > r < 1. Since
the ROC cannot contain any poles of H(z), it follows that a causal linear time-
invariant system is BIBO stable if and only if all the poles of H(z) areinside the
unit circle.

Example 3.63
A linear time-invariant system is characterized by the system function
3 -4z
HE = 13512
1 2

Specify the ROC of H(z) and determine h{n) for the following conditions:

(a) The system isstable.
(b) The system iscausal.
(c) The system is anticausal.

Solution The system has polesat z = 4 and z=3.

(a) Since the system is stable, its ROC must include the unit circle and hence it is

1 < |z} < 3. Consequently, A(n) is noncausa and is given as

h{m) = (})"u(n) — 2(3)"u(—n — 1)
(b) Since the system is causal, its ROC is |z| > 3. In this case
h(n) = (})"u(n) + 2(3)"u(n)

This system is unstable.
(c) If the system is anticausal, its ROC is |z] < 0.5. Hence

h(n) = —[(})" +23)"Ju(~n — 1)

In this case the system is unstable.
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3.6.5 Poile-Zero Cancellations

When a z-transform has a pole that is at the same location as a zero, the pole
is canceled by the zero and, conseguently, the term containing that pole in the
inverse z-transform vanishes. Such pole—zero cancellations are very important in
the analysis of pole-zero systems.

Pole-zero cancellations can occur either in the system function itself or in
the product of the system function with the z-transform of the input signal. In the
first case we say that the order of the system isreduced by one. In the latter case
we say that the pole of the system is suppressed by the zero in the input signal,
or vice versa. Thus, by properly selecting the position of the zeros of the input
signal, it is possible to suppress one or more system modes (pole factors) in the
response o the system. Similarly, by proper selection of the zeros of the system
function. it is possibie to suppress one or more modes of the input signal from the
response of the system.

When the zero islocated very near the pole but not exactly at the same loca-
tion, the term in the response has a very small amplitude. For example, nonexact
pole—zero cancellations can occur in practice as a result of insufficiant numerical
precision used in representing the coefficients of the system. Consequently, one
should not attempt to stabilize an inherently unstable system by placing a zero in
the input signal at the location of the pole.

Example 364

Determine the unit sample response of the system characterized by the difference
equation

vin)=25v{in—=1)—¥(n—-2)+x(n) —Sx(n = 1)+ 6x{n —2)
Solution The system function is

1-5:"1+6:72
HE = Toys =
_1-5714627
Cda-irha-2Th

This system has poles at py = 2 and p; = 4. Conseguently, at first glance it appears
that the unit sample response is

1-5:7"+6:72
(1-31zh1 -2

_ A + B
=z z—% z-2

By evaluating the constants at z = 4 and z = 2, we find that

Y(z) = H(DX(2) =

=3 =
=3 B=0

The fact that B = 0 indicates that there exists a zero at z = 2 which cancels
the pole at z = 2. In fact, the zeros occur at z = 2 and z = 3. Consequently, H{(z}
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reduces to

1-3:"" -3
H(z) = e = 20
L L
2577
= I— T
1-3z

and therefore
h(n) = 8(n) = 2.5(})" 'u(n - 1)
The reduced-order system obtained by canceling the common pole and zero is char-
acterized by the difference equation
ym) = dyn = 2) F x{n) - 3x(n - 1)
Although the original system is also BIBO stable due to the pole-zero cancellation,

in a practical implementation d this second-order system. we may encounter an
instability due to imperfect cancellation of the pole and the zero.

Example 3.6.5
Determine the response d the system
y(n) = iy(n = 1) = tvin = 2) + x(n)
to the input signal x(z) = &(n) — 18(n - 1).
Solution The system function is
H(z) =

S.- 1.2
l—zg + i

1

(1= (1= 527
This system has two poles, one at z = % and the other at : = 1. The:-transform d
the input signa is
X(z)=1-3:"
In this case the input signal contains a zero at : = 15 which cancels the pole at = = 1.

Consequently,
Y(@) = HOX(@)

11

'@ = 1-35z
and hence the response of the system is

y(n) = ($un)
Clearly, the mode (g)" is suppressed from the output as a result o the pole-zero
cancellation.

3.6.6 Multiple-Order Pol es and Stability

As we have observed, a necessary and sufficient condition for a causal linear ti ne
invariant system to be BIBO stable is that all its poles lie inside the unit circle.
The input signal is bounded if its z-transform contains poles {g+}, k =1, 2....,L,
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which satisfy the condition igx| < 1 for al k. We note that the forced response of
the system. given in (3.6.15). is also bounded. even when the input signal contains
one or more distinct poles on the unit circle.

In view of the fact that a bounded input signal may have poles on the unit
circle. it might appear that a stable system may also have poles on the unit circle.
Thisis not the case, however, since such a system produces an unbounded response
when excited by an input signal that also has a pole at the same position on the
unit circle. The following example illustrates this point.

Example 3.6.6
Determine the step response of the causal system described by the difference equation
yim)y=y{n - D +x{n)
Solution The system function for the system is

1
H(z) = ==

We note that the system contains a pole on the unit circle at - = 1. The :-transform
of the input signal x{r} = u(n) is

R 1
X)) = =
which aso contains a pole at z = 1. Hence the output signal has the transform
Y(2) = H{D)X(Q)
1
1=zt
which contains a double pole at z = 1.
The inverse z-transform of Y(z) is
y(r}) = (n+ Dun)

which isa ramp sequence. Thus v(n) is unbounded, even when the input is bounded.
Consequently. the system is unstable.

Example 3.6.6 demonstrates clearly that BIBO stability requires that the sys-
tem poles be strictly inside the unit circle. If the system poles are all inside the unit
circle and the excitation sequence x(n) contains one or more poles that coincide
with the poles of the system, the output Y (z) will contain multiple-order poles, As
indicated previously, such multiple-order poles result in an output sequence that
contains terms of the form

At (p)"u(n)

where 0 < b < m -1 and m isthe order of the pole. If |px| < 1, these terms decay
to zero as n approaches infinity because the exponential factor (p,)" dominates
the term n°. Consequently, no bounded input signal can produce an unbounded
output signal if the system poles are al inside the unit circle.
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Finally, we should state that the only useful systems which contain poles
on the unit circle are the digital oscillators discussed in Chapter 4. We call such
systems marginally stable.

3.6.7 The Schur-Cohn Stability Test

We have stated previously that the stability of a system is determined by the
position of the poles. The poles of the system are the roots of the denominator
polynomial of H(z). namely,

A@=1+aiz7 + a2+ +ayz ™V (3.6.16)

When the system is causal al the roots of A{z) must lie inside the unit circle for
the system to be stable.

There are several computational procedures that aid usin determining if any
d the roots of A(z) lie outside the unit circle, These procedures are called stability
criteria. Below we describe the Schur—Cohn test procedure for the stability of a
system characterized by the system function H(z) = B(z)/A(z).

Before we describe the Schur—Cohn test we need to establish some useful
notation. We denote a polynomial d degree m by

ALY=3a b a0 =1 (3.6.17)
k=0

The reciprocal or reverse polynomial B,,(z) of degree m is defined as
Bn(z) = 27" ARz

=2 am(m -k
k=0

We observe that the coefficientsd B,,(z) are the same asthose of A.(z), but
in reverse order.

In the Schur-Cohn stability test, to determine if the polynomial A(z) has all
its roots inside the unit circle, we compute a set of coefficients, caled reflection
coefficients, K1, K2, ..., Ky from the polynomias A, (z). First, we set

An(z) = A(D)

and (3.6.19)
Ky = an(N)

Then we compute the lower-degree polynomials A, (z), n=N,N-1,N-2,...,1,
according to the recursive equation

(3.6.18)

Ap(2) — KnBm(2)

e (3.6.20)

Am-1(z) =

where the coefficients K,, are defined as
Kpn =an(m) (3.6.21)
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The Schur—Cohn stability test states that the polvnomial Az} gi en by (3.6.16)
has all its reots inside the unii circle f and only if the coefficients K., satisfy the
condition |K,| <1 foralm=12.... N.

We shall not provide a proof of the Schur—Cohn test at this point. The
theoretical justification for this test is given in Chaprer 11. We illustrate the com-
putational procedure with the following example.

Example 3.6.7
Determine if the system having the svstem function

H(z) = PRy
is stable.
Solution We begin with 4(z). which is defined as
Az(:) =1~ ;:'] _ :L:_:
Hence
Ka=—1
Now
Byzy= -1 I:70 4t
and
Ax(2y = KaBa(2)
A = -
1(2) -
=1-1-"!
Therefore.
Ki=-1

Since | K| > 1 it follows that the system is unstable. This fact is easily estab-
tished in this example, since the denominator is easilv factored to yield the two poles

at py = -2 and p» = §. However, for higher-degree polynomials. the Schur-Cohn

test provides a simpler test for stability than direct factoring d H(z)

The Schur-Cohn stability test can be easily programmed in a digital computer
and it is very efficient in terms of arithmetic operations. Specificaly, it requires
only N% multiplications to determine the coefficients (K}, m = 1, 2...., N. The
recursive equation in (3.6.20) can be expressed in terms d the polynomial coef-
ficients by expanding the polynomials in both sides of (3.6.20) and equating the
coefficients corresponding to equal powers. Indeed, it is easily established that
(3.6.20) is equivalent to the following algorithm: Set

ay(k) = ax k=1.2,....N (36.22
Ky = an(N) (3.6.23)
Then, form=N, ¥ - 1,....1, compute
Kn =am(m)  am1(0)=1
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and
A (k) = Kby (k)
am-l(k)=T k=1,2,....m-1 (3.6.24)
where
b (kY = @m(m — k) k=0,1,....m (3.6.25)

This recursive agorithm for the computation of the coefficients{K,) finds
application in various signal processing problems, especially in speech signal pro-
cessing.

3.6.8 Stability of Second-Order Systems

In this section we provide a detailed analysis of a system having two poles. As
we shall see in Chapter 7, two-pole systemsform the basic building blocksfor the
realization of higher-order systems.

Let usconsider a causal two-pole system described by the second-order dif-

ference equation

y(n) = —ary(n — 1) — azy(n — 2) * box(n) (3.6.26)
The system function is
Y(z2) by
H TN e et
@) X{z) l4+az1+apz!
, (3.627)
- b
T Z2tazta

This system has two zeros at the origin and poles at

2
ay 01—4(12
pr=—o T2 6.
prp2=—7 m (3.6.28)

The system is BIBQ stable if the poles lie inside the unit circle, that is, if
lpt) < 1 and |ps} < 1. These conditions can be related to the vaues of the
coefficientsa; and a,. In particular, the roots of a quadratic equation satisfy the
relations

ay = —(ps + p2) (3.6.29)
a = pip2 (3.6.30)

From (3.6.29) and (3.6.30) we easly obtain the conditions that a; and a; must
satisfy for stability. First, a; must satisfy the condition

laz| = |pyp2! = Ip1llp2l < 1 (3.6.31)
The condition for a; can be expressed as
la1]l <1+ a (3.6.32)
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The conditions in (3.6.31) and (3.6.32) can also be derived from the Schur-
Cohn stability test. From the recursive equations in (3.6.22) through (3.6.25), we
find that

ay
K= 7 (3.6.33)
and
Ky=a (3.6.39)

The system isstable if and only if {K;| < 1 and |K»} < 1. Consequently,
-l<a <1
or equivalently laa| < 1, which agrees with {3.6.31). Also,

a1

-1
= 1+a;

<1

or, equivalently,
a < l+a
a > —1*02

which are in agreement with (3.6.32). Therefore. a two-pole system isstable if and
only if the coefficientse; and a satisfy the conditions in (3.6.31) and (3.6.32).

The stahility conditions given in (3.6.31) and (3.6.32), define a region in the
coefficient plane (a;. a2), which is in the form of a triangle, as shown in Fig. 315.
The system is stable if and only if the point (a:. @2} liesinside the triangle, which
we call thestahility triangle.

The characteristics of the two-pole system depend on the location of the
poles or, equivalently. on the location of the point (a;, a2) in the stability triangle.
The poles of the system may be real or complex conjugate, depending on the
value of the discriminant A = a? — 4a,. The parabola a; = a} /4 splitsthe stability

Complex
conjugale

Stability

1,//////// % / ca,,,,Mm,. poles

a

Rcal and distinct poles

Fire315 Regiond stability
ap=—a -1 (stability triangle) in the (aj, a2)
coefficient plane for a second-order
system.



Sec. 3.6 Analysis of Linear Time-Invariant Systems in the z-Domain 217

triangle into two regions, asillustrated in Fig. 3.15. The region below the parabola
(a? > 4ay) corresponds to real and distinct poles. The points on the parabola
(af = 4az) result in real and equal (double) poles. Finally. the points above the
parabola correspond to complex-conjugate poles.

Additional insight into the behavior of the system can be obtained from the
unit sample responses for these three cases.

Real and distinct poles (a? = 4az). Since py. p» arereal and p; # p». the
system function can be expressed in the form
Aq Az

H(z) = + 3.6.35
@ 1-pzt 1= paz? (3633
where
—b
4 = 2o Ay = 0P2 (3.6.36)
P1— P2 pPr—p2

Conseguently, the unit sample response is

hin) = by (Pt - pg'”)u(n) (3.6.37)

PL—=m
Therefore, the unit sample response is the difference of two decaying exponential
sequences. Figure 3.16 illustrates a typical graph for #(n) when the poles are
distinct.

Real and equal poles (a? = 4a,). Inthiscase p1 = p2=p = —-a/2. The
system function is

by
H() = ————— (3.6.38)
O =Ty
and hence the unit sample response d the system is
h(m) = botn t 1)p"u(n) (3.6.39)
h(n)
20 (
15t
104

0.5 L

hhﬁhn..-_- . .

0 50

Figure 316 Plot of h(n) given by (3.6.37) with p1 = 0.5, p2 = 0.75; h(n) =
[1/¢py = PP} = p3* Hutny.
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hin)

ZAO( '
o

| | IIIYTTTT?!q.-- .

0 50

Figure3.17 Plot & h(n) given by (3.6.39) with p = 2; h(n) = (n + 1)p"u(m)

We observe that #(n) is the product of a ramp sequence and a real decaying
exponential sequence. The graph d k(n} is shown in Fig. 3.17.

Complexconjugate poles (a? < 4a). Since the poles are complex con-
jugate, the system function can be factored and expressed as
A A
H(z) = 1 + =

a1 -
" t=p - (3.6.40)

T 1 reienzl + 1 - re—jmg-l
where p = re’* and 0 < ay < 7. Note that when the poles are complex conjugates,
the parameters a; and a- are related to r and wy according to

a) = —2rcos

LT (36.41)

a =r
The constant A in the partial-fraction expansion of H(:) is easily shown to be

A= bop _ bore/™
p=pr o rleln —emie) (3.6.42)
— bne!™
j2sinwyp

Consequently, the unit sample response of a system with complex-conjugate poles

IS
bo!’" ej(n-H)wg - e—j(n-ﬁ-l)m
hin) = —— ———=———u(n)
sin wo 2j

bor”

(3.6.43)
sin(n + Dagu(n)

Siney
In this case h(n) has an oscillatory behavior with an exponentially decaying
envelope when r < 1. The angle wp of the poles determines the frequency of
oscillation and the distance r of the poles from the origin determines the rate of
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hin)
12
10}
08
06+

04 |

uz— [ UI K35 ML ate o 4

—02 +

—04
—06 F
—08 +

10 F

1.2 F

Figure 318 Plat of h(n) given by (3.6.43) with by = 1, wy = nfd, r = 0.9;
h(n) = [bor™ /(sin ey)] sin[(n T Dy u(n).

decay. When r is close to unity, the decay isslow. When r is close to the origin,
the decay isfast. A typica graph of A(n) isillustrated in Fig. 3.18.

3.7 SUMMARY AND REFERENCES

The z-transform plays the same role in discrete-time signals and systems as the
Laplace transform doesin continuous-time signals and systems. In this chapter we
derived the important properties of the z-transform, which are extremely useful in
the analysis of discrete-time systems. Of particular importance is the convolution
property, which transforms the convolution of two sequences into a product of
their z-transforms.

In the context of LTI systems, the convolution property results in the product
of the z-transform X (z) of the input signal with the system function H{(z), where
the latter is the z-transform of the unit sample response of the system. This
relationship alows us to determine the output of an LTI system in response to an
input with transform X (z) by computing the product Y(z) = H(z)X(z) and then
determining the inverse z-transform of Y (z) to obtain the output sequence y(n).

We observed that many signalsaf practical interest have rational z-transforms.
Moreover, LTI systems characterized by constant-coefficient linear difference
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equations, atso possess rational system functions. Consequently. in determining
the inverse z-transform, we naturally emphasized the inversion of rational trans
forms. For such transforms. the partia-fraction expansion method is relatively
easy to apply. in conjunction with the ROC. to determine the corresponding se-
guence in the time domain. The one-sided z-transform wasintroduced to solve for
the response of causal systems excited by causal input signals with nonzero initia
conditions.

Finally, we considered the characterization of LTI systemsin the z-transform
domain. In particular. we related the pole-zero locations of a system to its time-
domain characteristics and restated the requirements for stability- and causality of
LTI systems in terms of the pole locations. We demonstrated that a causal system
has a system function #(z) with a ROC |z} > r;, where 0 < ri < oc. In a stable
and causal system, the poles of H(z) lie inside the unit circle. On the other hand,
if the system is noncausal. the condition for stability requires that the unit circle be
contained in the ROC of H(z). Hence a noncausal stable LTI system has a system
function with poles both inside and outside the unit circle with an annular ROC
that includes the unit circle. The Schur—Cohn test for the stability of a causal LTI
system was described and the stability of second-order system was considered in
some detail.

An excellent comprehensive treatment d the z-transform and its application
to the analysis o LTI systems is given in the text hy Jury (1964). The Schur-
Cohn test for stability is treated in several texts. Our presentation was given in
the context of reflection coefficients which are used in linear predictive coding d
speech signals. The text by Markel and Gray (1976) is a good reference for the
Schur—Cohn test and its application to speech signa processing.

PROBLEMS

3.1 Determinethe z-transform o the following signals.
(@) x(n)={3.0.0.0.0.6.1. —4}

& on=s
® X(")—{o. n=<4
32 Determine the:-transforms of the following Sgnas and sketch the corresponding
pole-zero patterns.
@) x(m)= 1+ nuim)
) x(m=(a" ta"un). a red
(c) x(r) =(= "2 u(n)
(d) x(n) = (na" Sinwyn)u(n)
{e) x(n) = (na" coswon)u(n)
(D x(n)=Ar"cos(wn + Piu(n).0 <r <1
@) x(n)=3(n* tmyt)—tun - 1)
() x(n) = (3)"[uln) — uln - 10)]
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33

34

[
tn

36

37

iu

Determine the z-transforms and sketch the ROC of the following signals.
_ G nzo0
(a) 11('1)—{(%)_"‘ n<0

(b) xz(n) = {
n <

(€) xa(n) =x;(n +4)

(d) x4(m) = x,(—n)

Determine the z-transform of the following signals.

(@) x{n) =n(=1)"u(n)

(b) x(n) =n?u(n)

(¢) x(n) = —na’u(-n-—1)

(@) x(n) =(-1)" (cos 13'-n) u(n)

(e) x(n)=(-1)"u(n)

® x(m)=11,0,-1,0,1,~-1,..)

t
Determine the regions of convergence of right-sided, left-sided, and finite-duration
two-sided sequences.

Express the z-transform of

-2 n20
0, 0

n

ym = xk

k=-oc
intermsof X(z). [H nr:Find the difference y(n) — y(n = 1).]
Compute the convolution of the following signals by means of the z-transform.
G, nz20
$H™ n<0

xi(n) = [

x2(n) = (})"u(n)

Use the convolution property to:
(@) Express the z-transform of

v =y xk)

ka=—o0c

intermsd X (z2).
(b) Determine the z-transform of x(n) = (n + Du(n). [Hint: Show first that x(n) =

uin)® u(n).]
The z-transform X (z) of areal signal x(n) includesa pair of complex-conjugate zeros
and a pair of complex-conjugate poles. What happens to these pairs if we multiply
x(n) by e/*"? (Hinr. Use the scaling theorem in the z-domain.)
Apply the fina value theorem to determine x(oo) for the signa

I("):{l, if n isgven
0, otherwise
Using long division, determine the inverse z-transform of
142771

1-2z714272
if (8) x(n) iscausal and (b) x(n) is anticausal.

X(z) =
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312 Determine the causa signal x(r) having the z-transform
1
= amma—n
3.13 Let x(n) be a sequence with z-transform X(z). Determine, in terms of X(z). the
z-transforms of the following signals.
n .
(@) xn) = [ x (E) -1f n even
0, if n odd
(b) x2(n) = x(2n)
314 Determine the causal signal x(n) if its ztransform X(z) is given by:

Xy — 14327
@ X&) =3
) X = 1
J I le-2
2z
-6+ -7
(€ X(2) = :
1+2:2
d) X)) = T:F?
1 1+t6: +o2
e Xt = 4 -2t A - 05
21571
0 X = 1-15:-1F0.5:2
1+2:7 422

(g X(2)= 7 a2
(h) x(z) is specified by a pole-zero pattern in Fig. P3.14. The constant G = ,‘;

—_l.-1

S<

(i) X&) =

TR
1% 52

1—azt

G X@=

P

Sit—

&~y

~
s
=

Figure P3.14

3.15 Determine alt possible signals x(n) associated with the z-transform

_ 5771

T -2z 13-

316 Determine the convolution of the following pairs of signals by means of the z-
transform.

X(z)
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(@ xi) = (Erutn =1, x2m =1+ um)

(b) x; 00 =u(n), x(n)=8(m)F GVuin)

(c) x1(n) = (})"u(n), xa(n) = cosnu(n)

(d) x1(n) =nu(n), x2(n)=2"u(n—1)
317 Prove the fina value theorem for the one-sided :-transform.
318 If X(z) is the z-transform of x(n), show that:

(a) Z{x"(m)} = X"(z*)

(b) Z{Re[x(m]} = 3[X (2} + X*(")]

(c) ZUmfxm)]} = 3[X(2) - X*")]

(d) If
ey = % (E) . ifn/k i.meger
0, otherwise
then
Xi(2) = X (N

(€) Z{e/™x(n)} = X (ze71*0)
319 By first differentiating X(z) and then using appropriate propertiesof the z-transform.
determine x(n) for the following transforms,
(@) X)) =log(1-22)., lIzf < %
() Xy=logl ==z |z >}
3.20 (a) Draw the pole-zero pattern far the signa
xy(n) = (r"Sinwomuin) O<r <l
(b) Compute the z-transform X;(z), which corresponds to the pole-zero patiern in
part (a),
(c) Compare X,(z) with X;(z). Are they indentical? If not. indicate a method (o
derive X;(z) from the pole-zero pattern.

321 Show that the roots of a polynomial with real coefficients are real or form complex-
conjugate pairs. The inverse is not true, in general.

322 Prove the convolution and correlation properties of the z-transform using only its
definition.
3.23 Determine the signa x(») with z-transform
X(=e+e 2] #£0
324 Determine, in closed form. the causal signals x(n) whose z-transforms are given by:

@ X = rys o5
1
®) X&) = 5062
Partially check your results by computing x(0), x (1}, x(2), and x(=c) by an alternative
method.
3.25 Determine al possible signals that can have the following z-transforms.

(a) X (2} = —_—

1~15z"1+0.5;2
b Xiz)= ——m8—
(b) X(z) It i
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327

329

330

331

3.32
333

3.34
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Determine the signa x{r) with:-transform

3

&=z Loty 2

if X(z) converges on the unit circie.
Prove the complex convolution relation given by (3.2.22).
Prove the conjugation properties and Parseval’s relation for the z-transform given ip
Table 3.2.
In Example 3.4.1 we solved for x(r), n < 0, by performing contour integrations for
each value of n. In general, this procedure proves to be tedious. It can be avoided by
making a transformation in the contour integral from z-plane to the w = 1/z plane.
Thus a circle of radius R in the z-plane is mapped into acircle of radius 1/R in the w-
plane. As a consequence. a pole inside the unit circle in the z-ptane is mapped intoa
pole outside the unit circle in the w-plane. By making the change of variable w = 1/z
in the contour integral. determine the sequence x(r) for n < 0 in Example 3.4.1.
Let x(n}, 0 < n < N —1 be afinite-duration sequence. which is also real-valued and
even. Show that the zeros of the polynomial X (z) occur in mirror-image pairs about
the unit circle. That is. if z = re/® isa zero of X(z). then z = (1/r)e’* is also a zero.
Compute the convolution of the following pair of signalsin the time domain and by
using the one-sided :-transform.
a xnim={1.1.111 xa(my =1{1. 1.1}
1 t

(by xi(r) = (3)"ulm).  xain) = (1)utn)
(¢) x;(m)=1{1.2.3.4). xa(n) = (4,3.2.1j

1 1

@ xm={.1.1L11. xm=I{.11)
1 t

Did you obtain the same results by both methods? Explain.
Determine the one-sided ,--transform of the constant signal x(n) = 1. ~oc < n < 0.
Prove that the Fibonacci sequence can be thought of as the impulse response of the
system described by the difference equation y(n) = y(n — 1)+ y(n = 2) * x(n). Then
determine h(n) using z-transform techniques.
Use the one-sided :-transform to determine y(n), n = 0 in the following cases.
(@) ymtivin -1 - ivn-2)=0; y-D=y-H=1
(b) ¥(m) = 1.5¥(n — 1) T 0Syn —2)=0; y(-D=1,v(-2)=0
(© ym =iy =Dt xm
x(n)=()rum). y(-1)=1
(d ¥ = iy - 2)F xtm)
x(n) = u(n)
Yy =0 y-2)=1
Show that the following systems are equivalent.
(@ y(m) =02y - 1)+ x(n) = 03x(n — 1)+ 0.02x(n - 2)
(b) y(n) =x(n) —01x(n - 1)
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3.36 Consider the sequence xin} =a"uin). —1 < & < 1. Determine at least two sequences
that are not equal to x(») but have the same autocorrelation.

3.37 Compute the unit step response of the system with impulse response

I n<0
hin) = (%),,. n>0

338 Compute the zero-state response for the following pairs of svstems and input signals.

(@) himy=(3run). xn) = (%)"(cos iT—n)u(n}
(b} hin) = (2rutn). x(m = (3 u(n) + (4 u=n = 1)
(c) vim) = =0Ivin = 13+ 0.2vn = 2 +.\(n) +taim -1

x(ny = (3)"utn)
(d) vin) = 1:.\'(”) -~ %.\'(n -1

T

x{n) = l(](cus ;n)u(n)
(e) vimy = —vin—=2)~ 10z

x(n) = ]()(C()s gn)u(n)

(D b = GYen) i) = wlm — wn = 7

(@) hin = (H i), xtn) = (=1, =x <n <=
(h) himy = (e, i) = i+ D3 um
3.39 Consider the svstem
T B
H(:)=“__,|M_UD_:[ ”_Uﬁ,_,] ROC: (15 < iz = |

(a) Sketch the pole-zero pattern. Is the system stable?
(b) Determine the impulse responsc of the system.

3.40 Compute the response of the system
vin)=07v(n - 1) —-012ytn =2)+xtn~ )+ x(n - 2)

to the input x(n) = nu(n). Is the system stable?

3.41 Determine theimpulse response and the step response d the following causal systems.
Plot the pole-zero patterns and determine which of the systems are stable.

(@) vim =3yin =1 = ix(n - 2) T xtm)

(b) ¥(my=v(n = 1) —05v(n =2yt xin) +xtn — 1)
4

(c) Hizy =

(1 =z
(d) viny =0.6v(n — 1) — 0.08%(n — 2)+ x(n)
(e) y(my=0.Ty(n— 1) = 0.1v(n — 2)F 2x(n) — x(n — 2)
3.42 Let x(n) be a causal sequence with:-transform X (z) whose pole-zero plot is shown
in Fig. P3.42. Sketch the pole-zero plots and the ROC of the following sequences:
(@ xin)=x(-nt2)
(b) x2(n) = e’V x(n)
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Im(z)

rog—

Re(2)

21—
t2f—

(ST

Figure P3.42

3.43 We want to design a causal discrete-time LTI system with the property that if the
input is
x(n) = ()"u(r) = (Y uln = 1)
then the output is
yiny = (3)"uin)
(a) Determine the impulse response #(n) and the system function H(z) of a system
that satisfies the foregoing conditions.
(b) Find the difference equation that characterizes this system.

(c) Determine aredization of the system that requires the minimum possible amount
o memory.

(d) Determine if the system is stable.
344 Determine the stability region for the causa system
1
HO= o Faes
by computing its poles and restricting them to be inside the unit circle.
3.45 Consider the system

H()

Determine:
(a) The impulse response
(b) The zero-state step response
(c) The step response if y(—=1) =1 and y(-2) = 2
3.46 Determine the system function, impulse response, and zero-state step response of the
system shown in Fig P3.46.
347 Consider the causal system

y(n) = —ayy(n = 1) + box(n) + brx(n = 1)

Determine:
(@) The impulse response
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) m
-

a

Figure P3.46

(b) The zero-state step response
(¢) The step response if ¥(=1) = A #0
(d) The response to the input
x(n) = CcOS wyn D<n«<oc
3.48 Derermine the zero-state response of the system
v(n) = %)'(u = 1)+4x(n)+3x(n - 1)
to the input
x(n) = e’*"u(n)
What is the steady-state response of the system?
349 Consider the causal system defined by the pole-zero pattern shown in Fig. P3.49.
(a) Determine the system function and the impulse response of the system given that
H()ey = 1.
(h) Is the system stable?

(c) Skeich a possible implementation of the system and determine the corresponding
difference equations,

im(z)

\
1

e
]
Sk N

\\0 Re(z)

FireP3.49

350 An FIR LTI system has an impulse response #(n), which is real valued, even, and
has finite duration of 2# + 1. Show that if z; = re’* isa zero d the system, then
21 = (1/r)e/* s also a zero.
351 Consider an LTI discrete-time system whose pole-zero pattern isshown in Fig. P351.
(@) Determine the ROC of the system function H(z) if the system is known to be
stable.
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Im(2)

Re(z)

Figure P3.51

(b) It is possible for the given pole-zero plot to correspond to a causal and stable
system? If so, what is the appropriate ROC?
(c) How many possible systems can be associated with this pole-zero pattern?

352 Let x(n) be a causal sequence.
(@) What conclusion can you draw about the value of its z-transform X (z) a : = m?
(b) Use the result in part (a) to check which of the following transforms cannot be
associated with a causal sequence.
(z-3)" - 1y . (: =1y
T W xe= RIS G xei= 0

7 -
g V3
(z= — 38 2)

ST

i X@) =

Wt

353 A causa pole-zero system is BIBO stable if its poles are inside the unit circle. Con-
sider now a pole-zero system that is BIBO stable and has its poles inside the unit
circle. Is the system always causal? [Hnt: Consider the systems 4, (n) = a"u(n) and
ha(m) = a"u(n +3) jal < 1]

354 Let x(n) be an anticausal signd [i.e., x(n) = 0 for n > 0]. Formulate and prove an
initial value theorem for anticausal signals.

355 The step response of an LTI system is
stn) = ()" 2uln +2)

(@) Find the system function H (z) and sketch the pole-zero piot.
(b) Determine the impulse response k(n).
(¢) Check if the system is causal and stable.

3.56 Use contour integration to determine the sequence x(n) whose z-transform is given
by

1 1
(a) X(2)= T-I. Izt > 3

(b) X(2) =

—f
&
-
A
ot

1-
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(€) X2y = — iz > la
@ Xi= — >3
V-l =
357 Let xtni be a sequence with t-transform
j. 2
X m—— ROC:a < |zl < 1/a

(0 —azi (1l —az™hH
with 0 < a < 1. Determine x(n) by using contour integration
358 The :-transform of a sequence x (1) is given by

Py

Xy = T Ts Y
=D =-2%C+ i+
Furthermore it is known that X (2) converges lor |z} = 1.

{a) Determine the ROC of X(z).

(b) Determine xin) at n = —18. (Hint: Use contour integration.)

229



Freguency Analysis of Signals
and Systems

The Fourier transform is one of several mathematical tools that is useful in the
analysis and design of LTI systems. Another is the Fourier series. These signa
representations basically involve the decomposition of the signals in terms of sinu-
soida! (or complex exponential) components. With such a decomposition, a signa
is said to be represented in the frequency domain.

Asweshall demonstrate, most signals of practical interest can be decomposed
into asum o sinusoidal signal components. For the class of periodic signals, such
a decomposition is called a Fourier series. For the class of finite energy signas, the
decomposition iscalled the Fourier transform. These decompositions are extremely
important in the analysisof LTI systems because the response of an LTI system to
asinusoidal input signal isasinusoid of the same frequency but of different ampli-
tude and phase. Furthermore. the linearity property of the LTI system implies that
a linear sum o sinusoidal components at the input produces a similar linear sum
of sinusoidal components at the output, which differ onty in the amplitudes and
phases from the input sinusoids. This characteristic behavior of LTI systems ren-
dersthe sinusoidal decomposition of signals very important. Although many other
decompositions of signals are possible, only the class of sinusoidal (or complex ex-
ponential) signals possess this desirable property in passing through an LTT system.

We begin our study of frequency analysis of signals with the representation
of continuous-time periodic and aperiodic signals by means o the Fourier series
and the Fourier transform. respectively. This is followed by a paralel treatment
of discrete-time periodic and aperiodic signals. The properties of the Fourier
transform are described in detail and a number o time-frequency dualities are
presented.

4.1 FREQUENCY ANALYSIS OF CONTINUOUS-TIME SIGNALS

It iswell known that a prism can be used to break up white light (sunlight) into the
colors of the rainbow (see Fig. 4.1a). In a paper submitted in 1672 to the Royal
Society, Isaac Newton used the term spectrum to describe the conti nuous bands
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Class prism
H | Violet
Biue
- \‘ Green
- Yellow
D Beam of *& 1
sunlight R{J Qr nEe
Specirum
(@)
Glass prism
ﬂ White light

U Beam of
sunhight

Figure 41 (a) Analysis and

(b) svnthesis of the white light (sunlight)

(b) using glass prisms.

of colors produced by this apparatus. To understand this phenomenon. Newton
placed another prism upside-down with respect to the first. and showed that the
colors blended hack into white light. as in Fig. 4.1b. By inserting a dit between
the two prisms and blocking one or more colors from hitting the second prism.
he showed that the remixed light is no longer white. Hence the light passing
through the first prism is simply analyzed into its component colors without any
other change. However. only if we mix again dl of these cotors do we obtain the
original white light.

Later. Joseph Fraunhofer (1787-1826). in making measurements of light
emitted by the sun and stars. discovered that the spectrum of the observed light
consists of distinct color lines. A few years later (mid-1800s) Gustav Kirchhoff and
Robert Bunsen found that each chemical element. when heated to incandescence.
radiated its own distinct color of light. As a consequence. each chemical element
can be identified by its own line spectrum.

From physics we know that each color corresponds to a specific frequency of
the visible spectrum. Hence the analysis of light into colors is actually a form of
frequency analysis.

Frequency analysis of a signal involves the resolution of the signal into its
frequency (sinusoidal) components. Instead of light, our signal waveforms are
basically functions of time. The role of the prism is played by the Fourier analysis
tools that we will develop: the Fourier series and the Fourier transform. The
recombination of the sinusoidal components to reconstruct the original signa is
basically a Fourier synthesis problem. The problem of signal analysis is basically
the same for the case of a signa waveform and for the case of the light from heated
chemical compositions. Just as in the case of chemica compositions. different
signal waveforms have different spectra. Thus the spectrum provides an "identity"
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or asignature for the signal in the sense that no other signal has the same spectrum.
Aswe will see, this attribute is related to the mathematical treatment of frequency-
domain techniques.

If we decompose a waveform into sinusoidal components. in much the same
way that a prism separates white light into different colors, the sum of these
sinusoidal components results in the original waveform. On the other hand, if any
of these components is missing, the result is a different signal.

In our treatment of frequency analysis, we will develop the proper mathe-
matical tools ("prisms") for the decomposition of signals ("light™) into sinusoidal
frequency components (colors). Furthermore, the tools ("inverse prisms") for syn-
thesis of a given signal from its frequency components will also be developed.

The basic mativation for developing the frequency analysis toolsis to provide
a mathematical and pictoria representation for the frequency components that are
contained in any given signal. Asin physics, the term spectrum is used when refer-
ring to the frequency content of asigna. The process of obtaining the spectrum
of a given signal using the basic mathematical tools described in this chapter is
known as frequency or spectral analysis. In contrast, the process of determining
the spectrum of a signal in practice, based on actual measurements of the signal,
is called spectrum estimation. This distinction is very important. In a practical
problem the signal to be analyzed does not lend itsdf to an exact mathematical
description. The signal is usually some information-bearing signal from which we
are attempting to extract the relevant information. If the information that we wish
to extract can be obtained either directly or indirectly from the spectral content o
the signal, we can perform spectrum estimation on the information-bearing signal,
and thus obtain an estimate of the signal spectrum. In fact, we can view spectral
estimation as atype of spectral analysis performed on signals obtained from physi-
cal sources (e.g., speech, EEG, ECG, etc.). The instruments or software programs
used to obtain spectral estimates of such signals are known as spectrum analyzers.

Here, we will deal with spectral analysis. However, in Chapter 12 we shall
treat the subject of power spectrum estimation.

4.1.1 The Fourier Series for Continuous-Time Periodic
Signals

In this section we present the frequency analysis tools for continuous-time pe-
riodic signals. Examples of periodic signals encountered in practice are square
waves, rectangular waves, triangular waves, and of course, sinusoids and complex
exponentials.

The basic mathematical representation of periodic signas is the Fourier se-
ries, which is a linear weighted sum of harmonically related sinusoids or complex
exponentials. Jean Baptiste Joseph Fourier (1768-1830), a French mathematician,
used such trigonometric series expansions in describing the phenomenon of heat
conduction and temperature distribution through bodies. Although his work was
motivated by the problem of heat conduction, the mathematical techniques that



Sec. 4.1 Frequency Analysis of Conanuous-Time Signals 233

he developed during the early par: of the nineteenth century now find applica
tion in a variety of problems encorrassing many different fields. including optics.
vibrations in mechanical systems. svs:zm theory. and electromagnetics.

From Chapter 1 we recall tha: 2 linear combination of harmonically related
complex exponentials o the form

by
X = Z Ckejz,-rlﬂ.a (4.1.1)
==
is a periodic signal with fundamenta! period 7, = 1/F,. Hence we can think of

the exponential signals
{e j2mk For

as the basic "building blocks™ from which we can construct periodic signals of
various types by proper choice of the fundamental frequency and the coefficients
{cx). Fo determines the fundamental period of x(t) and the coefficients (¢} specify
the shape of the waveform.

Suppose that we are given a periodic signa x(r) with period T,. We can
represent the periodic signal by the series (4.1.1), caled a Fourier series, where
the fundamental frequency Fu is selected to be the reciprocal o the given period
T,. To determine the expression for the coefticients {c;}, we first multiply both
sides of (4.1.1) by the complex exponential

e 2 Folt

where | is an integer and then integrate both sides of the resulting equation over
asingle period, say from 0 to T,. or more generaly, from 5 to 1, + 7,,, where 1 is
an arbitrary but mathematically convenient starting value. Thus we obtain

n+Tp T, o
f x(I)e—jZ:rr.’Fmdr = f e—jZH.’Fn! ( Z Cke+j2nkﬁ.l) di (412]
! ty

0 k=—o0

To evaluate the integral on the righi-hand side of (4.1.2), we interchange the order
of the summation and integration and combine the two exponentials. Hence

x w+T, PR o )27 Folk=ix o+ T,
C e/ = Cr [_] (4.1.3)
Yaf X\ Fmra=h

k==~oC k=-~oc fo

For k # I, the right-hand side of (4.1.3) evaluated at the lower and upper limits, #
and 1, + T,, respectively, yields zero. On the other hand, if k = !, we have

ta+Tp to+T,
[ dt = 1:| =T,
0

to

Consequently, (4.1.2) reduces to

10+7T,
/ x(tye i2iFor gy — Ty

o
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and therefore the expression for the Fourier coefficients in terms of the given

periodic signal becomes
1 o+ Ty .
== x(r)e~ /2 For gy
r Y
Since 1 is arbitrary, thisintegral can be evaluated over any interval of length 7,
that is, over any interval equal to the period of the signal x(r). Consequently, the
integral for the Fourier series coefficients will be written as

== [ x@e g (4.1.4)
r YT,
An important issue that arises in the representation of the periodic signai
x(t) by the Fourier series is whether or not the series converges to x(t) for every
value of 7, that is, if the signal x(r) and its Fourier series representation

o0

Y el 4.1.5)
are equal at every value of r. The so-caled Dirichler conditions guarantee that
the series (4.1.5) will be equal to x(r}, except at the values of ¢+ for which x(z) is
discontinuous. At these values of 1, (4.1.5) converges to the midpoint (average
value) of the discontinuity. The Dirichlet conditions are:

1. The signal x(r) has a finite number of discontinuitiesin any period.

2 The signa x(+) contains a finite number of maxima and minima during any
period.

3. The signal x(z) is absolutely integrable in any period, that is.

j {x(1)lds < o0 (4.1.6)
T

All periodic signals of practical interest satisfy these conditions.
The weaker condition, that the signal has finite energy in one period.

[x(O)Pdr < oc (4.17)
TI’

guarantees that the energy in the difference signal

oC
e(t) =x(t) — Z cpelirkFat
k=- x

is zero, although x(r) and its Fourier series may not be equal for all values of r.
Note that {(4.1.6) implies (4.1.7), but not vice versa. Also, both (4.1.7) and the
Dirichlet conditions are sufficient but not necessary conditions (i.e., there are Sig-
nals that have a Fourier series representation but do not satisfy these conditions).

In summary, if x(t) is periodic and satisfies the Dirichlet conditions, it can
be represented in a Fourier series asin (4.1.1), where the coefficients are specified
by (4.1.4). These relations are summarized below.
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FREQUENCY ANALYSIS OF CONTINUOUS-TIMEPERIODIC SIGNALS

I ~

Svnthesis equation | x(1) = Z o et (4.1.8)
! k=-x
|
Analysis equation | ¢, = -_;—/ Xty budy (4.1.9)
i Tp

In general. the Fourier coefficients ¢, are complex valued. Moreover. it is
easily shown that if the periodic signal isreal. ¢; and c..; are complex conjugates.
As a result. if

o = lele™
then
coo= el
Consequently, the Fourier series may also be represented in the form
Y
©) =0+ 23 lex cosQmk Far + 6;) (4.1.10)
k=1

where ¢, 1s real valued when a (1) isreal.
Finally. we should indicate that yet another form for the Fourier series can
be obtained by expanding the cosine function in (4.1.10) as

cos(2rk For F 6) = cos2mk For cost; — Sin 2k Fyr Sin

Consequently, we can rewrite (4.1.10) in the form

=
X)) =ag+ Z(a“ cos 2wk Fot — by sin 2xk For) t4.1.11)
k=1
where
ap = Co
ap = ZICkECOSQk

bk = 2|Ckf5i['19k

The expressionsin {4.1.8), (4.1.10), and (4.1.11) constitute three equivalent forms
for the Fourier series representation of a real periodic signal.

4.1.2 Power Density Spectrum of Periodic Signals
A periodic signal hasinfinite energy and a finite average power, which is given as

h=ifusz 4.1.12)
Tp Tp
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If we take the complex conjugate of (4.1.8) and substitute for x(#) in (4.1.12).we

obtain
1 = 2k Fut
P, —[ x(1) cre TR dy
Tp T LZ *
o

fl

b=—nc

1 2
= Z c IZF/T .:(r)e”“"“‘"dr:l (4.1.13)

k=—ox r
X
,
=Y jaf
k=—oc

Therefore. we have established the relation
1 5 > 2
P o= ~—f x(dt = Z lex? (4.1.14)
T” T k=—oc
which is called Parseval’s relation for power signals.
Toillustrate the physical meaning of (4.1.14). suppose that x(r) consists of a
single complex exponential

x(1) = ck(,j'lrrk-“ul

In this case, all the Fourier series coefficients except ¢, are zero. Consequently,
the average power in the signal is

Py = ol

It is obvious that fc;|* represents the power in the kth harmonic component of the
signal. Hence the total average power in the periodic signal is simply the sum o
the average powers in all the harmonics.

If we plot the jc; 1> asafunction of the frequenciesk Fo, k = 0, £1, £2,.... the
diagram that we obtain shows how the power of the periodic signal is distributed
among the various frequency components. This diagram. which is illustrated in
Fig. 4.2.is called the power density spectrum™ of the periodic signal x(r). Since the

Power density spectrum | ic,l*

L L1

—4Fy -3F, —2F, -F, 0 F, 2F; 3F, 4F; Freguency. F

Figure42 Power density spectrum of a continuous-time periodic signal.

'This function isalso called the power spectral density or. Ssmply, the power spectrum.
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power in a periodic signal exists only at discrete values of frequencies{i.e.. F = 0.
+Fp. =2F;....). thesignal issaid to have aline spectrum. The spacing between
two consecutive spectral lines is equal to the reciprocal of the fundamental period
T,. whereas the shape of the spectrum (i.e.. the power distribution of the signal).
depends on the time-domain characteristics of the signal.

Asindicated in the preceding section, the Fourier series coefficients {¢,} are
complex valued. that is. they can be represented as

o = Jegle!™

where

G = Xy
Instead of plotting the power density spectrum. we can plot the magnitude voltage
spectrum {ici [} and the phase spectrum {6, } asafunction o frequency. Clearly. the
power spectral density in the periodic signal issimply the square of the magnitude
spectrum. The phase information is totally destroyed (or does not appear) in the
power spectral density.

If the periodic signal 1s real valued. the Fourier series coefficients {c,} satisfy

the condition

Co =0
Consequently. lc* = icj . Hence the power spectrum is a symmetric function of
frequency. This condition also means that the magnitude spectrum is svmmetric
(even function) about the origin and the phase spectrum is an odd function. As
a consequence of the symmetry. it is sufficient to specify the spectrum of a real
periodicsignal for positive frequenciesonly. Furthermore. the total average power
can be expressed as

D
Po=ci+2y jal (4.1.15)
k=1
N - T
=aj+5 2 (@ +b) (4.1.16)

which follows directly from the relationships given in Section 4.1.1 among {a:}.
{h.}. and [c;) coefficients in the Fourier series expressions.

Example 4.1.1

Determine the Fourier series and the power density spectrum of the rectangular pulse
train signal illustrated n Fig. 4.3.

x(t)

-7, -0 T T, : Figure4.3 Continuous-time periodic
2 2 train of rectangular pulses.
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Solution The signal is periodic with fundamental period 7, and. clearly. satisfies the
Dirichlet conditions. Consequently. we can represent the signal in the Fourier series
given by (4.1.8) with the Fourier coefficients specified by (4.1.9).

Since x(z) 1s an even signa [i.e.. x(r) = x{(—1)]. it is convenient to select the
integration interval from ~7,/2 to 7,/2. Thus (4.1.9) evaluated for & = 0 yields

1 Tp/2 1 2 A
== x(Ndr = —f adr=22 4.1.17)
Tn -T,n T -2 Ts
The term ¢u represents the average value (dccomponent) of the signal x(r). Fork # 0
we have
7 - iRk 7R
oG = i Ae kol gy — i [8_1_1]
o Join T, | ~j2mkFe|_,,
_ A e/mkFoT _ =ik Fyr 4.118)
kT, Jj2
2 Arsazkhero g 4o
T, mkFut

It isinteresting to note that the right-hand side of (4.1.18) hasthe form (sin¢) /¢,
where ¢ = mk Fyz. In this case ¢ takes on discrete values since F, and T are fixed and
the index & varies. However. if we plot (sing)/¢ with ¢ as a continuous parameter
over the range —o < ¢ < oc. we obtain the graph shown in Fig. 4.4. We observe
that thisfunction decaysto zero as ¢ — zc. hasa maximum value of unity at ¢ =0,
and is zero at multiplesd = (ie..at ¢ = mma.m = +1, £2....). It is clear that the
Fourier coefficients given by (4.1.18) are the sample values of the (sing)/¢ function
for ¢ = mk Fyr and scaled in amptitude by A7/T,.

Since the periodic function x(z) is even. the Fourier coefficients ¢, are real.
Consequently, the phase spectrum is either zero, when ¢, is positive. or i when ¢, is
negative. Instead of plotting the magnitude and phase spectraseparately. we may sim-
ply plot {c¢} on asingle graph. showing both the positive and negative valuesc, on the
graph. Thisiscommonly done in practice when the Fourier coefficients {c;} are real.

Figure 4.5 illustrates the Fourier coefficients of the rectangular pulse train when
T, isfixed and the pulse width T is allowed to vary. In this case 7, = 0.25 second, so
that Fy = 1/T, = 4 Hz and * = 0.057,, T = 0.17,, and r = 0.27,. We observe that
the effect of decreasing v while keeping 7, fixed is to spread out the signal power
over the frequency range. The spacing between adjacent spectral linesis £, = 4 Hz,
independent of the value of the pulse width s.

sin ¢
| ¢
—Tr —6n =57 —4x -3 -27 -7 0 A 2 3 4x Sm 67 Tm ¢

0

Figure 44 The function (sing)/¢.
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Figure 45 Fourier coefficientsd the
rectangular pulse train with 7, is fixed
0 L and the pulse width v varies.

On the other hand. it is also instructive to fix r and vary the period 7, when
T, > 1. Figure 4.6 illustrates this condition when 7, = 5r. T,, = 10, and 7, = 201.
In this case. the spacing between adjacent spectral lines decreases as T, increases. In
the limit as 7, — sc. the Fourier coefficients ¢, approach zero due to the factor d
T, in the denominator of (4.1.18). This behavior is consistent with the fact that as

7, — oc and t remains fixed, the resulting signal is no longer a power signal. Instead.

€
A1
11T K J | [‘I‘.‘r ; AT
TIT ! ]_[ F
C‘,
'}_ 1r. 7;,: 10t
P .'ﬂ“H | { [ ‘ l } I eI
TTITE T ;
0
“ T,=201
s RrOHI T, "
T i T
0 F

Figure46 Fourier coefficient o a rectangular pulse tramn with fixed pulse width
= and varying period 7.
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it becomes an energy signal and itsaverage power iszero. The spectrad finite energy
signals are described in the next section.

We also note that if k # 0 and sin(zk Fyr) = 0. then ¢, = 0. The harmonjcs
with zero power occur at frequencies &/ such that x (kFo)r =mm, m = 41, £2,.. |
or at k Fy = m/z. For example, if Fy =4 Hz and t = 0.27,. it follows that the spectral
components at £20 Hz, 140 Hz,... have zero power. These frequencies correspond
to the Fourier coefficientsei. k =f5. 110, 115. .... On the other hand. if t =0.17,,
the spectral components with zero power are k = 10, £20, £30. ....

The power density spectrum far the rectangular pulse train is

I
’ (4.1.19)

2 . 2
A
Aty (SinTRRTN s
T, wkFyt

4.1.3 The Fourier Transform for Continuous-Time
Aperiodic Signals

2
lex]” =

In Section 4.1.1 we developed the Fourier series to represent a periodic signa
as a linear combination of harmonically related complex exponentials. As a con-
seguence of the periodicity, we saw that these signals possess line spectra with
equidistant lines. The line spacing is equal to the fundamental frequency, which
in turn is the inverse of the fundamental period of the signa. We can view the
fundamental period as providing the number of lines per unit of frequency (line
density). asillustrated in Fig. 4.6.

With this interpretation in mind, it is apparent that if we allow the period to
increase without limit, the line spacing tends toward zero. In the limit, when the
period becomes infinite, the signal becomes aperiodic and its spectrum becomes
continuous. This argument suggests that the spectrum of an aperiodic signal will
be the envelope o the line spectrum in the corresponding periodic signal obtained
by repeating the aperiodic signal with some period 7,.

Let us consider an aperiodic signal x(r) with finite duration as shown in
Fig. 4.7a. From this aperiodic signal. we can create a periodic signal x,(t) with pe-
riod T,, asshown in Fig. 4.7b. Clearly. x,(t) = x(z) in the limit as T,, — oo. that is,

x(t) = Tlim xp(t)
This interpretation implies that we should be able to obtain the spectrum of x(r)

from the spectrum of x,(r) smply by taking the limit as 7, — oc.
We begin with the Fourier series representation of x,(t),

= 1
Bphy= Y e F = T (4.1.20)

k==2c

where
1 T2 .
o = —f x,,(l)e_’z"kF“'dl (4.1.21)
T J-tn
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-T2 0 T2 !

T -T2 Q T./2 T/2 X o
' " ! 7 Figure 4.7 (a) Aperiodic signa (1)

and (b) periodic signal x, (1) constructed
() by repeatinp x () with a period 7.

Since x, (1) = x(r) for ~T,/2 <1 < T,/2. (4.1.21) can be expressed as
T2 ,
o= x(rye I 2mRE gy (4.1.22)
T, Jo7pn
It isalso true that 1 ¢ri =0 for |¢| > T, /2. Consequently. the limits on the integral
in (4.1.22) can be replaced by —s¢ and . Hence

1o -
o= —f x(ne 2TFr gy (4.1.23)
ToJx
Let us now define a function X (). called the Fourier transform of x{r), as
X(F) = f x(rye 1 Fidy (4.1.24)
-

X(F) is a function of the continuous variable F. It does not depend on 7, or
Fy. However, if we compare (4.1.23) and (4.1.24). it is clear that the Fourier
coefficients ¢, can be expressed in terms of X (F) as

1
= —X(kF
Ck T, (kFg)

or equivalently.

k

Toor = X(kFp) = X (——) (4.1.25)
TI’

Thus the Fourier coefficients are samples of X (F) taken at multiples of F; and

scaled by Fy (multiplied by 1/7,). Substitution for ¢; from (4.1.25) into (4.1.20)

yields

x,(t) = 1 i X (i) el2kFor (4.1.26)
r - Tp T WA

P

k=—oc
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We wish to take the himit of (4.1.26) as 7,, approaches infinity. First. we define
AF = 1/7,. With this substitution. (4.1.26) becomes
e
XA = Y X(kAF)e! AP AF 4.1.27)
k=-x

Itisclear that in the limit as T,, approaches infinity, x,(z) reduces to x(t). Also, AF
becomes the differential d F and k AF becomes the continuousfrequency variable
F. In turn. the summation in (4.1.27) becomes an integral over the frequency
variable F. Thus

: " - K a J2rnkAFL
T,hl“x X)) = x(1) = Al}rﬂnk;x X(kAF)e AF

. (4.1.28)
x (1) =/ X(F)e'F'adF

This integral relationship yields x(t) when X (F) is known, and it is caled the
in erse Fourier transform.

This concludes our heuristic derivation of the Fourier transform pair given
by (4.1.24) and (4.1.28)for an aperiodic signal x(r). Although the derivation is
not mathematically rigorous, it led to the desired Fourier transform relationships
with relatively simple intuitive arguments. In summary, the frequency analysis of
continuous-time aperiodic signals involves the following Fourier transform pair.

FREQUENCY ANALYSIS Of CONTINUOUS-TIME APERIODIC SIGNALS

Synthesis equation <
inverse transform I(I):/ X(F)e " d R (4.1.29)

Analysis equation <
direct transform X(F)= / x(ne i dr (4.1.30)
-

It is apparent that the essential difference between the Fourier series and the
Fourier transform is that the spectrum in the latter case is continuous and hence
the synthesis of an aperiodic signal from its spectrum is accomplished by means of
integration instead of summation.

Finally. we wish to indicate that the Fourier transform pair in (4.1.29) and
{4.1.30) can be expressed in terms of the radian frequency variable @ = 2= F.
Since dF = dQ/2n. (4.1.29) and (4.1.30) become

x(t) = i[ X{Qe!¥de (4.1.31)
2 J_«
X(82) =/ x(H)e™ ¥ dr (41.32)

The set of conditions that guarantee the existence of the Fourier transform is the
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Dirichler conditions, which may be expressed as:

1. Thesigna x(r} has a finite number of finite discontinuities.
2. The signal x(r) has a finite number of maxima and minima.
3 Thesigna x(z) is absolutely integrable, that is.

f x(D))dr < > (4.1.33)

o

The third condition follows easily from the definition of the Fourier transform,

given in (4.1.30). Indeed.
< / [x()ldr
Hence | X(F)! < oc if (4.1.33) is satisfied.

= :
IX(F)l = i/ x(De™ I dt
A weaker condition for the existence of the Fourier transform is that x(r)
has finite energy: that is.

it hl
[ x(n)dt < ¢ (4.1.34)
—oC
Note that if a signal x(1) is absolutely integrable. it will also have finite energy.
That is. if
f |x(t)dt < o¢
then h
x -~
E, =/ [x()"dt < oc (4.1.35)
-

However. the converse is not true. That is. a signal may have finite energy but
may not be absolutely integrable. For example, the signal
sin2m:
!
is square integrable but is not absolutely integrable. This signal has the Fourier
transform

x(t) = (4.1.36)

1. IFl=1
0. |Fl>1
Since this signal violates (4.1.33).it is apparent that the Dirichlet conditions are
sufficient but not necessary for the existence of the Fourier transform. In any case.
nearly al finite energy signals have a Fourier transform. so that we need not worry
about the pathological signals, which are seldom encountered in practice.

X(F)= (4.1.37)

4.1.4 Energy Density Spectrum of Aperiodic Signals

Let x(#) be any finite energy signal with Fourier transform X (F). Its energy is

E,:f |x (D) dr

<
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which, in turn, may be expressed in terms of X (F) as follows:

o
E. =f x(t)x™(r)dr

o

oc o )
=f x(r)drU X'(F)e'ﬂ"“dF]
f X'(F)dFU x(:)e‘ﬂ””d:]

f |X (F)*dF

o

Therefore, we conclude that

o oc
E, =f Ix(n)7dt =f IX(F)*dF (4.1.38)

o o

This is Parseval's relation for aperiodic, finite energy signals and expresses the
principle of conservation of energy in the time and frequency domains.

The spectrum X (F) of asignal isin general. complex valued. Consequently,
it is usually expressed in polar forms as

X(F) = |X(F)ie/™"
where | X (F)) is the magnitude spectrum and &{F) is the phase spectrum,
B(F) = 4£X(F)
On the other hand, the quantity
S (F) = [X(F)I (4.139)

which isthe integrand in (4.1.38), represents the distribution of energy in the signal
as a function of frequency. Hence S,,(F) is caled the energy density spectrum of
x(t). The integral of S,.(F) over al frequencies givesthe total energy in the signal.
Viewed in another way, the energy in the signal x(r) over a band of frequencies

Fl<F <F+AFis
F+AF
[ Sex(FYdF
3]

From (4.1.39) we observe that S., (F) does not contain any phase information
fi.e., S.:(F) is purely real and nonnegative]. Since the phase spectrum o x(¢) is
not contained in S..(F), it isimpossible to reconstruct the signal given S,,(F).

Finally, as in the case of Fourier series, it is easily shown that if the signal
x(1) isreal. then

[X{~F)| = |X(F)| (4.1.40)
£X(=F) = —4X(F) (4.1.41)
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By combining (4.1.40) and (4.1.39). we obtain
Sxx(_F) = S.rx(F) (4142)
In other words, the energy density spectrum o areal signal has even symmetry.

Example 4.1.2

Determine the Fourier transform and the energy density spectrum of a rectangular
pulse signal defined as

_fAa s
xm_l& > o2 (4.1.43)

and illustrated in Fig. 4.8(a).

Solution Clearly. thissignal is aperiodic and satisfiesthe Dirichlet conditions. Hence
its Fourier transform exists. By applying (4.1.30}, we find that

/1 :

X(F) =/ Ae /¥ gy = A INTFT (4.1.44)
—en T Fr

We observe that X(F) is real and hence it can be depicted graphically using only

one diagram. as shown in Fig. 4.8(b). Obviously, X (F) has the shape d the (sin ¢)/¢

function shown n Fig. 4.4. Hence the spectrum of the rectangular pulse is the en-

velope of the line spectrum (Fourier coefficients) of the periodic signal obtained by

x(n

A

(ST

(a)

X(F)
At

(b)

Fire48 (a) Rectangularpulse and (b) its Fourier transfonn.
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periodically repeating the pulse with period 7, as in Fig. 4.3. In other words, the
Fourier coefficients ¢, in the corresponding periodic signal x,(:) are simply samples
of X(F) at frequencies k Fy = k/T,. Specificaly,

1 k
o = FPX(/CFU) = ";,;X (ﬁ) (4.1.45)
From (4.1.44) we note that the zero crossings of X (F) occur at multiples of 1/z,
Furthermore, the width of the main lobe, which contains most of the signa en-
ergy, is equal to 2/r. As the pulse duration v decreases (increases), the main
lobe becomes broader (narrower) and more energy is moved to the higher (lower)
frequencies, as illustrated in Fig. 4.9. Thus as the signa pulse is expanded (com-
pressed) in time, its transform is compressed (expanded) in frequency. This be-
havior. between the time function and its spectrum, is a type of uncertainty
principle that appears in different forms in various branches of science and engi-
neering.
Finally, the energy density spectrum of the rectangular pulse is

(4.1.46)

sinnFr\’
TFrt

S (F) = (Ar)? (

x(r) X(F)
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Figure 49 Fourier transform of a rectangular pulse for various width values.
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42 FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS

In Section 4.1 we developed the Fourier series representation for continuous-time
periodic (power) signals and the Fourier transform for finite energy aperiodic
signals. In this section we repeat the development for the class of discrete-time
signals.

As we have observed from the discussion of Section 4.1, the Fourier series
representation of a continuous-time periodic signa can consist of an infinite num-
ber of frequency components, where the frequency spacing between two successive
harmonically related frequencies is1/T,. and where T, is the fundamental period.
Since the frequency range for continuous-time signals extends from —oc to o<, it
is possible to have signals that contain an infinite number of frequency compo-
nents. In contrast, the frequency range for discrete-time signals is unique over the
interval (—~x.or) or (0.2r). A discretetime signal of fundamental period N can
consist of frequency components separated by 2n/N radians or f = 1/N cycles.
Consequently, the Fourier series representation o the discrete-time periodic signal
will contain a most N frequency components. This is the basic difference between
the Fourier series representations for continuous-time and discrete-time periodic
signals.

4.2.1 The Fourier Series for Discrete-Time Periodic
Signals

Suppose that we are given a periodic sequence x(x) with period N, that is x(n) =
x(n+ Ny for dl n. The Fourier series representation for x(n) consists of N har-
monically related exponential functions

eIZmkn/N c=0.1,.... N -1
and is expressed as

N=)
x{n) = Z crelimniN (4.2.1)
=0
where the {¢(} are the coefficients in the series representation.
To derive the expression for the Fourier coefficients, we use the following
formula:

N=1
; k=0.xN £2N
2mkngn _ f N . o
Z ¢ - { 0, otherwise “22)

n=0
Note the similarity of (4.2.2) with the continuous-time counterpart in (4.1.3). The
proof of (4.2.2) follows immediately from the application of the geometric sum-
mation formula

—aV
1—a ! a1 4.2.3)

N—1 [N. a=1
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The expression for the Fourier coefficients ¢, can be obtained by multiplying
both sides of (4.2.1) by the exponential ¢~/>""/* and summing the product from
n=0ton=N~N -1 Thus

N1 -1 N1
Zx(n)e"j:”"”” _ cpel T h=lm/N (4.2.4)
n=0 n=() )

If we perform the summation over n first, in the right-hand side of (4.2.4),
we obtain

=

Il
.
Il

S eremscimn _ [N ke | =0, 22N, 425
v 0, otherwise -
where we have made use of (4.2.2). Therefore. the right-hand side of (4.2.4)
reduces to N¢; and hence
N-—-1
== S xme N 1=01, N-1 (4.2.6)
v
Thus we have the desired expression for the Fourier coefficients in terms of the
signal x(n).
The relationships (4.2.1) and (4.2.6) for the frequency analysis of discrete-
time signals are summarized below.

FREQUENCY ANALYSIS OF DISCRETE-TIME PERIODIC SIGNALS

e
Synthesis equation | x(n) = § e (4.2.7)

A=t

[

x(n)e=i2mknIN (4.2.8)

o=
tE

Analysis equation | ¢, =

nl)

Equation (4.2.7) is often called the discrete-rine Fourier series (DTFS).The
Fourier coefficients {¢;}. & = 0, 1..... N — 1 provide the description of x(n) in
the frequency domain. in the sense that ¢, represents the amplitude and phase
associated with the frequency component

Se(n) = el TN = gy

where wy = 2rxk/N.

We recall from Section 1.3.3that the functions s, (n) are periodic with period

N. Hence si(n) = si(n + N). In view of this periodicity, it follows that the Fourier

coefficients ¢;, when viewed beyond the range k =0, 1,.... N — 1, aso satisfy a

periodicity condition. Indeed, from (4.2.8), which holds for every vaue of k. we
have

N-1
CoaN = — Zx(n)e—jZN(l\+N)n/N

n—O

—j2mkn/N =c (429)

15
N x(n)e

iz
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Therefore, the Fourier series coefficients{c,} form a periodic sequence when ex-
tended outside of therangek =0, 1..... N - 1. Hence

Ch+N = Ci
that is, {¢,) isa periodic sequence with fundamental period N. Thus the spectrum
d asignal x(n),which is periodic with period N, isa periodic sequence with period
N. Consequently, any N consecutive samples of the signal or its spectrum provide
a complete description of the signal in the time or frequency domains.

Although the Fourier coefficientsform a periodic sequence, we will focus our
attention on the single period with rangek =0, 1...., N — 1. This is convenient,
since in the frequency domain, this amounts to covering the fundamental range
0 < w =27k/N <27, for 0 <k < N =1, In contrast, the frequency range
-7 < w;, = 2nk/N < m, corresponds to —N/2 < k < N/2, which creates an
inconvenience when N is odd. Clearly. if we use a sampling frequency F,. the
range 0 < 4 < N — | corresponds to the frequency range ¢ = F < F;.

Example 4.2.1
Determine the spectra of the signals

(8) x(m) = cos+/2mn

(b) x(n) = cosnn/3
(c) x(n) is periodic with period N = 4 and
xtn) = {1.1.0.0}
t
Solution

(@) For ay = 27, we have f, = 1/+/2. Since f, isnot arational number. the signal
is not periodic. Consequently. thissignal cannot be expanded in a Fourier series.
Nevertheless. the signal does possess a spectrum. |ts spectral content consists
o the single frequency component at w = wy = /27.

In this case fy = } and hence x(») 1s periodic with fundamental period N =é.
From (4.2.8) we have

o=y xmeT P g =018
n=0)
However. x{n) can be expressed as

(b

~

x(n) = cos 2_7;”_ = Lestnnth + Lg=jonnse

which is already in the form of the exponential Fourier series in (4.2.7). In
comparing the two exponential terms in x(n) with (4.2.7), it is apparent that
¢ = 4. The second exponential in x(x) corresponds to the term k = -1 in
(4.2.7). However. this term can also be written as

i . )
oI L J2mSbnf6 L j2niSm e

which means that ¢_; = c5. But this is consistent with (4.2.9), and our previous
observation that the Fourier series coefficients form a periodic sequence of
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period N. Consequently. we conclude that
Ch = C2 =0 =4 :0
ao=s =3

(c) From (4.2.8). we have

It Yrim 4
o= Zz.ﬂ‘n)e""‘"'“ k=0.1,273

n=ti
or
o= 1 +emim2)  k=0.123
For £ = 0. 1. 2. 3 we obtain
o =3 =1 -/ =10 ('::1:(1+j)
The magnitude and phase spectra are
\;‘/:7. \r”i

= == sl =0 3] = —=
19y ! s ry

4

icol =

[N

Xeao=0 KXo = —% Xen = undefined  Kow =

Figure 4.10 illustrates the spectral content of the signals in (b) and

4.2.2 Power Density Spectrum of Periodic Signals

The average power of a discrete-time periodic signal with period & was defined
in (2.1.23) as

N—
}: ICHE (4.2.10)

= l

We shall now derive an expression for P, in terms of the Fourier coefficient {c.}.
If we use the relation (4.2.7) in (4.2.10). we have

P = —Zx(n),\ (n)

n=0

L ()

n={) k=0
Now. we can interchange the order o the two summations and make use of (4.2.8).

obtaining
N-1 N—
P, = [ Z ")e—jlnkn/l\'jl

Il

k=0 n=0
N—-l N—

= Z lx(m®

k=0 n=0

(4.2.11)
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Figure 410 Spectrad the periodic
signals discussed in Example 4.2.1(h)
(c) and (c).

which is the desired expression for the average power in the periodic signd. In
other words, the average power in the signal is the sum of the powers of the
individua frequency components. We view (4.2.11) as a Parseva's relation for
discrete-time periodic signals. The sequence lcxl* for k =0, 1,..., N — 1 is the
distribution of power as a function of frequency and is called the power densty
spectrum of the periodic signal.

If we are interested in the energy of the sequence x(n) over a single period,
(4.2.11) implies that

N=] N-1
Ev=3 IxmPF=N3Y jof 4.2.12)
=0 k=0

which is consistent with our previous results for continuous-time periodic signals.
If the signal x(n) is real [ie.. x*(n) = x(n}], then, proceeding as in Sec-

tion 4.2.1, we can easily show that
c = Ck (4.2.13)
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or equivaently,
Je—xl = lexd (even symmetry) (4.2.14)
—Xc_p = Xc¢ (odd symmetry) (4.2.15)

These symmetry properties for the magnitude and phase spectra of a periodic Sg-
nal, in conjunction with the periodicity property, have very important implications
on the frequency range of discrete-time signals.

Indeed, by combining (4.2.9) with (4.2.14) and (4.2.15), we obtain

lex] = lew—l (4.2.16)
and
Acp = —XCN-k (4.2.17)
More specificaly, we have
fcol = lewnl, Xep=—4cn =0
leil = len-1l, XCl = —XCN-]
. (4.2.18)
lennl = lenpl, Xenp =0 if N iseven
iciv—nzl = lewvsnel LCn-2 = — 4 CN+)2 if N is odd
Thus, for a real signal, the spectrum ¢;, k =0, I....,N/2 for ¥ even, or

k=0.1..... (N —1)/2 for N odd, completely specifies the signal in the frequency
domain. Clearly, thisisconsistent with the fact that the highest relative frequency
that can be represented by a discrete-time signal isequal tox. Indeed, if 0 < w, =
2rk/N =n.thenQ <k < N/2.

By making use of these symmetry propertiesof the Fourier series coefficients
of areal signal, the Fourier seriesin (4.2.7) can also be expressed in the alternative
forms

L
2w
x(n) = ¢y + 2 ZI: Jex | cos (Wkn + 6*) (4219)

k=

L 2 . 2
= ag+ E (ak cos N kn — b sin Wkn) (4.2.20)
where ag = co, ax = 2{cijcosbi. by = 2|cilsing,, and L = N/2 if N iseven and
L=(N-1)2if Nisodd.

Finally, we note that as in the case of continuous-time signals, the power
density spectrum |c;|?* does not contain any phase information. Furthermore, the
spectrum is discrete and periodic with a fundamental period equal to that of the
signal itself.

Example 4.2.2 Periodic" Square-Wave" Signal

Determine the Fourier series coefficients and the power density spectrum o the
periodic signat shown in Fig. 4.11.
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ran)

1
L] .‘ I * L]
. - Figure 4.11 Discrete-time periodic

.
|
N a L A n  square-wave signal

Solution By applving the analysis equation (4.2.8) to the signal shown in Fig. 4.11.
we obtain

1 B O =
— . a=2TkniN — —j2xkn/N . — i
a=x 2 x(ne N E Ae k=0.1..... N -1

n=l) n=()

which is a geometric summation. Now we can use (4.2.3) to simplify the summation
above. Thus we obtain

AL k=0

A L-1 N
_ 4 TN
= N Z(U V= Al-— L,fjl.'rkL/I\’

n=t} [,
N 1 — - ibrkin °

The last expression can be simplificd further if we note that

k=1.2..... N -1

1 — ¢ ITALN (,—;nkL/:\’ (,y:vf\L/N - piTkLIN

1 — e-s27kin - o= 1ThIN CITRN N

sin(mrkL/N)
sinthk/N)

— iRy

Therefore.

AL

o k=0,+N, 2N,
A mi iy SINTEL/N)
N sin(mk/N) ~
The power density spectrum of this periodic signd is

ALY
A k=0 +N.£2N. ...

lex* = A . (4.2.22)
AN [sinmkL/N\" .
- | . otherwise
N sinwk/N

Figure 4.12 illustrates the plots o jc,}* for L =5and 7. N =40 and 60. and A =1

otherwise

4.2.3 The Fourier Transform of Discrete-Time Aperiodic
Signals

Just asin the case of continuous-time aperiodic energy signals, the frequency anal-
ysisof discrete-time aperiodic finite-energy signalsinvolves a Fourier transform of
the time-domain signal. Consequently, the development in this section paralels
to alarge extent, that given in Section 4.1.3.
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i .

L=7N=60

e

-3 -20 -10 0 10 20 30

L=5N=60

_..___umu‘__nldl hll. T Figure 4.12 Plot of the power density
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-3 -2 -10 0 10 20 0 spectrum given by (4.2.22).

The Fourier transform of a finite-energy discrete-timesignal x(») isdefined as

X@= Y x(me ™" (4.2.23)
Physicaly. X (w) represents the frequency content of the signal x(n). In other
words, X (») is a decomposition of x(n) into its frequency components.

W e observe two basicdifferences between the Fourier transform o adiscrete-
time finite-energy signal and the Fourier transform of a finite-energy analog signal.
First. for continuous-time signals, the Fourier transform, and hence the spectrum
of the signal, have a frequency range of (—co,co). In contrast, the frequency
range for a discrete-time signal is unique over the frequency interval of (—n,7)
or. equivaently, (0. 2r). This property is reflected in the Fourier transform of the
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signal. Indeed. X (w) is periodic with period 2. that is.

o

X(w+27wk) = Z x(n)e= @2k
= Y x(me /eI (4.2.24)
= Z x(me " = X(w)
n=-~2¢

Hence X (w)is periodic with period 2. But this property is just a conseguence of
the fact that the frequency range for any discrete-time signal is limited to (—n, 7)
or (0,2m). and any frequency outside this interval is equivalent to a frequency
within the interval.

The second basic differenceis aso a consequence of the discrete-time nature
o the signal. Since the signa is discrete in time. the Fourier transform of the
signa involves a summation of terms instead of an integral, as in the case o
continuous-time signals.

Since X{w) isa periodic function of the frequency variable w, it has a Fourier
series expansion, provided that the conditions for the existence of the Fourier
series, described previously, are sdtisfied. In fact, from the definition of the
Fourier transform X (w} of the sequence x(n), given by (4.2.23), we observe that
X (w) has the form of a Fourier series. The Fourier coefficients in this series
expansion are the values of the sequence x(»).

T o demonstrate this point. let usevaluate the sequence x (n} from X (w). First,
we multiply both sides (4.2.23) by /" and integrate over the interva (-, 7).
Thus we have

n -n

n T x . .
/ X{w)e’“""dw:f [Z x(n)e"““"} e!“"dw (4.2.25)

n=-0oC

The integral on the right-hand side o (4.2.25) can be evaluated if we can inter-
change the order of summation and integration. This interchange can be made if

the series
N

Xylw) = Z x{n)e "
n=—N
converges uniformly to X (w) as N — oc. Uniform convergence means that, for
every w, Xy(w) — X(w), as N — oo. The convergence of the Fourier transform
is discussed in more detail in the following section. For the moment, let us as-
sume that the series converges uniformly, so that we can interchange the order of
summation and integration in (4.2.25). Then

F 27 m=n
Jwln—n) . ’ e
[ﬁe dw = [0‘ m£n
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Consequently,
5 i wim—nt 2x(m). m=n
E x{n) e’ dw = m < n (4.2.26)
By combining (4.2.25) and (4.2.26).we obtain the desired result that
x(n) = ,,i X(w)e'"dw (4.2.27)

If we compare the integral in (4.2.27) with (4.1.9). we note that this is just
the expression for the Fourier series coefficient for a function that is periodic with
period 27. The only difference between (4.1.9) and (4.2.27) is the sign on the
exponent in the integrand, which is a consequence of our definition of the Fourier
transform as given by (4.2.23). Therefore. the Fourier transform of the sequence
x(n}, defined by (4.2.23), has the form of a Fourier series expansion.

In summary, the Fourier transform pair for discrete-time signals is as follows,

FREQUENCY ANALYSIS OF DISCRETE-TIME APERIODIC SIGNALS

Synthests equation

1
inverse transform x(n) = ;’;f Xlw)e!""dar (4.2.28)
Analysis equation x
direct transform X(w)= Z x(n)e ™" (4.2.29)

n=—or

4.2.4 Convergence of the Fourier Transform

In the derivation of the inverse transform given by (4.2.28), we assumed that the
series
N
Xnlw) = E x(n)e /" (4.2.30)
n=—N
converges uniformly to X (w). given in the integral of (4.2.28), as N — oc. By
uniform convergence we mean that for each w,

lim {sup X (w) - X, (w)} =0 (4.2.31)
N> = w
Uniform convergence is guaranteed if x(n} is absolutely summable, Indeed, if
z |x(n)j < oc (4.2.32)
then )
X@) =] xme7| = ¥ jximl < o0
n=— | n=-5¢c

Hence (4.2.32) isa sufficient condition for the existence of the discrete-time Fourier
transform. We note that this is the discrete-time counterpart of the third Dirich-
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let condition for the Fourier transform of continuous-time signals. The first two
conditions do not apply due to the discrete-time nature of {x(n)}.

Some sequences are not absolutely summable, but they are square summable.
That is, they have finite energy

E.= Y lxmf <oo (4.233)
n=—oc
which is a weaker condition than (4.2.32). We would like to define the Fourier
transform of finite-energy sequences, but we must relax the condition of uniform
convergence. For such sequences we can impose a mean-square convergence con-
dition:

Jim IX{w) — Xn()fdo =0 (4.2.34)

Thus the energy in the error X(w) — Xy(w) tends toward zero, but the error
| X(w) — Xn{w)} does not necessarily tend to zero. In this way we can include
finite-energy signasin the class of signals for which the Fourier transform exists.

Let us consider an example from the class of finite-energy signals. Suppose
that

0. w <ijwl=2m

X(w) = [ Lol = e (4.2.35)

The reader should remember that X (w) is periodic with period 2. Hence (4.2.35)
represents only one period of X (w). The inverse transform of X (w) results in the
sequence

x(n) = l] X(w)e!" dw
2r .
_ 1 o i gy = siDw.n n#0
2r J_,, nn
For n = 0, we have
x(0)=—l—/ rda)=(-a—E
2n J_w i
Hence
&, n=0
b1
X(n) =1 o sinwn (4.2.36)
—_—— n#0
T own
This transform pair isillustrated in Fig. 4.13.
Sometimes, the sequence {x(n)} in (4.2.36)is expressed as
x(n) = AN een —00 <N <o 4.2.37)
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x{n)

SE

32 11, I I 1T, Lete
T, A T
(a}
Xlw)
1
il —w, 0 w, '!‘

(b)

Figure 413 Fourier transform pair in (4.2.35) and (4.2.36).

with the understanding that at n = 0, x(n) = w, /7. We should emphasize, however,
that (sinw.n)/mn is not a continuous function, and hence L Hospital's rule cannot
be used to determine x{0).

Now let us consider the determination of the Fourier transform d the se-
quence given by (4.2.37). The sequence {x(n)) is not absolutely summable. Hence
the infinite series

Z x(n)e I = Z %e"’“" (4.2.38)

n=-00C n=-oc

does not converge uniformly for al «. However, the sequence {x(n)} has afinite

energy E, = w./m as will be shown in Section 4.3. Hence the sum in (4.2.38) is

guaranteed to converge to the X (w) given by (4.2.35) in the mean-square sense.
To elaborate on this point, let us consider the finite sum

Xn(w) = i ﬁ'nwcn —jwn (4239)
Nw-n=_~—7rn é L
Figure 4.14 shows the function X y{w) for several values o ~. We note that there
is asignificant oscillatory overshoot at @ = w., independent of the value of N. As
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X{w) X3(w)
s VaNll al

/AN

Xofw) Xis(w)

Xsolw) Xaplw)

Figure 414 Dlustrauon of convergence of the Fourier transform and the Gibbs
phenomenon at the point of discontinuity.

N increases, the oscillations become more rapid. but the size of the ripple remains
the same. One can show that as N — oo. the oscillations converge to the point
o the discontinuity at w = w.. but their amplitude does not go to zero. However,
(4.2.34) is satisfied, and therefore X y(w) converges to X(w) in the mean-square
sense.

The oscillatory behavior of the approximation X x(w) to the function X (w) at
a point of discontinuity of X (w) is called the Ghbbs phenomenon. A similar effect
is observed in the truncation of the Fourier series of a continuous-time periodic
signal, given by the synthesis equation (4.1.8). For example, the truncation o the
Fourier series for the periodic square-wave signal in Example 4.1.1, gives rise to
the same oscillatory behavior in the finite-sum approximation of x(r). The Gibbs
phenomenon will be encountered again in the design of practical, discrete-time
FIR systems considered in Chapter 8.
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4.25 Energy Density Spectrum of Aperiodic Signals

Recall that the energy of a discrete-time signa x(n) is defined as

oC

E;= Y |[x@l’ (4.2.40)

n=—ocC

Let us now express the energy E, in termsof the spectral characteristic X (w). First

we have
o o0 ] m X
E. = Z x(n)x*(n) = Z x{m) [5,/_ X (w)e ™ dw:l

n=-2 n=-o5c T

If we interchange the order of integration and summation in the equation above,
we obtain

E, = %f_” X*(w) [Z x(n)e—j“"’:l dw

=-—2C

1 7 )
= :’Z_J;/:,, | X () dw

Therefore. the energy relation between x(n) and X (w) is

oo . 1 m
E. = Z lx(m)]* = 7 [.,, IX () dow (4.2.41)

n=-oC

This is Parseva's refation for discrete-time aperiodic signals with finite energy.
The spectrum X (w) is. in general, a complex-valued function of frequency.
It may be expressed as

X (w) = (X ()]’ (4.2.42)
where
O(w) = £ X(w)

is the phase spectrum and X (w)! is the magnitude spectrum.
As in the case of continuous-time signals, the quantity

Sex(@) = (X (@) (4.2.43)

represents the distribution of energy as a function of frequency, and it is cdled
the energy density spectrum of x(n). Clearly, S.x(e) does not contain any phase
information.

Suppose now that the signal x(n) isreal. Then it easily follows that

X*{w) = X(—w) (4.2.44)
or equivalently,
X (—e)| = | X (@) (even symmetry) (4.2.45)
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and

LX(—w) = =% X(w) {odd symmetry) (4.2.46)
From (4.2.43) it also follows that

Sex(—w) = S (w) (even symmetry) (4.2.47)

From these symmetry properties we conclude that the frequency range of
real discrete-time signals can be limited further to the range 0 < w < & (ie.,
one-half of the period). Indeed, if we know X (w) intherange 0 < w < 7, we
can determine it for the range —7 < w < 0 using the symmetry properties given
above. Aswe have already observed. similar results hold for discrete-time periodic
signals. Therefore. the frequency-domain description of a real discrete-time signal
is completely specified by its spectrum in the frequency range 0 < w < .

Usually, we work with the fundamental interval 0 <w <x or 0 < F < £, /2,
expressed in Hertz. We sketch more than haf a period only when required by the
specific application.

Example 4.2.3
Derermine and sketch the energy densiry spectrum S, (w) of the signal
xm =i t ) -l<a<l

Solution  Since ju| < 1. the sequence x(n) 1s absolutely summahle, as can he verified
by applying the geometric summation formula.

i jx(mf = i jal" = 1 —lfﬂi < o

nEm—- n=i

Hence the Fourier transform of x(n) existsand is obtained by applying (4.2.29). Thus

X(w)= ia"e’“’”‘ = i(ae"'”)"

=l n=ll

Since jae™/*| = |a} < 1. use df the geometric summation formula again yields
1

X{w) = ————
@) 1—aev
The energy density spectrum is given by

1
Selw) = (X (@) = X ()X (w) = Tarmi—aom
or. equivalently, as

1
1-2acosw+a®

Note that $,, (—w) = 3., (w) in accordance with (4.2.47).

Figure 4.15 shows the signal x(n) and its corresponding spectrum for a = 0.5
and a= —0.5. Note that for a = —0.5 the signa has more rapid variations and as a
result its spectrum has stronger high frequencies.

Sex(w) =
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x(m)
A !
[ [ { . Figure 4.16  Discrete-time rectangular
0 L-1 i pulse.
Example 424
Determine the Fourier transform and the energy density spectrum of the sequence
A, O<sn<[ -1
SN (4.2.48)

xim = [0. otherwise

which is iltustrated in Fig. 4.16.

Solution Before computing the Fourier transform. we observe that

i bt} = iw = LIA| <

n=—=x n=(i

Hence x(n) is absolutely summable and its Fourier transform exists. Furthermore.

we note that x(n) is a finite-energy signal with £, = |A[°L.
The Fourier transform o this signal is

-1
X(w) = ZAe‘j"’"
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1—etut
=4 1—e e
jtef2 in(wl/2)
= A jlw/-)(L—llEln(_m_ 2.
e s (4.2.49)
For w = 0 the transform in (4.2.49) yields X(0) = AL, which is easly established
by setting w = 0 in the defining equation for X (w), or by using L'Hospital's rule in
(4.2.49) to resolve the indeterminate form when w =0.
The magnitude and phase spectra d x(r) are

|AIL, w=1{0
Xt = 1 4, |Sinlwl/2) ‘ otherwise @.2.50
sin{w/2)
and
_ e sin(wl /2)
XX(w)=XA 2(L D+ 4~r(wm (4.2.51)

where we should remember that the phase of a rea quantity is zero if the quantity is
positive and » if it is negative.

The spectra {X(w)| and X X (w) are shown in Fig. 4.17 for the case A = 1 and
L = 5. The energy density spectrum is simply the square o the expression given in
(4.2.50).

Thereisan interesting relationship that exists between the Fourier transform
o the constant amplitude pulse in Example 4.2.4 and the periodic rectangular

X(w)t

Figure 417 Magnitude and phase of
Fourier transform of the discrete-time
rectangular pulsein Fig. 4.16.




264 Frequency Analysis of Signals and Systems Chap. 4

wave considered in Example 4.2.2. If we evaluate the Fourier transform as given
in (4.2.49) at a set of equally spaced (harmonically related) frequencies

2

wk=7v—k k=0.1.....N -1
we obtain
27 . 1 SIn[(r/NYKL]
X[ 2k ) = Ae—/t/MkiL=1) 2.
(N ) ¢ sin[ (/N k] (4.2:32)

If we compare this result with the expression for the Fourier series coefficients
given in (4.2.21) for the periodic rectangular wave, we find that

2
X (-}Vk) = Ncj k=0.1...., N -1 (4.2.53)

To elaborate, we have established that the Fourier transform o the rectangular
pulse, which is identical with a single period of the periodic rectangular pulse
train, evaluated at the frequencies w = 2xk/N, k = 0, 1,.... N — 1, which are
identical to the harmonically related frequency components used in the Fourier
series representation of the periodic signal, is smply a multiple of the Fourier
coefficients {¢,) at the corresponding frequencies.

The relationship given in (4.2.53) for the Fourier transform of the rectangular
pulse evaluated at w = 2xk/N. k =0.1,..., N — 1, and the Fourier coefficients
o the corresponding periodic signal, is not only true for these two signals but, in
fact, holds in general. This relationship is developed further in Chapter 5.

4.2.6 Relationship of the Fourier Transform to the
z-Transform

The ;-transform of a sequence x(n) is defined as

X@= Y xtmz™ ROCir<izd<n (4.254)
where r; < |z] < r; is the region of convergence of X(z). Let us express the
complex variable z in polar form as

z=re/® (4.2.53)

where r = {z| and w = Xz. Then, within the region of convergence of X(z), we
can substitute z = re’* into (4.2.54). This yields

X@emperr = Y [xm)r"]em7o" (4.2.56)
n==0C
From the relationship in (4.2.56) we note that X(z) can be interpreted as
the Fourier transform of the signal sequence x(n)r=". The weighting factor =" is
growing with n if r < 1 and decaying if r > 1. Alternatively, if X (z) convergesfor



Sec. 4.2 Frequency Analysis of Discrete-Time Signals 265

|z] = 1. then
X(D)impe = X{w) = Z x(nyeIen 4.2.57)

Therefore, the Fourier transform can be viewed as the z-transform of the sequence
evaluated on the unit circle. If X(z) does not converge in the region |zj =1 [i.e.. if
the unit circle is not contained in the region of convergence of X (z})}. the Fourier
transform X (w) does not exist.

We should note that the existence of the:-transform requires that the se-
quence {x(n)r~"} be absolutely surnmable for some value d r. that is

o

Z Ix(myr ™| < oc (4.2.38)

==
Hence if (4.2.58) converges onty for values of r > ry > 1. the:-transform exists.
but the Fourier transform does not exist. This is the case. for example. for causal
sequences of the form x(n) = a"u(n), where ja| > 1.

There are sequences. however. that do not satisfy the requirement in (4.2.58).

for example, the sequence

SNw,n

x(ny = -0 <N < oe 4.2.59

mn
This sequence does not have a z-transform. Since it has a finite energy. its Fourier
transform converges in the mean-square sense to the discontinuous function X (w).
defined as
1 || < w,

—} 2
X(w) = 0 w, < |wl <7 (4.2.60)

In conclusion. the existence o the z-transform requires that (4.2.58) be sat-
isfied for some region in the:-plane. 1If this region contains the unit circle. the
Fourier transform X (w) exists. However, the existence of the Fourier transform.
which is defined for finite energy signals. does not necessarily ensure the existence
o the z-transform.

4.2.7 The Cepstrum

Let us consider a sequence {x(n)} having a z-transform X(z). We assume that
{x(n)} is a stable sequence so that X (z) converges on the unit circle. The complex
cepstrum of the sequence {x(n)} is defined as the sequence {c,(n)}. which is the
inverse z-transform of C,(z), where
C.(2)=InX(z2) (4.2.61)
The complex cepstrum exists if C,(z) converges in the annular region r; <
lz] < r, where 0 < r; < 1and r; > 1. Within this region of convergence. C,(z)
can be represented by the Laurent series

C=mX@) = Y clmz™ 4.2.62)

n=—0C
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where
1
eeln) = =— f In X(2)=""'dz (4.2.63)
2nj Je

C is a closed contour about the origin and lies within the region of convergence,
Clearly. if €, (z) can be represented as in (4.2.62), the complex cepstrum sequence
{cy(n)} is stable. Furthermore, if the complex cepstrum exists, C.(z) converges on
the unit circle and hence we have
o0
Colw)=lX(w) = Y clne ™" (4.2.64)
n=-—o&

where {c,(n)} is the sequence obtained from the inverse Fourier transform of
In X{(w). that is,

Celn) = % _1 inX(we! dw (4.2.65)
If we express X (w) in terms of its magnitude and phase, say
X(w) = |X (@)™ (4.2.66)
then
In X(w) = In{X(w)| + jé(w) (4.2.67)

By substituting (4.2.67)into (4.2.65), we obtain the complex cepstrum in the form

n

e (n) = ZL [In|X (@) + jé(w)])e’"dw (4.2.68)
b1

We can separate the inverse Fourier transform in (4.2.68) into the inverse Fourier
transforms of In | X (w)| and &(w):

-

i = = [ In|X @)l dw (4.2.69)
2 J_,
1 [ ;

coln) = —f Blw)e’"dw (4.2.70)
2 J

In some applications, such as speech signal processing, only the component ¢, (1)
iscomputed. In such acase the phase of X (w) isignored. Therefore. the sequence
{x(n)} cannot be recovered from {c,(n)}. That is, the transformation from {x(n}}
to {c(m)} is not invertible.

In speech signal processing, the (real) cepstrum has been used to separate
and thus to estimate the spectral content o the speech from the pitch frequency
o the speech. The complex cepstrum is used in practice to separate signals that
are convolved. The process of separating two convolved signals is called decon-
volution and the use of the complex cepstrurn to perform the separation is called
homomorphic deconvolution. This topic is discussed in Section 4.6.
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4.2.8 The Fourier Transform of Signals with Poles on the
Unit Circle

As was shown in Section 4.2.6, the Fourier transform of a sequence x(n) can be
determined by evaluating its z-transform X (z) on the unit circle, provided that the
unit circle lies within the region of convergence of X (z}. Otherwise, the Fourier
transform does not exist.

There are some aperiodic sequences that are neither absolutely summable
nor square summable. Hence their Fourier transforms do not exist. One such
sequence is the unit step sequence. which has the z-transform

) 1
X(L) = ——‘—l — :_*1

Another such sequence is the causal sinusoidal signal sequence x(#) = {(coswyn)
u(n). This sequence has the:-transform
1-z"'coswy
1-2z1cosay + 172
Note that both df these sequences have poles on the unit circle.

For sequences such as these two examples, it is sometimes useful to extend
the Fourier transform representation. This can be accomplished, in a mathemati-
caly rigorous way, by alowing the Fourier transform to contain impulses at certain
frequencies corresponding to the location of the poles of X (z) that lie on the unit
circle. The impulses are functions of the continuous frequency variable @ and
have infinite amplitude, zero width, and unit area. An impulse can be viewed as
the limiting form of a rectangular pulse of height 1/a and width a, in the limit
asa — 0. Thus, by alowing impulses in the spectrum o a signal, it is possible
to extend the Fourier transform representation to some signa sequences that are
neither absolutely summable nor square summable.

The following example illustrates the extension of the Fourier transform rep-
resentation for three sequences.

X)) =

Example 4.2.5
Determine the Fourier transform o the following signals.

(8) x)(n) = u(n)
(b) x2(n) = (=1)"u(n)
(€} xy(ny = (cos woniu(n)

by evaluating their z-transforms on the unit circle.

Solution
(a) From Table 4.3 we find that
l <
Xy(z) = == = - iz
1(2) PR ROC: iz} > 1
X, (z) has a pole, p; =1, on the unit circle, but convenges for 2] > 1.
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If we evaluate X,(z) on the unit circle. except at : = 1. we obtain

(,/u,": 1 .
Xi(w) = - = o= el w2tk A=0.1....
] 2jsin(ew/2y  2sin(w/2)

At w = 0 and multiples of 271. X(w) contains impulses of area .

Hence the presence of a pole at : =1 (i.e.. a w = 0) creates a problem
only when we want to compute |X (@) at @ = 0.because | Xi(w)] — o &
w — (. For any other value of w. X, (w) isfinite (i.c.. well behaved). Although,
at first glance one might expect the signal to have zero-frequent! components
at al frequencies except at w = 0. this is not the case. This happens because
the signal x, (1) is not a constant for al ~~ < n < . Instead, it is turned
on at n = 0. This abrupt jump creates all frequeney components existing in
the range 0 < « < 7. Generally. dl signals which start at a finite time have
nonzero-frequency components cvervwhere in the frequency axis from zero up
to the folding frequency,

From Table 3.3 we find that the :-transform of ¢"u(n) with ¢ = —1 reduces to
Xa(2) ! = ROC: | 1
XD = 1 = ;—: M

which hasa pole at : = — 1= ¢/7. The Founer transform evaluated at frequen-

cies other than w = 7 and multiples of 2x is

SLON

€
Xs(w) = ———— #2nk+ 5 k=01
e 2costw/2) @z ?
In this case the impulses occurs at « = 7 + 2xk.
Hence the magnitude is

1
JXZ(“)H:W w#2rk+n k=01,

and the phase is

if cos? >0
2 Xxw) = ) .
+n. if cos 5 < (

P

[SIR- RSN

Note that due to the presence f the pole at a = —1 (i.e.. at frequency w = 7),
the magnitude of the Fourier transform becomes infinite. Now X (w)| — =< as
w — 7. We observe that (—=1)"u(n) = (cosmnju(n). which is the fastest possible
oscillating signal in discrete time.
From the discussion above. it follows that Xi(w! is infinite at the frequency
component w = wy. Indeed, from Table 3.3. we find that

1-:"" cosan

x3(n} = (coswpn)uin} - Xa(z) = m ROC: |z > 1

The Fourier transform is

1= e cos
Xslw) = £ OSen w# dap+27k k=0.1....

(1 — e=dtw—eniy(] — g/twren)y
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The magnitude d X;(w) is given by
-
|Xatw)| = 11 — €7 cos uy] w# oy +2rk (=01,
11 — e-2w—wui||] s e |

Now if @ = —ay OF w = wy. | X3(w)} becomesinfinite. For all other frequencies.
the Fourier transform is well behaved.

429 The Sampling Theorem Revisited

To process a continuous-time signal using digital signal processing techniques, it is
necessary to convert the signal into a sequence of numbers. As was discussed in
Section 1.4, thisis usually done by sampling the analog signal, say x,(z), periodicaly
every T seconds to produce a discrete-time signal x(n) given by

x{(n) = x,(nT) —00 <n <00 (4.2.71)

The relationship (4.2.71) describes the sampling process in the time domain.
Asdiscussed in Chapter 1, the sampling frequency F, = 1/T must be selected large
enough such that the sampling does not cause any loss of spectral information (no
diasing). Indeed. if the spectrum of the analog signal can be recovered from the
spectrum of thediscrete- time signal, there isno loss of information. Consequently,
we investigate the sampling process by finding the relationship between the spectra
of signals x.{r) and x{n).

If x,(z) is an aperiodic signal with finite energy. its (voltage) spectrum isgiven
by the Fourier transform relation

X (F) = / X, (tye~ ¥ Fidy (4.2.72)
-0C

whereas the signa x,(r) can be recovered from its spectrum by the inverse Fourier

transform

X (1) = f X (F)e’ &g F (4.2.73)
Note that utilization of al frequency components in the infinite frequency range
—oo < F < oo is necessary to recover the signa x,(r) if the signal x,(r) is not
bandlimited.

The spectrum of a discrete-time signal x(n), obtained by sampling x,(t), is
given by the Fourier transform relation

o0
X(w) = Z x(m)e=ien (4.2.74)
n=-—0c
or, equivalently,
X(f)= Y x(myei2m 4.2.75)

n=—oc
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The sequence x () can be recovered from its spectrum X (w) or X (/) by the inverse
transform

27 J_, .
12

x{n})

(4.2.76)

n

X(fref*inaf
-1
In order to determine the relationship between the spectra of the discrete-
time signal and the analog signal, we note that periodic sampling imposes a refa-
tionship between the independent variablest and n in the signals x. () and x(n),
respectively. That is.

t=nT = — @277
This relationship in the time domain implies a corresponding relationship between
the frequency variabtes F and f in X,(F) and X(f ). respectively.
Indeed. substitution d (4.2.77) into (4.2.73) yields

x(n)Ex,,(nT):/ X, (Fye!rnFlifgp (4.2.78)

—oC

If we compare (4.2.76) with (4.2.78), we conclude that

1/2 o
f X(fre/Mdf = f X (Fyetit g p (4.2.79)
-1/ —oc

From the development in Chapter 1 we know that periodic sampling imposes a
relationship between the frequency variables F and f o the corresponding analog
and discrete-time signals, respectively. That is,

= — 4.2.80

S F ({ }

With the ad of (4.2.80), we can make a simple change in variable in (4.2.79), and
obtain the result

1 2 F . o .
-f X (—) IR g =f X (Fe T fihgp 4.2.8D
F.r -F 2 F -

£ oC

We now turn our attention to the integral on the right-hand side o (4.2.81).
The integration range d this integral can be divided into an infinite number of
intervals of width F,. Thus the integral over the infinite range can be expressed
as a sum of integras, that is,

oo ) x (k+1/2)F, )
f X (F)e/Fifigp = f X (F)e/TFiFg R 4.2.82)
{

i k=—oc Jk-1/DF,
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We observe that X,(F) in the frequency interval (k — 1)F, to (k + })F. is identical
to X, (F — kF,) in the interval —F,/2 to F./2. Consequently,

o (k+1/72)F, . . x .2 N
/ Xo(Fel i dp = Z/ Xo(F —kFoe ™ T dF

k=—og ¥ A—1/DF, (e F2
F 2 o ) )
N / [ D XulF —kFy e FhaF
-R2 =Tk
(4.2.83)
where we have used the periodicity o the exponential. namely.
emeI(F-é—l..‘,)/F, — e/?..‘mF/E
Comparing (4.2.83). (4.2.82), and (4.2.81). we conclude that
F o
Xl=]=F X, (F —kF, 4284
( F() . 1»;3( ( ) i )
or. equivalently.
X(fr="F Y X[/ -©BF] (4.2.85)
A=—-0oC

This isthe desired relationship between the spectrum X (7 /F,) or X (/) of the
discrete-time signal and the spectrum X,(F) of the analog signal. The right-hand
side of (4.2.84) or (4.2.85) consists of a periodic repetition of the scaled spectrum
F. X.(F) with period F.. This periodicity is necessary because the spectrum X (/)
or X(F/F;) d the discrete-time signal is periodic with period f,,=1or F, = F,.

For example, suppose that the spectrum of a band-limited analog signal is
as shown in Fig. 4.18(a). The spectrum is zero for |F{ > &. NoH' if the sam-
pling frequency F; isselected to be greater than 2B. the spectrum X (F/F,) of the
discrete-time signal will appear as shown in Fig. 4.18(b). Thus. if the sampling
frequency F; is selected such that 7, = 28. where 25 is the Nyquist rate. then

X (;-) = F.X,(F) [Fl<F.2 (4.2.86)
In this case there is no aliasing and therefore, the spectrum of the discrete-time
signal isidentical (within the scale factor F;) to the spectrum of the analog signal.
within the fundamental frequency range |F| < Fy/2 or [f] < 5.

On the other hand, if the sampling frequency F; isselected such that F; <
28, the periodic continuation of X,(F) results in spectral overlap, as illustrated
in Fig. 4.18(c) and (d). Thus the spectrum X{F/F;) of the discrete-time signal
contains aiased frequency components of the analog signal spectrum X,(F). The
end result isthat the aliasing which occurs prevents us from recovering the origina
signal x,(t) from the samples.

Given the discrete-time signa x(n) with the spectrum X (F/F;), asillustrated
in Fig. 4.18(b). with no aliasing, it is now possible to reconstruct the original analog



x,l1) X (F)

(@)

)

xn) = x,(nT})

F.X,(F+F)
y XAF) ANEX(F—F)
T 1
0 ——=iTh=— F,
?
(b)
x(%)
£
xter)
* F,
L]
? ] I 1. A . .
Qi T beee —F, 0 F F
2

()

x(n)

I
—e
f—w
Fo-e
—
e

}.

n F
0t T b= —F, o F,
(d)
40 X (F)
/{\\ ’/f\‘ i
-FR 0

(e)

Figure 418 Sampling of an analog bandlimited signd and aliasing of spectral
components.
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signal from the samples x(n). Since in the absence of aliasing

1 F

XF) = {F~X (F) Pl Rr 4.2.87)
0. (Fi> F /2

and by the Fourier transform relationship (4.2.75).

F > ,
X (F) = Y x(me (4.2.88)

n=—0C

the inverse Fourier transform o X,(F) is

£ -
x4(0) :/ X (FYe g F (4.2.89)
—F.2
Let us assume that F, = 2B. With the substitution of (4.2.87) into (4.2.89). we
have -
L& —
1 & Y-
=5 Z x(n)/_'u “e"”F“"’/F"dF (4.2.90)
= e

X Sin( /T )t —nT)
= Xa(nT)——————
Z Yalt?) (r/THY(t ~nT)

n=—00
where x(n) = x,(nT) and where T = 1/F, = 1/28 is the sampling interval. This
is the reconstruction formula given by (1.4.24) in our discussion o the sampling
theorem.
The reconstruction formulain (4.2.90) involves the function

(1) = sin(r/T ) _ sin2x Bt 4291
B == T T @.2.51)
appropriately shifted by n7. n = 0. £1. £2...., and multiplied or weighted by
the corresponding samples «,(nT) of the signal. We cal (4.2.90) an interpola-
tion formula for reconstructing x,(r) from its samples. and g(s). given in (4.2.91),
is the interpolation function. We note that at + = 7. the interpolation function
gt —nT) iszero except a & =n. Consequently, x.(1) evaluated at r = kT issmply
the sample x, (k7). At all other times the weighted sum of the time shifted versions
o the interpoiation function combine to yield exactly x,{r). This combination is
illustrated in Fig. 4.19.
The formula in (4.2.90) for reconstructing the analog signal x,(;) from its
samples is called the ideal interpolationformula. It formsthe basisfor the sampling
theorem, which can be stated as follows.

SamplingTheorem. A bandlimited continuous-timesignal, with highest fre-
quency (bandwidth) B Hertz. can be uniquely recovered from its samples provided
that the sampling rate F, > 28 samples per second.
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Reconstructedsignal \

-T 0 T 27 3T 4T

Figure4.19 Reconstruction of a continuous-time signal using ideal interpolation

According to the sampling theorem and the reconstruction formulain (4.2.90),
the recovery of x,(r) from its samples x(n), requires an infinite number of Sam+
ples. However, in practice we use a finite number of samples of the signal and
deal with finite-duration signals. As a consequence, we are concerned only with
reconstructing a finite-duration signa from a finite number of samples.

When aliasing occurs due to too low a sampling rate, the effect can be de-
scribed by a multiple folding of the frequency axis of the frequency variable F for
the analog signal. Figure 4.20(a) shows the spectrum X,(F) o an analog signa.
According to (4.2.84). sampling o the signa with a sampling frequency F; results
in a periodic repetition of X,(F) with period I;,. If F, < 2B, the shifted replicas of
X,(F) overlap. The overlap that occurs within the fundamental frequency range
—F./2 < F < F,;/2, isillustrated in Fig. 4.20(b). The corresponding spectrum o
the discrete-time signal within the fundamental frequency range, is obtained by
adding al the shifted portions within the range {f | < % to yield the spectrum
shown in Fig. 4.20(c).

A careful inspection o Fig. 4.20(a) and (b) reveais that the aliased spectrum
in Fig. 4.20(c) can be obtained by folding the original spectrum like an accordian
with pleats at every odd multiple of F;/2. Consequently, the frequency F,/2 is
caled the folding frequency, as indicated in Chapter 1. Clearly, then, periodic
sampling automatically forces a folding of the frequency axis of an analog signal
at odd multiplesof F/2, and this resultsin the relationship F = f F; between the
frequencies for continuous-time signals and discrete-time signals. Due to the fold-
ing of the frequency axis, the relationship F = f F; isnot truly linear. but piecewise
linear, to accommodate for the diasing effect. This relationship is illustrated in
Fig. 4.21.

If the analog signal is bandlimited to B < F;/2, the relationship between f
and F is linear and one-to-one. In other words, there is no aliasing. In practice,
prefiltering with an antialiasing filter is usually employed prior to sampling. This
ensures that frequency components of the signal above F > B are sufficiently
attenuated so that, if aliased, they cause negligible distortion on the desired signal.

The relationships among the time-domain and frequency-domain functions
Xa(8), x(n), X,(F), and X{(f) are summarized in Fig. 4.22. The relationships for
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Figure 421 Relationship between frequency variables F and f.

275



Frequency Analysis of Signals and Systems Chap. 4
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X0 = J X AF)enFIdF
X(F)=TX ;)
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Figure 422 Time-domain and frequency-domain relationships for sampled sig-
nals.

recovering the continuous-time functions, x.(r) and X,(F), from the discrete-time
quantities x(n) and X (f), assume that the analog signal is bandlimited and that it
issampled at the Nyquist rate (or faster).

The following examples serve to illustrate the problem o the aliasing of
frequency components.

Example 4.2.6 Aliasing in Sinusoidal Signals
The continuous-time signal

Xo(1) = cos 2 Fot = fe/2mfor 4 %e‘ﬂ”"o'

has a discrete spectrum with spectral lines at F = + #;, asshown in Fig. 4.23(a). The
process of sampling thissignal with a sampling frequency £, introduces replicas of the
spectrum about multiples of #;. Thisisillustrated in Fig. 4.23(b) for £,/2 < Fy < F-

To reconstruct the continuous-time signal, we should select the frequency com-
ponents inside the fundamental frequency range | F| < F,/2. The resulting spectrum
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Figure 423 Aliasing o sinusoidal signals.
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is shown in Fig. 4.23(c). The reconstructed signal is
X, (1) = cos2m(F, — Fy)t

Now. if F, isselected such that F, < Fy < 3F,/2. the spectrum of the sampled
signal is shown in Fig. 4.23(d). The reconstructed signal. shown in Fig. 4.23(e). is

x,(1) = cos2n(Fy — Fy)r

In both cases. aliasing has occurred, so that the frequency of the reconstructed signal
is an aiased version of the frequency of the original signal.

Exam,.e 427 Sampling a Nenbandlimited Signal

Consider the continuous-time signal
x, (1) = e~ A»0
whose spectrum is given by

XAF)y= 24
T AT n Ry

Determine the spectrum of the sampled signal xin) = x,(nT).

Solution  If we sample x,(7) with a sampling frequency F, = 1/T. we have

SATH (AT i —oc < < oC

xny=x,(nT)=¢

The spectrum of x(r) can he found easily if we use a direct computation of the Fourier
transform. We find that

F 1= e 1
X{—1|)= ¢ = T =—
F, 1= 26-AT cos2x FT + 247 Fe

Clearly. since cos2x F T = cos2w(F/F,) isperiodic with period F,, sois X (F/F;).
Since X,(F) is not bandlimited. aliasing cannot be avoided. The spectrum of
the reconstructed signal £,(r) is

TX(F) |F|<F‘
XU(F)= F“ _i
0. Fl> =

|Fl > 3

Figure 4.24(a) shows the original signal x,(:) and its spectrum X,(F) for A = 1.
The sampled signal x(n) and its spectrum X{F/F,) are shown in Fig. 4.24(b) for
F; =1 Hz. The aiasing distortion is clearly noticeable in the frequency domain. The
reconstructed signal %,(r) is shown in Fig. 4.24(c}. The distortion due to aliasing can
be reduced significantly hy increasing the sampling rate. For example, Fig. 4.24(d)
illustrates the reconstructed signal corresponding to a sampling rate F, = 20 Hz. It
isinteresting to note that in every case x,(nT) = x,(rT), but x,(t) # x,{t) at other
values of time.
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Figure 424 (a) Analog signal x, (1) and its spectrum X (F): (b} xtni = Xa(nT}
and the spectrum of xtr) for A = | and F. = 1 Hz. (c) reconstructed signal ¢/}
for £, = I Hz: (d) reconstructed signal 1,{1) for F; = 20 Hz.

4.2.10 Frequency-Domain Classificationof Signals: The
Concept of Bandwidth

Just as we have classified signals according to their time-domain characteristics. it
is also desirable to classify signals according to their frequency-domain character-
istics. It iscommon practice to classify signals in rather broad terms according to
their frequency content.

In particular. if a power signal (or energy signa) has its power density spec-
trum (or its energy density spectrum) concentrated about zero frequency. such
a signa is caled a low-frequency signal. Figure 4.25(a) illustrates the spectral
characteristics d such a signal. On the other hand, if the signal power density
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Figure 425 (a) Low-frequency. (b) high-frequency. and (c) medium-frequency
signals.

c

spectrum (or the energy density spectrum) is concentrated at high freguencies,
the signal is called a high-frequency signal. Such a signa spectrum is illustrated
in Fig. 4.25(b). A signal having a power density spectrum (or an energy density
spectrum) concentrated somewhere in the broad frequency range between low fre-
guencies and high frequencies is caled a medium-frequency signal or a bandpass
signal. Figure 4.25(c) illustrates such a signal spectrum.

In addition to this relatively broad frequency-domain classification of signals,
it is often desirable to express quantitatively the range of frequencies over which
the power or energy density spectrum is concentrated. This quantitative measure
is calied the bandwidrh d a signal. For example, suppose that a continuous-
time signal has 95% of its power (or energy) density spectrum concentrated in the
frequency range Fi < F < F,. Then the 95% bandwidth of the signal is /> — Fi. In
asimilar manner, we may define the 75% or 90% or 99% bandwidth of the signal.
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In the case of a bandpass signal. the term narrowband is used to describe
the signal if its bandwidth # — F7 is much smaller (say, by afactor of 10 or more)
than the median frequency (/> + F)/2. Otherwise. the signal is called wideband.

We shall say that a signal is bandlimired if its spectrum is zero outside the
frequency range { £} > B. For example, a continuous-time finite-energy signal x(t)
is bandlimited if its Fourier transform X(F) = 0 for |F| > B. A discrete-time
finite-energy signa x(») is said to be (periodically) bandlimired if

[ X(w)|=0 for wy < || < 7

Similarly. a periodic continuous-time signa x,(r) is periodically bandlimited if its
Fourier coefficients ¢, = € for |k > M, where M is some positive integer. A
periodic discrete-time signal with fundamental period N is periodically bandlimited
if the Fourier coefficients ¢, = 0 for ko < [k{ < N. Figure 4.26 illustrates the four
types of bandlimited signals.

By exploiting the duality between the frequency domain and the time domain,
we can provide similar means for characterizing signals in the time domain. In
particular. a signal x(r) will be called rimelimited if

x(r)y=0 >
If the signal is periodic with period 7. it will be called periodically rimelimited if
xp(1) =0 <ty < Tpf2
If we have a discrete-time signal x(s) of finite duration, that is,
x(n) =0 ln| > N

it isalso caled time-limited. When the signa is periodic with fundamental period
N, it issaid to be periodically time-limited if

xin)y=10 npg < inj< N
Aperiodicsignals Periodic signals
X(F) Cx
% }
£
< F kF,
-B 0 B ~MF, 0 MF, o
X(w) x
&
3
a . e,
-1 -ay 0 wy R _M2n 0 M2r x
L N N

Figure 426 Some examplesd bandlimited signals.
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We state, without proof, that no signal can be timelimited and bandlimited
simultaneously. Furthermore, a reciprocal relationship exists between the time
duration and the frequency duration of asignal. To elaborate, if we have a short-
duration rectangular pulse in the time domain, its spectrum has a width that is
inversely proportional to the duration of the time- domain pulse. The narrower
the pulse becomes in the time domain, the larger the bandwidth of the signal
becomes. Conseguently, the product of the time duration and the bandwidth of
a signal cannot be made arbitrarily small. A short-duration signa has a large
bandwidth and a small bandwidth signal has a long duration. Thus, for any signal,
the time—bandwidth product is fixed and cannot be made arbitrarily small.

Finally, we note that we have discussed frequency analysis methodsfor peri-
odic and aperiodic signals with finite energy. However, there is a family of deter-
ministic aperiodic signals with finite power. These signals consist of a linear super-
position of complex exponentials with nonharmonically related frequencies, that is,

M
x(n) = Z Agel"
k=1

where w1, ws, ..., wy are nonharmanically related. These signals have discrete
spectra but the distances among the lines are nonharmonically related. Signals
with discrete nonharmonic spectra are sometimes called quasi-periodic.

4211 The Frequency Ranges of Some Natural Signals

The frequency analysis tools that we have developed in this chapter are usually
applied to avariety of signals that are encountered in practice (e.g., seismic, biolog-
ical, and electromagnetic signals). In general. the frequency analysis is performed
for the purpose of extracting information from the observed signal. For example,
in the case of biological signals, such as an ECG signal, the analytical tools are
used to extract information relevant for diagnostic purposes. In the case of seismic
signals, we may be interested in detecting the presence of a nuclear explosion or in
determining the characteristicsand location of an earthquake. An electromagnetic
signal, such as a radar signal reflected from an airplane, contains information on
the position of the plane and itsradial velocity. These parameters can be estimated
from observation of the received radar signal.

In processing any signal for the purpose of measuring parameters or ex-
tracting other types of information, one must know approximately the range of
frequencies contained by the signal. For reference, Tables 4.1, 4.2, and 4.3 give
approximate limits in the frequency domain for biological, seismic, and electro-
magnetic signals.

4.2.12 Physical and Mathematical Dualities

In the previous sectionsof the chapter we have introduced several methods for the
frequency analysis of signals. Several methodswere necessary to accommodate the
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TABLE 4.1 FREQUENCY RANGES OF SOME BIOLOGICAL

SIGNALS
Type d Signa Frequency Range (Hz)
Electroretinogram? 0-20
Electronystapmogram® 0-20
Pneumogram® 040
Electrocardiogram (ECG) (-100
Electroencephalogram (EEG) 0-100
Electromyogram¢ 10-200
Sphygmomanogram® (-200
Speech 1004000

“A graphic recording of retina characteristics.

YA graphic recording d involuntary movement of the eyes.
¢A graphic recording of respiratory activity.

¢ A graphic recording of muscular action. such as muscular contraction.
‘A recording of blood pressure.

TABLE 4.2 FREQUENCY RANGES OF SOME SEISMIC SIGNALS

Type af Signal Frequency Range (Hz)
Wind noise 1001000
Seismic exploration signals 10-100
Earthquake and nuclear explosion signals 0.01-10

Seismic noise 0.1-1

TABLE 4.3 FREQUENCY RANGES OF ELECTROMAGNETIC SIGNALS

Type of Signal Wavelength {m) Frequency Range (Hz)
Radio broadcast 10°-1¢° 3% 10°-3 x 10°
Shortwave radio signals 10°-10"2 3x 1003 x 10

Radar. saiellite communications.
space communicalions.

common-carrier mtcrowavc 1-10 3 x 1083 x 10M
Infrared 107*-107¢ 3x10"-3 x 10%
Visible light 39x 107781 x 1077 3.7 x 10%-7.7 x 10!
Ultraviolet 1077104 3x 1013 x 10%
Gamma rays and x-rays 10-9-1g-10 3x 10773 x 101

different types of signals. To summarize, the following frequency analysis tools
have been introduced:

1 The Fourier series for continuous-time periodic signals.

2 The Fourier transform for continuous-time aperiodic signals.
3 The Fourier series for discrete-time periodic signals.

4. The Fourier transform for discrete-time aperiodic signals.
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Figure 4.27 summarizes the analysis and synthesis formulas for these types of
signals.

Aswe have already indicated several times. there are two time-domain char-
acteristics that determine the type of signal spectrum we obtain. These are whether
the time variable is continuous or discrete, and whether the signal is periodic or
aperiodic. Let us briefly summarize the results of the previous sections.

Continuous-timesignals have aperiodic spectra. A close inspection of
the Fourier series and Fourier transform analysis formulas for continuous-time
signals does not reveal any kind o periodicity in the spectral domain. This lack of
periodicity isa consequence of the fact that the complex exponential exp(;j2x Ft)
is a function of the continuous variable t. and hence it isnot periodic in F. Thus
the frequency range of continuous-time signals extends from F=01to F = cc.

Discrete-time signals have periodic spectra. Indeed. both the Fourier
series and the Fourier transform for discrete-time signals are periodic with period
w = 2n. Asaresult of this periodicity. the frequency range of discrete-time signals
isfinite and extends from w = —x tow = = radians, where w = = corresponds to
the highest possible rate of oscillation.

Periodic signals have discrete spectra. Aswe have observed, periodic
signals are described by means of Fourier series. The Fourier series coefficients
provide the "lines" that constitute tho discrete spectrum. The line spacing AF
or Af is equal to the inverse of the period 7, or N. respectiveiy. in the time
domain. That is. A F =1/T7, for continuous-time periodic signals and Af = 1/N
for discrete-time signais.

Aperiodic finite energy signals have continuous spectra. This prop-
erty is a direct conseguence of the fact that both X(F) and X (w) are functions
o exp(j2m Ft) and exp(jwn), respectively. which are continuous functions of the
variables F and w. The continuity in frequency is necessary to break the harmony
and thus create aperiodic signals.

In summary. we can conclude that periodicity with "period” « in one domain
automatically implies discretization with" spaci ng" of | /a in the other domain, and
vice versa.

If we keep in mind that "period" in the frequency domain means the fre-
quency range. "'spacing” in the time domain is the sampling period T, line spacing
in the frequency domain is AF. then a = T, impliesthat | /a = 1/T, = AF,a=N
implies that Af = 1/N,and a= F, impliesthat T = 1/F;.

These time-frequency dualities are apparent from observation of Fig. 4.27.
We stress, however, that the illustrations used in this figure do not correspond 10
any actual transform pairs. Thus any comparison among them should be avoided.

A careful inspection of Fig. 4.27 also reveas some mathematical symmetries
and dualities among the several frequency analysis relationships. In particular,
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we observe that there are dualities between the following analysis and synthesis
equations:

1. The analysis and synthesis equations of the continuous-time Fourier trans-
form.

2. The analysis and synthesis equations of the discrete-time Fourier series.

3. The analysis equation of the continuous-time Fourier series and the synthesis
equation of the discrete-time Fourier transform.

4. Theanalysis equation of the discrete-time Fourier transform and the synthesis
equation of the continuous-time Fourier series.

Note that all dual relations differ only in the sign of the exponent of the
corresponding complex exponential. It is interesting to note that this change in
sign can be thought of either asafolding of the signal or afolding of the spectrum,
since

(,—j2JrFr — t,err(--F)r — ()jz;rF(«l)

If we turn our attention now to the spectral density of signals, we recal that
we have used the term energy density spectrum for characterizing finite-energy
aperiodic signals and the term power density spectrum for periodic signals. This
terminology is consistent with the fact that periodic signals are power signals and
aperiodic signals with finite energy are energy signals.

4.3 PROPERTIES OF THE FOURIER TRANSFORM FOR
DISCRETE-TIME SIGNALS

The Fourier transform for aperiodic finite-energy discrete-time signals described
in the preceding section possesses a number of properties that are very useful in
reducing the complexity of frequency analysis problems in many practical appli-
cations. In this section we develop the important properties of the Fourier trans-
form. Similar properties hold for the Fourier transform of aperiodic finite-energy
continuous-time signals.
For convenience, we adopt the notation
o
X(w) = Flx(m)= Y x(me /" 4.3.1)

n=—oc

for the direct transform (analysis equation) and

x(n) = FY{X(w) = %/ X (w)e’*" dw (4.3.2)
2

for the inverse transform (synthesis equation). We also refer to x(n) and X () as
a Fourier transform pair and denote this relationship with the notation

x(n) <= X(w) (4.33)
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Recall that X (w) is periodic with period 2x. Consequently, any interval
d length 2 is sufficient for the specification o the spectrum. Usually, we plot
the spectrum in the fundamental interval [-n.7]. We emphasize that al the
spectral information contained in the fundamental interval is necessary for the
complete description or characterization of the signal. For this reason, the range
o integration in (4.3.2) is dways 2z, independent of the specific characteristics of
the signal within the fundamental interval.

4.3.1 Symmetry Properties d the Fourier Transform

When a signal satisfies some symmetry properties in the time domain. these prop-
erties impose some symmetry conditions on its Fourier transform. Exploitation
o any symmetry characteristics leads to simpler formulas for both the direct and
inverse Fourier transform. A discussion of various symmetry properties and the
implications of these properties in the frequency domain is given here.

Suppose that both the signal x(») and its transform X (w) are complex-valued
functions. Then they can be expressed in rectangular form as

x{n) = xpin)+jx (n) (4.3.4)
X{w) = Xp(w) +jX (w) (4.3.5)

By substituting {4.3.4) and ¢~/“ = cosw — jSnw into (4.3.1) and separating the
real and imaginary pans. we obtain

o

Xylw) = Z [xp(m)coswn + x;(n)sinon] (4.3.6)
oc
X (w) = - Z [xgr(n) sinwn ~ x;(n) cos wn) (4.3.7)
n=—2c

In a similar manner, by substituting (4.3.5) and e’* = cosw T j sinw into (4.3.2),
we obtain

xg(n) = % [X r{w) coswn — X (w) sinwnldw (4.3.8)
2r

xi(n) = % [Xg(w)sinwn + X, (w) cos wn]dw (4.3.9)
bl 2r

Now, let usinvestigate some special cases.

Real signals. If x(n) is real, then xz(n}) = x(n) and x,(n) = 0. Hence
(4.3.6) and (4.3.7) reduce to

x

Xg(w) = Y x{n)coswn (4.3.10)



288 Frequency Analysis of Signals and Systems Chap. 4

and -
X/ @) =- Y x(n)snwn 43.11)
Since cos(—wn) = coswn and sin(—wn) = —sinwn, it follows from (4.3.10) and
(4.3.11) that
Xg(~w) = Xp(w} (even) (4.3.12)
Xi(~w) = =X (w) (odd) (4.3.13)
If we combine (4.3.12) and (4.3.13) into a single equation. we have
X (w) = X(~w) (4.3.14)

In this case we say that the spectrum of a real signa has Hermitian symmetry.
With the aid of Fig. 4.28, we observe that the magnitude and phase spectra
for real signals are

X(@)] = X3 @) + X (4.3.15)
1 Xi(w)

Xlw| = tan™' S— 43.16

el =m @ (4-3.16)

As a consequence of (4.3.12) and (4.3.13), the magnitude and phase spectra also
possess the symmetry properties

X (@) = 1X(—w)] (even) (4.3.17)
AX(~w) = —5X(w) (odd) (4.3.18)
In the case of the inverse transform of a real-valued signal [i.e., x(n) = xg(n)],
(4.3.8) implies that
x(n) = —-1—/ [X & (w) coswn — X (w)sinwn]dw 4.3.19)
2 2n

Since both products Xg{w)coswn and X;(w)sinwn are even functions of w, we
have

1 r" .
x(n) = — [Xp(w)coswn — X, (w)sinwn]dw (4.3.20)
0
Imaginary axis
Xfw)[rommmomorfonnnnney » X(w)
«;,\“‘\ :
0 LX) . Redl axis  Figure 428 Magnitude and phase

Xglw) functions.
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Real and even signals. If x(n) isreal and even [ie., x(—n) = x(m)]. then
x(n)coswn is even and x(n)sinwn is odd. Hence. from (4.3.10). (4.3.11). and
(4.3.20) we obtain

Xplw) = x(0) + 2372, x(n) coswn {even) (4.3.21)
Xi(w) =0 (4.3.22)
xim) = L [ Xp(w)coswn do (4.3.23)

Thusreal and even signals possess real-valued spectra. which, in addition, are even
functions of the frequency variable w.

Real and odd signals. If x(n) isreal and odd [i.e., x{(—n) = —x(n}]. then
x(nycoswn is odd and x(n)sinwn is even. Consequently. (4.3.10). (4.3.11) and
(4.3.20) imply that

Xp(w) = 0 (43.24)
x
Xjw) = =23 x@)sinon  (odd) (4.3.25)
n=1
1 [T .
x(n) = —~f X/(w)sinwn dw (4.3.26)
T Jo

Thus real-valued odd signals possess purely imaginary-valued spectral characteris-
tics. which. in addition. are odd functions o the frequency variable w.

Purely imaginary signals. 1n thiscase xy{n) =0and x(n) = jx;(n). Thus
(4.3.6). (4.3.7). and (4.3.9) reduce to

oC

Xptw) = Y xwsinen  (odd) (4327
Xr(w) = i Xy (n)coswn (even) (4.3.28)
xi{n) = %/:[Xx(w) sinwn + X {w)coswn] dw (4.3.29)
If x;(n} isodd [i.e., x;(~n) = —x;(m)], then
Xp(w) = zixl(ﬂ)sin wn (odd) (4.3.30)
n=1
X/(w) =0 (43.31)

1 b2
x;(n) = ;/ Xrl{w)sinwn dw (4.3.32)
0
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Similarly. if x;(n) iseven [i.e.. x;(—n) = x,;(n)]. we have

Xelw) = 0 (4.3.33)
5
Xi(@) = x (0 +23_ximycoswn  (even) (4.334)
n=l
1 m
xy(n) = ——/ X (w)coswn dw (4.3.35)
T Jo

An arbitrary. possibly complex-valued signa x(n}) can be decomposed as

x(m) = xp(n) + jx;(n) = x(n) + x5(n) + jlxf(m + x§ ()] (4.336)

= x.(n)+ x,n)
where, by definition.

x(n) = xGim) + jxim) = x(n) + x*(=n)]

x,(n) = xjp(m) + jajn) = Hxn) — x*(=n)]
The superscripts ¢ and ¢ denote the even and odd signal components. respectively.
We note that x,(n) = x.(—n) and x,(—n) = —x,(n). From (4.3.36) and the Fourier

transform properties established above. we obtain the following relationships:

x(m) = [xgn) + jxj(m] + [agim + jxp(n)]
! : : (4337

X(w) = [X{(w) + jX[(@)] + (X(w) + jX ()]
These symmetry properties of the Fourier transform are summarized in Ta-

ble 4.4 and in Fig. 4.29. They are often used to simplify Fourier transform calcu-
lations in practice.

Example 4.3.1
Determine and sketch Xg(w), X (w). | X(w){. and X X (w) for the Fourier transform
1
X(w) = wom——— ~1l<a=<l (4.3.38)
I —ae

Solution By multiplying both the numerator and denominator of (4.3.38) by the
complex conjugate of the denominator. we obtain
1-ae™ 1 —acosw— jasinw
(1—ae )1 —ager)  1-ZacoswTa
This expression can be subdivided into real and imaginary parts. Thus we obtain

X(w) =

Xelw) = 1-—-acosw
R = T cosw + &

asnw
Xj(w) =

T1-2acosw+al

Substitution of the last two equations into (4.3.15) and (4.3.16) yields the mag-
nitude and phase spectra as
1

X ()} = ——o— (4.3.39)
1 -2acosw T a?
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TABLE 4.4 SYMMETRY PROPERTIES OF THE DISCRETE-TIME

FOURIER TRANSFORM

Sequence DTFT
x(n) X (w)
xTin) X ~w)
x"l=ny X (w)
xg(n) Xolwr = %[X(w)+X'(—w)]
Jxsny X, w) = %[X(w) - X*(—w)]

Neln) = d{xni 4+ x7(=n)]

Xotn) = %[.r(n) BEME)

Any real signal
v

20 = e+ a(=m)
{rcai and ¢ven)
= e = vi—m)
{real and odd)

Real Signals

Xpiw)
X1 (w)

Xiw)=X"{—w)
Xpw) = Xel-w)
Xjwy==X;(~a)
IXiw) = 1X{—w)
A Xiw) = —&.X1-w)
Xpiw)
(real and even)
JXH{w)
(1maginary and odd)

Time domain

Frequency domain

Even
Real
Odd
Signal
Odd
Imaginary
Even

Even

Real
Qdd

Signal
Odd

Imaginary
Even

Figure429 Summary d symmetry propertiesfor the Fourier transform.
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and )
asinw
l—acosw
Figures 4.30 and 4.31 show the graphical representation of these spectra for
a = 0.8. The reader can easily verify that as expected. all symmetry properties for
the spectra of real signals apply to this case.

% X(w) = —tan™! (4.3.40)

Example 4.3.2
Determine the Fourier transform of the signal
A. -M<n<M
= - 4.3.41
xn) l 0. elsewhere ( )
Solution Clearly, x(—n) = x(n). Thus x(n) is areal and even signal. From (4.321)
we obtain
M
X(@) = Xplw) = A (1 + 22\:050”:)
n=1
Xplw)
6 [
- 0 n
(a)
Xy(w)
2
a=08
i 1 1 1 i | J. w
- T
—2F

(b)

Figure 4.30 Graph d Xg(w) and X, (w) for the transformin Example 4.3.1
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Xl
6 -

Figure 4.31 Magnitude and phase spectra o the transform in Example 4.3.1.

If we use the identity given in Problem 4.13, we obtain the simpler fam

sin(M+'5)w

= A
X(w) sin(w/2)

Since X (w) 1s real. the magnitude and phase spectra are given by

sin(M + 1)w
= [A —/—2— 4342
| X (e} = |A Snw2) (4.3.42)
and
_ 0, if X{w) >0
£ X(w) = {K. if Xie) <0 (4.3.43)

Figure 4.32 shows the graphs for X (w}.
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Figure 432 Spectral characteristics of rectangular pulse in Example 4.3.2.

4.3.2 Fourier Transform Theorems and Properties

In thissection we introduce several Fourier transformtheoremsand illustratetheir
use in practiceby examples.

Linearity. |If

x1(n) DL Xi(@)
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and
xa(n) JEN Xa(w)
then
ayxy(n) + arx>(n} PN a X (w) + ar Xo(w) (4.3.44)
Simply stated, the Fourier transformation. viewed as an operation on asignal
x(n). isalinear transformation. Thus the Fourier transform of a linear combination
of two or more signals is equal to the same linear combination of the Fourier
transforms of the individual signals. This property iseasily proved by using {4.3.1).
The linearity property makes the Fourier transform suitable for the study of linear
systems.
Example 4.3.3
Determine the Fourier transform of the signal
xin) =" —l<a<] (4.3.45)
Solution  First. we observe that a(r) can be expressed as

X)) = xy{n)+ xan)

where
o ", n>A
xX{in) =
: 0. n<0
and
a ", n <0
xz{n) =
1200} (0. n=0

Beginning with the definition of the Fourier transform in (4.3.1). we have

o

Xiw)= Y xime ™ = ia"w“’ = i(ue‘“")”

Pr—_ n=0 n=(i

The summation is a geometric series that converges to

Xw) = ———
e 1 —ae~=
provided that
jae™ =al-j¢e7’* = jal <1
which is a condition that is satisfied in this problem. Similarly. the Fourier transform
o xa(n)is
3 -1
Xolw) = Z xy(n)e”’™" = Z a el
n=—oc A==
-1 o
= = Y ey
n=—ac k=1

ae’”

1 — aeiv



296 Frequency Analysis of Signals and Systems Chap. 4

By combining these two transforms. we obtain the Fourier rransform of x(n) in the
form
Xi{w) = Xjtw) + Xalw)

g (4.3.46)
1 - 2acosw + a*

Figure 4.33 illustrates x(n) and X (w) for the case in which « = C.8.

Time shifting. If
x(n) <—f~> X (w)
then
X1~ k)~ e X () (4.3.47)
The proof d this property follows immediately from the Fourier transform o
x(n — k) by making a change in the summation index. Thus

Flxin —k)) = X{wye '

1X(w)\(.f!2‘»xm,;,w“

i)

14

—e
.

|

| |
- ” U

4 @
=2 - ¢ 7 2n

Figure 4.33 Sequence x(n) and its Fourier transform in Example 4.3.3 with
a=08.
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This relation means that if a signal is shifted in the time domain by & sam-
ples, its magnitude spectrum remains unchanged. However, the phase spectrum is
changed by an amount —wk. This result can easily be explained if we recall that
the frequency content of a signal depends only on its shape. From a mathematical
point of view, we can say that shifting by k in the time domain, is equivalent to
multiplying the spectrum by e=/“* in the frequency domain.

Time reversal. |If
x(n) o X(w)
then
x(~n) <> X(~w) (4.3.48)

This property can be established by performing the Fourier transformation
of x(—n) and making a simple change in the summation index. Thus
Fix(—n)} = Z x(he!™ = X(=w)

(==

If x(n) isreal, then from (4.3.17) and (4.3.18) we obtain
Flx(=n)} = X{—w) = |X (—w)|e!&X =
X (@)l * X

Thismeansthat if asignal isfolded about the origin in time, its magnitude spectrum
remains unchanged, and the phase spectrum undergoes a change in sign (phase
reversal).

Convolution theorem. If
x1(n) < X1(w)
and
x2(n) < X2{w)
then
x(n) = 1) * () < X (@) = X1 (@) X2(w) 4349
To prove (4.3.49), we recall the convolution formula

X

x(n) = xy(n) * x2(n) = Z x1(k)xa(n — k)

k=—oc
By multiplying both sides of this equation by the exponential exp(—jwn) and
summing over al n, we obtain

2

X(w) = Z x(n)e™ion = i [i x,uc)xz(n—k)] g lwn

n=—0oC n=—c | k=-2c
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After interchanging the order of the summations and making a simple change in
the summation index, the right-hand side of thisequation reduces to the product
X {w)Xs(w). Thus (4.3.49) is established.

The convolution theorem is one of the most powerful tools in linear systems
analysis. That is. if we convolve two signals in the time domain. then this is
equivalent to multiplying their spectra in the frequency domain. In later chapters
we will see that the convolution theorem provides an important computational
tool for many digital signal processing applications.

Example 4.3.4
By use o (4.3.49). determine the convolution o the sequences

xi(n) =) =1{1. 1.1}
*

Solution By using (4.3.21). we obtain
X lw) = Xs(w) = | + 2cosw
Then
Xiw) = X Xofw) = (1 + 2cosw)’

= 3+4cosw + 2¢08 2w

R N TP S S I (¢! 4 712
Hence the convolution of x;(n) with xa(n) IS
xtn)={12321}
Figure 4.34 illustrates the foregoing relationships.
The correlation theorem. |If
F
x1(n} —— X(w)
and
F
x2(n) — Xa(w)
then
F
Fox,(m) +—— Sq (@) = X (0)X2(—~w) (4.3.50)

The proof of (4.3.50) is similar to the proof of (4.3.49). In this case. we have

r,nx;(”) = Z x1(kyx(k —n)

k=~

By multiplying both sides of this equation by the exponential exp(—jwn) and
summing over al n, we obtain

>

S,le(w) = Z "'xu;(")eujw" = i [ i x1(k)xa(k —")} eI

n=—ac n=—cG [ k=—oc



Sec. 4.3 Properties of the Fourier Transform for Discrete-Time Signals

X)(w)

X (m)

xXa(n)

-101

Figure 4.34 Graphical representation of the convolution property.

Finally, we interchange the order of the summations and make a change in the
summation index. Thus we find that the right-hand side of the equation above
reduces to X1(w)X2(—w). The function S,,,,() is called the cross-energy density
spectrum of the signals x;(n) and x2(n).

The Wiener—Khintchine theorem. Let x(n) be area signa. Then

Feell) <> Ser(w) (4.3.51)

That is, the energy spectral density of an energy signal isthe Fourier transform of
its autocorrelation sequence. Thisisa specia case of (4.3.50).

Thisisa very important result. It means that the autocorrelation sequence
of asignal and its energy spectral density contain the same information about the
signal. Since, neither of these contains any phase information, it isimpossible to
uniquely reconstruct the signal from the autocorrelation function or the energy
density spectrum.

Example4 35
Determine the energy density spectrum of the signal

x{n) = d"u(n) -l<a<l
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Solution From Example 2.6.2 we found that the autocorrelation function for this
signd is
Fecll) = I—,a‘“ oc <! <o
1—-a°
By using the result in (4.3.46) for the Fourier transform o a". derived in Exam-
ple 4.3.3. we have
1
1 -2acosw+ a?
Thus. according to the Wiener-Khintchine theorem,

1
1 —2acosw+ a?

Flral = 1 _102 Fla") =

Seclw) =

Frequency shifting. |If

x(n) < X(w)
then

eI () s X (w — wo) (4.3.52)

This property iseasily proved by direct substitution into the anatysis equation
(4.3.1). According to this property, multiplication of a sequence x(n} hy #/“" is
equivalent to a frequency translation of the spectrum X (w) by wy. This frequency
translation isillustrated in Fig. 4.35. Since the spectrum X (w) is periodic, the shift

applies to the spectrum of the signal in every period.

The modulation theorem. If

x(n) —= X(w)

K
1

=2 " x
2 -3 3 21 w
(a)
Xl{w—-wy)
-2 ~2% + wy Wy T :+w° w
{(b)

Figure 4.35 |llustration of the frequency-shifting property of the Fourier trans
form



Sec. 4.3 Properties of the Fourier Transform for Discrete-Time Signals 301

then
x(n) cos won < HX(w+ o) + X (w — wp)] (4.3.53)
To prove the modulation theorem. we first express the signal cosawyn as
COS woh = %(ef‘""* + e=Jenn)

Upon multiplying x (n) by these two exponentials and using the frequency-shiftinp
property described in the preceding section, we obtain the desired result in (4.3.53).

Although the property given in (4.3.52) can aso be viewed as (complex)
modulation, in practice we prefer to use (4.3.53) because the signal x () cos wyn
is real. Clearly. in this case the symmetry properties (4.3.12) and (4.3.13) are
preserved.

The modulation theorem is illustrated in Fig. 4.36, which contains a plot of
the spectra of the signalsx(z). vi(n) = x(n)cos 0.57n and y2(n) = x(n)cos .

%m{
1
-2 -7 0 7 b g

raly
[EIE ]

(a}

l»)’,{w)
1

L
- T 0 by T
T2 2
(b}
Yylw) = X(w — )
1
1
2
. L @
-r  _7T 0 n n
2 2

(c)

Fired.36 Graphical representationof the modulation theorem.
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Parseval's theorem. 1f

X)L X (w)

and
N F
x2(n) +— Xa(w)
then
K l w
2 amxm == | XiXi@ido (4.3.54)

To prove this theorem, we use (4.3.1) to eliminate X;(w) on the right-hand
side of (4.3.54). Thus we have

] o o)
— [ Z xl(n)e'/"’”i' Xw)dw

5
T Jan | p=mx

o s

1
= z .n(n)E[” X w)e /“"dw = Z xy(n)x3(n)

n=-oc = =~

In the special case where x2(n) = x;(n) = x(n). Parseval's relation (4.3.54)
reduces to

= 1
> Ixtmf = ——[ X (@)} dw (4.3.55)
2n 2n

n=-x

We observe that the left-hand side of (4.3.55) issimply the energy E, of the signa
x(m). It is atso equal to the autocorrelation of x(n), r..(/), evaluated at / = O.
The integrand in the right-hand side of (4.3.55) is equal to the energy density
spectrum, so the integral over the interval —x < w < = yields the total signal
energy. Therefore, we conclude that

> .1 5 1 7
Ec=r.(0)= Z lx{n)|° = 7 fz” X (w)|"dw = _2;,/:,, Sec(w)dw  (4.3.56)

n=—oC

Multiplication of t W0 sequences (Windowing theorem). |f

x1{n) PEAN X1 (w)
and
x2(n) e X2 (w)

then

n

1
x3(n) = xy (Mxp(n) —— Xa(w) = 5= | XiXa(w - A (4.3.57)
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The integral on the right-hand side of (4.3.57) represents the convolution of the
Fourier transforms X;{) and X-(w). Thisrelation is the dual of the time-domain
convolution. In other words, the multipiication of two time-domain sequences is
equivalent to the convolution of their Fourier transforms. On the other hand, the
convolution of two time-domain sequences is equivalent to the multiplication of
their Fourier transforms.

To prove (4.3.57) we begin with the Fourier transform of xi(n) = x;(n)xa2(n)
and use the formula for the inverse transform, namely,

1 ” .
xi(n) = E[ X1 (A)e’Md)
-n

Thus, we have
oc

oc
Xilw) = Z x3(nye /" = Z x1(n)xa{n)e” /"

n=-0oc n==oc
X 1 7 . )
= Z [——/ Xl(l)e”‘"d)ﬁ] xa(n)e /"
= 27 J_,

I

] * - = —j{w—=Xjn
f;f_,, X (Mdx ,:"-Z‘;xz(n)e Jw=4) ]

1 m
—/ X1 Xo(w — AMyd A
2n f .

The convolution integral in (4.3.57) is known as the periodi ¢ convolution of
X1(w) and X;(w) because it is the convolution of two periodic functions having the
same period. We note that the limits of integration extend over a single period.
Furthermore, we note that due to the periodicity of the Fourier transform for
discrete-time signals, there is no "perfect” duality between the time and frequency
domains with respect to the convolution operation, as in the case of continuous-
time signals. Indeed, convolution in the time domain (aperiodic summation) is
equivalent to multiplication of continuous periodic Fourier transforms. However,
multiplication of aperiodic sequences is equivalent to periodic convolution of their
Fourier transforms.

The Fourier transform pair in (4.3.57) will prove useful in our treatment of
FIR filter design based on the window technique.

Differentiation in the frequency domain. If

x(n) 4—':» X(w)

then

nx(n) BN jd)af'(w)
@

(4.3.58)
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To prove this property. we use the definition of the Fourier transform in
(4.3.1) and differentiate the series term by term with respect to w. Thus we

obtain

dX{w) d

Now we multiply both sides of

(4.3.58).

=—x

dw = dw [ Z x(n)e”“’"jf

X
=~ Z nx{nye” "

n==

the equation by o to obtain the desired result in

The properties derived in this section are summarized in Table 4.5. which
serves as a convenient reference. Table 4.6 illusirates some useful Fourier trans-
form pairs that will be encountered in later chapters.

TABLE 45 PROPERTIES OF THE FOURIER TRANSFORM FOR DISCRETE-TIME

SIGNALS
Properly Time Domain Frequency Domain
Notation xinm Xiw)
BNV Xilw)
xatn) Xalw)
Linearity a x(n) + arxa(n) ay Xj(wy+a: X(w)
Time shifting x{n —k) e ™ X{w)
Time reversal x(—n) X (~w)
Convolution xy(n) x xa(n) Xi(ew) Xa(w)
Correlation ronl) =0l xa(=h  Stw) = Xj(wiXa(—w)
= Xjlen Xw)
[if x2(n) is real]
Wiener-Khintchine reell) Six(w)
theorem
Frequency shifting e/ x(n) X(w— ay)
Modulation x(n) cosann o+ o)+ 1X(w-on
Multiplication xy{n)xa{n) %f X1 XA(w = di
Differentiation in the nx(n) .dX(w.)
frequency domain S
Conjugation x*(n} X (—w)

Parseval’s theorem

1
Z xi(n)x3(n) = 37

n=—oc

o

n

f Xi(w) X {w)dw
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TABLE 46 SOME USEFUL FOURIER TRANSFORM PAIRS FOR DISCRETE-TIME APERIODIC

SIGNALS
Signal x(n) Spectrum X (w) j
11 !
- n _[::—»w
-3-2-10 1 2 3 - m
x(r) = &(n) Xw)=1
A
]‘ T
LT w
~>—o- - ni -r 0 T
~L ] L
. 1
{A, Inl < L sin (“5)“’
=10, m>L Hr=r =5 @
2 !
|
I
X(w)
}L
l w
-r ~w, 0 w,
Xw) = 1, lwl<w,
fou) = 0, wo.Skol<
X(w) = 1
— ge—Jw

4.4 FREQUENCY-DOMAIN CHARACTERISTICS OF LINEAR
TIME-INVARIANT SYSTEMS

In this section we develop the characterization of linear time-invariant systemsin
the frequency domain. The basic excitation signals in this development are the
complex exponentials and sinusoidal functions. The characteristics of the system
are described by a function of the frequency variable w called the frequency re-
sponse, which is the Fourier transform of the impulse response #(r) of the system.

The frequency response function completely characterizes a linear time-
invariant system in the frequency domain. This allows us to determine the
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steady-state response of the system to any arbitrary weighted linear combination
of sinusoids or complex exponentials. Since periodic sequences, in particular, lend
themselvesto a Fourier series decomposition asaweighted sum of harmonically re-
lated complex exponentials. it becomes a simple matter to determine the response
o alinear time-invariant system to this class of signals. This methodology is aso
appiied to aperiodic signals since such signals can be viewed as a superposition of
infinitessimal size complex exponentials.

4.4.1 Response to Complex Exponential and Sinusoidal
Signals: The Frequency Response Function

In Chapter 2, it was demonstrated that the response of any relaxed linear time-
invariant system to an arbitrary input signal x(n), is given by the convolution sum
formula
¥ =3 hk)x(n - k) (4.4.1)
k==
In this input-output relationship. the system is characterized in the time domain
by its unit sample response {h(n). —oc < 1 < oc}.
To develop a frequency-domain characterization of the system, let us excite
the system with the complex exponential

x(n) = Ae!" —o <N <oC 4.4.2)

where A isthe amplitude and w isany arbitrary frequency confined to the frequency
interval [—s, x]. By substituting (4.4.2) into {4.4.1), we obtain the response

Z h (k)[AC“”"("—“}
k= (4.4.3)

A[i hik -J‘"*'] Jon
Je e

k=—

¥(n)

We observe that the term in brackets in (4.4.3)isa function of the frequency
variable w. In fact, this term is the Fourier transform of the unit sample response
h(k) of the system. Hence we denote this function as

oC
Hw)= Y h(kje /= (4.4.4)
k=—00

Clearly, the function H(w) exists if the system is BIBO stable, that is, if
Y ) < o0

n=-o¢

With the definition in (4.4.4), the response of the system to the complex
exponential given in (4.4.2) is

y(n) = AH (w)e/™ (4.4.5)
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We note that the response is also in the form of a complex exponential with the
same frequency as the input, but altered by the multiplicative factor A (w).

As aresult of this characteristic behavior. the exponential signal in (4.4.2) 1s
called an eigenfunction of the system. In other words. an eigenfunction of asystem
isan input signal that produces an output that differs from the input by a constant
multiplicativefactor. The multiplicative factor iscalled an eigenvalue of the system.
In this case, a complex exponential signal of the form (4.4.2) isan eigenfunction of
a linear time-invariant system, and H(w) evaluated at the frequency of the input
signal is the corresponding eigenvalue.

Example 4.4.1
Determine the output sequence o the system with impulse response
h(n) = (1" u(n) 4.4.6)
when the input is the complex exponentia sequence
x(n) = Ac/™7 —oc<n <OC

Solution First we evaluatethe Fourier transformd the impulse response hin). and
then we use (4.4.5) to determine v(n). From Example 4.2.3 wc recdl that

x

1

Hiw) = E fr{nye /" = l__"—’ (4.4.7)
Lo

At w = n/2, (4.4.7) yidds
H (z) = ! = i g /06

2

and therefore the output is

2 ek -
)’(") = A _e»pﬁ,ﬁ )emn.-
(%

2 .
A‘,Jmnﬁ’—%ﬁ ) —oCc < < T

7

(4.4.8)

yin)

Thisexample clearly illustrates that the only effect of the system on the input
signal is to scale the amplitude by 2/+/3 and shift the phase by —26.6°. Thus the
output is also a complex exponential of frequency # /2. amplitude 2A/v/5. and
phase —26.6".

If we alter the frequency of the input signal. the effect of the system on
the input also changes and hence the output changes. In particular. if the input
sequence is a complex exponential of frequency . that is,

x(n) = Ae/™" -0 <n <20 {4.4.9)

then, at w = 7.
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and the output o the systemis
¥(n) = %Ae’”" -0 <h <00 (4.4.10)
We note that H(x) is purely real [i.e., the phase associated with H(w) is zero at
w = 7). Hence. the input is scaled in amplitude by the factor H(z) = § but the
phase shift is zero.
In general. H(w) is a complex-valued function of the frequency variable w.
Hence it can be expressed in polar form as

H(w) = |H (w)e’" (4.4.12)
where {H (w}| is the magnitude of H{w) and
O(w) = A H{w)
which is the phase shift imparted on the input signal by the system at the fre-

quency w.
Since H(w) is the Fourier transform of {h(k)). it follows that H{w) is a peri-
odic function with period 2». Furthermore- we can view (4.4.4) as the exponential
Fourier seriesexpansion for H (w), with h(k) asthe Fourier series coefficients. Con-
sequently, the unit impulse k(k) is related to H{w) through the integral expression
hiky = S / H(w)e! dw (4.4.12)
2n J_,

For a linear time-invariant system with a real-valued impulse response. the
magnitude and phase functions possess symmetry properties which are developed

as follows. From the definition of H(w). we have

o
Hw)= Y hkye '™
k=—oc
= h(k)coswk — j h(k)sin wk
k;x kzz_x (4.4.13)

= Hp(w) + jH;(w)

/H,%(w) + H[Z(w)(,/lan"[H;(w)/HR(w)]

where Hg{w) and H,(w) denote the real and imaginary components of H(w). de-
fined as

I

He(w) = Y h(k)coswk
=% (4.4.14)
Hiw) = - Y hik)sinwk

=-oc

It isclear from (4.4.12) that the magnitude and phase of H(w), expressed in terms

of Ar(w) and H,{w}, are
|H(w)| = \/Hi(w) + H} (w)

O(w) = tan-' M
He(w)

(4.4.15)
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We note that Hg(w)} = Hg{—w) and H;{w) = —H,;(—w). SO that Hr{w) is an
even function of w and H, () isan odd function of w. Asa consequence, it follows
that [H(w)! is an even function of @ and ®(w) is an odd function of «. Hence,
if we know 1H ()] and ®(w) for 0 < w < m. we also know these functions for
-1 <w<0.

Example 442 Moving Average Filter
Determine the magnitude and phase of #(w) for the three-point moving average
(MA) system
yin) = %[x(n + 1+ x(n) + x(n - D)
and plot these two functionsfor 0 < w < .

Solution  Since

hny =14 40 §)
3
it follows that
Hiw) = e+ 14 e7%) = {1+ 2cosw)
Hence
[Hw) = {1+ 2coswl (4.4.16)
Ole) = 0. O<w=<21/3
@l = T, 23 cw<n

Figure 4.37 illustrates the graphs d the magnitude and phase of H(w). As indicated
previously, |H(w)| is an even function of frequency and @(w) is an odd function of

. . . Lo w

z x 3 ™

4 2 4
—_—

i i )

T z 3x T

4 2 4

Fgure 437 Magnitude and phase
responses fa the MA system in
Example 4.4.2.
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frequency. It is apparent from the frequency response characteristic Hi« that this
moving average filter smooths the input data. as we would expect from the input-
output equarion.

The symmetry properties satisfied by the magnitude and phase functions of
H(w), and the fact that a sinusoid can be expressed as a sum or difference of
two complex-conjugate exponential functions, imply that the response of a linear
time-invariant system to a sinusoid is similar in form to the response when the
input is a complex exponential. Indeed. if the input is

xi{n) = Ae/"
the output is
vi(n) = AlH(w)|e/?' @ el
On the other hand, if the input is
xa(n) = Ae™ /™"

the response of the system is

i

() A'H(‘_w)‘pji-ﬂ'uﬂp—jlun

- AIH(w)’(‘—jf')(tui()—jlull
where, in the last expression. we have made use of the svmmetry properties
|Hw)| = |H(-w)| and @(w) = ~BO(—w). Now. by applying the superposition
property of the linear time-invariant system. we find that the response of the sys
tem to the input

x(n) = %[xl(n) + w01 = Acosewn

vy = 1y om + )]

vin) = A|H{w)| cos{wn + O{w)] (4417
Similarty. if the input is
x(n) = —,]—[xl(n) —x2(nm)] = Asinwn
Jj2
the response of the system is
1
vin) = ,f_zl'““') — watn)] 4.4.18)

yin) = Al H(w)| Sin[wn + @(w)]

It is apparent from this discussion that H{w). or equivalently. (H (w)| and
®(w), completely characterize the effect of the system on a sinusoidal input signa
of any arbitrary frequency. Indeed. we note that |H(w)| determines the amplifi-
cation (|H(w)| > 1) or attenuation ({H (w)| < 1) imparted by the system on the
input sinusoid. The phase ®{w) determines the amount of phase shift imparted
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by the system on the input sinusoid. Consequently, by knowing H{w), we are
able to determine the response of the system to any sinusoidal input signal. Since
H(w) specifies the response of the system in the frequency domain, it is called the
frequency response of the system. Correspondingly, |H (w)| iscalled the magnitude
response and @(w) is called the phase response  the system.

If the input to the system consists of more than one sinusoid, the superpo-
sition property of the linear system can be used to determine the response. The
following examples illustrate the use d the superposition property.

Example 4.43
Determine the response d the system in Example 4.4.1 to the input signal

x(n)=10—-58in%n+20cos7m —x<n <
Solution The frequency response of the system is given in (4.4.7) as

Hiw)= m

The first term in the input signal is a fixed signal component corresponding to w = 0.
Thus

i
H(C‘):-f—zz

rap—

The second term in x(n) has a frequency =/2. At this frequency the frequency
response d the system is

n 2

) L P L

" (2) 72

Finally, the third term in x(n) has a frequency w = m. At this frequency
Himy =3

Hence the response of the system to x(n) is

y(n):ZG‘—lEsin(%n—26.6L)+%-qcoszrn —oo<n <o

V3

Example 444
A linear time-invariant system is described by the following difference equation:

y(n) = ay(n — 1) + bx(n) 0<a<l

(a) Determine the magnitude and phase o the frequency response H{w) d the
system.

(b) Choose the parameter b so that the maximum value  |H ()| is unity, and
sketch jH (w)] and X H{w) for a= 09.
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(c) Determine the output o the system to the input signal

=s5+125n%n 2 ( +x
x{n) =3 125|n2n 0cos(nr 4)

Solution The impulse response of the system is
h(n) = ba"u(n)
Since ja| < 1. the system is BIBO stable and hence H (w) exists.

(a) The frequency response is

i h(n)e ™"

Hw) =
_ b
T 1—ageiv

Since
l-—ge™’ = (1-acosw) + jasine

it follows that

1= ae~ ™| = /(1 —¢COSw)® + (@aSNw)’
= 1+a’~2ucosw
and
ey gar -t asinw
X (1 —ae™) = tan v
Therefore,
b
P T0 [ N—
v1+4+a° —2acosw
asinw
H =@ = Xb—tan-' ———
4 H @ (w) = % l-acosw

(b

Since the parameter a is positive. the denominator of |H{(w){ attains a minimum
at w = 0. Therefore. |H{w)| attains its maximum value at w = 0. At this
frequency we have

b
1H(D)|=—L=1
1-a

which implies that b = (1 — a). We choose b=1 - a. so that

1—
|H(w)| = —_
J1+a? —2acosw
and )
sin
O(w) = —tan~! 02
1l-—acosw

The frequency response plots for |H(w)l and ®(w) are illustrated in
Fig. 4.38. We observe that this system attenuates high frequency signals.
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(c) The input signal consists d components of frequenciesw = 0. =/2, and x. For
w=0.HM=1and & =0. Forw = = /2,

b4 l—a 0.1
‘H(E)i =24 9% _on

V1+a? 1.81
@(%) = -tan"lg = 42
For w=n,
1-a 01
|H(m)| = T72-10 =0.053
O(r) =10

Therefore, the output of the system is

SIH(0) + 12 IH (%)lsin [gn 0 (%)]

— 201H (x)| cos [n’n + % + @(m]

y(n)

5 +0.888sin (fn —42°) — 1.06cos x Cx<n<oo
2 (=t 3)
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In the most general case. if the input to the system consists of an arbitrary
linear combination of sinusoids of the form

L
X(")=2A,COS(M‘H+¢/) -0 <n <X
1=

where {A;} and {g;} are the amplitudes and phases of the corresponding sinusoidal
components. then the response d the system is simply

L
¥y =Y AjH (@)l cos[win + ¢ + O(w))] (4.4.19)
1=1
where |H (w;)] and ©(w;) are the magnitude and phase, respectively. imparted by
the system to the individual frequency components of the input signal.

It isclear that depending on the frequency response H (w) of the system, input
sinusoids of different frequencies will be affected differently by the system. For ex-
ample, some sinusoids may be completely suppressed by the system if H(w) =0a
the frequencies of these sinusoids. Other sinusoids may receive no attenuation (or
perhaps. some amplification) by the system. In effect. we can view the linear time-
invariant system functioning as afilter to sinusoids of differenr frequencies, pasing
some of the frequency components to the output and suppressing or preventing
other frequencv components from reaching the output. In fact, as discussed in
Chapter 8. the basic digital filter design problem involves determining the parame-
ters of alinear time-invariant system to achieve a desired frequency response H (w).

4.4.2 Steady-State and Transient Response to Sinusoidal
Input Signals

In the discussion in the preceding section. we determined the response of a linear
time-invariant system to exponential and sinusoidal input signals applied to the
system a n = —co. We usualy cal such signals eternal exponentials or eternal
sinusoids, because they were applied at n = —oc. In such a case, the response that
we observe at the output of the system is the steady-state response. There is no
transient response in this case,

On the other hand, if the exponential or sinusoidal signal is applied at some
finitetimeinstant. say at n = 0O, the response o the system consists of two terms. the
transient response and the steady-state response. To demonstrate this behavior,
let us consider. as an example, the system described by the first-order difference
eguation

y() =ay(n — 1)+ x(n) (4.4.20)
This system was considered in Section 2.4.2. Its response to any input x(n) applied
atn=10isgiven by (2.4.8)as

ymy=aly(=t Yy dxn -k nz0 (4.4.21)
k=0
where y(—1) is the initial condition.
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Now, let us assume that the input to the system is the complex exponential
x(n) = Ae/*" n>0 (4.4.22)
applied at n = 0. When we substitute (4.4.22)into (4.4.21), we obtain

y(n) = an+1y(_1)+AZai‘ejw(n-k)

k=0
n
— au+1),(_1) +A [Z(ae—fﬂ,)k] glum
= 1 4.4.23)
1- gl jwint )
="V + A——m—o———/" >0
1 —ae 1«
n+l - jwla+l)
=a"+1v(‘])—Aa e’ Jon 4 A Jjon n>0
: 1—aqge-/® 1-~-ae /@ -

We recall that the system in (4.4.20)is BIBO stable if ia| < 1. In this case
the two termsinvolving a'+' in (4.4.23)decay toward zero asn approaches infinity.
Consequentiy, we are left with the steady-state response

Yss(n) = him ‘\*(n] = ——:—_—;‘e""”
N 1—ae- (44.24)

= AHw)e!™"

The first two terms in (4.4.23) constitute the transient response of the system,

that is,
Aan+l —jwin+1)

Ye(n) =a"+'2(=1) - ———'" n>0 (4.4.25)
1-ae
which decay toward zero as . approaches infinity. The first term in the transient
response is the zero-input response of the system and the second term is the
transient produced by the exponential input signal.

In general, dl linear time-invariant BIBO systems behave in a similar fashion
when excited by a complex exponential. or by asinusoid at # = 0 or at some other
finite time instant. That is, the transient response decays toward zero asn — oo,
leaving only the steady-state response that we determined in the preceding section.
In many practical applications, the transient response o the system is unimportant,
and therefore it is usualty ignored in dealing with the response of the system to
sinusoidal inputs.

4.43 Steady-State Response to Periodic Input Signals

Suppose that the input to a stable linear time-invariant system is a periodic signal
x(n) with fundamental period N. Since such a signal exists from —~oc < 7 < o0,
the total response of the system at any time instant n, is simply equa to the
steady-state response.
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To determine the response v(n) of the svstem, we make use of the Fourier
series representation of the periodic signal. which is

N1
xm= Y e k=01 N -1 (4.4.26)
k=0

where the {¢,} are the Fourier series coefficients. Now the response o the system
to the complex exponential signal

xp(n) = cpedTTEaN k=0,1.....N=1

2 N
vl = c H (T’T&) SERN g1 N —1 (4.427)
where

2wk
H (T) = H(m)iwgzn“,\r ]\ = 0 1 ..... N — l

By using the superposition principle for linear systems. we obtain the response d
the system to the periodic signa x(n) in (4.4.26) as

= 2tk !
v(n) = Z o H ( N )e"‘”””\ —0C <N <X (4.4.28)
k=l
This result implies that the response of the system to the periodic input signd
x(n) is aso periodic with the same period N. The Fourier series coefficients for
v(n) are

2k
dy = H —N— k=0.1..... N1 (4.4.29)

Hence, the linear system can change the shape of the periodic input signa by
scaling the amplitude and shifting the phase of the Fourier series components. but
it does not affect the period o the periodic input signal.

4.4.4 Responseto Aperiodic Input Signals

The convolution theorem. given in (4.3.49). provides the desired frequency-domain
relationship for determining the output of an LTI system to an aperiodic finite-
energy signal. If {x(n)} denotes the input sequence. {v(n)} denotes the output
sequence. and (A(n)} denotes the unit sample response of the system. then from
the convolution theorem, we have

Y(w) = H(@) X (w) (4.4.30)

where ¥ (w), X{w), and H(w) are the corresponding Fourier transforms of {v(n)}.
{x(n)}, and {h(n)}, respectively. From this relationship we observe that the spec-
trum of the output signal is equal to the spectrum of the input signal multiplied
by the frequency response of the system.



x(n)
X{w)

Sec. 4.4  Frequency-Domain Characteristicsof Linear Time-Invariant Systems 317

If we express Y (w), H(w), and X («) in polar form, the magnitude and phase
of the output signal can be expressed as

[Y{w)| = |H(o)||X(w)] (4.4.31)
XY (w) = £ X (@) + % H(w) (4.4.32)

where [H(w)| and % H(w) are the magnitude and phase responses of the system.

By its very nature, a finite-energy aperiodic signal contains a continuum of
frequency components. The linear time-invariant system, through its frequency
response function, attenuates some frequency components of the input signal and
amplifies other frequency components. Thus the system acts as a filter to the input
signal. Observation of the graph of |H(w)! shows which frequency components
are amplified and which are attenuated. On the other hand, the angle of H(w)
determines the phase shift imparted in the continuum of frequency components of
the input signal as a function of frequency. If the input signal spectrum is changed
by the system in an undesirable way, we say that the system has caused magnitude
and phase distortion.

We aso observe that the output of a linear time-invariant system cannot con-
tain frequency components that are not contained in the input signal . 1t takes either
alinear time-variant system or a nonlinear system to create frequency components
that are not necessarily contained in the input signal.

Figure 4.39 illustrates the time-domain and frequency-domain relationships
that can be used in the analysis of BIBO-stable LTI systems. We observe that
in time-domain analysis, we deal with the convolution of the input signal with
the impulse response of the system to obtain the output sequence of the system.
On the other hand, in frequency-domain analysis, we deal with the input signal
spectrum X (w) and the frequency response H (w) of the system, which are related
through multiplication, to yield the spectrum of the signal at the output of the
system.

We can use the relation in (4.4.30) to determine the spectrum ¥ (w) of the
output signal. Then the output sequence (v(n)} can be determined from the inverse
Fourier transform

y(n) = i Y(w)e!"dw (4.4.33)
2n

-
However, this method is seldom used. Instead, the z-transform introduced in

Chapter 3 isa simpler method for solving the problem of determining the output
sequence{y(n)}.

Linear
Input time-invariant Outpul  y(n) = h(n)ex(n) . .
system ™" Y(w)=H(wX(w) Figure439 Time and
h(n). H(w) frequency-domain input-output
relationships in LTI systems.
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Let usreturn to the basic input-output relation in (4.4.30) and compute the

squared magnitude of both sides. Thus we obtain
V(@) = |H @)X {w)
, {4.4.34)
S_\')‘(w) = |H{w){"Sx{w)

where S..{w) and S,,(w) are the energy density spectra of the input and output
signals. respectively. By integrating (4.4.34) over the frequency range (-, n), we
obtain the energy of the output signal as

1 b4
E, = T - Siv(w)dw
- (4.435)
= —f |H (@) S (w)dw
2 J_,

Example 4.45
A linear time-invariant system is characterized by its impulse response

hin) = (3)"u(n)

Determine the spectrum and the energy density spectrum of the output signal when
the system is excited by the signal

x(n} = (3)Yuin)
Solution The frequency response function of the system

n=()

H(w)

1

1
1—leiw
Similarly. the input sequence {x(»)} has a Fourier transform

1

Xlw) = ———-
¢ 1—%6"—)"’

Hence the spectrum d the signal at the output of the system is

Yiw) = H{w) X (w)
1

(1— femro)(l — femrey

The corresponding energy density spectrum is
Sp(w) = V(@) = |H@FIX @}
1
(3 —cosw)(} - 1 cosw)
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4.4.5 Relationships Between the System Function and
the Frequency Response Function

From the discussion in Section 4.2.6 we know that if the system function H(z)
converges on the unit circle. we can obtain the frequency response o the system
by evaluating H(z) on the unit circle. Thus

oC
H@) = H@lmen = Y hime " (4.4.36)

n=-c

Inthe case where H(z) isarational function of the form H(z) = B(z)/A(z). we have

M
bkefij
B - .
Hw) = Bw _ L I— (4.437)
Aw) N .
1+ Z G;\(’-"m
=1
M .
1—[(1 — ke
k=1 o
= by— (4.4.38)

N

1—[(1 — pre~i)

k=1

where the {a;} and {b,} are real. hut {z;) and {p«} may he compiex-valucd.
It is sometimes desirable to express the magnitude squared of H(w) in terms
of H(z). First, we note that

|H (@) = Hw)H"(w)
For the rational system function given by (4.4.38). we have
M
n(l = zie’)
H (W)= by ———— (4.4.39)
[0~ pe™
k=1

It follows that H*(w) isobtained by evaluating #*(1/z*) on the unit circle. where
for a rational system function.

M
H(l -3

HY (/) = bgf:;—m—-— (4.4.40)
TTa-po
k=1

However, when {#(n)} is real or, equivalently. the coefficients {ax} and (b} are
real, complex-valued poles and zeros occur in complex-conjugate pairs. In this
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case. H*(1/z*) = H(z"!). Consequently, H*(w) = H(- w).and
H) = Hw)H* (w) = H@)H(—w) = HOHE ) .20 (4.4.41)

According to the correlation theorem for the z-transform (see Table 3.2). the
function H(z)H(z™") is the z-transform o the autocorrelation sequence {rgs(m)}
o the unit sample response {r(m)}. Then it follows from the Wiener—Khintchine
theorem that |H (w)|* is the Fourier transform of {ry,(m)}.

Similarly. if H(z) = B(z)/A(z), the transforms D(z) = B(z)B(z"") and C(z) =
A(2)A(z7") are the z-transforms of the autocorrelation sequences {c;} and {4},

where
N—1ly

a=)Y @an -N=IsN (4.4.42)
k=0
M—|i|

d=3 by -MsI<M (4.4.43)

Since the system parameters {a;} and {b,} are real vaued, it follows that ¢, = c_;
and d; = d_;. By using this symmetry property, iH (w)* may be expressed as

M
d0+22dkCOSkw

H (@)} = ——— (4.4.44)

o+ 2 Z ¢ Coskw
k=1
Finaliy, we note that coskw can be expressed as a polynomial function of
cosw. That is,

k
coskw = Y Bn(cosw)” (4.4.45)
m=0

where (8} are the coefficients in the expansion. Consequentiy. the numerator
and denominator of |H (w}* can be viewed as polynomial functions of cosw. The
following example illustrates the foregoing relationships.
Example 4.4.6

Determine |H (w)I* for the system

vn)=-01vin—1)+02y(n =2) + x(n) + x(n — 1)
Solution The system function is

. 1+
= o S0
and its ROC is |z] > 0.5. Hence H (w) exists. Now
1477 1+2
H@OHE) = . =
@HED 1401271 =022 140.1z-02z2
24+z+:7"

T 105+ 008z +21) - 02z 429
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By evaluating H(z)H4(z~") on the unit circle. we obtain

)
N - T 2COSw
[H{w)" = -

1.05 + 0.16cosw — 0.4 cos 2w
However. cos 2w = 2cos” w — 1. Consequently. | H (w)|* may be expressed as
2(1+ cosw)
1.45 + 0.16cos w — 0.8 cos® w

[|H(w)|" =

We note that given H(z). it is straightforward to determine A (z~!) and then
|H{w)|*. However. the inverse problem of determining H(z) given |H(w)]? or the
corresponding impulse response (4(n)}, is not straightforward. Since |H («)]* does
not contain the phase information in # (w), it is not possible to uniquely determine
H().

To elaborate on the point. let us assume that the ¥ poles and M zeros of
Hzy are {pi) and {z;}. respectively. The corresponding poles and zeros of H(z™")
are {1/p;) and {17z, ). respectively. Given |H (w)[* or, equivalently. H(2)H(z™"). we
can dcterminc different system funcrions H(:) by assigning to #(z). a pole p; or
its reciprocal 1/p,. and a zero g or its reciproca 1/z.. For example. if N =2 and
M = 1. tho poles and zeros of H()H(z=") are (py. pa, 1/py. 1/p2h and {zh. 17210, I
prand pq arc real. the possible polesfor H(z) arc {py. m). {1/p1. Y/ p2). {pr 1/p2),
and {p-. | /m} and the possible zeros are (2] or {1/z1}. Therefore. therc arc eight
possible choices of system functions, al of which result in the same iH{w). Even
if we restrict the poles of H(z) to bc inside the unit circle. there are still two
different choices Tar H(:). depending on whether we pick the zero {z;} or {1/z;}.
Therefore. we cannot determine H(z} uniquely given only the magnitude response
H(w)|.

4.4.6 Computation of the Frequency Response Function

In evaluating the magnitude response and the phase response as functionsof fre-
quency. it is convenient to express H{w) in terms of its poles and zeros. Hence
we write #(w} in factored form as

— eIy

H(w) = by~ (4.4.46)

M

]’I}
T
I_I 1- pre” jwk
k=1

or, equivalently. as

M .
n(e"" — )

H(w) = bye ™~ M’*:l———— (4.4.47)

]"[(e)‘" - pe)
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Let us express the complex-valued factorsin (4.4.47) in polar form as

Y — 7 = Vi(w)e! ™ (4.4.48)
and
&Y — Ph = Up(w)e! ™ (4.4.49)
where
Vi(w) = " — 2], Oplo) = %67 — z0) {4.4.50)
and
Uk(w) = [’ = pil. Dylw) = £’ — pi) (4.4.51)

The magnitude of H(w) is equal to the product of magnitudes o all termsin
(4.4.47). Thus, using (4.4.48) through (4.4.51), we obtain

Vilw) - Vy(w)
|H{(w)| IboIUI @ Ua(a) - Unil (4.4.52)
since the magnitude of e/#V-4 is 1,
The phase of H(w) is the sum of the phases of the numerator factors, mi-
nus the phases d the denominator factors. Thus, by combining (4.4.48) through
(4.4.51), we have

$Hw) = Kbt oV - M+ 01wy Tyt .+ 0w

4.4.53
i@t et .t op(w)] @459
The phase of the gain term b is zero or =, depending on whether & is positive or
negative. Clearly. if we know the zeros and the poies of the system function # (z),
we can evaluate the frequency response from (4.4.52) and (4.4.53).
There is a geometric interpretation of the quantities appearing in (4.4.52)
and (4.4.53). Let us consider a pole p; and a zero z; located at points A and B
o the z-plane, as shown in Fig. 4.40(a). Assume that we wish to compute H (w)
at a specific value of frequency w. The given value of v determines the angle of
e/ with the positive real axis. Thetip of the vector ¢/* specifies a point L on the
unit circle. The evaluation of the Fourier transform for the given value o w is
equivalent to evaluating the z-transform at the point L of the complex plane. Let
us draw the vectors AL and BL from the pole and zero locations to the point L, at
which we wish to compute the Fourier transform. From Fig. 4.40(a) it follows that

CL=CA + AL
and

CL=CB+BL
However, CL =e*", CA = p, and CB = z;. Thus

AL =e" — p; (4.4.54)
and

BL =e/% — gz (4.4.55)
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Im(z)

Unit circle
I=e

orlzi=1

Unit circle

(b)

Figure 440 Geometric interpretation
of the contribution of a pole and a zero
to the Founer transform (1) magnitude:
the factor Vi /U, (2) phase: the factor
B — .

By combining these relations with (4.4.48) and (4.4.49), we obtain

AL = &/ — py = Up(w)e/ ™ (4.4.56)
BL = ¢/* — z; = Vi(w)e/ '™ (4.4.57)

Thus Uk(w) isthe length of AL, that is, the distance of the pole px from the point
L corresponding to e/«, whereas Vi (w) is the distance of the zero z; from the same
point L. The phases &, (w) and &;(w) are the angles of the vectors AL and BL
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Im(2)

Unit circle
U,

Py =eiih el 2, = ekt
Apy @
&N

Re(2)

Figure4.41 A zero on the unit circle
causes |H{w)t =0 andw = X z. In
contrast. a pole on the unit circle results
in |Hw)=oc at w= Zg_p‘.

with the positive real axis, respectively. These geometric interpretations are shown
in Fig. 4.40(b).

Geometric interpretations are very useful in understanding how the location
of poles and zeros affects the magnitude and phase of the Fourier transform.
Suppose that a zero, say z;. and a pole, say p;, are on the unit circle as shown in
Fig. 441. We note that a w = %2;. Vi(w) and consequently |H (w)| become zero.
Similarly, at w = X p; the length U (w) becomes zero and hence |H (w)| becomes
infinite. Clearly, the evaluation of phase in these cases has no meaning.

From this discussion we can easily see that the presence of a zero close to
the unit circle causes the magnitude of the frequency response, at frequencies
that correspond to points of the unit circle close to that point, to be small. In
contrast, the presence of a pole close to the unit circle causes the magnitude o
the frequency response to be large at frequencies close to that point. Thus poles
have the opposite effect of zeros. Also, placing a zero close to a pole cancels
the effect of the pole, and vice versa. This can be also seen from (4.4.47), since
if zx = pu, the terms e — z; and e/“ — p, cancel. Obviously, the presence of
both poles and zeros in a transform results in a greater variety of shapes for
|H(w)| and 4 H{w). This observation is very important in the design o digita
filters. We conclude our discussion with the following example illustrating these
concepts.

Example 4.4.7
Evaluate the frequency response of the system described by the system function

1 z
) = 1587 = 708
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Solution Clearly. H(z) has a zero at - = 0 and a pole at p = 0.8. Hence the
frequency responseof the system is

oI
Hiw) = - 08
The magnitude response is
e/ 1

Hiw)i = =
e P XTI o7 w9

and the phase response is
Sinw
cosw — 0.8
The magnitude and phase responses arc illustrated in Fig. 4.43, Note that the peak

of the magnitude response occurs at w = 0. the point on the unit circle closest to the
pole lecated at 0.8,

#lw) = w — tan-'

If the magnitude response in (4.4.52) is expressed in decibels.
A N

| Hiw)lay = 20logg by +20Y log,, Vitw) — 20 ) logy Us(w) (4.4.58)
k=1 k=1

Thus the magnitude responsce is expressed as a sum of the magnitude factorsin

IH ).

4.4.7 Input-Output Correlation Functions and Spectra

In Section 2.6.5 we developed several correlation relationships between the input
and the output sequences of an LTI system. Specifically. we derived the following
equations:

P (m) = rap(m) *re(m) (4.4.59)
re(m) = hcm)*’xx(m) (44.60)

where r,,(m) is the autocorrelation sequence of the input signa {x(n)j. r,, (m) is
the autocorrelation sequence o the output {y(n)}, rxx(m) is the autocorrelation se-
quence of the impulse response {h(n)}. and r..(m) is the crosscorrelation sequence
between the output and the input signals. Since (4.4.59) and (4.4.60) involve the
convolution operation, the z-transform of these equations yields

S (2) = Shn(2)8xx(2)
= H@HEHSu()
Svx(2) = H(2)S::(2) (4.4.62)
If we substitute z = ¢’ in (4.4.62), we obtain
Su(w) = H(w) Sy (w)
H{w)| X ()]

(4.4.61)

(4.4.63)



326 Frequency Analysis of Signals and Systems Chap. 4
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- — *  Figure4.42 Magnitude and phase d
2 2 system with Hzy = 1/(1 — 0.8z~ 1),

Phase (radians)
1
[S1E] =3

I
L]

where S, (w) is the cross-energy density spectrum o [y(n)} and {x(x)}. Similarly,
evaluating $..(z) on the unit circle yields the energy density spectrum d the output

signal as
Suy(@) = |H (@) Sex () (4.4.64)
where 5. (w) is the energy density spectrum o the input signal.
Since ry{m) and §,.(w) are a Fourier transform pair. it follows that

1 bg
ry{m) = Z/ Syv(w)e!"dw (4.4.65)

T
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The total energy in the output signal is smply

1 T
E. = ,,—"] Solwidw = ro ()
Pt S SRR o
L (4.4.66)
= —/ (H(w)] S (w)dw
2 J_ .

The result in (4.4.66) may be used to easily prove that E, = 0.
Finally. we note that if the input signa has a flat spectrum [ie.. S.,(w) =
E, = constant for » < w =< —x]. (4.4.63) reduces to

Silw) = Hlw) E, (4.4.6M

where E, is the constant value of the spectrum. Hence

1
Hiw)= --§,, (@) (4.4.68)
E,
or. cquivalently,

1
) = — ry () 4.4.69
1 E. rFom { )
The relation in (4.4.69) implics that /itn) can be determined by exciting the input
to the system by a spectrally flat signal {x (1)}, and crosscorrelating the mput with
the output of the svstem. This method is useful in measuring the impulse response
of an unknown system.

4.4.8 Correlation Functions and Power Spectra for
Random Input Signals

This development parallels the derivations in Section 4.4.7.with the exception that
we now deal with statisticdl moments of the input and output signals of an LTI
system. The various statistical parameters are introduced in Appendix A.

Let usconsider a discrete-time linear time-invariant system with unit sample
response {#(n}} and frequency response H(f). For this development we assume
that {k(n)} isreal. Let x(n) be a sample function dof a stationary random process
X (n) that excites the system and let »(#) denote the response of the system to x(x).

From the convolution summation that relates the output to the input we have

K
¥y =3 hx(n —k) (4.4.70)
k=—oc

Since x (n) isa random input signal, the output is also a random sequence. In other
words. for each sample sequence x(r) of the process X (n), thereisa corresponding
sample sequence v(n) of the output random process Y(n). We wish to relate
the statistical characteristics of the output random process ¥ (n) to the statistical
characterization of the input process and the characteristics of the system.
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The expected value of the output y(n) is
m, = E[vm] = E[ Y h(kyx(n - k)]
ks=—oc
Y hk)E[x(n — )] (447

k=—oc

o

my=m. Y hk)

k=—oc

From the Fourier transform relationship

Hw)= Y h(kje /™ (4.4.72)
we have :‘3;
H(0) = Z h(k) (4.4.73)
k=—oc

which isthe dc gain of the system. The relationship in (4.4.73) allows us to express
the mean value in (4.4.71)as
m, =m H(0) (4.4.74)
The autocorrelation sequence for the output random process is

Yeor(m) = E[y*(n)v(n +m)]

E]: > hkxtor—k) Y h(j)x(n+m —j)}

k=—oc¢ j=—o¢
Sl R _ 4.4.75)
Z Z h(YR(DE[x™(n — k)x(n +m — j)]

k=—0C j==0C

Yo D ARtk = j +m)
k=-00 j=—0oc
This is the general form for the autocorretation of the output in terms of the
autocorrelation of the input and the impulse response of the system.

A special form of (4.4.75) is obtained when the input random processiswhite,
that is, when m, =0 and

Yex(m) = a8 (m) (4.4.76)
where o = y,,(0) is the input signal power. Then (4.4.75) reduces to
Yyy(m) = a? i Rk Rk T m) (4.4.77)
Under this condition the output proce?s= ;;s the average power
(@) = 02 fwhz(n) =q! f I:Z \H(f)df 4.4.78)

where we have applied Parseva's theorem,
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The relationship in (4.4.75) can be transformed into the frequency domain
by determining the power density spectrum o y,,(m). We have

x
r)')'(w) = Z Y\-\-(m)e—}wm

= i [ i i Iz(k)h(!)yl,(k_!+m)} oo
m=—0¢ | A=—ool=—oc

i

i i AR i Yarlk = 1 + m)e=1om

k=—0cl=—02c [m:—oc

Tee(f )[ > h(k)ef“] [Z h(l)e"“”}

k=—0C i=—oc

:! (4.4.79)

i

IH (@) Ty {e0)

Thisis the desired relationship for the power density spectrum d the output pro-
cess, in terms o the power density spectrum of the input process and the frequency
response o the system.

The equivalent expression for continuous-time systems with random inputs is

Ty (F) = |H(F)T . (F) (4.4.80)
where the power density spectra I',.(F) and I'..(F) are the Fourier transforms
of the autocorrelation functions y,,(r) and y..{7). respectively, and where H(F)

is the frequency response o the system, which is related to the impulse response
by the Fourier transform. that is,

H(F) =f h(ne 27 Fidr (4.4.81)

Asafinal exercise, we determine the crosscorrelation of the output v(n) with
the input signal x(»). If we multiply both sides o (4.4.70) by x*(z — m) and take
the expected value, we obtain

o
E{y(m)x*(n =m)] = El: Z h(k)x*(n— m)x{n — k)il

s
o
Yer(m) = Z h(K)E{x*(n — m)x(n — k)] (4.4.82)
ke—oc
o
= 3 hk)yutm—k)
K=o

Since (4.4.82) has the form of a convolution, the frequency-domain equivalent
expression is
Ty (@) = H@)T xe(0) (4.4.83)

In the special case where x(n) is white noise, (4.4.83) reduces to
(@) = o2 H(w) (4.4.84)
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where o? isthe input noise power. This result means that an unknown system with
frequency response H (w) can be identified by exciting the input with white noise,
crosscorrelating the input sequence with the output sequence to obtain y,, (m), and
finally, computing the Fourier transform of y,,.(m). The result of these computa-
tions is proportiona to H{w).

4.5 LINEAR TIME-INVARIANT SYSTEMS AS FREQUENCY-SELECTIVE
FILTERS

The term filter is commonly used to describe a device that discriminates, accord-
ing to some attribute of the objects applied at its input, what passes through it,
For example, an air filter allows air to pass through it but prevents dust par-
ticles that are present in the air from passing through. An ail filter performs
a similar function, with the exception that ail is the substance alowed to pass
through the filter, while particles of dirt are collected at the input to the filter
and prevented from passing through. In photography. an ultraviolet filter is of-
ten used to prevent ultraviolet light, which is present in sunlight and which is not
a part of visible light, from passing through and affecting the chemicals on the
film.

As we have observed in the preceding section, a linear time-invariant system
also performs a type of discrimination or filtering among the various frequency
components at its input. The nature of this filtering action is determined by the
frequency response characteristics H{w), which in turn depends on the choice of
the system parameters(e.g., the coefficients {a;} and {#,} in the difference equation
characterization of the system). Thus, by proper selection of the coefficients, we
can design frequency-selective filters that pass signals with frequency components
in some bands while they attenuate signals containing frequency components in
other frequency bands.

In general, a linear time-invariant system modifies the input signa spec-
trum X (w) according to its frequency response H(w) to yield an output signa
with spectrum Y(w) = H(@)X(w). In a sense, H(w) acts as a weighting func-
tion or a spectral shapingfunction to the different frequency components in the
input signal. When viewed in this context, any linear time-invariant system can
be considered to be a frequency-shaping filter, even though it may not necessar-
ily completely block any or al frequency components. Consequently, the terms
"linear time-invariant system™ and "filter" are synonymous and are often used
interchangeably.

We use the term filter to describe a linear time-invariant system used to
perform spectral shaping or frequency-selective filtering. Filtering is used in dig-
ital signal processing in a variety of ways. For example, removal of undesirable
noise from desired signals, spectral shaping such as equalization of communication
channels, signal detection in radar, sonar, and communications, and for performing
spectral analysis of signals, and so on.
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45.1 Ideal Filter Characteristics

Filters are usually classified according to their frequency-domain characteristics
as lowpass, highpass. bandpass. and bandstop or band-elimination filters. The
ideal magnitude response characteristics of these types of filters are illustrated
in Fig. 4.43. Asshown. these ideal filters have a constant-pain (usually taken as

unity-gain) passband characteristic and zero gain in their stopband.
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Another characteristic of anidea filter isalinear phase response. To demon-
strate this point, let us assume that a signal sequence {x{(n)} with frequency corn-
ponents confined to the frequency range w1 < w < w; is passed through a filter
with frequency response

Ce™/om, W) < w<w

How = 0. otherwise @51)
where C and ng are constants. The signal at the output of the filter has a spectrum
Viw) = X{w}H (w)
452
= CX(w)e™lom w < w<an

By applying the scaling and time-shifting properties of the Fourier transform, we
obtain the time-domain output

y(n) = Cx(n — ng) (4.5.3)

Consequently, the filter output issimply a delayed and amplitude-scaled version d
the input signal. A pure delay is usually tolerable and is not considered a distortion
o the signal. Neither is amplitude scaling. Therefore. ideal filters have a linear
phase characteristic within their passhand. that is.

Qlw) = —owng (4.5.9)

The derivative of the phase with respect to frequency has the units of delay.
Hence we can define the signal delay as a function of frequency as
dO(w)

dw
1,{w) 1s usually called the envel ope delay or the group delay of the filter. We
interpret 7,(w) asthe time delay that asignal component of frequency « undergoes
as it passes from the input to the output of the system. Note that when @(w) is
linear asin (4.5.4), 1,(w) = no = constant. In this case al frequency components
d the input signal undergo the same time delay.

In conclusion, idea filters have a constant magnitude characteristic and a
linear phase characteristic within their passband. In al cases, such filters are not
physically realizable but serve as a mathematical idealization of practical filters.
For example, the ideal lowpass filter has an impulse response

(4.5.5)

Tlw) = —

Snw.mn
hip(n) = -

—00 <n <0 (4.5.6)
n

We note that thisfilterisnot causal and it is not absolutely summable and therefore
it is aso unstable. Consequently, thisidea filter is physically unrealizable. Nev-
ertheless, its frequency response characteristics can be approximated very closely
by practical, physically realizable filters, as will be demonstrated in Chapter 8.

In the following discussion, we treat the design of some simple digital filters
by the placement of poles and zeros in the z-plane. We have aready described
how the location of poles and zeros affects the frequency response characteristics
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of the system. In particular. in Section 4.4.6 we presented a graphical method for
computing the frequency response characteristics from the pole-zero plot. This
same approach can be used to design a number of simple but important digital
filters with desirable frequency response characteristics.

The basic principle underlying the pole-zero placement method is to locate
poles near points of the unit circle corresponding to frequencies to be emphasized.
and to place zeros near the frequencies to be deemphasized. Furthermore, the
following constraints must be imposed:

1. All poles should be placed inside the unit circle in order for the filter to be
stable. However. zeros can be placed anywhere in the z-plane.

2 All complex zeros and poles must occur in complex-conjugate pairs in order
for the filter coefficients to be real.

From our previous discussion we recall that for a given pole-zero pattern.
the system function H(z) can be expressed as

M
Zlu:"‘ n(l —a:h
1

k=
= b
= 0

l+ZaL:_A I—[(l'—m?'l)
k=l

where by IS a gain constant selected to normalize the frequency response at some
specified frequency. That is, by is selected such that

[H{wy)] =1 (45.8)

where wy is a frequency in the passband of the filter. Usually, N is selected to
equal or exceed M. so that the filter has more nontrivial poles than zeros.

In the next section. we illustrate the method of pole-zero placement in the
design of some simple lowpass. highpass. and bandpass filters. digital resonators.
and comb filters. The design procedure isfacilitated when carried out interactively
on adigital computer with a graphics terminal.

(45.7)

4.5.2 Lowpass, Highpass, and Bandpass Filters

In the design d lowpass digital filters. the poles should be placed near the unit
circle at points corresponding to low frequencies (near w = 0) and zeros should
be placed near or on the unit circle at points corresponding to high frequencies
(near w = 7). The opposite holds true for highpass filters.

Figure 4.44 illustrates the pole-zero placement of three lowpass and three
highpass filters. The magnitude and phase responses for the single-pole filter with
system function

(@) = +—— (4.5.9)
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Figure4.44 Pole-zero patterns for several lowpass and highpass filiers.

are illustrated in Fig. 4.45 for a = 0.9. The gain G was selected as 1 — a, so that
the filter has unity gain at w = 0. The gain o this filter at high frequencies is
relatively small.

The addition of a zero at z = —1 further attenuates the response of the filter
at high frequencies. This leads to a filter with a system function
l—a l+z7!

T2 1-az!
and a frequency response characterstic that is also illustrated in Fig. 4.45. In this
case the magnitude of Ha{w) goesto zero at w = .

Similarly, we can obtain simple highpass filters by reflecting (folding) the
pole-zero locations of the lowpass filters about the imaginary axis in the z-plane.
Thus we obtain the system function

Hy(z) =

4.5.10)

l—atl-z"!
Hy(z) = 21 +az!
which has the frequency response characteristicsillustrated in Fig. 4.46 for a=0.9.
Example 45.1
A two-pole lowpass filter has the system function
b
(A = pzt)p

4.5.11)

H(z) =
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Determine the values d by and p such that the frequency response H{(w) satisfies the

conditions
H) =1
and :
bie
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0)=——5-1
H(0) a-pr
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or. equivalently.
V2o pi=1+pt 2
The value of p = 0.32 satisfies this equation. Consequently. the system function for
the desired filter is
H(:] = L
(1-032:°1
The same principles can be applied for the design of bandpass filters. Basi-
cally. the bandpass filter should contain one or more pairs of complex-conjugate

poles near the unit circle. in the vicinity of the frequency band that constitutes the
passband of the filter. The following example serves to illustrate the basic ideas.

Example 4.5.2
Design a two-pole handpass filler that has the center of its passband a w = 7/2,
zero 1n 1ts {requency response characteristic & w = (0 and « = #. and its magnitude
response is 1/3/2 at w =47 /9.

Solution  Clearly. the filter must have poles &

pia=rei?
and zeros at - =1 and : = —1. Consequently. the svstem function is
=he+D
Hio) = 6—————
(o= Jriz+gry
-1
=G

2l

The gain factor isdetermined by evaluating the frequency response H (w) of the filter
at w = n/2. Thus we have
i 2
H(E) = Gl—rz =1

1—r-
G =
2
The value d r is determined by evaluating H (w) at « = 4x/9. Thus we have
u (4 Foa-r 2-2cos81/9) 1
9 } T 4 1+r+2r7cos(8/9) 2

or. equivalently.
19401 —r)? =1-1882+r¢
The value of r* = 0.7 satisfies this equation. Therefore, the system function for the

desired filter is
1-z2
H{z) = 0.15m‘,7-£3

Its frequency response isillustrated in Fig. 4.47.
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It should be emphasized that the main purpose of the foregoing methodology
for designing simple digital filters by pole-zero placement is to provide insight
into the effect that poles and zeros have on the frequency response characteristic
of systems. The methodology is not intended as a good method for designing
digital fitterswith well-specified passband and stopband characteristics. Systematic
methods for the design of sophisticated digital filters for practical applicationsare
discussed in Chapter 8.

A simple lowpass-to-highpass filter transformation. Suppose that we
have designed a prototype lowpass filter with impulse response hjp(n). By us-
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ing the frequency translation property of the Fourier transform. it is possible to
convert the prototype filter to either a bandpass or a highpass filter. Frequency
transformations for converting a prototype lowpass filter into a filter of another
type are described in detail in Section 8.3. In this section we present a simple-
frequency transformation for converting a lowpass filter into a highpass filter. and
vice versa

If inp(n) denotes the impulse response of a lowpass filter with frequency
response Hy,(w). a highpass filter can be obtained by translating Hi,(w) by = radians
(ie.. replacing w by w — 7). Thus

th(a}) = H]p(w —7) (4512)

where Hyy(w) is the frequency response of the highpass filter. Since a frequency
translation of = radians is equivalent to multiplication of the impulse response
Ip(n) by ¢/™ the impulse response o the highpass filter is

Myp () = (/7Y () = (=) Ry () (4.5.13)

Therefore. the imputse response o the highpass filter is simply obtained from the
impulse response of' the lowpass filter by changing the signs of the odd-numbered
samples in /i, (n). Conversely.

h”,lllj = (—])”hhp(n) (4.5.14)

If tho lowpass filter is described by the difference equation

N M
7\'(n)=—Zak_\'(n-k)ﬁ—Zbkx(nfk) 4.5.15)

t=1 d==l)

its frequency response is

M
z bLE_ka

Hiplw) = == (4.5.16)
1+ ZﬂkF_Jw‘
k=1

Now. if we replace w by w — 7. in (4.5.16).then

M
Z(_l)kbke—lwk
=

Hpplw) = < (4.5.17)
1+ Z(~l)kake*’“’"
k=1
which corresponds to the difference equation
N M
vy == (=D'ay(n -k + Y (=1ibex(n — k) 45.18)
k=1 =0
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Example45.3
Convert the lowpass filter described by the difference equation
v(n) =0.9v(n — 1)+ 0.1x(n)
into a highpass filter.
Solution The difference equation for the highpass filter, according to (4.5.18), is
y{n) = —09y(n - 1) +0.1x(n)
and its frequency response is
Hiplw) = —_]-_Ol—
17T 0.9¢-7v
The reader may verify that Hhp(w) isindeed highpass.

4.5.3 Digital Resonators

A digital resonator is a special two-pole bandpass filter with the pair of complex-
conjugate poles located near the unit circle asshown in Fig. 4.48(a). The magnitude
o the frequency response of the filter is shown in Fig. 4.48(b). The name resonator
refersto the fact that the filter has a large magnitude response (i.e.. it resonates) in
the vicinity of the pole location. The angular position of the pole determines the
resonant frequency of the filter. Digital resonators are useful in many applications,
including simple bandpass filtering and speech generation.

In the design of a digital resonator with a resonant peak at or near w = wy,
we select the complex-conjugate poles at

pra = refio O0<r<l

In addition, we can select up to two zeros. Although there are many possible
choices, two cases are of specia interest. One choice is to locate the zeros at the
origin. The other choice is to locate a zero at : =1 and a zero at z= —1. This
choice completely eliminates the response of the filter at frequencies « = 0 and
w =, and it is useful in many practica applications.

The system function of the digital resonator with zeros at the origin is

by
H (Z) - (l— re/“"lz‘l)(] _ VB_J“"“Z-]) (4-519)
bo

1 - (2rcosag)z! T r2z-2

Since |H(w)! has its peak at or near w = wy, we select the gain by so that
|H(ap)| = 1. From (4.5.19) we obtain

H() = (4.5.20)

by
H = - -
(o) (1 — re/me=—Joo)(1 — re—Jwe—ion) 4.5.21)
- b
T (1 =r)A = re-i2m)
and hence b
|H (o)l = 2

=1
A -rv1%r2=2rcos2ug
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Thus the desired normalization factor is

bo= (1 —r)y1+7r2—2rcosuy (4.5.22)
The frequency response of the resonator in {(4.5.19) can be expressed as
b,
Hw)| = ———
Ur(w) Uz (w) (4.5.23)

O(w) = 2w — Dy (w) — Pz (w)

where U;(w) and Uz («w) are the magnitudes of the vectors from p; and p» to the
point @ in the unit circle and ®;{(w) and ®.(w) are the corresponding angles o
these two vectors. The magnitudes U (w) and Uz{(w) may be expressed as

U(w) = 1 +r% — 2r cos(wp — w)

Us(w) = /1 +r? —2r cos(wg + w)
For any value of r, U;(w) takes its minimum vaue (1-r) at w = wy. The
product Uy{w)U>(w) reaches a minimum value at the frequency

1 2
w, = cos™! ( ;r coswo) (4.5.25)

(4.5.24)

which defines precisely the resonant frequency of the filter. We observe that when
r isvery closeto unity, w, = wy, which is the angular position of the pole. We aso
observe that as r approaches unity, the resonance peak becomes sharper because
Ui{w) changes more rapidly in relative size in the vicinity of wo. A quantitative
measure of the sharpness of the resonance is provided by the 2-dB bandwidth Aw
o the filter. For values of r close to unity,
Aw=2(1-7r) (4.5.26)

Figure 4.48 illustrates the magnitude and phase of digital resonators with
wy = /3, r = 08 and wy = /3, r = 0.95. We note that the phase response
undergoes its greatest rate of change near the resonant frequency.

If the zeros of the digital resonator are placed at z = 1 and z = —1, the
resonator has the system function

A-zHl+zh

H(z) =G o—"
- 0z—1}(]1 — re—Jwiz—1
(1 =re/z750 ~rem27) 4.527)
p— l - Z_z
T 71— (2rcoswg)zt + r2z-?
and a frequency response characteristic
1— e

H(w)=by (4.5.28)

[1 - ref‘"*“—"’)][l — rg‘f(wo*'w)]
We observe that the zeros at ; = +1 affect both the magnitude and phase response
of the resonator. For example, the magnitude response is
N(w)

H =by——"—r 4.5.29
|H (w)| O (@) Unta) ( )
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where N(w) is defined as
Niw) = v 2(1 — cos2w)

Due to the presence of the zero factor. the resonant frequency is altered from
that given by the expression in (4.5.25). The bandwidth of the filter is also altered.
Although exact values for these two parameters are rather tedious to derive, we
can easily compute the frequency response in (4.5.28) and compare the result with
the previous case in which the zeros are located at the origin.

Figure 4.49 illustrates the magnitude and phase characteristics for wy = 7/3.
r =08and wy = /3, r = 0.95. We observe that this filter has a slightly smaller
bandwidth than the resonator, which has zeros at the origin. In addition. there
appears to be a very small shift in the resonant frequency due to the presence of
the zeros.

4.5.4 Notch Filters

A notch filter is afilter that contains one or more deep notches or, ideally, perfect
nullsin its frequency response characteristic. Figure 4.50 illustrates the frequency
response characteristic of a notch filter with nullsat frequencies wy and wi. Notch
filters are useful in many applications where specific frequency components must
be eliminated. For example, instrumentation and recording systems require that
the power-line frequency of 60 Hz and its harmonics be eliminated.
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w Figure 4.50 Frequency response
0 wp @ T characteristic of a notch filter.

To create a null in the frequency response of a filter at a frequency wg, we
simply introduce a pair of complex-conjugate zeros on the unit circle at an angle
wy. That is,

210 = eTiw

Thus the system function for an FIR notch filter is smply

H(z) = bo(1 — ez h(1 —e7/nzh
(4.5.30)
= bo(l - 2COS{1)(]:-1 + :—2)
Asan illustration. Fig. 4.51 shows the magnitude response for a notch filter having
anul at w = m/4.

The problem with the FIR notch filter is that the notch has a relatively large
bandwidth, which means that other frequency components around the desired null
are severely attenuated. To reduce the bandwidth of the null, we can resort to
a more sophisticated, longer FIR filter designed according to criteria described
in Chapter 8. Alternatively. we could. in an ad hoc manner, attempt to improve
on the frequency response characteristics by introducing poles in the system func-
tion.

Suppose that we place a pair of complex-conjugate poles at

pLa = re*/™

The effect of the poles is to introduce a resonance in the vicinity of the null and
thus to reduce the bandwidth of the notch. The system function for the resulting
filter is
1-2coswyz™! +z72

1 — 2r coswgz=! +r2:-2
The magnitude response |H (&)} of the filter in (4.5.31) is plotted in Fig. 4.52 for
wy = nw/4, r = 085, and for @ = /4, r = 0.95. When compared with the
frequency response of the FIR filter in Fig. 4.51, we note that the effect of the
poles is to reduce the bandwidth of the notch.

In addition to reducing the bandwidth of the notch, the introduction of a
pole in the vicinity of the null may result in asmall ripple in the passband of the
filter due to the resonance created by the pole. The effect d the ripple can be
reduced by introducing additional polesand/or zeros in the system function of the
notch filter. The major problem with this approach isthat it is basically an ad hoc,
trial-and-error method.

H{z)=to

(4.5.31)
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455 Comb Filters

In its simplest form, a comb filter can be viewed as a notch filter in which the
nulls occur periodically across the frequency band, hence the analogy to an ordi-
nary comb that has periodically spaced teeth. Comb filters find applications in a
wide range of practical systems such as in the rejection of power-line harmonics,
in the separation of solar and lunar components from ionospheric measurements
o electron concentration, and in the suppression o clutter from fixed objects in
moving-target-indicator (MTI) radars.
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Toillustrate a simple form of a comb filter. consider a moving average (FIR)
filter described by the difference equation

] M
(n) = ———r ‘(i — k 4532
v(n) M+1§Ux(n k) (4.5.32)
The system function of this FIR filter is

1 &,
M1 Z

k=t (4.5.33)
1 [] _ :—1M-'—I)]

M+1 (1-:hH

H() =

and its frequency response is

e~/9M2 sin w(i:‘-"-l-)

M+1  sin(w/2)

From (4.5.33) we observe that the filter has zeros on the unit circle at
=MD 12,30 M (4.5.35)

H(w) (4.5.34)

Note that the pole at : = 1 is actually canceled by the zero at z = 1. so that in
effect the FIR filter does not contain poles outside z = 0.

A plot of the magnitude characteristic of (4.5.34) clearly illustrates the ex-
istence of the periodically spaced zeros in frequency at w; = 27k/(M + 1) for
k=1,2,.... M. Figure 4.53shows |H (w)| for M = 10.
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In more general terms, we can create a comb filter by taking an FIR filter
with system function

M
H@) =) hkz™ (4.5.36)
=0

and replacing z by z*, where L isa positive integer. Thus the new FIR filter has
a system function

M
LACE DI 4.537)
k=0
If the frequency response o the original FIR filter is H (w), the frequency response
of the FIR in (4.5.37) is

M
Hi(w) = Y h(k)e ik
; (4.5.38)

= H(Lw)

Conseguently, the frequency response characteristic Hy (w) is ssimply an L-order
repetition of H{w) in therange 0 < w < 27. Figure 4.54 illustrates the relationship
between H(w) and H( o)for L =5.

Now, suppose that the origina FIR filter with system function H{z) has a
spectral null (i.e., a zero), a some frequency wy. Then the filter with system
function H.(z) has periodicaly spaced nulls at w; = wy +omk/L, k=0,1,2,...,
L —1. Asan illustration, Fig, 4.55 shows an FIR comb filter with M = 3 and
L = 3. This FIR fitter can be viewed as an FIR filter of length 10, but only four
of the 10 filter coefficients are nonzero.

Let us now return to the moving average filter with system function given by
(4.5.33). Suppose that we replace z by zL. Then the resulting comb filter has the
system function

1 1 — ;LMD
and a frequency response
1 in[wL 12 ;
Hi(w) = Snfwl M + D/ - jurmr (4.5.40)

M+1 sin(wL/2)
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Figure 455 Realization d an FIR comb filter having M= 3 and L = 3.

This filter has zeros on the unit circle at
gy = el KM (4.5.41)

for all integer values of k except k = 0, L. 2L,.... ML. Figure 4.56 illustrates
|Hp(w)) for L=5and M = 10.

The comb filter described by (4.5.39) finds application in the separation of
solar and lunar spectral components in ionospheric measurements of electron con-
centration as described in the paper by Bernhardt et al. (1976). The solar period
is T, = 24 hours and results in a solar component of one cycle per day and its
harmonics. The lunar period is 7. = 24.84 hours and provides spectral lines at
0.96618 cycle per day and its harmonics. Figure 4.57a shows a plot of the power
density spectrum of the unfiltered ionospheric measurements of the electron con-
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Figure 456 Magnitude response
gw -z (] I x  characteristic for a comb filter given by
2 2 (4.5.40). with L =3 and M = 1

centration. Note that the weak lunar spectral components are ailmost hidden by
the strong solar spectral components.

The two sets of spectral components can be separated by the use of comb
filters. If we wish to obtain the solar components. we can use a comb filler with
a narrow passband at multiples of one cycle per day. This can be achieved by
selecting L such that F./L = 1 cycle per day. where F, is the corresponding
sampling frequency. The result isa filter that has peaks in its frequency response
at multiples of one cycle per day. By selecting M = 58. the filter will have nulls
at multiples of (F./L)/(M + 1) = 1/59 cycle per day. These nulls arc very close
to the lunar components and result in good rejection. Figure 4.57(b} illustrates
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Figure4.57 (a) Spectrum o unfiltered electron content data; (b) spectrum o out-
put of solar filter; (c) spectrum of output of lunar filter. [From paper hy Bernhardt
et al. (1976). Reprinted with permission of the American Geophysical Union,]
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the power spectral density of the output of the comb filter that isolates the solar
components. A comb filter that rejects the solar components and passes the lunar
components can be designed in a similar manner. Figure 4.57(c) illustrates the
power spectral density at the output of such a lunar filter.

4.5.6 All-Pass Filters

An all-pass filter is defined as a system that has a constant magnitude response for
al frequencies. that is.

|H{w) =1 O<w=<m (4.5.42)
The simplest example of an all-pass filter is a pure delay system with system func-
tion

H(ny=z"
This system passes all signals without modification except for a delay o 4 samples.
This is a trivial all-pass system that has a linear phase response characteristic.
A more interesting all-pass filter is described by the system function

ay+ay12 a7V o

H() =
@ T+az"+- - +ayz™" (4.543)
S =1
PINY TS
where al the filter coefficients {a,} are real. If we define the polynomia A(:) as
N
A=Y az™  a=1
k=0
then (4.5.43) can be expressed as
= AT (4.5.44)
D=1z 5.
A(2)

Since
|H (@) = H@QHE ) mew = 1

the system given by (4.5.44) is an all-pass system. Furthermore. if z, is a pole
of H(z). then 1/z is a zero of H(z) (i.e., the poles and zeros are reciprocals of
one another). Figure 4.58 illustrates typical pole-zero patterns for a single-pole,
single-zero filter and a two-pole, two-zerofilter. A plot of the phase characteristics
of these filters is shown in Fig. 4.59 for a=0.6 and r = 0.9. wy = = /4.

The most general form for the system function of an all-pass system with real
coefficients, expressed in factored form in terms of poles and zeros. is

Ne o -1 Ne -1 -1 =
T oy @™ =B =B <
Hap{D) = 4.5.45
ap{Z) E 1— oz ] H Q=B A =gz ) ( )

where there are Ny real poles and zeros and N, complex-conjugate pairs of poles
and zeros. For causal and stable systems we require that -1 < «; < 1and {8 < 1.
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(1 -2rcosapz™t +r23273), r =0.9,
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Expressions for the phase response and group delay of all-pass systems can
easily be obtained using the method described in Section 4.4.6. For asingle pole-
single zero all-pass system we have

—

el e
Hplw) = m
Hence
rsin(w — )
Oyplw) = —w —2tan-" ———
apt®@ 1-rcosiw—H)
and
dOyp(w) 1—r"
T (w) = — = - (4.5.46
B dw 1 +r- = 2rcos{w — /) )

We note that for a causal and stable system. r < 1 and hence t,tw) = (. Since the
group delay of a higher-order pole-zero system consists o a sum of positive terms
asin (4.5.46), the group delay will aiways be positive.

All-pass filters find application as phase equalizers. When placed in cascade
with a system that has an undesired phasc response. a phase equalizer is designed
to compensate for the poor phase characteristics d the system and therefore to
produce an overal linear-phasc responsc.

4.5.7 Digital Sinusoidal Oscillators

A digital sinusoidal oscillaror can be viewed as a limiting form of a two-pole res
onator for which the complex-conjugate poles iie on the unit circle. From our
previous discussion of second-order systems, we recall that a system with system
function

H() = L (4.5.47)
14 apz! Fapz
and parameters
ay = -2rcoswy and gy = /? (4.5.48)
has complex-conjugate poles at p = re*/*, and a unit sample response
hin) = l_’“::ﬂ sin(r + Dapu(n) (4.5.49)

If the poles are placed on the unit circle (» = 1) and b isset to A sinay. then
h(n) = Asin{n + Dwou(n) (4.5.50)

Thus the impulse response of the second-order system with complex-conjugate
poles on the unit circle is a sinusoid and the system is called a digital sinusoidal
oscillator or adgtd sinusoidal generator. A digital sinusoidal generator is a basic
component o a digital frequency synthesizer.
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(A sin wg)d(n) .
¥n)=Asin(n+ 1k

a,= - 2cos wy
a;=1

Figure 460 Digital sinusoidal generator

The block diagram representation of the system function given by (4.5.47) is
illustrated in Fig. 4.60. The corresponding difference equation for this system is

vy = —ary(n = 1) — y(n — 2) T bys(n) (4.5.51)

where the parameters are «; = —2coswy and by = ASnwy, and the initia condi-
tions are y¥(-1) = y(-2) = 0. By iterating the difference equation in (4.5.51), we
obtain

¥(0) = Asinay

(1) = 2c0swyy(0) = 2A Snwycoswy = ASiN 2wy

¥(2) = 2cosapy(l) = ¥(0)

= 2ACOS wy sin 2wy — A Sin wy

A(4c0S wy — 1) sinwg

= 3ASNwy — 4sin°wp = Asin3wp

and so forth. We note that the application of the impulse at n = 0 serves the
purpose of beginning the sinusoidal oscillation. Thereafter, the oscillation is self-
sustaining because the system has no damping (i.e., r =1).

It isinteresting to note that the sinusoidal oscillation obtained from the sys
tem in (4.5.51) can also be obtained by setting the input to zero and setting the
initial conditions to y(—1) = 0, ¥(-2) = —Asinay. Thus the zero-input response
to the second-order system described by the homogeneous difference equation

y(n) =—aiy(n —1) — y(n = 2) (4.5.52)

with initial conditions y(—1) = 0 and y(-2) = —Asinay, is exactly the same as

the response of (4.5.51) to an impulse excitation. In fact, the difference equation

in (4.5.52) can be obtained directly from the trigonometric identity
a+ B a—f

. + n — -
sing Tsin 8 = 2sin — cos >

where, by definition, « = (n + 1)awp, 8 = (n — Dewp, and y(n) = sin(n + Dwy.

(45.53)
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In some practical applications involving modulation of two sinusoidal carrier
signals in phase quadrature, there is a need to generate the sinusoids A sinawyn
and A cosayn. These signals can be generated from the so-called coupled-form
oscillaror, which can be obtained from the trigonometric formulas

cos(e + ) = cosa cosg — sinasing
sin(e + 8) = sinacosg + cosasin g

where. by definition, @ = nwy, 8 = wy, and

Ye(n) = cos nwpu(n) (4.5.54)
ye{n} = sinnwpuin) (4.5.55)
Thus we obtain the two coupled difference equations
Yeln) = (€osawy)ye(n — 1) — (stnwp)y,(n — 1) (4.5.56)
V(1) = (sinag)y, (n — 1) F (coswp)y,(n — 1) (45.57)
which can also be expressed in matrix form as
) R it | )

Thestructure for the realization of the coupled-form oscillator isillustrated in
Fig.4.61. We note that this isa two-output system which isnot driven by any input,
but which requires the initial conditions y,(—1) = A coswp and ¥, (—=1) = — Asinay
in order to begin its self-sustaining oscillations.

Finaly. it is interesting to note that (4.5.58) corresponds to vector rotation
in the two-dimensional coordinate system with coordinates y.(n) and y.(n). Asa
consequence, the coupled-form oscillator can also be implemented by use of the
so-called CORDIC algorithm [see the book by Kung et al. (1985)].

m ‘ cos wy O‘ ‘
=

Y{n)=cos
sin @y,

o =sinwyn  Figyre 461 Realization o the
coupled-form oscillator.
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46 INVERSE SYSTEMS AND DECONVOLUTION

As we have seen. a linear time-invariant system takes an input signa x(n) and
produces an output signal v(n). which is the convolution of x(») with the unit
sample response #{n) of the system. In many practical applications we are given
an output signal from a system whose characteristics are unknown and we are
asked to determine the input signal. For example. in the transmission o digital
information at high data rates over telephone channels. it is well known that the
channel distorts the signal and causes intersymbol interference among the data
symbols. The intersymbol interference may cause errors when we attempt to re-
cover the data. In such a case the problem is to design a corrective systcm which.
when cascaded with the channel. produces an output that. in some sense. corrects
for the distortion caused by the channel. and thus yields a replica of the desired
transmitted signal. In digital communications such a corrective system is called
an equalizer. In the general context o linear systems theory. however. we call
the corrective svstcm an inverse sysiem, because the corrective system has a fre-
quency response which is basicaly the reciprocal of the frequency responsc of
the system that caused the distortion. Furthermore. since the distortive svstem
yields an output v(n} that is the convolution of the input x(r} with the impulse
response fi(n). the inverse system operation that takes v(n) and produces x(n) is
called deconvolution.

If the characteristics of the distortive system arc unknown. it is ofien ncec-
essary. when possible. to excite the system with a known signal. observe the
output, compare it with the input. and in some manner, determine the charac-
teristics of the system. For example, in the digital communication problem just
described, where the frequency response of the channel is unknown. the mca-
surement o the channel frequency response can be accomplished by transmitting
a st d equal amplitude sinusoids, at different frequencies with a specified set
of phases. within the frequency band of the channel. The channel will atten-
uate and phase shift each of the sinusoids. By comparing the received signa
with the transmitted signal. the receiver obtains a measurement of the channel
frequency response which can be used to design the inverse system. The pro-
cess of determining the characteristics o the unknown system, either /i(n} or
H{w), by a set of measurements performed on the system is called svsten: idenii-
fication.

The term "deconvolution" is often used in seismic signal processing. and
more generally, in geophysics to describe the operation o separating the input
signal from the characteristics of the system which we wish to measure. The de-
convolution operation is actually intended to identify the characteristics of the
system, which in this case, is the earth. and can aso be viewed as a system iden-
tification problem. The "inverse system," in this case. has a frequency response
that isthe reciprocal of the input signal spectrum that has been used to excite the
system.
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4.6.1 Invertibility of Linear Time-Invariant Systems

A system issaid to be invertible if there is a one-to-one correspondence between
its input and output signals. This definition implies that if we know the output
sequence y(n). —oc < n < oo, of an invertible system 7, we can uniquely determine
its input x(n). —oc < n < 0. The inverse system with input y(x) and output x(n)
is denoted by 7~!. Clearly. the cascade connection of a system and its inverse is
equivalent to the identity system. since

wim =T v = T HT[x(m)]) = x(n) (4.6.1)

as illustrated in Fig. 4.62. For example, the systems defined by the input—output
relations y(n} = ax(n) and v(n) = x(n— 5)are invertible, whereas the input-output
relations v(n) = x*(n) and v(n) = 0 represent noninvertible systems.

As indicated above. inverse systems are important in many practical appli-
cations. including geophysics and digital communications. Let us begin by con-
sidering the problem of determining the inverse of a given system. We limit our
discussion to the class of linear time-invariant discrete-time systems.

Now. suppose that the linear time-invariant system 7 has an impulse response
i) and let /i, (n) denote the impulse response of the inverse system 7-'. Then
(4.6.1) is equivalent to the convolution equation

w(n) = hy(n) *h(n) % x(n) = x(n) (4.6.2)
But {4.6.2) implies that
h(n) x h;(n) = 6(n) (4.6.3)

The convolution equation in (4.6.3)can be used to solve for A;(n) for agiven
i(n). However, the solution of (4.6.3) in the time domain is usualy difficult. A
simpler approach isto transform (4.6.3) into the z-domain and solve for 7~!. Thus
in the:-transform domain, (4.6.3) becomes

HOH(D =1
and therefore the system function for the inverse system is
1
Hi(z) = "o (4.6.4)
If #(z) has a rational system function
B(2)
H()y = (4.6.5)
A(Z)
Identity system
vin) E
e T T-1 —— win) = x(n)
Direct Inverse i
system system . Figure 462 System 7 in cascade with

______________________________________ . itsinverse 7-1.
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then
A(D)
B(2)
Thus the zeros of H(z) become the poles df the inverse system, and vice versa
Furthennore, if H(z) isan FIR system, then #,(z) is an all-pole system. or if H(z)
isan all-pole system, then H,(z) isan FIR system.

Hiz) = (4.6.6)

Example 4.6.1
Determine the inverse of the system with impulse response

hin) = (3 un)

Solution The system function corresponding to k{n} is

H() = l—:—%?‘_’

ROC: izf > 4
This system is both causal and stable. Since H(z} is an al-pole system, itsinverse is
FIR and is given by the system function
Hixy=1- {1
Hence its impulse response is
hy(n)=8(n) — $8(n = 1)

Example 4.6.2
Determine the inverse o the system with impulse response

h(n) =8(n) — $6(n — 1)
Solution Thisis an FIR system and its system function is
H(x=1- ! ROC: Iz} > 0

The inverse system has the system function

Thus #;(z) has a zero at the origin and a pole at : = §. In this case there are two
possible regions of convergence and hence two possible inverse systems, asillustrated
in Fig. 4.63. If we take the ROC of H,(z) aslz| > 1, the inverse transform yields

hy(ny = (3)"u(n)

which is the impulse response of a causa and stable system. On the other hand, if
the ROC is assumed to be |z| < % the inverse system has an impulse response

hyn) = — l Hu(—n-])
1{n) = 3

In this case the inverse system is anticausal and unstable.



358 Frequency Analysis of Signals and Systems  chap. 4

z-plane

D=
ENNN

Figure 463 Two possible regions o
(b convergence for H{z) = z/(z - }).

We observe that (4.6.3) cannot be solved uniquely by using (4.6.6) unless we
specify the region of convergence for the system function of the inverse system.

In some practical applications the impulse response A () does not possess a
z-transform that can be expressed in closed form. Asan alternative we may solve
(4.6.3) directly using a digital computer. Since {4.6.3) does not. in general. possess
a unique solution, we assume that the system and its inverse are causal. Then
(4.6.3) simplifies to the equation

zh(k)h/(n —k) = 8§(n) (4.6.7)

k=0

By assumption. h;(n) =0 for n < 0. For n = () we obtain

hy(0) = 1/h(0) (4.6.8)
The values of h;(n) for n > 1 can be obtained recursively from the equation
=\ h(kYh;(n —k)
hi(n) = = ) ——r————" 4.6.9)
0 == T nzl (

This recursive relation can easily be programmed on a digitat computer.
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There are two problems associated with (4.6.9). First, the method does not
work if h(0) = 0. However. this problem can easily be remedied by introducing
an appropriate delay in the right-hand side of (4.6.7), that is, by replacing é(n) by
S(n—m), where m = 1if h(0) = 0 and A(1) # 0. and so on. Second, the recursion
in (4.6.9) gives rise to round-off errors which grow with n and, as a result, the
numerical accuracy of h(n) deterioratesfor large n.

Example4.6.3
Determine the causal inverse of the FIR system with impulse response
h(n) = 8(n) —ad(n —1)
Solution  Since A{0) = 1. #(1) = —, and h(n) = 0 for n > «, we have
(D) =1/R() =1
and
hy(n) = ahi{n - 1) n>1
Consequently.
hil)y=a. HQ2)= . L him=a"
which corresponds to a causal |IR system as expected.

4.6.2 Minimum-Phase, Maximum-Phase, and
Mixed-Phase Systems

The invertibility of a linear time-invariant system is intimately related to the char-
acteristics of the phase spectral function o the system. To illustrate this point, let
us consider two FIR systems, characterized by the system functions

H) =1+3"=:"c+D (4.6.10)

Haz) =L+ =:"z+1) (4.6.11)
The system in {4.6.10) has a zero at z = —% and an impulse response h(0) = 1,
k(1) = 1/2. The system in (4.6.11) has a zero at z = —2 and an impulse response
h(0) = 172, k(1) = 1, which is the reverse o the system in (4.6.10). This is due to
the reciprocal relationship between the zeros of Hi(z) and H(z).

In the frequency domain, the two systems are characterized by their fre-
guency response functions, which can be expressed as

|Hy ()] = [Ha(w)| = \/§ + cosw (4.6.12)
and
_ tan snw
aL{w) = —w + tan- %m
sinw
2+ cosw
The magnitude characteristics for the two systems are identical because the zeros
of Hi(z) and H(z) are reciprocals.

(4.6.13)

O (w) = —w T tan-' (4.6.14)
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rr Figure 4.64 Phase response
charactenistics for the systems in (4.6.10)
(b) and (4.6.11).

The graphs of ©;(w) and O:(w) are illustrated in Fig. 4.64. We observe that
the phase characteristic ®;(w) for the first system begins at zero phase at the fre-
quency w = ( and terminates at zero phase at the frequency « = =. Hence the net
phase change, @;(7) — ©,(0) is zero. On the other hand, the phase characteristic
for the system with the zero outside the unit circle undergoes a net phase change
Ga(m) — ©2(0) = 7 radians. As a consequence of these different phase character-
istics, we call the first system a m ni numphase systern and the second system is
called a maximum-phase system.

These definitions are easily extended to an FIR system o arbitrary length.
To be specific, an FIR system of length M+1 has M zeros. Its frequency response
can be expressed as

H{w) = bo(1 — 217} (1 —2267°) - .- (1 = zpye™7%) (4.6.13)
where {z;} denote the zeros and b, is an arbitrary constant. When al the zeros
are inside the unit circle. each term in the product of (4.6.15), corresponding to
a real-valued zero, will undergo a net phase change of zero between « = ) and
w=m . Also, each pair d complex- conjugate factors in H{w) will undergo a net
phase change o zero. Therefore,

LH(m) - £H(0)=0 (4.6.16)

and hence the system is called a minimum-phase system. On the other hand, when
all the zeros are outside the unit circle, a real-valued zero will contribute a net
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phase change of = radians as the frequency varies from w = 0 to w = . and each
pair of complex-conjugate zeros will contribute a net phase change of 2x radians
over the same range of w. Therefore.

XH(m)— 2H(O)=Mn (4.6.17)

which is the largest possible phase change for an FIR system with M zeros. Hence
the system is called maximum phase. It follows from the discussion above that

A Hpax{) = X Hpin(m) . (4.6.18)

If the FIR system with M zeros has some of its zeros inside the unit circlc
and the remaining zeros outside the unit circle. it is called a mixed-phase svstem
or a nonminimum-phase svsiem.

Since the derivative d the phase characteristic of the system is a measure
of the time delay that signal frequency components undergo in passing through
the system. a minimum-phase characteristic implies a minimum delay function.
while a maximum-phase characteristic implies that the delay characteristic is also
maximum.

Now suppose that we have an FIR system with real coefficients. Then the
magnitude square value of its frequency response is

[Hie| = HIOHE D (4.6.19)

This relationship implies that if wc rcplace a zero z; of the system by its inverse
1/z¢. the magnitude characteristic of the system does not change. Thus il we re-
fiect a zero z; that is inside the unit circlc into a zero 1/z; outside the unit circlc.
we see that the magnitude characteristic of the frequency response is invariant to
such a change.

It is apparent from this discussion that if |H{w)}* is the magnitude square
frequency response of an FIR system having M zeros. there are 2¥ possible con-
figurations for the M zeros, some of which are inside the unit circle and the re-
maining are outside the unit circle. Clearly. one configuration has al the zeros
inside the unit circle. which corresponds to the minimum-phase system. A sec-
ond configuration has al the zeros outside the unit circle. which corresponds to
the maximum-phase system. The remaining 2" — 2 configurations correspond to
mixed-phase systems. However, not all 2¥ — 2 mixed-phase configurations nec-
essarily correspond to FIR systems with real-valued coefficients. Specifically, any
pair of complex-conjugate zeros result in only two possible configurations. whereas
a pair of real-valued zeros yield four possible configurations.

Example 4.6.4

Determine the zeros for the following FIR systems and indicate whether the system
is minimum phase, maximum phase. or mixed phase.

Hi(z) = 6+z7' =272
Hyzn) = 1-z"' =672
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Hy(z) = 1—£:7h =472
Hioy = 1+ 570 = 12
Solution By factaring the system functions we find the zeros for the four systems
are
Hiz) — 212 = =11 — minimum phase
Hiz) . zp2= —2.3 — maximum phase

Hi(Z) — S12 & -1.3— mixed phase

2.1 mixed phase

Hi(z) — <125 7=
Since the zeros of the four systems are reciprocals of one another. it follows that dl

lour systems have identical magnitude frequency response characteristics hut different
phase characteristics.

The minimum-phase property of FIR systemscarries over to | IR systems that
have rational system functions. Specifically, an IIR system with system function
B(o)
H(i) = — (4.6.20
A(D) )
is called mmirum phase if dl its poles and zeros are inside the unit circle. For a
stable and causal system [all roots of A(z) fall inside the unit circle] the svstem is
caled maximum phase if all the zeros are outside the unit circle. and mixed phase
if some. but not all. of the zeros are outside the unit circle.

This discussion brings us to an important point that should be emphasized.
That is. astable pole-zero system that is minimum phase has a stable inverse which
is also minimum phase. The inverse system has the system function

_ A(D)
Hliz) = =— 4.6.21)
B(z)
Hence the minimum-phase property o H(z) ensures the stability of the inverse
system H~'(z) and the stability of #H(z) implies the minimum-phase property of
H-'(z). Mixed-phase systems and maximum-phase systems result in unstable in-
verse systems.

Decomposition of nonminimum-phase pole-zero systems. Any
nonminimum-phase pole-zero system can be expressed as

H(Z) = Hmin (Z)Hap(z) (4622)

where Amin{z) is a minimum-phase system and Ha,(z) is an all-pass system. We
demonstrate the validity of this assertion for the class of causal and stable systems
with a rational system function H(z) = B(z)/A(z). In general, if B(z) has one
or more roots outside the unit circle, we factor B(z) into the product B,(z)Ba(z).
where Bi(z) hasall itsrootsinside the unit circle and B;(z) hasall its roots outside
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the unit circle. Then 8:(z~") has dl its roots inside the unit circle. We define the
minimum-phase system
Bi()B(z7h

Hmin(z) =
A(D)
and the all-pass system
N B
Herle) = gy

Thus H(2) = Hmin(z) Hap(z). Note that H,p(z) isa stable, all-pass. maximum-phase
system.

Group delay of nonminimum-phase system. Based on the decomposi-
tion of a nonminirnurn-phase system given by (4.6.22), we can express the group
delay of H(z) as

Te(w) = r;"‘"(w) + r:p(cu) (4.6.23)

Since 7, (w) = 0 for 0 < w < =, it follows that t,(w) > r:’i"(w), 0<w<m. From
(4.6.23)we conclude that among al pole-zero systems having the same magnitude
response, the minimum-phase system has the smallest group delay.

Partial energy of nonminimum-phase system. The partial energy of a
causal system with impulse response /(») is defined as

E(n) = Z R {4.6.24)
k=0

It can be shown that among all systems having the same magnitude response and
the same total energy E(cc), the minimum-phase system has the largest partial
energy [i.e.. Emin(n) > E{n), Where Ep,(n) is the partial energy of the minimum-
phase system].

4.6.3 System Identification and Deconvolution

Suppose that we excite an unknown linear time-invariant system with an input se-
quence x(r) and we observe the output sequence y(n). From the output sequence
we wish to determine the impulse response of the unknown system. Thisisa prob-
lem in system identification, which can be solved by deconvolution. Thus we have

y(n) = h(n) * x(n)

3 (4.6.25)
= 3 hix(n -k

k=—00

An analytical solution of the deconvolution problem can be obtained by
working with the z-transform of (4.6.25). In the z-transform domain we have

Y(2) = H(2)X(2)
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and hence
Hi = 28 (4.6.26)
X))
X(z) and Y(z) are the :-transforms of the available input signal xin) and the
observed output signal xin), respectively. This approach is appropriate only when

there are closed-form expressions for X () and Y{:).

Example 4.6.5
A causal system produces the cutput sequence
1. n=0
Y =1 3. n=1
0. otherwise

when excited by rhe input sequence
1. n=1
n=1

vin) =

n=2

=t

0. otherwise
Determine its impulse response and its input-output cquation.
Solution  The system function is casily determined by taking the z-transforms of x(a}
and vor). Thus we have

- 1

i+ -

S

Yo
Ho = — = 0 ——
X =gt + s

R |

1 -+ m\,
(1 —4z7h(l = 4z7h
Since the system iscausal. its ROC is |z| > l The system is also stable since its poles

lie inside the unit circle.
The input-output difference equation for the system is

) = ey — Lyin - = -
v =gy =1 = gyin =2y +xm + gxn -1

Its impulse response is determined by performing a partial-fraction expansion of H(z)
and inverse transforming the result. This computation yields

Aoy = [ = 304" |um)

We observe that (4.6.26) determines the unknown system uniquely if it is
known that the system is causal. However. the example above is artificial. since
the system response {y(n)} is very likely to be infinite in duration. Consequently.
this approach is usually impractical.

Asan alternative, we can deal directly with the time-domain expression given
by (4.6.25). If the system is causal. we have

ym =3 hk)x(n—k) nz0
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and hence

- ¥O
"= 0
n-1
¥(m) = 3 _h(k)x(n — k) (4.6.27)
h(ﬂ) = ‘=§:(0) n> 1

This recursive solution requires that x(0) # 0. However, we note again that when
{h(n)} hasinfinite duration, this approach may not be practical unless we truncate
the recursive solution at same stage [i.e., truncate {k(n)}].

Another method for identifying an unknown system is based on a crosscor-
relation technique. Recall that the input-output crosscorrelation function derived
in Section 2.6.5 is given as

o
Fe(m) = Z Ry (m = k) = h(n) % re (m) (4.6.28)
k=0
where r,(m) is the crosscorrelation sequence of the input {x()} to the system
with the output {y{»r)} of the system, and r,.(m) is the autocorrelation sequence
of the input signal. In the frequency domain, the corresponding relationship is

S (@) = H()Se (@) = H@)X @)

Hence S (@) 5. (@)

vl vl
B = @~ Xwr (4629
These relations suggest that the impulse response {k(n)} or the frequency re-
sponse of an unknown system can be determined (measured) by crosscorrelating
the input sequence {x(xn)} with the output sequence {v(n}}, and then solving the
deconvolution problem in (4.6.28) by means of the recursive equation in (4.6.27).
Alternatively, we could simply compute the Fourier transform of (4.6.28) and de-
termine the frequency response given by (4.6.29). Furthermore, if we select the
input sequence ( x(n)} such that its autocorrelation sequence (r,, ()}, isa unit sam-
ple sequence, or equivalently, that itsspectrum isflat (constant) over the passband
of #H(w), the values of the impulse response {#(n)} are smply equal to the values

of the crosscorrelation sequence (r,, (n)}.

In general, the crosscorrelation method described above is an effective and
practical method for system identification. Another practical approach based on

|east-squares optimization is described in Chapter 8.

4.6.4 Homomorphic Deconvolution

The complex cepstrum, introduced in Section 4.2.7, is a useful tool for performing
deconvolution in some applications such as seismic signal processing. To describe
this method, let us suppose that {y(n)} is the output sequence o a linear time-
invariant system which is excited by the input sequence {x(n)}. Then

Y(2) = X(2)H(2) (4.6.30)
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where H(z) is the system function. The logarithm of ¥(z) is

Cx) =Y
InX@)+InH() (4.6.31)
Cx(2) + Cu(2)

Consequently, the complex cepstrum of the output sequence {v{n)} is expressed
as the sum of the cepstrum of [x(n)} and {A(n)}, that is,

cy(n) = ce(n) + cpind (4.6.32)

Thus we observe that convolution of the two sequences in the time domain corre-
sponds to the summation of the cepstrum sequences in the cepsrral domain. The
system for performing these transformations is called a homormorphic systemand
is illustrated in Fig. 4.65.

In some applications, such as seismic signal processing and speech signal
processing. the characteristics of the cepstral sequences {c, (n)} and {c;(n)} are suf-
ficiently different so that they can be separated in the cepstral domain. Specificaly,
suppose that {¢,(n)} hasits main components (main energy) in the vicinity of small
values of n, whereas {c,(n)} has its components concentrated at large values of n.
We may say rhat {c,(m)} is “lowpass”™ and {c.{n)} is"highpass." We can then sepa-
rate {c,(n)} from {¢,(n}} using appropriate “lowpass’ and “highpass™ windows. as
ittustrated in Fig. 4.66. Thus

Cp(n) = ¢ (n)wip(n) (4.6.33)
and
Exm) = cx(Mwpp(n) (4.6.34)
{»"(")} Y(2) Complex InY(z) Inverse {C\'(:)}
— | z-Transform logarithm C{D) Z-transform

Figure 465 Homomorphic svstern for obtaiming the cepstrum {c,(r)} d the se-
quence {¥(n)}.

o) = e dn) + cpin) ® Exin)

Wip(R)
cdn) = cln) + ¢ (n) ® én)
{ Figure4.66 Separating the two
cepstral components by “lowpass™ and
Wp(r) “highpass™ windows.
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where
e F
Wi () = [(1) ]Z{ N }:,i (4.6.36)
Once we have separated the cepstrum sequences {¢, (n)} and {¢. (m)} by windowing.
the sequences {x(n)} and {#(n)} are obtained by passing {¢, ()} and (¢, (n)} through

the inverse hornomorphic system. shown in Fig. 4.67.

In practice. a digital computer would be used 10 compulte the cepstrum of the
sequence {v{n)}. to perform the windowing functions, and to implement the inverse
homomorphic system shown in Fig. 4.67. In place of the z-transtorm and inverse
z-transform. we would substitute a special form of the Fourier transform and its
inverse. This special form, called the discrete Fourier transform. is described in

Chapter 5.
¢ m [azs) X X
— X Compiex Inverse !—'—*-‘
oy Tedorm | exponential | :-lr:xnslom_?—u
Sy | Cplnd . i
Figure 4.67 Inverse homomorphic system f{or recoverning the sequences {yuinf and
{irin3} from the corresponding cepstra.

4.7 SUMMARY AND REFERENCES

The Fourier series and the Fourier transform are the mathematical tools lor an-
alyzing the characteristics of signals in the frequency domain. The Fourier series
is appropriate for representing a periodic signal as a weighted sum of harmoni-
caly related sinusoidal components. where the weighting coefficients represent the
strengths of each of the harmonics, and the magnitude squared d each weighting
coefficient represents the power of the corresponding harmonic. As we have in-
dicated, the Fourier series is one o many possible orthogonal series expansions
for a periodic signal. Its importance stems from the characteristic behavior of LTI
systems, as we shall see in Chapter 5.

The Fourier transform is appropriate for representing the spectral charac-
teristics o aperiodic signals with finite energy. The important properties of the
Fourier transform were also presented in this chapter.

There are many excellent texts on Fourier series and Fourier transforms.
For reference, we include the texts by Bracewell (1978). Davis (1963). Dvm and
McKean (1972). and Papoulis (1962).

In this chapter we also considered the frequency-domain characteristics of
LTI systems. We showed that an LTI system is characterized in the frequency
domain by its frequency response function A (w}, which is the Fourier transform
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of the impulse response of the system. We also observed that the frequency
response function determines the effect of the system on any input signal. In fact,
by transforming the input signal into the frequency domain, we observed that itisa
simple matter to determine the effect o the system on the signal and to determine
the system output. When viewed in the frequency domain, an LTI system performs
spectral shaping or spectral filtering on the input signal.

The design of some simple I IR filters was also considered in this chapter from
the viewpoint of pole-zero placement. By means of this method. we were able
to design simple digital resonators, notch filters, comb filters. all-pass filters. and
digital sinusoidal generators. The design of more complex IiR filtersis treated in
detail in Chapter 8. which atso includes several references. Digital sinusoidal gen
eratorsfind use in frequency synthesis applications. A comprehensive treatment of
frequency synthesis techniques is given in the text edited by Gorski-Popiel (1975).

Finally. we characterized LTI systems as either minimum-phase, maximum-
phase, or mixed-phase. depending on the position of their poles and zeros in the
frequency domain. Using these basic characteristicsof LTI systems. we considered
practical problems in inverse filtering. deconvolution. and system identification.
We concluded with the description of a deconvolution method based on cepstral
analysis o the output signal from a linear system.

A vast amount of technical literature exists on the topics of inverse filter-
ing. deconvolution, and system identification. 1n the context of communications,
svstem identification. and inverse filtering as theyv relate to channel equalization
are rreated in the book by Proakis (199.5). Deconvolution techniques are widely
used in seismic signal processing. For reference. we suggest the papers by Wood
and Treitel (1975). Peacock and Treite! (1969). and the books by Robinson and
Treitel (1978. 1980). Homomorphic deconvolution and its applications to speech
processing is treated in the book by Oppenheim and Schafer (1989).

PROBLEMS

4.1 Consider the full-wave rectified sinusoid in Fig. P4. 1.
(a) Determineits spectrum X, (F).
(b} Compute the power of the signal.

x, (1)

T

VOV VY

-7 0 T 2r

Figure P4.1
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41

43

44

45

46

47

() Plot the power spectral density.
(d) Check the validity of Parseval's relation for this signal.

Compute and sketch the magnitude and phase spectra for the feliowing signals ta > 01
) wdr) = Ae™Y, 1=0
W oxm=a, 1<

(b) x,(1) = Ae "
Consider the signal
1— /7. ri<r

=
! 0. elsewhere

(a) Determine and sketch its magnitude and phase spectra. |X,(F)i and X X.(F).
respectively.

(h) Create a periodic signal x,(1) with fundamental period 7, = 2r. so that xt/) =
xp(t) for jri < 7,/2. What arc the Fourier coefficiems ¢, for the signal x,.(1)”

(c) Using the results in parts (a) and (h). show that ¢, = (1/7,) X, (/T ).

Consider the fallowing periodic signal:

xomyve={0 0 L001L2,3.2.1.0.00

(a) Sketeh the signal (1) and its magnitude and phase spectra.

(b) Using the results o part (@). verily Parseval’s relation by computing the power
in the ume and frequency domains.

Consider the signal

T 7 1 3ma
vomy = 20 ZCUS—I 4-(:052 + - cos !
' - 4 2 27 4

(a) Determine and sketch s power density spectrum
(h) Evaluate the power of the signal

Determine and sketch the magnitude and phase spectra of the following periodic
signals.
T =2)

(a) xtn1=4sin
27

e
(h) x(n) = cos %n +sin—n

2n . 2w
{c) x{m)=COS—nsSIN —n
3

(d) xm =1 ... =2.-1.0.1.2.=2.-1.0.1.2...)
(e) xtmy=1{....-12.1.2.-1.0.-1.2.1.2.. ]
M xn=(...0.0.1.1.0.0011.00..}

1

(@) xtmy=1.-o¢ <n<x
(h) xtn) =(=1H". —x <n < x
Determine the periodic signals x(n). with fundamental period & = 8. if their Fourier
coefficients are given by:
3km

krx
= cos — +sin ==
(a) « cos - Tsin —
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49

410

411
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.k
() o= {8in5. O=k=<6

0. k=7
(©) {Ck}=(.-~,0.i.%.1.$_l.

Two DT signals. s, (n) and s;(n). are said to be orthogonal over an interval (¥, N,] if

1.0,

-

M

. Ag k=1
s ={g" 7,

=N

If 4, = 1. the signals are called orthonormal.
(a) Prove the relation
o griwn _ (N k= OENEN.
nst - [0. otherwise

(b) Illustrate the validity of the relation in part (a) by plotting for every value of
k=1.2....,6.the signals s;(n) = /&% n =0 1,..., 5. [Note: For a given k,
n the signal s;(r) can be represented as a vector in the complex planc.)

(c) Show that the harmoenically related signals

si(n) = e,«zwmn
are orthogonal over any interval of length N.

Compute the Fourier transform d the following signals.

(a) x(n) = u{n) — u(n - 6)

(b) x(rn) = 2"u(-m)

€ x(m) = (Hrunta)

(d) x(n) = (a"sinayn)u(n) laf < 1
(e) x(n) =|al"Sinwyn ol < 1
_J2-Gm  nfz4
O xtm = lO. elsewhere
(@) xtm)={-2.-1.0.1.2)
*
_fAeM+1-inh.  ni<M
(h) x(m) = ’0. In| > M

Sketch the magnitude and phase spectra for parts (a). (f). and (g).
Determine the signals having the following Fourier transforms.
_Jo. 0 < jof <
@) Xwy= [1. o < ol < 7
(b) X{w)=cos’w
wy — bw/2 < jol < wy+dw/2
(¢} X{w)= { " elsewhere
(d) The signaIDShown in Fig. P4.10.
Consider the signal

x{n)=1{1,0.-1,231
*
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Xiw)

(€]

2

n or Ixon
8 8 8 Figure P4. 10

ool -

3n

with Fourier transform X (w) = Xg(w) * | (X,(w)). Determine and sketch the signal

v(n) with Fourier transform

Y(@) = X, (@) + Xp(w)e'™

Xlw)

-

1

10 1010
{a)

Xiw)

ST S

T

Figure P4.12

4U Determine the signal x(n) if its Fourier transform is as given in Fig. P4.12.

w
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413 In Example 4.3.3. the Fourier transform of the signal
(n)_{L -M<n=<M
= o, otherwise

was shown to be

M
X(w)=1+ ZZcoswn
n=1
Show that the Fourier transform of
. O<n<M
nin) = IO. otherwise
and
n(n)z{' “M=ns-l
o 0. otherwise
are, respectively.

1 = e JeiM+D
Xi(w) = e
jor _ ja M)
Xa{w) = £ 1_:;'.“
Thus prove that
X(w) = Xi{w)+ Xo(w)
_sin(M + Do
sin(w/2)

and therefore,

sin(M + ,]w
142 Z coswn = sm(w/ZJ

414 Consider the signal
x(ny={-1,2,-3,2, -1}
t

Chap. 4

with Fourier transform X (). Compute the following quantities, without explicitly

computing X (w):
(@ X© () X(w) (o) Xwde (@ X(x)
© [T X do

415 The center of gravity of asigna x(r) is defined as

3

Z nx(n)

n=—o
c=
oc

Z x(n)

n=-e

and provides a measure of the "time delay" of the signal.
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Xiw

raly
=}
(S
4

Figure P4.1§

(@) Express ¢ in terms of X (w).
(b) Compute ¢ lor the signal x¢n) whose Fourier transform is shown in Fig. P4.15

4.16 Consider the Fourier transform parr

417

4.18

419

a"w(ny - 1—_—5-‘—,7 laj <1
Use the differentiation in frequency theorem and induction to show that
Yiny = i"—_tf——“!a”u(n} AN X = ———l——
nif — ! (1 — qe—r)

Let any be an arbitrary signal. not necessarily real-valued. with Fourier transform
Nitew). Express the Fourier transforms of the following signals 1 terms of X (w).

(2) v o

() v (—m)

{€) yuy=x(n) — xin - 1}

(d) vim = Z MK

ke
{e) ytm) =x(2m
x(n/2). neven
(n) =
0 v [¢N i odd
Determine and sketch the Fourier transforms X, (w). X2(w). and X:(w) o the following
signals.

(a) xi(m)=(1.1.1.1.1)

(b} x:(m)=1{1.0.1.0.1,0.1.0, 1)

(¢) x30m=11.0.0.1.0.0.1.0.0.1.0.0. 1}
3
(d) Is there any relation between X;(w). X:(w). and X3{w)? What is its physical
meaning?
(e) Show that if

n
xyln) = ;"(;)- if n/k integer
0 otherwise
then
Xilw) = X kw)

Let x(n) be a signal with Fourier transform as shown in Fig. P4.19. Determine and
sketch the Fourier transforms of the following signals.
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Xiw)

- -z Q n b
al 3

Figure P4.19

(a) xitn) = x(n)cos(mn/4) (b) x2(n} = x(m)sintzrn /2)
(€) xaln) = xtn)costmn/2) (d) xa(m) = x(njcosan
Note that these signal sequences are obtained by amplitude modulation of a carrier
COSw,n Of Sinw, n by the sequence x(n).

4.20 Censider an aperiodic signal x(n) with Fourier transform X tw). Show that the Fourier
series coefficients C; of the periodic signal

vin) = Z x(n —1IN)

f==2

are given by

4.21 Prove that

A .
sinw.n = Junn
Xntw) = 4
an
N

may be expressed as

df

s

ooy = L[ sinl@N + Dw 672
vol =3 _ sin[(w - 6)/2]

0

4.22 A signal x(n) has the following Fourier transform:

i) = 1
(w) = T= e
Determine the Fourier transforms of the following signals:
{a) x2nt1) (b) e x(n +23
(b) x(=2n) (d) x(n)cos{(0.37n)

(c) xtmy*x(n=-1 (D x(n) * x(—n)
4.23 From a discrete-time signal x(n) with Fourier transform X(w). shown in Fig. P4.23,
determine and sketch the Fourier transform of the following signals:
(8) vi(m) = x{n). n even
A ) n odd
(b) w(r) =x(2m
) _ x(n/f2). n even
© wm=1, n odd

Note that v;(n) = x(n)s(n), where s(m) = {...0. 1.0,1.0. 1.0.1.. ..)
1
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Xiw)

|
P
IS

Figure P4.23
424 ‘Ihe following input-output pairs have been observed during the operation of various
sysiems:
= Ly 1
(a) x(n) = (3)" — vim) = ()
T
(h) x(n) = (:l)"u(n) —= v(in) = (é)”u(n]
< T PUNEES
() x(iny=¢7" — v =3¢/
5 73 N
(d) x0on =e " uin) == yiny = 37
Ts .
(e} vim = vin+ Nj) — vim) = vin + N2) Ny 2 N NN prime
Determine thetr frequency response if cach of the above systems is LTI
425 (a) Determine and sketch tho Fourier transform We(e) of the rectangular sequence

w (n)m{l' Don=M
K o otherwise
(b) Consider the triangular sequence
", O<n=< M2
il‘7(l?):{M—-’L M2 <2< M
0. otherwise

Determine and sketch the Fourier transform Wj (w) of wy () by expressing it as
the convolution o a rectangular scquenco with itself.
(c) Consider the sequence

N
w (m =1 (1 +cos -—;%) wg(n)

Determine and sketch W, (@) by using Walw).
4.26 Consider an LTI system wirh impulse response htn} = (3Y'u(n).
(a) Determine and sketch the magnitude and phase response |H{w), and H (w},
respectively.
(b) Determine and sketch tho magnitude and phase spectra for the input and output
signals for the following inputs:

3mn
n ,r(n):COSTO—4—x <h <X
2y xo)={....1.0.0,1,1.1.0.1.1.1.0.1.. .}

+

427 Determine and skerch the magnitude and phase response of the following systems:
(a) v(n) = atm + x(n = 1))
() vin) = ix@) - x(n - 1]
() vimy=}[xtnt1)-x(n-1)]
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(@ ym=xnt D+ xm-1]
(&) v(m) = Hx(m) + x(n - 2))
M y(m) = ix(n) - x(r = 2)]
(g) y(imy= %[X(n) txtn—1)+x0 -2
(h) ¥(r) = x(n) — x(n _ 8)
(i) v(n)=2x(n-1)—x(n-2)
) ytm = Hx Fxm - 1)+ xn - 2)+ xtn - 3)]
&) vn) = EHx(n) +3xtn — D)+ 3x(n = 2)F x(n - 3)]
() »wm)=xin—4)
(m) ¥(n)=x(nt4)
(n} y(n) = 3fx(n) = 2x(n — 1) + xtrn = 2)}
428 An FIR filter is described by the difference equation

vin) = x(n) + x(n — 10)

(a) Compute and sketch its magnitude and phase response.
(b) Determine its response to the inputs

(I)x(n):cos%n+3sin(%n+r—0) —oC <n<o
27 F:4
(2) x(n) =10+ 5cos ?/7+? - <n < oo

429 Determine the transient and steady-statc responses of the FIR filrer shown in Fig. P4.29
to the input signa x(n) = 10e/™~u(n). Let » =2 and v(-1) = ¥(=2) = v(-3) =
v(—-4)=0.

N EI ST
b

x(n)

\[/—~ v Figure R4 29

430 Consider the FIR filter
¥(n)=x(n)+x(n—4)

(a) Compute and sketch its magnitude and phase response.
(b) Compute its response to the input

b g bid
x(n)=cosin+coszn —o<n<oC

(c) Explain the results obtained in part (b) in terms of the magnitude and phase
responses obtained in part (a).
431 Determine the steady-state and transient responses of the system

Hn) = 5[x(n) — x{n — 2)]



Chap. 4 Problems

to the input signal

x(n)=5+3cos(%n+60“> -0 <N <oC

4.32 From our discussions it is apparent thar an LTI sysrem cannot produce frequencies
at its output that are different from those applied in its input. Thus, if a system
creates "new" frequencies. it must be nonlinear and/or time varying. Determine the
frequency content of the outputs of the following sysiems to the input signal

T
x(n) = Acos Zn

(a) x(n) = x{(2n)
(b) ¥t =x*(m)
(c) »tn) = (cosmnix(n)
4.33 Determine and sketch the magnitude and phase response o the systems shown in
Fig. P4.33(a) through (c).

xtn) ¥n)

)

¥(n)

xin) —y

o0 |~

Figure P4.33

434 Determine the magnitude and phase response of the multipath channel
y(n) =x(n)+x(n—- M)

At what frequencies does H(w) = 0?
435 Consider the filter
y(n) =09y(n - 1) + bx(n)

(a) Determine b so that [H(0)| = 1.
(b) Determine the frequency at which {H (w)] = 1/~/§.
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4.38%
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(c) Isthisfilter lowpass, bandpass. or highpass?
(d) Repeat parts (b) and (C) for the filter y(n) = —0.9¥(n — 1) + 0.1x(n)
Harmonic distortion in digital sinusoidal generators An ideal sinusoidal generator
produces the signal

x(n) = cos 2w fyn —xX<n<oe
which is periodic with fundamental period N if f, = ky/N and ko, N are relatively
prime numbers. The spectrum of such a " pure" sinusoid consist of two lines at k = &
and k = N = k¢ (we limit ourselves in the fundamental interval 0 < k < N —1).
In practice, the approximations made in computing the samples of a sinusoid of
relativefrequency f, result in acertain amount of power fallinginto other frequencies.
This spurious power results in distortion, which isreferred to as harmonic distortion.
Harmonic distortion is usually measured in terms of the total harmonic distortion
(THD). which is defined as the ratio
spurious harmonic power

THD =
total power

(2) Show that

’:
THD = 1 — 2l

i N1
a, = E § .r(n](fﬂhm"lk”"

n=l

1< A
Po= NZIX(H)V

n=0

(b) By using the Taylor approximation

where

compute one period d x(n) for f, = 1/96. 1132, 11256 by increasing the number
of terms in the Taylor expansion from 2 to 8.

(c) Compute the THD and plot the power density spectrum for each sinusoid in
part (b) as well as for the sinusoids obtained using the computer cosine function.
Comment on the results.

Measurement of the total harmonic distortion in quantized sinusoids Let x(n) be a

periodic sinusoidal signal with frequency f, = k/N. that is.

x(n) = sin2x fyn

(a) Write acomputer program that quantizesthe signal x(») into 4 bits or equivalently
into L = 2" levels by using rounding. The resulting signal is denoted by x,(n)-

(b) For fy = 1/50 compute the THD of the quantized signals x,(n) obtained by using
b =4, 6, 8, and 16 bits.

(c) Repeat part (b) for fo = 1/100.

(d) Comment on the results obtained in parts (b) and (c).

Consider the discrete-time system

y(n)=ayin—1)+{0—a)x(n) r=z=0
wherea = 0.9and y(-1) =0.
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(a) Compute and sketch the output »,t») o the system to the input signals
N my=8n2xfin 0 <n <100

where fi=1. fi=t fi=g. iz &

(b) Compute and sketch the magnitude and phase response d the svstem and use
these results to explain the response of the svstem to the signals given in part (a).

4.39* Consider an LTI system with impulse response h{n) = (1)

(a) Dcterminc and sketch the magnitude and phase response Hi{w)| and 2 H (w).
respectively.

(b) Dcterminc and sketch the magnitude and phase spectra for the input and output
signais for tho following inputs:

3mn
(1) xmn) =cos o ~xX << o0

QY xm=f. .. -t -l L -L1L-1L1L-}1-1.1..}

4.40% Time-domain sampling  Consider the continuous-time signal

(,—12.1 H»/‘ 1 >0
Xty = -
0, 1 <0
(a) Compute analvucally the spectrum X, (F) of x,(r).
(b)y Compute analvtically the spectrum o the signal x(ny = x,(n7). T = 1/F,.
(¢) Plot the magnttude spectrum | X, (F)! for £y, = 10 Hz.
(d) Plot the magnitude spectrum (X (£ for £, = 10. 20, 40. and 100 Hz.
(e) Explain the results obtained in part (d) in terms ol the aliasing effect.
441 Consider the digital filter shown in Fig. P4.41.
(a) Determine the input-output relation and the impulse response /in).
(h) Determine and akctch the magnitude |Hw)| and the phase response 4 H(w) o
the filter and find which frequencies are completely blocked by the filter.
(¢) When ay = 7/2. determine the output v(n) to the input

b4
.\-(n)=3cos(—z—n+30) —xX <h <o

x{r) ———4_.@_«,_._ -t vin

a= - 2cos wy Figure R4 41

442 Consider the FIR filter

y(n) = xny—x{n—4)

(a) Compute and skeich its magnitude and phase response
(h) Compute its response to the input

e i
X(n)=cosin+cos-4—n —ocwn <X
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(c) Explain the results obtained in part (b) in terms of the answer given in part (a).
4.43 Determine the steadv-state response of the system

vin) = %[_\'(n) -x(n - 2)]

to the input signal

m - .
x(n)=5+3cos<5n+60')+4sm(7rn+45) —oc < n <00

444 Recall from Problem 4.32 that an LTI system cannot produce frequenciesat its output
that are different from those applied in its input. Thus if a system creates " new"
frequencies, it must be nonlinear and/or time varying. Indicate whether the following
systems are nonlinear and/or time varying and determine the output spectra when the
input spectrum is

_ 1. Jw| < 7/4
Xlw) = [0. /4 <|w <7

(a) »(nmy=x(2m

(b) v(n)=x*(n)

(c) ¥(r)=(cosmmx(n}

4.45 Consider an LTI system with impulse response

) = [(412) cos (%n)jl uin)

(a) Determine its system function H(z).

(b) Isit possible toimplement thissystem using afinite number of adders. multipliers,
and unit delays." If yes. how'?

(c) Provide a rough sketch of |H{w)| using the pole-zero plot.

(d) Determine the response of the system to the input

x(m) = (§)"utm
4.46 An FIR filier is described by the difference equation
¥(n)=xn) —xin ~10)

(a) Compute and sketch its magnitude and phase response.
(b) Determine 1ts response to the inputs

1 = il ’%(Z +ﬂ> - <n <oC
()x(n)_cosIanJr.sm 3n 0 c
(2) I(n):5+6cos(2—:-n+%) —_x <<
447 The frequency response df an ideal bandpass filter 1s given by
0. sy
H 1 kg 3n
= i <=
{w) 3 < |wl| 3
Q. §8£ <|lwl<=x
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(a) Determine its impulse response

(b} Show that this impulse response can be expressed as thr product of cosinm/4)
and the impulse response of a lowpass filter.

4.48 Consider the system described by the difference equation
wn) = %'\'ln - D+axm+ _%.\‘(n -
(a) Determine its impulse response.
(b) Determine its frequency response:
{1) From the impulse response
(2) From the difference equation
(¢c) Determine its response to the input

T hig
‘(”):C()g(T”"’}) —xX an <X

449 Sketch roughly the magnitude X (w)) of the Fourier transforms corresponding to the
pole-zere patterns given in Fig. P4.49.

i i
Double pole_, Unit r:lrdc/_l‘_\
Pole w 0.9¢"

\_| \ / \
/ | \ \
| N | i
T — T % ?

Unit circle Double zero "

() i

8th order pole
(c) (d)

Figure 449

450 Design an FIR filter that completely blocks the frequency wx = /4 and then compute
its output if the input is

T
x{n) = (sin Z") u(ny

for n =0, 1, 2. 3. 4. Does the filter fulfill your expectations? Explain
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4.51 A digital filter is characterized by the following properties:

(1) It ishighpass and has one pole and one zero.
(2) The poleis at a distance r = 0.9 from the origin of the z-plane.
(3) Constant signals do not pass through the system.

(a) Piot the pole-zero pattern of the filter and determine its system function H(z).

(b) Compute the magnitude response }H (w)| and the phase response X H(w) of the
filter.

(c) Normalize the frequency response H (w) so that |H(x)| = 1.

(d) Determine the input-output relation (difference equation) of the filter in the time
domain.

(e) Compute the output of the system if the input is

x(n):ZCOS(%n+4S;) —oCc <n <X
(You can use either algebraic or geometrical arguments.)

452 A causal first-order digital filter is described by the system function

1+b:7!

1+4+az-!

(a) Sketch the direct form | and direct form 11 realizations of this filter and find the
corresponding difference equations.

(b) For @ = 0.5 and b = —0.6. sketch the pole-zero pattern. IS the system stable?
Why?

(¢} Fora= -0.5and # = 0.5, determine 4. so that the maximum value of |H(w)| is
equal to 1.

(d) Sketch the magnitude response !H{w)| and the phase response X H(w) of the

filter obtained in part (c).

In a specific application it is known that a = 0.8. Does the resulting filter amplify

high frequencies or low frequencies in the input? Choose the value of b so as to

improve the characteristics of this filter (i.e., make it a better lowpass or a better

highpass filter).

453 Derive the expression for the resonant frequency of a two-pole filter with poles at
p1 =re’ and p» = p}. given by (4.5.25).

4.54 Determine and sketch the magnitude and phase responses of the Hanning filter char-
acterized by the (moving average) difference equation

H(z) = by

(e

-

vim) = tx(m)+ ix(n -+ tx(n -2
455 A causal LTI system excited by the input
x(n) = ())"uln) + u(-n - 1)

produces an output ¥(n) with z-transform
_3
Y(z) = —_—
(I—4hHa+zh
(a) Determine the system function #(z) and its ROC.
(b) Determine the output y(n) of the system.
(Hint: Pole cancellation increases the original ROC.)

-=1
<
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4.56

4.57

458

459

4.60

461

Determine the coefficients of a linear-phase FIR filter
¥ = byx(n) + bix(n — 1) + bax(n = 2)

such that:

(a) It rejects completely a frequency component at ax = 27/3.

(b) Itsfrequency response is normalized so that H(0) = 1.

(c) Compute and sketch the magnitude and phase response of the filter to check if
it satisfiesthe requirements.

Determine the frequency response # (w) of the following moving average filters.

1 M
(a) ¥(n) = TS} Z x(n—k)
k=—M
M-t

1 1 1
(b) y(n)= 4—IV7X(” + M)+ mk=_ZM:HX(n -k + mx(n -M)

Which filter provides better smoothing? Why?

The convolution x(r) of two continuous-time signals x;(r) and xz(t), from which at
least one is nonperiodic. is defined by

X2 x50 e 00 2 / X1 (Mxa (6 — Adh

(a) Show that X(F) = X (F)X2(F), where X,(F) and X.(F) are the spectra d x;(r)
and x2(7), respectively.

(b) Compute x{1) if x{r) = x2(7) = i <t/2

0. elsewhere
(¢) Dctermine the spectrum of x(r) using the results in part (a).
Compute the magnitude and phase response of a filter with system function

-§

HO =144+ 42

If the sampling frequency is £, = 1 kHz. determine the frequencies o the analog
sinusoids that cannot pass through the filter.

A second-order system has a double pole at p;,2 = 0.5 and two zeros at

2= e:jam

Using geometric arguments, choose the gain G d the filter so that |H(0)] = 1.

In this problem we consider the effect of a single zero on the frequency response of
asystem. Let - = re’® be a zero inside the unit circle (r < 1). Then

H.(w) = 1—re’e
= 1-—rcos(w—8)+ jrsin(w—8)
(@) Show that the magnitude response is
|H.(w)] = [1 ~ 2r costw ~ 8) + r*]'7?
or, equivalently.
20log,, |H.(w)| = 10log,,[1 — 2r cos(w — 6) + 7]
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(b) Show that the phase response is given as
@.(w) = tan”! M
ST 1-rcosiw—§6)

(c) Show that the group delay is given as

r? — rcos(w - 8)

W T T s = 0)

(d) Plot the magnitude | H (w)|g4s. the phase @(w) and the group delay z,(w) for r = 0.7
and 6 =0, =/2. and x.
462 In this problem we consider the effect of a single pole on the frequency response o
a system. Hence. we let
1
Hp(w) = 1—:—;7(—:1— r<l

Show that

i

[Hy@}lan = —|H:(@)les
A H(w) = —4 HAw)
T (w) = —1.(w)

where H.(w) and 7 (w) are defined in Problem 4.61.

4.63 In this problem we consider the effect of complex-conjugate pair of poles and zeros
on the frequency response of a system. Let

H(w) = (1 —re™e™ i) (1 —re™ ™)
(a) Show that the magnitude response in decibels is
H(Map = 10log,y|1 + r* — 2r costw — B)]
+10log,,[1 % - 2r costw + 8))

(b) Show that the phase response is given as

rsin(w — &) rsin(w + 6)
@.(w) = tan-' —— +tan-' ———
@) 1—-rcosiw—8) | = rcos(w + 8)
(c) Show that the group delay is given as
r? — rcos(w — 0) r? - reos(w + 6)

T {w) = 14r2—2rcostw—8) 1 +r*—2rcos(w +6)

(d) If H,(w) = 1/H-(w). show that

[Hp(w)las = ~|H.(@)|a
O,(w) = ~-O.(w)
'rg"(u)) = —r;(w)

(e} Plot |H,(w)], ®,(w) and 1/ {w) for r =0.9,and 8 = 0, 7/2,
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4.64

465

4.66

467

4.68*

40

Determine the ?-dB bandwidth of the filters (0 < a < 1)

1-a
Hi(z)

1 —az!
l—a 147!
Hizy =

- a3

2 1—az!
Which is a better lowpass filter?
Design a digital oscillator with adjustable phase. that is. a digital filter which produces
the signal

Y = cos{wyn + 6)uin)
This problem provides another derivation of the structure for the coupled-form os-
cillator by considering the system

Y =avin — 1)+ x(n)
for o = et

Let ity be real. Then vir) is complex. Thus
vy = vy + jyvelnd

(a) Determine the cquations describing a system with one input x¢ry and the two
outputs vein and vy en.

(b) Dctermine a block diagram realization

(¢y Show that il x(n) = ). then

Vel = {Coswynuin)
viim) = (Sinwgmiuin)

(d) Compute yg01). y;n).n=0.1..... Y for @, = /6. Compare these with the true
values d the sine and cosine.
Consider a filter with system function
(L -l — e

H{z) =
< b”(l — ezl — remienzt)

(a) Sketich the pole-zcro pattern.

(b) Using geometric arguments. show that for r = 1. the system is a notch filter and
provide a rough sketch of its magnitude response if w; = 60 .

(¢) For wy = 60 . choose by so that the maximum value of |H (w)}is 1.

(d) Draw a direct form II realization o the system

(e} Dctcrmine the approximate 3-dB bandwidth of the system,

Design an FIR digital filter that will reject a very strong 60-Hz sinusoidal interference

contaminating a 200-Hz useful sinusoidal signal. Determine the gain of the filter so

that the useful signal does not change amplitude. The filter works at a sampling

frequency F, = 500 samples/s. Compute the output of the filter if the input is a 60-Hz

sinusoid or a 200-Hz sinusoid with unit amplitude. How does the performance d the

filter compare with your requirements?

Determine the gain b, for the digital resonator described by (4.528) so that
[H (wo)] = 1.
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4.70

471

4.72

473

474

475

4.76

4.7

4.78

4.79
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Demonstrate that the difference equation given in (4.5.52) can be ohtained by apply-
ing the trigonometric identity
cosa +cos fi =2C05a:ﬁCOSu;ﬁ

where a = (n+1)wn. 8 = (7 = Day. and v(n) = cosayn. Thusshow that the sinusoidal
signal ¥(n) = A coswyn Can be generared from (4.5.52) hy use of the initial conditions
¥(—1) = Acosay and ¥(—2) = A cos 2ax.

Use the trigonometric identity in (4.5.53) witha = nay and § = (n—2jax to derive the
difference equation for generating the sinusoidal signal v(n) = A sin nay. Determine
the corresponding initial conditions.

Using the z-transform pairs 8 and 9 in Tabie 3.3. determine the difference equations
for the digital oscillators that have impulse responses A(rn) = A cos nwnie(n) and h(n) =
A Sinnexu(n), respectively.

Determine the structure for the coupled-form oscillator by combining the structure
for the digital oscillators obtained in Problem 4.72.

Convert the highpass filter with system function

-=1

1-:
Hi)y =

1
1 —a: @=

into a notch filier that rejects the frequency ay = 7/4 and its harmonics.

(a) Determine the difference equation.

(b) Sketch the pole-zero pattern.

(c) Sketch the magnitude response for both filters.

Choose L and M for a lunar filter that must have narrow passbands at (k = AF)

cvcles/day. where k = 1. 2, 3,... and A F = 0.067726.

(a) Show that the systems corresponding to the pole-zero patterns of Fig. 4.58 are
all-pass.

(b) What is the number of delays and multipliers required for the efficient implemen-
tation of a second-order al-pass system'!

A digital notch filter isrequired to remove an undesirable 60-Hz hum associated with

a power supply in an ECG recording application. The sampling frequency used is

F, = 500 samples/s. (a) Design a second-order FIR notch filter and (b) a second-

order pole-zero notch filter for this purpose. In hoth cases choose the gain &, so that

|H(w)| = 1for w=0.

Determine the coefficients {#(n)} of a highpass linear phase FIR filter of length M =
4 which has an antisymmetric unit sample response k(n) = —h(M - 1 -n) and a
frequency response that satisfies the condition
@5 ()
4 2 4

In an attempt to design a four-pole bandpass digital filter with desired magnitude
response

pre
fw=g

1
2

0, elsewhere

o X

[Hi{w)| = {
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we select the four poles at
pia o= 0'&,:[2:#1

i o= 08T

and four zeros at

L)

M

1
~

a=1 = —|

X
5

(a) Determine the value of the gain so that

o5)

(b) Determine the systcm function H(:).
{¢) Determine the magnitude of the frequency response #(w) for 00 < w < 7 and
compare it with the desired response [H(a)].
480 A discrete-time svstem with input v{n) and output v(n) is described in the trequency
domain by the relation

=1

dXtan

o

Yiw) = ¢ "X () +

(a) Compute the response of the system to the input xon = 8.
(b} Checek il the svstem is LTI and stable.
4.81 Consider an ideal lowpass filter with impulse response ¢ and trequency response

1. ] = w,

0. w, < jwl <

Hiw) = [

What is the frequency response of the filter defined by

; n)
.L'(H? - 1 (E . noeven
0.

» odd

482 Consider the system shown in Fig. P4.82. Determine its impulse response and 1ts
frequency rcsponsc if the system Hiw) is:
(@) Lowpass with cutof{ frequency w, .
(b) Highpass with cutoff frequency w,.

xirm) j _ ;
S S —" Hiw) @-—J———’ )

Figure R &

483 Frequency inverters have been used for many years for speech scrambling. Indeed.
a voice signa r{») becomes unintelligible if we invert its spectrum as shown in
Fip. PA.83.
(a) Determine how frequency inversion can be performed in the time domain.
(b) Design an unscrarnbler. (Hint: The required operations are very simpie and can
easily be done in real time.)
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X(w)

NS

w
- 0 n
(a)
Yiw)
I AN / 2
- o s Figure P483 (a) Orwginal spectrum;
(b) (b) frequency-inverted spectrum.

484 A lowpass filter is described by the difference equation
vin) = 0.9v(n — 1) + 0.1x(n)

(a) By performing a frequency translation of x/2. transform the filter into a bandpass
filter.
(b) What is the impulse response of the bandpass filter?
(¢) What 1s the major problem with the frequency translation method lor transform-
ing a prototype lowpass filter into a bandpass filter?
4.85 Consider a system with a real-valued impulse response /(») and frequency response

Hiw) = |H(w)le’™
The quantity

oc

D= Z n2h*(n)

provides a measure of the "effective duration™ of h(n).
{a) Express D in termsof H(w).
(b) Show that D is minimized for #(w) = O.
4.86 Consider the lowpass filter
y(n) =ay{n — 1) + bx(n) O<a<l
(a) Determineb so that |[H{0)| = I.
(b) Determine the 3-dB bandwidth s for the normalized filter in part (a).
fc) How does the choice of the parameter a affect ws?
(d) Repeat parts (a) through (c) for the highpass filter obtained by choosing -1 <
o < 0.
4.87 Sketch the magnitude and phase response o the multipath channel
y{n) = x(n) + axin — M) a>0

fora <<« 1.
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483 Determine the system functions and the pole-zero locations for the systemsshown in
Fig. P4.88(a) through (c). and indicate whether or not the systems are stable.

x(n) —s mn)

xn) vn)

ol

x(n) yin)

Figure P4.88

489 Determine and sketch the impulse response and the magnitude and phase responses
of the FIR filter shown in Fig, P4.89 for b =1and b= -1.

—

Figure P4.89

490 Consider the system
¥(n) = x(n) — 0.95x(n — 6)

(a) Sketch its pole-zero pattern.

(b) Sketch its magnitude response using the pole-zero plot.

(c) Determine the system function of its causal inverse system.

(d) Sketch the magnitude response of the inverse system using the pole-zero plot.
491 Determine the impulse response and the difference equation for al possible systems

specified by the system functions
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@ Ho)=1———=

_ .2
M

1
(b)H(Z)=W D<ag=<l

Determine the impulse response of a causal LTI system which produces the response
vin) = (l.-1.3.-1,6}
t

when excited by the input signal
x(m)=1{1.1,.2}
t

The system
viny = $vin = 1)+ x(n)
is excited with the input
x(n) ={(p)"u(n)
Determine the sequences r«.(!). ru (). r. (). and r,, ().

Determine if the following FIR systems are minimum phase
(a) A(n)=(10.9.-7.-8.0,5.3}
T

(b) A(n) =1{5.4,-3.-4.0.2.1}
t

Can you determine the coefficients of the al-pole system

1
HE = —
1+ Zakz“
k=1

if you know itsorder N and the values #{0), h(1), ..., h(L-1) of itsimpulse response?
How? What happens if you do not know N?

Consider a system with impulse response

h(n) = bpd(n) + b18(n — D)+ bad(n - 2D)
(@) Explain why the system generates echoes spaced D samples apart.
(b) Determine the magnitude and phase response of the system.

(c) Show that for |by + b;| << Ibi]. the locations of maxima and minima of }H ()
are at

w::thrr k=0.1,2,...
D
(d) Plot |H(w)| and % H{w) forby = 0.1, b, = 1. and b; = 0.05 and discuss the results.

Consider the pole-zero system
B(z) 1+br! & -
- . = z h n
H@ Alz)  l+az! 4 .

(a) Determine k(0}, k(1), #(2), and h(3) in terms of a and b.
(b) Let r4(} be the autocorrelation sequence of A(r). Determine ras(0), rax (1), ran(2),
and rs,(3) in terms of a and &.
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498 Let x(n) be area-valued minimum-phase sequence. Modify xtn) to obtain another
real-valued minimum-phase sequence v(n) such that »(0) = x(0) and »(#) = |xtn)|.

499 The frequency response of a stable LTI system is known to be real and even. Is the
inverse svstem stable?

4100 Let a(n) he areal filter with nonzero linear or nonlinear phase response. Show that
the following operations are equivalent to filtering the signal x(n1) with a zero-phase
filter.

(a) gn) = h{n)*xx(n)

fin) = hn) = g(—m
vin)y = fi=n)
by gim) = By ¥ xim

fimy = hin) * x(=m
v = gty f=n)
(Hint: Determine the frequency response o the composite system v(n} = Hx(n)].)
4.101 Check the validity of the following statements:
(a) The convolution of two minimum-phase sequences is always minimum-phase se-
quencc.
(b) The sum of two minimum-phase sequences is always minimum phase.
4.102 Determine the minimum-phase system whose squared magnitude response is given

byt

5

Z = COSar
B | 12—
(a) [Hw) T

9 L COS

. 200 —ah

b Hil~ = la] < 1

(i+a?) — 2acosw
4.163 Consider an FIR system with the following system function:

Hisy = (1 = 08¢ 70701 = 0.8¢7 7771 = 1307471 = 1577527

(a) Determine al systems that have the same magnitude response. Which is the
minimum-phase svstem?
(b) Determine the impulse response d all systems in part (a).
(c) Plot the partial energy
Einy = th(n]

k=it
for every svstem and use it 1o identify the minimum- and maximum-phase systems.
4104 The causal system

Hy =

is known to he unstable.
We modify this system by changing its impulse response h(n) to

hin)y = A"h{mu(n)
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(&) Show that by properly choosing 4 we can obtain a new stable system.
(b) What is the difference equation describing the new system?

4.105* Given a signal x(n), we can create echoes and reverberations by delaying and scaling
the signal as follows

oc

vin) = ng-x(" - kD)
k=4
where D is positive integer and g > g, —; > 0.
(a) Explain why the comb filter

Her=r=2
can he used asareverberator (i.e.. asa device to produce artificial reverberations).
(Hnt: Determine and sketch its impulse response.)

(b) The all-pass comb filter

=0

H(zy= =+

1—az=?

—da

is used in practice to build digital reverberators by cascading three to five such
fillers and properly choosing the parameters « and . Compute and plot the
impuisc response of two such reverberators each obtained by cascading three
sections with the following parameters.

UNIT 1 UNIT 2
Secion D a Section D a
1 50 07 1 50 07
2 40  0.665 2 17 077
3 32 0.63175 3 6 (.847

—~
)
~

The difference between echo and reverberation is that with pure echo there are
clear repetitions of the signal. but with reverberations, there are not. How is this
reflected in the shape of the impulse response of the reverberator? Which unit
in part (b) is a better reverberator?
If the delays D, D,. D; in acertain unit are prime numbers, the impulse response
of the unit is more "dense." Explain why.
(e) Plot the phase response of units 1 and 2 and comment on them.
(f) Plot #(n) for D;. D,. and D3 being nonprime. What do you notice?
More details about this application can be found in a paper by J. A. Moorer, "' Signa
Processing Aspects of Computer Music: A Survey,” Proc, |IEEE, vol. 65, No. 8, Aug.
1977. pp. 1108-1137.
4.106* By trial-and-error design athird-order lowpass filter with cutoff frequency at w. = n/9
radianstsample interval. Start your search with
(@ zi=u=zu=0.pp=r pp3=rev/* r=08
(b) r=09=n=5=-1

(d
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4,167 A speech signal with bandwidth B = 10 kHz is sampled at /; = 20 kHz. Suppose
that the signal is corrupted by four sinusoids with frequencies

Fi =10,000 Hz. Ff; =7778 Hz
F, = 8889 Hz. Fy = 6667 Hz

(a) Design a FIR filter that eliminates these frequency components.

(b) Choose the gain of the filter so that {H(0)| = 1 and then plot the log magnitude
response and the phase response of the filter.

(c) Does thefilter fulfill your objectives? Do you recommend the use of thisfilter in
a practical application?

4,108+ Compute and sketch the frequency response of a digital resonator with w = 7/6 and
r = 0.6.0.9,0.99. In each case. compute the bandwidth and the resonance frequency
from the graph, and check if they are in agreement with the theoretical results.

4.109* The system function d a communication channel is given by
Hz)y=(1— 0.9:"“'4"2_1)(1 _0'9e—jl)4n:—l)(] _ llsej‘lﬁfl‘:—l)(l _ l_se—jlllmz-l)

Determine the system function #,(z) of a causal and stable compensating system so
that the cascade interconnection of the two systems has a flat magnitude response.
Sketch rhc pole-zero plots and the magnitude and phase responses of al systemsin-
volved into the analysis process. [Hinr: Use the decomposition H (2) = Hup (2} Hmin(2).]



5

The Discrete Fourier
Transform: Its Propertiesand
Applications

Frequency analysis of discrete-time signals is usually and most conveniently per-
formed on a digital signal processor. which mayv be a general-purpose digital corn-
puter or specially designed digital hardware. To perform frequency analysis on a
discrete-time signal {x¢n}}. we convert tho time-domain scqucncc to an cquivalent
frequency-domain representation. Wc know that such a representation isgiven by
the Fourier transform Xi(w) of the scquencc {x(n)}. However. X(w) is a contin-
uous function of frequency and therefore. it is not a computationally convenient
representation of the sequence {xim)).

In thissection we consider the representation of a sequence {x(n)} by samples
of itsspectrum X (w). Such afrequency-domain representation leads to the discrete
Fourier transform (DFT). which is a powerful computational tool for performing
frequency analvsis of discrete-time signals.

5.1 FREQUENCY DOMAIN SAMPLING: THE DISCRETE FOURIER
TRANSFORM

Beforeweintroduce the DFT, we consider the sampling of the Fourier transform of
an aperiodic discrete-time sequence. Thus. we establish the relationship between
the sampled Fourier transform and the DFT.

5.1.1 Frequency-Domain Sampling and Reconstruction of
Discrete-Time Signals

We recall that aperiodic finite-energy signals have continuous spectra. Let us
consider such an aperiodic discrete-time signal x(n) with Fourier transform

X(w) = Z x(n)e™/@" (5.1.1)

n=-3
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Suppose that we sample X (w) periodically in frequency at a spacing of §w radians
between successive samples. Since X (w) is periodic with period 2. only samples
in the fundamental frequency range are necessary. For convenience. we take N
equidistant samples in the interval (¢ < w < 27 with spacing §w = 27 /N, as shown
in Fig. 5.1. First, we consider the selection of N, the number of samples in the
frequency domain.

if we evaluate (5.1.1) at w = 27k/N, we obtain

2x = —j2nkn/N
X{ k)= > xtme™ k=01.....N-1 (5.1.2)

n=—x¢

The summation in (5.1.2) can be subdivided into an infinite number of summations.
where each sum contains N terms. Thus

n - ) N=1
—k — jamkniN .
X ( N A) +"=§_Nx(n)e + E x(n)e /amkni

n=0

i

IN-1
+ Z X(”)‘,i)lnkn/h P

n=N

o INHN-]
— 2 : 2 : X(”)E;errku/h'
l=—x n=IN

If we change the index in the inner summation from » to » — /N and interchange
the order of the summation. we obtain the result

20 N & .
b <—k) => [ > xtn - {N):l emizmkn/N (5.1.3)
N n=0 {l=—&
fork=0,1,2..... N-— 1.
The signal

o<
Kl = Y x(n~IN) (5.14)
obtained by the periodic repetition of x(n) every N samples. is clearly periodic
with fundamental period N. Consequently. it can be expanded in a Fourier

X(w)

- (] kbw @ 1éwt 2m

Figure5.1 Frequency-domain sampling of the Fourier transform
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series as
N-1
xp(n) = Z oY =001, N-1 (5.1.5)
k=0
with Fourier coefficients
1 i
a= gx,,(n)e""’“ Wk =0,1....,N=1 (5.1.6)

Upon comparing (5.1.3) with (5.1.6). we conclude that

1. /2x
o= — —k k=0.1,..., N-1 5.1.7
Cr NX K N ) ( )
Therefore,
1 N-1 2 e
) = > x (%A) eITEIN =01 N =] (5.1.8)

k=0)

The relationship in {5.1.8) provides the reconstruction of the periodic signal
xptn) from the samples o the spectrum X (w). However. it does not imply that
we can recover X () or x(n) from the samples. T o accomplish this. we need to
consider the relationship between x, () and x(n).

Since x,(n) is the periodic extension of x(x) as given by (5.1.4). it is clear
that x(n) can be recovered from x,(n} if there is no aliasing in the time domain,
that is. if x(n) istime-limited to less than the period ~ of x,(n). This situation is
illustrated in Fig. 5.2. where without loss of generality. we consider a finite-duration

i“TTM.L .
Biiiee Imm,L Mtteee .
-M_UTmOthTmH---

Figure 5.2 Aperiodic sequence x{n) o length L and its periodic extension for
N > L (noaliasing) and N < L (aliasing).
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sequence x(n), which is nonzero in the interval 0 < n < L — 1. We observe that
when N > L.

x(n)y = x,(m O<n=<N-1

so that x(n) can be recovered from x,(n) without ambiguity. On the other hand.
if N < L. it is not possible to recover x(n) from its periodic extension due to tinie-
domai n aliasing. Thus. we conclude that the spectrum of an aperiodic discrete-time
signal with finite duration L. can be exactly recovered from its samples at frequen-
ciesw; = 2wk/N. if N = L. The procedure isto computex,(n).n=0. 1 .... N -1
from (5.1.8): then

xp(nd, O<n=<N~-1

5 [§
0. clsewhere (319

x(n) =

and finally. X (w) can be computed from (5.1.1).

Asin the case of continuous-timc signals. it is possible to express the spectrum
X (w) directly in terms of its samples X (2nk/N). k =0, 1..... N — 1. To derive
such an interpolation formula lor X (w), wc assume that ¥ > L and bhegin with
(5.1.8). Since x(n) = xpm) for 0 <n = A = 1.

Nl s
xny = — Z X ("—A) QRN O<n<N-—1 (3.1.10)

If we use (5.1.1) and substitute for x(z), we obtain

N1 N-1
1 2 5 .
X{(w) = _ X (_/\) ()/-ﬂn/f\ P
n=() ':N k=0 N <
Nel Nl (5.1.11)
- 2n 1= _. .
— = _ —jb=21k /N
=Y X < ~ A) [N doe J
k=0 n=0

The inner summation term in the brackets of (5.1.11) represents the basic
interpoiation function shifted by 2xk/N in frequency. Indeed. if we define

1= 11— /en
2 ~jen
P(w) N Z(" N 1—e¢iw 5
= (5.1.12)
N sin(w/2)

then (5.1.11) can be expressed as

N-1
X(m:ZX(%k)P(w—%k) N=>L (5.1.13)

k=0



398 The Discrete Fourier Transform: Its Properties and Applications  Chap. 5

The interpolation function P{w) is not the familiar (sinf)/¢ but instead. it
is a periodic counterpart of it. and it is due to the periodic nature of X (w). The
phase shift in (5.1.12)refiects the fact that the signal x(n) isa causal, finite-duration
sequence of length N. The function sin(wN/2)/(N sin{w/2}) is plotted in Fig. 5.3
for N = 5. We observe that the function P{w) has the property

21 1. A:O -
P(W‘)’[o. k=1.2.....N~-1 (5.1.14)

Consequently, the interpolation formula in (5.1.13) gives exactly the sample va-
ues X 2nk/N) for w = 27k/N. At al other frequencies, the formula provides a
properly weighted linear combination of the original spectral samples.

The following example illustrates the frequency-domain sampling o a
discrete-time signal and the time-domain aiasing that results.

Example 5.1.1
Consider the signal

xn) = a"uin) D<cu <l

The speetrum of this signal issampled at frequencies wy = 274/A. A =0.1..... N=1
Determine the reconstructed spectra for « = (0.8 when N =5 and & = 50.

Solution  The Fourier transform of the sequence x(n) is

= 1
Xiw) = " _
(w) §a ¢ papp—
Suppose that we sample X(w) at N equidistant frequencies w; = 2ak/A. k = 0,
1. . A" =1. Thus we obtain the spectral samples
27k 1 .
X“U”EX(T)sz_u(’:m k=0.1..... N1

w
-7 T
N=5 .
—-0.2] Figure 53 Plot of the function

[sin(wN /2)}/[N sinfw/2)].
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The periodic sequence x,(n), corresponding to the frequency samples X (2nk/N),
k=0,1,...,N =1, can be obtained from either (5.1.4) or (5.1.8). Hence

o 0

By =Y xtn-INy= Y o

i=—tc i=—oc

o a,,
a IN
a E a’ = O0<n<N-~1
1-a¥
=0

where the factor 1/(1 = a*) represents the effect of diasing. Since 0 < a < 1, the
aliasing error tends toward zero as N —~ oo.

For a = 0.8, the sequence x(n) and its spectrum X (w) are shown in Fig. 5.4a
and b, respectively. The aliased sequences z,(n) for ¥ = 5 and N = 50 and the
corresponding spectral samples are shown in Fig. 5.4c and d, respectively. We note
that the aliasing effects are negligible for N = 50.

If we define the aliased finite-duration sequence x(») as

- _ xp(n), O<n<N-1
*n) = {O, otherwise
then its Fourier transform is
N1 N-1
X(w) = Zi(n)e"“’" = Zxﬁ(n)e”“x
n={} n=()
1 1 —ghetwn

1—a¥ 1-ae v

Note that although X{w) # X(w). the sample values at w, = 2wk/N are identical.
That is,

5.1.2 The Distrete Fourier Transform (DFT)

The development in the preceding section is concerned with the frequency-domain
sampling of an aperiodic finiteenergy sequence x(z). In general, the equaly
spaced frequency samples X (27k/N), k =0,1,..., N—1, do not uniquely represent
the original sequence x(n) when x(») has infinite duration. Instead, the frequency
samples X (2xk/N), k =0, 1...., N — 1, correspond to a periodic sequence x,(n)
of period N, where x,(r) iS an aiased version of x(r), asindicated by the relation
in (5.1.4), that is,

oC

X =Y xn—IN) (5.1.15)

{=~oc

When the sequence x(n) has a finite duration d length L < N, then x,(n)
is simply a periodic repetition o x(z), where x,(n) over a single period is
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xtn) 4
1.0 1.0

»

mﬁM " A, L,
0 50 0 - o
(a) th
G .
i X(l\_ ;\)
i
. [ A=S
‘ ‘\
‘ : { . L]
AN=25 | 1
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5
Bn) \(—\l‘)
t.oe .
.
hﬁ%— .
43 50
()

Figure 5.4 (a) Plot of sequence xin) = (0.8)"u(n): (h)its Fourier transform (magnitude
only}): (c) effect of aiasing with A = 5. (d) reduced effect of aliasing with A = 50.

given as

x(m). O<sn=<Ll-~-1 (5.1.16)

pln) = (3 L<n<N-=-1

Consequently. the frequency samples X (2xk/N), k = 0. 1.....N — 1. uniquely
represent the finite-duration sequence x(n). Since x(n) = x,(n) over a single Pe-
riod (padded by ~¥ — L zeros). the original finite-duration sequence x(n) can b¢
obtained from the frequency samples {X (2k/N} by meansof the formula (5.1.8)-

It is important to note that zero padding does not provide any additional
information about the spectrum X(w) of the sequence {x(n)). The L equidis-
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tant samples of X(w) are sufficient to reconstruct X (w) using the reconstruction
formula (5.1.13). However, padding the sequence {x(n)} with N — L zeros and
computing an N-point DFT results in a "better display" o the Fourier transform
X(w).

In summary, a finite-duration sequence x{(n) of length L [i.e.. x(n) = 0 for
n <0 and n > L] has a Fourier transform

L-1
X =) xtme ™ 0<ws2n (5.1.17)
=0

where the upper and lower indices in the summation reflect the fact that x(n) =0
outside the range 0 < n < L — 1. When we sample X (w) at equaly spaced
frequencies wy, = 27k/N.k = 0,1 2..... N — 1L where N > L. the resultant
samples are

2wk 2 N
X (k) = x( ad ) =3 ximer sty

i
Nl n=0 (5.1.18)

Xty =3 x(me AN k=012, N 1
n={i
where for convenience. the upper index in the sum has been increased from L — 1
toN-1sincex(n)y=0forn>L.

The relation in (5.1.18) is a formula for transforming a sequence {x(n)} of
length L < N into a sequence of frequency samples (X (k}) of length N. Since
the frequency samples are obtained by evaluating the Fourier transform X (w)
at a set of ¥ (equally spaced) discrete frequencies. the relation in (5.1.18) is
caled the discrete Fourier transform (DFT) of x(x). In turn. the relation given
by (5.1.10). which alows us to recover the sequence x(n) from the frequency
samples

1 N1
— i 2kn /N — —
xim) = ;X(l\)e n=0.1...N~-1 (5.1.19)
is called the inverse DFT (IDFT). Clearly, when x(n) has length L < N. the N-
point IDFT yields x(n) =0 for L <n < N — 1. To summarize, the formulas for
the DFT and IDFT are

DFT
N1
X =3 xme ™M k=012, .N-1 (5.1.18)
=0
IDFT

1% ,
x(n) = = > Xkye N p=0,1,2,.. N =1 (5.1.19)
k=0
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Example5.1.2

A finite-duration sequence o length L isgiven as
x(n)—{l' O0<n<lL-1
1o, otherwise
Determine the N-point DFT of thissequence for N > L.

Solution The Fourier transform o this sequence is

L-1
X(w) = Zx(n)e""‘"

n={)

= ;V_je—/‘m _ 1 — piwt _ sin(wL/'Z)e—/w(L_u,z
pry 1— e sin{w/2)
The magnitudeand phase of X (w) areillustratedin Fig.55 for L = 10. The N-point
DFT of x{n) is smply X(w) evaluated at the set of & equally spaced frequencies
w, =2nk/N . k=0,1,....N -1 I|fence
] — t,—jZ)rkL/N
[ — ami2nk /N

X (k) k=0.1,....N-1

= Me~fnk(l-—l)/~
sin(wk/N)

[

Figure 55 Magnitude and phase
characteristics § the Fourier transform
for signal in Example 5.12.
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If N isselected such that ¥ = L. then the DFT becomes

L. k=0
Xk = [o. k=12.....L~1
Thus there is only one nonzero value in the DFT. This is apparent from ohser-
vation of X(w), since X(w) = O a the frequencies wy = 2wk/L, k # 0. The
reader should verify that x(n) can be recovered from X (k) by performing an L-point
IDFT.

Although the L-point DFT is sufficient to uniquely represent the sequence x(n)
in the frequency domain. it isapparent that it does not provide sufficient detail to yield
agood picture of the spectral characteristicsd x{r). If we wish to have better picture.
we must evaluate (interpolate} X (w) at more closely spaced frequencies. say a; =
2nk/N,where N > L. In effect.we can view this computation as expanding the size
of the sequence from L points [o N points by appending # — L zeros to the scquence
x(n). that is. zcro padding. Then the N-point DFT provides finer interpolation than
the L-point DFT.

Figure 5.6 provides a plot of the N-point DFT. in magnitude and phasc. for

= 10. N = 50. and N = 100. Now the spectral characteristics of the scquence
arc more clearly evident. as onc will conclude by comparing these spectra with the
continuous spectrum X (w).

5.1.3 The DFT as a Linear Transformation

The formulas for the DFT and IDFT given hy (5.1.18) and (5.1.19) may be ex-
pressed as

N-|

Xk =3 xmW k=01, N1 (5.1.20)
n=0
1 N-1
== KW =0,1.....N - 1.
x(n) = ém YWy n=01.....N-1 (5.1.21)

where, by definition,
Wy = e~ /2N (5.1.22)

which isan Nth root of unity.

We note that the computation d each point of the DFT can be accomplished
by N compiex multiplicationsand (¥ — 1) complex additions. Hence the N-point
DFT valuescan be computed in atotal of &% complex multiplicationsand N(N-1)
complex additions.

It is instructive to view the DFT and IDFT as linear transformations on
Sequences {x(n}} and {X ()}, r&spectlvely Let us definean N-point vector xy of
the signal sequencex(n), n =0, 1,. — 1, an N-point vector X, of frequency
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Figure56 Magnitudeand phaseof an N-point DFT in Example6.4.2; (a) L = 10,

N'=50; (b) L =10, N = 100.

samples,and an N x N matrix Wy as

r x(0)
x(1)
Xy = . N N =
Lx(¥N-1)
1 1 1... 1
1 Wy w2
Wy = W Wy
L 1 W,C.’ -1 va‘.” -

X(0)
X(1)

X(N-— 1)

wy-!
2(N-1)
WN

N-1N-D)
WN

Chap.5

(5.1.23)
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Figure 56  confinued

With these definitions, the N-paint DFT may be expressed in matrix form as

XN = WNxN (5.1-24)

where Wy is the matrix of the linear transformation. We observe that Wy is a

symmetric matrix. If we assume that the inverse of Wy exists, then (5.1.24) can
be inverted by premultiplying both sides by W3'. Thuswe obtain

xy = Wi'Xy (5.1.25)

But this is just an expression for the IDFT.
In fact, the IDFT as given by (5.1.21}, can be expressed in matrix form as

X = %W},XN (5.1.26)
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where W3, denotes the complex conjugate of the matrix Wy. comparison of
(5.1.26) with (5.1.25) leads us to conclude that

wy = %w;, (5.127)

which, in turn, implies that

WyWi = Ny (5.1.28)
where Iy is an N x N identity matrix. Therefore. the matrix Wy in the trans-
formation is an orthogonal (unitary) matrix. Furthermore, its inverse exists and

isgiven as W;,/N. Of course. the existence of the inverse of Wy was established
previously from our derivation of the IDFT.

Example5.U
Compute the DFT d the four-point sequence
xmy=(0 1 2 3)

Solution The first step is to determine the matrix W,. By exploiting the periodicity
property of ¥, and the symmetry property
WA‘+N/3 _ _Wf\,
N =W,

the matrix ¥, may he expressed as

.-le W:i le “fjl 1 1 1 1
W. — wyowlowlow; _ 1 wiowlow;
T weow2owdowe 1w oW ow:
Lwo wi we wo Towiowpow
r1o1 11
_|r -
1 -1 1 -1
L1 i -1 —j
Then
6
-242j
Xe=Wax=| 577
~2-2j

The IDFT d X4 may he determined by conjugating the elements in W to obtain W;
and then applying the formula (5.1.26).

The DFT and IDFT are computational tools that play a very important role
in many digital signal processing applications, such as frequency analysis (spectrum
analysis) of signals, power spectrum estimation, and linear filtering. The impor-
tance of the DFT and | OFT in such practical applications isdue to a large extent
on the existenced computationally efficient algorithms, known collectively as fast
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Fourier transform (FFT) algorithms,for computing the DFT and IDFT. Thisclass
of algorithmsis described in Chapter 6.

5.1.4 Relationship of the DFT to Other Transforms

In this discussion we have indicated that the DFT is an important computational
tool for performing frequency analysis of signals on digital signal processors. In
view of the other frequency analysis tools and transforms that we have devel-
oped, it isimportant to establish the relationshipsbetween the DFT to these other
transforms.

Relationship to the Fourier series coefficients of a periodic sequence.
A periodic sequence (x,(n)} with fundamental period N can be represented in a
Fourier series of the form

N-1
xp(n) = ZCkejz”"k/N ~00<n <00 (5.1.29)
k=(
where the Fourier series coefficientsare given by the expression
1 N-1 ) )
==Y xpme TN k=01, N1 (5.1.30)
N n=(

If we compare (5.1.29) and (5.1.30) with (5.1.18) and (5.1.19), we observe that the
formulafor the Fourier series coefficients has the form o a DFT. In fact, if we
definea sequence x(n) = x,(n), 0 <n < N =1, the DFT o thissequence issimply

X (k) = Nex (5.1.31)

Furthermore, (5.1.29) has the form d an IDFT. Thus the N-point DFT provides
the exact line spectrum of a periodic sequence with fundamental period N.

Relationship to the Fourier transform of an aperiodic sequence. We
have already shown that if x(n) isan aperiodicfinite energy sequence with Fourier
transform X (w), which issampled at ¥ equally spaced frequencies wy = 2wk/N,
k=0,1,..., N -1, the spectral components

o0
X(k) = X @lomzmtoy = 3 x(me™ PN k=01, N-1 (5132
n=—~-00
are the DFT coefficientsd the periodic sequence of period &, given by
00
xp(n) = Z x(n—IN) {5.1.33)
l=—00

Thus x,(n) is determined by aliasing {x{n)} over theinterval 0 <n < N=1 The
finite-duration sequence

o N xpn), Osn<N-1
X = 10‘: otherwise (5134
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bears no resemblance to the original sequence {x (n)}, unless x(n) isdf finite dura-
tion and length L < N, in which case

x{(n) = x{(n) O0<n<N-1 (5.1.35)
Only in this case will the IDFT of {X (k)} yield the origina sequence {x(n)}.

Relationship to the z-transform. Let us consider a sequence x(r) having
the z-transform

o
X@= Y xmz™ (5.1.36)
with a ROC that includes the unit circle. If X(z) is sampled at the N equaly
spaced points on the unit circle z; = ¢/2™*/¥ 0,1, 2,...,N - 1, we obtain
X(k) = X(2)|;meitrur k=01,...,N=1
= i x(")e-jZnnk,’N (5137)

n==00

The expression in (5.1.37) isidentica to the Fourier transform X (w) evaluated at
the N equally spaced frequencieswy, = 2nk/N. k =0, 1,.... N — 1, which isthe
topic treated in Section 5.1.1.

If the sequencex(n) hasa finiteduration of length N or less. the sequencecan
be recovered from its N-point DFT. Hence its z-transformis uniquely determined
by its N-point DFT. Consequently, X (z) can be expressed as a function o the
DFT {X(k)) asfollows

X@) =3 xtmz™"
n=(0
N—
Z X(k)ejZthn/N] "
k=0
N-—

N-1
X2y = = Z X(k) Y (elN )
k=l

n=0

=z

N=-1

X)) =

!LM
z|~

(5.1.38)

Z

1-z7% &= X (k)
X@) = N E T — e/2nk/N -1
When evaluated on the unit circle, (5.1.38) yields the Fourier transform of the
finite-duration sequence in terms of its DFT, in the form

1— eV 8] X (k)

1.39
N Le T el @2rk/N) (5.1.39)

X(w) =

Thisexpression for the Fourier transform isa polynomial (Lagrange) interpolation
formulafor X (w) expressedin terms of the values {X (k)} d the polynomial aa
=t of equally spaced discretefrequencieswy = 2xk/N,k =0, 1,....N = 1. With
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some algebraic manipulations, it is possible to reduce (5.1.39) to the interpolation
formula given previoudly in (5.1.13).

Relationship to the Fourier series coefficients of a continuous-time
signal. Suppose that x,(t) isa continuous-time periodic signal with fundamental
period T, = 1/F,. The signal can be expressed in a Fourier series

Xty =Y cpelimhho (5.1.40)

k=—oc

where {c;} are the Fourier coefficients. If we sample x,{(r) a a uniform rate
F, = N/T, =1/T, we obtain the discrete-time sequence

o0 oC
. ok nk
x(m) = x,0T) = Y cel?™T = N gypstminiN

k=—nc k=—oc

Vol | (5.1.41)
= Z |: z C.(-J'N] (JJZRM,’N
k=l [ ==
It is clear that (5.1.41) isin the form of an IDFT formula. where
X =N Y aun=Ng (5.1.42)

and
&=y Gy (5.1.43)

Thus the {&,} sequence is an aliased version df the sequence {c;}.

5.2 PROPERTIES OF THE DFT

In Section 5.1.2 we introduced the DFT as a set of N samples {X(k)} of the
Fourier transform X(w) for a finite-duration sequence {x(n)} of length L < N.
The sampling of X (w) occurs at the N equally spaced frequencies w; = 2wk/N,
k=0,1 2,....N — 1. We demonstrated that the N samples {X (k)} uniquely
represent the sequence {x(n)} in the frequency domain. Recall that the DFT and
inverse DFT (IDFT) for an N-point sequence {x(n)} are given as

N=-1

DFT: X(k) = ) x(mW§  k=0.1,....N -1 (52.1)
n=0
1 N-1 .

IDFT: x(n) = ﬁg)r(k)% n=01,...,N- 1 (522)

where Wy is defined as
Wy = e I2IN (5.2.3)
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In this section we present the important properties of the DFT. In view of the
relationships established in Section 5.1.4 between the DFT and Fourier series,
and Fourier transforms and :-transforms of discrete-time signals. we expect the
properties of the DFT to resemble the properties of these other transformsand
series. However, some important differences exist, one of which is the circular
convolution property derived in the following section. A good understanding of
these properties is extremely helpful in the application of the DFT to practica

problems.
The notation used below to denote the N-point DFT pair x(n) and X {k} is

x(n) 351 X k)

5.2.1 Periodicity, Linearity, and Symmetry Properties

Periodicity. If x(n) and X(k) are an N-point DFT pair, then
xtnt Ny==x(n) fordln (5.2.4)
X{k+ N)= X(k) for all k (5.25)

These periodicities in x¢ny and X (k) follow immediately from formulas (5.2.1) and
(5.2.2) for the DFT and IDFT, respectively.

We previously illustrated the periodicity property in the sequence x(n) for a
given DFT. However, we had not previously viewed the DFT X (k) as a periodic
sequence. In some applications it is advantageous to do this.

Linearity. |If
xi(n) S5 X, (k)
and
x2(m) S5 Xa(k)

then for any real-valued or complex-valued constants e; and a;,
a1 () + azxa(n) S a1 X (K) + a2 Xa(k) (5.2.6)

This property followsimmediately from the definition of the DFT given by (5.2.1).

Circular Symmetries of a Sequence. As we haveseen, the N-point DFT
of a finite duration sequence, x(n) of length L < N isequivalent to the N-point
DFT of a periodic sequence x,(n), of period N, which is obtained by periodically
extending x(n), that is,

o0

X =3 x(n—IN) (5.2.7
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Now suppose that we shift the periodic sequence x,(r) by k units to the right.
Thus we obtain another periodic sequence
o
xm=xn=k)= 3 x(n—k=~IN) (5.2.8)
Is—m

The finite-duration sequence
x;,(n), 0<n<N-1

x(n) = [0, otherwise

is related to the original sequence x(n) by a circular shift, This relationship is
illustrated in Fig. 5.7 for N = 4.

In general, the circular shift d the sequence can be represented as the index
modulo N. Thus we can write

x'(n) = x(n —k, modulo N)
x{(n = k)
For example, if k =2 and N = 4, we have
x'(n) = x((n—2))a

(5.2.9)

(5.2.10)

[}

which implies that
x'(0) = x((=2))4 = x(2)
(1) = x((-1))a =x(3)
x'(2) = x((0))4 = x(0)
x'(3) = x((1Na = x(1)

Hence x'(n} issimply x{n) shifted circularly by two units in time, where the coun-
terclockwise direction has been arbitrarily selected as the positive direction. Thus
we conclude that a circular shift of an N-point sequence is equivalent to a linear
shift d its periodic extension, and vice versa.

The inherent periodicity resulting from the arrangement of the N-point se-
quence on the circumferencedf a circle dictates a different definition of even and
odd symmetry, and time reversal o a sequence.

An N-point sequence is called circularly even if it is symmetric about the
point zero on the circle. Thisimpliesthat

x{(N —n)=x(n) l<n<N-1 (5.2.11)

An N-point sequence is caled circularly odd if it is antisymmetricabout the point
zero on the circle. Thisimpliesthat

x(N —n) = —x(n) l<n<N-1 (5.2.12)

Thetime reversal of an N-point sequenceis attained by reversingits samples
about the point zero on the cirdle. Thus the sequence x((—r))x issimply given as

x((~n))y=x(N—-n) 0=n=N-1 (5.2.13)
Thistime reversal isequivalent to plotting x(a) in a clockwisedirectionon acircle.
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Figure 57 Qrcuar shift d a sequence.

Chap. 5
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An equivalent definition of even and odd sequences for the associated peri-
odic sequence x,(n) is given as follows

even: x,(n) = xp(—n) =x,(N — n)

(5.2.14)
odd: xp(n) = =x,(=n) = —x,(N —n)
If the periodic sequence is complex-vaued, we have
conjugate even:  x,(n) = x;(N —
1 Xpln) = xp(N = m) (5.2.15)
conjugate odd: x,(n}) = —x,(N = n)
These relationships suggest that we decompose the sequence xp,(n) as
X,;(H) = xpr(") + Xpﬂ(n) (5~2-16)
where
Xpeln) = %[x,,(n) + x, (N — n)] 5217

Xpo(n) = 3[xp(m) = xp(N = )]

Symmetry properties of the DFT. The symmetry propertiesfor the DFT
can be obtained by applying the methodology previoudy used for the Fourier
transform. Let us assume that the N-point sequence x(n) and its DFT are both
complex vaued. Then the sequences can be expressed as

x(n) = xg(n) + jx;(n) 0<n<N-1 (5.2.18)
X(k) = Xe(k)+ jX; (k) O<ksN-1 (5.2.19)
By substituting (5.2.18) into the expression for the DFT given by (5.2.1), we obtain
Xgr(k) = :’Z;[xk(n) Cos%kn +x,(n)s'n27rNkn] (5.2.20)
N-1 wkn
Xi(k) = - ; [xn(n)sn — —x cos_l'_%c_] (5.221)

Similarly, by substituting (5.2.19) into the expression for the IDFT given by (5.2.2),
we obtain

k
xp(n) = — Xy (k) sin 2’; "] (52.22)

2I~'

xy(n) =

Zl

[ g ) g

[X r(k) cos

XR(k)Sn Z2 + X, (k) cos :g:bg] (5.223)

Real-valued sequences. If the sequence x(n) is redl, it follows directly
from(5.2.1) that

X(N —K) = X*(k) = X(= k) (5.2.24)
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Consequently, |X(N — k)| = |X()| and ZX(N — k) = —£X (k). Furthermore,
x;(n) = 0 and therefore x(n) can be determined from (5.2.22). which is another
form for the IDFT.

Real and even sequences. If x(») isrea and even, that is,
x(n) =x(N —n) 0<n<N-1
then (5.2.21) yields X, (k) = 0. Hence the DFT reducesto

2mkn

k O0<k<N-1 (5.2.25)
N

N-1
X(k) ="y x(n)cos
n=0

which is itsdf red-vaued and even. Furthermore, since X;(k) = 0, the IDFT
reducesto

N-—-1
x(n) = )IU Z X (k) cos 2rkn 0O<n<N-1 (5.2.26)
k=)
Real and odd sequences. If x(n) isreal and odd, that is,
x(n) = —x(N —n) O0<n<N- 1

then (5.2.20) yidds Xz (k) = 0. Hence

N-1
X(k):—jX:,\:(n)sinzer"m O<k<N-1 (5.2.27

n=0

which is purely imaginary and odd. Since X z(k} =0, the IDFT reducesto

2nkn

N-1
x(n) = j% g}((k)sin 0<n<N-1 (5.2.28)

Purely imaginary sequences. In thiscase, x(n) = jx;(n). Consequently,
(5.2.20) and (5.2.21) reduceto

N-1

Xp(k) = gx,(n)sin 2’;‘" (5.2.29)
N-1

Xp(ky = ; x1(m) cos 2”;" (5.230)

We observe that Xg(k) isodd and X;(k) is even.
If x;(n) is odd, then X,;(k) =0 and hence X (k) is purely real. On the other
hand, if x,(n) is even, then Xz (k) =0 and hence X (k) is purely imaginary.
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TABLES5.1 SYMMETRY PROPERTIES OF THE DFT

N-Point Sequence x(n).

O<n=snN-1 N-Point DFT
x(m) X (k)
x*(n) X*(N = k)
x*(N —n) X* (k)
xg(n) Xeolk) = HX k) X*(N = K)]
JXi(m) Xalky = §[X(k) = X" (N = k)]
Teeln) = [x(m) T x (N = )] Xg(k)
Xeo{n) = Hox(m) — x*(N = ) Xk
Redl Signals
Any rea signa X(k)=X"(N=-K
x(n) Xp(k)= Xp(N - %)

Xk ==X, (N-k)
1X (k)| = |X(N =D
LXKy = —LX(N = k)
Xeekn) = 3[x(m) + (N = )] Xr(k)
Xealm) = $[x () = X(N ~ )] JX k)

The symmetry properties given above may be summarized as follows:
x(n) = xh(n) + x;f(_n) + jxjim) +j_.r}’(n)
i DR (5.2.31)
X(k) = Xj(k) + X[k + jX5k) + X7 (h)
All the symmetry properties of the DFT can easily be deduced from (5.2.31). For
example, the OFT o the sequence
Xpe(n) = §[xp(m) F x5 (N = m)]

Xp(k) = X5(k) T X5 (k)

The symmetry properties d the DFT are summarized in Table 51. Ex-
ploitation d these properties for the efficient computation of the DFT o specia
sequences is considered in some o the problemsat the end of the chapter.

§.2.2 Multiplication of Two DFTs and Circular Convolution

Suppose that we have two finite-duration sequences of length N, x1(n) and xa(n).
Their respective N-point DFTs are

N-1
X =Y mme TN k=01, ,N-1 (5.2.32)

=0

N-1
Xak) = Y mpme N k=0,1,...,N -1 (52.33)



416 The Discrete Fourier Transform: Its Properties and Applications  chap. 5

If we multiply the two DFTs together, the result isa DFT, say Xa(k), of ase
guence x3(n) of tength N. Let us determine the relationship between x3(n) and
the sequences x;(n) and xz(n).

We have
Xa(k) = Xq (k) X2 (k) k=0,1,....N-1 (5.2.34)
The IDFT of {X1(k)} is
N-1
xs(m) = = 3 Xa(kper2rimM

N k=0
(5.2.35)

N-1

Il

1 - ikl
5 g X1 (k) X (K)ed2mkm/N

Suppose that we substitute for Xk} and X3¢k} in (5.2.35) using the DFTs given
in (5.2.32) and (5.2.33). Thus we obtain

N-1TN-1 N-1
Talm) = %Z [le(n)ejbrlmlﬂj] I:Zx:([)e—ﬂnk.'/ﬁ} el 2mkm /N

k=0 | n=0 =0

1 N1 N=1 N1 (5.236)
= — le(ﬂ) sz(l) [Z ej?.nk(m-n—[)/]v
N n=l) =0 =
The inner sum in the brackets in (5.2.36) has the form
=l N, a=1
DL L %1 (5.2.37)
ko T a

where a is defined as
a= eerr(m—n—l)/N

We observe that a =1 when m — n -/ isa multiple of N. On the other hand
aN =1 for any value of a # 0. Consequently, (5.2.37) reduces to

Eak =IN. I=m-n+pN=({m-m)x. paninteger (5.2.38)
0, otherwise

k=0

If we substitute the result in (5.2.38) into (5.2.36), we obtain the desired expression
for x3(m) in the form

N-1
xm =Y xmam-n)y m=01,.,N-1 (5239
n=0

The expressionin (5.2.39) has theform d a convolution sum. However, it is
not the ordinary linear convolution that was introduced in Chapter 2, which relates
the output sequence y(n) of a linear system to the input sequence x(n) and the
impulse response #(n). Instead, the convolution sum in (5.2.39) involves the index -
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((m —n))» and iscaled circular convolution. Thus we conclude that multiplication
of the DFTs of two sequences is equivalent to the circular convolution of the two
sequences in the time domain.

The following example illustrates the operations involved in circular convo-
lution.

Example 5.2.1
Perform the circular convolution of the following two sequences:
xn(n) = {2,1,2,1)
t

x(n) = {1,2,3,4)
t

Solution  Each sequence consists of four nonzero points. For the purposes of illus-
trating the operations involved in circular convolution, it is desirable to graph each
sequence as points on a circle. Thus the sequences x,{r) and x;(n) are graphed as
illustrated in Fig. 5.8(a). We note that the sequences are graphed in a counterclock-
wise direction on acircle. This establishes the reference direction in rotating one of
the sequences relative to the other.

Now, x3(m) is obtained by circularly convolving xi{n) with x2¢n} as specified by
(5.2.39). Beginning with m = 0 we have

(0 =) ximxa(=m)x
n=i}
x2({—n)})4 issimply the sequence xz(n) folded and graphed on acircle as illustrated in
Fig. 5.8(b). In other words, the folded sequence issimply x2(n) graphed in a clockwise
direction.

The product sequence is obtained by multiplying x;(n) with x;((—n})4. point by
point. This sequence is aso illustrated in Fig. 5.8(b). Finaly, we sum the vaues in
the product sequence to obtain

x3(0) =14

For m =1 we have
3

x() =Y xi(mx((1 - n)

=l

It is easily verified that x2((1 = n))4 is Simply the sequence x2{(~n)). rotated coun-
terclockwise by one unit in time as illustrated in Fig. 5.8(c). This rotated sequence
multiplies x,(n) to yield the product sequence, also illustrated in Fig. 5.8(c). Finaly,
we sum the values in the product sequence to obtain x3(1). Thus

13(1) =16
For m = 2 we have

3
1@ =Y nmx(2-m
n=0

Now x,((2 — n))4 is the folded sequence in Fig. 5.8(b) rotated two units d time in
the counterclockwise direction. The resultant sequence is illustrated in Fig. 5.8(d)
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Figure 58 Circular convolutiond two sequences.
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along with the product sequence x;{(n)x2((2 — n))s. By summing the four termsin the
product sequence, we obtain

x(2) =14

For m = 3 we have
3
B@) =Y xmxn(G -
A=
The folded sequence x2((~n))4 isnow rotated by three unitsin timeto yield x2((3—n))a
and the resultant sequence is multiplied by x,(r) to yield the product sequence as
illustrated in Fig. 5.8(¢). The sum of the valuesin the product sequence is
x33)=16
We observe that if the computation above is continued beyond m = 3. we
simply repeat the sequence of four values obtained above. Therefore, the circular
convolution of the two sequences xy(n) and x:(n) yields the sequence

x3(n) = {14, 16, 14, 16)
T

From this example, we observe that circular convolution involves basicaly
the same four steps as the ordinary linear convol ution introduced in Chapter 2
folding (time reversing) one sequence, shifting the folded sequence, multiplying the
two sequences to obtain a product sequence, and finally,sunmi ng the values of the
product sequence. The basic difference between these two types of convolution
is that, in circular convolution, the folding and shifting (rotating) operations are
performed in a circular fashion by computing the index of one of the sequences
modulo N. In linear convolution, there isno modulo N operation.

The reader can easity show from our previous development that either one
of the two sequences may be folded and rotated without changing the result of the
circular convolution. Thus

N-1
xm) =3 xmxlm-m)y m=01... N=1 (5.2.40)
n=0

Thefollowing example servesto illustrate the computation of x3(n) by means
of the OFT and | OFT.
Example 5.2.2
By means of the DFT and IDFT, determine the sequence x3(z) corresponding to the
circular convolution of the sequences x;(n) and x;(#) given in Example 52.1
Sl ution First we compute the DFTs of xi(n) and xx(n). The four-point DFT of
x1(n) is
3
Xik) = Y mme ™A =0,1,2,3
asl)

=24 g IR 4 27 IRk . o I3TER2



420 The Discrete Fourier Transform: fts Properties and Applications  Chap. 5

Thus
X1(0) =6 Xi1)=0 X12)=2 X,3)=0

The DFT o xa(n) is
3

Xo() = ) m(me B4 k=0,1,2,3
n=(
— 1+ 2pimk - 3o imk - 4, idnk N2
Thus
X2(0)=10 X;(1)=-2+ ;2 X22)= -2 X233y =-2-j2
When we multiply the two DFTs, we obtain the product
X3(k) = X, (k) X2(k)
or. equivalently,
X3(0) = 60 Xi3(1) =0 X3(2)=-4 X3(3) =0
Now, the | OFT of X3(k) is
xn) = ix;u:)eﬂ"“‘ n=0,123

kel
= 160 - 4e/™)
Thus
n0=14 x0)=16 u@=14 x3=16
which isthe result obtained in Example 5.2.1 from circular convolution.
We conclude this section by formally stating this important property o the
DFT.
Circular convolution. If

51 S5 X10)
aod
x2(m) 2> Xa(6)
then
DFT
x1(n) @ xatn) — X1 X200) (5.2.41)

where x1(n) ®) x2(n) denotes the circular convolution of the sequence x;(n) and
x2(n).
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xQ2) x(6}
x(5) x(7)

x(4) x(0)
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Figure 59 Timereversal d a sequence.

5.2.3 Additional DFT Properties

Time reversal of a sequence. If

x(n) P—NF-T» X (k)

then
2w = x(N =n) ZL X (=k)y = X(N - k) (5.2.42)

Hence reversing the N-point sequence in time is equivalent to reversing the DFT
values. Timereversal df a sequence x(n) isillustrated in Fig. 5.9.

Proof: From the definition o the DFT in (5.2.1) we have

N- | -
DFT{x(N —n)} = EX(N — pye—izmn/N
n=0

If we change the index from = tom = N — »n, then

N-
DFT{x(N —n)} = Zx(m)e'jz’”‘w""’/”

m=0

N=-1
—_ x(m)ejZ;rkm/N

m=0
N-] _

=Y x(m)eTTmW-RIN = X (N — k)
m=0

We note that X(N — k) = X((~k))n, 0 <k < N ~ 1.

Circular time shift of a sequence. |f

x(n) 255 X (k)
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then
x((n = DIn €55 X (k)e /2N

Proof. From the definition of the DFT we have

N-1
DFT{x((n —D)n} = ZX((,, — 1) e~ AmAnN
n=0

=1
=Y x((n—D)ye ¥
n=0

N-1

+ Z x{n — De~ImknIN

n=!
But x{(r — I))» = x(N — 1 *+n). Consequently,
-1

-1
ZJ((n — D)o tTRnIN Z"(N — | 4 n)e—i2mkn/N

n=0 n={)

N-1
— Z x(m)e—jbrk(m+{},’lv

m=N-{

Furthermore.

N-1 N=-1-

ZI(" — Dy J2mknIN Z x(m)e—iFmEUm+hiN
n=! m=0
Therefore,

N-1 .
DPT{X((n - [))} = Zx(m)e‘jhk(m+1)/’v
m=0
= X(k)e*jlﬂ&l/N

Circular frequency shift. If
x(n) 1%5 X (k)
then

x(me™ " 25 X (k= D

Chap, 5

(5.2.43)

(5.2.44)

Hence, the multiplicationof the sequence x(n) with the complex exponential se-
quencee/2**/¥ is equivalent tothecircular shift of the DFT by Z unitsin frequency.
Thisisthe dual to thecircular time-shifting property and its proof issmilar tothe

latter.
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Complex-conjugate properties. If
x(n) <35 X (k)
then
X' (1) S0 XM (=R = X' (N =) (5.2.45)

The proof o this property is |eft as an exercise for the reader. The IDFT of X*(k)
is

1 'E j2mkn /N 1 = f2nk(N—n) )
= Y XN = | =N X (k)TN N
N k=0 N k=0

Therefore,
x({(—n})n =x"(N —n) Pl Xk (5.2.46)
Circular correlation. In general, for complex-valued sequences x(z) and
y{m), if
x(n) < X (k)
and
¥(m) S5 Y (k)
then
FrolD) #0> Rey (k) = X (0)Y" () (5.2.47)

where 7,,(!) is the (unnormalized) circular crosscorrel ation sequence, defined as

N-1
P =3 x(m)y*((n = D)w
n=0

Proof: We can write Fr,(I) asthe circular convolution of x(n) with y*(—n),
that is,
@ =xO @@y (-

Then, with the aid of the propertiesin (5.2.41) and (5.2.46), the N-point DFT of
ny(l) is

Rey(K)= X (k)Y* (k)

In the special case where y(n) = x(n), we have the corresponding expression
for the circular autocorrelationd x{n),

EROR-LY MOT Ol (5.248)
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Multiplication of two sequences. If
nm £5 X ®
and
x(n) S5 Xok)
then
x1(n)x2(n) «"—N’l %xl ®) ® X2(k) (5.2.49)

Thisproperty isthe dua of (5.2.41). Its proof followssimply by interchanging
the rolesd time and frequency in the expression for the circular convolution d
two sequences.

Parseval'stheorem. For complex-vaued sequencesx(n) and y(n), in ger-
ed, if

x(n) PTVE X&)

and
y@) 25 ¥ (k)
then
N-1 1 N-1
3 xtytm =< Y XK K) (5.2.50)
n=0 N k=0

Proof The property followsimmediately from the circular correlation prop-
erty in (5.2.47). We have
Nt
x(m)y*(n) =7+ (0)
n=0
and

. 1 N=1 = .
Foyl) = 37 RyyyelhiN
k=0

1 N-1 )
=D XR)Y" (k)e N
N k=0
Hence (5.2.50) followsby evaluating the IDFT at / = 0.

The expressionin (5.2.50) is the general form of Parseval's theorem. In the
gpoecid case where y(r) = x(n), (5.2.50) reduces to

N-1 1 N-1
D@ == 3 1X®P (5.2.51)
nu k=
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Linear Filtering Methods Based on the DFT

TABLES5.2 PROPERTIESOF THE DFT

Property Time Domain Frequency Domain
Notation x(n), y(n) Xk}, Y (k)
Periodicity x(n)=x(n+N) Xk)=Xk+N)
Linearity aixi(n) +ayxz(n) @ X (k) +a; Xp(k)
Time reversal x(N —n) X(N -k
Circular time shift x((n=Dw X (kye—iTKN
Circular frequency shift x(n)eitrin¥ Xk —D)n
Complex conjugate x*(n) X*(N - k)
Circular convolution xim) ® xz(n) Xy (k) X2(k)
Circular correlation x(n) @ ¥ (—n) XYk
Multiplication of two sequences x1(n)xz(n) %X,(k) ® x2)

N-1

3 xnytm)

n=0

1 Mt
Parseval's theorem — E Xk)Y* (k)
N

which expresses the energy in the finite-duration sequence x{n) in terms o the
frequency components { X (£)].
The propertiesd the DFT given above are summarized in Table 5.2.

5.3 LINEAR FILTERING METHODS BASED ON THE DFT

Since the DFT provides a discrete frequency representation d a finite-duration
sequence in the frequency domain, it is interesting to explore its use as a com-
putational tool for linear system analysis and, especially, for linear filtering. We
have aready established that a system with frequency response H (w), when ex-
cited with an input signa that has a spectrum X (w), possessesan output spectrum
Y(w) = X (w)H (w). The output sequence y () is determined from its spectrum via
the inverse Fourier transform. Computationally, the problem with this frequency-
domain approach is that X(w), H(w), and Y(w) are functions o the continuous
variable w. Asaconsegquence, the computations cannot be done on a digital com
puter, since the computer can only store and perform computations on quantities
at discrete frequencies.

On the other hand, the DFT does lend itsdf to computation on a digita
computer. In the discussion that follows, we describe how the DFT can be used
to perform linear filtering in the frequency domain. In particular, we present
a computational procedure that serves as an aternative to time-domain convo-
lution. In fact, the frequency-domain approach based on the DFT, is compu-
tationally more efficient than time-domain convolution due to the existence of
efficient algorithms for computing the OFT. These algorithms, which are de-
scribed in Chapter 6, are collectively cdled fast Fourier transform (FFT) ago-
rithms,
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53.1 Use of the DFT in Linear Filtering

In the preceding section it was demonstrated that the product of two DFTs is
equivaenttothecircular convolution of the corresponding time-domainsequences.
Unfortunately, circular convolution is of no use to usif our objective is to deter-
mine the output o alinear filter to a given input sequence. In this case we seek
a frequency-domain methodology equivalent to linear convolution.

Suppose that we have a finite-duration sequence x(n) o length L which
excitesan H Rfilter of length M. Without lossof generality, let

x(n) =0, n<Qandn>L
h(n)=0, n<Oandn=M

where h(n) is the impulse response of the FIR filter.
The output sequence y(n) of the FIR filter can be expressed in the time
domain as the convolutionof x(n) and h(n), that is

M-1
ym) =3 htk)x(n - k) (531
k=0

Since h(n) and x(n) are finite-duration sequences, their convolution is also finite
in duration. In fact, the duration of y(n) isL +M-1
The frequency-domainequivalent to (5.3.1) is

Y(w)= X( 0} (w) (632
If the sequence y(n) is to be represented uniquely in the frequency domain by
samples o itsspectrum Y (w) at aset of discretefrequencies, the number of distinct
samplesmust equal or exceed L+ — 1. Therefore, aDFT o sizeN > L+ M -1,
is required to represent {y(n)} in the frequency domain.
Now if
Y (k) = Y{oMomani/v k=0,1,...,N-1
= X(0)H (@)|pe2niyn k=0,1,... N -1
then
Y)=X(KHE k=01,...,N=1 (5.3.3)

where {X(k)} and {H(k)} are the N-point DFTs of the corresponding sequences
x(m) and h{n), respectively. Since the sequences x(n) and h{n) have a duration
less than N, we simply pad these sequences with zeros to increase their length to
N. Thisincreasein the size of the sequencesdoes not alter their spectra X {(w) and
H (w), which are continuous spectra, since the sequences are aperiodic. However,
by sampling their spectraat N equally spaced pointsin frequency (computing the
N-point DFTs), we have increased the number of samples that represent these
sequences in the frequency domain beyond the minimum number (L or M, re-
spectively).
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Since the N = L+M = I-point DFT of the output sequence y(») issufficient
to represent y(n} in the frequency domain. it follows that the multiplication of the
N-point DFTs X (k) and H (), according to (5.3.3), followed by the computation
of the N-point IDFT, must yield the sequence {y(n)}. In turn, this implies that
the N-point circular convolution of x{(») with h{n) must be equivalent to the linear
convolution of x(z) with #(»). In other words, by increasing the length of the
sequences x(n) and k(n) to N points (by appending zeros), and then circularty
convolving the resulting sequences, we obtain the same result as would have been
obtained with linear convolution. Thus with zero padding, the DFT can be used
to perform linear filtering.

The following example illustrates the methodology in the use of the DFT in
linear filtering.

Example5.3.1
By mcans of the DFT and IDFT, determine the response of the FIR filter with impulse
response
hiny=1{1.2.3}
t

to the input scquence
x(ny=1{1.2,2.1)
1

Solution The input scquence has length L = 4 and the impulse response has length
M = 3. Lincar convolution of these two sequences produces a sequence of length
N = 6. Conscquently, the size of the DFTs must be at least six.

For simplicity wc compute eight-point DFTs. We should also mention that the
efficient computation of the DFT via the fast Fourier transform (FFT) algorithm is
usually performed for alength ¥ that is a power of 2. Hence the eight-point DFT of
x(n) is

.

Z x(n)e~/2rinM

A=0
= 14 267/ 4. 2pm IRy g i3RAN k=0.1,...,7

X&)

it

Thiscomputation yields

X =6 X(1)=2+ﬁ—j(4+3‘/§)
2 2
_ 4-3
XQ=-1-j  X@=2 ‘/5+j( ﬁ')
7} 2
X@) =0 X = Z“Zﬁ_j“_“;ﬁ

X(©)=—-14j XM=

2+42 (4432
7 I\
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The eight-point DFT d h(n) is
7
Hk) = ) hime™/2mton
n=l

— 1 -+ zefj:rklt + 3evprkf2
Hence
H©) = 6. H(1)=1+«/i—j(3+«/§),, H@)=-2-j2

HG) = 1-Ji+j(3-¢5), H4) =2
HE) = 1-&-;(3-«/5), H©) = -2+ j2

H()y = 1+Ji+j(3+J§)
The product of these two DFTs yields Y (k). which is

Chap.5

YO = 36, Y()=-14.07- j17.48 Y2)=j4 ¥(3)=0.07*+0.515
Y(4)=0, ¥Y(5) =0.07 — j0.515 Y(6) = —j4 Y(7) = —14.07 + j17.48

Findly, the eight-point IDFT is

7
vn) = Z YKo n=01.....7

k=)
This computation yields the result
y(n) ={1,4,9,11,8,3,0,0}
t

We observethat the first six valuesof y(n) constitute the set of desired output
values. The last two valuesare zero because we used an eight-point DFT and IDFT,

when, in fact. the minimum number of points required is six.

Although the multiplication of two DFTs corresponds to circular convolution
in the time domain, we have observed that padding the sequences x(n) and k(n)
with a sufficient number of zeros forces the circular convolution to yield the sane
output sequence as linear convolution. In the case of the H R filtering problem
in Example 5.3.1, it is a simple matter to demonstrate that the six-point circular

convolution of the sequences
h(ny =1{1,2,3,0,0,0}
t

x(n) = {1,2,2,1,0,0}
T

results in the output sequence
y(r) = {%, 4,9,11,8, 3}

which is the same sequence obtained from linear convolution.

(5.34)

(53.5)

(5.3.6
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It isimportant for usto understand the aliasing that resultsin the time domain
when the sizeof the DFTsissmaller than L+M —1. Thefollowingexample focuses
on the aiasing problem.

Example 532
Determine the sequence v(n) that resultsfrom the use o four point CFTs in Exam
ples.3.1.

Solution  The four-point DFT d h(n) is
3
H(k)= Y hmeszminss
=0

H{k) = 1+42¢7I™2 4 37/ =0,1,2,3
Hence
H({) =6, H(l)=-2-j2, H(2)=2, H(3)= -2+ ;2
The four-point DFT o x(n) is
X(k) = 142072 4 2e7Im L 3075742 ;2 0,1,2,3
Henee
X =6, X()y=-1-j X@2)=0. X@)=-1+j
The product d these two four-point OFTS is
YO =36 P(h=j4  FP2)=0. Y3 =-j4
The four-point IDFT yidds

k]
Sy = 1Y PheH n=01.2.3
k=0

1(36 4 jde/™t — j4ei3mni2)

Therefore,
y(n)=1{9,7.9,11}
t

The reader can vexify that the four-point circular convolution d k(n) with x(n)
yidds the same sequence §(n).

If we compare the result y(n), obtained from four-point DFTs with the se-
guence y(n) obtained from the use of eight-point (or six-point) DFTSs, the time-
domain aliasing effects derived in Section 5.2.2 are clearly evident. In particular,
y(4) is diased into y(0) to yield

JO) =y@ +y@d) =9
Similarly, y(5) is aliased into y(1) to yield
Y =y1)+y5) =7
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All other diasing has no effect since y(n) = 0 for n > 6. Consequently, we have
¥2) =y =9
Gy =y =1

Therefore, onty the first two pointsdf 3(n} are corrupted by the effect of aliasing
(ie., #(0) # y{0) and #(1) # y(1)]. This observation has important ramifications
in the discussion of the following section, in which we treat the filtering of long
sequences.

5.3.2 Filtering of Long Data Sequences

In practical applicationsinvolving linear filtering of signals, the input sequence
x(n) isoften a very long sequence. This is especialy true in some real-time signa
processing applicationsconcerned with signal monitoring and analysis.

Since linear filtering performed via the DFT involves operations on a block
o data, which by necessity must be limited in size due to limited memory o a
digital computer, a long input sgna sequence must be segmented to fixed-size
blocks prior to processing. Since the filtering is linear, successive blocks can be
processed one at a time via the DFT and the output blocks are fitted together to
form the overall output signa sequence.

We now describe two methodsfor linear A R filtering a long sequence on a
block-by-black basis usng the DFT. The input sequence is segmented into blocks
and each block is processed via the DFT and IDFT to produce a block o output
data. The output blocks are fitted together to form an overall output sequence
which isidentical to the sequence obtained if the long block had been processed
via time-domain convolution.

The two methods are called the overlap-save method and the overlap-odd
method. For both methods we assume that the H R filter has duration M. The
input data sequence is segmented into blocksdf L points, where, by assumption,
L >> M without loss o generality.

Overlap-save method. In this method the size o the input data blocksis
N =L*M -1and the size o the DFTs and IDFT are of length N. Each data
block consists of the last M — 1 data pointsof the previousdata block followed by
L new data points to form a data sequence of length N = 2+ M =1 An N-point
DFT is computed for each data block. The impulse response of the FIR filter is
increasedin length by appending L =1 zerosand an N-point DFT of the sequence
iscomputed once and stored. The multiplicationd the two N-point DFTs {H (k)}
and {X.(k)} for the mth block of data yields

Pul) = H®)Xn(k) k=01,....N—1 (5.3.7
Then the N-point | OFT yields the result
Y () = (FmOFn(1) - 5n (M = 1§ (M) - - 50 (N ~ 1)} (538
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Since the data record isof length ¥, the firet M — 1 pointsof y.(n) are corrupted
by aliasing and must be discarded. Thelast L pointsdf ya (#) are exactly the same
as the result from linear convolution and, as a consequence,

Ym(n) = ypn)n=M M+1, ..., N-1 (5.3.9

To avoid lossof datadueto diasing, thelast A —1 points of each data record
are saved and these points become the firs M = 1 data points of the subsequent
record, as indicated above. To begin the processing, the first M — 1 points of the
first record are set to zero. Thus the blocks of data sequences are

x1(n) =1{0,0,....0,x©), x(1). ..., x(L — 1)} (5.3.10)
e e
M~1 points
xam={x@-MtD, . x(L-1,x(L),....x2L-1} (5311
M-1 data pints L new data points
from xi(m

x3m) = (xQL~M+1).....xQL-1),xL),....x(3L—1)) (53.12)

M—1 data points L new data points
from x2(n)

and so forth. The resulting data sequences from the IDFT are given by (5.3.8),
where the firde M = | points are discarded due to aliasing and the remaining L
points constitute the desired result from linear convolution. This segmentation of
the input dataand thefittingdf the output data blocks together to form the output
seguence are graphicaly illustrated in Fig. 5.10.

Overlap-add method. In this method the size of the input data block is L
pointsand the size of the DFTs and IDFT isN =L+ M = 1. To each data block
we append M — 1 zerosand compute the N-point DFT. Thus the data blocks may
be represented as

x(n) = {x(0), x(1),...,x(L-1),0,0,...,0} (5.3.13)
N ——
M-1 zeros
xA)={xL),x(L+1),...,x2L -1),0,0,...,0} (5.3.14)
Nt o’
M—1 zeros
x3(n) = {x(2L),...,x(3L - 1),0,0,...,0} (5.3.15)
——— ottt
M~—1 zeros
and so on. The two N-point DFTs are multiplied together to form
Ym(k) = Hk)Xpm (k) k=0,1... . N-1 (5.3.16)

The IDFT yields data blocksof length N that are free of aiasing since the size of
the DFTs and IDFTis N = 2+ M —1 and the sequences areincreased to N-points
by appending zeros to each block.
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Input signal | L } Lt L—]
xy(n)
M-1
zeros M- L
X3(n)
/ X3(n)
/!

Output signal

7R
/

Discard 77
v 7R
points )
oW 7/
points
Discard
M-1 figure510 Linear FiR filtering by the
points overlap-save method.

Since each data block is terminated with M — 1 zeros, the tast M — 1 points
from each output block must be overlapped and added to the first M — 1 pointsd
the succeeding block. Hence this method is caled the overlap-add method. This
overlappingand adding yields the output sequence

y(n) = {(y1(0), y1(1), ..., (L = D, y1(L) + »2(0), (L + 1) +
M, ..o n(N =1+ ynM-1),nM),...}

The segmentation o the input data into blocks and the fitting o the output data
blocks to form the output sequence are graphicaly illustrated in Fig. 5.11.

At this point, it may appear to the reader that the use of the DFT in linear
H R filtering is not only an indirect method of computing the output of an FIR
filter, but it may also be more expensive computationally since the input data must
first be converted to the frequency domain via the DFT, multiplied by the DFT
d the FIR filter, and finally, converted back to the time domain via the IDFT.
On the contrary, however, by using the fast Fourier transform algorithm, as will
be shown in Chapter 6, the DFTs and IDFT require fewer computations to com-
pute the output sequence than the direct realization of the H R filter in the time

(53.17)
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Input data
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xy(n} //
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M-1
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M-1
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Output data
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o P 7
1opether
M-1 '/
pomh— /// Figure 5.11 Linear FIR filtering by the

together overlap-add method.

domain. This computational efficiencyis the basic advantage of using the DFT to
compute the output of an FIR filter.

54 FREQUENCY ANALYSIS OF SIGNALS USING THE DFT

To compute the spectrum of either a continuous-time or discrete-time signal, the
values o the signal for al time are required. However, in practice, we observe
signals for only a finite duration. Consequently, the spectrum of a signal can
only be approximated from a finite data record. In this section we examine the
implicationsof a finite data record in frequency analysis using the DFT.

If the signal to be analyzed is an analog signal, we would first pass it through
an antialiasing filter and then sample it at a rate F; > 2B, where B is the band-
width of the filtered signal. Thus the highest frequency that is contained in the
sampled signal is F;/2. Finally, for practical purposes, we limit the duration of
the signal to the time interval Ty = LT, where L is the number o samplesand T
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isthe sample interval. As we shall observe in the following discussion, the finite
observation interval for the signal places a limit on the frequency resolution; that
is, it limits our ability to distinguish two frequency components that are separated
by lessthan 1/7 = 1/LT in frequency.

Let {x(n)} denote the sequence to be analyzed. Limiting the duration of the
sequence to L samples, in the interval 0 <n < L — 1, isequivalent to multiplying
{x(n)} by a rectangular window w(n) of length L. That is,

x(n) = x(n)w(n) (5.4.1)

where
{1 0<n<L-1
win) = {0, otherwise

Now suppose that the sequence x(n) consists of a single sinusoid, that is,

(5.4.2)

x(n) = coswon (5.4.3)

Then the Fourier transform of the finite-duration sequence x(n) can be expressed
as

X(w) = 3[W(w - wp) + Wiw T wp)] (5.4.4)

where W (w) is the Fourier transform of the window sequence, which is (for the
rectangular window)

sin@l/2) _-np
——
sin(w/2)

To compute X (w) we use the DFT. By padding the sequence #(r) with N— L zeros,
we cancomputethe N-potat DFT of the truncated (L points) sequence {i(n)).
The magnltude spectrum {X (k)| = |X(we)| for ex = 2k/N, k =0, 1,...,N,is
illustrated in Fig. 5.12 for L = 25 and N = 2048. We note that the Wlndowed
spectrum X (w) is not localized to a single frequency, but instead it is spread out
over the whole frequency range. Thus the power of the original signal sequence
{x(n)} that was concentrated at a single frequency has been spread by the window
into the entire frequency range. We say that the power has"leaked out" into the
entire frequency range. Consequently, this phenomenon, which is a characteristic
of windowing the signal, is called leakage.

Ww) = (5.4.5)

" -— v

Mag itude

« Figure 50 Magnitude spectrum fa
L =25 and n = 2048, illugtratingthe
Frequency occurrenced leskage

~h
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Windowing not only distorts the spectral estimate due to the leakage effects,
it also reduces spectral resolution. To illustrate this problem, let us consider a
signal sequence consisting of two frequency components,

x(n) = coSwyn T cos wn (5.4.6)

When this sequence is truncated to L samples in therange ¢ < n < L - 1, the
windowed spectrum is

X @) = 3[Ww-w)+ Wew-w)+We+o) + W+ o) (547

The spectrum W(w) of the rectangular window sequence has itsfirst zero crossing
atw=2x/L. Now if jan — wp| < 2/L, the two window functions W(w — ;) and
W(w — un) overlap and, as a conseguence, the two spectral lines in x(n) are not
distinguishable. Only if (w; — @2) 2 2x/L will we see two separate lobes in the
spectrum X{w). Thus our ability to resolve spectral lines of different frequencies
is limited by the window main lobe width. Figure 5.13 illustrates the magnitude
spectrum [ X (w}}, computed via the DFT, for the sequence

x(n) = cOSwon + COSwyn + COS wrn (5.4.8)
B
6} L=25 4
3 8
2
M E 6t
o0
b3
2} M
2 -
0 A L )
-r - [} x T 2' X [)] x T
2 2 F
Frequency Frequency
(a) ®)
20 v
L = 100
15
L3
-1
2
S 10
]
=
5
2’ I 0 x T
2 2
Frequency

©)

Figure 5.13 Magnitude spectrum for the signal given by (5.4.8), as observed through a
rectangular window.
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where wy = 0.2, &y = 0227, and w; = 0.67. The window lengths selected are
L = 25,50, and 100. Note that ey and w; are not resolvable for L = 25 and 50,
but they are resolvable for L = 100.

Toreduce leakage, we can select a datawindow w(n) that has lower sidelobes
in the frequency domain compared with the rectangular window. However, aswe
describe in more detail in Chapter 8, a reduction of the sidelobes in a window
W{w) is obtained at the expense of an increase in the width of the main lobe of
W (@) and hence a loss in resolution. To illustrate this point, let us consider the
Hanning window, which is specified as

[$d-cos Zn), O<n<L-1
lo, otherwise

Figure 5.14 shows lf( (w)| for the window of (5.4.9). Its sidelobes are significantly
smaller than those of the rectangular window, but its main lobe is approximately
twice as wide, Figure 515 shows the spectrum of the signal in (5.4.8), after it is
windowed by the Hanning window, for L = 50, 75, and 100. The reduction of
the sideiobes and the decrease in the resolution, compared with the rectangular
window, isclearly evident.

For a general signal sequence {x(n)}, the frequency-domain relationship be-
tween the windowed sequence i (n) and the original sequence x (n) is given by the
convolution formula

(5.4.9

win) =
wn)

X(w) = L X(@W (o - 0)do (5.4.10)
2n J
The DFT of the windowed sequence i (r) is the sampled version of the spectrum
X( 0) .Thus we have

X (k)

X (@)lwm2ui/n

1 " 2k

— —_—— =01...,N—
zﬂ[”X(B)W(N o)de k=0 1
Just asin the case of the sinusoidal sequence, if the spectrum d the window is
relatively narrow in width compared to the spectrum X (w) of the signal, the win-
dow function has only a small (smoothing) effect on the spectrum X (w). On the
other hand, if the window function has a wide spectrum compared to the width of

(5.4.11)

6
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Figure 5.14 Magnitude spectrum of the
Frequency Hanning window.
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Figure 5.15 Magnitude spectrum o the signal in (5.4.8) as observed through a Hanning
window.

X (w), as would be the case when the number of samplesL issmall, the window
spectrum nasks the signal spectrum and, consequently, the DFT of the data re-
flects the spectral characteristicsof the window function. Of course, this situation
should be avoided.
Example 5.4.1

The exponential sgnal
e, 120
0, 1 <0
issampled at therate F = 20 samples per second, and a block of 100 samplesis used
to estimate its spectrum. Determine the spectral characteristicsd the signal x,(z} by
computing the DFT o the finiteduration sequence. Compare the spectrum o the
truncated discrete-time signal to the spectrumd the andog signdl.
Solution The spectrum o the andog signd is
1
1+ j2rF
The exponentia analog signal sampled at the rate of 20 samples per second yidds

X (8) = [

Xo(F) =
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the sequence
x(n) = e T =~ /B, n>0

= (e"17H" = (0.95)", n=>0
Now, let
095", 0=n=<9P
0, otherwise
The N-point DFT d the L = 100 point sequence is

x(n) =

9
Ry =) ime N k=0.1,...,N-1
kwl)

Chap. 5

To obtain sufficient detail in the spectrum we choose N = 200. This is equivalent to

padding the sequence x{n) with 100 zeros.

The graph of the analog signal x,(¢) and its magnitude spectrum |X,(F)| are
illustrated in Fig. 5.16{a) and (b), respectively. The truncated sequence x(») and its
N = 200 point DFT" (magnitude) are illustrated in Fig. 5.16(c) and (d), respectively.

-t
s

" " i e n i "

-50 -4 -30 -20 -10 0 10 20 30 40 50

(b)

Figwe 56 Hfat o windowing(truncating) the sampled version d the anal og

sigd in Example5.4.1.
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T n=0,1,...99
otherwise

x(n) = x,(nT) = {;

|”]”|”]HIIHH|nmm....nvwm.,_____,,
60 80 100
(¢)

Xk

0

40 60 80 100 120 140 160 180 200
(e)

Figure 116 Continued

In this case the DFT {X (k)} bearsa close resemblanceto the spectrum of the analog
signal. The effect of the window function isrelatively small.

Qn the other hand, suppose that a window function of length L = 20 is selected.
Then the truncated sequence x(n) is now given as

_ [ 0.95)", 0=<n=<19

xn)y= 0, otherwise
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Its N = 200 point DFT is illustrated in Fig. 5.16(e). Now the effect d the wider
spectral window function is clearly evident. First, the main peak is very wide as a
result of the wide spectral window. Second, the sinusoidal envelope variations in the
spectrum away from the main peak are due to the large sidelobes of the rectangular
window spectrum. Consequently, the DFT is no longer a good approximation of the
analog signal spectrum.

5.5 SUMMARY AND REFERENCES

The major focusdr thischapter wason the discrete Fourier transform, itsproperties
and its applications. We developed the DFT by sampling the spectrum X (w) of
the sequence x(r).

Fregquency-domain sampling of the spectrum d a discrete-time signd is par-
ticularly important in the processing of digital signals. Of particular significance
is the CFT, which was shown to uniquely represent a finite-duration sequence in
the frequency domain. The existence of computationally efficient algorithmsfor
the DFT, which are described in Chapter 6, make it possible to digitaly process
signasin the frequency domain much faster than in the time domain. The pro-
cessing methodsin which the OFT is especially suitable include linear filtering as
described in thischapter and correlation, and spectrum analysis, which are treated
in Chapters 6 and 12. A particularly lucid and concise treatment o the DFT and
its application to frequency analysisis given in the book by Brigham (1988).

PROBLEMS

51 The first five points of the eight-point DFT of a real-valued sequence are (0.25,
0.125-0.3018,0, 0. 125 - 0.0518, 0}. Determine the remaining three points.
52 Compute the eight-point circular convolution for the following sequences.
(a8) x(n) =1(1,1,1,1,0,0,0,0}
x2(n) = sin-éin 0sn<?
M) xi(n) = (3 0<n<7
xz(n)=cos—81n 0<n=<?
(c¢) Compute the DFT of the two circular convolution sequences using the DFTs of
xi(n) and xz{n).
53 Let X(k), 0 <k < N-1, bethe N-point DFT of the sequence x(n), 0 <n < N—1
We define
X(k), O=<k=<k,N-k <ksN-1
0, ke<k<N-k

and we compute the inverse N-point OFT of X(k), 0 5k < N —1, What is the effect
d this process on the sequence x(n)? Explain.

Xy =
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5.4

55

5.6

57

58

810

For the sequences
2 2

xn{n)=cosWn 12(H)=S|n—N—n 0<n=<N_-1
determine the N-point:
(a) Circular convolution x (n) &) x2(n)
(b) Circular correlation of xy(r) and x2(n)
(¢) Circular autocorrelation of x;(n)
(d) Circular autocorrelation of xz(n)

Compute the quantity

N-1
Zn (n)xz(n)
nx=l)

for the following pairs of sequences.
(a) x.(n):xz(n)=cos-/—v7—r-n 0<sn=N-1

2 2
(b) Xl(")=COS-—:-n xz(n)ZSinT\lJI-n 0<n<N-1
© xim)y=sm)+t8(r-8) xa(n)=uln) = uln — N)
Determine the N-point DFT of the Blackman window
2nn dstn
N1 +0.08cosN_]
If X (k) isthe DFT of the sequence x(n), determine the N-point DFTs of the sequences

w(n} = 0.42 — 0.5cos O<n<N-1

x,(n)=x(n)cosz-nTkn O<n<N-1

and
2mkn
N

xs(n) = x(n)sin 0gn<sN-1

in terms of X (k).
Determine the circular convolution of the sequences

xy(n) ={1,2,3,1}
T

x2(n) = {4,3,2,2)
T

using the timedomain formula in (5.2.39).

Ube the four-point DFT and | OFT to determine the sequence
x3(n) = x1(n) @xz(n)

where x;(n) and x;(n) are the sequence given in Problem 5.8.

Compute the energy of the N-point sequence

x(n)=oos¥ O<n<N-1
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511 Given the eight-point DFT of the sequence

x(n)=[l. 0=<n=<3
0, 4=<n=<?
compute the DFT of the sequences:

[1. n=0
®) x;(n):iO, l<n<4

1, S5<n<?

0, O0<n<1l
(b) xz(n)={1, 2<n<s5
0, 6<n=<?
512 Consider afinite-duration sequence

x(n)=10,1.2,3.4)
t

(a) Sketch the sequence s(n) with six-point DFT
Sthy=Ww;X(k) k=0.1.....6
(b) Determine the sequence y(n} with six-point DFT Y (k) = Re| X (k)}.
(c) Determine the sequence v(n) with six-point DFT V (k) = Im | X (k)|.
5W Let x,(n} be a periodic sequence with fundamental period N. Consider the [ollowing
DFTs:

Xp(n) 2= X, (k)
N

) «‘:—;’» X3(k)

(a) What is the relationship between X, (k) and X:(k)?
(b) Verify the result in part (a) using the sequence
xp(m)={(--1.2,1,2,1,2,1.2--)
)

514 Consider the sequences
x(n) =10,1.2,3,4}  xm=1{01.00.0 sn)=(1.0.0.00
t t t

and their 5-point DFTs.

(a) Determine a sequence y(n) so that Y (k) = X (k) X2 (k).

(b) Isthere a sequence x3(n) such that S(k) = X;(k)X3(k)?
515 Consider a causal LTI system with system function

1

H@ = 55
The output y(n) of the system is known for 0 < n < 63. Assuming that H(z) is
available, can you develop a 64-point DFT method to recover the sequence x(n),
0 < n <63? Can you recover all values of x(n) in thisinterval?

5.16* The impulse response of an LTI system is given by h(n) = 8(n} — {5(n — k). To
determine the impulse response g(n) of the inverse system, an engineer computesthe
N-point DFT H(k), N = 4k, d h(n) and then defines g(n) as the inverse DFT of
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Gk)=1/Hk),k =0,1.2,.... ¥N=1. Determine g(n) and the convolution h(n)*g(n),
and comment on whether the system with impulse response g(n) is the inverse of the
system with impulse response k(n).

8.17* Determine the eight-point DFT of the signal

x(n)=1{1,1,1,1,1,1,0,0}

and sketch its magnitude and phase.
5.18 A linear time-invariant system with frequency response H(w) is excited with the
periodic input

xm) =Y bn—kN)
k=—0c
Suppose that we compute the N-point DFT Y (k) of the samples y(n), 0 <n <N =1
of the output sequence. How is Y (k) related to H(w)?
519 DFT d real sequences with special symmetries

(a) Using the symmetry properties of Section 5.2 (especialy the decomposition prop-
erties), explain how we can compute the DFT of two real symmetric (even) and
two real antisymmetric (odd) sequences simultaneously using an N-point DFT
only.

(b) Suppose now that we are given four real sequencesx;{n), i =1, 2, 3, 4, that are
al symmetric [i.e.. x;(n) = x:{N —n),0 <n < N = 1]. Show that the sequences

simy=xi(n+1)—xi(n-1)

are antisymmetric [i.e., s;(n) = —s;(N — n) and s;(0) = 0}.

(c) Form asequence x(r) using x1{n), x2(n), s3(n), and s4(n) and show how to compute
the DFT X;(k) of x;(n), i =1, 2. 3,4 from the N-point DFT X (k} of x(n).

(d) Are there any frequency samplesof X;(k) that cannot be recovered from X (k)?
Explain.

520 DFT d real sequences with odd karmonics only Let x(r) bean N-point real sequence
with N-point DFT X (k) (N even). In addition, x(n) satisfies the following symmetry
property:

N N
x(n+—2-)=—x(u) n:O,l,...,f—l

that is, the upper half of the sequence is the negative of the lower half.
(@ Show that

X(k) =0  keven

that is, the sequence has a spectrum wi th odd harmonics.

(b) Show that thevalues of this odd-harmonic spectrum can be computed by evaluat-
ing the N/2-point DFT of a complex modulated version of the original sequence
x(n).

521 Let x,(f) be an analog signa with bandwidth B = 3 kHz. We wsh tousea ¥ = 2"-
point DFT to compute the spectrum of the signa w th a resolution less t han or equat
to 50 Hz. Determine (a) the nini num sampling rate, (b) the minimum nunber of
required samples, and (c) the m ni mumlength of the analog signal record.
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Consider the periodic sequence

x,(n) = €OS - <n <o

—n
10
with frequency fo = % and fundamental period N = 10. Determine the 10-point
DFT of the sequence x(n) = x,(n), 0 <n<N-1
Compute the N-point DFTs of the Sgnds
(®) x(n)=48(n)
(b) x(my=48(rn—ng) 0 <no<N
) x(my=a™ O0=<n=<N-1
1, 0<n<N/2-1(N even)
@ x(m) = [o. NR<n<N-1
(&) x(M=e/@/M Q<n<N-1

[{3] x(n)=cos7kgn O0<n<N-1

(® x(n):sin%v;—rkon O<n<N-1

() x(n) = {1’ » even
’ nodd 0srn<N-1
Consider the finite-duration signal
x(n)=1{1,2,3,1}
(a) Compute its four-point DFT by solving explicitly the 4-by-4 system d linear
equations defined by the inverse DFT formula
(b) Check the answer in part (a) by computing the four-point DFT, using its defini-
tion.

(@) Determine the Fourier transform X (w) of the signal
x(n)=11,2,3,2,1,0}
1

{b) Compute the 6-point DFT V (k) d the signa
v(n)=(3,2,1,0,1,2)

(c) Isthere any relation between X (w) and V(k)? Explain.

Rove the identity

i sn+IN) = % gdm/"’“
=

=0
(Hint: Find the DFT of the periodic signal in the left-hand side.)
Compuuation of the even and odd harmonics wing the DFT Let x(n) be an N-point
sequence with an N-point DFT X (k) (N even)
(a) Consider the time-aliased sequence

o) = I-Z“x(n+lM), O<n<M-1
0, elsewhere
What is the relationship bet ween the M-point DFT Y (k) of y(n) and the Fourier
transform X (w) d x(n)?
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(b) Let

y(n)glx(n)+x(n+%). 0<n=<N-1
0, elsewhere

and
yim) 25 v
N2

Show that X(lc)= Y(kﬂ), k = 2,4,..., N -2
(¢) Use the resultsin parts (a) and (b) to develop a procedure that computes the
odd harmonics of X (k) usng an N/2-point DFT.

5.28* Frequency-domainsampling Consider the following discrete-time signal

_[e" In| < L
“m’[& | > L
wherea =095and L =10
(@) Compute and plot the signa x(n).
(b) Show that
oo L
X@ =Y x(me = x(0) +2Y_ x(n) coswn

n=—0C n=1

Plot X (w) by computingit atw = mk/100, £ =0, 1,...,100.

(¢} Compute
1 2r
Ck=ﬁx(wk) k=0.1,....N—}
for ¥ = 30

(d) Determine and plot the signal

N-1

i(n) = qum"’"m
k=0

What is the relation between the signals x(z) and %(n)? Explain.
(e) Compute and plot the signal z;(r) = Eﬁ_m x(n—IN),-L<n=<LforN=30
Compare the signals x(n) and £;(n).
(f) Repeat parts (c) to () for N = 15.
529* Frequency-domain sampling The signal x(n) = ", -1 < a < 1 has a Fourier
transform
1-a4*
1-2acosw +a?
(@) Plot X(w)for0<w <2r,a=08.
Reconstruct and plot X (w) from its samples X (2xk/N),0 <k < N — 1 for:
(b) N=20
() N=100
(d) Compare the spectra obtained in parts (b) and (c) with the origina spectrum
X{w) and explain the differences.
(e) Ilustrate the time-domain aliasing when N = 20.

X(w) =
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5.30* F_re(ltljency analysis d amplitudemodulated discretetime signal  The discrete-time
sign
’ x(n) = cos2x fyn T cos 27 fon
where fi = % and /2 = g5. modulates the amplitude o the carrier
x.(n) = cos2mfon
where f, = ,-5-% The resuiting amplitude-modulated signd is
Xam(n) = x(n) COS2n fon

(a) Sketch the signals x(n), x-(r), and xam(n), 0 < n < 255.

(b) Compute and sketch the 128-point DFT of the signd xum(n). 0 < n <127.

(c) Compute and sketch the 128-point DFT of the signal xam(n), 0 <n < 99.

(d) Compute and sketch the 256-point DFT of the signal xam(n). ¢ < n < 179,

(e) Explain the resultsobtained in parts (b) through (d), by deriving the spectrum of
the amplitude-modulated signal and comparing it with the experimental results.

5.31* The sawtooth waveform in Fig. P5.31 can be expressed in the form of a Fourier series
as
x(1) = % (sinm - %sian + %sinSm - %sinl#m )

(a) Determine the Fourier series coefficients c;.

(b) Use an N-point subroutine to generate samples of thissignal in the time domain
using the first six terms of the expansion for N == 64 and N = 128. Plot the signal
x(ry and the samples generated, and comment on the results.

x

AN A .

7 ,,Vr 1[/2 V
-1 Figure P5.31

532 Recall that the Fourier transform of x(f) = e/ is X(j&) = 278(Q — S%) and the
Fourier transform of
0<t=Th

= [ 1,
po= 0, otherwise

Sin QT2 Y
QT2

(a) Determine the Fourier transform Y (j) of
Y@} = p(r)e’™
and roughly sketch |¥ (j €2 versus Q.

PUD=To
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{(b)

©

(d

=

(e)
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Now consider the exponential sequence
x(n) = /0"

where ay is some arbitrary frequency in the range 0 < ap < n radians. Give the
most general condition that wy must satisfy in order for x(n) to be periodic with
period P (P is a positive integer).

Let y(n) be the finite-duration sequence

¥(n) = x(m)ww(n) = ™ wy(n)

where wy(n) is a finite-duration rectangular sequence of length N and where
x(n) is not necessarily periodic. Determine ¥ (@) and roughly sketch |¥ (w)| for
0 < w < 2rx. What effect does ¥ have in |¥Y(w)|? Briefly comment on the
similarities and differences between |¥ (&)} and Y (j ).

Suppose that

x(n) = /@ /P P a positive integer
and
y(n) = wuln)x(n)

where N = /P, 1a positive integer. Determine and sketch the N-point DFT of
¥(n). Relate your answer to the characteristics of |Y{(w)l.

Isthe frequency sampling for the DFT in part (d) adequate for obtaining a rough
approximation of |¥ (w)i directly from the magnitude of the DFT sequence {Y (k)|?
If not. explain briefly how the sampling can be increased so that it will be possible
to obtain a rough sketch of |¥ (w)| from an appropriate sequence |¥ (k).



Efficient Computation of the
DFT: Fast Fourier Transform
Algorithms

As we have observed in the preceding chapter. the Discrete Fourier Transform
(DFT) plays an important role in many applications of digital signal processing,
including linear filtering, correlation analysis. and spectrum analysis. A major
reason for its importance is the existence of efficient algorithms for computing the
DFT.

The main topic of this chapter is the description of computationally efficient
algorithmsfor evaluating the DFT. Two different approachesare described. Oneis
a divide-and-conquer approach in which a DFT of size N, where N isa composite
number, is reduced to the computation of smaller DFTs from which the larger
DFT is computed. In particular, we present important computational agorithms,
caled fast Fourier transform (FFT) algorithms, for computing the DFT when the
size N is a power of 2 and when it isa power of 4.

The second approach is based on the formulation of the DFT as a linear
filtering operation on thedata. Thisapproach leads to two algorithms, the Goertzel
algorithm and the chirp-z transform algorithm for computing the DFT via linear
filtering of the data sequence.

6.1 EFFICIENT COMPUTATION OF THE DFT: FFT ALGORITHMS

In this section we present several methods for computing the DFT efficiently.
In view of the importance of the DFT in various digital signal processing ap-
plications, such as linear filtering, correlation anaysis, and spectrum analysis, its
efficient computation is a topic that has received considerable attention by many
mathematicians, engineers, and applied scientists.

Basicdly, the computational problem for the DFT istocomputethe sequence
{X(k)} of N complex-valued numbers given another sequence of data {x(n)} of

448
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length &, according to the formula

N-1
Xk = Zx(n)w;t.” 0<k<N-1 6.1.1)
n=0
where
Wy = eIV 6.1.2)

In general, the data sequence x(n) is also assumed to be complex valued.
Similarly, the IDFT becomes

1 N-1 o
x(n)ﬁﬁgm)w,, K 0<n=N-1 (6.1.3)

Since the DFT and IDFT involve basically the same type of computations, our
discussion of efficient computational algorithmsfor the DFT applies aswell to the
efficientcomputation of the IDFT.

We observe that for each value o k, direct computation of X (%) involves
N complex multiplications (4N real multiplications) and N — 1 complex additions
(4N -2 real additions). Consequently,to computeal N valuesof the DFT requires
N? compiex multiplicationsand ¥? — N complex additions.

Direct computation of the DFT is basicdly inefficient primarily because it
does not exploit the symmetry and periodicity properties o the phase factor Wy.
In particular, these two properties are:

Symmetry property: WeY? = —wk (6.1.4)
Periodicity property: WxtY = wi (6.15)

The computationally efficient algorithmsdescribed in this section, known collec-
tively asfast Fourier transform (FFT) algorithms, exploit these two basic properties
o the phase factor.

6.1.1 Direct Computation of the DFT

For a complex-valued sequence x(n) of N points, the DFT naly be expressed as

N1 2nkn
Xg(k) = "2 [xk(n)cos ZﬂTkn + x;(n)sin (6.1.6)
fakal} . 2mkn
X)) =~ Zg; [Ik(n)sn ~N x:(“)coség‘:] 6.1.7)

The direct computation of (6.1.6) and (6.1.7) requires:

1 2N? evaluationsdf trigonometric functions.
2 4N2 rea multiplications.



450 Efficient Computation of the DFT: Fast Fourier Transform Algorithms Chap. 6

3 4N(N -1) red additions.
4. A number of indexing and addressing operations.

These operations are typical of DFT computational algorithms. The operations
in items 2 and 3 result in the DFT values Xg(k) and X,;(k). The indexing and
addressing operations are necessary to fetch the data x(n), 0 <n < N-1, and
the phase factors and to store theresults. The variety of DFT algorithms optimize
each of these computational processes in a different way.

6.1.2 Divide-and-Conquer Approach to Computation of
the DFT

The development of computationally efficient algorithmsfor the DFT is made pos
sible if we adopt a divide-and-conquer approach. This approach is based on the
decomposition of an N-point DFT into successively smaller DFTs. This basic ap-
proach leadsto a family of computationally efficient algorithms known collectively
as FFT algorithms.

To illustrate the basic notions, let us consider the computation of an N-point
DFT, where N can be factored as a product of two integers, that is.

N=LM (6.1.8)

The assumption that & is not a prime number is not restrictive. since we can pad
any sequence with zeros to ensure a factorization of the form (6.1.8).

Now the sequence x(n), 0 < n < N — 1, can be stored in either a one-
dimensiona array indexed by n or as a two-dimensional array indexed by 1 and
m,where0 </ <L-1land0<m <M —1asillustrated in Fig. 6.1. Note that 1is
the row index and m is the column index. Thus, the sequence x (r) can be stored
in a rectangular array in a variety of ways, each of which depends on the mapping
of index n to the indexes (f, m).

For example, suppose that we select the mapping

n=Mi+m (6.1.9)

Thisleadsto an arrangement in which the first row consists of thefirst 4 elements
of x(n), the second row consists of the next M elements of x(n), and so on, &
illustrated in Fig. 6.2(a). On the other hand, the mapping

n=1I+mlL (6.1.10)

stores the first L elements d x(r) in the first column, the next L elementsin the
second column, and so on, asillustrated in Fig. 6.2(b).

A similar arrangement can be used to store the computed DFT values. In
particular, the mapping is from the index k to a pair of indices (p,q), where
O<ps<lL-land0=qg=M-L1 If weselect the mapping

k=Mp+gq (6.1.11)
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n—- 0 | N-1
x(0) x(1) x(2) x(N-1)
(a)
m column index
row index i [ I M-1

0 x(0, 0) x(0, 1)

1 x(1,0) x(1, 1)

2 x(2,0) x(2, 1)

(b)

Figure 6.1 Two dimensional data array for storing the sequence x(n). 0 < n <
N-1.

the DFT is stored on a row-wise basis, where the first row contains the first M
elements of the DFT X (), the second row contains the next set & M elements,
and so on. On the other hand, the mapping

k=gL+p (6.1.12)

resultsin a column-wisestorage of X (k), where the first L elements are stored in
the first column, the second set of L elements are stored in the second column,
and so on.

Now suppose that x(n) is mapped into the rectangular array x(Z, m) and X (k)
is mapped into a corresponding rectangular array X (p,q). Then the DFT can be
expressed & a double sum over the elements of the rectangular array multiplied
by the corresponding phase factors. To be specific, let us adopt a column-wise
mapping for x(n) given by (6.1.10) and the row-wise mapping for the DFT given
by (6.1.11). Then

M=-1L-1
X(p.g)y =Y 3 x(U,mwrromi+d (6.1.13)
m=0 =0
But
WLMp+q)(mL+l) = W:]ﬂ.mp Wqu W;{pl wi? (6.1.14)

However, W:MP =1, W:'IL = W;;’L = qu, and W;yp’ = WA’;I/M = W{I.
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Row-wise n=Ml+m
m
! 0 1 2 M1
0 x(0) 1) x(2) x(M - 1)
1 x(M) (M + 1) =M +2) x(2M - 1)
2 *(2M) XM+ 1) | x2M+2) (M — 1)
L- 1| x((L - DM [ -1M + Dz -1 +2) X(IM - 1)
(a)
Column-wise n=i+mL
m
! 0 ! 2 M1
0 x(0) L) x(2L) XM -1)L)
! () L+ 1) x2L+ 1) X(M—1L+1)
2 x2) XL+2) 2L +2) X((M ~ DL+ 2)
-1l xe-u w2~ | xGBL-1) X(LM ~ 1)

(b)

Figure 62 Two arrangements for the data arrays

With these simplifications, (6.1.13) can be expressed as

L-1 M-1
X(pg) =3 {Wy [Z xd, m)W;"” wy (6.1.15)
1=l maxl)

The expression in (6.1.15) involves the computation of DFTs of length M and
length L. To elaborate, let us subdivide the computation into three steps:

L Firgt, we compute the M-point DFTs

M-1
Fl) =3 xt,mWy!, 0<qsM-1 (6.1.16)
m=0

for each of therows?=0,1,...,L =1
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2. Second, we compute a new rectangular array G(l, q) defined as

i O<i<L-1
GU,q)=WJF(.q) O<geM—1 6.1.17)
3 Finally, we compute the L-point DFTs
L-1
X(p.g) =) GU.oW/ (6.1.18)
1=0

for each column g =0,1,...,M =1, of the array G(,q).

On the surface it may appear that the computational procedure outlined
above is more complex than the direct computation of the DFT. However, let
us evaluate the computational complexity of (6.1.15). The first step involves the
computation of L DFTs, each of M points. Hence this step requires LM? com-
plex multiplicationsand LM (M — 1) complex additions. The second step requires
LM complex multiplications. Finaly, the third step in the computation requires
ML? complex multiplications and ML(L — 1) complex additions. Therefore, the
computational complexity is

Complex multiplications:  N(M *+L +1)
Complex additions: NM+L-2)

where N = ML. Thus the number of multiplications has been reduced from N?
to N(M +L +1) and the number of additions has been reduced from N(N = 1) to
NM+L-2).

For example, suppose that N = 1000 and we select L = 2 and M = 500.
Then, instead of having to perform 10° complex multiplications via direct compu-
tation of the DFT, this approach leads to 503,000 complex multiplications. This
represents a reduction by approximately a factor of 2. The number of additions is
also reduced by about a factor of 2

When N is a highly composite number, that is, ¥ can be factored into a
product of prime numbers of the form

N=ryrzg---ry (6.1.20)

then the decomposition above can be repeated (v —1) more times. This procedure
results in smaller DFTs, which, in turn, leads to a more efficient computational
algorithm.

In effect, thefirst segmentation of the sequence x(n) into a rectangular array
o M columnswith L elementsin each column resulted in DFTs of sizesL and M.
Further decomposition of the data in effect involves the segmentation of each row
(or column) into smaller rectangular arrays which result in smaller DFTs. This
procedure terminateswhen N isfactored into its prime factors.

Example 6.1.1

To illustrate this computational procedure, let us consider the computation of an
N =15 point OFT. SinceN =5 x 3 =15 wesdect L = 5and M = 3. In other

(6.1.19)
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words, we store the 15-point sequence x(x} column-wise as follows:

Rowl: x(0.0)=x(0 x(0.1)=x05) x(0,2)=x(10)
Row2: x(1,0)=x(1) x(1L.D=x6) x(1,2)=x(11)
Row3: x2,0=x(2y x2.D=x(7 x(2.2)=x(12)
Row4: x3.00=x3) 3.1 =x(8 x(3.2)=x(13)
Row s x@4.0)=x(4) x@,1)=x® x@,2) =x(14)

Now. we compute the three-point DFTs lor each of the five rows. This leads
to the following 5 x 3 array:

F0,00 FO.1) F@0.2)
F1,0 FQ.1) F(1.2)
F2.00 F(2.1) F(2.2)
F(3,00 FG.1) F@3.2)
F4.00 FMA.1) F4.2

The next step is to multiply each of the terms F(/.¢) by the phase factors
Wy =W 0<l<4and0<g <2 Thiscomputation results in the 5 x 3 array:

Glum1 Column2 Column 3

G(0.0) [e1{UNY] G(0.2)
G(1,0) G 1 G(1.2)
G20 G2 h G(2.2)
G3.0 G{3. 1) G@3.2)

G(4.0) G@.n G(4.2)

Thefinal step isto compute the five-point DFTs for cach of the three columns.
This computation yields the desired values of the DFT in the form

X(0.0) = X(0) X(0,1)=x1 X(0.2y=X(2)
X1, =X(3) X(1.D)y= X4 X(1,2)=X(5)
X2.0 = X(6) XQ.h=Xx" X(2.2)=X(8}
X3,0=X® X3 D=X10) X@3.2y=X(11)
X@.0=X(12) X@¥.1H=X({13) X4.2)=X14

Figure 6.3 illustrates the steps in the computation.

It isinteresting to view the segmented data sequence and the resulting DFT in
terms of one-dimensional arrays. When the input sequence x(r) and the output DFT
X¢k) in the two-dimensional arrays are read across from row 1 through row 5, we
obtain the following sequences:

I NPUT ARRAY
x(0) x(5) x(10) x(1) x(6) x(11) x(2) x(7) x(12) x(3) x(8) x(13) x(4) x(9) x(14)
OUTPUT ARRAY

X0 X(1) X(2) X(3) X@) X(5) X(6) X(7) X(& X9 X10) X(11) X(12) X(13) X(14)

We observe that the input data sequence is shuffled from the normal order
in the computation d the DFT. On the other hand, the output sequence occurs in
normal order. In this case the rearrangement of the input data array is due to the
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w1l
(10) A———r:[__——- X
x(5) <) — X0, x5y
bay
110>-7/._ > ) 5?(01____. ®
l
) p . E X(3)
@ 2 e X(11)
) s X(6)
@ , , a e X(14)
, X0®)
4
@ X(12)

Figure 6.3 Compuation of ¥ = 15-point DFT by meansd 3-point and 5-point
DFTs.

segmentation of the one-dimensional array into a rectangular array and the order in
which the DFTs are computed. This shuffling of either the input data sequence or
the output DFT sequence is a characteristic of most FFT agorithms.

To summarize. the algorithm that we have introduced involves the following
computations:

Algorithm 1

1 Store the signal column-wise.

2 Compute the M-point DFT of each row.

3 Multiply the resulting array by the phase factors W,‘j.
A Compute the L-point DFT of each column

5 Read the resulting array row-wise.

An additional algorithm with a similar computational structure can be ob-
tained if the input signa is stored row-wise and the resulting transformation is.
column-wise. In this case we select as

n=M+m

(6.1.21)
k=gqL+p

This choice o indices leads to the formula for the DFT in the form
M-1L-1

X(p.) = 3 3 xUmWiWIW
m=0 I=0

M-1 L-1
=YW [Ex(hmwﬁ"] e
m=0 =0

Thus we obtain a second algorithm.

(6.1.22)
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Algorithm 2

1. Store the signal row-wise.

2 Compute the L-point DFT at each column.

3 Multiply the resulting array by the factors W§™.
4. Compute the M-point DFT of each row.

5 Read the resulting array column-wise.

The two algorithms given above have the same complexity. However, they
differ in the arrangement of the computations. In the following sections we exploit
the divide-and-conquer approach to derive fast algorithms when the size of the
DFT isrestricted to be a power of 2 or a power of 4.

6.1.3 Radix-2 FFT Algorithms

In the preceding section we described four algorithms for efficient computation d
the DFT based on the divide-and-conquer approach. Such an approach is applica-
ble when the number N of data pointsis not a prime. In particular. the approach
is very efficient when N is highly composite, that is, when N can be factored as
N = rirary--.r., Where the {r,} are prime.

Of particular importance as the case in whichry =r; =...=r, = r, so that
N = r". In such a case the DFTs are of size r, so that the computation of the
N-point DFT has a regular pattern. The number r iscaled the radix of the FFT
algorithm. ‘

In this section we describe radix-2 algorithms, which are by far the most
widely used FFT agorithms. Radix-4 algorithms are described in the following
section.

Let us consider the computation of the N = 2" point DFT by the divide-
and-conquer approach specified by (6.1.16) through(6.118. We select M= N/2
and L = 2. This selection resultsin a split of the N-point data sequence into two
N/2-point data sequences fi(n) and fa(n), corresponding to the even-numbered
and odd-numbered samples of x(n), respectively, that is,

Si(n) = x(2n}
N 6.1.23)

Ln) =x(2n+1), n=0.1..‘.,7—1

Thus fi(r) and f2(n)are obtained by decimating x(n) by a factor of 2, and hence
the resulting FFT algorithm is called a decimation-in-time algorithm.

Now the N-point DFT can be expressed in terms of the DFTs of the deci-
mated sequences as follows:

N-1
Xy =Y xmW k=01, N-1
n=0
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3 xmwl + 3 xmwg (6.1.24)

n even n odd

(N2)-1 (N/2)-1
Y xCmyWIt 4+ 3 x@m+ HwyEmD
m=0 m=0

But W2 = Wy,. With this substitution, (6.1.24) can be expressed as

(¥/23-1 . (¥2)-1
km km
> AmWEL+WE Y fmWi (6.1.25)

m=0 m=0

R +WhRK k=01, N—1

X(k)

where Fi(k) and F>(k) are the N /2-point DFTs of the sequences fi(m) and fa(m),
respectively.

Since Fi(k) and Faz(k) are periodic, with period ¥ /2, we have Fi(k+ N2) =
Fi(k) and F(k + N/2) = Fa(k). In addition, the factor wit*? = —w%. Hence
(6.1.25) can be expressed as

X(ky = AR+ WERGK)  k=01,.... = -1 (6.1.26)

~1 (6.1.27)

plz Nz

x(wg) = R - WhFak)  k=0.1,....

We observe that the direct computation of F(k) requires (N/2)*> complex
multiplications. The same applies to the computation of F»{k). Furthermore, there
are N2 additional complex multiplications required to compute W}, Fy(k). Hence
the computation of X (k) requires 2(N/2)* + N/2 = N2/2+ N2 complex multipli-
cations. Thisfirst step results in a reduction of the number of multiplicationsfrom
NZto N2p2 +N/2, which is about a factor of 2for N large.

To be consistent with our previous notation, we may define

N

Gk} = Fi(k) k=0,l,...,5—1
" N
Ga(k) = WyFR(k) k=0, 1....,-5—1

Then the DFT X (k) may be expressed as

X(k) = G1(k) + Ga(k) k=0,1,...,%-—1
(6.1.28)

N
X(k+?) = G (k) — Ga(k) k=0,1,...,?—1
This computation isillustrated in Fig. 6.4.
Having performed the decimation-in-time once, we can repest the process
for each of the sequences fi(n) and f2(n). Thus fi(n) would result in the two
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x(0) x(2) x(4) x(N-2)

) +G) Nr2-Point

DFT

Fi0) Fi(1) Fy(2) F.(ﬁ'— 1)

F20) Fo1)

Phase \
factors N
xE-9)
k /
G,(k)

' X(N=1)
"))
Figure 6.4 First step in the decimation-in-time algorithm.
N/4-point sequences
vni{n) = f1(2n) n=0.1,....%—l
N (6.1.29)
vie(n) = fin +1) n=0.1....,?—1
and f2(n) would yield
N
v1(n) = f2(2n) ”=O'1"”'I_
N (6.1.30)
vn(n) = L22n+1) n .—_0,1..,.,—4——1

By computing N/4-point DFTs, we would obtain the NR-point DFTs F; (k) and
F>(k) from the relations

Fik) = Vu(k) + Wy, Vipk)  k=0,1,..., % ~-1
(6.1.31)
F k+ﬁ = Vi) = W Viak) k=01 5—1
1 1 11 Np Y12 =04y
. N
Fa(k) = Vo1 (k) + Wy, Vio(k)  k=0,1, Ry -1
(6.1.32)
F. k+-A—l = Vnk) = Wi Vatk) k=0 N 1
2 7)==V Va2 (k) =0... 7~

where the {V;;(k)} are the NI4-point OFTS of the sequences {v;; ()}
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TABLE 61 COMPARISON OF COMPUTATIONAL COMPLEXITY FOR THE
DIRECT COMPUTATION OF THE OFT VERSUS THE FFT ALGORITHM

Number of  Complex Muluplications  Complex Multiplications Speed

Points, in Direct Computation, in FFT Algorithm, Improvement
N N? (N/2)logy N Factor
4 16 4 ' 4.0
8 64 12 53
16 256 32 80
32 1,024 80 12.8
64 4,096 192 213
128 16,384 48 36.6
256 65,536 1,024 64.0
512 262.144 2304 113.8
1,024 1,048,576 5,120 204.8

We observe that the computation o {V;;(k)} requires4(~/4)? multiplications
and hence the computation of Fi{k) and F(k) can be accomplished with #2/4 +
N /2 complex multiplications. An additional ¥/2 complex multiplicationsare re-
quired to compute X (k) from Fy(k) and F2{k). Consequently, the total number of
multiplicationsis reduced approximately by a factor of 2 again to N2/4 + N.

The decimation o the data sequence can be repeated again and again until
the resulting sequences are reduced to one-point sequences. For N = 2", this
decimation can be performed v = log, N times. Thus the total number of complex
multiplicationsis reduced to (N /2) log, N. The number d complex additionsis
Nlog, N. Table 6.1 presentsa comparison of the number of complex multiplica-
tionsin the FFT and in the direct computation of the DFT.

For illustrative purposes, Fig. 65 depictsthe computation d an N = 8 point
DFT. We observe that the computation is performed in three stages, beginning
with the computations of four two-point DFTs, then two four-point DFTs, and

x(0)—— 2-point
x4 DFT Combine ——— X(0)
2-point X
x2) ———  2-point DFT's X2
—  DFT . *
x(6) Combine XG
4-point XE4;
—e
x(1)——  2-point DFT's — X(5)
x5 —— DFT Combi
ombine X(€)
2-point
, e X(7)
x3)——  2-point DFT's
x7)—— DFT

Figure 6.5 Three stages in the computationd an N = 8-point DFT
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Stage 1 Stage 2 Stage 3
x(0) X(0)
] \/ \ /
x4 8 1 - y X
W><>< jQV@
x(2) - X(2)
Wy >< Wi /\ W
*(6) DN, X(3)
-1 -1 ]
Wy
1) * X(4)
2
>< \/ (
Wi Wy
£ j : : X(5)
A
1

Figure 66 Hght-point decimation-in-time FFT algorithm.

finaly, one eight-point DFT. The combination of the smaller DFTs to form the
larger DFT isillustrated in Fig. 66 for N = 8.

Observe that the basc computation performed at every stage, as illustrated
in Fig. 6.6, is to take two complex numbers, say the pair (a, b), multiply b by W},
and then add and subtract the product from a to form two new complex numbers
(A, B). This basic computation, which is shown in Fg. 6.7, is cdled a butterfly
because the flow graph resemblesa butterfly.

In general, each butterfly involves one complex multiplicationand two com-
plex additions. For N = 2¥, there are ¥ /2 butterfliesper stage o the computation
process and log, N stages. Therefore, as previoudy indicated the total number of
complex multiplicationsis (¥/2) log, N and complex additionsis N log, N.

Once a butterfly operation is performed on a pair of complex numbers (a, )
to produce (A, B), there is no need to'save the input pair (a,b). Hence we can

a A=a+Wyb

Wi >< Figure 6.7 Basic butterfiy computation
b l in the decimation-in-time FFT
thm.

=1 B=2-wyb algori
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store the result (A, B) in the same locations as (a, b). Consequently, we require
a fixed amount o storage, namely, 2N storage registers, in order to store the
results (N complex nunbers) of the computations at each stage. Since the same
2N storage locations are used throughout the computation of the N-point DFT,
we say that the computations are done in place.

A second important observation is concerned with the order of the input
data sequence after it is decimated (v — 1) times. For example, if we consider
the case where N = 8, we know that the first decimation yields the sequence
x(0), x(2), x(4), x(6), x(1), x(3), x(5), x(7), and the second decimation results in
the sequence x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7). This shuffling o the
input data sequence has a well-defined order as can be ascertained from observing
Fig.6.8, whichillustratesthe decimationdf the eight-point sequence. By expressing
the index n, in the sequence x(n), in binary form, we note that the order of the
decimated data sequence is easily obtained by reading the binary representation
d the index n in reverse order. Thus the data point x(3) = x(011) is placed in
position m = 110 or m = 6 in the decimated array. Thus we say that the data x(n)
after decimation is stored in bit-reversed order.

With the input data sequence stored in bit-reversed order and the butterfly
computations performed in place, the resulting DFT sequence X (k) is obtained
in natural order (ie., k =0,1,...,N —1). On the other hand, we should indi-
cate that it is possible to arrange the FFT algorithm such that the input is left
in natural order and the resulting output DFT will occur in bit-reversed order.
Furthermore, we can impose the restriction that both the input data x(n) and the
output DFT X (k) be in natural order, and derive an FFT algorithm in which the
computationsare not done in place. Hence such an algorithm requires additional
storage.

Another important radix-2 FFT algorithm, called the decimation-in-frequency
algorithm, isobtained by using the divide-and-conquer approach described in Sec-
tion 6.1.2 with the choiced M = 2 and L = N/2. This choice of parameters
implies a column-wise storage o the input data sequence. To derive the ago-
rithm, we begin by splitting the DFT formula into two summations, one of which
involves the sum over the first #/2 data points and the second sum involves the
last N/2 data points. Thus we obtain

{N/2)-1 N-1
X(k) = Z (MW + E x(n) Wi

n=0 n=N2

(N/2)-1 2 (N1 N \ (6.1.33)

Since W' = (=1)*, the expression (6.1.33) can be rewritten as

was k N kn
X (k) = ; [X(n) +(—1)*x (n + -2—)] Wy 6.1.34)
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Data Data
decimation 1 decimation 2
Memory address Memory
(decimal) (bi nary)
0 000 x(0) x(0) x(0)
1 001 x(1) x(2) >< x(4)
2 010 x(2) x(4) x(2)
3 ol1 x(3) x(6) x(6)
4 100 x(4) x(1) x(1)
5 101 x(5) x(3) >< x(5)
6 110 x(6) x(5) x(3)
7 S| x(7) x(7) x(7)
Natural Bit-reversed
order order
(a)

(naning) —  (nomamy) —  (nmpnn2)

(000) — (000 — (000)
001 = (100) — (100
©10) — (©01) — ©IO
©1y — 1oL - (11g
(100) — (010) =— (001)
(o — (1100 — (101
11— ©1H = ©11)
Aty = @111 - (111
b

Figure 68 Shuffling of the data and bit reversal.

Now, let us split (decimate) X (k) into the even- and odd-number ed samples. Thus
we obtain

(N/2)-1 N i N
X@2k) = ,.Z=|; [x(n)+x(n+-2—):| Wi k=0,1,....-2-—-1 (6.1.35)
and
(N2)-1 N N
X2k+1)= ;0 [[x(n)—x(n+-2-)]W:,]W:,"ﬂ k=0,1,...,-§—1

{6.1.36)
where we have used the fact that W3 = Wy .
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If we define the Nf2-point sequences g1(n) and gz(n) as

gi1(n) = x(m) +x (n + g)

N N (6.1.37)
gz(n)=[x(n)—x(n+?)]wf, n=0.1,2,...,?—1
then
(N2)-1
X2 = ) smwr,
n=0
ot (6.1.38)
XU+ = ) satmWyy
n=0

The computation of the sequences g1(n) and g,(n) according to (6.1.37) and the
subsequent use of these sequencesto compute the N/2-point DFTs are depicted in
Fig. 6.9. We observe that the basic computation in thisfigure involves the butterfly
operation illustrated in Fig. 6.10.

This computational procedure can be repeated through decimation oi the
Ni2-point DFTs, X (2k) and X (2k + 1). The entire process involves v = log, N

x0) = X(0)
x(1) —e X(2)
4-point
DFT
x(2) [—e X(4)
x(3) [—e X{6)
Wi
x(4) — — X()
wl
x(5) - 8 e X(3)
DFT
w2
x(6) - g e X(5)
/ \ w:
x(7) 3 —e X(7) Figure 69 Fird stage of the
- decimation-in-frequencyFFT algorithm.
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a A=a+b
>< Figure 6.10 Basic butterfly computation
Wy ., in the decimation-in-frequency FFT
b ¥ B=(a—bWy i equency

algorithm.

stages of decimation, where each stage involves NR butterfliesdf the type shownin
Fig. 6.10. Conseguently, the computation of the N-point DFT via the decimation-
in-frequency FFT algorithm, requires (N/2)log, N complex multiplications and
N log, N complex additions, just as in the decimation-in-time algorithm. For il-
lustrative purposes, the eight-point decimation-in-frequency algorithm is given in
Fig. 6.11.

We observe from Fig. 6.11, that the input data x(n) occursin natural order,
but the output DFT occurs in bit-reversed order. We aso note that the computa-
tionsare performed in place. However, it is possible to reconfigurethe decimation-
in-frequency algorithm so that the input sequence occurs in bit-reversed order
while the output DFT occurs in normal order. Furthermore, if we abandon the
requirement that the computations be done in place, it is also possible to have
both the input data and the output DFT in normal order.

x(0) X(0)
\ / \/ >< v
x(1) \v / l X4
0
(2 : :-1 :. s . X(2)
B >< y
s b X(6)

pe
N >< x)
0
x(s) /XX\ v wl X(S)
//\i : <> : )
2 4]
x(6) Wi -t * X(3)
w3 w2 0
H7) . : : 2 x

Figare 6.11 N = 8-point decimation-in-frequency FFT algorithmn.

LK

x4)
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6.1.4 Radix-4 FFT Algorithms

When the number of data points & in the DFT is a power of 4 (i.e., N =4"). we
can, of course. always use a radix-2 algorithm for the computation. However. for
this case. it is more efficient computationally to employ a radix-4 FFT algorithm.

Let usbegin by describing a radix-4 decimation-in-time FFT algorithm, which
is obtained by selecting L =4 and M = N/4 in the divide-and-conquer approach
described in Section 6.1.2. For thischoice of L and M, we havel, p=0,1,2 3 m,
g=0.1,....,N/4 =1:n=4m+1; and k = (N/4) p T q. Thus we split or decimate
the N-point input sequence into four subsequences, x(4n), x(4n + 1), x(4n T 2),
x(@n4+3).n=01.... N/4 -1,

By applying (6.1.15) we obtain

3
Xpgy=3 [ngm. q)] Wl p=01.2.3 (6.1.39)

i=0
where F(/.q) isgiven by (6.1.16), that is.
(NAH=1 1=0.1,2,3,

Fi.q) = W N 1.
(g ‘L::' x(UomyWyd, g=on2. (6.1.40)
and
x(l.m) = x(4m + 1) (6.1.41)
N
X(p.g) = X(Zp+q) (6.1.42)

Thus, the four N/4-point DFTs obtained from (6.1.40) are combined according
to (6.1.39) to yield the N-point DFT. The expression in (6.1.39) for combining
the N/4-point DFTs defines a radix-4 decimation-in-time butterfly, which can be
expressed in matrix form as

0
X(©0.q) 11 1 19 W09
XLy | _[1 -j -1 WyF(l.q) 61.43)
XQ2.q) 1 -1 1 <1||wW¥F@.q) -
X3.q) 1 j -1 —j W:,"F(S.q)

The radix-4 butterfly is depicted in Fig. 6.12(a) and in a more compact form
in Fig. 6.12(b). Note that since W§ = 1, each butterfly involves three complex
multiplications, and 12 complex additions.

Thisdecimation-in-time procedure can be repeated recursively v times. Hence
the resulting FFT algorithm consists of v stages, where each stage contains ~/4
butterflies. Consequently, the computational burden for the algorithm is3vN /4 =
(3N/8) log, N complex multiplications and (3¥/2) log, N complex additions. V¢
note that the number of multiplications is reduced by 25%, but the number o
additions hasincreased by 50% from ¥ log, & to (3N /2) log, N.



466  Efficient Computation d the DFT: Fast Fourier Transform Algorithms  Chap. g

—o0

wy -1
-Jj

Figure6.12 Basic butterfly computation in a radix4 FFT algorithm.

It is interesting to note. however, that by performing the additions in two
steps, it is possible to reduce the number of additions per butterfly from 12to 8
This can be accomplished by expressing the matrix of the linear transformation in
(6.1.43) as a product of two matrices as follows:

Q
X(0.9) 10 1 o1 0 1 oq[ %0
X(l.q) 01 0 —j{I10~1 0 WyF(l.q) (6.1.44)
X2.q) 10 -1 0fl01 0 1 WHF(2.q) -
X3.9) 01 0 j 01 0 -1 W,?,qF(3,q)

Now each matrix multiplication involves four additions for a total of eight addi-
tions. Thus the total number of complex additions is reduced to Nlog, », which
isidentical to the radix-2 FFT algorithm. The computational savings results from
the 25% reduction in the number of complex multiplications.

An illustration of a radix-4 decimation-in-time FFT algorithm is shown in
Fig. 6.13 for N =16. Note that in this algorithm, the input sequence is in normal
order while the output DFT is shuffled. In the radix-4 FFT agorithm, where
the decimation is by a factor of 4, the order of the decimated sequence can be
determined by reversing the order of the number that represents the index n
in a quaternary number system (i.e., the number system based on the digits 0,
1,2, 3).

A radix-4 decimation-in-frequency FFT algorithm can be obtained by select-
ingL=N/4, M=41,p=0,1,....,NA-1m ¢g=0,12 3 n=(NdmTE
and k = 4p +q. With this choice of parameters, the general equation given by
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Figure 613 Sixteen-point radix-4 decimation-in-time algorithm with input in nor-
mal order and output in digit-reversed order.

(6.1.15) can be expressed as

(N/4)~1

X(p.)= Y. GU.@W!, (6.1.45)
i=0
where
¢=0,1,23
Gd.q)=WEF(.q) (6.1.46)
4 N 1=01..... % 4
4
and
3 q=0,l.2,3
Fi.q)=Y x(.mwre {6.1.47)
e ,,.; ¢ z=o,1,2,3,...,-2‘1—1

We note that X(p,q) = X@p+q), q =0, 1, 2, 3. Consequently, the N-point
DFT is decimated into four N/4-point DFTs and hence we have a decimation-
in-frequency FFT algorithm. The computationsin (6.1.46) and (6.1.47) define
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x(0) X(©0)
0 0
x(1) 0 X(4}
- 0
x(2) X8)
)
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Figure 6.14  Sixteen-point, radix-4 decimation-in-frequency algorithm with input
in normal order and output in digit-reversed order.

the basic radix-4 butterfly for the decimation-in-frequency algorithm. Note that
the multiplications by the factors W,';’ occur after the combination of the data
points x(/, m), just as in the case of the radix-2 decimation-in-frequency ago-
rithm.

A 16-point radix4 decimation-in-frequency FFT algorithm is shown in
Fig. 6.14. Its input isin norma order and its output is in digit-reversed order.
It has exactly the same computational complexity as the decimation-in-time radix-
4 FFT agorithm.

For illustrative purposes, let us rederive the radix4 decimation-in-frequency
algorithm by breaking the N-point DFT formula into four smaller DFTs. We
have

N-1
Xty =) x(mWp
n=0
N/4-1 NR-I 3N7A-1 N~-1

= Z x(n)W,f,"+ Z x(n)W,’,‘,"+ Z x(n)W,f,"+ Z x(n)W,f,"

n=0 n=N{4 n=N/2 n=3N/4
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N1 s N/A-1 N i
= Z x(n)W"'+W Z x (n+~4—) wy

n=0 n=0
N4-1 NM4-1
) . 3N )
+ Wiz 2 ] (n + %) wik+ wihe Zﬂ x (n + —4—) win
(6.1.48)
From the definition of the twiddle factors, we have
W,f,”“ = (=) NLP = (=1} wz’“"'/“ = () (6.1.49)

After substitution of (6.1.49) into (6.1.48).we obtain

N1 . N
Xy =y |:X(I1)+(-—j) x <n+z)

n={}

N v 3N '
+ (=1x (n + Z) + ()'x (n + T)] wet

The relation in (6.1.50) is not an N /4-point DFT because the twiddle factor
dependson N and not on N /4. To convert it into an N /4-point DFT, wc subdivide
the DFT sequence into four N /4-point subsequences. X (4k). X (4k + 1), X (4k+2),
and X(4k +3). & =0. 1..... N/4 — 1. Thus we obtain the radix-4 decimation-in-
frcquency DFT as

(6.1.50)

NI4 1 N
X(4ky = I:; () +x (n + 7) (6.1.51)
n=(
N
+x (n + = ) x (n + EZ-)] WR,W,’G’;A
Nj4— N
X@dk+1) = g [x(n) - _[x n+ —4-) (6.1.52)
N
x(n+ >+jx( 3 )]W;Wf,’;d
4
N1 N
X(4k+2) = Zﬂ [x(n) —x 4) (6.1.53)

+x(n )—x(n+§‘¥-)] W,?\',"W,ﬂ%

N/d-1
X(@k+3) =y

n=0

. 3N n
-x (n + 3) - Jjx (n + -4—)] Wﬁ"w,'j,/d

x{n) + jx ( %) (6.1.54)
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where we have used the property wi " = Wj‘,'h. Note that the input to each N /4
point DFT isa linear combination of four signal samplesscaled by a twiddle factor.
This procedure is repeated v times. where v =log, N.

6.1.5 Split-Radix FFT Algorithms

An inspection of the radix-2 decimation-in-frequency flowgraph shown in Fig. 6.11
indicates that the even-numbered points of the DFT can be computed indepen-
dently of the odd-numbered points. This suggests the possibility of using different
computational methods for independent parts of the algorithm with the objective
o reducing the number of computations. The split-radix FFT (SRFFT) agorithms
exploit thisidea by using both a radix-2 and a radix-4 decomposition in the same
FFT algorithm.

Weillustrate this approach with a decimation-in-frequency SRFFT algorithm
due to Duhamel (1986). First, we recall that in the radix-2 decimation-in-frequency
FFT agorithm, the even-numbered samples of the N-point DFT are given as

Kowy N N
X(2k) = Z“ [x(n) +x (n + 3)] Wit k=0,1..... 3 1 (6.1.55)
Note that these DFT points can be obtained from an N /2-point DFT without any
additional multiplications. Consequently, a radix-2 sufficesfor this computation.
The odd-numbered samples {X (2t +1)) of the DFT require the premultipli-
cation of the input sequence with the twiddle factors Wy, For these samplesa
radix-4 decomposition produces some computational efficiency because the four-
point DFT has the largest multiplication-free butterfly. Indeed, it can be shown
that using a radix greater than 4, does not result in a significant reduction in com-
putational complexity.
If we use a radix-4 decimation-in-frequency FFT algorithm for the odd-
numbered samples of the N-point DFT, we obtain the following N /4-point DFTs:
N/4-1
X@k+1) = Z {x(n) = x(n T N/2)] (6.1.56)
n=0
— jlx(n 4+ N/4) — x(n + 3N /O WEWE,

Nja-1
X@k+3) = Y ([x(n) —x(n+ N/2)} (6.1.57)
n=0
+ilxnt N/M) - x(n T INRWEWE,
Thusthe N-point DFT is decomposed into one N /2-point DFT without additional
twiddle factors and two N /4-point DFTs with twiddle factors. The N-point DFT
is obtained by successive use of these decompositions up to the last stage. Thus
we obtain a decimation-in-frequency SRFFT algorithm.
Figure 6.15 shows the flow graph for an in-place 32-point decimation-
in-frequency SRFFT algorithm. At stage A of the computation for ¥ = 32, the
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top 16 points constitute the sequence

(6.1.58)

0<n<15

go(n) =x()+x(n+ N/2)

This is the sequence required for the computation of X(2k). The next 8 points

congtitute the sequence

(6.1.59)

0<n<x7

gi(n) =x(n) —x(n+ N/2)
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e for
X(4k+1)

Use for
X(4k+3)

Wi

Figure6.16 Butterfly for SRFFT algorithm.

The bottom eight points constitute the sequence jg. (), where
g2(n) =x(n + N/4) — x(n + 3N /4) O0<n<7?7 (6.1.60)

The sequences gi(n) and g2(r) are used in the computation of X (4k + 1) and
X (4k +3). Thus, at stage A we have completed the first decimation for the radix-2
component of the algorithm. At stage B. the bottom eight points constitute the
computation of [g:(n)+jg2(n)]W§2", 0 <n <7, whichisused to compute X (4k +3),
0 =<k 2 7. The next eight points from the bottom constitute the computation of
[g:(m) — jga(m)] Wiy, 0 < n < 7, which is used to compute X(4k+1),0 <k < 7.
Thus at stage B, we have completed the first decimation for the radix-4 algorithm,
which results in two 8-point sequences. Hence the basic butterfly computation for
the SRFFT algorithm has the ""L-shaped"” form illustrated in Fig. 6.16.

Now we repeat the steps in the computation above. Beginning with the top
16 points at stage A, we repeat the decomposition for the 16-point DFT. In other
words, we decompose the computation into an eight-point, radix-2 DFT and two
four-point, radix-4 DFTs. Thus at stage B, the top eight points constitute the
sequence (with N = 16)

go(n)=go(n) + gon + N/2) 0<n<7 (6.1.61)

and the next eight points constitute the two four-point sequences g; (=) and jg;(n),
where
£1(n) = go(n) — goln + N /2) 0=<n<3

8(n) = goln + N/4) — go(n + 3N /4) 0<n<3

The bottom 16 points of stage B are in the form of two eight-point DFTs. Hence
each eight-point DFT is decomposed into a four-point, radix-2 DFT and a four-
point, radix-4 DFT. In the final stage, the computations involve the combination
of two-point sequences.

Table 6.2 presents a comparison of the number d nontrivial real multipli-
cations and additions required to perform an N-point DFT with complex-valued

(6.1.62)
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TABLE 6.2 NUMBER OF NONTRIVIAL REAL MULTIPLICATIONS AND
ADDITIONS TO COMPUTE AN N-POINT COMPLEX DFT

Real Multiplications Real Additions

Radix Radix Radix Split Radix Radix Radix Split

N 2 4 8 Radix 2 4 8 Radix
16 24 20 20 152 148 148
32 88 68 408 388
64 264 208 204 196 1.032 976 972 964
128 712 516 2504 2308
256 1,800 1392 1284  58% 5.488 5380
512 4360 3204 3076 13.566 12420 12292
1.024 10248 7.856 7172 30.728 28,336 27.652

Source: Extracted fromDuhamel (1986).

data. using a radix-2, radix-4, radix-6, and a split-radix FFT. Note that the SRFFT
algorithm requires the lowest number of multiplication and additions. For this
reason. it is preferable in many practical applications.

Another type of SRFFT algorithm has been developed by Price (1990). Its
relation to Duhamel's algorithm described previously can be seen by noting that
the radix-4 DFT terms X (4k+ 1) and X (4k +3) involve the N /4-point DFTs of the
sequences [g1(n) — jga(n)]W3 and {gi(n) T jg2(n)]W3, respectively. In effect. the
sequences g;(n} and g2(n) are multiplied by the factor (vector) (1, —j)= (1, W)
and by W/, for the computation of X (4k + 1), while the computation of X (4k+3)
involves the factor (1. /) = (1, W5} and W3, Instead, one can rearrange the
computation so that the factor for X (4k +3) is(—j, -1) = —(W;l”.l). As aresult
of this phase rotation, the twiddle factors in the computation of X (4k +3) become
exactly the same as those for X (4k + 1), except that they occur in mirror image
order. For example, at stage B of Fig. 6.15, the twiddle factors W', wis, . . w3
arereplaced by W', W2, ..., W, respectively. This mirror-image symmetry occurs
at every subsequent stage of the algorithm. As a consequence, the number of
twiddle factors that must be computed and stored is reduced by a factor of 2 in
comparison to Duhamel's agorithm. The resulting algorithm iscalled the " mirror"
FFT(MF FT)algorithm.

An additional factor-of-2savingsin storage of twiddle factors can be obtained
by introducing a 90° phase offset at the midpoint of each twiddle array, which can
be removed if necessary at the output of the SRFFT computation. The incor-
poration of this improvement into the SRFFT (or the MFFT) results in another
algorithm, also due to Price (1990), called the " phase” FFT (PFFT) agorithm.

6.1.6 Implementation of FFT Algorithms

Now that we have described the basic radix-2 and radix-4 FFT algorithms, let
us consider some of the implementation issues. Our remarks apply directly to
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radix-2 algorithms, although similar comments may be made about radix-4 and
higher-radix algorithms.

Basically, the radix-2 FFT algorithm consists of taking two data points at a
time from memory, performing the butterfly computations and returning the re-
sulting numbers to memory. This procedure is repeated many times ((N log, N)/2
times) in the computation of an N-point DFT.

The butterfiy computations require the twiddle factors { W) at various stages
in either natural or bit-reversed order. In an efficient implementation of the ago-
rithm, the phase factors are computed once and stored in a table, either in normal
order or in bit-reversed order, depending on the specific implementation of the
algorithm.

Memory requirement is another factor that must be considered. If the com-
putations are performed in place, the number of memory locations required is2N
since the numbers are complex. However, we can instead double the memory to
4N, thus simplifying the indexing and control operationsin the FFT agorithms. In
this case we simply alternate in the use of the two sets of memory locations from
one stage of the FFT algorithm to the other. Doubling of the memory also alows
usto have both the input sequence and the output sequence in normal order.

There are a number of other implementation issues regarding indexing, bit
reversal, and the degree of pardlelism in the computations. To a large extent,
these issues are a function of the specific algorithm and the type of implementa-
tion, namely, a hardware or software implementation. In implementations based
on a fixed-point arithmetic, or floating-point arithmetic on small machines, there
is also the issue of round-off errorsin the computation. This topic is considered
in Section 6.4.

Although the FFT algorithms described previously were presented in the
context of computing the DFT efficiently, they can also be used to compute the
IDFT, which is

1 N-1 .
x(n) = = kgﬂ X(kywgm (6.1.63)

The only difference between the two transforms is the normalization factor 1/N
and the sign of the phase factor Wy. Consequently, an FFT algorithm for com-
puting the DFT, can be converted to an FFT algorithm for computing the | OFT
by changing the sign on all the phase factors and dividing the fina output of the
algorithm by N.

In fact, if we take the decimation-in-time algorithm that we described in
Section 6.1.3, reverse the direction of the flow graph, change the sign on the phase
factors, interchange the output and input, and finaly, divide the output by N, we
obtain a decimation-in-frequency FFT algorithm for computing the IDFT. On the
other hand, if we begin with the decimation-in-frequency FFT algorithm described
in Section 6.1.3 and repeat the changes described above. we obtain a decimation-
in-time FFT algorithm for computing the IDFT. Thus it isasimple matter to devise
FFT agorithmsfor computing the IDFT.
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Finally. we note that the emphasisin our discussion of FFT algorithms was
on radix-2. radix-4. and split-radix algorithms. These are by far the most widely
used in practice. When the number of data pointsis not a power of 2 or 4. it isa
simple matter to pad the sequence x(n) with zeros such that N = 2" or N = 4".

The measure of complexity for FFT agorithms that we have emphasized
is the required number of arithmetic operations (multiplications and additions).
Although thisis a very important benchmark for computational complexity, there
are other issues to be considered in practical implementation of FFT algorithms.
These include the architecture of the processor. the available instruction set, the
data structures for storing twiddle factors, and other considerations.

For general-purpose computers, where the cost of the numerical operations
dominate. radix-2, radix-4. and split-radix FFT algorithms are good candidates.
However. in the case of special-purpose digital signal processors, featuring single-
cycle multiply-and-accumulate operation. bit-reversed addressing, and a high de-
gree of instruction parallelism. the structural regularity of the algorithm is equally
important as arithmetic complexity. Hence for DSP processors, radix-2 or radix-
4 decimation-in-frequency FFT algorithms are preferable in terms of speed and
accuracy. The irregular structure of the SRFFT may render it less suitable for
implementation on digital signal processors. Structural regularity is also important
in the implementation of FFT algorithms on vector processors, multiprocessors,
and in VLSI. Interprocessor communication isan important consideration in such
implementations on parallel processors.

In conclusion, we have presented several important considerations in the
implementation of FFT agorithms. Advancesin digital signal processing technol-
ogy, in hardware and software, will continue to influence the choice among FFT
algorithms for various practical applications.

6.2 APPLICATIONS OF FFT ALGORITHMS

The FFT algorithms described in the preceding section find application in a variety
of areas, including linear filtering, correlation, and spectrum analysis. Basicaly,
the FFT algorithm is used as an efficient meansto computethe DFT and the IDFT,
In this section we consider the use of the FFT algorithm in linear filtering
and in the computation of the crosscorrelation of two sequences. The use of the
FFT in spectrum analysis is considered in Chapter 12. In addition we illustrate
how to enhance the efficiency of the FFT algorithm by forming complex-valued
sequences from rea-valued sequences prior to the computation of the DFT.

6.2.1 Efficient Computation of the DFT of Two Real
Sequences

The FFT algorithm is designed to perform complex multiplications and additions,
even though theinput datamay bereal valued. The basic reason for thissituation is
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that the phase factors are complex and hence, after the first stage of the algorithm,
al variables are basically complex-valued.

In view of the fact that the algorithm can handle complex-valued input se-
quences, we can exploit this capability in the computation of the DFT of two
real-valued sequences.

Suppose that x;(n) and xz(x) are two real-valued sequences of length », and
let x(n) be a complex-valued sequence defined as

x(m=xim)t jan) O<ns<N-1 (6.2.1)
The DFT operation is linear and hence the DFT of x(n) can be expressed as
X(k) = X (k) F jXa(k) (6.2.2)
The sequences x;(n) and xz2(n) can be expressed in terms d x(n) asfollows:
xi(n) = X(")—“;”'i) (6.23)
oy = 20— (6.2.4)
2j
Hence the DFTs of x(n} and x»(n) are
X\(k) = %{DFT[X(H)]-{—DFT[X'(H]]} (6.2.5)
Xotk) = %{DFT[x(n)] — DFTLx ()} (6.26)
Recall that the DFT of x*(n) is X*(N — k). Therefore,
1
Xik) = 5[X (k) + X4 (N - k)] (6.2.7)
Xa(k) = J,iZ[X(k) - X*(N -k)] 6.2.8)

Thus, by performing a single DFT on the complex-valued sequence x(n), we
have obtained the DFT of the two real sequences with only a small amount of
additional computation that is involved in computing X;(k) and X»(k) from X (k)
by use of (6.2.7) and (6.2.8).

6.2.2 Efficient Computation of the DFT of a 2N-Point
Real Sequence

Suppose that g(n) is a real-valued sequence of 2N points. We now demonstrate
how to obtain the 2N-point DFT of g(n) from computation of one N-point DFT
involving complex-valued data. First, we define

x1(n) = g(2n)

6.2.9)
x(n) = g2n +1)



Sec. 6.2 Applications of FFT Algorithms a77

Thus we have subdivided the 2N-point real sequence into two N-point real se-
quences. Now we can apply the method described in the preceding section.
Let x(n) be the N-point complex-valued sequence
x{(n) = xy(n) + jxa(n) 6.2.10)

From the results of the preceding section. we have

1
Xik) = IX W) + XN - k)]

| (6.2.11)
X2(k) = ﬁ[X(k) ~ X*(N - k)]

Finally, we must expressthe 2N-point DFT in terms of thetwo N-point DFTs,
X\ (ky and Xa(4). To accomplish this, we proceed asin the decimation-in-time FFT
algorithm, namely,
N~1 N-1
Gty =D eCmWI + 3 g2n + DWyy"

n=l) n={l
N-1

N1
= ZM(H)W,'{,‘ + Wiy sz(n)W,'\j*

n=l) n={)

Conscqucently,
Gk = X (k) + WINXa(k) k=01, N~
Gk + N) = X (k) — WENXa(k) k=0.1..... N-1

Thus we have computed the DFT of a 2¥-point real sequence from one N-point
DFT and some additional computation as indicated by (6.2.11) and (6.2.12).

(6.2.12)

il

6.2 3 Use of the FFT Algorithm in Linear Filtering and
Correlation

An important application of the FFT algorithm isin FIR linear filtering of long
data sequences. In Chapter 5 we described two methods, the overlap-add and the
overlap-save methods for filtering a long data sequence with an FIR filter, based
on the use of the DFT. In this section we consider the use d these two methods
in conjunction with the FFT algorithm for computing the DFT and the IDFT.

Let h(n), 0 < n < M — 1, be the unit sample response d the FIR filter and let
x(n) denote the input data sequence. The block size of the FFT algorithm is &,
where ¥ =L+ M = | and L isthe number of new data samples being processed
by the filter. We assume that for any given value of M, the number L of data
samples is selected so that N isa power d 2. For purposes of this discussion, we
consider only radix-2 FFT agorithms.

The N-point DFT of A(r), which is padded by L —1 zeros, isdenoted as H (k).
This computation is performed once via the FFT and the resulting N complex
numbers are stored. To be specific we assume that the decimation-in-frequency
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FFT agorithm is used to compute H (k). This yields H(k) in bit-reversed order,
which is the way it is stored in memory.

In the overlap-save method, the first M — 1 data points of each data block are
the last M — 1 data points of the previous data block. Each data block contains L
new data points, such that N = L + M — 1. The N-point DFT of each data block
is performed by the FFT algorithm. If the decimation-in-frequency agorithm is
employed, the input data block requires no shuffling and the values of the DFT
occur in bit-reversed order. Since this isexactly the order of H (). we can multiply
the DFT of the data, say Xn(k), with H(k) and thus the result

Yo (k) = H(K) X, (k)
isalso in bit-reversed order.

The inverse DFT (IDFT) can be computed by use of an FFT agorithm that
takes the input in bit-reversed order and produces an output in normal order.
Thus there is no need to shuffle any block of data either in computing the DFT
or the IDFT.

If the overlap-add method is used to perform the linear filtering, the compu-
tational method using the FFT algorithm is basically the same. The only difference
isthat the N-point data blocks consist of L new data pointsand M — 1 additional
zeros. After the IDFT iscomputed for each data block, the N-point filtered blocks
are overlapped asindicated in Section 5.3.2, and the M — 1 overlapping data points
between successive output records are added together.

Let us assess the computational complexity of the FFT method for linear fil-
tering. For this purpose, the one-time computation of # (k) isinsignificant and can
beignored. Each FFT requires (N /2) log, N complex multiplicationsand Nlog, N
additions. Since the FFT is performed twice, once for the DFT and once for the
IDFT, thecomputational burden is Nlog, N complex multiplicationsand 2N log, N
additions. There are aso N complex multiplicationsand N — 1 additions required
to compute Y., (k). Therefore. we have (N log, 2N)/L complex multiplications per
output data point and approximately (2N log, 2N)/L additions per output data
point. The overlap-add method reguires an incremental increase of (M — 1)/L in
the number of additions.

By way of comparison, a direct form realization of the FIR filter involves M
real multiplications per output point if the filter is not linear phase, and M2 if it
is linear phase (symmetric). Also, the number of additions is M — 1 per output
point (see Sec. 8.2).

It isinteresting to compare the efficiency of the FFT algorithm with the direct
form realization of the H R filter. Let us focus on the number of multiplications,
which are more time consuming than additions. Suppose that M = 128 = 27 and
N = 2*. Then the number of complex multiplications per output point for an FFT

sizeof N=2 is
cwy = Nog2N _ 20t
L " N- M+1
_2(v+1)

~ 2v 27



Sec.6.3 A Linear Filtering Approach to Computation of the DFT

TABLE 6.3 COMPUTATIONAL COMPLEXITY

c(v)
Size of FFT  Number of Complex Multiplications
v=log, N per Output Point
9 133
10 12.6
11 12.8
12 13.4
14 15.1

The values of <(v) for different values of v are given in Table 6.3. We observe
that there is an optimum value of » which minimizes ¢(v). For the FIR filter of
size M = 128, the optimum occurs at v = 10.

We should emphasize that «(v) representsthe number of complex multiplica-
tions for the FFT-based method. The number of real multiplicationsisfour times
this number. However, even if the FIR filter has linear phase (see Sec. 8.2), the
number of computations per output point is still less with the FFT-based method.
Furthermore. the efficiency of the FFT method can be improved by computing
the DFT of two successive data blocks simultaneously. according to the method
just described. Consequently. the FFT-based method is indeed superior from a
computational point of view when the filter length is relatively large.

The computation of the cross correlation between two sequences by means of
the FFT algorithm issimilar to the linear FIR filtering problem just described. In
practica applications involving crosscorrelation. at least one of the sequences has
finite duration and is akin to the impulse response of the FIR filter. The second
sequence may be a long sequence which contains the desired sequence corrupted
by additive noise. Hence the second sequence isakin to the input to the FIR filter.
By time reversing the first sequence and computing its DFT, we have reduced the
cross correlation to an equivalent convolution problem (i.e.. a linear H R filtering
problem). Therefore. the methodology we developed for linear FIR filtering by
use of the FFT applies directly.

6.3 A LINEAR FILTERING APPROACH TO COMPUTATION OF THE
DFT

The FFT algorithm takes N points of input data and produces an output sequence
of N points corresponding to the DFT of the input data. As we have shown.
the radix-2 FFT algorithm performs the computation of the DFT in (N/2) log, N
multiplications and ¥ log, N additions for an N-point sequence.

There are some applications where only a selected number of vaues of
the DFT are desired, but the entire DFT is not required. In such a case, the
FFT algorithm may no longer be more efficient than a direct computation of
the desired values of the DFT. In fact, when the desired number of values of



480 Efficient Computation of the DFT: Fast Fourier Transform Algorithms Chap. 6

the DFT isless than log, &, a direct computation of the desired values is more
efficient.

The direct computation of the DFT can be formulated as a linear filtering
operation on the input data sequence. As we will demonstrate, the linear filter
takes the form of a parallel bank of resonators where each resonator selects one
of the frequencies wx = 2xk/N, k =0, 1,..., N — 1, corresponding to the N
frequencies in the OFT.

There are other applications in which we require the evaluation of the z-
transform of a finite-duration sequence at points other than the unit circle. If
the set of desired points in the z-plane possesses some regularity, it is possible
to also express the computation of the z-transform as a linear filtering operation.
In this connection, we introduce another algorithm, called the chirp-z transform
algorithm, which is suitable for evaluating the z-transform of a set of data on a
variety of contours in the z-plane. This algorithm is also formulated as a linear
filtering of a set of input data. As a consequence, the FFT agorithm can be used
to compute the chirp-z transform and thus to evaluate the z-transform at various
contours in the z-plane, including the unit circle.

6.3.1 The Goertzel Algorithm

The Goertzel agorithm exploits the periodicity o the phase factors {W5%} and
alows us to express the computation of the DFT as a linear filtering operation.
Since Wi = 1, we can multiply the DFT by this factor. Thus
N-1 N-1
X(k) =Wy 3 xmyWEm = 3 x(mywtt ™ (6.3.1)
m=0 m=0
We note that (6.3.1) is in the form o a convolution. Indeed, if we define the
sequence y(n) as
N-1
yelny =3 x(mywgHe™m (63.2)
m=0

then it is clear that yx(r) is the convolution of the finite-duration input sequence
x(n) of length N with afilter that has an impulse response

hi(n) = Wik u(n) 6.3.3)

The output of thisfilter at n = N yields the value of the DFT at the frequency
w, =2mk/N. That is,

X (k) = ye(n)la=n (6.3.4)
as can be verified by comparing (6.3.1) with (6.3.2).
The filter with impulse response #(n) has the system function

1
Hy(z) = ———— 6.3.5)
k() oW (
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This filter has a pole on the unit circle at the frequency w = 2wk/N. Thus, the
entire DFT can be computed by passing the block of input data into a paral-
lel bank of & single-pole filters (resonators). where each filter has a pole at the
corresponding frequency of the DFT.

Instead of performing the computation of the DFT asin (6.3.2), via convolu-
tion. we can use the difference equation corresponding to the filter given by (6.3.5)
to compute y; (n) recursively, Thus we have

W) =Wl =1 +xn)  w(-1)=0 (6.3.6)

The desired output is X (k) = y(N), for k =0, 1,...,N =1 To perform this
computation, we can compute once and store the phase factors w;*.

The complex multiplicationsand additions inherent in (6.3.6) can be avoided
by combining the pairs of resonators possessing complex-conjugate poles. This
leads to two-pole filters with system functions of the form

1-wyz!
1—2cos(2rk/N)z=" + -2

The direct Cam 11 realization of the system illustrated in Fig. 6.17 is described by
the difference equation

Hi(z) = 6.3.7)

2nk
v (n) = 2cos -»vak(n — D= vn=2)+ x(n) (6.3.8)

yin) = vn) = Wit =1 63.9)

with initial conditions v, (—1) = v,(=2) =0.

The recursive relation in (6.3.8) isiterated for n =0, 1,.... N, but the equa-
tion in (6.3.9) is computed only once at time n = N. Each iteration requires one
real multiplication and two additions. Consequently, for a real input sequence
x(n). this algorithm requires ¥ * 1 real multiplications to yield not only X () but
also, due to symmetry, the value of X (N —k).

The Goertzel algorithm is particularly attractive when the DFT is to be com-
puted at a relatively small number M of values, where M < log, N. Otherwise.
the FFT agorithm is a more efficient method.

x(n) viin) ¥iln)
O— O

Figure 6.17 Direct form II realization
o two-pole resonator for computing the
DFT.
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6.3.2 The Chirp-z Transform Algorithm

The DFT of an N-point data sequence x(n) has been viewed as the z-transform
of x(n) evaluated at N equally spaced points on the unit circle. It has also been
viewed as N equally spaced samples dof the Fourier transform of the data sequence
x(n). In this section we consider the evaluation of X(z) on other contours in the
z-plane, including the unit circle.
Suppose that we wish to compute the values of the z-transform of x(n) at a
set of points {z;). Then,
N-1
X(@) =) x(mz" k=01,..,L-1 (6.3.10)
n=0
For example, if the contour isacircle of radiusr and the z; are N equally spaced
points, then )
ae=reM o —01,2,... ,N-1
N-d _ (6.3.11)
X(w) = Z[x(n)r"']e”’l"k”'m k=0,1,2,....N=-1
n=0
In this case the FFT agorithm can be applied on the modified sequence x(r)r==.
More generally, suppose that the points z; in the z-plane fall on an arc which
begins at some point
20 = roe’®

and spirals either in toward the origin or out away from the origin such that the
points {z;} are defined as

% = roe®(Roe/®Y¥  k=0,1,...,L -1 (6.3.12)

Note that if Ry < 1, the pointsfall on a contour that spiralstoward the origin and if
Ro > 1, the contour spiralsaway from the origin. If Ry =1, thecontour isacircular
arc of radiusrg. If ro =21 and Rp =1, the contour is an arc of the unit circle. The
latter contour would alow us to compute the frequency content of the sequence
x(n) at a dense set of L frequencies in the range covered by the arc without having
to compute a large DFT, that is, a DFT of the sequence x(n) padded with many
zeros to obtain the desired resolution in frequency. Finaly, if ro = Ry =1, 6 =0,
¢ = 2n/N, and L = N, the contour is the entire unit circle and the frequencies
are those of the DFT. The various contours are illustrated in Fig. 6.18.

When points {z;} in (63.12) are substituted into the expression for the z-
transform, we obtain

N-1
X(@) = Y x(mz"
= (63.13)

N-1 )
=) x(n)(roe/®) "V
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Figure 618 Some examples df contours on which we may evaluate the z-
transform.

where. by definition.

V= R(]?J% (6314)
We can express (6.3.13) in the form of a convolution, by noting that
nk = 1[n? k2 —(k = n)?] (6.3.15)
Substitution of (6.3.15) into (6.3.13) yields
N-1 .
X(z) = VR Y [x(m)roel®) "y AV (6.3.16)
n=0

Let usdefine a new sequence g(r) as
g(n) = x(n)(roe/®) ™"y " 6.317)
Then (6.3.16) can be expressed as

N-1
X(@) = VY glmv*t iR (6.3.18)
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The summation in (6.3.18) can be interpreted as the convolution of the sequence
g(n) with the impulse response h(n) of afilter, where

h(n) = V*/2 (6.3.19)
Consequently, (6.3.18) may be expressed as
X(ze) = VERy(k)
(6.3.20
:-y@ k=01 ....L-1 )
h(k)
where y(k) is the output of the filter
N=-1
Y& =3 glmhtk—n)  k=0,1..... L-1 (6.3.21)
n=0

We observe that both h(n) and g(n) are complex-valued sequences.

The sequence h{n) with Ry = 1 has the form of a complex exponential with
argument wn = n’¢y/2 = (ngy/2)n. The quantity ney/2 represents the frequency
of the complex exponential signal, which increases linearly with time. Such signals
are used in radar systems and are called chirp signals. Hence the z-transform
evaluated as in (6.3.18) iscalled the chirp-i transform.

The linear convolution in (6.3.21) is most efficiently done by use of the FFT
algorithm. The sequence g(n) is of length ¥. However, 2(n) has infinite du-
ration. Fortunately, only a portion h{n) is required to compute the L vaues
of X(2).

Since we will compute the convolution in (6.3.1) viathe FFT, let us consider
the circular convolution of the N-point sequence g(r) with an M-point section of
h(n). where M > N. In such a case, we know that the first N — 1 points contain
aliasing and that the remaining M — N + 1 points are identical to the result that
would be obtained from a linear convolution of A(n) with g(r). In view of this, we
should select a DFT of size

M=L+N-1

which would yield L valid points and N — 1 points corrupted by aliasing.

The section of h(n) that is needed for this computation corresponds to the
values of h(n) for — (N— 1) <n < (L —1), whichisof lengh M =L+ N -1, as
observed from (6.3.21). Let usdefine the sequence h;(n) of length M as

hi(n) =h(n—N+1) n=0,1,..., M -1 (6.3.22)

and compute its M-point DFT via the FFT algorithm to obtain Hj (k). From x(n)
we compute g{n) as specified by (6.3.17), pad g(n) with L — 1 zeros, and com-
pute its M-point DFT to yield G(k). The IDFT of the product Yi(k) = G(k)Hy(k)
yields the M-point sequence y1(n), n =0,1,...,M — 1 Thefirst N = 1 points of
»(n) are corrupted by aiasing and are discarded. The desired values are y;(n)
forN —1<n <M -1, which correspond to therange0 <» < L — 1 in (6.3.21),
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that is,
ym)=ynnm+N-1) n=01,....L-1 (6.3.23)
Alternatively, we can define a sequence A, (n) as
hatmy = | Osnsl-—1 (6.3.24)

A(n—N—-L+1) Lsn=M-1

The M-point DFT of ha(n) yields Ha(k), which when multiplied by G() yields
Y2 (k) = G(k) Ha (k). The IDFT of Y»(k) yieldsthe sequence y;(n) for0 <n < M-1.
Now the desired values o y,(n) arein therange0 <n < L —1, that is,

y(n} = y2(n) n=01...L-1 (6.3.25)

Finaly, the complex values X(z;} are computed by dividing y(k) by h(k),
k=0,1,...,L =1, asspecified by (6.3.20).

In general. the computational complexity of the chirp-z transform a gorithm
described above is d the order of M log, M complex multiplications, where M =
N+ L = 1. This number should be compared with the product, ~ . L, the number
of computations required by direct evaluation of the z-transform. Clearly, if L is
small, direct computation is more efficient. However, if L islarge. then the chirp-z
transform algorithm is more efficient.

The chirp-z transform method has been implemented in hardware to compute
the DFT of signals. For the computation of the DFT, weselect ro = Ry =1, 6, =0,
¢g = 27/N,and L = N. In this case

v—n"f.’ - e-jﬂnJ/N

. xn? (6.3.26)

= COs —N— = 19n N

The chirp filter with impulse response
h(n) = vrR

wn® | . mn?

=cos— + jsn— (6.3.27)
N N

=h(m)t jh ()

has been implemented as a pair of FIR filters with coefficients k.(n) and h,(n),
respectively. Both surface acoustic wave (SAW) devices and charge coupled de-
vices (CCD) have been used in practice for the FIR filters. The cosine and sine
sequences given in (6.3.26) needed for the premultiplications and postmultiplica-
tions are usually stored in a read-only memory (ROM). Furthermore, we note that
if only the magnitude of the DFT is desired, the postmultiplications are unneces-
sary. In this case,

X)) =y k=0.1....,N—1 (6.3.28)

asillustrated in Fig. 6.19. Thusthe linear A R filtering approach using the chirp-z
transform has been implemented for the computation of the DFT.



486 Efficient Computation o the DFT: Fast Fourier Transform Algorithms Chap. 6

ROM : FIR :

x(n)—

2

o an?

—sin ==
N

: filter N ()2
N T
! h,(n) = cos %2 [

FIR !
' filter !
n H \

hin) = sin N
: ¥

FIR
filter

2
hn) = sin s

N

: FIR ; sy J
H filier ) +

; 2 . + ()2
ROM H h,(m) =cos % ; U

ChirpFilters

Figure 619 Block diagramillustratingthe implementation of thechirp-: transformfor com-
puting the DFT (magnitude only).

6.4 QUANTIZATION EFFECTS IN THE COMPUTATION OF THE DFT*

As we have observed in our previous discussions, the DFT playsan important role
in many digital signal processing applications, including A R filtering, the compu-
tation of the correlation between signals, and spectral analysis. For this reason
it is important for us to know the effect of quantization errors in its computa
tion. In particular, we shall consider the effect of round-off errors due to the
multiplications performed in the DFT with fixed-point arithmetic.

The model that we shall adopt for characterizing round-off errorsin multi-
plication is the additive white noise model that we use in the statistical anaysis
of round-off errorsin IR and A R filters (see Fig. 7.34). Although the statistical

‘It isrecommended that the reader review Section 7.5 prior to reading this section.



Sec. 6.4  Quantization Effects in the Computation of the DFT 487

analysis is performed for rounding, the analysis can be easily modified to apply to
truncation in two's-complement arithmetic (see Sec. 7.5.3).

Of particular interest is the analysis of round-off errors in the computation
of the DFT via the FFT algorithm. However, we shall first establish a benchmark
by determining the round-off errorsin the direct computation of the DFT.

6.4.1 Quantization Errors in the Direct Computation of
the DFT

Given a finite-duration sequence {x{(m)}, 0 < n < N — 1, the DFT of {x(n)} is
defined as

N-1
Xy =Y xmWy  k=01,....N-1 6.4.1)

n=0
where Wy = ¢/2"/~ We assume that in general, {x(x)) is a compiex-valued se-
quence. We also assume that the real and imaginary components of {x(»)} and
{Wr) are represented by b hits. Consequently. the computation of the product
x(myW" requires four real multiplications. Each real multiplication is rounded
from 26 bits to # bits, and hence there are four quantization errors for each

complex-valued multiplication.

In the direct computation o the DFT, there are N complex-valued multiplica-
tions for each point in the DFT. Therefore. the total number of real multiplications
in the computation of a single point in the DFT is4N. Consequently. there are
4N quantization errors.

Let us evaluate the variance of the quantization errorsin a fixed-paint com-
putation of the DFT. First, we make the following assumptions about the statistica
properties of the quantization errors.

1 The quantization errors due to rounding are uniformly distributed random
variables in the range (—A /2, A/2) where A =2-*.

2. The 4N quantization errors are mutually uncorrelated.

3 The 4N quantization errors are uncorrelated with the sequence {x{n}}.

Since each of the quantization errors has a variance

Al 2w
2 SX e TT cm— .4.2
ARV 64.2)
the variance of the quantization errors from the 4 N multiplicationsis
0l = 4Nd}
_ N s 6.4.3)
3

Hence the variance of the quantization error is proportional to the size of DFT.
Note that when N is a power of 2 (i.e., N = 2"), the variance can be expressed
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as
2~20b=v/2)
% =3
This expression implies that every fourfold increase in the size N of the DFT
requires an additional bit in computational precision to offset the additional quan-
tization errors.
To prevent overflow, the input sequence to the DFT requiresscaling. Clearly,
an upper bound on |X (k)| is

(6.4.4)

N-1
X< Y ) (6.4.5)
n=0

If the dynamic range in addition is (—1. 1), then |X (k)| < 1 requires that

N-1
>kl <1 (6.4.6)
n=0
I |x(n)| is initially scaled such that |x(n)| < 1 for @l », then each point in the
sequence can be divided by N to ensure that (6.4.6) is satisfied.

The scaling implied by (6.4.6) is extremely severe. For example, suppose
that the signal sequence (x(n)} is white and. after scaling. each value |x(n)| of the
sequence is uniformly distributed in the range (—1/N. 1/N). Then the variance of
the signal sequence is

2 (NP1
o = 7 =i 647
and the variance of the output DFT coefficients|X (k)| is
a§ = Naf
1 (6.4.8)
T 3N
Thus the signal-to-noise power ratio is
2 2
oy 2
.E =3 (6.4.9)

We observe that the scaling is responsible for reducing the SNR by ~ and
the combination of scaling and quantization errors result in a total reduction that
is proportional to N2. Hence scaling the input sequence {x(n)} to satisfy (6.4.6)
imposes a severe penalty on the signal-to-noise ratio in the DFT.

Example 6.4.1

Use (6.4.9) to determine the number d bitsrequired to compute the DFT d a 1024-

point sequence with a SNR d 30 dB.

Solution The sze o the sequenceis N = 2!, Hence the SNR is

2
10log,, a_,; = 10]og,,, 2%~
a,

q
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For an SNR o 30dB, we have
32b-20) = 0
b = 15 hits
Note that the 15 bits is the precision for both multiplicationand addition.

Instead of scaling the input sequence {x ()}, suppose we simply require that
|x(n)| < 1. Then we must provide a sufficiently large dynamic range for addition
such that [X (k)] < N. In such a case, the variance of the sequence {jx(n)]} is
o2 = 1, and hence the variance of |X (k)| is

ﬁ:Nﬁ=% (64.10)
Consequently, the SNR is
2
Ix _ g (6.4.11)
%

If we repeat the computation in Example 6.4.1, we find that the number of
bits required to achieve a SNR of 30 dB is b = 5 hits. However, we need an
additional 10 bits for the accumulator (the adder) lo accommodate the increase
in the dynamic range for addition. Although we did not achieve any reduction
in the dynamic range for addition, we have managed to reduce the precision in
multiplication from 15 bits to 5 bits. which is highly significant.

6.4.2 Quantization Errors in FFT Algorithms

As we have shown, the FFT agorithms reguire significantly fewer multiplications
than the direct computation of the DFT. In view of thiswe might conclude that the
computation of the DFT viaan FFT agorithm will result in smaller quantization
errors. Unfortunately, that is not the case, as we will demonstrate.

Let us consider the use of fixed-point arithmetic in the computation of a
radix-2 FFT algorithm. To be specific, we select the radix-2, decimation-in-time
algorithm illustrated in Fig. 6.20 for the case N = 8. The results on quantiza-
tion errors that we obtain for this radix-2 FFT algorithm are typical of the results
obtained with other radix-2 and higher radix algorithms.

We observe that each butterfly computation involves one complex-valued
multiplication or, eguivalently, four real multiplications. We ignore the fact that
some butterflies contain a trivid multiplication by +1. If we consider the but-
terflies that affect the computation of any one value of the DFT, we find that,
in general, there are N/2 in the first stage of the FFT, /4 in the second stage,
N/8 in the third state, and 0 on, until the last stage, where there is only one.
Conseguently, the number d butterflies per output point is

242244241 =27 14 )+ + ()]

6.4.12)
=2n-(f)']l=~n-1
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Figure 6.20 Dccimation-in-ime FFT algorithm.

For example, the butterflies that affect the computation d X (3) in the eight-point
FFT agorithm of Fig. 6.20 are illustrated in Fig. 6.21.

The quantization errorsintroduced in each butterfly propagate to the output.
Note that the quantization errorsintroduced in the first stage propagate through
(v — 1) stages, those introduced in the second stage propagate through (v — 2)
stages, and so on. As these quantization errors propagate through a number of
subsequent stages, they are phase shifted (phase rotated) by the phase factors
W, These phase rotations do not change the statistical properties of the quan-
tization errors and, in particular, the variance of each quantization error remains
invariant.

If we assume that the quantization errorsin each butterfly are uncorrelated
with the errors in other butterflies. then there are 4(¥ — 1) errors that affect the
output of each point of the FFT. Conseguently, the variance of the total quanti-
zation error at the output is

2

NA-

.4.13
3 (6.4.13)

Az
2 ) —
a, = 4N 1)1 ~
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Figure 6.21 Butterflies that affect the computation of X(3).
where A =27%. Hence
N
ol =_ .92 (6.4.14)

93
Thisis exactly the same result that we obtained for the direct computation o the
DFT.

The result in (6.4.14) should not be surprising. In fact, the FFT agorithm
does not reduce the number of multiplicationsrequired to compute a single point
of the DFT. It does, however, exploit the periodicitiesin W} and thus reduces
the number o multiplicationsin the computation of the entire block of N points
in the DFT.

As in the case d the direct computation of the DFT, we must scale the
input sequence to prevent overflow. Recall that if |x(n)] < 1/N, 0 <n < N-
1, then |X k)| < 1for 0 < k < N =21 Thus overflow is avoided. With this
scding, the relationsin (6.4.7), (6.4.8), and (6.4.9), obtained previoudy for the
direct computation o the DFT, apply to the FFT agorithm as wel. Consequently,
the same SNR is obtained for the FFT.

Since the FFT algorithm consists of a sequence of stages, where each stage
contains butterflies that involve pairs of points, it is possble to devise a differ-
ent scaling strategy that is not as severe as dividing each input point by N. This
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atternative scaling strategy is motivated by the observation that the intermedi-
ate values [X,(k)| inthen = 1, 2,...,v stages of the FFT algorithm satisfy the
conditions (see Problem 6.35)

max{| X1 (). (Xas1 D] 2 max(|X, &)1, 1Xa ()]
max(| Xps1 (k}. {Xns1 (D] < 2max] X, k), |X, (D]

In view of these relations, we can distribute the total scaling of 1/N into each
of the stages of the FFT algorithm. In particular, if [x(n)] < 1, we apply a scae
factor of % in the first stage so that {x(n)l < % Then the output of each subsequent
stage in the FFT algorithm isscaled by % so that after v stages we have achieved
an overall scale factor of (})* = 1/N. Thus overflow in the computation of the
DFT is avoided.

This scaling procedure does not affect the signal level at the output of the
FFT algorithm, but it significantly reduces the variance of the quantization errors
at the output. Specificaly, each factor of % reduces the variance of a quantization
error term by a factor of 41 Thus the 4(~/2) quantization errors introduced in
the first stage are reduced in variance by (%)"“, the 4(N /4) quantization errors
introduced in the second stage are reduced in variance by ( %)"'3‘ and so on. Con-
sequently. the total variance of the quantization errors at the output of the FFT
algorithm is

(6.4.15)

ORI R
S G
: 2%‘2 [1 - (%)] ~ % P (6.4.16)

where the factor (3)* is negligible;

We now observe that {6.4.16) is no longer proportional to N. On the other
hand, the signal hasthe variance o = 1/3N, asgiven in (6.4.8). Hencethe SNR is
")2( 1y

il yvA
ez 2N (6.4.17)

= 22b—v—]
Thus, by distributing the scaling of 1/N uniformly throughout the FFT algorithm,
we have achieved an SNR that isinversely proportional to N instead of ~2,

Example 6.4.2

Determine the number of bits required to compute an FFT of 1024 points with an
SNR o 30 dB when the scaling is distributed as described above.
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Solution The size of the FFT is N = 2'%. Hence the SNR according to (6.4.17) is
10log,, 2% = 30
32b-11) = 30

21 .
= —(1
b > (11 bits)

Thiscan be compared with the 15 bits required if al the scaling is performed in the
first stage d the FFT algorithm.

6.5 SUMMARY AND REFERENCES

Thefocusof this chapter wason the efficient computation of the DFT. We demon-
strated that by taking advantage of the symmetry and periodicity propertiesof the
exponential factors W&, we can reduce the number of compiex multiplications
needed to compute the DFT from N2 to Nlog, N when N is a power of 2. Aswe
indicated, any sequence can be augmented with zeros. such that N = 2".

For decades, FFT-type algorithms were of interest to mathematicians who
were concerned with computing values of Fourier series by hand. However. it
was not until Cooley and Tukey (1965) published their well-known paper that the
impact and significance of the efficient computation of the DFT was recognized.
Since then the Cooley-Tukey FFT algorithm and its various forms, for example.
the algorithms of Singleton (1967, 1969), have had a tremendous influence on the
use of the DFT in convolution, correlation, and spectrum analysis. For a historical
perspective on the FFT algorithm, the reader is referred to the paper by Cooley
et al. (1967).

The split-radix FFT {(SRFFT) algorithm described in Section 935 is due
to Duhamel and Hollmann {1984, 1986). The "mirror" FFT (MFFT) and "phase”
FFT (PFFT) algorithms were described to the authors by R. Price. The exploitation
of symmetry propertiesin the data to reduce the computation time are described
in a paper by Swarztrauber (1986).

Over the years, a number of tutorial papers have been published on FFT
algorithms. We cite the early papers by Brigham and Morrow (1967}, Cochran et
al. (1967), Bergland (1969), and Cooley et al. {1967, 1969).

The recognition that the DFT can be arranged and computed as a linear
convolution is also highly significant. Goertzel (1968) indicated that the DFT
can be computed via linear filtering, although the computational savings of this
approach is rather modest, as we have observed. More significant is the work
of Bluestein (1970), who demonstrated that the computation of the DFT can be
formulated asa chirp linear filtering operation. This work led to the development
of the chirp-z transform algorithm by Rabiner et al. (1969).

In addition to the FFT algorithms described in this chapter, there are other
efficient algorithms for computing the DFT, some of which further reduce the
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number of multiplications, but usually require more additions. Of particular im-
portanceisan algorithm due to Rader and Brenner (1976), the class of primefactor
algorithms, such as the God algorithm (1971), and the Winograd algorithm (1976,
1978). For a description of these and related algorithms, the reader may refer to
the text by Blahut (1985).

PROBLEMS

61 Show that each of the numbers

ol GnNI O0<k=<N-1

corresponds to an Nth root of unity. Plot these numbers as phasors in the complex
plane and illustrate, by means d this figure. the orthogonality property
Nt N
Zej(ln/lene—j(Zn/Nlln N iHk=1
0, ifk 1

a=0
62 (a) Show that the phase factors can be computed recursively by
Wi = wiwi'

(b) Perform this computation once using single-precision floating-point arithmetic
and once using only four significant digits. Note the deterioration due to the
accumulation of round-off errorsin the later case.

{c) Show how the resultsin part (b) can be improved by resetting the result to the
correct vaue -, each time gl = ~/4.

63 Let x(n) be areal-valued N-point (¥ = 2") sequence. Develop a method to compute
an N-point DFT X’(k), which contains only the odd harmonics {i.e., X'(k) = 0 if k is
even] by using only a real ¥/2-spoint DFT.

64 A designer has available a number of eight-point FFT chips. Show explicitly how he
should interconnect three such chips in order to compute a 24-point DFT.

65 The:-transform of the sequence x(n) = u(n) — u(n — 7) is sampled at five points on
the unit circle as follows

x(k) = X@)|. =&/ £=0,1,2,3,4

Determine the inverse DFT x'(»} of X (k). Compare it with x(n) and exptain the
results.

66 Consider afinite-duration sequence x(n), 0 < n < 7, with z-transform X (z). We wish
to compute X (z) at the following set of values:

7 = 0.8/ <p <7
(@) Sketch the points {z;} in the complex plane.

(b) Determine a sequence s(r) such that its DFT provides the desired samples of
X().
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6.7

6.8

6.10

6.U

613

6.14

615

6.16

617

Derive the radix-2 decimation-in-time FFT algorithm given by (6.1.26) and (6.1.27)
as a special case of the more general algorithmic procedure given by (6.1.16) through
(6.1.18).

Compute the eight-point DFT of the sequence

1, 0<n=<7

M =10 otherwise

by using the decimation-in-frequency FFT algorithm described in the text.

Derive the signal flow graph for the N = 16 point, radix-4 decimation-in-time FFT
algorithm in which the input sequence is in normal order and the computations are
done in place.

Derive the signal Row graph for the N = 16 point. radix4 decimation-in-frequency
FFT algorithm in which the input sequence is in digit-reversed order and the output
DFT isin normal order.

Compute the eight-point DFT of the sequence
1111
xin) = 333 5,0.0,0.0

using the in-place radix-2 decimation-in-time and radix-2 decimation-in-frequency al-

gorithms. Follow exactly the corresponding signal flow graphs and keep track of all

the intermediate quantities hy putting them on the diagrams.

Compute the 16-point DFT of the sequence

_ n

x(n)—cos-z—n 0<n<lS

using the radix-4 decimation-in-time algorithm.

Consider the eight-point decimation-in-time (DIT) flow graph in Fig. 6.6.

(a) What isthe gain of the "signa path" that goes from x(7) to X(2)?

(b) How many paths lead from the input to a given output sample? Is this true for

every output sample?
(c) Compute X (3) using the operations dictated by this flow graph.

Draw the flow graph for the decimation-in-frequency (DIF) SRFFT algorithm for
N = 16. What is the number of nontrivial multiplications?

Derive the algorithm and draw the N = 8 Row graph for the DIT SRFFT agorithm.
Compare your flow graph with the DIF radix-2 FFT flow graph shown in Fig. 6.11.

Show that the product of two complex numbers (a+jb)and (c+ jd) can be performed
with three real multiplications and five additions using the algorithm

xg = (a—b)d+(c—d)a
x; = (a—b)d+{c+dw
where
x=xp+ jx; = (a+ jb)c+ jd)

Explain how the DFT can be used to compute N equispaced samples of the z-
transform, of an N-point sequence, on a circle of radiusr.
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6.18

619

620

621

62

6.23

624

6.25

6.26
6.27

Efficient Computation of the DFT: Fast Fourier Transform Algorithms Chap. 6

A red-valued N-point sequence x(n) is called DFT bandlimited if its DFT X (k) =0
for kg <k < N -k, Weinsert (L = 1)N zerosin the middle o X&) to obtain the
following L N-point DFT

X (k). O<k<ky—1
X'(tk)y =10, ko <k < LN -k
Xtk+N-LN). LN —ky+1<k<IN-1
Show that
Lx'{(Lny=xtn) O0<n<N-|
where

2 & x
LN

Explain the meaning of this type of processing by working out an example with ¥ = 4,
L=21and X{k)=1{1,0.0.1}.
Let X (k) be the N-point DFT of tho sequence x(n). 0 <n < A - 1. What is the
N-point DFT of the sequence s(n) = X(n}. 0 <n < N - 17
Let X{(k) be the N-point DFT of the sequence x¢n), ¢ < »
2N-point sequence v(n) as

h — 1. We define a

1A

i Il) on
v = (5 . neven

0. i odd
Express the 2M-point DFT of () in terms of X (k).
(a) Determine the -transform W (z) of the Hanning window wn) = (1 = cos £} /2.
(b} Determine a formula to compute the N-point DFT X, (k) of the signal x,.(n) =

w(mx(n), 0 < n < N -1, from the N-point DFT X (%) of the signa x(a).

Create a DFT coefficient table that usesonly ¥/4 memory locations to store the first
quadrant of the sine sequence (assume N even).
Determine the compurational burden of the algorithm given by (6.2.12) and compare
it with the computational burden required in the 2¥-point DFT of g(r). Assume that
the FFT agorithm is a radix-2 algorithm.

Consider an 1IR system described by the difference equation

N M
v(n) = — Zau(n -ky+ Zbkx(n -k

k=1 k=0

Describe a procedure that computes the frequency response # (%L) k=0 1....

N -1 using the FFT alporithm (¥ = 2").

Develop a radix-3 decimation-in-time FFT algorithm for ¥ = 3" and draw the corre-
sponding flow graph for N = 9. What is the number of required complex multiplica-
tions? Can the operations be performed in place?

Repeat Problem 6.25 for the DIF case.

FFT input ond output pruning In many applications we wish to compute only a few
points M of the N-point DFT of afinite-duration sequence of length L (i.e., M << N
and L << N).
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(&) Draw the flow graph of the radix-2 DIFFFT algorithm for N = 16 and eliminate
fi.e., prune) al signal paths that originate from zero inputs assuming that only
x(0) and x(1) are nonzero,

(b) Repeat pan (a) for the radix-2 DI T algorithm.

(c) Which algorithm is better if we wish to compute al points of the DFT? What
happens if we want to compute only the points X(0), X(1}, X(2), and X(3)?
Establish a rule to choose between DIT and DIF pruning depending on the
values of M and L.

(d) Give an estimate of saving in computations in termsof M, L, and N.

628 Parallel computation o the DFT Suppose that we wish to compute an N = 272"
point DFT using 2* digital signal processors (DSPs). For simplicity we assume that
p = v = 2. In this case each DSP carries out al the computations that are necessary
to compute 2" DFT points.

(a) Using the radix-2 DIF flow graph, show that to avoid data shuffling, the entire
sequence x(n) should be loaded to the memory of each DSP.

(b) Identify and redraw the portion of the flow graph that is executed by the DSP
that computesthe DFT samples X (2), X(10). X(6). and X (14).

(c) Show that, if we use M = 2' DSPs, the computation speed-up S is given by

_ log, N
S=M log, N —log, M T2(M - 1)

629 Develop an inverse radix-2 DIT FFT algorithm starting with the definition. Draw the
flow graph for computation and compare with the corresponding flow graph for the
direct FFT. Can the IFFT flow graph be obtained from the one for the direct FFT?

630 Repeat Problem 6.29 lor the DIF case.

631 Show that an FFT on data with Hermitian symmetry can be derived by reversing the
flow graph of an FFT for real data.

632 Determine the system function H(z} and the difference equation for the system that
uses the Goertzel algorithm to compute the DFT value X(N = k).

633 (a) Suppose that x(n) is a finite-duration sequence of N = 1024 points. It is desired
to evaluate the z-transform X (z} of the sequence at the points

2y = /@K L0 700,200, ..., 1000

by using the most efficient method or agorithm possible. Describe an algorithm
for performing this computation efficiently. Explain how you arrived at your
answer by giving the various options or algorithmsthat can be used.

(b) Repeat part (a) if X(z) isto be evaluated at

2 = 2(0.9)t /1@ SOMRR2] j = 01,2, ..., 999

6.34 Repeat the analysis for the variance of the quantization error, carried out in Sec-
tion 6.4.2, for the decimation-in-frequency radix-2 FFT algorithm.

635 The basic butterfly in the radix-2 decimation-in-time FFT algorithm is
Xos1(k) = Xa(k) + W3 X, ()
Xor1{l) = Xp(k) — WRXa(D)
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(a) If we require that |X, (k)| < 4 and |X.(N)| < 4, show that
IRe[ X1 (]l < 1, |Ref X (D] < 1
Hm[X, (0]l < 1, [m[X, (D]} <1

Thus overflow does not occur.
{b) Prove that

max{|Xps1 (K1 1 Xass N} 2 max{i X, k)1, 1Xa(1)1]
max{|Xns1 (K], 1Xast (D] < 2 max{| X, k). 1Xa (1]

6.36* Computation of rhe DFT Use an FFT subroutine to compute the following DFTs
and plot the magnitudes | X ()} of the DFTs.
(a) The 64-point DFT of the sequence

x(”)_lll n=01....15 (N =16)
10, otherwise
(b) The 64-point DFT of the sequence
x(n)_ll‘ n=01.-.. 7 (Ni=8
~lo. otherwise

(¢) The 128-point DFT of the sequence in part (a).
(d) The M-point DFT of the sequence

- 10edtx M n=0,1,..., 63 (N, =64)
0. otherwise

Answer the following questions.
(1) What is the frequency interval between successive samples for the plotsin
parts (a), (b). (c). and (d)?
(2) What is the value of the spectrum at zero frequency (dc value) obtained
from the plotsin parts (a). (b), (c), (d)?
From the formula
N-1

X(k) = Zx(n)c'j(z"’"""
=t

compute the theoretical values for the dc value and check these with the
computer results.

(3) In plots (a). (b). and (c), what is the frequency interval between successive
nulls in the spectrum? What is the relationship between #, of the sequence
x(n) and the frequency interval between successive nulls?

(4) Explain the difference between the plots obtained from parts (a) and (c).

6.37* Identification o pole positions in a system Consider the system described by the
difference equation

y(n)=—r'y(n —2) + x(n)

(a) Let - = 0.9 and x(n) = 8(n). Generate the output sequence y(r) for 0 < r < 127.
Compute the N = 128 point DFT (Y (k)} and plot {|¥ (k)1}.
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(b} Compute the N = 128 point DFT of the sequence
w(n) = (0.92)™"y(n)

where y(n) is the sequence generated in part (a). Plot the DFT values |W(k)|.
What can you conclude from the plotsin parts (a) and (b)?

(c) Let r = 05 and repeat part (a).

(d) Repeat pan (b) for the sequence

w(n) = (0.55)7" v(n)

where y(n) is the sequence generated in part (c). What can you conclude from
the plotsin parts (c) and (d)?

(e) Now let the sequence generated in part (c) be corrupted by a sequence d ""mea-
surement™ noise which is Gaussian with zero mean and variance ¢* = 0.1. Repeat
parts (¢) and (d) for the noise-corrupted signal.



| mplementation of
Discrete- Time Systems

The focus o this chapter is on the redlization of linear time-invariant discrete-
time systems in either software or hardware. Aswe noted in Chapter 2, there are
various configurations or structures for the realization of any FIR and IIR discrete-
time system. In Chapter 2 we described the simplest of these structures. namely,
the direct-form realizations. However, there are other more practical structures
that offer some distinct advantages. especially when quantization effects are taken
into consideration.

Of particular importance are the cascade, paralel. and lattice structures,
which exhibit robustness in finite-word-length implementations. Also described
in this chapter is the frequency-sampling realization for an FIR system. which
often has the advantage of being computationally efficient when compared with
alternative FIR realizations. Other important fitter structures are obtained by
employing a state-space formulation for linear time-invariant systems. An analysis
of systems characterized by the state-variable form is presented in both the time
and frequency domains.

In addition to describing the various structures for the realization of discrete-
time systems, we also treat problems associated with quantization effects in the
implementation of digital filters using finite-precision arithmetic. This treatment
includes the effects on the filter frequency response characteristics resulting from
coefficient quantization and the round-off noise effects inherent in the digital im-
plementation of discrete-time systems.

7.1 STRUCTURES FOR THE REALIZATION OF DISCRETE-TIME
SYSTEMS

Let us consider the important class of linear time-invariant discrete-time systems
characterized by the general linear constant-coefficient difference equation

N M
Y ==Y @y -k + Y bxin -k 7.1.1)
k=1 k=0
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Aswe have shown by means of the z-transform, such aclassof linear time-invariant
discrete-time systems are also characterized by the rational system function
M
bz
=0

Hz) = "‘N—
14) az
=1

which is a ratio of two polynomials in ¢~'. From the latter characterization, we
obtain the zeros and poles of the system function, which depend on the choice of
the system parameters (;} and {a:} and which determine the frequency response
characteristics of the system.

Our focus in this chapter is on the various methods of implementing (7.1.1)
or (7.1.2) in either hardware, or in software on a programmable digital computer.
We shdl show that (7.1.1) or (7.1.2) can be implemented in a variety of ways
depending on the form in which these two characterizations are arranged.

I'n general. we can view (7.1.1) as a computationa procedure (an a gorithm)
for determining the output sequence v(n) of the system from the input sequence
x(n). However, in various ways. the computations in (7.1.1) can be arranged into
equivalent sets of difierence equations. Each set d equations defines a compu-
tational procedure or an agorithm for implementing the system. From each set
of equations we can construct a block diagram consisting of an interconnection of
delay elements, multipliers, and adders. In Section 25 we referred to such a block
diagram as aredization of the system or, equivalently, as a structure for realizing
the system.

If the system is to be implemented in software, the block diagram or, equiv-
aently, the set of equations that are obtained by rearranging (7.1.1), can be con-
verted into a program that runson a digital computer. Alternatively, the structure
in block diagram form implies a hardware configuration for implementing the
system.

Perhaps. the one issue that may not be clear to the reader at this point
is why we are considering any rearrangements of (7.1.1) or (7.1.2). Why not
just implement (7.1.1) or (7.1.2) directly without any rearrangement? If either
(7.1.1) or (7.1.2) isrearranged in some manner, what are the benefits gained in the
corresponding implementation?

These are the important questions which are answered in this chapter. At
this point in our development, we simply state that the major factors that influ-
ence our choice of a specific realization are computational complexity, memory
reguirements, and finite-word-length effectsin the computations.

Computational complexity refersto the number of arithmeticoperations(mul-
tiplications, divisions, and additions) required to compute an output value y(n) for
the system. In the past, these were the only items used to measure computational
complexity. However, with recent developments in the design and fabrication of
rather sophisticated programmable digital signal processing chips, other factors,

(7.1.2)
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such as the number of times a fetch from memory is performed or the number of
times a comparison between two numbers is performed per output sample. have
become important in assessing the computational complexity of a given realization
of asystem.

Memory requirements refers to the number of memory locations required
to store the system parameters, past inputs. past outputs. and any intermediate
computed values.

Finite-word-length effects or finite-precision effects refer to the quantization
effects that are inherent in any digital implementation of the system. either in
hardware or in software. The parameters of the system must necessarily be repre-
sented with finite precision. The computations that are performed in the process
of computing an output from the system must be rounded- off or truncated to fit
within the limited precision constraints of the computer or the hardware used in
the implementation. Whether the computations are performed in fixed-point or
floating-point arithmetic is another consideration. All these problems are usualy
caled finite-word-length effects and are extremely important in influencing our
choice of a system realization. We shall see that different structures of a system,
which are equivalent for infinite precision, exhibit different behavior when finite-
precision arithmetic is used in the implementation. Therefore. it is very important
in practice to select a redization that is not very sensitive to finite-word-length
effects.

Although these three factors are the major onesin influencing our choice of
the realization of a system of the type described by either (7.1.1) or (7.1.2}, other
factors, such as whether the structure or the redization lends itself to paralel
processing, or whether the computations can be pipelined. may play a role in
our selection of the specific implementation. These additional factors are usualy
important in the realization of more complex digital signal processing algorithms.

In our discussion of alternative realizations. we concentrate on the three
major factors just outlined. Occasionally, we will include some additional factors
that may be important in some implementations.

7.2 STRUCTURES FOR FIR SYSTEMS

In general, an FIR system is described by the difference equation
M=1
y) =Y bix(n — k) (7.2.1)
k=0
or, equivalently, by the system function
M-1
H@ =) bz (7.22)
k=0

Furthermore, the unit sample response d the H R system isidentical to the coef-
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ficients {&;}, that is,

h(n) = b, O<n<M-1
=10, otherwise

The length of the FIR fitter is selected as M to conform with the established
notation in the technical literature.

We shall present several methods for implementing an FIR system, begin-
ning with the simplest structure, caled the direct form. A second structure is
the cascade-form realization. The third structure that we shall describe is the
frequency-sampling realization. Finally, we present a lattice realization of an H R
system. En this discussion we follow the convention often used in the technical
literature, which isto use (h(n)} for the parameters of an FIR system.

In addition to the four realizations indicated above, an FIR system can be
realized by means of the DFT, asdescribed in Section 6.2. From one point of view,
the DFT can be considered as a computational procedure rather than a structure
for an FIR system. However. when the computational procedure is implemented
in hardware, there is a corresponding structure for the FIR system. In practice,
hardware implementations of the DFT are based on the use of the fast Fourier
transform (FFT) algorithms described in Chapter 6.

(7.2.3)

7.2.1 Direct-Form Structure

The direct-form realization followsimmediately from the nonrecursive difference
equation given by (7.2.1)or, equivalently, by the convolution summation
M-

ym =Y hkxn -k (1.2.4)
k=0

The structure isillustrated in Fig.7.1.

We observe that this structure requires M — 1 memory locations for stor-
ing the M — 1 previous inputs, and has a complexity o M multiplications and
M = 1 additions per output point. Since the output consists of a weighted linear
combination of M — 1 past values of the input and the weighted current value of
the input, the structure in Fig. 7.1, resembles a tapped delay line or a transversal

i"-}—l ! 77 27!

h(0) h(l) h(2) h(3)

U U :

Figure 7.1 Direct-form realization of FIR system.
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1] ] - o
[ [ -

x{n)

(]

IOy BRI
" [
h(0) ) H2) h(“ =3 h (M_z‘l)

Output

Figure 72 Dircct-form realization of linear-phase FIR system (M odd).

system. Consequently, the direct-form realization is often called a transversal or
tapped-delay-line filter.

When the FIR system has linear phase, as described in Section 8.2, the unit
sampl e response of the system satisfieseither the symmetry or asymmetry condition

h(ny=xh(M —1-n) (7.2.5)

For such a system the number of multiplications is reduced from M to M2 for M
even and to (M — 1}/2 for M odd. For example, the structure that takes advantage
of this symmetry is illustrated in Fig. 7.2 for the case in which M isodd.

7.2.2 Cascade-Form Structures

The cascade realization follows naturally from the system function given by (7.2.2).
It isa simple matter to factor H(z) into second-order H R systems so that

K
HG) =[] Bk (7.26)
k=1
where
Hi(2) = beo + bryz™! + beaz™? k=12,...,.K (71.2.7)

and K isthe integer part of (M + 1)/2. The filter parameter b, may be equally
distributed among the X filter sections, such that by = byobsg - - - bge OF it may be
assigned to a single filter section. The zerosof H(z) are grouped in pairs to pro-
duce the second-order H R systems of the form (7.2.7). It is always desirable to
form pairs of complex-conjugate roots S0 that the coefficients {by;} in (7.2.7) are
real valued. On the other hand, real-valued roots can be paired in any arbitrary
manner. The cascade-form realization along with the basic second-order section
are shown in Fig. 7.3.
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my=xm) ] pm= 1 Yolm) = ye- = T yx(my=y(n)
H\(2) = Hy(2)
u Xy(n) L___._'—XJ('I) Xp(n) l_K_.J

(a)

x(m) J—z_—T'

Yiln) =xp 4 y(n)

\ L
®

Figure 73 Cascade realization o an FI R system.

In the case of linear-phase FIR filters, the symmetry in A(x) impliesthat the
zerosd H(z) aso exhibit a form of symmetry. In particular, if z; and z; are a pair
of complex-conjugate zerosthen 1/z; and 1/z} areasoa pair of complex-conjugate
zeros (see Sec. 8.2). Consequently, we gain some simplification by forming fourth-
order sections o the FIR system as follows

Hi(2) = coll =21 = fz7 (1 = 27 2 = 2712
(7.2.8)
=co+enzt Yoz ozt 4t

where the coefficients {ci1} and (cx2} are functions of z;. Thus. by combining
the two pairs of poles to form a fourth-order filter section, we have reduced the
number of multiplications from six to three (i.e., by a factor of 50%). Figure 7.4
illustrates the basic fourth-order FIR filter structure.

xy{n) m_l .
g | -

G2

CR ") Figare 74 Fourth-order sectionin a
\_/ cascade realization of an H R system.
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7.2.3 Frequency-Sampling Structurest

The frequency-sampling redlization is an alternative structure for an FIR filter
in which the parameters that characterize the filter are the values of the desired
frequency response instead of the impulse response h(n). To derive the frequency-
sampling structure. we specify the desired frequency response at a set of equally
spaced frequencies, namely

wk=2m”(k+a) k=0~1‘--v]M—_2_-1 Modd

k=01,.... -’\g»-} M even

a=0o0r}
and solve for the unit sample response #(n) from these equally spaced frequency
specifications. Thus we can write the frequency response as

M~1 )
H(w) = z G

n={)

and the values of H(w) at frequencies wy = 27/M Mk +a) are simply

H (2—”(1; + a))
M

M-1
3 htmpe irUremM =01, M -1
=l

Hk + o)

(7.2.9)

The set of values{H (k+a))are caled the frequency samplesof H(w). In the case
where a = 0, {H (k)) corresponds to the M-point DFT of {h(n)}).

It is a smple matter to invert (7.2.9) and express A(r) in terms of the fre-
quency samples. The result is

M-1
hin) = % Z Hk + a)e/2mdram 9 1,.... M =1 (7.2.10)
k=0

When « = 0, (7.2.10) is simply the IDFT of {H(k)}. Now if we use (7.2.10) to
substitute for ~{n) in the z-transform H(z), we have

M-1
H@) =) h(mz™"
=0 7211

M-l 1 M-1 i
= ; % Y Hk +a)elriromM =

k=0

The reader may alsorefer to Section 8.2.3 for additional discussion of frequency-samplingFIR
filters.



Sec. 7.2  Sruduresfor FIR Systems 507

By interchanging the order of the two summations in (7.2.11) and performing
the summation over the index » we obtain

M- 1 M1
H(z) = Z Hk + o) [H Z(eJer(k+u),’Mz-l)n]

k=0 n=0

(71.2.12)
1—zMeie ¥l Hik+a)
M £t 1 — eiZrthra/M ;-1

Thus the system function H(z) is characterized by the set of frequency samples
(H{k+ o)} instead of {2 (n)].

We view this FIR filter realization as a cascade of two filters [i.e., H(z) =
Hi(z)H2(2)]. Oneisan al-zero filter, or a comb filter, with system function

1 .
Hi(2) = E(] — 7 Meitmey (7.2.13)

Its zeros are located at equally spaced points on the unit circle at
7 = eTEAOM g0, M-1

The second filter with system function

— eJank-Hz)/Mz—l

O Hk+
=Y, ]—f——ﬂ-— (7.2.14)
k=0

consists of a paralel bank of single-pole filters with resonant frequencies
pp o= @M 0,1, M1

Note that the pole locations are identical to the zero locations and that both
occur at w, = 2m{k + a)/M, which are the frequencies at which the desired fre-
guency response is specified. The gains of the parallel bank of resonant filters
are simply the complex-valued parameters {H (k Ta)).This cascade redization is
illustrated in Fig. 7.5.

When the desired frequency response characteristic of the H R filter is nar-
rowband, most of the gain parameters {H{k + a)) are zero. Consequently, the
corresponding resonant filters can be eliminated and only the filters with nonzero
gains need be retained. The net result is a filter that requires fewer computa-
tions (multiplications and additions) than the corresponding direct-form realiza-
tion. Thus we obtain a more efficient realization.

Thefrequency-samplingfilter structurecan be simplified further by exploiting
the symmetry in H(k +a) ,namely, H (k) = H*(M — k) fora =0 and

Hk+})=H"(M-k-}) fora=}

These relations are easily deduced from (7.2.9). Asa result of this symmetry, a
pair of single-pole filters can be combined to form a single two-pole filter with
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Hiay

¢ilnath

D)

Hil+a)

i~

x(n)

132+ uuM

ﬂ*)
|

1
=0or =
o 01’2

//\ y(n)
+
HiM~ 1+ a)\-/—

£i2TM — ) + aVM

Fiure 75 Frequency-sampling realization of FIR filter.

real-valued parameters. Thus for a = 0 the system function Ha(z) reduces to

HO (M=-1)72 -1
Hi(z) = _(i_l A(K) + B(k)z o
1-z &~ 1-2cosQmk/M)z™" + 272
H(0) HMpP)y MET AG) + Bz
H =
2(2) 1-zt 142! T— 2cos(nk/M)z-1 .= M even

k=1

(7.2.15)
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where, by definition,

Ay = Hk)+ HM — k)

B(k) = H(k)e /&M + H(M — kyel7+/M
Similar expressions can be obtained for a= }.

Example 7.2.1

Sketch the block diagram for the direct-form realization and the frequency-sampling
redlization of the M = 32, a = 0, linear-phase (symmetric) FIR filter which has
frequency samples

(7.2.16)

1, k=012
2nk 1
A ("32_) =13 k=3
0, k=45, ..., 15
Compare the computational complexity of these two structures.

Solution Since the filter is symmetric. we exploit this symmetry and thus reduce the
number of multiplications per output point by a factor of 2, from 32 to 16 in the
direct-form realization. The number of additions per output point is 31 The block
diagram of the direct realization isillustrated in Fig. 7.6.

We use the form in (7.2.13) and (7.2.15) for the frequency-sampling realization
and drop all terms that have zero-gain coefficients {H(k)}. The nonzero coefficients
are H (k) and the corresponding pairs are H(M - k), for k = O, 1, 2, 3. The block
diagram of the resulting realization is shown in Fig. 7.7. Since #(0) = |, the single-
pole filter requires no multiplication. The three double-pole filter sections require
three multiplications each for a total of nine multiplications. The total number of
additions is 13. Therefore. the frequency-sampling readization of this FIR filter is
computationally more efficient than the direct-form realization.

x(n)

h(0)

yn}

Figure 7.6 Direct-form realization o M =32 FIR filter.
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B(1) U 'C"D
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Figure 7.7 Frequency-sampling realizationfor the A R filter in Example 7.2.1.
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7.2.4 Lattice Structure

In this section we introduce another FIR filter structure, called the lattice filter or
lattice realization. Lattice filters are used extensively in digital speech processing
and in the implementation of adaptive filters.

Let us begin the development by considering a sequence of FIR filters with
system functions

Hp()=Am(z) m=012,.... M- 1 (7.2.17)
where, by definition, An(z) is the polynomial
A@=1 Y antz*  m21 (7.2.18)
k=1
and Ap{z) = 1. The unit sample response of the mth filter is 4,(0) = | and

hm(k) =an k), k =1, 2,...,m. The subscript m on the polynomial A,(z) denotes
the degree of the polynomia. For mathematical convenience, we definea,,,(0) = 1.

If (x{(m)} is the input sequence to the filter A, (z) and {y(n)} is the output
seguence, we have

Yy =x(m) + Y omlk)x(n - k) (7.2.19)

k=1
Two direct-form structures of the FIR filter are illustrated in Fig. 7.8.

) |
-
a,

|| [ |

1 e,(1) @,(2) 'm(3) L}
Q/ +

—ap(l) - .(lj\ —a,(3) —a,(4)

N

Figure 78 Direct-form reglization d the FIR prediction filter.

x(n)
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In Chapter 11, we show that the FIR structures shown in Fig. 7.8 are inti-
mately related with the topic of linear prediction, where

i) ==Y ank)x(n— k) (7.2.20)
k=1
is the one-step forward predicted value of x(n}, based on m past inputs, and
y(n) = x(n)y — X(n), given by (7.2.19), represents the prediction error sequence.
In this context, the top filter structure in Fig. 7.8 is caled a prediction error filter.
Now suppose that we have afilter of order m = 1. The output of such afilter
is
y(m) = x(n) Toy(Dx(n = 1) (7.2.21)
This output can also be obtained from a first-order or single-stage lattice filter,
illustrated in Fig. 7.9, by exciting both of the inputs by x(z) and selecting the output
from the top branch. Thus the output is exactly (7.2.21), if we select K| = a;(1).
The parameter X, in the lattice is called a reflection coefficient and it is identical
to the reflection coefficient introduced in the Schiir—-Cohn stability test described
in Section 3.6.7.
Next, let us consider an FIR filter for which m = 2. In this case the output
from a direct-iorm structure is

vin)=x(n)+ax(D)x(n — 1) + a2 (Q}x(n — 2) (7.2.22)

By cascading two lattice stages as shown in Fig. 7.10, it is possible to obtain the
same output as {7.2.22). Indeed, the output from the first stage is

filn) = x(m + Kix(n—-1)

(7.2.23)
gin) = Kyx(n) + x(n —1)
The output from the second stage is
2(n) = fi(n) + K28:(n — 1)
¢ . 28 (7.2.24)
g2(n) = K2 filn) + g1(n — 1)
o o fi(n) = ¥(n)
K
x(r)
K,
M.
goln) t—ll golm— 1) O s

Jo(n) = goln) = x(n)
Siln)=fo(m) + Kygo(n — 1) =x(n} + Kyx(n = 1)
21(n) =K, foln} + goln — ) =Kix(n) +x(n - 1)

Figere 79 Single-stage lattice filter.
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fofm) Y___w fatm) = yn)

x(n)

\yxz(n)

Boln) £:(m)

Figure 7.10 Two-stage lattice filter.

If we focus our attention on f2{n) and substitute for fi(n) and gi(n — 1) from
(7.223) into (7.2.24), we obtain
f2(n) = x(n) + Kix(n = 1) + Ko[Kix(n — 1) + x(n — 2)]
(7.2.25)
=x(n)+ K11+ K)x(n = 1)+ Kyx(n = 2)
Now (7.2.25) is identical to the output d the direct-form FIR filter as given by
(7.2.22), if we equate the coefficients, that is,

a:(2) = Ky a(1) = K1(1+ K3) (7.2.26)
or, equivalently,
_ 10))
K> = aa2(2) K| = ——-—'——1 F ) (7227)

Thus the reflection coefficientsk, and K> of the lattice can be obtained from the
coefficients {a,, (k)} of the direct-form realization.

By continuing this process. one can easily demonstrate by induction, the
equivalence between an rnth-order direct-form FIR filter and an m-order or m-
stage lattice filter. The latticefilter is generally described by the following set of
order-recursive eguations:

So(n) = go(n} = x(n) (7.2.28)

Sm(n) = frna W)+ Kpgmatn—1) m=12,....M~-1 (7229)

gm(m) = Kp fn-1(0) + gy(n = 1) m=12,...M=-1 (7.230)
Then the output o the (M —1)-stagefilter correspondsto the output of an (M —~1)-
order FIR filter, that is,

y(n) = fu-1(n)

Figure 7.11 illustrates an (M — 1)-stage lattice filter in block diagram form along
with a typical stage that shows the computations specified by (7.2.29) and (7.2.30).

Asa consequencedf the equivalencebetweenan H Rfilter and alatticefilter,
the output f(n) of an m-stage lattice filter can be expressed as

fm) =3 an®xn—k)  an(0) =1 (7.231)
k=0

Since (7.2.31) isaconvolutionsum it followsthat the z-transform relationship is
F(z) = Am(2)X(2)
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T fitm) Sl Sfu=2n) S =1 () = y(n)
x(n) First Second (M-
stage stage stage
£oln) &i(m 82(n) 8y —2(m) 8- 1(n)
(a)
S 1lm) Juk)
+
K,
8m - 1(n) |_| " s..(ﬂ)
(b)
Figore 711 (M = 1)-stage latticefilter.
or, equivaently,
Fm(z)  Fu(2)
Ap(D) = —— = —— 2.32)
n( Xz FR@ a7

The other output component from the lattice, namely, gm(n), can also be
expressed in the form o a convolution sum as in (7.2.31), by using another set
o coefficients, say {Bm(k)}. That thisin fact is the case, becomes apparent from
observation of (7.2.23) and (7.2.24). From (7.2.23) we note that the filter coeffi-
cients for the lattice filter that produces fi(rn) are {1, K1} = {1,1(1)) while the
coefficientsfor'the filter with output g;(n) are {K1, 1) = {e(1). 1}. We note that
these two sets o coefficients are in reverse order. If we consider the two-stage
latticefilter, with the output given by (7.2.24), we find that g,(n) can be expressed
in the form

K2 fi(n) + g1(n ~ 1)

Kx(n) + Kix(n — D]+ Kyx(n — 1) + x(n — 2)
Kox(n) + Ky(1 + K)x(n — 1) + x(n - 2)

= a(2Q)x(n) + a2(Vx(n = 1) + x(n — 2)

Consequently, the filter coefficients are {a2(2), a2(1), |}, whereas the coefficients
for the filter that produces the output f2(n) are {1, a2(1), @2(2)}. Here, again, the
two setsd filter coefficientsare in reverse order.

From this development it follows that the output g, (r) from an m-stage
lattice filter can be expressed by the convolution sum of the form

82(n)

gm(m) = Bu(K)x(n — k) (7.233)
k=0
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where the filter coefficients {8.(k)} are associated with a filter that produces
fm(n) = y(n) but operates in reverse order. Consequently,

Bm(k) = am(m ~ k) k=01,....m (7.2.34)

With Be(m) = 1

In the context o linear prediction, suppose that the data x(n}, x(n — 1), ...,
x(n—m+1)isused to linearly predict the signal value x(n —m) by use of alinear
filter with coefficients (-8, (k)}. Thus the predicted valueis

m—1
in—m)y==Y Bulb)x(n~k) (7.2.35)
k=0

Since the data are run in reverse order through the predictor, the prediction per-
formed in (7.2.35) is called backward prediction. In contrast, the H R filter with
system function A, (z) iscaled aforward predictor.

In the z-transform domain, (7.2.33) becomes

Gm(2) = Bu(2)X(2) (7.2.36)
or, equivaently,
Gnm(2)
B,(z) = 2.
(2) X (7.2.37)

where B,{(z) represents the system function of the FIR filter with coefficients
{Bm(k}}, that is,

Bn() = Bnk)z™ (7.2.38)

k=0
Since B (k) = a, (m—k), (7.2.38) may be expressed as

Bn(2) = ) am(m —k)z™*
k=0

= Z an(l )Z‘_m
1=0 (7.2.39)

Y anh?
=0

=" An(z™)

The relationship in (7.2.39) implies that the zeros of the A R filter vith system
function B (z) are smply the reciprocalsd the zeros of Ax(z). Hence B,(z) is
cd |l ed the reciprocal or reverse polynomial of Ax(z).

Now that we have established these interesting relationships between the
direct-formH R filter and the | attice structure, let us return to therecursivelattice
equations in (7.2.28) through (7.2.30) and transfer them to the z-domain. Thus
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we have
Fo(2) = Golz) = X(2) (72.40)
Ful2) = Fn1(D) + Knz 'Gmoi(z) m=1,2,....M—-1 (7241)
Gm(2) = KnFni(@ + 2 Gp1(2)  m=12,....M-1 (7242)

If we divide each equation by X(z), we obtain the desired resultsin the form
Ap(z) = Bp(n) =1 (7.2.43)
An(2) = An1(D) + Kmz ' Buoim) m=12.....M- 1  (7.2.49)
Bn(2) = KnAmy @D + 27 Bu1(@)  m=1,2,....M—1 (7245

Thus a lattice stage is described in the z-domain by the matrix equation

Am (z) _ 1 Km Am-l(z)
[Bm(z)] = [Km 1 ][z-‘BM_«z)] (7.246
Before concluding this discussion, it is desirable to devel op the relationships

for convertingthe lattice parameters (K}, thet is, the reflection coefficients, to the
direct-form filter coefficients {a., (k)], and vice versa

Conversion of lattice coefficientsto direct-form filter coefficients. The
direct-form FIR filter coefficients {a. (k)} can be obtained from the lattice coeffi-
cients {K;} by using the following relations:

Aglz) = Bo(z) =1 (7.2.47)
Am@) = An1 @ + Kp2 'Buoi(z)  m=1,2,...,M—-1 (7.248)
Bu(z) = 2" Am(z) m=12,...,M-1 (7.2.49)

The solution is obtained recursively, beginning with m = 1. Thus we obtain a
sequence d (M — 1) FIR filters, one for each value of m. The procedure is best
illustrated by meansd an example.

Example 7.2.2

Given a three-stage latticefilter with coefficients Ky = §, K2 = §, K3 = 1, determine
the A R filter coefficientsfor the direct-for m structure.

Solution \We solve the problem recursively, beginningwith (7.2.48) for m = 1. Thus
we have

A1(2) = Ao(2) + K127' Bo(2)
=14+Kz"'=1+ %Z-i

Hence the coefficients d an FIR Nter corresponding to the single-stage lattice are
@ (0) =1, e1{1} = K; = }. Since B, (2) is the reverse polynomial of An(z), we have

Bi(z) = % +z7!
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Next we add the second stage to the lattice. For m = 2, (7.2.48) yields
A2(2) = A1(D) + K2z By (2)
=1+3"+ 42
Hence the F R filter parameter scorrespondingto the two-stage lattice are a»(0) = 1,
o) =3, @) =1. Als.
Byz) =1+ 3+ 272
Finally, the addition of the third stage to the lattice results in the polynomial
A3(2) = Ay T Kz By(2)

13- = —
_1+§Z l+%2 2+%Z3

Consequently. the desired direct-form FIR filter is characterized by the coefficients
=1 o= ou@=§ o=}

As this example illustrates, the lattice structure with parameters K\, K. ....
K. correspondsto aclassof m direct-form FIR filters with system functions A, (z).
Aa(D). ..., An(2). It isinteresting to note that a characterization of thisclassof m
FIR filters in direct form requires m(m + 1)/2 filter coefficients. In contrast. the
lattice-form characterization requires only the m reflection coefficients (K,). The
reason that the lattice provides a more compact representation for the classof m
FIR filters is simply due to the fact that the addition of stages to the lattice does
not alter the parameters of the previous stages. On the other hand, the addition
d the mth stage to a lattice with (m — 1) stages results in a FIR filter with system
function A, {(z) that has coefficients totally different from the coefficients of the
lower-order FIR filter with system function A,,—1(z).

A formula for determining the filter coefficients {a.(k)} recursively can be
easily derived from polynomial relationshipsin (7.2.47) through (7.2.49). From the
relationship in (7.2.48) we have

An(Z) = Ap1(2) + Kz ' Bp_1(2)

fjam(k)z‘*
k=0

By equating the coefficients of equal powers of z~! and recalling that e, (0) =1
form=1,2,...,M -1, weobtain the desired recursive equation for the FIR filter
coefficients in the form

am(©® =1 (7.2.51)
an(m) = Kn (7.2.52)
Uy (k) = 1 (k) + Knttm_1(m — k)

(7.2.50)

m—1 m—1
1)+ K Y amer(m — 1= k)%
k=0 k=0

= ap_1(k) + o (1)t (1 — ) :f: "152’" - lM _, 0259
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We note that (7.2.51} through (7.2.53) are smply the Levinson-Durbin recursive
eguations given in Chapter 11,

Conversion of direct-form FIR filter coefficients to lattice coefficients.
Suppose that we are given the H R coefficients for the direct-form realization or,
equivaently, the polynomia A (z), and we wish to determine the corresponding
lattice filter parameters{K,). For the m-stage lattice we immediately obtain the
parameter X,, = a,(m). To obtain K,—; we need the polynomialsA,-1(z} since,
in general, K,, isobtained from the polynomid A, z}foom=M -1, M-2,...,1.
Consequently, we need to computethe polynomias A, (z) startingfromm = M -1
and "stepping down' successivelytom = 1.

The desired recursive relation for the polynomialsis easily determined from
{7.2.44) and (7.2.45). We have

An(@) = Ano1@) + Kz ' Bpo1 (2)

= Ap-1(0) + Km[Bm(Z) ~ KnAn- (:)]
If we solvefor A,_1(z), we abtain
An(z) — KnBp(2)

1= K2

which is just the step-down recurson used in the Schiir—Cohn stability test de-
scribed in Section 3.6.7. Thus we compute dl lower-degree polynomias A (z}
beginning with Ax_1(z) and obtain the desired lattice coefficients from the rela-

tion K, = an(m). We observe that the procedure works as long as | K| # 1 for
m=12,....M-1.

Example7.2.3
Deter mine the lattice coefficients corresponding to the H R filter with system function
H@ =A@y =1+ 227 +§272 + {27

Am-1(2) = m=M-1M=-2....1 (7.2.54)

Solution First we note that K3 = a3(3) = % Furthermore.
By(zy =4+ 37+ Ba 2+ 27
The step-down relationship in (7.2.54) with m = 3 yields

A3(2) — K3By(2)

Az} = = K;‘

1+37 + 4272

Hence K2 = a2(2} = 1 ad By(z) = 1+ + 3277 + 27, By repeating the step-down
recursion in (7.2.51), we obtain

Ax2) — K2 B2(2)

A
1(2) e

It

1+ 4z

Hence K] =ai(l)= %.
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From the step-down recursive equation in (7.2.54), it is relatively easy to
obtain a formula for recursively computing K, beginning with m = M - 1 and
stepping downtom =1 Form =M -1, M - 2,..., 1 we have

Kn = am(m) on1(0) =1 (7.2.55)
m k) — Km 'm k
om_1 (k) = E’"(—)l—_—kjﬂ-—(—z
= @m0 ~ammantm =0 gy (7.2.56)
1—a2(m)

which is again the recursion we introduced in the Schiir—Cohn stability test.

As indicated above, the recursive equation in (7.2.56) breaks down if any
lattice parameters |K,! = 1. If this occurs, it is indicative of the fact that the
polynomial 4,,—(z) has a root on the unit circle. Such a root can be factored out
from An-1(z) and the iterative process in (7.2.56) is carried out for the reduced-
order system.

73 STRUCTURES FOR HR SYSTEMS

In this section we consider different IR systems structures described by the dif-
ference equation in (7.1.1) or, equivalently, by the system function in (7.1.2). Just
asin the case of FIR systems, there are several types of structures or realizations,
including direct-form structures, cascade-form structures, lattice structures, and
lattice-ladder structures. In addition, IR systems lend themselves to a parallel-
form realization. We begin by describing two direct-form realizations.

7.3.1 Direct-Form Structures

The rational system function as given by (7.1.2) that characterizes an IIR system
can be viewed as two systems in cascade, that is,

H(z) = Hi(2) Ha(2) (7.3.1)
where H;(z) consists of the zeros of H(z), and Ha(z) consists of the poles of H(z),

M
H@ =3 b (732)
k=0
and
1
Hi(2) = —— (7.3.3)
1+ Eakz k
k=1

In Section 2.5.1 we describe two different direct-form realizations, character-
ized by whether H;(z) precedes Hz(z), or vice versa. Since Hy(z) isan FIR system,
its direct-form realization was illustrated in Fig. 7.1. By attaching the all-pole
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Lo

All-zero system All-pole system

Fire 712 Direct fam | realization.

system in cascade with H;(z), we obtain the direct form | redization depicted in
Fig. 7.12. This redlization requiresM + N + 1 multiplications, M + » additions,
and M + N+ 1 memory locations.

If the all-polefilter Hz(z) is placed before the all-zero filter Aj(z), a more
compact structureisobtained asillustrated in Section 2.5.1. Recall that the differ-
ence equation for the al-polefilter is

N
w(n} = — Zakw(n — k)Y + x(n) (7.3.4)
k=1

Since w(n) isthe input to the all-zero system, its output is
M
yn) =Y bew(n — k) (13.5)
k=0

We note that both (7.3.4) and (7.35) involve delayed versions of the sequence
{w(n)}. Consequently, only asingle delay line or a single set of memory locations
is required for storing the past values of {w(n)). The resulting structure that
implements(7.3.4) and (7.3.5) is called adirect form 11 realization and is depicted
in Fig. 7.13. Thisstructure requires M + N + 1 multiplications, 4 + N additions,
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T IR
+ +
z-1
—a b,
+ +

Figure 713 Direct form Il realization(N= M .

and the maximum of {A, N} memory locations. Since the direct form II realization
minimizes the number & memory locations, it issaid to be canonic. However, we
should indicate that other 1R structures also possess this property, so that this
terminology is perhaps unjustified.

The structuresin Fgs 7.12 and 7.13 are both caled "direct form" rediza-
tions because they are obtained directly from the system function A (z) without
any rearrangement of H(z). Unfortunately, both structures are extremely sensi-
tive to parameter quantization, in general, and are not recommended in practical
applications. Thistopicisdiscussed in detail in Section 7.6, where we demonstrate
that when N islarge, asmal changein afilter coefficient due to parameter quan-
tization, results in a iarge change in the location o the poles and zeros o the
system.

7.39 Signal Flow Graphs and Transposed Structures

A dgnd flow graph provides an alternative,~but equivaent, graphical represen-
tation to a block diagram structure that we have been using to illustrate various
system realizations. The basic dements of a flow graph are branches and nodes.
A signal flow graph is basicdly a set o directed branches that connect at nodes.
By definition, the signal out of a branch isequal to the branch gain (system func-
tion) times the signal into the branch. Furthermore, the signal at a node of a
flow graph is equal to the sum o the signalsfrom all branches connecting to the
node.

To illustrate these basic notions, let us consider the two-pole and two-zero
IIR system depicted in block diagram form in Fg. 7.14a. The sysem block
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Figure 714 Second-order filter structure (a) and its signal Row graph (b).

diagram can be converted to the signa flow graph shown in Fig. 7.14b. We note
that the fiow graph contains five nodes labeled 1 through 5. Two of the nudes
(1,3) are summing nodes (i.e., they contain adders), while the other three nodes
represent branching points. Branch transmittances are indicated for the branches
in the flow graph. Note that a delay is indicated by the branch transmittance
z~'. When the branch transmittance is unity, it is left unlabeled. The input to
the system originates at a source node and the output signal is extracted at asink
node.

We observe that the signd flow graph contains the same basic information
as the block diagram realization of the system. The only apparent difference is
that both branch points and adders in the block diagram are represented by nudes
in the signal flow graph.

The subject of linear signal flow graphs isan important one in the treatment
o networks and many interesting results are available. One basic notion involves
the transformation of one flow graph into another without changing the basic
input-output relationship. Specifically, one technique that is useful in deriving
new system structures for FIR and IR systems stems from the trensposition or
flow-graph reversal theorem. This theorem simply states that if we reverse the
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directions of all branch transmittances and interchange the input and output in
the flow graph, the system function remains unchanged. The resulting structure is
called a transposed structure or a transposed form.

For example, the transposition of the signal flow graph in Fig. 7.14b isillus-
trated in Fig. 7.15a. The corresponding block diagram realization of the transposed
form isdepicted in Fig. 7.15b. It isinteresting to note that the transposition of the
origina flow graph resulted in branching nodes becoming adder nodes, and vice
versa. In Section 75 we provide a proof of the transposition theorem by using
state-space techniques.

Let us apply the transposition theorem to the direct form II structure. First,
we reverse al the signal flow directions in Fig. 7.13. Second, we change nodes
into adders and adders into nodes, and finally, we interchange the input and the
output. These operations result in the transposed direct form II structure shown
in Fig. 7.16. This structure can be redrawn as in Fig. 7.17, which shows the input
on the left and the output on the right.

[N]

win) 1 by 3 x(n)

¥n)

by

b,

Figure 715 Signal Bow graph of
transposed dructure (a) and its
realization (b).
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dructure.

The transposed direct form II realization that we have obtained can be de-
scribed by the set of difference equations

y(n) = wi(n — 1) + box(n) (7.3.6)
we(n) = wepi(n =D —ay() + bex(n)  k=12,...,N-1 (737
wy(n) = byx(n) —any(n) (7.3.8)

Without loss of generality, we have assumed that M = N in writing equations. It
isalso clear from observation of Fig. 7.17 that this set of difference equationsis
equivalent to the single difference equation

N M
yy==) ay(n~k)+Y_ bex(n — k) (7.3.9)
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sructure.

Finaly, we observe that the transposed direct form II structure requires the same
number of multiplications, additions, and memory locations as the original direct
form 11 structure.

Although our discussion of transposed structures has been concerned with
the general form of an IIR system, it is interesting to note that an A R system,
obtained from (7.3.9) by setting thea;, =0,k =1, 2,..., &, a0 has a transposed
direct form as illustrated in Fig. 7.18. This structure is simply obtained from
Fig. 717 by settinga; =0,k =1, 2,...,N. Tis transposed form realization may

x(n)

by by -

. wy(n} H °

Figure 718 Trangosad FIR structure.
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be described by the set of difference equations

wy(n) = byx(n) (7.3.10)
w(n) = wigy(n = 1) + bx(n) k=M-1M-2,...,1 (7311)
yn) = wilr = 1) + box(n) (7.3.12)

In summary, Table 7.1 illustratesthe direct-form structures and the corresponding
difference equations for a basic two-pole and two-zero IIR system with system
function

byt bz bz ?
T 1+aiz 4 az?
Thisisthe basic building block in the cascaderealizationd high-order | IR systems,
as described in the following section. Of the three direct-form structures given in
Table 7.1, the direct form II structures are preferable due to the smaller hnumber
o memory locations required in their implementation.

Finally, we note that in the z-domain, the set o differenceequations describ-
ing a linear signd flow graph constitute a linear set of equations. Any rearrange-
ment of such aset of equations isequivalent to a rearrangement of the signal flow
graph to obtain a new structure, and vice versa.

H(z) (1.3.13)

7.33 Cascade-Form Structures

Let us consider a high-order IIR system with system function given by (7.1.2).
Without loss of generality we assume that N > A. The system can be factored
into a cascade of second-order subsystems, such that H(z) can be expressed as

K
H@ =[] H (73.14)

k=1
where K is theinteger part of (¥ + 1)/2. Hi(z) has the generalform

bio + baz~! + bipz?
1+anz?! +apz?

Asin the case of FI R systems based on a cascade-form realization, the parameter
be can be distributed equally among the X filter sectionsso that by = bipbyg . . . bxo-

The coefficients {ag;} and {b}in the second-order subsystemsare real. This
impliesthat in formingthe second-order subsystemsor quadraticfactorsin (7.3.15),
we should group together a pair of complex-conjugate polesand we should group
together a pair of complex-conjugate zeros. However, the pairing of two complex-
conjugate poleswith a pair of complex-conjugatezerosor real-val ued zerosto form
a subsystem of the type given by (7.3.15), can be done arbitrarily. Furthermore,
any two real-valued zeros can be paired together to form a quadratic factor and,
likewise, any two real-valued poles can be paired together to form a quadratic
factor. Consequently, the quadratic factor in the numerator o (7.3.15) may consist

Hy(z) = (7.3.15)
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brx(n) — ayy(n)
+up(n—1)

/]

wzln) = byx(n) — azy(n)
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of either a pair of rea roots or a pair & complex-conjugate roots. The same
statement applies to the denominator of (7.3.15).

If N > M, some of the second-order subsystemshave numerator coefficients
that are zero, that is, either bys = 0 0or by; = 0 or both by = by = 0 for somek. Fur-
thermore, if N isodd, one of the subsystems, say H(z), must have a;; = 0, so that
the subsystemis o first order. To preserve the modularity in the implementation
of H(z), it isoften preferable to use the basic second-order subsystemsin the cas-
cade structure and have some zero-valued coefficientsin some of the subsystems.

Each o the second-order subsystemswith system function of theform (7.3.15)
can be realized in either direct form |, or direct form I, or transposed direct form
II. Since there are many ways to pair the polesand zeros of H(z) into a cascade
of second-order sections, and several ways to order the resulting subsystems, it is
possible to obtain a variety of cascade realizations. Although al cascade realiza-
tions are equivaent for infinite precison arithmetic, the various realizations may
differ significantly when implemented with finite-precision arithmetic.

The genera form of the cascade structure is illustrated in Fg. 7.19. If we
use the direct form II structure for each o the subsystems, the computational
agorithm for realizing the 1R system with system function H (z) is described by
the following set of equations.

yo(n) = x(n) (7.3.16)
wk(n) = —aklwk(n - 1) —akgwk(n —2)+yk_1(n) k= 1,2,...,K (7‘3.17)
Yi(n) = bowp(n) + bywi(n — 1) + bywi(n — 2) k=12,....K (7.3.18)

y(n) = yg(n) (7.3.19)
x(n) = x,(n) x(m) xg(n)
H(2) Hy(2) e Hy(2) [
¥)(n} ya(n) r)
(2}
x(m) /:\ 1 big D ylm=x,4(m)
Y .
—a, b
R
) by

®)

Figure 719 Cascade structure d second-order systems and a realization d each
second-or der secti on.
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Thus this set of equations providesa complete description of the cascade structure
based on direct form II sections.

7.3.4 Parallel-Form Structures

A parallel-form realization of an IR system can be obtained by performing a
partial-fraction expansion of H(z). Without loss of generality, we again assume
that N > M and that the polesare distinct. Then, by performing a partial-fraction
expansion of H(z), weobtain the result

N
A
H@Q=C+Y ——— (7.3.20)
Jucii il

where {p;} are the poles, {A«}are the coefficients (residues) in the partial-fraction
expansion, and the constant C is defined as C = by/ay. The structure implied
by (7.320) is shown in Fig. 7.20. It consists  a paralel bank of single-pole
filters.

In general, some of the polesof # (z) may be complex valued. In such a case.
the corresponding coefficients 4, are also complex vaued. To avoid multiplica
tions by complex numbers. we can combine pairs of complex-conjugate poles to
form two-pole subsystems. In addition, we can combine. in an arbitrary manner,

c

e
w 50—

—_—

Figure 720 Paralld structured |IR system.
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bio D) Y(n)

Fire?721 Structured second-order section in a parallel IR system realization.

pairs of real-valued poles to form two-pole subsystems. Each of these subsystems
has the form

b + bryz”!

H{)= ————————
k(@) 1 +ak12_] +ak22—2

(7.3.21)
where the coefficients {&;} and {ay;] are rea-valued system parameters. The over-
al function can now be expressed as

LS
H@=C+Y H() (1.3.22)

k=|

where X istheinteger part of (N+1)/2. When N isodd, oneof the H,(z) isrealy
asingle-pole system (i.e., bx; = a;; =0).

Theindividual second-order sections which are the basic building blocks for
H(z) can be implemented in either of the direct forms or in a transposed direct
form. The direct form II structureisillustrated in Fig. 7.21. With this structure as
a basic building block, the parallel-form realization of the FIR system isdescribed
by the following set of equations

wiln) = —apwe(n — 1) —apwi(n —2) +x(n) k=12,....K (73.23)

ye(n) = browe(n) + brywi(n — 1) k=1,2,....X (7.3.24)
¢
y(n) = Cx(n)+ Z; ye(n) (7.3.25)
Example 731
Determinethe cascadeand pardld redlizationsfor the sysem described by thesysem
function
— 1,1 - 2,1 -1
H(D) = 1001 — 3270 - £27)(1 + 2271

=3z =gzl - G+ipe 'l - G - ]
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Solution The cascade realization is easily obtained from this form. One possible
pairing of poles and zerosis

Hi(2) k26
R T P PP W
1432270 272
HZ(:)=+|—2
1—z714 32

and hence
H(z) = 10H,(2)Hy(2)

The cascade realization is depicted in Fig. 7.22a.

To obtain the parallel-form realization, H(z) must be expanded in partial frac-
tions. Thus we have

A A, A Al

A@=1z 31 1 izt * 1=+ jhz! *7 -4 —3;‘§>;-1

where Ay, Az. A;, and A3 are to be determined. After some arithmetic we find that
A =293, Ay =-1768 A3;=1225-j1457. A;=1225% 1457

upon recombining pairs o poles. we obtain
—14.75 - 12.90z7"  24.50 + 26.82:"!
T—t 4 2272 1—'+ 42

The paralel-form redlization isillustrated in Fig. 7.22b.

H(z) =

7.35 Lattice and Lattice-Ladder Structures for IR
Systems

In Section 7.24 we developed a latticefilter structure that is equivalent to an FIR
system. In this section we extend the development to | IR systems.
Let us begin with an all-pole system with system function

1 1
H(z) = — e (1.3.26)
1+ an(yz™
k=1

The direct form readization of thissystem isillustrated in Fig. 7.23. The difference
equation for thislIR system is

N
y{n) =— Ean(k)y(n — k) 4+ x(n) (7.3.27)
k=1

It isinteresting to note that if we interchange the roles of input and output
[i.e., interchange x(n) with y(n) in (7.3.27)], we obtain

N
x(m) == an(x(n - k) T yn)
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) (+)

22
3
(a)
/:\ -14.75 R
N
- I
1
8 -129
(ﬁ
x{n) / ¥(n)

26.82

Figure 7.22 Cascade and paralle realizationsfor the sysem in Example 7.3.1.
or, equivalently,

N
ym =xm + Y ank)x(n — k) (1.3.28)

k=1
We note that the equation in (7.3.28) describesan F R system having the
system function H(z) = An(z), whilethe system described by the difference ¢qu2”
tion in (7.3.27) representsan IR system with system function H(z) = 1/AN (-
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Mn)

Figure 723 Direct-form realization of an all-pole system.

One system can be obtained from the other simply by interchanging the roles of
the input and output.

Based on this observation, we shall usethe all-zerd H R) lattice described in
Section7.2.4to obtain alatticestructure for an all-polel IR system by interchanging
the rolesdof theinput and output. First, we take the al-zero lattice filter illustrated
in Fig. 7.11 and then redefine the input as

x(n) = fu(m) (7.3.29)
and the output as

vn) = fo(n) (7.3.30
These are exactly the opposite of the definitionsfor the all-zero latticefilter. These
definitionsdictate that the quantities{ f»(n)} becomputed in descending order [i.e.,
fv(m), fau—1(n),...). This computation can be accomplished by rearranging the
recursive equation in (7.2.29)and thus solvingfor fm—i(n) in termsof fm{n), that is,

Jua1(@) = fu(n) — Knm-1(n =1} m=NN-1..1

The equation (7.2.30)for gw(n) remains unchanged.
The result of these changes is the set of equations

fn(n) = x(n) (7.3.31)
Sn-1(n) = fm(r) = Kmgm-1(n — 1) m=N,N-1,..,1 (7.3.32)
gm() = Kmfrmor) T gmoan=1) m=N,N=-1,..,1 (7.3.33)
y(n) = fo(n) = go(m) (7.3.34)
which correspond to the structure shown in Fig. 7.24.
Input
x(n) (D vt A0 filn) D So(n) = y(n)

Output

Figure 724 Lattice structure for an all-polelIR sysem.
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To demonstrate that the set of equations (7.3.31) through (7.3.34) represent
an al-pole I'TR system, let us consider the case where N = 1. The equations
reduce to

x(n) = fi(n)

foln) = fi(n) — Kigo(n — 1)

&1(n) = Ky fo(n) + gon — 1) (7.3.35
¥{n) = fo(n)

=x(m)— Kyjy(n-1)
Furthermore, the equation for g;(n) can be expressed as
g1(n) = K1y(n) + y(n — 1) (1.3.36)

We observethat (7.3.35) represents a first-order all-pole [ IR system while (7.3.36)
representsafirst-order FIR system. The poteisa result d the feedback introduced
by the solution of the (f.(n)} in descending order. This feedback is depicted in
Fg. 7.25a.

Forward
x(n) m Jo(m) ¥n)
fitn)
K
K Feedback
+ -1
G By
Reverse
(@)
Forward
x(n) N fitm) m Jolm) ¥n)
f z—l]
[

Figure 725 Singe-poleand two-pole lattice system.
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Next, let us consider the case N = 2, which corresponds to the structure in
Fig. 7.25b. The equations corresponding to this structure are

frln) = x(n)
fin) = foln) — Kz2g1(n = 1)
g2(n) = Kz i)+ g1(n = 1)

(7.3.37)
fon) = fi(n) — Kiga(n — 1)
g1(n) = Ky fo(n) + go(n = 1)
¥(n) = fo(n) = go(n)
After some simple substitutions and manipulations ‘weobtain
y(in) = =K1 (1 + K)v(n—1) - Kay(n - 2) + x(n) (7.3.38)
82(n) = Kay(m) + K1(1 + K2)y(n — 1) + y(n — 2) (7.3.39)

Clearly. the difference equation in (7.3.38) represents a two-pole I1JR system, and
the relation in (7.3.39) is the input-output equation for a two-zero FIR system.
Note that the coefficients for the FIR system are identical to those in the IIR
system except that they occur in reverse order.

In general, these conclusions hold for any N. Indeed. with the definition of
Am(z) given in (7.2.32). the system function for the al-pole IIR system is

Y3 _ F@R) 1

H s o— = —~ = 7.3.40
D= X0 = @~ A (7349
Similarly, the system function o the all-zero (FIR) system is
Gm - -
Hy(o) = —(Z-)* = -G—mgl = Bn(z) =2 "An(z™h) (7.3.41)

where we used the previously established relationships in (7.2.36) through (7.2.42).
Thus the coefficientsin the A R system H,(z) are identical to the coefficientsin
Am(z), except that they occur in reverse order.

It isinteresting to note that the all-pole lattice structure has an all-zero path
with input gp(n) and output g (n), which is identical to its counterpart al-zero
path in the all-zero lattice structure. The polynomia B, (z), which represents the
system function of the all-zero path common to both lattice structures, is usualy
caled the backward system function, because it provides a backward path in the
al-pole lattice structure.

From this discussion the reader should observe that the all-zero and all-pole
lattice structures are characterized by the same set d lattice parameters, namely,
K1, Ka, ..., Ky. The two lattice structures differ only in the interconnections of
their signal flow graphs. Consequently, the agorithmsfor converting between the
system parameters {e. (k)} in thedirect form realization of an H R system, and the
parameters of its lattice counterpart apply as well to the all-pole structure.
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We recall that the roots of the polynomia Ay(z) lie inside the unit circle if
and only if the lattice parameters |K,,| < 1fordl m =1, 2,.... N. Therefore, the
al-pole lattice structure is a stable system if and only if its parameters |Kn| < 1
for al m.

In practical applicationsthe al-pole lattice structure has been used to model
the human voca tract and a stratified earth. In such cases the lattice parameters,
(K=} have the physical significance of being identical to reflection coefficientsin
the physica medium. Thisisthe reason that the lattice parameters are often called
reflection coefficients. In such applications,a stable model of the medium requires
that the reflection coefficients, obtained by performing measurements on output
signals from the medium, be less than unity.

Theall-pole |attice providesthe basic building block for lattice-typestructures
that implement 1IR systems that contain both poles and zeros. To develop the
appropriate structure, let us consider an IR system with system function

M
Yoemyz

H() = =0 _ Cu(z) (1.3.42)

N . An@
14+ ) ay(k)z”
k=1

where the notation for the numerator polynomia has been changed to avoid con-
fusion with our previous development. Without loss of generality, we assume that
N = M.

In the direct form IT structure, the system in (7.342) is described by the
difference equations

N
wm) = ~ Y _ay()w(n ~ k) +x(n) (7.3.43)
k=1
M
ym) =Y euk)win — k) (7.3.44)
k=0

Note that (7.3.43) isthe input-output of an all-pole | IR system and that (7.3.44) is
theinput-output o an all-zerosystem. Furthermore, we observe that the output of
the all-zerosystem issimply a linear combination of delayed outputs from the all-
pole system. Thisis easily seen by observing the direct form II structure redrawn
asin Fig. 7.26.

Since zeros result fromforming a linear combination of previousoutputs we
can carry over this observation to construct a pole-zero | IR system using the all-
pole lattice structure as the basic building block. We have already observed that
&m{n) isa linear combination d present and past outputs. In fact, the system

Gm(2)
Y@

Hy(z) = = Bn(z)
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xn) GP ; _@____

Figure 7.26 Direct form II realization of IR system.

is an all-zero system. Therefore, any linear combination o {gm(n)} is adso an
all-zero system.

Thus we begin with an al-pole lattice structure with parameters X, 1 <
m < N, and we add a ladder part by taking as the output a weighted linear
combination of {g.(r)}. The result isa pole-zero IIR system which has the lattice-
ladder structure shown in Fig. 7.27 for M = N. Its output is

M
Y#) = vngm(n) (7.3.45)
m=0

where {vn} are the parameters that determine the zeros of the system. The system

x(n) D Ja~ 1(m) A N Silm) D Jo(n)
Snin) Ky
enim) &n-(n)
LA N -1 8ol
Uy—1 Yo
f/+ ¥n)

Figure 7.27 L attice-ladder structure for the realization of a pole-zerosystem.
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function corresponding to (7.345) is

Y@

X(z)

M (7.3.46)

Z v Gm(z)
oXQ
Since X(z) = Fy(z) and Fy(z) = Go(z), (7.3.46) can be written as

m(z) Fﬂ(
@ = Z " Go@ Fu (@)

e B@
>: "'ANL (7.3.47)

Zv,,.B,,,(:)

_ m={}
Ani2)
If we compare (7.3.41) with (7.3.47), we conclude that

H(z) =

It

M
CM )= Z Um Bn(2) (7.3.48)
m=0
Thisisthe desired relationship that can be used to determine the weighting coef-
ficients {vm]. Thus, we have demonstrated that the coefficients of the numerator
polynomia Cy(z) determine the ladder parameters {v,}. whereas the coefficients
in the denominator polynomial Ax(z) determine the lattice parameters {Kn}.
Given the polynomials Cu(2) and An(z), where N = M, the parameters of
the all-pole lattice are determined first, as described previously. by the conver-
sion algorithm given in Section 7.2.4, which converts the direct form coefficients
into lattice parameters. By means of the step-down recursive relations given by
(7.2.54), we obtain the lattice parameters (K} and the polynomials B, (z), m=1,
2,...,N.
Theladder parameters are determined from (7.3.48), which can be expressed
as

m=1

Cn(@) =Y wBi(@) + vm Bu(2) (7.3.49)
k=0
or, equivaently, as
Cm(2) = Cn-1(2) T vaB, (2) (7.3.50}
Thus Cw(z) can be computed recursively from the reverse polynomials B, (z), m =
1,2,...,M. Since Bm(m) = 1 for al m, the parameters vy, m =0, 1,..., M can be
determined by first noting that

Uy = Cmim) m=0,1....M (7.3.51)
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Then, by rewriting (7.3.50) as
Cn-1(2) = Cu(2) — vm B (2) (7.3.52)

and running this recursive relation backwardin m (e, m =M, M - 1,..,,2), we
obtain ¢ (m) and therefore the ladder parameters according to (7.3.51).

The lattice-ladder filter structures that we have presented require the min-
i num amount of memory but not the minimum number of multiplications. Al-
though lattice structures with only one multiplier per lattice stage exist, the two
multiplier-per-stage | attice that we have described, is by far the most widdly used in
practical applications. In conclusion, the modularity, the built-in stability charac-
teristicsembodied in the coefficients (K}, and its robustness to finite-word-length
effects make the lattice structure very attractive in many practical applications,
includingspeech processingsystems, adaptive filtering, and geophysical signal pro-
cessing.

74 STATE-SPACE SYSTEM ANALYSIS AND STRUCTURES

Up to this point our treatment of linear time-invariant systems has been limited
to an input—output or external description o the characteristics f the system. In
other words, the system was characterized by mathematical equations that relate
the input signal to the output signd. In thissection we introduce the basic concepts
in the state-space description of linear time-invariant causal systems. Although the
stare-space or internal description o the system still involvesa relationship between
the input and output signals, it also involvesan additional set of variables, called
state variables. Furthermore, the mathematical equations describing the system,
itsinput, and its output are usualy divided into two parts:

1 A set of mathematical equations relating the state variables to the input
signal.

2. A second set of mathematical equations relating the state variablesand the
current input to the output signal.

The state variables provide information about al the interna signalsin the
system. As a result, the state-space description provides a more detailed descrip-
tion of the system than the input-output description. Although our treatment o
state-space analysisis confined primarily to single input-singleoutput linear time-
invariant causal systems, the state-space techniques can aso be applied to non-
linear systems, time-variant systems, and multiple input—-multiple output systems.
In fact, it isin the characterization and analysis of multiple input—multiple output
systemsthat the power and importance of state-space methodsare clearly evident.

Both input—output and state-variable descriptions of a system are useful in
practice. The description we use depends on the problem, the available informa-
tion, and the questions to be answered. In our presentation, the emphasisison
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the use of state-space techniques in system analysis, and in the development of
state-space structures for the realization of discrete-time systems.

7.4.1 State-Space Descriptions of Systems Characterized
by Difference Equations

Aswe have already observed, the determination of the output of a system requires
that we know the input signal and the set of initial conditionsat the time the input
is applied. If a system is not relaxed initially, say at time ng, then knowledge of
the input signa x(n) for n = ng is not sufficient to uniquely determine the output
y(n) for n > ne. Theinitial conditions of the system at n = np must also be known
and taken into account. This set of initial conditions is caled the state of the
system at n = ng. Hence we define the state of a system at time no as the amount of
informarion that must be provided ar time ng, which, together witk the inpur signal
x(n) for n = no, uniquely determine the ouzput of the system for all n > nq.

From this definition we infer that the concept of state leads to a decompo-
sition of a system into two parts, a part that contains memory, and a memoryless
component. The information stored in the memory component constitutes the set
d initial conditions and iscalled the state of the system. The current output of the
system then becomes a function of the current value of the input and the current
state. Thus, to determine the output of the system at a given time, we need the
current value of the state and the current input. Since the current value of the
input is available, we only need to provide a mechanism for updating the state of
the system recursively. Consequently, the state of the system at time no +1 should
depend on the state of the system at time no and the value of the input signal x{n)
at n=no.

The following example illustrates the approach in formulating a state-space
description of a system. Let us consider a linear time-invariant causal system
described by the difference equation

3 3
ym ==Y ayn-k+Y bx(n—k (74.1)
k=1 k=0

The direct form II realization for the system isshown in Fig. 7.28.

Asstate variables, we use the contents of the system memory registers, count-
ing them from the bottom, asshown in g 7.28. We recal that the output of a
delay element represents the present value stored in the register and the input
represents the next value to be stored in the memory. Consequently, with the aid
of Fg. 7.28, we can write

nn+1) = wn)
wnn+1) = nn) (7.4.2)
w(n + 1) = —a3u1(n) — av2(n) — a1va(n) + x(n)
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XN AN
by
+ +
—a, b
+ +
-a by
—ay by

Figure728 Direct form II redizationoi system described by the difierence equa:
tion in (7.5.1).

It isinteresting to note that the state-variable formulation for the third-order
system of (7.4.1) involvesthree first-order difference equationsgiven by (7.4.2). In
general, an nth-order system can be described by n first-order difference equations.

The output equation, which expresses y(n) in terms of the state variables and
the present input value x(n), can aso beobtained by referring to Fig. 7.28. We have

y(n) = bova(n + 1) + bavi () T bava(n) + b, v3(m)

We can eliminate vs(n + 1) by using the last equation in (7.4.2). Thus we obtain
the desired output equation

¥(n) = (b3 — boaz)vi(n) + (b2 — boaz)va(n) + (b — boar)va(n) + box(n)  (7.4.3)
If we put (7.4.2) and (7.4.3) into matrix form we have

vn+1) 0 1 0 vy (n) 0
[vg(n+l)]= [ 0 0 1 jll:v;(n)jl-é-[O]x(n) (7.4.4)

nn+1) —az —az —aJlus(n) 1
and
vi(n)
y(r) = [(b3 — boas) (b2 = boaz) (by — boay)] [vzgﬂ)] + box(n) (7.4.5)
vs(n)

The equations (7.4.4) and (7.4.5) provide a complete description of the sys-
tem. Furthermore, the variables vi{n), v (n), and vs(n), which summarize all the
necessary past information, are the sare variablesof the system. We also observe
that asindicated previously, equations (7.4.4) and (7.4.5) split the systeminto two
component parts, a dynamic (memory) subsystem and a static (memoryless) sub-
system. We say that this set of equations provides a state-space description of the
system.
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By generalizing the previousexample, it can easily beseen that the Nth-order
system described by

N N
Yy ==Y ay(n—k)+ Y bexin ~ k) (7.4.6)
k=1 k=0
can be expressed as a linear time-invariant state-space realization by the relations
State equation
v(n + 1) = Fv(n) + qx(n) (7.4.7)

Output equation
y(n) = g'v(n) + dx(n) (7.4.8)

where the elements of F, g, g, and d are constants (i.e., they do hange as a
function of the time index n), given by i

- 0 1 o - - . -0
0 0 10 .
0 0 - - -0 1

L—ay —Gn1 - . . —@2 —a

by — boay

by-1 — bpay-1
g= .
L b - beay

Any discrete-time system whose input x(n}, output y(n), and state v(r), for
al n > ny, are related by the state-space equations above, where F, g, g. and d are
arbitrary but fixed quantities, will be caled linear and time invariant. If at least
one o the quantitiesin F, q, g, or d depends on time, the system becomes time
variant.

We will refer to (7.4.7) through (7.4.8) as the linear time-invariant state-space
model, which can be represented by the simple vector-matrix block diagram in
Fig. 7.29. In thisfigure the double lines represent vector quantities and the blocks
represent the vector or matrix coefficients.

Example7.4.1

Deter minethe state-spaceequationsfor the transposed direct farm 11 gructureshown
in Fig. 7.30.

Solution The validity  thisstructurecan be seen if we rewrite (7.4.1) as

3
yn) = Z[bkx(n —k) —ay(n — k)] + bpx(n)

k=1



Sec. 7.4  State-Space System Analysis and Structures 543

x(n)

Figure 7.29 General state-space description of a linear time-invariant system.

x(n)

Figure 738 State-space realization far the system described by (7.4.1).

Due to the linearity and time invariance of the system, instead of first delaying the
signals x{n) and y(n) and then computing the terms bex(n — k) — ayy(n — k) as in
Fig. 7.28, we first compute the terms b,x(n) — a,y(n) and then delay them.

If we use the state variablesindicated in Fig. 7.30. we obtain

vin +1) 0 0 —a3)[ i) by — boas
[1‘2("+1)] = [1 0 —02] l:vz(n)] = [bz—boﬂz]x('l) (7.4.10)

vi(n +1) 0 1 -adLluvn) by — boay
vy(n)
ym) =[0 0 1] [vz(n)] + box(n) (14.11)
v3(n)

The state-space description specified by (7.4.4) and (7.4.5) is known asa type
| state-space realization, whereas the one described by (7.4.10) and (7.4.11) is
called a rype 2 state-gpace realization.

7.4.2 Solution of the State-Space Equations

There are several methodsfor solving the state-space equations. Here we discuss
a recursive solution which makesuse of the fact that the state-space equationsare
aset of linear first-order difference equations.
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For the N-dimensional state-space model
vin +1) = Fv(n) + qx(n) (7.4.12)
¥(n) = g'v(n) +dx(n) (7.4.13)
and given theinitial condition v(ng), we have for n > ng,
v(ng + 1) = Fv(ng) + gx(n)
v(np+2) = Fv(ng + 1) + qx(ng + 1)
= F?v(ng) + Fqx(ng) + qx(ng + 1)
where F? represents the matrix product FF and Fq is the product of the matrix F
and the vector q. If we continue as in the one-dimensional case. we obtain, for
n > ny,
n-1
ven) = Fvmg) + Y P quek) (7.4.14)
k=ngy
The matrix F is defined as the N x N identity matrix, having unity on the
main diagonal and zeros elsewhere. The matrix F =/ isoften denoted as (i - j),
that is,
oG- j)=F" (7.4.15)
for any positive integers i > 3. This matrix is caled the stare transition marrix o
the system.

The output of the system is obtained by substituting (7.4.14) into (7.4.13).
The result of this substitution is

n-1
yn) = gFv(ng) T Y g qx (k) Hdx(n)
k=ny

(7.4.16)

n—1

= g&(n —no)Ving) + y_ g ®(n — 1~ k)qu(k) + dx(n)
k=ng
From this general result, we can determine the output for two special cases.
First, the zero-input response of the system is

y2i(n) = g'F""v(ng) = g’ B(n — ng)ving) (7.4.17)
On the other hand, the zero-state response is

n=1

Yuln) =Y g®(n — 1~ k)qx(k) + dx(n) (7.4.18)

k=ng
Clearly, the N-dimensional state-space system is zero-input linear, zero-state
linear, and since y(n) = y,i(n) + ¥zs(n), it islinear. Furthermore, since any system
described by a linear constant-coefficient difference equation can be put in the
state-space form, it is linear, in agreement with the results obtained in Section 2.4.
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74.3 Relationships Between Input-Output and
State-Space Descriptions

From our previous discussion we have seen that there is no unique choicefor the
state variables of a causal system. Furthermore, different choices for the state
vector lead to different structuresfor the redlization of the same system. Hence,
in general, the input-output relationship does not uniquely describe the internal
structure of the system.

To illustrate these assertions, let us consider an N-dimensional system with
the state-space representation

v(n 4+ 1} = Fv(n) + gx(n) (74.19)
y(#) = g'v(n) +dx(n) (7.4.20)

Let P be any N x N matrix whose inverse matrix P! exiss. We define a new
state vector v(n) as
v(n) = Pv(n) (7.421)
Then
v(n) = P~'%(n) (7.4.22)
If (7.4.19) is premultiplied by P, we obtain
Pv(n + 1) = PFv(n) + Pgx(n)

By using (7.4.22), the state equation above becomes

Vin + 1) = (PFP Yo(n) + (PQ)x(n) (7.4.23)
Similarly, with the aid of (7.4.22)the output equation (7.4.20) becomes
yr) = @PH¥(n) + dx(n) (7.4.24)
Now, we definea new system parameter matrix F and the vectors § and gas
F = PFP~!
4 = pq (7.4.25)
¢ =gPp

With these definitions, the state equationscan be expressed in terms o the new
system quantitiesas

Yt 1) = Fo@m) +g(m (7.4.26)
yn) = g¥(n) +dx(n) (7.427)

If we compare (7.4.19) and (7.4.20) with (7.4.26) and (7.4.27), we observe
that by a smple linear transformation of the state variables, we have generated
anew set of state equationsand an output equation, in which the input x(n) and
the output y(n) are unchanged. Since there isan infinite number of choices of the
transformation matrix P, there is dso an infinite number o state-spaceequations
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and structures for a system. Some of these structures are different, while some
others are very similar, differingonly by scale factors.

Associated with any state-space realization of a system is the concept of a
minimal realization. A state-spaceredlizationissaid to be i nal if thedimension
o the state space (the number of state variables) is the smallest of dl possible
realizations. Since each state variable represents a quantity that must be stored
and updated at every time instant n, it followsthat a minimal realization is one
that requires the smallest number of delays (storage registers). We recall that the
direct form II realization requires the smallest number of storages registers, and
consequently, a state-space realization based on the contents of the delay elements
resultsin a minimal realization. Similarly, an FIR system realized asadirect form
structure leads to a minimal state-space realization if the values of the storage
registers are defined as the state variables. On the other hand, the direct form |
realizationd an IIR system does not lead to a minimal realization.

Now, let us determine the impulse response of the system from the state-
space redlization. The impulse response provides one of the links between the
input-output and state-space description of systems.

By definition the impulse response h(n) o a system is the zero-state re-
sponse o the system to the excitation x(z) = §(n). Hence it can be obtained from
equation (7.4.16) if we set ng = 0 (the time we apply the input), v(0) = 0, and
x(n) = 8(n). Thus the impulse response of the system described by (7.4.19) and
(7.4.20) is given by

hin)y = gFqu(n — 1) + dé(n)
= g ®(n ~ 1)qu(n — 1) + dé(n)

Given a state-space description, it is straightforward to determine the impulse re-
sponse from (7.4.28). However, the inverse is not easy since there is an infinite
number of state-space realizationsfor the same input-output description.

(7.4.28)

The transpose system. The transpose o a matrix F is obtained by inter-
changing its columns and rows, and it is denoted by F*. For example,

fu f2 o fiw o fa o fm
Fe f‘21 f?z fz;w , _ f.xz f.zz f{u
f:;n f.;rz fI;N hHw fin o faw
Now define the trangposesystem (7.4.19)-(7.4.20) as
Vin+1) = Fv(n) T gein) (7.4.29)
y(n) = q'v(n) T dx(n) (7.4.30)

According to (7.4.28), the impulse response d this system is given as
K@) =q F) " guln — 1) + dé(n) (7.4.31)
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From matrix algebra we know that (F)"-! = (F*~!)", Hence
h'(n) = ¢ F*Ygun — 1)+ dé(n)

We claim that &'(n) = h(r). Indeed, the term q'(F"~1)'g isa scalar. Hence it

isequal to its transpose. Consequently,
[qt (F'_l)rg]' = gI(F )n-lq

Since this is true, it foliows that (7.4.31) is identical to (7.4.28) and, therefore,
h'(n) = h(n). Thus a single input-single output system and its transpose have iden-
tical impulse responsesand hence the same input-output relationship. To support
this clam further, we note that the type 1 and type 2 state-space realizations.
described by (7.4.3), (7.4.4), (7.4.10), and (7.4.11) are transpose structures, which
stem from the same input-output relationship (7.4.1).

We have introduced the transpose structure because it provides an easy
method for generating a new structure. However, sometimes this new structure
may either differ trivially or be identical to the original one.

The diagonal system. A closed-formsolution of the state-space equations
iseasily obtained when the system matrix Fisdiagonal. Hence, by finding a matrix
P so that F = PFP~! isdiagonal, the solution of the state equations is smplified
considerably. The diagonalization of the matrix F can be accomplished by first
determining the eigenvalues and eigenvectors of the matrix.

A number A is an eigenvaiue of F and a nonzero vector u is the associated
eigenvector if

Fu=)n (7.4.32)
To determine the eigenvalues of F, we note that
(F-u=0 (1.4.33)

This eguation has a (nontrivial) nonzero solution u if the matrix F— Al is singular
[i.e., if (F= AI) is noninvertible], which is the caseif the determinant of (F— 11)
is zero, that is, if
det (F— ) =0 (7.4.34)
Thisdeterminant in (7.4.34) yieldsthe characteristic polynomial of the matrix
F. For an N x N matrix F, the characteristic polynomial of Fisdegree N and hence
it has N roots, say A;, i =1, 2,...,N. The roots may be distinct or some roots
may be repeated. In any case, for each root A;, we can determine a vector u,,
called the eigenvector corresponding to the eigenvalue 4;, from the equation
Fu; = A;u;

These eigenvectors are orthogonal, that is, wiw; =0, for i  j.
If we form a matrix U whose columns consist of the eigenvectors {u;}, that is,

Pt
U=[-1 U - “N]
o i
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then the matrix F = U-!FU is diagonal. Thus we have solved for the matrix that
diagonalizes F.
The following exampleillustrates the procedure of diagonalizing F.

Example 7.4.2
The Fibonacci sequence, which is the sequence (1.1, 2,3, 5,8,13....), can be gener-

ated as the impulse response of the system that satisfies the state-space equations
v+ 1) = [(1’ i]v(n) + [?]x(n)
¥y = [1 1]v(n) + x(n)
Determine the impulse response {4(n)} of the system.
Solution Now we wish to determine an equivalent system
¥ + 1) = Fon) T gx(m)
y(n) = g¥(m) T dx(m)

such that the matrix F is diagonal. From (7.4.25) we recall that the two systems are
equivalent if

F=PFP' §=Py ¢ =¢gP!
Given F. the problem is to determine a matrix P such that ¥ = PFP~' is a diagonal

matrix.
First. we compute the determinant in (7.4.34). We have
-A 1
det(F - Al :det[ ] 2 _a-1=
et( ) 1 1-3 =A—-A-1=0
or
1++/5 1-5
A= 2 = )

To find the eigenvector u; corresponding to A;, we have

[0 ]]u—/\u or u—[l]
1 (B =Aam | = M

S|m||al’|y, we obtain
[A.z]
2

We obser ve that wjm; = 1+ 33 = O (ie., the eigenvectors are orthogonal). Now
matrix U, whose col unms are the eigenvectors o F. is

1 1
U= [M A ]
Then the matrix U~'FU isdiagonal. Indeed, it easily follows that

_CUYU = [ M 0]
F-u FU"[O A2
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and since the transformation matrix is P= U~, we have

1 A -1
P'Az—xl [—Al 1 ]

Thus the diagonal matrix F has the form
B Al 0
F= [ 0 Xz]
where the diagona elements are the eigenvalues of the characteristic polynomial.
Furthermore, we obtain

-~

qg=Pq=

and
7 =gPl=¢gU
3445345
- 2 2
The impulse responsc d this equivalent diagonal system is
h(n) = gFiqu(n — 1) +ds(n)

-5 () ()
5 2 2
- (5%) (1-2_5)]( “1)+stm)

which is the general formula for the Fibonacci sequence.

An alternative expression can be found by noting that the Fibonacci sequence
can be considered asthe zero-input response of the system described by the difference
equation

Y =yin =Dt yn - 2) +x(n)

withinitia conditionsy(—1) =1, y(-2) = —1. From thetype 1 state-space realization,
we note that v1(0) = yf—2)=—1and 1»(0) = y(~1) =1. Hence

[51(0)]=,,[v1(0)]=_—_1 i;:_/-é
50 w3 | 3445
T

and the zero-input response is
yulm) = FF#(0)

- S[(55)-(5 Jo

Thisis the nor e familiar form for tbe Fibonacci sequence, where thefirst term d the
sequence iszero, that is the sequencesis {0,1,1,2,3,5,8,...).
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This example illustrates the method for diagonalizing the matrix F. The
diagonal system yields a set of N decoupled, first-order linear difference equations
that are easily solved to yield the state and the output of the system.

It isimportant to note that the eigenvaluesof the matrix Fare identical tothe
roots of the characteristic polynomial, which are obtained from the homogeneous
difference equation that characterizes the system. For example. the system that
generates the Fibonacci sequence is characterized by the homogeneous difference
equation

yn)—yin—=1)-yn-2)=0 (7.4.35)

Recall that the solution is obtained by assuming that the homogeneous solution
has the form

Ya(n) = A"
Substitution of this solution into (7.4.35) yields the characteristic polynomial
AM—-a-1=0

But thisis exactly the same characteristic polynomial obtained from the determi-
nant of (F = Al).

Since the state-variable realization of the system is not unique, the matrix
Fisaso not unique. However, the eigenvalues of the system are unique, that is,
they are invariant to any nonsingular linear transformation of F. Consequently,
the characteristic polynomia of F can be determined either from evaluating the
determinant d (F- AI) or from the difference equation characterizing the system.

In conclusion, the state-space description provides an alternative character-
ization of the system that is equivalent to the input-output description. One ad-
vantage of the state-variable formulation is that it provides us with the additional
information concerning the internal (state) variables of the system, information
that is not easily obtained from the input-output description. Furthermore, the
state-variable formulation of a linear time-invariant system alows us to represent
the system by a set of (usualy coupled) first-order difference equations. The de-
coupling of the equationscan be achieved by means of alinear transformation that
can be obtained by solving for the eigenvalues and eigenvectors of the system. The
decoupled equationsare then relatively simpleto solve. Moreimportant, however,
the state-space formulation provides a powerful, yet straightforward method for
dealing with systems that have multiple inputs and multiple outputs (MIMO). Al-
though we have not considered such systems in our study, it isin the treatment of
MIM O systems where the true power and the beauty of the space-space formula
tion can be fully appreciated.

744 State-Space Analysis in the z-Domain
The state-space analysis in the previous sections has been performed in the time

domain. However, as we have observed previously, the analysis of linear time-
invariant discrete-time systems can aso be carried out in the z-transform
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domain, often with greater ease. In this section we treat the state-space rep-
resentation of linear time-invariant discrete-time systems in the z-transform do-
main.
Let us consider the state-space equation
v(n + 1) = Fv(n) + qx(n) (7.4.36)

If we define the vector V(z) as

Vi(z)
vo=| " (7.4.37)
VN‘(Z)
then (7.4.36) can be expressed in matrix form as
V(@) =FVY{2) + ¢X(2) (7.4.38)

The two termsinvolving V(z) can be collected together and the resulting equation

can be usd to solve for V(z). Thus
2l =F)V(z) = qX(2)
(7.4.39)
Vi) = I -F)gX(2)

The inverse z-transform of (7.4.39) yields the solution for the state equations.
Next, we turn our attention to the output equation, which is given as

y(n) = g'v(n) + dx(n) (7.4.40)
The z-transform o (7.4.40) is
Y(2)=¢ V(@ tdX(@) (7.4.41)

By using the solution in (7.4.39) we can eliminate the state vector Y(z) in
(7.4.41). Thus we obtain

Y(2) =g -F g +d]X(2) (7.4.42)

which is the z-transform of the zero-state response o the system. The system
function is eadly obtained from (7.4.42) as
Y(2) -1
H(z) = — = I- +d 7.4.43

(@ @ ge-Ng (7.4.43)
The state equation given by (7.4.39), the output equation given by (7.4.42) and the
syst em function given by (7.4.43) al have in common the factor (zI — Fy~!. This
is a fundamental quantity that is related to the z-transform of the state transition
matrix of the sysem. The relationship is easily established by computing the
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z-transform of the impulse response k(n), which is given by (7.4.28). Thus we
have

H(z) = Y h(mz™
n=0

=Y [gF lqun ~ 1) + dé(m)}z ™" (7.4.44)
n=0

na=1

=g (il“"‘lz_") q+d

The term in parentheses in (7.4.44) can be written as

o0

Zl;w-lz—n

MU+ F 4 Pl 4

]

(7.4.45)
M A= Fz ) ! = (2l - F)~!

If we substitute the result in (7.4.45) into {7.4.44), we obtain the expression for
H(z) asgiven in (7.4.43).
Since the state transition matrix is given by

n) =F (7.4.46)

the ztransformd  (#) is

00
S Pt =1+Fr 4+ P24 P 4o
n=0
=A-F )l =zG1-F!
The relation in (7.4.47) provides a simple method for determining the state
transition matrix by means of z-transforms. We recdl that
- di(zI - F)
1-F)1 = 2 72 7.4.48
(Z-F) et =) ( )

whereadj(A) denotes the adjoint matrix of A and det (A) denotes the determinant
of the matrix A. Substitution of (7.4.48) into (7.4.43) yields the result

adj(zl - F)
det(zI-F)

Consequently, the denominator D(z) d the system function H{z), which contains
the poles o the system issimply

D(z) =det(zl - F) (7.4.50)

But the det(zI — F) is just the characteristic polynomial of F. Its roots, which are
the poles of system, are the eigenvalues of the matrix F,

(7.4.47)

Ho) =¢ q+d (7.4.49)
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Example 7.4.3

Determine the system function H({(z), the impulse response #(n), and the state tran-
sition matrix ®(n) of the system that generates the Fibonacci sequence. This system
is described by the state-space equation

vin+1) = [(1) 1]v(n)+[(l)]x(n)

y(n) = [1 1)v(n) + x(n)
Solution  First, we determine H(z) and h(n) by computing (z - F)~!. We have

_ -117! 1 z-1 1
ot T s
(2 ) -1 z-1 2e-z-1 1

I

Hence
1 z—-1 1770
Hm_?:ﬁulql JL%I
22 _ 1
P2—r—1 1-—z1-:7

By inverting H(z), we obtain #(n) in the form

1 l+\/§ n+1 1—\/5 n+l
h(n):z[( 5 ) —( 3 ) ]u(n)

We note that the poles of H(z) are p, = (1 T +v/5)/2 and p; = (1 - +/5)/2. Since
|pi] > 1, the system that generates the Fibonacci sequence is unstable.
The state transition matrix @(r) has the z-transform
_ 1 -z 2
o [ ]
2(zI-F) 7ol . 2
The four elements of ®(r) are obtained by computing the inverse transform of the
four elements of z(zl - F)~'. Thus we obtain

¢uln) ¢1z(")]
2 (n)  dn(n)

$(n) = [

where

1+J§(1~J§)"_1—J§(1+J§)"] -
5 \ 2 25\ 2 “

1 [/1+/5)" [1-V5\
¢12(ﬂ)=¢21(ﬂ)=£[( 3 )—( 3 )]u(n)

1 1+\/3 n+l 1’\/5 A+l
M(")=f|:(T) —(T) :[u(n)

We note that the impulse response h(n) can also be computed from (7.4.28) by using
the state transition matrix.

ouln) = [
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Thisanadysis method appiiesspecificaly to the computation of the zero-state
responsed the system. Thisis the consequenced the fact that we have used the
two-sided z-transform.

If we wish to determine the total response of the system, beginning a a
nonzero state, say v(np), we must use the one-sided z-transform. Thus, for a given
initial state v(nq) and a given input x(n) for n > ng, we can determine the state
vector v(r) for n > n and the output y(n) for n > ng, by meansd the one-sided
z-transform.

In this development we assume that n¢ = 0, without loss of generality. Then,
given x(z) for n > 0, and a causal system, described by the state equationsin
(7.4.36), the one-sided z-transform  the state equationsis

2V (z) — zv(0) = FV*(z) + gX (2)
or, equivaently,
V) =zl - B 'v0) T 2l - By gX () (7.4.51)

Note that X*(z) = X (z), Since x(n) is assumed to be causal.
Similarly, the z-transform of the output equation given by (7.4.40) is

Y =gVr@ tdx () (7.452)
If we substitutefor V+(z) from (7.4.51) into (7.4.52), we obtain the result
Yt =g @l -F v g - P 'qtd]x) (7.4.53)

O the terms on the right-hand side of (7.4.53). the first represents the zero-input
response o the system due to the initia conditions, while the second represents
the zero-state response d the system that we obtained previously. Consequently,
(7.4.53) congtitutesthe total response of the system, which can be expressedin the
time domain by inverting (7.4.53). The result of thisinversion yields the form for
y(n) given previoudy by (7.4.16).

7.45 Additional State-Space Structures

In Section 7.4.2 we described how state-space equations can be obtained from a
given structure and, conversely, how to obtain a redlization of the system given
the state equations. In this section we revisit the parallel-form and cascade-form
realizationsdescribed previoudy and consider these structuresin the context of a
state-space formulation.

The paraliel-form state-space structure is obtained by expanding the system
function H(z) into a partial-fraction expansion, developing the state-spaceformu-
lation for each term in the expansion and the corresponding structure, and findly,
connecting dl the structuresin parallel. We illustrate the procedure under the
assumption that the polesare distinctand ¥ = M.

The system function H(z) can be expressed as

H(z)=c+f: B
=1 2T P

(7.4.54)
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Note that this is a different expansion from that given in (7.3.20). The output
the system is

N
Y(@) = H@X@) =CX@) 1) Bl (14.55)
where, by definition. =
X
Yi(z) = z—% k=1,2,...,N (7.4.56)
In the time domain, the equationsin (7.4.56) become
yiln + 1) = peye(n) + x(n) k=12... N (7.457)
We define the state variablesas
vr(n) = y(n) k=1,2,...,N (7.4.58)
Then the difference equationsin (7.4.57) become
te(n+ 1) = prvi(n) + x(n) k=1,2,....N (7.4.59)
The state equationsin (7.4.59) can be expressed in matrix form as
P1 0 . 0 -1
0 p -~ O 1
vin+1)= . vim+ | . |x(n) (7.4.60)
0 PN .1
and the output equation is
yny=[B1 By --- By]vin)+Cx(n) (7.4.61)

This parallel-form redlization is called the normal f or m representation, be-
cause the matrix F is diagonal, and hence the state variables are uncoupled. An
alternative structureis obtained by pairing complex-conjugatepoles and any two
real-valued poles to form second-order sections, which can be realized by usng
either type 1 or type 2 state-spacestructures.

The cascade-formstate-space structure can be obtained by factoring H(z) into
a product of first-order and second-order sections, as described in Section 7.2.2,
and then implementing each section by using either type 1 or type 2 state-space
structures.

Let usconsider the state-space representationdf a single second-order section
involving a pair o complex-conjugate poles. The system function is
by + b1z7" + by272
1+a1z71 +ayz72

2
= tbuth (7.4.62)
*+az+a;
= b+ 4 B
2-p z-p*
The output o this system can be expressed as

Y(2) = hoX () + 2X@ 4 AXQ)
z-p 2-p*

H(z) =

(7.4.63)
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We define the quantity

S = (7.4.64)
z=p
This relationship can be expressed in the time domain as
sint 1) = ps(m) + Ax(n) (7.4.65)
Since s(n), p, and A are complex valued, we define s(z) as
s(n) = vi(n) T jualn)
p=o+jo; (7.4.66)

A=q+]q
Upon substitution of these relations into (7.4.65) and separating its real and
imaginary parts, we obtain

vi(n + 1) = e1v1(n) — eava(n) + q1x(n)

(7.4.67)
vy(n 4+ 1) = eavy(n) + ayva(n) + gax(n)

We choose v, (n} and v,(n}) as the state variables and thus obtain the coupled pair
of state equations which can be expressed in matrix form as

vin+1)= [:; —0:2] v(n) + [z:] x(n) (7.4.68)
The output equation can be expressed as
y(n) = box(n) + s(n) T 5* (n) (7.4.69)
Upon substitution for s(n) in {7.4.69), we obtain the desired result for the output
in the form
ym)=[2 0]¥@m)+box(n) (7.4.70)

A redlization for the second-order section isshown in Fig. 7.31. It issmply
called the coupled-form state-space realization. Thisstructure, which is used asthe
building block in the implementation of cascade-form realizationsfor higher-order
IR systems, exhibits low sensitivity to finite-word-length effects.

75 REPRESENTATION OF NUMBERS

Up to this point we have considered the implementation of discrete-time systems
without being concerned about the finite-word-length effects that are inherent in
any digital realization, whether it be in hardware or in software. In fact, we have
analyzed systems that are modeled as linear when, in fact, digital realizations of
such systems are inherently nonlinear.

In this and the following two sections, we consider the various forms of
quantization effects that arise in digital signal processing, Although we describe
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by
L]
vin+1)
o " - 2 )
v S
a
x(n)
—a,
42
+ z—]
vyn+ 1)

vy(n)

oy

Figure 731 Coupled-form state-space realization of a two-pole, two-zero IR
system

floating-point arithmetic operations briefly, our major concern is with fixed-point
realizationso digitd filters.

In thissection we consider the representation of numbersfor digital compu-
tations. The main characteristic of digital arithmeticis the limited (usualy fixed)
number o digits used to represent numbers. This constraint leads to finite nu-
merical precision in computations, which leads to round-off errors and nonlinear
effectsin the performance of digital filters. We now provide a brief introduction
to digita arithmetic.

75.1 Fixed-Point Representation of Numbers

The representation of numbers in a fixed-point format is a generalization of the
familiar decimal representation of a number as a string of digits with a decimal
point. In this notation, the digits to the left & the decimal point represent the
integer part of the number, and the digitsto the right of the decimal point represent
the fractional part o the number. Thus a real number X can be represented as

X = (b-tseer,but, by, b1y ..., bB);

& (7.5.1)
=3 br 0<h<(C-D
i=—A

where b; represents the digit, r is the radix or base, A is the number of integer
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digits,and B isthe number of fractional digits. Asan example, the decimal number
(123.45)y0 and the binary number (101.01), represent the following sums:

(123.45)10 = 1 x 107 +2x 10 +3 x 10° + 4 x 107! + 5 x 1072
(101.01); = 1x2+0x2' +1x2°+0x2 1 +1x 22

Let us focus our attention on the binary representation since it is the most
important for digital signd processing. In thiscase r = 2 and the digits {5;} are
caled binary digitsor bits and take the values{0,1}. The binary digits_, iscdled
the most significant bit( MSB) o the number, and the binary digit b5 is caled the
least significant bit(LSB). The "binary point" between the digits by and b, does
not exist physicdly in the computer. Simply, the logic circuits of the computer
are designed so that the computations result in numbers that correspond to the
assumed location o this point.

By usng an n-bit integer format (A = n -1, B = 0), we an represent
unsgned integers with magnitude in the range 0 to 2" — 1. Usually, we use the
fraction format (A = 0, B = n — 1), with a binary point between by and &, that
permits numbersin the range from 0 to 1 = 2. Note that any integer or mixed
number can be represented in a fraction format by factoring out the term r# in
(7.5.2). In the sequel we focus our attention on the binary fraction format because
mixed numbers are difficult to multiply and the number o bits representing an
integer cannot be reduced by truncation or rounding.

There are three ways to represent negative numbers. This leads to three
formats for the representationof signed binary fractions. The format for positive
fractionsis the same in all three representations, namely,

B
X=0bby---bg=3 b 27, X20 (152
i=]
Note that the MSB by is set to zero to represent the positive sign. Consider now
the negative fraction

]
X=-0bby-bg==3 b;-2" (1.5.3)
im=]

This number can be represented using one d the following three formats.

Sign-magnitude format. In this format, the MSB is set to 1 to represent
the negeative sign,
Xsm = 1L.b1by---bp for X <0 (7.5.4)

One’'s-complement format. In thisformat the negative numbersare rep-
resented as
Xic= 1.1.)152 o 'BB X<0 (7.5.5)

where b; = 1 = b; isthe one's complement & b;, Thus if X is a postive number,
the corresponding negative number isdetermined by complementing (changing1’s
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to0’s and 0’s to 1’s) all the bits. An alternative definitionfor X;¢ can be obtained
by noting that

B
X1C=lx2°+2(l -b) 27 =2-278x) (7.5.6)

i=]

Two's-complement format. In this format a negative number is repre-
sented by forming the two's complement of the corresponding positive number.
In other words, the negative number is obtained by subtracting the positive num-
ber from 20. More simply, the two's complement is formed by complementing
the positive number and adding one LSB. Thus

Xoc = 1.3132'-'-53+00--'01 X <0 (7.5.7)

where + represents modulo-2 addition that ignores any carry generated from the
sign bit. For example, the number —;—"; is simply obtained by complementing (011
(3) to obtain 1100 and then adding 0001. This yields 1101. which represents —%
in two's complement.

From (7.5.6) and (7.5.7) is can easily be seen that

Xoc=Xic+2F=2-1x; (7.5.8)
Todemonstrate that (7.5.7) truly represents a negative number, we use the identity

B
1= Zz-" +278 (7.5.9)

i=1

The negative humber X in (7.5.3) can be expressed as

B
Xoc=-3 bi-27+1-1
i=1

B
-14Y a-py27 4272

i=1

B
14 B2 +27F

i=1

which isexactly the two's-complement representation o (7.5.7).

In summary, the value of a binary string bob; ...bg depends on the format
used. For positive numbers, by = 0, and the number is given by (7.5.2). For
negative numbers, we use these corresponding formulas for the three formats.

Example 7.5.1

Express the fraction 3 and -7 in sign-magnitude, two's-complement, and one’s-
complement format.
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Solution X = § isreprgsented as 27! +2-2 +2-3, s that X = 0111 In sign-
magnitude format, X = = . isrepresented as 1.111. In one's complement. we have

Xic = 1.000
In two's complement. the result is
Xac = 1.000 + 0.001 = 1.001

The basic arithmetic operations of addition and multiplication depend on
the format used. For one's-complement and two's-complement formats, addition
iscarried out by adding the numbers bit by bit. The formats differ only in the way
in which acarry bit affectsthe MSB. For example, g—% = {. In two's complement,
we have

0100$1101 = 0001

where & indicates modulo-2 addition. Note that the carry bit. if present in the
IVBB. isdropped. On theother hand. in one's- complement arithmetic, the carry in
the MSB, if present, iscarried around to the LSB. Thus the computation § - 3 =

becomes
0100 & 1100 = 0000 & 0001 = 0001

Addition in the sign-magnitude format is more complex and can involve sign
checks, complementing, and the generation of a carry. On the other hand, di-
rect multiplication of two sign- magnitude numbers is relatively straightforward,
whereas a specia algorithm is usually employed for one's complement and two's
complement multiplication.

Most fixed-point digital signal processors use two's-complement arithmetic.
Hence, the rangefor (B+1)—bit numbersisfrom —1 to 1-~2-2. These numbers can
be viewed in a wheel format as shown in Fig. 7.32 for B = 2. Two's-complement
arithmetic is basically arithmetic modulo-25+! [i.e., any number that falls outside

0 0.0

-1.0
(a) (®)

Figure 7.32  Counting wheel for 3-bit two’s-complement numbers(a) integersand
(b) functions.
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the range (overflow or underflow) is reduced to this range by subtracting an appro-
priate multiple of 28+1]. This type of arithmetic can be viewed as counting using
the wheei of Fig.7.32. A very important property of two'ss complement addition
is that if the final sum of a string of numbers X1, X,,..., Xy is within the range,
it will be computed correctly, even if individua partial sums result in overflows.
This and other characteristics of two's-complement arithmetic are considered in
Problem 7.44.

In general, the multiplication of two fixed-point humbers each of & bits in
length results in a product of 2b bits in length. In fixed-point arithmetic, the
product is either truncated or rounded back to b bits. As a result we have a
truncation or round-off error in the b least significant bits. The characterization
of such errors is treated below.

7.5.2 Binary Floating-Point Representation of Numbers

A fixed-point representation of numbers allows us to cover a range of numbers,
SaY, Xmax — Xmin With a resolution

Xmax = Xmin
A= —
m-—1

where m = 2" is the number of levelsand b isthe number of bits. A basic character-
istic of the fixed-point representation is that the resolution isfixed. Furthermore,
A increases in direct proportion to an increase in the dynamic range.

A floating-point representation can be employed as a means for covering a
larger dynamic range. The binary floating-point representation commonly used
in practice, consists of a mantissa M, which is the fractional part of the number
and fallsin the range % < M <1, multiplied by the exponential factor 2%, where
the exponent E is either a positive or negative integer. Hence a number X is
represented as

X =M. 2F

The mantissa requires a sign bit for representing positive and negative numbers,
and the exponent requires an additional sign bit. Since the mantissa is a signed
fraction, we can use any of the four fixed-point representationsjust described.

For example, the number X; = 5 is represented by the following mantissa
and exponent:

M; = 0.101000
E, =011
while the number X, = 2 isrepresented by the following mantissa and exponent
M; = 0.110000
E; =101

where the leftmost bit in the exponent represents the sign bit.
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If the two numbersare to be multiplied, the mantissas are multiplied and the
exponents are added. Thus the product of these two numbers is

X1X; = MM, - 25+E:
= (0.011110) - 29°
= (0.111100) - 2!

On the other hand, the addition o the two floating-point numbers requires that
the exponents be equal. This can be accomplished by shifting the mantissa of the
smaller number to the right and compensating by increasing the corresponding
exponent. Thus the number X, can be expressed as

M, = 0.000011
E;, =011
With E, = E;, we can add the two numbers X, and X,. The result is
X1+ X3 = (0.101011) . 291

It should be observed that the shifting operation required to equalize the
exponent o X, with that for X; resultsin loss of precision, in general. In this
example the six-bit mantissa was sufficiently long to acc