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Preface 

This book was developed based on our teaching of undergraduate and gradu- 
ate level courses in digital signal processing over the past several years. In this 
book we present the fundamentals of discrete-time signals, systems, and modern 
digital processing algorithms and applications for students in electrical engineer- 
ing. computer engineering. and computer science. The book is suitable for either 
a one-semester or a two-semester undergraduate level course in discrete systems 
and digital signal processing. It is also intended for use in a one-semester first-year 
graduate-level course in diyital signal processing. 

I t  is assumed that the student in electrical and computer engineering has had 
undergraduate courses in advanced calculus (including ordinary differential equa- 
tions). and linear systems for continuous-time signals. including an introduction 
to the Laplace transform. Although the Fourier series and Fourier transforms of 
periodic and aperiodic signals are described in Chapter 4, we expect that many 
students may have had this material in a prior course, 

A balanced coverage is provided of both theory and practical applications. 
A Iaqe number of well designed problems are provided to help the student in 
mastering the subject matter. A solutions manual is available for the benefit of 
the instructor and can be obtained from the publisher. 

The third edition of the book covers basically the same material as the sec- 
ond edition, but is organized differently. The major difference is in the order in 
which the DFT and FFT alporithms are covered. Based on suggestions made by 
several reviewers, we now introduce the DFT and describe its efficient computa- 
tion immediately following our treatment of Fourier analysis. This reorganization 
has also ajlowed us to eliminate repetition of some topics concerning the DFT and 
its applications. 

In Chapter 1 we describe the operations involved in the analog-to-digital 
conversion of analog signals. The process of sampling a sinusoid is described in 
some detail and the problem of aliasing is explained. Signal quantization and 
digital-to-analog conversion are also described in general terms, but the analysis 
is presented in subsequent chapters. 

Chapter 2 is devoted entirely to the characterization and analysis of linear 
time-invariant (shift-invariant) discrete-time systems and discrete-time signais in 
the time domain. The convolution sum is derived and systems are categorized 
according to the duration of their impulse response as a finite-duration impulse 
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response (FIR) and as an infinite-duration impulse response (IIR). Linear tirne- 
invariant systems characterized by difference equations are presented and the so- 
Iution of difference equations with initial conditions is obtained. The chapter 
concludes with a treatment of discrete-time correlation. 

The z-transform is introduced in Chapter 3, Both the bilateral and the 
unilateral z-transforms are presented, and methods for determining the inverse 
z-transform are described. Use of the :-transform in the analysis of linear time- 
invariant systems is illustrated, and important properties of systems. such as causal- 
ity and stability. are related to z-domain characteristics. 

Chapter 4 treats the analysis of signals and systems in the frequency domain. 
Fourier series and the Fourier transform are presented for both continuous-time 
and discrete-time signals. Linear time-invariant (LTI) discrete systems are char- 
acterized in the frequency domain by their frequency response function and their 
response to periodic and aperiodic signals is determined. A number of important 
types of discrete-time systems are described, including resonators. notch filters. 
comb filters, all-pass filters, and osciliators. The design of a number of simple 
FIR and IIR filters is also considered. In addition, the student is introduced to 
the concepts of minimum-phase, mixed-phase. and maximum-phase systems and 
to the problem of deconvolution. 

The DFT. its properties and its applications. are the topics covered in Chap- 
ter 5. Two methods are described for using the DFT to perform linear filtering. 
The use of the DFT to perform frequency analysis of signals is also described. 

Chapter 6 covers the efficient computation of the DFT. Included In this chap- 
ter are descriptions of radix-2, radix-4, and spIit-radix fast Fourier transform (FFT) 
algorithms, and applications of the FFT algorithms to the computation of convo- 
lution and correlation. The Goertzel algorithm and the chirp-z transform are 
introduced as two methods for computing the DFT using linear filtering. 

Chapter 7 treats the realization of IIR and FIR systems. This treatment 
includes direct-form. cascade, parallel, lattice, and lattice-ladder realizations. The 
chapter includes a treatment of state-space analysis and structures for discrete-time 
systems. and examines quantization effects in a digital implementation of FIR and 
IIR systems. 

Techniques for design of digital FIR and IIR filters are presented in Chap- 
ter 8. The design techniques include both direct design methods in discrete time 
and methods involving the conversion of analog filters into digital filters by various 
transformations. Also treated in this chapter is the design of FIR and IIR filters 
by least-squares methods. 

Chapter 9 focuses on the sampling of continuous-time signals and the re- 
construction of such signals from their samples. In this chapter. we derive the 
sampling theorem for bandpass continuous-time-signals and then cover the AID 
and D/A conversion techniques, including oversampling A/D and D/A converters. 

Chapter 10 provides an indepth treatment of sampling-rate conversion and 
its applications to multirate digital signal processing. In addition to describing dec- 
imation and interpolation by integer factors, we present a method of sampling-rate 
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conversion by an arbitrary factor, Several applications to multirate signal process- 
ing are presented. including the implementation of digital filters, subband coding 
of speech signals, transmultiplexing. and oversampling A/D and DIA converters. 

Linear prediction and optimum linear (Wiener) filters are treated in Chap- 
ter 11. Also included in this chapter are descriptions of the Levinson-Durbin 
algorithm and Schiir algorithm for solving the normal equations, as well as the 
A R  lattice and ARMA lattice-ladder filters. 

Power spectrum estimation is the main topic of Chapter 12. Our coverage 
includes a description of nonparametric and model-based (parametric) methods. 
Aiso described are eigen-decomposition-based methods, including MUSIC and 
ESPRIT. 

At Northeastern University, we have used the first six chapters of this book 
for a one-semester (junior level) course in discrete systems and digital signal pro- 
cessing. 

A one-semester senior level course for students who have had prior exposure 
to discrete systems can use the material in Chapters 1 through 4 for a quick review 
and then proceed to cover Chapter 5 through 8. 

In a first-year graduate level course in digital signaI processing, the first five 
chapters provide the student with a good review of discrete-time systems. The 
instructor can move quickly through most of this material and then cover Chapters 
6 through 9. followed by either Chapters 10 and 11 or by Chapters 11 and 12. 

We have included many examples throughout the book and approximately 
500 homework problems. Many of the homework problems can be solved numer- 
ically on a computer, using a software package such as MATLAB@. These prob- 
lems are identified by an asterisk. Appendix D contains a list of MATLAB func- 
tions that the student can use in solving these problems. The instructor may also 
wish to consider the use of a supplementary book that contains computer based 
exercises, such as the books Digital Signal Processing Using MATLAB (P.W.S. 
Kent. 1996) by V. K. Ingle and J. G. Proakis and Cumpurer-Based Exercises for 
Signal Processing Using MATLAB (Prentice Hall, 1994) by C. S. B u m s  et al. 
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Introduction 

Digital signal processing is an area of science and engineering that has developed 
rapidly over the past 30 years. This rapid development is a result of the signif- 
icant advances in digital computer technology and integrated-circuit fabrication. 
The digital computers and associated digital hardware of three decades ago were 
relatively large and expensive and, as a consequence. their use was limited to 
general-purpose non-real-time (off-line) scientific computations and business ap- 
plications. The rapid developments in integrated-circuit technology, starting with 
medium-scale integration (MSI) and progressing to large-scale integration (LSI). 
and now, very-large-scale integration (VLSI) of electronic circuits has spurred 
the development of powerful. smaller. faster. and cheaper digital computers and 
special-purpose digital hardware. These inexpensive and relatively fast digital clr- 
cuits have made i r  possible to construct highly sophisticated digital systems capable 
of performing complex disital signal processing functions and tasks, which are usu- 
ally too difficult and/or too expensive to be performed by analog circuitry or analog 
signal processing systems. Hence many of the signal processing tasks that were 
conventionally performed by analog means are realized today by less expensive 
and often more reliable digital hardware. 

We do not wish to imply that digital signal processing is the proper solu- 
tion for all signal processing problems. Indeed, for many signals with extremely 
wide bandwidths, real-time processing is a requirement. For such signals, ana- 
log or, perhaps, optical signal processing is the only possible solution. However, 
where digital circuits are available and have sufficient speed to perform the signal 
processing, they are usually preferable. 

Not only do digital circuits yield cheaper and more reliable systems for signal 
processing, they have other advantages as well. In particular, digital processing 
hardware allows programmable operations. Through software, one can more easily 
modify the signal processing functions to be performed by the hardware. Thus 
digital hardware and associated software provide a greater degree of flexibility in 
system design. Also, there is often a higher order of precision achievable with 
digital hardware and software compared with analog circuits and analog signal 
processing systems. For all these reasons, there has been an explosive growth in 
digital signal processing theory and applications over the past three decades. 
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In this book our objective is to present an introduction of the basic analysis 
tools and techniques for digital processing of signals. We begin by introducing 
some of the necessary terminology and by describing the important operations 
associated with the process of converting an analog signal to digital form suitable 
for digital processing. As we shall see, digital processing of analog signals has 
some drawbacks. First, and foremost. conversion of an analog signal to digital 
form, accomplished by sampling the signal and quantizing the samples. results in a 
distortion that prevents us from reconstructing the orisinal analog signaI from the 
quantized samples. Control of the amount of this distortion is achieved by proper 
choice of the sampling rate and the precision in the quantization process. Second, 
there are finite precision effects that must be considered in the digital processing 
of the quantized samples. While these important issues are considered in some 
detail in this book, the emphasis is on the analysis and design of digital signal 
processing systems and computational techniques. 

1 .I SIGNALS, SYSTEMS, AND SIGNAL PROCESSING 

A signal is defined as any physical quantity that varies with time, space. or any 
other independent variable or variables. Mathematically, we describe a signaI as 
a function of one or more independent variables. For example. the functions 

describe two signals. one that varies linearly with the independent variable r (time) 
and a second that varies quadratically with t .  As another example, consider the 
function 

S ( X .  ') = 3x + 2xy + 1%: (1.1.2) 

This function describes a signal of two independent variables x and y that could 
represent the two spatial coordinates in a plane. 

The signals described by (2.1.1) and (1.1.2) belong to a class of signals that 
are precisely defined by specifying the functional dependence on the independent 
variable. However, there are cases where such a functional relationship is unknown 
or too highly complicated to be of any practical use. 

For example, a speech signal (see Fig. 1.1) cannot be described functionally 
by expressions such as (1.1.1). In general, a segment of speech may be represented 
to a high degree of accuracy as a sum of several sinusoids of different amplitudes 
and frequencies, that is, as 

h' 

Ai ( r )  sin[2n F; ( r ) r  + 8, (r)] (I. 1.3) 
1-1 

where (Aj(t)j, {Fi(t)], and (Oi(t)) are the sets of (possibly time-varying) amplitudes, 
frequencies, and phases, respectively, of the sinusoids. In fact, one way to interpret 
the information content or message conveyed by any short time segment of the 
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Figure 1.1 Example of a speech signal. 

speech signal is to measure the amplitudes. frequencies, and phases contained in 
the short time segment of the signal. 

Another example of a natural signal is an electrocardiogram (ECG). Such a 
signal provides a doctor with information about the condition of the patient's heart. 
Similarly, an electroencephalogram (EEG) signal provides information about the 
activity of the brain. 

Speech, electrocardiogram. and electroencephalogram signals are examples 
of information-bearing signals that evolve as functions of a single independent 
variable. namely. time. An example of a signal that is a function of two inde- 
pendent variables is an imaye signal. The independent variables in this case are 
the spatial coordinates. These are but a few examples of the countless number of 
natural signals encountered in practice. 

Associated with natural signals are the means by which such signals are gen- 
erated. For example. speech signals are generated by forcing air through the vocal 
cords. Images are obtained by exposing a photographic film to a scene or  an ob- 
ject. Thus signal generation is usually associated with a system that responds to a 
stimulus or  force. In a speech signal. the system consists of the vocal cords and 
the vocal tract, also called the vocal cavity. The stimulus in combination with the 
system is called a signal source. Thus we have speech sources, images sources. and 
various other types of signal sources. 

A system may also be defined as a physical device that performs an opera- 
tion on a signal. For example, a filter used to reduce the noise and interference 
corrupting a desired information-bearing signal is called a system. In this case the 
filter performs some operation(s) on the signal, which has the effect of reducing 
(filtering) the noise and interference from the desired information-bearing signal. 

When we pass a signal through a system, as in filtering. we say that we have 
processed the signal. In this case the processing of the signal involves filtering the 
noise and interference from the desired signal. In general, the system is charac- 
terized by the type of operation that it performs on the signaI. For example. if 
the operation is linear, the system is called linear. If the operation on the signal 
is nonlinear, the system is said to be nonlinear, and so forth. Such operations are 
usually referred to as signal processing. 



4 Introduction Chap. 1 

For our purposes. it is convenient to broaden the definition of a system to 
include not oniy phvsical devices. but also software realizations of operations on 
a signal. In digital processing of signals on a digital computer. the operations per- 
formed on a signal consist of a number of mathematical operations as specified by 
a software prosram. In this case, the program represents an implementation of the 
system in sofhvare. Thus we have a system that is realized on a digital computer 
by means of a sequence of mathematical operations: that is, we have a digital 
signal processing system realized in software. For example. a disital computer can 
be programmed to perform digital filtering. Alternatively, the digitaI processing 
on the signal map be performed by digital hardware (logic circuits) configured to 
perform the desired specified operations. In such a realization, we have a physical 
device that performs the specified operations. In a broader sense, a digital system 
can be implemented as a combination of digital hardware and software. each of 
which performs its own set of specified operations. 

This book deals with the processing of signals by digital means. either in soft- 
ware or in hardware. Since many of the signals encountered in practice are analog. 
we will also consider the problem of converting an analog signal into a digital sig- 
nal for processing. Thus we will be dealing primarily with digital systems. The 
operations performed by such a system can usually be specified mathematically. 
The method or set of rules for implementing the system by a prozram that per- 
forms the corresponding mathematical operations is called an algorithm. Usually. 
there are many ways or algorithms by which a system can be implemented, either 
in software or in hardware. to perform the desired operations and computations. 
In practice, we have an interest in devising algorithms that are computationally 
efficient, fast. and easily implemented. Thus a major topic in our study of digi- 
tal signal processing is the discussion of efficient algorithms for performing such 
operations as filtering, correlation, and spectral analysis. 

1.1.1 Basic Elements of a Digital Signal Processing 
System 

Most of the signals encountered in science and engineering are analog in nature. 
That is. the signals are functions of a continuous variable. such as time or space. 
and usually take on values in a continuous range. Such signals may be processed 
directly by appropriate analog systems (such as filters or  frequency analyzers) or 
frequency multipliers for the purpose of changing their characteristics or  extracting 
some desired information. In such a case we say that the signal has been processed 
directly in its analog form, as illustrated in Fig. 1.2. Both the input signal and the 
output signal are in analog form. 

Analog Analog 
input signal output 
signal processor signal 
u Figure 1.2 Analog signal processing. 
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Figure 13 Block diagram of a digtal  signal processing system. 
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DigitaI signal processing provides an alternative method for processing the 
analog signal, as illustrated in Fig. 1.3. To  perform the processing digitally, there 
is a need for an interface between the analog signal and the digital processor. 
This interface is called an analog-ro-digital (MD) converter. The output of the 
AID converter is a digital signal that is appropriate as an input to the digital 
processor. 

The digital signal processor may be a large programmable digital computer 
or a small microprocessor programmed to perform the desired operations on the 
input signal. It may also be a hardwired digital processor configured to perform 
a specified set of operations on the input signal. Programmable machines pro- 
vide the flexibility to change the signal processing operations through a change 
in the software. whereas hardwired machines are difficult to reconfigure. Conse- 
quently, programmable signal processors are in very common use. On the other 
hand, when signal processing operations are well defined, a hardwired implemen- 
tation of the operations can be optimized. resulting in a cheaper signal processor 
and, usually, one that runs faster than its programmable counterpart. In appli- 
cations where the digital output from the digital signal processor is to be given 
to the user in analog form. such as in speech communications, we must pro- 
vide another interface from the digital domain to the analog domain. Such an 
interface is called a digital-to-analog (D/A) converter. Thus the signal is pro- 
vided to the user in analog form. as illustrated in the block diagram of Fig. 1.3. 
However, there are other practical applications involving signal analysis, where 
the desired information is conveyed in digital form and no D/A converter is 
required. For example, in the digital processing of radar signals, the informa- 
tion extracted from the radar signal, such as the position of the aircraft and its 
speed, may simply be printed on paper. There is no need for a D/A converter in 
this case. 

AID 
convener , = 

i 

I .I .2 Advantages of Digital over Analog Signal 
Processing 

D/A 
converter 

Digital 
signal 
processor 

There are many reasons why digital signal processing of an analog signal may be 
preferable to  processing the signal directly in the analog domain, as mentioned 
briefly earlier. First, a digital programmable system allows flexibility in recon- 
figuring the digital signal processing operations simply by changing the program. 

Analog 
-- OUIPUt 

signal 
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Reconfiguration of an analog system usually implies a redesign of the hardware 
followed by testing and verification to see that it operates properly. 

Accuracy considerations also play an important role in determining the form 
of the signal processor. Tolerances in analog circuit components make it extremely 
difficult for the system designer to control the accuracy of an analog signal pro- 
cessing system. Qn the other hand. a digital system provides much better control 
of accuracy requirements. Such requirements, in turn, result in specifying the ac- 
curacy requirements in the A D  converter and the digital signal processor, in terms 
of word length, floating-point versus fixed-po~nt arithmetic, and similar factors. 

Digital signals are easily stored on magnetic media (tape or disk) without de- 
terioration or loss of signal fidelity beyond that introduced in the A/D conversion. 
As a consequence, the signals become transportable and can be processed off-line 
in a remote laboratory. The digital signal processing method also allows for the im- 
plementation of more sophisticated signal processing algorithms. It is usually very 
difficult to perform precise mathematical operations on signals in analog form but 
these same operations can be routinely implemented on a digital computer using 
software. 

In some cases a digital implementation of the signal processing system is 
cheaper than its analog counterpart. The lower cost may be due to the fact that 
the digital hardware is cheaper. or perhaps it is a result of the flexibility for mod- 
ifications provided by the digital implementation. 

As a consequence of these advantages, digital signal processing has been 
applied in practical systems covering a broad range of disciplines. We cite, for ex- 
ample, the application of digital signal processing techniques in speech processing 
and signal transmission on telephone channels, in image processing and transmis- 
sion, in seismology and geophysics. in oil exploration, in the detection of nuclear 
explosions. in the processing of signals received from outer space. and in a vast 
variety of other applications. Some of these applications are cited in subsequent 
chapters. 

As already indicated, however, digital implementation has its limitations. 
One practical Iimitation is the speed of operation of A/D converters and digital 
signal processors. We shall see that signals having extremely wide bandwidths re- 
quire fast-sampling-rate A/D converters and fast digital signal processors. Hence 
there are analog signals with large bandwidths for which a digital processing ap- 
proach is beyond the state of the art of digital hardware. 

1.2 CLASSlFlCATlON OF SIGNALS 

The methods we use in processing a signal or in analyzing the response of a system 
to a signal depend heavily on the characteristic attributes of the specific signal, 
There are techniques that apply only to specific families of signals. Consequently, 
any investigation in signal processing should start with a classification of the signals 
involved in the specific application. 
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1.2.1 Multichannel and Multidimensional Signals 

As explained in Section 1.1, a signal is described by a function of one or more 
independent variables. The value of the function (1.e.. the dependent vanable) can 
be a real-valued scalar quantity, a complex-valued quantity. or perhaps a vector. 
For example. the signal 

s l ( t )  = A s i n 3 ~ r  

is a real-valued signal. However, the signal 

is complex valued. 
In some applications, signals are generated by multiple sources or multiple 

sensors. Such signals. in turn. can be represented in vector form. Figure 1.4 shows 
the three components of a vector signal that represents the ground acceleration 
due to an earthquake. ?'his acceleration is the result of three basic types of elastic 
waves. The primary (P) waves and the secondary (S) waves propagate within the 
body of rock and are longitudinal and transversal, respectively. The third tvpe 
of elastic wave is called the surface wave. because it propagates near the ground 
surface. If s A ( r ) .  k = 1. 2. 3. denotes the electrical signal from the kth sensor as a 
function of time. the set of 17 = 3 siynals can be represented by a vector S:(r), where 

We refer to such a vector of signals as a miilrichannel signal. In electrocardiogra- 
phy. for example. 3-lead and 12-lead electrocardiograms (ECG) are often used in 
practice. which result in 3-channel and 12-channel signals. 

Let us now turn our attention to the independent variable(s). If the signal is 
a function of a single independent variable. the signal is called a one-dimensional 
signal. On the other hand. a signal is called M-dimensional if its value is a function 
of M independent variables. 

The picture shown in Fig. 1.5 is an example of a two-dimensional signal. since 
the intensity or  brightness I ( x .  J) at  each point is a function of two independent 
variables. On the other hand. a black-and-white television picture may be rep- 
resented as I ( x ,  J, r )  since the brightness is a function of time. Hence the TV 
picture may be treated as a three-dimensional signal. In contrast. a color TV pic- 
ture may be described by three intensity functions of the form I , ( x .  y. r ) .  I,(x-. y. r ), 
and l b ( x .  y. I ) ,  corresponding to the brightness of the three principal colors (red. 
green, blue) as functions of time. Hence the color TV picture is a three-channel. 
three-dimensional signal, which can be represented by the vector 

In this book we deal mainly with single-channel, one-dimensional real- or 
complex-valued signals and we refer to them simply as signals. In mathematical 
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Fipre 1.4 Three components of ground accelerat~on measured a few kilometers 
from the epicenter of an earthquake. (From Earrhquakex. by B. A. Bold. 01988 
by U'. H. Freeman and Company. Repr~n ted  with permission of the publisher.) 

terms these signals are described by a function of a single independent variable. 
Although the independent variable need not be time, it is common practice to use 
r as the independent variable. In many cases the signal processing operations and 
algorithms developed in this text for one-dimensional. single-channel signals can 
be extended to multichannel and multidimensional signals. 

1.2.2 Continuous-Time Versus Discrete-Time Signals 

Signals can be further classified into four different categories depending on the 
characteristics of  the time (independent) variable and the values they take. 
Continuous-time signals or analog signals are defined for every value of time and 
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Figure 1.5 Example of a two-dimensional signal. 

they take on values in the continuous interval (a. b). where a can be -cc and b 
can be oc. Mathemati~all)~,  these signals can be described by functions of a con- 
tinuous variable. The speech waveform in Fig. 1.1 and the signals xl  ( t )  = c o s ~ t ,  
x z ( t )  = e-1'1, -cc < t  < oc are examples of  analog signals. Discrete-time signals 
are defined only at certain specific values of time. These time instants need not be 
equidistant. but in practice they are usually taken at  equally spaced intervals for 
computational convenience and mathematical tractability. The signal x( t , )  = e-llnl, 
n = 0, f 1, f2 ,  . . . provides an example of a discrete-time signal. If we use the 
index n of the discrete-time instants as the independent variable, the signal value 
becomes a function of an integer variable (i.e., a sequence of numbers). Thus a 
discrete-time signal can be represented mathematically by a sequence of real or  
complex numbers. To emphasize the discrete-time nature of a signal. we shall 
denote such a signal as x ( n )  instead of x ( t ) ,  If the time instants t, are equally 
spaced (i.e., t, = n T ) ,  the notation x ( n T )  is also used. For example, the sequence 

i f n 2 O  
' ( " )  = { ::'" otherwise 

is a discrete-time signal, which is represented graphicaIly as in Fig. 1.6. 
In applications. discrete-time signals may arise in two ways: 

1. By selecting values of an analog signal at  discrete-time instants. This process 
is called sampl~ng  and is discussed in more detail in Section 1.4. All measur- 
ing instruments that take measurements at a regular interval of time provide 
discrete-time signals. For example, the signal x ( n )  in Fig. 1.6 can be obtained 
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Figure 1.6 Graphical representation of the d~screte time signal x ( n  I = 0.8" for 
n > O a n d x ( n ) = O f o r n  i 0 .  

by sampling the analog signal x ( r )  = 0.8', t 2 0 and x ( t )  = 0. t  < 0 once 
every second. 

2. By accumulating a variable over a period of time. For example. counting the 
number of cars using a given street every hour. or recording the value of gold 
every day, results in discrete-time signals. Figure 1.7 shows a graph of the 
Wolfer sunspot numbers. Each sample of this discrete-time signal provides 
the number of sunspots observed during an interval of 1 year. 

1.2.3 Continuous-Valued Versus Discrete-Valued Signals 

The values of a continuous-time or discrete-time signaI can be continuous or dis- 
crete. If a signal takes on all possible values on a finite or an infinite ranse. it 

1770 1790 1810 1830 1850 1870 

Year 

figure 1.7 Wolfer annual sunspot numbers (1770-1869). 



Sec. 1.2 Classification of Signals 11 

is said to be continuous-valued signal. Alternatively, if the signal takes on values 
from a finite set of possible values, it is said to be a discrete-valued signal. Usually, 
these values are equidistant and hence can be expressed as an integer multiple of 
the distance between two successive values. A discrete-time signal having a set of 
discrete values is called a digital signal. Figure 1.8 shows a digital signal that takes 
on one of four possible values. 

In order for a signal to be processed digitally, it must be discrete in time 
and its values must be discrete (i.e., it must be a digital signal). If the signal to 
be processed is in analog form, it is converted to a digital signal by sampling the 
analog signal at discrete instants in time. obtaining a discrete-time signal. and then 
by quantizing its values to a set of discrete values, as described later in the chapter. 
The process of converting a continuous-valued signal into a discrete-valued signal. 
called quantization. is basically an approximation process. It may be accomplished 
simply by rounding or truncation. For example. if the allowable signal values 
in the digital signal are integers, say 0 through 15, the continuous-value signal is 
quantized into these integer values. Thus the signal value 8.58 will be approximated 
by the value 8 if the quantization process is performed by truncation or by 9 if 
the quantization process is performed by rounding to the nearest integer. An  
explanation of the analog-to-digital conversion process is given later in the chapter. 

Figure 1.8 Dlgital srgnal with four different amplitude values 

1.2.4 Deterministic Versus Random Signals 

The mathematical analysis and processing of signals requires the availability of a 
mathematical description for the signal itself. This mathematical description, often 
referred to as the signal model, leads to another important classification of signals. 
Any signal that can be uniquely described by an explicit mathematical expression, 
a table of data, or a well-defined rule is called deterministic. This term is used to 
emphasize the fact that all past, present. and future values of the signal are known 
precisely, without any uncertainty. 

In many practical applications, however, there are signals that either cannot 
be described to any reasonable degree of accuracy by explicit mathematical for- 
mulas, or such a description is too complicated to be of any practical use. The lack 
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of such a relationship implies that such signals evolve in time in an unpredictable 
manner. We refer to these signals as random. The output of a noise generator, 
the seismic signal of Fig. 1.4, and the speech signal in Fig. 1.1 are examples of 
random signals. 

Figure 1.9 shows two signals obtained from the same noise generator and 
their associated histograms. Although the two signals do not resemble each other 
visually, their histograms reveal some similarities. This provides motivation for 

Figure 1.9 Two random signals from the same signal generator and their his- 
tograms. 
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Figure 1.9 Continued 

the analysis and description of random signals using statistical techniques instead 
of explicit formulas, The mathematical framework for the theoretical analysis of 
random signals is provided by the theory of probability and stochastic processes. 
Some basic elements of this approach, adapted to the needs of this book. are 
presented in Appendix A. 

It should be emphasized at this point that the classification of a real-world 
signal as deterministic or random is not always clear. Sometimes. both approaches 
lead to meaningful results that provide more insight into signal behavior. At other 
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times. the wrens classification may lead to erroneous results. since some mathe- 
matical tools may apply only to deterministic signals while others may apply only 
to random sisnals. This will become clearer as we examine specific mathematical 
tools. 

1.3 THE CONCEPT OF FREQUENCY IN CONTINUOUS-TIME AND 
DISCRETE-TIME SIGNALS 

The concept of frequency is familiar to students in engineering and the sciences. 
This concept is basic in. for example, the design of a radio receiver, a high-fidelity 
s!lstem. or a spectral fitter for color photography. From physics we know that 
frequency is closely related to a specific type of periodic motion called harmonic 
oscillation. which is described by sinusoidal functions. The concept of frequency 
is directly related to the concept of time. Actually, it has the dimension of inverse 
time. Thus we should expect that the nature of time (continuous or discrete) would 
affect the nature of the frequency accordingly. 

1.3.1 Continuous-Time Sinusoidal Signals 

A simple harmonic oscillation is mathematically described by the following 
continuous-time sinusoidal signal: 

shown in Fig. 1.10. The subscript a used with x ( t )  denotes an analog signal. This 
signal is completely characterized by three parameters: A is the amplitude of the 
sinusoid. 51 is the frequency in radians per second (radis), and 6' is the phase in 
radians. Instead of R, we often use the frequency F in cycles per second or hertz 
(Hz). where 

C'2=2rF (1.3.2) 

In terms of F .  (1.3.1) can be written as 

We will use both forms. (1.3.1) and (1.3.3), in representing sinusoidal signals. 

Figure 1.10 Example of an analog 
sinusoidal signal. 
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The analog sinusoidal signal in (1.3.3) is characterized by the following prpp- 
erties: 

Al. For every fixed value of the frequency F ,  x , ( r )  is periodic. Indeed. it can 
easily be shown, using elementary tri_gonometry, that 

where T, = 1 / F  is the fundamental period of the sinusoidal signal. 

A2. Continuous-time sinusoidal signals with distinct (different) frequencies are 
themselves distinct. 

A3. Increasing the frequency F results in an increase in the rate of oscillation 
of the signal, in the sense that more periods are included in a given time 
interval. 

We observe that for F = 0. the value T,, = cr: is consistent with the fun- 
damental relation F = 1/T,. Due to continuit? of the time variable r ,  we can 
increase the frequency F ,  without limit, with a corresponding increase in the rate 
of oscillation. 

The relationships we have described for sinusoidal signals carry over to the 
class of complex exponential signals 

This can easily be seen by expressing these signals in terms of sinusoids using the 
Euler identity 

By definition, frequency is an inherently positive physical quantity. This 
is obvious if we interpret frequency as the number of cycles per unit time in a 
periodic signal. However. in many cases, only for mathematical convenience, we 
need to introduce negative frequencies. T o  see this we recall that the sinusoidal 
signal (1.3.1) may be expressed as 

which follows from (1.3.5). Note that a sinusoidal signal can be obtained by adding 
two equal-amplitude complex-conjugate exponential signals, sometimes called pha- 
sors, illustrated in Fig. 1.11. As time progresses the phasors rotate in opposite 
directions with angular frequencies f Q radians per second. Since a positive fre- 
quency corresponds to counterclockwise uniform angular motion, a negative fre- 
quency simply corresponds to clockwise angular motion. 

For mathematical convenience, we use both negative and positive frequencies 
throughout this book. Hence the frequency range for analog sinusoids is -m < 
F < oo. 
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Figure 1.11 Representation of a coslne 
function by a pair of complex-con~ugatc 

I exponentials (phasors). 

1.3.2 Discrete-Time Sinusoidat Signals 

A discrete-time sinusoidal signal may be expressed as 

where n is an integer variable. called the sample number. A is the antplirltdc of the 
sinusoid. w is the frequency in radians per sample. and fl is the phase in radians. 

If instead of w we use the frequent!' variable f defined by 

LLI = 2 ~ - f  (1.3.8) 

the relation (1.3.7) becomes 

The  frequency f has dimensions of cycles per sample. In Section 1.4. where 
we consider the sampiing of analog sinusoids, we relate the frequency variable 
f of a discrete-time sinusoid to the frequency F in cycles per second for the 
analog sinusoid. For the moment we consider the discrete-time sinusoid in (1.3.7) 
independently of the continuous-time sinusoid given in (1.3.1). Figure 1.12 shows 
a sinusoid with frequency w = 17/6 radians per sample (f = & cycles per sample) 
and phase 6 = 17/3. 

figure 1.12 Example of a discrete-time 
sinusoidal signal (w  = n/6 and 6 = n/3).  
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In contrast to continuous-time sinusoids. the discrete-time sinusoids are char- 
acterized by the followin_e properties: 

B1. A discrete-time sinusoid is periodic only if its frequent?. f is a rational number. 

By definition, a discrete-time signal x ( n )  is periodic with period N ( N  > 0) if 
and only if 

x ( n  + N )  = x ( n )  for all n (1.3.10) 

The  smallest value of N for which (1.3.10) is true is caIled the fundamental period. 
The  proof of the periodicity property is simple. For a sinusoid with frequency 

.fo to  be periodic, we should have 

cosI2x fu(A1 + n )  + P] = cos(2x,~,iz + 0 )  

This relation is true if and only if there exists an integer k such that 

2nfoA1 = 2kx 

or, equivalently. 

According to (1.3.11). a discrete-time sinusoidal signal is periodic only i f  its fre- 
quency h, can be expressed as the ratio of two integers (i.e.. ,fo is rational). 

T o  determine the fundamental period hJ of a periodic sinusoid. we express its 
frequency fo as in (1.3.11) and cancel common factors so that k and N are relatively 
prime. Then the fundamental period of the sinusoid is equal to N.  Observe that a 
small change in frequency can result in a large change in the period. For example, 
note that fL = 31/60 impiies that NI = 60, whereas .f2 = 30/60 results in N2 = 2. 

B2. Discrete-time sinusoids whose frequencies are separated by an integer multiple 
of 2n  are identical. 

T o  prove this assertion. let us consider the sinusoid cos(*n + 8 ) .  It easily 
follows that 

cos[(wo + 2x)n + f?] = cos(q,n + 2nn + 8 )  = cos(won + 0 )  (1.3.12) 

A s  a result. all sinusoidal sequences 

where 

are indistinguishable (i.e., identical). On the other  hand, the sequences of any two 
sinusoids with frequencies in the range -x ( w 5 x o r  - 4  ( f ( are distinct. 
Consequently, discrete-time sinusoidal signals with frequencies Iwl 5 n o r  I f  1 ( $ 
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are unique. Any sequence resulting from a sinusoid with a frequency Iw[ > TI, or 
I f  1 > 4, is identical to a sequence obtained from a sinusoidal signal with frequency 
IwJ < n. Because of this similarity. we call the sinusoid having the frequency Iwl > 
TI an alias of a corresponding sinusoid with frequency /wj < JT. Thus we regard 
frequencies in the range -TI 5 w 5 TI, or -$ 5 f 5 $ as unique and all frequencies 
Iwl > TI, or I f  1 > f ,  as aliases. The reader should notice the difference between 
discrete-time sinuioids and continuous-time sinusoids, where the latter result in 
distinct signals for Q or F in the entire range -cc < Q < cc or -cc < F < cc, 

B3. The highest rate of oscillation in a discrete-rime sinusoid is artained when 
w = r (or w = - T I )  or, equivalently, f = (or f = -:). 

To  illustrate this property, let us investigate the characteristics of the sinu- 
soidal signal sequence 

when the frequency varies from 0 to TI. To simplify the argument, we take values 
of q = 0, TI 18. ~ 1 4 .  nl2. TI corresponding to f = 0, A. i. $, $. which result in 
periodic sequences having periods N = cc,. 16, 8, 4, 2. as depictei in Fig. 1.13. We 
note that the period of the sinusoid decreases as the frequency increases. In fact, 
we can see that the rate of oscillation increases as the frequency increases. 

Figure 1.13 Signal x ( n )  = c o s ~ n  for various values of the frequency y). 
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To  see what happens for 7~ L: wo ( 37~. we consider the sinusoids n ~ t h  
frequencies wr = wcl and w: = 2n - wg. Note that as wl varies from T to 2 7 .  tu: 
varies from n to 0. it can be easily seen that 

XI ( 1 1 )  = A cos wr n = A cos wgn 

Hence ( ~ h _  is an alias of w l .  If we had used a sine function instead of a cosine func- 
tion, the result would basically be the same, except for a 180' phase differencc 
between the sinusoids x l ( n )  and s2(n ) .  In any case. as we increase the relative 
frequency w~ of a discrete-time sinusoid from 7~ to 27~. its rate of oscillation de- 
creases. For w~ = 2n the result is a constant signal. as in the case for tu,, = 0. 
Obviousl!~. for wo = rr (or ,f = 4) we base the highest rate or oscillation. 

As for the casc of continuous-time signals. negative frequencies can be in- 
troduced as well for discrete-time signals. For this purpose we use the identity 

Since discrete-time sinusoidal signals ~vitli frequcncics that arc scpnrntcd b!. 
an integer multiple or 27~ are identical. it follows that thc frequencics in an! intcr\,al 
w ,  5 w 5 w ,  + 27~ constitute all the existing discrete-tirnc sinusoids or complcx 
exponentials. Hence the frequency range for discrete-time sinusoids is finite with 
duration 2n. Usuall!.. we choose the ranee 0 5 w 5 2n or -7 5 w 5 r r ( 0  5 ,f 5 1.  
-: 5 f 5 i), which we call the furtdan~enral range. 

1.3.3 Harmonically Related Complex Exponentiais 

Sinusoidal signals and complex exponentials play a major role in the analysis of 
signals and systems. In some cases we deal with sets of harnronicall~ relater1 com- 
plex exponentials (or sinusoids). These are sets of periodic complex exponentials 
with fundamental frequencies that are multiples of a s~ngle positive frequent!. 
Although we confine our discussion to complex exponentials. the same proper- 
ties clearly hold for sinusoidal signals. We consider harmonically related complex 
exponentials in both continuous time and discrete time. 

Continuous-time exponentials. The basic signals for continuous-time. 
harmonically related exponentials are 

We note that for each value of k .  s k ( t )  is periodic with fundamental period 
l / ( k  Fo) = T , / k  or fundamental frequency kFo. Since a signal that is periodic 
with period T , / k  is also periodic with period k(T, , /k )  = T, for any positive integer 
k, we see that all of the s k ( t )  have a common period of T,. Furthermore, according 
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to Section 1.3.1. FO is allowed to take any value and all members of the set are 
distinct. in the sense that if kl # k 2 .  then S ~ I  ( 1 )  # sk2(r). 

From the basic signals in (1.3.16) we can construct a linear combination of 
harmonically related complex exponentials of the form 

where ck, k = 0, il. *2. . . . are arbitrary complex constants. The signal x , ( r )  
is periodic with fundamental period T, = l / F o ,  and its representation in terms 
of (1.3.17) is called the Fourier series expansion for x , ( r ) .  The complex-valued 
constants are the Fourier series coefficients and the signal s k ( r )  is called the kth 
harmonic of x-, ( 1 ) .  

Discrete-time exponentials. Since a discrete-time complex exponential is 
periodic if its relative frequency is a rational number. we choose ,fo = l / h l  and we 
define the sets of harmonically related complex exponentials by 

j27rk,filn s k ( n )  = P . k = 0. & I .  & 2 , .  . . (1.3.18) 

In contrast to the continuous-time case. we note that 

SL+h, 
= P ~ 2 n n ( L + ~ ~ ! h '  - - p ~ 2 ~ f l  

s k  (11 ) = sk ( n  ) 

This means that. consistent with (1.3.10), there are only N distinct periodic complex 
exponentials in the set described by (1.3.18). Furthermore. all members of the set 
have a common period of N samples. Clearly, we can choose any consecutive hi 

complex exponentials, say from k = 110 to k = no -t N - 1 to form a harmonically 
refated se[ with fundamental frequency fo = 1 / N .  Most often. for convenience. 
we choose the set that corresponds to no = 0. that is, the set 

As in the case of continuous-time signals, it is obvious that the linear com- 
bination 

results in a periodic signal with fundamental period N .  As we shall see later. 
this is the Fourier series representation for a periodic discrete-time sequence with 
Fourier coefficients ( c k j  The sequence s k ( n )  is called the kth harmonic of x ( n ) .  

Example 1.3.1 

Stored in the memory of a digital signal processor is one cycle of the sinusoidal signal 

where 0 = 2nq/N,  where q and N are integers. 



Sec. 1.4 Analog-to-Digital a n d  Digital-to-Analog Conversion 21 

( a )  Determine  how thls table of values can be used t o  obtain values of harmonically 
related sinusoids having the same phase.  

(b) Determine  how this table can be used to obtain sinusoids of the same frequency 
bu t  different phase. 

Solution 

(a) Le t  X ~ f f l )  denote  the  sinusoidal signal sequence 

2 n 1 t k  
. , , I , ,  = sin (,, + 0)  

This  IS a sinusoid wlth frequent! fA = A / N .  which is harmonically related t o  
X ( I I ) .  But xA (11) ma? be expressed as 

x, ,1,1 = sin [F +@I 
T h u s  wc observc thal . I , (OI  = s f 0 ) .  x l ( l ?  = ~ ( k ) .  ~ ~ ( 2 )  = x ( 2 k ) .  and  so  on.  
Hence  thc  sinusoidal sequence ~ ~ 0 1 )  can be obtalned from the  table of values 
of x 0 1 )  b!' taking evcry kth value of x  (11). beginning with ~ ( 0 ) .  In this manner  we 
can g e n c r ~ c  I ~ C  \ l ; ~ L ~ e ~  of all harmonically relaled sinusoids with frequencies 
.f, = k l h '  for k  = 0. 1 .....A'- 1. 

(b) W e  can control the phasc H of ~ h c  sinusoid with frequency fA = k l h '  by taking 
the  first value of t t ~ c  scqucnce from memor)  location q = P N / 2 n .  where r/ is 
a n  integer. Thus  thc inilia1 phasc H controls the  starl ing location in the table 
and  we wrap around thc table each t ime the indcx ( k n )  exceeds N .  

1.4 ANALOG-TO-DIGITAL AND DIGITAL-TO-ANALOG CONVERSION 

Most signals of practical interest, such as speech. biological signals, seismic signals. 
radar signals, sonar signals. and various communications signals such as audio and 
video signals, are analog. To process analog signals by digital means, it is first 
necessary to convert them into digital form. that is, to convert them to a sequence 
of numbers having finite precision. This procedure is called analog-to-digital (MD) 
conversion, and the corresponding devices are called M D  converters (ADCs) .  

Conceptually, we view AD conversion as a three-step process. This process 
is illustrated in Fig. 1.14. 

.. Sampling. This is the conversion of a continuous-time signal into a discrete- 
time signal obtained by taking "samples" of the continuous-time signal at 
discrete-time instants. Thus, if x,(t) is the input to the sampler, the output 
is x,(nT) r x ( n ) ,  where T is called the sampling interval. 

2. Quantization. This is the conversion of a discrete-time continuous-valued 
signal into a discrete-time, discrete-valued (digital) signal. The value of each 
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AID converter 
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Figure 1.14 Basic parts of an analog-to-disital (AID) converter. 

signal sample is represented by a value selected from a finite set of possi- 
ble values. The difference between the unquantized sample s ( n )  and the 
quantized output x , ( n )  is called the quantization error. 

3. Coding. In the coding process. each discrete value x , ( n )  is represented hy a 
b-bit binary sequence. 

Although we model the AID converter as a sampler followed by a quantizer 
and coder. in practice the AID conversion is performed by a single device that 
takes x , ( t )  and produces a binary-coded number. The operations of sampling and 
quantization can be performed in either order but. in practice. sampling is alnlays 
performed before quantization. 

In many cases of practical interest (e.g.. speech processing) it is desirable 
to convert the processed digitaI signals into analog form. (Obviously. we cannot 
listen ro the sequence of samples representing a speech signal or see the num- 
bers corresponding to a TV signal.) The process of converting a digital signal 
into an analog signal is known as digital-ro-analog (D/Aj conversion. All DIA 
converters "connect the dots" in a digital signal by performing some kind of inter- 
polation, whose accuracy depends on the quality of the DIA conversion process. 
Figure 1.15 iIlustrates a simple form of DIA conversion. called a zero-order hold 
or a staircase approximation. Other approximations are possible. such as linearly 
connecting a pair of successive samples (linear interpolation), fitting a quadratic 
through three successive samples (quadratic interpolation). and so on. Is there an 
optimum (ideal) interpolator? For signals having a limited frequency content (finite 
bandwidth), the sampling theorem introduced in the following section specifies the 
optimum form of interpolation. 

Sampling and quantization are treated in this section. In particular, we 
demonstrate that sampling does not result in a loss of information, nor does it 
introduce distortion in the signal if the signal bandwidth is finite. In principle, the 
analog signal can be reconstructed from the samples, provided that the sampling 
rate is sufficiently high to avoid the problem commonly called aliasing. On the 
other hand, quantization is a noninvertible or irreversible process that results in 
signal distortion. We shall show that the amount of distortion is dependent on 
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Figure 1.15 Zero-order hold d~gltal-to-analog (DIA) conversion. 

the accuracIr. as measured by the number of bits. in the AID conversion process. 
The factors affecting the choice of the desired accuracJr of the AID converter are 
cost and sampling rate. In general. the cost increases with an increase in accuracy 
andlor sampling rate. 

1.4.1 Sampling of Analog Signals 

There are many ways to sample an analog slgnal. We limit our discussion to 
periodic or uniform sampling. which is the type of sampling used most often in 
practice. This is described by the relation 

X ( I Z )  = x,(nT). -x < n < oc (1.4.1) 

where x ( n )  is the discrete-time signal obtained by "taking samples" of the analog 
signal x,(t) every T seconds. This procedure is illustrated in Fig. 1.16. The time 
interval T between successive samples is called the sampling period or sample 
interval and its reciprocal 1/T = Fs is called the sampling rate (samples per second) 
or the sampling frequency (hertz). 

Periodic sampling establishes a relationship between the time variables t and 
n of continuous-time and discrete-time signals, respectively. Indeed, these vari- 
ables are linearly related through the sampling period T or, equivalently, through 
the sampling rate F, = 1 /T ,  as 

As a consequence of (1.4.2), there exists a relationship between the frequency 
variable F (or !i2) for analog signals and the frequency variable f (or w )  for 
discrete-time signals. To establish this relationship. consider an analog sinusoidal 
signal of the form 

x,(t) = A COSQT ~t + e)  (1.4.3) 
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Analog x(" )  = x o ( " ~ )  Discrete-rime 
i n  6 = l/T s~znal 

Figure 1.16 Penodic sampling of an analog slgnal 

which, when sampled periodically at a rate F, = 1/T samples per second. yields 

x o ( n T )  E ~ ( n )  = A cos(2x F n T  + 8 )  

If we compare (1.4.4) with (1.3.9), we note that the frequency variables F 
and f are linearly related as 

F 
f = -  (1.4.5) 

FT 
or, equivalently, as 

o = n T  (1.4.6) 

The relation in (1.4.5) justifies the name relative or normalized frequency, which is 
sometimes used to describe the frequency variable f .  As (1.4.5) implies, we can use 
f to determine the frequency F in hertz only if the sampling frequency Fc is known. 

We recall from Section 1.3.1 that the range of the frequency variable F or R 
for continuous-time sinusoids are 

However, the situation is different for discrete-time sinusoids. From Section 1.3.2 
we recall that 

By substituting from (1.4.5) and (1.4.6) into (1.4.8), we find that the frequency 
of the continuous-time sinusoid when sampled at a rate F, = 1/T must fall in 
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the range 

or, equivalently. 
IT - - -  - - n F , s R s n F , = -  

T T 
These relations are summarized in Table 1.1. 

TABLE 1.1 RELATIONS AMONG FREQUENCY VARIABLES 

Continuous-time slgnals D~screte-t~me slgnals 

n = 2 ; ~  F W =  ? T /  
r;~dinns Hz radians cvcles 

SCC 
-- 

\ samplc sarnpls 

From these relations we observe that the fundamental difference between 
continuous-time and discrete-time signals is in their range of values of the fre- 
quencjr variables F and .f. or R  and w. Periodic sampling of a continuous-time 
signal implies a mapping of the infinite frequency range for the variable F (or  52) 
into a finite frequency range for the variable ,f (or  wj. Since the highest frequent!, 
in a discrete-time signal is w = n or f = 4. it follows that. with a sampling ra1e 
F,, the corresponding hi2hest values of F  and R  are 

Therefore. sampling introduces an ambiguity. since the hlghest frequent! in a 
continuous-time signal that can be uniquely distinguished when such a signal is 
sampled at a rate F, = 1 / T  is Fm,, = F,/2. or R,,, = n F,. T o  see what happens 
to frequencies above Fs/2,  let us consider the following example. 

Example 1.4.1 

The implications of these frequency relations can be fully appreciated by considcr~ng 
the two analog sinusoidal signals 
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which are sampled at a rate Fs = 40 Hz. The corresponding discrete-time signals or  
sequences are 

However. cos 5,-rn/2 = cos(2n-n + nn/2)  = cos nn/2 .  Hence . a 2 ( r r )  = a, (n).  Thus the 
sinusoidal signals are identical and. consequently, indistinguishable. If we are given 
the sampled values generated by cos(njZ)n, there is some ambiguity as to whether 
these sampled values correspond to x , ( r )  or x z ( t )  Since x 2 ( r )  yields exactly the same 
values as x l ( r )  when the two are sampled at F7 = 40 samples per second. we say that 
the frequency F2 = 50 Hz  is an alias of the frequency F, = 10 Hz at the sampling 
rate of 40 samples per second. 

It is important to note that F2 is not the only alias of F,.  In fact at the sampling 
rate of 40 samples per second. the frequency F3 = 90 Hz is also an alias of F l ,  as is 
the  frequency F4 = 130 Hz. and so on. All of the sinusoids cos2;r(FI - 40k)i .  = 1. 
2. 3. 4 . .  . . sampled at 40 samples per second. yield idenrical values. Consequently. 
the!. arc all aliases of F1 = 10 HZ. 

I n  general. the sampling of a continuous-time sinusoidal signal 

with a sampling rate F, = 1 / T  results in a discrete-time signal 

where .fi, = Fb/F, is the relative frequency of the sinusoid. If we assume that 
- F, /2  5 FO 5 F, /2 .  the frequency fo of x ( n )  is in the range -4 5 .fi, 5 4. which is 
the frequency range for discrete-time signals. In this case, the relationship between 
Fu and .f i i  is one-to-one, and hence it is possible t o  identify ( o r  reconstruct) the 
analog signal x,(t)  from the samples x (n ) .  

O n  the other hand, if the sinusoids 

where 

are sampled at  a rate FT, it is clear that the frequency Fk is outside the fundamental 
frequency range - F v / 2  I: F 5 F,/2. Consequently, the sampled signal is 

xrn) = x , ( n T )  = Acos n  + s )  
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which is identical to the discrete-time signal in (1.4.15) obtained by sampiing. 
(1.4.14). Thus an infinite number of continuous-time sinusoids is represented by 
sampling the sunze discrete-time signal (i.e.. by the same set of samples). Con- 
sequently, if we are given the sequence x ( n ) .  an ambieuity exists as to which 
continuous-time signal x , i t )  these values represent. Equivalently, we can say that 
the frequencies FA = Fo f k F , ,  -XI :, k < cm ((k integer) are indistinguishable from 
the frequency Fo after sampling and hence they are aliases of Fo. The relationship 
between the frequency variables of the continuous-time and discrete-time signals 
is illustrated in Fig. 1.17. 

An example of aliasing is illustrated in Fig. 1.18. where two sinusoids with 
frequencies Fo = Hz and F, = -; Hz yield identical samples when a sampiing 
rate of F, = 1 Hz is used. From (1.4.17) it easily follows that for k = -1, Fo = 
F1 4- F, = (-$ + 1) Hz = Hz. 

Figure 1.17 Relationship between the cont~nuous-time and d~screte-time fre. 
quency variables in the case of periodic sampling. 

Rgure 1.18 Illustration of aliasing. 
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Since F s t 2 .  which corresponds to w = n. is the highest frequency that can be 
represented uniquely with a sampling rate F,. it is a simple matter to determine 
the mapping of any (alias) frequenqr above F s / 2  ( w  = rr) into the equivalent 
frequency below F.q/2. We can use Fr /2  or w = rr as the pivotal point and reflect 
or "fold" the alias frequency to the range 0 ( w _( T. Since the point of reflection 
is F 5 / 2  (w = n), the frequency Fc /2  (w = n) is called the foldlng frequenc~l. 

Example 1.4.2 

Consider the anaIog signal 

& ( I )  = 3 cos lOOls r  

(a) Determine the minimum sampling rate required to avoid aliasing. 

(b) Suppose that the signal is sampled at the rate F, = 200 Hz. What is the 
discrete-time signal obtained after sampling? 

(c) Suppose that the signal is sampled a: the rate F, = 75 Hz. \{'hat is thc discrcte- 
time signal obtained after sampling'! 

(d) What is the frequency O < F i F,;? of a sinusoid that yields samples identical 
to those obtained in part (c)? 

Solution 
(a) The frequency of the analog signal is F = 50 Hz. Hence the minimum sampl~ng 

rate required to avoid aliasing i s  F, = 100 Hz. 
(b) If the signal is sampled at F, = 220 Hz. the discretc-time slgnal is 

(c) If the signal is sampled at F, = 7 5  Hz. the discrete-lime s i ~ n a l  is 

(d) For the sampling rate of F7 :,= 75 Hz, we have 

F =  f F , = 7 5 f  

The frequency of the sinusoid in part (c) is f = ;. Hence 

F = 2 5 H z  

Clearly. the sinusoidal signal 

sampled at F, = 75 samplesis yields identical samples. Hence F = 50 H z  is an 
alias of F = 25 Hz for the sampling rate F, = 75 Hz. 
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1.4.2 The Sampling Theorem 

Given any analog signal. how should we select the sampling period T or. equib- 
alently, the sampling rate Fs? To  answer this question, we must have some in- 
formation about the characteristics of the signal to be sampled. In particular, we 
must have some general information concerning the frequency content of the sig- 
nal. Such information is generally available to us. For example, we know generally 
that the major frequency components of a speech signal fall below 3000 Hz. On 
the other hand, television signals. in general, contain important frequency com- 
ponents up to 5 MHz. The information content of such signals is contained in 
the amplitudes. frequencies. and phases of the various frequency components, but 
detailed knowledge of the characteristics of such signals is not available to us prior 
to obtaining the signals. In fact. the purpose of processing the signals is usually to 
extract this detailed information. However. if we know the maximum frequency . . 

content of the general class of signals (e.g.. the class of speech signals. the class 
of video signals, etc.). we can specify the sampling rate necessary to convert the 
analog signals to digital signals. 

Let us suppose that any analog signal can be represented as a sum of sinusoids 
of different amplitudes. frequencies, and phases. that is. 

h' 

x.,(I) = x A, COS(ZTI F ~ I  + 0,) (1.4.18) 
r=l 

where A! denotes the number of frequency components. All signals, such as speech 
and video, lend themselves to such a representation over any short time segment. 
The amplitudes, frequencies, and phases usually change ~lowl!~ with time from one 
time segment to another. However. suppose that the frequencies do not exceed 
some known frequency. say F,,,. For example, F,,, = 3000 Hz for the class 
of speech signals and Fmax = 5 MHz for television signals. S~nce  the maximum 
frequency may vary slightly from different realizations among signals of any given 
class (e.g., it may vary slightly from speaker to speaker). we may wish to ensure 
that F,,, does not exceed some predetermined value by passing the analog signal 
through a filter that severely attenuates frequency components above F,,,,,. Thus 
we are certain that no signal in the class contalns frequency components (having 
significant amplitude or power) above F,,,. In practice, such filtering is commonly 
used prior to sampling. 

From our knowledge of F,,,, we can select the appropriate sampling rate. 
We know that the highest frequency in an analog signal that can be unambigu- 
ously reconstructed when the signal is sampled at  a rate F, = 1 /T  is Fs/2 .  Any 
frequency above F,/2 or below - F s / 2  results in samples that are identical with a 
corresponding frequency in the range - F s / 2  ( F 5 Fs/2 ,  To  avoid the ambiguities 
resulting from aliasing, we must select the sampling rate to be sufficiently high. 
That is, we must select Fr/2 to be greater than F,,,. Thus to avoid the problem 
of aliasing, F, is selected so that 

Fs > 2Fmax (1.4.19) 
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where Fma, is the largest frequency component in the analog signal. With the 
sampling rate selected in this manner, any frequency component. say IFl{ < Fmax, 
in the analog signal is mapped into a discrete-time sinusoid with a frequency 

or, equivalently, 

Since, 1 f 1 = or Iwl = rr is the highest (unique) frequency in a discrete-time signal, 
the choice of sampling rate according to (1.4.19) avoids the problem of aliasing. 
In other words, the condition Fr :, 2Fmax ensures that all the sinusoidal compo- 
nents in the analog signal are mapped into corresponding discrete-time frequency 
components with frequencies in the fundamental interval. Thus all the frequency 
components of the analog signal are represented in sampled form without ambi- 
guity, and hence the analog signal can be reconstructed without distortion from 
the sample values using an "appropriate" interpolation (digital-to-analog conver- 
sion) method. The "appropriate" or ideal interpolation formula is specified by the 
sampling theorem.  

Sampiing Theorem. If the highest frequency contained in an analog signal 
s , ( t )  is Fm,, = B and the signal is sampled at a rate F, > 2Fm,, = 2 B .  then x u ( [ )  
can be exactly recovered from its sample values using the interpolation function 

sin 27rBt 
g ( t )  = - 

277 l3t 

Thus x a ( r )  may be expressed as 

where x ,  ( n / F $  ) = xa ( n  T )  = x ( n )  are the samples of x,(r ). 

When the sampling of x , ( r )  is performed at the minimum sampling rate 
F, = 28, the reconstruction formula in (1.4.23) becomes 

The sampling rate FN = 2 B  = 2Fma, is called the Nyquis t  rate.  Figure 1.19 illus- 
trates the ideal DIA conversion process using the interpolation function in (1.4.22). 

As can be observed from either (1.4.23) or (1.4.24), the reconstruction of x , ( t )  
from the sequence ~ ( n )  is a complicated process, involving a weighted sum of the 
interpolation function g ( t )  and its time-shifted versions g( t  - n T )  for -00 < n  < oo, 
where the weighting factors are the samples x ( n ) .  Because of the complexity and 
the infinite number of samples required in (1.4.23) or  (1.4.24), these reconstruction 
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.t,,(! 1 sample of s,,(fl 

Figure 1.19 Ideal D:A convcrstorl 

formulas are primarily of theoretical interest. Practical interpolation methods a re  
given in Chapter 9. 

Example 1.4.3 

Consider the  analog signal 

, ~ , f r )  = 3cosiO;r1 ~10s in30Or r1  - cos 100Tr 

What is thc Nyquist rate for this signal'.' 

Soiution Thc frequencies present in the signal abovc arc 

F, = 2 Hz. F2 = 150 HZ. F': = 50 H Z  

Thus F ,,;,, = 150 Hz and accordiny t o  (1.3.19). 

F, > ZF,,,,, = 300 Hz 

Thc Nyquist rate 1s FA = 2Fm:,,. Hence 

FA = 300 Hz 

Discussion It should he observed that the signal component 10sin300nr. sampled at 
the Nyquist rale F,. 5 300, results in the samples 10sinrrti. which are identicall! zero. 
In other words. wc are sampling the analog sinusoid at its zero-crossing poinrs. and 
hence we miss this signal component completel?. This situation would not occur if the 
sinusoid is offset in phase hy some amount 8 .  In such a case we have 10s in (300~1 tF i )  
sampled at the Nyquist rate FA. = 3CK) samples per second, which yields the samples 

Thus if P # 0 or  T. the samples of the sinusoid taken at the Nyquist rate are not all 
zero. However, we still cannot obtain the correct amplitude from the samples when 
the phase f? is unknown. A simple remedy that avoids this potentially troublesome 
situation is to  sample the analog signal at a rate higher than the Nyquist rate. 

Example 1.4.4 

Consider the analog signal 

x , ( t )  = 3cos2000rrt +5sin6000rrt + lOcos12.000nt 
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(a)  What is the Nyquist rate for this signal? 

(b) Assume now that we sample this signal using a sampling rate F, = 5000 
samplesis. What is the discrete-time signal obtained after sampling? 

(c) What is the analog signal ?.,,(t) we can reconstruct from the samples if we use 
ideal interpolation? 

Solution 

(a) The frequencies existing in the analog signal are 

FI = 1 kHz. Fz = 3 kHz. F3 = 6 kHz 

Thus F,,,,, = 6 kHz. and according to the sampling theorem. 

F, > 2 F,,, = 12 kHz 

The Nyquist rate is 

FA = 12 kHz 

(b) Since we have chosen F,  = 5 kHz. the folding frequency is 

and this is the maximum frequency that can be represented uniquel!. h!. the 
samplcd signal. By making use of (1.4.2) we obtain 

x 0 1 )  = x , , ( n T )  = x,, (k) 

Finally. we obrain 

The same result can be obtained using Fig. 1.17. Indeed. since F, = 5 kHz. 
the folding frequency is F,/2 = 2.5 kHz. This is the maximum frequency that 
can be represented uniquely by the sampled signal. From (1.4.17) we have 
Ft, = Fk - k F , .  Thus Fo can be obtained by subtracting from Fk an integer 
multiple of Fy such that - F v / 2  Fo F,/2. The frequency F, is less than Ft12  
and thus it is not affected by aliasing. However, the other two frequencies are 
above the folding frequency and they will be changed by the aliasing effect. 
Indeed. 

From (1.4.5) it follows that f i  = f .  f2 = -5. and f3 = f ,  which are in agreement 
with the result above. 
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( c )  Since only the frequent! components at I kHz and 2 kHz are present in the 
sampled signal. the analog signal we can recover is 

which is obviously different from the original signal x,,(r). This distortion of the 
original analog signal was caused b!, the aliasing effect. due to the low sampling 
rate used. 

Although aliasing is a pitfall to be avoided. there are two useful practical 
applications based on the exploitation of the aliasing effect. These applicalions 
are the stroboscope and the sampling oscilloscope. Both instruments are designed 
to operale as aliasing devices in order t o  represent high frequencies as low fre- 
quencies. 

T o  elaborate. consider a signal with high-frequency components confined to 
a given frequency band B1 < F < 8,. where B2 - B I  r U is defined as the 
bandwidth of the signal. We assume that B << B 1  < B2. This condition means 
that the frequency components in the signal are much larger than the bandwidth 
B of the signal. Such signals are u s u a l l ~ ~  called passband or narrowband signals. 
Now. if this signal is sampled at a rate F, 2 2 8 .  but F, << B 1 .  then all the fre- 
quenc!. components contained in the signal will be aliases of frequencies in the 
range 0 < F < F, /2 .  Consequently. if we observe the frequency content of the 
signal in the fundamental range 0 < F < F.; j2. we know precisel! the frequency 
content of the analog s i ~ n a l  since we know the frequency band B I  < F < R2 under 
consideration. Consequently. i f  the signal is a narrowband (passband) signal. we 
can reconstruct the original signal from the samples, provided that the signal is 
sampled at a rate F, > 2 8 .  where B is the bandwidth. This statement constitutes 
another form of the sampling theorem. which we call the passband form in order 
to distinguish it from the previous form of the sampling theorem. which applies in 
general t o  all types of signals. The latter is sometimes called the baseband form. 
The passband form of the sampiing theorem is described in detail in Section 9.1.2. 

1.4.3 Quantization of Continuous-Amplitude Signals 

As we have seen. a digital signal is a sequence of numbers (samples) in which each 
number is represented by a finite number of digits (finite precision). 

T h e  process of converting a discrete-time continuous-amplitude signal into a 
digital signal by expressing each sample value as a finite (instead of an infinite) 
number of digits, is called quantization. The error introduced in representing the 
continuous-valued signal by a finite set of discrete value levels is called quantization 
error o r  quanrization noise. 

W e  denote the quantizer operation on  the samples x ( n )  as Q [ x ( n ) ]  and let 
x,(n) denote the sequence of quantized samples at  the output of the quantizer. 
Hence 



34 Introduction Chap. 1 

Then the quantization error is a sequence e , ( n )  defined as the difference between 
the quantized value and the actual sample value. Thus 

We illustrate the quantization process with an example. Let us consider the 
discrete-time signal 

obtained by sampling the analog exponential signal x , ( t )  = 0.9*, t  2 0 with a 
sampling frequency FT :, 1 Hz (see Fig. 1.20(a)). Observation of Table 1.2. which 
shows the values of the first 10 samples of x ( n ) ,  reveals that the description of the 
sample value x ( n )  requires n  significant digits. It is obvious that this signal cannot 

4 T +  

T = 1 sec 

(a) 

Figure 1.20 Illustration of quantization. 
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TABLE 1.2 NUMERICAL ILLUSTRATION OF QUANTIZATION WITH ONE 
SIGNIFICANT DIGIT USING TRUNCATION OR ROUNDING 

* 1 ? 1 1  , \ , t i l l  e,;(nl = . x q ( n )  - . ~ t t ~ )  

n D~screte-t~mr signal (Truncatron) (Rounding) (Roundrng) 

be processed hy using a calculator or  a digital computer since only the first few 
samples can be stored and manipulated. For example, most calculators process 
numbers wilh only eight significant digits. 

However. let us assume that we want to use only one significant digit. To  
elimlnatc the excess digits. wc can either simply discard them (tncncation) o r  dis- 
card them h!, rounding the resul~ing number (murlding) .  The resulting quantized 
signals x,(r l )  are shown in Table 1.2. We discuss only quantization by rounding, 
although it is just as easy to treat truncation. The  rounding process is graphically 
illustrated in Fig. 1.20b. The values allowed in the digital signal are called the 
quanrizariotl levels. whereas the distance A between two successive quantization 
levels is called the quantization step size or resolurion. The  rounding quantizer 
assigns each sample of x ( n )  to the nearest quantization level. In contrast. a quan- 
tizer that performs truncation would have assigned each sample of x ( n )  to  the 
quantization level below it. The  quantization error e,(n)  in rounding is limited to 
the range of - A  /2 to A12,  that is, 

In other words, the instantaneous quantization error cannot exceed half of the 
quantization step (see Table 1.2). 

If x,i, and x,,, represent the minimum and maximum value of x ( n )  and L 
is the number of quantization levels, then 

We define the dynamic range of the signal as x,,, - x,,,. In our example we 
have x,,, = 1, xmi, = 0, and L = 11, which leads to A = 0.1. Note that if the 
dynamic range is fixed, increasing the number of quantization levels, L results in a 
decrease of the quantization step size. Thus the quantization error decreases and 
the accuracy of the quantizer increases. In practice we can reduce the quantization 
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error to an insignificant amount by choosing a sufficient number of quantization 
levels. 

Theoretically, quantization of analog signals always results in a loss of in- 
formation. This is a result of the ambiguity introduced by quantization. Indeed, 
quantization is an irreversible or noninvertible process (i-e., a many-to-one map- 
ping) since all samples in a distance A12 about a certain quantization level are 
assigned the same value. This ambiguity makes the exact quantitative analysis of 
quantization extremely difficult. This subject is discussed further in Chapter 9, 
where we use statistical analysis. 

1.4.4 Quantization of Sinusoidal Signals 

Figure 1.21 illustrates the sampling and quantization of an analog sinusoidal signal 
x , ( t )  = A cos n o t  using a rectangular grid. Horizontal lines within the range of the 
quantizer indicate the allowed levels of quantization. Vertical Iines indicate the 
sampling times. Thus, from the original analog signal x u ( [ )  we obtain a discrete- 
time signal x ( n )  = x , ( n T )  by sampling and a discrete-time, discrete-amplitude 
signal x , ( n T )  after quantization. In practice, the staircase signal x , ( t )  can be 
obtained by using a zero-order hold. This analysis is useful because sinusoids are 
used as test signals in A/D converters. 

If the sampling rate F, satisfies the sampling theorem, quantization is the only 
enor in the A/D conversion process. Thus we can evaluate the quantization error 

T i c  
Discretization 

Amplitude 
DiscrclLalion , 

Rgurc U1 Sampling and quantization of a sinusoidal signal. 
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by quantizing the analog signal x-,(t) instead of the discrete-time signal x t n )  = . 

x , ( n T ) .  Inspection of Fig. 1.21 indicates that the signal . ~ , , ( t )  is almost linear 
between quantization levels (see Fig. 1.77). The correspondins quantization error 
e,(t) = .v,,(r) - x-,,it) is shown in Fig. 1.72. I n  Fig. 1.22. r denotes the time that 
x-,(t? stays within the quantization levels. The mean-square error power P, is 

Since e , ( r )  = ( A  j 2 ~  ) t .  -T 5 I ( T .  we have 

If the quantizer has h bits of accurac! and the quantizer covers the entire range 
2A.  the quantization step is A = 7Ai2". Hence 

The avera_re powcr of thc signal s , ( r )  is 

The qualit!; of thc output of' thc AID converter is usuall!i measured by the sigt101- 
fo-qi~utzri;ulior~ tfoisc T L I I I O  (SQ.IYR). which provides the ratio of the siznal power 
to the noise powcr: 

' c/ - 
Expressed in decibels (dB).  the SQNR is 

SQNR(dB)  = IOIog,,, SQNR = 1.76 + 6.026 (1.4.37) 

This implies that the SQNR increases approximately 6 dB for every bit added t o  
the word length. that is, for each doubling of the quantization levels. 

Although formula (1.4.32) was derived for sinusoidal signals, we shall see in 
Chapter 9 that a similar result holds for every signal whose dynamic range spans the 
range of the quantizer. This relationship is extremely important because it dictates 

figure 122 The quantization error e, ( I )  = x, ( 1 )  - x, ( 1 ) .  
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the number of bits required by a specific application to assure a given signal-to- 
noise ratio. For example. most compact disc players use a sampling frequency 
of 44.1 kHz and 16-bit sample resolution, which implies a SQNR of more than 
96 dB. 

1.4.5 Coding of Quantized Samples 

The coding process in an A/D converter assigns a unique binary number to each 
quantization level. If we have L levels we need at least L different binary numbers. 
With a word length of b bits we can create 2b different binary numbers. Hence we 
have 2h 2 L. or equivalently, b 2 log, L. Thus the number of bits required in the 
coder is the smallest integer greater than or equal to logz L.  In our example it can 
easily be seen that we need a coder with b = 4 bits. Commercially available AID 
converters map be obtained with finite precision of b = 16 or less. Generally, the 
higher the sampling speed and the finer the quantization. the more expensive the 
device becomes. 

1.4.6 Digital-to-Analog Conversion 

To convert a digital signal into an analog signal we can use a digital-to-analog 
(D/A) converter. As stated previously, the task of a D/A converter is to interpolate 
between samples. 

The sampling theorem specifies the optimum interpolation for a bandlim- 
ited signal. However, this type of interpolation is too complicated and. hence 
impractical, as indicated previously. From a practical viewpoint. the simplest D/A 
converter is the zero-order hold shown in Fig. 1.15. which simply holds constant 
the value of one sample until the next one is received. Additional improvement 
can be obtained by using linear interpolation as shown in Fig. 1.23 to connect 
successive samples with straight-line segments. The zero-order hold and linear 
interpolator are analyzed in Section 9.3. Better interpolation can be achieved by 
using more sophisticated higher-order interpolation techniques. 

In general, suboptimum interpolation techniques result in passing frequencies 
above the folding frequency. Such frequency components are undesirable and are 
usually removed by passing the output of the interpolator through a proper analog 

I Ori~inal signal 

I L I I I I I  = r Rgure 1.23 Linear point connector 
0 T 2T 3T 4T 57 6T 7T (with 7-second delay). 
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filter, which is called a posrfilrer or smoorhirlg .filrrr. Thus D/A conversion usually 
involves a suboptimum interpolator followed h!' a postfilter. D;'A converters are 
treated in more detail in Section 9.3. 

1.4.7 Analysis of Digital Signals and Systems Versus 
Discrete-Time Signals and Systems 

We have seen that a digital signal is defined as a function of an integer independent 
variable and its values are taken from a finite set of possible values. The usefulness 
of such signals is a consequence of the possibilities offered by digital computers. 
Compurers operate on numbers. which are represented by a string of 0's and 1's. 
The length of this string (rvnrd letlgrh) is fixed and finite and usually is 8. 12. 16. or 
32 bits. The effects of finite word length in computations cause complications in 
rhe analysis of digital signal processing systems. To  avoid these complications. we 
neglect the quantized nature of digital sisnals and systems in much of our analysis 
and consider them as discrete-time signals and systems. 

In Chapters 6. 7. and 9 we investigate the consequences of using a finite word 
length. This is an important topic. since man!, digital signal processing problems are 
solved with sniall computers or microprocessors that employ fixed-point arithmetic. 
Consequentl!:. one rnusr look carefully at thc problem of finite-precision arithmetic 
and account for i r  in thc design of software and hardware that pcrtorms thc desired 
s i ~ n a l  processing tasks. 

1.5 SUMMARY AND REFERENCES 

In this introductory chapter we have attempted to provide the motivation for digital 
signal processing as an alternative to analog signal processing. We presented the 
basic elements of a digital signal processing system and defined the operations 
needed to convert an analog signal into a digital signal ready for processing. Of 
particular importance is the sampling theorem. which was introduced by Nyquist 
(1928) and later popularized in the classic paper by Shannon (1949). The sampling 
theorem as described in Section 1.4.2 is derived in Chapter 4. Sinusoidal signals 
were introduced primarily for the purpose of illustrating the aliasing phenomenon 
and for the subsequent development of the sampling theorem. 

Quantization effects that are inherent in the AID conversion of a signal were 
also introduced in this chapter. Signal quantization is best treated in statistical 
terms. as described in Chapters 6. 7. and 9. 

Finally. the topic of signal reconstruction, or DIA conversion, was described 
briefly, Signal reconstruction based on staircase or linear interpolation methods is 
treated in Section 9.3. 

There are numerous pracrjcal applications of digital signal processing. The 
book edited by Oppenheim (1978) treats appIications to speech processing, image 
processing, radar signal processing, sonar signal processing, and geophysical signal 
processing. 
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P R O B L E M S  

L1 Classify the following signals according to whether they are (1) one- or multi- 
dimensional: (2) single or multichannel, (3) continuous time or discrete time, and 
(4) analog or digital (in amplitude). Give a brief explanation. 
(a) Closing prices of utility stocks on the New York Stock Exchange. 
(b) A color movie. 
(c) Position of the steering wheel of a car in motion relative to car's reference frame. 
(d) Position of the steering wheel of a car in motion relative to ground reference 

frame. 
(e) Weight and height measurements of a child taken every month. 

1.2 Determine which of the following sinusoids are periodic and compute their funda- 
mental period. 

(it) cos 0.01nn (b) cos (n $) (c) cos 3nn (K I )  sin 3n (e) sin (= z) 
13 Determine whether or not each of the following signals is periodic. in case a signal 

is periodic, specify its fundamental period. 
(a) x,(r) = 3 cos(5r + r / 6 )  
(b) x(n) = 3 cos(5n + n/6) 
(c) x(n) = 2exp[j(n/6 - n ) ]  
(d) x(n) = cos(n/8) cos(xn/8) 
(e) x(n) = cos(rnf2) - sin(xn/8) + 3cos(nn/4 + 7713) 

1.4 (a) Show that the fundamental period hr,, of the signals 

is given by N, = N/GCD(k. N). where GCD is the greatest common divisor of k 
and N. 

(b) What is the fundamental period of this set for N = 7? 
(c) What is it for N = 16? 

15 Consider the following analog sinusoidal signal: 

(a) Sketch the signal x,(r) for 0 t _( 30 ms. 
(b) The signal x,(r) is sampled with a sampling rate F, = 300 samplesls. Determine 

the frequency of the discrete-time signal x ( n )  = x,(nT). T = l/F,,  and show that 
it is periodic. 

(c) Compute the sample values in one period of x(n). Sketch x(n) on the same 
diagram with x,(r). What is the period of the discrete-time signal in milliseconds? 

(d) Can you find a sampling rate F, such that the signal x(n) reaches its peak value 
of 3? What is the minimum F, suitable for t h s  task? 

l.6 A continuous-time sinusoid x,(r) with fundamental period 7, = l/Fo is sampled at a 
rate F, = 1/T to produce a discrete-time sinusoid x ( n )  = x,(nT). 
(a) Show that x(n) is periodic if TIT, = k / N  (i.e., TIT, is a rational number). 
(b) If x ( n )  is periodic, what is its fundamental period 7, in seconds? 
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(c) Explain the statement: . r (n)  is periodic if its fundamental period 7,. in seconds. 
is equal to  an inte_eer number of periods of .~ , , r r ) .  

1.7 An analog signal contains frequencies up to 1 0  kHz. 
(a)  What ranye of sampling frequencies allows exact reconstruction of this signal 

from its samples'.' 
(b) Suppose that we sample this signal with a sampling frequency F, = 8 kHz. Ex- 

amine what happens to the frequency FI = 5 kHz. 
(c) Repeat parr ( b )  for a frequency F2 = Y kHz. 

1.8 An analog electrocardiogram (ECG) signal contains uscful frequencies up to  100 Hz. 
(a)  What is the Nvquist rate for this signal? 
(b)  Suppose that we sample this signal at a rate of 250 samplesls. What is the highest 

frequency that can be represented uniquely at this sampling rate? 

1.9 An analog signal ~ , , t r  \ = sin(4S0xr) + 3 sin(720rr) is sampled 600 times per second. 
(a)  Determine the Nyquist sampling rate [or s,,tr). 
(b)  Determine thc [oldlng frequency. 
(c) What are the frequencies. in radians. in the resulting discrete time signal .r(n)? 
(d)  I f s ( n )  is passed through an ideal DIA converter. what is the reconstructed signal 

!.,(f ) ?  

1.10 A digital communlcatlon link carries binary-coded words representing samples of an 
input signal 

.I,, ( r ) = 3 cos 6 0 0 ~  r - 2 cos 1 XOOrr I 

The l ~ n k  is operated at 10.000 bitsis and cach input sample is quantized into 1034 
different voltage Icvcls. 
(a)  What is the sampling frequency and the folding frequency? 
(b) What is the Nvquist rate for the signal .r,(r)'? 
( c )  What are  the frequencies in the resulting discrete-time signal x ! n ) ?  
(d) What is the resolution A'! 

1.11 Consider the simple signal processing system shown in Fig. P1. l l .  The sampling 
periods of the AID and DIA converters are 7 = 5 ms and 7'  = 1 ms, respectively. 
Determine the output y,,(r) of the system. if the input is 

x,, f r  j = 3 cos 100xr 2 sin 25Oxr ( r  in seconds) 

The postfilter removes any frequency component above F $ / 2 .  

Figure P1.ll 

1.U (a) Derive the expression for the discrete-time signal x ( n )  in Example 1.4.2 usin$ the 
periodicity properties of sinusoidal functions. 

(b) What is the analog signal we can obtain from x ( n )  if in the reconstruction process 
we assume that F3 = 10 kHz? 
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l.W The discrete-time signal x ( n )  = 6.35 cos(n/lO)n is quantized with a resolution (a) A = 
0.1 or (b) A = 0.02. How many bits are required in the A D  converter in each case? 

1.14 Determine the bit rate and the resolution in the sampling of a seismlc signaI with 
dynamic range of 1 volt if the sampling rate is F, = 20 samptesis and we use an 8-bit 
AD converter? What is the maximum frequency that can be present in the resulting 
digital seismic signal? 

1.15* Sampling of sinusoidal signals: aliasing Consider the following continuous-time si- 
nusoidal signal 

Since x, ( f )  is described mathematically. its sampled version can be described by values 
every 7 seconds. The sampied signal is described by the formula 

where Fs = l / T  is the sampling frequency. 
(a) Plot the signal x ( n ) ,  0 5 n  5 99 for F, = 5 kHz and F<I = 0.5. 2. 3. and 4.5 kHz. 

Explain the similarities and differences among the various plots. 
(b) Suppose that F,, = 2 kHz and Fs = 50 kHz. 

(I) Plot the signal x ( n ) .  What is the frequency A, of the signal x(n)? 
(2) Plot the signal y ( n )  created by taking the even-numbered samples of x ( n ) .  

Is this a sinusoidal signal? Why? If so, what is its frequency? 
1.16+ Qriantizarion error in M D  conversion of a sinuoidal signal Let x , ( n )  be the signal 

obtained by quantizing the signal x ( n )  = sin 2xAln. The quantization error power P, 
is defined by 

The "quality" of the quantized signal can be measured by the signal-to-quantization 
noise ratio (SQNR) defined by 

SQNR = 10 log,, 5 
PY 

where P, is the power of the unquantized signal x ( n ) .  

(a) For h) = 1/50 and N = 200, write a program to quantize the signal x ( n ) ,  using 
truncation, to 64, 128. and 256 quantization levels. In each case plot the signals 
x ( n ) ,  x , (n ) ,  and e(n)  and compute the corresponding SQNR. 

(b) Repeat part (a) by using rounding instead of truncation. 
(c) Comment on the results obtained in pans (a) and (b). 
(d) Compare the experimentally measured SQNR with the theoretical SQNR pre- 

dicted by formula (1.4.32) and comment on the differences and similarities. 



Discrete-Time Signals and 
Systems 

In Chapter 1 we introduced the reader to a number of important types of signals 
and described the sampling process by which an anal09 signal is converted lo a 
discrete-time signal. In addition. we presented in some detail the characteristics 
of discrete-time sinusoidal signals. The sinusoid is an important elementary signal 
t h a ~  serves as a basic building block in more complex signals. However. there are 
other e lem~ntar !~  siynals t h a ~  are important in our treatment of  signal processing. 
These discrc!ct-time siynals are introduced in this chapter and are used as basis 
functions or building blocks lo describe more complex signals. 

The major emphasis in this chapter is the characterization of discrete-rimc 
systems in general and thc class of linear time-invariant (LTI) systems in parljcular. 
A number of' important time-domain properties of LTI systems are detincd and 
developed. and an important formula. called the con\folution formula, is derived 
which allows us to determine the output of an LTI system to any given arbitrar!' 
input signal. In addition to the convolution formula. difference equations are in- 
troduced as an alternative method for describing the input-output relationship of 
an LTI system, and in addition. recursive and nonrecursive realizations of LTI 
systems are treated. 

Our motivation for the emphasis on the study of LTI systems is twofold.  firs^. 
there is a large collection of mathematical techrliques that can be applied to the 
analysis of LTI systems. Second. many practical systems are either LTI systems 
or can be approximated by LTI systems. Because of its importance in digital 
signal processing applications and its close resemblance to the convolution formula. 
we also introduce the correlation between two signals. The autocorrelation and 
crosscorrelation of signals are defined and their properties are presented. 

2.1 DISCRETE-TIME SIGNALS 

As we discussed in Chapter 1. a discrete-time signal x ( n )  is a function of an inde- 
pendent variable that is an integer. It is graphically represented as in Fig. 2.1. It 
is important to note that a discrete-time signal is not defined at instants between 
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Figure 21  Graphical representation of a discrete-time s~gnal. 

two successive samples. Also, it is incorrect to think that x ( n )  is equal to zero if n 
is not an integer. Simply, the signal x ( n )  is not defined for noninteger values of n .  

In the sequel we will assume that a discrete-time signal is defined for every 
integer value n for -cc < n < oc. By tradition. we refer to x ( n )  as the "nth sample" 
of the signal even if the signal x ( n )  is inherently discrete time (i.e., not obtained 
by sampling an analog signal). If, indeed. x ( n )  was obtained from sampling an 
analog signal x,(t),  then x ( n )  = x , ( n T ) ,  where T  is the sampling period (i.e., the 
time between successive samples). 

Besides the graphical representation of a discrete-time signal or sequence as 
illustrated in Fig. 2.1. there are some alternative representations that are often 
more convenient to use. These are: 

1. Functional representation, such as 

1, for n  = 1, 3 

0, elsewhere 

2. Tabular representation, such as 

3. Sequence representation 

An infinite-duration signal or sequence with the time origin ( n  = 0) indicated 
by the symbol .f. is represented as 

x f n )  = {. . .0 .0 .  1.4,  1.0,O , . . .  } 
f 

A sequence x ( n ) ,  which is zero for n < 0. can be represented as 

The time origin for a sequence x ( n ) ,  which is zero for n  < 0, is understood to be 
the first (leftmost) point in the sequence. 
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A finite-duration sequence can be represented as 

. ~ - ( r i i  = j3. - 1. - 2.5.0.4.  - 1)  
h 

whereas a finite-duration sequence that satisfies the condition x ( n )  = 0 for 1 1  < 0 
can be represented as  

x ( n )  = (0 .1 .4 .1)  (9.1.5'1 
.p 

The signal in (2.1.4) consists of seven samples or points (in time). so it is called or 
identified as  a seven-point sequence. Similarly. the sequence given by (2.1.5) is a 
four-point sequence. 

2.1.1 Some Elementary Discrete-Time Signals 

In our study of discrete-time signals and systems there are a number of basic siignals 
that appear often and play an important role. These signals are defined below. 

1. The  ~tnir  snrnplc sequencr. is denoted as h ( n )  and is defined as 

1 .  for n = 0 
S ( n )  = 

0. for n + 0 

In words. the unit sample sequence is a signal that is zero everywhere. excepr 
at I I  = 0 where its value is unity. This siznal is sometimes referred lo as a 
unir impulsc. In contrast t o  the analog signal 6 ( r ) .  which is also called a 
unit impulse and is defined to be zero everywhere except r = 0. and has unir 
area. the unit sample sequence is much less mathematically complicated. The 
graphical representation of 6 ( 1 1 )  is shown in Fig. 2.2. 

2. The  u n i ~  step signal is denoted as  u ( n )  and is defined as 

u(n) s 
1, f o r n z 0  
0. for n < 0 

Figure 2.3 illustrates the unit step signal. 
3. The  unir ramp signal is denoted as u , in )  and is defined as 

n .  f o r n 3 0  
u,(r1) = 

0. for n < 0 

This signal i s  illustrated in Fig. 2.4. 

Figure 2.2 Graphical representation of 
-2-1 o 1 2 3 4 ... n the unit sample signal. 
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Figure 2.4 Graphical representation of 
n the tlnit ramp signal. 

4. The exponential signal is a sequence of the form 

x ( n )  = a" for all n (2.1.9) 

If the parameter a is real, then x ( n )  is a real signal. Figure 2.5 illustrates x ( n )  
for various values of the parameter a .  

When the parameter a is complex valued. it can be expressed as 

a = reje 

where r and 0 are now the parameters. Hence we can express x ( n )  as 

x ( n )  = rne jHn  

= r" (cos On + j sin On) 

Figure 2.5 Graphical representation of exponential signals. 
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Since X ( I I )  is now complex valued. i t  can be represented graphically h! plotting 
the real part 

. I K ( ~ )  E r f l  C O S ~ I !  (2.1.11) 

as a function of 1 1 .  and separately plotting the maginary part 

x l  ( 1 2  j r" sin Bn (2.1.12) 

as a function of n. Fisnre 2.6 it~ustrates the graphs of x R ( n )  and x-! (n)  for r = 0.9 
and H = 71/10. We observe that the signals x R ( I r )  and ~ , ( I I )  are a damped (decaying 
exponential) cosine function and a damped sine function. The angle variable 8 
is simply the frequency of the sinusoid. previously denoted by the (normalized) 
frequency variable w .  Clearly. if r = I .  the damping disappears and x R ( n ) .  x , ( n ) .  
and x ( n )  have a fixed amplitude. which is unity. 

Alternatively. the signal . r ( t l )  given by (2.1.10) can be represented graphically 
by the amplitude function 

I.r(n)l = A ( n )  = r" (2.1.13) 

and the phase function 

Figure 2.7 illustrates A ( ! ? )  and ~ ( I I )  for I -  = 0.9 and H = n/10. We observe that 
the phase function ia Iinear with t r .  However. the phase is defined only over the 
interval -;r -=z H ( rr or. equivalently. over the interval 0 5 C) -=z 2 x .  Consequently. 
by convention 4 0 1 )  is plotted over the finite interval -TT < f7 5 71 or 0 5 H < 2n. 
In other words, we subtract multiplies of 2n from $ ( I { )  before plotting. In one 
case. @(n) is constrained to the range -x i C) ( TT and in the other case $ ( n )  is 
constrained to the range O 5 P -=z 2x. The subtraction of multiples of 2n from $ ( n )  
is equivalent t o  interpreting the function @ ( n )  as @ ( n ) ,  modulo 271. The graph for 
#(n). modulo 37r. is shown in Fig. 2.7b. 

2.1 -2 Classification of Discrete-Time Signals 

The mathematical methods employed in the analysis of discrete-time signals and 
systems depend on the characteristics of the signals. In this section we classify 
discrete-time signals according to a number of different characteristics. 

Energy s i gna l s  and power signals. The energy E of a signal x ( n )  is 
defined as 

We have used the magnitude-squared values of x ( n ) .  so that our definition applies 
to complex-valued signals as well as reai-valued signals. The energy of a siznal can 
be finite or infinite. If E is finite (i.e., 0 c E < m), then x ( n )  is called an energy 



(a) Graph of r R ( n )  = (0.9)" cos 
10 

Fire 2 6  Graph of the real and imaginary components of a complex-valued exponential 
signal. 
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Fipure 2.7 Ciraph ot arnpl~ludc and phitsc l u n c t ~ o n  of ii complvx-viilurd cxponen- 
liid sicnal ( a )  crnph ol A [ n  r = r " .  3 = 0.'): ( h )  pap11 of f i 0 1 1  = 1.7:lOlti. modulo 
2n plorled In thc rnngc i-n. X I .  

signal. Sometimes we add a subscript .v to E and write E ,  to emphasize that E ,  is 
the energ!, of the  signal x - [ / r ) .  

Many signals that possess infinite energ!.. have a finite average power. The 
ave ray  power of a discrete-time signal x ( n ~  is defined as 

1 "' 
P = lim - 

h - s  2 N  + 1 c lx(n)t2  (2.1.16) 
n=-A'  

If we define the signal energy of x ( n )  over the finite interval - N  5 n 5 N as 

then we can express the signal energy E  as 

E = lim E N  
N - x  

and the average power of the signal x ( n )  as 

P E iim 1 
N - x  2 ~ + 1 ~ ~  (2.1.19) 
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Clearly, if E is finite. P = 0. On the other hand. if E is infinite. the average 
power P may be either finite or infinite. If P is finite (and nonzero), the signal is 
called a power signal. The following example illustrates such a signal. 

Example 2.1.1 

Determrne the power and energy of the unit step sequence. The average power of 
the unit step signal is 

Consequently. the unit step sequence is a power signal. Its energy is infinite. 

Similarly, it can be shown that the complex exponential sequence x ( n )  = 
AeJ'*'" has average power A*. so it is a power signal. On the other hand, the unit 
ramp sequence is neither a power signal nor an energy signal. 

Periodic signals and aperiodic signals. As defined on Section 1.3, a 
signal x ( n )  is periodic with period N ( N  > 0) if and only if 

x ( n  + A') = x ( n )  for all n (2.1.20) 

The smallest value of N for which (2.1.20) holds is called the (fundamental) period. 
If there is no value of N that satisfies (2.1.201, the signal is called nonperiodic or 
aperiodic. 

We have already observed that the sinusoidal signal of the form 

.X (n) = A sin 2x fan (2.1.21) 

is periodic when ,fi, is a rational number, that is, if f o  can be expressed as 

where k and N are integers. 
The energy of a periodic signal x ( n )  over a single period, say. over the interval 

0 5 n 5 N - 1. is finite if x ( n )  takes on finite values over the period. However, the 
energy of the periodic signal for -w 5 n 5 OG is infinite. On the other hand, the 
average power of the periodic signal is finite and it is equal to the average power 
over a single period. Thus if x ( n )  is a periodic signal with fundamental period N 
and takes on finite values, its power is given by 

Consequently, periodic signals are power signals, 
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Symmetric (even) and antisymmetric (odd) signals. A real-valued sig- 
nal . r ( n )  is called symmetric (even) if 

On the other hand. a signal ~ ( I I )  is called antisvmmetric (odd) i f  

We note that if s ( n )  is odd, then x(O) = 0. Examples of signals with even and odd 
symmetry are illustrated in Fig. 2.8. 

We wish to illustrate that any arbitrary signal can be expressed as the sum of 
two signal components. one of which is even and the other odd. The even signal 
component is formed h!' adding x ( n )  to . I ( - 1 1 )  and dividing b 2. that is. 

Figure 2.8 Example of even (a )  and odd (b) signals. 
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Clearly, x , ( n )  satisfies the symmetry condition (2.1.24). Similarly, we form an odd 
signal component x,(n) according to the relation 

Again, it is clear that x,(n) satisfies (2.1.25); hence it is indeed odd. Now, if we 
add the two signal components, defined by (2.1.26) and (2.1.27), we obtain x ( n ) ,  
that is, 

Thus any arbitrary signal can be expressed as in (2.1.28). 

2.1.3 Simple Manipulations of Discrete-Time Signals 

In this section we consider some simple modifications or manipuiations involving 
the independent variable and the signal amplitude (dependent variable). 

Transformation of the independent variable (time). A signal x ( n )  may 
be shifted in time by replacing the independent variable n by n  - k. where k is an 
integer. If k is a positive integer, the time shift results in a delay of the signal by 
k units of time. If k is a negative integer, the time shift results in an advance of 
the signal by Jkl units in time. 

Example 2.W 

A signal x ( n )  is graphically illustrated in Fig. 2.9a. Show a graphical representation 
of the signals x ( n  - 3) and x ( n  + 2). 

Solution The signal x ( n  - 3) is obtained by delaying x ( n )  by three units in time. The 
result is illustrated in Fig. 2.9b. On the other hand, the signal x ( n  + 2) is obtained by 
advancing x ( n )  by two units in time. The result is illustrated in Fig. 2 . 9 ~ .  Note that 
delay corresponds to shifting a signal to the right, whereas advance implies shifting 
the signal to the left on the time axis. 

If the signal x ( n )  is stored on magnetic tape or on a disk or, perhaps, in the 
memory of a computer, it is a relatively simple operation to modify the base by 
introducing a delay or an advance. On the other hand, if the signal is not stored but 
is being generated by some physical phenomenon in real time, it is not possible 
to advance the signal in time, since such an operation involves signal samples 
that have not yet been generated. Whereas it is always possible to insert a delay 
into signal samples that have already been generated, it is physically impossible 
to view the future signal samples. Consequently, in real-time signal processing 
applications, the operation of advancing the time base of the signal is physically 
unrealizable. 

Another useful modification of the time base is to replace the independent 
variable n  by -n. The result of this operation is a folding or a rGection of the 
signal about the time origin n  = 0. 
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I c /  versions. 

Example 2.1.3 

Show the graphica1 representation of the signal x ( - n )  and x ( - n  + 2 ) .  where x ( n )  is 
the signal illustrated in Fig. 2.10a. 

Solution The new signal y ( n )  = x ( - n )  is shown in Fig. 2.10b. Note that ~ ( 0 )  = ~ ( 0 ) .  
v ( 1 )  = x ( - 1 ) .  ~(2) = 11-21. and so on. Also. y(-1)  = ~ ( 1 ) .  y ( - 2 )  = x ( 2 ) .  and so on. 
Therefore. grt) is s~mply x ( n )  reflected or  folded about the lime origin n = 0. The 
signal ~ ( n )  = x ( - n  + 2 )  is simplv x ( - n )  delayed by two units in time. The resulting 
signal IS illustrated in Fig. 1.10~. A simple way to verify that the result in Fig. 7 . 1 0 ~  
is correct is to compute samples, such as ~ ( 0 )  = ~ ( 2 ) .  ~ ( 1 )  = x ( l ) ,  ~ ( 2 )  = ~ ( 0 ) .  
v ( - 1 )  = x(3). and so on. 

It is important to note that the operations of folding and time delaying (or 
advancing) a signal are nor commutative. If we denote the time-delay operation 
by TD and the folding operation by FD. we can write 

Now 
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Figure 2.10 Graphical illustration of 
the folding and shifting operations. 

whereas 
F D [ T D n [ x ( n ) ] }  = F D [ x ( n  - k)] = x ( - n  - k) (2.1.31) 

Note that because the signs of n  and k  in x ( n - k )  and x ( - n + k )  are different, the re- 
sult is a shift of the signals x ( n )  and x ( - n )  to the right by k samples, corresponding 
to a time delay. 

A third modification of the independent variable involves replacing n by pn, 
where p is an integer. We refer to this time-base modification as time scaling or 
down-sampling. 

Example Zld  

Show the graphical representation of the signal y ( n )  = x ( h ) ,  where x ( n )  is the signal 
illustrated in Fig. 2.11a. 

Solution We note that the signal y ( n )  is obtained from x ( n )  by taking every other 
sample from x ( n ) ,  starting with ~ ( 0 ) .  Thus y(0) = x(O), y ( l )  = x(2), y ( 2 )  = x(4), .. . 
and y(-1) = x ( - 2 ) ,  y ( - 2 )  = x( -4 ) .  and so on. In other words, we have skipped 
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Figurc 2.11 Graphical ~I lusLra~~on  of down-sampling operailon 

the odd-numbered samples in A ( 1 1 )  and retained the even-numhercd samples. The 
resulting signal is i l lus t ra~ed  in Fig. 2.1 lb .  

If the sisnal .t ( n )  was originally obtained by sampling an analog signal x,  ( r ) .  
then x ( n )  = A , ( ~ T ) .  where 7 is the sampling interval. Now. ,v(n) = x ( 2 n )  = 
x,(2Tn). Hence the time-scaling operation described in Example 2.1.4 is equivalent 
to changing the sampling rate from I I T  to I P T .  that is. to decreasing the rate by 
a factor of 2. This is a downsampl~ng operation. 

Addition, multiplication, and scaling of sequences. Amplitude modifi- 
cations include addlnon, rnulnpl~carion, and scaling of discrete-tlme signals. 

Amplitude scaling of a signal by a constant A is accomplished by multiplying 
the value of every signal sample by A .  Consequently, we obtain 

~ { n )  = Al(17)  - x < n < x 

The sum of two slgnals xl ( n )  and x2 (n )  is a signal ,~(n), whose value at any 
instant is equal to the sum of the values of these two sisnals at that instant. that is. 

! ' t r l )  = xl ( r r )  + x 2 ( n )  - x < n < x 

The Producl of two signals is similarly defined on a sample-to-sample basis as 
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2.2 DISCRETE-TIME SYSTEMS 

In many applications of digital signal processing we wish to design a device or 
an algorithm that performs some prescribed operation on a discrete-time signal. 
Such a device or algorithm is called a discrete-time system. More specificaIly, a 
discrete-time system is a device or algorithm that operates on a discrete-time signal, 
called the input or excitation. according to some well-defined rule. to produce an- 
other discrete-time signat called the output or response of the system. In general, 
we view a system as an operation or a set of operations performed on the input 
signal x(r1) to produce the output signal y ( n ) .  We say that the input signal x ( n )  is 
transformed by the systern into a signal ~ ( n ) ,  and express the general relationship 
between x ( n )  and ~ ( n )  as 

y ( n )  E T [ x ( n ) ]  (2 .2 .1)  

where the symbol T denotes the transformation (aiso called an operator), or pro- 
cessing performed by the system on x ( n )  to produce v ( n ) .  The mathematical 
relationship in (2.2.1) is depicted graphically in Fig. 2.12. 

There are various ways to describe the characteristics of the system and the 
operation it performs on x ( n )  to produce y ( n ) .  In this chapter we shall be con- 
cerned with the time-domain characterization of systems. We shall begin with 
an input-output description of the system. The input-output description focuses 
on the behavior at the terminals of the system and ignores the detailed internal 
construction or realization of the system. Later. in Section 7.5. we introduce the 
state-space description of a system, In this description we develop mathemati- 
cal equations that not only describe the input-output behavior of the system but 
specify its internal behavior and structure. 

2.2.1 Input-Output Description of Systems 

The input-output description of a discrete-time system consists of a mathematical 
expression or a rule, which explicitly defines the relation between the input and 
output signals (input-output relationship). The exact internal structure of the sys- 
tem is either unknown or ignored. Thus the only way to interact with the system is 
by using its input and output terminals (i.e., the system is assumed to be a "black 
box" to the user). To reflect this philosophy. we use the graphical representa- 

" n J  { Dtscrete-ttme 1 v ( n )  

Input signal 
System 

Output slpnal 
or exci~ation or response 

Figure 212 Block diagram representanon of a discrete-time system. 
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tion depicted in Fig. 2.12, and the general input-output relationship in (2.2.1) or, 
alternatively, the notation 

x(n) 5 v(n) (2.2.2) 

which simply means that y(n) is the response of the system 7 to the excitation 
x(n). The following examples illustrate several different systems. 

Example 2.2.1 

Determine the response of the following sytems to the input signal 

( )  = I -3 5 f l  5 3 
otherwise 

(a) ? i n )  = x ( n )  
(b) v i n )  = x ( n  - 1) 
(c) y ( n ?  = x ( n  + 1) 
(d) ?(n) = $[a(n + 1) + x ( n )  + x ( n  - 1)) 

(e) y ( n )  = m u x ( x ( n  + 1). ~ ( n ) .  x ( n  - 1)) 

(0 ? (n j  = El=-= x ( k )  = x ( n )  + x(n - 1) + x ( n  - 2) + . . . (2.2.3) 

Solution First. we determine expiicitly the sample values of the input signal 

Next. we determine the output of each system using its input-output relationship. 

(a) In this case the output is exactly the same as the input signal. Such a system is 
known as the identic1 system. 

(b) This system simply delays the input by one sample. Thus its output is given by 

(c) In this case the system "advances" the input one sample into the future. For 
example, the value of the output at  time n = 0 is v(Oj  = ~ ( 1 ) .  The response of 
this system to the given input is 

(d) The output of this system at any time is the mean value of the present, the 
immediate past, and the immediate future samples. For example, the output at  
time n  = 0  is 

Repeating this computation for every value of n, we obtain the output signal 

y(n)={ . . . .  0 , 1 , ~ , 2 , 1 , ~ . 1 . 2 , ~ , ~ . 0  ,... ] 
t 
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(e) This system selects as its output at time n the maximum vaiue of the three Input 
samples x ( n  - 11, x c n ) .  and  .I (n 4 I ). Thus the response of this system to  the 
input signal .I- ( n  i is 

(f) This system is basically an accltrnularor that computes the running sum of all 
the past input values up to present time. The response of this system to the 
given input is 

y ( n )  = { . . . .  0.3.5 .6 .6 .7 .9 .  12.0 . . . .  ) 
I 

We observe that for several of the systems considered in Example 2.2.1 the 
output at time n = n o  depends not only on the 17alue of the input at 17 = no [i.e., 
x ( n o ) ] .  but also on the values of the input applied to the system before and after 
n = no Consider. for instance, the accumulator In the example. We see that the 
output at time n = !lo depends not only on the input at  time 17 = HO. but also on 
x ( n )  at  times n  = nil - I .  - 2. and so on. By a simple algebraic manipulation 
the input-output relation of the accumulator can be written as  

whlch justifies the term uccumularor. Indeed. the system computes the current 
value of the output by addins (accumulating) the current value of the input to the 
p rev~ous  output value. 

There are some ~nterestin? conclusions that can be drawn by taking a close 
look into this apparently simple system. Suppose that we are given the input signal 
x ( n )  for  n  2 nc,. and we wish to determrne the output v ( r ~ )  of this system for n 2 no. 
For n  = no, no + 1. . . . . (2.2.4) gives 

and so  on. Note that we have a problem in computing ~ , ( n ( , ) .  since i t  depends on 
y ( n o  - 1 ). However. 

that is. !(no - 1) "summarizes" the effect on the system from all the inputs which 
had been applied to the system before time no. Thus the response of the svstem 
for n  2 no to  the input x ( n )  that is applied at  time r z l i  is the combined result of this 
input and all inputs that had been applied previously t o  the system. Consequently. 
y(n), n > no is not uniquely determined by the input x ( n )  for n > no. 
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The additional information required to determine y ( n )  for n  2 no is the initial 
condition y ( n o  - 1 ) .  This value summarizes the effect of all previous inputs to the 
system. Thus the initial condition y ( n o  - 1) together with the input sequence x ( n )  
for n  2 no uniquely determine the output sequence y ( n )  for n 2 no. 

If the accumulator had no excitation prior to no, the initial condition is y  (no - 
1 )  = 0. In such a case we say that the system is initially relaxed. Since y(na- 1)  = 0, 
the output sequence y(n) depends only on the input sequence x ( n )  for n 2 no. 

It is customary to assume that every system is relaxed at n = -m. In this 
case, if an input x ( n )  is applied at n = -cm, the corresponding output y ( n )  is solely 
and uniquely determined by the given input. 

Example 2.2.2 

The  accumulator described by (2.2.3) is excited by the sequence x ( n )  = n u ( n ) .  De- 
termine its output under the condition that: 

(a) It is initiallv relaxed [i.e,, v(-1) = 01. 
(b) Initially. y(-1) = 1. 

Solution The output of the system is defined as 
n - I  n 

But 

(a) If the system is initially relaxed. y(-l)  = 0 and hence 

(b) On the other hand, if the initial condition is y(-1) = 1, then 

2.2.2 Block Dlagram Representation of Discrete-Time 
Systems 

It is useful at this point to introduce a block diagram representation of discrete- 
time systems. For this purpose we need to define some basic building blocks that 
can be interconnected to form complex systems. 

An adder. Figure 2.13 illustrates a system (adder) that performs the addi- 
tion of two signal sequences to form another (the sum) sequence, which we denote 



Discrete-Time Signals and Systems Chap. 2 

Figure 2 1 3  Graphical representation 
of an adder. 

as y(n). Note that it is not necessary t o  store either one of the sequences in order 
to perform the addition. In other words, the addition operation is rnemoryless. 

A constant multiplier. This operation is depicted by Fig. 2.14, and simply 
represents applying a scale factor on the input x ( n ) .  Note that this operation is 
also memoryless. 

x ( n )  a = a x ( n  Figure 2.14 Graphical representation 
of a constant multiplier. 

A signal multiplier. Figure 2.15 illustrates the multiplication of two sig- 
nal sequences to form another (the product) sequence, denoted in the figure as 
y ( n ) .  As in the preceding two cases, we can view the multiplication operation as 
memoryless. 

1 Figure 2.15 Graph~cal representation 
x z ( n )  of a s~gnal multlpl~er. 

A unit delay element. The unit delay is a special system that simply delays 
the signal passing through it by one sample. Figure 2.16 illustrates such a system. 
If the input signal is x ( n ) ,  the output is x ( n  - 1). In fact, the sample x(?r - 1) is 
stored in memory at time n - 1 and it is recalled from memory at time n to form 

Thus this basic building block requires memory. The use of the symbol ,--I to  
denote the unit of delay will become apparent when we discuss the ;-transform in 
Chapter 3. 

A unit advance element. In contrast to the unit delay. a unit advance 
moves the input x ( n )  ahead by one sample in time to yield x ( n  + 1). Figure 2.17 
illustrates this operation, with the operator : being used to denote the unit advance. 

x ( n )  
I - of the unit delay element. 

- 
- - I  

? . ( n )  = x ( n -  1 )  
. Figure 2.36 Graphical representation 
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We observe that any such advance is physically impossible in real time, since. in 
fact, it involves looking into the future of the signal. On  the other hand. if we store 
the signal in the memory of the computer, we can recall any sample a t  any time. 
In such a nonreal-time application, it is possible t o  advance the signal x ( ? r )  in time. 

x ( n )  

Example 2.2.3 

~ ( n )  = x ( n + I )  
Figure 3-17 Graphical represenration 
of the unit advance element. 

Using basic building blocks introduced above. sketch the block diagram reprcsenta- 
tion of the discrete-time system described by the input-output relation. 

where x ( n )  is the input and y ( n )  is the output of the syslem. 

Solution According to (2.2.5), the output y ( n )  is obtained by rnultiply~ng thc Input 
x ( n )  by 0.5, multiplying the previous input x ( n - 1 )  by 0.5. adding the two products. and 
then adding the previous output p(n - 1) multiplied by $. Figure 2.IXa illustralcs this 
block diagram realization of the system. A simple rcarrangcrncnt or (7.1.5). namcl!. 

leads to the block diagram realization shown in Fig. 2.18h. Note that il wc trcat "thc 
system" from the "viewpoint" of an input-outpul or an cxtcrnal description. wc arc 
no1 concerned about how the system is realized. On thc other hand. if we adopt i1n 

Black h o x  
- - - * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . . . - . . . - - .  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - L . >  

(a) 

Black box - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - " " - - - - - - - - - - - - - - - - - - - - - -  

Figure 218 Block diagram realizations of the system y(n) = 0.25?.(n - 1) + 
0.5x(n)  + 0.5x(n - 1 ) .  
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internal description of the system. we know exactly how the system building blocks 
are configured. In terms of such a realization. we can see that a svstem is relaxed at 
time n = no if the outputs of all the deloys existing in the sysrem are zero at n = no 
(i.e., all memory is Jilled with zeros), 

2.2.3 Classification of Discrete-Time Systems 

In the analysis as well as in the design of systems, it is desirable to classify the 
systems according to the general properties that they satisfy. In fact, the mathe- 
matical techniques that we develop in this and in subsequent chapters for analyzing 
and designing discrete-time systems depend heavily on the general character~stics 
of the systems that are being considered. For this reason it is necessary for us 
to develop a number of properties or categories that can be used to describe the 
general characteristics of systems. 

We stress the point that for a system to possess a given property, the property 
must hold for every possible input signal to the system. If a property holds for 
some input signals but not for others. the system does not possess that property. 
Thus a counterexample is sufficient to prove that a svstem does not possess a 
property. However, to prove that the system has some property. we must prove 
that this property holds for every possible input signal. 

Static versus dynamic systems. A discrete-time system is called staric 
or memoryless if its output at any instant n depends at most on the input sample 
at the same time, but not on past or future samples of the input. In any other case. 
the system is said to be dynamic or to have memory. If the output of a system at 
time n is completely determined by the input samples in the interval from n - N 
to n ( N  2 0), the system is said to have memory of duration N .  If N = 0. the 
system is static. If 0 < N < ca, the system is said to  have finire memory. whereas 
if N = oc, the system is said to  have infinite memory. 

The systems described by the following input-output equations 

y(n)  = a x ( n )  (2.2.7) 

v ( n )  = n x ( n )  + b x 3 ( n )  (2.2.8) 

are both static or memoryless. Note that there is no need to store any of the past 
inputs or outputs in order to compute the present output. On the other hand. the 
systems described by the following input-output reiations 

y ( n )  = x ( n \  + 3 x ( n  - 1) (2.2.9) 
n 

are dynamic systems or systems with memory. The systems described by (2.2.9) 
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and (2.2.10) have finite memory, whereas the system described by (2.2.11) has 
infinite memory. 

We observe that static or mernoryless systems are described in general by 
input-output equations of the form 

and they do not include delay elements (memory). 

Time-invariant versus time-variant systems. We can subdivide the gen- 
eral class of systems into the two broad categories, time-invariant systems and 
time-variant systems. A system is called time-invariant if its input-output charac- 
teristics do not change with time. To elaborate, suppose that we have a system 'T 
in a relaxed state which, when excited by an input signal x ( n ) ,  produces an output 
signal y(n) .  Thus we write 

y ( n )  = T[x(n)] (2.2.13) 

Now suppose that the same input signal is delayed by k units of time to yield 
x ( n  - k), and again applied to the same system. If the characteristics of the system 
do not change with time, the output of the relaxed system will be y(n -&). That is, 
the output will be the same as the response to x ( n ) .  except that it will be delayed 
by the same k units in time that the input was delayed. This leads us to define a 
time-invariant or shift-invariant system as follows. 

Definition. A relaxed system 7 is rime invariant or shift invariant if and 
only if 

implies that 
7 

x ( n  - k) - g(n  - k )  

for every input signal x ( n )  and every time shift k 

To determine if any given system is time invariant, we need to perform the 
test specified by the preceding definition. Basically, we excite the system with an 
arbitrary input sequence x ( n ) ,  which produces an output denoted as y(n) .  Next 
we delay the input sequence by same amount k and recompute the output. In 
general, we can write the output as 

y ( n ,  k) = 7 [ x ( n  - k ) ]  

Now if this output y(n ,  k) = y(n - k ) ,  for all possible values of &, the system is 
time invariant. On the other hand, if the output y(n,  k )  # y(n - k), even for one 
value of k ,  the system is time variant. 
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J 0 1 )  \ ' (  (1 1 = l l . l - (  I1 I 

"Time" rnulliplier 

Figure 2-19 Examples of ;I 

11rnc-~nvarisnt (2) and somc tlrnc-va~iant 
svslernh (h)-ld). 

Example 2.2.4 

Determine if t he  syslems shown in Fig. 3.19 are time invar~anr or time variant. 

Solution 

(a) Thls system 1s described hy the input-output equations 

Now if the tnput is delayed b>- k units in time and applied to the svstem, it is 
clear from the block diagram that the output will be 

On the other hand. from (2.2.14) we note that if  we delay ~ ( n )  by k units in 
time. we obtain 

Since the right-hand sides of (2.2.16) and (2.2.17) are identical, it follows that 
v ( n .  k )  = y(n  - k ) .  Therefore, the system is time invariant. 
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(b) The input-output equation for this system is 

y ( n )  = T [ x ( n ) ]  = n x ( n )  

The response of this system to x ( n  - k) is 

y ( n ,  k )  = nx(n  - k )  

Now if we delay y ( n )  in (2 .2 .18)  by k  units in time, we obtain 

This system is time variant, since y ( n ,  k )  # y ( n  - k). 
(c) This system is described by the input-output relation 

The response of this system to x ( n  - k )  is 

y(n .  k )  = 7 [ x ( n  - k ) ]  = x ( - n  - k )  (2 .2 .22)  

Now, if we delay the output y ( n ) ,  as given by (2.2.21). by k units in time, the 
result will be 

y ( n  - k )  = x ( - n  + k )  (2.2.23) 

Since y(n.  k )  # y ( n  - k ) ,  the system is time variant. 

(d) The input-output equation for this system is 

y ( n )  = x ( n )  cos %n (2.2.24) 

The response of this system to x ( n  - k )  is 

y ( n ,  k) = x ( n  - k)cos*n 

If the expression in (2.2.24) is delayed by k units and the result is compared to 
(2 .2 .25) ,  it is evident that the system is time variant. 

Linear versus nonlinear systems. The general class of systems can also 
be subdivided into linear systems and nonlinear systems. A linear system is one 
that satisfies the superposition principle. Simply stated, the principle of superposi- 
tion requires that the response of the system to a weighted sum of signais be equal 
to the corresponding weighted sum of the responses (outputs) of the system to each 
of the individual input signals. Hence we have the following definition of linearity. 

Definition. A relaxed Tsystem is linear if and only if 

T[oixl(n) + a2x2(n)] = a17[x1 (n)] + a~T[x2(n)] (2.2.26) 

for any arbitrary input sequences xl(n) and xz(n) ,  and any arbitrary constants at 
and 0 2 .  

Figure 2.20 gives a pictorial illustration of the superposition principle. 
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Figure 2.20 Graphical representation of the superposition principle. 7 is linear 
i f  and only if v ( n )  = ~ ' ( r r )  

The superposition principle embodied in the relation (2.2.26) can be sepa- 
rated into two parts. First, suppose that a? = 0. Then (2.2.26) reduces to 

where 

The relation (2.2.27) demonstrates the multiplicative or scaling property of a linear 
system. That is, if the response of the system to the input xi(n) is yl(n), the 
response to alxl ( n )  is simply a ]  yl (n). Thus any scaling of the input results in an 
identical scaIing of the corresponding output. 

Second, suppose that a] = a? = 1 in (2.2.26). Then 

T[xl ( n )  + xz(n)] = 7 [ x l  (n)] + T [ x l  (n>3 
= ~ l ( n >  + y?(n) 

This relation demonstrates the additivity property of a linear system. The additivity 
and multiplicative properties constitute the superpositjon principle as it applies to 
linear systems. 

The linearity condition embodied in (2.2.26) can be extended arbitrarily to 
any weighted linear combination of signals by induction. In general, we have 

where 
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We observe from (2.2.27) that if a ,  = 0, then y(n)  = 0. In other  words. a re- 
laxed, linear system with zero input produces a zero output. If a system produces 
a nonzero output  with a zero input, the system may be either nonrelased o r  non- 
linear. If a relaxed system does not satisfy the superposition principle as _given by 
the definition above, it is called nonlinear. 

Example 2.2.5 

Determine if the systems described by the followins input-output equations arc linear 
or nonlinear. 

(a) v ( n )  = n x ( n )  (b )  .v(n) = x ( n 2 )  ( c )  y ( n )  = u ' ( n )  

(d) y ( n )  = A x ( n )  + 8 (e) ?.(n) = pX'" '  

Solution 

(a) For two input sequences xl ( n )  and . a ? ( n ) ,  the corresponding ou~puts arc 

A linear combination of the two input sequences rcsults in thc output 

On the other hand. a linear combina~ion of the two  outputs in  (1.1.31) rc4ults 
in the output 

Since the right-hand sides of (2.2.32) and (2.2.33) are identical. the system is 
linear. 

(b) As in part (a). we find the response of the system to two separate input signals 
x l ( n )  and x 2 ( n ) .  The result is 

The output of the system to a linear combination of x l ( n )  and x 2 ( n )  is 

Finaily. a linear combination of the two outputs in (2.2.36) yields 

By comparing (2.2.35) with (2.2.36). we conclude that the system is linear. 
(c) The output of the system is the square of the input. (Electronic devices that 

have such an input-output characreristic and are called square-law dev~ces.) 
From our previous discussion it is clear that such a system is memoryless. We 
now illustrate that this system is nonlinear. 
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The responses of the system to two separate input signals are 

The response of the system to a linear combination of these two input signals is 

3 ( n )  = 7 [ r n , x l i n )  + a z x z ( n ) ]  

On the other hand. if the system is linear, i t  would produce a linear comb~nation 
of the two outputs in (2.2.37). namely. 

u l .v l (n )  + a 2 ~ ? 2 ( n )  = olxf(n) + u 2 x i ( n )  ( 2 .2 .39 )  

Since the actual outpuL of the system. as given by (2.2.38). is not equal Lo 
(2.2.39). the slfstern is nonlinear. 

(d)  Assuming that the system is excited by x l ( n )  and x z ( u )  separately. we obtain 
the corresponding ou~pu t s  

A linear combination of x , ( n )  and x : ( n )  produces the output 

jr3 ( n  ) = 7 [ u l  1 ( 1 1 )  + u2.r2 ( 11  ) ]  

On the other hand. if the system were linear, its output to the linear cornbina- 
t ~ o n  of x l ( n )  and x , (n )  would he a linear combination of y l ( n )  and y 2 ( n ) .  that is. 

Clearly. (2.2.41) and (2.2.42) are different and hence the system fails to satisfy 
the Iinearity test. 

The reason that this system fails to satisfy the linearity test is not that the 
system is nonlinear (in fact. the system IS described by a linear equation) hut 
the presence of the constant B .  Consequently. the output depends on both the 
input excitation and on the parameter B # 0. Hence. for B # 0. the system IS 

not relaxed. If we set 3 = 0, the system is now relaxed and the linearity test is 
satisfied. 

(e) Note that the system described by the input4utput  equation 

is relaxed. If x i n )  = 0, we find that ?l(n)  = 1. This is an indication that the 
system is nonlinear. This, in fact. is the conclusion reached when the linearity 
test. is applied. 

Causal versus noncausal systems. We begin with the definition of causal 
discrete-time systems. 
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Definition. A system is said to be causal if the output of the system at any 
time n  [i.e., y ( n ) ]  depends only on present and past inputs [i.e., x ( n ) ,  x ( n  - I),  
x  (n  - 2),  . . .I, but does not depend on future inputs [i.e., x ( n  + 1 ), x (n + 2), . . .]. In 
mathematical terms, the output of a causal system satisfies an equation of the form 

where F[ . ]  is some arbitrary function. 

If a system does not satisfy this definition, it is called noncausal. Such a 
system has an output that depends not only on present and past inputs but also 
on future inputs. 

It is apparent that in real-time signal processing applications we cannot ob- 
serve future values of the signal, and hence a noncausal system is physically unreal- 
izable (i-e., it cannot be impiemented). On the other hand, if the signal is recorded 
so that the processing is done off-line (nonreal time), it is possible to implement 
a noncausal system, since all values of the signal are available at the time of pro- 
cessing. This is often the case in the processing of geophysical signals and images. 

Example 22.6 

Determine if the systems described by the following input-output equations are causal 
or noncausal. 

(a) ?(n)  = x ( n )  - x ( n  - 1) (b) y ( n )  = x ( k )  ( c )  y(n) = a x ( n )  

(d) y ( n )  = x ( n )  + 3 x ( n  + 4 )  (e) y(n) = x ( n 2 )  (r) y(n) = x ( 2 n )  

(g) v ( n )  = x ( - n )  

Solution The systems described in parts (a), (b), and (c) are clearly causal, since the 
output depends only on the present and past inputs. On the other hand, the systems 
in parts (d). (e), and (f) are clearly noncausai, since the output depends on future 
values of the input. The system in (g) is also noncausal, as we note by selecting, for 
example, n  = - 1, which yields y(-1) = xI1 ) .  Thus the output at n = - 1  depends on 
the input at n = 1 ,  which is two units of time into the future. 

Stable versus unstable systems. Stability is an important property that 
must be considered in any practical application of a system. Unstable systems 
usually exhibit erratic and extreme behavior and cause overflow in any practical 
implementation. Here, we define mathematically what we mean by a stable system, 
and later, in Section 2.3.6. we explore the implications of this definition for linear, 
time-invariant systems. 

Definition. An arbitrary relaxed system is said to be bounded input-bounded 
output (BIBO) stable if and only if every bounded input produces a bounded 
output. 

The conditions that the input sequence x ( n )  and the output sequence y ( n )  are 
bounded is translated mathematically to mean that there exist some finite numbers, 
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sa!. M, and M , .  such that 

for all n. If. for  some bounded input sequence . v ( r r ) .  the outpur rs unbounded 
(infinite), the system is classified as unstable. 

Example 2.7.7 

Consider the nonlinear system described b! the input-output equatlon 

As an  input scquencc wc select the hounded siznaI 

where C is a constant We alx) assume that I . ( -  1 I = U. Then tht' ou tpu t  sequcncc IS 

Clearl!,, the output is unbounded when I < ICI < x. Thercfarc. the system is B I B 0  
unstable, since a bounded input sequence has resulted in a n  unbounded  output. 

2.2.4 Interconnection of Discrete-Time Systems 

Discrete-time systems can be interconnected to form l a r ~ c r  s!.stems. Therc are 
two basic ways in which systems can be interconnected: in cascade (series) or  in 
parallel. These interconnections are illustrated in Fig. 2.21. Note that the rwo 
interconnected systems are different. 

In the cascade interconnection the output of the first system is 

Figure 2.21 Cascade (a)  and parallel 
(b) interconnections of systems. 
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and the output of the second system is 

We observe that systems 2i and 3 can be combined or consolidated into a single 
overall system 

Consequently, we can express the output of the combined system as 

In general, the order in which the operations and 7 2  are performed is 
important. That is, 

for arbitrary systems. However. if the systems 7; and are linear and time 
invariant, then (a) 7; is time invariant and (b) = =%, that is, the order in 
which the systems process the signal is not important. '7iT and ir;> yield identical 
output sequences, 

The proof of (a) follows. The proof of (b) is given in Section 2.3.4. To prove 
time invariance, suppose that and 3 are time invariant; then 

x ( n - k )  -% y ( n  - k )  

and 

~ ( n  - k )  3 y ( n  - k) 

Thus 

and therefore, is time invariant. 
In the parallel interconnection, the output of the system ;r; is y l ( n )  and the 

output of the system 5 12s y 2 ( n ) .  Hence the output of the parallel interconnection is 

= . ir;[x(n)]  + r z [ x ( n ) l  

= (;r; + ' 7 i ) [ x ( n ) l  

= q [ x ( n > ]  

where 7-, = + +. 
In general, we can use parallel and cascade interconnection of systems to 

construct larger, more complex systems. Conversely, we can take a larger system 
and break it down into smaller subsystems for purposes of analysis and imple- 
mentation. We shall use these notions later, in the design and implementation of 
digital filters. 
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2.3 ANALYSIS OF DISCRETE-TIME LINEAR TIME-INVARIANT 
SYSTEMS 

In Section 2.2 we classified systems in accordance with a number of characteristic 
properties or categories. namely: linearity. causality. stability. and time invariance. 
Having done so. we now turn our attention to the analysis of the important class 
of linear, time-invariant (LTI) systems. In particular. we shall demonstrate that 
such systems are characterized in the time domain simply by their response to a 
unit sample sequence. We shall also demonstrate that any arbitrary input signal 
can be decomposed and represented as a weighted sum of unit sample sequences. 
As a consequence of the linearity and rime-invariance properties of the system, 
the response of the system to any arbitrary input signal can be expressed in terms 
of the unit sample response of the system. The general form of the expression 
that re la~es  the unit sample response of the system and the arbitrary input signal 
to the output signal. called the convolution sum or the convolution formula. is also 
derived. Thus we are able to determine the output of any linear. time-invariant 
system to any arbitrary input signal. 

2.3.1 Techniques for the Analysis of Linear Systems 

There are rwo basic methods for analyzing the behavior or  response of a linear 
system to a given input s i~na l .  One method is based on the direct solution of the 
input-output equation for the system. which, in general. has the form 

! ( , I )  = F[,v(rl  - 1). ,*(n - 2). . . . . y(n - N ) . x ( n ) . x ( n  - I ) .  . . . . x ( n  - M I ]  

where F [ . ]  denotes some function of the quantities in brackets. Specifically, for  
an LTI system. we shall see later that the general form of the input-output rela- 
tionship is 

where (am] and ( b k )  are constant parameters that specify the system and are in- 
dependent of x ( n )  and y ( n ) .  The input-output relationship in (2.3.1) is called 
a difference equation and represents one way to characterize the behavior of a 
discrete-time LTI system. The solution of (2.3.1) is the subject of Section 2.4. 

The second method for analyzing the behavior of a linear system to a given 
input signal is first to decompose or resolve the input signal into a sum of ele- 
mentary signals. The elementary signals are selected so that the response of the 
system to each signal component is easily determined. Then, using the linearity 
property of the system, the responses of the system to the elementary signals are 
added to obtain the total response of the system to the given input signal. This 
second method is the one described in this section. 
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To elaborate, suppose that the input signal x ( n )  is resolved into a weighted 
sum of elementary signal components { x L ( n ) )  so that 

where the {ckJ are the set of ampiitudes (weighting coefficients) in the decom- 
position of the signal x ( n ) .  Now suppose that the response of the system to the 
elementary signal component x k ( n )  is yk(n). Thus. 

assuming that the system is relaxed and that the response to c ~ x ~  (n) is chi ].kin). as 
a consequence of the scaling property of the linear system. 

Finally, the total response to the input x ( n )  is 

In (2.3.4) we used the additivity property of the linear system. 
Although to a large extent, the choice of the elementar! signals appcars tc~ 

be arbitrary, our selection is heavily dependent on the class of input signals [hat 
we wish to consider. If we place no restriction on the characteristics of the input 
signals. its resolution into a weighted sum of unit sample (impulse) sequences 
proves to be mathematically convenient and completely general. On the other  
hand, if we restrict our attention to a subclass of input signals, there may be 
another set of elementary signals that is more convenient mathematically in the 
determination of the output. For example. if the input signal x ( n )  is penodic 
with period N, we have already observed in Section 1.3.5 that a mathematicall!. 
convenient set of elementary signals is the set of exponentials 

xk (n) = elwkn k = 0 . 1  . . . . .  N -  1 12.3.5) 

where the frequencies {ok] are harmonically related, that is, 

The frequency 2 x / N  is called the fundamental frequency, and all higher-frequency 
components are multiples of the fundamental frequency component. This subclass 
of input signals is considered in more detail later. 

For the resolution of the input signal into a weighted sum of unit sample 
sequences, we must first determine the response of the system to a unit sam- 
ple sequence and then use the scaling and multiplicative properties of the linear 
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system to determine the formula for the output given any arbitrary input. This 
development is described in detail as foIlows. 

2.3.2 Resolution of a Discrete-Time Signal into Impulses 

Suppose we have an arbitrary signal x ( n )  that we wish t o  resolve into a sum of unit 
sample sequences. T o  utilize the notation estabiished in the preceding section. we 
select the elementary signals x ~ ( n )  to  be 

where k represents the delay of the unit sample sequence. T o  handle an arbitrary 
signal x ( n )  that may have nonzero values over an infinite duration. the set of unit 
impulses must also be infinite. t o  encompass the infinite number of deiays. 

Now suppose that we multiply the two sequences x ( n )  and 6 ( n  - k ) .  Since 
6(r1 - k )  is zero everywhere except at  n = k .  where its value is unlty. the result 
of this multiplication is another sequence that is zero everywhere except at 11 = k .  
where its value is x ( k ) ,  as illustrated in Fig. 2.22. Thus 

Figure 222 Multiplication of a signal x ( n )  with a shifted unit sample sequence. 
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is a sequence that is zero everywhere except at n = k, where its value is x ( k ) .  If we 
were to repeat the multiplication of x ( n )  with 6 ( n  - m),  where m is another delay 
(m + k), the result will be a sequence that is zero everywhere except at n  = m, 
where its value is x ( m ) .  Hence 

In other words, each multiplication of the signal x ( n )  by a unit impulse at some 
delay k. [i.e., S(n - k)]. in essence picks out the single value x ( k )  of the signal x ( n )  
at the delay where the unit impulse is nonzero. Consequently, if we repeat this 
multiplication over all possible delays, -oo < k < GO, and sum all the product 
sequences, the result will be a sequence equal to the sequence x ( n ) ,  that is, 

We emphasize that the right-hand side of (2.3.10) is the summation of an 
infinite number of unit sample sequences where the unit sample sequence 6(n - k) 
has an amplitude value of x ( k ) .  Thus the right-hand side of (2.3.10) gives the 
resolution of or decomposition of any arbitrary signal x ( n )  into a weighted (scaled) 
sum of shifted unit sample sequences. 

Example 2.3.1 

Consider the special case of a finite-durarion sequence given as 

Resolve the sequence x ( n )  into a sum of weighted impulse sequences. 

Solution Since the sequence x ( n )  is nonzero for the time instants n = -1, 0. 2, we 
need three impulses at delays k = - 1 .  0, 2. Following (2.3.10) we find that 

2.3.3 Response of LTI Systems to Arbitrary Inputs: The 
Convolution Sum 

Having resolved an arbitrary input signal x ( n )  into a weighted sum of impulses, 
we are now ready to determine the response of any relaxed linear system to any 
input signal. First, we denote the response ~ ( n ,  k )  of the system to the input unit 
sample sequence at n  = k  by the special symbol h ( n .  k), -oo < k  < co. That is, 

y(n, k )  E h(n .  k) = 7 [ 6 ( n  - k)] (2.3.11) 

In (2.3.11) we note that n  is the time index and k  is a parameter showing the 
location of the input impulse. If the impulse at the input is scaled by an amount 
ck E ~ ( k ) ,  the response of the system is the correspondingly scaled output, that is, 



76 Discrete-Time Signals and Systems Chap. 2 

Finally, if the input is the arbitrary signal .r(rr) that is expressed as a sum of 
weighted impulses. that is. 

then the response of the system to xin) is the corresponding sum of weighted 
outputs. thar is. 

Clearly. (2.3.14) foIIows from the superposition proper t  of linear systcms. and is 
known as the s~lperposirion srimmatiorr. 

We note that (2.3.14) is an expression for the response of a linear system to 
any arbitrary input sequence . v ( / ~ ) .  This expression is a function of both .vor)  and 
the responses / I ( I I ,  k )  of the system 10 the unit ~mpulses S o l  - k )  for - x  < L < sc. 
In deriving (2.3.14) we used the linearity property of the sJfstern bur nor i ~ s  time- 
invariance property. Thus the expression in (2.1.14) applies to an! relaxed linear 
(time-variant) system. 

If. in addition. the system is time invariant. the formula in (3.3.13) simplifies 
considerably, in fact. if the response of the LTI system to the unit sample sequence 
6 ( n )  is denoted as h ( t ~  ). that IS. 

then by the time-invariance property. the response of the system to the delayed 
unit sample sequence S ( t 7  - k )  is 

Consequently. the formula ~n (2.3.14) reduces to 

Now we observe thar the relaxed LTI system is completely characterized by a 
single function h ( n ) ,  namely. its response to the unit sample sequence 6 ( n ) .  In 
contrast. the general characterization of the output of a rime-variant, tinear sys- 
tem requires an infinite number of unit sample response functions, h ( n .  k). one for 
each possible delay. 

The formula in (2.3.17) that gives the response y ( n )  of the LTI system as a 
function of the input signal x ( n )  and the unit sample (impulse) response h ( n )  is 
called a con ~olution sum. We say that the input x ( n )  is convolved with the impulse 
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response h ( n )  to yield the output ~ ( n ) .  We shall now explain the procedure for 
computing the response ~ ( n  ). both mathematically and graphically, given the input 
x ( n )  and the impulse response h ( n )  of the system. 

Suppose that we wish to compute the output of the system at some time 
instant, say n  = no. According to (2.3.17). the response at n  = no is given as 

Our first observation is that the index in the summation is k ,  and hence both the 
input signal x ( k )  and the impulse response h(no - k )  are functions of k .  Second, 
we observe that the sequences x ( k )  and h(no - k )  are multiplied together to form 
a product sequence. The output y (na )  is simply the sum over all values of the 
product sequence. The sequence h(no  - k )  is obtained from h ( k )  by, first, folding 
h ( k )  about k  = 0 (the time origin), which results in the sequence h (- k ) .  The 
folded sequence is then shifted by no to yieid h(no - k ) .  To summarize, the process 
of computing the convolution between x ( k )  and h ( k )  involves the following four 
steps. 

1. Folding. Fold h ( k )  about k = 0 to obtain h (- k ) .  
2. Shifting. Shift h (- k )  by no to the right (left) if no is positive (negative), to 

obtain h(no - k ) .  
3, Mulriplica~ion. Multiply x ( k )  by h(no - k )  to obtain the product sequence 

v,,,(k) = x ( k ) h ( n o  - k ) .  
4. Summation. Sum all the values of the product sequence v , , (k)  to obtain the 

value of the output at time n = no. 

We note that this procedure results in the response of the system at a sin- 
gle time instant, say n = no. In general, we are interested in evaluating the 
response of the system over all time instants -cc < n  < oo. Consequently, 
steps 2 through 4 in the summary must be repeated, for all possible time shifts 
-03 < n c m. 

In order to gain a better understanding of the procedure for evaluating the 
convolution sum, we shall demonstrate the process graphically. The graphs will 
aid us in explaining the four steps involved in the computation of the convolution 
sum. 

Example 232 

The impulse response of a linear time-invariant system is 

Determine the response of the system to the input signal 
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Solution We shall compute the convolution according to the formula (7.3.17). but 
we shall use graphs of the sequences to aid us in the computatron. In Fig. 1.23a we 
illustrate the input signal sequence x ( k )  and the lrnpulse response htki of the system, 
using k as the time index rn order to be consistent with (1.3.17). 

The first step in the computation of the convolut~on sum 1s ro fold h ( k ) .  The 
folded sequence h ( - k )  is illustrated in Fig. 2.23b. Now we can compute the output 
at n = 0. according to (3.3.17). which is 

Since the shift n = 0. we use h ( - k )  directly without shifting it. The product sequence 

Fold 
Product 

h( -k) 

Figure 123 Graphical computation of convolution. 
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is also shown in Fig. 2.23b. Finally, the sum of all the terms in the product sequence 
yields 

We continue the computation by evaluating the response of the system at 1 1  = 1  
According to (2.3.17). 

The sequence h ( l  - k )  is simply the folded sequence /I ( -k1 shifted to the right b! one 
unit in time. This sequence is illustrated in Fig. 2 .23~ .  The product sequence 

is also illustrated in Fig. 2 .23~.  Finally. the sum of all the values In the producr 
sequence yields 

In a similar manner. we obtain g(2) by shifting I? ( -k )  ~ w o  units to thc right. 
forming the product sequence 11:(k) = x(k ) / r (2  - k )  and thcn sumnling all thu Icrms 
in the product sequence obtaining ~ ' ( 2 )  = 8. By shifting h ( - k )  farther to thc right. 
multiplying the corresponding sequence. and  summing over all the values of thc rc- 
sulting product sequences. we obtain ~ ( 3 )  = 3. . ~ ( 4 )  = -2. \ ( 5 )  = - 1 .  For 11 > 5, wc 
find that ~ ( n )  = 0 because the product sequences contain all zeros. Thus wc have 
obtained the response ? ( ? I )  for n > 0. 

Next we wish to evaluate ~ ( n )  for n  < 0. We begin with n = -1. Thcn 

Now the sequence h(-1 - k )  is simply the folded sequence h ( - k )  shifted one time 
unit to the left. The resulting sequence is illustrated in Fig. 2.23d. Thc corresponding 
product sequence is also shown in Fig. 2.23d. F~nally. summing over the values of the 
product sequence. we obtain 

From observation of the graphs of Fig. 2.23, it is clear that any further shifls of 
h(- I - k )  to the left always results in an all-zero product sequence. and hence 

~ ( n )  = 0 for n 5 -2 

Now we have the entire response of the system for -x < n i x .  which we 
summarize below as 
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In Example 2.3.2 we illustrated the computation of the convolution sum. 
using graphs of the sequences to aid us in visualizing the steps involved in the 
cornputatlon procedure. 

Before working out another example. we wish to show that the convolu- 
rion operation is commutative in the sense that it is irrelevant which of the two 
sequences is folded and shifted. Indeed. if we begin with (2.3.17) and make a 
change in the variable of the summation. from k to m,  by defining a new index 
rn = n - k .  then k = n - rn and (2.3.17) becomes 

Since m is a dummy index. we may simply replace rn by k so that 

The expression in (2.3.28) involves leaving the impulse response h ( k )  unaltered. 
while the input sequence is folded and shifted. Although the output ~ ( n )  in (2.3.28) 
is identical to (2.3.17). the product sequences in the two forms of the convolurion 
formula are not identical. In fact. if we define the two product sequences as 

at,, ( k )  = x ( 1 1  - k ) h  ( k )  

it can be easily shown that 

and therefore. 

since both sequences contain the same sample values in a different arrangement. 

Example 2.3.3 

Determ~ne the output ~ ( n )  of a relaxed linear time-invariant system with impulse 
response 

when the input is a unit step sequence. that is, 

Solution In this case both h ( n )  and x(n) are infinite-duration sequences. We use 
the form of the convolution formula given by (2.328) in which x ( k )  is folded. The 
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. . 

- 2 - 1 0  1 2  3 4 5 k 

Figure 2.24 Graphical computation of  convolu t ion  In Example 2.3.3 

sequences h i k ) .  x ( k ) .  and x ( - k )  are shown in Fig. 2.24. The product sequences v i l i k ) .  
v l  ( k ) ,  and v 2 ( k )  corresponding to x t - k ) h ( k ) .  x ( l  - k ) h ( k ) .  and x i 2  - k ) h i k i  are illus- 
trated In Fig. 2.24c, d. and e. respectively. Thus we obtain the outputs 
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Clearly, for n r 0, the output is 

On the other hand. for n  < 0, the product sequences consist of all zeros. Hence 

A graph of the output v ( n )  is illustrated in Fig. 2.24f for the case 0 < a < 1. 
Note the exponential rise in the output as a function of n. Since la1 < 1, the final 
value of the output as n approaches infinity is 

1 
~ ( m )  = lim y ( n )  = - 

0-OC 
(2.3.30) 

I - a  

To summarize, the convolution formula provides us with a means for com- 
puting the response of a relaxed, linear time-invariant system to any arbitrary input 
signal x ( n ) .  It takes one of two equivalent forms, either (2 .3 .17)  or (2 .3 .28) ,  where 
x ( n )  is the input signal to the system. h(n) is the impulse response of the system, 
and y ( n )  is the outpur of the system in response to the input signal x ( n ) .  The 
evaluation of the convolution formula involves four operations. namely: folding 
either the impulse response as specified by (2.3.17) or the inpur sequence as spec- 
ified by (2.3.28) to yield either h (- k )  or x f - k ) .  respectively, shifting the folded 
sequence by n units in time to yield either h(n  - k) or x ( n  - k). multiplying the 
two sequences to yield the product sequence, either x(k )h (n  - k )  or x ( n  - k ) h ( k ) ,  
and finally summing all the values in the product sequence to yield the output ~ ( n )  
of the system at time n .  The folding operation is done only once. However, the 
other three operations are repeated for all possible shifts -m < n  < oo in order 
to obtain y ( n )  for -cr, < n  < CQ. 

2.3.4 Properties of Convolution and the Interconnection 
of LTI Systems 

In this section we investigate some important properties of convotution and in- 
terpret these properties in terms of interconnecting linear time-invariant systems. 
We should stress that these properties hold for every input signal. 

It is convenient to simplify the notation by using an asterisk to denote the 
wnvolution operation. Thus 

y ( n )  = x ( n )  * h ( n )  E x(k )h (n  - k )  (2 .3 .31)  
k = - a  

In this notation the sequence following the asterisk [i.e., the impulse response h ( n ) ]  
is folded and shifted. The input to the system is x ( n ) .  On the other hand, we also 
showed that 



Sec. 2.3 Analysis of Discrete-Time Linear Time-Invariant Systems 83 

Figure 2.25 interpretation of the commutative property of convolution. 

In this form of the convolution formula. it is the input signal that is folded. Alter- 
natively. we may interpret this form of the convolution formula as resulting from 
an interchange of the roles of x ( n )  and h ( n ) .  In other words, we may regard x ( n )  
as the impulse response of the system and h ( n )  as the excitation or input signal. 
Figure 2.25 illustrates this interpretation. 

We can view convolution more abstractly as a mathematical operarion be- 
tween two signal sequences. say x ( n )  and h ( / I ) ,  that satzsfies a number of properties. 
The property embodied in (2.3.31) and (2.3.32) is called the commutative law. 

Commutative law 

Viewed mathema~ically. the convolution operarion also satisfies the associa- 
tive Iaw. which can be stated as follows. 

Associative law 

From a physical point of view. wc can interpret x ( n )  as the input signal to 
a linear time-invariant system with impulse response h l  ( t i ) .  The output of this 
system, denoted as j l l ( n ) .  becomes the input to a second linear time-invariant 
system with impulse response h ( n ) .  Then the output is 

= [ x ( n )  * h l ( n ) ]  * h z ( n )  

which is precisely the left-hand side of (2.3.34). Thus the left-hand side of (2.3.34) 
corresponds to having two linear time-invariant systems in cascade. Now the right- 
hand side of (2.3.34) indicates that the input x ( n )  is applied to an equivalent system 
having an impulse response. say h(r1). which is equal to the convolution of the two 
impulse responses. That is. 

and 

Furthermore, since the convo1ution operation satisfies the commutative property, 
one can interchange the order of the two systems with responses h ~ ( n )  and h 2 ( n )  
without altering the overall input-output relationship. Figure 2.26 graphically il- 
lustrates the associative property. 
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Fvre 2.26 Implications of the associative (a) and the associative and commuta- 
tive (h) properties of convolution. 

Example 23.4 

Determine the impulse response for the cascade of  two linear time-invariant systems 
having impulse responses 

and 

Solution T o  determine the overall impulse response of the two systems in cascade, 
we simply convolve h l  ( n )  with h2(n) .  Hence 

where h2(n) is folded and shifted. We define the product sequence 

which is nonzero for k > 0 and n - k 2 0 o r  n 3 k 2 0. On the other hand, for n 0, 
we have v n ( k )  = 0 for all k, and hence 

For n 2 k 3 0. the sum of the values of the product sequence u,(k) over all k yields 

n  
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The generalization of the associative law to more than two systems in cascade 
follows easily from the discussion given above. Thus if we have L linear trme- 
invariant systems in cascade with impulse responses h l  ( 1 1 ) .  h 2 ( n ) .  . . . . h L ( n ) .  there 
is an equivalent linear time-invariant system having an impulse response that is 
equal to the ( L  - 1 )-fold convolurion of the impulse responses. That is. 

The  commutative Iaw implies that the order in which the convolutions are per- 
formed is immaterial. Conversely, any linear time-invariant system can be decom- 
posed into a cascade interconnection of subsystems. A method for accomplishing 
the decomposition will be described later. 

A third property that is satisfied b!. the convolution operation is the distribu- 
tive law. which may be stated as follows. 

Distributive law 

lnterpreted physically. this law implies that i f  we have two linear time- 
invariant systems with impulse responses h l ( n )  and h 2 ( n )  excited by the same 
input signal . r (n ) .  thc sum of thc two responses is identical to  the response of an 
overall systcm with impulse response 

Thus the overall system is viewcd as a parallel combinatlon of the two llnear 
time-invariant systems as illustrated in Fig. 2.27. 

The generalization of  (2.3.36) to more than two Ilnear time-invariant sys- 
tems in parailel follows easily by mathemat~cal  induction. Thus the interconnec- 
tion of L linear time-invariant systems in parallel with impulse responses iz l (n) .  
h z ( n ) .  . . . . I r ~ ( n )  and excited by the same input X ( I I )  is equivalent to one overall 
system with impulse response 

Conversel!~. any linear time-invariant system can be decomposed into a parallel 
interconnection of subsystems. 

Figure 2.27 lnrerpretation of the distributive property of convolution: two LTI 
systems connected in parallel can be replaced by a single system with h ( n )  = 
hi In) -k h z ( n ) .  
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2.3.5 Causal Linear Time-Invariant Systems 

In Section 2.2.3 we defined a causal system as one whose output at time n depends 
only on present and past inputs but does not depend on future inputs. In other 
words, the output of tho system at some time instant n ,  say n = no, depends only 
on values of x ( n )  for n  ( no. 

In the case of a linear time-invariant system, causality can be translated 
to a condition on the impulse response. To determine this relationship, let us 
consider a linear time-invariant system having an output at time n  = no given by 
the convolution formula 

Suppose that we subdivide the sum into two sets of terms. one set involving present 
and past values of the input [i.e.. x ( n )  for n 5 no] and one set involving future 
values of the input [i.e., x ( n ) .  n  > no]. Thus we obtain 

We observe that the terms in the first sum involve x ( n u ) ,  x ( n o  - 1 ) .  . . . , which are 
the present and past values of the input signal. On the other hand. the terms in 
the second sum involve the input signal components x ( n o  + I ) ,  x ( n o  +2). . . . . Now, 
if the output at time n  = no is to depend only on the present and past inputs, then, 
clearly. the impulse response of the system must satisfy the condition 

Since h ( n )  is the response of the relaxed linear time-invariant system to a unit 
impulse applied at n = 0, it follows that h ( n )  = 0 for n < 0 is both a necessary 
and a sufficient condition for causality. Hence an LTI system is causal if and only 
if its impulse response is zero for negative values of  n .  

Since for a causal system, h ( n )  = 0 for n  < 0. the limits on the summation of 
the convolution formula may be modified to reflect this restriction. Thus we have 
the two equivalent forms 

As indicated previously, causality is required in any real-time signal process- 
ing application, since at any given time n we have no access to future values of the 
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input signal. Only the present and past vatues of the input signal are available in 
computing the present output. 

It is sometimes convenient to call a sequence that is zero for n < 0, a ca~lsai 
sequence, and one that is nonzero for n < 0 and n > 0. a noncausal sequence. This 
terminology means that such a sequence could be the unit sample response of a 
causal or a noncausal system. respectively. 

If the input to a causal linear time-invariant system is a causal sequence [i.e.. 
if x ( n )  = 0 for n < 01. the limits on the convolution formula are further restricted. 
In this case the two equivalent forms of the convolution formula become 

We observe that in this case, the limits on the summations for the two alternative 
forms are identical. and the upper limit is gowing with time. Clearl~ ' .  the response 
of a causal system to a causaI input sequence is causal. since j * ( r r )  = 0 for n < 0. 

Dctcrminc thc unit stcp rcsponsc of' thc I~near timc-invarianl system with impulsc 
respclnsc 

Solution Since thc input signal is a unit step. which is a causal signal. and the system 
is also causal. we can usc one of the special forms ol the convolution formula. either 
(2.3.41) or  (2.3.42). Since x ( n )  = 1 for n > 0. (2.3.41) is simpler to use Because of the 
simplicity of this problem. one can skip the steps involved with sketching the folded 
and shifted sequences. Instead. we use direct substitution of the signals sequences in 
(2.3.41 ) and ohtain 

x(n) = 2.. 
i=o 

and ? j ( n )  = O for n < 0. We note that this result is identical t o  that obtained in Ex- 
ample 2.3.3. In this simple case. however. we computed the convolution a1gebraicaIIy 
without resorting to the derailed procedure outlined previously. 

2.3.6 Stability of Linear Time-invariant Systems 

As indicated previously, stability is an important property that must be considered 
in any practical implementation of a system. We defined an arbitrary relaxed 
system as BIB0  stable if and only if its output sequence y (n )  is bounded for every 
bounded input x ( n ) .  
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If x ( n )  is bounded, there exists a constant M, such that 

Similarly, if the output is bounded, there exists a constant M? such that 

Iy(n)l < M,. 
for all n.  

Now, given such a bounded input sequence x(n) to a linear time-invariant 
system, let us investigate the implications of the definition of stability on the char- 
acteristics of the system. Toward this end, we work again with the convolution 
formula 

M 

If we take the absolute value of both sides of this equation. we obtain 

I = - o c  

Now, the absolute value of the sum of terms is always less than or equal to the 
sum of the absolute values of the terms. Hence 

If the input is bounded, there exists a finite number M, such that Ix(n)l  5 MI. By 
substituting this upper bound for x ( n )  in the equation above. we obtain 

cc 

IY(")I 5 M, C lh(k)l 
I.=-= 

From this expression we observe that the output is bounded if the impulse response 
of the system satisfies the condition 

That is, a linear rime-invariant system is stable if its impulse response is absolutely 
surnrnable+ This condition is not only sufficient but it is also necessary to ensure the 
stability of the system. Indeed, we shaIl show that if Sh = w, there is a bounded 
input for which the output is not bounded. We choose the bounded input 

h(n )  = 0 
where h* (n )  is the complex conjugate of bin). It is sufficient to show that there is 
one value of n for which y(n) is unbounded. For n = 0 we have 

Thus, if S h  = m, a bounded input produces an unbounded output since y(0) = w. 
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The condition in (2.3.43) implies that the impulse response h ( n )  goes to zero 
as n approaches infinity. As a consequence, the output of the system goes to zero 
as n approaches infinity if the input is set to zero beyond n > no. To prove this. 
suppose that x ( n ) I  < M, for n < no and x ( n )  = 0 for n 5 no. Then, at n = no -t N .  
the system output is 

But the first sum is zero since x ( n )  = 0 for rr 2 no. For the remaining part, we 
take the absolute value of the output. which is 

Now, as A' approaches infinity. 
X 

lirn C l i?(n) i  = (I 
$41 

A = \ 

and hence 

lim I > , ( r l { ,  + hr)[ = O 
,v-3- 

This result implies that any excitation at the input to the system. which is of a finite 
duration. produces an output that is "transient" in nature: that is. its amplitude 
decays with time and dies out eventually. when the system is stable. 

Example 2.3.6 

Determine the range of values of the parameter a for which the linear time-invariant 
system wlth impulse response 

is stable 

Solution First. we note that the system is causal. Consequently. the lower index on 
the summation In (2.3.43) begins with k = 0. Hence 

Clearly, this geometric series converges to 

provided that l a  < 1. Otherwise. it diverges. Therefore, the system is stable if 1 0 1  < 1. 
Otherwise. it is unstable. In effect, h ( n )  must decay exponentially toward zero as n 
approaches infinity for the system to be stable. 
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Example 23.7 

Determine the range of values of a and b for which the linear time-invariant system 
with impulse response 

is stable. 

Solution This system i s  noncasual. The condition on stability given by (2.3.43) yields 

From Example 2.3.6 we have already determined that the first sum converges for 
la1 < 1. The second sum can be manipulated as fotlows: 

where /3 = l/lbl must be less than unity for the geometric series to converge. Conse- 
quently. the system is stable if both lo1 < 1 and Ibl > 1 are satisfied. 

2.3.7 Systems with Finite-Duration and Infinite-Duration 
Impulse Response 

Up to this point we have characterized a linear time-invariant system in terms of 
its impulse response h ( n ) .  It is also convenient, however, to subdivide the class 
of linear time-invariant systems into two types, those that have a finite-duration 
impulse response (FIR) and those that have an infinite-duration impulse response 
(IIR). Thus an FIR system has an impulse response that is zero outside of some 
finite time interval. Without loss of generality, we focus our attention on causal 
FIR systems, so that 

h ( n )  = O  n  c 0 and n  2 M 

The convolution formula for such a system reduces to 

y ( n )  = -x h (k )x  ( n  - k) 
k=O 

A useful interpretation of this expression is obtained by observing that the output 
at any time n  is simply a weighted linear combination of the input signal samples 
x ( n ) ,  x ( n  - 1 ) ,  . . . , x (n  - M + I ) .  In other words, the system simply weights, by 
the values of the impulse response h ( k ) ,  k = 0, I , .  . . , M - 1, the most recent 
M signal samples and sums the resulting M products. In effect, the system acts 
as a window that views only the most recent M input signal samples in forming 
the output. It neglects or simply "forgets" all prior input samples [i.e., x ( n  - M), 
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xirr - M - 11. . . .]. Thus we say that an FIR svstem has a finite memory of length-M 
samples. 

In contrast. an IIR linear time-invariant system has an infinite-duration im- 
pulse response. Its output. based on the convolution formula. is 

where causality has been assumed, although this assumption is not necessar!.. Few. 
the system output is a weighted [by the impulse response h ( k ) j  linear combination 
of the input signal samples x ( n ) ,  x ( n  - I ) .  x ( n  - 2) ,  , . . . Since this weighted sum 
involves the present and all the past input samples, we say that the system has an 
infinite memory. 

We investigate the characteristics of FIR and IZR systems in more detail in 
subsequent chapters. 

2.4 DISCRETE-TIME SYSTEMS DESCRIBED BY DIFFERENCE 
EQUATIONS 

Llp lo this polnt we have lreated linear and time-invarianl systems that are char- 
acterized by their unit sample response h(r1) .  In turn. / ] ( I T )  allows us to determine 
the output j v ( t r  1 of the system for any given input sequence x ( t r )  by means of [he 
convolution summation. 

In general. then. we have shown that any linear time-invariant system is char- 
acterized by the input-output relationship in (2.4.1). Moreover, the convolution 
summation formula in (2.4.1) suggests a means for the realization of the system. 
In the case of FIR systems, such a realization involves additions. multiplications. 
and a finite number of memory locations. Consequently. an FIR system is readily 
implemented directly, as implied by the convolution summation. 

If the system is IIR. however, its practical implementation as implied h j  
convolution is clearly impossible. since it requires an infinite number of mem- 
ory locations. multiplications. and additions. A question that naturally arises. 
then, is whether or not it is possible to realize IIR systems other than in the 
form suggested by the convolution summation. Fortunatel}. the answer is yes. 
there is a practical and computationally efficient means for implementing a 
family of IIR systems. as will be demonstrated in this section. Within the gen- 
eral class of IIR systems. this family of discrete-time systems is more con- 
veniently described by difference equations. This family or subclass of IIR 
systems is very useful in a variety of practical applications, including the imple- 
mentation of digital filters, and the modeling of physical phenomena and physical 
systems. 
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2.4.1 Recursive and Nonrecursive Discrete-Time Systems 

As indicated above, the convolution summation formula expresses the output of 
the linear time-invariant system explicitly and only in terms of the input signal. 
However, this need not be the case, as is shown here. There are many systems 
where it is either necessary or desirable to express the output of the system not 
only in terms of the present and past values of the input, but also in terms of the 
already available past output values. The following problem illustrates this point. 

Suppose that we wish to compute the cumulative average of a signal x ( n )  in 
the interval 0 k 5 n ,  defined as 

I n 

As implied by (2.4.2). the computation of ~ ( 1 1 )  requires the storage of all the input 
samples x ( k )  for 0 5 k < n .  Since n is increasing, our memory requirements grow 
linearly with time. 

Our intuition suggests, however, that y ( n )  can be computed more efficiently 
by utilizing the previous output value y ( n  - I ) .  Indeed, by a simple algebraic 
rearrangement of (2.4.2). we obtain 

and hence 

Now, the cumulative average ~ ( n )  can be computed recursively by multiplying the 
previous output value y ( n  - 1) by n / ( n  + I) ,  multiplying the present input x ( n )  by 
l / ( n  + I), and adding the two products. Thus the computation of y ( n )  by means 
of (2.4.3) requires two multiplications, one addition. and one memory location, as 
illustrated in Fig. 2.28. This is an example of a recursive system. In general, a 
system whose output v ( n )  at time n  depends on any number of past output values 
y(n - 11, y(n - 2), . . . is called a recursive system. 

figure 2.28 Realization of a recursive cumulative averaging system. 
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T o  determine the computation of the recursive system in (2.4.3) in more 
detail. suppose that we begin the process with 12 = O and proceed forward in time. 
Thus. according to  (3.3.3). we obtain 

and s o  on. If one  grows fatigued with this computation and wishes ro pass the 
problem to someone else at some time. say rr = no. the only information that one 
needs t o  provide his o r  her  successor is the past value s (no  - I )  and the new input 
samples x ( n ) ,  x ( n  + I). , , , . Thus the successor begins with 

and proceeds forward in lime until some time. say n = n i .  when he or she be- 
comes fatisued and passes the computational burden to  someone else with the 
information on  the value \ . ( r l l  - 1 ) .  and so on.  

T h e  point wc wish t o  make in this discussion is that if one  wishes to  compute 
the responsc (in thls casc. the cumulative average) of the system (7.4.3) to an  input 
signal . r ( r l )  applied at r l  = ? I , , .  we need the value , I . ( I I { ~  - 1 i and the input samples 
x ( n )  for r7 2 rlo. T h e  term ! ' ( ? I ( )  - 1 ) is called the initial condition for the system in 
(2.4.3) and contains all the information needed to determine the response of the 
system lor 11 2 no t o  thc input signal x ( n ) .  independent of what has occurred in 
the past. 

T h e  following example illustrates the use of a (nonlinear) recursive system 
to  compute the square root of  a number. 

Example 2.4.1 Square-Root Algorithm 

Many computers and calculators compute the square root of a pc~sitive number A .  
using the iterative algorithm 

where s-, is an initial guess (estimate) of f i. As the iteration converges we have 
.T, = . Y , - ~  Then i t  easily follows that s. = A. 

Consider now the recursive system 

which is realized as in Fig. 2.29. If we excite this system with a step of amplitude 
A [i.e., x ( n )  = Au(n)] and use as an initial condition y(-1) an estimate of A. the 
response y ( n )  of the system will tend toward f i  as n increases. Note that in contrast 
to the system (2.4.3). we do not need to specify exactly the initial condition. A rough 
estimate is sufficient for the proper performance of the system. For example. if we 
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Figure 2.29 Realization of the square-root system. 

let A = 2  and y(-1) = 1, we obtain y(0) = +, y(1) = 1.4166667. ~ ( 2 )  = 1.4142157. 
Similarly, for vi-1) = 1.5, we have v(0) = 1.416667, ~ ( 1 )  = 1.4142157. Compare 
these values with the &, which is approximately 1.4142136. 

We have now introduced two simple recursive systems, where the output y ( n )  
depends on the previous output value y(n - 1) and the current input x ( n ) .  Both 
systems are causal. In general, we can formulate more complex causal recursive 
systems, in which the output y ( n )  is a function of several past output values and 
present and past inputs. The system should have a finite number of delays or, 
equivalently, should require a finite number of storage locations to be practically 
implemented. Thus the output of a causal and practically realizable recursive 
system can be expressed in general as 

y(n> = ~ [ y ( n  - 11, y ( n  - 2 ) .  . . . , y(n - N ) ,  x ( n ) ,  x ( n  - I ) ,  . . . , x(n  - M ) ]  (2 .4 .5 )  

where F [ . ]  denotes some function of its arguments. This is a recursive equation 
specifying a procedure for computing the system output in terms of previous values 
of the output and present and past inputs. 

In contrast, if y ( n )  depends only on the present and past inputs, then 

y (n>  = F [ x ( n ) ,  x ( n  - 1 ) ,  . . . , x(n  - M ) ]  (2.4.6) 

Such a system is called nonrecursive. We hasten to add that the causal FIR systems 
described in Section 2.3.7 in terms of the convolution sum formula have the form 
of (2.4.6). Indeed, the convolution summation for a causal FIR system is 

= F [ x ( n ) ,  x ( n  - 1 ) ,  . . . , x(n  - M ) )  

where the function F [ . ]  is simply a linear weighted sum of present and past inputs 
and the impulse response values h ( n ) ,  0 5 n 5 M, constitute the weighting coef- 
ficients. Consequently, the causal linear time-invariant FIR systems described by 
the convolution formula in Section 2.3.7, are nonrecursive. The basic differences 
between nonrecursive and recursive systems are iI1ustrated in Fig. 2.30. A simpIe 
inspection of this figure reveals that the fundamental difference between these two 
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I 
I Figure 2.30 Basic form for a causal 

and real~zable (a)  nonrecursive and 
(hi (h )  recursive svstcm. 

systems is the feedback loop in the recursive system. which feeds back the output 
o f  the system into the input. This feedback loop contains a delay element. The 
presence of this delay is crucial for the realizahilit!. of the system. since the absence 
of this delay would force the system to compute y ( t ~ i  in terms of ~ ( n ) .  which is 
not possible for discrete-time systems, 

The  presence of the feedback loop or. equi~alent l)~.  the recursive nature of 
(2.4.5) creates another important difference between recursive and nonrecursive 
systems. For example, suppose that we wish to compute the output !(no) of a 
system when it is excited by an input applied at time n = 0. If the system is 
recursive. to compute ! (no) .  we first need to compute all the previous values ~ ( 0 ) .  
~ ( 1 ) .  . . . , ?.(no - 1). In contrast. if the system is nonrecursive. we can compute the 
output y (no)  immediately without having ?(no - 1). y(no - 2 ) ,  . . . . In conclusion, 
the output of a recursive svstem should be computed in order [i-e.. ~ ( 0 ) .  ~ ( 1 ) .  
y (2 ) .  . . . I .  whereas for a nonrecursive system. the output can be computed in any 
order [i.e.. ~ ( 2 0 0 ) .  ~ ( 1 5 ) .  ~(3 ) .  ~~(300) .  etc.]. This feature is desirable in some 
practical applications. 

2.4.2 Linear Time-Invariant Systems Characterized by 
Constant-Coefficient Difference Equations 

In Section 2.3 we treated linear time-invariant systems and characterized them 
in terms of their impulse responses. In this subsection we focus our attention 
on  a family of linear time-invariant systems described by an  input-output rela- 
tion called a difference equation with constant coeffficients. Systems described 
by constant-coefficient linear difference equations are a subclass of the recursive 
and nonrecursive systems introduced in the preceding subsection. T o  bring out  
the important ideas, we begin by treating a simple recursive system described by 
a first-order difference equation. 
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Figure 231 Block diagram realization 
of a simple recursive system. 

Suppose that we have a recursive system with an input-output equation 

where a  is a constant. Figure 2.31 shows a block diagram realization of the system. 
In comparing this system with the cumulative averaging system described by the 
input-output equation (2.4.3), we observe that the system in (2.4.7) has a constant 
coefficient (independent of time), whereas the system described in (2.4.3) has time- 
variant coefficients. As we will show, (2.4.7) is an input-output equation for a 
linear time-invariant system, whereas (2.4.3) describes a linear time-variant system. 

Now, suppose that we apply an input signal x ( n )  to the system for n  2 0. 
We make no assumptions about the input signal for n < 0, but we do assume 
the existence of the initial condition y ( - 1 ) .  Since (2.4.7) describes the system 
output implicitly, we must solve this equation to obtain an explicit expression for 
the system output. Suppose that we compute successive values of y(n) for n 2 0, 
beginning with ~ ( 0 ) .  Thus 

~ ( 0 )  = ay( -1)  + x(O) 

y(1) = a ~ l ( 0 )  + x ( 1 )  = a Z y ( - 1 )  + ax(0)  + x(1) 

or, more compactly, 

The response y(n)  of the system as given by the right-hand side of (2.4.8) 
consisl of two parts. The first part, which contains the term y( -1) ,  is a result of 
the initial condition y ( -1 )  of the system. The second part is the response of the 
system to the input signal x(n).  

If the system is initially relaxed at time n = 0 ,  then its memory (i.e., the 
output of the delay) should be zero. Hence y( -1)  = 0. Thus a recursive system is 
relaxed if it starts with zero initial conditions. Because the memory of the system 
describes, in some sense, its "state," we say that the system is at zero state and 
its corresponding output is called the zero-state response or forced response, and 
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is denoted by ~ , , ( n ) .  Obviously. the zero-state response o r  forced response o f  the 
system (2.4.7) is given by 

It is interesting to note that (2.4.9) is a convolution summation involv ln~  the 
input signal con\lolved with the impulse response 

We also observe that the svstem described by the first-order difference equation 
in (2.4.7) is causal. As a result. the lower limit on the convolution summation in 
(2.4.9) is k = 0. Furthermore. the condition !(-1) = O impIies that the input signal 
can be assumed causal and hence the upper limit on the convolution summation 
in (3.4.9) is 1 1 .  since .i-(n - k )  = 0 for k > 1 1 .  In effect. we have obtained the result 
that the relaxed recursive system described by the first-order difference equation 
in (2.4.7). is a linear time-invariant IIR system with impulse response given h!, 
(2.4.1 0). 

Now.  suppose that the system described by (3.4.7) is initiaIly nonrelaxed [i.e.. 
! ' (-I)  # 01 and thc input xcrr) = 0 for all n. Then the output of the svstem with 
zero input is called the zilro-inpttl re.spot7.rio or tlutlrrrrl rrsponsr and is  denored h!. 
!.,i(tl). From (2.4.7). with a ( r r )  = 0 for -x < n < x. we o b ~ a i n  

We ohserve that a recursi\re svstem with nonzero initial condition 1s nonrelaxed 
in the sense that it can produce an output without being excited. Note thar the 
zero-input response is due t o  the memory of the system. 

T o  summarize. the zero-input response is obtained by setting the input s~gnal  
to zero. making it independent of the input. It depends only on  the nature of the 
system and the initial condition. Thus the zero-input response is a characteristic of 
the system itself, and it is also known as the nartlrai or free response of the system. 
O n  the other hand, the zero-state response depends on the nature of the system 
and the input signal. Since this output is a response forced upon it by the input 
signal. it is usually called the forced response of the system. In general. the total 
response of the system can be expressed as v ( n )  = v z i ( n )  + yzs(n). 

The  system described by the first-order difference equation in (2.4.7) is the 
simplest possible recursive svstem in the general class of recursive systems de- 
scribed by linear constant-coefficient difference equations. T h e  general form for 
such an equation is 

or, equivalently, 
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The integer N is called the order of the difference equation or the order of the 
system. The negative sign on the right-hand side of (L4.12) is introduced as a 
matter of convenience to allow us to express the difference equation in (2.4.13) 
without any negative signs. 

Equation (2.4.12) expresses the output of the system at time n directly as 
a weighted sum of past outputs .v(n - 1) .  y ( n  - 2).  . . . . y01 - hr) as well as past 
and present input signals samples. We observe that in order to determine ~ ( n )  
for n ? 0, we need the input x ( n )  for all n  3 0, and the initial conditions s ( - l ) ,  
y ( -2 ) ,  . . . . ? ( - N ) .  In other words, the initial conditions summarize all that we 
need to know about the past history of the response of the system to compute 
the present and future outputs. The general solution of the N-order constant- 
coefficient difference equation is considered in the following subsection. 

At this point we restate the properties of linearity, time invariance, and 
stability in the context of recursive systems described by linear constant-coefficient 
difference equations. As we have observed. a recursive system may be relaxed or 
nonrelaxed. depending on the initial conditions. Hence the definitions of these 
properties must take into account the presence of the initial conditions. 

We begin with the definition of linearity. A system is linear if it satisfies the 
following three requirements: 

1. The total response is equal to the sum of the zero-input and zero-state re- 
sponses line.. y ( n )  = y,,(n) + ~ , , ( n ) ] .  

2. The principle of superposition applies to the zero-state response (zero-srate 
linear). 

3. The principle of superposition applies to the zero-input response (zero-input 
linear). 

A system that does not satisfy all three separate requirements is by definition 
nonlinear. Obviousiy. for a relaxed system, y Z i ( n )  = 0, and thus requirement 2, 
which is the definition of linearity given in Section 2.2.4, is sufficient. 

We illustrate the application of these requirements by a simpte example. 

Example 2.4.2 

Determine if the recursive system defined by the difference equation 

is linear. 

Solution By combining (2.4.9) and (2.4.11), we obtain (2.4.8). which can be expressed 
as 

Thus the first requirement for linearity is satisfied. 
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T o  check for the  second requirement,  let us assume tha t  .s (n)  = c l . r l ( n i  + 
c.:.~-?(n). T h e n  (2.4.9) gives 

Hence  \ . , . , ( II  1 satisfies the pr~nc ip le  o f  superposition. and thus the system is zero-state 
linear. 

NOH' let us assume that  y(-1) = C ~ J ~ ( - I )  i ~ . ~ \ . ~ ( - l i .  F rom (2.4.1 1 )  we  obtain 

Hencc  the  system is zero-input  linear. 
Sincc thc  system satisfies all lhrec conditions lo r  linearit!,. il i s  linear 

Although it is somewhat tedious, the procedure used in Example 2.4.7 to 
demons~rate linearit!; for the system described by the first-order difference equa- 
tion. carries over directly to the general recursive systems described by the constant- 
coefficient difference equation given in (3.4.13). Hence. a recursive system 
described by the linear difference equation in (2.4.13) also satisfies all three con- 
ditions in the definition of linearity, and therefore it is linear. 

The next question that arises is whether or  not the causal linear svstem 
described by the linear constant-coefficient difference equation in (2.4.13) is time 
invariant. This is fairly easy. when cleating with systems described by explicit 
input-output mathematical relationships. Clearly. the system described by (2.4.13) 
is time invariant because the coefficients ah and bh are constants. On the other 
hand. if one or more of these coefficients depends on time. the system is time 
variant. since its properties change as a function of time. Thus we conclude that 
the recursive system described bj. a linear constant-coefficient difference equation is 
linear and time invariant. 

The final issue is the stability of the recursive system described by the linear. 
constant-coefficient difference equation in (2.4.13). In Section 2.3.6 we introduced 
the concept of bounded input-bounded output (BIBO) stability for relaxed sys- 
tems. For nonrelaxed systems that may be nonlinear, BIBO stability should be 
viewed with some care. However. in the case of a linear time-invariant recursive 
system described by the linear constant-coefficient difference equation in (2.4.13), 
it suffices to state that such a system is BIBO stable if and only if for every 
bounded input and every bounded initial condition, the total system response is 
bounded. 
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Example 2.43 

Determine if the linear time-invariant recursive system described by the difference 
equation given in (2.4.7) is stable. 

Solution Let us assume that the input signal x(n)  is bounded in amplitude, that is, 
lx(n)l 5 M, < oc for all n 2 0. From (2.4.8) we have 

5 l a 1 ~ ~ ~ 1 ~ ~ - 1 ~ 1  + M~ ial', n 2 0 
k d  

1 - lain+' 
- M, .  n 2 0 5 laln+'lv(-111 -k M x -  - 

1 - lol 

If n is finite, the bound M, is finite and the output is bounded independently of the 
value of a. However. as n -P m, the bound M? remains finite only if la\ < 1 because 
Inl" -+ 0 as n -P m. Then M, = M,/( l  - lal). 

Thus the system is stable only if la1 < 1. 

For the simple first-order system in Example 2.4.3, we were able to express 
the condition for BIB0  stability in terms of the system parameter a ,  namely la1 < 1. 
We should stress, however, that this task becomes more difficult for higher-order 
systems. Fortunately, as we shall see in subsequent chapters, other simple and 
more efficient techniques exist for investigating the stability of recursive systems. 

2.4.3 Solution of Linear Constant-Coefficient Difference 
Equations 

Given a Iinear constant-coefficient difference equation as the input-output rela- 
tionship describing a Iinear time-invariant system, our objective in this subsection 
is to determine an explicit expression for the output y ( n ) .  The method that is 
developed is termed the direct method. An alternative method based on the z- 
transform is described in Chapter 3. For reasons that will become apparent later, 
the z-transform approach is called the indirect method. 

Basically, the goal is to determine the output y(n), n 2 0, of the system given 
a specific input x ( n ) ,  n 2 0, and a set of initial conditions. The direct solution 
method assumes that the total solution is the sum of two parts: 

The part yh(n) is known as the homogeneous or complementary solution, whereas 
y,(n) is called the particular solution. 

The homogeneous solution of a difference equation. We begin the 
problem of solving the linear constant-coefficient difference equation given by 
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(2.4.13) by assuming that the input x ( n )  = 0. Thus we will first obtain the solution 
to the homogeneous difference equation 

The procedure for solving a linear constant-coefficient difference equation 
directly is very similar to the procedure for solving a linear constant-coefficient 
differential equation. Basically, we assume that the solution is in the form of an 
exponential, that is. 

y,, (n) = iLn (2.4.15) 

where the subscript h on 3-07) is used to denote the solution to the homogeneous 
difference equation. I f  we substitute this assumed solution in (2.4.14). we obtain 
the polynomial equation 

The polynomial in parentheses is called the characierlstic polvnomial of the 
system. In  general, it has N roots, which we denote as hi .  iz. . . . . A N .  The roots 
can be real or complex valued. In  practice the coefficients a , ,  02. . . . , ahl are usually 
real. Complex-valued roots occur as complex-conjugate pairs. Some of the N roots 
may be identical. in which case we have multiple-order roots. 

For the moment, let us assume that the roots are distinct, that is, there are 
no multiple-order roots. Then the most general solution to the homogeneous 
difference equation in (2.4.14) is 

where C1. Cz. . . . . CN are weighting coefficients. 
These coefficients are determined from the initial conditions specified for the 

system. Since the input x ( n )  = 0. (2.4.17) can be used to obtain the zero-input 
response of the system. The fojlowing examples illustrate the procedure. 

Example 2.4.4 

Determine the homoyeneous solution of the system described by the first-order dif- 
ference equation 

Solution The assumed solution obtained by setting x ( n )  = 0 is 
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When we substitute this solution in (2.4.18). we obtain [with x (n )  = Oj 

Therefore, the solution to the homogeneous difference equation is 

y,(n) = CAn = C(-a ' )"  (2.4.19) 

The zero-input response of the system can be determined from (2.4.18) and 
(2.4.19). With x ( n )  = 0, (2.4.18) yields 

v ( 0 )  = - a l v ( - l )  

On the other hand. from (2.4,19) we have 

yh (0) = C 

and hence the zero-input response of the system is 

~ , ( n )  = ( -a l )"+ 'v( -1)  n >_ 0 (2.4.20) 

With a = - a ! ,  this result is consistent with (2.4.11) for the first-order system, which 
was obtained earlier by iteration of the difference equation. 

Example 2.45 

Determine the zero-input response of the system described by the homogeneous 
second-order difference equation 

y(n) - 3v(n - 1 )  - 4y(n - 2 )  = 0 (2.4.21) 

Solution First we determine the solution to  the homogeneous equation. We assume 
the solution to be the exponential 

Y ~ ( R )  = An 

Upon substitution of this solution into (2.4.21). we obtain the characteristic equation 
An - 31"-' - 41-2 = 0 

Therefore, the roots are 1 = -1, 4, and the general form of the solution to the 
homogeneous equation is 

The zero-input response of the system can be obtained from the homogenous 
solution by evaluating the constants in (2.4.22), given the initial conditions y(-1) and 
y ( - 2 ) .  From the difference equation in (2.4.21) we have 
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On the other hand. from (3.4.221 \ve obtain 

~ ( 0 1  = CI  -+ C? 

? ' ( I  I = -C,  +4C2 

By equatlng these two sets of relat~ons. we havt 

C, -k C: = 3,,(-11+ 4?,(-21 

-C1 +4C2 = 13\,(-11 + 171,(-2) 

The solution of these two equations 1s 

c - -4\.(-1,  + ;?.(-2, I - .. 

Thcroforc. tho zcro-input response of the svstcm is 

For uxamplc, i f  Y{-2) = 0 and \ . ( - I  ) = 5. then C, = - 1. C2 = 16. and hence 

\ , , ( , I )  = ( - l \ f r - i  + (4)11+= 11 2 0 

Thesc examples illustrate the method for obtaining the homogeneous solution 
and thc zero-input response o f  the systcm when the characteristic equation contains 
distinct roots. On the other hand, il the characteristic equation contains multiple 
roots. the form of the solution given in (2.4.17) must be modified. For example. if 
n ,  is a root of multiplicity m .  then (2.4.17) becomes 

The particular solution of the difference equation. The particular so- 
lution ! , ( I I )  is required to satisfy the difference equation (2.4.13) for the specific 
input signal x ( n ) .  n 2 0. In other words, x , ( r l )  is any solution satisfying 

To  solve (2,4.25). we assume for s,(n), a form that depends on the form of the 
input x ( n ) .  The following example illustrates the procedure. 

Example 2.4.6 

Determine the particular solution of the first-order difference equation 

y ( n )  + a l y ( n  - 1) = x ( n ) .  lol < 1 (2.4.261 

when the input x ( n )  is a unit step sequence. that is, 
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Solution Since the input sequence x ( n )  is a constant for n 2 0. the form of the solu- 
tion that we assume is also a constant. Hence the assumed solution of the difference 
equation to the forcing function r ( n ) .  called the particular solution of the difference 
equation. is 

where K is a scale factor determined so that (2.4.26) is satisfied. Upon substitution 
of this assumed solution into (2.4.26). we obtain 

TO determine K .  we must evaiuate this equation for any n 2 1. where none of the 
terms vanish. Thus 

Therefore, the particular solution to the difference equation is 

In  this example, the input x ( , l ) .  2 0. is a constant and the form assumed 
for the particular solution is also a constant. ~f x ( n )  is an exponential, we would 
assume that the particuiar sojution is also an exponential. If x ( n )  were a sinusoid, 
then r.,(n) would also be a sinusoid. Thus our assumed form for the particular 
solution takes the basic form of the signal x ( n ) .  Table 2.1 provides the general 
form of the particular solution for several types of excitation. 

Example 2.4.7 

Determine the particular solution of the difference equation 

when the forcing function x ( n )  = 2". n 0 and zero elsewhere. 

TABLE 2.1 GENERAL FORM OF THE PARTICULAR 
SOLUTION FOR SEVERAL TYPES OF INPUT 
SIGNALS 

Input Signal. Particular Sotution, 
x ( n )  ?,,I 

A (constant) K 
AM" K M" 
An M KonM + + . . . + K H  

A nn M A n ( K ( ] n M  + KrnM- '  + . . . + K w )  

( ~~~~ 1 K ,  cor q,n + KZ sin W n  
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Solution The form of the particular solution is 

~ , ( n )  = K2" n > 0 

Upon substitution of j,(n) into the difference equation, we obtain 

KZnu(n) = 2 ~ 2 " - ' u ( n  - 1 )  - ; ~ 2 " - ~ u ( n  - 2) + 2"u(n) 

To determine the value of K ,  we can evaluate this equation for any n 2 2, where 
none of the terms vanish. Thus we obtain 

and hence K = g .  Therefore, the particular solution is 

We have now demonstrated how to determine the two components of the 
sotution to a difference equation with constant coefficients. These two components 
are the homogeneous solution and the particular solution. From these two com- 
ponents, we construct the total solution from which we can obtain the zero-state 
response. 

The total solution of the difference equation. The  linearity property of 
the linear constant-coefficient difference equation allows us to add the homoge- 
neous solution and the particular solution in order t o  obtain the total solufion. Thus 

The  resultant sum y(n) contains the constant parameters {C,) embodied in the 
homogeneous solution component yh(n) .  These constants can be determined to 
satisfy the initial conditions. The following example illustrates the procedure. 

Example 2.4.8 

Determine the total solution ?in), n 2 0, to the difference equation 

when x ( n )  is a unit step sequence [i.e., x ( n )  = u(n)] and y(-1) is the initial condition. 

Solution From (2.4.19) of Example 2.4.4, the homogeneous solution is 

~ h ( ~ )  = C(-al)" 

and from (2.4.26) of Example 2.4.6, the particular solution is 

Consequently, the total solution is 

y(n) = c(-ol)" + I n 2 0 (2.4.29) 
1 + a l  

where the constant C is determined to satisfy the initial condition y(-I).  
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In particular, suppose that we wish to obtain the zero-srate response of the 
system described by the first-order difference equation in (7.4.26). Then we set 
J ' ( -1)  = 0. T o  evaluate C. we evaluate (3.4.28) ar n = 0 obtaining 

~ ( 0 )  + ul ,Y(- l )  = 1 

?'(0) = 1 

On the other hand, (2.4.29) evaluated at n = 0 yields 

v(0) = C + 2.- 
1 + a ,  

Consequently. - .  

I 
C + -  = 1 

I + (21 

c = L I I  
I to, 

Subs11tution for C  into (2.4.29) yields the zero-statc responsc of the svstem 

I f  we evaluate the parameter C in (2 .429)  under thc condrtion that ! . (-I)  + 0. the 
total solution will include thc zero-input responsc as wcll as thc zero-stale responsc 
of the svstem. In this case (2.4.28) yields 

= - a l \ - ( - l ) +  1 

On the other hand. (2.4.29) yields 

1 
~ 1 0 ,  = C + - 

1 + u ,  

By equating these two relat~ons. we obtain 

1 c + - = - u 1 > ~ ( - l ) +  I 
l +a1 

c = -  a l v ( - l )  + -EL- 
I + u ,  

Fmally. if we substitute this value of C into (2.4.29). we obtain 

We observe that the system response as given by (2.4.30) is consistent with 
the response y ( n )  given in (2.4.8) for the first-order system (with a = - a , ) .  which 
was obtained by solving the difference equation iteratively. Furthermore. we note 
that the value of the constant C depends both on the initial condition y(-1) and 
on the excitation function. Consequently, the value of C influences both the zero- 
input response and the zero-state response. On the other hand, if we wish t o  
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obtain the zero-state response only, we simply solve for C under the condition 
that y(-1) = 0, as demonstrated in Example 2.4.8. 

We further observe that the particular solution to the difference equation can 
be obtained from the zero-state response of the system. Indeed, if lal 1 < 1, which 
is the condition for stability of the system, as will be shown in Section 2.4.4, the 
limiting value of y=(n)  as n approaches infinity, is the particular solution, that is, 

1 
yP!,(n) = lim y,(n) = - 

n-+ OD 1 +a1 

Since this component of the system response does not go to zero as n approaches 
infinity, it is usually called the steady-state response of the system. This response 
persists as long as the input persists. The component that dies out as n approaches 
infinity is called the rransienf response of the system. 

Example 2.4.9 

Determine the response y ( n ) ,  n  2 0. of the system described by the second-order 
difference equation 

when the input sequence is 

Solution We have already determined the solution to the homogeneous difference 
equation for this system in Example 2.4.5. From (2.4.22) we have 

The particular solution to  (2.4.31) is assumed to be an exponential sequence of the 
same form as x ( n ) .  Normally, we could assume a solution of the form 

However, we observe that y,(n) is already contained in the homogeneous solution, 
so  that this particular solution is redundant. Instead, we select the particular solution 
to be linearly independent of the terms contained in the homogeneous solution. In 
fact, we treat this situation in the same manner as we have already treated multiple 
roots in the characteristic equation. Thus we assume that 

Upon substitution of (2.4.33) into (2.4.311, we obtain 

T o  determine K, we evaluate this equation for any n 2 2, where none of the 
unit step terms vanish. T o  simplify the arithmetic, we select n = 2, from which we 
obtain K = 9. Therefore, 
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The total solution to the difference equation is obtained by adding (2.3.32) to 
(2.4.34).  Thus 

~ ( f l ,  = C j ( - l ) "  + C1(4)" + t n ( 4 ) "  n z O  (2 .4 .35)  

where the constants C ,  and C2 are determined such that the initial conditions are 
satisfied. T o  accomplish this, we return to (2.4.31).  from which we obtain 

On the other hand. (2.4.35) evaluated at n = 0 and n  = 1 yields 

We can now equate thesc two sets of relations to obtain C 1  and Cz. In so doing. we 
have the response due to initial condltlons y ( - 1 )  and y ( - 2 )  (the zero-input response). 
and the zero-state or forced response. 

Since we have already solved for the zero-input response in Example 2.4.5. we 
can s~mplrfy the computations above by setting ?(-I = v ( - 2 )  = 0. Then we have 

Hence C1 = -4 and C: = $. Finally, we have the zero-state response to thc forclng 
function x ( n )  - ' (4 )"u(n)  in the form 

The total response of the svstem. which includes the response to arbitrary initial 
conditions. is the sum of (2.4.23) and (2.4.36).  

2.4.4 The Impulse Response of a Linear Time-Invariant 
Recursive System 

The impulse response of a linear time-invariant system was previously defined as 
the response of the system to a unit sample excitation [i.e., x t n )  = 6 ( n ) ] .  In the 
case of a recursive system, h (n )  is simply equal to the zero-state response of the 
system when the input x ( n )  = S ( n )  and the system is initially relaxed. 

For example, in the simpie first-order recursive system given in (2.4.7), the 
zero-state response given in (2.4.8), is 

n 

With x ( n )  = 6 ( n )  is substituted into (2.4.37), we obtain 
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Hence the impulse response of the first-order recursive system described h!, 
(2.4.7) is 

h ( n )  = a f lu (n )  (2.4.38) 

as indicated in Section 2.4.2. 
In the general case of an arbitrary, linear time-invariant recursive s?lstem. the 

zero-state response expressed in terms of the convolution summation is 
n 

y u ( n ) = x h ( k ) x ( n - k )  n z O  (2.4.391 
k=O 

When the input is an impulse [i.e.. x ( n )  = 6 ( n ) ] ,  (2.4.39) reduces to 

Now, let us consider the problem of determining the impulse response ~ ( I I )  given a 
linear constant-coefficient difference equation description of the system. In terms 
of our discussion in the preceding subsection, we have established the fact that the 
total response of the system to any excitation function consists of the sum o i  two 
solutions of the difference equation: the solution to the homogeneous equation 
plus the particular solution to the excitation function. I n  the case wherc thc cxci- 
tation is an impulse, the particular solution is zero. since x ( 1 1 )  = 0 for n > 0. that is. 

Consequently, the response of the system to an impulse consists only ol' the solu- 
tion to the homogeneous equation, with the (Ck] parameters evaluatcd to satisi!, 
the initial conditions dictated by the impulse. The following examplc illustrates 
the procedure for obtaining h ( n )  given the difference equation for the system. 

Example 2.4.10 

Determine the impulse response h ( n )  for the system described by the second-order 
difference equation 

v ( n )  - 3v(n  - 1 )  - 4 v ( n  - 2 )  = x ( n )  + 2 x ( n  - 1) (7.4.41 ) 

Solution We have already determined in Example 2.4.5 that the solution to the 
homogeneous difference equation for this system is 

yh ( n )  = (-1)" + C2(4)" n 2 0 (3.4.42) 

Since the particular solution is zero when x ( n )  = 6 ( n ) .  the impulse response of the sys- 
tem is simply given by (2,4.42),  where C1 and C2 must be evaluated to satisfy (1.4.41 ). 

For n = 0 and n = 1, (2.4.41) yields 

where we have imposed the conditions y ( - 1 )  = y ( - 2 )  = 0. since the system must he 
relaxed. On the other hand, (2.4.42) evaluated at n = 0 and n = 1 yields 

y (0) = C1 + c2 
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By solving these two sets of equations for CI and C2. we obtain 

Therefore, the impulse response of the system is 

We make the observation that both the simple first-order recursive system 
and the second-order recursive system have impulse responses that are infinite in 
duration. In other words, both of these recursive systems are IIR systems. In 
fact, due to the recursive nature of the system, any recursive system described by 
a linear constant-coefficient difference equation is an IIR system. The converse 
is not true, however. That is, not every linear time-invariant IIR system can be 
described by a linear constant-coefficient difference equation. In other words, 
recursive systems described by linear constant-coefficient difference equations are 
a subclass bf linear tirne-invariant IIR systems. 

The extension of the approach that we have demonstrated for determin- 
ing the impulse response of the first- and second-order systems. generaiizes in a 
straightforward manner. When the system is described by an Nth-order linear 
difference equation of the type given in (2.4.13). the solution of the homogeneous 
equation is 

N 

when the roots {Al.) of the characteristic polynomial are distinct. Hence the impulse 
response of the system is identical in form, that is, 

where the parameters {Ck\ are determined by setting the initial conditions y(-1) = 
. . .  - - y(-N) = 0. 

This form of h ( n )  allows us to easily relate the stabiiity of a system. described 
by an Nth-order difference equation, to the values of the roots of the characteristic 
polynomial. Indeed, since B I B 0  stability requires that the impulse response be 
absoluteiy summable, then, for a causal system, we have 

Now if IAkl < 1 for all k,  then 

2 1 k k 1 ~  < w 
n=O 

and hence 
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On the other hand, if one or more of the 1A1;( > 1, h(n) is no longer absolutely 
summable, and consequently. the system is unstable. Therefore, a necessary and 
sufficient condition for the stability of a causal IIR system described by a linear 
constant-coefficient difference equation, is that all roots of the characteristic poly- 
nomial be less than unity in magnitude. The reader may verify that this condition 
carries over to the case where the system has roots of multiplicity m.  

2.5 IMPLEMENTATION OF DISCRETE-TIME SYSTEMS 

Our treatment of discrete-time systems has been focused on the time-domain char- 
acterization and analysis of linear time-invariant systems described by constant- 
coefficient linear difference equations. Additional analytical methods are devel- 
oped in the next two chapters, where we characterize and analyze LTI systems in 
the frequency domain. Two other important topics that will be treated later are 
the design and implementation of these systems. 

In practice, system design and implementation are usuaHy treated jointly 
rather than separately. Often, the system design is driven by the method of 
implementation and by implementation constraints, such as cost. hardware Iim- 
itations, size limitations, and power requirements. At this point, we have not 
as yet developed the necessary analysis and design tools to treat such complex 
issues. However, we have developed sufficient background to consider some ba- 
sic implementation methods for realizations of LTI systems described by linear 
constant-coefficient difference equations. 

2.5.1 Structures for the Realization of Linear 
Time-Invariant Systems 

In  this subsection we describe structures for the realization of systems described 
by linear constant-coefficient difference equations. Additional structures for these 
systems are introduced in Chapter 7. 

As a beginning, let us consider the first-order system 

which is realized as in Fig. 2.32a. This realization uses separate delays (memory) 
for both the input and output signal samples and it is called a direct form I structure. 
Note that this system can be viewed as two linear time-invariant systems in cascade. 
The first is a nonrecursive, system described by the equation 

v(n) = box(n) + blx(n - 1 )  (2.5.2) 

whereas the second is a recursive system described by the equation 

However, as we have seen in Section 2.3.4, if we interchange the order of the 
cascaded linear time-invariant systems, the overall system response remains the 
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same. Thus if we interchanse the order of the recursive and nonrecursive systems. 
we obtain an alternative structure for the realization of the system described by 
(2.5.1). The resulting system is shown in Fig. 2.3%. From this f i y r e  we obtain 
the two difference equations 

which provide an alternative algorithm for computing the output of the system 
described by the single difference equation given in (2.5.1). In other words. the 
two difference equations (2.5.4) and (2.5.5) are equivalent to the sinsle difference 
equation (2.5.1). 

A close observation of Fig. 2.32 reveals that the two delay elements contain 
the same input U I ( I I )  and hence the same output urin - 1 ) .  Consequently. these 
two elements can be merged into one delay, as shown in Fig. 2 . 3 2 ~ .  In  contrast 

F~gure 2.32 Steps in converting from the direct form I realization in (a) to the 
direct form I1 realization in (c). 
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to the direct form I structure, this new realization requires only one delay for 
the auxiliary quantity w ( n ) ,  and hence it is more efficient in terms of memory 
requirements. It is called the direcr form 11 structure and it is used extensively in 
practical applications. 

These structures can readily be generalized for the general linear time- 
invariant recursive system described by the difference equation 

Figure 2.33 illustrates the direct form I structure for this system. This structure 
requires M + N delays and N + M + 1 multiplications. It can be viewed as the 
cascade of a nonrecursive system 

and a recursive system 
N 

= - x a i p ( n  - k) + v ( n )  
A = I  

By reversing the order of these two systems as was previously done for the 
first-order system, we obtain the direct form I1 structure shown in Fig. 2.34 for 

F i r e  U 3  Direct form I structure of the system described by (25.6). 



I 1 4  Discrete-Time Signals and Systems Chap. 2 

Figure 2-34 Direct form I1 structure for the system described by (2 .5 .6) .  

N > M. This structure is the cascade of a recursive system 

followed by a nonrecursive system 

We observe that if N 2 M. this structure requires a number of delays equal to 
the order N of the system. However, if M > N, the required memory is specified 
by M. Figure 2.34 can easily by modified to handle this case. Thus the direct form 
I1 structure requires M + N f 1 multiplications and max(M, N} delays. Because it 
requires the minimum number of delays for the realization of the system described 
by (2.5.6). it is sometimes called a cononic form. 
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A special case of (2.5.6) occurs if we set the system parameters a,, = 0. 
k = 1, . . . , N. Then the input-output relationship for the system reduces to 

which is a nonrecursive linear time-invariant system. This system views only the 
most recent M + 1 input signal samples and, prior to addition, weights each sample 
by the appropriate coefficient b k  from the set {bL j .  In other words. the system 
output is basically a weighted moving average of the input signal. For this reason 
it is sometimes called a moving average (MA) system. Such a system is an FIR 
system with an impulse response h(k) equal to the coefficients bx .  that is. 

bk,  O i k r M  
h(k' = 0, otherwise 

If we return to (2.5.6) and set M = 0, the genera1 linear time-invariant system 
reduces to a "purely recursive" system described by the difference equation 

In this case the system output is a weighted linear combination of N pas( ou(puts 
and the present input. 

Linear time-invariant systems described by a second-order dificrcncc q u a -  
tion are an important subclass of the more general systems described h!. (2.5.6) 
or (2.5.10) or (2.5.13). The reason for their importance will be explained later 
when we discuss quantization effects. Suffice to say at this point that second-order 
systems are usually used as basic building blocks for realizing higher-order systems. 

The most general second-order system is described by the difference equation 

which is obtained from (2.5.6) by setting N = 2 and M = 2. The direct form I1 
structure for realizing this system is shown in Fig. 2.35a. If we set a ]  = a. = 0. 
then (2.5.14) reduces to 

which is a special case of the FIR system described by (2.5.11). The structure 
for realizing this system is shown in Fig. 2.35b. Finally, if we set bl = b2 = 0 
in (2.5.14), we obtain the purely recursive second-order system described by the 
difference equation 

which is a special case of (2.5.13). The structure for realizing this system is shown 
in Fig. 2.35~. 
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Figure 255  Structures for the realization of second-order systems. (a) general 
second-order system; (b) FIR system: (c) "purely recursive system" 

2.5.2 Recursive and Nonrecursive Realizations of FIR 
Systems 

We have already made the distinction between FIR and IIR systems, based on 
whether the impulse response h(n )  of the system has a finite duration, or an infi- 
nite duration. We have also made the distinction between recursive and nonrecur- 
sive systems. Basically, a causal recursive system is described by an input-output 
equation of the form 

and for a linear time-invariant system specifically, by the difference equation 
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On the other hand, causal nonrecursive systems do not depend on past values of 
the output and hence are described by an input-output equation of the form 

y ( n )  = F [ x ( n ) ,  x (n  - I ) .  . . . , x ( n  - M ) ]  (2 .5 .19)  

and for linear time-invariant systems specifically, by the difference equation in 
(2 .5 .18)  with ak = 0 for k = 1, 2 ,  . . . , N .  

In the case of FIR systems, we have already observed that it is always possible 
to realize such systems nonrecursively. In fact, with ar. = 0, k = 1, 2 , .  . . , N, in 
(2 .5 .18) ,  we have a system with an input-output equation 

This is a nonrecursive and FIR system. As indicated in (2 .5 .12) ,  the impulse 
response of the system is simply equal to the coefficients (bnJ .  Hence every FIR 
system can be realized nonrecursively. On the other hand, any FIR system can 
also be realized recursively. Although the general proof of this statement is given 
later, we shall give a simple example to illustrate the point. 

Suppose that we have an FIR system of the form 

for computing the moving average of a signal x ( n ) .  Clearly. this system is FIR with 
impulse response 

Figure 2.36 illustrates the structure of the nonrecursive realization of the system. 
Now, suppose that we express (2.5.21) as 

1 
+ - [ x ( n )  - x ( n  - 1 - M ) ]  

M + 1  
1 

= y ( n  - 1)  + - [ x ( n )  - x ( n  - 1 - M ) ]  
M + l  

Fpre 236 Nonrecunive realization of an FIR moving average system. 
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Now, (2.5.22) represents a recursive realization of the FIR system. The structure 
of this recursive realization of the movlng average system is illustrated in Fig. 2.37. 

In summary. we can think of the terms FIR and IIR as general characteristics 
that distinguish a type of linear time-invariant system. and of the terms recursive 
and nonrecursive as descriptions of the structures for realizing or implementing 
the system. 

Fieure 237  Kccursive rcalira~ion oi an  FIR moving averart. system. 

2.6 CORRELATION OF DISCRETE-T1ME SIGNALS 

A mathematical operation that closely resembles convolution is correlation. Just 
as in the case of convolution. two signal sequences are involved in correlation. 
In contrast to convolution. however. our objective in computing the correlation 
between the two signals is to measure the degree to which the two signals are 
similar and thus to extract some information that depends to a large extent on 
the application. Correlation of signals is often encountered in radar. sonar. digital 
communications, geology. and other areas in science and engineering. 

To be specific. let us suppose that we have two signal sequences x ( n )  and 
v ( n )  that we wish to compare. In radar and active sonar applications. x ( n )  can 
represent the sampled version of the transmitted signal and ! ( n )  can represent the 
sampled version of the received signal at the output of the analog-to-digital (AID) 
converter. If a target is present in the space being searched by the radar or sonar. 
the received signal v(n) consists of a delayed version of the transmitted signal. 
reflected from the target. and corrupted by additive noise. Figure 2.38 depicts the 
radar signal reception problem. 

We can represent the received signal sequence as 

where cr is some attenuation factor representing the signal loss involved in the 
round-trip transmission of the signal x ( n ) ,  D is the round-trip delay, which is 
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Figure 238 Radar target detection. 

assumed to be an integer multiple of the sampling interval, and w ( n )  represents 
the additive noise that is picked up by the antenna and any noise generated by the 
electronic components and amplifiers contained in the front end of the receiver. 
On the other hand, if there is no target in the space searched by the radar and 
sonar, the received signal y ( n )  consists of noise alone. 

Having the two signal sequences, x ( n ) ,  which is called the reference signal or 
transmitted signal, and v ( n ) ,  the received signal, the problem in radar and sonar 
detection is to compare y ( n )  and x ( n )  to determine if a target is present and, if 
so, to determine the time delay D and compute the distance to the target. In 
practice, the signal x ( n  - D) is heavily corrupted by the additive noise to the point 
where a visual inspection of y ( n )  does not reveal the presence or absence of the 
desired signal reflected from the target. Correlation provides us with a means for 
extracting this important information from y ( n ) .  

Digital communications is another area where correlation is often used. In 
digital communications the information to be transmitted from one point to an- 
other is usually converted to binary from, that is, a sequence of zeros and ones, 
which are then transmitted to the intended receiver. To transmit a 0 we can trans- 
mit the signal sequence xo(n)  for 0 5 n _( L - 1. and to transmit a 1 we can transmit 
the signal sequence x l ( n )  for 0 5 n  j L - 1, where L is some integer that denotes 
the number of samples in each of the two sequences. Very often, x l ( n )  is selected 
to be the negative of xo(n) .  The signal received by the intended receiver may be 
represented as 

y ( n )  = x i ( n )  + w ( n )  i =0,1 0 5 n  5 L - 1 (2.6.2) 

where now the uncertainty is whether xo(n) or x l ( n )  is the signal component in 
y(n), and w ( n )  represents the additive noise and other interference inherent in 
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any communication system. Again. such noise has its origin in the electronic 
components contained in the front end of the receiver. In any case, the receiver 
knows the possible transmitted sequences xo(n) and xl ( n )  and is faced with the task 
of comparing the received signal ~ ( n )  with both x o ( n )  and x l ( n )  to determine which 
of the two signals better matches v ( n ) .  This comparison process is performed by 
means of the correlation operation described in the following subsection. 

2.6.1 Crosscorrelation and Autocorretation Sequences 

Suppose that we have two real signal sequences x ( n )  and y ( n )  each of which has 
finite energy. The crosscorrelat~on of x ( n )  and ~ ( n )  is a sequence r,,.(l), which is 
defined as 

or, equivalently. as 

The index I is the (time) shift (or lug) parameter and the subscripts I. on the cross- 
correlation sequence r,, ( I )  indicate the sequences being correlated. The order of 
the subscripts, with x preceding y. indicates the direction in which one sequence 
is sh~fted. relative to the other. To elaborate, in (2.6.3), the sequence x ( n )  is left 
unshifted and ~ ( n )  is shifted by I units in time, to the right for 1 positive and to 
the left for I negative. Equivalently, in (2.6.4), the sequence y ( n )  is left unshifted 
and x ( n )  is shifted by I units in time. to the left for I positive and to the right for 
I negative. But shifting x ( n )  to the left by I units relative to p(n)  is equivalent 
to shifting ~ ( n )  to the right by 1 units relative to x ( n ) .  Hence the computations 
(2.6.3) and (2.6.4) yield identical crosscorrelation sequences. 

If we reverse the roles of x ( n )  and y ( n )  in (2.6.3) and (2.6.4) and therefore 
reverse the order of the indices x?.. we obtain the crosscorrelation sequence 

or, equivalently, 

By comparing (2.6.3) with (2.6.6) or (2.6.4) with (2.6.5), we conclude that 

Therefore, r,,(l) is simply the folded version of r,,(l), where the foiding is done 
with respect to 1 = 0. Hence, r,, ( I )  provides exactly the same information as r,,(l), 
with respect to the similarity of x ( n )  to y(n). 
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Example 2.6.1 

Determine the crosscorrelation sequence r , ,  (I) of the sequences 

Solution Let us use the definition in (2+6.3) to compute r, ,  ( I ) .  For I = O we have 

The product sequence vO(n) = x ( n ) ! . ( n )  is 

and hence the sum over all values o i  n is 

For I > 0. we sirnpig shift ~ ( n )  to the right relativc to x(t1) hg I unith. compurc 
the product sequence t l , ( n )  = x ( n ) \ . ( n  - I ) .  and finally. sum ovor a11 v:rluc\ ol' thc 
product sequence. Thus we ohtain 

For 1 < 0, we shift ~ ( n )  to the left relat~ve to x ( n )  by I units. compute thc product 
sequence v , ( n )  = x ( n ) v ( n  - I ) .  and sum over all values of the product sequcncc. Thus 
we obtain the values of the crosscorrelation sequence 

Therefore. the crosscorrelation sequence of x ( n )  and y ( n )  is 

The similarities between the computation of the crosscorrelation of two se- 
quences and the convolution of two sequences is apparent. In the computation of 
convolution, one of the sequences is folded, then shifted, then multiplied by the 
other sequence to form the product sequence for that shift, and finally, the values 
of the product sequence are summed. Except for the folding operation. the com- 
putation of the crosscorrelation sequence involves the same operations: shifting 
one of the sequences, multiplication of the two sequences, and summing over all 
values of the product sequence. Consequently, if we have a computer program 
that performs convolution, we can use it to perform crosscorrelation by providing 
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as inputs to the program, the sequence x ( n )  and the folded sequence y ( - n ) .  Then 
the convolution of x i n )  with y ( - n )  yields the crosscorrelation r , , . ( l ) .  that is, 

In the special case where y ( n )  = x ( n ) ,  we have the autocorrelation of x ( n ) ,  
which is defined as the sequence 

DC 

r X x ( l )  = C x ( n ) x ( n  - 1 )  (2 .6 .9)  
n=-oz 

or, equivalently, as 
00 

r x , i [ )  = C x ( n  + [ ) x ( n )  
n=-cx2 

In dealing with finite-duration sequences, it is customary to express the auto- 
correlation and crosscorrelation in terms of the finite limits on the summation. In 
particular, if x ( n )  and y(n)  are causal sequences of length N [i.e.. x ( n )  = y ( n )  = O 
for 11 < 0 and n 1 Nj, the crosscorrelation and autocorrelation sequences may be 
expressed as 

N - I l l - l  

r , .( l)  = C x ( n ) v ( n  - 1 )  (2 .6 .11)  
l l = I  

and 

where i = I, k = 0 for I 2 0, and i = 0, k = I for 1 < 0. 

2.6.2 Properties of the Autocorrelation and 
Crosscorrelation Sequences 

The autocorrelation and crosscorrelation sequences have a number of important 
properties that we now present. To develop these properties. let us assume that 
we have two sequences x ( n )  and y ( n )  with finite energy from which we form the 
1 tnear combination, 

where a and b are arbitrary constants and I is some time shift. The energy in this 
signal is 
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First, we note that r x x ( 0 )  = Ex and r,.?(O) = E?, which are the energies of 
x ( n )  and y(n), respectively. It is obvious that 

a2r,, ( 0 )  + b2r,, ( 0 )  + 2abrx, (1)  >_ 0 (2.6.14) 

Now, assuming that b # 0 ,  we can divide (2.6.14) by b2 to obtain 

We view this equation as a quadratic with coefficients rxx(0) ,  2rx,(l),  and r,,(O). 
Since the quadratic is nonnegative, it follows that the discriminant of this quadratic 
must be nonpositive, that is, 

Therefore, the crosscorrelation sequence satisfies the condition that 

In the speciai case where v ( n )  = x ( n ) ,  (2.6.15) reduces to 

This means that the autocorrelation sequence of a signal attains its maximum value 
at zero lag. This result is consistent with the notion that a signal matches perfectly 
with itself at zero shift. In the case of the crosscorrelation sequence, the upper 
bound on its values is given in (2.6.15). 

Note that if any one or both of the signals involved in the crosscorrelation 
are scaled, the shape of the crosscorrelation sequence does not change, only the 
amplitudes of the crosscorrelation sequence are scaled accordingly. Since scaling 
is unimportant. it is often desirable, in practice, to normalize the autocorrelation 
and crosscorrelation sequences to the range from -1 to 1. In the case of the 
autocorrelation sequence, we can simply divide by rxx(0) .  Thus the normalized 
autocorrelation sequence is defined as 

rxx ( 1 )  
P x x  (0 = - 

rxx (0)  

Similarly, we define the normalized crosscorrelation sequence 

Now Jp,, ( 1 )  1 5 1 and Ipx,(l)/ I 1 ,  and hence these sequences are independent of 
signal scaling. 

F~nally, as we have already demonstrated, the crosscorrelation sequence sat- 
isfies the property 
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With v ( n )  = x ( n ) ,  this relation results in the following irnportanr property for the 
autocorrelation sequence 

r.z., (1 )  = ~ X . I  ( - 1 )  (2.6.19) 

Hence the autocorrelation function is an even function. Consequently, it suffices 
to compute r , , ( l )  for 1 1: 0. 

Example 2.63 

Compute the autocorrelation of the signal 

x ( n )  = a n u ( n ) .  0 i a < 1 

Solution Since x ( n )  is an infinite-duration signal. its autocorrelation also has infinite 
duration. We distinguish two cases. 

If 1 2 0. from Fig. 2.39 we observe that 

! a = /  n = I  n d  

Since a < 1. the infinite series can crges and wc obtain 

1 
( 1 2 0  

1 - u -  
For 1 < 0 we have 

But when I i s  negative. ( 1 - '  = r r '  . Thus the two relations for  r , , ( l )  can bc cnmhincd 
into the following expression: 

The sequence r , , ( l )  is shown in Fig. 2.42(d). We observe rhar 

r x r ( - l )  = r I , ( l )  
and 

r , , (O)  = - 
1 - 0 2  

Therefore, the  normalized aulocorrclation sequence is 

2.6.3 Correlation of Periodic Sequences 

In Section 2.6.1 we defined the crosscorrelation and autocorrelation sequences of 
energy signals. In this section we consider the correlation sequences of power 
signals and, in particular, periodic signals. 

Let x ( n )  and y ( n )  be two power signals. Their crosscorrelation sequence is 
defined as 

i M 

r x , ( l )  = lim - z x ( n ) y ( n  - l) (2.6.22) 
M 4 z  2M + 1 n=-M 
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F p  239 Computation of the autocorrelation of the signal x ( n )  = an. 

O - z a < l .  

If x ( n )  = y (n) ,  we have the definition of the autocorrelation sequence of a 
power signal as 

1 A, 
r.,(l) = lim - x(n)x (n  - 1 )  

M - c a  2M + 1 nr-M 

In particular, if x ( n )  and y (n)  are two periodic sequences, each with period N, 
the averages indicated in (2.6.22) and (2.6.23) over the infinite interval, are identical 
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to the averages over a single period, so that (2.6.22) and (2.6.23) reduce to 

and 

It is clear that r,, (I) and r, ,( l)  are periodic correlation sequences with period N. 
The factor 1 / N  can be viewed as a normalization scale factor. 

In some practical applications, correlation is used to identify periodicities in 
an observed physical signal which may be corrupted by random interference. For 
example. consider a signaI sequence ~ ( n )  of the form 

where x ( n )  is a periodic sequence of some unknown period N and w ( n )  represents 
an additive random interference. Suppose that we observe M sarnpies of y(n). say 
0 ( n  5 M - 1, where M > r  N .  For all practical purposes, we can assume that 
~ ( n )  = O for n  < 0 and n 2 M. Now the autocorrelation sequence of ~ ( n ) ,  using 
the normalization factor of 1 /M .  is 

If we substitute for ~ ( n )  from (2.6.26) into (2.6.27) we obtain 

1 ' -  . 
r,, (1) = - C [ x ( n )  + u ) ( n ) ] [ r ( n  - 1 )  + u) (n  - I ) ]  

n=(1 

The first factor on the right-hand side of (2.6.28) is the autocorrelation se- 
quence of x @ ) .  Since x ( n )  is periodic, its autocorrelation sequence exhibits the 
same periodicity, thus containing relatively large peaks at 1 = 0, N ,  2N, and so 
on. However. as the shift 1 approaches M, the peaks are reduced in amplitude 
due to the fact that we have a finite data record of M samples so that many of the 
products x ( n ) x ( n  - I )  are zero. Consequently, we should avoid computing r , , ( l )  
for large lags, say, 1 > M12.  
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The crosscorrelations rx ,  (1) and r,,(l) between the signal x(n) and the ad- 
ditive random interference are expected to be relatively small as a result of the 
expectation that x ( n )  and w ( n )  will be totally unrelated. Finally. the last term on 
the right-hand side of (2.6.28) is the autocorrelation sequence of the random se- 
quence w(n) .  This correlation sequence will certainly contain a peak at I = 0. but 
because of its random characteristics, r,, ,(l) is expected to decay rapidly toward 
zero. Consequently, only r x x ( l )  is expected to have large peaks for I > 0. This 
behavior allows us to detect the presence of the periodic signal x (11) buried in the 
interference w ( n )  and to identify its period. 

An example that illustrates the use of autocorreiation to identify a hidden 
periodicity in an observed physical signal is shown in Fig. 2.40. This figure illus- 
trates the autocorrelation (normalized) sequence for the Wolfer sunspot numbers 
for 0 5 1 5 20, where any value of 1 corresponds to one year. These numbers are 
given in Table 2.2 for the 100-year period 1770-1869. There is clear evidence in 
this figure that a periodic trend exists, with a period of 10 to I1  years. 

Example 2.6.3 

Suppose that a signal sequence x ( n )  = sin(ri5)n. lor 0 5 ~1 5 99 is corrupted h!. 
an additive noise sequence u ~ ( n ) .  where the values of the additivc n o i s c  arc sclcctcd 
independently from sample to sample. from a uniform d i s t r i h u l i o n  over thc rangc 
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1770 1790 1810 1830 1850 1870 
Year 

w 
Lag - Years 

Figure 2.40 Identification of periodicity in the Wolfer sunspot numbers: ( a )  an- 
nual Wolfer sunspot numbers: (b) autocorrelatlon sequence. 

(-A/,?., A/2),  where A is a parameter of the distribution. The observed sequence is 
?in) = xin)i-win).  Determine the autocorrelation sequence r , , (n )  and thus determine 
the period of the signal x ( n ) .  

Solution The assumption is that the signal sequence x ( n )  has some unknown period 
that we are attempting to determine from the noise-corrupted observations { ~ ( n ) } .  
Although x ( n )  is periodic with period 10, we have only a finite-duration sequence of 
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length M = 100 [~.e.. 10 perlocis of .ten)]. The nolse power level P, In the sequence 
U , ( ~ I )  1s determined b the parameter 3. We s~mplv state that P, = n2/12. The slgnal 
power level is P, = Therefore. the slgnal-~o-n01se ratlo (SNR) is defined as 

Usually. the SNR is expressed on a logarithmic scale in decibels (dB) as lOlog,,, 
( P , / P u  1. 

Figure 2.41 illustrates a sample of a noise sequence ul (n) .  and the observed 
sequence ~ ( n i  = x ( n )  + ul (n)  when the SNR = I dB. The autocorrelatlon sequence 

SNR = 1 dB 

Figure 2.41 Use of autocomelation to detect the prestnce of a periodic signal corrupted by 
noise. 
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(b) SNR = 5 dB 

Figure 242 Use of autocorrelation to detect the presence of a periodic signal 
corrupted by noise. 

r ,y , ( l )  is illustrated in Fig. 2.41~. We observe that the periodic signal x ( n ) ,  embedded 
in y ( n ) ,  results in a periodic autocorrelation function r , , ( l )  with period N = 10. The 
effect of the additive noise is to add to the peak value at 1 = 0. but for 1 # 0, the 
correlation sequence r,,,(!) x 0 as a result of the fact that values of w ( n )  were gen- 
erated independently. Such noise is usually called white noise. The presence of this 
noise expiains the reason for the large peak at 1 = 0. The smaller, nearly equal peaks 
at 1 = f 10, f 20, . . . are due the periodic characteristics of x ( n ) .  

Figure 2.42 illustrates the noise sequence w(n) ,  the noise-corrupted signal y(n ) ,  
and the autocorrelation sequence r,,(l) for the same signal, within which is embedded 
a signal at a smalier noise level. In this case, the SNR = 5 dB. Even with this relatively 
small noise level, the periodicity of the signal is not easily determined from observa- 
tion of y ( n ) .  However, it is clearly evident from observation of the autocorrelation 
sequence r , , (n) .  

2.6.4 Computation of Correlation Sequences 

As indicated on Section 2.6.1, the procedure for computing the crosscorrelation 
sequence between x ( n )  and y (n)  involves shifting one of the sequences, say x ( n ) ,  
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to obtain x ( n  - I) .  multiplying the shifted sequence by y(n) to obtain the prod- 
uct sequence y ( n ) x ( n  - I). and then summing all the values of the product se- 
quence to obtain r , , ( l ) .  This procedure is repeated for different values of the 
lap 1 .  Except for the folding operation that is involved in convolution. these ba- 
sic operations for computing the correlation sequence are identical to those in 
convolution. 

The procedure for computing the convolution is directly applicable to com- 
puting the correlation of two sequences. Specifically, if we fold y(n) to obtain 
y ( - n ) .  then the convolution of x ( n )  with y ( - n )  is identical to the crosscorrelation 
of x ( n )  with ~ ( n ) .  That is. 

As a consequence. the computational procedure described for convolution can be 
applied directly to the computation of the correlation sequence. 

We now describe an algorithm that can be easily programmed to compute 
the crosscorrelation sequence of two finite-duration signals x ( n ) ,  O 5 n  5 N  - I ,  
and v ( n ) ,  O 5 n  5 M - 1. 

The algorithm computes r,,.(l) for positive lags. According to the relation 
r,, ( - 1 )  = r,,., ( I ) .  the values of r,, ( I )  for negative lags can be obtained by using the 
same algorithm for positive iags. and interchanging the roles of x ( n )  and ~ ( n ) .  We 
observe that if M ( N ,  r,r, .( l)  can be computed by the relations 

M - l + i  

I )  - 1 0 5 I 5 N - M  

( 2 , 6 3 0 )  

n n - I .  N - M  < I 5  N - 1  

On the other hand. if M > N ,  the formula for the crosscorrelation becomes 

A'- l 

r , , ( l )  = C x ( n ) y ( n  - I )  o 5 I 5 N - 1  (2 .6 .31)  
n=i 

The formulas in (2 .6 .30)  and (2.6.31) can be combined and computed by means 
of the following simple algorithm illustrated in the flowchart in Fig. 2.43. By 
interchanging the roles of x ( n )  and v ( n )  and recomputing the crosscorrelation 
sequence. we obtain the values of r,,(l) corresponding to negative shifts I .  

If we wish to compute the autocorrelation sequence r,,(l), we set y ( n )  = x ( n )  
and M = N in (2 .6 .31) .  The computation of rx , ( l )  can be done by means of the 
same algorithm for positive shifts only. 

2.6.5 Input-Output Correlation Sequences 

In this section we derive two input-output relationships for LTI systems in the 
"correlation domain." Let us assume that a signal x ( n )  with known autocorrela- 
tion r, ,(l)  is applied to an LTI system with impulse response h ( n ) ,  producing the 
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Begin 

t 
x ( n ) . n = O .  1. ... . N -  1 

y ( n ) , n = 0 . 1 ,  ..., M -  1 

f 
1 = 0  

I i 

F w  2.43 Flowchart for software 
implementation of crosxorrelation. 
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output signal 

The crosscorrelation between the output and the input signal is 

where we have used (2.6.8) and the properties of convolution. Hence the crosscor- 
relation between the input and the output of the system is the convolution of the 
impulse response with the autocorrelation of the input sequence. Alternativel!'. 
r,., ( 1 )  may be viewed as the output of the LTI system when the input sequence is 
r,,(l). This is illustrated in Fig. 2.44. I f  we replace I by -1 in (2.6.32). we obtain 

The autocorrelation of the output signal can be obtained by using (2.6.8) with 
x ( n )  = ~ ( 1 1 )  and the properties of convolution. Thus we have 

The autocorrelation r h h ( / )  of the impulse response h ( n )  exists if the system is stable. 
Furthermore. the stability insures that the system does not change the type (energy 
or power) of the input signal. By evaluating (2.6.33) for I = 0 we obtain 

which provides the energy (or power) of the output signal in terms of autocorre- 
lations. These relationships hold for both energy and power signals. The direct 
derivation of these relationships for energy and power signals, and their extensions 
to complex signals. are left as exercises for the student. 

Input Ourput 
SYSTEM 

r,( n 

Figure 244 Input-output relation for 
crosscorrelatlon r,, (n).  
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2.7 SUMMARY AND REFERENCES 

The major theme of this chapter is the characterization of discrete-time signals and 
systems in the time domain. Of particular importance is the class of linear time- 
invariant (LTI) systems which are widely used in the design and implementation 
of digital signal processing systems. We characterized LTI systems by their unit 
sample response h ( n )  and derived the convolution summation, which is a formula 
for determining the response y ( n )  of the system characterized by h (n) to any given 
input sequence x (n). 

The class of LTI systems characterized by linear difference equations with 
constant coefficients is by far the most important of the LTI systems in the theory 
and application of digital signal processing. The general solution of a linear dif- 
ference equation with constant coefficients was derived in this chapter and shown 
to consist of two components: the solution of the homogeneous equation which 
represents the natural response of the system when the input is zero, and the par- 
ticular solution, which represents the response of the system to the input signal. 
From the difference equation. we also demonstrated how to derive the unit sample 
response of the LTI system. 

Linear time-invariant systems were generally subdivided into FIR (finite- 
duration impulse response) and IIR (infinite-duration impulse response) depend- 
ing on whether h ( n )  has finite duration or infinite duration, respectively. The 
realizations of such systems were briefly described. Furthermore, in the realiza- 
tion of FIR systems, we made the distinction between recursive and nonrecursive 
realizations. On the other hand, we observed that IIR systems can be implemented 
recursively, only. 

There are a number of texts on discrete-time signals and systems. We men- 
tion as examples the books by McGillem and Cooper (19841, Oppenheim and Will- 
sky (1983), and Siebert (1986). Linear constant-coefficient difference equations are 
treated in depth in the books by Hildebrand (1952) and Levy and LRssman (1961). 

The last topic in this chapter, on correlation of discrete-time signals, plays an 
important role in digital signal processing, especially in applications dealing with 
digital communications, radar detection and estimation, sonar, and geophysics. In 
our treatment of correlation sequences, we avoided the use of statistical concepts. 
Correlation is simply defined as a mathematical operation between two sequences, 
which produces another sequence, called either the crosscorrelation sequence when 
the two sequences are different. or the autocorrelation sequence when the two se- 
quences are identical. 

In practical applications in which correlation is used, one (or both) of the 
sequences is (are) contaminated by noise and, perhaps, by other forms of interfer- 
ence. In such a case, the noisy sequence is called a random sequence and is char- 
acterized in statistical terms. The corresponding correlation sequence becomes a 
function of the statistical characteristics of the noise and any other interference. 

The statistical characterization of sequences and their correlation is treated in 
Appendix A. Supplementary reading on probabilistic and statistical concepts deal- 
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ing with correjation can be found in the books by Davenport (1970). Helstrom 
(1990). Papoulis (1983). and Peebles (1987). 

P R O B L E M S  

2.1 A discrelt-timc signal ~ ( n )  is defined as 

0, elsewhere 

(a)  Determine its values and sketch the signal s ( n ) .  
(b) Sketch the signals that result if we: 

( 1 )  First fold 1- (n]  and then delay the resulting signal by four samples. 
(3) First dclay x ( 1 7 )  by four samples and then fold the resulting signal- 

(c) Skctch lhc signal x(-11 + 4) .  
(d) Compare thc results in parts (h) and (c) and derive a rule for obtaining the signal 

.\-(-?I + A )  from . ~ ( t ] ) .  

(e) Can you cxpress thc signal ~ ( n )  in terms of signals S ( n )  and u ( n ) ?  

2.2 A discrclc-time signal . ~ ( n )  IS shown in Fig. P2.2. Sketch and labcl carcf'ully each of 
the lullowing signals. 

- 2 - 1 0  1 1  3 4 n Figure P22 

( a )  x ( n  - 2 )  (b) x(4 - n) ( c )  x ( n  i 2 )  ( d )  x ( n ) u ( 2  - n )  
( e )  x ( n  - 1 ) 6 ( n  - 3) (f) x ( n 2 )  (g) even part of x ( n )  
(h) odd part of x ( n  ) 

2 3  Show that 
( a )  S ( n )  = u ( n )  - u ( n  - 1) 
(b) u ( n )  = xi=-, 6 ( k )  = xz';=cl - k )  

2.4 Show thal any signal can be decomposed into an even and an odd component. Is the 
decomposllion unique? Illustrate your arguments using the stgnal 

2.5 Show that the energy (power) of a real-valued energy (power) signal 1s equal to the 
sum of the energies (powers) of its even and odd components. 

2.6 Consider the system 
y(n) = T [ x ( n ) ]  = x ( n 2 )  

(a) Determine if the system is time invariant. 
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(b) To clarify the result in part (a) assume that the signal 

1. O s n s 3  
0. elsewhere 

is applied into the system. 
( I )  Sketch the signal .r(n). 
(2) Determine and sketch the signal y ( n )  = T[x(n)]. 
(3) Sketch the signal y;(n) = v(n - 2). 
(4) Determine and sketch the signal xz(n) = x(n - 2). 
(5) Determine and sketch the signal yz(n) = 7[x2(n)].  
(6) Compare the signals )~(n) and y(n - 2). What is your conclusion? 

(c) Repeat part (b) for the system 

y(n) = x(n) - x(n - 1) 

Can you use this result to make any statement about the time invariance of this 
system? Why? 

(d) Repeat parts (b) and (c) for the system 

y(n) = T[x(n)] = nx(n) 

2.7 A discrete-time system can be 
(1) Static or  dynamic 
(2) Linear or nonlinear 
(3) Time invariant or time varying 
(4) Causal or noncausal 
(5) Stable o r  unstable 

Examine the following systems with respect to the properties above. 
(a) y(n) = cos[x(n)] 

(b) v(n) = Yoc x(k) 
(c) y(n) = x(n) cos(wnn) 
(d) y(n) =x(-n + 2 )  
(e) v(n) = Trun[x(n)], where Trun[x(n)] denotes the integer part of x(n), obtained 

by truncation 
(4 v(n) = Round[x(n)], where Round[x(n)] denotes the integer part of x(n) obtained 

by rounding 
Remark: The systems in parts (e) and (f) are quantizers that perform truncation and 
rounding, respectively. 
(g) v(n) = Ix(n)l 
(h) v(n )  = x(n)u(n) 
(i) y(n)  = x(n) + nr(n + I )  
(j) y(n) = x(2n) 

(1) y(n) = x(-n) 
(m) y(n) = signIx(n)l 
(n) The ideal sampling system with input x,(i) and output x ( n )  = x,(nT), -as < 

n < o o  
2.8 Two discrete-time systems 7; and ?; are connected in cascade to form a new system 
7 as shown in Fig. P2.8. Prove or disprove the following statements. 
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J _ _ _ _ _  7-.-.L.---_-----------_____-...-_-m 

7= TIT, Figure P2.8 

(a) If IT; and 7;_ are linear. then 7 is linear (i.e.. the cascade connection of two linear 
syslems is linear). 

(b) If T, and Z are time invariant. then 7 1s time invariant. 
(c) If r f i  and 7? are causal. then 7 is causal. 
(d) I f  ?; and 5 are linear and time invariant. the same holds for 7 .  
(e) If and 3 are linear and tlme invariant. then interchanging their order does not 

change the system 7. 
(f) As in part (e) except that z7;, 72 are now time varying. ( H i n s  Use an example.) 
(g) If 7, and are nonlinear, then 7 is nonlinear. 
(h) I f  IT; and 5 are stable. then 'T is stable. 
ti) Show by an example that the inverse of parts (c) and (h) do not hold in general. 

2.9 Let 7 be an LTI. relaxed. and B I B 0  stable system with input x t n )  and output ~ ( n ) .  
Show that: 
(a) If  x ( n )  is periodic with period N [ i t . .  xin) = x ( n  + N )  for all n  2 01, the output 

~ ( n i  tends lo  a periodic signal with the same period. 
(b) I f  A ( n )  IS bounded and tcnds lo a connanl, the output will also tend to  a constant. 
(c)  If x i n )  is an energy signal. ~ h t :  output y (n )  will also be an energy signal. 

2.10 The following input-output pairs have been observed during the operation of a lime- 
invariani system: 

Can you draw any conclusions regarding the linearitv of the system. What is the 
impulse response of the system? 

2.11 The following input-output pairs have been observed during the operation of a linear 
system: 

xl(n) = t-1.2.11 A y l ( n )  = (1.2.-1.0,1) 
t t 

Can you draw any conclusions about the time invariance of this system? 
212 The only available information about a system consists of N input-output pairs, of 

signals y , (n )  = T ( x , ( n ) ] ,  i = 1 ,  2,. . . . N .  
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(a) What is the class of input signals for which we can determine the output, using 
the information above, if the system is known to be linear? 

(b) The same as above, if the system is known to be time invariant, 
2.W Show that the necessary and sufficient condition for a relaxed LTI system to be BIB0 

stable is 

2 Ih(n)i 5 Mh < m 
n=-cc 

for some constant M.. 

2.14 Show that: 
(a) A relaxed linear system is causal if and only if for any input x(n) such that 

x(n) = O  forn <no  y(n) = O  forn < n o  

(b) A relaxed LTI system is causal if and only if 

h(n) = O  for n < 0 

2.U (a) Show that for any real or complex constant a ,  and any finite integer numbers M 
and N, we have 

, i f a f l  

.=M N - M + I ,  i f o = l  

(b) Show that if la1 < 1, then 
1 

T a n =  - 
n d l  1 - 4  

a 2.16 (a) If y(n) = x(n) * h(n), show that xv = x,, where x, = x ,=-, x ( n ) .  
(b) Compute the convolution v(n) = x(n) * h(n) of the following signals and check 

the correctness of the results by using the test in (a). 
(1) x(n) = [1,2,4], h(n) = (1, 1, 1, 1 , l )  
(2) x(n) = {l ,  2. -1). h(n) = x(n) 
(3) x(n) = {O. 1. -2,3. -4). h(n) = {i, i, I ,  f }  
(4) x(n) = {1,2,3,4,5) .  h(n) = (1) 
(5) x(n) = {l, -2.31. h(n) = (0,O. 1.1.1, 1) 

t t 

217 Compute and plot the convolutions x(n) * h(n) and h(n) *x(n) for the pairs of signals 
shown in Fig. P2.17. 
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(d i Figure PZ.17 

2.18 Dc~crminc and skc~ch the convolution v(n) of the s ~ g n a l ~  

- ? i n 5 2  
l i l n ,  = 1 

0. elsewheru 
(a) Graphically 
(b) Analytically 

2.19 Compu~e  the convolution >.in) of the signals 

elsewhere 

2.20 Consider the following three operations. 
(a)  Multiply the integer numbers: 131 and 122. 
(b) Compute the convolution of s~gnals: ( 1 . 3 . 1 )  * { 1 , 2 . 2 ) .  
(c) Multiply the polynomials: 1  + 3: + zZ and 1 + 2: + 2:'. 
( d )  Repeat part (a) for the numbers 1.31 and 12.2. 
(e) Comment on your results. 

2.21 Compute the convolution ~ ( n )  = x ( n )  * h ( n )  of the following pairs of signals. 
( a )  x ( n )  = a " u ( n ) ,  h ( n )  = b n u ( n )  when a # b and when n = b 

I 1. n =- 2 . 0 . 1  
(b) x ( n )  = 2 ,  n = -1 

0 ,  elsewhere 
h ( n )  = S(n)  - 6 ( n  - 1) + 6(n - 4 )  + 6(n - 5 )  
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(c) x ( n )  = u(n  + 1 )  - u(n  - 4 )  - 6(n  - 5 )  
h ( n )  = [ u ( n  + 2) - u(n  - 3 ) ]  . (3 - inl) 

(d) x ( n )  = u ( n )  - u(n  - 5 )  
h ( n )  = u(n  - 2) - u(n  - 8) + u ( n  - 1 1 )  - u(n  - 17) 

232 Let x ( n )  be the input signal to  a discrete-time filter with impulse response h i ( n )  and 
let y , (n)  be the corresponding output. 
(a) Compute and sketch x ( n )  and j , , (n) in the following cases. using the same scale 

in all figures. 

x ( n )  = {1.4 .2 .3 .5 .3 .3 .4 ,5 .7 .6 .9)  

Sketch x ( n ) ,  y l  ( n ) ,  y z ( n )  on one graph and x ( n ) .  y3(n) .  .v4(n). y5(n)  on another 
graph 

(b) What is the difference between y I ( n )  and .vz(n). and between ~ ~ ( 1 1 )  and v 4 ( n ) ?  
(c) Comment on the smoothness of y ( n )  and y4(n).  Which factors affect the smooth- 

ness? 
(dl Compare y4(n) with y s ( n ) .  What is the difference? Can you explain it? 
(e) Let hh(n) = {i ,  -4). Compute yhvhln). Sketch . r ( n ) .  yz(n). and ,v6(n) on the same 

figure and comment on the results, 

2.23 The discrete-time system 

is at rest [i.e.. y(-1) = 01. Check if the system is linear time invariant and BIB0 stable. 
2.24 Consider the signal y (n) = a n u ( n ) ,  0 < a < 1. 

(a) Show that any sequence x ( n )  can be decomposed as 

x(r1) = 2 Q y ( n  - k )  
n=-cr 

and express ck in terms of x ( n ) .  
(b) Use the propenies of iinearity and time invariance to  express the output y ( n )  = 

T [ x ( n ) ]  in terms of the input x ( n )  and the signal g ( n )  = T [ y ( n ) ] ,  where T[.] is 
an LTI system. 

(c) Express the impulse response h ( n )  = T [ 6 ( n ) ]  in terms of g ( n ) .  

2.25 Determine the zero-input response of the system described by the second-order dif- 
ference equation 

x ( n )  - 3y(n  - 1 )  - 4y(n  - 2 )  = 0 

2.24 Determine the particular solution of the difference equation 

when the forcing function is x ( n )  = 2"u(n),  
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227 Determinc the response ? . (n ) ,  n  2 0, of the system described by the second-order 
difference equation 

j.(n) - 3 v ( n  - 1)  - 4 y j n  - 2 )  = x ( n )  + 2 x ( n  - 1 )  

to the input x ( n )  = 4 " u j n ) .  

2.28 Determlnt: the impulse response of the following causal system: 

~ ( n )  - 3!3(n - 1 )  - 4 ~ ( n  - 21 = x ( n )  + 2 x ( n  - 1) 

2.29 Let x (11 ) .  N I  5 11 5 N2 and h ( n ) .  M I  5 n  M2 be two finite-duration signals. 
(a) Determine the range L ,  5 n  5 L2 of their convolution, in terms of N,. N2, M 1  

and M2. 
(b) Determine the limits of the cases of partial overlap from the left. full overlap, 

and partial overlap from thc right. For convenience. assume that h ( n )  has shorter 
duration than x ( n l .  

(c) Illustrate the validity of your resul~s  by computing the convolution of the signals 

x ( n )  = ( I :  
- 2 n 4  

O elsewhere 

2 3  Determinc the impulse response and the unit step response of the svsterns described 
by the dlflerencc equatlon 
( a )  y ( n )  = O . + ( r l  - 1 )  - O.OS?.(n - 7 )  + . v ( r ~ )  

(b) J , ( I I )  = (1.7!9(tr - 1 ) - O . l y ( r ~  - 2 )  - 3.v(tz) - a(n - 2) 
231  Consider a svstcm with impulsc rcsponsc 

0. elsewhere 

Determinc the input .rini for 0 5 n 5 S that will generate the output sequence 

232 Consider the interconnection of LTI systems as shown in Fig. P3.32. 
(a)  Express the overall impulse response in terms of h l ( n ) ,  h z ( n ) .  h3 (n ) .  and h 4 ( n ) .  
(b) Determine h j n )  when 

h i ( , )  = {L L 1 
2 .  4 .  2 1  

h z ( n )  = h 3 ( n )  = ( n  + I ) u ( n )  

Figure P U 2  
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(c) Determine the response of the system in part (b) if 

x ( n )  = 6(n  + 2 ) + 3 6 ( n  - 1) -46(n  - 3) 

233 Consider the system in Fig. P2.33 with h ( n )  = a n u ( n ) ,  -1 < a < I .  Determine the 
response v ( n )  of the system to the excitation 

x ( n )  = u(n  + 5 )  - u(n - TO) 

Figure P233 

2.34 Compute and sketch the step response of the system 

235 Determine the range of values of the parameter a for which the linear time-invariant 
system with impulse response 

( n )  = [ ;:. n z 0 .  n even 
otherwise 

is stable. 
236 Determine the response of the system with impulse response 

h ( n )  = a n u ( n )  

to the input signal 

x ( n )  = u ( n )  - u(n - 10) 

(Hinc The solution can be obtained easily and quickly by applying the linearity and 
time-invariance properties to the result in Example 2.3.5.) 

237 Determine the response of the (relaxed) system characterized by the impulse response 

h ( n )  = ( i ) " u ( n )  

to the input signal 
1 ,  O s n < 1 0  

x ( n )  = { 0, otherwise 

238 Determine the response of the (relaxed) system characterized by the impulse response 

h ( n )  = ( ; ) " u ( n )  

to the input signals 
(a )  x ( n )  = 2"u ( n )  
(b) x ( n )  = u( -n )  
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2.39 Three systems with impulse responses h l ( n )  r S ( r r )  - 6 ( n  - 1). h z ( n )  = h t n ) .  and 
h3(rr)  = u ( n ) ,  are connected in cascade. 
(a) What is the impulse response. h , ( n ) .  of the overall system? 
(b) Does the order of the interconnection affect the overall system? 

2.40 (a) Prove and explain graphically the difference between the relations 

x ( n ) & ( n  - n , , )  = . r(n0)6(n - no) and ~ ( n l  * 601 - no) = x ( n  - n o )  

(b) Show that a discrete-time system, which is described by a convolution summation. 
is LT1 and relaxed, 

(c )  What is the impulse response of the system described by ~ ( n )  = x ( n  - no)? 

2.41 Two signals s ( n )  and v ( n )  are related through the following difference equations 

Design the block diagram realization of: 
(a) The system that generates s i n )  when excited by v ( n ) .  
(b) The system that generates v ( n )  when excited bv s ( n ) .  
(c) What is the impulsc response of the  cascade ~nterconnection of systems in parts 

(a) and (b)? 

2.42 Compute the zero-statc rcspclnsc of the system described by the difference equation 

to the input 

by solving the  difference equation recursively. 

2.43 Determine t h e  direct form 11 realization for each of the following LTI systems 
( a )  3 v ( n )  + ~ ( n  - 1 )  - 4 v ( n  - 3)  = x ( n )  + 3 x ( n  - 51 
(b) ~ * ( n )  = x ( n )  - x ( n  - 1) + 2.r (n  - 2 )  - 3 x ( n  - 41 

2.44 Consider the discrete-time system shown in Fig. P2.44. 

Figure P2.44 

(a) Compute the 10 first samples of its impulse response. 
(b) Find the input-output relation. 
(c) Apply the input x ( n )  = {I.  1.  1. . . .) and compute the first 10 samples of the output. 

t 
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(d) Compute the first 10 samples of the output for the input gven  in part (c) by using 
convolution. 

(e) Is the system causal? Is it stable? 
245 Consider the system described by the difference equation 

(a) Determine b in terms of a so that 

(b) Compute the zero-state step response s ( n )  of the system and choose b so that 
~ ( 0 0 )  = 1. 

(c) Compare the values of b obtained in parts (a) and (b). What did you notice? 
2.46 A discrete-time system is reaiized by the structure shown in Fig. P2.46. 

(a)  Determine the impulse response, 
(b) Determine a realization for its inverse system, that is, the system which produces 

x ( n )  as an output when y ( n )  is used as an input. 

247 Consider the discrete-time system shown in Fig. P2.47 

L.2-I F i r e  P247 

(a) Compute the first six values of the impulse response of the system. 
(b) Compute the first six values of the zero-state step response of the system. 
(c) Determine an analytical expression for the impulse response of the system. 

248 Determine and sketch the impulse response of the following systems for n = 0, 
1, ..., 9. 
(a) Fig, P2.48(a). 
(b) Fig. P2.48(b). 
(c) Fig. F'2.48(c). 
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Figure P2.48 

(d) Classify the svstems above as FIR or  IIR. 
(e) Find an explicit expression for the impulse response of the system in part (c). 

2.49 Consider the systems shown in Fig. P2.49. 
(a) Determine and sketch their impulse responses h l ( n ) .  h 2 i n ) .  and h 3 ( n ) .  
(b) Is it possible to  choose the coefficients of these systems in such a way that 

2.50 Consider the system shown in Fig. P2.50. 
(a) Delermine its impulse response h ( n ) .  
(b) Show thal h ( n )  is equal lo the convolution of the following signals. 

h l  ( n )  = 6 ( n )  + 6 ( n  - 1) 
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Figure P2.49 

Figure P2.9 

251 Compute the sketch the convolution ?.,(n) and correlation r , ( n )  sequences for the 
following pair of signals and comment on the results obtained. 
(a) x l ( n )  = ( 1 . 2 . 4 )  h ~ ( n )  = [ l ,  1. 1 .1 .  I ]  

t t 
(b) x : ( n ) = ( O . l . - 2 . 3 . - 4 )  h 2 ( n ) = { i . l . 2 . 1 , f ]  

t t 
(c) x3(n) = ( 1 . 2 . 3 . 4 )  h 3 ( n )  = ( 4 . 3 . 2 ,  11 

t t 
(a) x4(n) = {1 .2 .3 ,41  h4(n) = ( 1 . 2 , 3 . 4 )  

t t 
2.52 The zero-state response of a causal LTI system to the input x ( n )  = { 1 , 3 , 3 , 1 )  is 

yfn) = { 1 , 4 , 6 , 4 .  I ) .  Determine its impulse response. 
t 

t 
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2 5 3  Prove by direct subst~rution the equivalence of equations (1.5.9) and (2.5.10). which 
describe the direct form I1 structure. to the relation (2.5.6). which describes the direct 
form I structure. 

2.54 Determine the response ~ ~ ( n ) .  n > 0 of the svstern described by the second-order 
difference equation 

when the input is 

and the initial conditions arc v ( - 1 )  = y(-2) = 0. 
255  Determine the impulse response h ( n )  for the system described by the second-order 

difference equation 

256 Show that any d~scrttre-time signal x ( n )  can ho expressed as 
a 

A=-% 

whcrc u ( r ~  - A is a unit s ~ c p  delaycd by X. unlls in Limc. Lhal is, 

2 5 7  Show that the output of a n  LTI systcm can he expresscd in terms of its unit step 
rcsponsc . v i ~ ~ )  as follows. 

+L 

2 5 8  Compute the correlation sequences r , , ( l )  and I , , ( I )  for the following signal sequences. 

x ( , l l  = 1 1 :  
no - A' 5 n 5 no- A' 

O otherwise 

2 5 9  Determine the autocorrelation sequences of the following signals. 
(a)  x (n1  = { I .  2 . 1 . 1 )  

7 
(b} y ( n )  = {I .  1 .2 .  I }  

4 

What IS your conclusion? 
2.60 What is the normalized autocorrelation sequence of the signal x ( n )  given by 

- N s n i N  
x'n) = { otherwise 
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2.61 An audio signal s ( t )  generated by a loudspeaker is reflected at two different walls 
with reflection coefficients rl and rz. The signal x ( t )  recorded by a microphone close 
to the loudspeaker, after sampling. is 

where k l  and k2 are the delays of the two echoes. 
(a) Determine the autocorrelation r , , ( l )  of the signal x ( n ) .  
(b) Can we obtain r , ,  rz ,  k , ,  and k:! by observing r , , ( l )? 
(c) What happens if rz = O? 

262* Time-delay estimation in radar Let x,(r)  be the transmitted signal and b ( t )  be the 
received signal in a radar system, where 

and v, ( r )  is additive random noise. The signals x,(r)  and y , ( t )  are sampled in the 
receiver, according to the sampling theorem, and are processed digitally to deter- 
mine the time delay and hence the distance of the object. The resulting discrete-time 
signals are 

.v(n) = yo(nT)  = ax,(nT - D T )  + v , (nT)  

(a) Explain how we can measure the delay D by computing the crosscorrelation r,! ( I ) .  
(b) Let x ( n )  be the 13-point Barker sequence 

and v ( n )  be a Gaussian random sequence with zero mean and variance a2 = 0.01. 
Write a program that generates the sequence v ( n ) .  0 n  5 199 for a = 0.9 and 
D = 20. Plot the signals x ( n ) .  v ( n ) ,  0 5 n  5 199. 

(c) Compute and plot the crosscorrelation r , , . ( l ) ,  0 5 1 5 59. Use the plot to estimate 
the value of the delay D. 

(d) Repeat parts (b) and (c) for aZ = 0.1 and a2 = 1. 
(e )  Repeat parts (b) and (c) for the signal sequence 

which is obtained from the four-stage feedback shift register shown in Fig. P2.62. 

Modui-2 adder d Figure P2.61 Linear feedback shift 
register. 
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Note that x ( n )  is just one period of the periodic sequence obtained from the 
feedback shift register. 

(f) Repear pans (b) and (c) for a sequence of period N = 2' - 1, which is obtained 
from a seven-stage feedback shift register. Table 2.3 gives the stages connected 
to the modulo-2 adder for (maximal-length) shift-register sequences of length 
N =2" -1. 

TABLE 2.3 SHIFT-REGISTER 
CONNECTIONS FOR GENERATING 
MAXIMAL-LENGTH SEQUENCES 

rn Stages Connected to Modulo-2 Adder 

2.63* lmplemen~otian qf LTl svstems Consider the recursive discrete-time svstem described 
by the d~fference equation 

where a ,  = -0.8, a2 = 0.64. and bl, = 0.866. 
(a) Write a program to compute and plot the impulse response h ( n )  of the system 

for 0 5 n 5 49. 
(b) Write a program to compute and plot the zero-state step response s ( n )  of the 

system for 0 5 n  5 100. 
(c) Define an FIR system with impulse response h F I R ( n )  given by 

h i n ) .  0 5  n 5 19 
elsewhere 

where h ( n )  is the irnpuise response computed in part (a). Write a program to 
compute and plot its step response. 

(d) Compare the results obtained in parts (b) and (c) and explain their similarities 
and differences. 



150 Discrete-Time Signals and Systems Chap. 2 

M4* Write a computer program that computes the overall impulse response h ( n )  of the sys- 
tem shorn in Fig. P2.64 for 0 _< n i 99. The systems 5 ,  ?;, 3, and Z are specified by 

3 : h l ( n )  = (I ,  i ,  h, &) 
.t 

Z : n ( n )  = f r ( n )  + i x ( n  - 1 )  + fx (n  - 2 )  

Z : y ( n )  = 0.9y(n - 1 )  - 0.81y(n - 2 )  + v ( n )  + v ( n  - 1 )  

Plot h ( n )  for 0 j n 5 99. 

Figure P2.64 



The Z -Transform and Its 
Application to the Analysis of 
LTI Systems 

Transform techniques are an important tool in the analysis of signals and Iin- 
ear time-invariant (LTI) svstems. In  this chapter we introduce the :-transform. 
develop its properties. and demonstrate its importance in the analysis and charac- 
terization of linear timc-invariant systems. 

The :-transform plays the same role in the analysis of discrete-time signals 
and LTI systems as the Laplace transform does in the analysis of continuous-time 
signals and LTI svstems. For example. we shall see that in the :-domain (complex 
:-plane) the convolution of two time-domain signals is equivalent to multiplication 
of their corresponding ;-transforms. This property greatly simplifies the analysis 
of the response of an LTI svstem to various signals. In addition. the z-transform 
provides us with a means of characterizing an LTI system, and its response to 
various signals, by its pole-zero locations. 

We begin this chapter by defining the z-transform. Its important properties 
are presented in Section 3.2. In Section 3.3 the transform is used to characterize 
signals in terms of their pole-zero patterns. Section 3.4 describes methods for 
inverting the z-transform of a signal so as to obtain the time-domain representa- 
tion of the signal. The one-sided :-transform is treated in Section 3.5 and used 
to solve linear difference equations with nonzero initial conditions. The chapter 
concludes with a discussion on the use of the z-transform in the analysis of LTI 
systems. 

3.1 THE Z-TRANSFORM 

In this section we introduce the z-transform of a discrete-time signal, investigate 
its convergence properties, and briefly discuss the inverse z-transform. 
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3.1.1 The Direct z-Transform 

The z-transform of a discrete-time signal x ( n )  is defined as the power series 

where z is a complex variable. The relation (3.1.1) is sometimes called the direct 
z-transform because it transforms the time-domain signal x(n) into its comptex- 
plane representation X ( ; ) .  The inverse procedure [i.e., obtaining x(n) from X ( z ) ]  
is called the inverse z-transform and is examined briefly in Section 3.1.2 and in 
more detail in Section 3.4. 

For convenience, the z-transform of a signal x ( n )  is denoted by 

X(z) = Z{x(n)) (3.1.2) 
whereas the relationship between x(n) and X(z) is indicated by 

x(n) - X(;) (3.1.3) 
Since the :-transform is an infinite power series, it exists only for those values of 
z for which this series converges. The region of convergence (ROC) of X(z) is the 
set of all values of : for which X(z) attains a finite value. Thus any time we cite 
a z-transform we should also indicate its ROC. 

We illustrate these concepts by some simple examples. 

Example 3.1.1 

Determine the ;-transforms of the following finire-duration signals. 

( a )  x l ( n )  = (1. 2.5.7.0. 1) 

(b) x ? ( n )  = (1. 2.5.7.0. 1) 
A 

(c) xj(n) = {0,0,1,2,5.7.0.  1) 

(dl xd(n) = (2 .4 ,  5.7.0, l )  
t 

(el x s ( n )  = 6(n) 
( f )  x 6 ( n )  = &(n - k ) ,  k r 0 

(g) x 7 ( n )  = 6(n + k ) ,  k r 0 

Solution From definition (3.1.1). we have 

(a) X1(z) = 1 + 2;-I + 5z-2 + 7 ; ~ ~  + ;-', ROC: entire z-plane except 2 = 0 
(b) X2(z) = z2 + 2z + 5 + 7;-I + r3, ROC: entire :-plane except ; = 0 and z = m 
(c) X3(;) = + 2z-' + 5zd4 + 7;-' + ;-7, ROC: entire z-plane except z = 0 

(d) X4(z) = 2z2 + 4z + 5 + 7z-'  + :-3. ROC: entire z-plane except : = 0 and z = cr, 

(e) X5(z) = l[i.e., 6(n) - 11. ROC: entire z-plane 

(f) Xb(z) = ~-~[ i .e . ,  6 ( n  - k)  - :-'I, k > 0, ROC: entire z-plane except : = 0 

(g) XAZ) = zk[i.e., &(n + k )  - z'], k > 0, ROC: entire z-plane except z = oo 
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From this example it is easily seen that the ROC of a finite-duration signal 
is the entire 2-plane, except possibly the points z = 0 andlor z = oo. These points 
are excluded, because :'(k > 0) becomes unbounded for z = oo and ~ - ~ ( k  > 0) 
becomes unbounded for z = 0. 

From a mathematical point of view the z-transform is simply an alternative 
representation of a signal. This is nicely illustrated in Example 3.1.1, where we 
see that the coefficient of z-", in a given transform, is the value of the signal at 
time n. In other words. the exponent of z contains the time information we need 
to identify the samples of the signal. 

In many cases we can express the sum of the finite or infinite series for the 
2-transform in a closed-form expression. In such cases the z-transform offers a 
compact alternative representation of the signal. 

Example 3.1.2 

Determine the z-transform of the signal 

Solution The signal x ( n )  consists of an infinite number of nonzero values 

The :-transform of x ( n )  is the infinlte power series 

This is an infinite geometric series. We recall that 

Consequently. for ~ f : - ' l  -= 1, or  equivalently, for I:I > i, X(:) converges to  

We see that in this case. the r-transform provides a compact alternative representation 
of the signal x ( n ) .  

Let us express the complex variable z in polar form as 

where r = lzl and @ = &z. Then X(z) can be expressed as 
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In the ROC of X t ) .  IX(z) I  < x. But 

Hence /X(:) is finite if the sequence x(n)r-" is absolutely summable. 
The  problem of finding the ROC for X(r)  is equivalent to determining the 

range of values of r for which the sequence x ( n ) r - "  is absolutely summable. T o  
elaborate, iet us express (3.1.5) as 

If X ( z )  converges in some region of the complex plane. both summations in (-3,1.6) 
must be finite in that region. I f  the first sum in (3.1.6) converges. there must exist 
values of r small enough such that the product sequence x(-11)r". 1 ( 11 < K. is 
absolutely summable. Therefore. the R O C  for the first sum consists of all points 
in a circle of some radius rl .  where rl < x. as illustrated in Fig. 3. la .  On  the 
other hand, if the second sum in (3.1.6) converges. there must exist values of r 
large enough such that the product sequence x(rr)/r". 0 5 11 < x, is absolutely 
summable. Hence the R O C  for the second sum in (3.1.6) consists of all points 
outside a circle of radius r > r,. as illustrated in Fig. 3. lb.  

Since the convergence of X ( : )  requires that both sums in (3.1.6) be finite. it 
follows that the R O C  of X(:) is generally specified as the annular region in the 
:-plane, rz < r < rl .  which is the common region where both sums are finite. This 
region is illustrated in Fis. 3.1~. On the other  hand. if r: > rl.  there is no  common 
region of convergence for the two sums and hence X(:) does not  exist. 

The  following examples illustrate these important concepts. 

Example 3.1.3 

Determine the :-transform of the signal 

Solution From the definition (3.1.1) we have 

If laz-'l < 1 or equivalently, Izl  r Iul, this power series converges to 1/(1 -a : - ' ) .  
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Region of convergence for 

(a) 

Re(:) 

Region of convergence for 

6 lx(n)l 

Re(:) 

Region of convergence for U(:)I 

F m  3.1 Region of convergence for 
X ( z )  and its corresponding causal and 

(c) anticausal components. 
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Figure 3 2  The exponential signal x i n )  = a n u ( n )  (a). and the ROC of ~ t s  r. 
transform (b). 

Thus we have the :-transform pair 
1 

x ( n )  = crnu(n) L-+ X ( : )  = - ROC: Jzl  > la1 (3 .1.7)  
1 - a:-' 

The ROC is the exterior of a circle having radius la1 Figure 3.2 shows a graph of the 
signal x ( n )  and its corresponding ROC* Note that. in general. a need not be real. 

If we set a = 1 in (3,1.7), we obtain the z-transform of the unit step signal 

x ( n )  = u ( n )  X X (  = - 1 - :-I ROC: > 1 (3.1.8) 

Example 3.1.4 

Determine the z-transform of the signal 

Solution From the definition (3.1.1) we have 

where 1 = - n .  Using the formula 

A  
A + A ' + A ~ +  * . .  = A ( ~ + A + A * + . . . ) =  - 

I - A  
when IA i  < 1  gives 

provided that l a - ' z l  c 1  or, equivalently, lzl < [a/. Thus 
1 

x ( n )  = -a"u( -n  - 1) ci X(z) = -- ROC: 121 < la1 (3.1.9) 
1 - az-I 

The ROC is now the interior of a circle having radius \a[. This is shown in Fig. 3.3. 
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Figure 3.3 Anticausal signal ~ ( 7 7 )  = -unu( -n  - 1 )  ( a ) ,  and the ROC of its :- 
transform (b). 

Examples 3.1.3 and 3.1.4 illustrate two very important issues. The first con- 
cerns the uniqueness of the :-transform. From (3.1.7) and (3.1.9) we see that 
the causal signal a n u ( n )  and the anticausal signal -anu(-rr - 1) havc identical 
closed-form expressions for the :-transform, that is, 

This implies that a closed-form expression for the z-transform does not uniquely 
specify the signal in the time domain. The ambiguity can be resolved only if 
in addition to the closed-form expression, the ROC is specified. In summar!.. a 
discrete-time signal x ( n )  is uniquely determined by its z-rransform X (:) and tlre 
region of convergence of X ( z ) .  In this text the term "2-transform" is used to refer 
to both the closed-form expression and the corresponding ROC. Example 3.1.3 
also illustrates the point that rhe ROC of a causal signal is the exterior of a circle 
of some radius r2 while the ROC of an anticausal signal is the interior of a circle o f  
some radius rl. The following example considers a sequence that is nonzero for 
-m < n < oo. 

Example 3.15 

Determine the z-transform of the signal 

Solution From definition (3.1.1) we have 

The first power series converges if lazL'l < 1 or lzl > 1a1. The second power series 
converges if Ib-'zl < 1 or Iz[ < Ibl. 

In determining the convergence of X ( z ) ,  we consider two different cases. 
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Case 1 )b\ < /a\: In this case the two ROC above do not overlap, as shown 
in Fig. 3.4(a). Consequently, we cannot find values of r for which both power series 
converge simultaneously, Clearly, in this case, X(:) does not exist. 

Case 2 JbJ > la[: In this case there is a ring in the :-plane where both power 
series converge simultaneously, as shown in Fig. 3.4(b). Then we obtain 

1 1 
X ( 2 )  == - - - 

1 - a z - l  1 
b - a 

(3.1.10) 
- 

a + b - z - ab,--I 

The ROC of X ( z )  is la1 i Izl < Ibl- 

This example shows that if rhere is a ROC for an infinire durarion rwo-sided 
signal, ir is a ring (annular region) in rhe z-plane. From Examples 3.1.1, 3.1.3, 3.1.4, 
and 3.1.5. we see that the ROC of a signal depends o n  both its duration (finite 
or infinite) and on  whether i t  is causal, anticausal, o r  two-sided. These facts are 
summarized in Table 3.1. 

O n e  special case of a two-sided signal is a signal that has infinite duration 
on the right side but not on  the left [i.e., x ( n )  = 0 for n r no < 01. A sec- 
ond case is a signal that has infinite duration on  the left side but not on the 

Figure 3.4 ROC for z-transform in 
Example 3.1.5. 
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TABLE 3.1 CHARACTERISTIC FAMILIES OF SIGNALS WITH THEIR 
CORRESPONDiNG ROC 

Signal ROC 

Finite-Duration Signals 
Causal 

Entire z-piane 
except z = 0 

0 

Anticausal 

Entire z-plane 
except z = .o 

Two-sided 

Entire z-plane 
except z = 0 

0 andz=- 

Causal 

= i r r t t 7  .., I:l > r2 

0 n 

Two-sided 

. r r T t l T 1 v  ... r2 c Izl < r ,  

0 n 

right lie., x ( n )  = 0 for n > nl > 01. A third special case is a signal that has 
finite duration on both the left and right sides [i.e., x ( n )  = 0 for n < no < 0 
and n  > n l  > 01. These types of signals are sometimes called right-sided, left- 
sided, and finite-duration two-sided, signals, respectively. The determination of the 
ROC for these three types of signals is left as an exercise for the reader (Prob- 
lem 3.5). 

Finally, we note that the z-transform defined by (3.1.1) is sometimes referred 
to as the two-sided or bilateral z-transform, to distinguish it from the one-sided or 
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unilnreral 1-rransforn~ given by 

The one-sided :-transform is examined in Section 3.5. In this text we use the 
expression :-transform exclusively to mean the two-sided :-transform defined by 
(3.1.1). The term "two-sided" will be used oniy in cases where we want to resolve 
any ambiguities. Clearly, if x ( n )  is causal [i.e.. x ( n )  = 0 for n  < 01. the one-sided 
and two-sided z-transforms are equivalent. In any other case. the! are different. 

3.1.2 The Inverse z-Transform 

Often, we have the :-transform X ( z )  of a signal and we must determine the signal 
sequence. The procedure for transforming from the :-domain to the time domain 
is called the inverse r-rransform. An inversion formula for obtaining x ( n )  from 
X (:) can be derived by using the Cauchy irzregral rheorern. which is an important 
theorem in the theory of complex variables. 

To  begin, we have the :-transform defined ty (3.1.1) as 

Suppose that we rnulllply both sldes of (3.1.12) by :"-I and inlegrate both sides 
over a closed conlour within thc ROC of X ( : )  which rncloses the ongin. Such a 
contour is illustrated in Fig. 3.5. Thus we have 

where C denotes the dosed contour in the ROC of A' ( ; ) .  taken in a counterclock- 
wise direction. Since the series converges on this contour. we can interchange 
the order of integration and summation o n  the right-hand side of (3.1.13). Thus 

Figure 35 Contour C for integral in 
(3.1.13). 
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(3.1.13) becomes 

Now we can invoke the Cauchy integral theorem, which states that 

where C is any contour that encloses the origin. By applying (3.1.15), the right- 
hand side of (3.1.14) reduces to 21rjx(n) and hence the desired inversion formula 

Although the contour integral in (3.1.16) provides the desired inversion for- 
mula for determining the sequence x(n) from the z-transform, we shall not use 
(3.1.16) directly in our evaluation of inverse z-transforms. In our treatment we deal 
with signals and systems in the z-domain which have rational i-transforms (i.e., z- 
transforms that are a ratio of two polynomials). For such z-transforms we develop a 
simpler method for inversion that stems from (3.1.16) and employs a table lookup. 

3.2 PROPERTIES OF THE Z-TRANSFORM 

The :-transform is a very powerful tool for the study of discrete-time signals and 
systems. The power of this transform is a consequence of some very important 
properties that the transform possesses. I n  this section we examine some of these 
properties. 

In the treatment that follows, it should be remembered that when we combine 
several z-transforms, the ROC of the overall transform is, at least, the intersection 
of the ROC of the individual transforms. This will become more apparent later, 
when we discuss specific examples. 

Linearity. If 

xl(n) A XI(:> 
and 

x*(n) A X2(z) 
then 

x(n) = alxl (n) + a m ( n )  X(Z) = alX1 (i) + azXz(z) (3.2.1) 
for any constants a1 and 0 2 .  The proof of this property follows immediately from 
the definition of linearity and is left as an exercise for the reader. 

The linearity property can easily be generalized for an arbitrary number of 
signals. Basically, it implies that the z-transform of a linear combination of signals 
is the same linear combination of their z-transfonns. Thus the linearity property 
helps us to find the z-transform of a signal by expressing the signal as a sum of 
elementary signals, for each of which, the z-transfonn is already known. 
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Example 3.21 

Determine the :-transform and the R O C  of the signal 

x ( n )  = [ 3 ( 2 " )  - 4 ( 3 " ) ] u ( n )  

Solution If we define the signals 

x l ( n )  = 2 " u ( n )  

and 

xz (n )  = 3"u (n )  

then x i n )  can be written as 

x ( n )  = 3 x 1 ( n )  - 4 x 2 ( n )  

According to (3.2.1). its :-transform is 

x ( : )  = 3x1 ( z )  - ~ X Z ( Z )  

From (3.1.7) we recall that 

- 1 
a " u ( n )  - ROC: 1 ~ 1  > la1 

1 - a:-! 

By setting rr = 2 and a = 3 in (3 .2 .2) .  we obtain 

1 
1, tn) = 2"u(n) A XI(:) = - 1 - 2=-1 ROC: 121 > 2 

1 
x ? ( n )  = 3 " u ( n )  ++ X 2 ( ; )  = - ROC: > 3 

1 - 3:-1 
The intersection of the R O C  of XI (z) and X z ( z )  is 121 > 3. Thus the overall transform 
X ( z )  is 

Example 3 3 2  

Determine the i-transform of the signals 

(a )  x  ( n )  = (COS q n ) u ( n )  

(b) x ( n )  = (sin y , n ) u ( n )  

Solution 

(a) By using Euler's identity, the signal x ( n )  can be expressed as 

x ( n )  = ( c o s w n ) u ( n )  = i e ~ ~ " u ( n )  + ;e-'""u(n) 

Thus (3.2.1) implies that 

X ( z )  = i Z { e ~ " ~ " u ( n ) J  + ; ~ { e - ~ q " u ( n ) ]  
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If we set a = e*/*o(\cr/ = lef"'Q/ = 1 )  in (3.2.2). we obtain 

1 
e J W n u ( n )  - ROC: 1 - 1  > 1 

and 
1 

e - J w n ~ l n )  - -e- ,WL-  1 ROC: I: > 1 

Thus 
1 I 1 1  

X(:) = 2 1  + j + - e-lu#;-l ROC: i l l  > 1 

After some simple algebraic manipulations we obtain the desired result. namel!. 

- 1-:-'coswo 
(cos w]n)u(n) - ROC: I z I  b 1 (3.1.3) 

1 - 2:-' cos w,, + :-2 

(b) From Euler's identity, 

I 
xin) = (sin ~ , n ) u ( n )  = - [ a / ~ ~ " U ( n )  _ p - ~ l * ~ n  uO~)] 

21 

Thus 

and finally. 

:-' sin qi 
(sin y,n)u(n) A ROC: ):I > 1 (3.2.4) 

1 - 2:-' cos m, + :-= 

Time shifting. If 

then 

The ROC of z - ~ x ( ~ )  is the same as that of X ( z )  except for z = 0 if k > O and 
z = a if k < 0. The proof of this property follows immediately from the definition 
of the z-transform given in (3.1.1) 

The properties of linearity and time shifting are the key features that make 
the z-transform extremely useful for the analysis of discrete-time LTI systems. 

Example 3.2.3 

By applying the time-shifting property, determine the z-transform of the signals .r:(n I 

and x3(n)  in Example 3.1.1 from the z-transform of XI (n). 

Solution It can easily be seen that 
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and 

x 3 ( n )  = x l ( n  - 2 )  

Thus from (3.2.5) we obtain 

X 2 ( : )  = 2 2 ~ , ( ~ )  = z2 + 2: + 5 + 7:-I + :-j 

and 
X 3 ( ; )  = : - * x , ( ; )  = z-l + 2:-si + 5z-4 + 7:-5 + ;-7 

Notc that because of the multiplication by ?, the ROC of X z ( : )  does not ~nclude the 
point : = x. even if it is contained in the ROC of XI(:). 

Example 3.2.3 provides additional insight in understanding the meaning of 
the shifting property. Indeed, if we recall that the coefficient of 2-" is the sample 
value at time n .  it is immediately seen that delaying a signal by k(k > 0) samples 
[i.e.. X O I )  + x ( n  - k ) ]  corresponds to multiplying all terms of the :-transform by 
:-'. The coefficient of :-" becomes the coefficient of :-'"+'.'. 
Example 3.2.4 

Determine the transform of the signal 

1 ,  O z n z N - 1  
r ( n l =  [ 13.2.6) 

0. elsewhere 

Solution We can determine the :-transform of this signal by using the definition 
(3.1.1 ). Indeed, 

Since .r(n) has finite duration. its ROC is the entire :-plane, except : = 0 .  
Let us also derive this transform by using the linearity and time shifting prop- 

erties. Note that x ( n )  can be expressed in terms of two unit step signals 

x ( n )  = u ( n )  - u ( n  - N )  

By using (3.2.1) and (3.2.5) we have 

X ( : )  = Z { u ( n ) ]  - Z { u ( n  - N ) )  = ( I  - : - " ) ~ { u ( n ) }  

However. from (3.1.8) we have 

1 
Z { u ( n ) )  = --- 1 - 2 - 1  

ROC: 121 > 1 

which. when combined with (3.2.8), leads to (3.2.7). 

Example 3.2.4 helps to clarify a very important issue regarding the ROC 
of the combination of several z-transforms. lf the linear combination of several 
signals has finite duration, the ROC of its z-transform is exclusively dictated by the 
finite-duration nature of this signal, not by the ROC of the individual transforms. 

Scaling in the z-domain. If 

x ( n )  X ( z )  ROC: rl < Izl  < rz 
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then 
a n x ( n )  - ~ ( a - ' z )  ROC: lalrl < Iz] < lalrz 

for any constant a ,  real or complex. 

Proof: From the definition (3.1.1) 

= x ( a L ' z )  

Since the ROC of X ( z )  is rl < Izl < r l ,  the ROC of ~ ( a - l z )  is 
rl < la-'zl < r-2 

or 
lalrl < 1 : l  < lair? 

To better understand the meaning and implications of the scaling property, 
we express a and z in polar form as a = roeJYI, : = re'", and we introduce a new 
complex variable w = a- '2.  Thus Z ( x ( n ) }  = X ( z )  and Z ( a n x ( n ) ]  = X ( w ) .  It can 
easily be seen that 

This change of variables results in either shrinking (if ro > 1) or expanding (if 
ro < 1) the z-plane in combination with a rotation (if wg # 2k1r ) of the z-plane 
(see Fig. 3.6). This explains why we have a change in the ROC of the new transform 
where la 1 < 1. The case la 1 = 1. that is. a = ejwl is of special interest because it 
corresponds only to rotation of the z-plane. 

Example 3.25 

Determine the z-transforms of the signals 

(a) x(n)  = an(cos  q ,n)u(n)  
(b) x(n)  = an(sin q ,n)u(n)  

z-plane w-plane 

Eprr 3.6 Mapping of the z-plane to the w-plane via the transformation w = 
a-'2. a = r g e l q .  
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Solution 

(a) From (3.1.3) and (32.9)  we casily obtaln 

1 - a:- '  cos w,,  
a" (cos wilrr ) l i  ( n  1 - I 13.2.10) 

I - 2n:-! co5 wll t 02:-: 

(b) Similarly. (3.3.3) and (3.2.9) yield 

a:-' sln q, 
u"(s1n q , ~ r ) u ( n )  - 1: > l u  (3.1.11) 

1 - 2u;-' cos w,, + 02;-2 

Time reversal. If 

I )  - X ROC: r ,  < l:l < r: 

then 
1 1 - x  R O C : - < l : l i -  
r2 rl 

Proof. From the definition (3.1 . I ) .  we have 
a, % 

Z{ . i ( - l l ) ]  = x . v ( - l ~ ) : - ~ ~  = x . , ( / I ( : - ~ ) - ~  = x(:-') 
! I = - %  I=-\ 

where the chanye of variable 1 = - ) I  1s made. The ROC of x ~ z - ' )  is 

Note that the ROC for a(n1 is the inverse of that for x(-11). This means that if  zo 
belongs to the ROC of x ( t t ) ,  then 1/;(, is in the ROC for x ( - n ) .  

An intuitive proof of (3.2.12) is the following. When we fold a signal. the 
coefficient of z-" becomes the coefficient of :". Thus. folding a signal is equivalent 
to replacing : by :-' in the :-transform formula. In  other words. reflection in the 
time domain corresponds to inversion in the 2-domain. 

Example 3.2.6 

Determine the :-transform of the signal 

x ( n )  = u ( - n )  

Solution It is known from (3.1.8) that 

- 1 
u ( n )  - - 1 - - - I  

ROC: I: > 1 

By using (3.2.12). we easily obtain 

- 1 
u ( - n )  - - ROC: 1 :  < 1 

1 - z  

Differentiation in the z-domain. If 

x ( n )  X ( Z )  
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then 

Proof. By differentiating both sides of (3.1.1), we have 

= - z - ' z { n x ( n ) )  

Note that both transforms have the same ROC. 

Example 3.2.7 

Determine the :-transform of the signal 

Solution The signal x ( n )  can be expressed as n x l ( n ) ,  where r l ( n )  = a nu ( n ) .  From 
(3.2.2) we have thal 

I 
x l ( n ) = a n u ( n )  - XI(:) = - ROC: 1x1 > la1 

I - uz-'  

Thus, by using (3.2.14) .  we obtain 

dX,[ , - )  a:-' 
nanu(n)  - X ( z )  = -2- = --------- ROC: 1 ~ 1  > la]  d :  (1 - a z U 1 ) 2  

If we set a = I in (3.2.15). we find the z-transform of the unit ramp signal 

, - I  
n u ( n )  tl, - ROC: 1:1 > 1 (3.2.16)  

(1 - z - I ) ?  

Example 3.2.8 

Determine the signal x ( n )  whose z-transform is given by 

Solution By taking the first derivative of X(z),  we obtain 

Thus 

The inverse z-transform of the term in brackets is (-a)". The multiptication by 
z-I implies a time delay by one sample (time shifting property), which results in 
(-a)"-'u(n - 1). Finally, from the differentiation property we have 
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Convolution of two sequences. If 

then 

x(n) = x ~ ( n )  * xz(n) - X(Z)  = XI (:)X2(:) (3.2.17) 

The ROC of X ( z )  is, at least, the intersection of that for XI(;) and X2(z). 

Proof The convolution of XI (n) and xz(n) is defined as 

The :-transform of x ( n )  is 

Upon interchanging the order of the summations and applying the time-shifting 
property in (3.2.5). we obtain 

X 

= XZ(L) E I] (lip = XI(Z)XI (:) 
k = - c c  

Example 3.2.9 

Compute the convolution x ( n )  of the signals 

1, O _ < n i 5  
0, elsewhere 

Solution From (3.1.1), we have 

XI(:) = 1 - 2:-I + 2-2 

According to (3.2.17). we carry out the multiplication of XI ( 2 )  and Xz(z). Thus 

X(Z) = Xl(~)Xz(i) = I -Z- '  - z - ~  f 2-' 

Hence 
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The same result can also be obtained by noting that 

XI(:) = (1 - :-I): 

Then 
- - j ) ( l  - 7 - 6 )  = 1 - :-I - : -b  + 5' X ( : )  = (1 - 

The reader is encouraged to obtain the same result explicitly by using the convolution 
summation formula (time-domain approach). 

The convolution property is one of the most powerful properties of the :- 
transform because it converts the convolution of two signals (time domain) to 
multiplication of their transforms. Computation of the convolution of two signals. 
using the z-transform, requires the following steps: 

1. Compute the z-transforms of the signals to be convolved. 

X I  (r) = Zlxl(~1)) 

(time domain - :-domain) 

XI2(:) = Z { x z ( n ) ]  

2. Multiply the two z-transforms. 

X (2) = XI (z)X?(:) (z-domain) 

3, Find the inverse z-transform of X(z) .  

x ( n )  = Z - ' { ~ ( z ) )  (2-domain - time domain) 

This procedure is, in many cases, computationally easier than the direct eval- 
uation of the convolution summation. 

Correlation of two sequences. If 

then 

Proof: We recall that 

r.r,x2 (1)  = * x2(-1) 
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Using the convolution and time-reversal properties, we easily obtain 

Rllx: [ z )  = Z{XI (i)IZ{x:(-l)) = XI ( : ) X : ( : - ~  1 

The ROC of R I I X 2 ( z )  is at least the intersection of that for XI (;I and x?(z-'). 

As in the case of convolution, the crosscorrelation of two signals is more 
easily done via polynomial multiplication according to (3.2.18) and then inverse 
transforming the result. 

Example 3.2.10 

Determine the  aurocorrelatlon sequence of the signal 

Solution Since the  autocorrelation sequence of a signal is its correlation with itself, 
(3.2.16) gives 

RI,(:) = Z [ r T x ( / ) l  = x ( z ) x ( : - ' )  
From (3.2.2) we have 

1 
X(:) = - ROC: 1 ~ 1  > lo1 (causal slpnal) 

1 - a:-( 

and by using (3.3.15). we obtain 

1 
x(;-l) = - 1 

ROC: I:[ i - (anticausal signal) 
1 - a :  lu I 

Thus  

1 1 1 I - R r t ( : )  = -- - ROC: 1 0 :  < 1: < - 
1 -a:-' 1 -0: I - a(: +:-I) + 02 /a / 

Since the ROC of R,,(z) is a ring. r , , ( l )  is a two-sided signal, even if x ( n )  1s causal. 
To  obtain r , , ( l ) ,  we observe that the :-transform of the sequence in Exarn- 

ple 3.1.5 with b = 1 /a is slrnply (1 - 02) ~ , , ( z ) .  Hence ir follows that 

T h e  reader is encouraged to compare this approach with the time-domain solution of 
the same problem given in Section 2.6. 

Multiplication of two sequences. If 

then 

where C is a closed contour that encloses the origin and lies within the region of 
convergence common to both XI ( v )  and Xz(l/v). 
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Proof. The i-transform of x j ( n )  is 

Let us substitute the inverse transform 
1 

x l  ( n )  = -$xl 2xj c ( u ) v n V 1 d u  

for x l ( n )  in the 2-transform X ( z )  and interchange the order of summation and 
integration. Thus we obtain 

The sum in the brackets is simply the transform Xz(,-) evaluated at z / v .  Therefore, 

which is the desired result. 
To  obtain the ROC of X ( z )  we note that if X l  ( v )  converges for r l ,  < I v (  < rl, 

and X 2 ( 2 )  converges for rzt < IzI < r2r,, then the ROC of X z ( i / ~ )  is 

Hence the ROC for X ( z )  is at least 

Although this property will not be used immediately, it will prove useful later, 
especially in our treatment of filter design based on the window technique, where 
we multiply the impulse response of an IIR system by a finite-duration "window" 
which serves to truncate the impulse response of the IIR system. 

For complex-valued sequences x l ( n )  and x:(n) we can define the product 
sequence as x ( n )  = x I  ( n ) x ; ( n ) .  Then the corresponding complex convolution 
integral becomes 

The proof of (3.2.21) is left as an exercise for the reader. 

Parseval's relation. If xl(n) and x2(n)  are complex-valued sequences, then 

provided that rl,ru < 1 < rlur2u, where r l ,  < lil < r l .  and r u  < It1 < rtu are the 
ROC of XI ( 2 )  and X 2 ( z ) .  The proof of (3.2.22) follows immediately by evaluating 
X ( z )  in (3.2.21) at z = 1. 
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The Initial Value Theorem. If x t n )  is catisal [i.e.. x(rr )  = 0 for t1 i 01. then 

Proof: Since x ( n )  is causal, (3.1.1) gives 

Obviously, as z 4 m. :-" 4 0 since n > 0 and (3.2.23) follows. 
AIL the properties of the z-transform presented in this section are summarized 

in Table 3.2 for easy reference. They are listed in the same order as they have 
been introduced in the text. The conjugation properties and Parseval's relation 
are left as exercises for the reader. 

We have now derived most of the :-transforms that are encountered in many 
practical applications. These :-transform pairs are summarized in Table 3.3 for 
easy reference. A simple inspection of this table shows that these :-transforms 
are all rational functions (i.e.. ratios of polynomials in ; - I ) .  As will soon become 
apparent, rational :-transforms are encountered not only as the ;-transforms of 
various important signals hut also in the characterization of discrete-time linear 
time-invariant systems described hy constant-coefficient differencc equations. 

3.3 RATIONAL z -TRANSFORMS 

As indicated in Section 3.2, an important family of :-transforms are those for which 
X(z) is a rational function. that is. a ratio of two polynomials in :-' (or  :). In 
this section we discuss some very important issues regarding the class of rational 
:-transforms. 

3.3.1 Poles and Zeros 

The zeros of a z-transform X ( : )  are the values of z for which X (:I = 0. The poles 
of a z-transform are the values of : for which X(:) = cc. If X(;) is a rational 
function, then 

M 

If a0 # 0 and bo # 0, we can avoid the negative powers of : by factoring out the 
terms b o ~ - M  and aoz-" as follows: 



TABLE 3.2 PROPERTIES OF THE 2-TRANSFORM 

Property Time Domain z-Domain ROC 

Notation 

Linearity 

Time shifting 

Scaling in the z-domain 

Time reversal 

Conjugation 
Real part 
Imaginary part 

Differentiation in the 
z-domain 
Convolution 

Correlation 

Initial value theorem 

Multiplication 

Parseval's relation 

If x(n) causal x(0) = lim X (2) 
2- -3  

.- 

ROC: r2 < 121 < r l  
ROCl 
ROC2 
At least the intersection of ROCl 
and ROC2 
That of X(z), except z = 0 if k > 0 
a n d z = c o i f k < O  

Includes ROC 
Includes ROC 

At  least, the intersection of ROCl 
and ROC* 
At  least, the intersection of ROC of 
XI (Z)  and x2(z1') 

At least r l l ra  < l z l  < rl,,rzu 
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TABLE 3.3 SOME COMMON 2-TRANSFORM PAIRS 

Signal. x ( n )  :-Transform, X (:) ROC 

1 6 ( n )  1 All : 

1 
3 a n u ( o )  

1  - a:-' 
I:l > lal 

a;-I 
4 n a nu ( n )  

(1 - kt > la1 

1 
5 - a n u ( - n - 1 )  

1 - a:-I 
I:l < lnl 

a:-I 
6 -nonu( -n  - 1) 

(1 - '7:-I l2 lzl < lal 

1 - z-' cos q, 
( = O ~ w ) ~ ) u ( f l )  1 - 2:-' wl + ;-: 1:l > 1 

,--I sin q, 
8 (sin w ~ n ) u ( n )  lz1 > 1 

1 - 2:-I cosq,  + .r2 
1 - a:-' c o s y ,  

9 (an cos y,n )u (n 
1 - - I  , + 2 

';I > la' 

a;-' sin ql 
1 0  (a" s ~ n  w l ~ n ) u ( n )  

1 - &;'"I C M w  + r?2: - l  
''I ' ''I 

Since N ( z )  and D ( z )  are polynomials in L, they can be expressed in factored form as 

where G = bolao. Thus X(:) has M finite zeros at z = zl, zz, . . . , ZM (the roots of 
the numerator polynomial), N finite poles at z = p l ,  pz, . . . , p~ (the roots of the 
denominator polynomial), and IN - Mi zeros (if N > M) or poles (if N c M) at 
the origin z = 0. Poles or zeros may also occur at z = oo. A zero exists at z = oo if 
X(m) = 0 and a pole exists at z = cc if X(m) = ca. If we count the poles and zeros 
at zero and infinity, we find that X (z) has exactly the same number of poles as zeros. 

We can represent X ( z )  graphically by a pole-zero plor (or parern) in the 
complex plane, which shows the location of poles by crosses ( x )  and the location 
of zeros by circles (0). The multiplicity of multiple-order poles or  zeros is indicated 
by a number close to the corresponding cross or circle. Obviously, by definition, 
the ROC of a z-transform should not contain any poles. 
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Example 33.1 

Determine the pole-zero plot for the signal 

Solution From Table 3.3 we find that 
1 

X ( : ) =  - = ROC: I - ' /  > a 1-a:-I : - a  

Thus X ( z )  has one zero at z l  = 0 and one pole at pl = a .  The pole-zero plot is 
shown in Fig. 3.7. Note that the pole pl = a is not included in the ROC since the 
z-transform does not converge at a pole. 

Figure 3.7 Pole-zero plot lor 12lc 

causal exponenlial signal .I ( 1 1 )  = ci" 1 1 (  11 i 

Example 33.2 

Determine the pole-zero plot for the signal 

{ ;  O 5 n 5 M - 1  
elsewhere 

where o r 0. 

Solution From the definition (3.1.1) we obtain 

Since a > 0, the equation zM =a M has M roots at  

The zero zo = 5 cancels the pole at z = a.  Thus 

which has M - 1 zeros and M - 1 poles, located as shown in Fig. 3.8 for M = 8. Note 
that the ROC is the entire z-plane except z = 0 because of the M - 1 poles located 
at the origin. 
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Figure 3.8 Pole-zero pattern for 
the fin~re-duration slgnal x ( n )  = a" 
0 5 n 5 M - l (a  > 0). for M = 8. 

Clearly. if we are given a pole-zero plot, we can determine X ( z ) ,  by using 
(3.3.2). to within a scahng factor G. This is illustrated in the following example. 

Example 3.3.3 

Determine the :-transform and the signal that corresponds to the pole-zero plot of 
Fig. 3.9. 

Solution There are two zeros (M = 2) at :I = 0, zz = r c o s q ,  and two poles (A1 = 2 )  
a1 p1 = p, = re- IY1.  By substitution of these relations into (3.3.2). we obtain 

X ( ; )  = G 
(: - :,I(: - 3) 

= G 
:(: - r c o s q , )  

( Z  - PI)(: - p 2 )  (: - r e J y ~ ) ( :  - ~ P - J ~ I )  
ROC: I:[ > r 

Aftcr some simple algebraic manipulations, we obtain 

1 - r z - I  cos ql 
X ( : )  = 1 - Zril + r';-i ROC: l:l > r 

From Table 3.3 we find that 

From Example 3.3.3, we see that the product (: - PI)(: - p2)  results in a 
polynomial with real coefficients, when pl and p~ are complex conjugates. In 

Figore 3.9 Pole-zero pattern for 
Example 3.3.3. 
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general, if a polynomial has real coefficients, its roots are either real or occur in 
complex-conjugate pairs. 

As we have seen. the :-transform X(:) is a complex function of the complex 
variable z = Re(:) + j lm(:). Obviously. /X(:)j, the magnitude of X ( z ) ,  is a real 
and positive function of :. Since 2 represents a point in the complex plane, IX(:)I 
is a two-dimensional function and describes a "surface." This is illustrated in 
Fig. 3.10(a) for the 2-transform 

,- 1 ,-2 
C C 

= 1 + 1.2732;-I + 0.81r-' 

Figure 3.10 Graph of IX(z)l for the 
:-transform in (3,3.3). [Reproduced wth 
permission from Introduction 10 Systems 
Analysis. by T. H. Giisson. @ 1985 by 
McGraw-Hi1 Book Company.] 
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which has one zero at zl = 1 and two poles at pi,  pz = 0 . 9 e * ~ ~ / ~ .  Note the 
high peaks near the singularities (poles) and the deep valley close to the zero. 
Figure 3.10(b) illustrates the graph of IX(z)l for z = el". 

3.3.2 Pole Location and Time-Domain Behavior for 
Causal Signals 

In this subsection we consider the relation between the z-plane location of a pole 
pair and the form (shape) of the corresponding signal in the time domain. The dis- 
cussion is based generally on the collect~on of z-transform pairs given in Table 3.3 
and the results in the preceding subsection. We deal exclusively with real, causal 
signals. In particular, we see that the characteristic behavior of causal signals de- 
pends on whether the poles of the transform are contained in the region l z l  < 1, 
or in the region l z /  > 1, or on the circle l z l  = 1. Since the circle [ z J  = 1 has a 
radius of 1, it is called the uni! circle. 

If a real signal has a z-transform with one pole, this pole has to be real. The 
only such signal is the real exponential 

1 
x ( n )  = a n u ( n )  6 X ( z >  = - ROC: I:] > l a l  

1 - az-' 

having one zero at 21 = 0  and one pole at pl = a on the real axis. Figure 3.11 

z-plane 

1 0 n 

z-plane 

* 
1 0 n 

F w  3.11 Time-domain behavior of a single-real pole causal signal as a function 
of the location of the pole with respect to the unit circle. 
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illustrates the behavior of the signal with respect to the location of the pole rel- 
ative to the unit circle. The signal is decaying if the pole is inside the unit 
circle, fixed if the pole is on the unit circle, and growing if the pole is out- 
side the unit circle. In addition, a negative pole results in a signal that alter- 
nates in sign. Obviously, causal signals with poles outside the unit circle be- 
come unbounded, cause overflow in digital systems, and in general, should be 
avoided. 

A causal real signal with a double real pole has the form 

x (n )  = nan u ( n )  

(see Table 3.3) and its behavior is illustrated in Fig. 3.12. Note that in contrast to 
the single-pole signal, a double real pole on the unit circle results in an unbounded 
signal. 

Figure 3.13 illustrates the case of a pair of complex-conjugate poles. Accord- 
ing to Table 3.3, this configuration of poles results in an exponentially weighted 
sinusoidal signal. The distance r of the poles from the origin determines the enve- 
lope of the sinusoidal signal and their angle with the real positive axis, its relative 
frequency. Note that the amplitude of the signal is growing if r > 1, constant if 
r = 1 (sinusoidal signals), and decaying if r < 1. 

Figure 3.U Time-domain behavior of causal signals corresponding to a double (m = 2) real 
pole, as a Function of the pole location. 
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F i r e  3.13 A pair of complex-conjugate poles corresponds to causal signals with 
oscillatory behavior. 

Finally, Fig. 3.14 shows the behavior of a causal signal with a double pair of 
poles on the unit circle. This reinforces the corresponding results in Fig. 3.12 and 
illustrates that multiple poles on the unit circle should be treated with great w e .  

To summarize, causal real signals with simple real poles or simple complex- 
conjugate pairs of poles, which are inside or on the unit circle are always bounded 
in amplitude. Furthermore, a signal with a pole (or a complex-conjugate pair 
of poles) near the origin decays more rapidly than one associated with a pole 
near (but inside) the unit circle. Thus the time behavior of a signal depends 
strongly on the location of its poles relative to the unit circle. Zeros also af- 
fect the behavior of a signal but not as strongly as poles. For example, in the 
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Figure 3.13 Causal s~pnal  corresponding to a double pair of complex-conjugate 
poles on the unlt circle. 

case of sinusoidal signals, the presence and location of zeros affects only their 
phase. 

At this point. it should be stressed that everything we have said about causal 
signals applies as well to causal LTl systems, since their impulse response is a causal 
signal. Hence i f  a pole of a system is outside the unit circle, the imputse response 
of the system becomes unbounded and. consequently, the system is unstable. 

3.3.3 The System Function of a Linear Tirne-Invariant 
System 

In Chapter 2 we demonstrated that the output of a (relaxed) linear time-invariant 
system to an input sequence x(n)  can be obtained by computing the convolution 
of x ( n )  with the unit sample response of the system. The convolution propert!'. 
derived in Section 3.2. allows us to express this relationship in the :-domain as 

Y (:) = H ( : ) X ( z )  (3.3 4) 

where Y t:) 1s the z-transform of the output sequence v (n ) .  X ( z )  is the :-transform 
of the input sequence x ( n )  and H ( z )  is the z-transform of the unit sample response 
h ( n ) .  

If we know h ( n )  and x ( n ) ,  we can determine their corresponding :-transforms 
H ( z )  and X(:). multjply them to obtain Y ( : ) ,  and therefore determine ~ ( n )  by 
evaluating the inverse :-transform of Y ( : ) .  Alternatively, if we know x ( n )  and we 
observe the output y ( n )  of the system. we can determine the unit sample response 
by first solving for H ( : )  from the relation 

and then evaluating the inverse :-transform of H ( z ) .  
Since 
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it is clear that H ( z )  represents the z-domain characterization of a system, whereas 
h ( n )  is the corresponding time-domain characterization of the system. In other 
words, H ( i )  and h ( n )  are equivalent descriptions of a system in the two domains. 
The transform H ( z )  is called the system function, 

The relation in (3.3.5) is particularly useful in obtaining H ( z )  when the system 
is described by a linear constant-coefficient difference equation of the form 

In this case the system function can be determined directly from (3.3.7) by com- 
puting the z-transform of both sides of (3.3.7). Thus, by applying the time-shifting 
property, we obtain 

or, equivalently, 

Therefore, a linear time-invariant system described by a constant-coefficient dif- 
ference equation has a rational system function. 

 his-is the general form for the system function of a system described by a 
linear constant-coefficient difference equation. From this general form we obtain 
two important special forms. First, if ak = 0 for 1 ( k 5 N, (3.3.8) reduces to 

In this case, H ( z )  contains M zeros, whose values are determined by the 
system parameters (bk}, and an Mth-order pole at the origin z = 0. Since the 
system contains only trivial poles (at z = 0) and M nontrivial zeros, it is called 
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an all-zero sysrem. Clearly. such a system has a finite-duration impulse response 
(FIR), and it is called an FIR system or a moving average (MA) system. 

On the other hand. if bk = 0 for 1 5 k M ,  the system function reduces to 

In this case H(:) consists of N poles. whose values are determined by the system 
parameters ( a k )  and an Nth-order zero at the origin c = 0. We usually do not 
make reference to these trivlal zeros. Consequently. the system function in (3.3.10) 
contains only nontrivial poles and the corresponding system is called an all-pole 
sysrem. Due to the presence of poles. the impulse response of such a system is 
infinite in duration, and hence it is an IIR system. 

The general form of the system function given by (3.3.8) contains both poles 
and zeros. and hence the corresponding system is called a pole-zero system. with 
N poles and M zeros. Poles and/or zeros at : = 0 and s = cxz are implied but are 
not counted explicitly. Due to the presence of poles, a pole-zero system is an IIR 
system. 

The following example illustrates the procedure for determining the system 
function and the unit sample response from the difference equation. 

Example 3.3.4 

Determine the system function and the unit sample response of the system described 
by the difference equation 

Solution By computing the :-transform of the difference equation. we obtain 

Hence the system function is 

This system has a pole at : = and a zero at the origin. Using Table 3.3 we obtain 
the inverse transform 

This is the unit sample response of the system. 



184 The z-Transform and Its Application to the Analysis of LTI Systems Chap. 3 

We have now demonstrated that rational z-transforms are encountered in 
commonly used systems and in the characterization of linear time-invariant sys- 
tems. In Section 3.4 we describe several methods for determining the inverse 
z-transform of rational functions. 

3.4 INVERSION OF THE 2-TRANSFORM 

As we saw in Section 3.1.2, the inverse z-transform is formally given by 

where the integral is a contour integral over a closed path C that encloses the 
origin and lies within the region of convergence of X(z). For simplicity, C can be 
taken as a circle in the ROC of X(z) in the z-plane. 

There are three methods that are often used for the evaluation of the inverse 
z-transform in practice: 

1. Direct evaluation of (3.4.1), by contour integration. 
2. Expansion into a series of terms, in the variables z, and z-'. 
3. Partial-fraction expansion and table lookup. 

3.4.1 The Inverse z-Transform by Contour Integration 

In this section we demonstrate the use of the Cauchy residue theorem to determine 
the inverse z-transform directly from the contour integral. 

Cauchy residue theorem. Let f (2) be a function of the complex variable 
z and C be a closed path in the z-plane. If the derivative df (z)/dz exists on and 
inside the contour C and if f (z) has no poles at z = zo, then 

if 20 is inside C 
if 20 is outside C 

More generally, if the (k + 1)-order derivative of f (z) exists and f (2) has no poles 
at z = zo, then 

(o+ml , i f zo i s ins ideC 
& $ A d z  = (k - I)! dzk-I z=zo (3.4.3) 
2x1 c (z - zoIk 

if zo is outside C 

The values on the right-hand side of (3.4.2) and (3.4.3) are called the residues of 
the pole at z = zo. The results in (3-4.2) and (3.4.3) are two forms of the Cauchy 
residue theorem. 

We can apply (3.4.2) and (3.4.3) to obtain the values of more general contour 
integrals. To be specific, suppose that the integrand of the contour integral is 
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P ( z )  = f ( z ) / g ( : ) .  where f (:) has no poles inside the contour C and g ( z )  is a 
polynomial with distinct (simple) roots :I, ,-2, . . . . zn inside C.  Then - - 

= C A , G , )  
I =1 

where 
f ( z )  

A[ (:) = ( z  - :,I P ( : )  = ( z  - 1 - (3.4.5) 
g ( z )  

The values ( A ,  ( z , ) }  are residues of the corresponding poles at z = z,, i = 1.2, . . . , n. 
Hence the value of the contour integral is equal to the sum of the residues of all 
the poles inside the contour C. 

We observe that (3.4.4) was obtained by performing a partial-fraction expan- 
sion of the integrand and applying (3.4.2). When g(z )  has multiple-order roots 
as well as simple roots inside the contour, the partial-fraction expansion, with ap- 
propriate modificat~ons. and (3.4.3) can be used to evaluate the residues at the 
corresponding poles. 

In the case of the inverse ,--transform. we have 

= C [residue of x(:);"-' at z = ;,I (3.4.6) 
all poles I:, 1 Inside C 

= E(: - 2 i ) x ( z ) ~ ~ - ~ l : = : ~  
I 

provided that the poles { z ,  ) are simple. If x (2):"-' has no poles inside the contour 
C for one or more values of n, then x ( n )  = 0 for these values. 

The following example illustrates the evaluation of the inverse z-transform 
by use of the Cauchy residue theorem. 

Example 3.4.1 

Evaluate the inverse z-transform of 
1 

X ( z )  = - 
1 - a:-I 

l:I > la1 

using the complex inversion integral. 

Solution We have 

where C is a circle at radius greater than la/ .  We shall evaluate this integral using 
(3.4.2) with f (z) = z". We distinguish two cases. 
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L If n 2 0, f (z) has only zeros and hence no poles inside C. The only pole inside 
C is z = a. Hence 

x(n) = f (z0)  = a n  n 2 0 

2. If n < 0, f (2) = zn has an nth-order pole at z = 0, which is also inside C. Thus 
there are contributions from both poles. For n = -1 we have 

If n = -2, we have 

1 1 
I ( - 2 )  = -j7d2 2nj rz2(z - 0  = $ (A) lr4 + $Iza = o 

By continuing in the same way we can show that x ( n )  = 0 for n < 0. Thus 

3.4.2 The Inverse I-Transform by Power Series 
Expansion 

The basic idea in this method is the following: Given a z-transform X(z) with its 
corresponding ROC, we can expand X ( z )  into a power series of the form 

which converges in the given ROC. Then, by the uniqueness of the z-transform, 
x ( n )  = c, for all n. When X(z) is rational, the expansion can be performed by 
long division. 

To illustrate this technique, we will invert some z-transforms involving the 
same expression for X ( z ) ,  but different ROC. This will also serve to emphasize 
again the importance of the ROC in dealing with z-transforms. 

Determine the inverse z-transform of 
1 

X ( z )  = 1 - 1.5~-1 + 0 . 5 ~ - ~  

when 

(a) ROC: lzl > 1 
(b) ROC: lz1 < 0.5 

(a) Since the ROC is the exterior of a circle, we expect x(n) to be a causal signal- 
Thus we seek a power series expansion in negative powers of z. By dividing 
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the numerator of X ( z ,  by its denominator. we obtain the power series 

By cornpanng this relation with (3.1.1), we conclude that 

x ( n )  = [ I .  +, { .  g. x 2.. 16 . .I 

Nore thar in each step of the long-division process. we eliminate the lowest- 
power term of ;-'. 

(b) 1n this case the ROC is the interior of a circle. Consequently, the signal .l-(n) 

is anticausal. T o  obtain a power series expansion in positive powers of :, we 
perform the long division in the following way: 

Thus 

In this case x ( n )  = O for 11 2 0, By comparing this result to (3.1.1). we conclude 
that 

We observe that in each step of the long-division process, the lowest-power 
term of : is eliminated. We emphasize that in the case of anticausal s ~ g -  
nals we simpl!. carry out the Long division by writing down the two poly- 
nomials in "reverse" order (i.e.. starting with the most negative term on the 
left). 

From this example we note that. in general, the method of long division will 
not provide answers for x ( n )  when n is large because the long division becomes 
tedious. Although, the method provides a direct evaluation of x ( n ) ,  a closed-form 
solution is not possible, except if the resulting pattern is simple enough to infer 
the general term x ( n ) .  Hence this method is used only if one wished to determine 
the values of the first few samples of the signal. 
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Example 3.4.3 

Determine the inverse :-transform of 

X ( z )  = log(1 + a:-') Izl > lal 

Solution Using the power series expansion for log0 + 11, with 1x1 < 1, we have 

Thus 

Expansion of irrational functions into power series can be obtained from tables. 

3.4.3 The Inverse z-Transform by Partial-Fraction 
Expansion 

In the table lookup method, we attempt to express the function X ( z )  as a linear 
combination 

X(z) = a1X1(:) + crzXz(z) + - - - + ~ K X K ( Z )  (3.4.8) 

where XI ( z ) ,  . . . . X K  (z) are expressions with inverse transforms xl ( n ) ,  . . . , x K ( n )  
available in a table of z-transform pairs. If such a decomposition is possible, 
then x(n) ,  the inverse z-transform of X(z) ,  can easily be found using the linearity 
property as 

x(n)  = alxt(n)  + crzxz(n) + - . .  + a ~ x ~ ( n )  (3.4.9) 

This approach is particularly useful if X(r) is a rational function, as in (3.3.1). With- 
out loss of generality, we assume that a0 = 1, so that (3.3.1) can be expressed as 

Note that if a0 # 1, we can obtain (3.4.10) from (3.3.1) by dividing both numerator 
and denominator by ao. 

A rational function of the form (3.4.10) is called proper if a~ # 0 and M < N. 
From (3.3.2) it follows that this is equivalent to saying that the number of finite 
zeros is less than the number of finite poles. 

An improper rational function (M 2 N) can always be written as the sum of 
a polynomial and a proper rational function. This procedure is illustrated by the 
following example. 

Example 3.44 

Express the improper rational transform 

in terms of a polynomial and a proper function. 
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Solution First. we note that we should reduce the numerator so  that the terms z-' 
and :-' are eliminated. Thus we should carry out the long division with these two 
polynomials written in reverse order. We stop the division when the order of the 
remainder becomes :-I. Then we obtain 

1 .-I 

X(,) = 1 + 2:-' + 6' 
1 + $ - I +  +-2 

In general, any improper rational function (M 2 N)  can be expressed as 

The inverse I-transform of the polynomial can easily be found by inspection. 
We focus our attention on the inversion of proper rational transforms, since any 
improper function can be transformed into a proper function by using (3.4.11). 
We carry out the development in two steps. First, we perform a partial frac- 
tion expansion of the proper rational function and then we invert each of the 
terms. 

Let X(:) be a proper rational function. that is, 

where 

ah; # O and M I N 

To simplify our discussion we eliminate negative powers of : by multiplying both 
the numerator and denominator of (3.4.12) by z N .  This results in 

which contains only positive powers of :. Since N > M ,  the function 

is also always proper. 
Our task in performing a partial-fraction expansion is to express (3.4.14) 

or, equivaiently, (3.4.12) as a sum of simple fractions. For this purpose we first 
factor the denominator poiynomial in (3.4.14) into factors that contain the poles 
PI. I)?, . . . , p~ of X ( ; ) .  We distinguish two cases. 

Distinct poles. Suppose that the poles pl ,  p2, . . . . p~ are all different (dis- 
tinct). Then we seek an expansion of the form 

The problem is to determine the coefficients A1, A 2 , .  . . , A N .  There are two ways 
to solve this problem, as illustrated in the following example. 
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Example 3.45 

Determine the partial-fraction expansion of the proper function 

Solution First we eliminate the negative powers, by multiplying both numerator and 
denominator by z2 .  Thus 

The poles of X( i )  are pl = 1 and p;l = 0.5. Consequently, the expansion of the form 
(3.4.15) is 

A very simple method to  determine Al and A2 is to multiply the equation by the 
denominator t e r n  ( z  - l ) ( z  - 0.5). Thus we obtain 

: = (Z - 0.5)Al + (2  - 1)Az (3.4.18) 

Now if we set : = pl  = 1 in (3.4.18), we eliminate the term involving Az. Hence 

1 = (1 - 0.5)AI 

Thus we obtain the result A, = 2. Next we return to (3.4.18) and set z = p2 = 0.5, 
thus eliminating the term involving A l ,  so we have 

and hence A? = -1. Therefore, the result of the partial-fraction expansion is 

The example given above suggests that we can determine the coefficients Al ,  
A2, . . . , A N ,  by multiplying both sides of (3.4.15) by each of the terms (2 - p L ) ,  
k = 1, 2. . . . , N, and evaluating the resulting expressions at the corresponding pole 
positions, pl, p*, - . . , p ~ .  Thus we have, in general, 

Consequently, with z = pk, (3.4.20) yields the kth coefficient as 

Example 3.4.6 

Determine the partial-fraction expansion of 
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Solution To eliminate negative powers of: in (3.4.22). we multiply both numerator 
and denominator by z'. Thus 

The poles of X ( z )  are complex conjugates 

and 
p? = l -  j i  - 2 

Since p ,  # p?. we seek an expansion of the form (3.4.15). Thus 

To obtain A ,  and A?,  we use the formula (3.4.21) Thus we obtain 

The expansion (3.4.15) and the formula (3.4.21) hold for both real and com- 
plex poles. The only constraint is that all poles be distinct. We also note that 
A: = A ; .  It can be easily seen that this is a consequence of the fact that pz = p i .  
In other words, cornpiex-conjugate poles result in complex-conjugare coefficients in 
the partial-fraction expansion. This simple result will prove very useful later in our 
discussion. 

Multiple-order poles. If X ( i )  has a pole of multiplicity 1, that is, it contains 
in its denominator the factor ( z  - p k ) ' ,  then the expansion (3.4.15) is no longer 
true. In this case a different expansion is needed. First, we investigate the case of 
a double pole (i.e., I = 2). 

Example 3.4.7 

Determine the partial-fraction expansion of 

Solution First, we express (3.4.23) in terms of positive powers of :, in the form 

X(:) - 2  
I-= 

: ( z + l ) ( ~ - l ) ~  
X (2) has a simple pole at pl = -1 and a double pale p2 = p3 = 1. In such a case the 
appropriate partial-fraction expansion is 

The problem is to determine the coefficients A1, A2 ,  and A3. 
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We proceed as in the case of distinct poles. To determine A l ,  we multiply both 
sides of (3.4.24) by (z + 1) and evaluate the result at z = -1. Thus (3.4.24) becomes 

whch, when evaluated at z  = -1, yields 

A ,  = 
1 

Next. if we multiply both sides of (3.4.24) by ( z  - 112, we obtain 

Now, if we evaluate (3.4.25) at z = 1, we obtain A3. Thus 

The remaining coefficient A2 can be obtained by differentiating both sides of 
(3.4.25) with respect to t and evaluating the result at z  = 1. Note that it is not 
necessary formally to carry out the differentiation of the right-hand side of (3.4.25), 
since all terms except A2 vanish when we set : = I .  Thus 

The generalization of the procedure in the example above to the case of an 
lth-order pole (z - pk)' is straightforward. The partial-fraction expansion must 
contain the terms 

The coefficients ( A i ~ )  can be evaluated through differentiation as illustrated in 
Example 3.4.7 for 1 = 2. 

Now that we have performed the partial-fraction expansion, we are ready to 
take the final step in the inversion of X(z). First, let us consider the case in which 
X(z) contains distinct poles. From the partial-fraction expansion (3.4.15), it easily 
follows that 

1 
X ( Z )  = A1 - 1 1 

l - p , z - l  + A  ~ - 1 + . . . + A x -  (3.4.27) 
1 p2z- 1 - pffz-I  

The inverse z-transform, x ( n )  = Z - I  (X(z)], can be obtained by inverting each 
term in (3.4.27) and taking the corresponding linear combination. From Table 3.3 
it follows that these terms can be inverted using the formula 

( p t ) " u ( n ) ,  if ROC: Izl > lptl  
1 (causal signals) 

-(pk)"u(-n - I ) ,  if ROC: Izl i lpkI 
(3.4.28) 

I (anticausal signals) 
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If the signal x ( n )  is causal, the ROC is izl > Pmax, where p,,, = maxlJplJ,  
Ip2 1. . . . . I p x  1 ) .  In this case all terms in (3.4.27) result in causal signal components 
and the signal x ( n )  is given by 

x ( n )  = ( A l p ;  + A.p: + . .  . + A ~ p k ) u ( r ~ )  (3.4.29) 

If all poles are real. (3.4.29) is the desired expression for the signal x ( n ) .  Thus a 
causal signal, having a :-transform that contains real and distinct poles. is a linear 
combination of real exponential signals. 

Suppose now that all poles are distinct but some of them are complex. In 
this case some of the terms in (3.4.27) result in complex exponential components. 
However. if the signal x l n )  is real. we should be able to reduce these terms into 
real components. If x(r1) is real, the polvnomials appearing in X ( z )  have real co- 
efficients. In this case. as we have seen in Section 3.3. if p, is a pole, its complex 
conjugate p; is also a pole. As was demonstrated in Example 3.4.6, the correspond- 
Ing coefficients in the partial-fraction expansion are also complex conjugates. Thus 
the contribution of two complex-conjugate poles is of the form 

x ~ ( n )  = [A1 ( p i  1" + A ; ( p ; ) " ] u ( n )  (3.4.30) 

These two terms can be combined to form a real signal component. First. 
we express A, and p, in polar form (~.e . ,  amplitude and phase) as 

Ak = IAk lrJU' (3.4.31 ) 

p~ = rkrJPh (3.4.32) 

where u~ and are the  phase components of A* and pk.  Substitution of these 
relations into (3.4.30) gives 

X k ( n )  = IA,:(r"[e~(fitf l+"~ I + e-~c8~rl+uk ]u ( n )  

or. equivalently, 

Thus we conclude that 
A * 

I - pkz - l  + 6) = 2 1 ~ k / r ;  cos(~kn + a r ) u ( n )  
Z - I  (A (3.4.34) 

if the ROC is Izj > Ipr I = rk. 
From (3.4.34) we observe that each pair of complex-conjugate poles in the 

z-domain results in a causal sinusoidal signal component with an exponential en- 
velope. The distance r,: of the pole from the origin determines the exponential 
weighting (growing if rk > 1, decaying if rk i 1, constant if rk = 1). The angle of 
the poles with respect to the positive real axis provides the frequency of the sinu- 
soidal signal. The zeros, or equivalently the numerator of the rational transform, 
affect only indirectly the amplitude and the phase of xk(n)  through Ak.  

In the case of rnulripie poles. either real or complex, the inverse transform 
of terms of the form A / ( z  - p k ) "  is required. In the case of a double pole the 
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following transform pair (see Table 3.3) is quite useful: 

provided that the ROC is l z l  > IpI. The generalization to the case of poles with 
higher multiplicity is left as an exercise for the reader. 

Example 3.4.8 

Determine the inverse z-transform of 

(a) ROC: Izl > 1 

(b) ROC: Izl < 0.5 
(c) ROC: 0.5 < lzl < 1 

Solution This is the same problem that we treated in Example 3.4.2. The partial- 
fraction expansion for X ( z )  was determined in Example 3.4.5. The partial-fraction 
expansion of X ( z )  yields 

To invert X ( z )  we should apply (3.4.28) for p ,  = 1 and pz = 0.5. However, this 
requires the specification of the corresponding ROC. 

(a) In case when the ROC is l z /  > 1, the signal x(n) is causal and both terms in 
(3.4.36) are causal terms. According to (3.4.28). we obtarn 

x ( n )  = 2 ( l ) " u ( n )  - (0.5)"u(n) = ( 2  - O S n ) u ( n )  (3.4.37) 

which agrees with the result in Example 3.4.2(a). 
(b) When the ROC is IzI < 0.5,  the signal x ( n )  is anticausal. Thus both terns in 

(3.4.36) result in anticausal components. From (3.4.28) we obtain 

x ( n )  = [- 2  + (0.5)"]u(-n - 1 )  (3.4.38) 

(c) In this case the ROC 0.5 < I:[ c 1 is a ring. whch implies that the signal x ( n )  is 
two-sided. Thus one of the terms corresponds to a causal signal and the other 
to an anticausal signal. Obviously, the given ROC is the overlapping of the 
regions (z l  > 0.5 and lz [  < 1. Hence the pole pl  = 0.5 provides the causal part 
and the pole pl = 1 the anticausal. Thus 

Example 3.4.9 

Determine the causal signal x ( n )  whose z-transform is given by 
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Solution In Example 3.4.6 we have obtained the partial-fraction expansion as 

where 

~ ~ = A f = i - j ;  

and 

p1 = P I =  { + j {  

Since we have a pair of complex-conjugate poles, we should use (3.4.34). The 
polar forms of A ,  and pl are 

1 
p1 = - p l . T i 4  

JZ 
Hence 

Example 3.4.10 

Dctermlne the causal signal x ( n )  having the ;-transform 

1 
X ( , )  = 

( I  + : - ] ) ( I  - : - I ) ?  

Solution From Example 3.4.7 we have 

By applying the inverse transform relations in (3.4.28) and (3.4.35). we obtain 

3.4.4 Decomposition of Rational z-Transforms 

At this point it is appropriate to discuss some additional issues concerning the 
decomposition of rational z-transforms, which will prove very useful in the imple- 
mentation of discrete-time systems. 

Suppose that we have a rational :-transform X(z) expressed as 
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where, for simplicity, we have assumed that a0 = I. If M 2 N [i.e., X(z) is 
improper], we convert X ( z )  to a sum of a polynomial and a proper function 

M-N 

X(Z) = c ckz" + Xpr(z) 
k=O 

If the poles of XPr(z) are distinct, it can be expanded in partial fractions as 

1 
Xpr(z) = Al- 

l 1 
+A2- +...+ 

1 - P ~ Z - '  I - p2z-l 1 - pNz-l (3.4.42) 
As we have already observed, there may be some complex-conjugate pairs of 

poles in (3.4.42). Since we usually deal with real signals, we should avoid complex 
coefficients in our decomposition. This can be achieved by grouping and combining 
terms containing complex-conjugate poles, in the following way: 

where 

are the desired coefficients. Obviously, any rational transform of the form (3.4.43) 
with coefficients given by (3.4.44), which is the case when a: - 4az < 0, can be 
inverted using (3.4.34). By combining (3.4.41). (3.4.42), and (3.4.43) we obtain a 
partial-fraction expansion for the z-transform with distinct poles that contains real 
coefficients. The general result is 

M-N 

X(Z) = c c~z- '  (3.4.45) 
k=O 

where K1 + 2 K 2  = N. Obviously, if M = N, the first term is just a constant, 
and when M < N, this term vanishes. When there are also multiple poles, some 
additional higher-order terms should be included in (3.4.45). 

An alternative form is obtained by expressing X(Z) as a product of simple 
terms as in (3.4.40). However, the complex-conjugate poles and zeros should be 
combined to avoid complex coefficients in the decomposition. Such combinations 
result in second-order rational terms of the following form: 

where 

btk = -2 Re(zk), a l k  = -2Re(pk) 

b2k = I Z ~ I ~ V  a2 = I P ~ I *  
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Assuming for simplicity that M = N ,  we see that X(z)  can be decomposed in the 
following way: 

where N = K1 + 2 K 2 +  We will return to these important forms in Chapters 7 and 8& 

3.5 THE ONE-SIDED Z-TRANSFORM 

The two-sided :-transform requires that the corresponding signals be specified 
for the entire time range -oo < n < m. This requirement prevents its use for 
a very useful family of practical problems, namely the evaluation of the output 
of nonrelaxed systems. As we recall. these systems are described by difference 
equations with nonzero initial conditions. Since the input is applied at a finite 
time, say no, both input and output signals are specified for n no, but by no 
means are zero for n < no. Thus the two-sided 2-transform cannot be used. In this 
section we develop the one-sided i-transform which can be used to solve difference 
equations with initial conditions. 

3.5.1 Definition and Properties 

The one-sided or unilateral :-transform of a signal x ( n )  is defined by 

We also use the notations Z+{x(n))  and 

The one-sided z-transform differs from the two-sided transform in the lower 
limit of the summation, which is aiways zero, whether or not the signal x ( n )  is zero 
for n < 0 (i.e.. causal). Due to this choice of lower limit, the one-sided z-transform 
has the following characteristics: 

1. It does not contain information about the signal x ( n )  for negative values of 
time (i.e., for n < 0). 

2. It is unique only for causal signals, because only these signals are zero for 
n < 0. 

3. The one-sided z-transform Xf (z) of x ( n )  is identical to the two-sided z- 
transform of the signal x ( n ) u ( n ) .  Since x ( n ) u ( n )  is causal, the ROC of its 
transform, and hence the ROC of X'(z), is always the exterior of a circle. 
Thus when we deal with one-sided z-transforms, it is not necessary to refer 
to their ROC. 
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Example 35.1 

Determine the one-sided z-transform of the signals in Example 3.1.1. 

Solution From the definition (3.5.1), we obtain 

( n )  = ( k )  k > 0 - X: (L)  = I-' 

.+ 
x7(n )  = 6 ( n  + k ) .  k > 0 - X;(Z) = 0 

Note that for a noncausal signal, the one-sided :-transform is not unique. Indeed, 
X:(z) = X:(z)  but x2(n) # x4(n) .  Also for anticausal signals, X+(z) is always zero. 

Almost all properties we have studied for the two-sided z-transform carry over to 
the one-sided z-transform with the exception of the shifting property. 

Shiftlng Property 

Case l: Tune Delay If 

x ( n )  - x+(T)  
then 

k 

x(n - t) z-~[x+(z)  + E x ( - n ) z n l  t > o 
n=l 

In case x ( n )  is causal, then 

Proof. From the definition (3.5.1) we have 

By changing the index from I to n = -1, the result in (3.5.2) is easily obtained. 
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Example 3.5.2 

Determine the one-sided :-transform of the signals 

( a )  x ( n )  = a n u ( n )  

(b) s l ( n )  = x ( n  - 2) where x ( n )  = a" 

Solution 

(a) From (3.5.1) we easily obtain 

(b) We will apply the shifting property for k = 2 .  Indeed. we have 

Z + { x ( n  - 2 ) )  = : - > [ x + ( z )  + x ( - 1 ) :  + x(-2)z2] 

= :-:x+(:) + x ( - I ) : - '  + x ( - 2 )  

Since .r(-1) = a - ' .  x(-2) = LI- ' .  we obtain 

The meaning of the shifting property can be intuitively explained if we write (3.5.2) 
as follows: 

To obtain x ( n  - k ) ( k  > 0) from x ( n ) ,  we should shift x ( n )  by k samples to the right. 
Then k "new'' samples, x ( - k ) ,  x ( - k  + I ) .  . . . . x(-1). enter the positive time axis 
with x ( - k )  located at time zero. The first term in (3.5.4) stands for the z-transform 
of these sampies. The "old" samples of x ( n  - k) are the same as those of x ( n )  
simply shifted by k  samples to the right. Their z-transform is obviously z -~x+(: ) ,  
which is the second term in (3.5.4). 

Case 2: Time advance If 

x ( n )  X + ( z )  

then 

Proof. From (3.5.1) we have 

where we have changed the index of summation from n to 1 = n + k .  Now, from 
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(3.5.1) we obtain 

By combining the last two relations, we easily obtain (3.5.5).  

Example 35.3 

With x ( n ) ,  as given in Example 3.5.2, determine the one-sided :-transform of the 
signal 

Solution We will apply the shifting theorem for k = 2. From (3.5.5). with k = 2, we 
obtain 

But x(0) = 1, x(1) = o ,  and X + ( z )  = 1/(1 - a : - ' ) .  Thus 

The case of a time advance can be intuitively explained as follows. To obtain 
x(n+k) ,  k > 0, we should shift x ( n )  by k samples to the left. As a result, the samples 
x (0). x (1 ), . . . , x (k - 1 )  "leave" the positive time axis. Thus we first remove their 
contribution to the X + ( z ) ,  and then multiply what remains by ? t o  compensate 
for the shifting of the signal by k samples. 

The importance of the shifting property lies in its application to the solution 
of difference equations with constant coefficients and nonzero initial conditions. 
This makes the one-sided i-transform a very useful tool for the analysis of recursive 
linear time-invariant discrete-time systems. 

An important theorem useful in the analysis of signals and systems is the 
final value theorem. 

Final Value Theorem. If 
-+ 

x ( n )  A X + ( i )  

then 

lim x (n) = lim(z - l )X+(z)  
n+ oo z- 1 

(3.5.6) 

The limit in (3 .5 .5)  exists if the ROC of (z - l ) X + ( r )  includes the unit circle. 

The proof of this theorem is left as an exercise for the reader. 
This theorem is useful when we are interested in the asymptotic behavior of 

a signal x ( n )  and we know its z-transform, but not the signal itself. In such cases, 
especially if it is compiicated to invert X + ( z ) ,  we can use the final value theorem 
to determine the limit of x ( n )  as n goes to infinity. 
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Example 35.4 

The impulse response of a relaxed linear time-invariant system is h ( n )  = a n u ( n ) ,  
la/ < 1.  Determine the value of the step response of the system as n  4 oo. 

Solution The step response of the system is 

where 

Obviously, if we excite a causal system with a causal input the output will be causal. 
Since h(n) ,  x ( n ) ,  ~ ( n )  are causal signals, the one-sided and two-sided z-transforms are 
identical. From the convolution property (3.2.17) we know that the z-transforms of 
h ( n )  and x ( n )  must be multiplied to yield the z-transform of the output. Thus 

1  1 
Y ( 2 )  = -- = 

z 
ROC: lz l  > la1 

1  - a:-] 1 - :-I (z - I)(: -a) 
Now 

-- 
: - I ) :  = A ROC: 121 > la1 

i-ff 

Since la1 < 1 the ROC of (: - I )  Y (z) includes the unit circle* Consequently, we can 
apply (3.5.6) and oblain 

7 -- 1 
lim v ( n )  = lim - = - 

n-rn 1 -  1 - a  

3.5.2 Solution of Difference Equations 

The one-sided z-transform is a very efficient tool for the solution of difference 
equations with nonzero initial conditions. It achieves that by reducing the dif- 
ference equation relating the two time-domain signals to an equivalent algebraic 
equation relating their one-sided z-transforms. This equation can be easily solved 
to obtain the transform of the desired signal. The signal in the time domain is 
obtained by inverting the resulting z-transform. We will illustrate this approach 
with two examples. 

Example 3 5 5  

The well-known Fibonacci sequence of integer numbers is obtained by computing 
each term as the sum of the two previous ones. The first few terms of the sequence are 

Determine a closed-form expression for the nth term of the Fibonacci sequence. 

Solution Let y ( n )  be the nth term of the Fibonacci sequence. Clearly, y ( n )  satisfies 
the difference equation 
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with initial conditions 

From (3.5.8b) we have >.(-I) = 0. Then (3.5.8a) gives y(-2) = 1. Thus we have to 
determine v ( n ) .  n 2 0, which satisfies (3.5.7). with initial conditions y(-1) = 0 and 
?(-2) = 1. 

By taking the one-sided ;-transform of (3.5.7) and using the shifting property 
(3.5.2). we obtain 

or  

1 -- 
Y + ( : )  = 7 =- 7 ] - - - I - : -  : - - : - I  (3.5.9) 

where we have used the fact that Y(-1) = 0 and y(-2) = 1 .  
We can invert Y + ( : )  by the partial-fraction expansion method. The poles of 

Y+(:) are 

and the corresponding coefficients are A ,  = pi;v3 and A: = - f > 2 i & .  Therefore. 

or, equivalently. 

Example 3.5.6 

Determine the step response of the system 

when the initial condition is ?(-I) = 1. 

Solution Bv taking the one-sided :-transform of both sides of (3,5.11), we obtain 

Y + ( : )  = a [ : - ' y i ( z )  + ?.(-I)] + X + ( : )  

Upon substktution for ?(-I) and X+(:) and solving for Y + ( z ) .  we obtain the result 

Yi(z) = Q 
1 + (3.5.12) 

1 - a:-' (1 - a:-])(l - 2-11 

By performing a partial-fraction expansion and inverse transforming the result. we 
have 
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3.6 ANALYSIS OF LINEAR TIME-tNVARIANT SYSTEMS IN THE 
I-DOMAIN 

In Section 3.4.3 we introduced the system function of a linear time-invariant sys- 
tem and related it to the unit sample response and to the difference equation 
description of systems. In this section we describe the use of the system func- 
tion in the determination of the response of the system to some excitation signal. 
Furthermore, we extend this method of analysis to nonrelaxed systems. Our atten- 
tion is focused on the important class of pole-zero systems represented by linear 
constant-coefficient difference equations with arbitrary initial conditions. 

We also consider the topic of stability of linear time-invariant systems and 
describe a test for determining the stability of a system based on the coefficients 
of the denominator polynomial in the system function. Finally, we provide a 
detailed analysis of second-order systems, which form the basic building blocks in 
the realization of higher-order systems. 

3.6.1 Response of Systems with Rational System 
Functions 

Let us consider a pole-zero system described by the general linear constant- 
coefficient difference equation in (3.3.7) and the corresponding system function 
in (3.3.8). We represent H(z) as a ratio of two polynomials B(z)/A(z), where 
B(z) is the numerator polynomial that contains the zeros of H(z), and A(z) is the 
denominator polynomial that determines the poles of H(z). Furthermore, let us 
assume that the input signal x ( n )  has a rational z-transform X(z) of the form 

This assumption is not overly restrictive, since, as indicated previously, most signals 
of practical interest have rational z-transforms. 

If the system is initially relaxed, that is, the initial conditions for the difference 
equation are zero, y(-1) = y( -2 )  = = y(-N) = 0, the z-transform of the 
output of the system has the form 

Now suppose that the system contains simple poles pl, p2, .  . . , p~ and the z- 
transform of the input signal contains poles ql,  92,. . . , q ~ ,  where pk # qm for all 
k = 1, 2. .. . , N and m = 1, 2, .. . , L. In addition, we assume that the zeros of 
the numerator polynomials B(z) and N(z) do not coincide with the poles ( p k }  and 
{qk}, SO that there is no pole-zero cancellation. Then a partial-fraction expansion 
of Y (z) yields 
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The inverse transform of Y ( z )  yields the output signal from the system in the form 

We observe that the output sequence y(n) can be subdivided into two parts. The 
first part is a function of the poles { p k )  of the system and is called the nasural 
response of the system. The influence of the input signal on this part of the 
response is through the scale factors ( A k ) .  The second part of the response is a 
function of the poles {qk] of the input signal and is called the forced response of 
the system. The influence of the system on this response is exerted through the 
scale factors {el-). 

We should emphasize that the scale factors ( A k )  and (Qk} are functions of 
both sets of poles { p k }  and {qk). For example, if X ( z )  = 0 so that the input is 
zero, then Y(z) = 0, and consequently. the output is zero. Clearly, then, the 
natural response of the system is zero. This implies that the natural response of 
the system is different from the zero-input response. 

When X(z) and H ( z )  have one or more poles in common or when X ( z )  
and/or H ( z )  contain multiple-order poles, then Y(z) will have multiple-order poles. 
Consequently, the partial-fraction expansion of Y (2) will contain factors of the form 
I / ( l  - p,z-')k, k = 1, 2, . . . , rn,  where m is the pole order. The inversion of these 
factors will produce terms of the form nk- lp :  in the output y ( n )  of the system, as 
indicated in Section 3.4.2. 

3.6.2 Response of Pole-Zero Systems with Nonzero 
Initial Conditions 

Suppose that the signal x(n) is applied to the pole-zero system at n = 0. Thus 
the signal x ( n )  is assumed to be causal. The effects of all previous input signals to 
the system are reflected in the initial conditions y(-1), y(-2), . . . , y ( - N ) .  Since 
the input x ( n )  is causal and since we are interested in determining the output y ( n )  
for n  2 0, we can use the one-sided z-transform, which allows us to deal with the 
initial conditions. Thus the one-sided z-transform of (3.4.7) becomes 

Since x ( n )  is causal, we can set X+(z) = X(z). In any case (3.6.5) may be expressed 



Sec. 3.6 Analysis of Linear Time-Invariant Systems in the z-Domain 

where 

From (3.6.6) it is apparent that the output of the system with nonzero initial 
conditions can be subdivided into two parts. The first is the zero-state response of 
the system, defined in the z-domain as 

The second component corresponds to the output resulting from the nonzero initial 
conditions. This output is the zero-input response of the system, which is defined 
in the z-domain as 

Hence the total response is the sum of these two output components, which can 
be expressed in the time domain by determining the inverse z-transforms of Y,,(:) 
and Y ~ ( z )  separately, and then adding the results. Thus 

~ ( n )  = h ( n )  + yzi(n) (3.6.10) 

Since the denominator of Y;(Z), is Atz),  its poles are p l ,  pz, . . . . ph;. Conse- 
quently, the zero-input response has the form 

N 

This can be added to (3.6.4) and the terms involving the poles { p k )  can be combined 
to yield the total response in the form 

N L 

where, by definition, 
A; = Ak + Dk 

This development indicates clearly that the effect of the initial conditions 
is to alter the natural response of the system through modification of the scale 
factors (Ak) .  There are no new poles introduced by the nonzero initial conditions. 
Furthermore, there is no effect on the forced response of the system. These 
important points are reinforced in the following example. 

Example 3.6.1 

Determine the unit step response of the system described by the difference equation 

y(n)  = 0.9y(n - 1 )  - O.&ly(n - 2 )  + x ( n )  

under the following initial conditions: 
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Solution The system function is 

1 
H(:) = 

1 - 0.9:-' + 0 . 8 1 ~ - ~  

This system has two complex-conjugate poles at 

The :-transform of the unit step sequence is 

Therefore, 

and hence the zero-state response is 

(a) Since the initial conditions are zero in this case, we conclude that ~ ( n )  = y,(n).  

(b) For the initla1 conditions j ~ ( - l )  = y(-2) = 1, the additional component in the 
:-transform is 

Consequently, the zero-input response is 

In this case the total response has the z-transform 

The inverse transform yields the total response in the form 

3.6.3 Transient and Steady-State Responses 

As we have seen from our previous discussion, the response of a system to a given 
input can be separated into two components, the natural response and the forced 
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response. The natural response of a causal system has the form 
N 

where {pk}, k = 1, 2, . . . , N are the poles of the system and {Ak) are scale fac- 
tors that depend on the initial conditions and on the characteristics of the input 
sequence. 

If lpkl < 1 for all k, then, y, ,(n) decays to zero as n approaches infinity. In 
such a case we refer to the natural response of the system as the trumient response. 
The rate at which ynr(n) decays toward zero depends on the magnitude of the pole 
positions. If all the poles have small magnitudes, the decay is very rapid. On the 
other hand, if one or more poles are located near the unit circle, the corresponding 
terms in ynr(n) will decay slowly toward zero and the transient will persist for a 
relatively long time. 

The forced response of the system has the form 

where { q ~ ) .  k = 1, 2, . . . , L are the poles in the forcing function and {Qk} are 
scale factors that depend on the input sequence and on the characteristics of the 
system. If all the poles of the input signal fall inside the unit circle, yf,(n) will decay 
toward zero as n approaches infinity, just as in the case of the natural response. 
This should not be surprising since the input signal is also a transient signal. On 
the other hand, when the causal input signal is a sinusoid, the poles fall on the unit 
circle and consequently, the forced response is also a sinusoid that persists for all 
n 2 0. In this case, the forced response is called the steady-state response of the 
system. Thus, for the system to sustain a steady-state output for n 2 0, the input 
signal must persist for all n 1 0. 

The following example illustrates the presence of the steady-state response. 

Example 3.6.2 

Determine the transient and steady-state responses of the system characterized by 
the difference equation 

when the input signal is x ( n )  = lOcos(rrn/4)u(n). The system is initially at rest (i.e., 
it is relaxed). 

Solution The system function for this system is 
1 

H ( z )  = 

and therefore the system has a pole at z = 0.5. The z-transform of the input signal is 
(from Table 3.3) 
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Consequently. 

Y ( ; J  = H ( : ) X ( : )  

The natural or transient response is 

ynr(n) = 6.3(0.5)"u(n) 

and the forced or steady-state response is 

yrr(n ) = [ 6 . 7 8 ~ - ' ~ ~ . '  (el""'4 ) + 6.7SeJ2"~e- '"" '4]u(~~ 

Thus we see that the steady-state response persists for all n r U. just as the input 
signal persists for all n 2 0. 

3.6.4 Causality and Stability 

As defined previously. a causal linear time-invariant system is one whose unit 
sample response h ( n )  satisfies the condition 

We have also shown that the ROC of the :-transform of a causal sequence is the 
exterior of a circle. Consequently. a linear time-invariatir sysrenl is cartsal if and 
only if the ROC of the sysren7 fitncriot? is the exterior of a circle of radius r < CQ, 

including the point : = x. 
The stability of a linear time-invariant system can also be expressed in terms 

of the characteristics of the system function. As we recall from our previous 
discussion, a necessary and sufficienr condition for a linear time-invariant system 
to be BIB0  stable is 

lh(n) l  < sc 

In turn, this condition implies that H ( z )  must contain the unit circle within its ROC* 
Indeed, since 

n=-3C 

it follows that 

n =- x  n = - m  

When evaluated on  the unit circle (i.e.. 1z1 = l), 
CT 

IH(z)l 5 C lh(n)i 
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Hence, if the system is B I B 0  stable, the unit circle is contained in the ROC of 
H ( z ) .  The converse is also true. Therefore, a linear time-invoriont system h B I B 0  
stable if and only if the ROC of the system function includes the unit circle. 

We should stress, however, that the conditions for causality and stability are 
different and that one does not imply the other. For example, a causal system 
may be stable or unstable, just as a noncausal system may be stable or unstable. 
Similarly, an unstable system may be either causal or noncausal, just as a stable 
system may be causal or noncausal. 

For a causal system, however, the condition on stability can be narrowed 
to some extent. Indeed, a causal system is characterized by a system function 
H ( z )  having as a ROC the exterior of some circle of radius r .  For a stable 
system, the ROC must include the unit circle. Consequently, a causal and sta- 
ble system must have a system function that converges for lzl > r < 1. Since 
the ROC cannot contain any poles of H ( z ) ,  it follows that a causal linear time- 
invariant system is B I B 0  stable if and only if all the poles of H ( z )  are inside the 
unit circle. 

Example 3.63 

A linear time-invariant system is characterized by the system function 

Specify the ROC of H ( 2 )  and determine h ( n )  for the following conditions: 

(a) The system is stable. 
(b) The system is causal. 
(c) The system is anticausal. 

Solution The system has poles at z = & and z = 3. 

(a) Since the system is stable, its ROC must include the unit circle and hence it is 
< 1z1 < 3. Consequently, h(n)  is noncausal and is given as 

(b) Since the system is causal, its ROC is l z l  > 3- In this case 

This system is unstable. 
(c) If the system is anticausal, its ROC is l z l  < 0.5. Hence 

In this case the system is unstable. 
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3.6.5 PoleZero Cancellations 

When a z-transform has a pole that is at the same location as a zero, the pole 
is canceled by the zero and, consequently, the term containing that pole in the 
inverse z-transform vanishes. Such pole-zero cancellations are very important in 
the analysis of pole-zero systems. 

Pole-zero cancellations can occur either in the system function itself or in 
the product of the system function with the z-transform of the input signal. In the 
first case we say that the order of the system is reduced by one. In the latter case 
we say that the pole of the system is suppressed by the zero in the input signal, 
or vice versa. Thus, by properly selecting the position of the zeros of the input 
signal, it is possible to suppress one or more system modes (pole factors) in the 
response of the system. Similarly, by proper selection of the zeros of the system 
function. it is possibie to suppress one or more modes of the input signal from the 
response of the system. 

When the zero is located very near the pole but not exactly at the same lo=- 
tion, the term in the response has a very small amplitude. For example, nonexact 
pole-zero cancellations can occur in practice as a result of insufficiant numerical 
precision used in representing the coefficients of the system. Consequently, one 
should not attempt to stabilize an inherently unstable system by placing a zero in 
the input signal at the location of the pole. 

Example 3.6.4 

Determine the unit sample response of the system characterized by the difference 
equation 

Solution The system function is 

This system has poles at pl = 2 and pl = 4. Consequently, at first glance it appears 
that the unit sample response is 

By evaluating the constants at z = 5 and z = 2, we find that 

The fact that B = 0 indicates that there exists a zero at z = 2 which cancels 
the pole at z = 2. In fact, the zeros occur at z = 2 and z = 3. Consequently, H ( z )  
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reduces to 

and therefore 

h ( n )  = 6 ( n )  - 2.5(;)"-'u(n - 1) 

The reduced-order system obtained by canceling the common pole and zero is char- 
acterized by the difference equation 

y ( n )  = i v ( n  - 2 )  + x ( n )  - 3x(n - 1 )  

Although the original system is also B I B 0  stable due to the pole-zero cancellation, 
in a practical implementation of this second-order system. we may encounter an 
instability due to imperfect cancellation of the pole and the zero. 

Example 3.6.5 

Determine the response of the system 

y ( n )  = :!(n - 1 )  - $?(n  - 2 )  + x ( n )  

to the input signal x(n j  = 6 ( n )  - ;6(n - 1). 

Solution The system function is 

This system has two poles, one at ; = and the other a1 : = i. The :-transform of 
the input signal is 

X ( z )  = 1 - f ; - 1  

In this case the input signal contains a zero at : = f which cancels the pole at : = 4. 
Consequently, 

Y ( z )  = H ( ; ) X ( z )  

and hence the response of the system is 

y(n)  = ( $ l n u ( n )  

Clearly, the mode (5 )"  is suppressed from the output as a result of the pole-zero 
cancellation. 

3.6.6 Multiple-Order Poles and Stability 

As we have observed, a necessary and sufficient condition for a causal linear time- 
invariant system to be BIB0 stable is that all its poles lie inside the unit circle. 
The input signal is bounded if its z-transform contains poles {qk}, k = 1, 2. . . . , L, 
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which satisfy the condition (qkl 5 1 for all k .  We note that the forced response of 
the system. given in (3.6.15). is also bounded. even when the input signal contains 
one or more distinct poles on the unit circle. 

In view of the fact that a bounded input signal may have poles on the unit 
circle. it might appear that a stable system may also have poles on the unit circle. 
This is not the case, however, since such a system produces an unbounded response 
when excited by an input signal that also has a pole at the same position on the 
unit circle. The following example illustrates this point. 

Example 3.6.6 

Determine the step response of the causal system described by the difference equation 

Solution The system function for the system is 

1 
H  ( z )  = - 1 - :-I 

We note that the system contains a pole on the unit circle at ,- = 1. The ;-transform 
of the input signal x ( n )  = u(n) is 

1 
X ( : )  = 1 

which also contains a pole at : = 1. Hence the output signal has the transcorm 

Y ( : )  = H t : ) X ( : )  

which contains a double pole at z = 1. 
The inverse :-transform of Y (;I is 

which is a ramp sequence. Thus v ( n )  is unbounded, even when the input 1s bounded. 
Consequently. the system is unstable. 

Example 3.6.6 demonstrates clearly that B I B 0  stability requires that the sys- 
tem poles be strictly inside the unit circle. If the system poles are all inside the unit 
circle and the excitation sequence x ( n )  contains one or more poles that coincide 
with the poles of the system, the output Y ( z )  will contain multiple-order poles, As 
indicated previously, such multiple-order poles result in an output sequence that 
contains terms of the form 

where 0 5 b 5 m - 1 and m is the order of the pole. If lpkl c 1, these terms decay 
to zero as n approaches infinity because the exponential factor (pk )"  dominates 
the term n b.  Consequently, no bounded input signal can produce an unbounded 
output signal if the system poles are all inside the unit circle. 
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Finally, we should state that the only useful systems which contain poles 
on the unit circle are the digital oscillators discussed in Chapter 4. We call such 
systems marginally stable. 

3.6.7 The Schur-Cohn Stability Test 

We have stated previously that the stability of a system is determined by the 
position of the poles. The poles of the system are the roots of the denominator 
polynomial of H (z), namely, 

When the system is causal all the roots of A ( z )  must lie inside the unit circle for 
the system to be stable. 

There are several computational procedures that aid us in determining if any 
of the roots of A(,-) lie outside the unit circle, These procedures are called stability 
criteria. Below we describe the Schur-Cohn test procedure for the stability of a 
system characterized by the system function H ( z )  = B ( z ) / A ( z ) .  

Before we describe the Schur-Cohn test we need to establish some useful 
notation. We denote a polynomial of degree m by 

m 

A,,, (z) = x a, (k)z-'  an, (0) = 1 (3.6.17) 
k=U 

The reciprocal or reverse polynomial B,,,(z) of degree m is defined as 

We observe that the coefficients of B,(z) are the same as those of A,(z),  but 
in reverse order. 

In the Schur-Cohn stability test, to determine if the polynomial A(z)  has all 
its roots inside the unit circle, we compute a set of coefficients, called reflection 
coeficients, K1,  Kz, . . . , K N  from the polynomials A, ( z ) .  First, we set 

and 

Then we compute the lower-degree polynomials A, ( z ) ,  m = N ,  N - 1, N - 2, . . . , 1, 
according to the recursive equation 

where the coefficients K, are defined as 
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The Schur-Cohn stability test states that thepolynomial A(:) gi en b? (3.6.16) 
has all irs roors inside the unii circle if and only if the coefficients K ,  sarisf) the 
condition IK,,I < 1 for all rn = 1, 2. . . . . N .  

We shall not provide a proof of the Schur-Cohn test at this point. The 
theoretical justification for this test is given in Chaprer 11. We illustrate the com- 
putational procedure with the following example. 

Example 3.6.7 

Determine if the system having the svstem function 

is stable. 

Solution We begin with A ? ( : ) ,  which is defined as 
A ( - )  = ] - I--] - 1 - - 2  

2 - 4 '  2' 

Hence 

A'? = - 4 
Now 

and 

- 1 - ;:-I - 

Therefore. 

K ,  = -; 
Since tK1l r 1 il follows that the system is unstable. This fact is easily estab- 

jished in this example, since the denominator is easilv factored to yield the two poles 
at p ,  = -2 and p2 = i. However, for higher-degree polynomials. the Schur-Cohn 
test provides a sampler test for stability than direct factoring of Hc:). 

The Schur-Cohn stability test can be easily programmed in a digital computer 
and it is very efficient in terms of arithmetic operations. Specifically, it requires 
only N~ multiplications to determine the coefficients {K,} ,  rn = 1, 2. . . . , N .  The 
recursive equation in (3.6.20) can be expressed in terms of the polynomial coef- 
ficients by expanding the polynomials in both sides of (3.6.20) and equating the 
coefficients corresponding to equal powers. Indeed, it is easily established that 
(3.6.20) is equivalent to the following algorithm: Set 

a N ( k )  = a,, k = 1.2, . . .  . N (3.6.22) 

Then, for m = N, N - 1 , .  . . . 1, compute 
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and 
n,(k> - K,b,(k) 

a,-l(k> = k = l , 2 , . , , , m - 1  (3.6.24) 
1 - K; 

where 

This recursive algorithm for the computation of the coefficients {K,) finds 
application in various signal processing problems, especially in speech signal pro- 
cessing. 

3.6.8 Stability of Second-Order Systems 

In this section we provide a detailed analysis of a system having two poles. As 
we shaIl see in Chapter 7, two-pole systems form the basic building blocks for the 
realization of higher-order systems. 

Let us consider a causal two-pole system described by the second-order dif- 
ference equation 

y (n)  = - a ~ y ( n  - 1) - azy(n - 2)  + box(n) (3.6.26) 

The system function is 

This system has two zeros at the origin and poles at 

The system is BIB0  stable if the poles lie inside the unit circle, that is, if 
Jpl[  < 1 and Jp2J < 1. These conditions can be related to the values of the 
coefficients a1 and a2. In particular, the roots of a quadratic equation satisfy the 
relations 

a2 = la ~2 (3.6.30) 

From (3.6.29) and (3.6.30) we easily obtain the conditions that a1 and 0 2  must 
satisfy for stability. First, a2 must satisfy the condition 

la2t = Ip1p21 = I P I I I P ~ I  < 1 

The condition for a1 can be expressed as 

la1 I < 1 + a2 
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The conditions in (3.6.31) and (3.6.32) can also be derived from the Schur- 
Cohn stability test. From the recursive equations in (3.6.22) through (3.6.25), we 
find that 

and 

K2 = a2 

The system is stable if and only if lK1 1 < 1 and lK2\ < 1. Consequently, 

or equivalently la?/ < 1, which agrees with (3.6.31). Also, 

a1 < 1  -1 < - 
1 +a2 

or, equivalently, 

which are in agreement with (3.6.32). Therefore. a two-pole system is stable if and 
only if the coefficients a ,  and a: satisfy the conditions in (3.6.31) and (3.6.32). 

The stability conditions given in (3.6.31) and (3.6.32), define a region in the 
coefficient plane (a l .  az), which is in the form of a triangle, as shown in Fig. 3.15. 
The system is stable if and only if the point ( a l .  a , )  lies inside the triangle, which 
we call the stability triangle. 

The characteristics of the two-pole system depend on the location of the 
poles or, equivalently. on the location of the point ( a l ,  a2)  in the stability triangle. 
The poles of the system may be real or complex conjugate, depending on the 
value of the discriminant A = a: - 4 ~ .  The parabola up = af/4 splits the stability 

Real and distinct poles 

F i r e  3.15 Region of stability 
(stability triangle) in the ( a l ,  a z )  
coefficient plane for a ~cond-order  
system. 
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triangle into two regions, as illustrated in Fig. 3.15. The region below the parabola 
(a; > 4a2) corresponds to real and distinct poles. The points on the parabola 
(at = 4az) result in real and equal (double) poles. Finally. the points above the 
parabola correspond to complex-conjugate poles. 

Additional insight into the behavior of the system can be obtained from the 
unit sample responses for these three cases. 

Real and distinct poles (a: = 4g) .  Since pl,  p2 are real and pl  # pz.  the 
system function can be expressed in the form 

where 

Consequently, the unit sample response is 

Therefore, the unit sample response is the difference of two decaying exponential 
sequences. Figure 3.16 illustrates a typical graph for h ( n )  when the poles are 
distinct. 

Real and equal poles (a: = 4a2). In this case pl = pz = p = - c r 1 / 2 .  The 
system function is 

and hence the unit sample response of the system is 

h ( n )  = bo(n + l ) pnu (n )  

Figure 3.16 Plot of h ( n )  given by (3.6.37) with pl = 0.5, p2 = 0.75; h ( n )  = 

[ l / ( p ~  - m)l(p;+' - p,"+')u(n). 
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Figure 3.17 Plot of h ( n )  given by (3.6.39) with p = i; h ( n )  = (n + l ) p n u ( n )  

We observe that h ( n )  is the product of a ramp sequence and a real decaying 
exponential sequence. The graph of h ( n )  is shown in Fig. 3.17. 

Complexconjugate poles (a: < 4*). Since the poles are complex con- 
jugate, the system function can be factored and expressed as 

- - 
1 - r p ~ ~ , z - l  + 1 - r e - ~ ~ ~ z - l  

where p = reJ" and 0 < q < rr. Note that when the poles are complex conjugates, 
the parameters a,  and a? are related to r and according to 

The constant A in the partial-fraction expansion of H ( z )  is easily shown to be 

=-  
j 2  sin 

Consequently, the unit sample response of a system with complex-conjugate poles 
is 

born e j ( n + l ) q  - e - j ( n + l ) y l  

h ( n )  = - 
sln oo 2 i  u(n> 

(3.6.43) 
- born - -  sin(n + l ) q , u ( n )  

sin oo 
In this case h(n )  has an oscillatory behavior with an exponentially decaying 

envelope when r < 1. The angle WQ of the poles determines the frequency of 
oscillation and the distance r of the poles from the origin determines the rate of 
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Figure 3.18 Plot of h(n )  given hy (3.6.43) with h~ = 1 ,  ~1 = n / 4 ,  r = 0.9; 
h (n )  = [born/(s in  yl)] sin[(n + I ) q ] u ( n ) .  

decay. When t is close to unity, the decay is slow. When r is close to the origin, 
the decay is fast. A typical graph of h ( n )  is illustrated in Fig. 3.18. 

3.7 SUMMARY AND REFERENCES 

The z-transform plays the same role in discrete-time signals and systems as the 
Laplace transform does in continuous-time signals and systems. In this chapter we 
derived the important properties of the z-transform, which are extremely useful in 
the analysis of discrete-time systems. Of particular importance is the convolution 
property, which transforms the convoiution of two sequences into a product of 
their z-transforms. 

In the context of LTI systems, the convolution property results in the product 
of the z-transform X(z) of the input signal with the system function H(z), where 
the latter is the z-transform of the unit sample response of the system. This 
relationship allows us to determine the output of an LTI system in response to an 
input with transform X(z) by computing the product Y(z) = H(z)X(z) and then 
determining the inverse z-transform of Y ( z )  to obtain the output sequence y (n) .  

We observed that many signals of practical interest have rational z-transforms. 
Moreover, LTI systems characterized by constant-coefficient linear difference 
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equations, aho possess rational system functions. Consequently. in determinink 
the inverse z-transform, we naturally emphasized the inversion of rational trans- 
forms. For such transforms. the partial-fraction expansion method is relatively 
easy to appiy, in conjunction with the ROC. to determine the corresponding se- 
quence in the time domain. The one-sided :-transform was introduced to solve for 
the response of causal systems excited by causal input signals with nonzero initial 
conditions. 

Finally, we considered the characterization of LTI systems in the z-transform 
domain. In particular. we related the pole-zero locations of a system to its tirne- 
domain characteristics and restated the requirements for stability- and causality of 
LTI systems in terms of the pole locations. We demonstrated that a causal system 
has a system function H(: )  with a ROC 121 r l ,  where 0 < rl 5 m. In a stable 
and causal system, the poles of H(:) lie inside the unit circle. On the other hand, 
if the system is noncausal. the condition for stability requires that the unit circle be 
contained in the ROC of H ( : ) .  Hence a noncausal stable LTI system has a system 
function with poles both inside and outside the unit circle with an annular ROC 
that includes the unit circle. The Schur-Cohn test for the stability of a causal LTI 
system was described and the stability of second-order system was considered in 
some detail. 

An excellent comprehensive treatment of the :-transform and its application 
to the analysis of LT1 systems is given in the text hy Jury (1964). The Schur- 
Cohn test for stability is treated in several texts. Our presentation was given in 
the context of reflection coefficients which are used in linear predictive coding of 
speech signals. The text by Markel and Gray (1976) is a good reference for the 
Schur-Cohn test and its application to speech signal processin_g. 

P R O B L E M S  

3.1 Determine the :-transform of the follow~ng signals. 
(a) x ( n )  = {3. 0 . 0 . 0 . 0 . 6 .  1. -41 

6 

32 Determine the :-transforms of  the following signals and sketch the corresponding 
pole-zero patterns. 
(a) x ( n )  = ( 1  + n ) u ( n )  
(b) x ( n )  = ( a n  + u - " ) u ( n ) .  u  real 
( c )  x ( n )  = ( - 1  ) "2 - "u (n )  
( d )  x ( n )  = tnan sin w n ) u ( n )  
(e)  x ( n )  = (nu" coswon)u (n )  
(0 x ( n )  = A r n  c o s ( y , n  i. # ) u ( n ) .  0 < r  < 1  
(g) x ( n )  = i ( n 2  + n ) ( f  ) " - 'u (n  - I) 
(h) x l n )  = ( ; ) " [ u ( n )  - u(n - l o ) ]  
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3 3  Determine the z-transforms and sketch the ROC of the following signals. 

(c) x d n )  = x l (n  + 4) 
(4 ~ 4 ( n )  = X I  ( - n )  

3A Determine the z-transform of the following signals. 
(a) x ( n )  = n ( - l ) " u ( n )  
(b) x ( n )  = n 2u(n)  
(c) x ( n )  = -nnnu(-n - 1 )  

(d) x ( n )  = ( -1)" ( C O ~  g n )  u ( n )  
(el x ( n )  = ( - l ) " u ( n )  
(0 x ( n )  = 11.0. -1,O. 1, -1,. . .) 

t 
3 5  Determine the regions of convergence of right-sided, left-sided, and finite-duration 

two-sided sequences. 
3.6 Express the z-transform of 

n 

v ( n )  = x ( k )  
k=-oc 

in terms of X(:). [Hinr: Find the difference y ( n )  - y(n - l).] 
3.7 Compute the convolution of the following signals by means of the z-transform. 

3.8 Use the convolution property to: 
(a) Express the z-transform of 

Y ( " )  = 2 x ( k )  
k + - 0 2  

in terms of X(z). 
(b) Determine the z-transform of x ( n )  = (n + l ) u ( n ) .  [ H i m  Show first that x ( n )  = 

u(n>  * u(n1.1 

3.9 The z-transform X ( z )  of a real signal x ( n )  includes a pair of complextonjugale zeros 
and a pair of complex-conjugate poles. What happens to these pairs if we multiply 
x ( n )  by elmn? (Hinr: Use the scaling theorem in the 2-domain.) 

3.10 Apply the final value theorem to determine x ( m )  for the signal 
1 ,  if n  is even 

x ( n )  = 1 0, otherwise 

3.ll Using long division, determine the inverse z-transform of 

if (a) x(n) is causal and (b) x ( n )  is anticausal. 
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3.12 Determine the causal signal x ( n )  having the z-transform 

1 
x ( z )  = ( 1  - Zz - l ) (1  - :-I): 

3.W Let x ( n )  be a sequence with z-transform X(z). Determine, in terms of X ( : ) ,  the 
:-transforms of the fotlowing signals. 

if n odd 

(b) ~ 2 @ )  = x ( 2 n )  
3.14 Determine the causal signal x ( n )  if its z-transform X(:) js given by: 

1  + 3:-' 
(a) X ( : )  = 

1 + 3:-I + 2z-" 
1 

(b) X ( = )  = 1 - 
+ i * - 2  

2' - -6 + z-7  

(c) X ( : )  = - 
1 + 2:-' 

(d) X ( z )  = - 
1 + :-I 

1  I + 6:-' + :-' 
(e) X ( z )  = - 

4  (1 - 2:-I + 2 ~ - ~ ) ( 1  - 0 .5 :~ ' )  
2 - 1.5:-' 

(t) X ( : )  = 
1 - 1.5:-I + US:-:  
1  + 2:-' + :-? 

(g) X ( : )  = 1 + 4 - 1  + 4:-2 

(h) X(:) is specified by a pole-zero pattern in Fig. P3.14. The constant G = 
1  - 1--1 

7 .. 
(i) X k )  = - 1 + - - -1 

2' 

1  - 0:-I 
(j) X(:) = 

3.E Determine all possible signals x ( n )  associated with the z-transform 

3.16 Determine the convolution of the following pairs of signals by means of the z- 
transform. 
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(a) x l ( n )  = ( $ ) " u ( n  - 1). x 2 ( n )  - [l + ( $ l n ] u ( n )  
Ib) = u ( n ) ,  xz (n)  = 6 ( n )  + ( $ l n u ( n )  
( c )  x1 ( n )  = ( ; ) " u ( n ) ,  x z ( n )  = c o s n n u ( n )  
(d) x l ( n )  = n u ( n ) ,  x2 (n)  = Znu(n - 1) 

3.17 Prove the final value theorem for the one-sided :-transform. 
3.18 If X ( z )  is the z-transform of x ( n ) ,  show that: 

( a )  Z ( x m ( n ) )  = X'(z0 )  
(b) Z { R e [ x ( n ) ] l  = ; [ X ( Z )  + Xa(:* ) ]  

( c )  Z ( I m ( x ( n ) ] l  = + [ x ( : )  - X*(:')] 
(4 If 

then 
otherwise 

XI(&?) = x C k )  

(e )  Z(e iq)"x(n>)  = X ( z r - ] % )  
3.19 By first differentiating X  ( z )  and then using appropriate properties of the :-transform. 

determine x ( n )  for the follawing transforms, 
(a) X(z) = log(1 - Z:), /:I < 

(b) X ( : )  = log(l - :-'1. (:I > 4 
3.20 (a) Draw the pole-zero pattern far the signal 

xl(n) = ( r n  sin w , n ) u ( n )  0 c: r  i 1 

(b) Compute the z-transform Xz( : ) ,  which corresponds to the pole-zcro pattcrn in 
part (a), 

(c) Compare X 1 ( 2 )  with X 2 ( i ) .  Are they indentical? If not. indicate a method i o  
derive X I  ( z )  from the pole-zero pattern. 

321 Show that the roots of a polynomial with real coefficients are real or form complex- 
conjugate pairs. The inverse is not true, in general. 

322 Prove the convolution and correlation properties of the 2-lransform using only its 
definition. 

3.23 Determine the signal x ( n )  with ,,-transform 

3.24 Determine, in closed form. the causal signals x ( n )  whose z-transforms are given by: 
Z 

1 
(b) '(') = 1 - O.5:-* + 0.6:" 
Partially check your results by computing x(O),  x(l) ,  x { 2 ) ,  and x { w )  by an alternative 
method. 

325 Determine all possible signals that can have the following z-transforms. 
1 

' ( 2 )  1 - 1.5r-1 + 0.5i-2 
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3.26 Determine the signal x ( n )  with :-transform 

if X ( 2 )  converges on the unit circie. 

3.27 Prove the complex convolution relation given by (3.2.22). 

3.28 Prove the conjugation properties and Parseval's relation for the 2-transform given in 
Table 3.2. 

3.29 In Example 3.4.1 we solved for x ( n ) ,  n  < 0,  by performing contour integrations for 
each value of n.  In general, this procedure proves to be tedious. It can be avoided by 
making a transformation in the contour ~ntegral from z-plane to the UJ = I / i  plane. 
Thus a circle of radius R in the 2-plane is mapped into a circle of radius 1 / R  in the w- 
plane. As a consequence. a pole inside the unit circle in the z-plane is mapped into a 
pole outside the unit circle in the ur-plane. By making :he change of variable w = l / z  
in the contour integral. determine the sequence x ( n )  for n < 0 in Example 3.4.1. 

3.30 Let x ( n ) ,  0 5 n 5 hf - 1  be a finite-duration sequence. which is also real-valued and 
even. Show that the zeros of the polynomial X ( z )  occur in mirror-image pairs about 
the unit circle. That is. if z = re'' is a zero of X(;), then : = ( I / r ) e J 6  is also a zero. 

3.31 Compute the convolut~on of the following pair of signals in the time domain and by 
using the one-sided :-transform. 
a . I  = 1  1  1  1  1  x z ( n )  = (1 .  1. 1 )  

T ? 

(b) x l ( n )  = ( + ) " u ( n ) .  1 z ( n )  = ( ; ) " u ( n )  
(c) x 1 ( n ) = { l . 2 . 3 . 4 ) .  x z ( n ) =  ( 4 . 3 . 2 . 1 )  

t t 
d x = { 1 . 1 . 1 . 1 1  x 2 ( n ) = { 1 . 1 . 1 )  

t t 
Did you obtain the same results by both methods? Explain. 

3.32 Determine the one-sided ,--transform of the constant signal x ( n )  = I .  -m xj n  n m. 

3.33 Prove that the Fibonacci sequence can be thought of as the impulse response of the 
system described by the difference equation y(n)  = v ( n  - 1 )  + s ( n  - 2 )  + x ( n ) .  Then 
determine h ( n )  using z-transform techniques. 

3.34 Use the one-sided :-transform to  determine y ( n ) ,  n  ? 0 in the following cases. 
( a )  ~ ( n )  + i Y ( n  - 1) - fY(n  - 2 )  = 0; y( -1)  = y(-2) = 1  

( b )  v ( n )  - 1.5y(n - 1 )  + 0.5y(n - 2 )  = 0; y(-1) = 1 ,  v(-2) = 0  

(c) ~ ( n )  = ; y ( n  - 1) + x ( n )  

x ( n )  = ( i ) " u ( n ) ,  y ( -1)  = l 

(d) s ( n )  = av(n  - 2 )  + x ( n )  

x ( n )  = u ( n )  

y ( - 1 ) = 0 ;  y ( - 2 ) = 1  

3.35 Show that the following systems are equivalent. 
(a) y(n) = 0.2y(n - 1 )  + x ( n )  - 0.3x(n - 1)  + O.OZt(n - 2 )  
( b )  y(n) = x ( n )  - O.lx(n - 1)  
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3.36 Consider thc sequence .a-cn) = nl'lc(ti ). -I < ~1 < 1. Determine a1 least two sequences 
that are not equal to x(r7) but have the same autocorrelation. 

3.37 Compute the unit step response of the system with rrnpulse responsc 

3.38 Compute the zero-state response for the following pairs of svstems and  input signals. 

(a) / I ( I ? ,  = ( j ) * u ~ l ) . . r ~ n )  = ( i )~l(cos T n ) l ( ( n )  

(b) / ~ ( n )  = ( i ) " ~ i ( ~ i ) . . x - f r ~ ~  = ( i ) " i t ( n )  + ( i ) p " l t ( - n  - 1) 

( c )  , ( n )  = - 0 . I ~ ~ i l l  - 1 )  + 0.2\,(11 - 2 )  + . ~ ( 8 1 )  + -1 ( n  - 1 )  

. T 0 1 )  = ( ; ) t l l , [ l i )  

( e )  ?,(I, 1 = - , , . 0 1  - 2 )  + 1 0 . x  ( n  ) 

(0  / 1 ( 1 1 )  = ( ; Y ' I , ( I I ) .  . a 0 1 1  = i ~ ( t , )  - ~ i ( u  - 71 

tg) 1 ~ 0 1 )  = ( 4 ~ 1 ~ , f ~ t , ) . . l - ( l l )  = (-l)fJ,-x < 11 < EC 

(h)  h(17 )  = ( ~ l l ' t ~ ~ t ~ i . . r ~ ~ l l  = + ~ ) ( : ) " l t ( r l )  

3.39 Consider thu systcm 

1 - 2;-I + ? - - 2  - --; 
i- . 

ROC: 0.5 l z l  < 1 H('' = ( 1  - : - l ) ( j  - ~.j:-I~(l - U.?:-I) 

(a) Sketch the pole-zero pattern. Is the system stable? 
(b) Determine the  impulse responsc of the  system. 

3.40 Compute the response of the system 

to the input . s (n)  = n u ( n ) .  Is the system stable? 

3.41 Determine the ~rnpulse response and the step response of the following causal systems. 
Plot the pole-zero patterns and determ~ne which of the systems are stable. 
(a) \.(n) = i y ( n  - 1 )  - ; v ( n  - 2 )  + x ( n )  

( b )  ~ ( n )  = v ( n  - 1) - 0 . 5 v ( n  - 2 )  + x ( n )  + x ( n  - I) 

( d )  v I n )  = 0 . 6 ~ ( n  - 1 )  - 0 . 0 8 y ( n  - 2 )  + x i n )  
( e )  y ( n )  = 0 . 7 y ( n  - 1) - O.ly(h - 2 )  + 2 x ( n )  - x ( n  - 2 )  

3.42 Let x ln)  be a causal sequence with :-transform X ( z )  whose pole-zero plot is shown 
in Fig. P3.42. Sketch the pole-zero plots and the ROC of the following sequences: 
(a) X I  ( n )  = X (  -n + 2) 
( b )  x 2 ( n )  = e ) ~ x f l ' n x ( n )  
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Figure P3.42 

3.43 We want to design a causal discrete-time LTI system with the property that if the 
input is 

x ( n )  = ( i ) " u ( n )  - i ( f ) " - l u ( n  - 1) 

then the output is 
~ ( n )  = (f ) " u ( n )  

(a) Determine the impulse response h ( n )  and the system function H(:) of a system 
that satisfies the foregoing conditions. 

(b) Find the difference equation that characterizes this system. 
(c) Determine a realization of the system that requires the minimum possible amount 

of memory. 
(d) Determine if the system is stable. 

3.44 Determine the stability region for the causal system 
1 

H(:) = 
1 + a,  c-1 + 02:-2 

by computing its poles and restricting them to be inside the unit circle. 
3.45 Consider the system 

z-1 + ! z - 2  

H ( z )  = 1 - ? - - I  + I:-? 
f i c  25 

Determine: 
(a) The impulse response 
(b) The zero-state step response 
(c) The step response if y(-1) = 1 and y ( -2 )  = 2 

3.45 Determine the system function, impulse response, and zero-state step response of the 
system shown in Fig P3.46. 

3.47 Consider the causal system 

Determine: 
(a) The impulse response 
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Figure P3.46 

(b) The zero-state step response 
(c) The step response if ? ( - I )  = A # 0 
(d) The response to the input 

3.48 Derermine the zero-state response of the system 

? ( n )  = i ? , ( n  - 1 )  + 4 x ( n )  i- 3 x ( n  - 1) 

to the Input 

x ( n )  = rl"""u(n) 

What is the steady-state response of the system? 

3.49 Consider thc causal system defined by the pole-zero pattern shown in Fig. P3.49. 
(a) Determine the system function and the lrnpulsc response of the system given that 

Ht:)lz=i = 1. 
(h) Is the system stable? 
(c) Skctch a possiblc implementation of the system and determine thc correspondjng 

difference equations, 

F i r e  P3.49 

350 An FIR LTI system has an impulse response h ( n ) ,  which is real valued, even, and 
has finite duration of 2111 + 1 .  Show that if  2 1  = re'* is a zero of the system, then 
:I = ( l / r ) e J W  IS also a zero. 

351 Consider an LTI discrete-time system whose pole-zero pattern is shown in Fig. P3.51. 
(a) Determine the ROC of the system function H(:) if the system is known to be 

stable. 
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Figure P351 

(b) It is possible for the glven pole-zero plot to correspond to a causal and stable 
system? If so, what is the appropriate ROC? 

(c) How many possible systems can be associated with this pole-zero pattern? 

352 Let x ( n )  be a causal sequence. 
(a) What conclusion can you draw about the value of its z-transform X(:) at : = m? 
(b) Use the result in part (a) to check which of the following transforms cannot be 

associated with a causal sequence. 

( z  - +I4 (1 - ; : - I ) ?  (: - 
(i)  X ( z )  = ---- (ii) X ( z )  = - (iii) X ( z  j = - 

( 2  = 9" ( I  - $ - I j  (: - ;13 

3.53 A causal pole-zero system is BIBO stable if its poles are inside the unit circle. Con- 
sider now a pole-zero system that is BIBO stable and has its poles inside the unit 
circle. Is the system always causal? [Hint: Consider the systems h l  ( n )  = anu(n)  and 
hz (n )  = o%(n + 3 ) ,  la/ < 1.1 

354 Let x(n) be an anticausal signal [i.e., x ( n )  = 0 for n > 01. Formulate and prove an 
initial value theorem for anticausal signals. 

355 The step response of an LTI system is 

(a) Find the system function H ( z )  and sketch the pole-zero plot. 
(b) Determine the impulse response h ( n ) .  
(c) Check if the system is causal and stable. 

356 Use contour integration to determine the sequence x(n) whose z-transform is given 
by 

1 
(a) X ( z )  = - I:i > 4 1 - Lz-1 
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(c) .x(:) = 2 1: ' 1  /fl 
1-0: 

1 - l - - l  
4 - - I  > 4 

(dl .I,(:) = - 1--1 - L - - 2  ; - ,  - 
h' 6 %  

3.57 Let . v [ r r i  be a sequence with ;-transform 

1 - [ I 2  
.Y(:l = ROC: u i 1;; 4 l / u  

( I  - cl:)(l - a : - ' )  

with O i ( I  < 1. Det t rmin t .  .I ( 1 1 )  by using contour integration 

358 T h e  :-transform of a sequence . ~ - - (n i  is given hy 

Furthermore i t  is known thal  X(:r ConverLgrs lor 1 ~ 1  = 1. 
(a )  Delcrrnine thc ROC of X ( : i .  
(b) Delcrmine  . Y O ! )  a l  t ~  = -IS. (Hint: Use contour integration.) 



Frequency Analysis of Signals 
and Systems 

The Fourier transform is one of several mathematical tools that is useful in the 
analysis and design of LTI systems. Another is the Fourier series. These signal 
representations basically involve the decomposition of the signals in terms of sinu- 
soidal (or complex exponential) components. With such a decomposition, a signal 
is said to be represented in the frequency domain. 

As we shall demonstrate, most signals of practical interest can be decomposed 
into a sum of sinusoidal signal components. For the class of periodic signals, such 
a decomposition is called a Fourier series. For the class of finite energy signals, the 
decomposition is called the Fourier transform. These decompos~tions are extremely 
important in the analysis of LTI systems because the response of an LTI system to 
a sinusoidal input signal is a sinusoid of the same frequency but of different ampli- 
tude and phase. Furthermore. the linearity property of the LTI system implies that 
a linear sum of sinuso~dal components at the input produces a similar linear sum 
of sinusoidal components at the output, which differ oniy in the amplitudes and 
phases from the input sinusoids. This characteristic behavior of LTI systems ren- 
ders the sinusoidal decomposition of signals very important. Although many other 
decompositions of signals are possible, only the class of sinusoidal (or complex ex- 
ponential) signals possess this desirable property in passing through an LTI system. 

We begin our study of frequency analysis of signals with the representation 
of continuous-time periodic and aperiodic signals by means of the Fourier series 
and the Fourier transform. respectively. This is followed by a parallel treatment 
of discrete-time periodic and aperiodic signals. The properties of the Fourier 
transform are described in detail and a number of time-frequency dualities are 
presented. 

4.1 FREQUENCY ANALYSIS OF CONTINUOUS-TIME SIGNALS 

It is well known that a prism can be used to break up white light (sunlight) into the 
colors of the rainbow (see Fig. 4.la) .  In a paper submitted in 1672 to the Royal 
Society, Isaac Newton used the term spectrum to describe the continuous bands 
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Class prism 

Green 

sunlifhr Red 

Spectrum 

Figurc 4.1 (a)  Analvsis and 
(b) svnthes~s of the white light (sunl i~ht)  
uslng glass prlsrns. 

of colors pri~duced by this apparatus. To understand this phenomenon. Newton 
placed anothcr prism upside-down with respec1 lo the first. and showed that the 
colors blended hack into white lisht. as in Fig. 4 . lb .  By inserting a slit between 
the two prisms and blocking one or more colors from hitting the second prism. 
he showed that the remixed light is no Ion~ger white. Hence the light passing 
through the first prism is simply analyzed into its component colors without any 
other change. However. only i f  we mix again all of these colors do we obtain the 
orisinal while light. 

Later. Joseph Fraunhofer (1787-1826). in making measurements of light 
emitted by the sun and stars. discovered that the spectrum of the observed light 
consists of distinct color lines. A fenr years later (mid-1800s) Gustav Kirchhoff and 
Robert Bunsen found that each chemical element. when heated to incandescence. 
radiated its own distinct color of light. As a consequence. each chemical element 
can be identified by its own line spectrum. 

From physics we know that each color corresponds to a specific frequency of 
the visible spectrum. Hence the analysis of light into colors is actually a form of 
frequency analysis. 

Frequency analysis of a signal involves the resolution of the signal into its 
frequency (sinusoidal) components. Instead of light, our signal waveforms are 
basicaljy functions of time. The role of the prism is played by the Fourier analysis 
tools that we will develop: the Fourier series and the Fourier transform. The 
recombination of the sinusoidal components to reconstruct the original signal is 
basically a Fourier synthesis problem. The problem of signal analysis is basically 
the same for the case of a signal waveform and for the case of the light from heated 
chemical compositions. Just as in the case of chemical compositions. different 
signal waveforms have different spectra. Thus the spectrum provides an "identity" 
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or a signature for the signal in the sense that no other signal has the same spectrum. 
As we will see, this attribute is related to the mathematical treatment of frequency- 
domain techniques. 

If we decompose a waveform into sinusoidal components. in much the same 
way that a prism separates white light into different colors, the sum of these 
sinusoidal components results in the original waveform. On the other hand, if any 
of these components is missing, the result is a different signal. 

In our treatment of frequency analysis, we will develop the proper mathe- 
matical tools ("prisms") for the decomposition of signals ("light") into sinusoidal 
frequency components (colors). Furthermore, the tools ("inverse prisms") for syn- 
thesis of a given signal from its frequency components will also be developed. 

The basic motivation for developing the frequency analysis tools is to provide 
a mathematical and pictorial representation for the frequency components that are 
contained in any given signal. As in physics, the term spectrum is used when refer- 
ring to the frequency content of a signal. The process of obtaining the spectrum 
of a given signal using the basic mathematical tools described in this chapter is 
known as frequency or spectral analysis. In contrast, the process of determining 
the spectrum of a signal in practice, based on actual measurements of the signal, 
is called spectrum esrimation. This distinction is very important. In a practical 
problem the signal to be analyzed does not lend itself to an exact mathematical 
description. The signal is usually some information-bearing signal from which we 
are attempting to extract the relevant information. If the information that we wish 
to extract can be obtained either directly or indirectly from the spectral content of 
the signal, we can perform spectrum estimation on the information-bearing signal, 
and thus obtain an estimate of the signal spectrum. In fact, we can view spectral 
estimation as a type of spectral analysis performed on signals obtained from physi- 
cal sources (e-g., speech, EEG, ECG, etc.). The instruments or software programs 
used to obtain spectral estimates of such signals are known as spectrum analyzers. 

Here, we will deal with spectral analysis. However, in Chapter 12 we shall 
treat the subject of power spectrum estimation. 

4.1 .I The Fourier Series for Continuous-Time Periodic 
Signals 

In this section we present the frequency analysis tools for continuous-time pe- 
riodic signals. Examples of periodic signals encountered in practice are square 
waves, rectangular waves, triangular waves, and of course, sinusoids and complex 
exponentials. 

The basic mathematical representation of periodic signals is the Fourier se- 
ries, which is a linear weighted sum of harmonically related sinusoids or complex 
exponentials. Jean Baptiste Joseph Fourier (176&1830), a French mathematician, 
used such trigonometric series expansions in describing the phenomenon of heat 
conduction and temperature distribution through bodies. Although his work was 
motivated by the problem of heat conduction, the mathematical techniques that 
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he developed durins the early par. 0 1  the nineteenth century now find applica- 
tion in a variety of problems encorr.?-.ssing many different fields. including optics. 
vibrations in mechanical systems. s!-srem theon.. and electromagnetics. 

From Chapter 1 we recall th2: 2 linear combination of harmonically related 
complex exponentials of the form 

is a periodic signal with fundaments1 period 7, = l / F o .  Hence we can think of 
the exponential signals 

{ejZnL Ftlr x. = 0. A1. *2, . . .} 
as the basic "building blocks" from ivhich we can construct periodic signals of 
various types by proper choice of the fundamental frequency and the coefficients 
{ c k ] .  FO determines the fundamental period of x(t) and the coefficients (ci} specify 
the shape of the waveform. 

Suppose that we are given a periodic signal x ( t )  with period T,,. We can 
represent the periodic signal by the series (4.1.1). called a Fourier series, where 
the fundamental frequency FII is srircted to be the reciprocal of the given period 
T,. To determine the expression tor the coefticients (cl}, we first multiply both 
sides of (4.1.1 ) by the complex esp~>nential 

t,- J 2 7  FO/I  

where I is an integer and then integrate both sides of the resulting equation over 
a single period, say from 0 10 T,. or more generally, from to to to + Tp,  where 1" is 
an arbitrary but mathematically convenient starting value. Thus we obtain 

To evaluate the integral on the righi-hand side of (4.1.2). we interchange the order 
of the summation and integration and combine the two exponentials. Hence 

For k # I ,  the right-hand side of (4.1.3) evaluated at the lower and upper limits, to 

and to + Tp, respectively, yields zero. On the other hand, if k = I ,  we have 

dt = l]lD+Tp = T* 
10 

Consequently, (4.1.2) reduces to 
rfo+T, 
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and therefore the expression for the Fourier coefficients in terms of the given 
periodic signal becomes 

Since to is arbitrary, this integral can be evaluated over any interval of length T,, 
that is, over any interval equal to the period of the signal x ( r ) .  Consequently, the 
integral for the Fourier series coefficients wiIl be written as 

An important issue that arises in the representation of the periodic signai 
x ( t )  by the Fourier series is whether or not the series converges to x ( t )  for every 
value of t ,  that is, if the signal x ( t )  and its Fourier series representation 

are equal at every value of t .  The so-called Dirichler conditions guarantee that 
the series (4.1.5) will be equal to x ( t ) ,  except at the values of r for which x ( r )  is 
discontinuous. At these values of r .  (4.1.5) converges to the midpoint (average 
value) of the discontinuity. The Dirichlet conditions are: 

1. The signal x ( t )  has a finite number of discontinuities in any period. 
2. The signal x ( t )  contains a finite number of maxima and minima during any 

period. 
3. The signal x ( r )  is absolutely integrable in any period, that is. 

All periodic signals of practical interest satisfy these conditions. 
The weaker condition, that the signat has finite energy in one period. 

(4.1.7) 

guarantees that the energy in the difference signal 

e ( f )  = x ( f )  - 2 ckc j2rkhr  
k = - x  

is zero, although x ( t )  and its Fourier series may not be equal for a11 values of t .  
Note that (4.1.6) implies (4.1.7), but not vice versa. Also, both (4.1.7) and the 
Dirichlet conditions are sufficient but not necessary conditions (i.e., there are sig- 
nals that have a Fourier series representation but do not satisfy these conditions). 

In summary, if x ( t )  is periodic and satisfies the Dirichlet conditions, it can 
be represented in a Fourier series as in (4.1.1), where the coefficients are specified 
by (4.1.4). These relations are summarized below. 
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FREQUENCY ANALYSIS OF CONTINUOUS-TIME PERIODIC SIGNALS 

Analysis equa:ion .I = 4 1 ~ c - 2 n k r l l ~  d t  (4.1.9) 

In _general. the Fourier coefficients c~ are complex valued. Moreover. i r  is 
easil!, shown that if the periodic signal is real. L.L and c-A are complex conjusates. 
As a result. if 

cA = 1 ~ ~ 1 ~ ' ~ '  

then 
C-L = IcLI-Jr'k 

Consequently, the Fourier series may also be represented in the form 

where c,, is real valued when .4 ( 1 )  is real. 
Finall). we should indicate that yet another form for the Fourier series can 

be obtained by expanding the cosine function in (4.1.10) as 

cos(?n k FOI + Cli ) = cos 2rrk For cos H L  - sin 2rr k For sin HL 

Consequently, we can rewrite (4.1.10) in the form 

where 

The expressions in (4.1.8). (4.1.10). and (4.1.11) constitute three equivalent forms 
for the Fourier series representation of a real periodic signal. 

4.1.2 Power Density Spectrum of Periodic Signals 

A periodic signal has infinite energy and a finite average power, which is given as 
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If we take the complex conjugate of (4.1.8) and substitute for A - * ( I )  in (4.1.12). we 
obtain 

k=- rw  

Therefore. we have established the relation 

which is called Parsevai's relation for power signals. 
T o  illustrate the physical meaning of (4.1.14). suppose that x ( t )  consists of a 

single complex exponential 
X ( I )  = 

In this case, all the Fourier series coefficients except L.L are zero. Consequently, 
the average power in the signal is 

PI  = Ic.1'1- 

It is obvious that 1: represents the power in the kth harmonic component of the 
signal. Hence the total average power in the periodic signal is simply the sum of 
the average powers in all the harmonics. 

If we plot the icA 1' as a function of the frequencies kFo, k = 0, f l , 1 2 ,  . . . . the 
diagram that we obtain shows how the power of the periodic signal is distributed 
among the various frequency components. This diagram. which is illustrated in 
Fig. 4.2. is called the power dens~t!. specrrunl* of the periodic signal x ( r ) .  Since the 

-4Fo -3F, -2F, -F,, 0 F, 2F, 3F0 4F0 Frequency. F 

Power density spectrum 

Figure 4.2 Power density spectrum of a continuous-time periodic signal. 

lclt2 

'This function is also called the power spectra1 densip or. simply, the power spectrum. 
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power in a periodic sisnal exists only at discrete values of frequencies (i.e,. F = 0. 
f Fo. S F o .  . . .). the signal is said to have a line spectrrrm. The  spacing between 
two consecutive spectral lines is equal ta the reciprocal of the fundamental period 
T,. whereas the shape of the spectrum (i.e.. the power distribution of  the signal). 
depends on the time-domain characteristics of the signal. 

A s  indicated in the precedin? section, the Fourier series coefficients ( c L )  are 
complex valued. that is. they can be represented as 

where 
Bn = 4 c i  

Instead of piotting the power density spectrum. we can plot the magnitude volta_ge 
spectrum {Icr I }  and the phase spectrum ( O L }  as a function of frequency. Clearly. the 
power spectral density in t h e  periodic sisnal is simply the square of the magnitude 
spectrum. The phase information is tot all!^ destroyed (or  does not appear) in the 
power spectral denslt!'. 

I f  t h e  periodic signal IS real valued. the Fourler scries coefficients { c I  ] satisfy 
t h e  condition 

L - k  = L ;  

Consequently. 1 = lc.;/'. Hence the power spectrum is a symmetric function of 
frequency. This condition also means that the magnitude spectrum is svmmetric 
(even function) about the origin and the phase spectrum is an odd function. As 
a consequence of the symmetry. it is sufficient to specify ~ h c  spectrum of a real 
periodic signal for positive frequencies only. Furthermore. the total average power 
can be expressed as 

which follows directly from the relationships given in Section 4.1.1 among ( a ~ } ,  

{bb \ .  and ( o k )  coefficients in the Fourier series expressions. 

Example 4.1.1 

Determine the  Fourler series and the power density spectrum of the rectangular pulse 
train s ipat  illustrated ln Fig. 4.3. 

7 o _ L  -Tp -- T~ t Figure 4.3 Continuous-time periodic 
2 2 tram of rectangular pulses. 
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Solution The signal is periodic with fundamental period T, and. clearly. satisfies the 
Dirichlet conditions. Consequently. we can represent the signal in the Fourier series 
given by (4.1.8) with the Fourier coefficients specified by (4.1.9). 

Since x ( r )  1s an even signal [i.e.. x ( r )  = x ( - I ) ] .  it is convenient to select the 
integration interval from -Tp/2  to T,,/2. Thus (4.1.9) evaluated for k = 0 yields 

The term CI, represents the average value (dc component) of the sisnal x ( r ) .  Fork  # 0 
we have 

AT sinrrl;Fllr 
= -- k = i l . f 2  . . . .  

T,, 7 r k F ( , ~  

It is interesting to note that the right-hand side of (4.1.18) has the form (sin #I/#, 
where 4 = IT~F , IT .  In this case # takes on discrete values since F(, and T are fixed and 
the index k varies. However. if we plot (sin @ ) / #  with 4 as a continuous parameter 
over the range -oc < # < oc. we obtain the graph shown in Fig. 4.4. We observe 
that this function decays to zero as 4 + f x. has a maxlmum value of unity at # = 0, 
and is zero at multiples of n (i.e.. at 4 = mrr. rn = i l .  k2 , .  . .). It is clear that the 
Fourier coefficients given by (4.1.18) are the sample values of the (sin @ ) / @  function 
for $ = nk For and scaled in amptitude by Ar/T,, .  

Since the periodic function x ( r )  is even. the Fourier coefficients ci are real. 
Consequently, the phase spectrum is either zero, when cl is positive. or IT when cl is 
negative. Instead of plotting the magnitude and phase spectra separately. we may sim- 
ply plot { c k )  on a single graph. showing both the positive and negative values ck on the 
graph. This is commonly done in practice when the Fourier coefficients ( c k ]  are real. 

Figure 4.5 illustrates the Fourier coefficients of the rectangular pulse train when 
Tp is fixed and the pulse width T is allowed to vary. In this case T,, = 0.25 second, so 
that Fo = l / T p  = 4 Hz and r = 0.05TP, T = O.lTp, and r = 0.2Tp. We observe that 
the effect of decreasing r while keeping T, fixed is to spread out the signal power 
over the frequency range. The spaclog between adjacent spectral lines is 6, = 4 Hz, 
independent of the value of the pulse width s .  

Figure 4.4 The funct~on (s in#)/$.  
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CA r = 0.05 T, 
Figure 4 5  Fourier coefficients of the 

A mm~n rectangular pulse train with T, is fixed 
0 F and the pulse width r varies. 

On the other hand. it is also instructive to fix T and vary the period T,, when 
TI, > T .  Figure 4.6 illustrates this condition when TI, = Sr. T,, = lor. and 7,, = 20s. 
In  this case. the spacing between adjacent spectral lines decreases as T,, increases. In 
the limit as TI, 4 m, the Fourier coefficients ci  approach zero due to the factor of 
T,, in the denominator of (4.1.18). This hehavior is consistent with the fact rhar as 
TI, + x and T remains fixed, the resulting signal is no longer a power signal. Instead. 

Figure 4.6 Fourier coefficient of a rectangular pulse tram with fixed pulse width 
r and varying period T,. 
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it becomes an energy signal and its average power is zero. The spectra of finite energy 
signals are described in the next section. 

We also note that if k # 0 and sin(rrkF,,s) = 0. then cr = 0. The harmonia 
with zero power occur at frequencies kF0 such that r r (kFo)r  = mrr, m = f 1, f 2, . . ., 
or at k Fo = m/r  . For example, if Fo = 4 Hz and T = 0.27,. it follows that the spectra] 
components at f 20 Ifi, 1 4 0  H z ,  . . . have zero power. These frequencies correspond 
to the Fourier coefficients CL. k = f 5 .  110, 115. . . . . On the other hand. if r = O.lTp, 
the spectral components with zero power are k = f 10, f 20, k30.. . . . 

The power density spectrum far the rectangular pulse train is 

4.1.3 The Fourier Transform for Continuous-Time 
Aperiodic Signals 

In Section 4.1.1 we developed the Fourier series to represent a periodic signal 
as a linear combination of harmonically related complex exponentials. As a con- 
sequence of the periodicity, we saw that these signals possess 11ne spectra with 
equidistant lines. The line spacing is equal to the fundamental frequency, which 
in turn is the inverse of the fundamental period of the signal. We can view the 
fundamental period as providing the number of lines per unit of frequency (line 
density). as illustrated in Fig. 4.6. 

With this interpretation in mind, it is apparent that if we allow the period to 
increase without limit, the line spacing tends toward zero. In the limit, when the 
period becomes infinite, the signal becomes aperiodic and its spectrum becomes 
continuous. This argument suggests that the spectrum of an aperiodic signal will 
be the envelope of the line spectrum in the corresponding periodic signal obtained 
by repeating the aperiodic signal with some period T,. 

Let us consider an aperiodic signal x ( r )  with finite duration as shown in 
Fig. 4.7a. From this aperiodic signal. we can create a periodic signal x, ( t )  with pe- 
riod T,, as shown in Fig. 4.7b. Clearly. x , ( t )  = x ( t )  in the limit as T, -+ oo, that is, 

This interpretation implies that we should be able to obtain the spectrum of x ( t )  
from the spectrum of x, (r )  simply by taking the limit as T, 4 m. 

We begin with the Fourier series representation of x , ( r ) ,  

where 
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7, - T , ,  0 T,,/2 742 I 
Figure 4.7 ( a )  Aper~od ic  signal .I ( I )  

and (h )  periodic signal x p ( t )  constructed 
ih)  by repeatinp x ( t )  with a period 7,,. 

Since x - , ( I )  = x ( t )  for  -Tp/2 5 r 5 Tp/2. (4.1.21) can be expressed as 

It is also true tha t  .t ( r  = 0 Cor It > T,,/2. Consequentl!~. the limits on the intesral 
in (4.1.22) can bc replaced by -x and x. Hence 

Let us now define a function X ( F ) ,  called the Fourier transform of x ( t ) ,  as 

X ( F )  = 1% r ( t ) e - ~ ' " ~ ' d r  (4.1.24) 
x 

XCFl is a function of the continuous variable F. It does not depend o n  T, o r  
Fo. However, if we compare (4.1.73) and (4.1.24). it is clear that the Fourier 
coefficients c~ can be expressed in t e r n s  of X (  F )  as 

o r  equivalently. 

Thus the Fourier coefficients are samples of X ( F )  taken at multiples of Fo and 
scaled by Fo (multiplied by l /T , , ) .  Substitution for ck from (4.1.25) into (4.1.20) 
yields 



242 Frequency Analysis of Signals and Systems Chap. 4 

We wish to take the iimit of (4 .1 .26)  as Tp approaches infinity. First. we define 
A F = l / T p .  With this substitution. (4 .1 .26)  becomes 

It is clear that in the limit as T,, approaches infinity, x,(r)  reduces to x ( r ) .  Also, AF 
becomes the differential d  F and k AF becomes the continuous frequency variable 
F. In turn. the summation in (4.1.27) becomes an integral over the frequency 
variable F. Thus 

Ci 

lim x,,(I) = x ( I ) =  lim r x ( ~ A F ) ~ J ~ " ~ ~ '  
T p - x  

AF 
* F + O k = - x  

x ( r )  = 1- x ( F ) ~ J ~ " " ~ F  
3L' 

This integral relationship yields x ( t )  when X ( F )  is known, and it is called the 
in erse Fourier transform. 

This concludes our heuristic derivation of the Fourier transform pair given 
by (4 .1 .24)  and (4 .1 .28)  for an aperiodic signal x ( t ) .  Although the derivation is 
not mathematically rigorous, it led to the desired Fourier transform relationships 
with relatively simple intuitive arguments. In  summary, the frequency analysis of 
continuous-time aperiodic signals involves the folIowing Fourier transform pair. 

FREQUENCY ANALYSIS O f  CONTINUOUS-TIME APERIODIC SIGNALS 

Synthesis equation 
inverse transform 

Analysis equation 
dtrect transform 

It is apparent that the essential difference between the Fourier series and the 
Fourier transform is that the spectrum in the latter case is continuous and hence 
the synthesis of an aperiodic signal from its spectrum is accomplished by means of 
integration instead of summation. 

Finally. we wish to indicate that the Fourier transform pair in (4 .1 .29)  and 
(4.1.30) can be expressed in terms of the radian frequency variable 52 = 2 n  F .  
Since d F = d!2/27r . (4.1.29) and (4.1.30) become 

I =  
~ ( r )  = - 1 X ( R ) ~ J ~ ~ S  (4.1.31) 

2~ -.,= 
c€ 

X(R) = ~ ( r ) e - ~ " d r  1, (4 .1 .32)  

The set of conditions that guarantee the existence of the Fourier transform is the 
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Dirichler condirions, which may be expressed as: 

1. The signal .r(r) has a finite number of finite discontinuities. 
2. The signal x ( r )  has a finite number of maxima and minima. 
3. The signal x ( r )  is absolutely integrable, that is. 

(4.1.33) 
X 

The third condition follows easily from the definition of the Fourier transform, 
given in (4.1.30). Indeed. 

Hence 1 X ( F ) I  < x if (4.1.33) is satisfied. 
A weaker condition for the existence of the Fourier transform is that x( r )  

has finite energy: that is. LX i .~-(!) i~dt < x 
CC 

N o ~ e  that if a signal x ( i )  is absolutely integable. it will also have finite energy. 
That is. 

r 

,.r(r)ldr < x 
Z 

then 

However. the converse is not true. That is. a signal may have finite energy but 
may not be absolutely integrable. For example, the signal 

sin 2rr r 
x ( r )  = - 

T! 

is square integrable but is not absolutely integrable. This signal has the Fourier 
transform 

Since this signal violates (4.1.33). it is apparent that the Dirichlet conditions are 
sufficien~ but not necessary for the existence of  the Fourier transform. In any case. 
nearly all finite energy signals have a Fourier transform. so that we need not worry 
about the pathological signals, which are seldom encountered in practice. 

4.1.4 Energy Density Spectrum of Aperiodic Signals 

Let x(r)  be any finite energy signal with Fourier transform X ( F ) .  Its energy is 
3C 

Ex = 1 ix(r)12dr 
Y: 



244 Frequency Analysis of Signats and Systems Chap. 4 

which, in turn, may be expressed in terms of X ( F )  as follows: 

Therefore, we conclude that 

This is Parseval's relation for aperiodic, finite energy signals and expresses the 
principle of conservation of energy in the time and frequency domains. 

The spectrum X ( F )  of a signal is in general. complex valued. Consequently, 
it is usually expressed in polar forms as 

where IX(F)I  is the magnitude spectrum and O ( F )  is the phase spectrum, 

On the other hand, the quantity 

which is the integrand in (4.1.38), represents the distribution of energy in the signal 
as a function of frequency. Hence S , , ( F )  is called the energ)) density spectrum of 
~ ( t ) .  The integral of S , , ( F )  over all frequencies gives the total energy in the signal. 
Viewed in another way, the energy in the signal x ( r )  over a band of frequencies 
Fl 5 F  j F I + A F  is 

From (4.1.39) we observe that S x x ( F )  does not contain any phase information 
[i.e., S, , (F)  is purely real and nonnegative]. Since the phase spectrum of x ( t )  is 
not contained in S x X ( F ) ,  it is impossible to reconstruct the signal given S x x ( F ) .  

Finally, as in the case of Fourier series, it is easily shown that if the signal 
x ( t )  is real. then 
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By combining (4.1.40) and (4.1.39), we obtain 

In other words, the energy density spectrum of a real signal has even symmetry. 

Example 4.1.2 

Determine the Fourier transform and the energy density spectrum of a rectangular 
pulse signal defined as 

and illustrated in Fig. 4.8(a). 

Solution Clearly. this signal is aperiodic and satisfies the Dirichlet conditions. Hence 
its Fourier transform exists. By applying (4.1.30), we find that 

r/Z sin 71 F T  
X ( F )  = /_ ~ r - ~ ~ " ' ' d r  = AT - 

rR lr F r  

We observe that X(F) is real and hence it can be depicted graphically using only 
one diagram. as shown in Fig. 4.8(b). Obviously, X ( F )  has the shape of the (sin@)/# 
function shown In Fig. 4.4. Hence the spectrum of the rectangular pulse is the en- 
velope of the line spectrum (Fourier coefficients) of the periodic signal obtained by 

F i r e  4 8  (a) Rectangular pulse and (b) its Fourier transfonn. 
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periodically repeating the pulse with period 7, as in Fig. 4.3. In other words, the 
Fourier coefficients cl in the corresponding periodic signal xp(r) are simply samples 
of X ( F )  at frequencies kFo = k/T , .  Specifically, 

From (4.1.44) we note that the zero crossings of X ( F )  occur at multiples of l / r .  
Furthermore, the width of the main lobe, which contains most of the signal en- 
ergy, is equal to 2 / r .  As the pulse duration T decreases (increases), the main 
lobe becomes broader (narrower) and more energy is moved to the higher (lower) 
frequencies, as illustrated in Fig. 4.9. Thus as the signal pulse is expanded (com- 
pressed) in time, its transform is compressed (expanded) in frequency. This be- 
havior. between the time function and its spectrum, is a type of uncertainty 
principle that appears in different forms in various branches of science and engi- 
neering. 

Finally, the energy density spectrum of the rectangular pulse is 

Figure A9 Fourier transform of a rectangular pulse for various width values. 
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4.2 FREQUENCY ANALYSIS OF DISCRETE-TIME SIGNALS 

In Section 4.1 we developed the Fourier series representation for continuous-time 
periodic (power) signals and the Fourier transform for finite energy aperiodic 
signals. In this section we repeat the development for the class of discrete-time 
signals. 

As we have observed from the discussion of Section 4.1, the Fourier series 
representation of a continuous-time periodic signal can consist of an infinite num- 
ber of frequency components, where the frequency spacing between two successive 
harmonically related frequencies is 1 / T,, and where T, is the fundamental period. 
Since the frequency range for continuous-time signals extends from -cu, to ce. it 
is possible to have signals that contain an infinite number of frequency compo- 
nents. In contrast, the frequency range for discrete-time signals is unique over the 
interval (-rr. J T )  or (0 .27~) .  A discrete-time signal of fundamental period N can 
consist of frequency components separated by 2 x / N  radians or +f = 1/N cycles. 
Consequently, the Fourier series representation of the discrete-time periodic signal 
will contain at most N frequency components. This is the basic difference between 
the Fourier series representations for continuous-time and discrete-time periodic 
signals. 

4.2.1 The Fourier Series for Discrete-Time Periodic 
Signals 

Suppose that we are given a periodic sequence s(rr) with period N .  that is. x ( n )  = 
x(rr  + A') for all 1 1 ,  The Fourier series representation for ~ ( I I )  consists of N har- 
monicalfy related exponential functions 

and is expressed as 

where the { c ~ )  are the coefficients in the series representation. 
To derive the expression for the Fourier coefficients, we use the following 

formula: 
N - l  

p , ~ l ~ n j ~  = ( N .  k = 0. & N .  1 2 N .  . . . 

n=D 
0, otherwise 

Note the similarity of (4.2.2) with the continuous-time counterpart in (4.1.3). The 
proof of (4.2.2) follows immediately from the application of the geometric sum- 
mation formula 
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The expression for the Fourier coefficients ck can be obtained by multiplying 
both sides of (4.2.1) by the exponential e-J'"'"'" and summing the product from 
n = O  to n = N - 1. Thus 

If we perform the summation over n first, in the right-hand side of (4.2.4), 
we obtain 

N - l  
N ,  k- I = O , f N , f 2 N ,  pj27r~A-~1n,N = lo ,  

n =U 
otherwise 

where we have made use of (4.2.2). Therefore. the right-hand side of (4.2.4) 
reduces to h'ci and hence 

1 "-I 
cr = - C r ( r , ~ r - ~ : ~ ' ~ i "  i = O , I  . . . . ,  N - 1  (4.2.6) 

,,=,I 

Thus we have the desired expression for the Fourier coefficients in terms of the 
signal x ( n ) .  

The relationships (4.2.1) and (4.3.6) for the frequency analysis of discrete- 
time signals are summarized below. 

FREQUENCY ANALYSIS OF DISCRETE-TIME PERIODIC SIGNALS 

Synthesis equation 

Equation (4.2.7) is often called the discrete-rime Fourier series (DTFS).  The 
Fourier coefficients { c k  j. k = 0. 1. . . . . N - 1 provide the description of x ( n )  in 
the frequency domain. in the sense that q represents the amplitude and phase 
associated with the frequency component 

(,,) = eJl"l.n/hi = plwln  

h'- l 

r ( n )  = ckr""A"h (4.2.7) 
L d l  

Analysis equation 

where ok = 2~tk lN .  
We recall from Section 1.3.3 that the functions s ~ ( n )  are periodic with period 

N. Hence sk(n) = sk(n + N). In view of this periodicity, it follows that the Fourier 
coefficients ck, when viewed beyond the range k = 0, 1,. . . . N - 1, also satisfy a 
periodicity condition. Indeed, from (4.2.8). which holds for every value of k. we 
have 

1 n.-' 
C ,  = - )c,-''7kn'" (4.2.8) 

A,r ,,=,I 
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Therefore, the Fourier series coefficients ( c k }  form a periodic sequence when ex- 
tended outside of the range k = 0, 1 , .  . . . N - 1. Hence 

that is, { c k )  is a periodic sequence with fundamental period N .  Thus the spectrum 
of a signal x ( n ) ,  which is periodic with period N ,  is a periodic sequence wizh period 
N .  Consequently, any N consecutive samples of the signal or its spectrum provide 
a complete description of the signal in the time or frequency domains. 

Although the Fourier coefficients form a periodic sequence, we will focus our 
attention on the single period with range k = 0, 1. . . . , N - 1. This is convenient, 
since in the frequency domain, this amounts to covering the fundamental range 
0 ( wk = 27rk/N < 2n, for 0 5 k 5 N  - 1. In contrast, the frequency range 
-rr < w~ = 2 n k / N  5 rr, corresponds to - N / 2  < k 5 N / 2 ,  which creates an 
inconvenience when N is odd. Clearly. if we use a sampling frequency F , ,  the 
range 0 5 k 5 N - I corresponds to the frequency range 0 ( F < Fr. 

Example 4.2.1 

Determine the spectra of the slgnals 

(a) = cos A~rn 

(b) x ( n )  = cosrrn/3 
(c) S ( I I )  is pcriod~c with period N = 4 and 

Solution 

(a) For q, = fin, we have f o  = 1/a. Since frr is not a rational number. the signal 
is not periodic. Consequently. this signal cannor be expanded in a Fourier series. 
Nevertheless. the si_enal does possess a spectrum. Its spectral content consists 
of the single frequency component at w = q, = &!IT. 

(b) In this case f,) = $ and hence xoi) IS periodic with fundamental period N = 6. 
From (4.2.8) we have 

Q = ~ ~ r ( n ) e - ~ ~ " ' ~ ' ~  I = 0.1 ..... 5 
HA) 

However. ~ ( n )  can be expressed as 
2nn (n) = Cos - = 1 p~2*n15 + i e - / 2 n n / 6  

6 
which is already in the form of the exponential Fourier series in (4.2.7). In 
comparing the two exponential terms in x ( n )  with (4.2.7), it is apparent that 
c ,  = 4. The second exponential in x ( n )  corresponds to the term k = -1 in 
(4.2.7). However. this term can also be written as 

e-j2nn/6 - j2rrt5-hwlh = e j 2 x < 5 n ) / 6  - e 

which means that c - ~  = rs. But this is consistent with (4.2.9). and our previous 
observation that the Fourier series coefficients form a periodic sequence of 
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period N .  Consequently. we conclude that 

(.] = I < . . - I  
1 > - 7  

(c) From (4.2.8). we have 

= + e-l . i ,? 1 X = 0 . 1 . 2 , 3  

For X = 0. 1, 2. 3 we obtain 

co = 4 = 1  - j c.? = O  (.; = f ( l  + j )  

The magnitude and phase spectra are 

Figure 4.10 illustrates the spectral conlent of the siynalh in (h )  and (c).  

4.2.2 Power Density Spectrum of Periodic Signals 

The average power of a discrete-time periodic signal with period hJ was defined 
in (2.1.23) as 

We shall now derive an expression for P, in terms of the Fourier coefficient (ck}. 

If we use the relation (4.2.7) in (4.2.10). we have 

Now. we can interchange the order of the two summations and make use of (4.2.8). 
obtaining 
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Figure 4.10 Spectra of the periodic 
slpnals discussed in Example 4.2.1 (b) 
and (c). 

which is the desired expression for the average power in the periodic signal. In 
other words, the average power in the signal is the sum of the powers of the 
individual frequency components. We view (4.2.11) as a Parseval's relation for 
discrete-time periodic signals. The sequence lck12 for k = 0, 1, . . . , N - 1 is the 
distribution of power as a function of frequency and is called the power density 
spectrum of the periodic signal. 

If we are interested in the energy of the sequence x ( n )  over a single period, 
(4.2.1 1) implies that 

n =O k =O 

which is consistent with our previous results for continuous-time periodic signals. 
If the signal x ( n )  is real [i.e.. x ' ( n )  = x ( n ) ] ,  then, proceeding as in Sec- 

tion 4.2.1, we can easily show that 
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or equivalently, 
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Ic-1.1 = /ck/ (even symmetry) (4.2.14) 

- i $ ~ - ~  = 4cL (odd symmetry) (4.2.15) 

These symmetry properties for the magnitude and phase spectra of a periodic sig- 
nal, in conjunction with the periodicity property, have very important implications 
on the frequency range of discrete-time signals. 

Indeed, by combining (4.2.9) with (4.2,14) and (4.2.15), we obtain 

and 

4~~ = - 4 ~  N - k  

More specifically, we have 

(4.2.18) 
if N is even 

Thus, for a real signal, the spectrum cl ,  k = 0, I . .  . . , A ' P  for N even, or 
k = 0, 1. . . . . ( N  - 1)/2 for N odd, completely specifies the signal in the frequency 
domain. Clearly, this is consistent with the fact that the highest relative frequency 
that can be represented by a discrete-time signal is equal to rr. Indeed, if 0 5 wk = 
2rk/N 5 x ,  then 0 ( k 5 1'41'2. 

By making use of these symmetry properties of the Fourier series coefficients 
of a real signal, the Fourier series in (4.2.7) can also be expressed in the alternative 
forms 

where a0 = co, ak = 2 ~ c ~ ~ c 0 s 8 ~ .  bk = 21ckl sin&, and L = N / 2  if N is even and 
L = ( N  - 7)/2 if N is odd. 

Finally, we note that as in the case of continuous-time signals, the power 
density spectrum lcP12 does not contain any phase information. Furthermore, the 
spectrum is discrete and periodic with a fundamental period equal to that of the 
signal itself. 

Example 4.2.2 Periodic "Square-Wave" Signal 

Determine the Fourier series coefficients and the power density spectrum of the 
periodic signal shown in Fig. 4.11. 
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4 
* * y e .  e m * * *  . * * * I  

- Figure 4-11 Di~crete-tune per~odic 
- N  n square-wave s~gnal 

Solution By applyins the analysis equation (4.2.8) to the signal shown in Fig. 4.11. 
we obtain 

which is a geometric summation. Now we can use (4.2.3) to simplify the summation 
above. Thus \ve obtain 

The last esprcssion can be simplified further ~f we noic that 

Therefore. 

The power density spectrum of this periodic signal is 

Figure 4.12 illustrates the plots of icAl2 for L = 5 and 7. N = 40 and 60. and A = 1 

4.2.3 The Fourier Transform of Discrete-Time Aperiodic 
Signals 

Just as in the case of continuous-time aperiodic energy signals, the frequency anal- 
ysis of discrete-time aperiodic finite-energy signals involves a Fourier transform of 
the time-domain signal. Consequently, the development in this section parallels 
to a large extent, that given in Section 4.1.3. 
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The Fourier transform of a finite-energy discrete-time signal x ( n )  is defined as 

Physically. X(o) represents the frequency content of the signal x ( n ) .  In other 
words, X ( w )  is a decomposition of x ( n )  into its frequency components. 

We observe two basic differences between the Fourier transform of a discrete- 
time finite-energy signal and the Fourier transform of a finite-energy analog signal. 
First. for continuous-time sfgnals, the Fourier transform, and hence the spectrum 
of the signal, have a frequency range of (-cm, co). In contrast, the frequency 
range for a discrete-time signal is unique over the frequency interval of (-n, x )  
or. equivalently, ( 0 . 2 ~ ) .  This property is reflected in the Fourier transform of the 
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signal. Indeed. X ( w )  is periodic with period 27r. that is. 

Hence X (w )  is periodic with period 2rr. But this property is just a consequence of 
the fact that the frequency range for any discrete-time signal is limited to (-n, n) 
or (0,2rr), and any frequency outside this interval is equivalent to a frequency 
within the interval. 

The second basic difference is also a consequence of the discrete-time nature 
of the signal. Since the signal is discrete in time. the Fourier transform of the 
signal involves a summation of terms instead of an integral, as in the case of 
continuous-time signals. 

Since X ( w )  is a periodic function of the frequency variable o, it has a Fourier 
series expansion, provided that the conditions for the existence of the Fourier 
series, described previously, are satisfied. In fact, from the definition of the 
Fourier transform X(o)  of the sequence x ( n ) :  given by (4.2.23). we observe that 
X ( w )  has the form of a Fourier series. The Fourier coefficients in this series 
expansion are the values of the sequence x l n ) .  

To demonstrate this point. let us evaluate the sequence x ( n )  from X(w).  First, 
we multiply both sides (4.2.23) by e~"" and integrate over the interval (-zr, r). 
Thus we have 

The integral on the right-hand side of (4.2.25) can be evaluated if we can inter- 
change the order of summation and integration. This interchange can be made if 
the series 

N 

converges uniformly to X(o) as N -t oc. Uniform convergence means that, for 
every o, X H ( w )  + X ( W ) ,  as N -t cm. The convergence of the Fourier transform 
is discussed in more detail in the following section. For the moment, let us as- 
sume that the series converges uniformly, so that we can interchange the order of 
summation and integration in (4,2.25). Then 
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Consequently, 

By combining (4.2.25) and (4.2.26). we obtain the desired result that 
1 " 

x ( n )  = 1 ~ ( w ) p ' ~ " d w  (4.2.27) 
,'I 

If we compare the integral in (4.2.27) with (4.1.9). we note that this is just 
the expression for the Fourier series coefficient for a function that is periodic with 
period 217. The only difference between (4.1.9) and (4.2.27) is the sign on the 
exponent in the integrand, which is a consequence of our definition of the Fourier 
transform as given by (4.2.23). Therefore. the Fourier transform of the sequence 
x ( n ) ,  defined by (4.2.23), has the form of a Fourier series expansion. 

In summary, the Fourier rransforrn pair for discrete-time signals is as foIIows. 

FREQUENCY ANALYSIS OF DISCRETE-TIME APERlODlC SIGNALS 

Synthesis equation 
inverse transform 

1 1 . i n ) =  i X~w)~lJu'r 'du  14.2.28) 

I 

4.2.4 Convergence of the Fourier Transform 

Analysis equation 
direct transform 

In the derivation of the inverse transform given by (4.2.28), we assumed that the 
series 

Xx(w)  = 2 x ( n ) r - J w n  (4.2.30) 
n=-N 

k 

X ( w )  = x ( n ) ~ - ' ~ ~  (1.2.29) 
n = - x  

converges uniformly to X ( w ) ,  given in the integral of (4.2.28), as N -+ cc. By 
uniform convergence we mean that for each w ,  

l lrn {sup x ( w )  - X, (w):) = 0 (4.2.31) 
+ w 

Uniform convergence is guaranteed if x ( n )  is absolutely summable. Indeed, if 

then 

Hence (4.2.32) is a sufficient condition for the existence of the discrete-time Fourier 
transform. We note that this is the discrete-time counterpart of the third Dirich- 
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let condition for the Fourier transform of continuous-time signals. The first two 
conditions do not apply due to the discrete-time nature of ( x ( n ) } .  

Some sequences are not absolutely summable, but they are square summable. 
That is, they have finite energy 

which is a weaker condition than (4.2.32). We would like to define the Fourier 
transform of finite-energy sequences, but we must relax the condition of uniform 
convergence. For such sequences we can impose a mean-square convergence con- 
dition: 

Thus the energy in the error X ( w )  - X N ( w )  tends toward zero, but the error 
I X ( w )  - X N ( W ) J  does not necessarily tend to zero. In this way we can include 
finite-energy signals in the class of signals for which the Fourier transform exists. 

Let us consider an example from the class of finite-energy signals. Suppose 
that 

The reader should remember that X ( w )  is periodic with period 217. Hence (4.2.35) 
represents only one period of X ( w ) .  The inverse transform of X ( w )  results in the 
sequence 

sin w,n 

rrn n # O  

For n = 0, we have 

Hence 

This transform pair is illustrated in Fig. 4.13. 
Sometimes, the sequence { x ( n ) )  in (4.2.36) is expressed as 

sin o,n 
x ( n )  = - - 

nn 
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Figure 4.13 Four~er transform pair rn (4.2.35) and (4.2361. 

with the understanding that at n = 0, x ( n )  = w , . / r .  We should emphasize, however, 
that (sin w, .n ) /nn  is not a continuous function, and hence L'Hospital's rule cannot 
be used to determine x ( 0 ) .  

Now let us consider the determination of the Fourier transform of the se- 
quence given by (4.2.37). The sequence { x ( n ) )  is not absolutely summable. Hence 
the infinite series 

does not converge uniformly for all w.  However, the sequence { x ( n ) )  has a finite 
energy Ex = w,/rr as will be shown in Section 4.3. Hence the sum in (4.2.38) is 
guaranteed to converge to the X ( w )  given by (4.2.35) in the mean-square sense. 

To elaborate on this point, let us consider the finite sum 

' sin w  n 
xN(o) = C ---lrpJ" 

n=-N I T n  

Figure 4.14 shows the function XN(w) for several values of N. We note that there 
is a significant oscillatory overshoot at w = w,, independent of the value of N.  As 
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Figure 4.14 Illustrat~on of convergence of the Fourier transform and the Gibbs 
phenomenon at the point of discontinuity. 

N increases, the oscillations become more rapid. but the size of the ripple remains 
the same. One can show that as N -+ oo. the oscillations converge to the point 
of the discontinuity at w = w,-. but their amplitude does not go to zero. However, 
(4.2.34) is satisfied, and therefore X N ( w )  converges to X(w) in the mean-square 
sense. 

The oscillatory behavior of the approximation X N ( w )  to the function X(o) at 
a point of discontinuity of X ( w )  is called the Gibbs phenomenon. A similar effect 
is observed in the truncation of the Fourier series of a continuous-time periodic 
signal, given by the synthesis equation (4.1.8). For example, the truncation of the 
Fourier series for the periodic square-wave signal in Example 4.1.1, gives rise to 
the same oscillatory behavior in the finite-sum approximation of x ( r ) .  The Gibbs 
phenomenon will be encountered again in the design of practical, discrete-time 
FIR systems considered in Chapter 8. 
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4.2.5 Energy Density Spectrum of Aperiodic Signals 

Recall that the energy of a discrete-time signal x ( n )  is defined as 

Let us now express the energy El in terms of the spectral characteristic X ( w ) .  First 
we have 

If we interchange the order of integration and summation in the equation above, 
we obtain 

Therefore. the energy relation between x ( n )  and X ( w )  is 

This is Parseval's retation for discrete-time aperiodic signals with finite energy. 
T h e  spectrum X ( w )  is. in general, a complex-valued function of frequency. 

I t  may be expressed as 

X ( W )  = [ X  ( u ) l e ~ " ' ~ '  (4.2.42) 

where 

is the phase spectrum and / X ( w ) t  is the magnitude spectrum. 
As in the case of continuous-time signals, the quantity 

Sll ( w )  = lx(412 (4.2.43) 

represents the distribution of energy as a function of frequency, and i t  is called 
the energy density specrrum of x ( n ) .  Clearly, Sx,(w) does not contain any phase 
information. 

Suppose now that the signal x ( n )  is real. Then it easily follows that 

or equivalently, 

1 X ( -w)  1 = JX(w)J (even symmetry) (4.2.45) 
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and 

& x ( - w )  = - r ; X ( w )  (odd symmetry) (4.2.46) 

From (4.2.43) it also follows that 

S,T,(-w) = S,,(W) (even symmetry) (4.2.47) 

From these symmetry properties we conclude that the frequency range of 
real discrete-time signals can be limited further to the range 0 5 w 5 rr (i.e., 
one-half of the period). Indeed, if we know X ( w )  in the range 0 5 w 5 n, we 
can determine it for the range -rr _< w < 0 using the symmetry properties given 
above. As we have already observed. similar results hold for discrete-time periodic 
signals. Therefore. the frequency-domain description of a real discrete-time signal 
is completely specified by its spectrum in the frequency range 0 5 w 5 x. 

Usually, we work with the fundamental interval 0 5 w 5 n or 0 5 F 5 FT/2 .  
expressed in Hertz. We sketch more than half a period only when required by the 
specific application. 

Example 4.2.3 

Derermine and sketch thc cncrgy densiry spectrum S , , ( w )  of the signal 

I = i t )  - 1 < 'I < 1 

Solution Since i u  < 1. thc scqucncc ~ ( n )  1s absolutely summahle, as can he verified 
by applying the geometric summation formula. 

Hence the Fourier transform of x ( n )  exists and is obtained by applying (4.2.29). Thus 

Since lap-Jf"I = la1 < I .  use of the geometric summation formula again yields 

1 
X ( w )  = - 1 - ae-1" 

The energy density spectrum is given hy 

or. equivalently, as 

1 
Srr = 

1 - 2 0 c o s w + a 2  

Note that S,,(-w) = SI , (w)  in accordance with (4.2.47). 
Figure 4.15 shows the signal x ( n )  and its corresponding spectrum for a = 0.5 

and a = -0.5. Note that for a = -0.5 the signal has more rapid variations and as a 
result its spectrum has stronger high frequencies. 
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Figure 4.11 ( a )  Sequencc .I 0 1 1  = i 4 i U r r c r i i  and . ~ o i i  = t - ; i " i r o r ~ :  ( h )  Lhc~r cnerg!. dcnsit! 
spectra. 

A ~ ~ r r r  f 

... 
Figure 4.16 Discrcle-t~rne reclnnpular 

0 L - I  17 pulse. 

Example 4.2.4 

Determine the Fourier transform and the energy density spectrum of the sequence 

which is iliustrated in Fig. 4.16. 

Solution Before computing the Fourier transform. we observe that 

Hence x ( n )  is absolutely summable and its Fourier transform exists. Furthermore. 
we note that x ( n )  is a finite-energy signal with E, = I A I ' L .  

The Fourier transform of this signal is 
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For w = 0 the transform in (4.2.49) yields X ( 0 )  = A L ,  which is easily established 
by setting w = 0 in the defining equation for X ( w ) ,  or by using L'Hospital's rule in 
(4.2.49) to resolve the indeterminate form when w  = 0. 

The magnitude and phase spectra of x ( n )  are 

X (w)l = 1 1 sin(uL/2) 1 
lAl sin(o/t) . otherwise 

and 

where we should remember that the phase of a real quantity is zero if the quantity is 
positive and n- i f  it is negative. 

The spectra IX(w)l and 4 X ( w )  are shown in Fig. 4.17 for the case A = 1 and 
L = 5. The energy density spectrum is simply the square of the expression given in 
(4.2.50). 

There  is an  interesting relationship that  exists between the Fourier  transform 
of the constant amplitude pulse in  Example 4.2.4 and the periodic rectangular 

Rgore 4.17 Magnitude and phase of 
Fourier transform of the discrete-time 
rectangular pulse in Fig. 4.16. 
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wave considered in Example 4.2.2. If we evaluate the Fourier transform as given 
in (4.2.49) at a set of equally spaced (harmonically related) frequencies 

we obtain 

If we compare this result with the expression for the Fourier series coefficients 
given in (4.2.21) for the periodic rectangular wave, we find that 

To elaborate, we have established that the Fourier transform of the rectangular 
pulse, which is identical with a single period of the periodic rectangular pulse 
train, evaluated at the frequencies w = 2 ~ r k / N ,  k = 0, 1,.  . . . N - 1. which are 
identical to the harmonically related frequency components used in the Fourier 
series representation of the periodic signal, is simply a multiple of the Fourier 
coefficients (ck J at the corresponding frequencies. 

The relationship given in (4.2.53) for the Fourier transform of the rectangular 
pulse evaluated at w = 2 r r k l N .  k = 0. 1 , .  . . , N  - 1, and the Fourier coefficients 
of the corresponding periodic signal, is not only true for these two signals but, in 
fact, holds in general. This relationship is developed further in Chapter 5. 

4.2.6 Relationship of the Fourier Transform to the 
z-Transform 

The ;-transform of a sequence x ( n )  is defined as 
bC 

~(z) = C x ( n ) z - "  ROC: r2 < (z l  < rl (4.2.54) 
n = - r  

where r2 1;) < rl is the region of convergence of X ( z ) .  Let us express the 
complex variable : in polar form as 

where r = iz l  and w = 4:. Then, within the region of convergence of X(;), We 

can substitute ; = re)" into (4.2.54). This yields 

From the relationship in (4.2.56) we note that X(z) can be interpreted as 
the Fourier transform of the signal sequence x(n)r-".  The weighting factor r-" is 
growing with n if r < 1 and decaying if r > 1. Alternatively, if X ( z )  converges for 
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1 ~ 1  = 1. then 
x 

X ( Z ) ~ : = ~ , , ~  G X ( w )  = 2 x ( ~ ~ ) e - ~ ~ ~ ~ ~  (4.2.57) 
n=-x 

Therefore, the Fourier transform can be viewed as the z-transform of the sequence 
evaluated on the unit circle. If X ( z )  does not converge in the region = 1 [i.e.. if 
the unit circle is not contained in the region of convergence of X(L)] ,  the Fourier 
transform X ( w )  does not exist. 

We should note that the existence of the :-transform requires that the se- 
quence { x ( n ) r - " )  be absolutely surnmable for some value of r .  that is. 

2 I.~(n)r-"1 < 3~ (4.2.58) 
f l = - 3 ;  

Hence if (4,2.58) converges only for values of r > ro > 1 .  the :-transform exists. 
but the Fourier transform does not exist. This is the case. for example. for causal 
sequences of the form x ( n )  = onu(l l) ,  where la > 1. 

There are sequences. however. that do not satisfy the requirement in (4.2.58). 
for example, the sequence 

sin o, ri 
x ( n )  = - - m < ~ ~  < X  (4.3.59 

7 1 1 1  

This sequence does not have a :-transform. Since it  has a finite energy. its Fourier 
transform converges in the mean-square sense to the discontinuous func~ion X (o). 
defined as 

In conclusion. the existence of the z-transform requires that (4.2.58) be sat- 
isfied for some region in the :-plane. If this region contains the unit circle. the 
Fourier transform X ( w )  exists. However, the existence of the Fourier transform. 
which is defined for finite energy signals. does not necessarily ensure the existence 
of the z-transform. 

4.2.7 The Cepstrum 

Let us consider a sequence { x ( n ) )  having a :-transform X ( z ) .  We assume that 
( x ( n ) )  is a stable sequence so that X ( z )  converges on the unit circle. The conlplex 
cepstrum of the sequence { x ( n ) )  is defined as the sequence (c , (n ) ) ,  which is the 
inverse z-transform of C, (;), where 

The complex cepstrum exists if C,(z) converges in the annular region rl < 
Izl < r2, where 0 < rl < 1 and rz > 1. Within this region of convergence. C,(:) 
can be represented by the Laurent series 
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where 
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C is a closed contour about the origin and lies within the region of convergence, 
Clearly. if C., ( z )  can be represented as in (4.2.62), the complex cepstrum sequence 
{c,(n))  is stable. Furthermore, if the complex cepstrum exists, C, (z )  converges on 
the unit circIe and hence we have 

where { c , ( n ) ]  is the sequence obtained from the inverse Fourier transform of 
In X(w) .  that is, 

r , ( n )  = 1 /I in ~ ( w ) e j ~ " d w  (4.2.65) 
2n -, 

If we express X ( w )  in terms of its magnitude and phase, say 

By substituting (4.2.67) into (4.2.65), we obtain the complex cepstrum in the form 

We can separate the inverse Fourier transform in (4.2.68) into the inverse Fourier 
transforms of in I X ( w ) l  and O(w) :  

c,(n) = 1" l n l ~ ( w ) l e j ~ ~ d w  (4.2.69) 
2x -n 

In some applications, such as speech signal processing, only the component c, (n )  

is computed. In such a case the phase of X ( w )  is ignored. Therefore. the sequence 
{ x ( n ) ]  cannot be recovered from {c,(n)). That is, the transformation from ( x ( n ) l  
to {c,(n))  is not invertible. 

In speech signal processing, the (real) cepstrum has been used to separate 
and thus to estimate the spectral content of the speech from the pitch frequency 
of the speech. The complex cepstrum is used in practice to separate signals that 
are convolved. The process of separating two convolved signals is called decon- 
volurion and the use of the complex cepstrurn to perform the separation is called 
homomorphic deconvolution. This topic is discussed in Section 4.6. 
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4.2.8 The Fourier Transform of Signals wlth Poles on the 
Unit Circle 

As was shown in Section 4.2.6, the Fourier transform of a sequence x ( n )  can be 
determined by evaluating its z-transform X(:) on the unit circle, provided that the 
unit circle lies within the region of convergence of X ( z ) .  Otherwise, the Fourier 
transform does not exist. 

There are some aperiodic sequences that are neither absolutely summable 
nor square summable. Hence their Fourier transforms do not exist. One such 
sequence is the unit step sequence. which has the z-transform 

Another such sequence is the causal sinusoidal signal sequence x ( n )  = ( cosqn)  
u(n). This sequence has the :-transform 

1 - z-' cos "(, x (z) = 
1 - 2;-' cos wo f ;-2 

Note that both of these sequences have poles on the unit circle. 
For sequences such as these two examples, it is sometimes useful to extend 

the Fourier transform representation. This can be accomplished, in a mathemati- 
cally rigorous way, by allowing the Fourier transform to contain impulses at certain 
frequencies corresponding to the location of the poles of X(:) that lie on the unit 
circle. The impulses are functions of the continuous frequency variable w and 
have infinite amplitude, zero width, and unit area. An impulse can be viewed as 
the limiting form of a rectangular pulse of height l /a  and width a ,  in the limit 
as a -+ 0. Thus, by allowing impulses in the spectrum of a signal, it is possible 
to extend the Fourier transform representation to some signal sequences that are 
neither absolutely summable nor square summable. 

The following example illustrates the extension of the Fourier transform rep- 
resentation for three sequences. 

Example 4 2 5  

Determine the Fourier transform of the following signals. 

(a) x ~ ( n )  = u ( n )  

(b) .*2(n) = ( - l I n u ( n )  

(c) x3(n) = ( c o s w n ) u ( n )  

by evaluating their z-transfotms on the unit circle. 

Solution 
(a) From Table 4.3 we find that 

1 X, ( 2 )  = ------ = -4, ROC: I:( > 1 
1-2-1 2 - 1  

X , ( z )  has a pole, pl = 1, on the unit circle, but convenges for /;I > 1. 
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If we evaluate XI (:I on the unit circle. except at : = 1. we obtain 

At w = 0 and multiples of 271. XI I W )  contains impulses of area T .  
Hence the presence of a pole at ; = 1 (i.e.. at (0 = 0)  creates a problem 

only when we want to computc l i l ( w )  at w = 0.becausc i X l (w ) l  - x as 
w -- 0. For any other value or w.  X I  ( w )  is finite (i.c.. well behaved). Although, 
at first glance one might expect thc signal ro have zero-frequent! components 
at all frequencies exccpr at w = 0. this is not rht. case. This happens because 
the signal . ~ ~ ( n i  is nor a constant for all -x < tr < x. Instead, ir is turned 
on at n = 0. This i~hrupt jump creates all frcqucncy components esisting in 
the range 0 i w 5 x. Generally. all signals which start at a finire time have 
nonzero-frequency components cver!.whcrc in Ihe frequrnc! asls from zero up 
lo thc lolding frequent!,. 

(b) From Table 3.3 we find (ha( rhc :-transform of c r " 1 1 c 1 1 )  with o = - I  rcduces to 

1 
X2(,-i = - = Ll- 

1 : - 1  
R O C :  ;  > 1 

which has a polc at : = - 1  = P I ' .  Thc Fourier triinsform c\-alualud ar frequcn- 
cies orhcr than (!I = n and multiples of 2~ i s  

I n  this case the impulses occur\ a( LL = 7 + 9.rX. 
Hence the magnitude is 

and the phase is 

N o ~ e  that due to the presence of the pole at a = -1 (i.e.. at frequency w = n) ,  
the magnitude of the Fourier transform hecomes infinite. Now ;X (w) l  -r x as 
w + n. We observe that (-1 ) " u ( n )  = (cos nn )u (n ) .  which is the fastest possible 
oscillating signal in discrete time. 

(c) From the discussion above. it follows that X 3 ( w )  is infinite at the frequency 
component w = y,. Indeed, from Table 3.3. we find that 

1 - :-' c o s y ,  
x3(n) = (coswnn)u(n) - X 3 ( z )  = ROC: 1 :  r 1 

1 -2:- 'cosy, +:-' 
The Fourier transform is 
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The magnitude of X3(w)  is glven by 

11 - e- Iw cos ql 
IX.?(w)l = 1 - - - , I  , + I i 141 + 2JrL = 0. 1. 

Now if w = -q, or o = w. IX3(w)j becomes infinite. For all other frequencies. 
the Fourier transform is well behaved. 

4.2.9 The Sampling Theorem Revisited 

To process a continuous-time signal using digital signal processing techniques, it is 
necessary to convert the signal into a sequence of numbers. As was discussed in 
Section 1.4, this i s  usually done by sampling the analog signal, say x , ( t ) ,  periodically 
every T seconds to produce a discrete-time signal x ( n )  given by 

The relationship (4.2.71) describes the sampling process in the time domain. 
As discussed in Chapter 1, the sampling frequency FT = 1/T must be selected large 
enough such that the sampling does not cause any loss of spectral information (no 
aliasing). Indeed. if the spectrum of the analog signal can be recovered from the 
spectrum of the discrete- time signal, there is no loss of information. Consequently, 
we investigate the sampling process by finding the relationship between the spectra 
of signals x , ( r )  and x ( n ) .  

If x , ( t )  is an aperiodic signal with finite energy. its (voltage) spectrum is given 
by the Fourier transform relation 

whereas the signal x, ( I )  can be recovered from its spectrum by the inverse Fourier 
transform 

Note that utilization of all frequency components in the infinite frequency range 
-m < F < cc is necessary to recover the signal x , ( r )  if the signal x , ( r )  is not 
bandlimited. 

The spectrum of a discrete-time signal x ( n ) ,  obtained by sampling x , ( r ) ,  is 
given by the Fourier transform relation 

or, equivalently, 
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The sequence x ( n )  can be recovered from its spectrum X ( w )  or X (f) by the inverse 
transform 

1 " 
x(n) = - X ( o ) e J w n d w  

27r -, 
1 r- (4.2.76) 

= LIE X (f )e'"'"df 
In order to determine the relationship between the spectra of the discrete- 

time signal and the analog signal, we note that periodic sampling imposes a reh- 
tionship between the independent variables t and n in the signals x,(t) and x ( n ) ,  
respectively. That is. 

This relationship in the time domain implies a corresponding relationship between 
the frequency variabtes F and f in X,(F) and X(  f ). respectively. 

Indeed. substitution of (4.2.77) into (4.2.73) vields 

If we compare (4.2.76) with (4.2.78), we conclude that 

From the development in Chapter 1 we know that periodic sampling imposes a 
relationship between the frequency variables F and f of the corresponding analog 
and discrete-time signals, respectively. That is, 

With the aid of (4.2.801, we can make a simple change in variable in (4.2.791, and 
obtain the result 

We now turn our attention to the integral on the right-hand side of (4.2.81). 
The integration range of this integral can be divided into an infinite number of 
intervals of width F,. Thus the integral over the infinite range can be expressed 
as a sum of integrals, that is, 
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We observe that X , ( F )  in the frequency interval ( k  - ? ) F ,  to ( k  + $)F; is identical 
to X , ( F  - k F , )  in the interval -Fq/2 to F,j2. Consequentlj,. 

where we have used the periodicity of the exponential. namely. 

rZrr~r(F+il F, ) I F ,  - - p j ? . 7 n f  / F ,  

Comparing (4.2.83). (4.2.52). and (4.1.81). we conclude that 

or. equivalently. 

This is the desired relationship between the spectrum X (  F / F ,  or  A'(./') of thc 
discrete-time signal and the spectrum X, (F)  of the analog signal. Thc righl-hand 
side of (4.2.84) or (4.2.85) consists of a periodic repetition of the scaled spcctrum 
F T X , ( F )  with period F,. This periodicity is necessary because the spectrum A'(,/', 
or X ( F / F , )  of the discrete-time signal is periodic with period f,, = 1 or F,, = F, .  

For example, suppose that the spectrum of a band-limited analog signal is 
as shown in Fig. 4.18(a). The spectrum is zero for IF/ > B. NOH'. if the sam- 
pling frequency F,T is selected to be greater than 2B. the spectrum X ( F / F T  1 of the 
discrete-time signal will appear as shown in Fig. 4.18(b). Thus. if the samplins 
frequency F% is selected such that FT :, 28 .  where 2 3  is the Nyquist rate. then 

In this case there is no aliasing and therefore, the spectrum of the discrete-time 
signal is identical (within the scale factor F.) to the spectrum of the analog signal. 
within the fundamental frequency range I FI 5 F,/2 or I f  1 5 5 .  

On the other hand, if the sampling frequency F7 is selected such that F7 < 
28, the periodic continuation of X , ( F )  results in spectral overlap, as illustrated 
in Fig. 4.18(c) and (d). Thus the spectrum X ( F / F , )  of the discrete-time signal 
contains aliased frequency components of the analog signal spectrum X,(F). The 
end result is that the aliasing which occurs prevents us from recovering the original 
signal x , ( t )  from the samples. 

Given the discrete-time signal x ( n )  with the spectrum X ( F / F , ) .  as illustrated 
in Fig. 4.18(b). with no aliasing, it is now possible to reconstruct the original analog 



Figure 4.18 Sampling of an analog bandlim~ted signal and aliasing of spectral 
components. 
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signal from the samples x ( n ) .  Since in the ahsence of aliasins 

and by the Fourier transform relationship (4.2.75). 

the inverse Fourier transform of X , ( F )  is 

Let us assume that F, = 2 B .  With the substitution of (4.2.87) into (4.2.89). we 

where x ( n )  = x , (nT)  and where T = l /FT = 1/2B is the sampling interval. This 
is the reconstruction formula given by (1.4.24) in our discussion of the sampling 
theorem. 

The reconstruction formula in (4.2.90) involves the function 

appropriately shifted by n T ,  n  = 0, il. zk2. . . . , and multiplied or weighted by 
the corresponding samples x , (nT)  of the signal. We call (4.2.90) an interpola- 
tion formula for reconstructing x , ( t i  from its samples. and g ( r ) .  given in (4.2.91), 
is the interpolation function. We note that at t  = k T ,  the interpolation function 
g(r - n T )  is zero except at k = n.  Consequently, x , ( t )  evaluated at f = k T  is simply 
the sample x- , (kT).  At all other times the weighted sum of the time shifted versions 
of the interpolation function combine to yield exactly x,cc). This combination is 
illustrated in Fig. 4.19. 

The formula in (4.2.90) for reconstructing the analog signal x , ( r )  from its 
samples is called the ideal inzerpolation formula. It forms the basis for the sampl in~ 
theorem, which can be stated as follows. 

Sampling Theorem. A bandlimited continuous-time signal, with highest fre- 
quency (bandwidth) B Hertz. can be uniquely recovered from its samples provided 
that the sampling rate F, 2 2 8  samples per second. 
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Reconstructed signal 

-T 0 

Figure 4.19 Reconstruction of a continuous-time s~pnal using ideal ~nterpolarion 

According to the sampling theorem and the reconstruction formula in (4.2.90), 
the recovery of x,(r) from its samples x ( n ) ,  requires an infinite number of Sam- 
ples. However, in practice we use a finite number of samples of the signal and 
deal with finite-duration signals. As a consequence, we are concerned only with 
reconstructing a finite-duration signal from a finite number of samples. 

When aliasing occurs due to too low a sampling rate, the effect can be de- 
scribed by a multiple folding of the frequency axis of the frequency variable F for 
the analog signal. Figure 4.20(a) shows the spectrum X,(F) of an analog signal. 
According to (4.2.84). sampling of the signal with a sampling frequency F, results 
in a periodic repetition of X,(F) with period I;,. If I;, < 28,  the shifted replicas of 
X,(F) overlap. The overlap that occurs within the fundamental frequency range 
- F , / 2  5 F 5 &/2, is illustrated in Fig. 4.20(b). The corresponding spectrum of 
the discrete-time signal within the fundamental frequency range, is obtained by 
adding all the shifted portions within the range 1 f I 5 $, to yield the spectrum 
shown in Fig. 4.20(c). 

A careful inspection of Fig. 4.20(a) and (b) reveais that the aliased spectrum 
in Fig. 4.20(c) can be obtained by folding the original spectrum like an accordian 
with pleats at every odd multiple of F , / 2 .  Consequently, the frequency Fs /2  is 
called the folding frequency, as indicated in Chapter 1. Clearly, then, periodic 
sampling automatically forces a folding of the frequency axis of an analog signal 
at odd multiples of F,/2, and this results in the relationship F = f F, between the 
frequencies for continuous-time signals and discrete-time signals. Due to the fold- 
ing of the frequency axis, the relationship F = f FT is not truly linear. but piecewise 
linear, to accommodate for the aliasing effect. This relationship is illustrated in 
Fig. 4.21. 

If the analog signal is bandlimited to B 5 F,/2, the relationship between f 
and F is linear and one-to-one. In other words, there is no aliasing. In practice, 
prefiltering with an antialiasing filter is usually employed prior to  sampling. This 
ensures that frequency components of the signal above F 2 B are sufficiently 
attenuated so that, if aliased, they cause negligible distortion on the desired signal. 

The relationships among the time-domain and frequency-domain functions 
xo(t), x ( n ) ,  Xo(F), and X ( f )  are summarized in Fig. 4.22. The relationships for 
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Figure 4.20 Illustration of aliasing around the foiding frequency 

Figure 4.21 Relationship between frequency variables F and f. 
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Figure 4 2  Time-domain and frequency-domain relationships for sampled sig- 
nals. 

recovering the continuous-time functions, x , ( t )  and X , ( F ) ,  from the discrete-time 
quantities x ( n )  and X( f ) ,  assume that the analog signal is bandlimited and that it 
is sampled at the Nyquist rate (or faster). 

The following examples serve to illustrate the problem of the aliasing of 
frequency components. 

Example 4 2 6  Aliasing in Sinusoidal Signals 

The continuous-time signal 

has a discrete spectrum with spectral lines at F = f F,,, as shown in Fig. 4.23(a). The 
process of sampling this signal with a sampling frequency F, introduces replicas of the 
spectrum about multiples of F,. This is illustrated in Fig. 4.23(b) for Fs/Z < Fo < F,. 

To reconstruct the continuous-time signal, we should select the frequency com- 
ponents inside the fundamental frequency range ] FI 5 F,/2. T h e  resulting s p e c t W  
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Figure 4.23 Aliasing of sinusoidal signals. 
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is shown in Fi9. 4.23(c). The reconstructed signal is 

Now. if F, is selected such that FT < F0 < 3 F , / 2 .  the spectrum of the sampled 
signal is shown in Fig. 4.23(d). The reconstructed sisnal. shown in Fig. 4.23(e). is 

In both cases. aliasing has occurred, so  that the frequency of the reconstructed signal 
is an aliased version of the frequency of the original signal. 

Exam, . e 4.2.7 Sampling a Pionbandlimited Signal 

Consider the continuous-time signal 

whose spectrum is given by 

Determine the spectrum of the sampled signal . r (n)  E x , ( n T ) .  

Solution If we sample a,,(r) with a sampling frequency F,  = 1 / T .  we have 

The spectrum of x ( n )  can he found easily if we use a direct computation of the Fourier 
transform. We find that 

Clearly. since cos 2n F T  = cos 27r( F / F ,  ) is periodic with period F , ,  so  is X (  F/Fs' , )+  
Since X , ( F )  is not bandlimited. aliasing cannor be avoided. The spectrum of 

the reconstructed signal i , ( r  J is 

Figure 4.24(a) shows the original signal x , ( r )  and its spectrum X , ( F )  for A = 1. 
The sampled signal x(n) and its spectrum X ( F / F , )  are shown in Fig. 4.24(b) for 
Fs = 1 Hz.  The aliasing distortion is clearly noticeable in the frequency domain. The 
reconstructed signal i , ( r )  is shown in Fig. 4.24(c). The distortion due to aliasing can 
be reduced significantly hy increasing the sampling rate. For example, Fig. 4.24(d) 
illustrates the reconstructed signal corresponding to  a sampling rate F, = 20 Hz. It 
is interesting t o  note that in every case x , ( n T )  = i a ( n T ) ,  but x , ( t )  # i a ( r )  at other 
values of time. 
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Figure 4.24 l a )  Analog signal  x , ( 1 )  a n d  its spectrum X,,( F ) :  ( h )  . r ( n  I = x , l n T )  
and the spectrum of ~ ( n  r for A = I and FT = 1 Hz. (c)  reconstructed signal 11,~) 
for Fr = I Hz: ( d )  reconstrucred slgnal id(!) for F, = 20 Hz. 

4.2.1 0 Frequency-Domain Classification of Signals: The 
Concept of Bandwidth 

Just as we have classified signals according to their time-domain characteristics. it 
is also desirable to classify signals according to their frequency-domain character- 
istics. It is common practice to classify signals in rather broad terms according to 
their frequency content. 

In particular. if a power signal (or energy signal) has its power density spec- 
trum (or its energy density spectrum) concentrated about zero frequency. such 
a signal is called a low-frequency signal. Figure 4.25(a) illustrates the spectral 
characteristics of such a signal. On the other hand, if the signal power density 
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Figure 4.25 (a) Low-frequency. (b) high-frequency. and (c) medlum-frequency 
signals. 

spectrum (or the energy density spectrum) is concentrated at high frequencies, 
the signal is called a high-frequency signal. Such a signal spectrum is illustrated 
in Fig. 4.25(b). A signal having a power density spectrum (or an energy density 
spectrum) concentrated somewhere in the broad frequency range between low fre- 
quencies and high frequencies is called a medium-frequency signal or a bandpass 
signal. Figure 4.25(c) illustrates such a signal spectrum. 

In addition to this relatively broad frequency-domain classification of signals, 
it is often desirable to express quantitatively the range of frequencies over which 
the power or energy density spectrum is concentrated. This quantitative measure 
is called the bandwidrh of a signal. For example, suppose that a continuous- 
time signal has 95% of its power (or energy) density spectrum concentrated in the 
frequency range FI I F 5 F2. Then the 95% bandwidth of the signal is F2- Fl .  In 
a similar manner, we may define the 75% or 90% or 99% bandwidth of the signal. 
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In the case of a bandpass signal. the term narrowband is used to describe 
the sienal if its bandwidth F: - FI is much smaller (say, by a factor of 10 or more) 
than the median frequency ( F 2  + F,),Q. Otherwise. the signal is called wdebond. 

We shall say that a signal is bandlimired if its spectrum is zero outside the 
frequency range 1 Fl 2 B. For example, a continuous-time finite-energy signal x ( r )  
is bandlimited if its Fourier transform X ( F )  = 0 for IF1 > B .  A discrete-time 
finite-energy signal x ( n )  is said to be (periodically) bandlimired if 

Similarly. a periodic continuous-time signal x , ( t )  is periodically bandlimited if its 
Fourier coefficients cl; = 0 for Ikl > M, where M IS some positive integer. A 
periodic discrete-time signal with fundamental period N is periodically bandlimited 
if the Fourier coefficients c~ = 0 for ko < Ikl < N. Figure 4.26 illustrates the four 
types of bandlimited signals. 

By exploiting the duality between the frequency domain and the time domain, 
we can provide similar means for characterizing signals in the time domain. In 
particular. a signal x ( t )  will be called rime-limited if 

If the signal is periodic with period T,. it will be called periodically rime-limited if 

If we have a d~screte-time signal . r ( t r)  of finite duration, that is, 

it is also called time-limited. When the signal is periodic with fundamental period 
N ,  it is said to be periodically time-limited if 

F i l e  4.26 Some examples of bandlimited signals. 

Aperiodic signals Periodic signals 

- - 
-B 0 B 0 MFo kF0 
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We state, without proof, that no signal can be time-limited and bandlimited 
simultaneously. Furthermore, a reciprocai relationship exists between the time 
duration and the frequency duration of a signal. To elaborate, if we have a short- 
duration rectangular pulse in the time domain, its spectrum has a width that is 
inversely proportional to the duration of the time- domain pulse. The narrower 
the pulse becomes in the time domain, the larger the bandwidth of the signal 
becomes. Consequently, the product of the time duration and the bandwidth of 
a signal cannot be made arbitrarily small. A short-duration signal has a large 
bandwidth and a small bandwidth signal has a long duration. Thus, for any signal, 
the time-bandwidth product is fixed and cannot be made arbitrarily small. 

Finally, we note that we have discussed frequency analysis methods for peri- 
odic and aperiodic signals with finite energy. However, there is a family of deter- 
ministic aperiodic signals with finite power. These signals consist of a linear super- 
position of complex exponentials with nonharmanicatly related frequencies, that is, 

where wl ,  q, . . . , W M  are nonharmanically related. These signals have discrete 
spectra but the distances among the lines are nonharmonically related. Signals 
with discrete nonharmonic spectra are sometimes called quasi-periodic. 

4.2.11 The Frequency Ranges of Some Natural Signals 

The frequency analysis tools that we have developed in this chapter are usually 
applied to a variety of signals that are encountered in practice (e.g., seismic, biolog- 
ical, and electromagnetic signals). In general. the frequency analysis is performed 
for the purpose of extracting information from the observed signal. For example, 
in the case of biological signals, such as an ECG signal, the analyticat tools are 
used to extract information relevant for diagnostic purposes. In the case of seismic 
signals, we may be interested in detecting the presence of a nuclear explosion or in 
determining the characteristics and location of an earthquake. An electromagnetic 
signal, such as a radar signal reflected from an airplane, contains information on 
the position of the plane and its radial velocity. These parameters can be estimated 
from observation of the received radar signal. 

In processing any signal for the purpose of measuring parameters or ex- 
tracting other types of information, one must know approximately the range of 
frequencies contained by the signal. For reference, Tables 4.1, 4.2, and 4.3 give 
approximate limits in the frequency domain for biological, seismic, and electro- 
magnetic signals. 

4.2.12 Physical and Mathematical Dualities 

In the previous sections of the chapter we have introduced several methods for the 
frequency analysis of signals. Several methods were necessary to accommodate the 
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TABLE 4.1 FREQUENCY RANGES OF SOME BIOLOGICAL 
SlGNALS 
- - 

Type of Signal Frequency Range (Hz) 

Electroretinograrna 
Electronystapmogramb 

PneumogramC 

Electrocardio~rarn (ECG) 
Electroencephalogram (EEG) 
Electrornyoprarnd 
Sphvprnomanograrn" 
Speech 

% graph~c recording of retina characteristics. 
h~ graphic recording of involuntarv movement of the eyes. 
'A  graphic recording of respirato+ activity. 
d~ graphic recording of muscular action. such as  muscular contraction. 
'A recording of blood pressure. 

TABLE 4.2 FREQUENCY RANGES OF SOME SEISMIC SIGNALS 

Type of Signal Frequency Range (Hz) 
- - - - - - - - - - - - - - 

W ~ n d  notsc I(Wl-l(KK) 
Sc~smic cxploratlon signals l(k1OU 
Earthquakc and nuclc;ir explosion signals 0.01-10 
Sclsmic noise 0.1-1 

TABLE 4.3 FREQUENCY RANGES OF ELECTROMAGNETIC SIGNALS 

Type of Sirnal Wavelength {m)  Frequency Range (Hz) 

Radio broadcast 1@-1($ 3 x 10'-3x 10' 
Shortwave radio signals 1[$-10-~ 3 x 10h-3 x 10"' 
Radar. saiellile communications. 

space commun~ca t~ons .  
common-carrier mtcrowavc 1-lo-? 3 x I@-3 x 10'" 

Infrared 10-'-lo-" 3 x 10"-3 x 1 0 ' ~  
Visible light 3.9 x 10-'-8.1 x lo-' 3.7 x 10'~-7.7 x 10" 
Ultraviolet 10-'-10-~ 3 x 10"-3 x 10lh 
Gamma rays and x-rays ] ( ) - ~ - l o - l ~ ~  3 x 30"-3 x 10'" 

different types of signals. To summarize, the following frequency analysis tools 
have been introduced: 

1. The Fourier series for continuous-time periodic signals. 
2. The Fourier transform for continuous-time aperiodic signals. 
3. The Fourier series for discrete-time periodic signals. 
4. The Fourier transform for discrete-time aperiodic signals. 
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Figure 4.27 summarizes the analysis and synthesis formulas for these types of 
signals. 

As we have already indicated several times. there are two time-domain char- 
acteristics that determine the type of signal spectrum we obtain. These are whether 
the time variable is continuous or discrete, and whether the signal is periodic or 
aperiodic. Let us briefly summarize the results of the previous sec~ions. 

Continuous-time signals have aperiodic spectra. A close inspection of 
the Fourier series and Fourier transform analysis formulas for continuous-time 
signals does not reveal any kind of periodicity in the spectral domain. This lack of 
periodicity is a consequence of the fact that the complex exponential exp(j2n Ft) 
is a function of the continuous variable t. and hence it is not periodic in F. Thus 
the frequency range of continuous-time signals extends from F = 0 to F = m. 

Discrete-time signals have periodic spectra. Indeed. both the Fourier 
series and the Fourier transform for discrete-time signals are periodic with period 
w = 2n. As a result of this periodicity. the frequency range of discrete-time signals 
is finite and extends from w = -rr to w = x radians, where w = JT corresponds to 
the highest possible rate of oscillation. 

Periodic signals have discrete spectra. As we have observed, periodic 
signals are described by means of Fourier series. The Fourier series coefficients 
provide the "lines" that constitute tho discrete spectrum. The line spacing A F  
or Af is equal to the inverse of the period T, or N. respectiveiy, in the time 
domain. That is. A F  = l/T,, for continuous-time periodic signals and Af = 1/N 
for discrete-time signals. 

Aperiodic finite energy signals have continuous spectra. This prop 
erty is a direct consequence of the fact that both X ( F )  and X ( w )  are functions 
of exp(j2n F t )  and exp(jwn), respectively. which are continuous functions of the 
variables F and w. The continuity in frequency is necessary to break the harmony 
and thus create aperiodic signals. 

In summary. we can conclude that periodicity with "period" cr in one domain 
automatically implies discretization with "spacing" of l / a  in the other domain, and 
vice versa. 

If we keep in mind that "period" in the frequency domain means the fre- 
quency range. "spacing" in the time domain is the sampling period T, line spacing 
in the frequency domain is A F .  then a = T, implies that l / a  = l / T p  = A F ,  a = N 
implies that A f = 1 / N ,  and a = F, implies that T = l / F , .  

These time-frequency dualities are apparent from observation of Fig. 4.27. 
We stress, however, that the illustrations used in this figure do not correspond to 
any actuaI transform pairs. Thus any comparison among them should be avoided. 

A careful inspection of Fig. 4.27 also reveals some mathematical symmetries 
and dualities among the several frequency analysis relationships. In particular, 
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we observe that there are dualities between the following analysis and synthesis 
equations: 

1. The analysis and synthesis equations of the continuous-time Fourier trans- 
form. 

2. The analysis and synthesis equations of the discrete-time Fourier series. 
3. The analysis equation of the continuous-time Fourier series and the synthesis 

equation of the discrete-time Fourier transform. 
4. The analysis equation of the discrete-time Fourier transform and the synthesis 

equation of the continuous-time Fourier series. 

Note that all dual relations differ only in the sign of the exponent of the 
corresponding complex exponential. It is interesting to note that this change in 
sign can be thought of either as a folding of the signal or  a folding of the spectrum, 
since 

c -12nFr  - - c j Z n ( - F ) r  = c j Z n F ( - t l  

If we turn our attention now to the spectral density of signals, we recall that 
we have used the term energy density spectrum for characterizing finite-energy 
aperiodic signals and the term power density spectrum for periodic signals. This 
terminology is consistent with the fact that periodic signals are power signals and 
aperiodic signals with finite energy are energy signals. 

4.3 PROPERTIES OF THE FOURIER TRANSFORM FOR 
DISCRETE-TIME SIGNALS 

The Fourier transform for aperiodic finite-energy discrete-time signals described 
in the preceding section possesses a number of properties that are very useful in 
reducing the complexity of frequency anakysis problems in many practical appli- 
cations. In this section we develop the important properties of the Fourier trans- 
form. Similar properties hold for the Fourier transform of aperiodic finite-energy 
continuous-time signals. 

For convenience, we adopt the notation 

for the direct transform (analysis equation) and 

x ( n )  = F - ' { ~ ( w ) )  = (4.3.2) 

for the inverse transform (synthesis equation). We also refer to x ( n )  and X ( w )  as 
a Fourier transform pair and denote this relationship with the notation 
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Recall that X(w) is periodic with period 2rr. Consequently, any interval 
of length 27r is sufficient for the specification of the spectrum. Usually, we plot 
the spectrum in the fundamental interval [-n. X I .  We emphasize that all the 
spectral information contained in the fundamental interval is necessary for the 
complete description or characterization of the signal. For this reason, the range 
of integration in (4.3.2) is always 2x, independent of the specific characteristics of 
the signal within the fundamental interval. 

4.3.1 Symmetry Properties of the Fourier Transform 

When a signal satisfies some symmetry properties in the time domain. these prop- 
erties impose some symmetry conditions on its Fourier transform. Exploitation 
of any symmetry characteristics leads to simpler formulas for both the direct and 
inverse Fourier transform. A discussion of various symmetry properties and the 
implications of these properties in the frequency domain is given here. 

Suppose that both the signal x ( n )  and its transform X(w) are complex-valued 
functions. Then they can be expressed in rectangular form as 

By substituting (4.3.4) and P - ~ ' ~ '  = cosu - j sin w into (4.3.1) and separating the 
real and imaginary pans. we obtain 

x 

X n ( w )  = ( x x ( n )  coswt~ + X I ( . )  sin o n ]  (4.3.6) 
1 1 = - s  

In a similar manner, by substituting (4.3.5) and el" = cos w + j sin tx into (4.3.2), 
we obtain 

Now, let us investigate some special cases. 

Real signals. If x ( n )  is real, then x R ( n )  = x ( n )  and x l ( n )  = 0. Hence 
(4.3.6) and (4.3.7) reduce to 
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and 
3z 

X,(w) = - x ( n )  sin wn 
n=-3C 

Since cos(-wn) = coswn and sin(-wn) = -sin wn, it follows from (4.3.10) and 
(4.3.11) that 

XR(-w) = XR(W) (even) (4.3.12) 

XI(-W) = -X[(w) (odd) (4.3.13) 

If we combine (4.3.12) and (4.3.13) into a single equation. we have 

In this case we say that the spectrum of a real signal has Hermirian symmetry. 
With the aid of Fig. 4.28, we observe that the magnitude and phase spectra 

for real signals are 

lx(w)l = Jx;(w) + x:(w) (4.3.15) 

 XI(^) 
& ~ l w l  = tan-' - (4.3.16) 

XK (w) 
As a consequence of (4.3.12) and (4.3.131, the magnitude and phase spectra also 
possess the symmetry properties 

a x ( - w ) = - & X ( w )  (odd) (4.3.18) 

In the case of the inverse transform of a real-valued signal [i-e., x(n) = x ~ ( n ) ] ,  
(4.3.8) implies that 

Since both products X R ( w ) ~ ~ ~ o n  and XI(w)sinwn are even functions of w, we 
have 

x ( n ) = -  [ X R ( ~ ) ~ 0 ~ ~ n - x I ( ~ ) s i n w n ] d w  (4.3.20) 
0 

Imaginary axis 

t 

Real axis Figure 4.28 
functions. 

Magnitude and phase 
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Real and even signals. If .r(n) is real and even [i.e.. .r(-n) = x(n)]. then 
x ( n )  coswrl is even and x ( n )  sin wrt is odd. Hence. from (4.3.10). (4.3.13). and 
(4.3.20) we obtain 

Thus real and even signals possess real-valued spectra. which, in addition, are even 
functions of the frequency variable w. 

Real and odd signals. If x ( t l )  is real and odd [i.e., xi-n) = - . r (n) ] .  then 
. r ( r i )  cos wrt is odd and .r (n sin wn is even. Consequently. (4.3.10). (4.3.1 1 ) and 
(4.3.20) irnpl!, that 

Thus rcal-valued odd signals possess purely imaginary-valued spectral characteris- 
tics. which. in addition. are odd functions of the frequency variable w .  

Purely imaginary signals. In this case x R ( n )  = 0 and x(n)  = j x l ( n ) .  Thus 
(4.3.6). (4.3.7). and (4.3.9) reduce to 

3C 

X x ( w ) =  x x , ( n ) s i n w n  (odd) 
n = - r .  

X J ( ~ ) =  e r ~ ( n ) c o s w n  (even) (4.3.28) 
n=-CE. 

If x ~ ( n )  is odd [i.e., xl{-n) = -xl(n)], then 

3C 

X a ( o ) = 2 ~ r , ( n ) s i n o n  (odd) (4.3.30) 
n = l  
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Similarly. if x ,  (n) is even [i.e.. x- ,  ( - ) I )  = A ,  (n)]. we have 

X R ( W )  = 0 (4.3.33) 
5 

X! ( w )  = x ,  (01 + 2 x x ,  (11) cos wn (even) (4.3.34) 

An arbitrary. possibly complex-valued signal x ( n )  can be decomposed as 

where, by definition. 

The superscripts e and o denote the even and odd signal components. respectively. 
We note that x , ( n )  = x , ( - i1 )  and x , , ( -n j  = - x , , ( t ~ ) .  From (4.3.36) and the Fourier 
transform properties established above. we obtain the foliowin_e relationships: 

These symmetry properties of the Fourier transform are summarized in Ta- 
ble 4.4 and in Fig. 4.29. They are often used to simplify Fourier transform calcu- 
lations in practice. 

Example 4.3.1 

Determ~ne and sketch X R ( w ) .  X , ( W ) .  IX(w)/.  and &X(w) for the Fourier transform 

Solution By multiplying both the numerator and denominator of (4.3.38) by the 
complex conjugate of the denominator. we obtain 

1 - aeJ" 
- - I - a c o s w -  jas inw 

X(w) = 
I - e W ) ( l  - e W  1 - 2a cos w + a 2  

This expression can be subdivided into real and imaginary parts. Thus we obtain 

a sin w 
X,(w)  = - 

1 - 2 a c o s w + a 2  
Substitution of the l a s ~  two equations into (4.3.15) and (4.3.16) yields the mag- 

nitude and phase spectra as 

I 
IX(w)I = (4.3.39) 

JI - 2acosw + a 2  
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TABLE 4.4 SYMMETRY PROPERTIES OF THE DISCRETE-TIME 
FOURIER TRANSFORM 

Sequence DTFT 

.y\ni X (0) 
. ~ " ( n i  Xm(-w)  

x F \ - n i  X * ( w )  

.18(") X,.(W) = ~ [ x ( w )  + x ' ( -w ) ]  
J . T / ( I I )  X,,lW) = { [ ~ ( w )  - X * ( - w ) ]  

.,(.(IT\ = 4 [ x ( n )  + - r - ( - l , ) ]  X R ( W )  

.<< , in )  = +[.1-(,2i - . Y * { - , I ) ]  j X , ( w )  
Real Sisnals 

X ( W )  = X ' J - W )  

Any  real s~gnal  X R ( W )  = X K ( - W )  

~ ( 1 1 )  X 1 ( w )  = - X I ( - w i  
1Xlw)J = ] X i - o l l  

& X ( 0 )  = - & X ' ( - w l  

X,.( I I  1 = 4 ( X  t,, i + .1 ( -n ) ]  X R ( w i  

(rcal and cvcn) (real and even) 

. I , , I ~ J  = ? I . , - ( I I ~  - r i -n ) ]  j X ~ i w i  

(rcul and odd)  (~rnaglnorv and odd) 

Tlmc domain : Frequent! domain 

Real 

Signal 

Imaginary 

Real 

Signal 

Imaginary 

Figure 4.29 Summary of symmetry properties for the Fourier transform. 
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and 

Figures 4.30 and 4.31 show the graphical representation of these spectra for 
a = 0.8. The reader can easily verify that as expected. all symmetry properties for 
the spectra of real signals apply to this case. 

Example 4.3.2 

Determine the Fourier transform of the signal 
A .  - M i n i M  

(4.3.41) 
elsewhere 

Solution Clearly, I(-n) = x ( n ) .  Thus x ( n )  is a real and even s ipa l .  From (4.3.21) 
we obtain 

Ftgure 430 Graph of X R ( ~ )  and X,(w)  for the transform in Example 4.3.1 
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Figure 4.31 Magnitude and phase spectra of the transform in Example 4.3.1. 

I f  we use the identity given in Problem 4.13, we obtain the simpler form 

Slnce X(w) IS real. the magnitude and phase spectra are given by 

and 

Figure 4.32 shows the graphs for X(w). 
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Figure 4.32 Spectral characteristics of rectangular pulse in Example 4.3.2. 

4.3.2 Fourier Transform Theorems and Properties 

In this section we introduce several Fourier transform theorems and illustrate their 
use in practice by examples. 

Linearity. If 
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and 

then 

Simply stated, the Fourier transformation. viewed as an operation on a sisnal 
x ( n 1 ,  is a linear transformation. Thus the Fourier transform of a linear combination 
of two or  more signals is equal to the same linear combination of the Fourier 
transforms of the individual signals. This property is easily proved by using (4.3.1). 
The linearity property makes the Fourier transform suitable for the study of linear 
systems. 

Example 4.3.3 

Determine the Fourier transform of the signal 

Solution Firs(, wc crbscrvc that .I ( 1 1 )  can bc cxpressecl as 

and 

Beginning with the definition of the Fourier transform in (4.3.1). we havc 

The summation is a seometric serles that converges LO 

I 
XI iw)  = - 1 - aeLIUJ 

provided that 

which is a condition that is satisfied in this problem. Similarly. the Fourier transform 
of x 2 ( n )  is 
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By combining these two transforms. we obtain the Fourier rransform of x ( n )  in the 
form 

X ( W )  = X r I w )  S X2(w)  

1 - u 2  (4.3.46) - - 
1 - 2 r r c o s w + u ~  

Figure 4.33 illustrates x ( n )  and X ( w )  for the case in which LI = 0.8. 

Time shifting. If 

then 

The proof of this property follows immediately from the Fourier transform of 
x ( n  - k )  by making a change in the summation index. Thus 

F ( x ( n  - k ) )  = ~ ( w ) r - ~ ~ '  

Figure 4.33 Sequence x ( n )  and its Fourier transform in Example 4.3.3 with 
a = 0.8. 
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This relation means that if a signal is shifted in the time domain by k sarn- 
pies, its magnitude spectrum remains unchanged. However, the phase spectrum is 
changed by an amount -wk. This result can easily be explained if we recall that 
the frequency content of a signal depends only on its shape. From a mathematical 
point of view, we can say that shifting by k in the time domain, is equivalent to 
multiplying the spectrum by e-J"" in the frequency domain. 

Time reversal. If 

then 

x(-n) x(-w> 

This property can be established by performing the Fourier transformation 
of x(-n) and making a simple change in the summation index. Thus 

CT 

FIX(-n)] = x(1)e)" = X(-w) 
i=-CC 

If x ( n )  is real, then from (4.3.77) and (4.3.18) we obtain 

This means that if a signal is folded about the origin in time, its magnitude spectrum 
remains unchanged, and the phase spectrum undergoes a change in sign (phase 
reversal). 

Convolution theorem. If 

and 

xz(n) - X.(W) 

then 

x(n) = xl(n) * xz(n) ~ ( w )  = X I ( W ) X ~ ( W )  

To prove (4.3.49), we recall the convolution formula 
x 

x (n) = X I  ( n )  * rz(n) = xl(k)r2(n - k)  
k=-oc  

By multiplying both sides of this equation by the exponential exp(-jon) and 
summing over all n ,  we obtain 
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After interchanging the order of the summations and making a simple change in 
the summation index, the right-hand side of this equation reduces to the product 
XI ( w ) X 2 ( w ) .  Thus (4.3.49) is established. 

The  convolution theorem is one of the most powerful tools in linear systems 
analysis. That is. if we convolve two signals in the time domain. then this is 
equivalent to multiplying their spectra in the frequency domain. In later chapters 
we will see that the convolution theorem provides an important computational 
tool for many digital signal processing applications. 

Example 4.3.4 

By use of (4.3.49). determine the convolution of the sequences 

Solution Bq using (4.3.21 1. wc ohtaln 

XI ((0) = X 2 ( w )  = 1 + 2 cos U) 

Then 

X ( w ]  = X 1 ( ~ ~ ) ) X 2 ( ~ ~ ) )  = ( 1  + : ! C O S W ) ~  

= 3 + 4 cos w 1- 2 ct)h Ztri 

- - 3 + 2 ( c l t , ,  
c-  l ' f  , + (<,/:I,, * t,- l ? f ' , )  

Hence the convolu~ion of .rl ( ! I  with . Y ~ ( I I  IS 

. I - ( 1 1 )  = ( 1  2 3 2 I ]  
.+ 

Figure 4.34 illustrates the rorcgoing relationships. 

The correlation theorem. If 

s 1 0  - x.XI(WJ 
and 

x2(n) - x:(w) 

then 

r .., im) -A ~,, , , iw) = X I  ~ w ) ~ * i - w )  (4.3.50) 

The  proof o f  (4.3.50) is similar to the proof of (4.3.49). In this case. we have 

By multiplying both sides of this equation by the exponential exp(-jwn) and 
summing over all n, we obtain 



Sec. 4.3 Properties of the Fourier Transform for Discrete-Time Signals 

Figure 434  Graphical representation of the convolution property. 

Finally, we interchange the order of the summations and make a change in the 
summation index. Thus we find that the right-hand side of the equation above 
reduces to X 1 ( w ) X Z ( - ~ ) .  The function Sx,,,(w) is called the cross-energy density 
spectrum of the signals x l  (n) and x 2 ( n ) .  

The Wiener-Khintchine theorem. Let x ( n )  be a real signal. Then 

That is, the energy spectral density of an energy signal is the Fourier transform of 
its autocorrelation sequence. This is a special case of (4.3.50). 

This is a very important result. It means that the autocorrelation sequence 
of a signal and its energy spectral density contain the same information about the 
signal. Since, neither of these contains any phase information, it is impossible to 
uniquely reconstruct the signal from the autocorrelation function or the energy 
density spectrum. 

Example 4 3 5  

Determine the energy density spectrum of the signal 
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Solution From Example 2.6.2 we found that the autocorrelation function for this 
signal is 

By using the result in (4.3.46) for the Fourier transform of a" ' .  derived in Exam- 
ple 4.3.3. we have 

Thus. according to the Wiener-Khintchine theorem, 

Frequency shifting. I f  

x(n) A ~ ( w )  

then 

e J * ' n x ( ~ r )  A X(W - ~ g )  

This property is easily proved by direct substitution into the  analysis equation 
(4.3.1). According to  this property, multiplication of a sequence x(n) hy ejqln is 
equivalent to a frequency translation of the spectrum X(w) by w,. This frequency 
translation is illustrated in Fig. 4.35. Since the spectrum X(w) is periodic, the shift 
q, applies to  the spectrum of the signal in every period. 

The modulation theorem. If 

Fpre A35 Illustration of the frequency-shifting property of the Fourier trans- 
form. 
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then 

To prove the modulation theorem. we first express the signal cosw(,n as 

Upon multiplying x (n) by these two exponentials and using the frequency-shiftinp 
property described in the preceding section, we obtain the desired result in (4.3.53). 

Although the property given in (4.3.52) can also be viewed as (complex) 
modulation, in practice we prefer to use (4.3.53) because the signal x ( n )  cosco(~n 
is real. Clearly. in this case the symmetry properties (4.3.12) and (4.3.13) are 
preserved. 

The modulation theorem is illustrated in Fig. 4.36, which contains a p lo~  of 
the spectra of the signals x(n). (n) = x(n)cos 0.5xw and !*z(n) = .\ ( 1 1 )  cos irn.  

F i r e  436 Graphical representation of the modulation theorem. 



302 Frequency Analysis of Signals and Systems Chap. 4 

Parseval's theorem. If 

xl(n) L+ X I X ~ ( ~ )  

and 

x z ( n )  cT-t ~ ? ( w )  

then 

To prove this theorem, we use (4.3.1) t o  eiiminate XI ( w )  on the right-hand 
side of (4.3.54), Thus we have 

I n  the special case where x 2 ( n )  = x l ( n )  = x ( t 1 ) .  Parseval's relation (4.3.54) 
reduces to 

We observe that the left-hand side of (4.3.55) is simply the energy E, of the signal 
.r(n). It is aiso equal to the autocorrelation of x ( n ) .  r , , ( l ) ,  evaluated at  I = 0. 
The integrand in the right-hand side of (4-3.55) is equal to the energy density 
spectrum, so  the integral over the interval -rr 5 w 5 rr yields the total signal 
energy. Therefore, we conclude that 

Multiplication of two sequences (Windowing theorem). If 

x ~ ( n )  X I ( W )  

and 

x2(n) X Z ( W I  

then 

x 3 ( n )  = xl ( n ) x 2 ( n )  X 3 ( w )  = - (4.3.57) 
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The integral on the right-hand side of (4.3.57) represents the convolution of the 
Fourier transforms X l ( w )  and X?(O). This relation is the dual of the time-domain 
convolution. In other words, the multipiication of two time-domain sequences is 
equivalent to the convolution of their Fourier transforms. On the other hand, the 
convolution of two time-domain sequences is equivalent to the multiplication of 
their Fourier transforms. 

To prove (4.3.57) we begin with the Fourier transform of x3(n)  = xl(n)x2(n) 
and use the formula for the inverse transform, namely, 

Thus, we have 

The convolution integral in (4.3.57) is known as the periodic convolution of 
X1(u) and X2(u) because it is the convolution of two periodic functions having the 
same period. We note that the limits of integration extend over a single period. 
Furthermore, we note that due to the periodicity of the Fourier transform for 
discrete-time signals, there is no "perfect" duality between the time and frequency 
domains with respect to the convolution operation, as in the case of continuous- 
time signals. Indeed, convolution in the time domain (aperiodic summation) is 
equivalent to multiplication of continuous periodic Fourier transforms. However, 
multiplication of aperiodic sequences is equivalent to periodic convolution of their 
Fourier transforms. 

The Fourier transform pair in (4.3.57) will prove useful in our treatment of 
FIR filter design based on the window technique. 

Differentiation in the frequency domain. If 

then 



304 Frequency Analysis of Signals and Systems Chap. 4 

T o  prove this property. we use the definition of the  Fourier transform in 
(4.3.1) and differentiate the series term by term with respect to w .  Thus we 
obtain 

Now we multiply both sides of the equation by J to obtain the desired result in 
(4.3.58). 

The properties derived in this section are summarized in Table 4.5. which 
serves as a convenient reference. Table 3.6 illuslrates some useful Fourier trans- 
form pairs that will bc encountered in later chapters. 

TABLE 4.5 PROPERTIES OF THE FOURIER TRANSFORM FOR DISCRETE-TIME 
SIGNALS 

Properly Timc Domain Frcqucnc! D0mi11n 

Notation 

Linearity 
Time shifting 
Time reversal 
Convolution 
Correlation 

Wiener-Khintchine 
theorem 

Frequency shifting 
Modulation 

eJ"nl'x ( n )  
x ( n )  cos q l n  

X ( w )  
X I ( # )  
X2( (0)  
o i X 1 ( w \  + 0,X2iw)  
- 1 mi X(w)  

XI-wi 

X'1(w)X.(w) 
S,,,,(w) = X I  (w )X2 ( -w i  

= Xl,(wrX;(tui  
[if x 2 ( t t )  is real] 

S,,(w) 

Multiplication xl(n)x, ini  & ll X,(i)A'-.(m - k)diL 

Differentiation In the nx (n )  
d X ( w )  

frequency domain j , ~  
Conjugation x ' ( n )  X " ( -w )  

1 " 
Parseval'r theorem 2 x i  ( n ) x i ( n )  = - ,x lr XI ( w ) X ~ ( Y , ~ W  

n = - 3 j  
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TABLE 4.6 SOME USEFUL FOURIER TRANSFORM PAIRS FOR DISCRETE-TIME APERIODIC 
SIGNALS 

Signal r ( n )  Spectrum X (w)  

I 

A, InlSL 
= { 

0, tnl > L 

sin (L + i)u 
X(w) = A - 

sin 

4.4 FREQUENCY-DOMAIN CHARACTERISTICS OF LINEAR 
TIME-INVARIANT SYSTEMS 

In this section we develop the characterization of linear time-invariant systems in 
the frequency domain. The basic excitation signals in this development are the 
complex exponentials and sinusoidal functions. The characteristics of the system 
are described by a function of the frequency variable w called the frequency re- 
sponse, which is the Fourier transform of the impulse response h(n)  of the system. 

The frequency response function completely characterizes a linear time- 
invariant system in the frequency domain. This allows us to determine the 
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steady-state response of the system to any arbitrary weighted linear combination 
of sinusoids or complex exponentials. Since periodic sequences, in particular, lend 
themselves to a Fourier series decomposition as a weighted sum of harmonically re- 
lated complex exponentials. it becomes a simple matter to determine the response 
of a linear time-invariant system to this class of signals. This methodology is also 
appiied to aperiodic signals since such signals can be viewed as a superposition of 
infinitesimal size complex exponentials. 

4.4.1 Response to  Complex Exponential and Sinusoidal 
Signals: The Frequency Response Function 

In Chapter 2, it was demonstrated that the response of any relaxed linear time- 
invariant system to an arbitrary input signal x ( n ) ,  is given by the convolution sum 
formula 

x 

y ( n )  = C h ( i ) x ( n  - ii) (4.4.1) 
A=-% 

In this input-output relationship. the system is characterized in the time domain 
by its unit sample response { h ( n ) .  -oo i n < m}. 

To develop a frequency-domain characterization of the system, let us excite 
the system with the complex exponential 

where A is the amplitude and w is any arbitrary frequency confined to the frequency 
interval [-n, rr]. By substituting (4.4.2) into (4.4.1), we obtain the response 

We observe that the term in brackets in (4.4.3) is a function of the frequency 
variable w. In fact, this term is the Fourier transform of the unit sample response 
h ( k )  of the system. Hence we denote this function as 

Clearly, the function H ( o )  exists if the system is B I B 0  stable, that is, if 

With the definition in (4.4.4), the response of the system to the complex 
exponential given in (4.4.2) is 
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We note that the response is also in the form of a complex exponential with the 
same frequency as the input, but altered by the multiplicative factor Hi&). 

As a result of this characteristic behavior. the exponential signal in (4,4.2) 1s 
called an eigenfunction of the system. In other words. an eigenfunction of a system 
is an input signal that produces an output that differs from the input by a constant 
multiplicative factor. The multiplicative factor is called an eigenr~aiue of the system. 
In this case, a complex exponential signal of the form (4.4.2) is an eizenfunction of 
a Iinear time-invariant system, and H ( w )  evaluated at the frequency of the input 
signal is the corresponding eigenvalue. 

Example 4.4.1 

Determine the output sequence of the system with impulse response 

when the input is the complex exponential sequence 

Solution First we evaluate the  Fourier transform of the impulse response I r ~ i ) ,  and 
then we use (4.4.5) to determine ! ( ? I ) .  From Example 4.2.3 wc recall that 

~t = n/2, (4.4.7) yields 

and therefore the output is 

This example clearly illustrates that the only effect of the system on the input 
signal is to scale the amplitude by 214'3 and shift the phase by -26.15~. Thus the 
output is also a complex exponential of frequency n/2. amplitude 2 ~ / 3 .  and 
phase -26.6". 

If we alter the frequency of the input signal. the effect of the system on 
the input also changes and hence the output changes. In particular. if the input 
sequence is a complex exponential of frequency IT. that is, 

then, at  w = n. 
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and the output of the system is 

We note that H ( n )  is purely real [i.e., the phase associated with H ( w )  ,is zero at 
w  = T I .  Hence. the input is scaled in amplitude by the factor HOT) = 5 ,  but the 
phase shift is zero. 

In general. H ( w )  is a complex-valued function of the frequency variable w. 
Hence it can be expressed in polar form as 

H  ( w )  = I H ( w )  lei'-''") (4.4.11) 

where / H ( w ) l  is the magnitude of H ( w )  and 

@ ( w )  = 4 H ( w )  

which is the phase shift imparted on the input signal by the system at the fre- 
quency w. 

Since H ( w )  is the Fourier transform of ( h ( k ) ] ,  it follows that H ( w )  is a peri- 
odic function with period 2rr. Furthermore- we can view (4.4.4) as the exponential 
Fourier series expansion for H ( w ) ,  with h ( k )  as the Fourier series coefficients. Con- 
sequently, the unit impulse h ( k )  is related to H ( w )  through the integral expression 

1 " 
h ( k )  = - [ H (w)pjddw (4.4.12) 

271. -, 
For a linear time-invariant system with a real-valued impulse response. the 

magnitude and phase functions possess symmetry properties which are developed 
as follows. From the definition of H ( w ) .  we have 

rT 

H ( w )  = l ~ ( k ) e - ' ~ ~  
k = - s  

where H K ( w )  and H l ( w )  denote the real and imaginary components of H ( w ) .  de- 
fined as 

32 

HR ( w )  = )' h (k) cos wk 

It is clear from (4.4.12) that the magnitude and phase of H ( w ) ,  expressed in terms 
of H R ( w )  and H ] ( w ) ,  are 

Hl f 0) O ( w )  = tan-' - 
HR (0) 
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We note that H R ( w )  = H R ( - u )  and H,(w)  = - H I ( - w ) .  so that HR(w)  is an 
even function of o and H I  ( w )  is an odd function of w. As a consequence, it follows 
that l H ( w ) (  is an even function of w  and C-)(w) is an odd function of w. Hence, 
if we know jH(w)l and O ( w )  for 0 < w 5 x .  we also know these functions for 
-n 5 w 5 0. 

Example 4.4.2 Moving Average Filter 

Determine the magnitude and phase of H ( w )  for the three-point moving average 
(MA) system 

y ( n )  = $ [ x ( n  + 1) + .r(n) + x ( n  - I)] 

and plot these two functions for 0 5 w 5 rr. 

Solution Since 

h ( n )  = ( t .  {.  i) 
3 

it follows that 

H ( L U )  = { ( P J " '  + 1 + e-)") = + ( I  + ~ C O S  W )  

Hence 

IH((o)I = ill + ZCOSWI (4.4.16) 

Figure 4.37 illustrates thc graphs of the magnitude and phase of H ( o ) .  As indica~ed 
previously, l f t (o) l  is an even func~ion of frequency and C-)(w) is an odd function of 

Figure 4.37 Magnitude and phase 
responses for the MA system in 
Example 4.4.2. 
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frequency. Ir is apparent from the frequency response characteristic H ( w l  t ha t  this 
moving average filter smooths the input data. as we would expect from the input- 
output equarion. 

The symmetry properties satisfied by the magnitude and phase functions of 
H(w) ,  and the fact that a sinusoid can be expressed as a sum or difference of 
two complex-conjugate exponential functions, imply that the response of a linear 
time-invariant system to a sinusoid is similar in form to the response when the 
input is a complex exponential. Indeed. if the input is 

the output is 

On the other hand, if the input is 

the response of the system is 

where, in the last expression. we have made use of the s!,mmetr> properties 
lH(w) l  = IH1-w)J and (-)(w) = -(-I(-w). Now. b) applying the superposition 
property of the linear time-invariant system. we find that the response of the sys- 
tem to the input 

x(n)  = ~ [ X ~ ( I I )  + ~ ? ( 1 1 ) ]  = Acoswn 
1s 

? ( ? I )  = ;[ill ( n )  + .v2(n)] 

v l n )  = A J H l u ) J  cos[wn + (-I(w)] 

Similariy. if the input is 
1 

x l n )  = ;Z[xI(n) - x : ( n ) ]  = Asin wn 

the response of the system is 

It is apparent from this discussion that H ( w ) .  or equivalently. (H(w) l  and 
O ( w ) ,  completely characterize the effect of the system on a sinusoidal input signal 
of  any arbitrary frequency. Indeed. we note that IH(w)l determines the amplifi- 
cation (IH(w)l > 1) or attenuation ( lH(w)l  < 1) imparted by the system on the 
input sinusoid. The  phase O ( w )  determines the amount of phase shift imparted 
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by the system on the input sinusoid. Consequently, by knowing H ( w ) ,  we are 
able to determine the response of the system to any sinusoidal input signal. Since 
H(w) specifies the response of the system in the frequency domain, it is called the 
frequency response of the system. Correspondingly, I H ( w )  1 is called the magnitude 
response and O(w) is called the phase response of the system. 

If the input to the system consists of more than one sinusoid, the superpo- 
sition property of the linear system can be used to determine the response. The 
following examples illustrate the use of the superposition property. 

Example 4.43 

Determine the response of the system in Example 4.4.1 to the input signal 

x ( n ) = 1 0 - 5 s i n ~ n - t 2 0 c o s r r n  - m < n < o o  
2 

Solution The frequency response of the system is given in (4.4,7) as 

The first term in the input signal is a fixed signal component corresponding to w = 0. 
Thus 

The second term in x ( n )  has a frequency n/2. A1 this frequency the frequency 
response of the system is 

Finally, the third term in x ( n )  has a frequency w = rr. At this frequency 

Hence the response of the system to  x ( n )  is 

Example 4.4.4 

A linear time-invariant system is described by the following difference equation: 

(a) Determine the magnitude and phase of the frequency response H(w)  of the 
system. 

(b) Choose the parameter b so that the maximum value of IH(u)J is unity, and 
sketch jH(w)l and &H(w) for a = 0.9. 
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(c) Determine the output of the system to the input signal 

x ( n )  = 5 + 12 sin E n  - 20 cos rn + - 
2 ( 1) 

Solution The impulse response of the system is 

h ( n )  = hanu(n) 

Since la1 < 1. the system is B I B 0  stable and hence H(w) exists. 

(a) The frequency response is 

Since 

1 -or - I"  = (1 -ucosw)  -t jus inw 

it follows that 

11 - ar-Jidi = J ( 1  - u cos w): -t {a sin w)' 

and 

Therefore, 

a sin w 4 (1  - U P - ' " ' )  = tan-' - 
1 - 0  cosw 

a sin w 
4 H ( w )  = O(w) = &h - tan-' - 

1 - a c o s w  

(b) Since the parameter a is positive. the denominator of IH(w)l attains a minimum 
at w = 0. Therefore. (H(w)j attains its maximum value at w = 0. At this 
frequency we have 

which implies that b = f (1 - a). We choose b = 1 - a. so that 

and 
a sin w 

O(w) = -tan-' - 
1 - a c o s w  

The frequency response plots for IH(w)t and @(o) are illustrated in  
Fig. 4.38. We  observe that this system attenuates high frequency signals. 



Sec. 4.4 Frequency-Domain Characteristics of Linear Time-Invariant Systems 313 

(c) The inpu~  signal consists of components of frequencies w = 0. nj2, and n. For 
w = 0. I H(O) l  = 1 and C-)(O] = 0. For w = n/2. 

1 

For w =  n ,  

R 

II - 
7 

Therefore, the output of the system is 

- 
- 
- 

(nn + ;) - 3~ < n < r 

l7 I 3n - - - 
4 -I 4 R 

! I I 3 -u 

1 -- - 

-u 

- Figure 4.38 Mngni~udc and - phusc rcspclnsch lor ~ h c  systurn ~n 
T Exanlplc 4.4.4 wrlh t i  = 0 '1, 
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In the most general case. if the input to the system consists of an arbitrary 
linear combination of sinusoids of the form 

L 

x ( n )  = C A, cos(w,n + 4,) - ca < n < sc 
i=l 

where [ A i }  and (#,I  are the amplitudes and phases of the corresponding sinusoida] 
components. then the response of the system is simply 

1=1 

where IH(w,) l  and @ ( a , )  are the magnitude and phase, respectively. imparted by 
the system to the individual frequency components of the input signal. 

It is clear that depending on the frequency response H ( w )  of the system, input 
sinusoids of different frequencies will be affected differently by the system. For ex- 
ample, some sinusoids may be completely suppressed by the system if H ( w )  = 0 at 
the frequencies of these sinusoids. Other sinusoids may receive no attenuation (or 
perhaps. some amplification) by the system. In effect. we can view the linear time- 
invariant system functioning as a filter to sinusoids of differenr frequencies, passing 
some of the frequency components to the output and suppressing or preventing 
other frequencv components from reaching the output. In fact, as discussed in 
Chapter 8. the basic digital filter design problem involves determining the parame- 
ters of a linear time-invariant system to achieve a desired frequency response H ( o ) .  

4.4.2 Steady-State and Transient Response to Sinusoidal 
Input Signals 

In the discussion in the preceding section. we determined the response of a linear 
time-invariant system to exponential and sinusoidal input signals applied to the 
system at n = -m. We usually call such signals eternal exponentials or eternal 
sinusoids, because they were applied at n = -cc. In such a case, the response that 
we observe at the output of the system is the steady-state response. There is no 
transient response in this case, 

On the other hand, if the exponential or sinusoidal signal is applied at some 
finite time instant. say at n = 0, the response of the system consists of two terms. the 
transient response and the steady-state response. To demonstrate this behavior, 
let us consider. as an example, the system described by the first-order difference 
equation 

y ( n )  = a y ( n  - 1)  + x(n> (4 .4 .20)  

This system was considered in Section 2.4.2. Its response to any input x(n) applied 
at n = 0 is given by (2 .4 .8)  as 

n 

y ( n )  = a n t l y ( - 1 )  + C o k x ( n  - k) n 2 0 (4 .4 .21)  
k=O 

where y ( - 1 )  is the initial condition. 
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Now, let us assume that the input to the system is the complex exponential 

x ( n ) = A e J W n  n L O  (4.4.22) 

applied at n = 0. When we substitute (4.4.22) into (4.4.21), we obtain 

We recall that the system in (4.4.20) is BIBO stable if la1 < 1. In this case 
the two terms involving an+' in (4.4.23) decay toward zero as n approaches infinity. 
Consequentiy, we are left with the steady-state response 

A 
? , , ( n )  = lim y ( n )  = - e ~ ~ n  

#I - x 1 - a p - J o J  (4.4.24) 
= AH(w)eJ"" 

The first two terms in (4.4.23) constitute the transient response of the system, 
that is, 

A a n + l  - j m ( n + l  I 

y u ( n )  = an+'?(-1) - eJw" n 2 0 (4.4.25) 
1 - ae-Jw 

which decay toward zero as n approaches infinity. The first tern in the transient 
response is the zero-input response of the system and the second term is the 
transient produced by the exponential input signal. 

In general, all linear time-invariant BIBO systems behave in a similar fashion 
when excited by a complex exponential. or by a sinusoid at n = 0 or  at some other 
finite time instant. That is, the transient response decays toward zero as n + co, 
leaving only the steady-state response that we determined in the preceding section. 
In many practical applications, the transient response of the system is unimportant, 
and therefore it is usualty ignored in dealing with the response of the system to 
sinusoidal inputs. 

4.4.3 Steady-State Response to Periodic Input Signals 

Suppose that the input to a stable linear time-invariant system is a periodic signal 
x ( n )  with fundamental period N. Since such a signal exists from -00 c n < m, 
the total response of the system at any time instant n, is simply equal to the 
steady-state response. 
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To determine the response ? ( n )  of the svstem, we make use of the Fourier 
series representation of the periodic signal. which is 

&-I  

~ ( 1 1 )  = C c ~ ~ J ~ ~ ~ ~ ~ ~  k = 0 . 1  . . . . ,  A'- 1 (4.4.26) 
k=O 

where the { c A )  are the Fourier series coefficients. Now the response of the system 
to the complex exponential signal 

x l ( n )  =ckej2"""" = O ,  l . . . . . N -  1 

is 

where 

By using the superposition principle for linear systems. we obtain the response of 
the system to the periodic signal x ( ~ z )  in (4.4.26) as 

This result implies that the response of the system to the periodic input signal 
x ( n )  is also periodic with the same period N.  The Fourier series coefficients for 
~ ( n )  are 

Hence, the linear system can change the shape of the periodlc input signal by 
scaling the amplitude and shifting the phase of the Fourier series components. but 
it does not affect the period of the periodic input signal. 

4.4.4 Response to Aperiodic Input Signals 

The convolution theorem. given in (4.3.49). provides the desired frequency-domain 
relationship for determining the output of an LTI system to an aperiodic finite- 
energy signai. If { x ( n ) )  denotes the input sequence. ( ~ ( n ) }  denotes the output 
sequence. and ( h ( n ) )  denotes the unit sample response of the system. then from 
the convolution theorem, we have 

Y ( w )  = H ( w ) X ( w )  (4.4.30) 

where Y ( w ) .  X ( w ) ,  and H (o) are the corresponding Fourier transforms of { ~ . ( n ) ) .  
( x ( n ) ) ,  and { h ( n ) ] ,  respectively. From this relationship we observe that the spec- 
trum of the output signal is equal to the spectrum of the input signal multiplied 
by the frequency response of the system. 
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If we express Y (o), H ( w ) ,  and X(w) in polar form, the magnitude and phase 
of the output signal can be expressed as 

where iH(w)(  and &H(w) are the magnitude and phase responses of the system. 
By its very nature, a finite-energy aperiodic signal contains a continuum of 

frequency components. The linear time-invariant system, through its frequency 
response function, attenuates some frequency components of the input signal and 
amplifies other frequency components. Thus the system acts as a filter to the input 
signal. Observation of the graph of lH(w)l  shows which frequency components 
are amplified and which are attenuated. On the other hand, the angle of H ( w )  
determines the phase shift imparted in the continuum of frequency components of 
the input signal as a function of frequency. If the input signal spectrum is changed 
by the system in an undesirable way, we say that the system has caused magnitude 
and phase distortion. 

We also observe that the output of a linear time-invariant system cannot con- 
tain frequency components that are not contained in the input signal. It takes either 
a linear time-variant system or a nonlinear system to create frequency components 
that are not necessarily contained in the input signal. 

Figure 4.39 illustrates the time-domain and frequency-domain relationships 
that can be used in the analysis of BIBO-stable LTI systems. We observe that 
in time-domain analysis, we deal with the convolution of the input signal with 
the impulse response of the system to obtain the output sequence of the system. 
On the other hand, in frequency-domain analysis, we deal with the input signal 
spectrum X(w) and the frequency response H(w) of the system, which are related 
through multiplication, to yield the spectrum of the signal at the output of the 
system. 

We can use the relation in (4.4.30) to determine the spectrum Y(w) of the 
output signal. Then the output sequence (?(a)]  can be determined from the inverse 
Fourier transform 

However, this method is seldom used. Instead, the z-transform introduced in 
Chapter 3 is a simpler method for solving the problem of determining the output 
sequence {y (n)}. 

Linear 
Input time-invariant Outpul 

system 
h(n),  H(w) -El- .v(n) = h(n)*dn)  

y(w) = H ( ~ ) x ( ~ )  Figure 439 Time- and 
frequency-domain input-output 
relationships in LTI systems. 
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Let us return to the basic input-output relation in (4.4.30) and compute the 
squared magnitude of both sides. Thus we obtain 

where S,,(w) and S,,(w) are the energy density spectra of the input and output 
signals. respectively. By integrating (4.4.34) over the frequency range ( - r r ,  n),  we 
obtain the energy of the output signal as 

Example 4.45 

A linear time-invariant system is characterized by its impulse response 

Determine the spectrum and the energy density spectrum of the ourput signal when 
the system is excited by the signal 

Solution The frequency response function of the system 

Similarly. the input sequence { x ( n ) )  has a Fourier transform 

Hence the spectrum of the signal at the output of the system is 

The corresponding energy density spectrum is 
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4.4.5 Relationships Between the System Function and 
the Frequency Response Function 

From the discussion in Section 4.2.6 we know that if the system function H(:) 
converges on the unit circle. we can obtain the frequency response of the system 
by evaluating H(:)  on  the unit circle. Thus 

In the case where H ( z )  is a rational function of the form H(:)  = B ( ; ) / A ( r ) .  we have 

where the ( a k ]  and { b k }  are real. hut { z A ]  and ( p i ]  may he complex-~~alucd.  
It is sometimes desirable to express the magnitude squared of H ( w )  in terms 

of H ( z ) .  First, we note that 

For the rational system function given by (4.4.38). we have 

f i ( l  - : ; p J Y ' )  

H  * ( w )  = bi) k;' 

It follows that H * ( w )  is obtained by evaluating H * ( l / : * )  on the unit circle. where 
for a rational system function. 

M 

However, when {h(n)] is real or, equivalently. the coefficients (ak} and (bkJ are 
real, complex-valued poles and zeros occur in complex-conjugate pairs. In  this 
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case. Ha(l/:*) = ~ ( z - I ) .  Consequently, H * ( w )  = H (- w ) .  and 

According to the correlation theorem for the :-transform (see Table 3.2), the 
function H (:) H ( z - ' )  is the z-transform of the autocorrelatior~ sequence {rhh (m)} 
of the unit sample response ( h ( n ) } .  Then it follows from the Wiener-Khintchine 
theorem that I H(w)12 is the Fourier transform of { r h h f m ) } .  

Similarly. if H f z )  = B ( : ) / A ( : ) ,  the transforms D ( z )  = B ( : ) B ( z - ' )  and C ( Z )  = 
A ( : ) A ( : - ' )  are the =-transforms of the autocorrelation sequences (c,] and { d l } ,  
where 

N-lli 

k=O 
Since the system parameters { a k ]  and { b k j  are real valued, it follows that cl = c-1 

and dl = d-i. By using this symmetry property, 1 H ( w )  1' may be expressed as 

k=1 
Finaliy, we note that coskw can be expressed as a polynomial function of 

cos w.  That is, 
k 

cos kw = r Brn (cos w).  
rn =O 

where (p,,, are the coefficients in the expansion. Consequentiy. the numerator 
and denominator of 1 H(w)12 can be viewed as polynomial functions of cos w. The 
foIlowing example illustrates the foregoing relationships. 

Example 4.4.6 

Determine lH(w)12 for the system 

Solution The system function is 

1 + z-I 
H(:) = 

1 -t 0.1:-' - 0 . 2 r 2  
and its ROC is 1 ~ 1  > 0.5. Hence H ( w )  exists. Now 
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By evaluating H { : ) H ( : - ' )  on the unit circle. we obtain 

However. c o s 3 ~  = ~ C O S ' W  - I .  Consequently. I H ( w ) ~ '  may be expressed as 

2(1 -L cos w )  

' H ( w ) ' L  = 1.45 + O l h c o s w  - 0.8cos2 w 

We note that given H ( : ) ,  it is straightforward to determine H ( : - ' )  and then 
~ ~ ( w ) l ' .  However. the inverse problem of determining H ( : )  given 1 ~ ( w ) l '  or the 
corresponding impulse response ( ~ ( I I ) ] ,  is not straightforward. Since ] H ( w ) l 2  does 
not contain the phase information in H ( w ) .  it is not possible to uniquely determine 
H ( r ) .  

To elaborate on the point. let us assume that the N poles and M zeros of 
H ( ; )  are { p i )  and {ri:]. respectively. The corresponding poles and zeros of I?(:-') 
are { l / p k ]  and {1 / ;~  1. respectively. Given ~ ~ ( w ) l '  or, equivalently. N ( : ) H ( z - ' 1 .  we 
can dcterminc different system funcrions H ( : )  by assigning to H ( : ) .  a pole pi or 
its reciprocal 1 / p k .  and a zero ;A or its reciprocal 1 /z1. For example. if N = 7 and 
M = 1. tho poles and zcros of H ( : ) H ( : - ' I  are ( p ! .  p?, l / p l .  1 / p )  and (:I. I / : I ) .  I f  
11, and ,112 arc rcal. tho possiblc poles for H ( : )  arc { p l .  ,I??), { l / p l .  l / p2 ) ,  { / ? I .  I / ' / J ~ ] ,  
and ( p , .  I / p l  ) and thc possihtc zcros are 1:' ] or { l  / z l } .  Thereforc, therc arc eight 
possiblc choices of system functions, all of which result in the same l H ( w ) i 2 .  Even 
if we restrict thc polcs of H ( : )  to bc insidc the unit circle. there are still two 
different choices Tor H(:) .  depending on whether we pick the zero ( z , }  or {I/ : ,} .  
Therefore. we cannot determine H (:) uniquely given only the magnitude response 
IH(w)i.  

4.4.6 Computation of the Frequency Response Function 

In evaluating the magnitude response and the phase response as functions of fre- 
quency. it is convenient to express H ( u )  in terms of its poles and zeros. Hence 
we write H ( w )  in factored form as 

or, equivalently. as 
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Let us express the complex-valued factors in (4.4.47) in polar form as 

- zk = vk (w),Jnkcw) (4.4.48) 

and 
eJ('j - PA = uA ( w ) e J o l ( ~ )  

where 

and 

The magnitude of H ( w )  is equal to the product of magnitudes of all terms in 
(4.4.47). Thus, using (4.4.48) through (4.451). we obtain 

since the magnitude of eJw(N-M)  is 1. 
The phase of H ( u )  is the sum of the phases of the numerator factors, mi- 

nus the phases of the denominator factors. Thus, by combining (4.4.48) through 
(4.4.51), we have 

4 H ( w )  = &bo + w ( N  - MI + @ * ( w )  + O ? ( W )  + . .  . + O M ( w )  
(4.4.53) 

- [ O ~ ( W )  + % ( w )  + . . + @ N ( w ) ]  

The phase of the gain term bo is zero or rr, depending on whether bo is positive or 
negative. Clearly. if we know the zeros and the poies of the system function H ( z ) ,  
we can evaluate the frequency response from (4.4.52) and (4.4.53). 

There is a geometric interpretation of the quantities appearing in (4.4.52) 
and (4.4.53). Let us consider a pole pk and a zero zk located at points A and B 
of the 2-plane, as shown in Fig. 4.40(a). Assume that we wish to compute H ( w )  
at a specific value of frequency w .  The given value of w determines the angle of 
ejw with the positive real axis. The tip of the vector e ~ "  specifies a point L on the 
unit circle. The evaluation of the Fourier transform for the given value of w  is 
equivalent to evaluating the z-transform at the point L of the complex plane. Let 
us draw the vectors A L  and BL from the pole and zero locations to the point L, at 
which we wish to compute the Fourier transform. From Fig. 4.40(a) it follows that 

C L = C A + A L  

and 

C L = C B + B L  

However, CL = e Jw,  CA = pk and CB = zk .  Thus 

AL = eJw - pk 

and 
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Figure 4.40 Geometric interpretation 
of-the contribution of a pole and a zero 
to the Founer transform (1) magnitude: 
the factor V c / U k .  (2) phase: the factor 
8 k  - 9. 

By combining these relations with (4.4.48) and (4.4.49), we obtain 

Thus Uk(w) is the length of AL, that is, the distance of the pole pk from the point 
L corresponding to e j w ,  whereas Vk(w) is the distance of the zero zk from the same 
point L .  The phases Qk(w)  and Ok(w)  are the angles of the vectors AL and BL 
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Irn(2) 

Unit circle I 

Figure 4.41 A zero on the unit circle 
causes I H(w)l = 0 and w = &zk. In 
contrast. a pole on the unit circle results 
in IH(w) l  = m at w = & p l .  

with the positive real axis, respectively. These geometric interpretations are shown 
in Fig. 4.40(b). 

Geometric interpretations are very usefuI in understanding how the location 
of poles and zeros affects the magnitude and phase of the Fourier transform. 
Suppose that a zero, say ZL? and a pole, say pk ,  are on the unit circle as shown in 
Fig. 4.41. We note that at o = &zk .  Vk(w) and consequently ( H ( w ) J  become zero. 
Similarly, at w = & p ~  the length Uk(w) becomes zero and hence JH(w) l  becomes 
infinite. Clearly, the evaluation of phase in these cases has no meaning. 

From this discussion we can easily see that the presence of a zero close to 
the unit circle causes the magnitude of the frequency response, at frequencies 
that correspond to points of the unit circle close to that point, to be small. In 
contrast, the presence of a pole close to the unit circle causes the magnitude of 
the frequency response to be large at frequencies close to that point. Thus poles 
have the opposite effect of zeros. Also, placing a zero close to a pole cancels 
the effect of the pole, and vice versa. This can be also seen from (4.4.47), since 
if zt = pk, the terms eJ" - zp and eJ" - pk cancel. Obviously, the presence of 
both poles and zeros in a transform results in a greater variety of shapes for 
IH(w)J and 4H(w) .  This observation is very important in the design of digital 
filters. We conclude our discussion with the following example illustrating these 
concepts. 

Example 4.4.7 

Evaluate the frequency response of the system described by the system function 
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Solution Clearly. H(:) has a zero at : = 0 and  a pole at  p = 0.8. Hence  the 
frequency response of the system is 

elW 
H ( w )  = - 

eJW - 0.8 

The magnitude response is 

and the phase response is 

sin w 
~ ( w )  = w - tan- ' ---- 

cos w - 0.8 

Thc mafnitudc and  phase responses arc illustrated in Fig. 4.43, Note  that thc peak 
of lhc m a ~ n i t u d c  responst  occurs a t  aJ = 0. the point on the  unit crrcle closes1 to the 
polc localtd at 0.8. 

I f  the magnitude responsc in (4.4.52) is expressed in decibels. 
41 h.' 

I H((u)l,i,j = 2(11og,,, lbll i ?Ox log,,, V L ( W )  - 20 lop,,, U ~ i w )  (4.4.58) 

Thus thc maynitudc rcsponsc is expressed as a sum of the magnitude factors in 
I H I ~ I J ) ~  

4.4.7 Input-Output Correlation Functions and Spectra 

In Section 2.6.5 wc developcd several correlation relationships between the ~ n p u t  
and the output sequences of an LTI system. Specifically. we derived the following 
equations: 

where r , , ( m )  is the autocorrelation sequence of the input signal ( x ( n ) ) .  r , ,  ( m )  is 
the autocorrelation sequence of the output { y ( n ) ] ,  r h h ( m )  is the autocorrelation se- 
quence of the impulse response { h ( n ) ) .  and r,,(rn) is the crosscorrelation sequence 
between the output and the input signals. Since (4.4-59) and (4.4.60) involve the 
convolution operation, the :-transform of these equations yields 

If we substitute z = el" in (4.4.62), we obtain 
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- - J T 

- - Figure 4.42 Magnitude and phase of 
2 

- 
2 system wrth H ( : )  = 1/f1 - 0.8:-~). 

where S,,(w) is the cross-energy density spectrum of ( ~ ( n ) }  and ( x ( n ) ] .  Similarly, 
evaluating S,,.,,.(z) on the unit circle yields the energy density spectrum of the output 
signal as 

where S x x ( o )  is the energy density spectrum of the input signal. 
Since r y y ( m )  and S,,.(w) are a Fourier transform pair. it follows that 



Sec. 4.4 Frequency-Domain Characteristics of Linear Time-Invariant Systems 327 

The total energy in the output signal is simply 

The result in (4.4.66) may be used to easily prove that E, > 0. 
Finall!,. we note that if the input signal has a flat spectrum [~.e.. S,, ( w )  = 

E ,  = constant for rr 5 w 5 -;?I. (4.4.63) reduces ro 

where E ,  is the constant \value of the spectrum. Hence 

i 
H ( w )  = --S,.,  ( w )  

Ev 
or. cquivalenlly. 

The rclation in (4.3.hO) implics that I r ( r r )  can be determined by cxciring thc input 
to the system by a spectrally flat signal ( x (n )J .  and crosscorrelating the Input with 
thc output of thc svslcrn. This method is uscful in measuring the impulse response 
of an unknown s!lstcm. 

4.4.8 Correlation Functions and Power Spectra for 
Random Input Signals 

This development parallels the derivations in Section 4.4.7. with the exception that 
we now deal with statistical moments of the input and output signals of an LTI 
system. The various statistical parameters are introduced in Appendix A. 

Let us consider a discrete-time linear time-invariant system with unit sample 
response ( h ( n ) }  and frequency response N( f ). For this development we assume 
that ( h ( n  ) }  is real. Let x ( n )  be a sample function of a stationary random process 
X ( r t )  that excites the system and let ~ ~ ( n )  denote the response of the system to x ( n ) .  

From the convolution summation that relates the output to the input we have 

Since x ( n )  is a random input signal, the output is also a random sequence. In other 
words. for each sample sequence x ( n )  of the process X ( n ) ,  there is a corresponding 
sample sequence ~ ( n )  of the output random process Y ( n ) .  We wish to relate 
the statistical characteristics of the output random process Y ( n )  to the statistical 
characterization of the input process and the characteristics of the system. 
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The expected value of the output y ( n )  is 
3C 

m ,  = E [ ? ( n ) ]  = E [  x h ( k ) x ( n  - k ) ]  

From the Fourier transform relationship 

we have 

which is the dc gain of the system. The relationship in (4.4.73) allows us to express 
the mean value in (4.4.71) as 

m ,  = m,H(O) (4.4.74) 

The autocorrelation sequence for the output random process is 

This is the general form for the autocorrelation of the output in terms of the 
autocorrelation of the input and the impulse response of the system. 

A special form of (4.4.75) is obtained when the input random process is white, 
that is, when m, = 0 and 

rXx(m) = 0,26(m) (4.4.76) 

where a: = y,,(O) is the input signal power. Then (4.4.75) reduces to 
02 

~ ~ ~ ( m )  = 02 x h ( k ) h ( k  + m) (4.4.77) 
k=-x 

Under this condition the output process has the average power 

where we have applied Parseval's theorem, 
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The relationship in (4.4.75) can be transformed into the frequency domain 
by determining the power density spectrum of y,, ( m ) ,  We have 

This is the desired relationship for the power density spectrum of the output pro- 
cess, in terms of the power density spectrum of the input process and the frequency 
response of the system. 

The equivalent expression for continuous-time systems with random inputs is 

where the power density spectra r? , . (F )  and rXx(F) are the Fourier transforms 
of the autocorrelation functions y , , ( r )  and y, , (r) ,  respectively, and where H ( F )  
is the frequency response of the system, which is related to the impulse response 
by the Fourier transform. that is, 

x. 

H ( F ) = [  h(r)e-)2nFrdr (4.4.81) 
DC 

As a final exercise, we determine the crosscorrelation of the output y ( n )  with 
the input signal x ( n ) .  If we multiply both sides of (4.4.70) by x*(n  - m) and take 
the expected value, we obtain 

E[?p(n)r*(n - m ) ]  = E h(k)x*  ( n  - rn)x(n  - k )  
k = - o z  1 

Since (4.4.82) has the form of a convolution, the frequency-domain equivalent 
expression is 

r.yx ( w )  = H (u) rxx ( w )  (4.4.83) 

In the special case where x ( n )  is white noise, (4.4.83) reduces to 
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where u: is the input noise power. This result means that an unknown system with 
frequency response H ( w )  can be identified by exciting the input with white noise, 
crosscorrelating the input sequence with the output sequence to obtain y,,(m), and 
finally, computing the Fourier transform of y,.,(m). The result of these computa- 
tions is proportional to H(w) .  

4.5 LINEAR TIME-INVARIANT SYSTEMS AS FREQUENCY-SELECTIVE 
FILTERS 

The term filter is commonly used to describe a device that discriminates, accord- 
ing to some attribute of the objects applied at its input, what passes through it, 
For example, an air filter allows air to pass through it but prevents dust par- 
ticles that are present in the air from passing through. An oil filter performs 
a similar function, with the exception that oil is the substance allowed to pass 
through the filter, while particles of dirt are collected at the input to the filter 
and prevented from passing through. In photography. an ultraviolet filter is of- 
ten used to prevent ultraviolet light, which is present in sunlight and which is not 
a part of visible light, from passing through and affecting the chemicals on the 
film. 

As we have observed in the preceding section, a linear time-invariant system 
also performs a type of discrimination or filtering among the various frequency 
components at its input. The nature of this filtering action is determined by the 
frequency response characteristics H ( w ) ,  which in turn depends on the choice of 
the system parameters (e.g., the coefficients ( a k )  and { b k }  in the difference equation 
characterization of the system). Thus, by proper selection of the coefficients, we 
can design frequency-selective filters that pass signals with frequency components 
in some bands while they attenuate signals containing frequency components in 
other frequency bands. 

In general, a linear time-invariant system modifies the input signal spec- 
trum X(w) according to its frequency response H(w)  to yield an output signal 
with spectrum Y ( w )  = H ( w ) X ( w ) .  In a sense, H ( w )  acts as a weighting func- 
tion or a spectral shaping function to the different frequency components in the 
input signal. When viewed in this context, any linear time-invariant system can 
be considered to be a frequency-shaping filter, even though it may not necessar- 
ily completely block any or all frequency components. Consequently, the terms 
"linear time-invariant system" and "filter" are synonymous and are often used 
interchangeably. 

We use the term filter to describe a linear time-invariant system used to 
perform spectral shaping or frequency-selective filtering. Filtering is used in dig- 
ital signal processing in a variety of ways. For example, removal of undesirable 
noise from desired signals, spectral shaping such as equalization of communication 
channels, signal detection in radar, sonar, and communications, and for performing 
spectral analysis of signals, and so on. 
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4.5.1 Ideal Filter Characteristics 

Filters are usually classified according to their frequency-domain characteristics 
as lowpass. highpass. bandpass. and bandstop o r  band-elimination filters. The 
ideal magnitude response characteristics of these types of filters are illustrated 
in Fig. 4.43. A s  shown. these ideal filters have a constant-pain (usually taken as 
unity-gain) passband characteristic and zero gain in their stopband. 

' I t  
1 -  Bandpav 

1 L , 

All-pass 
Figure 4.43 Magnitude responses 
for some ideal frequency-selective 

W 
0 discrete-time filters. 
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Another characteristic of an ideal filter is a linear phase response. To demon- 
strate this point, let us assume that a signal sequence ( x ( n ) }  with frequency corn- 
ponents confined to the frequency range wl < w < q is passed through a filter 
with frequency response 

H (w) = 7 W l < W < w z  

otherwise 
(4.5.1) 

where C and no are constants. The signal at the output of the filter has a spectrum 

By applying the scaling and time-shifting properties of the Fourier transform, we 
obtain the time-domain output 

Consequently, the filter output is simply a delayed and amplitude-scaled version of 
the input signal. A pure delay is usually tolerable and is not considered a distortion 
of the signal. Neither is amplitude scaling. Therefore. ideal filters have a linear 
phase characteristic within their passhand. that is. 

O ( w )  = -wnc, (4.5.4) 

The derivative of the phase with respect to frequency has the units of delay. 
Hence we can define the signal delay as a function of frequency as 

rg(w)  IS usually called the envelope delay or the group d e l q  of the filter. We 
interpret s,(w) as the time delay that a signal component of frequency w undergoes 
as it passes from the input to the output of the system. Note that when O(w)  is 
linear as in (4.5.4), s,(w) = no = constant. In this case all frequency components 
of the input signal undergo the same time delay. 

In conclusion, ideal filters have a constant magnitude characteristic and a 
linear phase characteristic within their passband. In all cases, such filters are not 
physically realizable but serve as a mathematical idealization of practical filters. 
For example, the ideal lowpass filter has an impulse response 

sin w,rr n 
hlp(f l)  = - - c m < n < m  (4.5.6) 

n n 
We note that this filter is not causal and it is not absolutely summable and therefore 
it is also unstable. Consequently, this ideal filter is physically unrealizable. Nev- 
ertheless, its frequency response characteristics can be approximated very closely 
by practical, physically realizable filters, as will be demonstrated in Chapter 8. 

In the following discussion, we treat the design of some simple digital filters 
by the placement of poles and zeros in the z-plane. We have already described 
how the location of poles and zeros affects the frequency response characteristics 
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of the system. In particular. in Section 4.3.6 we presented a sraphical method for 
computing the frequent! response characteristics from the pole-zero plot. This 
same approach can be used to design a number of simple but important digital 
filters with desirable frequency response characteristics. 

The basic principle underlying the pole-zero placement method is to locate 
poles near points of the unit circle corresponding to frequencies to be emphasized. 
and to place zeros near the frequencies to be deemphasized. Furthermore, the 
following constraints must be imposed: 

1. All poles should be placed inside the unit circle in order for the filter to be 
stable. However. zeros can be placed anywhere in the z-plane. 

2. All complex zeros and poles must occur in complex-conjusate pairs in order 
for the filter coefficients to be real. 

From our previous discussion we recall that for a pven pole-zero pattern. 
thc system function H i : )  can be expressed as 

wherc ho is a pain conslanr sclccted to norrnalizc the frcquenc!~ response at some 
specified frcqucncy. That is, hO is selected such thal 

where w~ is a frequency in the passband of the filter. Usually, N is selected to 
equal or exceed M. so that the filter has more nontrivial poles than zeros. 

In the next section. we illustrate the method of pole-zero placement in the 
design of some simple lowpass. hiehpass. and bandpass filters. digital resonators. 
and comb filters. The design procedure is facilitated when carried out interactively 
on a digital computer with a graphics terminal. 

4.5.2 Lowpass, Highpass, and Bandpass Filters 

In the design of lowpass digital filters. the poles should be placed near the unit 
circle at points corresponding to low frequencies (near w = 0) and zeros should 
be placed near or on the unit circle at points corresponding to high frequencies 
(near w = T). The opposite holds true for highpass filters. 

Figure 4.44 illustrates the pole-zero placement of three lowpass and three 
highpass filters. The magnitude and phase responses for the single-pole filter with 
system function 
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Lowpass 

Highpass 

Figure 4.44 Pole-zero patterns for several lowpass and h~ghpass filrers. 

are illustrated in Fig. 4.45 for a = 0.9. The gain G was selected as 1 - a ,  so that 
the filter has unity gain at w = 0. The gain of this filter at high frequencies is 
relatively small. 

The addition of a zero at z = -1 further attenuates the response of the filter 
at high frequencies. This leads to a filter with a system function 

and a frequency response characterstic that is also illustrated in Fig. 4.45. In this 
case the magnitude of Hz(w) goes to zero at w = n.  

Similarly, we can obtain simple highpass filters by reflecting (folding) the 
pole-zero locations of the lowpass filters about the imaginary axis in the z-plane. 
Thus we obtain the system function 

which has the frequency response characteristics illustrated in Fig. 4.46 for a = 0.9. 

Example 45.1 

A two-pole lowpass filter has the system function 
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Figure 4.45 Magnitude and phase 
response of (1) a slngle-pole filter 
and (2) a one-pole. one-zero -.r filter; HI ( z )  = (1 - a) / ( l  - a:-' 1. 

* H2(r )  = [(l  - c1)/2][(1 4- :-')/(I - a:-' )I - * - - - 
2 2 and a = 0,9. 

Determine the values of bo and p such that the frequency response H(w)  satisfies the 
conditions 

H (0) = 1 

and 

Solution At ,w = 0 we have 
b" - 1  H ( 0 )  = - - 

(1 - p12 
Hence 

bo = (1 - p12 
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X - - 
2 - 
O 

T - - -  
2 

Fipre  4.46 Magnitude and phase 
-IL - response of a simple highpass filter: 
- * I - - 0 r - * H(:) = [( l  - o)r,][fl - z- ') /( l  + oz-')I 

2 2 with a = 0.9. 

Hence 
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or. equivalentl). 
7 

,Gil - = I + p' - V 2 p  

T h t  value of p = 0.32 satisfies this equation. Consequently. the system function for 
the desired filtcr is 

The same principles can be applied for the design of bandpass filters. Basi- 
cally. the handpass filter should contain one or more pairs of complex-conjugate 
poles near the unit circle. in the vicinity of the frequency band that constitutes the 
passband of the filter. The follo~ling example serves to illustrate the basic ideas. 

Example 4.5.2 

Dcsign a two-pole bandpass filler that has thc center of its passband ar o = rri'2. 
zero In 11s frcqucncy rcsponsc characteristic at (11 = O and w = r r .  and irs rnagnirucle 
rcsponsc ih live a t  (11 = 4n/O. 

Solution Clearb. thc filtcr must havc pcrlus at 

- 2  - 1 
= G------; 

-2 + r- 

The gain faclor is delcrmined by evaluating the frequency response H ( w )  of the filter 
at w = n/2. Thus we havc 

1 - r 2  
G = -  

2 
The value of r is determined by evaluating H ( w )  at w = 41r/9. Thus we have 

or. equivalently. 

1.94(1 - r2)' = 1 - 1.88r2 + r4 

The value of r2  = 0.7 satisfies this equation. Therefore, the system function for the 
desired filter is 

Its frequency response is illustrated in Fig. 4.47. 
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Figure 4.47 Magn~tude and 

- 7  
phase response of a slrnple 

- * '* * - - 0 ; bandpass filter in Example 4.5.2: - 
2 2 H(:) = 0.15[(1 - :-:)/(I + 0.7:-?)]. 

It should be emphasized that the main purpose of the foregoing methodology 
for designing simple digital filters by pole-zero placement is to provide insight 
into the effect that poles and zeros have on the frequency response characteristic 
of systems. The methodology is not intended as a good method for designing 
digital fitters with well-specified passband and stopband characteristics. Systematic 
methods for the design of sophisticated digital filters for practical applications are 
discussed in Chapter 8. 

A simple lowpass-to-highpass filter transformation. Suppose that we 
have designed a prototype lowpass filter with impulse response hl,(n).  By us- 
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lng the frequency translation properr); of the Fourier transform. it is possible to 
convert the prototype filter to either a bandpass or a highpass filter. Frequency 
transformations for converting a prototype lowpass filter into a filter of another 
type are described in detail in Section 8.3* I n  this section we present a simple- 
frequency transformation for converting a lowpass filter into a highpass filter. and 
vice versa. 

If hl ,(n)  denotes the impulse response of a lowpass filter with frequency 
response Ht,(w).  a highpass filter can be obtained by translating HI,(w) by rr radians 
(i.e.. replacing w by o - n ). Thus 

where H h p ( w )  is the frequency response of the highpass filter. Since a frequency 
translation of rr radians is equivalent to multiplication of the impulse response 
I r i r ( ~ ~ )  by e'"", the impulse response of the highpass filter is 

Therefore. the impuise response of the highpass filter is simply obtained from the 
irnpulsc response of' thc lowpass filter by changing the signs of the odd-numbered 
samples in illP(r1 1. Conversely. 

I f  tho lowpass filter is dcscrihcd b!, thc difference equation 

its frequency response is 

Now. if we replace w by o - n. in (4.5.16). then 

which corresponds to the difference equation 
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Example 45.3 

Convert the lowpass filter described by the difference equation 

~ ( n )  = 0.9y(n - 1 )  + O.lx(n)  

into a highpass filter. 

Solution The difference equation for the hlghpass filter, according to (4.5.18), is 

y ( n )  = -0.9y(n - 1 )  + O.lx(n) 

and its frequency response is 
0.1 

Hhp(w) = - 
1 + 0 . 9 e - J ~  

The reader may verify that Hhp(w)  is indeed highpass. 

4.5.3 Digital Resonators 

A digiiai resonator is a special two-pole bandpass filter with the pair of complex- 
conjugate poles located near the unit circle as shown in Fig. 4.48(a). The magnitude 
of the frequency response of the filter is shown in Fig. 4.48(b). The name resonator 
refers to the fact that the filter has a large magnitude response (i.e.. it resonates) in 
the vicinity of the pole location. The angular position of the pole determines the 
resonant frequency of the filter. Digital resonators are useful in many applications, 
including simple bandpass filtering and speech generation. 

In the design of a digital resonator with a resonant peak at or near w = w, 
we select the complex-conjugate poles at 

pl.2 = re*jvl 0 < r < 1 

In addition, we can select up to two zeros. Although there are many possible 
choices, two cases are of special interest. One choice is to locate the zeros at the 
origin. The other choice is to locate a zero at z = 1 and a zero at z = -1. This 
choice completely eliminates the response of the filter at frequencies w = 0 and 
w = r, and it is useful in many practical applications. 

The system function of the digital resonator with zeros at the origin is 

H ( z )  = bo 
(1 - rejwZ-l)(1 - r e - ~ ~ a ~ - l )  

(4.5.19) 

H ( z )  = bo (4.5.20) 
1 - (2r C O S ~ ) : - '  + r2i-2 

Since / H ( w ) /  has its peak at or near u = w, we select the gain b~ so that 
I H ( w ) l  = I. From (4.5.19) we obtain 

and hence 

IH(w)l = 
bo = 1 

(1 - r)  JI + r2 - 2r cos & 
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-" FIIF 4.48 (a) Pok-zero pattern and 
- h  0 - (b) the corresponding magnitude and 

7 1 
phase response of a digital resonator 

( C )  with (1) r = 0.8 and (2) r = 0.95. 
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Thus the desired normalization factor is 

bo = (1 - r )  J1+ r2 - 2r cos zwo 
The frequency response of the resonator in (4.5.19) can be expressed as 

0 (w)  = 2w - @, ( W )  - (w)  

where U l ( w )  and U Z ( u )  are the magnitudes of the vectors from pl and pl to the 
point w in the unit circle and Ol(o)  and Q 2 ( w )  are the corresponding angles of 
these two vectors. The magnitudes U l  ( w )  and U2(w)  may be expressed as 

For any value of r ,  U l ( w )  takes its minimum value (1 - r )  at w = wo. The 
product Ul (w)U2(w)  reaches a minimum value at the frequency 

ur = cos-I (G cos wo 1 
which defines precisely the resonant frequency of the filter. We observe that when 
r is very close to unity, w, * w, which is the angular position of the pole. We also 
observe that as r  approaches unity, the resonance peak becomes sharper because 
U 1 ( w )  changes more rapidly in relative size in the vicinity of w. A quantitative 
measure of the sharpness of the resonance is provided by the 2-dB bandwidth Aw 
of the filter. For values of r close to unity, 

Figure 4.48 illustrates the magnitude and phase of digital resonators with 
% = x / 3 ,  r = 0.8 and = x / 3 ,  r = 0.95. We note that the phase response 
undergoes its greatest rate of change near the resonant frequency. 

If the zeros of the digital resonator are placed at z = 1 and z = -1, the 
resonator has the system function 

and a frequency response characteristic 
1 - , - j h  

H ( w )  = bo [I - r e ~ ( ~ - m ) ] [ l  - r e - ~ ( q + w )  I 
(4.5.28) 

We observe that the zeros at z = f 1 affect both the magnitude and phase response 
of the resonator. For example, the magnitude response is 



Sec. 4.5 Linear Time-Invariant Systems as Frequency-Selective Filters 

54runb-j 0 

e \ r = 0.8 
I - - ---__ 
2 r = 0.95 Figure 4.49 Mapn~~udc  and phasc 

- * responsc of digital resonalor with zcros - 
-" - E  0 1 at w = 0 and c t j  = rr and ( I )  r = 0.8 and - 

2 2 ( 2 )  r = O.'lS, 

where N ( w )  is defined as 

Due 10 the presence of the zero factor. the resonant frequency is altered from 
that given by the expression in (4.5.25). The bandwidth of the filter is also altered. 
Although exact values for these two parameters are rather tedious to derive, we 
can easily compute the frequency response in (4.5.28) and compare the result with 
the previous case in which the zeros are located at the origin. 

Figure 4.49 illustrates the magnitude and phase characteristics for y, = r/3. 
r = 0.8 and wi, = x/3 .  r = 0.95. We observe that this filter has a slightly smaller 
bandwidth than the resonator, which has zeros at the origin. In addition. there 
appears to be a very small shift in the resonant frequency due to the presence of 
the zeros. 

4.5.4 Notch Filters 

A notch filter is a filter that contains one or more deep notches or, ideally, perfect 
nulls in its frequency response characteristic. Figure 4.50 illustrates the frequency 
response characteristic of a notch filter with nulls at frequencies WJ and wl .  Notch 
filters are useful in many applications where specific frequency components must 
be eliminated. For example, instrumentation and recording systems require that 
the power-line frequency of 60 Hz and its harmonics be eliminated. 
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W I  x characteristic of a notch filter. 

To create a null in the frequency response of a filter at a frequency m, we 
simply introduce a pair of cornplex-conjugate zeros on the unit circle at an angle 
a. That is, 

Thus the system function for an FIR notch filter is simply 

As an illustration. Fig. 4.51 shows the magnitude response for a notch filter having 
a null at w = r/4 .  

The problem with the FIR notch filter is that the notch has a relatively large 
bandwidth, which means that other frequency components around the desired null 
are severely attenuated. To reduce the bandwidth of the null, we can resort to 
a more sophisticated, longer FIR filter designed according to criteria described 
in Chapter 8. Alternatively. we could. in an ad hoc manner, attempt to improve 
on the frequency response characteristics by introducing poies in the system func- 
tion. 

Suppose that we place a pair of cornplex-conjugate poles at 

The effect of the poles is to introduce a resonance in the vicinity of the null and 
thus to reduce the bandwidth of the notch. The system function for the resulting 
filter is 

1 - 2 cos woe-' 4- z - ~  
H ( z )  = bo (4.5.31) 

1 - 2r cos wa;-l + r2:-2 

The magnitude response IH(w)j of the filter in (4.5.31) is plotted in Fig. 4.52 for 
w = x/4, r = 0.85, and for wo = r/4 ,  r = 0.95. When compared with the 
frequency response of the FIR filter in Fig. 4.51, we note that the effect of the 
poles is to reduce the bandwidth of the notch. 

In addition to reducing the bandwidth of the notch, the introduction of a 
pole in the vicinity of the null may result in a small ripple in the passband of the 
filter due to the resonance created by the pole. The effect of the ripple can be 
reduced by introducing additional poles andlor zeros in the system function of the 
notch filter. The major problem with this approach is that it is basically an ad hoc, 
trial-and-error method. 
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charactenstics of a notch filter with 
- r - - 0 

2 2 H( : )  = GI1 - 2cosy)i-I  + z - ~ )  

4.5.5 Comb Filters 

In its simplest form, a comb filter can be viewed as a notch filter in which the 
nulls occur periodically across the frequency band, hence the analogy to an ordi- 
nary comb that has periodically spaced teeth. Comb filters find applications in a 
wide range of practical systems such as in the rejection of power-line harmonics, 
in the separation of solar and lunar components from ionospheric measurements 
of electron concentration, and in the suppression of clutter from fixed objects in 
moving-target-indicator (MTI) radars. 
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- 
3 0 

r = 0.95 

Figure 4.52 Frequency response 
characlcr~stics of 1u.o notch fillcrs with 

To illustrate a simple form of a comb filter. consider a moving average (FIR) 
filter described by the difference equation 

The system function of this FIR filter is 

and its frequency response is 

From (4.5.33) we observe that the filter has zeros on the unit circle at 
- e ~ 2 n i / { M - 1 )  

c - k = 1 . 2 . 3  ..... M (4.5.351 

Note that the pole at  : = 1 is actually canceled by the zero at : = 1. so  that in 
effect the FIR filter does not contain poles outside z = 0. 

A plot of the magnitude characteristic of (4.5.34) clearly illustrates the ex. 
istence of the periodically spaced zeros in frequency at wk = 27rk/ (M + I )  for 
k = 1 ,2 ,  . . . . M. Figure 4.53 shows (H (w ) (  for M = 10. 
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Figure 453 Magnitude response 
charactenstic for the comb filter given 
by (5.4.32) with M = 10. 

In more general terms, we can create a comb filter by taking an FIR filter 
with system function 

M 

and replacing i by z L ,  where L is a positive integer. Thus the new FIR filter has 
a system function 

If the frequency response of the original FIR filter is H ( w ) ,  the frequency response 
of the FIR in (4.5.37) is 

M 

Consequently, the frequency response characteristic HL(o )  is simply an L-order 
repetition of H ( w )  in the range 0 5 w 5 2rr. Figure 4.54 illustrates the relationship 
between HL (o) and H (o) for L = 5. 

Now, suppose that the original FIR filter with system function H ( z )  has a 
spectral null (i.e., a zero), at some frequency *. Then the filter with system 
function H L ( z )  has periodically spaced nulls at wk = wo + 2xk/L, k = 0, 1, 2, . . , , 
L - 1. As an illustration, Fig, 4.55 shows an FIR comb filter with M = 3 and 
L = 3. This FIR fitter can be viewed as an FIR filter of length 10, but only four 
of the 10 filter coefficients are nonzero. 

Let us now return to the moving average filter with system function given by 
(4.5.33). Suppose that we replace z by z L .  Then the resulting comb filter has the 
system function 

and a frequency response 
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Figure 4.54 Comh fil~er w i ~ h  frequency response H L ( w )  obtained from H ( w ) .  

Figure 4.55 Realization of an FIR comb filter having M = 3 and L = 3. 

This filter has zeros on the unit circle at 

for a11 integer values of k except k = 0, L. 2 L , .  . . . ML. Figure 4.56 illustrates 
IHL(w)l for L = 5 and M = 10. 

The comb filter described by (4.5.39) finds application in the separation of 
solar and lunar spectral components in ionospheric measurements of electron con- 
centration as described in the paper by Bernhardt et al. (1976). The solar period 
is T, = 24 hours and results in a solar component of one cycle per day and its 
harmonics. The lunar period is TL = 24.84 hours and provides spectral lines at 
0.96618 cycle per day and its harmonics. Figure 4.57a shows a plot of the power 
density spectrum of the unfiltered ionospheric measurements of the electron con- 
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L .a 

- 0.8 - 
0.6 

Ir - 
0.4 

0.2 
Figure 4.56 Magnitude respunsc 

0 - * r 7 - - 0 - n character~stlc for a cornh filtcr y v e n  h\  
2 2 (4.5.40). wlth L = 7 and M = I 0  

centration. Note that the weak lunar spectral components are almost hidden b!, 
the strong solar spectral components. 

The  two sets of spectral components can be separatcd by the use of comb 
filters. If we wish t o  obtain the solar components. we can use a comh filler with 
a narrow passband at multiples of one cycle per day. This can be achieved by 
selecting L such that F , / L  = 1 cycle per day. where F, is the corresponding 
sampling frequency. The  result is a filtcr that has pcaks in ils Srcqucncy response 
at multiples o f  one cyclc per day. By selecting M = 58. the filtcr will have nulls  
at multiples of ( F , / L ) / ( M  + 1)  = 1/59 cyclc per day. Thcsc nulls arc vcr! closc 
t o  the lunar components and rcsult in good rcjcction. Figurc 4.57(b) illustrates 

loo C 

Frtqucncy (cyclesiday 1 

(0  

Figure 4.57 (a)  Spectrum of unfiltered electron content data; (b) spectrum of out- 
put of solar filter; (c) spectrum of output of lunar filter. [From paper hy Bernhardt 
et al. (1976). Reprinted with permission of the American Geophysical Union,] 
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the power spectral density of the output of the comb filter that isolates the solar 
components. A comb filter that rejects the solar components and passes the lunar 
components can be de s iped  in a similar manner. Figure 4.57(c) illustrates the 
power spectral density at the output of such a lunar filter. 

4.5.6 All-Pass Filters 

An all-pass filter is defined as a system that has a constant magnitude response for 
all frequencies. that is. 

I H ( w ) l = l  0 5 - T  (4.5.42) 

The simplest example of an all-pass filter is a pure delay system with system func- 
tion 

H(:) = ,-" 
This system passes all signals without modification except for a delay of k samples. 
This is a trivial all-pass system that has a linear phase response characteristic. 

A more interesting all-pass filter is described by the system function 

whcrc all the filter coefficients ( a A )  are real. If we define thc polynomial A ( : )  as 

then (4.5.43) can be expressed as 

Since 
I H ( W ) ~ ~  = H(z)H(:-')I:=,,~. = 1 

the system given by (4.5.44) is an all-pass system. Furthermore. if is a pole 
of H(:). then is a zero of H(z) (i.e., the poles and zeros are reciprocals of 
one another). Figure 4.58 illustrates typical pole-zero patterns for a single-pole, 
single-zero filter and a two-pole, two-zero filter. A plot of the phase characteristics 
of these filters is shown in Fig. 4.59 for a = 0.6 and r = 0.9. y, = ~ / 4 .  

The most general form for the system function of an all-pass system with real 
coefficients, expressed in factored form in terms of poles and zeros. is 

where there are N R  real poles and zeros and N ,  complex-conjugate pairs of poles 
and zeros. For causal and stable systems we require that -1 < < 1 and < 1. 
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Figure 458 Pole-zero patterns of (a) a 
first-order and (b)  a second-order 
all-pass filter. 

Figure 4.59 Frequency response 
characteristics of an all-pass 
filter with system functions 
( 1 )  H ( 2 )  = (0.6 + z-')/(I + 0 . 6 ~ - I ) .  
(2) ~ ( z )  = (r2 - 2r cosylzL1 + z - ~ ) /  
(1 - 2r coswz-' + r ' ~ - ~ ) ,  r = 0.9, 
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Expressions for the phase response and group delay of all-pass systems can 
easily be obtained using the method described In Section 4.4.6. For a sin_rle pole- 
sinsle zero all-pass system we have 

Hence 
r sin(w - P I  

(-),,,(w) = -u - 7 tan- ' 
1 - I .COS(W - b ' )  

and 

We note that for a causal and stable system. I-  < 1 and hence r,cw) 2 0. Since the 
group delay of a higher-order pole-zero system consists of a sum of positive terms 
as in (4.5.46). the group delay will alwavs be positive. 

All-pass filters find application as phasc equalizers. When placed in cascade 
with a system that has an undesired phasc response. a phase equalizer is designed 
to compensate for the poor phase charactcrisrics of the systcm and theref'orc to 
produce an overall linear-phasc response. 

4.5.7 Digital Sinusoidal  Oscillators 

A digiral slnusoiriu/ oscillaror can be viewcd as a limiting lorm of a two-pole res- 
onator for which the complex-conjugate poles Iie on the unit circle. From our 
previous discussion of second-order systems, we recall that a system wirh system 
function 

H(: i  = 
60 

I +- u,:-' + a?;-' 

and parameters 

U I  = -2r cos wo and a2 = r 2  (4.5.48) 

has complex-conjugate poles at p = re* / " * ' .  and a unit sample response 

If the poles are placed on the unit circle (r  = 1) and bo is set to  A sin wo. then 

Thus the impulse response of the second-order system with complex-conjugate 
poles on the unit circle is a sinusoid and the system is called a digital sinusoidal 
oscillator or a digital sinusoidal generator. A digital sinusoidal generator is a basic 
component of a digital frequency synthesizer. 
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(A sin woiS(n) 
; y ( n ) = A s i n ( n +  I)wo 

a ,  = - 2  cos wo 
a?= 1 

Figure 4.60 D~gital sinusoidal renerator 

The block diagram representation of the system function given by (4.5.47) is 
illustrated in Fig. 4.60. The corresponding difference equation for this system is 

~ ( I I )  = -a1y(n - 1) - y(n - 2) + bo6(n) (4.5.51) 

where the parameters are ul  = -2coswo and bo = A sin m, and the initial condi- 
tions are !*(-I) = y(-2) = 0. By iterating the difference equation in (4.5.51), we 
obtain 

~ ( 0 )  = A sinwo 

y(1) = 2 cos q,y(O) = 2A sin y, cosy ,  = A sin 2wo 

y(2) = 2 c o s ~ v ( l )  - !~(0) 

= ~ ( 4  cos2 q~ - 1) sin q 

= 3 A  sin WJ - 4 sin3 
LOO = A sin 3wo 

and so forth. We note that the application of the impulse at n = 0 serves the 
purpose of beginning the sinusoidal oscillation. Thereafter, the oscillation is self- 
sustaining because the system has no damping (i.e., r = 1). 

It is interesting to note that the sinusoidal oscillation obtained from the sys- 
tem in (4.5.51) can also be obtained by setting the input to zero and setting the 
initial conditions to y(-1) = 0, y ( - 2 )  = -Asinwo. Thus the zero-input response 
to the second-order system described by the homogeneous difference equation 

with initial conditions y(-1) = 0 and j ( - 2 )  = - A s i n ~ ,  is exactly the same as 
the response of (4.5.51) to an impulse excitation. In fact, the difference equation 
in (4.5.52) can be obtained directly from the trigonometric identity 

a + p  a - p  
sina + sinp = 2sin - cos - 

2 2 
(4.5.53) 

where, by definition, a = (n + l ) ~ ,  B = ( n  - 1)w,  and y ( n )  = sin(n + 1 ) ~ .  
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In some practical applications involving modulation of two sinusoidal camer 
signals in phase quadrature, there is a need to generate the sinusoids A sinwon 
and A cos y , n .  These signals can be generated from the so-called coupled-form 
oscillaror, which can be obtained from the trigonometric formulas 

cos(cr + B )  = cos a cos B  - sin a sin 

sin(a + 8) = sin a cos b: + cos a sin 

where. by definition, ct = nwg, B = wo, and 

Thus we obtain the two coupled difference equations 

?; 01) = (sin w o ) ~ ,  (tz - 1) + (cos q ) ~ . ~ ( n  - 1) (4.5.57) 

which can also be expressed in marrix form as 

I., ( n  ) cos W,J- sin y' ( n  - 1 ) 
[ i . . , ( n ~ ]  = [sin w1 cos *I]  [\:(n - 1 I ]  

The structure for the realization of the coupled-form oscillator is illusrrated in 
Fig. 4.61. We note that this is a two-output system which is not driven by any input, 
but which requires the initial conditions J, (-1) = A c o s w  and ?,,(-I) = - A  s i n w  
in order to begin its self-sustaining oscillations. 

Finally. it is interesting t o  note that (4.558) corresponds t o  vector rotation 
in the two-dimensional coordinate system with coordinates g,.(n) and ~ , ~ ( n ) .  As a 
consequence, the coupled-form oscillator can also be implemented by use of the 
so-called CORDIC algorithm [see the book by Kung et al. (1985)j. 

COS Wo 

y<(n)  = cos 

-sin wo 

cos q = sin Wo" Figare 4.61 Realization of the 

coupled-form oscillator. 
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4.6 INVERSE SYSTEMS AND DECONVOLUTION 

As we have seen. a linear time-invarianr system takes an input signal .v(ll) and 
produces an output signal ~ ( n ) .  which is the convolution of x ( u )  with the unit 
sample response h(rr) of the system. In many practical applications we are given 
an output signal from a system whose characteristics are unknown and we are 
asked to determine the input signal. For example. in the transmission of digital 
information at high data rates over telephone channels. it is well known that the 
channel distorts the signal and causes intersymbol interference among the data 
symbols. The intersymbol interference may cause errors when we attempt to re- 
cover the data. In such a case the problem is to design a corrective systcm which. 
when cascaded with the channel. produces an output that. in some sense. correcls 
for the distortion caused by the channel. and thus yields a replica of the desired 
transmitted signal. In digital communications such a corrective system is calicd 
an equalizer. In the general context of linear systems theory. however. MY call 
the corrective svstcm an irrvcrse sysrcrn. because the corrective sjlstern has a f'rc- 
quency response which is basically the reciprocal of the frequency rcsponsc o f  
the system that caused the distortion. Furthermore. sincc the distorii\lc systcrn 
yields an output !-(n) that is the convolution of the input s ( n )  with the impulsc 
response h(11). thc inverse system operation that takes ? ( I ! )  and produccs .rcrr) i5 

called deconvolurion. 
If the characteristics of the distorlive system arc unknown. it is oftcn ncc- 

essary. whcn possible. to excite the system with a known s i~nal .  ohscrvc thc 
output, compare it with the input. and in some manner, dctcrniine the charac- 
teristics of the system. For example, in the digital communication problem just 
described, where the frequency response oi the channel is unknown. the mca- 
surernent of the channel frequency response can be accomplished by transmittin2 
a set of equal amplitude sinusoids, at different frequencies with a specified set 
of phases. within the frequency band of the channel. The channel will atten- 
uate and phase shift each of the sinusoids. By comparing the received signal 
with the transmitted signal. the receiver obtains a measurement of the channel 
frequency response which can be used to design the inverse system. The pro- 
cess of determining the characteristics of the unknown system, either h ( n )  or 
H(w) ,  b y  a set of measurements performed on the system is called system idrnti- 
ficarion. 

The term "deconvolution" is often used in seismic signal processing. and 
more generally, in geophysics to describe the operation of separating the input 
signal from the characteristics of the system which we wish to measure. The de- 
convolution operation is actually intended to identify the characteristics of the 
system, which in this case, is the earth. and can also be viewed as a system iden- 
tification problem. The "inverse system," in this case. has a frequency response 
that is the reciprocal of the input signal spectrum that has been used to excite the 
system. 
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4.6.1 lnvertibility of Linear Time-Invariant Systems 

A system is said t o  be invertible if there is a one-to-one correspondence between 
its input and output signals. This definition implies that if we know the output 
sequence ~ ( n ) .  -x < n  < x, of an invertible system 7 ,  we can uniquety determine 
its input x ( n ) ,  -x r n < 63. The  inverse system with input y ( n )  and output x ( n )  
is denoted by 7-' .  Clearly. the cascade connection of a system and its inverse is 
equivalent to the identity system. since 

w ( n )  = 7 - ' [ v ( n ) ]  = 7 - ' [ 7 [ x ( n ) ] )  = x ( n )  (4 .6 .1)  

as iliustrated in Fig. 4.62. For example, the systems defined by the input-output 
relations y(n)  = u s ( n )  and y ( n )  = x ( n  - 5 )  are invertible, whereas the input-output 
relarions ! ( , I )  = x 2 ( n )  and y ( n )  = 0 represent noninvertible systems. 

As indicated above. inverse systems are important in many practical appli- 
cations. including geophysics and digital communications. Let us begin by con- 
sidering the problem of determining the inverse of a given system. We limit our 
discussion to the class of linear time-invariant discrete-time systems. 

Now. suppose that the linear time-invariant system 7 has an impulse response 
h(rr) and let h,(rr)  denote the impulse response of the inversc system 7- ' .  Then 
(3.6.1 ) is equivalent to the convo~ution equation 

u i ( n )  = h,(r7) * h ( n )  + x ( n )  = x ( n )  (4 .6 .2)  

But (4A.2) implies that 

h l n )  * h l ( n )  = S ( n )  (4 .6 .3)  

The convolution equation in (4 .6 .3)  can be used to solve for  h l ( n )  for a given 
Ir(n).  However, the solution of (4 .6 .3)  in the time domain is usually difficult. A 
simpler approach is t o  transform (4 .6 .3)  into the :-domain and solve for 7-'+ Tbus 
in the :-transform domain, (4 .6 .3)  becomes 

ff ( : ) H I  = 1 

and therefore the system function for the inverse system is 

I f  H ( : )  has a rational system function 

Identity system 
- - - - - - - - - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - -  

I Direct Inverse : 
qystern system Figure 4.62 System 7 in cascade with 

1. ----.--------L-...---_--------------- its inverse T- ' .  
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then 

Thus the  zeros of H( : )  become the poles of the inverse system, and vice versa. 
Furthennore,  if ti(:) is an  FIR system, then HI (:) is an all-pole system. o r  if H ( 2 )  

is an all-pole system, then H;(z) is an FIR system. 

Example 4.6.1 

Determine the inverse of the system with impulse response 

h ( n )  = ( i ) " u ( n )  

Solution The system function corresponding to h ( n )  is 

ROC: l z l  > 4 

This system is both causal and stable. Slnce H( : )  is an all-pole system, its inverse is 
FIR and is given by the system function 

Hence its ~mpulse response is 

h / ( n )  = A(n)  - 46(n  - 1) 

Example 4.6.2 

Determine the inverse of the system with impulse response 

h ( n )  = 6 ( n )  - !6(n - 1 )  

Sohtion This is an FIR system and its system function is 

H(: )  = 1 - 4:-' ROC: (21 > 0 

The inverse system has the system function 

Thus Hi(i) has a zero at the origin and a pole at : = j. In this case there are two 
possible regions of convergence and hence two possible ~nverse systems, as illustrated 
in Fig. 4.63. If we take the ROC of HI(:) as l z l  > i. the inverse transform yields 

which is the impulse response of a causal and stable system. On the other hand, if 
the ROC is assumed to be lzl  < i, the inverse system has an  impulse response 

In this case the inverse system is anticausal and unstable. 
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Figure 4.63 Two poss~bte rcglons of 
cunverpencc for Hi;) = :/(I - f j. 

We observe that (4.6.3) cannot be solved uniquely by using (4.6.6) unless we 
specify the region of convergence for the system function of the inverse system. 

In some practical applications the impulse response bin) does not possess a 
z-transform that can be expressed in closed form. As an alternative we may solve 
(4.6.3) directly using a digital computer. Since (4.6.3) does not. in general. possess 
a unique solution, we assume that the system and its inverse are causal. Then 
(4.6&3) simplifies to the equation 

By assumption. h l ( n )  = 0 for n < 0. For n = 0 we obtain 

The values of h ~ ( n )  for n  L 1 can be obtained recursively from the equation 

This recursive reiation can easily be programmed on a digital computer. 
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There are two problems associated with (4.6.9). First, the method does not 
work if h ( 0 )  = 0. However. this problem can easily be remedied by introducing 
an appropriate delay in the right-hand side of (4.6.7), that is, by replacing 6 ( n )  by 
S(n - m),  where rn = 1 if h(0)  = 0 and h ( 1 )  # 0. and so on. Second, the recursion 
in (4.6.9) gives rise to round-off errors which grow with n and, as a result, the 
numerical accuracy of h ( n )  deteriorates for large n. 

Example 4.6.3 

Determine the causal inverse of the FIR system with impulse response 

Solution Since h ( O ) =  1. h ( l ) =  - a , and  h ( n ) = O f o r n  > u , w e  have 

h,(O) = l / h ( O )  = 1  

and 

h , ( n )  = a l l l ( n  - 1 )  n > 1 
Consequently. 

h , ( l )  =a. h l ( 2 )  = (r2. . . . , h,(rl)  = a" 

which corresponds to a causal IIR system as expected. 

4.6.2 Minimum-Phase, Maximum-Phase, and 
Mixed-Phase Systems 

The invertibility of a linear time-invariant system is intimately related to the char- 
acteristics of the phase spectral function of the system. To illustrate this point, let 
us consider two FIR systems, characterized by the system functions 

The system in (4.6.10) has a zero at z = -; and an impulse response h(0)  = 1, 
h(1)  = 1/2 .  The system in (4.6.11) has a zero at z = -2 and an impulse response 
h(0)  = l j 2 ,  h ( 1 )  = 1, which is the reverse of the system in (4.6.10). This is due to 
the reciprocal relationship between the zeros of 4 ( z )  and Hz(z ) .  

In the frequency domain, the two systems are characterized by their fre- 
quency response functions, which can be expressed as 

H l ( o ) l  = IHz(w)l = 4; +cosw 
and 

sin w 
01 ( w )  = -LL) + tan-' - (4.6.13) ; + cosw 

sin w 
@(o) = -w + tan-' - (4.6.14) 

2 +  coso 
The magnitude characteristics for the two systems are identical because the zeros 
of Hl(z) and Hz(z) are reciprocals. 
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c h n r a c ~ c r ~ s ~ ~ c s  for thc syslems in (4.6.10) 
and (1.6.1 1). 

The graphs of (-Il (w )  and @)2(w) are illustrated in Fig. 4.64. We observe that 
the phase characteristic 0,  ( w )  for the first system begins at zero phase at the fre- 
quency w = 0 and terminates at zero phase at the frequency w = n. Hence the net 
phase change, @ I  (r) - 01 (0) is zero. On the other hand, the phase characteristic 
for the system with the zero outside the unit circle undergoes a net phase change 
02(r) - 02(0) = x radians. As a consequence of these different phase character- 
istics, we cat1 the first system a minimum-phase syslem and the second system is 
called a maximum-phase system. 

These definitions are easily extended to an FIR system of arbitrary length. 
To be specific, an FIR system of length M + 1 has M zeros. Its frequency response 
can be expressed as 

where (z,) denote the zeros and bo is an arbitrary constant. When all the zeros 
are inside the unit circle. each term in the product of (4.6.15), corresponding to 
a real-valued zero, will undergo a net phase change of zero between w  = 0 and 
w = rr . Also, each pair of complex- conjugate factors in H ( w )  will undergo a net 
phase change of zero. Therefore, 

& H ( T )  - i$H(O) = 0 (4.6.16) 
and hence the system is called a minimum-phase system. On the other hand, when 
all the zeros are outside the unit circle, a real-valued zero will contribute a net 
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phase change of rr radians as the frequency \?aries from w = 0 to w = rr. and each 
pair of complex-conjugate zeros will contribute a net phase change of 27 radians 
over the same range of w .  Therefore. 

which is the largest possible phase change for an FIR system with M zeros. Hence 
the system is called maximum phase. It fol lo~ls from the discussion above that 

If the FIR system with M zeros has some of its zeros inside the unit circlc 
and the remaining zeros outside the unit circle. i t  is called a mixed-plznsc sysfcm 
or a nonminimum-phase srsipnl. 

Since the derivative of the phase characteristic of the system is a measurc 
of the time delay that signal frequency components undergo in passing throuyh 
the system. a minimum-phase characteristic implies a minimum delay function. 
while a maximum-phase characteristic implies that the delay characteristic is also 
maximum. 

Now suppose that we have an FIR system with real coefficients. T h c n  the 
magnitude squarc valuc of its frequcnc), rcsponsc is 

This relationship implies that if wc rcplacc a zero ;A of' thc systcm h!. its invcrsc 
l / z c .  the magnitude characteristic of the system does not change. Thu\ i l  ulc rc- 
flect a zero zk that is inside thc unit circlc into a zero l / rA outsidc the unit circlc. 
we see that the magnitude characteristic of the frequency response is invariant to 
such a change. 

It is apparent from this discussion that if I H ( ~ ) / '  is the magnitude square 
frequency response of an FIR system having M zeros. there are 2M possible con- 
figurations for the M zeros, some of which are inside the unit circle and the re- 
maining are outside the unit circle. Clearly. one configuration has all the zeros 
inside the unit circle. which corresponds t o  the minimum-phase system. A sec- 
ond configuration has all the zeros outside the unit circle. which corresponds to 
the maximum-phase system. The remaining 2" - 2 configurations correspond t o  
mixed-phase systems. However, not all 2M - 2 mixed-phase confi_eurations nec- 
essarily correspond to FIR systems with real-valued coefficients. Specifically, any 
pair of complex-conjugate zeros result in only two possible configurations. whereas 
a pair of real-valued zeros yield four possible configurations. 

Example 4.6.4 

Determine the zeros for the following FIR systems and indicate whether the system 
is minimum phase, maximum phase. or mixed phase. 
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Solution By factorin2 t h e  system functions we find the zeros for the four systems 
are 

HI t:) - :I 2 = - . i. 4 -, - minimum phase 

~.(:i - Z r . 2  = -2.3 - maximum phase 

H?(,) - = - i. 3 - mixed phase 

~ ~ ( ~ 1  - = - 2 ,  1 - mixed phase 

Sincc the zeros o l  the four systems are reciprocals of one anothcr. it follows that  all 
lour systems have identical magnitude frequency response characteristics hut different 
phasc charactcristics. 

The minimum-phase property of FIR systems carries over to IIR systems that 
have rational system functions. Specifically, an IIR system with system function 

is called mi11inrunl phi~sr. if all its poles and zeros are inside the unit circle. For a 
stable and causal system [all roots of A ( : )  falI inside the unit circle] the svstem is 
called n~rrsimirm phusc if all the zeros are outside the unit circle. and n~ixcd phase 
i f  some. but not all. of the zeros are outside the unit circle. 

This discussion brings us to an important point that should be emphasized. 
That is. a srablc pole-zero system that is minimum phase has a stable inverse which 
is also minimum phase. The inverse system has the system function 

Hence the minimum-phase property of H ( z )  ensures the stability of the inverse 
system H - ' ( : )  and the stability of H ( z )  implies the minimum-phase property of 
H - ' ( L ) .  Mixed-phase systems and maximum-phase systems result in unstable in- 
verse systems. 

Decomposition of nonminimum-phase pole-zero systems. Any 
nonminimum-phase pole-zero system can be expressed as 

where H,,,(:) is a minimum-phase system and H,,,(z) is an all-pass system. We 
demonstrate the validity of this assertion for the class of causal and stable systems 
with a rational system function H ( z )  = B ( : ) / A ( z ) ,  In general, if B ( ; )  has one 
o r  more roots outside the unit circle, we factor B ( z )  into the product B 1 ( z )  B2(zIr 
where Bl (i) has all its roots inside the unit circle and B z ( i )  has all its roots outside 
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the unit circle. Then B,(:-') has all its roots inside the unit circle. We define the 
minimum-phase system 

and the all-pass system 

Thus H ( : )  = Hm,,(:)Hap(:). Note that Hap(:) is a stable, all-pass. maximum-phase 
system. 

Group delay of nonminimum-phase system. Based on the decomposi- 
tion of a nonminirnurn-phase system given by (4 .6 .22) ,  we can express the group 
delay of H (:) as 

T, ( w )  = r?ln ( w )  + (u) (4 .6 .23)  

Since T;"(w) 1 0 for 0 ( w 5 rr, it follows that r,(u) 2 qin(u), 0 (w 5 rr. From 
(4 .6 .23)  we conclude that among all pole-zero systems having the same magnitude 
response, the minimum-phase system has the smallest group delay. 

Partial energy of nonminimum-phase system. The partial energy of a 
causal system with impulse response h ( n )  is defined as 

It can be shown that among all systems having the same magnitude response and 
the same total energy E ( m ) ,  the minimum-phase system has the largest partial 
energy [i.e., Emin(n) 2 E ( n ) ,  where E,, , (n)  is the partial energy of the minirnum- 
phase system]. 

4.6.3 System Identification and Deconvolution 

Suppose that we excite an unknown linear time-invariant system with an input se- 
quence x ( n )  and we observe the output sequence y(n). From the output sequence 
we wish to determine the impulse response of the unknown system. This is a prob- 
lem in sysrem idenrificarion, which can be solved by deconvulutiun. Thus we have 

An analytical solution of the deconvolution problem can be obtained by 
working with the z-transform of (4.6.25).  In the z-transform domain we have 



364 Frequency Analysis of Signals and Systems Chap. 4 

and hence 

X(:) and Y ( : )  are the :-transforms of the available input signal X ( I I )  and the 
observed output signal ? i n ) .  respectively. This approach is appropriate only when 
there are closed-form expressions for X (: i and Y (; 1. 

Example 4.6.5 

A causal system produces thc ourput sequence 

1. r t = O  

0. otherwise 

when excited h!. rhe input sequcnce 

Deterrn~ne its impulse rcsponsc and  its input-r~utpul cquation. 

Solution The system lunction i h  cilsil! dctcrmincd h!, ri~kiny thc :-tranr;lomls of . L ( ~ I )  

and J , ( J I ~ .  Thus wc havc 

Since the system is causal. its ROC is 1: > 4. The system is also stable since ils poles 
lie inside the unit circle. 

The input-output difference equation for the syslern is 

Its impulse response is determined by performing a partial-fraction expansion of H(: )  
and inverse transforming the result. This computalion yields 

We observe that (4.6.26) determines the unknown system uniquely if it is 
known that the system is causal. However. the example above is artificial. since 
the system response { ~ ( t l ) ]  is very likely to be infinite in duration. Consequently. 
this approach is usually impractical. 

As an alternative, we can deal directly with the time-domain expression given 
by (4.6.25). If the system is causal. we have 
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and hence 
(0) 

h ( 0 )  = - 
x (0) 

n-1 

~ ( n )  - x h ( k ) x ( n  - P )  
k=O 

h(n )  = n 2 1 
x ( 0 )  

This recursive solution requires that x ( 0 )  # 0. However, we note again that when 
[ h ( n ) ]  has infinite duration, this approach may not be practical unless we truncate 
the recursive solution at same stage [i.e., truncate ( h ( n ) ] ] .  

Another method for identifying an unknown system is based on a crosscor- 
relation technique. Recall that the input-output crosscorrelation function derived 
in Section 2.6.5 is given as 

X 

r , . , (m) = h(k)r..,(rn - P) = h ( n )  * r,,(rn) (4.6.28) 
P=O 

where r,,(m) is the crosscorrelation sequence of the input ( x ( n ) )  to the system 
with the output ( ~ ( n ) ]  of the system, and r,,(rn) is the autocorrelation sequence 
of the input signal. In the frequency domain, the corresponding relationship is 

S?., ( w )  = H (w)S,., ( w )  = H (o) lx(w)12 
Hence 

These relations suggest that the impulse response ( h ( n ) )  or the frequency re- 
sponse of an unknown system can be determined (measured) by crosscorrelating 
the input sequence ( x ( n ) )  with the output sequence ( ~ ( n ) } ,  and then solving the 
deconvolution problem in (4.6.28) by means of the recursive equation in (4.6.27). 
Alternatively, we could simply compute the Fourier transform of (4.6.28) and de- 
termine the frequency response given by (4.6.29). Furthermore, if we select the 
input sequence ( x  ( n ) ]  such that its autocorrelation sequence (r,, ( n ) ) ,  is a unit sam- 
ple sequence, or equivalently, that its spectrum is flat (constant) over the passband 
of H(w) ,  the values of the impulse response ( h ( n ) )  are simply equal to the values 
of the crosscorrelation sequence (r,, (n) 1 .  

In general, the crosscorrelation method described above is an effective and 
practical method for system identification. Another practical approach based on 
least-squares optimization is described in Chapter 8. 

4.6.4 Homomorphic Deconvolution 

The complex cepstrum, introduced in Section 4.2.7, is a useful tool for performing 
deconvolution in some applications such as seismic signal processing. To describe 
this method, let us suppose that { y ( n ) )  is the output sequence of a linear time- 
invariant system which is excited by the input sequence ( x ( n ) ) .  Then 
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where H ( z )  is the system function. The  logarithm of Y ( z )  is 

Consequently, the complex cepstrum of the output sequence { ? . ( n ) )  is expressed 
as the sum of the cepstrum of ( x ( n ) )  and { h ( n ) ) ,  that is, 

Thus we observe that convolution of the two sequences in the time domain corre- 
sponds to the summation of the cepstrum sequences in the cepsrral domain. The 
system for performing these transformations is called a homormorphic system and 
is iIlustrated in Fig. 4.65. 

In some applicat~ons. such as seismic signal processing and speech signal 
processing. the characteristics of the cepstral sequences (c ,  ( n ) )  and {c, , (n))  are suf- 
ficiently different so that they can be separated in the cepstral domain. Specifically, 
suppose that {c , , (n )}  has its main components (main energy) in the vicinity of small 
values of n ,  whereas ( c , ( n ) }  has its components concentrated ar large values of n. 
We may say rhat {c , , (n ) )  is "lowpass" and ( c , ( n ) ]  is "highpass." We can then sepa- 
rate {c i l (n ) j  from (c, (n)] using appropriate "lowpass" and "hi_rhpass" windows. as 
iljustrated in Fig. 4.66. Thus 

LI, ( ! I )  = c ,  ( r i ) w ~ ~ ( n )  (4.6.33) 

and 

Figure 4.65 Homomorph~c svstern for obtain~ng the cepstrum {c,  ~ n ) )  of the se- 
quence ( ~ ( n ) ) .  

Figure 4.66 Separating the two 
cepstral components by "lowpass" and 
"highpass" windows. 
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where 

1. l r 1 l _ ( N I  
u l I p ( ~ ' )  = 

0. otherwise 

Once we have separated the cepstrum sequences ( i . , , (n)J  and {i., (n)} by windoiving. 
the sequences ( i ( n ) )  and ( h ( n ) )  are obtained by passing ( c ' , , ( t l ) ]  and (;, (u l j  through 
the inverse hornomorphic system. shown in Fig. 4.67. 

In practice. a disital computer would be used to compute the cepstrum of the 
sequence { y ( n ) ] .  to perform the windowin_g functions, and to implement the ini~erw 
homomorphic system shown in Fis. 4.67. In place of the :-transform and inverse 
z-transform. we would substitute a special form of the Fourier transforni and its 
inverse. This special form, called the discrete Fourier lransform. is described in 
Chapter 5. 

Figure 4.67 lnvcrsc h~~rnon io rph l c  sysloni for rccovcrlnp 111c scqucncc\ {.I ( 1 1  1 1   nil 
l i ~ i t l ) )  from t l ~ c  corrcspond~ny ccpqtr;l. 

4.7 SUMMARY AND REFERENCES 

The Fourier series and the Fourier transform are rhe mathematical tools lor an-  
alyzing the characteristics of signals in the frequency domain. The Fourier series 
is appropriate for representing a periodic signal as a weighted sum of harmoni- 
cally related sinusoidal components. where the weighting coefficients represent the 
strengths of each of the harmonics, and the magnitude squared of each weighting 
coefficient represents the power of the corresponding harmonic. As we have in- 
dicated, the Fourier series is one of many possible orthogonal ser~es  expansions 
for a periodic signal. Its importance stems from the characteristic beha\,ior of LTI 
systems, as we shall see in Chapter 5. 

The Fourier transform is appropriate for representing the spectral charac- 
teristics of aperiodic signals with finite energy. The important properties of the 
Fourier transform were also presented in this chapter. 

There are many excellent texts on Fourier series and Fourier transforms. 
For reference, we include the texts by Bracewell (1978). Davis (19631, Dym and 
McKean (1972). and Papoulis (1962). 

In this chapter we also considered the frequency-domain characteristics of 
LTI systems. We showed that an LTI system is characterized in the frequency 
domain by its frequency response function H ( w ) ,  which is the Fourier transform 
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of the impulse response of the system. We also observed that the frequency 
response function determines the effect of the svstem on any input signal. In fact, 
bg transforming the input signal into the frequency domain, we observed that it is a 
simple matter to determine the effect of the system o n  the signal and to determine 
the system output. When viewed in the frequency domain, an LTI system performs 
spectral shaping or spectral filtering on the input signal. 

The design of some simple IIR filters was also considered in this chapter from 
the viewpoint of pole-zero placement. By means of this method. we were able 
to design simple digital resonators, notch filters, comb filters. all-pass filters. and 
digital sinusoidal generators. The design of more complex IIR filters is treated in 
detail in Chapter 8. which aiso includes several references. Digital sinusoidal gen- 
erators find use in frequency synthesis applications. A comprehensive treatment of 
frequency synthesis techniques is siven in the text edited by Gorski-Popiel (1975). 

Finally. we  characterized LTI systems as either minimum-phase, rnaximum- 
phase, or mixed-phase. depending on the position of their poles and zeros in the 
frequency domain. ljsing these basic characteristics of LTI systems. we considered 
practical problems in inverse filtering. deconvolution. and system identification. 
We concluded with the description of a deconvolution method based on cepstral 
analysis of the output signal from a linear system. 

A vast amount of technical literature exists on the topics of inverse filter- 
ins. deconvolution, and system identification. In the context of communicarions, 
syslcm identification. and inverse filtering as they relate to channel equalization 
are rreated in the book by Proakis (199.5). Deconvolution techniques are widely 
used in seismic signal processing. For reference. we sugpest the papers b!' Wood 
and Treitel (1975). Peacock and Treitei (1969). and the books by Robinson and 
Treitel (1978, 1980). Hornomorphic deconvolution and its applications to speech 
processing is treated in the book by Oppenheim and Schafer (1989). 

P R O B L E M S  

4.1 Consider the full-wave rectified sinusold in Fig. P4.1. 
(a) Determine its spectrum X,(F). 
(b) Compute the power of the signal. 
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(c) Plot the power spectral density. 
(d) Check thc validity of Parseval.5 relation for this signal. 

4.1 Compute and sketch the maynllude and phase spectra for  he follnwln$ signals ( n  > O I .  

(b) .r,,(11 = 

4.3 Consider thc signal 

(a) Determine and sketch its magnitude and  phase spectra. I X , (  F ) !  and & X , , ( F I .  
respectively. 

(h) Creatc a pcriodic siynal . s , , ( r )  with fundamental period TI, > 2 ~ .  so that .r(r I = 
.v , , ( t  for I t ;  < TI,/?. W:hat arc the Fourier cocfficicn~s for the signal I , . ( { ) ' ?  

(c) Usinp thc results in part\ ( a )  and (h) .  show that (, = ( l / T , z ) X , , ( X I T , , ) .  

4.4 Cons~der  thc fallowing pcriodic signal: 

.I(!?) = { ,  . 1.0. 1 .2 .3 .2 .1 .0 .  I . .  . I  
A 

(a)  Skctch the signal t ( 1 1 )  a n d  i t 5  magniludc and phase spectra. 
( t b )  Using the rcsults 111 par! ( a ) .  vcrily Pi~rscval's rclation hy computing the power 

in Ihc l ~ m c  and frcqucncy domains. 

4.5 C'on?;~dcr the signal 
7 11 rr t l  1 3-711 

.v t 1 7 )  = 2 i 2 cos - + cos - + - co\ - 
4 2 2  4 

(a) Dctcrm~nc and 5Lctch I[\  powcr dcn\rt! \pcctrurn 
(h) Elaluatc thc powcr ol thc slgnal 

4.6 Dcterminc and sketch the rni~gnitudc and phasc spectra of thc foliowing periodic 
signals. 

~ ( 1 1  - 2 )  
(a)  x(r11 = 4sin - 

3 
7, ?n 

(h) x ( n )  = cos Kn + sin :n 
3 

2Jr 2rr 
(c) . ~ ( t 7 j  = cos sin 7 1 7  

3 

(e)  x ( n )  = {. . .  . -1.2. 1.2. -1.0. -1.2. 1 . 2 . .  . . }  
*. I 

(g) x ( n )  = I . - %  < n < x 
(h) x ( n )  = (-1)". -x: < n < x 

4.7 Determine the periodic s~gnals ~ ( I I ) ,  with fundamental pe r~od  N = 8. if their Fourier 
coeffic~ents are given by: 

krr 3krr 
(a) ck = cos - + sin - 

4 4 
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4.8 Two DT si_enals. sk(n)  and s i (n ) .  are said to be orthogonal over an interval [ N ,  , Nzj if 

If Ak = 1. the signals are called orthonormal. 
(a) Prove the relation 

N-1 
J 2 k n  - N k = 0. * N .  *2N.  . . 

n = l ~  - 0 .  otherwise 

(b) Illustrate the valldity of the relation in part (a) by plott~ng for every value of 
k = 1. 2. . . . .6 .  the signals s r ( n )  = e J " " / h ' k n .  n  = 0 ,  1,. . . - 5 .  [Note: For a given k, 
n the signal sL(n) can be represented as a vector in the complex plane.] 

(c) Show that the harmon~cally related signals 

are orthogonal over any interval o i  lenpth hf. 

4.9 Compute the Fourier transform of the following slgnals. 
( a )  x ( n )  = u ( n )  - u ( n  - 6) 
( b )  x ( n )  = 2 " u ( - n )  

(c) ~ ( n )  -- ( ! Y u ( n  + 4) 
( d )  x ( n )  = (a" sincy,n)u(n)  la1 < 1 
(e) x ( n )  = lain sin q l n  /(Y/ < 1 

2 - ( i ) n .  In1 5 4 (f) x ( n )  = 
elsewhere 

(g) x ( n )  = (-2. -1.0.1.2) 
t 

Sketch the magnitude and phase spectra for parts (a). (f). and (g). 
4.10 Determine the signals having the following Fourier transforms. 

(b) X ( w )  = cos' w 

) )  = [ ;: YII - 6 w P  5 l4 5 W0 + ~ w R  
elsewhere 

(d) The signal shown in Fig. P4.10. 
4.11 Consider the signal 

x ( n )  = (1, 0. -1, 2.31 
t 
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Figure P4.10 

with Fourier transform X ( w )  = XR(w) + j ( X I  ( w ) ) .  Determine and sketch the signal 
v(n)  with Fourier transform 

4.U Determine the signal x ( n )  if its Fourier transform is as given in Flg. P4.12. 
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4.13 In Example 4.3.3. the Fourier transform of the signal 

I .  - M ( n M  
r ( n )  = otherwise 

was shown to be 
M 

X ( w )  = 1 + 2 C c o s w n  
n=L 

Show that the Fourier transform of 
1 .  O s n l M  

= 1 0,  otherwise 

and 
1. - M ( n  5 - 1  

x ? ( n )  = ( 0 3  otherwise 

are, respectively. 
1 - p - ~ u + ( M + l l  

X , ( w )  = 1 - (>-)(d 

Thus prove that 

and therefore, 

4.14 Consider the signal 

with Fourier transform X ( w ) .  Compute the following quantities, without explicitly 
computing X ( w ) :  
(a) X ( O )  (b) i X ( w )  (c) j': X ( w )  d m  (4 X ( x )  

(el J:x I X ( ~ ) I '  d m  
4.15 The center of gravity of a signal x(n) is defined as 

n = - ( L  

and provides a measure of the "time delay" of the signal. 
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(a)  Express c in terms of X (10 ) .  

(b) Compute c lor thc signal x(rr) whose Fourier transform is shown in Fig. P4.15 
4.16 Consider the Fourier transform parr 

1 
i 1 " ; 1 ( 1 1 )  . - "' l U l < l  

l lsc thc dilfurcntiation in frcqucnc! theorem and  induction to show that 

4.17 Lct .I ( 1 1  I hc a n  arh~lrar!. signal. not ncccssarily real-valued. with Fourier transform 
X ( ( I , ) .  Exprc+ ~ h c  Fourier Ir~ns[r)rms of the lollowing signals In rcrms oi Xiw) .  
[ a )  \ . o r )  

(11) v ' ( - ! I )  

(c)  \ . ( l l )  = l ( / l l  - .It11 - 1 

I .  11 even 
II  odd 

4.18 Determine and sketch thc Fouricr lransiorms A ' , ( w I .  X 2 ( w ) .  and X3rw) of the following 
signals. 
(a) . x l ( n )  - (1. 1. 1. 1. 1)  

(dl Is lhere any relation between X l ( w ) .  X 2 ( w ) .  and X 3 ( u ) ?  What is its physical 
meaning? 

(e) Show that if 

xk ( n  = 1 x (i) . if n / k  integer 

0. otherwise 

4.19 Let x ( n )  be a signal with Fourier transform as shown in Fig. P4.19. Determine and 
sketch the Fourier transforms of the following signals. 
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- n r r O n x  - - 
q 3 Figure P4.19 

(a) x l ( n )  = A-(n j cos(;rn/4) (b) xz(ni = ~ ( n )  sin(rrni2) 
(c )  r3 (n )  = x(n)cos(rrn/2) (d) ~ ~ ( t 1 )  = X ( ~ I ) C O S X ~  

Note that these signal sequences are obtained by arnplit~ide modulation of a carrier 
cos w,  n or sin w, 11 by the sequence .r (n). 

4.20 Consider an aperiodic signal x (n )  with Fourier transform Xlw). Show that the Fourier 
series coefficients C; of the periodic signal 

are 9iven h 

4.21 Provc that 

may be expressed as 

4.22 A slgnal x(n)  has the following Fourier transform: 

1 
X ( w )  = - 1 - a p - / ' u  

Determine the  Fourier transforms of the following signals: 
(a) x(2n + I ) (b) E ~ ~ . ~ x ( ~  + 2 )  
(b) x ( - 2 n )  (d) x(n)  cos(0.3rrn) 
(c) x(n )  * x(n - 1)  (f) x(n) * x(-n) 

4.23 From a discrete-time signal x ( n )  with Fourier transform X ( w ) ,  shown in Fig. ~ 4 . 2 3 ,  
determine and sketch the Fourier transform of the following signals: 

n even 
(a) ( n )  = [ .;;''). 

n odd 
(b) vZ(n) = x(2n) 

x(n/Z). n even 
(c) yi(n, = { O. n odd 
Note that y ( n )  = x(n)s(n), where s (n )  = (. . .O .  1.0, 1.0. 1.0.1.. . .) 

7 
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Figure P4.23 

4.24 Thc follnwrin~ inpul-output pairs havc hcen observed during the operation of various 
syslcrns: 

71 (a )  . I ( l l I  = (A)!) , , ( t i )  = (;)jl 

7, 
) I = I + ) ( 1  = i t  + N Nl l h;?. h',. h;: prime 

Dctcrn~inc  tllcir frequency rcsponsc i f  cach of thc above svstems is LTI. 
4.25 (a)  Dctcrmi~ic and s k c ~ c l ~  tho Fouricr rransl'orm W R ( ( o )  01 lhc rcctangular scqutncc 

(h) Considcr ~ h c  trii~ngular scqucncc 

0 5 I J  5 M / 2  
M j ? < l i M  
otherwise 

Doterminc and s k e ~ c h  the Fouricr transform W7 ( w )  of' 7 1 1 ~  ( 1 1  ) by expressing it as 
[he convolulinn of a rectangular scquenco with itself. 

(c)  Consider thc sequence 

( 11  1 = 4 (1 cos 9 ) unR ( I? ) 

Determine and sketch H', ( w )  by using W,(co). 

4.26 Considcr an LTI system wirh impulse response h ( n )  = i ; ) " u ( r i ) .  

(a )  Determine and sketch the magnitude and phase response lH (w ) l  and ,H(w) .  
respectively. 

(h) Determine and sketch tho magnitude and phase spectra for the input and output 
signals for the following inputs: 

37rn 
( I )  .~(11) = cos -. -nc < n < x 

I 0  

4.27 Determine and skerch the magnitude and phase response of the following systems: 
( a )  ! i n )  = ; [ r ( t ~ )  A x i n  - I ) ]  

(b) > , ( I ,  J = ; [.v ( 1 1 )  - ,T (11 - 1 )] 

(c) ~ ( n )  = $ [ x ( n  + 1) - x ( n  - I ) ]  
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(d) ~ ( n )  = { [ x ( n  + 1 )  + x ( n  - 111 
(e) ~ ( n )  = + [ x ( n )  + x ( n  - 2 ) ]  

(f) ~ ( n )  = i [ x ( n )  - x(,r - Z)] 

(g) ~ ( n )  = i [ x ( n )  + x ( n  - 1 )  + x ( n  - 2 ) ]  
(h) y ( n )  = ~ ( n )  - x ( n  - 8) 
(i) y ( n )  = 2 x ( n  - 1) - x ( n  - 2 )  
Q) v ( n )  = $ [ x ( n )  + x ( n  - 1 )  + x ( n  - 2 )  + x ( n  - 311 
(k) v ( n )  = i [ x ( n )  -t 3.r(n - 1 )  + 3 x ( n  - 2 )  + x(n - 3)] 
(I) ~ ( n )  = x ( n  - 4 )  

(m) ~ ( n )  = x ( n  + 4 )  
(n) s ( n )  = a [ x ( n )  - 2 x 0 1  - 1 )  + . r (n  - 2 ) ]  

4.28 An FIR filter is described by the difference equation 

(a) Compute and sketch its rnagn~tude and phase response. 
(b) Determine its response to the inputs 

( I )  x ( n ) = c o s ~ n + 3 s i n ( ~ n + ~ )  IO c c  < n  ccc 

( 2 )  x ( n )  = 10 + s cos (*; - 1 1  + i )  - 3 c c n c c c  

4.29 Determ~ne the transient and steady-statc responses of the FIRfilrer shown in Fig. P4.29 
to the input signal r ( n )  = 10rl"',"u(n). Let h = 2 and !(-I) = y ( - 2 )  = y(-3) = 
y(-4)  = 0. 

Figure P4.29 

4.30 Consider the FIR filter 

(a) Compute and sketch its magnitude and phase response. 
(b) Compute its response to the input 

(c) Explain the results obtained in part (b) in terms of the magnitude and phase 
responses obtained in part (a). 

4.31 Determine the steady-state and transient responses of the system 

y (n) = [ x  (n) - x ( n  - 2)] 
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10 the inpur signal 

r ( n ) = ~ + 3 c o r ( f n + 6 0 )  ---<TI <CC 

4.32 From our discussions i t  is apparent thar an LTI sysrem cannot produce frequencies 
at its output that are different from those applied in its input. Thus, if a system 
creates "new" frequencies. it must be nonlinear and/or time varying. Determine the 
frequency content of the outputs of the following systems to  the input signal 

X 
x ( n )  = A cos -n 

4 
(a) ~ ( n )  = x(2n) 
(b) ?in) = x2(n) 
(c) y(n) = (COS r n ) x  ( n )  

4.33 Determine and sketch the magnitude and phase response of the systems shown in  
Fig. P4.33(a) through (c) .  

4.34 Determine the magnitude and phase response of the multipath channel 

At  what frequencies does H ( w )  = O? 

4.35 Consider the filter 

(a) Determine b so that I H (0) ( = 1. 
(b) Determine the frequency at which lH(w) l  = 1 / d .  
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(c) IS this filter lowpass, bandpass. or highpass? 
(d) Repeat parts (b) and (c) for the filter ~ ( n )  = -0.9?(n - 1) + O.l.r(n) 

4.36* Harmonic disrorrion in digital sinc~soidal generarors An ideal sinusoidal generator 
produces the signal 

x ( l t ) = c o s 2 ~ f i , n  - c r i n < x  

which is periodic with fundamental period N if fil = k o / N  and k o .  N are relatively 
prime numbers. The spectrum of such a "pure" sinusoid consist of two lines at k = k, 
and k = N - ko (we limit ourselves in the fundamental intenfal 0 5 k _i N - 1). 
In practice, the approximations made in computing the samples of a sinusoid of 
relative frequency fo result in a certain amount of power falling into other frequencies. 
This spurious power results in distortion, which is referred to as harmonic distortion. 
Harmonic distortion is usually measured in rerms of the roral l~nrmonic distortion 
(THD). which is defined as the ratio 

spurious harmonic power 
T H D  = 

total power 
(a) Show that 

lc*,, I? T H D = I - 2 -  
J', 

where 
* ! ' - I  

(b) By using the Taylor approximation 

compute one period of x ( n )  for fi, = 1/96. 1132, 11256 by increasing the number 
of terms in the Taylor expansion from 2 to 8. 

(c) Compute the THD and plot the power density spectrum for each sinusoid in 
part (b) as well as for the sinusoids obtained using the computer cosine function. 
Comment on the results. 

4.37* Measurement of the total harmonic distortion in quantized sinusoids Let x(n) be a 
periodic sinusoidal signal with frequency fi, = k / N .  that is. 

(a) Write a computer program that quantizes the signal x(n) into b bats or equivalently 
into L = 2h levels by using rounding. The resulting signal is denoted by x,(n). 

(b) For f n  = 1/50 compute the THD of the quantized signals x , ( n )  obtained by using 
b = 4. 6, 8, and 16 bits. 

(c) Repeat part (b) for f,) = 1/100. 
(d) Comment on the results obtained in parts (b) and (c). 

4.38' Consider the discrete-time system 

where a = 0.9 and y(-I)  = 0. 
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( a )  Compute and sketch the output ?.,(n) of the system to the input s ipa l s  

.I, ( 1 7 )  = sin l a , f , n  O 5 11 5 100 

where I ; = ' .  {;= f .  f' - ' . 4 ? . 1 1 , .  . 4 - 5. 
( b )  Cornputc and skctch the magnitude and phase response of the svstem and usc 

thesc results to explain the response of the svstem to the signals given in part (a) .  
4-39" Consider an LTI system with impulse response h(r1) = ( + ) I " '  

(a) Dcterminc and sketch the magnitude and phase rksponse H ( w )  and i$H((r>). 
respectively. 

( b )  Dcterminc and sketch the magnitude and phase spectra for the input and output 
siynals for tho following inputs: 

?rr 11 
(1) . X ( r l )  = co5 -. -x < I 1  < 3c 

8 

4.40* Tttnr-rlnn7irltl . snnrplo~~ Consider the continuous-t~mc s i ~ n a l  

(a) Compurc anaivtically Lhc spectrum X , , ( F  1 or .{-,,(I 1. 
(h)  Compurc analvt~call!' thc spcctrum of thc signal . r ( r l i  = ~ , , ( t l T ) .  T = 1 /F, . 
(c) PloL thc rnagnitudc spcctrum IX,,(F)I for 6, = ti1 H z .  
( d )  Plot thc mi~gi l l t~dc spectrum I X I F ) I  for f', = 10.  20. 40. and 100 H z .  
(e)  Esplain rhu resuit5 ohtainod in  part ( d )  in tcrms ol thc aliasing cftcct. 

4.41 Consider ~ h c  digitat filter shown in  Fig. P4.41. 
(a)  Dclerm~nc thc input-output relation and the impulse response h ( n ) .  
(h) Determine and akctch Lhc magnitude I H ( w )  and thc phase response 4 H ( w ~  of 

the filter and find which frequencies are completely blocked by the filter. 
(c)  When w,,  = 712,  determine the output y(t1i to the input 

X I H ,  = icos(:n 4 3 0  

x(ni 

O =  - 2  co\ w, Figure P4.41 

4.42 Consider the FIR filter 

(a) Compute and  skctch its mallnitude and phase response 
(h) Compute its response to  the input 
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(c) Explain the results obtained in part (b) in terms of the answer given in part (a). 
4.43 Determine the steadv-state response of the system 

y ( n )  = i [ r { n )  - .r(n - 2)) 2 - 

to the input signal 

4.44 Recall from Problem 4.32 that an LTI system cannot produce frequencies at its output 
that are different from those applied in its input. Thus if a system creates "new" 
frequencies, it must be nonIinear andlor time varying. Indicate whether the following 
systems are nonlinear andlor time varying and determine the output spectra when the 
input spectrum is 

(a) y ( n )  = x(2n l  
(b) ~ 0 1 )  = x 2 ( n )  
(c) ! ( ? I )  = (coSrrn)r(n) 

4.45 Consider an LTI system with impulse response 

(a) Determine its system function H(:). 
(b) Is it possihle to  implement this svstern using a finite number of adders. multipliers, 

and un i~  delays'.' If yes. how'? 
(c) Provide a rough sketch of IH(w)l using the pole-zero plot. 
(d) Determine the response of the system to the input 

4.46 An FIR filler is described by the difference equation 

(a) Compute and sketch its magnitude and phase response. 
(b) Determine ~ t s  response to  the inputs 

( I )  x ( t z ) = c o s ~ n + ? s i n  
10 

4.47 The frequency response of an ideal bandpass filter 1s given by 
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(a)  Determine its impulse response 
(b) S h o ~  that this impulse response can he expressrd as thr product of cos(n.-r/4~ 

and  the impulse response of a lowpass filter. 

4.48 Consider the system dcscrihed hy the difference equation 

{a) Determine its impulse response. 
(b) Determine its frequency response: 

( 1 ) From the impulse response 
( 2  1 From the difference equation 

(c) Determine its response to the input 
T II 

~ ( 1 1 1  =C()s(T!T + ?) - %  < 11 < 31 

4.49 Sketch roughly thc magnitude (X ' t to ) l  of thc Fourier transforms corrcspanding to the 
polc-7ero pattcrns given in Fig. P4.4Y. 

8th order pole / 1 
i c )  1d1 

Figure P4.49 

4.50 Design an  FIR filter that completely blocks the frequency w, = ~ / 4  and then compute 
its output if the input is 

.r(n) = (sin : n )  u ( ~ I )  

for n = 0, 1, 2. 3. 4. Does the filter fulfill your expectations? Explain 
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451 A digital filter is characterized by the following properties: 
(1) It is highpass and has one pole and one zero. 
(2) The pole is at a distance r = 0.9 from the origin of the :-plane. 
(3) Constant signals do not pass through the system. 

(a) Plot the pole-zero pattern of the filter and determzne its system function H(:). 
(b) Compute the magnitude response iH(w) l  and the phase response 4 H ( w )  of the 

filter. 
(c) Normalize the frequency response H(w)  so that IH(n)i = 1. 
(d) Determine the input-output relation (difference equation) of the filter in the time 

domain. 
(e) Compute the output of the system if the input is 

(You can use either algebraic or geometrical arguments.) 
4.52 A causal first-order digital filter is described by the system function 

(a) Sketch the direct form I and direct form I1 realizations of this filter and find the 
corresponding difference equations. 

(b) For a = 0.5 and b = -0.6. sketch the pole-zero pattern. Is thc system stable? 
Why? 

(c) For a = -0.5 and b = 0.5, determine br,. so that the maximum value of J H ( w ) l  is 
equal to 1 .  

(d) Sketch the magnitude response IH(w)l  and the phase response L;H(w)  of the 
filter obtained in part (c). 

(e) In a specific application it is known that a = 0.8. Does the resulting filter amplify 
high frequencies or low frequencies in the input? Choose the value of b so as to 
improve the characteristics of this filter (i.e., make it a better lowpass or a better 
highpass filter). 

453 Derive the expression for the resonant frequency of a two-pole filter with poles at 
pl  = rpIfi and pz = p; ,  given by (4.5.25). 

4.54 Determine and sketch the magnitude and phase responses of the Hannlng filter char- 
acterized by the (moving average) difference equation 

4.55 A causal LTI system excited by the input 

produces an output ~ ( n )  with z-transform 

(a) Determine the system function H ( z )  and its ROC. 
(b) Determine the output y ( n )  of the system. 

(Hint: Pole cancellation increases the original ROC.) 
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4.56 Determine the coefficients of a linear-phase FIR filter 

such that: 
(a) It rejects completely a frequency component at ~1 = 2x/3. 
(b) Its frequency response is normalized so that H ( 0 )  =. 1. 
(c) Compute and sketch the magnitude and phase response of the filter to check if 

it satisfies the requirements. 
457 Determine the frequency response H(w)  of the following moving average filters. 

(a )  ~ ( n )  = - 

Which filter provides better smoothing? Why? 
4.58 The convolution x ( r )  of two continuous-time signals ~ ~ ( $ 1  and x z ( t ) ,  from which at 

least one is nonperiodic. is defined by 

(a)  Show that X ( F )  = X I ( F ) X 2 ( F ) .  where X I ( F )  and X 2 ( F )  are the spectra of X I ( $ )  

and , x l ( t ) ,  respectively. 

(h) Computc . x ( r )  i f  x i ( r )  = ~ ~ ( 1 )  = 
Itl < 5 / 2  

elsewhere 
(c) Determine the spectrum of x ( t )  using the results in part (a). 

4.59 Compute the magnitude and phase response of a filter wlth system function 

If the sampling frequency is FT = 1 kHz. determine the frequencies of the analog 
sinusoids that cannot pass through the filter. 

4.60 A second-order system has a double pole at p1.2 = 0.5 and two zeros at 

Using geometric arguments, choose the gain G of the filter so  that IH(O)i = 1. 

4.61 In this problem we consider the effect of a single zero on the frequency response of 
a system. Let : = rej@be a zero inside the unit circle ( r  < 1). Then 

(a) Show that the magnitude response is 

or, equivalently. 

20 log,, lH,(w)l = 10 log,,[l - 2r cos(w - 9) + r 2]  
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(b)  Show that the phase response is given as 

r sln(w - 8)  
~ , ( w )  =  an-' 

1 - r cosiw - 8 )  

(c )  Show that the group delay is given as  

(d) Plot the magnitude JH(w)ldB the phase O(w) and the group delay r,(w) for r = 0.7 
and 6 = 0, 1~12, and n. 

4.62 In this problem we consider the effect of a single pole on the frequency response of 
a system. Hence. we let 

Show that 

where H,(w)  and r j ( w )  are defined in Problem 4.61. 

4.63 In this problem we consider the effect o l  complex-conjugate paw o l  poles and zeros 
on the frequency response of a system. Ler 

(a) Show that the magnitude response in decibels is 

/ H , - ( w ) J ~ ~  = I O I O ~ ~ , , [ I  + r2  - 2r cos(w - B ) ]  

+ 10 10g,,,(l + r' - 2r cos(w + 8 )] 

(b) Show that the phase response is given as 

r sin(w - 8 )  r sin(w + 0 )  
o,(u) = tan-' f tan-' 

1 - r cos(w - 8 )  1 - r cos(o  + 0) 

(c) Show that the group delay is given as 

(d) I f  H p ( w )  = 1/H,  (w) .  show that 

O J w )  = -O:(w) 

T [ ( w )  = - z ~ ( w )  

(e) Plot IH,(w)l, O,(w) and T[(w) for r = 0.9, and 6 = 0, nf2,  
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4.64 Determine the ?-dB bandwidth of the filters (0  i o i 1 1  

M'hich is a better lo%.pass filter? 

4.65 Design a digital oscillator with adjustable phase. that is. a digital filter which produces 
the signal 

4.66 This prohlem prclvides another derivation of the structure for the coupled-form os- 
cillator hy considering the system 

for rr = tJ 

Lcl .c t t 1 1  bc rcal. Then 1 ' (17}  is complex. Thus 

( a )  Dcturminc thc equations describing a svstcm with onc input .r(n) and the two 
(jutput5 \ . k ( t r )  i~nd  > , , c t r ) .  

(b) Dutcrminc a hlock d~agram rca1iz;ltion 
(c)  Show thar il . r ( t l )  = A ( t r ) .  thun 

~ ~ ( 1 1 1  = (sin C O , I I I  ) W { I I )  

(d) Compute ! , K ~ ) i ) .  ? , ( ) I ) .  I I  = 0, I . .  . . . Y for (I>(, = ~ / 6 .  Comparc these with thc true 
values of the sinc and cosine. 

4.67 Consider a filter with system function 

(a)  Skclch thc pole-zcro pattern. 
(h) L!sin_c geometric arguments. show that for r 2 1. the system is a notch filter and 

provide a rough sketch of its magnitude response if w, = 60 . 
(c) For = 60 . choose bn so that the maximum value of IH(o)l is 1. 
(d) Draw a direct form 11 realization of the system 
(e) Dctcrmine the approximate 3-dB bandwidth of the system, 

4.@* D c s i ~ n  an FIR digital filter that will reject a very strong 60-Hz sinusoidal interference 
contaminating a 200-Hz useful sinusoidal signal. Determine the gain of the filter so 
that the useful signal does not change amplitude. The filter works at a sampling 
frequency F ,  = 500 samplesls. Compute the output of the filter if the input is a 60-Hz 
sinusoid or  a 200-Hz sinusoid with unit amplitude. How does the performance of the 
filter compare with your requirements? 

4.69 Determine the gain bo for the digital resonator described by (4.5.28) so that 
IH(wr)l = 1. 
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4.70 Demonstrate that the difference equation given in (4.5.52) can be ohtained by apply- 
ing the trisonometric identity 

where a. = ( n + l ) q , ,  8 = (n - l ) y l .  and ~ ( n )  = cos y l n ,  Thus show that the sinusoidal 
sisnal y ( n )  = A coso(,n can be generared from (4.5.52) hy use of the initial conditions 
y ( - 1 )  = A cos yl and ?.(-2) = A cos2q ) .  

4.71 Use the trigonometric identity in (4.5.53) with a. = nwll and P = ( n - 2 j w  to derive the 
difference equation for generating the sinusoidal signal y(n) = A sin no..+,. Determine 
the corresponding initial conditions. 

4.72 Using the :-transform pairs 8 and 9 in Table 3.3. determine the difference equations 
for the dlgltal oscillators thar have impulse responses h ( n )  = A c o ~ n o ( ~ u ( n )  and l i ( n )  = 
A sin nwlu(n) ,  respectively. 

4.73 Determine the structure for the coupled-form oscillator by combining the structure 
for the digital oscillators obtained in Problem 4.72. 

4.74 Convert thc highpass filter with svslem function 

into a notch fillcr that rcjecis the frequency tol, = i r /4  and its harmonics. 
(a) Determine thr diflercncc equation. 
(h) Sketch rhc pole-xcro pattern. 
(c) Sketch thc magnitude responsc for both liltcrs. 

4.75 Choose L and M for a lunar filter that must have narrow passbands at ( k  & A F )  
cl;clesiday. where k = 1. 7 ,  3. . . . and A F = 0.067726. 

4.76 (a) Show that the systems corresponding to thc pole-zero patterns of Fig. 4.58 are 
all-pass. 

(b) What is the number of delays and multipliers required for the efficient implemen- 
tation of a second-order all-pass system'! 

4.77 A digital notch filter is required to  remove an undesirahle 60-Hz hum associated with 
a power supply in an ECG recording application. The sampling frequency used is 
F, = 500 samplesis. (a) Design a second-order FIR notch filter and (b) a second- 
order pole-zero notch filter for this purpose. In hoth cases choose the gain 9, so  that 
IH(w)l  = 1 for w =0 .  

4.78 Determine the coefficients (h(n))  of a highpass linear phase FIR filter of length M = 
4 which has an ant~symmetric unit sample response h ( n )  = - h ( M  - 1 - n) and a 
frequency response that satisfies the condition 

4.79 In an attempt to design a four-pole bandpass digital filter with desired magnitude 
response 

( 0, elsewhere 
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we select the four poles at 

,7: ., = 0 '' 

and four zerob at 

c ,  = 1 = - 1 -; = CZiT 

(a) Determine the value ol' the gain s o  [hat 

(b) Determine the systcm function N(:). 
( c )  Delerminc the mapnitudc of the frequency response H(coi  for 0 5 w n and 

mmparc  it with the dcsircd rcsponse ;H,!(oi) l .  

4.80 A discrctc-timc system wirh input ~ 0 1 1  and output l . ( i r i  is described in  thc trcquency 
domain hy the relation 

(a)  Compulc thc rcsponsc 01 lhc syhtcm to the input .rOrl = ~ ( I I ) .  

( 1 ) )  Chcck i l  thc system i x  LTI and stahic. 

4.81 Con\idcr a n  idcal lowpass filtcr with impulse response h c i l  i and Ircqucnc! rcsponx 

Whal i \  the frequency rcsponw 01' thc IiLlcr dcfincd h> 

y(,,)= [ / l ( : ] .  li'.vcn 
I). !I odd 

4.82 Consider thc sysrern shown in Fig. P1.89. Dctcrminc ils impulse rcsponse and 11s 
frequency rcsponsc if the system H ( ( L ) )  is: 
(a) Lnwpass w ~ t h  cutoff frequency w, . 
(b) Hiyhpass with cutoff frequency w,  . 

_ _ _ _ _ _ _ . . _ _ _ _ _ _ _ . . _ - - - - . . . - - - - - - . . - - - ,  Figure P4.82 

4.83 Frequency inver~ers have been used for many years for speech scrambling. Indeed. 
a voice signal . r (n )  becomes unintelligible if we invert its spectrum as shown in 
F ig  P4.83. 
(a) Determine how frequency inversion can be performed in the time domain. 
(b) Design an unscrarnbler. (Hint: The required operations are very simple and can 

easily be done in real time.) 
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7 Figure P4.83 (a)  Ortplnal spectrum; 
(b) frequency-inverted spectrum. 

4.84 A lowpass filter is described hy the difference equation 

(a) By performing a frequency translation of n/2. transform tht. filter into a bandpass 
filter. 

(b) What is the impulse response of the handpass filter? 
{c) What IS the major problem with thc frequency translation method lor transform- 

ing a prototype lowpass filter into a bandpass flier'! 
4.85 Consrder a system with a real-valued impulse response h ( n )  and frequency response 

The quantity 

provides a measure of the "effective duration" of h ( n ) .  
{a) Express D in terms of H ( w ) .  
(b) Show that D is minimized for @(w)  = 0. 

4.86 Consider the lowpass filter 

(a) Determine b so that I H(O)l = I .  
(b) Determine the 3-dB bandwidth y for the normalized filter in part (a). 
fc) How does the choice of the parameter a affect q? 
(d) Repeat parts (a) through (c) for the highpass filter obtained by choosing -1 < 

0 < 0. 
487 Sketch the magnitude and phase response of the multipath channel 

for a << 1. 
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4.88 Determine the system functions and the pole-zero locations for the systems shown in 
Fig. P4.88(a) through (c). and indicate whether or not the systems are slable. 

Figure P4.M 

4.89 De!errnrne and sktlch the impulse response and the magnitude and phase responses 
of the FIR filter shown in Fig, P4.89 for h = 1 and h = -1. 

xln) . w y  - - I  

- v(n) Figure P4.89 

4.90 Consider the system 

(a) Sketch its pole-zero pattern. 
(b) Sketch its magnitude response using the pole-zero plot. 
(c) Determine the system function of its causal inverse system. 
(d) Sketch the magnitude response of the inverse system using the pole-zero plot. 

4.91 Determine the impulse response and the difference equation for all possible systems 
specified by the system functions 
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4.92 Determine the impulse response of a causal LTI system which produces the response 

y ( n )  = ( I .  -1.3. - I , 6 }  
t 

when excited by the input signal 

x ( n )  = (1. 1 .2)  
t 

4.93 The system 

~ ( n )  = i ~ ( n  - 1 )  + x ( n )  

is excited with the input 

x ( n )  = ( i ) " u ( n )  

Determine the sequences r , , ( l ) ,  rhh ( 1 ) .  r r r  (1) .  and r , ,  ( 1 ) .  
4.94 Determine if the following FIR systems are minimum phase 

(a) h ( n )  = (10.9. - 7. - 8 . 0 . 5 . 3 )  
t 

4.95 Can you determine the coefficients of the all-pole system 

1 
H ( 2 )  = 

h 

1 + cL?A:-' 
k= 1 

if you know its order N and the values h ( 0 ) .  h ( 1 ) .  . . . , h ( L  - 1 )  of its impulse response? 
How? What happens if you do not know N ?  

4% Consider a system with impulse response 

(a) Explain why the system generates echoes spaced D samples apart. 
(b) Determine the magnitude and phase response of the system. 
(c) Show that for Ibo + b21 << 161 1, the locations of maxima and minima of lFf(w)12 

are at 
k 

w = k - 7 r  k = 0 . 1 , 2  , . . .  
D 

(d) Plot IH(w)l and 4 H ( w )  for bn = 0 .1 ,  bl = 1. and b2 = 0.05 and discuss the results. 
4.97 Consider the pole-zero system 

(a) Determine h(O),  h ( l ) ,  h ( 2 ) ,  and h(3 )  in terms of o and b. 
(b) Let rhh(i) be the autocorrelation sequence of h(n) .  Determine rhh (O) ,  r h h ( l ) .  ~hh(2)r 

and rhh(3) in terms of a and b. 
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4.98 Let . T ( ~ I )  be a real-valued minimum-phase sequence. Modify x t n )  to obtain another 
real-valued minimum-phase sequence y ( n )  such that ~ ( 0 )  = x(0) and ~ ( n )  = 1xcn) l .  

4.99 The frequency response of a srahle LT1 system is known to be real and even. Is the 
inverse sysrem stable? 

4.100 Let h(t7) he a real filter with nonzero linear or nonlinear phase response. Show that 
the following operations are equivalent to filrering the signal x ( n )  with a zero-phase 
filter. 
(a) ~ ( n )  = i r ( n )  z . r (n )  

I ( ! ? )  = / l ( l i )  * &'-17) 

~ ~ [ ? l )  = j ( - 1 1 )  

(b) S(!?) = l ? ( t l )  * .T[II )  

J ( n 1  = / I ( ~ T )  * .I ( - I ! )  

\ , ( l i l  = A ) ( ? ! )  + f [ - l l \  

(Hint: Determine the frequency response of the composite system \ . ( ~ i i  = H[v(II ) ] . )  

4.101 Check thc validity of the f'cjllowiny staterncnls: 
(a) The convoiution o l  two minlmum-phase sequences is always minimum-phase se- 

qucncc. 
(b) Thc sum or ~ w o  minimum-phasc scquenccs is always minimum phase. 

4.1112 Dc~crminc thc minimum-phasc systcrn whose squared magnitude response is given 
h y : 

5 - - co\ ( 1 )  

(a) I H ( ~ , , ) I '  = 
I0 2 

cos ( I )  

4 ..1 

2tl  - a ? )  
(h) l ~ ( t r } ) l ?  = I r lJ 1 1 

( 1  + (12 1 - 20 cos f0 
4.103 Consider an FIR syslcm with thc following systcrn Cunction: 

(a) Dctcrrninc all systems that have rhc same magnitude response. Which is  the 
minimum-phaw svstem? 

(h) De~erminc the impulse response of all systems in part ( a ) .  
(c) Plot the partla1 energy 

n 

E ( t r )  = xl~'(t~) 
={I 

for every svstcm and use il lo identify the minimum- and maximum-phase systems. 

4.104 The causal system 

is known to  he unstable. 
We modify this system hy changlng its impulse response h ( n )  to 
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(a) Show that by properly choosing h we can obtain a new stable system. 
(b) What is the difference equation describing the new system? 

4.105* Given a signal x ( n ) ,  we can create echoes and reverberations hy delaying and scaling 
the signal as follows 

where D is positive integer and g~ > g~ - 1  > 0. 
(a) Explain why the comb filter 

can he used as a revcrbcrator (i.e,. as a device to produce artificial reverberations). 
(Hint: Determine and sketch its impulse response.) 

(h) The all-pass comb filter 

is used in practice to build digrtal rcverberators by cascading three to five such 
fillers and properly choosing the parameters u and 1). Compute and plot the 
irnpulsc response of two such reverherators each obtained h!. cascading three 
sections with thc following parameters. 

UNIT f UNIT 2 

Secllon I )  a Section D a 

(c) The difference between echo and reverberation is that with pure echo there are 
clear repetitions of the signal. but with reverberations, there are not. How is this 
reflected in the shape of the impulse response of the reverberator? Which unit 
in part (b) is a better reverberator? 

(d) If the delays D l .  D2, D3 in a certain unit are prime numbers, the lmpulse response 
of the unit is more "dense." Explain why. 

(e) Plot the phase response of units 1 and 2 and comment on them. 
(f) Plot h ( n )  for D i .  L . 2 .  and D3 being nonprime. What do you notice? 
More details about this application can be found in a paper by J. A .  Moorer, "Signal 
Processing Aspects of Computer Music: A Survey," Pruc, IEEE, vol. 65, No. 8, Aug. 
1977. pp. 1108-1137. 

4.106' By trial-and-error design a third-order lowpass filter with cutoff frequency at w, = ? ~ / 9  
radianstsample interval. Start your search with 
(a) 2 ,  = 22 = 23 = 0, PI = r, p2.3 = r e i i w t .  r = 0.8 
(b) r = 0.9. 21 = = 23 = -1 



Chap. 4 Problems 393 

4.107* A speech signal with bandwidth B = 10 kHz is sampled at F2 = 20 kHz.  Suppose 
that the signal is corrupted by four sinusoids with frequencies 

(a) Design a FIR filter that eliminates these frequency components. 
(b) Choose the gain of the filter so that I H (011 = 1 and then plot the log magnitude 

response and the phase response of the filter. 
(c) Does the filter fulfill your objectives? Do  you recommend the use of this filter in 

a practical application? 
4.108* Compute and sketch the frequency response of a digital resonator with o = rr/6 and 

r = 0.6. 0.9, 0.99. In each case. compute the bandwidth and the resonance frequency 
from the graph, and check if they are in agreement with the theoretical results. 

4.109* The system function of a communication channel is given by 

Determine the system function H, (:) of a causal and stable compensating system so 
that the cascade interconnection of the two systems has a flat magnitude response. 
Sketch rhc pole-zero plots and the maznitude and phase responses of all systems in- 
volved into the analysis proccss. [Hint: Use the decomposition H(:) = Ha, ( : )  H,,,(:).] 



The Discrete Fourier 
Transform: Its Properties and 
Applications 

Frequency analysis of discrete-time signals is usually and most conveniently per- 
formed on a digital signal processor. which may be a general-purpose digi~al  corn- 
puter o r  specially designed digital hardware. To pcriorm frequency analysis on a 
discrete-time signal { . \ ( ? I ) / .  we convert tho time-domain scqucncc to  an equivalent 
frequency-domain representation. Wc know that such a rcprcscntation is given by 
the Fourier transform X ( w )  of the scqucncc (sol)). However. S ( < r i )  is a contin- 
uous function of frequency and therefore. it is not a cornpu~ationally convenient 
representation of the sequence { . v ( i l ) ) .  

In this section we consider the representation o i  a sequence { . I - ~ I ) )  by samples 
of its spectrum X ( w ) .  Such a frequency-domain representation leads to thc discrete 
Fourier transform (DFT) .  which is a powerful computational tool for performing 
frequency analvsis of discrete-time signals. 

5.1 FREQUENCY DOMAIN SAMPLING: THE DISCRETE FOURIER 
TRANSFORM 

Before we introduce the DFT,  we consider the sampling of  the Fourier transform of 
an  aperiodic discrete-time sequence. Thus. we establish the relationship between 
the sampled Fourier transform and the DFT.  

5.1.1 Frequency-Domain Sampling and Reconstruction of 
Discrete-Time Signals 

W e  recall that aperiodic finite-energy signals have continuous spectra. Let us 
consider such an  aperiodic discrete-time signal ~ ( 1 1 )  with Fourier transform 
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Suppose that we sample X ( w )  periodically in frequency at a spacing of Sw radians 
between successive samples. Since X ( w )  is periodic with period 277. only samples 
in the fundamental frequency range are necessary. For convenience. we take N 
equidistant samples in the interval 0 5 w < 2rr with spacing 6w = 2 r r / N ,  as shown 
in Fig. 5.1. First, we consider the selection of N ,  the number of samples in the 
frequency domain. 

i f  we evaluate (5.1.1) at w = 2 r r k / N ,  we obtain 

The summation in (5.1.2) can be subdivided into an infinite number of summations. 
where each sum contains N terms. Thus 

If we change the index in the inner summation from n to N - I N  and interchange 
the order of the summation. we obtain the result 

f o r k = 0 . 1 , 2  . . . . .  N- 1 .  
The signal 

obtained by the periodic repetition of x ( n )  every N samples. is clearly periodic 
with fundamental period N. Consequently. it can be expanded in a Fourier 

Figure 5.1 Frequency-domain sampling of the Fourier transform 



396 The Discrete Fourier Transform: Its Properties and Applications Chap. 5 

series as 
N - 1  

x , ( n )  = x cke~2nkni" n = 0 , 1  , . . . .  N - 1  
k=O 

with Fourier coefficients 

Upon comparing (5.1.3) with (5.1.6). we conclude that 

Therefore, 

The relationship in (5,l.s) provides the reconstruction of the periodic signal 
x, , ( t l )  from the samples of the spectrum X ( w ) .  However. it does not imply that 
we can recover X ( w )  or x ( n )  from the samples. T o  accomplish this. we need to 
consider the relationship between x , , ( r ~ )  and xcn 1. 

Since x , , ( t l )  is the periodic extension of x ( n )  as given by (5.1.4). it is clear 
that ~ ( 1 1 )  can be recovered from x , ( n )  i f  there is no aliasing in  the time domain, 
that is. i f  x ( n )  is time-limited t o  less than the period N of x,, (n) .  This situation is 
illustrated in Fig. 5.2. where without loss of generality. we consider a finite-duration 

Figure 5.2 Aperiodic sequence x(n) of length L and its penodic extension for 
N 3 L (no aliasing) and N i L (aliasing). 
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sequence x ( t 1 ) .  wrhich is nonzero in the interval 0 ( r l  5 L - 1. We observe that 
when N 2 L.  

so that x(11)  can be recovered from . k , ( n r  without ambiguity. O n  the orher hand. 
if N < L. it is not possible to recover a(11) from its periodic extension due to tirue- 
domain aliasing. Thus. we conclude that the spectrum of an aperiodic discrete-time 
signal with finite duration L. can be exactly recovered from its samples at frequen- 
cies wi = 2xh-IN. i f  N 3 L. The procedure is to compute x,,(n ). 11 = 0. 1. . . . . N - 1 
from (5.1.8); then 

and finally. X ( w )  can be cornpuled from (5.1. I ) .  
As in the casc of continuous-timc s i ~ n a l s .  it is possible to express the spectrum 

X ( w )  directly i n  terms of its samples A'I2,-rX/N). X = 0. 1 . .  . . . h' - 1 .  To dcrivc 
such an interpolation formula lor X ( w ) .  wc assumc that A' 3 L and hcgin with 
(5.1.8). Since . { - ( / I  = , r , , (~i  1 f o r  0 5 11 5 A' - I .  

If we use (5.1.1) and substitute for .\.(!I). we obtain 

The inner summation term in the brackets of (5.1.11) represents the basic 
interpoiation function shifted by 2 ; r k l N  in frequency. Indeed. if we define 

then (5.1.11) can be expressed as 
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The interpolation function P(w) is not the familiar (sinP)/Ci but instead. it 
is a periodic counterpart of it. and it is due to the periodic nature of X(w). The 
phase shift in (5.1.12) reAects the fact that the signal x ( n )  is a causal, finite-duration 
sequence of length N. The function sin(wN/Z)/(N sin(w/Z)) is plotted in Fig. 5.3 
for A1 = 5. We observe that the function P ( o )  has the property 

Consequentl!, the interpolation formula in (5.1.23) gives exactly the sample val- 
ues X(2r / i /hT)  for w = 2rrk/N. At all other frequencies, the formula provides a 
properl!, weighted linear combination of the original spectral samples. 

The following example illustrates the frequency-domain sampling of a 
discrete-time siynal and the time-domain aliasing that results. 

Example 5.1.1 

Consider the ~ i y n a l  

T h c  spcclrum of rhih signal is sampled at frequencies wi = 3aL/,\ ' . = 0. 1 .  . . . . h! - 1. 
Dcterminc the rccc>nsrructcd spectra for 11 = 0.K whcn N = 5 and Iv' = 50. 

Solution The Fourler transform of rhe sequence x ( r i )  is 

S u p p o ~  thal wc sample X(w1 at N equ~d~s tan l  frequenc~es w, = 2nkJh . L = 0, 
1 .  . A' - I .  Thus we ohtaln the spectral samples 

Fgure 5.3 Plot of the function 
[sin(wN/2)]/[N ~in(wj?)] .  
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The periodic sequence x , ( n ) ,  corresponding to the frequency samples X (2nk/h'), 
k = 0 ,  1, .  . . , N  - 1, can be obtained from either (5.1.4) or (5.1.8). Hence 

where the factor 1/(1 - aN) represents the effect of aliasing. Since 0 < a < 1, the 
aliasing error tends toward zero as N -+ oo. 

For o = 0.8, the sequence x ( n )  and its spectrum X ( w )  are shown in Fig. 5.4a 
and b, respectively. The aiiased sequences x,(n) for N = 5 and N = 50 and the 
corresponding spectral samples are shown in Fig. 5 . 4 ~  and d, respectively. We note 
that the aliasing effects are negligible for N = 50. 

If we define the aliased finite-duration sequence x(n) as 

O s n z N - 1  
otherwise 

then its Fourier transform is 
N -  1 H - 1  

Note that  although i ( w )  # X ( L L ) ) ,  the sample values at cuk = 2nk/N are identical. 
That is, 

5.1.2 The Discrete Fourier Transform (OFT) 

The development in the preceding section is concerned with the frequency-domain 
sampling of an aperiodic finite-energy sequence x ( n ) .  In general, the equally 
spaced frequency samples X ( 2 r k / N ) ,  k = 0 , l .  . . . , N - 1, do not uniquely represent 
the original sequence x ( n )  when x ( n )  has infinite duration. Instead, the frequency 
samples X ( 2 n k / N ) ,  k = 0, 1. . . . , N - 1, correspond to a periodic sequence x , ( n )  
of period N ,  where x, (n)  is an aliased version of x ( n ) ,  as indicated by the relation 
in (5.1.4), that is, 

When the sequence x ( n )  has a finite duration of length L 5 N, then x , ( n )  
is simply a periodic repetition of x ( n ) ,  where x, (n)  over a single period is 
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Figure 5.4 fa )  Plot of sequence A- in )  = ( O . ) i i " r t ( r i ) :  ( h )  its Fourier transform (magnitude 
only): ( c )  effect oI aliasing w ~ t h  N = 5: ( d )  reduced effect of aliasing wi th  h' = 50.  

given as 

Consequently. the frequency samples X ( 2 x k / N ) ,  k = 0. 1.. . . . N  - 1 .  uniquely 
represent the finite-duration sequence x ( , r ) .  Since x ( n )  s x,(,~) over a single Pe- 
riod (padded by N - L zeros). the original finite-duration sequence x ( n )  can be 
obtained from the frequency sarnptes ( X ( 2 r k / N  by means of the formula (5.1.8) 

It is important to note that zero padding does not provide any additional 
information about the spectrum X ( w )  of the sequence { x ( n ) ) .  The L equidis' 
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cant samples of X(w) are sufficient to reconstruct X ( w )  using the reconstruction 
formula (5.1.13). However, padding the sequence ( x ( n ) )  with N - L zeros and 
computing an N-point DFT results in a "better display" of the Fourier transform 
x (w).  

In summary, a finite-duration sequence x ( n )  of length L [i.e., x ( n )  = 0 for 
n < 0 and n 2 L] has a Fourier transform 

where the upper and lower indices in the summation reflect the fact that x ( n )  = 0 
outside the range 0 5 n 5 L - 1. When we sample X ( w )  at equally spaced 
frequencies wk = 2 r X . / N .  k = 0, 1. 2. .  . . . N - 1. where N 2 L .  the resultant 
samples are 

where for convenience. the upper index in the sum has been increased from L - 1 
to N - I since x ( n )  = 0 for 11 2 L .  

The relation in (5.1.18) is a formula for transforming a sequence { x ( n ) )  of 
length L ( N into a sequence of frequency samples (X(h)) of length N. Since 
the frequency samples are obtained by evaluating the Fourier transform X ( w )  
at a set of N (equally spaced) discrete frequencies. the relation in (5.1.18) is 
called the discrete Fourier transform (Dm) of x ( n ) .  In turn. the relation given 
by (5.1.10). which allows us to recover the sequence x ( n )  from the frequency 
samples 

is called the inverse DFT (IDFT). Clearly, when x ( n )  has length L < N. the N- 
point IDFT yields x ( n )  = O for L 5 n 5 N - 1. To summarize, the formulas for 
the DFT and IDFT are 

DFT 
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Example 5 . U  

A finite-duration sequence of length L is given as 

1. O i n h L - 1  
x ( n )  = [*, 

otherwise 

Determine the N-point DFT of this sequence for N 2 L. 

Solution The Fourier transform of this sequence is 

The magnitude and phase of X(w1 are illustrated in Fig. 5.5 for L = 10. The N-point 
DIT of x ( n )  is simply X(w1 evaluated at the set of N equally spaced frequencies 
WA = 2 n k / N ,  X. = 0, 1..  . . . N - 1 .  I-fence 

Fipn 5 5  Magnitude and phase 
characteristics of the Fourier transfoJm 
for signal in Example 5.12. 
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If N is selected such that N = L. then the DFT becomes 

Thus there is only one nonzero value in the DFT. This is apparent from ohser- 
vation of X(w),  since X(o) -- 0 at the frequencies wr; = Zrrk/L,  k # 0. The 
reader should verify that x ( n )  can be recovered from X ( 6 )  by performing an L-poinl 
IDFT. 

Although the L-point DFT is sufficient to uniquely represenl the sequence x ( n )  
in the frequency domain. ir is apparent that it does not provide sufficienl detail to yield 
a good picture of the spectral characteristics of x ( n ) .  1C we wish t o  have better picture. 
we must evaluate (interpolale) X ( w )  at more closely spaced frequencies. say wl = 
21rk lN .  where N > L. In effect. we can view this computation as expanding the size 
of thc sequence from L poinls lo  N points by appending N - L zeros lo  lhc scqucncc 
x ( n ) .  thal is. zcro padding. Thcn thc N-point DFT providcs finor interpolation than 
the L-point  DFT. 

Figure 5.6 providcs a plot of thc N-point DFT. in magnitude and phasc. for 
L = 10. N = 50, and N = 1oU. Now lhc spcctral chtrraclcristics of thc scqucncc 
arc morc clcarly cvidcnl. as onc will concludc by comparing lhcsc spectra with thc 
continuous spectrum X (to). 

5.1.3 The DFT as a Linear Transformation 

The formulas for the DFT and IDFT given hy (5.1.18) and (5.1.19) may hc ex- 
pressed as 

N- I  

X(P) = x x ( n ) ~ F  k = O . l , . . . . ~ - l  (5.1.20) 
n=(l 

where, by definition, 

which is an Nth root of unity. 
We note that the computation of each point of the DFT can be accomplished 

by N compiex multiplications and (N - 1 )  complex additions. Hence the N-point 
DFT values can be computed in a total of NZ complex multiplications and N(N - 1 )  
complex additions. 

It is instructive to view the DFT and IDFT as linear transformations on 
Sequences { x ( n ) }  and { X ( k ) } ,  respectively. Let us define an N-point vector X N  of 
the signal sequence x ( n ) ,  n  = 0, 1 , .  . . , N - 1, an N-point vector XN of frequency 
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Figure 5.6 Magnitude and phase of an N-point DFT in Example 6.4.2; (a) L = 10, 
N = 50; (b) L = 10, N = 100. 

samples, and an N x N matrix WN as 
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Figure 5.6 conrinued 

With these definitions, the N-paint DFT may be expressed in matrix form as 

XN = WNXN (5.1.24) 

where W N  is the matrix of the linear transformation. We observe that WN is a 
symmetric matrix. If we assume that the inverse of WN exists, then (5.1.24) can 
be inverted by premultiplying both sides by W,'. Thus we obtain 

IN = WN'XN (5.1.25) 

But this is just an expression for the IDFT. 
In fact, the IDFT as given by (5.1.21), can be expressed in matrix form as 

1 
XN = -WNXN (5.1 -26) 

N 
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where W; denotes the complex conjugate of the matrix W,V. comparison of 
(5.1.26) with (5.1.25) leads us to conclude that 

1 w,' = -Wt, (5.1 -27) 
N 

which, in turn, implies that 

where IN is an N x N identity matrix. Therefore. the matrix WN in the trans- 
formation is an orthogonal (unitary) matrix. Furthermore, its inverse exists and 
is given as W', /N.  Of course. the existence of the inverse of W,V was established 
previously from our derivation of the IDFT. 

Example 5 . U  

Compute t h e  DFT of the four-point sequence 

Solution The first step is to determine thc matrix W4. By exploiting the periodicity 
property of W4 and lhe symmetry property 

w:+N/?  = - w,:, 

the matrix Wq may he expressed as 

Then 

The IDFT of & may he determined by conjugating t h e  elements in Wg t o  obtain Wi 
and then applying t h e  formula (5.1.26). 

The DFT and IDFT are computational tools that play a very important role 
in many digital signal processing applications, such as frequency analysis (spectrum 
analysis) of signals, power spectrum estimation, and linear filtering. The impor- 
tance of the DFT and IDFT in such practicat applications is due to a large extent 
on the existence of computationally efficient algorithms, known collectively as fast 
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Fourier transform (FIT) algorithms, for computing the DFT and IDFT. This class 
of algorithms is described in Chapter 6. 

5.1.4 Relationship of the D n  to Other Transforms 

In this discussion we have indicated that the DFT is an important computational 
tool for performing frequency analysis of signals on digital signal processors. In 
view of the other frequency analysis tools and transforms that we have devel- 
oped, it is important to establish the relationships between the DFT to these other 
transforms. 

Relationship to the Fourier series coefficients of a periodic sequence. 
A periodic sequence (x , (n ) )  with fundamental period N can be represented in a 
Fourier series of the form 

N- I  

where the Fourier series coefficients are given by the expression 

If we compare (5.1.29) and (5.1.30) with (5.1.18) and (5.1.19), we observe that the 
formula for the Fourier series coefficients has the form of a DFT. In fact, if we 
define a sequence x ( n )  = x , ( n ) ,  0 5 n 5 N - 1, the DFT of this sequence is simply 

Furthermore, (5.1.29) has the form of an IDFT. Thus the N-point DFT provides 
the exact line spectrum of a periodic sequence with fundamental period N. 

Relationship to the Fourier transform of an aperiodic sequence. We 
have already shown that if x ( n )  is an aperiodic finite energy sequence with Fourier 
transform X ( o ) ,  which is sampled at N equally spaced frequencies o,t = 27rk/N,  
k = 0,1, .  . . , N - 1, the spectral components 

are the DFT coefficients of the periodic sequence of period N, given by 

Thus x,(n) is determined by aliasing (x(n)J over the interval 0 ( n 5 N - 1. The 
finite-duration sequence 

x,(n), 0 5  n 5 N - f 
otherwise 

(5.1 34) 
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bears no resemblance to the original sequence {x(n)), unless x(n) is of finite dura- 
tion and length L 5 N, in which case 

x ( n ) = i ( n )  O z n  5 N -1 (5.1.35) 

Only in this case will the IDFT of {X(k)] yield the original sequence {x(n)}. 

Relationship to the I-transform. Let us consider a sequence x(n) having 
the z-transform 

X(z) = 2 x(n)z-" (5.1.36) 
n=-m 

with a ROC that includes the unit circje. If X(z) is sampled at the N equally 
spaced points on the unit circle zl: = ei2xk1N, 0, 1, 2, & .  . , N - 1, wz obtain 

The expression in (5.2.37) is identical to the Fourier transform X(o) evaluated at 
the N equally spaced frequencies ar; = 2 7 r k / N ,  k = 0, 1,. . . . N - 1, which is the 
topic treated in Section 5.1.1. 

If the sequence x (n )  has a finite duration of length N or less. the sequence can 
be recovered from its N-point DFT. Hence its z-transform is uniquely determined 
by its N-point DFT. Consequently, X(z) can be expressed as a function of the 
DFT (X(k)) as follows 

N-1 

When evaluated on the unit circle, (5.1.38) yields the Fourier transform of the 
finite-duration sequence in terms of its DFT, in the form 

This expression for the Fourier transform is a polynomial (Lagrange) interpolation 
formula for X(o) expressed in terms of the values {X(k)} of the polynomial at a 
set of equally spaced discrete frequencies o k  = 2rrk /N ,  k = 0, 1,. . . . N - 1. With 
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some algebraic manipulations, it is possible to reduce (5.1.39) to the interpolation 
formula given previously in (5.1.13).  

Relationship to the Fourier series coefficients of a continuous-time 
signal. Suppose that x,(r) is a continuous-time periodic signal with fundamental 
period Tp = l / F o .  The signal can be expressed in a Fourier series 

where { c ~ }  are the Fourier coefficients. If we sample x,,(r) at a uniform rate 
Fs = N / T p  = 1 / T ,  we obtain the discrete-time sequence 

I t  i s  clear that (5.1.41) is in thc form of an IDFT formula. where 

X ( P )  = N x ' , r - / w  r N i l  
I=-% 

and 

I = - %  

Thus the ItL) sequence is an aliased version of the sequence (cL). 

5.2 PROPERTIES OF THE DFT 

In Section 5.1.2 we introduced the DFT as a set of N samples {X(k)} of the 
Fourier transform X ( w )  for a finite-duration sequence { x ( i i ) }  of length L 5 N .  
The sampling of X(o) occurs at the N equally spaced frequencies wk = 2 n k / N ,  
k = 0 ,  1,  2 ,  . . . . N - 1. We demonstrated that the N samples ( X ( k ) )  uniquely 
represent the sequence (x(n)} in the frequency domain. Recall that the DFT and 
inverse DFT (IDFT) for an N-point sequence { x ( n ) }  are given as 

N - 1  

DFT: X(k) = x r ( n ) ~ F  k = O . 1 .  .... N - 1  (5.2.1) 
n=O 

1 N-I 
I D F T : X ( ~ ) = - ~ X ( ~ ) W ~ ~ "  n = 0 . 1 .  .... N - 1  (5.2.2) 

k, 

where WN is defined as 
wN = e - ~ b / N  (5.2.3) 
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In this section we present the important properties of the DFT. In view of the 
relationships established in Section 5.1.4 between the DFT and Fourier series, 
and Fourier transforms and :-transforms of discrete-time signals. we expect the 
properties of the DFT to resemble the properties of these other transforms and 
series. However, some important differences exist, one of which is the circular 
convolution property derived in the following section. A good understanding of 
these properties is extremely helpful in the application of the DFT to practical 
problems. 

The notation used below to denote the N-point DFT pair x(n) and Xik) is 

5.2.1 Periodicity, Linearity, and Symmetry Properties 

Periodicity. If xin) and X(k) are an N-point DFT pair, then 

x ( n  + N )  = x ( n )  for all n (5.2.4) 

X i k + N ) = X ( k )  foral lk  (5.2.5) 

These periodicities in .r(n) and X(k) follow immediately from formulas (5.2.1) and 
(5.2.2) for the DFT and IDFT. respectively. 

We previously illustrated the periodicity property in the sequence x ( n )  for a 
given DFT. However, we had not previously viewed the DFT X(k) as a periodic 
sequence. In some applications it is advantageous to do this. 

Linearity. If 

1 1  in) XI (k) 

and 

x2(n) X2(k) 

then for any real-valued or complex-valued constants a, and az, 

This property follows immediately from the definition of the DFT given by (5.2.1). 

Circular Symmetries of a Sequence. As we have seen, the N-point Dm 
of a finite duration sequence, x(n)  of length L 5 N is equivalent to the N-point 
DFT of a periodic sequence x,(n),  of period N, which is obtained by periodically 
extending x(n) ,  that is, 

x,(n) = 2 x ( n  -IN) (5.2.7) 
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Now suppose that we shift the periodic sequence x,(n) by k  units to the right. 
Thus we obtain another periodic sequence 

x,!,(n) = x p ( l t  - k )  = 2 x ( n - k - I N )  (5.2.8) 
IS-m 

The finite-duration sequence 
x i ( n ) ,  O i n  5 N - 1  

x l (n)  = ( o, 
otherwise 

is related to the original sequence x(n)  by a circular shift, This relationship is 
illustrated in Fig. 5.7 for N = 4. 

In general, the circular shift of the sequence can be represented as the index 
modulo N. Thus we can write 

xr (n)  = x(n - k ,  modulo N )  

= x((n - k ) ) ~  

For example, if k = 2 and N = 4, we have 

which implies that 
~ ' ( 0 )  = x ( ( - 2 ) ) 4  = ~ ( 2 )  

Hence xr (n)  is simply x(n)  shifted circularly by two units in time, where the coun- 
terclockwise direction has been arbitrarily selected as the positive direction. Thus 
we conclude that a circular shift of an N-point sequence is equivalent to a linear 
shift of its periodic extension, and vice versa. 

The inherent periodicity resulting from the arrangement of the N-point se- 
quence on the circumference of a circle dictates a different definition of even and 
odd symmetry, and time reversal of a sequence. 

An N-point sequence is called circularly even if it is symmetric about the 
point zero on the circle. This implies that 

x ( N - n ) = x ( n )  1 5 n s N - 1  (5.2.11) 

An N-point sequence is called circularly odd if it is antisymmetric about the point 
zero on the circle. This implies that 

The time reversal of an N-point sequence is attained by reversing its samples 
about the point zero on the circle. Thus the sequence x ( ( - n ) ) ~  is simply given as 

~ ( ( - n ) ) ~  = x ( N  - n )  0 5 n  5 N - 1 (5.2.13) 

This time reversal is equivalent to plotting x(n)  in a clockwise direction on a circle. 
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Figrue 5.7 Circular shift of a sequence. 
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An equivalent definition of even and odd sequences for the associated peri- 
odic sequence xp (n )  is given as follows 

even: x p ( n )  = x,(-n) = x,(N - n )  

odd: x,(n) = -xp(-n) = -x,(N - n )  

If the periodic sequence is complex-valued, we have 

conjugate even: x,(n) = x i ( N  - n )  
(5.2.15) 

conjugate odd: x,(n) = -xF(N - n )  

These relationships suggest that we decompose the sequence x,(n) as 

x,(n) = x,,(n) + xp,(n) (5.2.16) 

where 

Symmetry properties of the DFT. The symmetry properties for the DFT 
can be obtained by applying the methodology previously used for the Fourier 
transform. Let us assume that the N-point sequence x ( n )  and its DFT are both 
complex valued. Then the sequences can be expressed as 

x ( n ) = x R ( n ) + j x , ( n )  O z n i N - 1  (5.2.18) 

X ( k )  = X R ( ~ ) +  j X l ( k )  0 5  k 5 N - 1  (5.2.19) 

By substituting (5.2.18) into the expression for the DFT given by (5.2.1), we obtain 
N - l  217 kn 

X R ( ~ )  = x [ xR(n )  cos - + xr(n)  sin - 
n=O 

N N 

N-1 2rkn  
X I  ( k )  = - x [xR(n)  sin - - x f  ( n )  cos - 

N 2xkn]  (5.2.21) 
n d  

N 

Similarly, by substituting (5.2.19) into the expression for the IDFT given by (5.2.2), 
we obtain 

1 N-1 k k n  
N "'"1 (5.2.23) 

x I  In) = 2 [ X R ( k )  sin - + X I ( k )  cos - N 

Real-valued sequences. If the sequence x (n )  is real, it follows directly 
from (5.2.1) that 

X(N - k )  = Xa(k )  = X(- k) (5.2.24) 
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Consequently, IX(N - k)l = IX(k)l  and L X ( N  - k )  = - L X ( P ) .  Furthermore, 
x r ( n )  = 0 and therefore x ( n )  can be determined from (5.2.22).  which is another 
form for the IDFT. 

Real and even sequences. If x ( n )  is real and even, that is, 

x ( n ) = x ( N - n )  O z n z  N - 1  

then (5.2.21) yields X I ( k )  = 0 .  Hence the DFT reduces to 

which is itself real-valued and even. Furthermore, since X I ( k )  = 0 ,  the IDFT 
reduces to 

Real and odd sequences. If x ( n )  is real and odd, that is, 

x ( n ) =  - x ( N - n )  O i n  5 N  - 1  

then (5.2.20) yields X R ( k )  = 0. Hence 

N - 1  2xkn 
X ( k )  = - j x x ( n )  sin - O s k i N - 1  

n-0 N  

which is purely imaginary and odd. Since X R ( k )  = 0 ,  the IDET reduces to 

Purely imaginary sequences. In this case, x ( n )  = j x l ( n ) .  Consequently, 
(5.2.20) and (5.2.21) reduce to 

We observe that X R ( k )  is odd and X I ( k )  is even. 
If x I ( n )  is odd, then X r ( k )  = 0 and hence X ( k )  is purely real. On the other 

hand, if x { ( n )  is even, then X R ( k )  = 0 and hence X ( k )  is purely imaginary. 
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TABLE 5.1 SYMMETRY PROPERTIES OF THE DFT 
- -  - - -  

N-Point Sequence x ( n ) .  
O s n s N - 1  N- Po in t  DFT 

x ( n )  
x * ( n )  

x * ( N  - n )  
X R ( ~ )  

J X I  (n) 
x,,(n) = $ [ . ~ ( n >  + x k ( N  - n ) ]  

x,,,(n) = $ [ x ( n )  - x * ( N  - n ) ]  

Real Signals 
Any real signal 

x ( n  1 

x ( k )  
X * ( N  - k )  

X* (k ) 
X,. , (k)  -- 4 [ ~ ( k )  + X * ( N  - k ) ]  
X , , , (k )  = i [ ~ ( k )  - X ' ( N  - k)] 

X R ( ~ )  
j X , ( k )  

The symmctry properties given ahovc may be summarized as follows: 

All the symmetry properties of the DFT can easily be deduced from (5.2.31). For 
example, the DFT of the sequence 

x , , (n)  = i [ x p ( n )  + x , ( N  - n ) ]  

X R ( ~ )  = X > ( k )  + X i ( k )  

The symmetry properties of the DFT are summarized in Table 5.1. Ex- 
ploitation of these properties for the efficient computation of the DFT of special 
sequences is considered in some of the problems at the end of the chapter. 

5.2.2 Multiplication of Two DFTs and Circular Convolution 

Suppose that we have two finite-duration sequences of length N,  x , ( n )  and x2(r1). 
Their respective N-point DFTs are 
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If we multiply the two DFTs together, the result is a DFT, say Xt(k), of a se- 
quence x3(n)  of length N. Let us determine the relationship between x ~ ( R )  and 
the sequences X I  (n) and x2 (n).  

We have 

The IDFT of ( X 3 ( k ) )  is 
1 N- 1 

Suppose that we substitute for X l ( k )  and X z ( k )  in (5.2.35) using the DFTs given 
in (5.2.32) and (5.2.33). Thus we obtain 

The inner sum in the brackets in (5.2.36) has the form 

where a is defined as 
a = e j 2 n ( m - n - l ) / N  

We observe that a = 1 when m - n - 1 is a multiple of N. On the other hand 
a N = 1 for any value of a # 0. Consequently, (5.2.37) reduces to 

N - 1  Car=(:.  l = m - n + p ~ = ( ( m - n ) ) ~ .  paninteger 
otherwise 

(5.2.38) 
f 4  

If we substitute the result in (5.2.38) into (5.2.36), we obtain the desired expression 
for x3(m) in the form 

N - 1  

x d m )  = ~ x ~ ( n ) x t ( ( m  - n ) ) ~  rn =O. 1 . .  .. .N - 1 (5.2.39) 
n r O  

The expression in (5.2.39) has the form of a convolution sum. However, it is 
not the ordinary linear convolution that was introduced in Chapter 2, which relate - 

the output sequence y (n)  of a linear system to the input sequence x ( n )  and the 
impulse response h(n).  Instead, the convolution sum in (5.2.39) invohes the index - 
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((m - n ) ) N  and is called circular convolution. Thus we conclude that multiplication 
of the DFTs of two sequences is equivalent to the circular convolution of the two 
sequences in the time domain. 

The following example illustrates the operations involved in circular convo- 
lution. 

Example 5 3 1  

Perform the circular convolution of the following two sequences: 

Solution Each sequence consists of four nonzero points. For the purposes of illus- 
trating the operations involved in circular convolution, it  is desirable to graph each 
sequence as points on a circle. Thus the sequences x l ( n )  and x 2 ( n )  are graphed as 
illusttatcd in Fig. 5.8(a). We note that the sequences are graphed in a counterclock- 
wise direction on a circle. This establishes the reference direction in rotating one of 
the sequences relative to the other. 

Now, x 3 ( m )  is obtained by circularly convolving x l ( n )  with x z ( n )  as specified by 
(5.2.39). Beginning with m = 0 we have 

~ ? ( ( - n ) ) ~  is simply the sequence x 2 ( n )  folded and graphed on a circle as illustrated in 
Fig. 5.8(b). In other words, the folded sequence is simply x z ( n )  graphed in a clockwise 
direction. 

The product sequence is obtained by multiplying x l ( n )  with x 2 ( ( - n ) ) r ,  point by 
point. This sequence is also illustrated in Fig. 5.8(b). Finally, we sum the values in 
the product sequence to obtain 

x 3 ( 0 )  = 14 
For m = 1  we have 

It is easily verified that x2((1  - n))4  is simply the sequence x2 ( ( -n ) )4  rotated coun- 
terclockwise by one unit in time as illustrated in Fig. 5.8(c). This rotated sequence 
multiplies x l  ( n )  to yield the product sequence, also illustrated in Fig. 5.8(c). Finally, 
we sum the values in the product sequence to obtain x 3 ( l ) .  Thus 

For m = 2 we have 

Now x2((2 - R ) ) ~  is the folded sequence in Fig. 5.8(b) rotated two units of time in 
the counterclockwise direction. The resultant sequence is illustrated in Fig. 5.8(d) 



x 2 ( f ) = 2  
Folded .sequence 

x2(2 )  = 3 
Folded sequence rotated by one unit in time 

~ ~ ( 3 )  ' 4 
Folded sequence r o t d  by two units in time 

4 0 )  = 1 
Folded sequence rotated by three units in time 

2  
Product sequence 

3 

Product sequence 
(c) 

5.8 Circular convolution of two sequences. 
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along with the product sequence x l ( n ) x 2 ( ( 2  - n)),. By summing the four terms in the 
product sequence, we obtain 

~ ~ ( 2 )  = 14 

For m = 3 we have 

The folded sequence x2((-n))4 is now rotated by three units in time to yield ~ ~ ( ( 3 - n ) ) 4  
and the resultant sequence is multiplied by xl(n) to yield the product sequence as 
illustrated in Fig. 5.8(e). The sum of the values in the product sequence is 

We observe that if the computation above is continued beyond m = 3 .  we 
simply repeat the sequence of four values obtained above. Therefore, the circular 
convolution of the two sequences xi (n) and x2(n)  yields the sequence 

From this example, we observe that circular convolution involves basically 
the same four steps as the ordinary linear convolution introduced in Chapter 2: 
folding (time reversing) one sequence, shifring the folded sequence, multiplying the 
two sequences to obtain a product sequence, and finally, summing the values of the 
product sequence. The basic difference between these two types of convolution 
is that, in circular convolution, the folding and shifting (rotating) operations are 
performed in a circular fashion by computing the index of one of the sequences 
modulo N. In linear convolution, there is no modulo N operation. 

The reader can easily show from our previous development that either one 
of the two sequences may be folded and rotated without changing the result of the 
circular convolution. Thus 

N - 1  

x3 (m)  = x x 2 ( n ) x 1 ( ( m  - n ) ) N  rn =O. 1. . . . ,  N - 1 (5.2.40) 
n=O 

The following example serves to illustrate the computation of x j ( n )  by means 
of the DFT and IDFT. 
Example 5 2 2  

By means of the D m  and IDFT, determine the sequence x3(n) corresponding to the 
circular convolution of the sequences x i  (n) and x2(n)  given in Example 5.2.1. 

Solution First we compute the DFTs of x l ( n )  and x2(n).  The four-point DFT of 
x l ( n )  is 
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Thus 

The DFT of x2(n) is 

- - 1  + 2e-ixkn + 33e-i~" + 4e-~3xklz 

Thus 

X2(0 )  = 10 X z ( 1 )  = -2 f j2 X 2 ( 2 )  = -2 X 2 ( 3 )  = - 2  - j2  

When we multiply the two DFTs, we obtain the product 

X3(k )  = Xl ( k ) X z ( k )  

or. equivalently, 

x 3 ( 0 )  = 60 x 3 ( 1 )  = 0 x 3 ( 2 )  = - 4 x 3 ( 3 )  = 0 

Now, the IDFT of X 3 ( k )  is 

Thus 

which is the result obtained in Example 5.2.1 from circular convolution. 

We conclude this section by formally stating this important property of the 
Dm. 

Circular convolution. If 

aod 

then 

xl (n )  @ x2(n) 9 X I  Q)X2(k)  (5.2.41) 

where x l (n )  @I ~ ( n )  denotes the circular convolution of the sequence x l (n )  and 
xt(n). 
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Figure 5.9 Time reversal of a sequence. 

5.2.3 Additional DFT Properties 

Time reversal of a sequence. If 

then 
DFr  

x ( ( - r i ) ) ~  = x ( N  - n )  * X ( ( - k ) ) ~  = X(N - k )  (5.2.42) 

Hence reversing the N-point sequence in lime is equivalent to reversing the DFT 
values. Time reversal of a sequence x ( n )  is illustrated in Fig. 5.9. 

Proof: From the definition of the DFT in (5.2.2) we have 

N- I  

DFT(X(N - , I ) )  = X ( N  - , I ) ~ - J ' * ' " / ~  

n=0 

If we change the index from n to  m = N - n, then 

N- I 

DFT(x(N - n)) = C x ( m ) e - j 2 " k ' N - m ' / N  

m=O 

N-I 
- - C ( m ) e i 2 n k m / N  

N-I 
- - C X ( m ) r - j 2 " m ( N - k ) / ~  = x (N _ k) 

mEO 

We note that X ( N  - k ) =  X( ( -k ) )N,  05k 5 N -  1. 

Circular time shm of a sequence. If 
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then 
DFT x ( ( n  - 1 1 ) ~  - 

Pro05 From the definition of the D F T  we have 

But x ( ( n  - 1 ) ) ~  = x ( N  - I + n). Consequently, 

Furthermore. 

Therefore, 
N-1 

D F T { x ( ( n  - I ) ) )  = r (rn)r-jhk'm+"~N 

Circular frequency shift. If 

then 

x (n)ejhlnlN X ( (k  - 
Hence, the multiplication of the sequence x(n)  with the complex exponential se- 
quence ejhk'lx is equivalent to the circular shift of the DFT by l units in frequency. 
This is the dual to the circular time-shifting property and its proof is similar to the 
latter. 
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Complex-conjugate properties. If 
DFT 

x ( n )  y X ( k )  

then 

The proof of this property is left as an exercise for the reader. The IDFT of X 9 ( k )  
is 

Therefore, 
DFT 

x * ( ( - l t ) ) ~  = x t ( N  - n) t-, X*(k )  (5.2.46) 

Circular correlation. In general, for complex-valued sequences x ( n )  and 
,v(n), if 

DR' 
x ( n )  - X ( k )  

and 
DR' 

y ( n )  7 Y ( a )  

then 

Fxy(l)  k x y ( k )  = X ( k ) Y * ( k )  (5 .2 .47)  

where G,( l )  is the (unnorrnalized) circular crosscorrelation sequence, defined as 

Proof: We can write Fx,(l) as the circular convolution of x ( n )  with ye(-n) ,  
that is, 

Then, with the aid of the properties in (5.2.41) and (5.2.46), the N-point DFT of 
f x y ( l )  is 

R,, ( k )  = X ( k ) Y * ( k )  

In the special case where y(n) = x(n) ,  we have the corresponding expression 
for the circular autocorrelation of x ( n ) ,  
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Multiplication of two sequences. If 

11 (n) X I  ( k )  

and 

x*(n)  y X*(k)  

then 
DFT 1 

X I  ( n ) x A n )  7 ? X I  ( k )  @ X2(k )  (5.2.49) 

This property is the dual of (5.2.41). Its proof follows simply by interchanging 
the roles of time and frequency in the expression for the circular convolution of 
two sequences. 

Parseval's theorem. For complex-valued sequences x ( n )  and y ( n ) ,  in gen- 
eral, if 

x ( n )  9 ~ ( k )  

and 

y ( n )  7 ~ ( k )  

then 

Proof The property follows immediately from the circular correlation prop- 
erty in (5.2.47). We have 

and 

Hence (5.2.50) follows by evaluating the IDFT at 1 = 0. 
The expression in (5.2.50) is the general form of Parseval's theorem. In the 

special case where y (n )  = x(n) ,  (5.2.50) reduces to 
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TABLE 5 2  PROPERTIES OF THE DFT 

Property Time Domain Frequency Domain 

Notation 
Periodicity 
Linearity 
Time reversal 
Circular time shift 
Circular frequency shift 
Complex conjugate 
Circular convolution 

Circular correlation 

Multiplication of two sequences 

Parseval's theorem 

which expresses the energy in the finite-duration sequence x ( n )  in terms of the 
frequency components {X (k) 1. 

The properties of the DFT given above are summarized in Table 5.2. 

5.3 LINEAR FILTERING METHODS BASED ON THE DFT 

Since the DFT provides a discrete frequency representation of a finite-duration 
sequence in the frequency domain, it is interesting to explore its use as a com- 
putational tool for linear system analysis and, especially, for linear filtering. We 
have already established that a system with frequency response H(w), when ex- 
cited with an input signal that has a spectrum X(w), possesses an output spectrum 
Y(w) = X(w)H(w). The output sequence y ( n )  is determined from its spectrum via 
the inverse Fourier transform. Computationally, the problem with this frequency- 
domain approach is that X(w), H ( o ) ,  and Y(w) are functions of the continuous 
variable w. As a consequence, the computations cannot be done on a digital com- 
puter, since the computer can only store and perform computations on quantities 
at discrete frequencies. 

On the other hand, the DFT does lend itself to computation on a digital 
computer. In the discussion that follows, we describe how the DFT can be used 
to perform linear filtering in the frequency domain. In particular, we present 
a computational procedure that serves as an alternative to time-domain convo- 
lution. In fact, the frequencydomain approach based on the DFT, is compu- 
tationally more efficient than time-domain convolution due to the existence of 
efficient algorithms for computing the DFT. These algorithms, which are de- 
scribed in Chapter 6, are collectively called fast Fourier transform (FFT') algo- 
rithms, 
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5.3.1 Use of the DFT in Linear Filtering 

In the preceding section it was demonstrated that the product of two DFTs is 
equivalent to the circular convolution of the corresponding time-domain sequences. 
Unfortunately, circular convolution is of no use to us if our objective is to deter- 
mine the output of a linear filter to a given input sequence. In this case we seek 
a frequency-domain methodology equivalent to linear convolution. 

Suppose that we have a finite-duration sequence x ( n )  of length L which 
excites an FIR filter of length M. Without loss of generality, let 

h(n)  = 0, n  < 0 and n  > M 

where h(n)  is the impulse response of the FIR filter. 
The output sequence y ( n )  of the FIR filter can be expressed in the time 

domain as the convolution of x ( n )  and h(n) ,  that is 
M-1 

y (n)  = x h(k)x (n  - k) (5.3.1) 
k=O 

Since h(n)  and x ( n )  are finite-duration sequences, their convolution is also finite 
in duration. In fact, the duration of y (n)  is L + M - 1. 

The frequency-domain equivalent to (5.3.1) is 

Y ( w )  = X (o) H (w) (5.3.2) 

If the sequence y ( n )  is to be represented uniquely in the frequency domain by 
samples of its spectrum Y (w) at a set of discrete frequencies, the number of distinct 
samples must equal or exceed L + M - 1. Therefore, a DFT of size N 2 L + M - 1, 
is required to represent ( y ( n ) )  in the frequency domain. 

Now if 

Y t k )  Y(w)I - z~~L/N k = O . I ,  ..., N - 1  

then 

where { X ( k ) }  and ( H ( k ) }  are the N-point DFTs of the corresponding sequences 
x(n)  and h(n), respectively. Since the sequences x ( n )  and h(n) have a duration 
less than N, we simply pad these sequences with zeros to increase their length to 
N. This increase in the size of the sequences does not alter their spectra X ( o )  and 
H ( o ) ,  which are continuous spectra, since the sequences are aperiodic. However, 
by sampling their spectra at N equally spaced points in frequency (computing the 
N-point DFTs), we have increased the number of samples that represent theS 
sequences in the frequency domain beyond the minimum number (L or M, re- 
spectively). 
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Since the N = L + M - I-point DFT of the output sequence y(n) is sufficient 
to represent y (n)  in the frequency domain. it follows that the multiplication of the 
N-point DFTs X ( k )  and H ( k ) ,  according to (5.3.3), followed by the computation 
of the N-point IDFT. must yield the sequence { y ( n ) ) .  In turn, this implies that 
the N-point circular convolution of x ( n )  with h ( n )  must be equivalent to the linear 
convolution of x ( n )  with h(n ) .  In other words, by increasing the length of the 
sequences x(m) and h ( n )  to N points (by appending zeros), and then circular1y 
convolving the resulting sequences, we obtain the same result as would have been 
obtained with linear convolution. Thus with zero padding, the DFT can be used 
to perform linear filtering. 

The following example illustrates the methodology in the use of the DFT in 
linear filtering. 

Example 5.3.1 

By mcans of the DFT and IDFT, determine the response of the FIR filter with impulse 
response 

to  1hc input scqucncc 

Sululion The input scqucncc has lcnplh L = 4 and the impulse response has lcngth 
M = 3. Lincar convolution of lhesc two sequences produces a sequence of lcnglh 
N = 6. Consequently, the size of the DFTs must be a1 least six. 

For simplicity wc compute eight-point DFTs. We should also mention that the 
efficienl computation of the DFT via the fast Fourier transform (FFT) algorithm is 
usually performed for a length N that is a power of 2. Hence the  eight-point DFT of 
x ( n )  is 

This computation yields 
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The eight-point DFT of h ( n )  is 
7 

H(k) = x h(n)e-jbknfi 
n 4  

- - 1 + 2e-i*k/4 + 3 e - l x k f l  

Hence 

The product of these two DFTs yields Y(k), which is 

Y(0) = 36, Y(1) = -14.07 - j17.48 Y(2) - j4 Y(3) = 0.07 + j0.515 

Finally, the eight-point IDFT is 
7 

~ ( n )  = x ~ ( ~ ) ~ j ' " ' ~ f i  ~ = 0 , 1  . . . . ,  7 
t4O 

This compurarion yields the ~esult 

We observe that the first six values of y ( n )  constitute the set of desired output 
values. The last two values are zero because we used an eight-point DFT and IDFT, 
when, in fact. the minimum number of points requi~ed is six. 

Although the multiplication of two DFTs corresponds to circular convolution 
in the time domain, we have observed that padding the sequences x (n )  and h(n) 
with a sufficient number of zeros.forces the circular convolution to  yield the same 
output sequence as linear convolution. In the case of the FIR filtering problem 
in Example 5.3.1, it is a simple matter to  demonstrate that the six-point circular 
convolution of the sequences 

h(n)  = 11,2,3,0,O,O) (5.3.4) 
t 

results in the output sequence 

y(n) = 11,4,9,11,8,3) (5.3.6) 
t 

which is the same sequence obtained from linear convolution. 
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It is important for us to understand the aliasing that results in the time domain 
when the size of the DFTs is smaller than L+ M - 1. The following example focuses 
on the aliasing problem. 

Example 532 

Determine the sequence y ( n )  that results from the use of four point DFTs in Exam- 
ple 5.3.1. 

Solution The four-point DFT of h ( n )  is 
3 

H ( k )  = x h (n)e-~"~"'' 
n=O 

Hence 

H ( O ) = 6 .  H ( l ) = - 2 - j 2 .  H ( 2 ) = 2 .  H ( 3 ) = - 2 + j 2  

Thc four-point DFT of x ( n )  is 

Hcncc 

Thc product of thesc two four-point DFTs is 

The four-point I D R  yields 

Therefore, 

The reader can verify that the four-point circular convolution of h(n)  with x ( n )  
yields the same sequence j ( n ) .  

If we compare the result ?(n), obtained from four-point DFTs with the se- 
quence y(n) obtained from the use of eight-point (or six-point) DFTs, the time- 
domain aliasing effects derived in Section 5.2.2 are clearly evident. In particular, 
y(4) is aliased into y(0) to yield 

Similarly, y(5) is aliased into y(1) to yield 
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All other aliasing has no effect since y ( n )  = 0  for n  2 6. Consequently, we have 

Therefore, only the first two points of j ( n )  are corrupted by the effect of aliasing 
[i.e., F(O) # y ( 0 )  and jl(1) # y(l)]. This observation has important ramifications 
in the discussion of the following section, in which we treat the filtering of long 
sequences. 

5.3.2 Filtering of Long Data Sequences 

In practical applications involving linear filtering of signals, the input sequence 
x ( n )  is often a very long sequence. This is especially true in some real-time signal 
processing applications concerned with signal monitoring and analysis. 

Since linear filtering performed via the DFT involves operations on a block 
of data, which by necessity must be limited in size due to limited memory of a 
digital computer, a long input signal sequence must be segmented to fixed-size 
blocks prior to processing. Since the filtering is linear, successive blocks can be 
processed one at a time via the DFT and the output blocks are fitted together to 
form the overall output signal sequence. 

We now describe two methods for linear FIR filtering a long sequence on a 
block-by-black basis using the DFT. The input sequence is segmented into blocks 
and each block is processed via the DFT and IDFT to produce a block of output 
data. The output blocks are fitted together to form an overall output sequence 
which is identical to the sequence obtained if the long block had been processed 
via time-domain convolution. 

The two methods are caIled the overlap-save method and the overlap-odd 
method For both methods we assume that the FIR filter has duration M. The 
input data sequence is segmented into blocks of L points, where, by assumption, 
L >> M without loss of generality. 

Overlap-save method. In this method the size of the input data blocks is 
N = L + M - 1 and the.size of the DFTs and IDFT are of length N. Each data 
block consists of the last M - 1  data points of the previous data block followed by 
L new data points to form a data sequence of length N = L + M - 1. An N-point 
DFT is computed for each data block. The impulse response of the FIR filter is 
increased in length by appending L - 1 zeros and an N-point DFT of the sequence 
is computed once and stored. The multiplication of the two N-point DFTs { H ( k ) )  
and { X m ( k ) }  for the mtb block of data yields 

Then the N-point IDFT yields the result 
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Since the data record is of Iength N, the first M - 1 points of y,(n) are corrupted 
by aliasing and must be discarded. The last L points of y,(n) are exactly the same 
as the result from iinear convolution and, as a consequence, 

To avoid loss of data due to aliasing, the last M - f points of each data record 
are saved and these points become the first M - 1 data points of the subsequent 
record, as indicated above. To begin the processing, the first M - 1 points of the 
first record are set to zero. Thus the blocks of data sequences are 

x 2 ( n )  = { x ( L  - M + l), .. . , x ( L  - l ) , x ( L ) ,  . . . , x ( 2 L  - I)} (5.3.11) 
d 

M - l  data p i n t s  L ncw data poinls 
from x l ( n )  

x3(n) = ( 5 ( 2 L  - M + 1 ) ,  . . . ,  x ( 2 L  - 1 ) , x ( 2 L ) .  .... x(3L - 1 ) )  , (5.3.12) 
M - I  data points L new data points 

from r2ln) 

and so forth. The resulting data sequences from the IDFT are given by (5.3.8), 
where the first M - 1 points are discarded due to aliasing and the remaining L  
points constitute the desired result from linear convolution. This segmentation of 
the input data and the fitting of the output data blocks together to form the output 
sequence are graphically illustrated in Fig. 5.10. 

Overlap-add method. In this method the size of the input data block is L  
points and the size of the D m s  and IDFT is N = L  + M - 1. To each data block 
we append M - 1 zeros and compute the N-point DFI'. Thus the data blocks may 
be represented as 

and so on. The two N-point DFTs are multiplied together to form 

The IDFT yields data blocks of Iength N that are free of aliasing since the size of 
the DFTs and IDFT is N = L + A4 - 1 and the sequences are increased to N-points 
by appending zeros to each block. 
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Input signal 1- L L-. ~4 

Output signal 

points / 
Discard 

M- l 
points / 

Discard 
M- 1 

points 
figure 5.10 Linear FIR filtering by h e  
overlapsave method. 

Since each data block is terminated with M - 1 zeros, the last M - 1 points 
from each output block must be overlapped and added to the first A4 - 1 points of 
the succeeding block. Hence this method is called the overlap-add method. This 
overlapping and adding yields the output sequence 

The segmentation of the input data into blocks and the fitting of the output data 
blocks to form the output sequence are graphically illustrated in Fig. 5.11. 

At this point, it may appear to the reader that the use of the DFT in linear 
FIR filtering is not only an indirect method of computing the output of an FIR 
filter, but it may also be more expensive computationally since the input data must 
first be converted to the frequency domain via the DFT, multiplied by the Dm 
of the FIR filter, and finally, converted back to the time domain via the IDFT. 
On the contrary, however, by using the fast Fourier transform algorithm, as d l  
be shown in Chapter 6, the DFTs and IDFT' require fewer computations to com- 
pute the output sequence than the direct realization of the FIR filter in the time 
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Input data 
+L+L+L+ 

Output data 

M-I p o i n t s L m  
add Figure 5-11 Linear FIR filtering by [he 

together overlap-add method. 

domain. This computational efficiency is the basic advantage of using the DFT to 
compute the output of an FIR filter. 

5.4 FREQUENCY ANALYSIS OF SIGNALS USING THE DFT 

To compute the spectrum of either a continuous-time or discrete-time signal, the 
values of the signal for all time are required. However, in practice, we observe 
signals for only a finite duration. Consequently, the spectrum of a signal can 
only be approximated from a finite data record. In this section we examine the 
implications of a finite data record in frequency analysis using the DFT. 

If the signal to be analyzed is an analog signal, we would first pass it through 
an antialiasing filter and then sample it at a rate F, > 2B,  where B is the band- 
width of the filtered signal. Thus the highest frequency that is contained in the 
sampled signal is F,f2. Finally, for practical purposes, we limit the duration of 
the signal to the time interval To = LT, where L is the number of samples and T 
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is the sample interval. As we shall observe in the following discussion, the finite 
observation interval for the signal places a limit on the frequency resolution; that 
is, it limits our ability to distinguish two frequency components that are separated 
by less than l/To = I /LT in frequency. 

Let { x ( n ) }  denote the sequence to be analyzed. Limiting the duration of the 
sequence to L  samples, in the interval 0 I n 5 L - 1, is equivalent to multiplying 
( x ( n ) ]  by a rectangular window w ( n )  of length L .  That is, 

where 
1 O z n y L - 1  

W ( n )  = ( 0 :  otherwise 

Now suppose that the sequence x ( n )  consists of a single sinusoid, that is, 

Then the Fourier transform of the finite-duration sequence x ( n )  can be expressed 
as 

X(w) = S [ W ( W  -w) + W ( w  + q)] (5.4.4) 

where W ( w )  is the Fourier transform of the window sequence, which is (for the 
rectangular window) 

To compute i ( w )  we use the DFT. By padding the sequence i(n) with N- L  zeros, 
we cancompute the N-poi?[ DFT o! the truncated ( L  points) sequence [f (n)). 
The magnitude spectrum / X ( k ) l  = (X(wk)l for o k  = 2 ~ r k / N ,  k = 0, 1 , .  . . , N, is 
illustrated !n Fig. 5.12 for L  = 25 and N = 2048. We note that the windowed 
spectrum X ( w )  is not localized to a single frequency, but instead it is spread out 
over the whole frequency range. Thus the power of the original signal sequence 
{ x ( n ) )  that was concentrated at a single frequency has been spread by the window 
into the entire frequency range. We say that the power has "leaked out" into the 
entire frequency range. Consequently, this phenomenon, which is a characteristic 
of windowing the signal, is called leakage. 

I2 

10 
d 
2 8 - 
P :  

2 

0 
-7 - E  0 7 

+ F m  5.12 Magnitude spectrum for 
2 5 L = 25 and n = 2048, illustrating the 

F W ~ W  occurrence of leakage. 
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Windowing not only distorts the spectral estimate due to the leakage effects, 
it also reduces spectral resolution. To illustrate this problem, let us consider a 
signal sequence consisting of two frequency components, 

x ( n )  = cos wln + c o s q n  (5.4.6) 

When this sequence is truncated to L samples in the range 0 5 n ( L - I, the 
windowed spectrum is 

The spectrum W (w) of the rectangular window sequence has its first zero crossing 
at w = 2x lL .  Now if lol - y l  < 2 x / L ,  the two window functions W(o - ol) and 
W ( w  - q?) overlap and, as a consequence, the two spectral lines in x(n) are not 
distinguish_able. Only if (wl - 1 ~ h _ )  2 2 r / L  will we see two separate lobes in the 
spectrum X(w). Thus our ability to resolve spectral lines of different frequencies 
is limited by the window main lobe width. Figure 5.13 illustrates the magnitude 
spectrum IX(w)f ,  computed via the DFT, for the sequence 

8 

6 
U z 
'h 
5 

2 

0 
- r  - Z  0 - w f 

2 2 
Frequency 

(a) 

' Frequency 
L 

(b) 

F I  5.W Magnitude spectrum for the signal given by (5.4.8). as observed through a 
rectangular window. 
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where UQ = 0 . b ,  ol = 0 . 2 2 ~ ~  and cq = 0.6n. The window lengths selected are 
L = 25, SO, and 100. Note that w and ol are not resolvable for L = 25 and 50, 
but they are resolvable for L = 100. 

To  reduce leakage, we can select a data window w(n) that has lower sidelobes 
in the frequency domain compared with the rectangular window. However, as we 
describe in more detail in Chapter 8, a reduction of the sidelobes in a window 
W ( o )  is obtained at the expense of an increase in the width of the main lobe of 
W(o) and hence a loss in resolution. To illustrate this point, let us consider the 
Hanning window, which is specified as 

f ( 1 - C O S & ~ ) .  O c n  5 L - I  
otherwise 

Figure 5.14 shows ~i (o) l  for the window of (5.4.9). Its sidelobes are significantly 
smaller than those of the rectangular window, but its main lobe is approximately 
twice as wide, Figure 5.15 shows the spectrum of the signal in (5.4.8), after it is 
windowed by the Hanning window, for L  = 50, 75, and 100. The reduction of 
the sideiobes and the decrease in the resolution, compared with the rectangular 
window, is clearly evident. 

For a general signal sequence ( x  (n)}, the frequency-domain relationship be- 
tween the windowed sequence Z(n )  and the original sequence x ( n )  is given by the 
convolution formula 

The DFT of the windowed sequence i ( n )  is the sampled version of the spectrum 
X (o). Thus we have 

Just as in the case of the sinusoidal sequence, if the spectrum of the window is 
relatively narrow in width compared to the spectrum X(o) of the signal, the win- 
dow function has only a small (smoothing) effect on the spectrum X(w). On the 
other hand, if the window function has a wide spectrum compared to the width of 

Magnitude spectrum of the 
F ~ u t n c y  Hanning window. 
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L 
Frequency Frequency 

(b) 

2 2 
Frequency 

(c) 

figure 5.W Magnitude spectrum of the signai in (5.4.8) as observed through a Hanning 
window. 

X(w) ,  as would be the case when the number of samples L is small, the window 
spectrum masks the signal spectrum and, consequently, the DFT of the data re- 
flects the spectral characteristics of the window function. Of course, this situation 
should be avoided. 

The exponential signal 

is sampled at the rate F, = 20 samples per second, and a block of I00 samples is used 
to estimate its spectrum. Determine the spectral characteristics of the signal xa( t )  by 
computing the DFT of the finiteduration sequence. Compare the spectrum of the 
truncated discrete-time signal to the spectrum of the analog signal. 

Solution The spectrum of the analog signal is 

The exponential analog signal sampled at the rate of 20 samples per second yields 
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the sequence 
x ( n )  = ednT = e-"mLO, nzO 

Now, let 
(0.95)", O j n 5 99 

otherwise 
The N-point DFT of the L = 100 point sequence is 

w 
f ( t ) = C i ( n ) e - ~ ~ ' "  ~ = o . I , . . . , N - 1  

k d  

To obtain sufficient detail in the spectrum we choose N = 200. This is equivalent to 
padding the sequence x(n) with 100 zeros. 

The graph of the analog signal x,(t) and its magnitude spectrum IX.(F)I are 
illustrated in Fig. 5.16(a) and (b), respectively. The truncated sequence x ( n )  and its 
N = 200 point DFT (magnitude) are illustrated in Fig. 5.16(c) and (d), respectively. 

Rgnm 5.16 Effect of windowing (truncating) t&c sampled version of the analog 
signal ia Example 5.4.1. 
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Figure 116 Continued 

In this case the DFT ( X ( k ) }  bears a close resemblance to the spectrum of the analog 
signal. The effect of the window function is relatively small. 

On the other hand, suppose that a window function of length L = 20 is selected. 
Then the truncated sequence x ( n )  is now given as 

(0.95)", 0 5 n  5 19 
i ( n )  = l o ,  otherwise 
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Its N = 200 point DFT is illustrated in Fig. 5.16te). Now the effect of the wider 
spectral window function is clearly evident. First, the main peak is very wide as a 
result of the wide spectral window. Second, the sinusoidal envelope variations in the 
spectrum away from the main peak are due ro the large sidelobes of the rectangular 
window spectrum. Consequently, the DFT is no longer a good approximation of the 
analog signal spectrum. 

5.5 SUMMARY AND REFERENCES 

The major focus of this chapter was on the discrete Fourier transfom, its properties 
and its applications. We developed the DFT by sampfing the spectrum X(o) of 
the sequence x(n) .  

Frequency-domain sampling of the spectrum of a discrete-time signal is par- 
ticularly important in the processing of digital signals. Of particular significance 
is the DFT, which was shown to uniquely represent a finite-duration sequence in 
the frequency domain. The existence of computationally efficient algorithms for 
the DFT, which are described in Chapter 6, make it possible to digitally process 
signals in the frequency domain much faster than in the time domain. The pro- 
cessing methods in which the DFT is especially suitable include linear filtering as 
described in this chapter and correlation, and spectrum analysis, which are treated 
in Chapters 6 and 12. A particularly lucid and concise treatment of the Dm and 
its application to frequency analysis is given in the book by Brigham (1988). 

P R O B L E M S  

5.1 The first five points of the eight-point DFT of a real-valued sequence are (0.25, 
0.125 - j0.3018, 0, 0.125 - j0.0518,O). Determine the remaining three points. 

5.2 Compute the eight-point circular convolution for the following sequences. 
(8 )  x~(n) = I1,l .  1.1,0,0,0,0) 

3n 
x2(n)=sin-n O s n z ?  

8 

1c) Compute the DFT of the two circular convolution sequences using the DFTs of 
xl(n) and xz(n). 

53 Let X ( k ) ,  0 5 k 5 N - 1, be the N-point D m  of the sequence x(n), 0 5 n 5 N - 1. 
We define 

and we compute the inverse N-point DFT of j(k), O 5 k 5 N - 1. What is the effect 
of this process on the sequence x(n)? Explain. 
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5.4 For the sequences 

2n 2a 
x l ( n )  = COS -n x2(n)  = sin - n  0 5 n 5 - 1 N N  

determine the N-point: 
(a) Circular convolution xl ( n )  @ xZ(n) 
(b) Circular correlation of X I  ( n )  and xz (n )  
(c) Circular autocorrelation of x l ( n )  
(d) Circular autocorrelation of xz (n )  

5 5  Compute the quantity 

~4 

for the following pairs of sequences. 
2x 

(a)  x l ( n ) = x 2 ( n )  =cos-n 05 n  5 N - 1  
N 

2m 2m 
(b) xl ( n )  = cos -n x2 (n )  = sin -n 0  5  n  5 N  - 1 

N N 
(c) xs(n) = 6 ( n )  + 6(n - 8 )  xz(n)  = u ( n )  - u(n  - N) 

5.6 Determine the N-point DFT of the Blackman window 

5.7 li X ( k )  is the DFT of the sequence x ( n ) ,  determine the N-point DFTs of the sequences 

and 
2lr kn  

x, ( n )  = x  ( n )  sin - O s n s N - 1  
N 

in terms of X ( k ) .  

5 8  Determine the circular convolution of the sequences 

using the timedomain formula in (5.2.39). 
5.9 Use the four-point Dm and IDFT to determine the sequence 

where x , ( n )  and xz(n) are the sequence given in Problem 5.8. 
110 Compute the energy of the N-point sequence 
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5.11 Given the eight-point DFT of the sequence 

compute the DFT of the sequences: 
1 .  n = O  

0, 6 _ < n 5 7  
5.12 Consider a finite-duration sequence 

(a) Sketch the sequence s ( n )  with six-point DFT 

(b) Determine the sequence y ( n )  with six-point DFI' Y ( X - )  = Re I X (X-)I. 
( c )  Determine the sequence v ( n )  with six-point DFT V ( k )  = Irn IX(X-)I. 

5.W Let x , (n)  be a periodic sequence with fundamental period N. Consider thc lollowing 
DFI's: 

DFr 
x , ( n )  y X l ( k )  

(a) What is the relationship between X ,  ( k )  and X3(k)?  
(b) Verify the result in part (a) using the sequence 

5.14 Consider the sequences 

and their 5-point DFTs. 
(a) Determine a sequence y ( n )  so that Y ( k )  = XI ( k ) X 2 ( k ) .  
(b)  Is there a sequence x3(n)  such that S ( k )  = X l ( k ) X 3 ( k ) ?  

5.15 Consider a causal LTI system with system function 

The output y ( n )  of the system is known for 0  5 n  5 63. Assuming that H ( z )  is 
available, can you develop a 64-point DFT method to recover the sequence x f n ) ,  
0 5 n  5 63? Can you recover all values of x ( n )  in this interval? 

5.16+ The impulse response of an LTI system is given by h(n)  = 6 ( n )  - i 8 f n  - b). TO 
determine the impulse response g ( n )  of the inverse system, an engineer computes the 
N-point DFT H ( k ) ,  N = 4k0, of h f n )  and then defines g ( n )  as the inverse DFT of 
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G ( k )  = 1 / H ( k ) ,  k  = 0, 1 . 2 , .  . . . N -1. Determine g ( n )  and the convolution h(n) *g (n ) ,  
and comment on whether the system with impulse response g ( n )  is the inverse of the 
system with impulse response h(n) .  

5.17* Determine the eight-point DFT of the signal 

and sketch its magnitude and phase. 
5.18 A linear time-invariant system with frequency response H ( o )  is excited with the 

periodic input 

Suppose that we compute the N-point DFT Y ( k )  of the samples y(n ) ,  0 5 n 5 N - 1 
of the output sequence. How is Y ( k )  related to H(w)?  

5.19 DFT of real sequences with special symmetries 
(a) Using the symmetry properties of Section 5.2 (especially the decomposition prop- 

erties), explain how we can compute the DFT of two real symmetric (even) and 
two real antisymmetric (odd) sequences simultaneously using an N-point DFT 
only. 

(b) Suppose now that we are given four real sequences x i (n ) ,  i = 1, 2, 3, 4, that are 
all symmetric [i.e.. x i ( n )  = x i ( N  - n ) ,  0 5 n 5 N - 11. Show that the sequences 

are antisymmetric [i.e., s,(n)  = - s ; ( N  - n )  and si(0) = 01. 
(c) Form a sequence x ( n )  using x l (n ) ,  x2(n), s3(n) ,  and s4(n) and show how to compute 

the DFT X i ( k )  of x i (n ) ,  i = 1, 2. 3, 4 from the N-point DFT X ( k )  of x(n ) .  
(d) Are there any frequency samples of Xi (&)  that cannot be recovered from X(k)? 

Explain. 
5.24 DFT of real sequences with odd harmonics only Let x(n)  be an N-point real sequence 

with N-point DFT X ( k )  (N even). In addition, x ( n )  satisfies the following symmetry 
property: 

that is, the upper half of the sequence is the negative of the lower half. 
(a) Show that 

X (k) = 0 k even 

that is, the sequence has a spectrum with odd harmonics. 
(b) Show that the values of this odd-harmonic spectrum can be computed by evaluat- 

ing the ND-point DlT of a complex modulated version of the original sequence 
x(n ) .  

5.21 Let x,(t) be an analog signal with bandwidth B = 3 kHz We wish to use a N = 2"- 
point DFT to compute the spectnun of the signal with a resolution less than or equal 
to 5 0  Hz. D e t e d n e  (a) the minimum sampling rate, (b) the minimum number of 
required samples, and (c) the minimum length of the analog signal record. 
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5.22 Consider the periodic sequence 

with frequency fo = $ and fundamental period N = 10. Determine the 10-point 
DFI'of the sequencex(n) = xp(n), 0 5 n 5 N - 1. 

5.23 Compute the N-point DFTs of the signals 
(a) x(n) = 4(n) 
(b) x(n) = 6(n - no) 0 < no < N 
(c) x(n) =a n 0 5 n 5 N - 1 

R even 
(h) x(n) = ( i: n odd 0 5 n 5 N - 1 

5.24 Consider the finite-duration signal 

x(n) = (1.2.3,lI 
(a) Compute its four-point DFT by solving explicitly the 4-by-4 system of linear 

equations defined by the inverse DFT formula. 
(b) Check the answer in part (a) by computing the four-point Dm, using its defini- 

tion. 
5.2s (a) Determine the Fourier transform X ( w )  of the signal 

x(n) = (1,2,3,2,1,0) 
f 

(b) Compute the 6-point DFI' V(k) of the signal 

(c) Is there any relation between X ( o )  and V(k)? Explain. 
536 Rove the identity 

w-r 
p J ( n + l N ) =  - 

Ir-ar 
C ej*/N& 

N M  

(Hint: Fmd the Dm of the periodic signal in the left-hand side.) 
527 Compwarion of the even a d  odd harmonics wing the DFT Let x (n) be an N-point 

sequence with an N-point DFT X ( k )  (N even) 
(a) Consider the time-aliased sequence 

l 0, elsewhere 
What is the relationship between the M-point DFT Y ( k )  of y(n) and the Fourier 
transform X(o) of x(n)? 
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(b) Let 

I 01 
and 

elsewhere 

Show that X ( k )  = Y ( k / 2 ) ,  k  = 2, 4 , .  . . , N - 2. 
(c) Use the results in parts (a) and (b) to develop a procedure that computes the 

odd harmonics of X ( k )  using an ND-point D R .  
528* Frequency-domain sampling Consider the following discrete-time signal 

x ( n )  = Inl 5 L 1:: I n l z L  

where n = 0.95 and L  = 10 
(a) Compute and plot the signal x ( n ) .  
(b) Show that 

Plot X ( w )  by computing it at w =xk/100.  k =0 .  1 . . . . ,  100. 
(c) Compute 

for H = 30. 
(d) Determine and plot the signal 

N-1 

What is the relation between the signals x ( n )  and f (n)? Explain. 
(e) Compute and plot the signal i l ( n )  = xE-m x ( n  - I N ) ,  - L  5 n  5 L for N = 30. 

Compare the signals f (n) and il ( n ) .  
(f) Repeat parts (c) to (e) for N = 15. 

529* Frequency-domain sampling The signal x ( n )  = a'"', -1 < a < 1 has a Fourier 
transform 

(a) Plot X ( o )  for 0 5 w 5 2n, n = 0.8. 
Reconstruct and plot X ( w )  from its samples X ( h k / N ) ,  0 5 k  5 N  - 1 for: 

(b) N = 20 
(c) N = 100 
(d) Compare the spectra obtained in parts (b) and (c) with the original spectrum 

X ( w )  and explain the differences. 
(e) Illustrate the timedomain aliasing when N = 20. 
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5- Frequency analysis of amplitude-modulated discrete-time signal The discrete-time 
signal 

x ( n )  = c0s2x f in  + ms2x f2n 

where f~ = & and ft = A. modulates the amplitude of the carrier 

where f, = s. The resuiting amplitude-modulated signal is 

x,,(n) = x ( n )  cos 2rr f,n 

(a) Sketch the signals x(n ) ,  x,(n),  and x,(n), 0 5 n ( 255. 
(b) Compute and sketch the 128-point DFT of the signal x,,(n). 0 ( n 5 127. 
(c) Compute and sketch the 128-point DFT of the signal x,,(n), 0 5 n 5 99. 
(d) Compute and sketch the 256-point DFT of the signal x,,(n). 0 5 n 5 179. 
(e) Explain the results obtained in parts (b) through (d), by deriving the spectrum of 

the amplitude-modulated signal and comparing it with the experimental results. 
5.31* The sawtooth waveform in Fig. P5.31 can be expressed in the form of a Fourier series 

as 

1 .  1 .  1 .  
~ i n n t - ~ s l n Z r r t + - s 1 n 3 n r - ~ s i n 4 a t . - .  

3 

(a) Determine the Fourier series coefficients s. 
(b) Usc an N-point subroutine to generate samples of this signal in the time domain 

using the first six terms of the expansion for N = 64 and N = 128. Plot the signal 
~ ( t )  and the samples generated, and comment on the results. 

5.32 Recall that the Fourier transform of x ( t )  = e j q  is X ( j S t )  = 2x6(!2 - Q,) and the 
Fourier transform of 

sin QTofl p ( j n )  = T, - e- jQTon 
m o f l  

(a) Determine the Fourier transform Y ( j ! 2 )  of 

and roughly sketch IY (jS2)j versus S2. 
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(b) Now consider the exponential sequence 

where oo is some arbitrary frequency in the range 0 < < n radians. Give the 
most general condition that w must satisfy in order for x ( n )  to be periodic with 
period P (P is a positive integer). 

(c) Let y ( n )  be the finite-duration sequence 

where W ~ ( t t )  is a finite-duration rectangular sequence of length N and where 
x ( n )  is not necessarily periodic. Determine Y ( o )  and roughly sketch JY(w) l  for 
0 5 o 5 2n. What effect does N have in IY(w)l? Briefly comment on the 
similarities and differences between IY (w)l and ] Y (  jQ)l. 

(d) Suppose that 

x ( n )  = e i ( h / P ) n  P a positive integer 

and 

where N = If. 1 a positive integer. Determine and sketch the N-point DFT of 
y(n) .  Relate your answer to the characteristics of IY(w)l+ 

(e) Is thc frequency sampling for the DFT in par1 (d) adequate for obtaining a rough 
approximation of I Y ( w ) ]  directly from the magnitude of the DFT sequence IY(k) l? 
If not. explain briefly how the sampling can be increased so that it will be possible 
to obtain a rough sketch of IY(w)l  from an appropriate sequence IY (k ) ( .  



Efficient Computation of the 
DFT: Fast Fourier Transform 
Algorithms 

As we have observed in the preceding chapter. the Discrete Fourier Transform 
( D m )  plays an important role in many applications of digital signal processing, 
including linear filtering, correlation analysis. and spectrum analysis. A major 
reason for its importance is the existence of efficient algorithms for computing the 
D m .  

The main topic of this chapter is the description of computationally efficient 
algorithms for evaluating the DFT. Two different approaches are described. One is 
a divide-and-conquer approach in which a DFT of size N, where N is a composite 
number, is reduced to the computation of smaller DFTs from which the larger 
DFT is computed. In particular, we present important computational algorithms, 
called fast Fourier transform (FFT) algorithms, for computing the DFT when the 
size N is a power of 2 and when it is a power of 4. 

The second approach is based on the formulation of the DFT as a linear 
filtering operation on the data. This approach leads to two algorithms, the Goertzel 
algorithm and the chirp-z transform algorithm for computing the DFT via linear 
filtering of the data sequence. 

6.1 EFFICIENT COMPUTATION OF THE DFT: FFT ALGORITHMS 

In this section we present several methods for computing the DFT efficiently. 
In view of the importance of the DFT in various digital signal processing ap- 
plications, such as linear filtering, correlation analysis, and spectrum analysis, its 
efficient computation is a topic that has received considerable attention by many 
mathematicians, engineers, and applied scientists. 

Basically, the computational problem for the DFT is to  compute the sequence 
{ X ( k ) }  of N complex-valued numbers given another sequence of data ( x ( n ) )  of 
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length N, according to the formula 

where 
wN = e - j 2 x / N  

In general, the data sequence x ( n )  is also assumed to be complex valued. 
Similarly, the IDFT becomes 

Since the DFT and IDFT involve basically the same type of computations, our 
discussion of efficient computational algorithms for the DFT applies as well to the 
efficient computation of the IDIT. 

We observe that for each value of k, direct computation of X ( k )  involves 
N complex multiplications (4N real multipljcations) and N - 1 complex additions 
(4N -2 real additions). Consequently, to compute all N values of the DFT requires 
N 2  complex multiplications and N2 - N complex additions. 

Direct computation of the DFT is basically inefficient primarily because it 
does not exploit the symmetry and periodicity properties of the phase factor WN. 
In particular, these two properties are: 

Symmetry property: wFN" = - W; (6.1.4) 

Periodicity property: wFN = W; (6.1.5) 

The computationally efficient algorithms described in this section, known collec- 
tively as fast Fourier transform (FFT) algorithms, exploit these two basic properties 
of the phase factor. 

6.1.1 Direct Computation of the DFT 

For a complex-valued sequence x(n)  of N points, the DFT may be expressed as 
N-1 2 n k n  

X n ( k )  = [xr(rt)  cos - + xl  ( n )  sin - 
n=O 

N 2nkn N I 
N-1 2~ kn 

X I ( k )  = - [*n(n) sin - - 
N " k n ]  (6.1.7) 

xI  ( n )  cos - 
n i O  

N 

The direct computation of (6.1.6) and (6.1.7) requires: 

1. 2~~ evaluations of trigonometric functions. 
2. 4N2 real multiplications. 
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3. 4N(N - 1) real additions. 
4. A number of indexing and addressing operations. 

These operations are typical of DFT computational algorithms. The operations 
in items 2 and 3 result in the DFT values XR(k) and X,(k). The indexing and 
addressing operations are necessary to fetch the data x(n), 0 5 n 5 N - 1, and 
the phase factors and to store the results. The variety of DFT algorithms optimize 
each of these computational processes in a different way. 

6.1.2 Divide-and-Conquer Approach to Computation of 
the DFT 

The development of computationally efficient algorithms for the DFT is made pos- 
sible if we adopt a divide-and-conquer approach. This approach is based on the 
decomposition of an N-point DFT into successively smaller DFTs. This basic ap- 
proach leads to a family of computationally efficient algorithms known collectively 
as FFT algorithms. 

To illustrate the basic notions, let us consider the computation of an N-point 
DFT, where N can be factored as a product of two integers, that is. 

The assumption that N is not a prime number is not restrictive. since we can pad 
any sequence with zeros to ensure a factorization of the form (6.1.8). 

Now the sequence x(n), 0 5 n 5 N - 1, can be stored in either a one- 
dimensional array indexed by n or as a two-dimensional array indexed by 1 and 
m, where 0 5 1 _( L - 1 and 0 5 m ( M - 1 as illustrated in Fig. 6.1. Note that 1 is 
the row index and m is the column index. Thus, the sequence x(n) can be stored 
in a rectangular array in a variety of ways, each of which depends on the mapping 
of index n to the indexes (1, m). 

For example, suppose that we select the mapping 

This leads to an arrangement in which the first row consists of the first M elements 
of x(n), the second row consists of the next M elements of x(n), and so on, as 
illustrated in Fig. &2(a). On the other hand, the mapping 

stores the first L elements of x(n)  in the first column, the next L elements in the 
second column, and so on, as illustrated in Fig. 6.2(b). 

A similar arrangement can be used to store the computed DFT values. In 
particular, the mapping is from the index k to a pair of indices (p, q ) ,  wbere 
0 < p 5 L - 1 and 0 5 q 5 M - 1. If we select the mapping 
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n- 0 I . . . N- 1 

column index 

mwinclex 0 I 

0 

1 

Fire 6.1 Two dimensional data array for storing the sequence x ( n ) .  0 5 n 5 
N - I .  

the DFT is stored on a row-wise basis, where the first row contains the first M 
elements of the DFT X ( k ) ,  the second row contains the next set of M elements, 
and so on. On the other hand, the mapping 

results in a column-wise storage of X(k), where the first L elements are stored in 
the first column, the second set of L elements are stored in the second column, 
and so on. 

Now suppose that x ( n )  is mapped into the rectangular array x(1, m) and X (k) 
is mapped into a corresponding rectangular array X(p, q ) .  Then the DFT can be 
expressed as a double sum over the elements of the rectangular array muhiplied 
by the corresponding phase factors. To be specific, let us adopt a column-wise 
mapping for x ( n )  given by (6.1.10) and the row-wise mapping for the DFI' given 
by (6.1.11). Then 

But 
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F- 6.2 Two arrangements for the data arrays. 

With these simplifications, (6.1.13) can be expressed as 

The expression in (6.1.15) involves the computation of DFTs of length M and 
length L. To elaborate, let us subdivide the computation into three steps: 

L First, we compute the M-point DFTs 
M-1 

~ ( 1 , ~ )  = E x ( l , m ) ~ ; P .  O s q  s M - 1  (6.1.16) 
m r O  

for each of the rows 1 = 0 , 1 , .  . . , L - 1. 
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2 Second, we compute a new rectangular array G ( 1 ,  q )  defined as 

3. Finally, we compute the L-point DFTs 

for each column q = 0 , 1 ,  . . . , M - 1, of the array G ( 1 ,  q) .  

On the surface it may appear that the computational procedure outlined 
above is more complex than the direct computation of the DFT. However, let 
us evaluate the computational complexity of (6.1.15). The first step involves the 
computation of L DFTs, each of M points. Hence this step requires L M ~  com- 
plex multiplications and L M ( M  - 1 )  complex additions. The second step requires 
LM complex multiplications. Finally, the third step in the computation requires 
M L ~  complex multiplications and M L ( L  - 1 )  complex additions. Therefore, the 
computational complexity is 

Complex multiplications: N ( M  + L + 1 )  
(6.1.19) 

Complex additions: N ( M + L - 2 )  

where N = M L .  Thus the number of multiplications has been reduced from N~ 
to N ( M  + L + 1) and the number of additions has been reduced from N ( N  - I )  to 
N ( M + L - 2 ) .  

For example, suppose that N = 1000 and we select L = 2 and M = 500. 
Then, instead of having to perform 106 complex multiplications via direct compu- 
tation of the DFT, this approach leads to 503,000 complex multiplications. This 
represents a reduction by approximately a factor of 2. The number of additions is 
also reduced by about a factor of 2. 

When N is a highly composite number, that is, N can be factored into a 
product of prime numbers of the form 

N = r 1 r 2 - - - r v  (6.1.20) 

then the decomposition above can be repeated (v - 1) more times. This procedure 
results in smaller DFTs, which, in turn, leads to a more efficient computational 
algorithm. 

In effect, the first segmentation of the sequence x(n)  into a rectangular array 
of M columns with L elements in each column resulted in DlFTs of sizes L and M. 
Further decomposition of the data in effect involves the segmentation of each row 
(or column) into smaller rectangular arrays which result in smaller DlFTs. This 
procedure terminates when N is factored into its prime factors. 

Eumple 6.l.1 
To illustrate this computational procedure, let us consider the computation of an 
N = 15 point DFT. Since N = 5 x 3 = 15, we select L = 5 and M = 3. In other 
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words, we store the 15-point sequence x ( n )  column-wise as follows: 

Now. we compute the three-point DFTs lor each of the five rows. This leads 
to  the following 5 x 3 array: 

The next step is to multiply each of thc terms F ( 1 . q )  hy the phase factors 
W: = w::. 0 I 1 5 4 and 0 y 5 2. This computation results in the 5 x 3 array: 

Column 1 Column 2 Column 3 

The final step is to  compute the five-point DFTs for each of the three columns. 
This computation yields the desired values of the DFT in the form 

Figure 6.3 illustrates the steps in the computation. 
It is interesting to view the segmented data sequence and the resulting DFT in 

terms of one-dimensional arrays. When the input sequence x ( n )  and the output DFT 
X  (k) in the two-dimensional arrays are read across from row 1 through row 5, we 
obtain the following sequences: 

INPUT ARRAY 
x ( 0 )  x(5)  x(10) x ( l )  x(6) ~ ( 1 1 )  x ( 2 )  x ( 7 )  x(12) x ( 3 )  x(8) x(13) x(4) x(9)  x(14) 

OUTPUT ARRAY 
X(0) X ( 1 )  X(2) X ( 3 )  X(4) X ( 5 )  X ( 6 )  X ( 7 )  X(8) X ( 9 )  X ( l 0 )  X ( l 1 )  X ( l 2 )  X(13)  X ( l 4 )  

We observe that the input data sequence is shuffled from the normal order 
in the computation of the DFT. On the other hand, the output sequence occurs in 
normal order. In this case the rearrangement of the input data array is due to the 
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Figure 63 Computation of N = 15-point DFT by means of Ipoint and 5-point 
DFTs. 

segmentation of the one-dimensional array into a rectangular array and the order in 
which the DFTs are computed. This shuffling of either the input data sequence or 
the output D m  sequence is a characteristic of most algorithms. 

To summarize. the algorithm that we have introduced involves the following 
computations: 

Algorithm 1 

1. Store the signal column-wise. 
2. Compute the M-point DFT of each row. 
3. Multiply the resulting array by the phase factors w:. 
A Compute the L-point DFT of each column 
5. Read the resulting array row-wise. 

An additional algorithm with a similar computational structure can be ob- 
tained if the input signal is stored row-wise and the resulting transformation is. 
column-wise. In this case we select as 

This choice of indices leads to the formula for the DFT in the form 

Tbus we obtain a second algorithm. 
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Algorithm 2 

1. Store the signal row-wise. 
2. Compute the L-point DFT at each column. 
3. Multiply the resulting array by the factors wLm. 
4. Compute the M-point DFT of each row. 
5. Read the resulting array column-wise. 

The two algorithms given above have the same complexity. However, they 
differ in the arrangement of the computations. In the following sections we exploit 
the divide-and-conquer approach to derive fast algorithms when the size of the 
DFT is restricted to be a power of 2 or a power of 4. 

6.1.3 Radix4 FFT Algorithms 

In the preceding section we described four algorithms for efficient computation of 
the DFT based on the divide-and-conquer approach. Such an approach is applica- 
ble when the number N of data points is not a prime. In particular. the approach 
is very efficient when N is highly composite, that is, when N can be factored as 
N = rlrZr3 - .  . r,,, where the tr, 1 are prime. 

Of particular importance as the case in which r ,  = r: = . . . = r,, = r ,  so that 
N = r".  In such a case the DFTs are of size r .  so that the computation of the 
N-point DFT has a regular pattern. The number r is called the radix of the FFT 
algorithm. 

In this section we descnbe radix-2 algorithms, which are by far the most 
widely used FFT algorithms. Radix-4 algorithms are described in the following 
section. 

Let us consider the computation of the N = 2" point DFT by the divide- 
and-conquer approach specified by (6.1.16) through (6.1.18). We select M = N / 2  
and L = 2. This selection results in a split of the N-point data sequence into two 
N/Z-point data sequences fl (n) and f i (n ) ,  corresponding to the even-numbered 
and odd-numbered samples of x ( n ) ,  respectively, that is, 

Thus fi ( n )  and fi (n)  are obtained by decimating x (n )  by a factor of 2, and h e n s  
the resulting FFT algorithm is called a decimation-in-time algorithm. 

Now the N-point DFT can be expressed in terms of the DFTs of the deci- 
mated sequences as follows: 
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= C x ( n )  W$ + C x ( n ) w ?  
n even n odd 

But W: = W N p .  With this substitution, (6.1.24) can be expressed as 

where F l ( k )  and Fz(k) are the N/2-point DFTs of the sequences f i ( m )  and f i ( rn) ,  
respectively. 

Since Fl(k)  and Fz(k)  are periodic, with period N / 2 ,  we have F, ( k  + N / 2 )  = 
F l ( k )  and F2(k + N / 2 )  = F2(k) .  In addition, the factor wFN" = -w;. Hence 
(6.1.25) can be expressed as 

We observe that the direct computation of F l ( k )  requires ( ~ / 2 ) ~  complex 
multiplications. The same applies to the computation of F2(k) .  Furthermore, there 
are N / 2  additional complex multiplications required to compute W; F ~ ( X . ) .  Hence 
the computation of X ( k )  requires 2(N/212 + N / 2  = N 2 / 2  + N / 2  complex multipli- 
cations. This first step results in a reduction of the number of multiplications from 
N~ to N 2 / 2  + N f 2 ,  which is about a factor of 2 for N large. 

To  be consistent with our previous notation, we may define 

Then the DFT X ( k )  may be expressed as 

This computation is illustrated in Fig. 6.4. 
Having performed the decimation-in-time once, we can repeat the process 

for each of the sequences f l ( n )  and f2(n). Thus f l ( n )  would result in the two 
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xfOl ~ ( 2 )  x(4) x(N-2) 

factors x g  - 1) 

X(N - I) 

Figure 6.4 F~rst step in the decimation-in-time algorithm. 

N/4-point sequences 

and fi(n) would yield 

By computing Nl4-point DFTs, we would obtain the NR-point DFTs F l ( k )  and 
F 2 ( k )  from the relations 

where the {K,(k)] are the Nl4-point DFTs of the sequences {v i j (n) } .  
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TABLE 6.1 COMPARISON OF COMPUTATIONAL COMPLEXITY FOR THE 
DIRECT COMPUTATION OF W E  OFT VERSUS THE FFT ALGORITHM 

Number of Complex Muldplicadons Complex Multiplications Speed 
Points, in Direct Cornputadon, in FIT Algorithm, Improvement 
N N2 (N/Z) log;, N Factor 

We observe that the computation of { V i j ( k ) )  requires 4 ( ~ / 4 ) ~  multiplications 
and hence the computation of F l ( k )  and F2(k)  can be accomplished with ~ ~ / 4  + 
N / 2  complex multiplications. An additional N / 2  complex multiplications are re- 
quired to compute X ( k )  from Fl ( k )  and F 2 ( k ) .  Consequently, the total number of 
multiplications is reduced approximately by a factor of 2 again to N 2 / 4  + N .  

The decimation of the data sequence can be repeated again and again until 
the resulting sequences are reduced to one-point sequences. For N  = 2", this 
decimation can be performed v = log, N times. Thus the total number of complex 
multiplications is reduced to ( N j 2 )  log, N. The number of complex additions is 
N log2 N .  Table 6.1 presents a comparison of the number of complex multiplica- 
tions in the FFT and in the direct computation of the DFT. 

For illustrative purposes, Fig. 6.5 depicts the computation of an N = 8 point 
DFT. We observe that the computation is performed in three stages, beginning 
with the computations of four two-point DFTs, then two four-point DFTs, and 

Figure 6.5 Three stages in the computation of an N = &point DFT 
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Stage i Stage 2 Stage 3 

figure 6.6 Eight-point decimation-in-time FFT algorithm. 

finally, one eight-point DR. The combination of the smaller DFTs to form the 
larger DFT is illustrated in Fig. 6.6 for N = 8. 

Observe that the basic computation performed at every stage, as illustrated 
in Fig. 6.6, is to take two complex numbers, say the pair (a, b), multiply b by Wi, 
and then add and subtract the product from a to form two new complex numbers 
(A,  B). This basic computation, which is shown in Fig. 6.7, is called a bune$y 
because the flow graph resembles a butterfly. 

In general, each butterfly involves one complex multiplication and two corn- 
plex additions. For N = 2", there are N / 2  butterflies per stage of the computation 
process and logz N stages. Therefore, as previously indicated the total number of 
complex multiplications is ( N / 2 )  log, N and complex additions is N log, N. 

Once a butterfly operation is performed on a pair of complex numbers (a, 6 )  
to produce ( A ,  B ) ,  there is no need to'save the input pair (a, b). Hence we can 

a :X A = a + W i b  

Fignrt 47 Basic buttertiy computation 

b B= - Wh h tbe decimation-in-time FFT - 1 algorithm. 



Sec. 6.1 Efficient Computation of the DFT: FFT Algorithms 461 

store the result (A, B )  in the same locations as (a, b). Consequently, we require 
a fixed amount of storage, namely, 2N storage registers, in order to store the 
results (N complex numbers) of the computations at each stage. Since the same 
2N storage locations are used throughout the computation of the N-point DFT, 
we say that the computations are done in place. 

A second important observation is concerned with the order of the input 
data sequence after it is decimated (v - 1) times. For example, if we consider 
the case where N = 8, we know that the first decimation yields the sequence 
x(O), x(2), x(4), x(6), x(l), x(3), x(5), x(7), and the second decimation results in 
the sequence x(O), xf4), x(2), x(6), x(l), x(5), x(3), x(7). This shuffling of the 
input data sequence has a well-defined order as can be ascertained from observing 
Fig. 6.8, which illustrates the decimation of the eight-point sequence. By expressing 
the index n, in the sequence x(n), in binary form, we note that the order of the 
decimated data sequence is easily obtained by reading the binary representation 
of the index n in reverse order. Thus the data point xf3) = x(011) is placed in 
position m = 110 or m = 6 in the decimated array. Thus we say that the data x(n) 
after decimation is stored in bit-reversed order. 

With the input data sequence stored in bit-reversed order and the butterfly 
computations performed in place, the resulting DFT sequence X ( k )  is obtained 
in natural order (i.e., k = 0,1,. . . , N - 1). On the other hand, we should indi- 
cate that it is possible to arrange the FFT algorithm such that the input is left 
in natural order and the resulting output DFT will occur in bit-reversed order. 
Furthermore, we can impose the restriction that both the input data x(n) and the 
output DFT X ( k )  be in natural order, and derive an FFT algorithm in which the 
computations are not done in place. Hence such an algorithm requires additional 
storage. 

Another important radix-2 F I T  algorithm, called the decimation-in-frequency 
algorithm, is obtained by using the divide-and-conquer approach described in Sec- 
tion 6.1.2 with the choice of M = 2 and L = N/2. This choice of parameters 
implies a column-wise storage of the input data sequence. To derive the algo- 
rithm, we begin by splitting the DFT formula into two summations, one of which 
involves the sum over the first N12 data points and the second sum involves the 
last N / 2  data points. Thus we obtain 

Since wYfl = (-I)&, the expression (6.1.33) can be rewritten as 
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Data Dala 
decimation 1 decimation 2 

Memory address 

(decimal) (binary) 
0 000 

t 
Natural 
order 

(a) 

t 
Bit-reversed 
order 

Figure 68 Shuffling of the data and bit reversal. 

Now, let us split (decimate) X ( k )  into the even- and odd-numbered samples. Thus 
we obtain 

and 

where we have used the fact that W; = WNn. 
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If we define the NQ-point sequences gl(n) and gz(n)  as 

then 

The computation of the sequences gl(n) and gz(n) according to (6.1.37) and the 
subsequent use of these sequences to compute the N/2-point DFTs are depicted in 
Fig. 6.9. We observe that the basic computation in this figure involves the butterfly 
operation illustrated in Fig. 6.10. 

This computational procedure can be repeated through decimation o i  the 
N/2-point DFTs, X(2k) and X(2k + 1). The entire process involves v = log2 N 

F m  6.9 First stage of the 
decimation-in-frequency FIT algorithm. 
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' :x A = a + b  

Figwe 6.10 Basic butterfly computation 
in the decimation-in-frequency FFT 

b B=(a-b)WL algorithm. 

- 1 

stages of decimation, where each stage involves NR butterflies of the type shown in 
Fig. 6.10. Consequently, the computation of the N-point DFT via the decimation- 
in-frequency FFT algorithm, requires ( N / 2 )  logz N complex multiplications and 
N logz N complex additions, just as in the decimation-in-time algorithm. For il- 
lustrative purposes, the eight-point decimation-in-frequency algorithm is given in 
Fig. 6.11. 

We observe from Fig. 6.11, that the input data x ( n )  occurs in natural order, 
but the output DFT occurs in bit-reversed order. We also note that the computa- 
tions are performed in place. However, it is possible to reconfigure the decimation- 
in-frequency algorithm so that the input sequence occurs in bit-reversed order 
while the output DFT occurs in normat order. Furthermore, if we abandon the 
requirement that the computations be done in place, it is also possible to have 
both the input data and the output DFT in normal order. 
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6.1.4 Radix-4 FFT Algorithms 

When the number of data points N in the DFT is a power of 4 (i.e., N = 4"). we 
can, of course. always use a radix-;! algorithm for the computation. However. for 
this case. it is more efficient computatjonally to employ a radix4 FFT algorithm. 

Let us begin by describing a radix4 decimation-in-time FFT algorithm, which 
is obtained by selecting L = 4 and M = N/4 in the divide-and-conquer approach 
described in Section 6.1.2. For this choice of L and M, we have 1, p = 0, 1, 2, 3: m, 
q = 0. 1 , .  . . , N/4 - 1: n = 4m + 1 ;  and k = (N/4)p + q. Thus we split or decimate 
the N-point input sequence into four subsequences, x(4n), x(4n + I ) ,  x(4n + 2), 
x(4n $ 3 1 . ~  =0, 1 . . . . ,  N/4 - 1. 

By applying (6.1.15) we obtain 

where F ( I .  q )  is given by (6.1.16). that is. 

and 

Thus, the four Nl4-point DFTs obtained from (6.1.40) are combined according 
to (6.1.39) to yield the N-point DFT. The expression in (6.1.39) for combining 
the Nl4-point DFTs defines a radix4 decimation-in-time butterfly, which can be 
expressed in matrix form as 

The radix-4 butterfly is depicted in Fig. 6.12(a) and in a more compact form 
in Fig. 6.12(b). Note that since W; = 1, each butterfly involves three complex 
multiplications, and 12 complex additions. 

This decimation-in-time procedure can be repeated recursively v times. Hence 
the resulting FFT algorithm consists of v stages, where each stage contains N / 4  
butterflies. Consequently, the computational burden for the algorithm is 3vN/4 = 
(3N/8) log, N complex multiplications and (3Nt2)  logz N complex additions. We 
note that the number of multiplications is reduced by 25%, but the number of 
additions has increased by 50% from N log, N to (3N12) log, N. 
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Figure 6.12 Basic butterfly computation in a radix4 FFT algorithm. 

It is interesting to note. however, that by performing the additions in two 
steps, it is possible to reduce the number of additions per butterfly from 12 to 8. 
This can be accomplished by expressing the matrix of the linear transformation in 
(6.1.43) as a product of two matrices as follows: 

Now each matrix multiplication involves four additions for a total of eight addi- 
tions. Thus the total number of complex additions is reduced to N log, N, which 
is identical to the radix-2 FFT algorithm. The computational savings results from 
the 25% reduction in the number of complex multiplications. 

An illustration of a radix4 decimation-in-time FFT algorithm is shown in 
Fig. 6.13 for N = 16. Note that in this algorithm, the input sequence is in normal 
order while the output DFT is shuffled. In the radix4 F'FT algorithm, where 
the decimation is by a factor of 4, the order of the decimated sequence can be 
determined by reveniing the order of the number that represents the index n 
in a quaternary number system (i.e., the number system based on the digits 0, 
1,2,3).  

A radix-4 decimation-in-frequency FFT algorithm can be obtained by select- 
ing L = N/4, M = 4; I ,  p = 0, 1, . . . , N/4 - 1; m,  q = 0, 1, 2, 3; n = (N/4)m + 1; 
and k = 4p + q. With this choice of parameters, the general equation given by 
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figure 6.13 Sixtren-point radix-4 decimation-in-tlme algorithm with input in nor- 
mal order and output in dipit-reversed order. 

(6.1.15) can be expressed as 

where 

and 

We note that X ( p ,  q )  = X(4p + q), q = 0, 1,2, 3. Consequently, the N-point 
DlT is decimated into four N/4-point DFTs and hence we have a decimation- 
in-frequency FFT algorithm. The computations in (6.1.46) and (6.1.47) define 
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Figure 6.14 Sixteen-point, radix-4 decimation-in-frequency algorithm with input 
in normal order and output in digit-reversed order. 

the basic radix-4 butterfly for the decimation-in-frequency algorithm. Note that 
the multiplications by the factors W: occur after the combination of the data 
points x(1, m), just as in the case of the radix-2 decimation-in-frequency algo- 
rithm. 

A 16-point radix4 decimation-in-frequency FFT algorithm is shown in 
Fig. 6.14. Its input is in normal order and its output is in digit-reversed order. 
It has exactly the same computational complexity as the decimation-in-time radix- 
4 FFT algorithm. 

For illustrative purposes, let us rederive the radix4 decimation-in-frequency 
algorithm by breaking the N-point DFT formula into four smaller DFTs. We 
have 

N 14- 1 NR-I 3N/4-1 N-1 
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N/4-1 N/4-1 

+ w,yc C . ( ! I  + $) w;! + w;"" x(n+y)w; 
n=O n=O 

(6.1.48) 
From the definition of the twiddle factors, we have 

After substitution of (6.1.49) into (6.1.48). we obtain 

T h c  relation in (6.1.50) is not an N/4-point DFT because the twiddle factor 
depends on  N and no1 on N / 4 .  T o  convert it into an  N/4-point DFT, wc subdivide 
the DFT sequence into four N/4-point subsequences. X(4k). X(4k + 1 ) .  X (4k + 2). 
and X (4k  + 3). k = 0. 1. . . . . N/4 - 1.  Thus we obtain the radix-4 decimation-in- 
frcqucncy DFT as 
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where we have used the property wikn = wkn Note that the input to each N/4- 
point DFT is a linear combination of four signal samples scaled by a twiddle factor. 
This procedure is repeated v times. where v = log, N. 

6.1.5 Split-Radix FW Algorithms 

An inspection of the radix-2 decimation-in-frequency flowgraph shown in Fig. 6.11 
indicates that the even-numbered points of the DFT can be computed indepen- 
dently of the odd-numbered points. This suggests the possibility of using different 
computational methods for independent parts of the algorithm with the objective 
of reducing the number of computations. The split-radix FFT (SRFFT) algorithms 
exploit this idea by using both a radix-2 and a radix-4 decomposition in the same 
FFT algorithm. 

We illustrate this approach with a decimation-in-frequency SRFFT algorithm 
due to Duhamel (1986). First, we recall that in the radix-2 decimation-in-frequency 
FFT algorithm, the even-numbered samples of the N-point DFT are given as 

Note that these DFT points can be obtained from an N/2-point DFT without any 
additional multiplications. Consequently, a radix-2 suffices for this computation. 

The odd-numbered samples { X { 2 k  + 1 ) )  of the DFT require the premultipli- 
cation of the input sequence with the twiddle factors Wi. For these samples a 
radix-4 decomposition produces some computational efficiency because the four- 
point DFT has the largest multiplication-free butterfly. Indeed, it can be shown 
that using a radix greater than 4, does not result in a significant reduction in com- 
putational complexity. 

If we use a radix-4 decimation-in-frequency FFT algorithm for the odd- 
numbered samples of the N-point Dm, we obtain the following N/4-point DFTs: 

N 14- 1 

X ( 4 k  + 1) = x { [ x ( n )  - x ( n  + N/'2)] (6.1.56) 
n=O 

+ j [ x ( n  + N/4) - x ( n  + 3 ~ / 4 ) ] } ~ :  W& 
Thus the N-point DFT is decomposed into one N/Z-point DFT without additional 
twiddle factors and two N/4-point DFTs with twiddle factors. The N-point Dm 
is obtained by successive use of these decompositions up to the last stage. Thus 
we obtain a decimation-in-frequency SRFFT algorithm. 

Figure 6.15 shows the flow graph for an in-place 32-point decimation- 
in-frequency SRFFT algorithm. At stage A of the computation for N = 32, the 
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Figure 6.15 Length 32 split-radix FJT algorithms from paper by Duhamel (1986): reprinted 
with permission from the IEEE. 

top 16 points constitute the sequence 

This is the sequence required for the computation of X(2 .k) .  The next 8 points 
constitute the sequence 
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Use for 
X(4k  + 1) 

Use for 
X(4k  + 3 )  

Figure 6.16 Butterfly for SRFFT algorithm. 

The bottom eight points constitute the sequence jgz(?r), where 

The sequences g l (n )  and gz(n) are used in the computation of X(4k + 1) and 
X(4k + 3). Thus, at stage A we have completed the first decimation for the radix-2 
component of the algorithm. At stage B, the bottom eight points constitute the 
computation of [g l (n)+ jg2(n)]w33;', 0 5 n 5 7, which is used to compute X(4k+3), 
0 5 k 5 7. The next eight points from the bottom constitute the computation of 
[gl(n) - j g z ( n ) ]  W;2, 0 I n 5 7, which is used to compute X(4k + I ) ,  0 I k 5 7. 
Thus at stage B, we have completed the first decimation for the radix-4 algorithm, 
which results in two 8-point sequences. Hence the basic butterfly computation for 
the SRFFT algorithm has the "L-shaped" form illustrated in Fig. 6.16. 

Now we repeat the steps in the computation above. Beginning with the top 
16 points at stage A, we repeat the decomposition for the 16-point DFT. In other 
words, we decompose the computation into an eight-point, radix-:! DFT and two 
four-point, radix-4 DFTs. Thus at stage B, the top eight points constitute the 
sequence (with N = 16) 

and the next eight points constitute the two four-point sequences g;  (n) and jg;(n), 
where 

The bottom 16 points of stage B are in the form of two eight-point DFTs. Hence 
each eight-point DFT is decomposed into a four-point, radix-2 DFT and a four- 
point, radix-4 DFT. In the final stage, the computations involve the combination 
of two-point sequences. 

Table 6.2 presents a comparison of the number of nontrivial real multipli- 
cations and additions required to perform an N-point DFT with complex-valued 



Sec. 6.1 Efficient Computation of the DFT: FFT Algorithms 

TABLE 6.2 NUMBER OF NONTRIVIAL REAL MULTIPLICATIONS AND 
ADDITIONS TO COMPUTE AN N-POINT COMPLEX Dm 

Real Multiplications Real Additions 
- - 

Radix Radix 
2 4 

24 20 
8x 

264 208 
712 

1.800 1.392 
4.360 

10.248 7.856 

Radix Split 
8 Radix 

20 
68 

204 1% 
516 

1.284 
3.2M 3.076 

7.172 

Radix Radix 
2 4 

152 148 
408 

1.032 976 
2.504 
5.8% 5.488 

13.566 
30.728 28,336 

Radix Split 
8 Radix 

- - -  

Snurcc Extracted from Duhamel (1986). 

data. using a radix-2, radix-4, radix-6, and a split-radix FFT. Note that the SRFFT 
algorithm requires the lowest number of multiplication and additions. For this 
reason. it is preferable in many practical applications. 

Another type of SRFFT algorithm has been developed by Price (1990). Its 
relation to Duhamel's algorithm described previously can be seen by noting that 
the radix-4 DFT terms X (4k + 1) and X (4k + 3) involve the N/4-point DFTs of the 
sequences [ g l ( n )  - j g z ( n ) ]  Wf; and [gl(n) + j g z ( r l ) ] ~ : ,  respectively. In effect. the 
sequences g, (n) and gz(n) are multiplied by the factor (vector) (1, -j) = (1, w:!) 
and by WL for the computation of X(4k + I ) ,  while the computation of X (4k + 3) 
involves the factor (1, j )  = (1, w;~) and w?. Instead, one can rearrange the 
computation so that the factor for X(4k + 3) is (- j .  -1) = -(w$, 1). As a result 
of this phase rotation, the twiddle factors in the computation of X(4k + 3) become 
exactly the same as those for X(4k + I) ,  except that they occur in mirror image 
order. For example, at stage B of Fig. 6.15, the twiddle factors w*', wl8 , .  . . , w3 
are replaced by w ' ,  w2, . . . , w', respectively. This mirror-image symmetry occurs 
at every subsequent stage of the algorithm. As a consequence, the number of 
twiddle factors that must be computed and stored is reduced by a factor of 2 in 
comparison to Duhamel's algorithm. The resulting algorithm is called the "mirror" 
FFT (MF'FT) algorithm. 

An additional factor-of-2 savings in storage of twiddle factors can be obtained 
by introducing a 90" phase offset at the midpoint of each twiddle array, which can 
be removed if necessary at the output of the SRFFT computation. The incor- 
poration of this improvement into the SRFET (or the MFFT) results in another 
algorithm, also due to Price (1990), called the "phase" FFT (PFFT) algorithm. 

6.1.6 Implementation of FFT Algorithms 

Now that we have described the basic radix-2 and radix-4 algorithms, let 
us consider some of the implementation issues. Our remarks apply directly to 
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radix-2 algorithms, although similar comments may be made about radix-4 and 
higher-radix algorithms. 

Basically, the radix-2 FFT algorithm consists of taking two data points at a 
time from memory, performing the butterfly computations and returning the re- 
sulting numbers to memory. This procedure is repeated many times ((N log, N ) / 2  
times) in the computation of an N-point DFT. 

The butterfiy computations require the twiddle factors { w;) at various stages 
in either natural or bit-reversed order. In an efficient implementation of the algo- 
rithm, the phase factors are computed once and stored in a table, either in normal 
order or in bit-reversed order, depending on the specific implementation of the 
algorithm. 

Memory requirement is another factor that must be considered. If the com- 
putations are performed in place, the number of memory locations required is 2N 
since the numbers are complex. However, we can instead double the memory to 
4N, thus simplifying the indexing and control operations in the FFT algorithms. In 
this case we simply alternate in the use of the two sets of memory locations from 
one stage of the FFT algorithm to the other. Doubling of the memory also allows 
us to have both the input sequence and the output sequence in normal order. 

There are a number of other implementation issues regarding indexing, bit 
reversal, and the degree of parallelism in the computations. To a large extent, 
these issues are a function of the specific algorithm and the type of implementa- 
tion, namely, a hardware or software implementation. In implementations based 
on a fixed-point arithmetic, or floating-point arithmetic on small machines, there 
is also the issue of round-off errors in the computation. This topic is considered 
in Section 6.4. 

Although the FFT algorithms described previously were presented in the 
context of computing the DFT efficiently, they can also be used to compute the 
IDFT, which is 

+a N-1 

The only difference between the two transforms is the normatization factor l / N  
and the sign of the phase factor WN. Consequently, an FFT algorithm for com- 
puting the DFT, can be converted to an FFT algorithm for computing the IDFT 
by changing the sign on all the phase factors and dividing the final output of the 
algorithm by N .  

In fact, if we take the decimation-in-time algorithm that we described in 
Section 6.1.3, reverse the direction of the flow graph, change the sign on the phase 
factors, interchange the output and input, and finally, divide the output by N, we 
obtain a decimation-in-frequency FFT algorithm for computing the IDFT. On the 
other hand, if we begin with the decimation-in-frequency FFT algorithm described 
in Section 6.1.3 and repeat the changes described above. we cibtain a decimation- 
in-time F l T  algorithm for computing the TDFT. Thus it is a simple matter to devise 
FFT algorithms for computing the IDFT. 
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Finally. we note that the emphasis in our discussion of FFT algorithms was 
on radix-2. radix-4. and split-radix algorithms. These are by far the most widely 
used in practice. When the number of data points is not a power of 2 or 4. it is a 
simple matter to pad the sequence x ( n )  with zeros such that N = 2" or N = 4". 

The measure of complexity for FFT algorithms that we have emphasized 
is the required number of arithmetic operations (multiplications and additions). 
Although this is a very important benchmark for computational complexity, there 
are other issues to be considered in practical implementation of FFT algorithms. 
These include the architecture of the processor. the available instruction set, the 
data structures for storing twiddle factors, and other considerations. 

For general-purpose computers, where the cost of the numerical operations 
dominate. radix-2, radix-4. and split-radix algorithms are good candidates. 
However. in the case of special-purpose digital signal processors, featuring single- 
cycle multiply-and-accumulate operation. bit-reversed addressing, and a high de- 
gree of instruction parallelism. the structural regularity of the algorithm is equally 
important as arithmetic complexity. Hence for DSP processors, radix-2 or radix- 
4 decimation-in-frequency FFT algorithms are preferable in terms of speed and 
accuracy. The irregular structure of the SRFFT may render it less suitable for 
implementation on digital signal processors. Structural regularity is also important 
in the implementation of FFT algorithms on vector processors, multiprocessors, 
and in VLSI. Interprocessor communication is an important consideration in such 
implementations on parallel processors. 

In conclusion, we have presented several important considerations in the 
implementation of FFT algorithms. Advances in digital signal processing technol- 
ogy, in hardware and software, will continue to influence the choice among FFT 
algorithms for various practical applications. 

6.2 APPLICATIONS OF FFT ALGORtTHMS 

The FFT algorithms described in the preceding section find application in a variety 
of areas, including linear filtering, correlation, and spectrum analysis. Basically, 
the FFT algorithm is used as an efficient means to compute the DFT and the IDFT. 

In this section we consider the use of the FFT algorithm in linear filtering 
and in the computation of the crosscorrelation of two sequences. The use of the 
FFT in spectrum analysis is considered in Chapter 12. In addition we illustrate 
how to enhance the efficiency of the FFT algorithm by forming complex-valued 
sequences from real-valued sequences prior to the computation of the DFT. 

6.2.1 Efficient Computation of the DFT of Two Real 
Sequences 

The FFT algorithm is designed to perform complex multiplications and additions, 
even though the input data may be real valued. The basic reason for this situation is 
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that the phase factors are complex and hence, after the first stage of the algorithm, 
all variables are basically complex-valued. 

In view of the fact that the algorithm can handle complex-valued input se- 
quences, we can exploit this capability in the computation of the DFT of two 
real-valued sequences. 

Suppose that xl ( n )  and x z ( n )  are two real-valued sequences of length N, and 
let x ( n )  be a complex-valued sequence defined as 

x ( n )  = x ~ ( n )  + j x z ( n )  0 5 n  5 N - 1  (6 .2 .1)  

The DFT operation is linear and hence the DFT of x ( n )  can be expressed as 

X ( k )  = X l ( k )  + j X z ( k )  (6 .2 .2)  

The sequences x, (n) and X * ( I I )  can be expressed in terms of x ( n )  as follows: 

Hence the DFTs of x l ( n )  and x z ( n )  are 

Recall that the DFT of x * ( n )  is X * ( N  - k). Therefore, 

1 
X I  ( k )  = ? [ X ( k )  + X*(N - k ) ]  (6.2.7) 

1 
X z ( k )  = ,[X ( k )  - X*(N - k ) ]  (6.2.8) 

J 2  
Thus, by performing a single DFT on the complex-valued sequence x ( n ) ,  we 

have obtained the DFT of the two real sequences with only a small amount of 
additional computation that is involved in computing X l  ( k )  and X z ( k )  from X ( k )  
by use of (6.2.7) and (6 .2 .8) .  

6.2.2 Efficient Computation of the DFT of a 2N-Point 
Real Sequence 

Suppose that g ( n )  is a real-valued sequence of 2N points. We now demonstrate 
how to obtain the 2N-point DFT of g ( n )  from computation of one N-point DFI: 
involving complex-valued data. First, we define 
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Thus we have subdivided the 2N-point real sequence into two N-point real se- 
quences. Now we can apply the method described in the preceding section. 

Let x ( n )  be the N-point complex-valued sequence 

From the results of the preceding section. we have 
1 

XI ( k )  = -[X(k) + X*(N - k)] 
2 

(6.2.1 1) 
1 

Finally, we must express the 2N-point DFT in terms of the two N-point DFTs, 
X l ( k f  and X,(k). To accomplish this, we proceed as in the decimation-in-time FFT 
algorithm, namely, 

Conscqucntly, 

G ( k )  =  XI(^;.)+ w,"Nx?(~) k =0. I . . . , . N -  I 
(6.2.12) 

G ( k + N )  = Xl(k)- w ' ~ N x ~ ( ~ )  k = 0 . 1  . . . . .  N- 1  

Thus we have computed the DFT of a 2N-point real sequence from one N-point 
DFT and some additional computation as indicated by (6.2.11) and (6.2.12). 

6.2.3 Use of the FFT Algorithm in Linear Filtering and 
Correlation 

An important application of the FFT algorithm is in FIR linear filtering of long 
data sequences. In Chapter 5 we described two methods, the overlap-add and the 
overlap-save methods for filtering a long data sequence with an FIR filter, based 
on the use of the DFT. In this section we consider the use of these two methods 
in conjunction with the FFT algorithm for computing the DFT and the IDFT. 

Let h ( n ) ,  0 5 n 5 M - 1, be the unit sample response of the FIR filter and let 
x ( n )  denote the input data sequence. The block size of the FFT algorithm is N. 
where N = L + M - I and L is the number of new data samples being processed 
by the filter. We assume that for any given value of M, the number L of data 
samples is selected so that N is a power of 2. For purposes of this discussion, we 
consider only radix-2 F'FT algorithms. 

The N-point DFT of h(n) ,  which is padded by L -1 zeros, is denoted as H ( k ) .  
This computation is performed once via the FFT and the resulting N complex 
numbers are stored. To  be specific we assume that the decimation-in-frequency 
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FFT algorithm is used to compute H(k). This yields H(k) in bit-reversed order, 
which is the way it is stored in memory. 

In the overlap-save method, the first M - 1 data points of each data block are 
the last M - 1 data points of the previous data block. Each data block contains L 
new data points, such that N = L + M - 1. The N-point DFT of each data block 
is performed by the FFT algorithm. If the decimation-in-frequency algorithm is 
employed, the input data block requires no shuffling and the values of the DFT 
occur in bit-reversed order. Since this is exactly the order of H(X;). we can multiply 
the DFT of the data, say X , ( k ) ,  with H(k) and thus the result 

Ym(k) = H(k)Xm(k) 
is also in bit-reversed order. 

The inverse DFT (IDFT) can be computed by use of an FFT algorithm that 
takes the input in bit-reversed order and produces an output in normal order. 
Thus there is no need to shuffle any block of data either in computing the DFT 
or the IDFT. 

If the overlap-add method is used to perform the linear filtering, the compu- 
tational method using the FIT algorithm is basically the same. The only difference 
is that the N-point data blocks consist of L new data points and M - 1 additional 
zeros. After the IDFT is computed for each data block, the N-point filtered blocks 
are overlapped as indicated i n  Section 5.3.2, and the M - 1 overlapping data points 
between successive output records are added together. 

Let us assess the computational complexity of the FFT method for linear fil- 
tering. For this purpose, the one-time computation of H (k) is insignificant and can 
be ignored. Each FFT requires (N12) log2 N complex multiplications and N log2 N 
additions. Since the FFT is performed twice, once for the DFT and once for the 
IDFT, the computational burden is N log, N complex multiplications and 2N log, N 
additions. There are also N complex multiplications and N - 1 additions required 
to compute Y,,,(k). Therefore. we have (N log, 2N)lL complex multiplications per 
output data point and approximately (2N log, 2N)lL additions per output data 
point. The overlap-add method requires an incremental increase of (M - 1)lL in 
the number of additions. 

By way of comparison, a direct form realization of the FIR filter involves M 
real multiplications per output point if the filter is not linear phase, and M/2 if it 
is linear phase (symmetric). Also, the number of additions is M - 1 per output 
point (see Sec. 8.2). 

It is interesting to compare the efficiency of the FFT algorithm with the direct 
form reahation of the FIR filter. Let us focus on the number of multiplications, 
which are more time consuming than additions. Suppose that M = 128 = 2' and 
N = 2". Then the number of complex multiplications per output point for an FFT 
size of N = 2' is 

N log2 2N 2'(v + 1) - C ( V )  = ------- - 
L N - M + 1  
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TABLE 6.3 COMPUTATiONAL COMPLEXITY 

C(V) 

Size of FFT Number of Complex Multiplications 
v = log, N per Output Point 

The values of c ( v )  for different values of v  are given in Table 6.3. We observe 
that there is an optimum value of v which minimizes c ( v ) .  For the FIR filter of 
size M = 128, the optimum occurs at v = 10. 

We should emphasize that c ( v )  represents the number of complex multiplica- 
tions for the FFT-based method. The number of real multiplications is four times 
this number. However, even if the FIR filter has linear phase (see Sec. 8.2), the 
number of computations per output point is still less with the FFT-based method. 
Furthermore. the efficiency of the FFT method can be improved by computing 
the DFT of two successive data blocks simultaneously. according to the method 
just described. Consequently. the FFT-based method is indeed superior from a 
computational point of view when the filter length is relatively large. 

The computation of the cross correlation between two sequences by means of 
the FFT algorithm is similar to the linear FIR filtering problem just described. In 
practical applications involving crosscorrelation. at least one of the sequences has 
finite duration and is akin to the impulse response of the FIR filter. The second 
sequence may be a long sequence which contains the desired sequence corrupted 
by additive noise. Hence the second sequence is akin to the input to the FIR filter. 
By time reversing the first sequence and computing its DFT, we have reduced the 
cross correlation to an equivalent convolution problem (i.e.. a linear FIR filtering 
problem). Therefore. the methodology we developed for linear FIR filtering by 
use of the FFT applies directly. 

6.3 A LINEAR FILTERING APPROACH TO COMPUTATION OF THE 
DFT 

The FFT algorithm takes N points of input data and produces an output sequence 
of N points corresponding to the DFT of the input data. As we have shown. 
the radix-2 FFT algorithm performs the computation of the DFT in ( N j 2 )  log, N 
multiplications and N logz N additions for an N-point sequence. 

There are some applications where only a selected number of values of 
the DFT are desired, but the entire DFT is not required. In such a case, the 
FFT algorithm may no longer be more efficient than a direct computation of 
the desired values of the Dm. In fact, when the desired number of values of 
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the DFT is less than log, N, a direct computation of the desired values is more 
efficient. 

The direct computation of the DFT can be formulated as a linear filtering 
operation on the input data sequence. As we will demonstrate, the linear filter 
takes the form of a parallel bank of resonators where each resonator selects one 
of the frequencies wk = 2 n k / N ,  k = 0,  I , .  . . , N - 1, corresponding to the N 
frequencies in the DFT. 

There are other applications in which we require the evaluation of the z- 
transform of a finite-duration sequence at points other than the unit circle. If 
the set of desired points in the z-plane possesses some regularity, it is possible 
to also express the computation of the z-transform as a linear filtering operation. 
In this connection, we introduce another algorithm, called the chirp-z transform 
algorithm, which is suitable for evaluating the z-transform of a set of data on a 
variety of contours in the I-plane. This algorithm is also formulated as a linear 
filtering of a set of input data. As a consequence, the FFT algorithm can be used 
to compute the chirp-z transform and thus to evaluate the z-transform at various 
contours in the z-plane, including the unit circle. 

6.3.1 The Gaertzel Algorithm 

The Goertzel algorithm exploits the periodicity of the phase factors { w;] and 
allows us to express the computation of the DFT as a linear filtering operation. 
Since wikN = 1, we can multiply the DFT by this factor. Thus 

We note that (6.3.1) is in the form of a convolution. Indeed, if we define the 
sequence yk (n )  as 

then it is clear that yk(n)  is the convolution of the finite-duration input sequence 
x ( n )  of length N with a filter that has an impulse response 

The output of this filter at n = N yields the value of the DFT at the frequency 
ok = 2 n k / N .  That is, 

as can be verified by comparing (6.3.1) with (6.3.2). 
The filter with impulse response hk(n)  has the system function 

i 
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This filter has a pole on the unit circle at the frequency wk = 2xk/N. Thus, the 
entire D m  can be computed by passing the block of input data into a paral- 
lel bank of N single-pole filters (resonators). where each filter has a pole at the 
corresponding frequency of the DFT. 

Instead of performing the computation of the DFT as in (6.3.2), via convolu- 
tion. we can use the difference equation corresponding to the filter given by (6.3.5) 
to compute yk(rr) recursively, Thus we have 

The desired output is X ( k )  = gk(N), for k = 0, 1 , .  . . , N - 1. To perform this 
computation, we can compute once and store the phase factors w;';. 

The complex multiplications and additions inherent in (6.3.6) can be avoided 
by combining the pairs of resonators possessing complex-conjugate poles. This 
leads to two-pole filters with system functions of the form 

Thc direct Corm I1 realization of the system illustrated in Fig. 6.17 is described hy 
thc difference equalion 

with initial conditions vA(-1 )  = vk(-2)  = 0. 
The recursive relation in (6.3.8) is iterated for n = 0, 1.. . . . N, but the equa- 

tion in (6.3.9) is computed only once at time n = N. Each iteration requires one 
real multiplication and two additions. Consequently, for a real input sequence 
x 0 1 ) .  this algorithm requires N + 1 real muttiplications to yield not only X ( k )  but 
also, due to symmetry, the value of X (N - k ) .  

The Goertzel algorithm is particularly attractive when the DFT is to be com- 
puted at a relatively small number A4 of values, where M Iogz N .  Otherwise. 
the FFT algorithm is a more efficient method. 

Ftgun 617 Direct form II realization 
of two-pole resonator for computing the 
Dm. 
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6.3.2 The Chirp-z Transform Algorithm 

The DFT of an N-point data sequence x(n) has been viewed as the z-transform 
of x ( n )  evaluated at N equally spaced points on the unit circle. It has also been 
viewed as N equally spaced samples of the Fourier transform of the data sequence 
x(n) .  In this section we consider the evaluation of X ( z )  on other contours in the 
z-plane, including the unit circle. 

Suppose that we wish to compute the values of the z-transform of x(n)  at a 
set of points { z k ] .  Then, 

For example, if the contour is a circle of radius r  and the zk are N equally spaced 
points, then 

zk = rej2nhr'/N k = 0,1,2,. . . , N - 1 

In this case the FFT algorithm can be applied on the modified sequence x(n)r-".  
More generally, suppose that the points zk in the z-plane fall on an arc which 

begins at some point 
zO = rOejfir 

and spirals either in toward the origin or out away from the origin such that the 
points { ~ k }  are defined as 

Note that if Ro < 1, the points fall on a contour that spirals toward the origin and if 
Ro > 1, the contour spirals away from the origin. If Ro = 1, the contour is a circular 
arc of radius ro. If ro = 1 and Ro = 1, the contour is an arc of the unit circle. The 
latter contour would allow us to compute the frequency content of the sequence 
x ( n )  at a dense set of L frequencies in the range covered by the arc without having 
to compute a large DFT, that is, a DFT of the sequence x(n)  padded with many 
zeros to obtain the desired resolution in frequency. Finally, if ro = Ro = = 0, 
$,J = 2 x / N ,  and L = N, the contour is the entire unit circle and the frequencies 
are those of the DFT. The various contours are illustrated in Fig. 6.18. 

When points { z k ]  in (63.12) are substituted into the expression for the z- 
transform, we obtain 
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Figure 6-18 Some examples of contours on which we may evaluate ~ h c  z- 
transform. 

where. by definition. 
V = ~~e~~ (6.3.14) 

We can express (6.3.13) in the form of a convolution, by noting that 
nk = f [n2 + k2 - (k - n ) * ]  (6.3.15) 

Substitution of (6.3.15) into (6.3.13) yields 

Let us define a new sequence g ( n )  as 

g(n) = x(n)(meJh)-" v-"'~ 

Then (6.3.16) can be expressed as 
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The summation in (6.3.18) can be interpreted as the convolution of the sequence 
g ( n )  with the impulse response h ( n )  of a filter, where 

Consequently, (6.3.18) may be expressed as 

where y ( k )  is the output of the filter 

We observe that both h ( n )  and g ( n )  are complex-valued sequences. 
The sequence h ( n )  with Ro = 1 has the form of a complex exponential with 

argument wn = n2#9/2 = (n&,l;?)n. The quantity n&/2 represents the frequency 
of the complex exponential signal, which increases linearly with time. Such signals 
are used in radar systems and are called chirp signals. Hence the z-transform 
evaluated as in (6.3.18) is called the chirp-i transform. 

The linear convolution in (6.3.21) is most efficiently done by use of the FFT 
algorithm. The sequence g ( n )  is of length N .  However, h ( n )  has infinite du- 
ration. Fortunately, only a portion h ( n )  is required to compute the L  values 
of X ( z ) .  

Since we will compute the convolution in (6.3.1) via the FFT. let us consider 
the circular convolution of the N-point sequence g ( n )  with an M-point section of 
h(n) ,  where M > N .  In such a case, we know that the first N - 1 points contain 
aliasing and that the remaining M - N + 1 points are identical to  the result that 
would be obtained from a linear convo1ution of h ( n )  with g ( n ) .  In view of this, we 
should select a DFT of size 

which would yield L  valid points and N - 1 points corrupted by aliasing. 
The section of h ( n )  that is needed for this computation corresponds to the 

values of h ( n )  for - ( N  - 1 )  5 n  5 ( L  - I ) ,  which is of length M = L  + N  - 1, as 
observed from (6.3.21). Let us define the sequence h i ( n )  of length M as 

and compute its M-point DFT via the FFT algorithm to obtain H l ( k ) .  From x(n)  
we compute g(n)  as specified by (6.3.17), pad g ( n )  with L  - 1 zeros, and com- 
pute its M-point DFT to yield G ( k ) .  The IDFI' of the product Yl (k) = G ( k )  HI ( k )  
yields the M-point sequence y l (n ) ,  n  = 0, 1, .  . . , M - 1. The first N - 1 points of 
yl(n)  are corrupted by aliasing and are discarded. The desired values are y l (n )  
for N  - 1 5 n I M - 1, which correspond to the range 0 5 n  5 L  - 1 in (6.3.21), 
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that is, 

Alternatively, we can define a sequence h 2 ( n )  as 

The M-point DFT of h z ( n )  yields H z ( k ) ,  which when multiplied by G ( k )  yields 
Y2(k)  = G ( k )  Hl(k). The IDFI' of Y2(X-) yields the sequence y2(n) for 0 5 n M - 1. 
Now the desired values of yz(n)  are in the range 0 5 n  5 L - 1, that is, 

Finally, the complex values X ( z r , )  are computed by dividing p(k )  by h ( k ) .  
k = 0, 1, . . . , L - 1 ,  as specified by (6.3.20). 

ln general. the computational complexity of the chirp-z transform algorithm 
described above is of the order of M log, M complex multiplications, where M = 
N + L - 1. This number should be compared with the product, N . L, the number 
of computations required by direct evaluation of the z-transform. Clearly, if L is 
small, direct computation is more efficient. However, if L is large. then the chirp-i 
transform algorithm is more efficient. 

The chirp-: transform method has been implemented in hardware to compute 
the DFT of signals. For the computation of the DFT, we select rcl = RO = 1,80 = 0, 
&, = 2 t r / N ,  and L = N. In this case 

rc nZ x n 2  

= cos - - j sin - 
N N 

The chirp filter with impulse response 

rrn2 H n2 

= cos - + j sin - 
N N 

= h , (n )  + j h ,  ( n )  

has been implemented as a pair of FIR filters with coefficients h , ( n )  and h ,  ( n ) ,  
respectively. Both surface acoustic wave (SAW) devices and charge coupled de- 
vices (CCD) have been used in practice for the FIR filters. The cosine and sine 
sequences given in (6.3.26) needed for the premultiplications and postmultiplica- 
tions are usually stored in a read-only memory (ROM). Furthermore, we note that 
if only the magnitude of the DFT is desired, the postmultiplications are unneces- 
sary. In this case, 

as illustrated in Fig. 6.19. Thus the linear FIR filtering approach using the chirp-z 
transform has been implemented for the computation of the DFT. 
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Chirp Filters 

Figure 6.19 Block diagram illustrating the implementation of the chirp-: transform for com- 
puting the DlT (magnitude only). 

6.4 QUANTIZATION EFFECTS IN THE COMPUTATION OF THE DFT' 

As we have observed in our previous discussions, the DFT plays an important role 
in many digital signal processing applications, including FIR filtering, the compu- 
tation of the correlation between signals, and spectral analysis. For this reason 
it is important for us to know the effect of quantization errors in its computa- 
tion. In particular, we shall consider the effect of round-off errors due to the 
multiplications performed in the DFI: with fmed-point arithmetic. 

The model that we shall adopt for characterizing round-off errors in multi- 
plication is the additive white noise mode1 that we use in the statistical analysis 
of round-off errors in IIR and FIR filters (see Fig. 7.34). Although the statistical 

'It is recommended that the reader review Section 7.5 prior to reading this section. 
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analysis is performed for rounding, the analysis can be easily modified to apply to 
truncation in two's-complement arithmetic (see Sec. 7.5.3). 

Of particular interest is the analysis of round-off errors in the computation 
of the DfT via the FFT algorithm. However, we shall first establish a benchmark 
by determining the round-off errors in the direct computation of the DFT. 

6.4.1 Quantization Errors in the Direct Computation of 
the DTT 

Given a finite-duration sequence { x t n ) ) ,  0 < n  < N - 1, the DfT of { x t n ) )  is 
defined as 

where W N  = c - ~ ~ ~ / ~ .  We assume that in general, { x ( ~ t ) ]  is a compiex-valued se- 
quence. We also assume that the real and imaginary components of { A - ( n ) ]  and 
{M':!') are represented hy b hits. Consequently. the computation of the product 
x ( t r ) ~ ~ y  requires four real multiplications. Each real multiplication is rounded 
from 2h bits to h bits, and hence there are four quantization errors for each 
complex-valued muitiplicatian. 

In the direct computation of the DFT. there are N complex-valued multiplica- 
tions for each point in the DFT. Therefore. the total number of real multiplications 
in the computation of a singlc point in the DFT is 4 N .  Consequently. there are 
4N quantization errors. 

Let us evaluate the variance of the quantization errors in a fixed-paint com- 
putation of the DFT. First, we make the following assumptions about the statistical 
properties of the quantization errors. 

1. The quantization errors due to rounding are uniformly distributed random 
variables in the range ( -A/2 ,  A/2) where A = 2-b.  

2. The 4N quantization errors are mutually uncorrelated. 

3. The 4N quantization errors are uncorrelated with the sequence { x t n ) } .  

Since each of the quantization errors has a variance 

the variance of the quantization errors from the 4 N  multiplications is 

Hence the variance of the quantization error is proportional to the size of DFT. 
Note that when N is a power of 2 (i.e., N = 2'3, the variance can be expressed 
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This expression implies that every fourfold increase in the size N  of the DFT 
requires an additional bit in computational precision to offset the additional quan- 
tization errors. 

To prevent overflow, the input sequence to the DFT requires scaling. Clearly, 
an upper bound on IX(k)l is 

N-1 

If the dynamic range in addition is (-1,1), then IX(k)l < 1 requires that 

lf tx(n)l  is initially scaled such that Ix(r~)l < 1 for all n ,  then each point in the 
sequence can be divided by N to ensure that (6.4.6) is satisfied. 

The scaling implied by (6.4.6) is extremely severe. For example, suppose 
that the signal sequence ( x ( r ~ ) )  is white and. after scaling. each value Ix(n)l of the 
sequence is uniformly distributed in the range ( - 1 / N .  I / N ) .  Then the variance of 
the signal sequence is 

and the variance of the output DFT coefficients IX(k)I is 

Thus the signal-to-noise power ratio is 

We observe that the scaling is responsible for reducing the SNR by N and 
the combination of scaling and quantization errors result in a total reduction that 
is proportional to N * .  Hence scaling the input sequence { x ( n ) }  to satisfy (6.4.6) 
imposes a severe penalty on the signal-to-noise ratio in the DFT. 
Example 6.4.1 

Use (6.4.9) to determine the number of bits required to compute the DFT of a 1024- 
point sequence with a SNR of 30 dB. 

Solution The size of the sequence is N = 2'" Hence the SNR is 

u2 
10 log,, = 10 log,,, 

u: 
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For an SNR of 30 dB, we have 
3(2b - 20) = 30 

b = 15 bits 

Note that the 15 bits is the precision for both multiplication and addition. 

Instead of scaling the input sequence ( x ( n ) ) ,  suppose we simply require that 
Ix(n)l < I. Then we must provide a sufficiently large dynamic range for addition 
such that ( X ( k ) (  < N. In such a case, the variance of the sequence { l x ( n ) l )  is 
4 = 4, and hence the variance of ( X ( k ) l  is 

N 
a; = N U ;  = - 

3 
Consequently, the SNR is 

'I 

If we repeat the computation in Example 6.4.1, we find that the number of 
bits required to achieve a SNR of 30 dB is b = 5 bits. However, we need an 
additional 1 0  bits for the accumulator (the adder) lo accommodate the increase 
in the dynamic range for addition. Although we did not achieve any reduction 
in the dynamic range for addition, we have managed to reduce the precision in 
multiplication from 15 bits to 5 bits. which is highly significant. 

6.4.2 Quantization Errors in FFT Algorithms 

As we have shown, the FFT algorithms require significantly fewer multiplications 
than the direct computation of the DFT. In view of this we might conclude that the 
computation of the DFT via an FFT algorithm will result in smaller quantization 
errors. Unfortunately, that is not the case, as we will demonstrate. 

Let us consider the use of fixed-point arithmetic in the computation of a 
radix-2 FFT algorithm. To be specific, we select the radix-2, decimation-in-time 
algorithm illustrated in Fig. 6.20 for the case N = 8. The results on quantiza- 
tion errors that we obtain for this radix-2 FFT algorithm are typical of the results 
obtained with other radix-2 and higher radix algorithms. 

We observe that each butterfly computation involves one complex-valued 
multiplication or, equivalently, four real multiplications. We ignore the fact that 
some butterflies contain a trivial multiplication by f 1. If we consider the but- 
terflies that affect the computation of any one value of the Dm, we find that, 
in general, there are N / 2  in the first stage of the FFT, N/4 in the second stage, 
N / 8  in the third state, and so on, until the last stage, where there is only one. 
Consequently, the number of butterflies per output point is 

= Z Y [ l  - (f)"] = N - 1 



490 Efficient Computation of the DFT: Fast Fourier Transform Algorithms Chap. 6 

Stage I 

- I - I - I 

Figure 6.2) Dccimatinn-in-time FFT algorithm. 

For example, the butterflies that affect the computation of X ( 3 )  in the eight-point 
FFT algorithm of Fig. 6.20 are illustrated in Fig. 6.21. 

The quantization errors introduced in each butterfly propagate to the output. 
Note that the quantization errors introduced in the first stage propagate through 
(V - 1) stages, those introduced in the second stage propagate through ( v  - 2) 
stages, and so on. As these quantization errors propagate through a number of 
subsequent stages, they are phase shifted (phase rotated) by the phase factors 
w:. These phase rotations do not change the statistical properties of the quan- 
tization errors and, in particular, the variance of each quantization error remains 
invariant. 

If we assume that the quantization errors in each butterfly are uncorrelated 
with the errors in other butterflies. then there are 4(N - 1) errors that affect the 
output of each point of the FFT'. Consequently, the variance of the total quanti- 
zation error at the output is 
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Figure 6.21 Butterflies that affect the computation oi X ( 3 ) .  

where A = 2-b. Hence 
N 

a2 = - .2-a  " (6.4.14) 

This is exactly the same result that we obtained for the direct computation of the 
DFT. 

The result in (6.4.14) should not be surprising. In fact, the F'FT algorithm 
does not reduce the number of multiplications required to compute a single point 
of the DFT. It does, however, exploit the periodicities in W: and thus reduces 
the number of multiplications in the computation of the entire block of N points 
in the DFT. 

As in the case of the direct computation of the DFT, we must scale the 
input sequence to prevent overflow. Recall that if Ix(n) 1 < 1/N, 0 5 n 5 N - 
1, then IX(k)l < 1 for 0 5 k 5 N - 1. Thus overflow is avoided. With this 
scaling, the relations in (6.4.7), (6.4.8), and (6.4.9), obtained previously for the 
direct computation of the DFT, apply to the FFT algorithm as well. Consequently, 
the same SNR is obtained for the FFT. 

Since the FFT algorithm consists of a sequence of stages, where each stage 
contains butterflies that involve pairs of points, it is possible to devise a differ- 
ent scaling strategy that is not as severe as dividing each input point by N. This 
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atternative scaling strategy is motivated by the observation that the intermedi- 
ate values [X,(k)l in the n = 1, 2, . . . , v stages of the FFT algorithm satisfy the 
conditions (see Problem 6.35) 

In view of these relations, we can distribute the total scaling of 1/N into each 
of the stages of the FFT algorithm. In particular, if Ix(n)l < 1, we apply a scale 
factor of in the first stage so that (x(n)(  < 5 .  Then the output of each subsequent 
stage in the FFT algorithm is scaled by i, so that after v stages we have achieved 
an overall scale factor of ( i )"  = 1/N.  Thus overflow in the computation of the 
DFT is avoided. 

This scaling procedure does not affect the signal level at the output of the 
FFT algorithm, but it significantly reduces the variance of the quantization errors 
at the output. Specifically, each factor of reduces the variance of a quantization 
error term by a factor of $. Thus the 4(N/2 )  quantization errors introduced in 
the first stage are reduced in variance by ( $ ) " - I ,  the 4(N/4 )  quantization errors 
introduced in the second stage are reduced in variance by ($)"-'. and so on. Con- 
sequently. the total variance of the quantization errors at the output of the FFT 
algorithm is 

where the factor (4)" is negligible; 
We now observe that (6.4.16) is no longer proportional t o  N. On the other 

hand, the signal has the variance a: = 1/3N, as given in (6.4.8). Hence the SNR is 

Thus, by distributing the scaling of 1/N uniformly throughout the FFT algorithm, 
we have achieved an SNR that is inversely proportional to N instead of IV2. 

Determine the number of bits required to compute an FFT of 1024 points with an 
SNR of 30 dB when the scaling is distributed as described above. 
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Solution The size of the FFT is N = 2''. Hence the SNR according to (6.4.17) is 

b = z(1l bits) 
2 

This can be compared with the 15 bits required if all the scaling is performed in the 
first stage of the FFT algorithm. 

6.5 SUMMARY AND REFERENCES 

The focus of this chapter was on the efficient computation of the DFT. We demon- 
strated that by taking advantage of the symmetry and periodicity properties of the 
exponential factors w:, we can reduce the number of compiex muitiplications 
needed to compute the DFT from N~ to N log, N when N is a power of 2. As we 
indicated, any sequence can be augmented with zeros. such that N = 2". 

For decades, FFT-type algorithms were of interest to mathematicians who 
were concerned with computing values of Fourier series by hand. However. it 
was not until Cooley and Tukey (1965) published their well-known paper that the 
impact and significance of the efficient computation of the DFT was recognized. 
Since then the Cooley-Tukey FFT algorithm and its various forms, for example. 
the algorithms of Singleton (1967, 1969), have had a tremendous influence on the 
use of the DFT in convolution, correlation, and spectrum analysis. For a historical 
perspective on the FFT algorithm, the reader is referred to the paper by Cooley 
et al. (1967). 

The split-radix FFT (SRFFT) algorithm described in Section 9.3.5 is due 
to Duhamel and Hollmann (1984,1986). The "mirror" FFT (MFFT) and "phase" 
FFT (PFlT) algorithms were described to the authors by R. Price. The exploitation 
of symmetry properties in the data to reduce the computation time are described 
in a paper by Swarztrauber (1986). 

Over the years, a number of tutorial papers have been published on F'FT 
algorithms. We cite the early papers by Brigham and Morrow (1967), Cochran et 
al. (1%7), Bergland (1969), and Cooley et al. (1%7, 1969). 

The recognition that the DFT can be arranged and computed as a linear 
convolution is also highly significant. Goertzel (1%8) indicated that the DFT 
can be computed via linear filtering, although the computational savings of this 
approach is rather modest, as we have absented. More significant is the work 
of Bluestein (1970), who demonstrated that the computation of the DFT can be 
formulated as a chirp linear filtering operation. This work led to the development 
of the chirp-z transform algorithm by Rabiner et al. (1969). 

In addition to the FFT algorithms described in this chapter, there are other 
efficient algorithms for computing the DFT, some of which further reduce the 
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number of multiplications, but usually require more additions. Of particular im- 
portance is an algorithm due to Rader and Brenner (1976), the ctass of prime factor 
aIgorithms, such as the Good algorithm (1971), and the Winograd algorithm (1976, 
1978). For a description of these and related algorithms, the reader may refer to 
the text by Blahut (1985). 

P R O B L E M S  

6.1 Show that each of the numbers 

e j12n/H)I  O s k l N - 1  

corresponds to an Nth root of unity. Plot these numbers as phasors in the complex 
plane and illustrate, by means of this figure. the orthogonality property 

6.2 (a) Show that thc phase factors can be computed recursively hy 

(h) Pcrform this computation once using single-precision floating-poinl arithmetic 
and once using only four significant digits. Note the deterioration due to the 
accumulation of round-off errors in the later case. 

(c) Show how the results in part (b) can be improved hy resetting the result to the 
correct value - j ,  each time ql = N/4. 

6 3  Let x ( n )  be a real-valued N-point ( N  = 2") sequence. Develop a method to compute 
an N-point DFT X 1 ( k ) ,  which contains only the odd harmonics [i.e.. X ' ( k )  = 0 if k is 
even] by using only a real N/2-spoint DFT. 

6.4 A designer has available a number of eight-point FFT chips. Show explicitly how he 
should interconnect three such chips in order to compute a 24-point DFT. 

6 5  The :-transform of the sequence x ( n )  = u ( n )  - u(n - 7) is sampled at five points on 
the unit circle as follows 

Determine the inverse DFT x r ( n )  of X(k). Compare it with x ( n )  and exptain the 
results. 

6.6 Consider a finite-duration sequence x(n) ,  0 5 n 5 7, with z-transform X(z). We wish 
to compute X(:) at the following set of values: 

(a) Sketch the points irk) in the complex plane. 
(b) Determine a sequence s(n)  such that its DFT' provides the desired samples of 

X(z). 



Chap. 6 Problems 495 

6.7 Derive the radix-2 decimation-in-time FFT algorithm given by (6.1.26) and (6.1.27) 
as a special case of the more general algorithmic procedure given by (6.1.16) through 
(6.1.18). 

6.8 Compute the eight-point DFT of the sequence 

1, O 1 n s 7  
x ( n )  = 1 0, otherwise 

by using the decimation-in-frequency FFT algorithm described in the text. 
6.9 Derive the signal flow graph for the N = 16 point, radix-4 decimation-in-time FFT 

algorithm in which the input sequence is in normal order and the computations are 
done in place. 

6.10 Derive the signal Row graph for the N = 16 point. radix4 decimation-in-frequency 
FFT algorithm in which the input sequence is in digit-reversed order and the output 
D F F  is in normal order. 

6.11 Computc thc eight-point DFT ol the sequence 

using thc in-placc radix-2 dccimation-in-time and radix-2 decimation-in-frequency al- 
gorithms. Follow exactly the corresponding signal flow graphs and keep track of all 
the intermediate quantities hy putling them on the diagrams. 

6.U Compulc the 16-point DFT of the sequence 

x(n) = cos 'Z" O ~ n s l S  

using the radix-4 decimation-in-time algorithm. 
6.13 Consider the eight-point decimation-in-time (DIT) flow graph in Fig. 6.6. 

(a) What is the gain of the "signal path" that goes from x ( 7 )  to X ( 2 ) ?  
( b )  How many paths lead from the input to a given output sample? Is this true for 

every output sample? 
(c) Compute X ( 3 )  using the operations dictated by this flow graph. 

6.14 Draw the flow graph for the decimation-in-frequency (DIF) SRFFT algorithm for 
N = 16. What is the number of nontrivial multiplications? 

6.15 Derive the algorithm and draw the N = 8 Row graph for the DIT  SRFFT algorithm. 
Compare your flow graph with the DIF  radix-2 FFT flow graph shown in Fig. 6.11. 

6.16 Show that the product of two complex numbers (a+ j b )  and ( c +  j d )  can be performed 
with three real multiplications and five additions using the algorithm 

where 

6.17 Explain how the DFT can be used to  compute N equispaced samples of the z-  
transform, of an N-point sequence, on a circle of radius r .  
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6.18 A real-valued N-point sequence x ( n )  is called DFT bandlimited if its DFT X ( k )  = 0 
for ko 5 k  5 N - 6,) .  We insert ( L  - 1 I N  zeros in the middle of X ( k )  to obtain the 
following L N-point DFT 

O s k s k o - 1  
k{ ,  5 k  5 L N  - k,, 

X ( k + N - L N ) .  L N - k , ] + l  zk 5 L t V - 1  

Show that 

where 

Explain the meaning of this type of processing by working out an example with iy = 4, 
L = 1. and X ( k )  = { 1 , 0 . 0 . 1 ) .  

6.19 Let X ( k )  be the N-point DFT of tho sequence . r ( n ) .  0 5 n 5 A' - 1. What is the 
N-point DFT of the sequence s(n) = X ( I T ) ,  1 )  5 n 5 N - 1 :' 

620 Let X ( k )  be the N-point DFT of the scquencc .v(r,), 0 5 n 5 h' - 1. Wc dclinc a 
2N-point sequence \ . ( I ! )  as 

Express the 2N-p in t  DFT of ! ( / I )  in terms of X ( k ) .  

6.21 (a) Determint the :-lransIorm W ( : )  ol'thc Hrrnnins window u l ( r ! )  = ( 1  - c o h  s) /2. 
(b) Determine a formula to compute thc N-point DFT A',, ( X )  o f  thc signal . ~ , , . ( n )  = 

u r ( n ) x ( n ) ,  O  5 rr 5 N  - 1. from thc N-poinl DFT X ( k )  01- ~ h c  signal . r ( n ) .  

6.22 Create a DFT coefficient table that uses only N/4 memory localions to store the first 
quadrant of the sine sequence (assume N even). 

6.23 Determine the compurational burden of the algorithm given by (6.2.12) and compare 
it with the compulational burden required in thc 2N-poinl DFT of ~ ( n ) .  Assume that 
the FFT algorithm is a radix-2 algorithm. 

6.24 Consider an IIR system described by the difference equation 

Describe a procedure that computes the frequency response H - k  . k = 0. 1. . . . . (; ) 
N - 1 using the FFT alporithm ( N  = 2"). 

6.25 Develop a radix-3 decimation-in-time FFT algorithm for hr = 3" and draw the corre- 
sponding flow graph for N = 9. What is the number of required complex multiplica- 
tions? Can the operations be performed in place? 

626  Repeat Problem 6.25 for the DIF case. 
6.27 FFT input ond output pnuting In many applications we wish to compute only a few 

points M of the N-point DFT of a finite-duration sequence of length L (i.e., M << N 
and L << N). 
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(a) Draw the flow graph of the radix-2 DIF  FFT algorithm for N = 16 and eliminate 
[i.e., prune) all signal paths that originate from zero inputs assuming that only 
x(0) and x(1) are nonzero, 

(b) Repeat p a n  (a) for the radix-2 DIT algorithm. 
(c) Which algorithm is better if we wish to  compute all points of the DFT? What 

happens if we want to  compute only the points X(O), X(1), X ( 2 ) ,  and X(3)? 
Establish a rule to  choose between DIT and DIF pruning depending on the 
values of M and L. 

(d) Give an estimate of saving in computations in terms of M, L,  and N. 

6.28 Parallel computation of the DFT Suppose that we wish to  compute an N = 2 p 2 "  
point DFT using 2 P  digital signal processors (DSPs). For simplicity we assume that 
p = v = 2. In this case each DSP carries out all the computations that are necessary 
to compute 2" DFT points. 
(a) Using the radix-2 DIF  flow graph, show that to  avoid data shuffling, the entire 

sequence x ( n )  should be loaded to  the memory of each DSP. 
(b) Idenlify and redraw the portion of the flow graph that is executed by the DSP 

that computes the DFT samples X ( 2 ) ,  X(IO), X(6). and X(14). 
(c) Show that, if we use M = 2 '  DSPs, the computation speed-up S is given by 

S = M  
log, N 

log, N - log, M + 2(M - 1) 

6.29 Develop an inverse radix-2 DIT FIT algorithm starting with the definition. Draw the 
flow graph for computation and comparc with the corresponding flow graph for the 
direct FFT. Can the IFFT flow graph bc ohtained from the one for the direct FFT? 

6.30 Repeat Problem 6.29 lor the DIF case. 
6.31 Show that an FFT on data with Hermitian symmetry can be derived by reversing the 

flow graph of an F'FT for real data. 
6.32 Determine the system function H ( z )  and the difference equation for the system that 

uses the Goertzel algorithm to compute the DFT value X(N - k). 

633 (a) Suppose that x(n) is a finite-duration sequence of N = 1024 points. It is desired 
to  evaluate the z-transform X(;) of the sequence at the points 

by using the most efficient method or algorithm possible. Describe an algorithm 
for performing this computation efficiently. Explain how you arrived at your 
answer by giving the various options or algorithms that can be used. 

(b) Repeat part (a) if X(z) is to be evaluated at 

6.34 Repeat the analysis for the variance of the quantization error, camed out in Sec- 
tion 6.4.2, for the decimation-in-frequency radix-2 F'FT algorithm. 

635 The basic butterfly in the radix-2 decimation-in-time FFT algorithm is 
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(a) If we require that IX,(k)l < 4 and IX.(l)I < f ,  show that 

Thus overflow does not occur. 
(b) Prove that 

6 X *  Cumputurion of rhe DFT Use an FFT subroutine to compute the following DFTs 
and plot the magnitudes IX(k)l of the DFTs. 
(a) The 64-point DFT of the sequence 

1. n = 0 . 1 ,  . . . .  15 ( N I - 1 6 )  
x(n)  = lo, otherwise 

(b) The 64-point DFT of the sequence 

1, n = 0 , 1  . . . . ,  7 ( N I = 8 )  
= 1 0. otherwise 

(c) Thc 128-point DFT of the sequence in part (a). 
(d) The M-point DFT of the sequence 

x(n)  = 
lOej'""'", n = 0 , l .  . . . ,63 (NI  = 64) 

otherwise 

Answer the following questions. 
(1) What is the frequency interval between successive samples for the plots in 

parts (a), (b). (c). and (d)? 
(2) What is the value of the spectrum at zero frequency (dc value) obtained 

from the plots in parts (a). (b), (c), (d)? 
From the formula 

compute the theoretical values for the dc value and check these with the 
computer results. 

(3) In plots (a). (b). and (c), what is the frequency interval between successive 
nulls in the spectrum? What is the relationship between NI of the sequence 
x ( n )  and the frequency interval between successive nulls? 

(4) Explain the difference between the plots obtained from parts (a) and (c). 
637* Idenrijicarion of pole positions in a system Consider the system described by the 

difference equation 

(a) Let T = 0.9 and x(n) = 6(n) .  Generate the output sequence y(n)  for 0 5 n 5 127. 
Compute the N = 128 point DFT [Y (k ) ]  and plot (IY(k)l) .  
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(b) Compute the N = 128 point DFT of the sequence 

where v ( n )  is the sequence generated in part (a). Plot the DFT values IW(k)l. 
What can you conclude from the plots in parts (a) and (b)? 

(c) Let r = 0.5 and repeat part (a). 
(d) Repeat pan (b) for the sequence 

where y(n) is the sequence generated in part (c). What can you conclude from 
the plots in parts (c) and (d)? 

(e) Now let the sequence generated in part (c) be corrupted by a sequence of "mea- 
surement" noise which is Gaussian with zero mean and variance a* = 0. l .  Repeat 
parts (c) and (d) for the noise-corrupted signal. 



Implementation of 
Discrete-Time Systems 

The focus of this chapter is on the realization of linear time-invariant discrete- 
time systems in either software or hardware. As we noted in Chapter 2, there are 
various configurations or structures for the realization of any FIR and IIR discrete- 
time system. In Chapter 2 we described the simplest of these structures. namely, 
the direct-form realizations. However, there are other more practical structures 
that offer some distinct advantages. especially when quantization effects are taken 
into consideration. 

Of particular importance are the cascade, parallel. and lattice structures, 
which exhibit robustness in finite-word-length implementations. Also described 
in this chapter is the frequency-sampling realization for an FIR system. which 
often has the advantage of being computationally efficient when compared with 
alternative FIR realizations. Other important fitter structures are obtained by 
employing a state-space formulation for linear time-invariant systems. An analysis 
of systems characterized by the state-variable form is presented in both the time 
and frequency domains. 

In addition to describing the various structures for the realization of discrete- 
time systems, we also treat problems associated with quantization effects in the 
implementation of digital filters using finite-precision arithmetic. This treatment 
includes the effects on the filter frequency response characteristics resulting from 
coefficient quantization and the round-off noise effects inherent in the digital im- 
plementation of discrete-time systems. 

7.1 STRUCTURES FOR THE REALIZATION OF DISCRETE-TIME 
SYSTEMS 

Let us consider the important class of linear time-invariant discrete-time systems 
characterized by the general linear constant-coefficient difference equation 
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As we have shown by means of the z-transform, such a class of linear time-invariant 
discrete-time systems are also characterized by the rational system function 

which is a ratio of two polynomials in z-' .  From the latter characterization, we 
obtain the zeros and poles of the system function, which depend on the choice of 
the system parameters ( b k ]  and {ax and which determine the frequency response 
characteristics of the system. 

Our focus in this chapter is on the various methods of implementing (7.1.1) 
or (7.1.2) in either hardware, or in software on a programmable digital computer. 
We shall show that (7.1.1) or (7.1.2) can be implemented in a variety of ways 
depending on the form in which these two characterizations are arranged. 

I n  general. we can view (7.1.1) as a computational procedure (an algorithm) 
for determining the output sequence y ( t r )  of the system from the input sequence 
x(n ) .  However, in various ways. the computations in (7.1.1) can be arranged into 
equivalent sets of difierence equations. Each set of equations defines a compu- 
tational procedure or an algorithm for implementing the system. From each set 
of equations we can construct a block diagram consisting of an interconnection of 
delay elements, multipliers, and adders. In Section 2.5 we referred to such a block 
diagram as a realization of the system or, equivalently, as a structure for realizing 
the system. 

If the system is to be implemented in software, the block diagram or, equiv- 
alently, the set of equations that are obtained by rearranging (7.1.1), can be con- 
verted into a program that runs on a digital computer. Alternatively, the structure 
in block diagram form implies a hardware configuration for implementing the 
system. 

Perhaps. the one issue that may not be clear to the reader at this point 
is why we are considering any rearrangements of (7.1.1) or (7.1.2). Why not 
just implement (7.1.1) or (7.1.2) directly without any rearrangement? If either 
(7.1.1) or (7.1.2) is rearranged in some manner, what are the benefits gained in the 
corresponding implementation? 

These are the important questions which are answered in this chapter. At  
this point in our development, we simply state that the major factors that influ- 
ence our choice of a specific realization are computational complexity, memory 
requirements, and finite-word-length effects in the computations. 

Computational complexity refers to the number of arithmetic operations (mul- 
tiplications, divisions, and additions) required to compute an output value y(n) for 
the system. In the past, these were the only items used to measure computational 
complexity, However, with recent developments in the design and fabrication of 
rather sophisticated programmable digital signal processing chips, other factors, 
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such as the number of times a fetch from memory is performed or the number of 
times a comparison between two numbers is performed per output sample. have 
become important in assessing the computational complexity of a _given realization 
of a system. 

Memory requirements refers to the number of memon. locations required 
to store the system parameters, past inputs. past outputs. and any intermediate 
computed values. 

Finite-word-lengrh effecrs or finite-precision effects refer to the quantization 
effects that are inherent in any digital implementation of the system. either in 
hardware or in software. The parameters of the system must necessarily be repre- 
sented with finite precision. The computations that are performed in the process 
of computing an output from the system must be rounded- off or truncated to fit 
within the limited precision constraints of the computer or the hardware used in 
the implementation. Whether the computations are performed in fixed-point or 
floating-point arithmetic is another consideration. All these problems are usually 
called finite-word-length effects and are extremely important in influencing our 
choice of a system realization. We shall see t h a ~  differen! structures of a system, 
which are equivalent for infinite precision, exhibit different behavior when finite- 
precision arithmetic is used in the implementation. Therefore. it is very important 
in practice to select a realization that is not very sensitive to finite-word-length 
effects. 

Although these three factors are the major ones in influencing our choice of 
the realization of a system of the type described by either (7.1.1) or (7.1.2). other 
factors, such as whether the structure or the realization lends itself LO parallel 
processing, or whether the computations can be pipelined. may play a role in 
our selection of the specific implementation. These additional factors are usually 
important in the realization of more complex digital signal processing algorithms. 

In our discussion of alternative realizations. we concentrate on the three 
major factors just outlined. Occasionally, we will include some additional factors 
that may be important in some implementations. 

7.2 STRUCTURES FOR FIR SYSTEMS 

In general, an FIR system is described by the difference equation 

or, equivalently, by the system function 

Furthermore, the unit sample response of the FIR system is identical to the coef- 
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ficients {bh}, that is, 

O l n l M - 1  h ( n )  = 1;:' 
otherwise 

The length of the FIR fitter is selected as M to conform with the established 
notation in the technical literature. 

We shall present several methods for implementing an FIR system, begin- 
ning with the simplest structure, called the direct form. A second structure is 
the cascade-form realization. The third structure that we shall describe is the 
frequency-sampling realization. Finally, we present a lattice realization of an FIR 
system. En this discussion we follow the convention often used in the technical 
literature, which is to use [ h ( n ) )  for the parameters of an FIR system. 

In addition to the four realizations indicated above, an FIR system can be 
realized by means of the DFT, as described in Section 6.2. From one point of view, 
the DFT can be considered as a computational procedure rather than a structure 
for an FIR system. However. when the computational procedure is implemented 
in hardware, there is a corresponding structure for the FIR system. In practice, 
hardware implementations of the DFT are based on the use of the fast Fourier 
transform (FFT) algorithms described in Chapter 6 .  

7.2.1 Direct-Form Structure 

The direct-form realization follows immediately from the nonrecursive difference 
equation given by (7.2.1) or, equivalently, by the convolution summation 

y ( n )  = -x h ( k ) x ( n  - k) 

The structure is illustrated in Fig. 7.1.  
We observe that this structure requires M - 1 memory locations for stor- 

ing the M - 1 previous inputs, and has a complexity of M multiplications and 
M - 1 additions per output point. Since the output consists of a weighted linear 
combination of M - 1 past values of the input and the weighted current value of 
the input, the structure in Fig. 7.1, resembles a tapped delay line or a transversal 

Fwre 7.1 Direct-fonn realization of FIR system. 
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Figure 7 2  Dircct-form realization of linear-phase FIR system (M odd). 

.r(n) 

system. Consequently, the direct-form realization is often called a transversal or 
tapped-delay-line filter. 

When the FIR system has linear phase, as described in Section 8.2, the unit 
sample response of the system satisfies either the symmetry or  asymmetry condition 

Input 

For such a system the number of multiplications is reduced from M to M/2 for M 
even and to (M - 1)/2 for M odd. For example, the structure that takes advantage 
of this symmetry is illustrated in Fig. 7.2 for the case in which M is odd. 

... 

7.2.2 Cascade-Form Structures 

I' 

h(0) 1' h(2)  h ) h (Y) 1 

I 

. . . 

The cascade realization follows naturally from the system function given by (7.2.2). 
It is a simple matter to factor H(z) into second-order FIR systems so that 

where 

and K is the integer part of (M + 1)/2. The filter parameter bo may be equally 
distributed among the K filter sections, such that bo = blob bKO or it may be 
assigned to a single filter section. The zeros of H ( z )  are grouped in pairs to pro- 
duce the second-order FIR systems of the form (7.2.7). It is always desirable to 
form pairs of complexconjugate roots so that the coefficients { b k j }  in (7.2.7) are 
real valued. On the other hand, real-valued roots can be paired in any arbitrary 
manner. The cascade-form realization along witb the basic second-order section 
are shown in Fig. 7.3. 
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Figure 7 3  Cascade realization of an FIR system. 

In  the case of linear-phase FIR filters, the symmetry in h ( n )  implies that the 
zeros of H ( z )  also exhibit a form of symmetry. In particular, if z~ and z; are a pair 
of complex-conjugate zeros then l / z k  and I /z', are also a pair of complex-conjugate 
zeros (see Sec. 8.2). Consequently, we gain some simplification by forming fourth- 
order sections of the FIR system as follows 

where the coefficients {ckll and (ck2}  are functions of zk. Thus. by combining 
the two pairs of poles to form a fourth-order filter section, we have reduced the 
number of multiplications from six to three (i.e., by a factor of 50%). Figure 7.4 
illustrates the basic fourth-order FJR filter structure. 

F I  7A Fourth-order section in a 
cascade realization of an FIR system. 
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7.2.3 Frequency-Sampling Structurest 

The frequency-sampling realization is an alternative structure for an FIR filter 
in which the parameters that characterize the filter are the values of the desired 
frequency response instead of the impulse response h ( n ) .  To derive the frequency- 
sampling structure. we specify the desired frequency response at a set of equally 
spaced frequencies, namely 

2rr M - 1  
U k  = - (k +a) k = 0 , 1  . . . . ,  - 

2 
M odd 

M 
M 

k = 0 , 1 ,  . . . . - -  I M even 
2 

cr=Oor f 
and solve for the unit sample response h ( n )  from these equally spaced frequency 
specifications. Thus we can write the frequency response as 

M-1 

H ( w )  = x h(n ) r - jw  

and Lhe values of H ( w )  at frequencies wk = (2n/M)(k +a) are simply 

The set of values { H ( k  + a ) )  are called the frequency samples of H(o).  In the case 
where a = 0, ( H ( k ) ]  corresponds to the M-point DFT of { h ( n ) ) .  

It is a simple matter to invert (7.2.9) and express h ( n )  in terms of the fre- 
quency samples. The result is 

When cr = 0, (7.2.10) is simply the IDFT of { H ( k ) ) .  Now if we use (7.2.10) to 
substitute for h(n)  in the z-transform H ( z ) ,  we have 

tThe reader may also refer to Section 8.2.3 for additional discussion of frequency-sampling FIR 
filters. 
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By interchanging the order of the two summations in (7.2.11) and performing 
the summation over the index n we obtain 

Thus the system function H(z)  is characterized by the set of frequency samples 
(H(k + a ) )  instead of ( h ( n ) ] .  

We view this FIR filter realization as a cascade of two filters [i.e., H ( z )  = 
Hl(z)H2(z)j. One is an all-zero filter, or a comb filter, with system function 

Its zeros are located at equally spaced points on the unit circle at 

The second filter with syslem function 

consists of a parallel bank of single-pole filters with resonant frequencies 

Note that the pole locations are identical to the zero locations and that both 
occur at wk = 2 r ( k  + cr) /M,  which are the frequencies at which the desired fre- 
quency response is specified. The gains of the parallel bank of resonant filters 
are simply the complex-valued parameters { H (k + a)). This cascade realization is 
illustrated in Fig. 7.5. ' 

When the desired frequency response characteristic of the FIR filter is nar- 
rowband, most of the gain parameters { H ( k  + a ) )  are zero. Consequently, the 
corresponding resonant filters can be eliminated and only the filters with nonzero 
gains need be retained. The net result is a filter that requires fewer computa- 
tions (multiplications and additions) than the corresponding direct-form realiza- 
tion. Thus we obtain a more efficient realization. 

The frequency-sampling filter structure can be simplified further by exploiting 
the symmetry in H  (k -1- a),  namely, H ( k )  = H* ( M  - k )  for a = 0 and 

These relations are easily deduced from (7.2.9). As a result of this symmetry, a 
pair of single-pole filters can be combined to form a single two-pole filter with 
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Fiure 7 5  Frequency-sampling realization of FIR filter. 

real-valued parameters. Thus for a = 0 the system function H?(:) reduces to 

M  odd 

H ~ ( z )  = - +- A(k)  + ~ ( k ) z - '  
M  even 

1 - 2-' 1 + Z-' ,=, 1 - 2 ~ ~ ( 2 ~ k / M ) i - '  + zb2 
(7.2.15) 
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where, by definition, 

Similar expressions can be obtained for a = i. 
Example 7.2.1 

Sketch the block diagram for the direct-form realization and the frequency-sampling 
realization of the M = 32, a = 0, linear-phase (symmetric) FIR filter which has 
frequency samples 

Compare the computational complexity of these two structures. 

Solution Since the filter is symmetric. we exploit this symmetry and thus reduce the 
number of multiplications per output point by a factor of 2, from 32 to 16 in the 
direct-form realization. The number of additions per output point is 31. The block 
diagram of the direct realization is illustrated in Fig. 7.6. 

We use the form in (7.2.13) and (7.2.15) for the frequency-sampling realization 
and drop all terms that have zero-gain coefficients (H(k)). The nonzero coefficients 
are H ( k )  and the corresponding pairs are H(M - k ) ,  for k = 0, 1, 2, 3. The block 
diagram of the resulting realization is shown in Fig. 7.7. Since H(0) = I ,  the single- 
pole filter requires no multiplication. The three double-pole filter sections require 
three multiplications each for a total of nine multiplications. The total number of 
additions is 13. Therefore. the frequency-sampling realization of this FIR filter is 
computationally more efficient than the direct-form realization. 

Fire 7.6 Direct-form realization of M = 32 FIR filter. 



Implementation of Discrete-Time Systems Chap. 7 

F i  7.7 Frequency-sampling realization for the FIR filter in Example 72.1. 
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7.2.4 Lattice Structure 

In this section we introduce another FIR filter structure, called the lattice filter or 
lattice realization. Lattice filters are used extensively in digital speech processing 
and in the implementation of adaptive filters. 

Let us begin the development by considering a sequence of FIR filters with 
system functions 

H,,,(z)=A,(z) m = 0 , 1 , 2  , . . . ,  M - 1  (7.2.17) 

where, by definition, A,(z) is the polynomial 
m 

A, ( r )  = 1 + u, (k)z-" m > l  

and A&) = 1.  The unit sample response of the mth filter is h,,,(O) = I and 
h,(k)  = a,,(k), k = 1, 2, . . . , m. The subscript m on the polynomial A,,,(:) denotes 
the degree of the polynomial. For mathematical convenience, we define a,,, (0) = 1 .  

If ( x ( n ) }  is the input sequence to the filter A,,(z) and ( g ( n ) }  is the output 
sequence, we have 

m 

Two direct-form structures of the FIR filter are illustrated in Fig. 7.8. 

Figure 7.8 Direct-fonn realization of the FIR prediction filter. 
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In Chapter 11, we show that the FIR structures shown in Fig. 7.8 are inti- 
mately related with the topic of linear prediction, where 

is the one-step forward predicted value of x(n) ,  based on rn past inputs, and 
y(n)  = x(n)  - i ( n ) ,  given by (7.2.19), represents the prediction error sequence. 
In this context, the top filter structure in Fig. 7.8 is called a prediction error filter. 

Now suppose that we have a filter of order m = 1. The output of such a filter 
is 

y(n) = x(n)  + c r ~  ( l ) x ( n  - 1) (7.2.21) 

This output can also be obtained from a first-order or single-stage lattice filter, 
illustrated in Fig. 7.9, by exciting both of the inputs by x ( n )  and selecting the output 
from the top branch. Thus the output is exactly (7.2.21), if we select K I  = a, (1). 
The parameter K1 in the lattice is called a reflection coefficient and it is identical 
to the reflection coeficient introduced in the Schiir-Cohn stability test described 
in Section 3.6.7. 

Next, let us consider an FIR filter for which rn = 2. In this case the output 
from a direct-iorm structure is 

By cascading two lattice stages as shown in Fig. 7.10, it is possible to obtain the 
same output as (7.2.22)& Indeed, the output from the first stage is 

The output from the second stage is 

Figuc 7.9 Single-stage lattice filter. 
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Figre 7.10 Two-stage lattice filter. 

If we focus our attention on f2(n) and substitute for fi(n) and gl(n - 1) from 
(7.2.23) into (7.2.24), we obtain 

Now (7.2.25) is identical to the output of the direct-form FIR filter as given by 
(7.2.22), if we equate the coefficients, that is, 

a2(2)=K2 cr2(l)=K1(1+K2) (7.2.26) 
or, equivalently, 

a2(1) K2=ar(2)  XI=- (7.2.27) 
1 + cr2(2) 

Thus the reflection coefficients K1 and K2 of the lattice can be obtained from the 
coefficients {a,(k)) of the direct-form realization. 

By continuing this process. one can easily demonstrate by induction, the 
equivalence between an rnth-order direct-form FIR filter and an m-order or m- 
stage lattice filter. The lattice filter is generally described by the following set of 
order-recursive equations: 

g,(n) = K, f,-r(n) +g,-,(n - I )  rn = 1,2, ..., M - 1 (7.2.30) 

Then the output of the (M - 1)-stage filter corresponds to the output of an (M- 1)- 
order FIR filter, that is, 

y(n)  = fu-l(n) 
Figure 7.11 illustrates an (M - 1)-stage lattice filter in block diagram form along 
with a typical stage that shows the computations specified by (7.2.29) and (7.2.30). 

As a consequence of the equivalence between an FIR filter and a lattice filter, 
the output f, ( n )  of an m-stage lattice filter can be expressed as 

m 

f. (n) = a,,, (k )x (n  - k) ~ ( 0 )  = 1 (7.2.31) 
k* 

Since (7.2.31) is a convolution sum, it follows that the r-transform relationship is 
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JM - 2ln) 

(M - I)" 

Figure 7.11 (M - 1)-stage lattice filter. 

or, equivalently, 

The other output component from the lattice, namely, gm(n), can also be 
expressed in the form of a convolution sum as in (7.2.31), by using another set 
of coefficients, say {Bm(k)}. That this in fact is the case, becomes apparent from 
observation of (7.2.23) and (7.2.24). From (7.2.23) we note that the filter coeffi- 
cients for the lattice filter that produces fi(n) are {I, K1) = {1, crl(l)) while the 
coefficients for'the filter with output gl (n) are (K1, 1) = {al  (1). I]. We note that 
these two sets of coefficients are in reverse order. If we consider the two-stage 
lattice filter, with the output given by (7.2.24), we find that gz(n) can be expressed 
in the form 

Consequently, the filter coefficients are {a2(2), a2(I), I}, whereas the coefficients 
for the filter that produces the output f2(n) are {I, a2(I), cr2(2)}. Here, again, the 
two sets of filter coefficients are in reverse order. 

From this development it follows that the output g,(n) from an m-stage 
lattice filter can be expressed by the convolution sum of the form 

m 
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where the filter coefficients {/Irn ( k ) }  are associated with a filter that produces 
f,(n) = y (n)  but operates in reverse order. Consequently, 

with /lnr(m) = 1. 
In the context of linear prediction, suppose that the data x(n) ,  x(n - I), . . . , 

x ( n  - m + 1 )  is used to linearly predict the signal value x(n - m )  by use of a linear 
filter with coefficients {-/l,,,(k)}. Thus the predicted value is 

Since the data are run in reverse order through the predictor, the prediction per- 
formed in (7.2.35) is called backward prediction. In  contrast, the FIR filter with 
system function A,(z) is called a forward predictor. 

In the z-transform domain, (7.2.33) becomes 

or, equivalently, 

where Bm(z )  represents the system function of the FIR filter with coefficients 
(Bm(k ) } ,  that is, 

m 

Since /Im ( k )  = a, (m - k ) ,  (7.2.38) may be expressed as 

The relationship in (7.2.39) implies that the zeros of the FIR filter with system 
function Bm(z)  are simply the reciprocals of the zeros of A,(z) .  Hence B,,,(z) is 
called the reciprocal or reverse polynomial of A,(z) .  

Now that we have established these interesting relationships between the 
direct-form FIR filter and the lattice structure, let us return to the recursive lattice 
equations in (7.2.28) through (72.30) and transfer them to the zdomain. Thus 
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we have 

Fo(z) = Go(z) = Xtz) 

If we divide each equation by X(z), we obtain the desired results in the form 

Ao(z) = Bo(z) = 1 (7.2.43) 

A m ( z ) = A m - l ( ~ ) + ~ m ~ - l ~ m - l ( ~ )  m = 1 , 2  ,..., M-1 (7.2.44) 

B m ( r ) = K m A , - l ( z ) + z - ' ~ , - l ( z )  m = 1 , 2  ,..., M - 1  (7.2.45) 

Thus a lattice stage is described in the z-domain by the matrix equation 

Before concluding this discussion, it is desirable to develop the relationships 
for converting the lattice parameters [Ki], that is, the reflection coefficients, to the 
direct-form filter coefficients (am(k)], and vice versa. 

Conversion of lattice coefficients to direct-form filter coefficients. The 
direct-form FIR filter coefficients {a,(k)] can be obtained from the lattice coeffi- 
cients {Ki] by using the following relations: 

The solution is obtained recursively, beginning with rn = 1. Thus we obtain a 
sequence of (M - 1) FIR filters, one for each value of m .  The procedure is best 
illustrated by means of an example. 

Example 7.2.2 

Given a three-stage lattice filter with coefficients K1 = i, Kz = i, K3 = 5, determine 
the FIR 6lter coefficients for the direct-form structure. 

Solotion We solve the problem recursively, beginning with (7.2.48) for rn = 1. Thus 
we have 

Hence tbe coefficients of an FIR Nter corresponding to tbe single-stage lattice are 
ql(0) = 1, al (I)  = K1 = i. Since B,(z) is the reverse polynomial of A,(z), we have 
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Next we add the second stage to the lattice. For m = 2, (7.2.48) yields 

Hence the FIR filter parameters corresponding to the two-stage lattice are m ( 0 )  = 1,  
q(1) = i, a 2 ( 2 )  = i. Also. 

Finally, the addition of the third stage to the lattice results in the polynomial 

A ~ ( z )  = AZ(:)  + K C - I  B ~ ( L )  

- - 1 + g - - 1  + i 2 - 2  + $4 
24 ' 

Consequently. the desired direct-form FIR filter is characterized by the coefficients 

a3(0 )=1  a3(1)=$ r r 3 ( 2 ) = :  u 3 ( 3 ) = $  

As this example illustrates, the lattice structure with parameters K 1 ,  K 2 , .  . . . 
K,, corresponds to a class of m direct-form FIR filters with system functions A ,  (:). 

A?(:), . . . , A,,(z).  It is interesting to note that a characterization of this class of ni 
FIR filters in direct form requires m(m + 1)/2 filter coefficients. In contrast. the 
lattice-form characterization requires only the m reflection coefficients (K , ) .  The 
reason that the lattice provides a more compact representation for the class of nl 
FIR filters is simply due to the fact that the addition of stages to the lattice does 
not alter the parameters of the previous stages. On the other hand, the addition 
of the mth stage to a lattice with (m - 1) stages results in a FIR filter with system 
function Am(z) that has coefficients totally different from the coefficients of the 
lower-order FIR filter with system function A,-1 (2). 

A formula for determining the filter coefficients [a,(k)} recursively can be 
easily derived from polynomial relationships in (7.2.47) through (7.2.49). From the 
relationship in (7.2.48) we have 

By equating the coefficients of equal powers of 2-I  and recalling that u,(O) = 1 
for m = 1, 2, . . . , M - 1, we obtain the desired recursive equation for the FIR filter 
coefficients in the form 
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We note that (7.2.51) through (7.2.53) are simply the Levinson-Durbin recursive 
equations given in Chapter 11. 

Conversion of direct-form FIR filter coefficients to lattice coefficients. 
Suppose that we are given the FIR coefficients for the direct-form realization or, 
equivalently, the polynomial A,( z ) ,  and we wish to determine the corresponding 
lattice filter parameters { K , ) .  For the m-stage lattice we immediately obtain the 
parameter K ,  = crm(m). To obtain Km-1 we need the polynomials A,- l (z)  since, 
in general, K ,  is obtained from the polynomial A, ( 2 )  for m = M  - 1, M - 2 ,  . . . -1. 
Consequently, we need to compute the polynomials A, (2) starting from m = M - 1 
and "stepping down" successively to m = 1. 

The desired recursive relation for the polynomials is easily determined from 
(7.2.44) and (7.2.45). We have 

If we solve for A,-! ( z ) ,  we obtain 

A",(z) - KmBm(z) 
Am-1 (2) = m =  M - 1 , M - 2  ..... 1 (7.2.54) 

1 - K,S, 

which is just the step-down recursion used in the Schiir-Cohn stability test de- 
scribed in Section 3.6.7. Thus we compute all lower-degree polynomials Am(z)  
beginning with AM-l  ( z )  and obtain the desired lattice coefficients from the rela- 
tion Km = cr,(m). We observe that the procedure works as long as ]KmI # 1 for 
m = l , 2  ,..., M - 1 .  

Example 7.23 

Determine the lattice coefficients corresponding to the FIR filter with system function 

Solution First we note that K3 = a3(3) = 5 .  Furthermore. 

The step-down relationship in (7.2.54) with m = 3 yields 

Hence K2 = a2(2) = 4 and B2(z) = + at-] + Z-I. By repeating the stepdown 
recursion in (7.2.51), we obtain 

Hence K1 = al (1) = :. 



Sec. 7.3 Structures for HR Systems 51 9 

From the step-down recursive equation in (7.2.54), it is relatively easy to 
obtain a formula for recursively computing K,, beginning with m = M - 1 and 
stepping down to rn = 1. For m = M - 1, M - 2, . . . , 1  we have 

which is again the recursion we introduced in the Schiir-Cohn stability test. 
As indicated above, the recursive equation in (7.2.56) breaks down if any 

lattice parameters IKmj = 1. If this occurs, it is indicative of the fact that the 
polynomial A,- , ( z )  has a root on the unit circle. Such a root can be factored out 
from A,-l(z) and the iterative process in (7.2.56) is carried out for the reduced- 
order system. 

7.3 STRUCTURES FOR flR SYSTEMS 

In this section we consider different IIR systems structures described by the dif- 
ference equation in (7.1.1) or, equivalently, by the system function in (7.1.2). Just 
as in the case of FIR systems, there are several types of structures or realizations, 
including direct-form structures, cascade-form structures, lattice structures, and 
lattice-ladder structures. In addition, IIR systems lend themselves to a parallel- 
form realization. We begin by describing two direct-form realizations. 

7.3.1 Direct-Form Structures 

The rational system function as given by (7.1.2) that characterizes an IIR system 
can be viewed as two systems in cascade, that is, 

H ( z )  = H ~ ( z ) H ~ ( z )  (7.3.1) 

where HI (z) consists of the zeros of H ( z ) ,  and H t ( z )  consists of the poles of H ( z ) ,  

and 
1 

H2(z)  = N 

In Section 2.5.1 we describe two different direct-form realizations, character- 
ized by whether Hl ( z )  precedes H2(z), or vice versa. Since Hl ( 2 )  is an FIR system, 
its direct-form realization was illustrated in Fig. 7.1. By attaching the all-pole 
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I k 
I I I I 

' - - - - - - - - - - - - - - _ - - - - - - - - - - - - - - #  ( - - - _ - - - - - - - - - - - _ _ _ - - - - - - - - - - - #  

All-zero system All-pole system 

F i r e  7.U Direct form I realization. 

system in cascade with HI ( z ) ,  we obtain the direct form I realization depicted in 
Fig. 7.12. This realization requires M + N + 1 multiplications, M + N additions, 
and M + N + l memory locations. 

If the all-pole filter H2(z) is placed before the all-zero filter H l ( z ) ,  a more 
compact structure is obtained as illustrated in Section 2.5.1. Recall that the differ- 
ence equation for the all-pole filter is 

Since w(n) is the input to the aI1-zero system, its output is 

We note that both (7.3.4) and (7.3.5) involve delayed versions of the sequence 
( ~ ( n ) ) .  Consequently, only a single delay Iine or a singIe set of memory locations 
is required for storing the past vaIues of {w(n)) .  The resulting structure that 
implements (7.3.4) and (7.3.5) is called a direct form I1 realization and is depicted 
in Fig. 7.13. This structure requires M + N + 1 multiplications, M + N additions, 
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Figure 7.13 Direct form I1 realization (N = M). 

and the maximum of {M, N} memory locations. Since the direct form I1 realization 
minimizes the number of memory locations, it is said to be canonic. However, we 
should indicate that other IIR structures also possess this property, so that this 
terminology is perhaps unjustified. 

The structures in Figs. 7.12 and 7.13 are both called "direct form" realiza- 
tions because they are obtained directly from the system function H ( z )  without 
any rearrangement of H ( z ) .  Unfortunately, both structures are extremely sensi- 
tive to parameter quantization, in general, and are not recommended in practical 
applications. This topic is discussed in detail in Section 7.6, where we demonstrate 
that when N is large, a small change in a filter coefficient due to parameter quan- 
tization, results in a iarge change in the location of the poles and zeros of the 
system. 

7.39 Signal Flow Graphs and Transposed Structures 

A signal flow graph provides an alternative,\but equivalent, graphical represen- 
tation to a block diagram structure that we have been using to illustrate various 
system realizations. The basic elements of a flow graph are branches and nodes. 
A signal flow graph is basically a set of directed branches that connect at nodes. 
By definition, the signal out of a branch is equal to the branch gain (system func- 
tion) times the signal into the branch. Furthermore, the signal at a node of a 
flow graph is equal to the sum of the signals from all branches connecting to the 
node. 

To illustrate these basic notions, let us consider the two-pole and two-zero 
IIR system depicted in block diagram form in Fig. 7.14a. The system block 
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Source node Sink d e  
x(n) 1 2 bo 3 f i n )  

Fire 7.14 Second-order filter StNCtUre (a) and its signal Row graph (b). 

diagram can be converted to the signal flow graph shown in Fig. 7.14b. We note 
that the flow graph contains five nodes labeled 1 through 5. Two of the nudes 
(1,3) are summing nodes (i.e., they contain adders), while the other three nodes 
represent branching points. Branch transmittances are indicated for the branches 
in the flow graph. Note that a delay is indicated by the branch transmittance 
z-'. When the branch transmittance is unity, it is left unlabeled. The input to 
the system originates at a source node and the output signal is extracted at a sink 
node. 

We observe that the signal flow graph contains the same basic idonnation 
as the block diagram realization of the system. The only apparent difference is 
that both branch points and adders in the block diagram are represented by nudes 
in the signal flow graph. 

The subject of linear signal flow graphs is an important one in the treatment 
of networks and many interesting results are available. One basic notion involves 
the transformation of one flow graph into another without changing the basic 
input-output relationship. Specifically, one technique that is useful in deriving 
new system structures for Fm and IIR systems stems from the transposition or 
flow-graph reversal theorem. This theorem simply states that if we reverse the 
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directions of all branch transmittances and interchange the input and output in 
the flow graph, the system function remains unchanged. The resulting structure is 
called a transposed structure or a transposed form. 

For example, the transposition of the signal flow graph in Fig. 7.14b is illus- 
trated in Fig. 7.15a. The corresponding block diagram realization of the transposed 
form is depicted in Fig. 7.15b. It is interesting to note that the transposition of the 
original flow graph resulted in branching nodes becoming adder nodes, and vice 
versa. In Section 7.5 we provide a proof of the transposition theorem by using 
state-space techniques. 

Let us apply the transposition theorem to the direct form I1 structure. First, 
we reverse all the signal flow directions in Fig. 7.13. Second, we change nodes 
into adders and adders into nodes, and finatly, we interchange the input and the 
output. These operations result in the transposed direct form II structure shown 
in Fig. 7.16. This structure can be redrawn as in Fig. 7.17, which shows the input 
on the left and the output on the right. 

F p  7.15 Signal Bow graph of 
transposed structure (a) and its 
realization (b).  
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F i r e  7.16 
structure. 

Transposed direct form I1 

The transposed direct form I1 realization that we have obtained can be de- 
scribed by the set of difference equations 

Without loss of generality, we .have assumed that M = N in writing equations. It 
is also clear from observation of Fig. 7.17 that this set of difference equations is 
equivalent to the single difference equation 
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Feure 7.17 
structure. 

Transposed direct form I1 

Finally, we observe that the transposed direct form I1 structure requires the same 
number of multiplications, additions, and memory locations as the original direct 
form I1 structure. 

Although our discussion of transposed structures has been concerned with 
the general form of an IIR system, it is interesting to note that an FIR system, 
obtained from (7.3.9) by setting the ak = 0, k = 1, 2, . . . , N, also has a transposed 
direct form as illustrated in Fig. 7.18. This structure is simply obtained from 
Fig. 7.17 by setting ak = 0, k = 1, 2 , .  . . , N. This transposed form realization may 

F i  7.18 Transposed FIR strumre. 
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be described by the set of difference equations 

In summary, Table 7.1 illustrates the direct-form structures and the corresponding 
difference equations for a basic two-pole and two-zero IIR system with system 
function 

This is the basic building block in the cascade realization of high-order IIR systems, 
as described in the foIlowing section. Of the three direct-form structures given in 
Table 7.1, the direct form I1 structures are preferable due to the sma1ler number 
of memory locations required in their implementation. 

Finally, we note that in the z-domain, the set of difference equations describ- 
ing a linear signal flow graph constitute a linear set of equations. Any rearrange- 
ment of such a set of equations is equivaIent to a rearrangement of the signal flow 
graph to obtain a new structure, and vice versa. 

7.3.3 Cascade-Form Structures 

Let us consider a high-order IIR system with system function given by (7.1.2). 
Without loss of generality we assume that N 2 M. The system can be factored 
into a cascade of second-order subsystems, such that H ( z )  can be expressed as 

where K is the integer part of (N + 1)/2. Hk(z) has the genera1 form 

As in the case of FIR systems based on a cascade-form realization, the parameter 
bo can be distributed equally among the K filter sections so that bo = blobm. . . bKo. 

The coefficients {aki) and {bkilin the second-order subsystems are real. This 
implies that in forming the second-order subsystems or quadratic factors in (7.3.15), 
we should group together a pair of complex-conjugate poles and we should group 
together a pair of complex-conjugate zeros. However, the pairing of two complex- 
conjugate poles with a pair of complex-conjugate zeros or real-valued zeros to form 
a subsystem of the type given by (7.3.15), can be done arbitrarily. Furthermore, 
any two real-valued zeros can be paired together to form a quadratic factor and, 
likewise, any two real-valued poles can be paired together to form a quadratic 
factor. Consequently, the quadratic factor in the numerator of (7.3.15) may consist 



TABLE 7.1 SOME SECOND-ORDER MODULES FOR DISCRETE-TIME SYSTEMS 

Structure lrnplcmentation Equations System Function 
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of either a pair of real roots or a pair of complex-conjugate roots. The same 
statement applies to the denominator of (7.3.15). 

If N > M i  some of the second-order subsystems have numerator coefficients 
that are zero, that is, either bk2 = 0 or bkl = 0 or both bk2 = bkl = 0 for some k. Fur- 
thermore, if N is odd, one of the subsystems, say H k ( z ) ,  must have ak2 = 0, SO that 
the subsystem is of first order. To preserve the modularity in the implementation 
of H ( z ) ,  it is often preferable to use the basic second-order subsystems in the cas- 
cade structure and have some zero-valued coefficients in some of the subsystems. 

Each of the second-order subsystems with system function of the form (7.3.15) 
can be realized in either direct form I, or direct form 11, or transposed direct form 
11. Since there are many ways to pair the poles and zeros of H(z) into a cascade 
of second-order sections, and several ways to order the resulting subsystems, it is 
possible to obtain a variety of cascade realizations. Although all cascade realiza- 
tions are equivalent for infinite precision arithmetic, the various realizations may 
differ significantly when implemented with finite-precision arithmetic. 

The general form of the cascade structure is illustrated in Fig. 7.19. If we 
use the direct form I1 structure for each of the subsystems, the computational 
algorithm for realizing the IIR system with system function H ( z )  is described by 
the following set of equations. 

iilgmre 7.19 Cascade structure of second-otder systems and a realization of each 
second-order section. 
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Thus this set of equations provides a complete description of the cascade structure 
based on direct form I1 sections. 

7.3.4 Parallel-Form Structures 

A parallet-form realization of an IIR system can be obtained by performing a 
partial-fraction expansion of H ( : ) .  Without loss of generality, we again assume 
that N 2 M and that the poles are distinct. Then, by performing a partial-fraction 
expansion of H ( z ) ,  we obtain the result 

where { p k }  are the poles, { A k  tare the coefficients (residues) in the partial-fraction 
expansion, and the constant C is defined as C = b N / a N .  The structure imptied 
by (7.3.20) is shown in Fig. 7.20. It consists of a parallel bank of single-pole 
filters. 

In general, some of the poles of H ( z )  may be complex valued. In such a case. 
the corresponding coefficients Al are also complex valued. To avoid multiplica- 
tions by complex numbers. we can combine pairs of complex-conjugate poles to 
form two-pole subsystems. In addition, we can combine. in an arbitrary manner, 

E i  7 3  Parallel structure of IIR system. 



Implementation of Discrete-Time Systems Chap. 7 

F i r e  721 Structure of second-order section in a parallel IIR system realization. 

pairs of real-valued poles to form two-pole subsystems. Each of these subsystems 
has the form 

where the coefficients (bk,) and ( a k i j  are real-valued system parameters. The over- 
all function can now be expressed as 

where K is the integer part of ( N  + I)/?. When N is odd, one of the Hk (i) is really 
a single-pole system (i.e., bkl = a k ~  = 0).  

The individual second-order sections which are the basic building blocks for 
H ( z )  can be implemented in either of the direct forms or in a transposed direct 
form. The direct form I1 structure is illustrated in Fig. 7.21. With this structure as 
a basic building block, the parallel-form realization of the FIR system is described 
by the following set of equations 

~ ( n )  = C x ( n )  + C y k ( n )  
krl 

Example 7.3.1 

Determine the cascade and parallel realizations for the system described by the system 
function 
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Solution The cascade realization is easily obtained from this form. One possible 
pairing of poles and zeros is 

and hence 

H(z)  = ~ O H I ( Z ) H ~ ( Z )  

The cascade realization is depicted in Fig. 7.22a. 
To obtain the parallel-form realization, H(z) must be expanded in partial frac- 

tions. Thus we have 

where A ! .  A2,  A 3 ,  and A; are to be determined. After some arithmetic we find that 

A1 = 2.93, A2 = -17.68, A3 = 12.25 - j14.57. A; = 12.25 + j14.57 

upon recombining pairs of poles. we obtain 

The parallel-form realization is illustrated in Fig. 7.22b. 

7.3.5 Lattice and Lattice-Ladder Structures for IIR 
Systems 

In Section 7.2.4 we developed a lattice filter structure that is equivalent to an FIR 
system. In this section we extend the development to IIR systems. 

Let us begin with an all-pole system with system function 

The direct form realization of this system is illustrated in Fig. 7.23. The difference 
equation for this IIR system is 

It is interesting to note that if we interchange the roles of input and output 
[i.e., interchange x ( n )  with y ( n )  in (7.3.27)], we obtain 

N 

x ( n )  = - I o N ( k ) x ( n  - k )  + y(n) 
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Figure 7.22 Cascade and parallel realizations for the system in Example 7.11. 

or, equivalently, 

We note that the equation in (7.3.28) describes an FIR system having the 
system function H ( z )  =  AN(^), while the system described by the difference eqUBUB 
tion in (7.3.27) represents an IIR system with system function H ( r )  = I /AN(Z) *  
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Figure 7.23 Direct-form realization of an all-pole system. 

One system can be obtained from the other simply by interchanging the roles of 
the input and output. 

Based on this observation, we shall use the all-zero (FIR) lattice described in 
Section 7.2.4 to obtain a lattice structure for an all-pole IIR system by interchanging 
the roles of the input and output. First, we take the all-zero lattice filter illustrated 
in Fig. 7.11 and then redefine the input as 

x ( n )  = fiv(n> (7.3.29) 
and the output as 

.v(n) = /o(n) (7.3.30) 

These are exactly the opposite of the definitions for the all-zero lattice filter. These 
definitions dictate that the quantities { / , ( n ) )  be computed in descending order [i.e., 
fN(n) ,  JN-,(n), ...I. This computation can be accomplished by rearranging the 
recursive equation in (7.2.29) and thus solving for (n)  in terms of f,(n), that is, 

fm- l (n )=  f m ( n ) - K m g m - ~ ( n - 1 )  m =  N , N - 1 ,  ..., 1 

The equation (7.2.30) for g, (n)  remains unchanged. 
The result of these changes is the set of equations 

f ~ ( n )  = x(n> (7.3.31) 

fm-l(n) = f,(n) - K,g, -~(n - 1 )  m = N ,  N - 1 , .  . . , 1  (7.3.32) 

gm(n)  = K, fm-l(n) + g,-l(n - 1) m = N ,  N - 1 , .  . . , 1  (7.3.33) 

y(n) = fo(n) = go(n) (7.3.34) 

which correspond to the structure shown in Fig. 7.24. 

Flpre 724 tatticc Jtructure for an all-pole IIR system. 
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To demonstrate that the set of equations (7.3.31) through (7.3.34) represent 
an all-pole ITR system, let us consider the case where N = 1. The equations 
reduce to 

Furthermore, the equation for gt(n) can be expressed as 

We observe that (7.3.35) represents a first-order all-pole IIR system while (7.3.36) 
represents a first-order FIR system. The pote is a result of the feedback introduced 
by the solution of the [ f , (n) )  in descending order. This feedback is depicted in 
Fig. 7.25a. 

Reverse 

Flyc 7.25 Singe-pole and twcpole lattice system. 
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Next, let us consider the case N = 2. which corresponds to the structure in 
Fig. 7.25b. The equations corresponding to this structure are 

After some simple substitutions and manipulations 'we obtain 

Clearly. the difference equation in (7.3.38) represents a two-pole IJR system, and 
the relation in (7.3.39) is the input-output equation for a two-zero FIR system. 
Note that the coefficients for the FIR system are identical to those in the IIR 
system except that they occur in reverse order. 

In general, these conc~usions hold for any N. Indeed. with the definition of 
A,,(:) given in (7.2.32). the system function for the all-pole IIR system is 

Similarly, the system function of the all-zero (FIR) system is 

where we used the previously established relationships in (7.2.36) through (7.2.42). 
Thus the coefficients in the FIR system Hb(z)  are identical to the coefficients in 
Am(z) ,  except that they occur in reverse order. 

It is interesting to note that the all-pole lattice structure has an all-zero path 
with input go(n) and output g ~ ( n ) ,  which is identical to its counterpart all-zero 
path in the all-zero lattice structure. The polynomial B,(z), which represents the 
system function of the all-zero path common to both lattice structures, is usually 
called the backward system funcrion, because it provides a backward path in the 
all-pole lattice structure. 

From this discussion the reader should observe that the all-zero and all-pole 
lattice structures are characterized by the same set of lattice parameters, namely, 
K1, K2, . . . , KN. The two lattice structures differ only in the interconnections of 
their signal flow graphs. Consequently, the algorithms for converting between the 
system parameters {a,(k)} in the direct form realization of an FIR system, and the 
parameters of its lattice counterpart apply as well to the all-pole structure. 
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We recall that the roots of the polynomial AN(z)  lie inside the unit circle if 
and only if the lattice parameters I K,I < 1 for all m = 1,2, . . . . N. Therefore, the 
all-pole lattice structure is a stable system if and only if its parameters IK,] < 1 
for all m. 

In practical applications the all-pole lattice structure has been used to model 
the human vocal tract and a stratified earth. In such cases the lattice parameters, 
{ K , )  have the physical significance of being identical to reflection coefficients in 
the physical medium. This is the reason that the lattice parameters are often called 
reflection coeficients. In such applications, a stable model of the medium requires 
that the reflection coefficients, obtained by performing measurements on output 
signals from the medium, be less than unity. 

The atl-pole lattice provides the basic building block for lattice-type structures 
that implement IIR systems that contain both poles and zeros. To develop the 
appropriate structure, let us consider an IIR system with system function 

where the notation for the numerator polynomial has been changed to avoid con- 
fusion with our previous development. Without loss of generality, we assume that 
N L M. 

In the direct form I1 structure, the system in (7.3.42) is described by the 
difference equations 

Note that (7.3.43) is the input-output of an all-pole IIR system and that (7.3.44) is 
the input-output of an all-zero system. Furthermore, we observe that the output of 
the all-zero system is simply a linear combination of delayed outputs from the all- 
pole system. This is easily seen by observing the direct form I1 structure redrawn 
as in Fig. 7.26. 

Since zeros result from forming a linear combination of previous outputs we 
can carry over this observation to construct a pole-zero IIR system using the all- 
pole lattice structure as the basic building block. We have already observed that 
g,(n) is a linear combination of present and past outputs. In fact, the system 
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Figure 736 Direct form I1 realization of IIR system. 

is an all-zero system. Therefore, any linear combination of { g , ( n ) )  is also an 
all-zero system. 

Thus we begin with an all-pole lattice structure with parameters K,, 1 5 
rn ( N, and we add a ladder part by taking as the output a weighted linear 
combination of (8, ( n ) )  . The result is a pole-zero IIR system which has the lattice- 
ladder structure shown in Fig. 7.27 for M = N. Its output is 

where (v,}  are the parameters that determine the zeros of the system. The system 

Figure 7.27 Lattice-ladder structure for the r e d i d o n  of a pole-zero system. 
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function corresponding to (7.3.45) is 

Since X ( 2 )  = FN ( 2 )  and Fo(z) = Go(z) ,  (7.3.46) can be written as 

- - nl=0 

AH(:) 
If we compare (7.3.41) with (7.3.47), we conclude that 

This is the desired relationship that can be used to determine the weighting coef- 
ficients (v,]. Thus, we have demonstrated that the coefficients of the numerator 
polynomial C M ( z )  determine the ladder parameters {urn) .  whereas the coefficients 
in the denominator polynomial A N ( z )  determine the lattice parameters ( K , ) .  

Given the polynomials C M ( z )  and A N ( z ) ,  where N 2 M, the parameters of 
the all-pole lattice are determined first, as described previously. by the conver- 
sion algorithm given in Section 7.2.4, which converts the direct form coefficients 
into lattice parameters. By means of the step-down recursive relations given by 
(7.2.54), we obtain the lattice parameters (K,) and the polynomials B , ( z ) ,  m = 1, 
2, . . . ,  N. 

The ladder parameters are determined from (7.3.481, which can be expressed 
as 

m-1 

or, equivalently, as 

C,(Z)  = C,-I (z) + u,,, B, ( z )  (7.3.50) 

Thus C,(z)  can be computed recursively from the reverse polynomials B, ( z ) ,  m = 
1,2,. . . , M. Since Bm(rn) = 1 for all rn, the parameters v,, m = 0, 1, . . . , M can be 
determined by first noting that 
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Then, by rewriting (7.3.50) as 

and running this recursive relation backward in rn (i.e., rn = M, M - 1, . . , ,2), we 
obtain cm(m) and therefore the ladder parameters according to (7.3.51). 

The lattice-ladder filter structures that we have presented require the min- 
imum amount of memory but not the minimum number of multiplications. Al- 
though lattice structures with only one multiplier per lattice stage exist, the two 
multiplier-per-stage lattice that we have described, is by far the m a t  widely used in 
practical applications. In conclusion, the modularity, the built-in stability charac- 
teristics embodied in the coefficients (K,,,], and its robustness to finite-word-length 
effects make the lattice structure very attractive in many practical applications, 
including speech processing systems, adaptive filtering, and geophysical signal pro- 
cessing. 

7.4 STATE-SPACE SYSTEM ANALYSIS AND STRUCTURES 

Up to this point our treatment of linear time-invariant systems has been limited 
to an inpur-ourpur or external description of the characteristics of the system. Zn 
other words, the system was characterized by mathematical equations that relate 
the input signal to the output signal. In this section we introduce the basic concepts 
in the state-space description of linear time-invariant causal systems. Although the 
stare-space or internal description of the system still involves a relationship between 
the input and output signals, it also involves an additional set of variables, called 
slate variables. Furthermore, the mathematical equations describing the system, 
its input, and its output are usually divided into two parts: 

1. A set of mathematical equations relating the state variables to the input 
signal. 

2 A second set of mathematical equations relating the state variables and the 
current input to the output signal. 

The state variables provide information about all the internal signals in the 
system. As a result, the state-space description provides a more detailed descrip- 
tion of the system than the input-output description. Although our treatment of 
state-space analysis is confined primarily to single input-single output linear time- 
invariant causal systems, the state-space techniques can also be applied to non- 
linear systems, time-variant systems, and multiple input-multiple output systems. 
In fact, it is in the characterization and analysis of multiple input-multiple output 
systems that the power and importance of state-space methods are clearly evident. 

Both input+utput and state-variable descriptions of a system are useful in 
practice. The description we use depends on the problem, the available informa- 
tion, and the questions to be answered. In our presentation, the emphasis is on 
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the use of state-space techniques in system analysis, and in the development of 
state-space structures for the realization of discrete-time systems. 

7.4.1 State-Space Descriptions of Systems Characterized 
by Dtfference Equations 

As we have already observed, the determination of the output of a system requires 
that we know the input signal and the set of initial conditions at the time the input 
is applied. If a system is not relaxed initially, say at time no, then knowledge of 
the input signal x ( n )  for n 2 no is not sufficient to uniquely determine the output 
y ( n )  for n 1 no. The initial conditions of the system at n = no must also be known 
and taken into account. This set of initial conditions is called the state of the 
system at n = no. Hence we define the state of a system at time no as the amount of 
informarion that must be provided ar rime no, which, together with the input signal 
x ( n )  for n 2 no, uniquely determine the ourput of the system for all n > no. 

From this definition we infer that the concept of state Ieads to a decompo- 
sition of a system into two parts, a part that contains memory, and a memoryless 
component. The information stored in the memory component constitutes the set 
of initial conditions and is called the state of the system. The current output of the 
system then becomes a function of the current value of the input and the current 
state. Thus, to determine the output of the system at a given time, we need the 
current value of the state and the current input. Since the current value of the 
input is available, we only need to provide a mechanism for updating the state of 
the system recursively. Consequently, the state of the system at time no + 1 should 
depend on the state of the system at time no and the value of the input signal x(n)  
at n = no. 

The following example illustrates the approach in formulating a state-space 
description of a system. Let us consider a linear time-invariant causal system 
described by the difference equation 

The direct form I1 realization for the system is shown in Fig. 7.28. 
As state variables, we use the contents of the system memory registers, wunt- 

ing them from the bottom, as shown in Fig. 7.28. We recall that the output of a 
delay element represents the present value stored in the register and the input 
represents the next value to be stored in the memory. Consequently, with the aid 
of Fig. 7.28, we can write 
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Figure 738 Direct iorm I 1  realization oi system described by the difierence equa- 
tion in (7.5.1). 

it is interesting to note that the state-variable formulation for the third-order 
system of (7.4.1) involves three first-order difference equations given by (7.4.2). In 
general, an nth-order system can be described by n first-order difference equations. 

The output equation, which expresses y (n)  in terms of the state variables and 
the present input value x ( n ) ,  can also be obtained by referring to Fig. 7.28. We have 

y ( n )  = b o q ( n  + 1) + b3vl ( n )  + 6 2 ~ 2 ( n )  + bl v3 (n)  

We can eliminate v3(n + 1)  by using the last equation in (7.4.2). Thus we obtain 
the desired output equation 

If we put (7.4.2) and (7.4.3) into matrix form we have 

and 

y (n)  = [(h - boo,) (h - boa21 ( b ~  - bonl)] [ ~ ~ ~ ~ ) ) l  + box(n) (7.4.5) 
L v3(n) J 

The equations (7.4.4) and (7.4.5) provide a complete description of the sys- 
tem. Furthennore, the variables v l (n ) ,  y ( n ) ,  and v3(n) ,  which summarize all the 
necessary past information, are the stare variables of the system. We also observe 
that as indicated previously, equations (7.4.4) and (7.4.5) split the system into two 
component parts, a dynamic (memory) subsystem and a static (memoryless) sub- 
system. We say that this set of equations provides a state-space description of the 
system. 
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By generalizing the previous example, it can easily be seen that the Nth-order 
system described by 

can be expressed as a linear time-invariant state-space realization by the relations 

State equation 

Output equation 

where the elements of F, q, g, and d are constants (i-e., they do not change as a 
function of the time index n), given by 

- 0  1 0 . .  . 0 
0 0 1 0 .  . . ] q = I"] (7.4.9) 
0 0 . . .  0 1 

, -UN -a,-] - . . - 0 2  -a1 

h ~ - I  - ~ O ~ N - I  

- bl -boal 

Any discrete-time system whose input x(n), output y(n), and state v(n), for 
all n 1 no, are related by the state-space equations above, where F, q, g. and d are 
arbitrary but fixed quantities, will be called linear and time invariant. If at least 
one of the quantities in F, q, g, or d depends on time, the system becomes time 
variant. 

We will refer to (7.4.7) through (7.4.8) as the linear time-invariant state-space 
model, which can be represented by the simple vector-matrix block diagram in 
Fig. 7.29. In this figure the double lines represent vector quantities and the blocks 
represent the vector or matrix coefficients. 

Example 7.4.1 

Determine the state-space equations for the transposed direct form 11 structure shown 
in Fig. 7.30. 

Solution The validity of this structure can be seen if we rewrite (7.4.1) as 
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xln) 

Figure 7.29 General state-space description of a linear time-invariant system. 

Figure 730 State-space realization for the system described by (7.4.1). 

Due to the linearity and time invariance of the system, instead of first delaying the 
signals x(n) and y ( n )  and then computing the terms bkx(n - k) - oky(n - k) as in 
Fig. 7.28, we first compute the terms bkx(n )  - a k y ( n )  and then delay them. 

If we use the state variables indicated in Fig. 7.30. we obtain 

(7.4.10) 

(7.4.1 1) 

The state-space description specified by (7.4.4) and (7.4.5) is known as a type 
I state-space realization, whereas the one described by (7.4.10) and (7.4.11) is 
called a type 2 state-space realization. 

7.49 Solution of the State-Space Equations 

There are several methods for solving the state-space equations. Here we discuss 
a recursive solution which makes use of the fact that the state-space equations are 
a set of linear first-order difference equations. 
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For the N-dimensionaI state-space model 

and given the initial condition v(no), we have for n  > no, 

where F2 represents the matrix product FF and Fq is the product of the matrix F 
and the vector q. If we continue as in the one-dimensional case. we obtain, for 

The matrix F" is defined as the N x N identity matrix, having unity on the 
main diagonal and zeros elsewhere. The matrix F1-J is often denoted as +( i  - j), 
that is, 

+(i - j )  = F'-I  (7.4.15) 

for any positive integers i 2 J. This matrix is called the stare transilion marrix of 
the system. 

The output of the system is obtained by substituting (7.4.14) into (7.4.13). 
The result of this substitution is 

n- l  

y(n) = g 'F-nYv(n~)  + z d ~ - ' - ' ~ x ( k )  + d x ( n )  

From this general result, we can determine the output for two special cases. 
First, the zero-input response of the system is 

On the other hand, the zero-state response is 

Clearly, the N-dimensional state-space system is zero-input linear, zero-state 
linear, and since y ( n )  = yZi(n)  + yzs(n) ,  it is linear. Furthermore, since any system 
described by a linear constant-coefficient difference equation can be put in the 
state-space form, it is linear, in agreement with the results obtained in Section 2.4. 
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7.4.3 Relationships -tween Input-Output and 
Statespace Descriptions 

From our previous discussion we have seen that there is no unique choice for the 
state variables of a causal system. Furthermore, different choices for the state 
vector lead to different structures for the realization of the same system. Hence, 
in general, the input-output relationship does not uniquely describe the internal 
structure of the system. 

To illustrate these assertions, let us consider an N-dimensional system with 
the state-space representation 

Let P be any N x N matrix whose inverse matrix P-' exists. We define a new 
state vector i ( n )  as 

i ( n )  = Pv(n) (7.4.21) 
Then 

v (n )  = P- ' i (n )  (7.4.22) 

If (7.4.19) is premultiplied by P, we obtain 

By using (7.4.22). the state equation above becomes 

Similarly, with the aid of (7.4.22) the output equation (7.4.20) becomes 

Now, we define a new system parameter matrix fi and the vectors ij and as 

4 = F'q (7.4.25) 

g = gp-1 

With these definitions, the state equations can be expressed in terns of the new 
system quantities as 

+(n + 1) = @+(n) + @(n) (7.4.26) 

If we compare (7.4.19) and (7.4.20) with (7.4.26) and (7.4.27), we observe 
that by a simple linear transformation of the state variables, we have generated 
a new set of state equations and an output equation, in which the input x(n) and 
the output y(n) are unchanged. Since there is an infinite number of choices of the 
transformation matrix P, there is also an infinite number of state-space equations 
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and structures for a system. Some of these structures are different, while some 
others are very similar, differing only by scale factors. 

Associated with any state-space realization of a system is the concept of a 
minimal realization. A state-space realization is said to be minimal if the dimension 
of the state space (the number of state variables) is the smallest of all possible 
realizations. Since each state variable represents a quantity that must be stored 
and updated at every time instant n, it follows that a minimal realization is one 
that requires the smallest number of delays (storage registers). We recall that the 
direct form I1 realization requires the smallest number of storages registers, and 
consequentty, a state-space realization based on the contents of the delay elements 
results in a minimal realization. Similarly, an FIR system realized as a direct form 
structure leads to a minimal state-space realization if the values of the storage 
registers are defined as the state variables. On the other hand, the direct form I 
realization of an IIR system does not lead to a minimal realization. 

Now, let us determine the impulse response of the system from the state- 
space realization. The impulse response provides one of the links between the 
input-output and state-space description of systems. 

By definition the impulse response h(n)  of a system is the zero-state re- 
sponse of the system to the excitation x ( n )  = &(n). Hence it can be obtained from 
equation (7.4.16) if we set no = 0 (the time we apply the input), v(0) = 0, and 
x ( n )  = 6(n) .  Thus the impulse response of the system described by (7.4.19) and 
(7.4.20) is given by 

Given a state-space description, it is straightforward to determine the impulse re- 
sponse from (7.4.28). However, the inverse is not easy since there is an infinite 
number of state-space realizations for the same input-output description. 

The transpose system. The transpose of a matrix F is obtained by inter- 
changing its columns and rows, and it is denoted by P. For example, 

Now define the transpose system (7.4.19)-(7.4.20) as 

d ( n  + 1 )  = Fv'(n) + gx(n)  (7.4.29) 

y'(n) = qrv'(n) + dx(n)  (7.4.30) 

According to (7.4.28), the impulse response of this system is given as 
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From matrix algebra we know that (I?)"-' = ( F - I ) ' .  Hence 

h l(n )  = qr (P- l ) 'gu(n  - 1)  + d6(n) 

We claim that hl (n)  = h(n) .  Indeed, the term q'(F"-')'g is a scalar. Hence it 
is equal to its transpose. Consequently, 

[ q ' ( ~ - ~ ) ~ g ] ~  = +(F )"-lq 

Since this is true, it follows that (7.4.31) is identical to (7.4.28) and, therefore, 
h l(n )  = h(n) .  Thus a single input-single output system and its transpose have iden- 
tical impulse responses and hence the same input-output relationship. To support 
this claim further, we note that the type 1 and type 2 state-space realizations. 
described by (7.4.3), (7.4.4), (7.4.10), and (7.4.11) are transpose structures, which 
stem from the same input-output relationship (7.4.1). 

We have introduced the transpose structure because it provides an easy 
method for generating a new structure. However, sometimes this new structure 
may either differ trivially or be identical to the original one. 

The diagonal system. A closed-form solution of the state-space equations 
is easily ob_tained when the system matrix F is diagonal. Hence, by finding a matrix 
P so that F = PFP-' is diagonal, the solution of the state equations is simplified 
considerably. The diagonalization of the matrix F can be accomplished by first 
determining the eigenvalues and eigenvectors of the matrix. 

A number A is an eigenvalue of F and a nonzero vector u is the associated 
eigefivector if 

Fu = hu (7.4.32) 

To determine the eigenvalues of F, we note that 

(F - M)u = 0 

This equation has a (nontrivial) nonzero solution u if the matrix F - M is singular 
[i.e., if (F - M) is noninvertible], which is the case if the determinant of (F - 11) 
is zero, that is, if 

det (F - AI) = 0 (7.4.34) 

This determinant in (7.4.34) yields the characteristic polynomial of the matrix 
F. For an N x N matrix F, the characteristic polynomial of F is degree N and hence 
it has N roots, say A,, i = 1, 2 , .  . . , N. The roots may be distinct or some roots 
may be repeated. In any case, for each root Ai,  we can determine a vector u,, 
called the eigenvector corresponding to the eigenvalue ki, from the equation 

Fui = Ai LI~ 

These eigenvectors are orthogonal, that is, u:u, = 0, for i # j. 
If we form a matrix U whose columns consist of the eigenvectors { ~ i ) ,  that is, 

t t 

.1 J 
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then the matrix f! = U-'F'U is diagonal. Thus we have solved for the matrix that 
diagonalizes F. 

The following example illustrates the procedure of diagonaiizing F. 

Example 7.4.2 

The Fibonacci sequence, which is the sequence (I ,  1,2.3.5,8.13. . . .), can be gener- 
ated as the impulse response of the system that satisfies the state-space equations 

Determine the impulse response { h ( n ) )  of the system. 

Solution Now we wish to determine an equivalent system 

i ( n  + I )  = &(n)  + i x ( n )  

y ( n )  = $ i ( n )  + d x ( n )  

such that the matrix F is diagonal. From (7.4.25) we recall that the two systems are 
equivalent if 

Given F. the problem is to delemine a matrix P such that @ = PFP-' is a diagonal 
matrix. 

First. we compute the determinant in (7.4.34). We have 

det(F - AI) = det [-i 1 - ~ ] = ~ 2 - ~ - 1 = ~  

To find the eigenvector ul corresponding to A,, we have 

Similarly, we obtain 

We observe that u',u2 = 1 + )CIA2 = 0 (i.e., the eigenvectors are orthogonal). Now 
matrix U, whose columns are the eigenvectors of F. is 

Then the matrix U-'FU is diagonal. Indeed, it easily follows that 
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and since the transformation matrix is P = U-', we have 

Thus the diagonal matrix @ has the form 

where the diagonal elements are the eigenvalues of the characteristic polynomial. 
Furthermore, we obtain 

-- 
and 

The impulse responsc of this eq~livalent diagonal system is 

which is the general formula for the Fibonacci sequence. 
An alternative expression can be found by noting that the Fibonacci sequence 

can be considered as the zero-input response of the system described by the difference 
equation 

y(n) = y(n - 1) + y(n - 2 )  + x ( n )  

with initial conditions y( -1 )  = 1, y(-2) = -1. From the type 1 state-space realization, 
we note that v1(0)  = yf-2) = -1 and y(0) = y(-1) = 1. Hence 

L 
and the zero-input response is 

This is the more familiar form for tbe Fibonacci sequence, where the first term of the 
sequence is zero, that is, the sequences is {O, 1,1,2,3,5,8, . . .). 
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This example illustrates the method for diagonalizing the matrix F. The 
diagonal system yields a set of N decoupled, first-order linear difference equations 
that are easily solved to yield the state and the output of the system. 

It is important to note that the eigenvalues of the matrix F are identical to the 
roots of the characteristic polynomial, which are obtained from the homogeneous 
difference equation that characterizes the system. For example. the system that 
generates the Fibonacci sequence is characterized by the homogeneous difference 
equation 

y ( n )  - y(n - I )  - y(n  - 2) = O  (7.4.35) 

Recall that the solution is obtained by assuming that the homogeneous solution 
has the form 

yh(n) = A" 

Substitution of this solution into (7.4.35) yields the characteristic polynomial 

But this is exactly the same characteristic polynomial obtained from the detemi- 
nant of (F - M).  

Since the state-variable realization of the system is not unique, the matrix 
F is also not unique. However, the eigenvalues of the system are unique, that is, 
they are invariant to any nonsingular linear transformation of F. Consequently, 
the characteristic polynomial of F can be determined either from evaluating the 
determinant of (F - M) or from the difference equation characterizing the system. 

In conclusion, the state-space description provides an alternative character- 
ization of the system that is equivalent to the input-output description. One ad- 
vantage of the state-variable formulation is that it provides us with the additional 
information concerning the internal (state) variables of the system, information 
that is not easily obtained from the input-output description. Furthermore, the 
state-variable formulation of a linear time-invariant system allows us to represent 
the system by a set of (usually coupled) first-order difference equations. The de- 
coupling of the equations can be achieved by means of a linear transformation that 
can be obtained by solving for the eigenvalues and eigenvectors of the system. The 
dewupled equations are then relatively simple to solve. More important, however, 
the state-space formulation provides a powerful, yet straightforward method for 
dealing with systems that have multiple inputs and multiple outputs (MIMO). Al- 
though we have not considered such systems in our study, it is in the treatment of 
MIMO systems where the true power and the beauty of the space-space formula- 
tion can be fully appreciated. 

7.4.4 State-Space Analysis in the z-Domain 

The state-space analysis in the previous sections has been performed in the time 
domain. However, as we have observed previously, the analysis of linear time- 
invariant discrete-time systems can also be carried out in the z-transform 
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domain, often with greater ease. In this section we treat the state-space rep- 
resentation of linear time-invariant discrete-time systems in the z -transform do- 
main. 

Let us consider the state-space equation 

If we define the vector V(z) as 

then (7.4.36) can be expressed in matrix form as 

The two terms involving V(z) can be collected together and the resulting equation 
can be used to solve for V(z). Thus 

The inverse z-transform of (7.4.39) yields the solution for the state equations. 
Next, we turn our attention to the output equation, which is given as 

The z-transform of (7.4.40) is 

Y (z) = g'V(z) + dX(z) (7.4.41) 

By using the solution in (7.4.39) we can eliminate the state vector V ( r )  in 
(7.4.41). Thus we obtain 

which is the z-transform of the zero-state response of the system. The system 
function is easily obtained from (7.4.42) as 

The state equation given by (7.4.39), the output equation given by (7.4.42) and the 
system function given by (7.4.43) all have in common the factor (zI - F)-'. This 
is a fundamental quantity that is related to the z-transform of the state transition 
matrix of the system. The relationship is easily established by computing the 
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z-transform of the impulse response h(n) ,  which is given by (7.4.28). Thus we 
have 

The term in parentheses in (7.4.44) can be written as 

If we substitute the result in (7.4.45) into (7.4.44), we obtain the expression for 
H ( z )  as given in (7.4.43). 

Since the state transition matrix is given by 

(n) = F (7.4.46) 

the z-transform of ( n )  is 

The relation in (7.4.47) provides a simple method for determining the state 
transition matrix by means of z-transforms. We recall that 

where adj(A) denotes the adjoint manix of A and det (A) denotes the determinant 
of the matrix A. Substitution of (7.4.48) into (7.4.43) yields the result 

Consequently, the denominator D(z) of the system function H(z), which contains 
the poles of the system is simply 

But the det(zI - F) is just the characteristic polynomial: of F. Its roots, which are 
the poles of system, are the eigenvalues of the matrix F. 
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Example 7.43 

Determine the system function H t z ) ,  the impulse response h(n) ,  and the state tran- 
sition matrix iP(n)  of the system that generates the Fibonacci sequence. This system 
is described by the state-space equation 

Solution First, we determine H ( z )  and h(n)  by computing (21 - F)-I. We have 

Hence 

By inverting H(:), we obtain h ( n )  in the form 

We note that the poles of H ( z )  are p, = (1 + 8)/2 and f i  = (1 - f i ) / 2 .  Since 
Ipl 1 > 1, the system that generates the Fibonacci sequence is unstable. 

The state transition matrix + ( n )  has the z-transform 

The four elements of +(n)  are obtained by computing the inverse transform of the 
four elements of z(z1- F)-'. Thus we obtain 

where 

We note that the impulse response h(n)  can also be computed from (7.4.28) by using 
the state transition matrix. 
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This analysis method appiies specifically to the computation of the zero-state 
response of the system. This is the consequence of the fact that we have used the 
two-sided z-transform. 

If we wish to determine the total response of the system, beginning at a 
nonzero state, say v(no), we must use the one-sided z-transform. Thus, for a given 
initial state v(n0) and a given input x ( n )  for n 2 no, we can determine the state 
vector v(n) for n 2 no and the output y(n) for n 2 no, by means of the one-sided 
2-transform. 

In this development we assume that no = 0, without loss of generality. Then, 
given x(n) for n 2 0, and a causal system, described by the state equations in 
(7.4.36), the one-sided z-transform of the state equations is 

zV+(z) - zv(0) = FV+(z) f qX(z) 
or, equivalently, 

V+(z) = z(zI-  F)- '~(0)  + (z1- F) - '~x(z )  (7.4.51) 

Note that X+(z) = X ( z ) ,  since x(n) is assumed to be causal. 
Similarly, the z-transform of the output equation given by (7.4.40) is 

~ ' ( 2 )  = g'V+(z) + dX(z) (7.4.52) 

If we substitute for V+(z) from (7.4.51) into (7.4.52), we obtain the result 

Y+(z) = zg'(z1- F) - '~ (0 )  + [g'(zI - F ) - ' ~  + d ] ~ ( z )  (7,4.53) 

Of the terms on the right-hand side of (7.4.53). the first represents the zero-input 
response of the system due to the initial conditions, while the second represents 
the zero-state response of the system that we obtained previously. Consequently, 
(7.4.53) constitutes the total response of the system, which can be expressed in the 
time domain by inverting (7.4.53). The result of this inversion yields the form for 
y(n) given previously by (7.4.16). 

7.4.5 Additional State-Space Structures 

In Section 7.4.2 we described how state-space equations can be obtained from a 
given structure and, conversely, how to obtain a realization of the system given 
the state equations. In this section we revisit the parallel-form and cascade-form 
realizations described previously and consider these structures in the context of a 
state-space formulation. 

The parallel-form state-space structure is obtained by expanding the system 
function H ( z )  into a partial-fraction expansion, developing the state-space formu- 
lation for each term in the expansion and the corresponding structure, and finally, 
connecting all the structures in parallel. We illustrate the procedure under the 
assumption that the poles are distinct and N = M. 

The system function H ( t )  can be expressed as 
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Note that this is a different expansion from that given in (7.3.20). The output of 
the system is 

H 

Y(Z) = H(Z)X(Z) = CX(Z) + C B~YI(Z) (7.4.55) 
k=l 

where, by definition. 

X(z) k = 1 , 2 ,  ..., N Y~(z) = - (7.4.56) 
z - Pk 

In the time domain, the equations in (7.4.56) become 

yk(n+l)=pkyk(n)+x(n) k = 1 , 2  ,..., N (7.4.57) 
We define the state variables as 

~k(n)=yk(n) k = 1 , 2 , + . . , N  
Then the difference equations in (7.4.57) become 

The state equations in (7.4.59) can be expressed in matrix form as 

and the output equation is 

This parallel-form realization is called the normal form representation, be- 
cause the matrix F is diagonal, and hence the state variables are uncoupled. An 
alternative structure is obtained by pairing complex-conjugate poles and any two 
real-valued poles to form second-order sections, which can be realized by using 
either type 1 or type 2 state-space structures. 

The cascade-form state-space structure can be obtained by factoring H (I) into 
a product of first-order and second-order sections, as described in Section 7.2.2, 
and then implementing each section by using either type 1 or type 2 state-space 
structures. 

Let us consider the state-space representation of a single second-order section 
involving a pair of complex-conjugate poles. The system function is 

A A * 
= h + - + -  

2 - p  z- p *  
The output of this system can be expressed as 

AX(z) ArXtz) 
Y(z) = boX(z)+ - + - 

z - p  2- p *  
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We define the quantity 
AX(:) 

S(z)  = - 
z - P  

This relationship can be expressed in the time domain as 

s(n + 1 )  = ps(n) + Ax@)  

Since s ( n ) ,  p, and A are complex valued, we define s(n)  as 

s(n)  = V I  (n)  + j v 2 ( n )  

Upon substitution of these relations into (7-4.65) and separating its real and 
imaginary parts, we obtain 

We choose v l (n )  and vz(n) as the state variables and thus obtain the coupled pair 
of state equations which can be expressed in matrix form as 

The output equation can be expressed as 

~ ( n )  = box(n) + s(n)  + s*(n) (7.4.69) 

Upon substitution for s(n) in (7.4.69), we obtain the desired result for the output 
in the form 

y(n) = [ 2  O] v(n)  + box(n) (7.4.70) 

A realization for the second-order section is shown in Fig. 7.31. It is simply 
called the coupled-form state-space realization. This structure, which is used as the 
building block in the implementation of cascade-form realizations for higher-order 
IIR systems, exhibits low sensitivity to finite-word-length effects. 

7.5 REPRESENTATION OF NUMBERS 

Up to this point we have considered the implementation of discrete-time systems 
without being concerned about the finite-word-length effects that are inherent in 
any digital realization, whether it be in hardware or in software. In fact, we have 
analyzed systems that are modeled as linear when, in fact, digital realizations of 
such systems are inherently nonlinear. 

In this and the following two sections, we consider the various f o m s  of 
quantization effects that arise in digital signal processing, Although we describe 
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F i p r e  731 Coupled-form state-space realization of a two-pole, two-zero IIR 
system. 

floating-point arithmetic operations briefly, our major concern is with fixed-point 
realizations of digital filters. 

In this section we consider the representation of numbers for digital compu- 
tations. The main characteristic of digital arithmetic is the limited (usually fixed) 
number of digits used to represent numbers. This constraint leads to finite nu- 
merical precision in computations, which leads to round-off errors and nonlinear 
effects in the performance of digital filters. We now provide a brief introduction 
to digital arithmetic. 

7.5.1 Fixed-Point Representation of Numbers 

The representation of numbers in a fixed-point format is a generalization of the 
familiar decimal representation of a number as a string of digits with a decimal 
point. In this notation, the digits to the left of the decimal point represent the 
integer part of the number, and the digits to the right of the decimal point represent 
the fractional part of the number. Thus a real number X can be represented as 

X = (b-A, . . . , b-1, bo, bl, . . . , bs),  

where bi represents the digit, r is the radix or base, A is the number of integer 
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digits, and B is the number of fractional digits. As an example, the decimal number 
(1U.45)lo and the binary number (101.01)2 represent the following sums: 

Let US focus our attention on the binary representation since it is the most 
important for digital signal processing. ln this case r = 2 and the digits {bi}  are 
called binary digits or bits and take the values {0, 11. The binary digit b-A is called 
the most significant bit (MSB) of the number, and the binary digit bB is called the 
least significant bit (LSB). The "binary point" between the digits bo and bl does 
not exist physically in the computer. Simply, the logic circuits of the computer 
are designed so that the computations result in numbers that correspond to the 
assumed location of this point. 

By using an n-bit integer format (A = n - 1, B = 0), we an represent 
unsigned integers with magnitude in the range 0 to 2" - I. Usually, we use the 
fraction format ( A  = 0,  B = n - I), with a binary point between h and bl ,  that 
permits numbers in the range from 0 to 1 - 2-". Note that any integer or mixed 
number can be represented in a fraction format by factoring out the term r A  in 
(7.5.1). In the sequel we focus our attention on the binary fraction format because 
mixed numbers are difficult to multiply and the number of bits representing an 
integer cannot be reduced by truncation or rounding. 

There are three ways to represent negative numbers. This leads to three 
formats for the representation of signed binary fractions. The format for positive 
fractions is the same in all three representations, namely, 

Note that the MSB bo is set to zero to represent the positive sign. Consider now 
the negative fraction 

B 

This number can be represented using one of the following three formats. 

Sign-magnitude format. In this format, the MSB is set to 1 to represent 
the negative sign, 

X ~ ~ = l . b l b ~ " - b ~  f o r X l O  (7.5.4) 

One'wmmplement format. In this format the negative numbers are rep- 
resented as 

~ ~ ~ = 1 . 6 ~ & . . . 6 ~  X ~ O  (7.5.5) 

where Z;i = 1 - bi is the one's complement of bi. Thus if X is a positive number, 
the corresponding negative number is determined by complementing (changing 1's 
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to 0's and 0's to 1's) all the bits. An alternative definition for Xlc can be obtained 
by noting that 

3 

Xlc = 1 x 2 O + C ( 1  - bi) .2-' = 2 - Z - ~ I X I  (7.5.6) 
i = l  

Two's-complement format. In this format a negative number is repre- 
sented by forming the two's complement of the corresponding positive number. 
In other words, the negative number is obtained by subtracting the positive num- 
ber from 2.0. More simply, the two's complement is formed by complementing 
the positive number and adding one LSB. Thus 

where + represents modulo-2 addition that ignores any carry generated from the 
sign bit. For example, the number -: is simply obtained by complementing 001 1 
(i) to obtain 1100 and then adding 0001. This yields 1101. which represents -; 
in two's complement. 

From (7.5.6) and (7.5.7) is can easily be seen that 

To demonstrate that (7.5.7) truly represents a negative number, we use the identity 

The negative number X in (7.5.3) can be expressed as 

which is exactly the two's-complement representation of (7.5.7). 
In summary, the value of a binary string bobl . . . be depends on the format 

used. For positive numbers, bo = 0, and the number is given by (7.5.2). For 
negative numbers, we use these corresponding formulas for the three formats. 

Express the fraction and -i in sign-magnitude, two's-complement, and one's- 
complement format. 
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Solution X = is represented as 2-' + 2-2 + T3,  so that X = 0.111. In sign- 
magnitude format, X = -: is represented as 1.111. In one's complement. we have 

In two's complement. the result is 

The basic arithmetic operations of addition and multiplication depend on 
the format used. For one's-complement and two's-complement formats, addition 
is carried out by adding the numbers bit by bit. The formats differ only in the way 
in which a carry bit affects the MSB. For example, % - = i. In two's complement, 
we have 

0100 $1101 = OOO1 

where $ indicates modulo-2 addition. Note that the carry bit. if present in the 
MSB. is dropped. On the other hand. in one's- complement arithmetic, the carry in 
the MSB, if present, is carried around to the LSB. Thus the computation % - $ = 
becomes 

0100~1100=0000~OOO1 =OOO1 

Addition in the sign-magnitude format is more complex and can involve sign 
checks, complementing, and the generation of a carry. On the other hand, di- 
rect multiplication of two sign- magnitude numbers is relatively straightforward, 
whereas a special algorithm is usually employed for one's complement and two's 
complement multiplication. 

Most fixed-point digital signal processors use two's-complement arithmetic. 
Hence, the range for (B+1) -bit numbers is from -1 to 1 -2-B.  These numbers can 
be viewed in a wheel format as shown in Fig. 7.32 for B = 2. Two's-complement 
arithmetic is basically arithmetic modul0-2~+' [i-e., any number that falls outside 

F I  732 Counting wheel for Ibi t  two'wmnplernent numbers (a) integers and 
(b) functions. 
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the range (overllow or underflow) is reduced to this range by subtracting an appro- 
priate multiple of 2B+1]. This type of arithmetic can be viewed as counting using 
the wheei of Fig. 7.32. A very important property of two's- complement addition 
is that if the final sum of a string of numbers XI, X2,. . . , XN is within the range, 
it will be computed correctly, even if individual partial sums result in overflows. 
This and other characteristics of two's-complement arithmetic are considered in 
Problem 7.44. 

In general, the multiplication of two fixed-point numbers each of b bits in 
length results in a product of 2b bits in length. In fixed-point arithmetic, the 
product is either truncated or rounded back to b bits. As a result we have a 
truncation or round-off error in the b least significant bits. The characterization 
of such errors is treated below. 

7.5.2 Binary Floating-Point Representation of Numbers 

A fixed-point representation of numbers allows us to cover a range of numbers, 
say, x,,, - x,,, with a resolution 

where rn = 2" is the number of levels and b is the number of bits. A basic character- 
istic of the fixed-point representation is that the resolution is fixed. Furthermore, 
A increases in direct proportion to an increase in the dynamic range. 

A floating-point representation can be employed as a means for covering a 
larger dynamic range. The binary floating-point representation commonly used 
in practice, consists of a mantissa M, which is the fractional part of the number 
and falls in the range f. 5 M < 1, multiplied by the exponential factor 2E,  where 
the exponent E is either a positive or negative integer. Hence a number X is 
represented as 

x = ~ . 2 ~  

The mantissa requires a sign bit for representing positive and negative numbers, 
and the exponent requires an additional sign bit. Since the mantissa is a signed 
fraction, we can use any of the four fixed-point representations just described. 

For example, the number XI = 5 is represented by the foIlowing mantissa 
and exponent: 

M 1  = 0.101000 

while the number Xz = is represented by the following mantissa and exponent 

where the leftmost bit in the exponent represents the sign bit. 
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If the two numbers are to be multiplied, the mantissas are multiplied and the 
exponents are added. Thus the product of these two numbers is 

On the other hand, the addition of the two floating-point numbers requires that 
the exponents be equal. This can be accomplished by shifting the mantissa of the 
smaller number to the right and compensating by increasing the corresponding 
exponent. Thus the number XZ can be expressed as 

With E2 = El, we can add the two numbers XI and X2. The result is 

It should be observed that the shifting operation required to equalize the 
exponent of X2 with that for XI results in loss of precision, in general. In this 
example the six-bit mantissa was sufficiently long to accommodate a shift of four 
bits to the right for M2 without dropping any of the ones. However, a shift of five 
bits would have caused the loss of a single bit and a shift of six bits to the right 
would have resulted in a mantissa of MI = 0.000000, unless we round upward after 
shifting so that M2 = 0.000001. 

Overflow occurs in the multiplication of two floating-point numbers when the 
sum of the exponents exceeds the dynamic range of the fixed-point representation 
of the exponent. 

In comparing a fixed-point representation with a floating-point representa- 
tion, each with the same number of total bits, it is apparent that the floating- 
point representation allows us to cover a larger dynamic range by varying the 
resolution across the range. The resolution decreases with an increase in the 
size of successive numbers. In other words, the distance between two successive 
floating-point numbers increases as the numbers increase in size. It is this vari- 
able resolution that results in a larger dynamic range. Alternatively, if we wish 
to cover the same dynamic range with both fixed-point and floating-point rep- 
resentations, the floating-point representation provides finer resolution for small 
numbers but coarser resolution for the larger numbers. In contrast, the fixed- 
point representation provides a uniform resolution throughout the range of num- 
bers. 

For example, if we have a computer with a word size of 32 bits, it is possible 
to represent 232 numbers. If we wish to represent the positive integers beginning 
with zero, the largest possible integer that can be accommodated is 
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The distance between successive numbers (the resolution) is 1, Alternatively, we 
can designate the leftrnost bit as the sign bit and use the remaining 31 bits for 
the magnitude. In such a case a fixed-point representation allows us to cover the 
range 

again with a resolution of 1. 
On the other hand, suppose that we increase the resolution by allocating 10 

bits for a fractional part, 21 bits for the integer part, and 1 bit for the sign. Then 
this representation allows us to cover the dynamic range 

-(231 - 1) .2-10 = -(27-1 - 2-10) to (231 - 1) -2-10 = 221 - 2-10 

or, equivalently, 

In this case, the resolution is 2-lo. Thus, the dynamic range has been decreased 
by a factor of approximately 1OOO (actually 21°), while the resolution has been 
increased by the same factor. 

For comparison, suppose that the 32-bit word is used to represent floating- 
point numbers. In particular, let the mantissa be represented by 23 bits plus a sign 
bit and let the exponent be represented by 7 bits plus a sign bit. Now, the smallest 
number in magnitude will have the representation, 

sign 23 bits sign 7 bits 
0, 100- - 60 1 1111111 = x 2-I'7 F= 0.3 x lo-= 

At the other extreme, the largest number that can be represented with this floating- 
point representation is 

sign 23 bits sign 7 bits 
o 111.. . I  o 1111111 = (1 - rZ3) 212' = 1.7 x IP 

Thus, we have achieved a dynamic range of approximately but with varying 
resolution. In particular, we have fine resolution for small numbers and coarse 
resolution for Iarger numbers. 

The representation of zero poses some special problems. In general, only 
the mantissa has to be zero, but not the exponent. The choice of M and E, 
the representation of zero, the handling of overflows, and other related issues 
have resulted in various floating-point representations on different digital com- 
puters. In an effort to define a common floating-point format, the Institute of 
Electrical and Electronic Engineers (IEEE) introduced the IEEE 754 standard, 
which is widely used in practice. For a 32-bit machine, tbe IEEE 754 standard 
single-precision, floating-point number is represented as X = (-1)' - 2"-ln(Af), 

where 
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This number has the following interpretations: 

If E = 255 and M # 0 ,  then X is not a number 
If E = 255 and M = 0, then X = (-llS . oo 

If 0 < E < 255, then X = (-1)' . 2E-'27 (1.M) 
If E = 0 and M # 0,  then X = (-I)' . 2-126 (0 .M) 
If E = 0 and M = 0,  then X = (-1)'. 0 

where 0.M is a fraction and l.M is a mixed number with one integer bit and 23 
fractional bits. For example, the number 

has the value X = -lo x 2130-127 x 1.1010.. .0  = 23 x $ = 13. The magni- 
tude range of the 32-bit IEEE 754 floating-point numbers is from 2-126 x 2-= to 
(2 -2-") x 212' (i.e., from 1 .I8 x to 3.40 x 1dX). Computations with numbers 
outside this range result in either underflow or overflow. 

7.5.3 Errors Resulting from Rounding and Truncation 

In performing computations such as multiplications with either fixed-point or 
floating-point arithmetic, we are usually faced with the problem of quantizing a 
number via truncation or rounding, from a given level of precision to a level of 
lower precision. The effect of rounding and truncation is to introduce an error 
whose value depends on the number of bits in the original number relative to 
the number of bits after quantization. The characteristics of the errors introduced 
through either truncation or rounding depend on the particular form of number 
representation. 

To be specific, let us consider a fixed-point representation in which a number 
x is quantized from b, bits to b bits. Thus the number 

consisting of b, bits prior to quantization is represented as 

after quantization, where b < b,. For example, if x represents the sample of 
an analog signal, then b, may be taken as infinite. In any case if the quantkr 
truncates the value of x ,  the truncation error is defined as 
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First, we consider the range of values of the error for sign-magnitude and 
two's-complement representation. In both of these representations, the positive 
numbers have identical representations. For positive numbers, truncation results in 
a number that is smaller than the unquantized number. Consequently, the trunca- 
tion error resulting from a reduction of the number of significant bits from b, to b is 

- (2-b - 2-bu) - < Et 5 0 (7.5.11) 

where the largest error arises from discarding b, - b bits, all of which are ones. 
In the case of negative fixed-point numbers based on the sign-magnitude 

representation, the truncation error is positive, since truncation basically reduces 
the magnitude of the numbers. Consequently, for negative numbers, we have 

In the two's-complement representation, the negative of a number is obtained 
by subtracting the corresponding positive number from 2. As a consequence, the 
effect of truncation on a negative number is to increase the magnitude of the 
negative number. Consequently, x > Qt (x )  and hence 

Hence we conclude that the truncation error for the sign-magnitude represenrarion 
is syn~rnetric ahour zero and falls in the range 

On the other hand, for two's-complement representation, the truncation error is 
always negative and falls in the range 

- (2-b - 2-bu) 5 E: f 0 (7.5.15) 

Next, let us consider the quantization errors due to rounding of a number. A 
number x ,  represented by b, bits before quantization and b bits after quantization, 
incurs a quantization error 

Basically, rounding involves only the magnitude of the number and, consequently, 
the round-off error is independent of the type of fixed-point representation. The 
maximum error that can be introduced through rounding is (2-b - 2-bm)12 and this 
can be either positive or negative, depending on the value of x .  Therefore, the 
round-off error is symmetric about zero and falls in the range 

- 4 (2-b - 2-b=)  5 E, 5 4 ( 2 4  - 2-bm (7.5.17) 

These relationships are summarized in Fig. 7.33 when x is a continuous signal 
amplitude (b, = m). 

In a Aoating-point representation, the mantissa is either rounded or truncated. 
Due to the nonuniform resolution, the corresponding error in a floating-point 
representation is proportional to the number being quantized. An appropriate 
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F w  733 Quantization errors in rounding and truncation: (a) rounding; (b) truncation 
in two's complement; (c) truncation in sign-magnitude. 

representation for the quantized value is 

Q ( x )  = x +ex 

where e is called the relative error. Now 

Q ( x )  - x  = ex 
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In the case of truncation based on two's-complement representation of the 
mantissa, we have 

- 2E2-b < e,x < 0 (7.5.20) 

for positive numbers. Since 2E-' I x < 2E,  it follows that 

On the other hand, for a negative number in two's-complement representation, 
the error is 

and hence 

In the case where the mantissa is rounded, the resulting error is symmetric 
relative to zero and has a maximum value of f 2-'/2. Consequently, the round-off 
error becomes 

Again, since x falls in the range 2E-1 _( x < 2&, we divide through by 2E-' so that 

- 2-' < e, 5 2-h (7.5.24) 

In arithmetic computations involving quantization via truncation and round- 
ing, it is convenient to adopt a statistical approach to the characterization of such 
errors. The quantizer can be modeled as introducing an additive noise to the 
unquantized value x .  Thus we can write 

where E = E, for rounding and E = E, for truncation. This model is illustrated in 
Fig. 7.34. 

Since x can be any number that falls within any of the levels of the quan- 
tizer, the quantization error is usually modeled as a random variable that falls 

J3gmc 734 Additive noise m d e l  for 
the nonlinear quantization process: 
(a) actual system; (b) model for 
quantization. 
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within the limits specified. This random variable is assumed to be uniformly 
distributed within the ranges specified for the fixed-point representations. Fur- 
thermore, in practice, b, >> b, so that we can neglect the factor of 2-bb in 
the formulas given below. Under these conditions, the probability density func- 
tions for the round-off and truncation errors in the two fixed-point representations 
are illustrated in Fig. 7.35. We note that in the case of truncation of the two's- 
complement representation of the number, the average value of the error has a 
bias of 2-b/2, whereas in all other cases just illustrated, the error has an average 
value of zero. 

We shall use this statistical characterization of the quantization errors in our 
treatment of such errors in digital filtering and in the computation of the DFT for 
fixed-point implementation. 

A = 2-3 

E, 
F i  735 Statistical characterization 
of quantization erron: (a) round-off 
error, (b) truncation error for 
sign-magnitude; (c) truncation error for 
two's complement. 
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7.6 QUANTIZATION OF FILTER COEFflClENTS 

In the realization of FIR and IIR filters in hardware or in software on a general- 
purpose computer, the accuracy with which filter coefficients can be specified is 
limited by the word length of the computer or the length of the register provided 
to store the coefficients. Since the coefficients used in impiementing a given filter 
are not exact, the poles and zeros of the system function will, in general, be 
different from the desired poles and zeros. Consequently, we obtain a filter having 
a frequency response that is different from the frequency response of the filter with 
unquantized coefficients. 

In Section 7.6.1, we demonstrate that the sensitivity of the filter frequency 
response characteristics to quantization of the filter coefficients is minimized by 
realizing a filter having a large number of poles and zeros as an interconnection 
of second-order fiher sections. This leads us to the parallel-form and cascade- 
form realizations in which the basic building blocks are second-order filter 
sections. 

7.6.1 Analysis of Sensitivity to Quantization of Filter 
Coefficients 

To illustrate the effect of quantization of the filter coefficients in a direct-form 
realization of an IIR filter, let us consider a general IIR fiher with system 
function 

The direct-form realization of the IIR filter with quantized coefficients has the 
system function 

where the quantized coefficients {zk)and {Ek) can be related to tbe unquantized 
coefficients {bk} and {ak} by the relations 

and {Ask) and (Abk) represent the quantization errors. 
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The denominator of H ( z )  may be expressed in the form 

where { p k )  are the poles of H ( z ) .  Similarly, we can express the denominator of - 
H ( z )  as 

where Fk = pk + Apk, k = 1,2, . . . , N, and Apk is the error or perturbation resulting 
from the quantization of the filter coefficients. 

We shall now relate the perturbation Apk to the quantization errors in the 
b k ) .  

The perturbation error Ap, can be expressed as 

where i3p,/aak, the partial derivative of pi with respect to ak, represents the tncre- 
mental change in the pole p, due to a change in the coefficient ak. Thus the total 
error Api is expressed as a sum of the incremental errors due to changes in each 
of the coefficients {ak J. 

The partial derivatives api/aak,  k = 1 ,  2, . . . , N, can be obtained by differen- 
tiating D ( z )  with respect to each of the { a k ) .  First we have 

Then 

The numerator of (7.6.8) is 

The denominator of (7.6.8) is 
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Therefore, (7.6.8) can be expressed as 

apt 
N-k 

-- - -pi 

Substitution of the result in (7.6.11) into (7.6.6) yields the total perturbation 
error Ap,  in the form 

This expression provides a measure of the sensitivity of the ith pole to changes in 
the coefficients (ak ) .  An analogous result can be obtained for the sensitivity of the 
zeros to errors in the parameters (bk ) .  

The terms (pi in the denominator of (7.6.12) represent vectors in the 
z-plane from the poles { p l }  to the pole pi. If the poles are tightly clustered as 
they are in a narrowband filter, as illustrated in Fig. 7.36, the lengths Ipi - pi) are 
small for the poles in the vicinity of pi. These small lengths will contribute to large 
errors and hence a large perturbation error Api results. 

The error Api can be minimized by maximizing the lengths Ipi - pll. This can 
be accomplished by realizing the high-order filter with either single-pole or double- 
pole filter sections. In general, however, single-pole (and single-zero) filter sections 
have complex-valued poles and require complex-valued arithmetic operations for 
their realization. This problem can be avoided by combining complex-valued poles 
(and zeros) to form second-order filter sections. Since the complex-valued poles 
are usually sufficiently far apart, the perturbation errors { A p i )  are minimized. As 
a consequence, the resulting filter with quantized coefficients more closely ap- 
proximates the frequency response characteristics of the filter with unquantized 
coefficients. 

It is interesting to note that even in the case of a two-pole filter section, the 
structure used to re& the filter section plays an important role in the errors 
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Figure 7.36 Pole positions for a 
bandpass IIR filter. 

caused by coefficient quantization. To be specific, let us consider a two-pole filter 
with system function 

1 

H ( z 1  = 
1 - (2r cos 0);-' + r 2 r 2  

This filter has poles at z = re**'. When realized as shown in Fig. 7.37, it has two 
coefficients, a: = 2r cosB and a2 = - r 2.  With infinite precision it is possible to 
achieve an infinite number of poIe positions. Clearly, with finite precision (i.e., 
quantized coefficients a1 and az), the possible pole positions are also finite. In 
fact, when b bits are used to represent the magnitudes of a1 and az, there are at 
most (2b - 112 possible positions for the poles in each quandrant, excluding the 
case a1 = 0 and a2 = 0. 

For example, suppose that b = 4. Then there are 15 possible nonzero values 
for al .  There are also 15 possible values for rZ. We illustrate these possible values 
in Fig. 7.38 for the first quandrant of the z-plane only. There are 169 possibie pole 

Fiye 737 Realization of a two-pole 
ILR filter. 
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F p r e  738 Possible pole positions for two-pole IIR filter realization in Fig. 7.37. 

positions in this case. The nonunifonnity in their positions is due to the fact that 
we are quantizing r2, whereas the pole positions lie on a circular arc of radius r .  Of 
particular significance is the sparse set of poles for values of 8 near zero and, due to 
symmetry, near 9 = n. This situation would be highly unfavorable for lowpass fil- 
ters and highpass filters which normally have poles clustered near 8 = 0 and 8 = n. 

An alternative realization of the two-pole filter is the coupled-form realiza- 
tion illustrated in Fig. 7.39. The two coupled equations are 

By transforming these two equations into the z-domain, it is a simple matter to 
show that 

-- '(') - H(z) = (T sin 9)~-I 

X ( z )  1 - (2rcosB)z-l+ 6-2-2 
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rsin 8 
-rsin 0 

rcos B 

Figure 739 Coupled-form realization 
Y I ( ~  - 1) of a two-pole IIR filter. 

In the coupled form we observe that there are also two coefficients, a] = 
r sine and a2 = ; cos 0. Since they are both linear in r ,  the possible pole positions 
are now equally spaced points on a rectangular grid, as shown in Fig. 7.40, As 
a consequence, the pole positions are now uniformly distributed inside the unit 
circle, which is a more desirable situation than the previous realization, especially 
for lowpass filters. (There are 198 possible pole positions in this case.) However, 
the price that we pay for this uniform distribution of pole positions is an increase 
in computations. The coupled-form realization requires four rnulttpiications per 
output point, whereas the realization in Fig. 7.37 requires only two multiplications 
per output point. - 

1t-is interesting to compare the coupled-form realization of Fig. 7.39 with 
the coupled (or normal) form state-space structure of Fig. 7.31. The poles of the 
state-space structure are directly related to its coefficients, since a, and fa2 are 
the real and imaginary parts of the roots. Since a1 = r cos 0 and rr2 = r sin 0 ,  
it is clear that quantizing a1 and crz results in a rectangular grid of possible pole 
positions, as shown in Fig. 7.40. 

Since there are vanous ways in which one can realize a second-order filter 
section, there are obviously many possibilities for different pole locations with 
quantized coefficients. Ideally, we shouid select a structure that provides us with 
a dense set of points in the regions where the poles lie. Unfortunately, however, 
there is no simple and systematic method for determining the filter realization that 
yields this desired result. 

Given that a higher-order IIR filter should be implemented as a combination 
of second-order sections, we still must decide whether to employ a parallel config- 
uration or a cascade configuration. In other words, we must decide between the 
realization 
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F p  7.40 Possible pole positions for the coupled-form two-pole hlter in 
Fig* 7.39. 

and the realization 
K 

H(z) = 
ck0 + cklz-' 

,,, 1 + at~z-I + om-2 

If the IIR filter bas zeros on the unit circle, as is generally the case with elliptic 
and Chebyshev type I1 filters, each second-order section in the cascade configu- 
ration of (7.6.16) contains a pair of complexconjugate zeros. The coefficients 
{bk)  directly determine the location of these zeros. If the {bk] are quantized, the 
sensitivity of the system response to the quantization errors is easily and directly 
controlled by allocating a sufficiently large number of bits to the representation 
of the (bki].  In fact, we can easily evaluate the perturbation effect resulting from 
quantizing the coefficients {bki) to some specified precision. Thus we have direct 
control of both the poles and the zeros that result from the quantization process. 

On the other hand, the parallel realization of H ( z )  provides direct control 
of the poles of the system only. The numerator coefficients {cw) and {ckl} do not 
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specify the location of the zeros directly. In fact, the {qo) and {sl} are obtained 
by performing a partial-fraction expansion of H ( z ) .  Hence they do not directly 
influence the location of the zeros, but only indirectly through a combination of all 
the factors of H ( z ) .  As a consequence, it is more difficult to determine the effect 
of quantization errors in the coefficients ( c k ; } ,  on the location of the zeros of the 
system. 

It is apparent that quantization of the parameters (ck i ]  is likely to produce a 
significant perturbation of the zero positions and usually, it is sufficiently large in 
fixed-point implementations to move the zeros off the unit circle. This is a highly 
undesirable situation, which can be easily remedied by use of a floating-point 
representation. In any case the cascade form is more robust in the presence of co- 
efficient quantization and should be the preferred choice in practical applications, 
especially where a fixed-point representation is employed. 

Example 7.6.1 

Determine the effect of parameter quantization on the frequency response of the 
7-order elliptic filter given in Table 8.11 when it is realized as a cascade of second- 
order sections. 

Solution The coefficients for the elliptic filter given in Table 8.11 are specified for 
the cascade form to six significant digits. We quantized these coefficients to four and 
then three significant digits (by rounding) and plotted the magnitude (in decibels) 
and the phase of the frequency response. The results are shown in Fig. 7.41 along the 
frequency response of the filter with unquantized (six significant digits) coefficients. 
We observe that there is an insignificant degradation due to coefficient quantization 
for the cascade realization. 

Example 7.42 

Repeat the computation of the frequency response for the elliptic filter considered in 
Example 7.6.1 when it is realized in the paralleI form with second-order sections. 

Solution The system function for the 7-order eliptic filter given in Table 8.11 is 

The frequency response of this filter with coefficients quantized to four digits 
is shown in Fig. 7.42.a. When this result is compared with the frequency response in 
Fig. 7.41, we observe that the zeros in the parallel realization have been perturbed 
sufficiently so that the nulls in the magnitude response are now at -80, -85, and 
-92 dB. The phase response has also been perturbed by a small amount. 
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Relative frequency 

F v r e  7.41 Effect of coefficient quantization of the magnitude and phase response of an 
N = 7 elliptic filter realized in cascade form. 

When the coefficients are quantized to three significant digits, the frequency 
response charaaeristic deteriorates significantly, in both magnitude and phase, as 
illustrated in Fig. 7.42b. It is apparent from the magnitude response that the zeros 
are no longer on the unit circle as a result of the quantization of the coefficients. This 
result clearly illustrates the sensitivity of the zeros to quantization of the coefficients 
in the parallel form. 

When compared with the results of Example 7.6.1, it is also apparent that the 
cascade form is definitely more robust to parameter quantization than the parallel 
form. 
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Relative frequency 
(a) Quantization to 4 digits 

F i r e  7 4  Effect of coefficient quantization of the magnitude and phase response of an 
N = 7 elhptic filter realized in cascade form: (a) quantization to four digits; (b) quantization 
to three digits. 

7.6.2 Quantization of Coefficients in FIR Filters 

As indicated in the preceding section, the sensitivity analysis performed on the 
poles of a system also applies directly to the zeros of the IIR filters. Consequently, 
an expression analogous to (7.6.12) can be obtained for the zeros of an FIR filter. 
In effect, we should generally realize F'IR filters with a large number of zeros as 
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Relauve frequency 

(b) Quantization to 3 digits 

F i  7.42 Continued 

a cascade of second-order and first-order filter sections to minimize the sensitivity 
to coefficient quantization. 

Of particular interest in practice is the realization of linear phase J3R filters. 
The direct-form realizations shown in Figs. 7.1 and 7.2 maintain the linear-phase 
property even when the coefficients are quantized. This follows easily from the ob- 
servation that the system function of a linear-phase FIR filter satisfies the property 
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independent of whether the wefficiedts are quantized or unquantized (see Sec- 
tion 8.2). Consequently, coefficient quantization does not affect the phase charac- 
teristic of the FIR filter, but affects only the magnitude. As a result, coefficient 
quantization effects are not as severe on a linear-phase FIR filter, since the only 
effect is in the magnitude. 

Example 7.63 

Determine the effect of parameter quantization on the frequency response of an 
M = 32 linear-phase FIR bandpass filter. The filter is realized in the direct form. 

Solution The frequency response of a linear-phase FIR bandpass filter with unquan- 
tized coefficients is illustrated in Fig. 7.43a. When the coefficients are quantized to 
four significant digits, the effect on the frequency response is insignificant. However, 
when the coefficients are quantized to three significant digits, the sidelobes increased 
by several decibels, as illustrated in Fig. 7.43b. This result indicates that we should use 
a minimum of 10 bits to represent the coefficients of this FIR filter and, preferably, 
12 to 14 bits, if possible. 

From this example we learn that a minimum of 10 bits is required to represent 
the coefficients in a direct-form realization of an FIR filter of moderate length. As 
the filter length increases, the number of bits per coefficient must be increased to 
maintain the same error in the frequency response characteristic of the filter. 

For example, suppose that each filter coefficient is rounded to (b + 1) bits. 
Then the maximum error in a coefficient value is bounded as 

-2-th+l) < eh ( n )  < 2-(b+1) 

Since the quantized values may be represented as x ( n )  = h(n)  + eh(n) ,  the error in 
tbe frequency response is 

Since eh(n)  is zero mean, it follows that EM (w)  is also zero mean. Assuming that 
the coefficient error sequence eh(n) ,  0 5 n 5 M - 1, is uncorreiated, the variance 
of the error EM(w) in the frequency response is just the sum of the variances of 
the M terms. Thus we have 

2-2(b+l' 2-2(b+21 
02 = - M=- 

12 3 
M 

Here we note that the variance of the error in H(w) increases linearly with M. 
Hence the standard deviation of the error in H(o)  is 

Consequently, for every factor of 4 increase in M, the precision in the filter coeffi- 
cients must be increased by one additional bit to maintain the standard deviation 
fixed. This result, taken together with the results of Example 7.6.3, implies that 
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Relative frequency 
(a) No quantization 

Relative frequency 
(b) Quantization to 3 digits 

Flgwc 7.43 Effect of coefficient quantization of the magnitude of an M = 32 linear-phase 
FIR filter realized in direct form: (a) no quantization; (b) quantization to three digits. 

the frequency error remains tolerable for lilter lengtbs up to 256, provided that 
filter coefficients are represented by 12 to 13 bits. If the word length of the digi- 
tal signal processor is less than 12 bits or if the filter length exceeds 256, the filter 
should be implemented as a cascade of smaller length filters to reduce the precision 
requirements. 
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In a cascade realization of the form 

where the second-order sections are given as 

the coefficients of complex-valued zeros are expressed as bkl = -2rk cos Ok and 
bt2 = r:. Quantization of bkl and bkz result in zero locations as shown in Fig. 7.38, 
except that the grid extends to points outside the unit circle. 

A problem may arise, in this case, in maintaining the linear-phase property, 
because the quantized pair of zeros at z = (l/rk)e*jek may not be the mirror image 
of the quantized zeros at z = rte"jek. This problem can be avoided by rearranging 
the factors corresponding to the mirror-image zero. That is, we can write the 
mirror-image factor as 

The factors (llr:] can be combined with the overall gain factor G, or they can 
be distributed in each of the second-order filters. The factor in (7.6.20) contains 
exactly the same parameters as the factor (1 - 2rk cosOkzL' + r ; ~ - ~ ) ,  and conse- 
quently, the zeros now occur in mirror-image pairs even when the parameters are 
quantized. 

In this brief treatment we have given the reader an introduction to the 
problems of coefficient quantization in IIR and FIR filters. We have demon- 
stated that a high-order filter should be reduced to a cascade (for FIR or IIR 
filters) or a parallel (for IER filters) realization to minimize the effects of quan- 
tization errors in the coefficients. This is especially important in fixed-point re- 
alizations in which the coefficients are represented by a relatively small number 
of bits. 

ROUND-OFF EFFECTS IN DIGITAL FILTERS 

In Section 7.5 we characterized the quantization errors that occur in arithmetic 
operations performed in a digital filter. The presence of one or more quantiz- 
ers in the realization of a digital filter results in a nonlinear device with char- 
acteristics that may be significantly different from the ideal linear filter. For 
example, a recursive digital filter may exhibit undesirable oscillations in its out- 
put, as shown in the following section, even in the absence of an input 
signal. 

As a result of the finite-precision arithmetic operations performed in the 
digital filter, some registers may overflow if the input signal level becomes large. 
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Overflow represents another form of undesirable nonlinear distortion on the de- 
sired signal at the output of the filter. Consequently, special care must be exercised 
to scale the input signal properly, either to prevent overAow completely or, at least, 
to minimize its rate of occurrence. 

The nonlinear effects due to finite-precision arithmetic make it extremely 
difficult to precisely analyze the performance of a digital filter. To perform an 
analysis of quantization effects, we adopt a statistical characterization of quanti- 
zation errors which, in effect, results in a linear model for the filter. Thus we are 
able to quantify the effects of quantization errors in the implementation of digi- 
tal filters. Our treatment is limited to fixed-point realizations where quantization 
effects are very important. 

7.7.1 Limit-Cycle Oscillations in Recursive Systems 

In the realization of a digital filter, either in digital hardware or in software on 
a digital computer, the quantization inherent in the finite- precision arithmetic 
operations render the system nonlinear. In recursive systems. the nonlinearities 
due to the finite-precision arithmetic operations often cause periodic oscillations 
to occur in the output, even when the input sequence is zero or some nonzero 
constant value. Such oscillations in recursive systems are called limit cycles and 
are directly attributable to round-off errors in multiplication and overflow errors 
in addition. 

To illustrate the characteristics of a limit-cycle oscillation, let us consider a 
single-pole system described by the linear difference equation 

where the pole is at z = a. The ideal system is realized as shown in Fig. 7.44. On 
the other hand, the actual system, which is described by the nonlinear difference 
equation 

is realized as shown in Fig. 7.45. 
Suppose that the actual system in Fig. 7.45 is implemented with fixed-point 

arithmetic based on four bits for the magnitude plus a sign bit. The quantization 
that takes place after multiplication is assumed to round the resulting product 
upward. 

F i  7.44 Ideal single-pole recursive 
system. 
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F i  7.a Actual nonlinear system. 

In Table 7.2 we list the response of the actual system for four different 
locations of the pole z = a, and an input x ( n )  = PS(n), where /J = 15/16, which 
has the binary representation 0.1111. Ideally, the response of the system should 
decay toward zero exponentially [i.e., y ( n )  = an + 0 as n + m]. In the actual 
system, however, the response u(n)  reaches a steady-state periodic output sequence 
with a period that depends on the value of the pole. When the pole is positive, the 
oscillations occur with a period N, = 1, so that the output reaches a constant value 
of & for u = f and b for a = f .  On the other hand, when the pole is negative, the 
output sequence oscillates between positive and negative values (f for o = -f 
and f for a = -:). Hence the period is N, = 2. 

These limit cycles occur as a result of the quantization effects in multipli- 
cations. When the input sequence x ( n )  to the filter becomes zero, the output of 
the filter then, after a number of iterations, enters into the limit cycle. The out- 
put remains in the limit cycle until another input of sufficient size is applied that 
drives the system out of the Iimit cycle. Similarly, zero-input limit cycles occur 
from nonzero initial conditions with the input x ( n )  = 0. The amplitudes of the 
output during a limit cycle are confined to a range of values that is called the dead 
band of the filter. 

TABLE 7.2 LIMIT CYCLES FOR LOWPASS SINGLE-POLE FILTER 

0 0.1111 ($) 0.1111 ($) 0.1011 ($) 0.1011 (E) 
1 o.1ooo ( A )  r.im (-&) 0.1ooo (i) 1.1m ( -5)  
2 0.0100 (i) 0.0100 (6) 0.0110 (i) 0.0110 (6) 
3 0.0010 ( 6 )  1.0010 (-&) 0.0101 (i) 1.0101 (-A) 
4 0.oool (A) 0.oool (h) 0.0100 (i) 0.0100 ($) 
5 0.0001 (A) 1.0001 (-&) 0.0011 (&) 1.0011 (-4) 
6 0.OOOl (A) 0.OOOl (A) 0.0010 (h) 0.0010 ($1 
7 0.0001 (h) 1.0001 (-&) 0.0010 (&) 1.0010 (-&) 
8 o.m1 (A) o.m1 (&) 0.0010 (&) 0.0010 ($1 
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It is interesting to note that when the response of the single-pole filter is in 
the limit cycle, the actual nonlinear system operates as an equivalent Baear system 
with a pole at 2 = 1 when the pole is positive and z = -1 when the pole is negative. 
That is, 

Since the quantized product au(n - 1) is obtained by rounding, it follows that the 
quantization error is bounded as 

where b is the number of bits (exclusive of sign) used in the representation of the 
pole a and u(n). Consequently, (7.7.4) and (7.7.3) leads to 

and hence 

The expression in (7.7.5) defines the dead band for a single-pole filter. For 
example, when b = 4 and {a! = i. we have a dead band with a range of amplitudes 
(- $, &). When b = 4 and Jol=  i, the dead band increases to (-g, i). 

The limit-cycle behavior in a two-pole filter is much more complex and a 
larger variety of oscillations can occur. In this case the ideal two-pole system is 
described by the linear difference equation, 

whereas the actual system is described by the nonlinear difference equation 

When the filter coefficients satisfy the condition a: < -h2, the poles of the 
system occur at 

where a2 = -r2 and a1 = 2r cos0. As in the case of the single-pole fdter, when 
the system is in a zero-input or zero-state limit cycle, 

In other words, the system behaves as an oscillator with complex-conjugate poles 
on the unit circle (i.e., a2 = -r2 = -1). Rounding the product av(n - 2) implies 
that 

Upon substitution of (7.7.8) into (7.7.9), we obtain the result 
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or equivalently, 
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The expression in (7.7.10) defines the dead band of the two-pole filter with complex- 
congugate poles. We observe that the dead-band limits depend only on ]azl. The 
parameter a1 = 2r cos8 determines the frequency of oscillation. 

Another possible limit-cycle mode with zero input, which occurs as a result 
of rounding the multiplications, corresponds to an equivalent second-order system 
with poles at z = f 1. In this case it was shown by Jackson (1969) that the two-pole 
filter exhibits oscillations with an amplitude that falls in the dead band bounded 
by 2 - b / ( l  - (al 1 - a2). 

It is interesting to note that these limit cycles result from rounding the prod- 
uct of the filter coefficients with the previous outputs. v(n - 1) and v(n - 2). 
Instead of rounding, we may choose to truncate the products to b bits. With trun- 
cation, we can eliminate many, although not all, of the limit cycles as shown by 
Claasen et al. (1973). However, recall that truncation results in a biased error 
unless the sign-magnitude representation is used, in which case the truncation er- 
ror is symmetric about zero. l n  general, this bias is undesirable in digital filter 
implementation. 

In a parallel realization of a high-order IIR system, each second-order filter 
section exhibits its own limit-cycle behavior, with no interaction among the second- 
order filter sections. Consequently, the output is the sum of the zero-input limit 
cycles from the individual sections. In the case of a cascade realization for a high- 
order IIR system, the limit cycles are much more difficult to analyze. In particular, 
when the first filter section exhibits a zero-input limit cycle, the output limit cycle 
is filtered by the succeeding sections. If the frequency of the limit cycle falls near a 
resonance frequency in a succeeding filter section, the amplitude of the sequence 
is enhanced by the resonance characteristic. In general, we must be careful to 
avoid such situations. 

In addition to limit cycles caused by rounding the result of multiplications, 
there are limit cycles caused by overflows in addition. An overflow in addition 
of two or more binary numbers occurs when the sum exceeds the word size 
available in the digital implementation of the system. For example, let us con- 
sider the second-order filter section illustrated in Fig. 7.46, in which the addi- 
tion is performed in two's-complement arithmetic. Thus we can write the output 
y ( n )  

where the function g[-]  represents the two'scomplement addition. It is easily 
verified that the function g ( v )  versus v  is described by the graph in Fig. 7.47. 

Recall that the range of values of the parameters (al, a2) for a stable filter 
is given by the stability triangle in Fig. 3.15. However, these conditions are no 
longer sufficient to prevent overflow oscillation with two's-complement arithmetic. 
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F i r e  7.46 Two-pole filter realization. 

Fpre 7A7 Characteristic functional relationship for two's complement addition 
of two or more numbers. 

In fact, it can easily be shown that a necessary and sufficient condition for ensuring 
that no zero-input overflow limit cycles occur is 

which is extremely restrictive and hence an unreasonable constraint to impose on 
any second-order section. 

An effective remedy for curing the problem of overflow oscillations is to 
modify the adder characteristic, as iIlustrated in Fig. 7.48, so that it performs sat- 
uration arithmetic. Thus when an overflow (or underflow) is sensed, the output 
of the adder will be the full-scale value of f 1. The distortion caused by this 
nonlinearity in the adder is usually small provided that saturation occurs infre- 
quently. The use of such a nonlinearity does not preclude the need for seal- 
ing of the signals and the system parameters, as described in the following sec- 
tion. 
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F i r e  7.48 Characteristic functional 
relationship for addition with clipping at 
21. 

7.7.2 Scaling to Prevent Overflow 

Saturation arithmetic as just described eliminates limit cycles due to overflow, on 
the one hand, but on the other hand, it causes undesirable signal distortion due to 
the nonlinearity of the clipper. In order to limit the amount of nonlinear distortion, 
it is important to scale the input signal and the unit sample response. between the 
input and any internal summing node in the system, such that overflow becomes 
a rare event. 

For fixed-point arithmetic, let us first consider the extreme condition that 
overliow is not permitted at any node of the system. Let yk(n)  denote the response 
of the system at the kth node when the input sequence is x ( n )  and the unit sample 
response between the node and the input is hk(n). Then 

Suppose that x(n)  is upper bounded by A,. Then 

Iyk(n)I 5 A, x lhk(m)l for an n (7.7.13) 
m--m 

Now, if the dynamic range of the computer is limited to (-1, I), the condition 

can be satisfied by requiring that the input x ( n )  be scaled such that 

for all possible nodes in the system. The condition in (7.7.14) is both necessary 
and sufficient to prevent overflow. 
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The condition in (7.7.14) is overly conservative, however, to the point where 
the input signal may be scaled too much. In such a case, much of the precision 
used to represent x ( n )  is lost. This is especially true for narrowband sequences, 
such as sinusoids, where the scaling implied by (7.7.14) is extremely severe. For 
narrowband signals we can use the frequency response characteristics of the system 
in determining the appropriate scaling. Since IH(w)l represents the gain of the 
system at frequency w ,  a less severe and reasonably adequate scaling is to require 
that 

1 

where Hk (w)  is the Fourier transform of {hk (n ) ) .  
In the case of an FIR filter, the condition in (7.7.14) reduces to 

which is now a sum over the M nonzero terms of the filter unit sample response. 
Another approach to scaling is to scale the input so that 

From Parseval's theorem we have 

By combining (7.7.17) with (7.7.18), we obtain 

If we compare the different scaling factors given above, we find that 

Clearly, (7.7.14) is the most pessimistic constraint. 
In the following section we observe the ramifications of this scaling on the 

output signal-to-noise (power) ratio (SNR) from a first-order and a second-order 
filter section. 
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7.7.3 Statistical Characterizatlon of Quantization Effects 
in Fixed-Point Realizations of Digital Filters 

It is apparent from our treatment in the previous section that an analysis of quan- 
tization errors in digital filtering, based on deterministic models of quantization 
effects, is not a very fruitful approach. The basic problem is that the nonlinear 
effects in quantizing the products of two numbers and in clipping the sum of two 
numbers to prevent overflow are not easily modeled in large systems that contain 
many multipliers and many summing nodes. 

To obtain more general results on the quantization effects in digital filters, we 
shall model the quantization errors in multiplication as an additive noise sequence 
e(n) ,  just as we did in characterizing the quantization errors in A/D conversion of 
an analog signal. For addition, we consider the effect of scaling the input signal 
to prevent overflow. 

Let us begin our treatment with the characterization of the round-off noise in 
a single-pole filter which is implemented in fixed-point arithmetic and is described 
by the nonlinear difference equation 

v ( n )  = Q,[ov(n - I ) ]  + x(n)  (7.7.21) 

The effect of rounding the product av(n  - 1) is modeled as a noise sequence e ( n )  
added to the actual product av(n - I ) ,  that is, 

Q,Iav(n - I ) ]  = av(n - 1)  + e(n)  (7.7.22) 

With this model for the quantization error, the system under consideration is 
described by the linear difference equation 

The corresponding system is illustrated in block diagram form in Fig. 7.49. 
It is apparent from (7.7.23) that the output sequence v ( n )  of the filter can 

be separated into two components. One is the response of the system to the 
input sequence x(n) .  The second is the response of the system to the additive 
quantization noise e(n) .  In fact, we can express the output sequence v(n)  as a sum 
of these two components, that is, 

v(n)  = y(n) + q ( n )  (7.7.24) 

F i  7.49 Additive noise model for 
the quantization error in a single-pole 
tilter. 
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where y (n)  represents the response of the system to x ( n ) ,  and q ( n )  represents the 
response of the system to the quantization error e (n) .  Upon substitution from 
(7.7.24) for v(n) into (7.7.23), we obtain 

To simplify the analysis, we make the following assumptions about the error 
sequence e (n) .  

1. For any n ,  the error sequence ( e ( n ) }  is uniformly distributed over the range 
(-h . 2-b 1 - 2-b). This implies that the mean value of e ( n )  is zero and its 

T 2  variance is 

2. The error { e ( n ) ]  is a stationary white noise sequence. In other words, the 
error e ( n )  and the error e ( m )  are uncorrelated for n # m. 

3. The error sequence ( e ( n ) }  is uncorrelated with the signal sequence ( ~ ( n ) ) .  

The last assumption allows us to separate the difference equation in (7.7.25) 
into two uncoupled difference equations, namely, 

y ( n )  = ay(n  - 1) + x(n)  (7.7.27) 

The difference equation in (7.7.27) represents the input-output relation for the 
desired system and the difference equation in (7.7.28) represents the relation for 
the quantization error at the output of the system. 

To complete the analysis, we make use of two important relationships devel- 
oped in Appendix A. The first is the relationship for the mean value of the output 
q ( n )  of a linear shift-invariant filter with impulse response h ( n )  when excited by a 
random sequence e (n)  having a mean value me. The result is 

or, equivalently, 

m, = m, H (0) 

where H ( 0 )  is the value of the frequency response H ( o )  of the filter evaluated at 
0 = 0. 

The second important relationship is the expression for the autocorrelation 
sequence of the output q ( n )  of the filter with impulse response h ( n )  when the input 
random sequence e ( n )  has an autocorrelation y,,(n). This result is 

w m 

yW(n) = z 1 h(k)h(l)yet(k - 1  + n )  (7.7.31) 
kc-m I=-oc 
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In the important special case where the random sequence is white (spectrally flat), 
the autocorrelation y,,(n) is a unit sample sequence scaled by the variance a:, 
that is, 

y , h )  = a,26(n) (7.7.32) 

Upon substituting (7.7.32) into (7.7.31), we obtain the desired result for the auto- 
correlation sequence at the output of a filter excited by white noise, namely, 

The variance a: of the output noise is simply obtained by evaluating y,,(n) at 
n = 0. Thus 

0: =of 2 h 2 ( k )  (7.7.34) 
k = - 0 0  

and with the aid of Parseval's theorem, we have the alternative expression 

In the case of the single-pole filter under consideration. the unit sample 
response is 

h ( n )  = a n u ( n )  (7.7.36) 

Since the quantization error due to rounding has zero mean, the mean value of 
the error at the output of the filter is m, = 0. The variance of the error at the 
output of the filter is 

m 

u,' = 0: C a "  
k d  (7.7.37) 

u 
=C 

1 - 0 2  

We observe that the noise power 0: at the output of the filter is enhanced 
relative to the input noise power a: by the factor 1/(1 - aZ). This factor increases 
as the pole is moved closer to the unit circle. 

To  obtain a clearer picture of the effect of the quantization error, we should 
also consider the effect of scaling the input. Let us assume that the input sequence 
{ x ( n ) )  is a white noise sequence (wideband signal), whose amplitude has been 
scaled according to (7.7.14) to prevent overflows in addition. Then 

If we assume that x(n )  is uniformly distributed in the range (-A,, A,), then, 
according to (7.7.31) and (7.739, the signal power at the output of the filter 



Sec. 7.7 Round-Off Effects in Digital Fitters 

where a! = ( 
power uj to 
ratio (SNR), 

:I - /a1)'/3 is the variance of the input signal. The ratio of the signal 
the quantization error power 4, which is called the signal-to-noise 
is simply 

This expression for the output SNR clearly illustrates the severe penalty paid 
as a consequence of the scaling of the input, expecially when the pole is near the 
unit circle. By comparison, if the input is not scaled and the adder has a sufficient 
number of bits to avoid overflow, then the signal amplitude may be confined to 
the range ( -1 , l ) .  In this case, u: = i, which is independent of the pole position. 
Then 

u2 2 - 22(b+l) 
0; - (7.7.40) 

The difference between the SNRs in (7.7.40) and (7.7.39) clearly demonstrates the 
need to use more bits in addition than in multiplication. The number of additional 
bits depends on the position of the pole and should be increased as the pole is 
moved closer to the unit circle. 

Next, let us consider a two-pole filter with infinite precision which is described 
by the linear difference equation 

where a1 = 2r cos6 and a2 = -r2. When the two products are rounded, we have 
a system which is described by the nonlinear difference equation 

This system is illustrated in block diagram form in Fig. 7.50. 
Now there are two multiplications, and hence two quantization errors are 

produced for each output. Consequently, we should introduce two noise sequences 
e l (n)  and ez(n), which correspond to the quantizer outputs 

12, [a1 v(n - 111 = a1 v(n - 1) + el (n) 
(7.7.43) 

Qr[azv(n - 2)] = azv(n - 2) + e2(n) 
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Figure 7.50 Two-pole digital filter with 
rounding quantizen. 

A block diagram for the corresponding model is shown in Fig. 7.51. Note that the 
error sequences el(n) and ez(n) can be moved directly to the input of the filter. 

As in the case of the first-order filter, the output of the second-order filter 
can be separated into two components, the desired signal component and the 
quantization error component. The former is described by the difference equation 

while the latter satisfies the difference equation 

It is reasonabie to assume that the two sequences el(n) and ez(n) are uncorrelated. 
Now the second-order filter has a unit sample response 

rn  
h(n) = - sin(n + 1)8u(n) 

sin 8 
(7.7.46) 

Hence 

Fiye 7.51 Additive n o k  model for 
the quantization errors in a two-p~le 
filter realization. 
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By applying (7.7.34), we obtain the variance of the quantization errors at the output 
of the filter in the form 

In the case of the signal component, if we scale the input as in (7.7.14) to 
avoid overflow, the power in the output signal is 

m 

where the power in the input signal x ( n )  is given by the variance 

1 
of = (7.7.50) 

Consequently, the SNR at the output of the two-pole filter is 

Although it is difficult to determine the exact value of the denominator term 
in (7.7.51), it is easy to obtain an upper and a lower bound. In particular, Ilr(n)l is 
upper bounded as 

so that 
M 1 " 1 z Ih(n)i 5 - Ern = 

n d  sine h, (1 - r) sin 8 

The lower bound may be obtained by noting that 

But 

At w = 0, which is the resonant frequency of the filter, we obtain the largest value 
of I H(w) 1. Hence 
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Therefore, the SNR is bounded from above and below according to the relation 

u2  
22(b+l)(l - r12 ,in2 8 5 2 < 22(6+1) (1 - r12(1 + r2 - 2r cos 28) (7.7.55) 04' - 

For example, when 8 = n/2,  the expression in (7.7.55) reduces to 

The dominant term in this bound is (1 - r ) 2  which acts to reduce the SNR 
dramatically as the poles move toward the unit circle. Hence the effect of scaling 
in the second-order filter is more severe than in the single-pole filter. Note that 
if d = 1 - r is the distance of the pole from the unit circle, the SNR in (7.7.56) 
is reduced by d2, whereas in the single-pole filter the reduction is proportional 
to d. These results serve to reinforce the earlier statement regarding the use of 
more bits in addition than in multiplication as a mechanism for avoiding the severe 
penalty due to scaling. 

The analysis of the quantization effects in a second-order filter can be ap- 
plied directly to higher-order filters based on a parallel realization. In this case 
each second-order filter section is independent of all the other sections, and there- 
fore the total quantization noise power at the output of the parallel bank is simply 
the linear sum of the quantization noise powers of each of the individual sections. 
On the other hand, the cascade realization is more difficult to analyze. For the 
cascade interconnection, the noise generated in any second-order filter section is 
filtered by the succeeding sections. As a consequence, there is the issue of how to 
pair together real-valued poles to form second-order sections and how to arrange 
the resulting second-order filters to minimize the total noise power at the output 
of the high-order filter. This general topic was investigated by Jackson (1970a, b), 
who showed that poles close to the unit circle should be paired with nearby zeros 
to reduce the gain of each second-order section. In ordering the second-order 
sections in cascade, a reasonable strategy is to place the sections in the order of 
decreasing maximum frequency gain. In this case the noise power generated in 
the early high-gain section is not boosted significantly by the latter sections. 

The following example illustrates the point that proper ordering of sections 
in a cascade realization is important in controlling the round-off noise at the output 
of the overall filter. 

Example 7.7.1 

Determine the variance of the round-off noise at the output of the two cascade 
realizations of the filter with system function 

where 
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Solution Let h ( n ) ,  h i  ( n ) ,  and h z ( n )  represent the unit sample responses correspond- 
ing to the system functions H ( z ) ,  H l ( z ) ,  and Hz(z ) ,  respectively. It follows that 

The two cascade realizations are shown in Fig. 7.52. 
In the first cascade realization, the variance of the output is 

In the second cascade realization, the variance of the output noise is 

ez(n) 
(a) Cascadt realization I 

e2(n) 

(b) Cascade realization II 

Flgue 752 Two cascade realizations in Example 7.8.1: (a) cascade reahtion L; 
@) cascade realization IT. 
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Now 

a: 4 4 x h 2( n )  = - - - 1 
1 - 1  I - '  + = 1.83 

m d l  I6 

Therefore, 
0,: = 2.%,2 

and the ratio of noise variances is 

a;? - - - 1.09 
(.Yl 

Consequently, the noise power in the second cascade realization is 9% larger than 
the first realization. 

7.8 SUMMARY AND REFERENCES 

From the treatment in this chapter we have seen that there are various realizations 
of discrete-time systems. FIR systems can be realized in a direct form, a cascade 
form, a frequency sampling form, and a lattice form. IIR systems can also be 
realized in a direct form, a cascade form, a lattice or a lattice-ladder form, and in 
a parallel form. 

For any given system described by a linear constant-coefficient difference 
equation, these realizations are equivalent in that they represent the same system 
and produce the same output for any given input, provided that the internal com- 
putations are performed with infinite precision. However, the various structures 
are not equivalent when they are realized with finite- precision arithmetic. 

The state-space formulation provides an internal description of a system and, 
as a consequence, we obtained additional system realizations, called store-space re- 
alizations. These realizations represent additional possible structures that provide 
good alternative candidate realizations for the system. 

Three important factors are presented for choosing among the various FIR 
and IIR system realizations. These factors are computational complexity, mem- 
ory requirements, and finite-word-length effects. Depending on either the time- 
domain or the frequency-domain characteristics of a system, some structures may 
require less computation andor less memory than others. Hence our selection 
must consider these two important factors. 

Much research has been done over the past two decades on state-space rep- 
resentation and realization of systems. For reference, we cite the books by Chen 
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(1970), DeRusso et aL (1%5), Zadeh and Desoer (1%3), and Gupta (1966). The 
use of state-space filter structures in the realization of IIR systems has been pro- 
posed by Mullis and Roberts (1976a,b), and further developed by Hwang (1977), 
Jackson et al. (1979), Jackson (1979), Mills et al. (1981), and Bomar (1985). 

In deriving the transposed structures in Section 7.3, we introduced several 
concepts and operations on signal flow graphs. Signal flow graphs are treated in 
depth in the books by Mason and Zimmerman (1960) and Chow and Cassignol 
(1962). 

Another important structure for IIR systems, a wave digital filter, has been 
investigated by Fettweis (1971) and further developed by Sedlrneyer and Fettweis 
(1973). A treatment of this filter structure can also be found in the book by 
Antoniou (1979). 

Finite-word-length effects are an important factor in the implementation of 
digital signal processing systems. In this chapter we described the effects of a finite 
word length in digital filtering. In particular, we considered the following problems 
dealing with finite-word length effects: 

1. Parameter quantization in digital filters 
2. Round-off noise in multiplication 
3. Overflow in addition 
4. Limit cycles 

These four effects are internal to the filter and influence the method by which 
the system will be implemented. In particular, we demonstrated that high-order 
systems, especially IIR systems, should be realized by using second-order sections 
as building blocks. We advocated the use of the direct form I1 realization, either 
the conventional or the transposed form. 

Effects of round-off errors in fixed-point implementations of FIR and IIR 
filter structures have been investigated by many researchers. We cite the papers 
by Gold and Rader (1966), Rader and Gold (1%7b), Jackson (19 70a,b), Liu (1971), 
Chan and Rabiner (1973a,b,c), and Oppenheim and Weinstein (1972). 

As an alternative to the use of direct form 11 second-order filters as building 
blocks for high-order filters, we can use second-order state-variable forms. Such 
state-variable forms can be optimized with respect to the state transition matrix 
to minimize round-off errors. The optimization leads to minimum-round-off-noise 
second-order state-variable filters that are highly robust for implementing both 
narrowband and wideband filters. 

For a treatment of minimum-round-off-noise sewnd-order state-space real- 
izations, the reader can refer to the papers of Mullis and Roberts (1976a,b), Hwang 
(1977), Jackson et d. (1979), Mills et al. (1981), Bomar (1985), and the book by 
Roberts and Mullis (1987). 

Limitcycle oscillations occur in IIR filters as a result of quantization effects 
in fixed-point multiplication and rounding. Investigation of h i t  cycles in digital 
filtering and their characteristic behavior is treated in the papers by Parker and 
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Hess (1971), Brubaker and Gowdy (1972), Sandberg and Kaiser (1972), and Jack- 
son (1969, 1979). The latter paper deals with limit cycles in state-space structures. 
Methods have also been devised to eliminate limit cycles caused by round-off er- 
rors. For example, the papers by Barnes and Fam (1977), Fam and Barnes (1979), 
Chang (1981), Buttenveck et al. (1984), and Auer (1987) discuss this problem. 
Overflow oscillations have been treated in the paper by Ebert et al. (1969). 

The effects of parameter quantization has been treated in a number of papers. 
We cite for reference the work of Rader and Gold (1%7b), Knowles and Olcayto 
(1%8), Avenhaus and Schuessler (1970), H e m a n n  and Schuessler (1970b), Chan 
and Rabiner (1973c), and Jackson (1976). 

Finally, we mention that the lattice and lattice-ladder filter structures are 
known to be robust in fixed-point implementations. For a treatment of these types 
of filters, the reader is referred to the papers of Gray and Markel (1973), Makhoul 
(1978), and Morf et al. (1977) and to the book by Markel and Gray (1976). 

P R O B L E M S  

7.1 Determine a direct form realization for the following linear phase filters. 
(a) h ( n )  = (1,2.3.4.3,2.11 

t 
(b) h ( n )  = [1,2,3,3,2,11 

t 
7.2 Consider an FIR filter with system function 

H ( r )  = 1 + 2.882-' + 3.4048z-' + 1 . 7 4 ~ - ~  + 0.4z-' 

Sketch the direct form and lattice realizations of the filter and determine in detail the 
corresponding inputautput equations. Is the system minimum phase? 

7 3  Determine the system function and the impulse response of the system shown in 
Fig. W.3. 

7.4 Determine the system function and the impulse response of the system shown in 
Fig. W.4. 

75 Determine the transposed structure of the systems in Fig. W.4 and verify that both 
the original and the transposed system have the same system function. 
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Figure W.4 

7.6 Determine a l ,  L I Z .  and cl and co in terms of hl and b2 so that thc two systcms in 
Fig. P7.6 are equivalent. 

7.7 Consider the filter shown in Fig. P7.7. 
(a) Determine its system function. 
(b) Sketch the pole-zero plot and check for stability if 

( I )  h= b2 = 1, b l  = 2 ,  = 1 . 5 , ~  = -0.9 
( 2 )  h = b = l ,  b l = 2 ,  o l = l , a 2 = - 2  

(c) Determine the response to x ( n )  = cos(lrn/3) if bo = 1, b l  = bz = 0, a, = 1. and 
= -0.99. 

7% Consider an LTI system, initially at rest, described by the difference equation 

(a) Determine the impulse response, h(n) ,  of the system. 
(b) What is the response of the system to the input signal 

x ( n )  = [(i)" + ( - i ) n ] u ( n )  

(c) Determine the direct form 11, parallel-form, and cascade-form realizations for this 
system. 

(d) Sketch roughly the magnitude response IH(w)[ of this system. 
7.9 Obtain the direct form I, direct form 11, cascade, and parallel structures for the fol- 

lowing systems. 
(a) y(n)  = i y ( n  - 1) - $ y ( n  - 2 )  + x ( n )  + $ x ( n  - 1 )  
(b) y(n)  = -O.ly(n - 1)  + 0.72y(n - 2 )  + 0.7x(n)  - 0.252x(n - 2) 
(c) ~ ( n )  = -O.ly(n - 1) + 0 . 2 y ( n  - 2 )  + 3x(n)  + 3.6x(n - 1) + 0.6x(n - 2 )  
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(f) y ( n ) = y ( n - l ) - $ y ( n - 2 ) + x ( n ) - x ( n - I ) + x ( n - 2 )  
Which of the systems above are stable? 

7.10 Show that the systems in Fig. P7.10 are equivalent. 
7.ll Determine all the FIR lilters which are specified by the lattice parameters K1 = 4 9  

Kz = 0.6, K3 = -0.7, and K4 = 4. 
7.U Determine the set of Werence equations for describing a realization of an IIR SF 

tern based on the use of the transposed direct form I1 strucnue for the second-order 
subsystems. 
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rsin % '-i-(7f"TTT 
I rcos q, 

7.W* Write a program that implements a parallel-form realization based on transposed 
direct form II second-order modules. 

7.14* Write a program that implements a cascade-form realization based on regular direct 
form I1 second-order modules. 

7.15 Determine the parameters {K,} of the lattice filter corresponding to the FIR fdter 
described by the system function 

7.16 (a) Determine the zeros and sketch the zero pattern for the FIR lattice filter with 
parameters 

@) The same as in part (a) but with K3 = -1. 
(c) You should have found that all the zeros lie exactly on the unit circle. Can this 

result be generalized? How? 
(d) Sketch the phase response of the filters in parts (a) and (b). What did you notice? 

Can this result be generalized? How? 
7.17 Consider an FIR lattice filter with coeflicients Kl = 0.65, Kz = -0.34, and K3 = 0.8. 

(a) Find its impulse response by tracing a unit impulse input through the lattice 
structure. 

@) Draw the equivalent direct-form structure. 



604 Implementation of Discrete-Time Systems Chap. 7 

7.18 Consider a causal IIR system with system function 

(a) Determine the equivalent lattice-ladder structure. 
@) Check if the system is stable. 

7.19 Determine the input-output relationship, the system function, and plot the pole-zero 
pattern for the discrete-time system shown in Fig. P7.19. 

rcos 8 

7 

rcos 6 

720 Determine the coupled-form state-space realization for the digital resonator 

7.21 (a) Determine the impulse response of an FIR lattice liiter with parameters K1 = 0.6, 
K2 = 0.3, K3 = 0.5, and K4 = 0.9. 

(b) Sketch the direct form and lattice all-zero and all-pole filters specified by the 
K-parameters given in part (a). 

7.22 (a) Sketch the lattice realization for the resonator 

(b) What happens if r = I? 
733 Sketch the lattice-ladder structure for the system 

7.24 Determine a state-space model and the corresponding realization for the following 
FIR system: 
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725 Determine the state-space model for the system described by 

and sketch the type 1 and type 2 state-space realizations. 
7.26 Determine the type 1 and type 2 state-space realizations for the Fibonacci system and 

its diagonal form. 
727 By means of the z-transform, determine the impulse response of the system described 

by the state-space parameters 

728 Determine the characteristic polynomial of the coupled-form state-space structure 
described by (7.4.68) and solve for the roots. 

7.29 Determine the transpose structure for the coupled-form state-space structure shown 
in Fig. 7.31. 

7.30 Consider a pole-zero system with system function 

(a) Sketch the regular and transpose direct form 11 realizations of the system. 
(b) Determine and sketch the type 1 and type 2 state-space realizations. 
(c) Determine the impulse response of the system by inverting H ( z )  and by using 

state-space techniques. 
(d) Determine the coupled-form state-space realization. 
(e) Repeat parts (a) through (d) for the system obtained by changing the angle of 

the poles from x/3 to x/4. 
731  (a) Determine a parallel. and a cascade realization of the system 

(b) Determine the type 1 and type 2 state-space descriptions of the system in part (a). 
7.32 Show how to use a lattice structure to implement the following all-pass filter 

Is the system stable? 
733 Consider a system described by the following state-space equations: 

(a) Determine the characteristic polynomial and the eigenvalues of the system. 
@) Determine the state transition matrix +(n) for n 2 0. 
(c) Determine the system function and the impulse response of the system. 
(d) Compute the step response of the system if v(0) = [0  I]'. 
(e) Sketch a state-space realization for the system. 
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7.34 Repeat Problem 7.33 if the system is described by the state-space equations 

735 Repeat Problem 7.33 for the system described by the state-space equations 

736 Consider the system 

(a) Determine the type 1 and type 2 state-space realizations of the system. 
(b) Determine the parallel and cascade state-space realizations of the system. 
(c) Determine the impulse response of the system by at least two different methods. 

7.37 Consider the causal system 

(a) Determine its system function. 
(b) Determine the type 1 state-space model. 
(c) Determine the state transition matrix *(n)  = F", for any n. using z-transform 

techniques. 
(d) Determine the system function using the formula 

Compare the answer with that in part (a). 
(e) Compute the characteristic polynomial det(zI-F) and check if the system is stable. 

738 Determine the impulse response of the system 

using the z-transform approach. 
7 3  A discrete-time system is described by the following state-space model: 

y(n> = g'v(n) + dx(n)  
where 

(a) Sketch the corresponding state-space structure. 
(b) Calculate the impulse response for n = 0, 1, . . . , 5  and for n = 17 by using the 

state-space approach 
(c) Find the differen= equation description of the system. 
(d) Repeat part (b) by using the difference equation. 
(e) Sketch the dircct form I1 implementation of the system. 



Chap. 7 Probbrns 

7 4  Determine the state-space parameters F, q, g, and d for: 
(a) the all-zero lattice structure 
(b) the all-pole lattice structure 

7.41 The generic floating-point format for a DSP microprocessor is the following: 

1 sign w 

exponent ' --ti=- 

The value of the number X is given by 

01.M x 2E if S = 0 

if E is the most negative two's-complement value 

Determine the range of positive and negative numbers for the following two formats: 

(a) I E I s I  M I short formt 

7.42 Consider the IIR recursive filter shown in Fig. P7.42 and let hF(n) ,  hR(n) ,  and h ( n )  
denote the impulse responses of the FIR section, the recursive section, and the overall 
filter, respectively. 
(a) Find all the causal and stable recursive second-order sections with integer coef- 

ficients (a , ,  az)  and determine and sketch the& impulse responses and frequency 
responses. These filters do not require comphcated multiplications or quantiza- 
tion after multiplications. 

. . 

single-precision format (b) E S M 
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(b) Show that three of the sections obtained in part (a) can be obtained by intercon- 
nection of other sections. 

(c) Find a difference equation that describes the impulse response h ( n )  of the filter 
and determine the conditions for the overall filter to be FIR. 

(d) Rederive the results in parts (a) to (c) using zdomain considerations. 
7.43 This problem illustrates the development of digital filter structures using Homer's 

rule for polynomial evduation. To this end consider the polynomial 

which computes p(x)  with the minimum cost of p multiplications and p additions. 
(a) Draw the structures corresponding to the factorizations 

and determine the system function, number of delay elements, and arithmetic 
operations for each structure 

(b) Draw the Homer structure for the following linear-phase system: 

7.44 Let xl  and n be (b  + 1)-bit binary numbers with magnitude less than 1. To compute 
the sum of xl and XI using two's-complement representation we treat them as (b + 1)- 
bit unsigned numbers, we perform addition modulo-2 and ignore any carry after the 
sign bit. 
(a) Show that if the sum of two numbers with the same sign has the opposite sign, 

this corresponds to overflow. 
(b) Show that when we compute the sum of several numbers using two's-complement 

representation, the result will be correct, even if there are overflows, if the correct 
sum is less than 1 in magnitude. Illustrate this argument by constructing a simple 
example with three numbers. 

7.45 Consider the system described by the difference equation 

(a) Show that it is all-pass. 
(b) Obtain the direct form I1 realization of the system 
(c) If you quantize the coefficients of the system in part (b), is it still all- pass? 
(d) Obtain a realization by rewriting the difference equation as 

(e) If you quantize the coefficients of the system in part (d), is it still all-pass? 
7.46 Consider the system 

(a) Compute its response to the input x(n) = ( t )"u(n)  assuming infinite-prdon 
arithmetic. 
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(b) Compute the response of the system y(n), 0 ( n ( 5 to the same input, assuming 
finite-precision sign-and-magnitude fractional arithmetic with five bits (i.e., the 
sign bit plus four fractional bits). The quantization is performed by truncation. 

(c) Compare the results obtained in parts (a) and (b). 
7.47 The input to the system 

y(n)  = 0.999y(n - 1 )  + x(n)  

is quantized to b = 8 bits. What is the power produced by the quantization noise at 
the output of the filter? 

7.48 Consider the system 
y ( n )  = 0.875y(n - 1) - 0.125y(n - 2) + x ( n )  

(a) Compute its poles and design the cascade realization of the system. 
(b) Quantize the coefficients of the system using truncation, maintaining a sign bit 

plus three other bits. Determine the poles of the resulting system. 
(c) Repeat part (b) for the same precision using rounding. 
(d) Compare the poles obtained in parts (b) and (c) with those in part (a). Which 

realization is better? Sketch the frequency responses of the systems in parts (a), 
(b), and (c). 

7.49 Consider the system 

(a) Draw all possible realizations of the system. 
(b) Suppose that we implement the filter with fixed-point sign-and- magnitude frac- 

tional arithmetic using (b + 1 )  bits (one bit is used for the sign). Each resulting 
product is rounded into b bits. Determine the variance of the round-off noise 
created by the multipliers at the output of each one of the realizations in part (a). 

750 The first-order filter shown in Fig. W . 5 0  is implemented in four-bit (including sign) 
fixed-point two's-complement fractional arithmetic. Product. are rounded to four-bit 
representation. Using the input x(n)  = 0.106(n), determine: 

(a) The first five outputs if o = 0.5. D w s  the filter go into a limit cycle? 
@) The first five outputs if a = 0.75. Does the fdter go into a limit cycle? 

751 The digital system shown in Fig. W.51 uses a six-bit (including sign) fixed-point two's- 
complement A/D converter with rounding, and the filter H ( z )  is implemented us- 
ing eight-bit (including sign) fixed-point two's-complement fractional arithmetic with 
rounding. The input x ( t )  is a zero-mean uniformly distributed random process hav- 
ing autocorrelation y,,(t) = 3S(r). Assume that the AID converter can handle input 
values up to f 1.0 without overflow. 
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(a) What value of attenuation should be applied prior to the A/D converter to assure 
that it does not overflow? 

(b) With the attenuation above, what is the signal-to-quantization noise ratio (SNR) 
at the AID converter output? 

(c) The six-bit AID samples can be left-justified, right-justified, or centered in the 
eight-bit word used as the input to the digital filter. What is the correct strategy 
to use for maximum SNR at the filter output without overflow? 

(d) What is the SNR at the output of the fitter due to all quantization noise sources? 

752 Shown in Fig. W.52 is the coupled-form implementation of a two-pole filter with 
poles at x = re*je. There are four real mu1tipIications per output point. Let ei(n),  
i = 1, 2, 3, 4 represent the round-off noise in a fixed-point implementation of the 
filter. Assume that the noise sources are zero-mean mutually uncorrelated stationary 
white noise sequences. For each n the probability density function p(e) is uniform in 
the range -A /2 5 e 5 A /2, where A = 2-b. 
(a) Write the two coupled difference equations for y(n)  and u(n),  including the noise 

sources and the input sequence x ( n ) .  
(b) From these two difference equations, show that the filter system functions Hl(z )  

and H z ( z )  between the input noise terms el (n)  + e2(n) and 4 ( n )  + e,(n) and the 
output y(n) are: 

r sin 82-' 
H l (2 )  = 1 - 2 coaaz-l + r2z-2 

We know that 

H ( z )  = - + r2z-2 =+ h(n)  = I r n  sin(n + l )Bu(n) sin 9 

Determine hl (n) and h2(n). 
(c) Determine a closed-form expression for the variance of the total noise from ei(n)* 

i = 1 , 2 , 3 , 4  at the output of the filter. 
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I 

rcm e '(" - 

rsin 0 

cl(n) 

-I sin 8 

e,(4 

753 Determine the variance of the round-off noise at the output of the two wcade real- 
izations of the filter shown in Fig. P7.53, with system function 

where 

7.54 Quantization effects in direct-fonn FIR filters Consider a direct-form realization of 
an FIR filter of length M. Suppose that the multiplication of each coefficient with 
the corresponding signal sample is performed in fixed-point arithmetic with b bits and 
each product is rounded to b bits. Determine the variance of the quantization noise 
at the output of the filter by using a statistical characterization of the round-off noise 
as in Section 7.7.3. 

755* Consider the system specified by the system function 

(a) Choose GI and G2 so that the gain of eacb secondsrder section at w = 0 is equal 
to 1. 
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= f i n )  

- 1 - 
1 2 I ,  4 

e,(n) @z(n) 

(a) Cascade realization 1 

t 1 
e An) e2(n) 

(b) Cascade realization I1 

(b) Sketch the direct form 1, direct form 2, and cascade realizations of the system. 
(c) Write a program that implements the direct form 1 and direct form 2, and compute 

the fust 100 samples of the impulse response and the step response of the system. 
(d) Plot the results in part (c) to illustrate the proper functioning of the programs. 

756* Consider the system given ia Roblem 7.55 with GI -- G2 = 1. 
(a) Determine a lattice realization for the system 

(b) Determine a lattice realization for the system 

(c) Determine a lattice-ladder realization for the system H ( z )  = B ( z ) / A ( z ) .  
(d) Write a program for the implementation of the lattice-ladder structure in part (c)- 
(e) Determine and sketch the first 100 samples of the impulse responses of the W 

tans in parts (a) through (c) by working with the lattice structures. 
(0 Compute and sketch the first 100 samples of the convolution of impulse respom 

in parts (a) and (b). What did you h d ?  Explain your resdts. 
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757* Consider the system given in Problem 7.55. 
(a) Determine the parallel-form structure and write a program for its implementation. 
(b) Sketch a parallel structure using second-order coupled-form state-space sections. 
(c) Write a program for the implementation of the structure in part (b). 
(d) Verify the programs in parts (a) and (c) by computing and sketching the impulse 

response of the system. 



Design of Digital Filters 

With the background that we have developed in the preceding chapters, we are 
now in a position to treat the subject of digital filter design. We shall describe 
several methods for designing FIR and IIR digital filters. 

Jn the design of frequency-selective filters, the desired filter characteristics 
are specified in the frequency domain in terms of the desired magnitude and phase 
response of the filter. In the filter design process, we determine the coefficients of a 
causal FIR or IIR filter that closely approximates the desired frequency response 
specifications. The issue of which type of filter to design, FIR or IIR, depends 
on the nature of the problem and on the specifications of the desired frequency 
response. 

In practice, FIR filters are employed in filtering problems where there is 
a requirement for a linear-phase characteristic within the passband of the filter. 
If there is no requirement for a linear-phase characteristic, either an IIR or an 
FIR filter may be employed. However, as a general rule, an IIR filter has lower 
sidelobes in the stopband than an FIR filter having the same number of parameters. 
For this reason, if some phase distortion is either tolerable or unimportant, an IIR 
filter is preferable, primarily because its implementation involves fewer parameters, 
requires less memory and has lower computational complexity. 

In conjunction with our discussion of digital filter design, we describe ffe- 
quency transformations in both the analog and digital domains for transforming a 
lowpass prototype filter into either another lowpass, bandpass, bandstop, or high- 
pass filter. 

Today, FIR and IIR digital filter design is greatly facilitated by the availabilit~ 
of numerous computer software programs. In describing the various digital filter 
design methods in this chapter, our primary objective is to give the reader the 
background necessary to select the filter that best matches the application and 
satisfies the design requirements. 

8.1 GENERAL CONSlDERATlONS 

In Section 4.5, we described the characteristics of ideal hlters and dernonsuae 
that such filters are not causal and therefore, are not physically realizable. In tba 
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section, the issue of causality and its implications is considered in more detail. 
Following this discussion, we present the frequency response characteristics of 
causal FIR and IIR digital filters. 

8.1 .I Causality and Its Implications 

Let us consider the issue of causality in more detail by examining the impulse 
response h(n) of an ideal lowpass filter with frequency response characteristic 

The impulse response of this filter is 

A plot of h ( n )  for o, = n/4 is illustrated in Fig. 8.1. It is clear that the ideal 
lowpass filter is noncausal and hence it cannot be realized in practice. 

One possible solution is to introduce a large delay no in h(n) and arbitrarily 
to set h ( n )  = 0 for n < no. However, the resulting system no longer has an 
ideal frequency response characteristic. Indeed, if we set h(n) = 0 for n < no, 
the Fourier series expansion of H(w) results in the Gibbs phenomenon, as will be 
described in Section 8.2. 

Although this discussion is limited to the realization of a lowpass fitter, our 
conclusions hold, in general, for all the other ideal filter characteristics. ln brief, 
none of the ideal filter characteristics previously iIlustrated in Fig. 4.43 are causal, 
hence all are physically unrealizable. 

A question that naturally arises at this point is the following: What are the 
necessary and sufficient conditions that a frequency response characteristic N(o) 

F i  81 Unit sample response of an ideal lowpass filter. 
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must satisfy in order for the resulting filter to be causal? The answer to this 
question is given by the Paley-Wiener theorem, which can be stated as follows: 

Pdey-Wiener Theorem. If h(n)  has finite energy and h ( n )  = 0 for n < 0, 
then [for a reference, see Wiener and Paley (1934)l 

Conversely, if IH(o) l  is square integrable and if the integral in (8.1.3) is finite, then 
we can associate with IH(w) [  a phase response O ( o ) ,  so that the resulting fiher 
with frequency response 

is causal. 

One important conclusion that we draw from the Paley-Wiener theorem is 
that the magnitude function IH(w)l can be zero at some frequencies, but it cannot 
be zero over any finite band of frequencies, since the integral then becomes infinite. 
Consequently, any ideal filter is noncausal. 

Apparently, causality imposes some tight constraints on a linear time- 
invariant system. In addition to the Paley-Wiener condition, causality also implies 
a strong relationship between HR(w) and H,(w) ,  the real and imaginary compo- 
nents of the frequency response H ( w ) .  To illustrate this dependence, we decom- 
pose h ( n )  into an even and an odd sequence, that is, 

where 

and 

Now, if h(n)  is causal, it is possible to recover h ( n )  from its even part ht (n )  for 
0 5 n 5 oo or from its odd component ho(n)  for 1 5 n 5 oo. 

Indeed, it can be easily seen that 

and 

Since ho(n)  = 0 for n = 0 ,  we cannot recover h ( 0 )  from h, (n )  and hence we also 
must know h(0) .  In any case, it is apparent that ho(n)  = he(n)  for n 2 1, so there 
is a strong relationship between h,(n) and h,(n).  

If h(n)  is absolutely summable (i.e., BIB0 stable), the frequency response 
H ( o )  exists, and 
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In addition, if h(n) is real valued and causal, the symmetry properties of the Fourier 
transform imply that 

Since h(n) is completely specified by h,(n), it follows that H (w) is completely 
determined if we know HR(w). Alternatively, H(w) is completely determined 
from HI(o) and h(0). In short, HR(w) and Hl(w) are interdependent and cannot 
be specified independently if the system is causal. Equivalently, the magnitude 
and phase responses of a causal filter are interdependent and hence cannot be 
specified independently. 

Given HR(u) for a corresponding real, even, and absolutely summable se- 
quence h,(n), we can determine H(w). The following example illustrates the pro- 
cedure. 

Example &L1 

Consider a stable LTI system with real and even impulse response h ( n ) .  Determine 
H (w)  if 

Solution The first step is to determine h,(n).  This can be done by noting that 

The ROC has to be restricted by the poles at pl = a and = l/a and should include 
the unit circle. Hence the ROC is la1 < lzl < l/lal. Consequently, h,(n) is a two- 
sided sequence, with the pole at z = a contributing to the causal part and p;! = l/a 
contributing to the anticausal part. By using a partial-fraction expansion, we obtain 

h,(n) = 4a'"l + 46(ri) 

By substituting (8.1.11) into (8.1.7), we obtain h ( n )  as 

Finally, we obtain the Fourier transform of h ( n )  as 
1 

The relationship between the real and imaginary components of the Fourier 
transform of an absolutely summable, causal, and real sequence can be easily 
established from (8.1.7). The Fourier transform relationship for (8.1.7) is 
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where U ( o )  is the Fourier transform of the unit step sequence u ( n ) .  Although the 
unit step sequence is not absolutely summable, it has a Fourier transform (see 
Section 4.2.8). 

By substituting (8.1.13) into (8.1.12) and carrying out the integration, we obtain 
the relation between H R ( w )  and HI (o) as 

1 " m - A  
H, ( o )  = - Z; /_* HR (A)  cot -dA 

2 
(8.1.14) 

Thus H, ( w )  is uniquely determined from H R ( w )  through this integral relationship. 
The integral is called a discrete Hilbert transform. It is left as an exercise to the 
reader to establish the relationship for HR(m) in terms of the discrete Hilbert 
transform of H , ( o ) .  

To summarize, causality has very important implications in the design of 
frequency-selective filters. These are: (a) the frequency response H ( w )  cannot 
be zero, except at a finite set of points in frequency; (b) the magnitude IH(w)j 
cannot be constant in any finite range of frequencies and the transition from pass- 
band to stopband cannot be infinitely sharp [this is a consequence of the Gibbs 
phenomenon, which results from the truncation of h ( n )  to achieve causality]; and 
(c) the real and imaginary parts of H ( w )  are interdependent and are related by the 
discrete Hilbert transform. As a consequence, the magnitude IH(o ) l  and phase 
Q ( w )  of H ( o )  cannot be chosen arbitrarily. 

Now that we know the restrictions that causality imposes on the frequency 
response characteristic and the fact that ideal filters are not achievable in practice, 
we limit our attention to the class of linear time-invariant systems specified by the 
difference equation 

which are causal and physically realizable. As we have demonstrated, such systems 
have a frequency response 

The basic digital filter design problem is to approximate any of the ideal frequency 
response characteristics with a system that has the frequency response (8.1.15), by 
properly selecting the coefficients {ak} and {bk). The approximation problem is 
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treated in detail in Sections 8.2 and 83, where we discuss techniques for digital 
filter design. 

8.1 2 Characteristics of Practical Frequency-Selective 
Filters 

As we observed from our discussion of the preceding section, ideal filters are 
noncausal and hence physically unrealizable for real-time signal processing appli- 
cations. Causality implies that the frequency response characteristic H(w) of the 
filter cannot be zero, except at a finite set of points in the frequency range. In 
addition, H(w) cannot have an infinitely sharp cutoff from passband to stopband, 
that is, H(w) cannot drop from unity to zero abruptly. 

Although the frequency response characteristics possessed by ideal filters may 
be desirable, they are not absolutely necessary in most practical applications. If we 
relax these conditions, it is possible to realize causal filters that approximate the 
ideal filters as closely as we desire. In particular, it is not necessary to insist that the 
magnitude IH(w)( be constant in the entire passband of the filter. A small amount 
of ripple in the passband, as illustrated in Fig. 8.2, is usually tolerable. Similarly, it 
is not necessary for the filter response I H(w)lto be zero in the stopband. A small, 
nonzero value or a small amount of ripple in the stopband is also tolerable. 

The transition of the frequency response from passband to stopband defines 
the transition band or transition region of the filter, as illustrated in Fig, 8.2. The 
band-edge frequency w, defines the edge of the passband, while the frequency w, 
denotes the beginning of the stopband. Thus the width of the transition band is 
w, -up. The width of the passband is usually called the bandwidth of the filter. For 
example, if the filter is lowpass with a passband edge frequency w,, its bandwidth 
is w,. 

IH(o)l 
I 

6, - Passband ripple 
62 - Stopband ripple 
op - Passband edge ripple 
o, - Stopband edge ripple 

Fiyt 8.2 Magnitude characteristics of physically realizable filters. 
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If there is ripple in the passband of the Nter, its value is denoted as 61, and 
the magnitude H ( o ) l  varies between the limits 1 f S1. The ripple in the stopband 
of the filter is denoted as S2. 

To accommodate a large dynamic range in the graph of the frequency re- 
sponse of any filter, it is common practice to use a logarithmic scale for the mag- 
nitude I H(w)J. Consequently, the ripple in the passband is 2010g,~ S1 decibels, and 
that in the stopband is 2010glo a2. 

In any filter design problem we can specify (1) the maximum tolerable pass- 
band ripple, (2) the maximum tolerable stopband ripple, (3) the passband edge 
frequency o,, and (4) the stopband edge frequency o,. Based on these speci- 
fications, we can select the parameters { a k )  and [bk) in the frequency response 
characteristic, given by (8.1.15), which best approximates the desired specification. 
The degree to which H (o) approximates the specifications depends in part on the 
criterion used in the selection of the filter coefficients {ak} and [bk) as well as on 
the numbers (M, N) of coefficients. 

In the following section we present a method for designing linear-phase FIR 
filters. 

8.2 DESIGN OF FIR FILTERS 

In this section we describe several methods for designing FIR filters. Our treatment 
is focused on the important class of linear-phase FIR filters. 

8.2.1 Symmetric and Antisymmetric FIR Filters 

An FIR filter of length M with input x ( n )  and output y ( n )  is described by the 
difference equation 

y ( n )  = box(n)  + b ~ x ( n  - 1 )  +.  - .  + bw-lx(n - M + I) 

k d  

where ( b k )  is the set of filter coefficients. Alternatively, we can express the output 
sequence as the convolution of the unit sample response h ( n )  of the system with 
the input signal. Thus we have 

t 4  

where the lower and upper limits on the convolution sum reflect the causality and 
finite-duration characteristics of the filter. Clearly, (8.2.1) and (8.2.2) are identical 
in form and hence it follows that bk = h(k), k = 0, 1,. . . , M - 1. 

The filter can also be characterized by its system function 
M- l  

H ( r )  = h(k)z-' (8.2.3) 
k t O  
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which we view as a polynomial of degree M - 1 in the variable z-'. The roots of 
this polynomial constitute the zeros of the filter. 

An FIR filter has linear phase if its unit sample response satisfies the condi- 
tion 

h(n)  = f h ( M  - 1 - n )  n = 0 , 1 ,  ..., M-1 (8.2.4) 

When the symmetry and antisymmetry conditions in (8.2.4) are incorporated into 
(8.2.3), we have 

H(z )  = h(0) + h(1)z-I + h ( 2 ) ~ - ~  + - -  - + h(M - 2 ) ~ - ' ~ - ' ~ )  + h(M - I)z-'~'" 

Now, if we substitute z-' for z in (8.2.3) and multiply both sides of the resulting 
equation by z - ( ~ - ' ) ,  we obtain 

This result implies that the roots of the polynomial H(z )  are identical to the roots 
of the polynomial ~ ( z - I ) .  Consequently, the roots of H ( z )  must occur in reciprocal 
pairs. In other words, if 21 is a root or a zero of H(z ) ,  then l / z t  is abo a root. 
Furthermore, if the unit sample response h(n) of the filter is real, complex-valued 
roots must occur in complex-conjugate pairs. Hence, if zl is a complex-valued 
root, z; is also a root. As a consequence of (8.2.6), H ( z )  also has a zero at l / z ; .  
Figure 8.3 illustrates the symmetry that exists in the location of the zeros of a 
linear-phase FIR filter. 

The frequency response characteristics of linear-phase FIR filters are ob- 
tained by evaluating (8.2.5) on the unit circle. This substitution yields the expres- 
sion for H (LO). 

1 
d ' q  

1 - 
zj .,.- 

1 - 
22 

I ' 
I ,.e' - 

23 
Unit 
cmle , F m  83 Symmetry of zero locations 

21 for a tincar-phase FIR fitter. 
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When h ( n )  = h ( M  - 1 - n ) ,  H ( w )  can be expressed as 

H ( w )  = H, (w)e-~w(M-1)12 (8.2.7) 

where Hr(w)  is a real function of w and can be expressed as 

(M/2)-1 

H r ( o )  = 2 x h ( n ) c o s w  ( " ; l - n )  - Meven 
n=O 

The phase characteristic of the filter for both M odd and M even is 

When 

the unit sample response is antisymmetric. For M odd, the center point of the 
antisymmetric h ( n )  is n = ( M  - 1)/2. Consequently, 

However, if M is even, each term in h ( n )  has a matching term of opposite sign. 
It is straightforward to show that the frequency response of an FIR filter with 

an antisymmetric unit sample response can be expressed as 
H ( @ )  = ~ ~ ( ~ ) ~ j [ - w ( M - l ) P + n / 2 1  (8 .2 .11)  

where 

The phase characteristic of the filter for both M odd and M even is 

These general frequency response formulas can be used to design linear- 
phase F'IR filters with symmetric and antisymmetric unit sample responses. We 
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note that, for a symmetric h(n) ,  the number of filter coefficients that specify the 
frequency response is ( M  + 1 ) / 2  when M is add or M / 2  when M is even. On the 
other hand, if the unit sample response is antisymmetric, 

so that there are (M - 1 ) / 2  filter coefficients when M is add and M / 2  coefficients 
when M is even to be specified. 

The choice of a symmetric or antisymmetric unit sample response depends 
on the application. As we shall see later, a symmetric unit sample response is 
suitable for some applications, while an antisymmetric unit sample response is 
more suitable for other applications. For example, if h(n)  = -h(M - 1 - n)  and M 
is odd, (8.2.12) implies that Hr ( 0 )  = 0 and Hr (lr) = 0 .  Consequently, (8.2.12) is not 
suitable as either a lowpass filter or a highpass filter. Similarly, the antisymmetric 
unit sample response with M even also results in Hr ( 0 )  = 0 ,  as can be easily verified 
from (8.2.13). Consequently, we would not use the antisymmetric condition in the 
design of a lowpass linear-phase FIR filter. On the other hand, the symmetry 
condition h ( n )  = h(M - 1 - n)  yields a linear-phase FIR filter with a nonzero 
response at w = 0 ,  if desired, that is, 

H , ( O ) = 2  x h(n) ,  Meven (8.2.16) 
n 4  

In summary, the problem of FIR filter design is simply to determine the M 
coefficients h(n) ,  n  = 0,1, . . . , M - 1, from a specification of the desired frequency 
response Hd ( o )  of the FIR filter. The important parameters in the specification of 
H d ( o )  are given in Fig. 8.2. 

In the following subsections we describe design methods based on specifica- 
tion of Hd ( w ) .  

8.2.2 Design of Linear-Phase FlR Filters Uslng Wlndows 

In this method we begin with the desired frequency response specification H d ( o )  
and determine the corresponding unit sample response hd(n) .  Indeed, hd(n)  is 
related to H d ( o )  by the Fourier transform relation 

where 

Thus, given Hd (o), we can determine tbe unit sample response hd (n) by evaluating 
the integral in (8.2.18). 



624 Design of Digital Filters Chap. 8 

In general, the unit sample response hd(n) obtained from (8.2.17) is infinite 
in duration and must be truncated at some point, say at n = M - 1, to yield an 
FIR filter of length M. Truncation of hd(n)  to a length M  - 1 is equivalent to 
multiplying hd(n) by a "rectangular window," defined as 

1  n = 0 , 1 ,  ..., M - 1  
w(n)  = { & otherwise 

Thus the unit sample response of the FIR filter becomes 

= {,";(n). n = 0 , 1 ,  ..., M - 1  
otherwise 

It is instructive to consider the effect of the window function on the de- 
sired frequency response Hd(w).  Recalt that multiplication of the window function 
w ( n )  with hd(n) is equivalent to convolution of Hd (w)  with W ( o ) ,  where W ( w )  is 
the frequency-domain representation (Fourier transform) of the window function, 
that is, 

Thus the convolution of H d ( o )  with W ( w )  yields the frequency response of the 
(truncated) FIR filter. That is, 

The Fourier transform of the rectangular window is 
M- I 

This window function has a magnitude response 

and a piecewise linear phase 

when sin(oM12) 2 0 
O ( w )  = 

The magnitude response of the window function is illustrated in Fig. 8.4 for M = 31 
and 61. The width of the main lobe [width is measured to the first zero of W ( o ) ]  
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-1501 1 Figure 8.4 Frequency response 
O O.l 0 e 2  0e3 0.4 0e5 f for rectangular window of lengths 

Normllitcd frequency (a) M = 31, (b) M = 61. 

is 477/M. Hence, as M increases, the main lobe becomes narrower. However, the 
sidelobes of I W(w)l are relatively high and remain unaffected by an increase in M. 
In fact, even though the width of each sidelobe decreases with an increase in M, 
the height of each sidelobe increases with an increase in M in such a manner that 
the area under each sidelobe remains invariant to changes in M. This character- 
istic behavior is not evident from observation of Fig. 8.4 because W(w) has been 
normalized by M such that the normalized peak values of the sidelobes remain 
invariant to an increase in M. 

The characteristics of the rectangular window play a significant role in deter- 
mining the resulting frequency response of the FIR filter obtained by truncating 
h d ( n )  to length M.  Specifically, the convolution of Hd(w) with W(w) has the effect 
of smoothing H~(w). AS M is increased, W(w) becomes narrower, and the smooth- 
ing provided by W(w) is reduced. On the other hand, the large sidelobes of W ( w )  
result in some undesirable ringing effects in the FIR filter frequency response 
H(w), and also in relatively larger sidelobes in H(w) .  These undesirable effects 
are best alleviated by the use of windows that do not contain abrupt discontinu- 
ities in their time-domain characteristics, and have correspondingly low sidelobes 
in their frequency-domain characteristics. 

Table 8.1 lists several window functions that possess desirable frequency re- 
sponse characteristics. Figure 8.5 illustrates the time-domain characteristics of the 
windows. The frequency response characteristics of the Hanning, Hamming, and 
Blackman windows are illustrated in Figs. 8.6 through 8.8. All of these window 
functions have significantly lower sidelobes compared with the rectangular win- 
dow. However, for the same value of M, the width of the main lobe is also wider 
for these windows compared to the rectangular window. Consequently, these win- 
dow functions provide more smoothing through the convolution operation in the 
frequency domain, and as a result, the transition region in the FIR filter response 
is wider. To reduce the width of this transition region, we can simply increase the 
length of the window which results in a larger filter. Table 8.2 summarizes these 
important frequencydomain features of the various window functions. 

The window technique is best described in terms of a specific example. Sup- 
pose that we want to design a symmetric lowpass linear-phase FIR filter having a 
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TABLE 8.1 WINDOW FUNCTIONS FOR FIR FILTER DESIGN 

Name of 
window 

Timedomain sequence, 
h ( n ) , O ~ n _ < M - 1  

Bartlett (triangular) 1  - 
M - 1 

Blackman 

Hamming 

Kaiser 

Tukey 

sin [27r ( n  - F) / ( M  - 1 ) ]  

27r ( n  - 7) / (F) 

desired frequency response 

Hd(0) = [ i:-Jo(M-1)R3 0 5 (01 5 mC 
otherwise 

A delay of ( M  - 1)/2 units is incorporated into Hd(w) in anticipation of forcing 
the filter to be of length M .  The corresponding unit sample response, obtained by 
evaluating the integral in (8.2.18), is 

M - 1  
sin o, (n - T )  

Clearly, hd(n) is noncausal and infinite in duration. 
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Figure 8.5 Shapes of several window 
functions. 
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I Figure 8.7 Frequency responses for - 150 0 0.1 0.2 0.3 0.4 0.5 Hamming window for (a) M = 31 and 
N o d i t e d  frcqucncy (b) M = 61. 
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- 0 

6 
0, 
u -50 
0 - ." 
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2 - 100 

- 1%; : 1 ' ] F- 88 Frequency responses for 
0.1 0.2 0.3 0.4 0.5 Blackman window for (a) M = 31 and 

Normalized frequency (b) M = 61. 

TABLE 8.2 IMPORTANT FREQUENCY-DOMAIN 
CHARACTERISTICS OF SOME WINDOW FUNCTIONS 

Approximate 
transition width of Peak sidelobe 

Type of window main lobe (dB) 

Rectangular 4n/M -13 
Bartlen 8n/M -27 
Hanning 8n/M -32 
Hamming 8n/M -43 
Blackman 12n/M -58 

If we multiply hd(n)  by the rectangular window sequence in (8.2.19), we 
obtain an FIR filter of length M  having the unit sample response 

M - 1  
sin wc ( n  - M - 1  

h ( n )  = O s n s M - I  n # -  
2 

(8.2.28) 
n ( n - v )  

If M  is selected to be odd, the value of h(n)  at n = ( M  - 1)/2 is 

The magnitude of the frequency response H ( o )  of this filter is illustrated 
in Fig. 8.9 for M = 61 and M  = 101. We observe that relatively large oscilla- 
tions or ripples occur near the band edge of the filter. The oscillations increase in 
frequency as M  increases, but they do not diminish in amplitude. As indicated pre- 
viously, these large oscillations are the direct result of the large sidelobes existing 
in the frequency characteristic W(w) of the rectangular window. As this window 
function is convolved with the desired frequency response characteristic Hd(u) ,  
the oscillations occur as the large constant area sidelobes of W ( o )  move across 
the discontinuity that exists in H d ( o ) .  Since (8.2.17) is basically a Fourier series 
representation of Hd (o),  the multiplication of hd (n) with a rectangular window is 
identical to truncating the Fourier series representation of the desired filter char- 
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acteristic Hd(w).  The truncation of the Fourier series is known to introduce ripples 
in the frequency response characteristic H (o) due to the nonuniform convergence 
of the Fourier series at a discontinuity. The oscillatory behavior near the band 
edge of the filter is called the Gibbs phenomenon. 

To alleviate the presence of large oscillations in both the passband and the 
stopband, we should use a window function that contains a taper and decays to- 
ward zero gradually, instead of abruptly, as it occurs in a rectangular window. 
Figures 8.10 through 8.13, illustrate the frequency response of the resulting filter 
when some of the window functions listed in Table 8.1 are used to taper hd(n) .  As 
illustrated in Figs. 8.10 through 8.13, the window functions do indeed eliminate the 
ringing effects at the band edge and do result in lower sidelobes at the expense of 
an increase in the width of the transition band of the filter. 

i 

- lwl 1 Flgmre 8.10 Lowpass FIR filter 
0 0.1 0.2 0-3 0.4 0.5 desi-ed with rectangular window 

0.8 
d .z 0.6 
m 

5 0.4 

0.2 

O" O f -  '.' Fin, 8.9 Lowpass filter designed with 
Normalucd frequency a rectangular window (a) M = 61 and 

(b) (b) M = 101. 

- 
- 
- 
- 

M = 101 
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0 
CI 1-20 
a' g -40 - 1 -a 

-86 

- 100 FIgPre 8.11 Lowpass FIR filter 
0 0.1 0-2 0.3 0.4 0.5 designed with Hamming window 

F i r e  BU Lowpass FIR filter 
3 0:4 0.5 designed with Blackman window 

F i  &l3 Lowpass FIR filter 
5 designed with a = 4 Kaiser window 

8.2.3 Deslgn of Linear-Phase FIR Filters by the 
Frequency-Sampling Method 

In the frequency sampling method for FIR filter design, we specify the desired 
frequency response &(w) at a set of equaIly spaced frequencies, namely 

M - 1  
w, = X ( k + a )  k = O , l ,  ...,- 

2 
M odd 

M  
k = 0 , 1 ,  ...,-- 1  M even 

2 

and soIve for the unit sample response h(n) of the FIR filter from these equally 
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spaced frequency specifications. To reduce sidelobes, it is desirable to optimize the 
frequency specification in the transition band of the filter. This optimization can be 
accomplished numerically on a digital computer by means of linear programming 
techniques as shown by Rabiner et al. (1970). 

In this section we exploit a basic symmetry property of the sampled frequency 
response function to simpIify the computations. Let us begin with the desired 
frequency response of the FIR filter, which is [for simplicity, we drop the subscript 
in Nd(u)], 

Suppose that we specify the frequency response of the filter at the frequencies 
given by (8.2.30). Then from (8.2.31) we obtain 

It is a simple matter to invert (8.2.32) and express h(n) in terms of H(k +a). 
If we multiply both sides of (8.2.32) by the exponential, exp(jZlrkm/M), m = 0, 
1, .  . . , M - 1, and sum over k = 0, 1 , .  . . , M - 1, the right-hand side of (8.2.32) 
reduces to Mh(m) exp(- jZrram/M). Thus we obtain 

The relationship in (8.2.33) aIiows us to compute the values of the unit sample 
response h(n) from the specification of the frequency samples H(k + a) ,  k = 0, 
1, .  . . , M - 1. Note that when a = 0, (8.2.32) reduces to the discrete Fourier 
transform (DFT) of the sequence {h(n)},and (8.2.33) reduces to the inverse DFT 
(IDFT). 

Since {h(n)} is real, we can easily show that the frequency samples {H(k +a)} 
satisfy the symmetry condition 

This symmetry condition, along with the symmetry conditions for {h(n)}, can be 
used to reduce the frequency specifications from M points to (M + 1)/2 points for 
M odd and M / 2  points for M even. Thus the Iinear equations for determining 
{h (n)} from { H (k + a)} are considerably simplified. 

In particular, if (8.2.11) is sampled at the frequencies wk = 2n(k + a)/M, 
k = 0, 1, . . . , M - 1, we obtain 
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where p = 0 when {h(n) ]  is symmetric and p = 1 when {h(n) }  is antisymmetric. A 
simplication occurs by defining a set of reaI frequency samples { G ( k  + m ) ]  

We use (8.2.36) in (8.2.35) to  eliminate H,(ok). Thus we obtain 

Now the symmetry condition for H(k + a )  given in (8.2.34) translates into a corre- 
sponding symmetry condition for G(k + a ) ,  which can be exploited by substituting 
into (8.2.33), to simplify the expressions for the FIR filter imputse response { h ( n ) }  
for the four cases a  = 0, a  = i: p = 0, and p = 1. The results are summarized in 
Table 8.3. The detailed derivations are left as exercises for the reader. 

Although the frequency sampling method provides us with another means for 
designing linear-phase FIR filters, its major advantage lies in the efficient frequency 
sampling structure, which is obtained when most of the frequency samples are zero, 
as demonstrated in Section 7.2.3. 

The following examples illustrate the design of linear-phase FIR filters based 
on the frequency sampling method. The optimum values for the samples in the 
transition band are obtained from the tables in Appendix C which are taken from 
the paper by Rabiner et al. (1970). 

Example 8.2.1 

Determine the coefficients of a linear-phase FIR filter of length M = 15 which has a 
symmetric unit sample response and a frequency response that satisfies the conditions 

Solution Since h ( n )  is symmetric and the frequencies are selected to correspond to 
the case a = 0, we use the corresponding formula in Table 8.3 to evaluate h(n) .  In 
this case 

The result of this amputation is 
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TABLE 8.3 UNlT SAMPLE RESPONSE: h(n) = f h(M - 1 - n) 
Symmetric 

M - 1  
, M  odd 

- - I ,  Meven 
2 

Antisymmetric 

H ( k )  = G ( k ) e ~ ~ f l e ~ " ~ ' ~  k = 0, 1 ,  . . . , M - 1 

( k )  = ( - 1  H ( )  G ( k )  = G ( M  - k )  

2 CM-1,/2 21rk 
h ( n ) = - -  x G ( k ) s i n - ( n + i )  Modd 

k ~ f  
M  

(M/2) -1  2rr 
( - I ) " + ' G ( M / z ) - ~ , ~  G ( k ) s i n - k ( n + i )  Meven 

k-1 - M 

M - 3 
, Modd 

- - 1, M even 
2 
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Figure 8.14 Frequency response of linear-phase FIR filter in Example 8.2.1. 

The frequency response characteristic of this filter is shown in Fig. 8.14. We should 
emphasize that H,(w) is exactly equal to the values given by the specifications above 
at ok = 2xk/15. 

Example 8.22 

Determine the coefficients of a linear-phase FIR filter of length M = 32 which has a 
symmetric unit sample response and a frequency response that satisfies the condition 

where TI = 0.3789795 for a = 0, and TI = 0.3570496 for a = 4. These values of TI 
were obtained from the tables of optimum transition parameters given in Appendix C. 

Solotion The appropriate equations for this computation are given in Table 8.3 for 
a = 0 and a = 4. These computations yield the unit sample responses shown in 
Table 8.4. The corresponding frequency response characteristics are illustrated in 
Figs. 8.15 and 8.16, respectively. Note that the bandwidth of the filter for a = 4 is 
wider than that for a = 0.  

The optimization of the frequency samples in the transition region of the 
frequency response can be explained by evaluating the system function H ( z ) ,  given 
by (7.2.12), on the unit circle and using the relationship in (8.2.37) to express H ( o )  
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TABLE 8.4 

M =  32 
ALPHA = 0. 
TI= 0.37897953+00 

M =  32 
ALPHA = 0.5 
T1= 0.35704963+00 

815 Frequency response of linear-phase FIR filter in Example 8.2.2 (M = 
32 and a = 0). 
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Figure 8.16 Frequency response of linear-phase FIR filter in Example 8.2.2 (M  = 
32 and a = 4). 

in terms of G ( k  + a). Thus for the symmetric filter we obtain 

o M  
sin (r - na) M-I 

H ( o )  = G ( k  + a )  C o n  
e - J o ( M - 1 ) / 2  

M (8.2.38) 
t=o sin [- - - ( k  + a ) ]  

2 M  

where 
- G ( M  - k ) ,  a = O  

G ( k  + a )  = 
G ( M  - k - i), = 

Similarly, for the antisymmetric linear-phase FIR filter we obtain 

where 

With these expressions for the frequency response H ( o )  given in terms of the 
desired frequency samples { G  ( k + a ) ) ,  we can easily explain the method for selecting 
the parameters {G(k + a ) }  in the transition band which result in m h i m k h g  the 
peak sidelobe in the stopband. In brief, the values of G ( k  + a )  in the passband are 
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set to (-1)' and those in the stopband are set to zero. For any choice of G(k + a )  
in the transition band, the value of H ( o )  is computed at a dense set of frequencies 
(e.g., at w, = 2 n n / K ,  n = 0, 1 , .  . . , K - 1, where, for example, K = 10M). The 
value of the maximum sidelobe is determined, and the values of the parameters 
(G(k + a ) ]  in the transition band are changed in a direction of steepest descent, 
which, in effect, reduces the maximum sidelobe. The computation of H(w) is now 
repeated with the new choice of {G(k + a ) ] .  The maximum sidelobe of H(w)  is 
again determined and the values of the parameters {G(k+a) ]  in the transition band 
are adjusted in a direction of steepest descent that, in turn, reduces the sidelobe. 
This interactive process is performed until it converges to the optimum choice of 
the parameters {G(k  + a ) )  in the transition band. 

There is a potential problem in the frequency-sampling realization of the FIR 
linear-phase filter. The frequency sampling realization of the FIR filter introduces 
poles and zeros at equally spaced points on the unit circle. In the ideal situation, the 
zeros cancei the poles and, consequently, the actual zeros of H(z )  are determined 
by the selection of the frequency samples {H(k  + a ) } .  In a practical implementation 
of the frequency-sampling realization, however, quantization effects preclude a 
perfect cancellation of the poles and zeros. In fact, the location of poles on the 
unit circle provide no damping of the round-off noise that is introduced in the 
computations. As a result, such noise tends to increase with time and, ultimately, 
may destroy the normal operation of the filter. 

To mitigate this problem, we can move both the poles and zeros from the 
unit circle to a circle just inside the unit circle, say at radius r = 1 - E ,  where E 

is a very small number. Thus the system function of the linear-phase FIR filter 
becomes 

The corresponding two-pole filter realization given in Section 7.2.3 can be modified 
accordingly. The damping provided by selecting r < 1 ensures that roundoff noise 
will be bounded and thus instability is avoided. --  

8.2.4 Design of Optimum Equiripple Linear-Phase FIR 
Filters 

The window method and the frequency-sampling method are relatively simple 
techniques for designing linear-phase FIR filters. However, they also possess some 
minor disadvantages, described in Section 8.2.6, which may render them undesir- 
able for some applications. A major probiem is the lack of precise control of the 
critical frequencies such as w,, and o , .  

The filter design method described in this section is formulated as a Cheby- 
shev approximation problem. It is viewed as an optimum design criterion in the 
sense that the weighted approximation error between the desired frequency re- 
sponse and the actual frequency response is spread evenly across the passband 
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and evenly across the stopband of the filter minimizing the maximum error. The 
resulting filter designs have ripples in both the passband and the stopband. 

To describe the design procedure, let us consider the design of a lowpass 
filter with passband edge frequency w, and stopband edge frequency o,. From 
the general specifications given in Fig. 8.2, in the passband, the filter frequency 
response satisfies the condition 

Similarly, in the stopband, the filter frequency response is specified to fall between 
the limits f s2, that is, 

Thus S1 represents the ripple in the passband and 62 represents the attenuation or 
ripple in the stopband. The remaining filter parameter is M, the filter length or 
the number of filter coefficients. 

Let us focus on the four different cases that result in a linear-phase FIR filter. 
These cases were treated in Section 8.2.2 and are summarized below. 

Case 1: Symmetric unit sample response h(n)  = h(M - 1 - n )  and M Odd.  
In this case, the real-valued frequency response characteristic H, (o) is 

M - 1 (M-3)f l  M - 1  
Hr (o) = h (T) + 2 C h(n) cos w (T - n) (8.2.45) 

n 4  

If we let k = (M - 1 ) /2  - n and define a new set of filter parameters { ~ ( k ) }  as 

then (8.2.45) reduces to the compact form 

(M-l)/Z 

H, (a) = C n(k) cos wk (8.2.47) 
k = 4  

Case 2: Symmetric unit sample response h(n)  = h(M - 1 - n )  and M Even. 
In this case, Hr(o )  is expressed as 

Again, we change the summation index from n to k = M / 2  - n and define a new 
set of filter parameters {b (k ) }  as 

b(k) = U (; - k ) .  k = 1.2, ..., M f 2  
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With these substitutions (8.2.48) becomes 

In carrying out the optimization, it is convenient to rearrange (8.2.50) further into 
the form 

where the coefficients { h ( k ) )  are linearly related to the coefficients { b ( k ) ) .  In fact, 
it can be shown that the relationship is 

Case 3: Antisymmetric unit sample response h(n) = - h(M - 1 - n) and 
M Odd. The real-valued frequency response characteristic H r ( u )  for this case is 

If we change the summation in (8.2.53) from n to k  = ( M  - 1 ) / 2  - n and define a 
new set of filter parameters { c ( k ) }  as 

then (8.2.53) becomes 

As in the previous case, it is convenient to rearrange (8.2.55) into the form 

Hr (w) = sin w ' z' E(k) cos o k  
k d )  

where the coefficients (Z(k)) are linearly related to the parameters (c(k)). This de- 
sired relationship can be derived from (8.255) and (8.2.56) and is simply 
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given as 
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Case 4: Antisymmetric unit sample response h(n) = -h(M - 1 - n) and 
M Even, In this case, the real-valued frequency response characteristic H, ( w )  is 

A change in the summation index from n to k = M12-n  combined with a definition 
of a new set of filter coefficients ( d ( k ) ) ,  related to { h ( n ) )  according to 

results in the expression 

As in the previous two cases, we find it convenient to rearrange (8.2.60) into the 
form 

'M/2'-' - 
Hr (w) = sin - d ( k )  cos ok (8.2.61) 

k d  

where the new filter parameters {J (k ) }  are related to { d ( k ) }  as follows: 

The expressions for H,(o) in these four cases are summarized in Table 8.5. 
We note that the rearrangements that we made in cases 2, 3, and 4 have allowed 
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TABLE 8.5 REAL-VALUED FREQUENCY RESPONSE 
FUNCTIONS FOR LINEAR-PHASE FIR FILTERS 

Filter type Q ( o )  P (0) 

h(n)  = h(M - 1 - n )  
M o d d  1 
(- 1) 

h(n) = h(M - 1 - n )  o 
M even cos - 
(case 2) 2 

h(n)  = -h(M - 1 - n )  
M odd  sin w 
(case 3) 

h ( n )  = -h(M - 1 - n) 
M even sin 
(case 4)  

(M/L)-1 

)' J l k )  c o s o k  

us to express H,(w) as 

where 

I 
1 case 1 

W 
w s-  case2 

2 
Q(o)= sino case3 

W 
sin - case 4 

2 
and P(w) has the common form 

L 

P(o) = z a ( k )  wsok (8.2.65) 
k n o  . 

with {a(k)] representing the parameters of the filter, which are linearly related to 
the unit sample response h(n) of the FIR filter. The upper limit L in the sum is 
L = (M - 1)/2 for Case 1, L = (M - 3)/2 for Case 3, and L = M/2 - 1 for Case 2 
and Case 4. 

In addition to the common framework given above for the representation 
of Hr(w), we also define the real-valued desired frequency response Hdr(o) and 
the weighting function W(o) on the approximation error. The real-valued de- 
sired frequency response Hdr(~)  is simply defined to be unity in the passband and 
zero in the stopband. For example, Fig. 8.17 illustrates several different types 
of characteristics for Hdr(o). The weighting function on the approximation er- 
ror allows us to choose the relative size of the errors in the different frequency 
bands (i.e., in the passband and in the stopband). In particular, it is convenient to 
normalize W(o) to unity in the stopband and set W(o) = &/a1 in the passband, 
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inn 0 W I  % W3 w4 x o response F i  817 characteristics Desired frequency for different 

(4 types of filters. 

that is. 

w in the passband 
w in the stopband (8.2.66) 

Then we simply select W(w) in the passband to reflect our emphasis on the relative 
size of the ripple in the stopband to the ripple in the passband. 

With the specification of Hdr(u) and W(u), we can now define the weighted 
approximation error as 



Sec. 8.2 Design of FIR Filters 643 

= W (0) Q (o) [% - P (o)] 
Q (w> 

For mathematical convenience, we define a modified weighting function ~ ( w )  and 
a modified desired frequency response Hdr(w) as 

Then the weighted approximation error may be expressed as 

for all four different types of linear-phase FIR filters. 
Given the error function E(w),  the Chebyshev approximation problem is 

basically to determine the filter parameters {u(k)]  that minimize the maximum 
absolute value of E(w) over the frequency bands in which the approximation is to 
be performed. In mathematical terms, we seek the solution to the problem 

(8.2.70) 
where S represents the set (disjoint union) of frequency bands over which the 
optimization is to be performed. Basically, the set S consists of the passbands and 
stopbands of the desired filter. 

The solution to this problem is due to Parks and McCleDan (1972a). who 
applied a theorem in the theory of Chebyshev approximation. It is called the 
alternation theorem, which we state without proof. 

Alternation Theorem: Let S be a compact subset of the interval [0, r). A 
necessary and sufficient condition for 

L 

P (o) = u fk)  cos wk 
k = O  

to be the unique, best weighted Chebyshev approximation to Hdr(w) in S, is that 
the enor  function E ( o )  exhibit at least L + 2 extremal frequencies in S. That is, 
there must exist at least L +2 frequencies {oi) in S such that ol < a < . . . < oL+2, 

E(wi) = - E ( w ~ + ~ ) ,  and 

We note that the enor function E(w) aiternates in sign between two succes- 
sive extremal frequencies. Hence the theorem is called the alternation theorem. 

To elaborate on the alternation theorem, let us consider the design of a 
lowpass filter with passband 0 5 w 5 w, and stopband m, 5 o 5 n. Since the 
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desired frequency response Hdr(w) and the weighting function W (o) are piecewise 
constant, we have 

dHr(a)  - = -- - 
dw 

Consequently, the frequencies {ai) corresponding to the peaks of E(w) also cor- 
respond to peaks at which Hr(w) meets the error tolerance. Since Hr(w) is a 
trigonometric polynomial of degree L, for Case 1, for example, 

L 

Hr (w)  = x a(k )  cos uk 
k 4  

L 

= x al(k)  (cos o)' 
k=O 

it follows that Hr(w) can have at most L - 1 local maxima and minima in the open 
interval 0 < o < n. In addition, w = 0 and w = n are usually extrema of Hr (w)  and, 
also, of E(w). Therefore, Hr(w) has at most L + 1 extremal frequencies. Further- 
more. the band-edge frequencies up and w, are also extrema of E (w) ,  since I E(w)l 
is maximum at w = wp and w = w,. As a consequence, there are at most L + 3 ex- 
tremal frequencies in E(w) for the unique, best approximation of the idea1 lowpass 
filter. On the other hand, the alternation theorem states that there are at least L+2 
extremal frequencies in E(w).  Thus the error function for the lowpass filter design 
has either L + 3 or L + 2  extrema. In general, filter designs that contain more than 
L + 2 alternations or ripples are called extra ripple filters. When the filter design 
contains the maximum number of alternations, it is called a muxima1 ripple filter. 

The alternation theorem guarantees a unique solution for the Chebyshev 
optimization problem in (8.2.70). At the desired extremal frequencies {wn} ,  we 
have the set of equations 

where 6 represents the maximum value of the error function E(w).  In fact, if we 
select W(w)  as indicated by (8.2.66), it follows that 6 = SZ. 

The set of linear equations in (8.2.72) can be rearranged as 

or, equivalently, in the form 
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If we treat the {a(k)} and 6 as the parameters to be determined, (8.2.73) can be 
expressed in matrix form as 
C 

1 C O S ~ ~ ,  C O S ~  - - -  f idr  (OO) 

1 cosq  cos2q . . -  CQsLq - 

1 C O S O L + ~  c 0 s 2 0 ~ + ~  ... WS LWL+~ - - W@L+l) J , 6 - 
(8.2.74) 

Initially, we know neither the set of extremal frequencies {on] nor the pa: 
rameters (ar(k)} and 6. To solve for the parameters, we use an iterative algorithm, 
called the Remez erchunge algorithm [see Rabiner et al. (1975)], in which we 
begin by guessing at the set of extremal frequencies, determine P(w) and 6, and 
then compute the error function E(w). From E ( o )  we determine another set of 
L + 2 extremal frequencies and repeat the process iteratively until it converges to 
the optimal set of extremal frequencies. Although the matrix equation in (8.2.74) 
can be used in the iterative procedure, matrix inversion is time consuming and 
inefficient. 

A more efficient procedure, suggested in the paper by Rabiner et al. (1975), 
is to compute 6 anaIyticaHy, according to the formula 

where 

n = f i  1 
ns, cos W& - cos Wn 

n+k 

The expression for 6 in (8.2.75) follows immediately from the matrix equation in 
(8.2.74). Thus with an initial guess at the L+2 extremal frequencies, we compute 6. 

Now since P(w) is a trigometric polynomial of the form 

and since we know that the polynomial at the points xn = cos on, n = 0,1, . . . , L+1, 
has the corresponding values 
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we can use the Lagrange interpolation formula for P(o). Thus P(w) can be ex- 
pressed as [see Hamming (1962)] 

where P(on) is given by (8.2.77), x = cos w, xk = coswk, and 

Having the solution for P(w), we can now compute the error function E(w) from 

on a dense set of frequency points. Usually, a number of points equal to 16M, 
where M is the length of the filter, suffices. If I E (w)l 2 6 for some frequencies on 
the dense set, then a new set of frequencies corresponding to the L+2 largest peaks 
of IE(o)l are selected and the computational procedure beginning with (8.2.75) 
is repeated. Since the new set of L + 2 extremal frequencies are selected to 
correspond to the peaks of the error function IE(o)l, the algorithm forces 6 to 
increase in each iteration until it converges to the upper bound and hence to the 
optimum solution for the Chebyshev approximation problem. In other words, 
when [E(o)]  5 6 for all frequencies on the dense set, the optimal solution has 
been found in terms of the polynomial H(w). 

A flowchart of the algorithm is shown in Fig. 8.18 and is due to Remez (1957). 
Once the optimal solution has been obtained in terms of P(w), the unit 

sample response h(n) can be computed directly, without having to compute the 
parameters ( c r ( k ) ) .  In effect, we have determined 

which can be evaluated at o = 2xk/M, k = 0, 1 , .  . ., (M - 1)/2, for M odd, or 
M/2 for M even. Then, depending on the type of filter being designed, h(n) can 
be determined from the formulas given in Table 8.3. 

A computer program written by Parks and McClellan (1972b) is available for 
designing linear phase FIR filters based on the Chebyshev approximation criterion 
and implemented with the Remez exchange algorithm. This program can be used 
to design lowpass, highpass or bandpass filters, differentiators, and Hilbert trans- 
formers. The latter two types of filters are described in the following sections. A 
number of software packages for designing equiripple linear-phase FIR filters are 
now available. 

The Parks-McClellan program requires a number of input parameters which 
determine the filter characteristics. In particular, the following parameters must 
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Input filter m r s  

lnitial guess of 
M + 2 extrtmal fnq. 

Calculate the optimum 
6 on exkmal set 

Interpolate through M + 1 
points to obtain P(o) 

Calculate error E(w) r - 5  
1 and find local maxima 1 

be specified: 

LINE 1 

Check whether the 
exkmal points changed 

Fpre 8.1 Flowchart of Remez algorithm. 

NFILT: The filter length, denoted above as M. 
JTYPE: Type of filter: 

JTYF'E = 1 results in a multiple passbandlstopband filter. 
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JTYPE = 2 results in a differentiator. 
JTYPE = 3 results in a Hilbert transformer. 

NBANDS: The number of frequency bands from 2 (for a lowpass filter) to 
a maximum of 10 (for a multiple-band filter). 

LGRID: The grid density for interpolating the error function E(u). The 
default value is 16 if left unspecified. 

LINE 2 

EDGE: The frequency bands specified by lower and upper cutoff fre- 
quencies, up to a maximum of 10 bands (an array of size 20, 
maximum}. The frequencies are given in tenns of the variable 
f = o / 2 x ,  where f = 0.5 corresponds to the folding frequency. 

LINE 3 

FX: An array of maximum size 10 that specifies the desired fre- 
quency response Hdr (a) in each band. 

LINE 4 

WTX: An array of maximum size 10 that specifies the weight function 
in each band. 

The foilowing examples demonstrate the use of this program to design a 
lowpass and a bandpass filter. 

Example 8.23 

Design a lowpass filter of length M = 61 with a passband edge frequency f, = 0.1 
and a stopband edge frequency f, = 0.15. 

Solution The lowpass filter is a two-band filter with passband edge frequencies 
(0,O.l) and stopband edge frequencies (0.15,0.5). The desired response is (I, 0) and 
the weight function is arbitrarily selected as (1,l). 

61,1,2 
0.0,O.l. 0.15,0.5 
1.0,o.o 
1.0.1.0 

The result of this design is illustrated in Table 8.6, which gives the filter coefficients. 
The frequency response is shown in Fig. 8.19. The resulting filter has a stopband 
attenuation of -56 dB and a passband ripple of 0.0135 dB. 

If we increase the length of the filter to M = 101 while maintaining all the 
other parameters given above the same, the resulting filter has the frequency re- 
sponse characteristic shown in Fig. 8.20. Now, the stopband attenuation is -85 dB 
and the passband ripple is reduced to 0.00046 dB. 

We should indicate that it is possible to increase the attenuation in the s top 
band by keeping the filter length fixed, say at M = 61, and decreasing the weighting 
function W ( o )  = &/a1 in the passband. With M = 61 and a weighting function 



TABLE 8.6 PARAMETERS FOR LOWPASS FILTER DESIGN IN 
EXAMPLE 8.2.3 

FINITE IMPULSE RESPONSE (FIR) 
LINEAR PHASE DIGITAL FILTER DESIGN 

REMEZ EXCHANGE ALGORITHM 
FILTER LENGTH = 61 

** '** IMPULSE RESPONSE * * * * *  
H( 1) = -0.12109351E-02 = H f  61) 
H( 2) = -0.67270687E-03 = H( 60) 
H( 3) = 0.98090240E-04 = H f  59) 
H( 4) = 0.13536664E-02 = H( 58) 
H( 5) = 0.22969784E-02 = H( 57) 
H( 6) = 0.19963495E-02 = H( 56) 
H( 7) = 0.97026095E-04 = H( 55) 
H( 8) = -0.26466695E-02 = H f  54) 
H( 9) = -0.45133103B-02 = H( 53) 
H(10) = -0.37704944E-02 = H( 52) 
H(11) = 0.13079655E-04 = H( 51) 
H112) = 0.51791356E-02 = H( 50) 
H(13) = 0.84883478E-02 = H( 49) 
H(14) = 0.69532110E-02 = H( 48) 
H(15) = 0.71037059E-04 = H( 47) 
H(16) = -0.90407897E-02 = H f  46) 
H(17) = -0.14723047E-01 = H( 45) 
H(18) = -0.11958945E-01 = H( 44) 
H(19) = -0.29799214E-04 = H( 43) 
H(20) = 0.15713422E-01 = H( 42) 
H(21) = 0.25657151E-01 = H( 41) 
H(22) = 0.21057373E-01 = H( 40) 
H(23) = 0.68637768E-04 = H( 39) 
H(24) = -0.28902054E-01 = H( 38) 
H(25) = -0.49118541E-01 = H( 37) 
H126) t -0.42713970E-01 = H( 36) 
H(27) = -0.50114304E-04 = H( 35) 
H(28) = 0.73574215E-01 = H( 34) 
H(29) = 0.15782040E+00 = H( 33) 
H(30) = 0.22465512E+00 = H( 32) 
H(31) = 0.25007001EI~O = H( 31) 

BAND 1 BAND 2 
LOWER BAND EDGE 0.0000000 0.1500000 
UPPER BAND EDGE 0.1000000 0.5000000 
DESIRED VALUE 1.0000000 0.0000000 
WEIGHTING 1.0000000 1.0000000 
DEVIATION 0.0015537 0.0015537 
DEVIATION IN DB 0.0134854 -56.1724014 

EXTREMAL FREQUENCIES--MAXIMA OF THE ERROR CURVE 
0.0000000 0.0252016 0.0423387 0.0584677 0.0735887 
0.0866935 0.0957661 0.1000000 0.1500000 0.1540323 
0.1631048 0.1762097 0.1903225 0.2054435 0.2215725 
0.2377015 0.2538306 0.2699596 0.2860886 0.3022176 
0.3183466 0.3354837 0.3516127 0.3677417 0.3848788 
0.4010078 0.4171368 0.4342739 0.4504029 0.4665320 
0.4836690 0.5000000 
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Figure 8.19 Frequency response of M = 61 FIR filter in Example 8.2.3. 

Normalized frequency 

F i n  8.20 Frequency response of M = 101 FIR filter in Example 8.2.3. 

(0.1. I), we obtain a filter that has a stopband attenuation of -65 dB and a pass- 
band ripple of 0.049 dB. 

Example 8.2.4 

Design a bandpass filter of length M = 32 with passband edge frequencies fpl = 0.2 
and fp2 = 0.35 and stopband edge frequencies of = 0.1 and f,z = 0.425. 
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Solntion This passband lilter is a three-band filter with a stopband range of (O,0.1), a 
passband range of (0.2.0.33, and a second stopband range of (0.425,O.S). The weight- 
ing function is selected as (10.0,1.0,10.0), or as (1.0,0.1, LO), and the desired response 
in the three bands is (0.0,1.0,0.0). Thus the input parameters to the program are 

The results of this design are shown in Table 8.7, which gives the filter coefficients. 
We note that the ripple in the stopbands $ is 10 times smaller than the ripple in 

TABLE 8.7 PARAMETERS FOR BANDPASS FILTER IN EXAMPLE 8.2.4 

FINITE IMPULSE RESPONSE (FIR)  
LINEAR PHASE DIGITAL FILTER DESIGN 

REMEZ EXCHANGE ALGORITHM 

BANDPASS FILTER 
FILTER LENGTH = 32 

* * * * *  IMPULSE RESPONSE * + * + +  
H( 1) = -0.57534026E-02 = H( 3 2 )  

H( 2 )  = 0.99026691E-03 = H( 311 
H( 3 )  = 0.75733471E-02 = H( 3 0 )  

H( 4 )  = -0.65141204E-02 = H( 2 9 )  

H( 5 )  = 0.13960509E-01 = Hf 2 8 )  

H( 6 )  = 0.22951644E-02 = H( 2 7 )  

H( 7 )  = -0.19994041E-01 = H( 2 6 )  

H( 8 )  = 0.713696563-02 = H( 2 5 )  

H( 9 )  = -0.39657373E-01 = H( 24)  
H(10)  = 0.112600663-01 = H( 2 3 )  

H(11)  = 0-662336353-01 = H( 2 2 )  

H ( 1 2 )  = -0.10497202E-01 = H( 2 1 )  

H(13)  = 0.85136160E-01 = H( 2 0 )  

H(14)  = -0.12024988E+00 = H( 1 9 )  

H ( 1 5 )  = -0 .29678580~+00* = H( 1 8 )  
H(16)  = 0.30410913E+00 = H( 1 7 )  

BAND 1 BAND 2 BAND3 
LOWER BAND EDGE 0.0000000 0.2000000 0.4250000 

UPPER BAND EDGE 0.1000000 0.3500000 0.5000000 

DESIRED VALUE 0.0000000 1.0000000 0.0000000 
WEIGHTING 10.0000000 1 .0000000 10.0000000 

DEVIATION 0.0015131 0.0151312 0.0015131 

DEVIATION IN DB -56.4025536 0.1304428 -56.4025536 
FREQUENCIES--XhXIHA OF THE ERROR CURVE 

0.0000000 0.0273438 0.0527344 0.0761719 0.0937500 
0.1000000 0.2000000 0.2195313 0.2527344 0.2839844 

0.3132813 0.3386719 0.3500000 0.4250000 0.4328125 

0.4503906 0.4796875 
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F i e  821 Frequency response of M = 32 FIR filter in Example 8.2.4. 

the passband due to the fact that errors in the stopband were given a weight of 10 
compared to the passband weight of unity. The frequency response of the bandpass 
filter is illustrated in Fig. 8.21. 

These examples serve to illustrate the relative ease with which optimal low- 
pass, highpass, bandstop, bandpass, and more general multiband linear-phase FIR 
filters can be designed based on the Chebyshev approximation criterion imple- 
mented by means of the Remez exchange algorithm. In the next two sections we 
consider the design of differentiators and Hilbert transformers. 

8.2.5 Design of FIR Differentiators 

Differentiators are used in many analog and digital systems to take the derivative 
of a signal. An ideal differentiator has a frequency response that is linearly pro- 
portional to frequency. Similarly, an ideal digital differentiator is defined as one 
that has the frequency response 

The unit sample response corresponding to Hd(w) is 

cos xn =- - c a < n < c a , n # O  
n 
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We observe that the ideal differentiator has an antisymmetric unit sample response 
[i.e., hd (n) = -hd(-n)] .  Hence, hd (0)  = 0 .  

In this section we consider the design of linear-phase FIR differentiators 
based on the Chebyshev approximation criterion. In view of the fact that the 
ideal differentiator has an antisymmetric unit sample response, we shall confine 
our attention to FIR designs in which h(n) = -h(M - 1 - n). Hence we consider 
the filter types classified in the preceding section, as Case 3 and Case 4.  

We recall that in Case 3, where M is odd, the real-valued frequency response 
of the FIR filter H r ( o )  has the characteristic that Hr(0) = 0. A zero response at 
zero frequency is just the condition that the differentiator shouId satisfy, and we 
see from Table 8.5 that both filter types satisfy this condition. However, if a full- 
band differentiator is desired, this is impossible to achieve with an FIR filter having 
an odd number of coefficients, since Hr(lr) = 0 for M odd. In practice, however, 
full-band differentiators are rarely required. 

In most cases of practical interest, the desired frequency response character- 
istic need only be linear over the limited frequency range 0 5 w _< 27r fp, where fp 

is called the bandwidth of the differentiator. In the frequency range 2lr f, < w _< lr, 
the desired response may be either left unconstrained or constrained to be zero. 

In the design of FIR differentiators based on the Chebyshev approximation 
criterion, the weighting function W ( w )  is specified in the program as 

1 
W ( w ) = -  0 z w < 2 n f p  (8.2.83) 

w 
in order that the relative ripple in the passband be a constant. Thus the absolute 
error between the desired response w and the approximation H,(o) increases as 
w varies from 0 to 2n fp. However, the weighting function in (8.2.83) ensures that 
the relative error 

is fixed within the passband of the differentiator. 

Example 8.2.5 

Use the Remez algorithm to design a Linear-phase FIR differentiator of length M = 
60. The passband edge frequency is 0.1 and the stopband edge frequency is 0.15. 

Solution The input parameters to the program are 
60, 2. 2 
0.0, 0.1, 0.15, 0.5 
1.0, 0.0 
1.0, 1.0 

The results of this design including the filter coefficients are shown in Table 8.8. The 
frequency response characteristic is illustrated in Fig. 8.22. Also shown in the same 
figure is the approximation error over the passband 0 5 f 5 0.1 of the filter. 



TABLE 8.8 PARAMETERS FOR FIR DIFFERENTIATOR IN EXAMPLE 8.2.5 

FINITE IWULSE RESPONSE (FIR) 

LINEAR-PHASE DIGITAL FILTER DESIGN 

REMEZ EXCHANGE ALGORITHM 
DIFFEPEWTIATOR 

FILTER LENGTH = 60 
****' IMPULSE RESPONSE *'*+. 

H( 1) = -0.12478075E-02 = -H( 60) 
HI 21 = -0.15713560E-02 = -HI 59) 
HI 3) = 0,36846737E-02 = -Hi 58) 
H( 4) = 0.19298020E-02 = -H( 57) 
Ht 5) = 0.14264141E-02 = -HI 56) 
HI 6) = -0.17615277E-02 = -Ht 55) 
H( 7) = -0.43110573E-02 = -H( 54) 
HI 8 )  = -0.469534053-02 = -H( 53) 
H( 9 )  = -0.14105244E-02 = -H( 52) 
H(10) = 0.416942228-02 = -HI 51) 
H(11) = 0.85736215E-02 = -H( 50) 
Hf12) = 0.79813031E-02 = -H( 49) 
H(13) = 0.118333851-02 = -HI 48) 
H(14) = -0.87396065E-02 = -H( 47) 
H(15) = -0.15401847E-01 = -H( 46) 
H(161 = -0.12878445E-01 = -H( 45) 
Hil7i = -0.18826872E-03 = -H( 44) 
HI181 = 0.16620506E-01 = -H( 43) 
H(19) = 0.261415233-01 = -H( 42) 
H(20) = 0.20892018E-01 = -H( 411 
Hi21) = -0.18584095E-02 = -H( 40) 
H(22) = -0.31109909E-01 = -H( 39) 
HI231 = -0.488221763-01 = -HI 38) 
H(24) = -0.38673453E-01 = -H( 37) 
H(25) = 0.367601223-02 = -HI 36) 
HI261 = 0.65462478E-01 = -H( 35) 
H(27) = 0.12066317E+00 = -H( 34) 
H(28) = 0.14182134E+00 = -H( 33) 
H129) = 0.11403757Ec00 = -H( 32) 
H(30) = 0.43620080E-01 = -H( 31) 

BAND 1 BAND 2 

LOWER BhND EIX;E 0.0000000 0.1500000 

UPPER BAND m E  0.1000000 0.5000000 
DESIRED S W P E  10.0000000 0.0000000 

WEIGHTING 1.0000000 1.0000000 
DEVIATION 0.0073580 0.0073580 

EXlTEWL FREQUENCIES---HAXIMA OF THE ERROR CURVE 

0.0010417 0.0156250 0.0312500 0.0468750 0.0514583 

0.0750000 0.0875000 0.0968750 0.1000000 0.1500000 

0.1552083 0.1666667 0.1822916 0.1979166 0.2155249 

0.2322916 0.2489582 0.2666668 0.2843754 0.3020839 

0.3187508 0.3364594 0.3541680 0.3718765 0.3906268 

0.4083354 0.4260439 0.4441942 0.4625027 0.4812530 

0.5000000 

654 
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lGig~re 8.22 Frequency response and approximation error for M = 60 FIR differentiator of 
Example 8.23. 

The important parameters in a differentiator are its length M, its bandwidth 
[band-edge frequency) f,, and the peak relative error 6 of the approximation. The 
interrelationship among these three parameters can be easily displayed paramet- 
rically. In particular, the value of 2010g,,6 versus f, with M as a parameter is 
shown in Fig. 8.23 for M even and in Fig. 8.24 for M odd. These results, due to 
Rabiner and Schafter (1974a), are useful in the selection of the filter length, given 
specifications on the inband ripple and the cutoff frequency f,. 

A comparison of the graphs in Figs. 8.23 and 8.24 reveals that even-length 
differentiators result in a significantly smaller approximation error 6 than compa- 
rable odd-length differentiators. Designs based on M odd are particularly poor if 
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- 10 1 Optimum FIR differentiators I 

Passband cutoff frequency (4) 

Figure 823 Curves of 2010glo6 versus fp for A4 = 4, 8, 16, 32, and 64. [From 
paper by Rabiner and Schafer (1974a). Reprinted with permission of AT&T.] 

the bandwidth exceeds f, = 0.45. The problem is basically the zero in the fre- 
quency response at w = ~ r (  f = 112). When f, < 0.45, good designs are obtained 
for M odd, but comparable-length differentiators with M even are always better 
in the sense that the approximation error is smaller. 

In view of the obvious advantage of even-length over odd-length differentia- 
tors, a conclusion might be that even-length differentiators are always preferable in 
practical systems. This is certainly true for many applications. However, we should 
note that the signal delay introduced by any linear-phase FIR filter is (M - 1)/2, 
which is not an integer when M is even. In many practical applications, this is 
unimportant. In some applications where it is desirable to have an integer-valued 
delay in the signal at the output of the differentiator, we must select M to be odd. 

These numerical results are based on designs resulting from the Chebyshev 
approximation criterion. We wish to indicate it is also possible and relatively 
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Passband cutoff frequency (4) 

Fwre 8.24 Curves of 2010glo& versus F,, for M = 5, 9, 17, 33 and 65. [From 
paper by Rabiner and Schafer (1974a). Reprinted with permission of ATBrT.1 

easy to design linear phase FIR differentiators based on the frequency sampling 
method. For example, Fig. 8.25 illustrates the frequency response characteristics of 
a wideband (f, = 0.5) differentiator, of length M = 30. The graph of the absolute 
value of the approximation error as a function of frequency is also shown in this 
figure. 

82.6 Design of Hilbert Transformers 

An ideal Hilbert transformer is an all-pass filter that imparts a 90" phase shift 
on the signal at its input. Hence the hequency response of the ideal Hilbert 
transformer is specified as 

O < w l l r  
- n < w < O  (8.2.85) 
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Normrlized frequency 

Rgme 825 Frequency response and approximation error for M = 30 FIR differentiator 
designed by frequency sampling method. 

Hilbert transformers are frequently used in communication systems and signal 
processing, as, for example, in the generation of single-sideband modulated signals, 
radar signal processing, and speech signal processing. 

The unit sample response of an ideal Hilbert transformer is 
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As expected, hd(n)  is infinite in duration and noncausal. We note that hd(n)  is 
antisymmetric [i.e., hd(n)  = -hd(-n)] .  In view of this characteristic, we focus our 
attention on the design of linear-phase FIR Hilbert transformers with antisymmet- 
ric unit sample response [i.e., h(n)  = -h(M - 1 - n ) ] .  We also observe that our 
choice of an antisymmetric unit sample response is consistent with having a purely 
imaginary frequency response characteristic H d ( o ) .  

We recall once again that when h(n)  is antisymmetric, the real-valued fre- 
quency response characteristic H r ( o )  is zero at o = 0 for both M odd and even 
and at w = x when M is odd. Clearly, then, it is impossible to design an all-pass 
digital Hilbert transformer. Fortunately, in practical signal processing applications, 
an all-pass Hilbert transformer is unnecessary. Its bandwidth need only cover the 
bandwidth of the signal to be phase shifted. Consequently, we specify the desired 
real-valued frequency response of a Hilbert transform filter as 

where fi and f, are the lower and upper cutoff frequencies, respectively. 
It is interesting to note that the ideal Hilbert transformer with unit sample 

response hd(n)  as given in (8.2.86) is zero for n even. This property is retained by 
the FIR Hilbert transformer under some symmetry conditions. In particular, let 
us consider the Case 3 filter type for which 

( M - 1 ) / 2  
H, (o) = x ~ ( k )  sin ru* (8.2.88) 

and suppose that fi = 0.5 - f,. This ensures a symmetric passband about the 
midpoint frequency f = 0.25. If we have this symmetry in the frequency response, 
Hr ( w )  = Hr ( x  - w) and hence (8.2.88) yields 

x' c (k )  sin wk = ' x' c&) sin k ( n  - o )  
k=l k=1 

( M - 1 ) / 2  

= x ~ ( k ) ( - l ) ~ + '  sin o k  
LEI 

or equivalently, 
( M - 1 ) / T  x [I - (-l)'+']c(k) sin& = 0 

k=1 
Clearly, c (k )  must be equal to zero for k = 0,2,4, . . . . 
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Now, the relationship between {c(k)] and the unit sample response {h(n)] is, 
from (8.2.54), 

or, equivalently, 

If c(k) is zero for k = 0, 2, 4, . . . , then (8.2.90) yields 

Unfortunately, (8.2.91) holds only for M odd. It does not hold for M even. This 
means that for comparable values of M, the case M odd is preferable since the 
computational complexity (number of multiplications and additions per output 
point) is roughly one half of that for M even. 

When the design of the Hilbert transformer is performed by the Chebyshev 
approximation criterion using the Remez algorithm, we select the filter coefficients 
to minimize the peak approximation error 

6 = [ H d r  (w)  - Hr ( w ) ]  
2n f io52n f .  

- - max [1 - H,(w)] 
2x/rw52nf .  

Thus the weighting function is set to unity and the optimization is performed over 
the single frequency band (i.e., the passband of the filter). 

Example 8 3 6  

Design a Hilbert transformer with parameters M = 31, fi = 0.05, and f, = 0.45. 

Solution We observe that the frequency response is symmetric, since f, = 0.5 - fi. 
The parameters for executing the Remez algorithm are 

The result of this design is the unit sample response coefficients and the peak a p  
proximation error 6 = 0.0026803 or -51.4 dB given in Table 8.9. We obseme that, 
indeed, every other value of h(n) is essentially zero (these values are of the order of 
lo-'). The frequency response of the Hilbert transformer is shown in Fig. 8.26. 
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TABLE 8.9 PARAMETERS FOR FIR HILBERT TRANSFORM FILTER IN 
EXAMPLE 8.2.6 

FINITE IMPULSE RESPONSE (FIR) 

LINEAR PHASE DIGITAL FILTER DESIGN 

REXEZ EXCHANGE ALGORITHM 
HILBERT TEZRNSFORMER 

FILTER LENGTH = 31 
* * * * *  IMPULSE RESPONSE * * * * *  

H( 1) = 0.41957516E-02 = -H( 31) 
H f  2) = 0.643102573-07 = -H( 30) 
H( 3) = 0.92822444E-02 = -H( 29) 
H( 4) = 0.52693927E-07 = -H( 28) 
H( 5)  = 0.18835988E-01 = -H( 271 
H f  6) = 0.82308283E-07 = -H( 26) 
H( 7) = 0.34401190E-01 = -H( 25) 
H( 8) = 0.93328794E-07 = -H( 24) 
H( 9) = 0.59551738E-01 = -H( 23) 
H(l0) = 0.50821171E-07 = -H( 22) 
H(l1) = 0.10303782E+OO = -H( 21) 
H(12) = 0.17612138E-07 = -H( 20) 
H(13) = 0.19683167E+00 = -H( 19) 

H(14) = -0.23977606E-07 = -Hf 18) 
H(15) = 0.63135374E+00 = -H( 17) 
H(16) = 0.0 

BAND 1 

LOWER BAND EDGE 0.0500000 

UPPER BAND EDGE 0.4500000 

DESIRED VALUE 1.0000000 

WEIGHTING 1.0000000 

DEVIATION 0.0026803 

EXTREMAL FREQUENCIES---MAXIMA OF THE ERROR CURVE 
0.0500000 0.0562500 0.0750000 0.1000000 0.1291666 

0.1583333 0.1874999 0.2187499 0.2499998 0.2812498 

0.3124998 0.3416664 0.3708331 0.3999997 0.4249997 

0.4437497 

Rabiner and Schafer (1974b) have investigated the characteristics of Hilbert 
transformer designs for both M odd and M even. If the filter design is restricted 
to a symmetric frequency response, then there are basically three parameters of 
interest, M, 6, and 3. Figure 8.27 is a plot of 2010g,,S versus fi with M as a 
parameter. We observe that for comparable values of M, there is no performance 
advantage of using M odd over M even, and vice versa. However, the computa- 
tional complexity in implementing a filter for M odd is less by a factor of 2 over 
M even as previously indicated. Therefore, M odd is preferable in practice. 

For design purposes, the graphs in Fig. 8.27 suggest that, as a rule of thumb, 
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Normalized frequency 

Figure 8.26 Frequency response of FIR Hilben transform filter in Example 8.6.6. 

Hence this formula can be used to estimate the size of one of the three basic filter 
parameters when the other two parameters are specified. 

In concluding this section, we wish to show that Hilbert transformers can 
also be designed by the window method and the frequency sampling method. 
For example, Fig. 8.28 illustrates the frequency response of an M = 31 Hilbert 
transformer designed using the frequency sampling method. The corresponding 
values of the unit sample response are given in Table 8.10. A comparison of these 
filter parameters with those given in Table 8.9 indicates some small differences. 
In particular, it appears that the Chebyshev approximation criterion gives signifi- 
cantly smaller values for the filter coefficients that should be zero. In general, the 
Chebyshev approximation criterion results in better filter designs. 

8.2.7 Comparison of Design Methods for Linear-Phase 
FIR Filters 

Historically, the design method based on the use of windows to truncate the 
impulse response h d ( n )  and obtaining the desired spectral shaping, was the first 
method proposed for designing linear-phase FIR filters. The frequency-sampling 
method and the Chebyshev approximation method were developed in the 1970s 
and have since become very popular in the design of practical linear-phase FIR 
filters. 

The major disadvantage of the window design method is the lack of precise 
control of the critical frequencies, such as w, and us, in the design of a lowpass 
FIR filter. The values of w, and us, in general, depend on the type of window and 
the filter length M. 
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Transition width (Af) 

F i i  8.27 Curves of 2010glo 6 versus A f for M = 3, 4, 7, 8, 15, 16,31, 32, 63, 
64. [From paper by Rabiner and Schafer (1974b). Reprinted with permission of 
AT&T.] 

The frequency sampling method provides an improvement over the win- 
dow design method, since H,(w)  is specified at the frequencies wk = 2 n k / M  or 
wk = n ( 2 k  + 1 ) / M  and the transition band is a multiple of h / M .  This filter de- 
sign method is particularly attractive when the FIR filter is realized either in the 
frequency domain by means of the DFT or in any of the frequency sampling re- 
alizations. The attractive feature of these realizations is that H , ( w k )  is either zero 
or unity at all frequencies, except in the transition band. 

The Chebyshev approximation method provides total control of the filter 
specifications, and, as a consequence, it is usually preferable over the other two 
methods. For a lowpass filter, the specifications are given in terns of the param- 
eters up, us, A1, 62, and M. We can specify the parameters up, a,, M and 6, and 
optimize the filters relative to 82. By spreading the approximation error over the 
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Normalized frequency 

F- 828 Frequency response of M = 31 FIR Hilbert transform filter designed by the 
frequency sampling method. 

passband and the stopband of the filter, this method results in an optimal filter de- 
sign, in the sense that for a given set of specifications just described, the maximum 
sidelobe level is minimized. 

The Chebyshev design procedure based on the Remez exchange algorithm 
requires that we specify the length of the filter, the critical frequencies w, and w,, 
and the ratio 62/61. However, it is more natural in filter design to specify w,, o,, JI ,  
and 82 and to determine the filter length that satisfies the specifications. Although 
there is no simple formula to determine the filter length from these specifications, 
a number of approximations have been proposed for estimating M from w,, o,, 
a l ,  and J2. A particularly simple formula attributed to Kaiser for approximating 
M is 

where Af is the transition band, defined as Af = (w, - o,)/2n. This formula 
has been given in the paper by Rabiner et d. (1975). A more accurate formula 
proposed by Herrmann et a1. (1973) is 

where, by definition, 
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TABLE 8.10 PARAMETERS A FOR M = 3t HllBERT 
TRANSFORM FILTER DESIGNED BY T HE FREQUENCY- 
SAMPLING METHOD 

LINEAR PHASE FIR HILBERT TRANSFORM 

FREQUENCY SAMPLING METHOD 

FILTER LENGTH =31 
LOWER CUTOFF FREQUENCY (RELATIVE) = 0.5000000E-01 
UPPER CUTOFF FREQUENCY (RELATIVE) = 0.45000003+00 

IMPULSE RESPONSE: 
H( 0) = -0.1342662E-03 
H( 1) = 0.21331403-02 
H( 2) = 0.48408633-02 

H( 3) = 0.2286159E-02 

H( 4) = 0.14235323-01 

H( 5) = 0.1517075E-02 

H( 6) = 0.30018053-01 

H( 7) = 0.5263533E-03 

H f  8) = 0.55747213-01 

H( 9) = -0.2281570E-03 
H(10) = 0.1001032E+00 

H(11) = -0.5338326E-03 
H(12) = 0.19498486+00 

H(13) = -0.3994641E-03 
H (14) = 0.63072533+00 

H(15) = -0.9335956E-06 
H(16) = -0.63072453+00 
H(17) = 0.39962223-03 

H(18) = -0.19498533+00 
H(19) = 0.5341307E-03 

H(20) = -0.1001035E+00 
H(21) = 0.22053383-03 

H (22) = -0.55747353-01 
H(23) = -0.52633403-03 
H(24) = -0.30017943-01 
H(25) = -0.151724OE-02 
H(26) = -0-14235573-01 
H(27) = -0.22859153-02 
H(28) = -0.48482153-02 
H (29) = -0.2133800E-02 
H (30) = 0.1344162E-03 
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These formulas are extremely useful in obtaining a good estimate of the filter 
length required to achieve the given specifications A f ,  J1, and J2. The estimate 
is used to carry out the design and if the resulting 6 exceeds the specified 62, the 
length can be increased until we obtain a sidelobe level that meets the specifica- 
tions. 

8.3 DESIGN OF IIR FILTERS FROM ANALOG FILTERS 

Just as in the design of FIR filters, there are several methods that can be used to 
design digital filters having an infinite-duration unit sample response. The tech- 
niques described in this section are all based on converting an analog filter into 
a digital filter. Analog filter design is a mature and well developed field, so it is 
not surprising that we begin the design of a digital filter in the analog domain and 
then convert the design into the digital domain. 

An analog filter can be described by its system function. 

where { a k )  and { p k }  are the filter coefficients, or by its impulse response, which is 
related to Ha(s) by the Laplace transform 

Ha(s) = h(l)e-"dt (8.3.2) 

Alternatively, the analog filter having the rational system function H(s) given in 
(8.3.1), can be described by the linear constant-coefficient differential equation 

rgk - 
k 4  

where x(t) denotes the input signal and y(t) denotes the output of the filter. 
Each of these three equivalent characterizations of an analog filter leads to 

alternative methods for converting the filter into the digital domain, as will be 
described in Sections 8.3.1 through 8.3.4. We recall that an analog linear time- 
invariant system with system function H ( s )  is stable if all its poles lie in the left 
half of the s-plane. Consequently, if the conversion technique is to be effective, it 
should possess the following desirable properties: 

L The jQ axis in the s-plane should map into the unit circle in the z-plane. 
Thus there will be a direct relationship between the two frequency variables 
in the two domains. 
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2. The left-half plane (LHP) of the s-plane should map into the inside of the 
unit circle in the z-plane. Thus a stable analog filter will be converted to a 
stable digital filter. 

We mentioned in the preceding section that physically realizable and stable 
IIR filters cannot have linear phase. Recall that a linear-phase filter must have a 
system function that satisfies the condition 

where z-" represents a delay of N units of time. But if this were the case, the 
filter would have a mirror-image pole outside the unit circle for every pole inside 
the unit circle. Hence the filter would be unstable. Consequently, a causal and 
stable IIR filter cannot have linear phase. 

If the restriction on physical realizability is removed, it is possible to obtain 
a linear-phase IIR filter, at least in principle. This approach involves performing a 
time reversal of the input signal x(n), passing x(-n) through a digital filter H(z), 
time-reversing the output of H(z), and finally, passing the result through H(z) 
again. This signal processing is computationally cumbersome and appears to offer 
no advantages over linear-phase FIR filters. Consequently, when an application 
requires a linear-phase filter, it should be an FIR filter. 

In the design of IIR filters, we shall specify the desired filter characteristics 
for the magnitude response only. This does not mean that we consider the phase 
response unimportant. Since the magnitude and phase characteristics are related, 
as indicated in Section 8.1, we specify the desired magnitude characteristics and 
accept the phase response that is obtained from the design methodology. 

8.3.1 IIR Filter Design by Approximation of Derivatives 

One of the simplest methods for converting an analog filter into a digital filter is to 
approximate the differential equation in (8.3.3) by an equivalent difference equa- 
tion. This approach is often used to solve a lineir constant-coefficient differential 
equation numerically on a digital computer. 

For the derivative dy(t)/dt at time t = nT, we substitute the backward dif- 
ference [ ~ ( n  T) - y (n T - l)]/T . Thus 

where T represents the sampling interval and y(n) = y(nT). The analog differ- 
entiator with output dy(t)/dt has the system function H(s) = s, while the digi- 
tal system that produces the output [y(n) - y(n - l)]/T has the system function 
H(z) = (1 - z-~) /T .  Consequently, as shown in Fig. 8.29, the frequency-domain 
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~ ( n )  - f in- l )  
T F i  8.29 Substitution of the 

backward difference for the derivative 
(b) implies the mapping s = (1 - z - ' ) IT .  

equivalent for the relationship in (8.3.5) is 

The second derivative dZy(t)/dt2 is replaced by the second difference, which 
is derived as foHows: 

d2y (1) d dy(t) ~ l ~ = ~ ~  = [T],~,,~ 

In the frequency domain, (8.3.7) is equivalent to 

It easily follows from the discussion that the substitution for the kth derivative 
of y(r) results in the equivalent frequency-domain relationship 

Consequently, the system function for the digital IIR filter obtained as a result of 
the approximation of the derivatives by finite differences is 

H(Z) = HCZ(S)I,=(I-~-~),T (8.3.10) 

where H,(s) is the system function of the analog filter characterized by the differ- 
ential equation given in (8.3.3). 

Let us investigate the implications of the mapping from the s-plane to the 
z-plane as given by (8.3.6) or, equivalently, 

1 z = -  (8.3.11) 
1 -ST 

If we substitute s = jR in (8.2.11), we find that 

1 z = -  
I - jRT 
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As S2 varies from -00 to oo, the corresponding locus of points in the z-plane is a 
circle of radius $ and with center at z = $, as illustrated in Fig. 8.30. 

It is easily demonstrated that the mapping in (8.3.11) takes points in the 
LHP of the s-plane into corresponding points inside this circle in the z-plane and 
points in the RHP of the s-plane are mapped into points outside this circle. Con- 
sequently, this mapping has the desirable property that a stable analog filter is 
transformed into a stable digital filter. However, the possible location of the poles 
of the digital filter are confined to relatively small frequencies and, as a conse- 
quence, the mapping is restricted to the design of lowpass filters and bandpass 
filters having relatively small resonant frequencies. It is not possible, for exam- 
ple, to transform a highpass analog filter into a corresponding highpass digital 
filter. 

In an attempt to overcome the limitations in the mapping given above, more 
complex substitutions for the derivatives have been proposed. In particular, an 
Lth-order difference of the form 

has been proposed, where {ak} are a set of parameters that can be selected to 
optimize the approximation. The resulting mapping between the s-plane and the 
z-plane is now 

Unit circle 
I 

830 The mapping s = (1 - z-')/T takes LHP in the s-plane into points 
inside the circle of radius and center z = in the z-plane. 
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When z = eJ", we have 
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which is purely imaginary. Thus 

is the resulting mapping between the two frequency variables. By proper choice 
of the coefficients {ak} it is possible to map the jR-axis into the unit circle. Fur- 
thermore, points in the LHP in s can be mapped into points inside the unit circle 
in z. 

Despite achieving the two desirable characteristics with the mapping of 
(8.3.16), the problem of selecting the set of coefficients (ak) remains. In general, 
this is a difficult problem. Since simpler techniques exist for converting analog 
filters into IIR digital filters, we shall not emphasize the use of the Lth-order 
difference as a substitute for the derivative. 

Convert the analog bandpass filter with system function 

Ha@) = 
1 

(s + 0.1)= + 9 
into a digital IIR filter by use of the backward difference for the derivative. 

Solution Substitution for s from (8.3.6) into H(s) yields 

The system function H(z) has the form of a resonator provided that T is selected 
small enough (e.g., T 5 0.1), in order for the poles to be near the unit circle. Note 
that the condition a: < 4a2 is satisfied, so that the poles are complex valued. 

For example, if T = 0.1, the poles are located at 

We note that the range of resonant frequencies is limited to low frequencies, due to 
the characteristics of the mapping. The reader is encouraged to plot the ftequency 
response H (o) of the digital filter for different values of T and compare the results 
with the frequency response of the analog filter, 



Sec. 8.3 Design of IIR Filters From Analog Filters 

Example 83.2 

Convert the analog bandpass filter in Example 8.3.1 into a digital IIR Nter by use of 
the mapping 

Solution By substituting for s in H(s) ,  we obtain 

We observe that this mapping has introdllced two additional poles in the con- 
version from H,(s) to H ( z ) .  As a consequence, the digital filter is significantly more 
complex than the analog filter. This is a major drawback to the mapping given above. 

8.3.2 IIR Filter Design by lmpulse lnvariance 

In the impulse invariance method, our objective is to design an IIR filter having a 
unit sample response h(n)  that is the sampled version of the impulse response of 
the analog filter. That is, 

h ( n ) = h ( n T )  n = 0 , 1 , 2 ,  ... (8.3.17) 

where T is the sampling interval. 
To examine the implications of (8.3.171, we refer back to Section 4.2.9. Recall 

that when a continuous time signal xa(r) with spectrum X a ( F )  is sampled at a 
rate F, = 1 / T  samples per second, the spectrum of the sampled signal is the 
periodic repetition of the scaled spectrum FsXa(F)  with period F,. Specifically, 
the relationship is 

00 

x ( f  1 = Fs C & [ ( f  -r k)Fs]  (8.3.18) 
ks-w 

where f  = F/F,  is the normalized frequency. Aliasing occurs if the sampling rate 
F, is less than twice the highest frequency contained in Xa(F) .  

Expressed in the context of sampling the impulse response of an analog 
filter with frequency response Ha(F),  the digital filter with unit sample response 
h(n)  = ha(nT)  has the frequency response 

or, equivalently, 
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F i  831 Frequency response H,(S2) of the analog filter and frequency re- 
sponse of the corresponding digital Nter with aliasing. 

Figure 8.31 depicts the frequency response of a lowpass analog filter and the 
frequency response of the corresponding digital filter. 

It is clear that the digital filter with frequency response H ( w )  has the fre- 
quency response characteristics of the corresponding analog filter if the sampling 
interval T is selected sufficiently small to completely avoid or at least minimize 
the effects of aliasing. It is also clear that the impulse invariance method is in- 
appropriate for designing highpass fiiters due the to spectrum aliasing that results 
from the sampling process. 

To investigate the mapping of points between the z-plane and the s-plane 
implied by the sampling process, we rely on a generalization of (8.3.21) which 
relates the z-transform of h(n)  to the Laplace transform of ha( t ) .  This reiation- 
ship is 
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where 

Note that when s = jR, (8.3.22) reduces to (8.3.21), where the factor of j in H,(Q) 
is suppressed in our notation. 

Let us consider the mapping of points from the s-plane to the z-plane implied 
by the relation 

2 = esT (8.3.24) 

If we substitute s = o + j S Z  and express the complex variable z in polar form as 
z = re'", (8.3.24) becomes 

,,iw = ea7ejR7 

Clearly, we must have 
r = 

Consequently, a c 0 implies that 0 < r K 1 and CY > 0 implies that r > I, When 
a = 0, we have r = 1. Therefore, the LHP in s is mapped inside the unit circle in 
z and the RHP in s is mapped outside the unit circle in 2. 

Also, the jQ-axis is mapped into the unit circle in z as indicated above. How- 
ever, the mapping of the jS2-axis into the unit circle is not one-to-one. Since w 
is unique over the range (-r, x), the mapping w = QT implies that the interval 
- r / T  5 SZ 5 K / T  maps into the corresponding values of -n 5 w 5 r .  Fur- 
thermore, the frequency interval r / T  s R s 3 r / T  also maps into the interval 
-R 5 w 5 R and, in general, so does the interval (2 - l ) l r / T  5 Q s (2k + l ) x / T ,  
when k is an integer. Thus the mapping from the analog frequency S2 to the fre- 
quency variable w in the digital domain is many-to-one, which simply reflects the 
effects of aliasing due to sampling. Figure 8.32 illustrates the mapping from the 
s-plane to the z-plane for the relation in (8.3.24)' 

To explore further the effect of the impulse invariance design method on 
the characteristics of the resulting filter, let us express the system function of the 
analog filter in partial-fraction form. On the assumption that the poles of the 
analog filter are distinct, we can write 

where { p k )  are the poles of the analog filter and {ck) are the coefficients in the 
partial-fraction expansion. Consequently, 
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F i  832 Th e  mapping of z = dT 
maps strips of width 2 n / T  (for a < 0) in 
the s-plane into points in the unit circle 
in the z-plane. 

If we sample h,  ( t )  periodically at t  = nT,  we have 

h ( n )  = h, (nT)  

Now, with the substitution of (8.3.28), the system function of the resulting digital 
IIR filter becomes 

The inner sum in (8.3.29) converges because pk < 0 and yields 

Therefore, the system function of the digital filter is 

We observe that the digital filter has poles at 

z k  = epkT k = 1 ,2 , .  . . , N 
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Although the poles are mapped from the s-plane to the z-plane by the relationship 
in (8.3.32), we should emphasize that the zeros in the two domains do not satisfy the 
same relationship. Therefore, the impulse invariance method does not correspond 
to the simple mapping of points given by (8.3.24). 

The development that resulted in H ( z )  given by (8.3.31) was based on a filter 
having distinct poles. It can be generaiized to include multiple-order poles. For 
brevity, however, we shall not attempt to generalize (8.3.31). 

Example 8 3 3  

Convert the analog filter with system function 

into a digital IIR filter by means of the impulse invariance method. 

Solution We note that the analog filter has a zero at s =t -0.1 and a pair of complex- 
conjugate poles at 

as illustrated in Fig. 8.33. 
We do not have to determine the impulse response h,( t )  in order to design 

the digital IIR filter based on the method of impulse invariance. Instead, we directly 
determine H(:), as given by (82.31), from the partial-fraction expansion of H,(s). 
Thus we have 

Then 

Qure 833 Pole-zero locations for 
analog filter in Example 83.3. 
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- 501 
0 0.1 0.2 0.3 0.4 0-5 F- 8.34 Frequency response of 

Nonndizcd fraquency digital filter in Example 8.3.3. 

Since the two poles are complex conjugates, we can combine them to form a 
single two-pole filter with system function 

1 - (e-'.IT cos ~ T ) z - I  
H ( z )  = 1 - (ze-0.17 cos 3 ~ ) z - I  + e-a2Tt-1 

The magnitude of the frequency response characteristic of this filter is plotted 
in Fig. 8.34 for T = 0.1 and T = 0.5. For purpose of comparison, we have also plotted 
the magnitude of the frequency response of the analog filter in Fig. 8.35, We note 
that aliasing is significantly more prevalent when T = 0.5 than when T = 0.1. Also, 
note the shift of the resonant frequency as T changes. 

Frequency 
F i  835 Frequency response of 
analog filter in Example 8.3.3. 

The preceding example illustrates the importance of selecting a small value 
for T to minimize the effect of aliasing. Due to the presence of aliasing, the 
impulse invariance method is appropriate for the design of lowpass and bandpass 
filters only. 

8.3.3 IIR Filter Design by the Bilinear Transformation 

The IIR filter design techniques described in the preceding two sections have a 
severe limitation in that they are appropriate only for lowpass filters and a limited 
class of bandpass filters. 

In this section we describe a mapping from the s-plane to the z-plane, called 
the bilinear transformation, that overcomes the limitation of the other two design 
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methods described previously. The biIinear transformation is a conformal mapping 
that transforms the jR-axis into the unit circle in the z-plane only once, thus 
avoiding aliasing of frequency components. Furthermore, all points in the LHP of 
s are mapped inside the unit circle in the z-plane and all points in the RHP of s 
are mapped into corresponding points outside the unit circle in the z-plane. 

The bilinear transformation can be linked to the trapezoidal formula for 
numerical integration. For example, let us consider an analog Iinear filter with 
system function 

This system is also characterized by the differential equation 

Instead of substituting a finite difference for the derivative, suppose that we in- 
tegrate the derivative and approximate the integral by the trapezoidal formula. 
Thus 

~ ( 1 )  = [ y f ( ~ ) d r  + y(t01 (8.3.35) 

where y t ( t )  denotes the derivative of ~ ( 2 ) .  The approximation of the integral in 
(8.3.35) by the trapezoidal formula at r = nT and to = nT - T yields 

T 
y ( n T )  = Z [ y ' ( n T )  + yl(nT - T ) ]  + y(nT - T )  (8.3.36) 

Now the differential equation in (8.3.34) evaluated at t = nT yields 

We use (8.3.37) to substitute for the derivative in (8.3.36) and thus obtain a dif- 
ference equation for the equivalent discrete-time system. With y (n)  E y ( n T )  and 
x ( n )  = x ( n T ) ,  we obtain the result 

The 2-transform of this difference equation is 

Consequently, the system function of the equivalent digital filter is 

or, equivalently, 
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Clearly, the mapping from the s-plane to the z-plane is 

This is called the bilinear transformation. 
Although our derivation of the bilinear transformation was performed for a 

first-order differential equation, it holds, in general, for an Nth-order differential 
equation. 

To investigate the characteristics of the bilinear transformation, let 

z = 

Then (8.3.40) can be expressed as 

r2 - 1 2r sin o 

l+r2++rcosw +'I +r2+2rcosw 
Consequently, 

2 2r sinw n = -  
T 1 +r2+2rcosw 

First, we note that if r < 1, then u < 0, and if r > 1, then a > 0. Conse- 
quently, the LHP in s maps into the inside of the unit circle in the z-plane and the 
RHP in s maps into the outside of the unit circle. When r = 1, then a = 0 and 

2 sin w n=-- 
T 1 +cosw 
2 w  = - tan - 
T 2 

or, equivalently, 
QT 

w = 2 tan" - 
2 

(8.3.44) 

The relationship in (8.3.44) between the frequency variables in the two domains 
is illustrated in Fig. 8.36. We observe that the entire range in CZ is mapped only 
once into the range -n 5 o 5 n. However, the mapping is highly nonlinear. We 
observe a frequency compression or frequency warping, as it is usually called, due 
to the nonlinearity of the arctangent function. 

It is also interesting to note that the bilinear transformation maps the point 
s = oo into the point z = -1. Consequently, the single-pole lowpass filter in 



Sec. 8.3 Design of IIR Fitters From Analog Fitters 

Figure 8.36 Mapping between the frequency variables o and R resulting from 
the bilinear transformation. 

(8.3.33), which has a zero at s = do, results in a digital filter that has a zero at 
z = -1. 

Example 83.4 

Convert the analog filter with system function 

into a digital IIR filter by means of the bilinear transformation. The digital filter is 
to have a resonant frequency of LO, = n/2. 

Solution First, we note that the analog filter has a resonant frequency R, = 4. This 
frequency is to be mapped into or = n/2 by selecting the value of the parameter T. 
From the relationship in (8.3.43). we must select T = 5 in order to have w, = n/2. 
Thus the desired mapping is 

The resulting digital filter has the system function 

We note that the coefficient of the z-' term in the denominator of H ( z )  is extremely 
smaIl and can be approximated by zero. Thus we have the system function 

This filter has poles at 



and zeros at 
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Therefore, we have succeeded in designing a two-pole filter that resonates near w = 
x f l -  

In this example the parameter T was selected to map the resonant frequency 
of the analog filter into the desired resonant frequency of the digital filter. Usually, 
the design of the digital filter begins with specifications in the digital domain, which 
involve the frequency variable w. These specifications in frequency are converted 
to the analog domain by means of the relation in (8.3.43). The analog filter is then 
designed that meets these specifications and converted to a digital filter by means 
of the bilinear transformation in (8.3.40). In this procedure, the parameter T is 
transparent and may be set to any arbitrary value (e-g., T = 1). The following 
example illustrates this point. 

Example 835 

Design a single-pole lowpass digital filter with a 3-dB bandwidth of 0.2x, using the 
bilinear transformation applied to the analog filter 

where Q, is the 3-dB bandwidth of the analog filter. 

Solution The digital filter is specified to have its -3-dB gain at w, = 0.277. In the 
frequency domain of the analog filter LO, = 0.2n corresponds to 

2 
= - tan 0 . 1 ~  

T 

Thus the analog filter has the system function 

This represents our filter design in the analog domain. 
Now, we apply the bilinear transformation given by (8.3.40) to convert the 

analog filter into the desired digital filter. Thus we obtain 

where the parameter T has been divided o u t  
The frequency response of the digital filter is 

At o = 0, H ( 0 )  = 1, and at w = 0.2~~ we have IH(0.2n)i = 0.707, which is the desired 
response. 
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8.3.4 The Matched-z Transformation 

Another method for converting an analog filter into an equivalent digital filter is to 
map the poles and zeros of H(s) directly into poles and zeros in the z-plane. Sup- 
pose that the system function of the analog filter is expressed in the factored form 

where { z p )  are the zeros and { p k }  are the poles of the filter. Then the system 
function for the digitaI filter is 

where T is the sampling interval. Thus each factor of the form (s - a )  in H(s) 
is mapped into the factor (I - eaTz-I). This mapping is called the matched-z 
transformation. 

We observe that the poles obtained from the matched-z transformation are 
identical to the poles obtained with the impulse invariance method. However, the 
two techniques result in different zero positions. 

To preserve the frequency response characteristic of the analog filter, the 
sampling interval in the matched-z transformation must be properly selected to 
yield the pole and zero locations at the equivalent position in the z-plane. Thus 
aliasing must be avoided by selecting T sufficiently small. 

8.3.5 Characteristics of Commonly Used Andog Filters 

As we have seen from our discussion above, IIR digital filters can easily be ob- 
tained by beginning with an analog filter and then using a mapping to transform the 
s-plane into the z-plane. Thus the design of a digital filter is reduced to designing 
an appropriate analog filter and then performing the conversion from H(s) to H (z), 
in such a way so as to preserve as much as possible, the desired characteristics of 
the analog filter. 

Analog filter design is a well-developed field and many books have been 
written on the subject. In this section we briefly describe the important character- 
istics of commonly used analog filters and introduce the relevant filter parameters. 
Our discussion is limited to lowpass filters. Subsequently, we describe several 
frequency transformations that convert a lowpass prototype filter into either a 
bandpass, highpass, or band-elimination filter. 
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Butternorth filters. Lowpass Butterworth filters are all-pole filters char- 
acterized by the magnitude-squared frequency response 

where N is the order of the filter, R, is its -3-dB frequency (usually called the 
cutoff frequency), R, is the passband edge frequency, and 1/(1 + c 2 )  is the band- 
edge value of I H ( R ) ~ ~ .  Since H  ( s ) H ( - s )  evaluated at s  = j n  is simply equal to 
lH(R)12, it follows that 

H ( s ) H ( - s )  = 
1  

1  + (-s2/522c)N 
(8.3.48) 

The poles of H ( s ) H ( - s )  occur on a circle of radius R, at equally spaced points. 
From (8.3.48) we find that 

and hence 

s k = n c e * n / z e ~ c B + l ) n / z N  k = O , l , . . . .  N - 1  (8.3.49) 

For example, Fig. 8.37 illustrates the pole positions for an N = 4 and N = 5 
Butterworth filters. 

The frequency response characteristics of the class of Butterworth filters are 
shown in Fig. 8.38 for several values of N. We note that I H ( R ) ~ ~  is monotonic 
in both the passband and stopband. The order of the filter required to meet an 
attenuation 62 at a specified frequency R, is easily determined from (8.3.47). Thus 
at R  = R, we have 

1 
i + ~2(n , /n , )2~  = 'i 

and hence 

where, by definition, 62 = l / d - .  Thus the Butterworth filter is completely 
characterized by the parameters N, S2, E ,  and the ratio n , / Q , .  

Example 83.6 

Determine the order and the poles of a lowpass Butterworth filter that has a -3-dB 
bandwidth of 500 Hz and an attenuation of 40 dB at 1000 Hz. 

Solution The critical frequencies are the -3-dB frequency S2, and the stopband 
frequency Q, which are 
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Poles of 
H(s)  

Poles of 
H(-3) 

Poles of 
H(5)  

Poles of 
H(-J) 

Figure 837 Pole positions for Butterworth filters. 

For an attenuation of 40 dB, b2 = 0.01. hence from (8.3.50) we obtain 

= 6.64 

To meet the desired specifications, we select N = 7. The pole positions are 

,k = 1 ~ , j [ n t 2 + ( u + l ) x / 1 4 1  k = 0 , 1 , 2  ,..., 6 

Chebyshev filters. There are two types of Chebyshev filters. Type I 
Chebyshev filters are all-pole filters that exhibit equiripple behavior in the pass- 
band and a monotonic characteristic in the stopband. On the other hand, the 
family of type I1 Chebyshev filters contains both poles and zeros and exhibits a 
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Figure 838 Frequency response of Butterworth filters. 

monotonic behavior in the passband and an equiripple behavior in the stopband. 
The zeros of this class of filters lie on the imaginary axis in the s-plane. 

The magnitude squared of the frequency response characteristic of a type I 
Chebyshev filter is given as 

where E is a parameter of the filter related to the ripple in the passband and TN(x)  
is the Nth-order Chebyshev polynomial defined as 

cos(N cos-' x ) ,  1x1 5 1 
c o s h ( ~  cosh-'x), 1x1 > 1 

(8.3.52) 
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The Chebyshev polynomials can be generated by the recursive equation 

where To(x)  = I and T l ( x )  = x .  From (8.3.53) we obtain T2(x)  = 2x2 - 1, T3(x)  = 
4x3 - 3x,  and so on. 

Some of the properties of these polynomials are as follows: 

1. ITN(x)J j 1 for all 1x1 5 1. 
2. T N ( ~ )  = 1 for all N. 

3. A11 the roots of the polynomial T N ( x )  occur in the interval -1 5 x  5 1. 

The filter parameter r is related to the ripple in the passband, as illustrated 
in Fig. 8.39, for N odd and N even. For N odd, T N ( 0 )  = 0  and hence I H ( O ) ~ ~  = 1. 
On the other hand, for N even, T N ( 0 )  = 1 and hence [ H ( O ) [ ~  = 1/(1 + c2). At the 
band edge frequency !2 = R,, we have T N ( l )  = 1, so that 

1 -- 
d m - 1 - 6 1  

or, equivalently, 

where 6 ,  is the value of the passband ripple. 
The poles of a type I Chebyshev filter lie on an ellipse in the s-plane with 

major axis 

N odd N even 

F p  839 Type I Chebyshev filter characteristic. 
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and minor axis 
/I2 - 1 

n = n,= (8.3.56) 

where #I is related to E according to the equation 

The pole locations are most easily determined for a filter of order N by first locating 
the poles for an equivalent Nth-order Butterworth filter that lie on circles of radius 
rl or radius r2, as illustrated in Fig. 8.40. If we denote the angular positions of the 
poles of the Butterworth filter as 

then the positions of the poles for the Chebyshev filter lie on the ellipse at the 
coordinates ( x k ,  yk), k = 0, 1,. . . , N - 1, where 

FigPre 8.40 Deterinination of the pole locations for a Chebyshev lilter. 
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A type I1 Chebyshev filter contains zeros as well as poles. The magnitude 
squared of its frequency response is given as 

where TN (x) is, again, the Nth-order Chebyshev polynomial and S2, is the stopband 
frequency as illustrated in Fig. 8.41. The zeros are located on the imaginary axis 
at the points 

The poles are located at the points (vk,  wk), where 

where {xk) and { y k }  are defined in (8.3.59) with 8 now related to the ripple in the 
stopband through the equation 

1 I N  

From this description, we observe that the Chebyshev filters are characterized 
by the parameters N, r, 62, and the ratio S2,/np. For a given set of specifications 

N odd N even 

F i  8.41 Type I1 Chebyshcv filters. 
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on c ,  Sz, and R , / R p ,  we can determine the order of the fitter from the equation 

where, by definition, S2 = I/-. 

Example 8.3.7 

Determine the order and the poles of a type I lowpass Chebyshev filter that has a 
1-dB ripple in the passband, a cutoff frequency S2, = 1000n, a stopband frequency 
of 2000x, and an attenuation of 40 dB or more for Q 2 as. 

Solution First, we determine the order of the filter. We have 

Also, 

Hence from (8.3.65) we obtain 
Log,, 196.54 

N =  
10g,~(2 + A) 

Thus a type I Chebyshev filter having four poles meets the specifications. 
The pole positions are determined from the relations in (8.3.55) through (8.3.59). 

First, we compute B ,  rl ,  and r2. Hence 

8 = 1.429 

r2 = 0.365S2, 
The angles {&) are 

Therefore, the poles are located at 
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The filter specifications in Example 8.3.7 are very similar to the specifications 
given in Example 8.3.6, which involved the design of a Butterworth filter. In 
that case the number of poles required to meet the specifications was seven. On 
the other hand, the Chebyshev filter required only four. This result is typical of 
such comparisons. In general, the Chebyshev filter meets the specifications with a 
fewer number of poles than the corresponding Butterworth filter. Alternatively, if 
we compare a Butterworth filter to a Chebyshev filter having the same number 
of poles and the same passband and stopband specifications, the Chebyshev filter 
will have a smaller transition bandwidth. For a tabulation of the characteristics of 
Chebyshev filters and their pole-zero locations, the interested reader is referred 
to the handbook of Zverev (1967). 

Elliptic filters. Elliptic (or Cauer) filters exhibit equiripple behavior in both 
the passband and the stopband, as illustrated in Fig. 8.42 for N odd and N even. 
This class of filters contains both poles and zeros and is characterized by the 
magnitude-squared frequency response 

where U N ( x )  is the Jacobian elliptic function of order N, which has been tabulated 
by Zverev (1967), and 6 is a parameter related to the passband ripple. The zeros 
lie on the jn-axis. 

We recall from our discussion of FIR filters that the most efficient designs 
occur when we spread the approximation error equally over the passband and the 
stopband. Elliptic filters accomplish this objective and, as a consequence, are the 
most efficient from the viewpoint of yielding the smallest-order filter for a given 

N cvcn N odd 

F+e 8.42 Magnitude-squared frequency characteristics of elliptic 6lters. 
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set of specifications. Equivalently, we can say that for a given order and a given 
set of specifications, an elliptic filter has the smallest transition bandwidth. 

The filter order required to achieve a given set of specifications in passband 
ripple A1, stopband ripple 82, and transition ratio Q,/Q, is given as 

where K(x) is the complete elliptic integral of the first kind, defined as 

and 82 = 1/dm. Values of this integral have been tabulated in a number 
of texts [e.g., the books by Jahnke and Emde (1945) and Dwight (1957)l. The 
passband ripple is 10 log,,(l + E'). 

We shall not attempt to describe elliptic functions in any detail because such 
a discussion would take us too far afield. Suffice to say that computer programs are 
available for designing elliptic filters from the frequency specifications indicated 
above. 

In view of the optimality of elliptic filters, the reader may question the reason 
for considering the class of Butterworth or the class of Chebyshev filters in practical 
applications. One important reason that these other types of filters might be prefer- 
able in some applications is that they possess better phase response characteristics. 
The phase response of elliptic filters is more nonlinear in the passband than a com- 
parable Butterworth filter or a Chebyshev filter, especially near the band edge. 

Bessel fllters. BesseI filters are a class of all-pole filters that are charac- 
terized by the system function 

1 
H(s) = - (8.3.69) 

BN (s) 
where BN(s) is the Nth-order Bessel polynomial. These polynomials can be ex- 
pressed in the fotm 

where the coefficients (ak) are given as 

(2N - k)! 
ak = k = 0 , 1 ,  ..., N 

2N-kk!(N - k)! 
Alternatively, the Bessel polynomials may be generated recursively from the rela- 
tion 

BN(s) = (2N - ~)BN-,(s) + S'BN-~(S) (8.3.72) 

with Bds) = 1 and Bl(s) = s + 1 as initial conditions. 
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Phase 

F i  8.43 Magnitude and phase responses of Bessel and Butternorth filters of 
order N = 4. 

An important characteristic of Bessel filters is the Iinear-phase response over 
the passband of the filter. For example, Fig. 8.43 shows a comparison of the 
magnitude and phase responses of a Bessel filter and Butterworth filter of order 
N = 4. We note that the Bessel filter has a larger transition bandwidth, but 
its phase is linear within the passband. However, we should emphasize that the 
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linear-phase chacteristics of the analog filter are destroyed in the process of con- 
verting the filter into the digital domain by means of the transformations decribed 
previously. 

8.3.6 Some Examples of Digital Filter Designs Based on 
the Bilinear Transformation 

In this section we present several examples of digital filter designs obtained from 
analog filters by applying the bilinear transformation to convert H ( s )  to H ( z ) .  
These filters designs are performed with the aid of one of several software packages 
now available for use on a personal computer. 

A lowpass filter is designed to meet specifications of a maximum ripple of 
5 dB in the passband, 60-dB attenuation in the stopband, a passband edge fre- 
quency of w, = 0.25n, and a stopband edge frequency of w, = 0 . 3 0 ~ .  

A Butterworth filter of order N = 37 is required to satisfy the specifications. 
Its frequency response characteristics are illustrated in Fig. 8.44. If a Cheby- 
shev filter is used, a filter of order N = 13 satisfies the specifications. The fre- 
quency response characteristics for a type I and type I1 Chebyshev filters are 
shown in Figs. 8.45 and 8.46, respectively. The type I filter has a passband rip- 
ple of 0.31 dB. Finally, an elliptic filter of order N = 7  is designed which also 
satisfied the specifications. For illustrative purposes, we show in Table 8.11, the 
numerical values for the filter parameters and the resulting frequency specifica- 
tions are shown in Fig. 8.47. The following notation is used for the parameters in 
the function H(z): 

Although we have described only lowpass analog filters in the preceding section, it 
is a simple matter to convert a lowpass analog filter into a bandpass, bandstop, or 
highpass analog filter by a frequency transformation, as is described in Section 8.4. 
The bilinear transformation is then applied to convert the analog filter into an 
equivaient digital filter. As in the case of the lowpass filters described above, the 
entire design can be carried out on a computer. 

8.4 FREQUENCY TRANSFORMATIONS 

The treatment in the preceding section is focused primarily on the design of low- 
pass IIR filters. If we wish to design a highpass or a bandpass or a bandstop filter, 
it is a simple matter to take a lowpass prototype filter (Butterworth, Chebyshev, 
elliptic, Bessel) and perform a frequency transformation. 

One possibility is to perform the frequency transformation in the analog 
domain and then to convert the analog filter into a corresponding digital filter 
by a mapping of the s-plane into the z-plane. An alternative approach is first to 
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Normalized ftequerrcy 

F i n  8.44 Frequency response characteristics of a 37-order Buttenvorth filter. 

convert the analog lowpass filter into a lowpass digital filter and then to transform 
the lowpass digital filter into the desired digital filter by a digital transformation. 
In general, these two approaches yield different results, except for the bilinear 
transformation, in which case the resulting filter designs are identical. These two 
approaches are described below. 

8.4.1 Frequency Transformations in the Analog Domain 

First, we consider frequency transformations in the analog domain. Suppose that 
we have a lowpass filter with passband edge frequency 52, and we wish to convert 



694 Design of Digital Filters Chap. 8 

Fwn 845 Frequency response characteristics of a Iforder type I Chebyshev filter. 

it to another lowpass filter with passband edge frequency Rb. The transformation 
that accompIishes this is 

Thus we obtain a lowpass filter with system function H,(s) = Hp[(Rp/S2'p)s], 
where H,(s) is the system function of the prototype filter with passband edge 
frequency QP. 
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Rgmre 8.46 Frequency response characteristics of a 13order type I1 Chebyshev filter. 

If we wish to convert a lowpass filter into a highpass filter with passband 
edge frequency Rb, the desired transformation is 

(lowpass to highpass) s+- (8.4.2) 

The system function of the highpass filter is Hh (s) = Hp (RpStP/s).  
The transformation for converting a lowpass analog filter with passband edge 

frequency QP into a band filter, having a lower band edge frequency Rl and an 
upper band edge frequency Q,, can be accomplished by first converting the lowpass 
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TABLE 8.t t FILTER COEFFICIENTS FOR A 7-ORDER ELLIPTIC ALTER 

INFINITE IMPULSE RESPONSE (IIR) 
ELLIPTIC LOWPASS FILTER 
UNQUANTIZED COEFFICIENTS 

FILTER ORDER = 7 
SAMPLING FREQUENCY = 2.000 KILOHERTZ 

1 -.790103 .OOOOOO .lo4948 .lo4948 .OOOOOO 

2 -1.517223 .714088 .lo2450 -.007817 .I02232 

3 -1.421773 -861895 .420100 -.399842 .419864 

4 -1.387447 .962252 -714929 -. 826743 .714841 

* * *  CHARACTERISTICS OF DESIGNED FILTER '** 
BAND I BAND 2 

LOWER BAND EDGE .0 0 0 0 0 .30000 

UPPER BAND ELXE ,25000 1.00000 

NOMINAL GAIN 1.00000 .OOOOO 

NOMINALRIPPLE .05600 .00100 

MAXIMUM RIPPLE -04910 .00071 

RIPPLE IN DB .41634 -63.00399 

filter into another lowpass filter having a band edge frequency S2; = 1 and then 
performing the transformation 

S d  
s2 + nlnu 

(lowpass to bandpass) 
s(Qu - Ql)  

Equivalently, we can accomplish the same result in a single step by means of the 
transformation 

s ---P SZ,  
s2 + n,nu 

(lowpass to bandpass) 
s(Q, - Ql> 

where 

nl = lower band edge frequency 

Qu = upper band edge frequency 

Thus we obtain 

Finally, if we wish to convert a lowpass analog filter with band edge frequency 
Q, into a bandstop filter, the transformation is simply the inverse of (8.4.3) with 
the additional factor !J,, serving to normalize for the band edge frequency of the 
lowpass filter. Thus the transformation is 
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Figure 847 Frequency response characteristics of a 7-order eUiptic filter. 

which leads to 

n e  mappings in (8.4.1), (8.4.2), (8.4.3), and (8.4.5) are summarized in 
Table 8.12. The mappings in (8.4.4) and (8.4.5) are nonlinear and may appear 
to distort the frequency response characteristics of the lowpass filter. However, 
the effects of the nonlinearity on the frequency response are minor, primarily af- 
fecting the frequency scale but preserving the amplitude response characteristics 
of the filter. Thus an equiripple lowpass filter is transformed into an equiripple 
bandpass or bandstop or highpass filter. 



Design of Digital Fitters Chap. 8 

TABLE 8.12 FREQUENCY TRANSFORMATIONS FOR 
ANALOG FILTERS (PROTOTYPE LOWPASS FILTER 
HAS BAND EDGE FREQUENCY n p )  

Band edge 
Type of frequencies of 

transformation Transformation new filter 

Highpass 

Bandpass 
s2 + QR, 

s--tRp- RI,Ru ~ ( a ,  - 

Bandstop s(nu - 4) 
'- Q P ~  Q.R 

Example 8.4.1 

Transform the single-pole lowpass Buttenvorth filter with system function 

into a bandpass filter with upper and lower band edge frequencies 4 and n,, respec- 
tively. 

Solution The desired transformation is given by (8.3.4). Thus we have 

=: 
(0, - 0 1 ) s  

s 2 + ( f i U  --ns+n,n, 
The resulting filter has a zero at s = 0 and poles at 

8.4.2 Frequency Transformations in the Digital Domain 

As in the analog domain, frequency transformations can be performed on a digital 
lowpass filter to convert it to either a bandpass, bandstop, or highpass filter. The 
transformation involves replacing the variable z-I by a rational function g(z-l), 

which must satisfy the following properties. 

I. The mapping z-' -+ g(z-l) must map points inside the unit circle in the 
z-plane into itself. 

2. The unit circle must also be mapped into itself. 
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Condition (2) implies that for r = 1, 

It is clear that we must have (g(w)l = 1 for all o. That is, the mapping must be 
all-pass. Hence it is of the form 

where [akl < 1 to ensure that a stable filter is transformed into another stable filter 
(i.e., to satisfy condition I). 

From the general form in (8.4.6), we obtain the desired set of digital trans- 
formations for converting a prototype digital lowpass filter into either a bandpass, 
a bandstop, a highpass, or another lowpass digital filter. These transformations 
are tabulated in Table 8.13. 

TABLE 8.13 FREQUENCY TRANSFORMATION FOR DIGITAL FILTERS 
(PROTOTYPE LOWPASS FILTER HAS BAND EDGE FREQUENCY w p )  

-- 

Type of 
transformation Transformation Parameters 

u; = band edge frequency 
,-I 

z - l  , - a  
of new filter 

Lowpass 
1 - az-I sinl(op - o;)/21 

a  = 
sinl(u, + wb)/21 

0 6  = band edge frequency 
new filter 

Highpass z - l  - --, 
1 + az-' cos[(w, + wb)/21 

a = -  
cos[(wp - wb)/21 

o! = lower band edge frequency 
w. = upper band edge frequency 
a1 = - 2 a K / ( K  + 1) 

z - 1  , - zm2 - alz-l +a2 a2 = ( K  - l ) / ( K  + 1) 
Bandpass 

azz-2 - 012-I + 1 
LZ = -1 (Y, + 01 )/21 

-I(w, - 01 )/21 

of = lower band edge frquency 
w. = upper band edge frequency 
a1 = -&/(K + 1) 

:-I , - zW2 - 0iz- l  + q 4 = (1 - K)/(1 + K )  
Bandstop 

a2:-2 - alz-I + 1 
a = cosI(0. + w1)/21 

-[(wu - w1)/21 



Design of Digital Filters Chap. 8 

Example 8.4.2 

Convert the single-pole lowpass Butterworth filter with systern function 

into a bandpass Nter with upper and lower cutoff frequencies wu and q, respectively. 
Tbe lowpass filter has 3-dB bandwidth w, = 0.2x (see Example 8.3.5). 

Solution The desired transformation is 

where a1 and a;! are defined in Table 8.13. Substitution into H(z) yields 

Note that the resulting filter has zeros at z = f 1 and a pair of poles that depend on 
the choice of w, and y. 

For example, suppose that w, = 3 ~ / 5  and w, = k / 5 .  Since o, = 0.2n, we find 
that K = 1, a;! = 0, and al = 0. Then 

This filter has poles at z = f j0.713 and hence resonates at w = xf2. 

Since a frequency transformation can be performed either in the analog do- 
main or in the digital domain, the filter designer has a choice as to which ap- 
proach to take. However, some caution must be exercised depending on the 
types of filters being designed. In particular, we know that the impulse invan- 
ance method and the mapping of derivatives are inappropriate to use in designing 
highpass and many bandpass filters, due to the aliasing problem. Consequently, 
one would not employ an analog frequency transfoxmation followed by conver- 
sion of the result into the digital domain by use of these two mappings. Instead, 
it is much better to perform the mapping from an analog lowpass filter into a 
digital lowpass filter by either of these mappings, and then to perform the fre- 
quency transformation in the digital domain. Thus the problem of aliasing is 
avoided. 

In the case of the bilinear transformation, where aliasing is not a problem, it 
does not matter whether the frequency transformation is performed in the analog 
domain or in the digital domain. In fact, in this case only, the two approaches 
result in identical digital filters. 
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8.5 DESIGN OF DIGITAL FILTERS BASED ON LEAST-SQUARES 
METHOD 

Except for the impulse invariance method, the design techniques for IIR filters de- 
scribed in Section 8.3 involved the conversion of an analog filter into a digital filter 
by some mapping from the s-plane to the z-plane. As an alternative, one can design 
digital IIR filters directly in the z-domain without reference to the analog domain. 

We now describe several methods for designing digital filters directly. In the 
first three techniques, the Pad6 approximation method and least-squares design 
methods, the specifications are given in the time domain and the design is camed 
out in the time domain. The final section describes a least-squares technique in 
which the design is camed out in the frequency domain. 

8.5.1 Pade Approximation Method 

Suppose that the desired impulse response h d ( n )  is specified for n 2 0. The filter 
to be designed has the system function 

M 

C bkz-' 

where h ( k )  is its unit sample response. The filter has L = M + N + 1 parameters, 
namely, the coefficients {ak) and {bk}, which can be selected to minimize some 
error criterion. 

The least-squares error criterion is often used in optimization problems of 
this type. Suppose that we minimize the sum of the squared errors 

with respect to the filter parameters (ak) and { b k } ,  where U is some preselected 
upper limit in the summation. 

In general, h ( n )  is a nonlinear function of the filter parameters and hence the 
minimization of & involves the solution of a set of nonlinear equations. However, 
if we select the upper limit as U = L - 1, it is possible to match h(n)  perfectly 
to the desired response hd(n)  for 0 5 n ( M + N. This can be achieved in the 
following manner. 

The difference equation for the desired filter is 
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Suppose that the input to the filter is a unit sample [i.e., x ( n )  = 6 ( n ) ] .  Then the 
response of the filter is y ( n )  = h(n)  and hence (8.5.3) becomes 

Since S(n - k) = 0 except for n  = k, (8.5.4) reduces to 

For n  > M, (8.5.4) becomes 

The set of linear equations in (8.5.5) and (8.5.6) can be used to solve for the 
filter parameters {a t ]  and {bk } .  We set h ( n )  = hd(n)  for 0 5 n  5 M + N, and 
use the linear equations in (8.5.6) to solve for the filter parameters {ak ) .  Then 
we use values for the { a k }  in (8.5.5) and solve for the parameters {bk} .  Thus we 
obtain a perfect match between h ( n )  and the desired response h d ( n )  for the first 
L values of the impulse response. This design technique is usually called the Pad6 
approximation procedure. 

The degree to which this design technique produces acceptable filter designs 
depends in part on the number of filter coefficients selected. Since the design 
method matches hd(n)  only up to the number of filter parameters, the more com- 
plex the filter, the better the approximation to hd(n)  for 0 ( n  5 M + N. However, 
this is also the major limitation with the Pade approximation method, namely, the 
resulting filter must contain a large number of poles and zeros. For this reason, 
the Pad6 approximation method has found limited use in filter designs for practical 
applications. 

Example 85.1 

Suppose that the desired unit sample response is 

Determine the parameters of the filter with system function 

using the Pad6 approximation technique. 

Solution In this simple example, H ( z )  can provide a perfect match to Hd(z ) ,  by 
selecting bo = 2, bl = 0,  and a l  = -;. Let us apply the Pad6 approximation to see if 
we indeed obtain the same result. 

With 6 ( n )  as the input to H ( z ) ,  we obtain the output 

For n > 1, we have 
h ( n )  = -a1 h(n - 1 )  

or, equivalently, 
h d ( n )  = - a l h d ( n  - 1 )  
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With the substitution for hd(n) .  we obtain al = -1. T o  solve for bo and b , ,  we use 
the form (8.5.5) with h ( n )  = h d ( n ) .  Thus 

For n = 0 this equation yields bo = 2. For n  = 1 we obtain the result bl = 0. Thus 
H (2)  = H',(z). 

This example illustrates that the Pade approximation results in a perfect 
match to  H d ( z )  when the desired system function is rational and we have prior 
knowledge of the number of poles and zeros in the system. In general, however, 
this is not the case in practice, since h d ( n )  is determined from some desired fre- 
quency response specifications H d ( w ) .  In such a case the Pade approximation may 
not result in a good filter design. T o  illustrate a potential problem and suggest a 
solution, let us consider the following examples. 

Example 85.2 

A fourth-order Butterworth filter has the system function 

The unit sample response corresponding to Hd(z)  is illustrated in Fig. 8.48. Use the 
Pad6 approximation method to approximate Hd(; ) .  

Solution We observe that the desired filter has M = 4 zeros and N = 4 poles. It is 
instructive lo  determine the coefficients in the Pade approximation when the number 
of zeros andlor poles are not identical to the desired number of filter parameters. 

figure 8-48 Impulse response h d ( n )  of digital Butterworth filter in Example 8.5.2. 
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Magnitude 
response 

Fiure  849 Filter designs based on Pad* approximation (Example 8.5.2). 

In Fig. 8.49 we plot the frequency response of the filter obtained by the Pad6 
approximation method. We have considered four cases: M = 3, N = 5 ;  M = 3, N = 4; 
M = 4, N = 4; M r 4, N = 5. We observe that when M = 3, the resulting frequency 
response is a relatively poor approximation to the desired response. However, an 
increase in the number of poles from N = 4 to N = 5 appears to compensate in part 
for the lack of the one zero. When M is increased from three to four, we obtain a 
perfect match with the desired Butterworth filter not only for N = 4 but for N = 5, 
and, in fact, for larger values of N. 

Example 853 

A three-pole and three-zero type II lowpass Chebyshev digital filter has the system 
function 

Its unit sample response is illustrated in Fig. 8.50. Use the Pad6 approximation 
method to approximate H d ( z ) .  

Solution By following the same procedure as in Example 8.5.2, we determined the 
Pad6 approximation of H d ( z )  based on the selection of M = 2, N = 3; M = 2, N = 4; 
M = 3, N = 3; M = 3, N = 4. The frequency responses of the resulting designs are 
illustrated in Fig. 851. 
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-0.1 1 
F i  850 Impulse response h d ( n )  of type 11 Chebyshev digital filter given in 
Example 8.5.3. 
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Figme 851 Filter designs based on Pad6 approximation method (Example 853). 
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As in Example 8.5.2, we note that when we underestimate the number of zeros 
we obtain a relatively poor design, as evidenced by the two cases in which M = 2. 
On the other hand, if M = 3, we obtain a perfect match for N = 3 and N = 4. 

These two examples suggest that an effective approach in using the Pade 
approximation is to try different values of M and N until the frequency responses of 
the resulting filters converge to the desired frequency response within some small, 
acceptable approximation error. However, in practice, this approach appears to 
be cumbersome. 

8.5.2 Least-Squares Design Methods 

Again, let us assume that h d ( n )  is specified for n  2 0 .  We begin with the simple 
case in which the digital filter to be designed contains only poles, that is, 

Now, consider the cascade connection of the desired filter H d ( z )  with the reciprocal, 
all-zero filter l / H ( z ) ,  as illustrated in Fig. 8.52. Now suppose that the cascade 
configuration in Fig. 8.52 is excited by the unit sample sequence 6 ( n ) .  Thus the 
input to the inverse system l / H ( : )  is h d ( n )  and the output is v (n ) .  Ideally, y d ( n )  = 
6 ( n ) .  The actual output is 

The condition that y d ( 0 )  = y ( 0 )  = 1 is satisfied by selecting bo = h d ( 0 ) .  For 
n > 0, y(n) represents the error between the desired output y d ( n )  = 0 and the 
actual output. Hence the parameters {ak} are selected to minimize the sum of 

Minimize 

F i  852 Least-squares inverse filter design method. 



Sec. 8.5 Design of Digital Filters Based on Least-Squares Method 

squares of the error sequence, 

By differentiating with respect to the parameters {ak), it is easily established 
that we obtain the set of linear equations of the form 

~ U t r h h ( k . l ) = - r h h ( / . O )  1 = 1 , 2  ...., N (8.5.10) 
k=l 

where, by definition, 

The solution of (8.5.10) yields the desired parameters for the inverse system 
1 / H  (2 ) .  Thus we obtain the coefficients of the all-pole filter. 

In a practical design problem, the desired impulse response hd (n)  is specified 
for a finite set of points, say 0 5 n  5 L, where L >> N. In such a case, the 
correlation sequence rdd(k) can be computed from the finite sequence hd(n) as 

and these values can be used to solve the set of linear equations in (8.5.10). 
The least-squares method can also be used in a pole-zero approximation for 

Hd(z). If the filter H ( z )  that approximates H i ( z )  has both poles and zeros, its 
response to the unit impulse 6(n)  is 

or, equivalently, 

For n > M, (8.5.13) reduces to 
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Clearly, if Hd(z )  is a pole-zero filter, its response to 6 ( n )  would satisfy the same 
equations (8.5.13) through (8.5.15). In general, however, it does not. Nevertheless, 
we can use the desired response hd(n )  for n  > M to construct an estimate of hd(n ) ,  
according to (8.5.15). That is, 

Then we can select the filter parameters {ak) to minimiz~ the sum of squared errors 
between the desired response h d ( n )  and the estimate h d ( n )  for n > M. Thus we 
have 

The minimization of £1, with respect to the pole parameters {ak), leads to the set 
of linear equations 

where rhh ( k ,  1 )  is now defined as 

Thus these linear equations yield the filter parameters {ak). Note that these equa- 
tions reduce to the all-pole filter approximation when M is set to zero. 

The parameters {bk} that determine the zeros of the filter can be obtained 
simply from (8.5.14), where h ( n )  = h d ( n ) ,  by substitution of the values {&) ob- 
tained by solving (8.5.18). Thus 

Therefore, the parameters {Cik} that determine the poles are obtained by the 
method of least squares while the parameters {bk) that determine the zeros are 
obtained by the the Pad6 approximation method. The foregoing approach for 
determining the poles and zeros of H ( z )  is sometimes called Prony's method. 

The least-squares method provides good estimates for the pole parameters 
{ak). However, Prony's method may not be as effective in estimating the pa- 
rameters {bk), primarily because the computation in (8.5.20) is not based on the 
least-squares method. 
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Figure 8.53 Least-squares method for  determining the poles and zeros o f  a filter 

a(n) 

An alternative method in which both sets of parameters {ak) and ( b k }  are de- 
termined by application of the least-squares method has been proposed by Shanks 
(1967). In Shanks' method, the parameters {ak) are computed on the basis of the 
least-squares criterion, according to (8.5.18), as indicated above. This yields the 
estimates {iik], which allow us to synthesize the all-pole filter. 

1 + x hkz" 
k = l  

The response of this filter to the impulse 6(n) is 

all-pole 
filter 

If the sequence {v(n)) is used to excite an all-zero filter with system function 

H2(z) = x blz-" 
k=O 

as illustrated in Fig. 8.53, its response is 

v(n) - 

Now we can define an error sequence e(n) as 

all-zero 
filter 

and, consequently, the parameters {bk} can also be determined by means of the 
least-squares criterion, namely, from the minimization of 

Thus we obtain a set of linear equations for the parameters {bk], in the form 
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where, by definition, 
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Example 85.4 

Approximate the fourth-order Buttenvorth filter given in Example 8.5.2 by means of 
an aII-pole filter using the least-squares inverse design method. 

Solution From the desired impulse response hd(n),  which is illustrated in Fig. 8.48, 
we computed the autocorrelation sequence r h h ( k .  1)  = r h h ( k  - I )  and solved to set 
of linear equations in (8.5.10) to obtain the filter coefficients. The results of this 
computation are given in Table 8.14 for N = 3, 4, 5, 10, and 15. In Table 8.15 we list 
the poles of the filter designs for N = 3, 4, and 5 along with the actual poles of the 
fourth-order Butterworth filter. We note that the poles obtained from the designs 
are far from the actual poles of the desired filter. 

TABLE 8.14 ESTIMATES OF FILTER COEFFlCtEMS 
{ak)  IN LEAST-SQUARES INVERSE FILTER DESIGN 
METHOD 
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TABLE 8.15 ESTIMATES OF POLE 
Posrr lws IN LEAST-SQUARES 
INVERSE FILTER DESIGN MEMOD 
(EXAMPLE 8.5.4) 

Number of 
poles Pole positions 

0.9305 
0.8062 f j0.5172 
0.8918 f j0.2601 
0.7037 f j0.6194 

0.914 
0.8321 f j0.4307 
0.5544 f j0.7134 
0.6603 f j0.4435 
0.5241 f j0.1457 

The frequency responses of the filter designs are plotted in Fig. 8.54. We note 
that when N is small, the approximation to the desired filter is poor. As N is increased 
to N = 10 and N = 15, the approximation improves significally. However, even for 
N = 15, there are large ripples in the passband of the filter response. It is apparent 
that this method, which is based on an all-pole approximation, does not provide good 
approximations to filters that contain zeros. 

Example 8 5 5  

Approximate the type I1 Chebyshev lowpass filter given in Example 8.5.3 by means 
of the three least-squares methods described above. 

Solution The results of the filter designs obtained by means of the least-squares 
inverse method, Prony's method and Shanks' method, are illustrated in Fig. 8.55. 
The filter parameters obtained from these design methods are listed in Table 8.16. 

The frequency response characteristics in Fig. 8.55 illustrate that the least- 
squares inverse (dl-pole) design method yiiids poor designs when the filter contains 
zeros. On the other hand, both Prony's method and Shanks' method yield very good 
designs when the number of poles and zeros equals or exceeds the number of poles 
and zeros in the actual filter. Thus the inclusion of zeros in the approximation has a 
significant effect in the resulting flter design. 

8.5.3 FIR Least-Squares Inverse (Wiener) Filters 

In the preceding section we described the use of the least-squares error criterion 
in the design of pole-zero filters. In this section we use a similar approach to 
determine a least-squares FIR inverse filter to a desired filter. 

The inverse to a linear time-invariant system with impulse response h(n) and 
system function H ( z )  is defined as the system whose impulse response h[(n) and 
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4-th order Buttcrworth 

F i r e  854 Magnitude responses for filter designs based on the least-squares inverse filter 
method. 

system function HI ( z ) ,  satisfy the respective equations. 

In general, Hf(z) is IIR, unless H(z) is an all-pole system, in which case Hf (z) is 
FIR. 



(a) Least S q u m  Invme Design 

filter 

Figwe 855 Fiter designs based on least-squares methods ((Example 85.5): 
(a) least-squares design; (b) Rony's method; (c) Shank's method. 

n II - - 2 
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-100 - 
@) Rony's Method 

- - Desired msponse 

- N = 3 , M = 3  

- N = 4 , M = 3  



71 4 Design of Digital Filters Chap. 8 

TABLE 8.16 POLE-ZERO LOCATIONS FOR FILTER DESIGNS IN EXAMPLE 8.5.5 
- 

Chcbyshev Filter: 
Zeros: -1,0.1738311 f j0.9847755 
Poles: 0.3880,0.5659 f j0.467394 

Filter Poles in 
Order Least-Squares Inverse 

N = 3  0.8522 
0.6544 f j0.6224 

N = 4 0.7959 f j0.3248 
0.4726 f j0.7142 

Prony's Method Shanks' Method 
Filter 

Order Poles Zeros Poles Zeros 

In many practical applications, it is desirable to restrict the inverse filter to 
be FIR. Obviously, one simple method is to truncate hI  ( n ) .  In so doing, we incur 
a total squared approximation error equal to 

where M + 1 is the length of the truncated filter and £, represents the energy in 
the tail of the impulse response h I ( n ) .  

Alternatively, we can use the least-squares error criterion to optimize the 
M + 1 coefficients of the FIR filter. First, let d ( n )  denote the desired output 
sequence of the FIR filter of length M + 1 and let h ( n )  be the input sequence. 
Then, if y ( n )  is the output sequence of the filter, as illustrated in Fig. 8.56, the 
error sequence between the desired output and the actual output is 

where the {bk] are the FIR filter coefficients. 
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h(n) filter 

e(n) 

j Ibk) Minimize 
c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - -  the sum of 

squared errors 

Figure 856 Least-squares FIR inverse fikter. 

The sum of squares of the error sequence is 

When & is minimized with respect to the filter coefficients, we obtain the set of 
linear equations 

M 

where rhh(l)  is the autocorrelation of h(n),  defined as 

and rdh(n) is the crosscorrelation between the desired output d(n)  and the input 
sequence h (n) ,  defined as 

M 

rdh ( 1 )  = C d(n)h (n - 1 )  (8.5.37) 
n =O 

The optimum, in the least-squares sense, FIR filter that satisfies the linear 
equations in (8.5.35) is called the Wiener filter, after the famous mathematician 
Norbert Wiener, who introduced optimum least-squares filtering methods in engi- 
neering [see book by Wiener (1 949)l. 

If the optimum least-squares FIR filter is to be an approximate inverse filter, 
the desired response is 

The crosswrreiation between d (n )  and h(n) reduces to 
h(0) 1 = 0  

r d h ( l )  = ( 0  otherwise 
(8.5.39) 
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Therefore, the coefficients of the least-squares FIR filter are obtained from the 
solution of the linear equations in (8.5.35), which can be expressed in matrix form 
as 

We observe that the matrix is not only symmetric but it also has the special 
property that all the elements along any diagonal are equal. Such a matrix is 
called a Toeplitz matrix and lends itself to efficient inversion by means of an 
algorithm due to Levinson (1947) and Durbin (1959), which requires a number of 
computations proportional to M 2  instead of the usual M3. The Levinson-Durbin 
algorithm is described in Chapter 11. 

The minimum value of the least-squares error obtained with the optimum 
FIR filter is 

cc M 

= z d 2 b )  - z h r d h  ( k )  

In the case where the FIR filter is the least-squares inverse filter, d ( n )  = 6 ( n )  and 
r d h  ( n )  = h(0 )6 (n ) .  Therefore, 

Example 85.6 

Determine the least-squares FIR inverse filter of length 2 to the system with impulse 
response 

1 ,  n = O  

0, otherwise 

where la1 < 1. Compare the least-squares solution with the approximate inverse 
obtained by truncating h1 ( n ) .  

Solution Since the system has a system function H ( z )  = 1 - az-', the exact inverse 
is IIR and is given by 

or, equivalently, 
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If this is truncated after n terms, the residual energy in the tail is 

From (8.5.40) the least-squares FIR filter of length 2 satisfies the equations 

which have the solution 

For purposes of comparison, the truncated inverse filter of length 2 has the 
coefficients bo = 1, b1 = a. 

The least-squares error is 

which compares with 

for the truncated approximate inverse. Clearly, E, > gin, so that the least-squares 
FIR inverse filter is superior. 

In this example, the impulse response h(n) of the system was minimum phase. 
In such a case we selected the desired response to be d(0) = 1 and d (n) = 0, n 2 1. 
On the other hand, if the system is nominimum phase, a delay should be inserted 
in the desired response in order to obtain a good filter design. The value of the ap- 
propriate delay depends on the characteristics of h(n). In any case we can compute 
the least-squares error filter for different delays and select the filter that produces 
the smallest error. The foliowing example illustrates the effect of the delay. 

Example 85.7 

Determine the least-squares FIR inverse of length 2 to the system with impulse re- 
v- 

-a, n = O  

0, otherwise 

where la1 < 1. 
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Solution This is a maximum-phase system. If we select d ( n )  = [ 1 0 ]  we obtain the 
same solution as in Example 8.5.6, with a minimum least-squares error 

If 0 c a c I, then E ~ ,  > 1, which represents a poor inverse filter. If -1 c cr < 0, then 
Em,, c 1. In particular, for a = 5 ,  we obtain Emi, = 1.57. For a = -4. Em,, = 0.81, 
which is still a very large value for the squared error. 

Now suppose that the desired response is specified as d ( n )  = 6(n - 1). Then 
the set of equations for the filter coefficients, obtained from (8.5.35). are the solution 
to the equations 

The solution of these equations is 

The least-squares error, given by (8.5.41). is 

In particular, suppose that ru = &;. Then Emin = 0.29. Consequently, the desired 
response d ( n )  = 6(n  - 1 )  results in a significantly better inverse filter. Further im- 
provement is possible by increasing the length of the inverse filter. 

In general, when the desired response is specified to contain a delay D, then 
the crosscorrelation rdh(l) ,  defined in (8.5.37), becomes 

The set of linear equations for the coefficients of the least-squares FIR inverse 
fiiter given by (8.5.35) reduce to 

Then the expression for the corresponding least-squares error, given in general by 
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(8.5.41), becomes 
M 

Least-squares FIR inverse filters are often used in many practical applications for 
deconvoiution, including communications and seismic signal processing. 

8.5.4 Design of IIR Filters In the Frequency Domain 

The IIR filter design methods described in Sections 8.5.1 through 8.5.3 are camed 
out in the time domain. There are also direct design techniques for 1IR filters 
that can be performed in the frequency domain. In this section we describe a 
filter parameter optimization technique carried out in the frequency domain that 
is representative of frequency-domain design methods. 

The design is most easily camed out with the system function for the IIR 
filter expressed in the cascade form as 

where the filter gain G and the filter coefficients {akl], {(rk2J, {#3k1), {#3k2) are to be 
determined. The frequency response of the filter can be expressed as 

H(o) = ~ ~ ( o ) e j ~ ( ~ )  
where 

and O(w) is the phase response. 
Instead of dealing with the phase of the filter, it is more convenient to deal 

with the envelope delay as a function of frequency, which is 

dO (4 rg (u) = - - 
dir, 

or, equivalently, 

It can be shown that rg(z)  can be expressed as 

where Re(u) denotes the real part of the complex-valued quantity u.  
Now suppose that the desired magnitude and delay characteristics A(@) and 

td (a) are specified at arbitrarily chosen discrete frequencies y, q, . . . , w~ in 
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the range 0 5 Iw[ 5 IT. Then the error in magnitude at the frequency wk is 
GA(wn) - Ad(wk) where Ad(wt) is the desired magnitude response at wk. Simi- 
larly, the error in delay at wk can be defined as rg (wk) - rd (wk), where T ~ ( o ~ )  is 
the desired delay response. However, the choice of rd(wn) is complicated by the 
difficulty in assigning a nominal delay to the filter. Hence, we are led to define the 
error in delay as rg(wk) - rg(Lq) - rd(uk), where r g ( q )  is the filter delay at some 
nominal center frequency in the passband of the filter and rd(wk) is the desired 
delay response of the filter relative to rg(m). By defining the error in delay in 
this manner, we are willing to accept a lilter having whatever nominal delay rg(w) 
results from the optimization procedure. 

As a performance index for determining the filter parameters, one can choose 
any arbitrary function of the errors in magnitude and delay. To be specific, let 
us select the total weighted least-squares error over all frequencies o l ,  y, . . . , wt, 
that is, 

where p denotes the 4K-dimensional vector of filter coefficients {anl}, (ak2), { / 3 k ~ } ,  
and (/3n2}, and A, (w,), and { v , }  are weighting factors selected by the designer. 
Thus the emphasis on the errors affecting the design may be placed entirely on the 
magnitude (A = 0), or on the delay (A = 1) or, perhaps, equally weighted between 
magnitude and delay (A = 112). Similarly, the weighting factors in frequency {w,] 
and {v,] determine the relative emphasis on the errors as a function of frequency. 

The squared-error function E(p, G) is a nonlinear function of (4K + 1) pa- 
rameters. The gain G that minimizes & is easily determined and given by the 
relation 

The optimum gain G can be substituted in (8.5.51) to yield 

Due to the nonlinear nature of &(p, k) ,  its minimization over the remaining 
4K parameters is performed by an iterative numerical optimization method such 
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as the Fletcher and Powell method (1963). One begins the iterative process by 
assuming an initial set of parameter values, say p"). With the initial values substi- 
tuted in (8.5.51), we obtain the least-squares error &(p(O), G). If we also evaluate 
the partial derivatives a&/atrkl,  a£/acrk2, a&/aBkl, and a£/agk2 at the initial value 
p(0), we can use this first derivative information to change the initial values of the 
parameters in a direction that leads toward the minimum of the function &(p. G) 
and thus to a new set of parameters p( l f .  

Repetition of the above steps results in an iterative algorithm which is de- 
scribed mathematically by the recursive equation 

where A(") is a scalar representing the step size of the iteration, Q"") is a (4K  x 4 K )  
matrix, which is an estimate of the Hessian, and g(") is a ( 4 K  x 1) vector consisting 
of the four K-dimensional vectors of gradient components of £ (i-e., a&/acrkl, 
a & / a ~ t , ~ ,  a&/agkl ,  a e / a g k 2 ) ,  evaluated at a t ,  = all;), wz = a:;', ,8k1 = &;'I, and 
Bk2 = &). This iterative process is terminated when the gradient components 
are nearly zero and the value of the function £ ( p ,  6) does not change appreciably 
from one iteration to another. 

The stability constraint is easily incorporated into the computer program 
through the parameter vector p. When Jtrn21 > 1 for any k = 1, .  . . , K ,  the param- 
eter nkz is forced back inside the unit circle and the iterative process continued. A 
similar process can be used to force zeros inside the unit circle if a minimum-phase 
filter is desired. 

The major difficulty with any iterative procedure that searches for the param- 
eter values that minimize a noniinear function is that the process may converge 
to a local minimum instead of a global minimum. Our only recourse around this 
problem is to start the iterative process with different values for the parameters 
and observe the end result. 

Example 85.8 

Let us design a lowpass filter using the Fletcher-powell optimization procedure just 
described. The filter is to have a bandwidth of 0 . 3 ~  and a rejection band commencing 
at 0 . 4 5 ~ .  The delay distortion can be ignored by selecting the weighting factor = 0. 

Solntion We have selected a two-stage (K = 2) or four-pole and four-zero filter 
which we believe is adequate to meet the transition band and rejection requirements. 
The magnitude response is specified at 19 equally spaced frequencies. which is con- 
sidered a sufficiently dense set of points to realize a good design. Finally, a set of 
uniform weights is selected. 

This filter has the response shown in Fig. 8.57. It has a remarkable resemblance 
to the response of the elliptic lowpass filter shown in Fig. 8.58, which was designed 
to have the same passband ripple and transition region as the computer-generated 
filter. A small but noticeable difference between the elliptic filter and the computer- 
generated filter is the somewhat flatter delay response of the latter relative to the 
former. 
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L 

Frequency 

(a) 

Figure 857 Filter designed by Fletcher-Powell optimization method (Exam- 
ple 8.5.8). 

Example 83.9 

Design an IIR filter with magnitude characteristics 

sinw, 0 5 JUI 5 
Ad(#) = 2 

and a constant envelope delay in the passband. 
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X - 
2 

Frequency 

Frequency 

Fire 858 Ampiitude and delay response for elliptic filter. 

Solution The desired filter is called a modified duobinary filter and finds application 
in high-speed digital communications modems. The frequency response was specified 
at the irequencies illustrated in Fig. 8.59. The envelope delay was left unspecified 
in the stopband and selected to be fiat in the passband. Equal weighting coefficients 
(w.) and {v,) were selected. A weighting factor of 1 = 1/2 was selected. 

A two-stage (four-pole, four-zero) filter is designed to meet the foregoing spec- 
ifications. The result of the design is illustrated in Fig. 8.60. We note that the 
magnitude characteristic is reasonably well matched to sin o in the passband, but the 
stopband attenuation peaks at about -25 dB, which is rather large. The envelope 
delay characteristic is relatively fiat in the passband. 
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Figure 8.59 Frequency response of an ideal modified duobinary filter. 

A four-stage (eight-pole, eight-zero) filter having the same frequency response 
specifications was also designed. This design produced better results. especially in 
the stopband where the attenuation peaked at -36 dB. The envelope delay was also 
considerably flatter. 

8.6 SUMMARY AND REFERENCES 

We have described in some detail the most important techniques for designing FIR 
and IIR digital filters based on either frequency-domain specifications expressed 
in terms of a desired frequency response Hd(u), or in terms of the desired impulse 
response hd (n). 

As a general rule, FIR filters are used in applications where there is a need 
for a linear-phase filter. This requirement occurs in many applications, especially in 
telewmmunications, where there is a requirement fo separate (demultiplex) signals 
such as data that have been frequency-division multiplexed, without distorting 
these signals in the process of demultiplexing. Of the several methods described 
for designing FIR filters, the frequency sampling design method and the optimum 
Chebyshev approximation method yield the best designs. 

IIR filters are generally used in applications where some phase distortion 
is tolerable. Of the class of IIR filters, elliptic filters are the most efficient to 
implement in the sense that for a given set of specifications, an elliptic filter bas a 
lower order or fewer coefficients than any other IIR filter type. When compared 
with FIR filters, elliptic filters are also considerably more efficient. In view of 
this, one might consider the use of an elliptic filter to obtain the desired frequency 
selectivity, followed then by an all-pass phase equalizer that compensates for the 
phase distortion in the elliptic filter. However, attempts to  accomplish this have 
resulted in filters with a number of coefficients in the cascade combination that 
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F@ue 860 Frqucncy response of filter in Example 8.5.9. Designed by the 
Fletcher-Powell optimization method. 

equaled or exceeded the number of coefficients in an equivalent linear-phase FIR 
filter. Consequently, no reduction in complexity is achievable in using phase- 
equalized elliptic filters. 

In addition to the filter design methods based on the transformation of analog 
filters into the digital domain, we also presented several methods in which the 
design is done directly in the discrete-time domain. The least-squares method is 
particularly appropriate for designing IIR filters. The least-squares method is also 
used for the design of FIR Wiener filters. 
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Such a rich literature now exists on the design of digital filters that it is not 
possible to cite ail the important references. We shall cite only a few. Some of 
the early work on digital filter design was done by Kaiser (1963, 1966), Steiglitz 
(1%5), Golden and Kaiser (1964), Rader and Gold (1%7a), Shanks (1%7), Helms 
(1968), Gibbs (1969, 1970), and Gold and Rader (1969). 

The design of analog filters is treated in the classic books by Storer (1957), 
Guillemin (1957), Weinberg (1%2), and Daniels (1974). 

The frequency sampling method for filter design was first proposed by Gold 
and Jordan (1968, 1969), and optimized by Rabiner et al. (1970). Additional 
results were published by Hemnann (1970), Hemnann and Schuessler (1970a), 
and Hofstetter et al. (1971). The Chebyshev (minimax) approximation method for 
designing linear-phase FIR filters was proposed by Parks and McClellan (1972a,b) 
and discussed further by Rabiner et al. (1975). The design of elliptic digital filters is 
treated in the book by Gold and Rader (1969) and in the paper by Gray and Markei 
(1976). The latter includes a computer program for designing digital elliptic filters. 

The use of frequency transformations in the digital domain was proposed by 
Constantinides (1967, 1968, 1970). These transformations are appropriate only for 
IIR filters. The reader should note that when these transformations are applied 
to a lowpass FIR filter, the resulting filter is IIR. 

Direct design techniques for digital filters have been considered in a num- 
ber of papers, including Shanks (1967), B u m s  and Parks (1970), Steiglitz (1970), 
Deczky (1972), Brophy and Salazar (1973), and Bandler and Bardakjian (1973). 

P R O B L E M S  

8.1 Design an FIR linear phase, digital filter approximating the ideal frequency response 
X 

1, for Iwl ( - 
Hd(w) = 6 

0, f o r Z < ~ w l _ < n  
6 

(a) Determine the coefficients of a 25-tap filter based on the window method with a 
rectangular window. 

(b) Determine and plot the magnitude and phase response of the filter. 
(c) Repeat parts (a) and (b) using the Hamming window. 
(d) Repeat parts (a) and (b) using a Bartlett window. 

82 Repeat Problem 8.1 for a bandstop filter having the ideal response 

I, f o r l o l ~ 2 -  
n 

0, for -z itoj -z - 
6 3 

I, f o r l i l o l ( n  3 

83 Redesign the filter of Problem 8.1 using the Hanning and Blackman windows. 
8A Redesign the filter of Problem 8.2 using the Hanning and Blackman windows. 
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85 Determine the unit sample response { h ( n ) )  of a linear-phase FIR filter of length M = 4 
for which the frequency response at o = 0 and w = n12 is specified as 

8.6 Determine the coefficients { h ( n ) )  of a linear-phase FIR filter of length M = 15 which 
has a symmetric unit sample response and a frequency response that satisfies the 
condition 

k = 0 ,1 .2 ,3  ( )  k = 4 , 5 , 6 . 7  

8.7 Repeat the filter design problem in Problem 8.6 with the frequency response specifi- 
cations 

8.8 The ideal analog differentiator is described by 

where x a ( t )  is the input and yo(!)  the output signal. 
(a) Determine its frequency response by exciting the system with the input x u ( ! )  = 

j2n F f  

(b) Sketch the magnitude and phase response of an ideal analog differentiator band- 
limited to B hertz. 

(c) The ideal digital differentiator is defined as 

Justify this definition by comparing the frequency response I H (o) 1, i$ H ( w )  with 
that in part (b). 

(d) By computing the frequency response H ( w ) ,  show that the discrete-time system 

is a good approximation of a differentiator i t  low frequencies. 
(e) Compute the response of the system to the input 

x (n) = A cos(wn + 8)  

8.9 Use the window method with a Hamming window to design a 21-tap differentiator 
as shown in Fig. P8.9. Compute and plot the magnitude and phase response of the 
resulting filter. 
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8.10 Use the matched-z transformation to convert the analog filter with system function 

into a digital IIR filter. Select T = 0.1 and compare the location of the zeros in H ( z )  
with the locations of the zeros obtained by applying the impulse invariance method 
in the conversion of H(s ) .  

8.11 Convert the analog bandpass filter designed in Example 8.4.1 into a digital filter by 
means of the bilinear transformation. Thereby derive the digital filter characteristic 
obtained in Example 8.4.2 by the alternative approach and verify that the bilinear 
transformation applied to the aoalog filter results in the same digital bandpass fil- 
ter. 

8.12 An ideal analog integrator is described by the system function U,( s )  = l / s .  A digital 
integrator with system function H(z )  can obtained by use of the bilinear transforma- 
tion. That is, 

(a) Write the difference equation for the digital integrator relating the input x(n)  to 
the output y(n).  

(b) Roughly sketch the magnitude [H,(jR)I and phase O ( R )  of the analog integra- 
tor. 

(c) It is easily verified that the frequency response of the digital integrator is 

Roughly sketch IU(w)l and B(w). 
(d) Compare the magnitude and phase characteristics obtained in parts (b) and (c). 

How well does the digital integrator match the magnitude and phase character- 
istics of the analog integrator? 

(e) The digital integrator has a pole at z = 1. If you implement this filter on a digital 
computer, what restrictions might you place on the input signal sequence x(n)  to 
avoid computational difficulties? 

8.W A z-plane pole-zero plot for a certain digital filter is shown in Fig. P8.13. The filter 
has unity gain at dc. 
(a) Determine the system function in the form 

(1  + alz- l ) ( l  + biz-' + b ~ z - ~ )  
H ( z )  = A [ ( l  + c , ~ - ~ ) ( l  + dlr-I + d2z-') 1 

giving numerical values for the parameters A, 41, bl ,  bz, c l ,  d l ,  and d2.  
(b) Draw block diagrams showing numerical values for path gains in the following 

forms: 
( 1 )  Direct form I1 (canonic form) 
(2) Cascade form (make each section canonic, with real coefficients) 

8.14 Consider the pole-zero plot shown in Fig. P8.14. 
(a) Does it represent an FIR filter? 
(b) Is it a linear-phase system? 
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(c) Give a direct form realization that exploits all symmetries to minimize the number 
of multiplications. Show all path gains. 

815* A digital low-pass filter is required to meet the following specifications: 
Passband ripple: 5 1 dB 
Passband edge: 4 kHz 
Stopband attenuation: 2 40 dB 
Stopband edge: 6 kHz 
Sample rate: 24 kHz 

The filter is to be designed by performing a bilinear transformation on an analog 
system function. Determine what order Butterworth, Chebyshev. and elliptic analog 
designs must be used to meet the specifications in the digital implementation. 
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8.16* An IIR digital low-pass filter is required to meet the following specifications: 
Passband ripple (or peak-to-peak ripple): 5 0.5 dB 
Passband edge: 1.2 kHz 
Stopband attenuation: 2 40 dB 
Stopband edge: 2.0 kHz 
Sample rate: 8.0 kHz 

Use the design formulas in the book to determine the required filter order for 
(a) A digital Butterworth filter 
(b) A digital Chebyshev filter 
(c) A digital elliptic filter 

8.17* Determine the system function H ( z )  of the lowest-order Chebyshev digital filter that 
meets the following specifications: 
(a) l-dB ripple in the passband 0 5 Iwl 5 0 . 3 ~ .  
(b) At least 60 dB attentuation in the stopband 0.35~ 5 { w ]  ( x. Use the bilinear 

transformation. 
818* Determine the system function H ( z )  of the lowest-order Chebyshev digital fiiter that 

meets the following specifications: 
(a) 5 - d ~  ripple in the passband 0 5 ]wl 5 0.24x. 
(b) At least 50-dB attenuation in the stopband 0 . 3 5 ~  5 Iw[ ( x .  Use the bilinear 

transformation. 
8.l9* An analog signal x(r) consists of the sum of two components xl (t) and xz(r). The 

spectral characteristics of x(t) are shown in the sketch in Fig. P8.19. The signal x(t) is 
bandlimited to 40 kHz and it is sampled at a rate of 100 kHz to yield the sequence x(n). 

It is desired to suppress the signal x2(r) by passing the sequence x(n) through a 
digital lowpass filter. The allowable amplitude distortion on ] X I (  f ) l  is &2% (hl = 0.02) 
over the range 0 5 IF] _( 15 kHz. Above 20 kHz, the filter must have an attenuation 
of at least 40 dB (a2 = 0.01). 
(a) Use the Remez exchange algorithm to design the minimum-order linear-phase 

FIR filter that meets the specifications above. From the plot of the magni- 
tude characteristic of the filter frequency response, give the actual specifications 
achieved by the filter. 

(b) Compare the order M obtained in part (a) with the approximate formulas given 
in equations (8.2.94) and (8.2.95). 

(c) For the order M obtained in part (a), design an FIR digital lowpass filter using the 
window technique and the Hamming window. Compare the frequency response 
characteristics of this design with those obtained in part (a). 

Frequency in lcilohertz 
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(d) Design the minimum-order elliptic filter that meets the given amplitude specifica- 
tions. Compare the frequency response of the elliptic filter with that of the FIR 
filter in part (a). 

(e) Compare the complexity of implementing the FIR filter in part (a) versus the 
elliptic filter obtained in part (d). Assume that the FIR filter is implemented in 
the direct form and the elliptic filter is implemented as a cascade of two-pole 
filters. Use storage requirements and the number of multiplications per output 
point in the comparison of complexity. 

8.20 The impulse response of an analog filter is shown in Fig. P8.20. 

(a) Let h(n)  = h, (nT) ,  where T = 1, be the impulse response of a discrete-time filter. 
Determine the system function H ( z )  and the frequency response H ( w )  for this 
FIR filter. 

(b) Sketch (roughly) I H ( w )  and compare this frequency response characteristic with 
IH,,(JQ)I. 

(c) The FIR filter with unit sample response h ( n )  given above is to be approximated 
by a second-order IIR filter of the form 

Use the least-squares inverse design procedure to determine the values of the 
coefficients bo, a,, and 02. 

8.21 In this problem you will be comparing some of the characteristics of analog and digital 
implementations of the single-pole low-pass analog system 

H,(s)  = L- + h,( t )  E e" 
s +a- 

(a) What is the gain at dc? At what radian frequency is the analog frequency re- 
sponse 3 dB down from its dc value? At what frequency is the analog frequency 
reponse zero? At what time has the analog impulse response decayed to l/e of 
its initial value? 

(b) Give the digital system function H ( z )  for the impulse-invariant design for this 
filter. What is the gain at dc? Give an expression for the 3-dB radian frequency. 
At what (real-valued) frequency is the response zero? How many samples are 
there in the unit sample time-domain response before it has decayed to l/e of its 
initial value? 

(e) "Prewarp" the parameter a and perfom the bilinear transformation to obtain 
the digital system function H(z) from the analog design. What is the gain at dc? 
At what (real-valued) frequency is the response zero? Give an expression for 
the 3dB radian frequency. How many samples in the unit sample time-domain 
response before it has decayed to I/r of its initid value? 



732 Design of Digital Fitters Chap. 8 

8.22 We wish to design a FIR bandpass filter having a duration M = 201. H d ( w )  repreSents 
the ideal characteristic of the noncausal bandpass filter as shown in Fig. P8.22. 

Hd(0)  

(a) Determine the unit sample (impulse) response h d ( n )  corresponding to H d ( w ) .  
(b) Explain how you would use the Hamming window 

to design a FIR bandpass filter having an impulse response h ( n )  for 0 ( n  5 
200. 

(c) Suppose that you were to design the FIR filter with M = 201 by using the fre- 
quency sampling technique in which the DFT coefficients H ( k )  are specified 
instead of h ( n ) .  Give the values of H ( k )  for 0 5 k  5 200 corresponding to 
Hd(cJW) and indicate how the frequency response of the actual filter will differ 
from the ideal. Would the actual Nter represent a good design? Explain your 
answer. 

8.23 We wish to design a digital bandpass filter from a second-order analog lowpass But- 
terworth filter prototype using the bilinear transformation. The specifications on the 
digital filter are shown in Fig. P8.23(a). The cutoff frequencies (measured at the half 
power points) for the digital filter should lie at w  = 5aP2  and w = 7~ /12 .  

The analog protoype is given by 

H  (s) = 
I 

~ 2 + ~ + 1  
with the half-power point at $2 = 1. 
(a) Determine the system function for the digital bandpass filter. 
(b) Using the same specs oo the digital filter as in part (a), determine which of the 

analog baodpass prototype filters shown in Fig. P.8.23(b) could be transformed 
directly using the bilinear transformation to give the proper digital filter. Only 
the plot of the magnitude squared of the frequency is given. 

824 Figure Pa24 shows a digital filter designed using the frequency sampling method. 
(a) Sketch a z-plane pole-zero plot for this filter. 
(b) Is the liIter lowpass, highpass, or bandpass? 
(c) Determine the magnitude response 1 H ( o )  at the frequencies ok - n k / 6  for k = 0, 

1, 2, 3, 4, 5, 6. 
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Figure P8.U 

(d) Use the results of part (c) to sketch the magnitude response for 0 _( o _( n and 
confirm your answer to part (b). 

8.25 An analog signal of the form x,(r) = a(r)cos2000nr is bandlimited to the range 
900 5 F 5 1100 Hz. It is used as an input to the system shown in Fig. P8.25. 
(a) Determine and sketch the spectra for the signals x(n) and w(n). 
(b) Use a Hamming window of length M = 31 to design a lowpass linear phase FIR 

filter H (o )  that passes {a(n)). 
(c) Determine the sampling rate of the AID converter that would allow us to elim- 

inate the frequency conversion in Fig. P8.25. 

8.26 System identificarion Consider an unknown LTI system and an FIR system model 
as shown in Fig. P8.26. Both systems are excited by the same input sequence (x(n)). 
The problem is to determine the coefficients {h(n), 0 5 n 5 M - 1) of the FIR model 
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R, = -1- = 2500 cos (0.8 m) 
Tr 

Unknown 

system 

Am x(n)  w ( n )  
xJ1f - Converter 

= 

A 

v(n)  
H(w) 

Figure P8.26 

x ( n )  

of the system to minimize the average squared error between the outputs of the two 
systems. 
(a) Use the least-squares criterion to determine the equations for the optimum FIR 

filter coefficients. 
(b) Repeat part (a) if the output of the unknown system is corrupted by an additive 

white noise (u~(n)} sequence with variance a:. 

8.27 Determine the least-squares FIR inverse of length 3 to the system with impulse re- 
sponse 

I 2. n = O  

h ( n ) =  1. n = l  
0. otherwise 

D/A 
converter 

FIR 
model 

Also, determine the minimum squared error Emin. 
8.28 Determine the least-squares FIR inverse filter of length 3 for the system with im- 

pulse response h ( n )  given in Example 8.5.6. when a = and the desired response is 
specified as d ( n )  = 6 ( n  - 2).  Also compute the minimum least-squares error. 

d ( n )  
___q 

.G(n) 

C 

I 

' . . . . . . . . . . . . . . . . . . . . . . . .  
Minimize 
the sum of 
squared 

errors 
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8.29* A linear time-invariant system has an input sequence x(n) and an output sequence 
y(n). The user has access only to the system output y ( n ) .  In addition, the following 
information is available. 
(a) The input signal is periodic with a given fundamental period N and has a flat 

spectral envelope, that is, 
N - 1  

r(n) = x c;e~["/N)kn all n 

where c;' = 1 for all k .  
(b) The system H ( z )  is all-pole, that is, 

but the order p and the coefficients (ak, 1 5 k 5 p) are unknown. Is it possible to 
determine the order p and the numerical values of the coefficients {ak, 1 5 k ( p )  
by taking measurements on the output y(n)? If yes, explain how. Is this possible 
for every value of p? 

(c) Repeat Problem 8.31 for a system with system function 

( d )  FIR system modeling Consider an "unknown" FIR system with impulse response 
h(n), 0 5 n 5 11, given by 

A potential user has access to the input and output of the system but does not 
have any information about its impulse response other than that it is FIR. In 
an effort to determine the impulse response of the system, the user excites it 
with a zero mean, random sequence x(n) uniformly distributed in the range 
[-0.5,0.5], and records the signaI x ( n )  and the corresponding output y(n) for 
O z n  < 199. 
(1) By using the available information that the unknown system is FIR, the 

user e m p l o ~  the method of least-squares to obtain an FIR model h(n). 
0 5 n I M - 1. Set up the system of linear equations, specifying the param- 
eters h(O), h(l), . . . , h(M - 1). Specify formulas we should use to determine 
the necessary autocorrelation and crosscorrelation values. 
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(2) Since the order of the system is unknown, the user decides to try models of 
different orders and check the corresponding total squared error. Clearly, 
this error will be zero (or very close to it if the order of the model be- 
comes equal to the order of the system). Compute the FIR models h M ( n ) ,  
0 ( n  _( M - 1 for M = 8, 9, 10, 11, 12. 13, 14 as well as the come- 
sponding total squared errors E M ,  M = 8, 9 , .  . . , 14. What do you ob- 
serve? 

(3) Determine and plot the frequency response of the system and tbe models 
for M = 11,12, 13. Comment on the results. 

(4) Suppose now that the output of the system is corrupted by additive noise, 
so instead of the signal y ( n ) ,  0 5 n ( 199, we have available the sig- 
nal 

where w ( n )  is a Gaussian random sequence with zero mean and variance 
o2 = 1. 

Repeat part (b) by using v(n)  instead of y ( n )  and comment on the results. The 
quality of the model can be also determined by the quantity 



Sampling and Reconstruction 
of Signals 

In Chapters I and 4 we treated the sampling of continuous-time signals and demon- 
strated that if the signals are bandlimited, it is possible to reconstruct the original 
signal from the samples, provided that the sampling rate is at least twice the highest 
frequency contained in the signal. We also briefly described the subsequent oper- 
ations of quantization and coding that are necessary to convert an analog signal 
to a digital signal appropriate for digital processing. 

In this chapter we consider time-domain sampling, analog-to-digital (AD) 
conversion (quantization and coding), and digital-to-analog (D/A) conversion (sig- 
nal reconstruction) in greater depth. First, we consider the sampling of the spe- 
cial class of signals that are characterized as bandpass signals. Then we treat 
analog-to-digital converters and their characteristics. Of particular interest is 
the use of oversampling and sigma-delta modulation in the design of high pre- 
cision AID converters. The final topic of the chapter is digital-to-analog conver- 
sion or, simply, the reconstruction of the continuous-time signal from its sampled 
values. 

9.1 SAMPLING OF BANDPASS SIGNALS 

Our main focus in this section is the sampling of bandpass signals. We begin by 
describing the time and frequency domain representations of bandpass signals. 

9.1 .I Representation of Bandpass Signals 

Suppose that a real-valued signal x ( t )  has a frequency content concentrated in a 
narrow band of frequencies in the vicinity of a frequency F,, as shown in Fig. 9.1. 
Our objective is to develop a mathematical representation of such signals. First, 
we construct a signal that contains only the positive frequencies in x(r ) .  Such a 
signal can be expressed as 

X + ( F )  = 2 V ( F ) X ( F )  (9.1.1) 
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F Figure 9.1 Spectrum of a bandpass 
signal. 

where X ( F )  is the Fourier transform of x ( r )  and V ( F )  is the unit step function. 
The equivalent time-domain expression for (9.1.1) is 

The signal x+(r) is called the analytic signal or the pre-envelope of x ( r ) .  We note 
that F - ' [ x ( F ) ]  = x ( r )  and 

Hence, 

We define i ( r  ) as 

The signal i ( r )  can be viewed as the output of the filter with impulse response 
1 

h ( t )  = - - b o < 1 < 0 0  (9 .1 .6 )  
X I  ' 

when excited by the input signal x ( t ) .  Such a filter is called a Hilbert transformer. 
The frequency response of this filter is simply 

We observe that IH(F)I = I and that the phase response Q ( F )  = -in for F  > 0 
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and O ( F )  = in for F < 0. Therefore, this filter is basically a 90" phase shifter 
for all frequencies in the input signal, and it is akin to the discrete-time Hilbert 
transform filter described in Section 8.2.6. 

The analytic signal x+(t)  is a bandpass signal. We can obtain an equivalent 
lowpass representation by performing a frequency translation of X+(F) .  Thus, we 
define X I ( F )  as 

X I ( F )  = X + ( F +  Fc) (9.1.8) 

The equivalent time-domain relation is 

xi ( 1 )  = X+ ( t  )e-jZn Frr 

or, equivalently, 
~ ( t )  + j i ( t )  = ~ , ( t ) e j ' " ~ ~ '  

In general, the signal xi(t)  is complex-valued (see Problem 9.3), and can be 
expressed as 

xl(t)  = + J U , ~ ( ~ )  (9.1.11) 

If we substitute for xi ( t )  in (9.1.10) and equate real and imaginary parts on each 
side, we obtain the relations 

The expression (9.1.12) is the desired form for the representation of a band- 
pass signal. The low-frequency signal components u,(t)  and u , ( t )  can be viewed 
as amplitude modulations impressed on the carrier components cos2rrF,t and 
sin 2rr F,t, respectively. Since these carrier components are in phase quadrature, 
u, ( t )  and u, ( t )  are called the quadrature components of the bandpass signal x ( t ) .  

Another representation of the signal in (9.1.12) is 

where Re denotes the real part of the complex-valued quantity in the brackets 
following. The lowpass signal x,( t)  is usually called the complex envelope of the 
real signal x ( t ) ,  and is basically the equivalent lowpass signal. 

Finally, a third possible representation of a bandpass signal is obtained by 
expressing X I  ( t  ) as 

x l ( t )  = a(t)ejec" (9.1.15) 
where 

a ( * )  = J'W (9.1.16) 

us(?)  % ( t )  = tan-' - 
uc(t) 
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Then 

= a  (t > cos[2n F,.t + 0 ( r ) ]  (9.1.18) 

The signal a ( [ )  is called the envelope of x ( r ) ,  and B(r) is called the phase of x ( r ) .  
Therefore, (9.1.12), (9.1 .I 4), and (9.1.18) are equivalent representations of band- 
pass signals. 

The Fourier transform of x ( r )  is 

r 

= J_, ( ~ e [ x , ( r ) e ~ ~ ~ ~ ' ] ) e - ~ ~ ~ ' d t  

Use of the identity 

in (9.1.19) yields the result 

where X I ( F )  is the Fourier transform of xl(r) .  This is the basic relationship between 
the spectrum of the real bandpass signal x ( r )  and the spectrum of the equivalent 
lowpass signal xl ( r ) .  

It is apparent from (9.1.21) that the spectrum of the bandpass signal x ( r )  
can be obtained from the spectrum of the complex signal x l ( r )  by a frequency 
translation. To be more precise, suppose that the spectrum of the signal x l ( r )  
is as shown in Fig. 9.2(a). Then the spectrum X ( F )  for positive frequencies is 
simply X I ( F )  translated in frequency to the right by F, and scaled in amplitude by 
5 .  The spectrum X ( F )  for negative frequenc

i

es is obtained by first folding X l ( F )  
about F = 0 to obtain X I ( -  F ) .  conjugating X I ( -  F )  to obtain X;(- F ) ,  translating 
X f  (- F )  in frequency to the left by F,. and scaling the result by f. The folding 
and conjugation of X I ( F )  for the negative-frequency component of the spectrum 
result in a magnitude spectrum IX(F)I that is even and a phase spectrum 4 X ( F )  
that is odd as shown in Fig. 9.2(b). These symmetry properties must hold since 
the signal x ( r )  is real valued. However, they do not apply to the spectrum of the 
equivalent complex signal XI ( t  ). 

The development above implies that any bandpass signal x ( t )  can be repre- 
sented by an equivalent lowpass signal xl( t ) .  In general, the equivalent lowpass 
signal x r ( t )  is complex valued, whereas the bandpass signal x ( t )  is real. The latter 
can be obtained from the former through the timedomain relation in (9.1.14) or 
through the frequency-domain relation in (9.1.21). 
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Figure 9.2 (a) Spectrum of the lowpass signal and (b) the corresponding spectrum 
for the bandpass signal. 

9.1.2 Sampling of Bandpass Signals 

We have already demonstrated that a continuous-time signal with highest fre- 
quency B can be uniquely represented by samples taken at the minimum rate 
(Nyquist rate) of 28  samples per second. However, if the signal is a bandpass 
signal with frequency components in the band B1 5 F 5 Bt, as shown in Fig. 9.3, 
a blind application of tbe sampling theorem would have us sampling the signal at 
a rate of 2B2 samples per second. 

If that were the case and Bz was an extremely high frequency, it would 
certainly be advantageous to perform a frequency shift of the bandpass signal by 
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Figure 9.3 Bandpass signal with 
F frequency components in the range 

-8, -4 -B,  0 4 & 4 B1 5 F 5 8 2 .  

an amount 

and sampling the equivalent lowpass signal. Such a frequency shift can be achieved 
by multiplying the bandpass signal as given in (9.1.12) by the quadrature carriers 
cos2x F,r and sin 23~ F,t and lowpass filtering the products to eliminate the signal 
components at 2F,. Clearly, the multiplication and the subsequent filtering are first 
performed in the analog domain and then the outputs of the filters are sampled. 
The resulting equivalent lowpass signal has a bandwidth B / 2 ,  where B = B2 - B1. 
Therefore, it can be represented uniquely by samples taken at the rate of B samples 
per second for each of the quadrature components. Thus the sampling can be 
performed on each of the lowpass filter outputs at the rate of B samples per second. 
as indicated in Fig. 9.4. Therefore, the resulting rate is 2 3  samples per second. 

In  view of the fact that frequency conversion to iowpass allows us to reduce 
the sampling rate to 2 8  samples per second, it should be possible to sample the 
bandpass signal at a comparable rate. In fact, it is. 

Suppose that the upper frequency F, + B / 2  is a multiple of the bandwidth B 
(i,e., F, + B / 2  = kB). where k is a positive integer. If we sample x ( r )  at the rate 

filter 

Oscillator Sampling rate = B Hz 

'-'passignat -1 52, &L . , , ~ " t  

filter 

Figure 9.4 Sampling of a bandpass signal by first converting to an equivalent 
low-pass signal. 
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28 = 1/T samples per second, we have 

L L 

where the last step is obtained by substituting Fc = kB - B / 2  and T = 1/2B. 
For n even, say n = h, (9.1.23) reduces to 

where TI = 2T = 1/B. For n odd, say n = 2m - 1, (9.1.23) reduces to 

Therefore, the even-numbered samples of x(t), which occur at the rate of B sam- 
ples per second, produce samples of the lowpass signal component u,(t). The 
odd-numbered samples of x(t), which also occur at the rate of B samples per 
second, produce samples of the lowpass signal component u,(r). 

Now, the samples {u,(mTi)} and the samples [us(mTl - T1/2)) can be used 
to reconstruct the equivalent lowpass signals. Thus, according to the sampling 
theorem for lowpass signals with TI = 1 / B ,  

Furthermore, the relations in (9.1.24) and (9.1.25) allow us to express u,(t) and 
u,(t) directly in terms of samples of x(r). Now, since x(t) is expressed as 

x(r) = u,(r) cos2nFCt - u,(t)sin2x F,r (9.1.28) 

substitution from (9.1.27), (9.1.26), (9.1.25), and (9.1.24) into (9.1.28) yields 

X(I)  = 2 ( ( -1 )"~(2m~)  sin(x/2T)(t - 2mT) cos 2n Fct 
m=-a3 (n/2T)(t - 2mT) 

sin(nPT)(t - 2mT + T )  + (-l)"+'x((2m - 1)T) sin 2x F,r 
(n/2T)(r -2mT + 7) 

But 

and 
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With these substitutions, (9.1.29) reduces to 

where T = 1/2 B. This is the desired reconstruction formula for the bandpass signal 
x(t), with samples taken at the rate of 2B samples per second, for the special case 
in which the upper band frequency F, + B/2 is a multiple of the signal band- 
width B. 

In the general case. where only the condition F, 2 8/2 is assumed to hold, 
let us define the integer part of the ratio F, + B / 2  to B as 

While holding the upper cutoff frequency F, + B / 2  constant, we increase the 
bandwidth from B to B' such that 

Furthermore, it is convenient to define a new center frequency for the increased 
bandwidth signal as 

Clearly, the increased signal bandwidth B' includes the original signal spectrum of 
bandwidth B. 

Now the upper cutoff frequency F, + B / 2  is a multiple of B', Consequently, 
the signal reconstruction formula in (9.1.30) holds with F, replaced by F: and T 
replaced by T'. where T' = 1/2Bf, that is, 

sin(Ir/2T1)(t - mT') 
~ ( r )  = 2 x ( n T f )  cos 21r FL (t - m T') (9.1.34) 

n=-3c (x/2T1)(t -.mT1) . 

This proves that x(r) can be represented by samples taken at the uniform rate 
l / T 1  = 2Br1/r, where r '  is the ratio 

and r = Lr'j. 
We observe that when the upper cutoff frequency Fc + B / 2  is not an integer 

multiple of the bandwidth B, the sampling rate for the bandpass signal must be 
increased by the factor rl /r .  However, note that as Fc/B increases, the ratio r'/r 
tends toward unity. Consequently, the percent increase in sampling rate tends to 
zero. 

The derivation given above also illustrates the fact that the lowpass signal 
components u,(t) and u , ( t )  can be expressed in terms of samples of the bandpass 
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signal. Indeed, from (9.1.24), (9.1.25), (9.1.26), and (9.1.27), we obtain the result 
!x s in(n/2T1)( t  - 212 T ' )  

u r ( t )  = x (- l)"x(?nT1) 
n=-bo ( x / 2 T r ) ( t  - 2nT') 

and 
w 

~ ~ ( 1 )  = x ( - l )"+'+'x(2n~'  - T')  
sin(n/2T')(r - 2rz T' + T') 

(x/2T')(r - 2nT' + T ' )  
(9.1.37) 

n=-a: 

where r = Lr'j. 
In conclusion, we have demonstrated that a bandpass signal can be repre- 

sented uniquely by samples taken at a rate 

where B is the bandwidth of the signal. The lower limit applies when the upper 
frequency Fc + BfZ is a multiple of B .  The upper limit on F, is obtained under 
worst-case conditions when r = 1 and r' * 2. 

9.1.3 Discrete-Time Processing of Continuous-Time Signals 

As indicated in our introductory remarks in Chapter 1. there are numerous ap- 
plications where it is advantageous to process continuous-time (analog) signals on 
a digital signal processor. Figure 9.5 illustrates the general configuration of the 
system for digital processing of an analog signal. In designing the processing to 
be performed, we must first select the bandwidth of the signal to be processed 
since the signal bandwidth determines the minimum sampling rate. For example, 
a speech signal, which is to be transmitted digitally, can contain frequency compo- 
nents above 3000 Hz, but for purposes of speech intelligibiIity and speaker iden- 
tification, the preservation of frequency components below 3000 Hz is sufficient. 
Consequently, it would be inefficient from a processing viewpoint to preserve the 
higher-frequency components and wasteful of channel bandwidth to transmit the 
extra bits needed to represent these higher-frequency components in the speech 
signal. Once the desired frequency band is selected we can specify the sampling 
rate and the characteristics of the prefilter, which is also called an antialiasing filter. 

Antialiasing filter. The antialiasing filter is an analog filter which has a 
twofold purpose. First, it ensures that the bandwidth of the signal to be sampled 
is limited to the desired frequency range. Thus any frequency components of 
the signal above the folding frequency F,/2 are sufficiently attenuated so that the 

Fwre 9.5 Configuration of system for digital processing of an analog signal. 

- M I t c r  
J 

Xo convmcr Pastfilter 
~ ' ( 1 )  x(nl Digimi 

processor 
Y(") Dl* convener '2 
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amount of signal distortion due to aliasing is negligible. For example, the speech 
signal to be transmitted digitally over a telephone channel would be filtered by 
a lowpass filter having a passband extending to 3000 Hz, a transition band of 
approximately 400 to 500 Hz, and a stopband above 3400 to 3500 Hz. The speech 
signal may be sampled at 8000 Hz and hence the folding frequency would be 
4000 Hz. Thus aliasing would be negligible. 

Another reason for using an antialiasing filter is to limit the additive noise 
spectrum and other interference, which often corrupts the desired signal. Usu- 
ally, additive noise is wideband and exceeds the bandwidth of the desired signal. 
By prefiltering we reduce the additive noise power to that which fails within the 
bandwidth of the desired signal and we reject the out-of-band noise. 

Ideally, we would like to employ a filter with steep cutoff frequency response 
characteristics and with no delay distortion within the passband. Practically, how- 
ever, we are constrained to employ filters that have a finite-width transition region, 
are relatively simple to implement, and introduce some tolerable amount of delay 
distortion. Very stringent filter specifications, such as a narrow transition region, 
result in very complex filters. In practice, we may choose to sample the signal well 
above the Nyquist rate and thus relax the design specifications on the antialiasins 
filter. 

Once we have specified the prefilter requirements and have selected the de- 
sired sampling rare. we can proceed with the design of the digital signal processing 
operations to be performed on the discrete-time signal. The selection of the sam- 
pling rate F, = 1/T,  where T is the sampling interval. not only determines the 
highest frequency ( F T / 2 )  that is preserved in the analog signal, but also serves as a 
scale factor that influences the design specifications for digital filters and any other 
discrete-time systems through which the signal is processed. 

For example. suppose that we have an analog signal to be differentiated that 
has a bandwidth of 3000 Hz. Although differentiation can be performed directly 
on the analog signal, we choose to do it digitally in discrete time. Hence we 
sample the signal at the range F, = 8000 Hz and design a digital differentiator as 
described in Sec. 8.2.4. In this case, the sampling rate Fs = 8000 Hz establishes 
the folding frequency of 4000 Hz, which corresponds to the frequency w = n 
in the discrete-time signal. Hence the signal bandwidth of 3000 Hz corresponds 
to the frequency w, = 0.7%. Consequently, the discrete-time differentiator for 
processing the signal would be designed to have a passband of 0 5 Iwl 5 0.7%. 

As another example of digital processing. the speech signal that is bandlim- 
ited to 3000 Hz and sampled at 8000 Hz may be separated into two or more 
frequency subbands by digital filtering, and each subband of speech is digitally en- 
wded with different precision. as is done in subband coding (see Section 10.9.5 for 
more details). The frequency response characteristics of the digital filters for sep- 
arating the 0- to 3000-Hz signal into subbands are specified relative to the folding 
frequency of 4000 Hz, which corresponds to the frequency w = n for the discrete- 
time signal. Thus we may process any continuous-time signal in the discrete-time 
domain by performing equivalent operations in discrete time. 
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The one implicit assumption that we have made in this discussion on the 
equivalence of continuous-time and discrete-time signal processing is that the quan- 
tization error in analog-to-digital conversion and round-off errors in digital signal 
processing are neghgible. These issues are further discussed in this chapter. How- 
ever, we should emphasize that analog signal processing operations cannot be 
done very precisely either, since electronic components in analog systems have 
tolerances and they introduce noise during their operation. In general, a digi- 
tal system designer has better control of tolerances in a digital signal processing 
system than an analog system designer who is designing an equivalent analog 
system. 

9.2 ANALOG-TO-DIGITAL CONVERSION 

The discussion in Section 9.1 focused on the conversion of continuous-time signals 
to discrete-time signals using an ideal sampler and ideal interpolation. In this 
section we deal with the devices for performing these conversions from analog to 
digital. 

Recall that the process of converting a continuous-time (analog) signal to 
a digital sequence that can be processed by a digital system requires that we 
quantize the sampled values to a finite number of levels and represent each level 
by a number of bits. The electronic device that performs this conversion from an 
analog signal to a digital sequence is called an analog-to-digital (Am) converter 
(ADC). On the other hand, a digital-to-analog (D/A) converter (DAC)  takes a 
digital sequence and produces at its output a voltage or current proportional to 
the size of the digital word applied to its input. DIA conversion is treated in 
Section 9.3. 

Figure 9.6(a) shows a block diagram of the basic elements of an AD con- 
verter. In this section we consider the performance requirements for these el- 
ements. Although we focus mainly on ideal system characteristics, we shall also 
mention some key imperfections encountered in practical devices and indicate how 
they affect the performance of the converter. We concentrate on those aspects that 
are more relevant to signal processing applications. The practical aspects of AD 
converters and related circuitry can be found in the manufacturers' specifications 
and data sheets. 

In practice, the sampling of an analog signal is performed by a sample-and-hold 
(SM) circuit. The sampled signal is then quantized and converted to digital form. 
Usually, the S/H is integrated into the AID converter. 

The S/H is a digitally controlled analog circuit that tracks the analog input 
signal during the sample mode, and then holds it fixed during the hold mode to 
the instantaneous value of the signal at the time the system is switched from the 
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Tracking 
,in "samvle" 

SM 

Figure 9.6 (a) Block diagram of basic elements of an AID converter; (b) tlme- 
domain response of an ideal S/H circuit. 

Convert 
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sample mode to the hold mode. Figure 9.6(b) shows the time-domain response of 
an ideal SIH circuit (i.e., a S M  that responds instantaneously and accurately). 

The goal of the S I H  is to continuously sample the input signal and then to 
hold that value constant as long as it takes for the AID converter to obtain its 
digital representation. The use of an S I H  allows the A D  converter to operate 
more slowly compared to the time actually used to acquire the sample. In the 
absence of a S/H. the input signal must not change by more than one-half of the 
quantization step during the conversion, which may be an impractical constraint. 
Consequently, the S/H is cruciaI in high-resolution (12 bits per sample or higher) 
digital conversion of signals that have large bandwidths (i.e., they change very 
rapidly). 

An ideal S / H  introduces no distortion in the conversion process and is ac- 
curately modeled as an ideal sampler. However, time-related degradations such 
as errors in the periodicity of the sampting process ("jitter"), nonlinear variations 
in the duration of the sampling aperture, and changes in the voltage held during 
conversion ("droop") do occur in practical devices. 

The A/D converter begins the conversion after it receives a convert com- 
mand. The time required to compIete the conversion should be less than the 
duration of the hold mode of the StH. Furthermore, the sampling period T should 
be larger than the duration of the sample mode and the hold mode. 

In the folIowing sections we assume that the SEl introduces negligible errors 
and we focus on the digital conversion of the analog samples. 
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9.2.2 Quantization and Coding 

The basic task of the A/D converter is to convert a continuous range of input 
amplitudes into a discrete set of digital code words. This conversion involves the 
processes of quantization and coding. Quantization is a noniinear and noninvert- 
ible process that maps a given amplitude x(n)  = x ( n T )  at time t = nT into an 
amplitude xk, taken from a finite set of values. The procedure is illustrated in 
Fig. 9.7(a), where the signal amplitude range is divided into L intervals 

4 = ( x k  < ~ ( n )  5xk+1j  k = 1 , 2 , .  . . , L (9.2.1) 

by the L  + 1  deckion levels XI, x ~ ,  . . . , x t + ~ .  The possible outputs of the quantizer 
(i-e., the quantization levels) are denoted as i l ,  iz, . . . , 3L. The operation of the 
quantizer is defined by the relation 

x, (n) = Q[x(n) ]  = 2k if x ( n )  E Ik (9.2.2) 

In most digital signal processing operations the mapping in (9.2.2) is indepen- 
dent of n (i.e., the quantization is memoryless and is simply denoted as x,, = Q [ x ] ) .  
Furthermore, in signal processing we often use uniform or linear quantizers defined 
i 

i k + , - i k = A  k = 1 , 2  ,..., L - 1  

xk+l - xk = A for finite x k ,  xk+l 

where A is the qwntizer step size. Uniform quantization is usually a requirement 
if the resulting digital signal is to be processed by a digital system. However, 
in transmission and storage applications of signals such as speech, nonlinear and 
time-variant quantizers are frequently used. 

If a zero is assigned a quantization level, the quantizer is of the midtread 
type. If zero is assigned a decision level, the quantizer is called a midrise type. 

Quantization Decision 
levels levels \ F i k A ,  , 

.., . . . 
x3 i3 x4 i4 x5 .. . "t ik  x k +  I 

Instantaneous amplitude - 
(a1 

X I= - -  2, x2 l2 x3 i3 X, Z4 x5 5 x6 f X, 2, xg ig x g = =  

A -3A -2A A 0 A 2A 3A 

Instantaneous amplitude - , 
I I 

I I , Range of quantiztr 

Fgure 9.7 Quantization process and an example of a midtread quantizer. 
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Figure 9.7(b) illustrates a midtread quantizer with L = 8 levels. In theory, the 
extreme decision levels are taken as xl = -m and x ~ + l  = ca, to cover the total 
dynamic range of the input signal. However, practical AID converters can handle 
only a finite range. Hence we define the range R of the quantizer by assuming 
that II = IL = A. For example, the range of the quantizer shown in Fig. 9.7(b) is 
equal to 8A. In practice, the term full-scale range (FSR) is used to describe the 
range of an A/D converter for bipolar signals (i.e., signals with both positive and 
negative amplitudes). The term full scale (FS) is used for unipolar signals. 

It can be easily seen that the quantization error e,(n)  is always in the range 
-A/2  to AD: 

In other words, the instantaneous quantization error cannot exceed half of the 
quantization step. If the dynamic range of the signal, defined as x,,, - xmin. is 
larger than the range of the quantizer, the samples that exceed the quantizer 
range are clipped. resulting in a large (greater than A/2)  quantization error. 

The operation of the quantizer is better described by the quantization char- 
acteristic function, illustrated in Fig. 9.8 for a midtread quantizer with eight 

I 
Range R = FSR 

I 
(Peak-to-peak range) { 

-FS +FS 

2A 

A 

-- 
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F i  911 Example of a midtread quantizer. 
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quantization levels. This characteristic is preferred in practice over the midriser 
because it provides an output that is insensitive to infinitesimal changes of the 
input signal about zero. Note that the input amplitudes of a midtread quantizer 
are rounded to the nearest quantization levels. 

The coding process in an A D  converter assigns a unique binary number to 
each quantization level. If we have L levels, we need at least L different binary 
numbers. With a word length of b + 1 bits we can represent 2b+1 distinct binary 
numbers. Hence we should have Zb+l 2 L or, equivalently, b + 1 2 log, L. Then 
the step size or the resolution of the A/D converter is given by 

where R is the range of the quantizes. 
There are various binary coding schemes, each with its advantages and dis- 

advantages. Table 9.1 illustrates some existing schemes for 3-bit binary coding. 
These number representation schemes were described in detail in Section 7.5. 

The two's-complement representation is used in most digital signal pro- 
cessors. Thus it is convenient to use the same system to represent digital sig- 
nals because we can operate on them directly without any extra format conver- 

TABLE 9.1 COMMONLY USED BIPOLAR CODES 

Decimal Fraction 

Posttive Negative Sign + Two's Offset One's 
Number Reference Reference Magnitude Complement Binary Complement 
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sion. In general, a (b + 1)-bit binary fraction of the form &PI& - - - BB has the 
value 

if we use the two's-complement representation. Note that Po is the most signs- 
cant bit (MSB) and pb is the least significant bit (LSB). Although the binary code 
used to represent the quantization levels is important for the design of the A/D 
converter and the subsequent numerical computations, it does not have any effect 
in the performance of the quantization process. Thus in our subsequent discus- 
sions we ignore the process of coding when we analyze the performance of A/D 
converters. 

Figure 9.9(a) shows the characteristic of an ideal 3-bit A/D converter. The 
only degradation introduced by an ideal converter is the quantization error, which 
can be reduced by increasing the number of bits. This error, that dominates the 
performance of practical A/D converters, is analyzed in the next section. 

Practical AID converters differ from ideal converters in several ways. Various 
degradations are usuaIIy encountered in practice. A number of these performance 
degradations are illustrated in Fig. 9.9(b)-(e). We note that practical A/D convert- 
ers may have offset error (the first transition may not occur at exactly +iLSB), 
scale-factor (or gain) error (the difference between the values at which the first 
transition and the last transition occur is not equal to FS - 2LSB), and linearity 
error (the differences between transition values are not all equal or uniformly 
changing). If the differential linearity error is large enough, it is possible for one 
or more code words to be missed. Performance data on commercially available 
A/D converters are specified in the manufacturers' data sheets. 

9.2.3 Analysis of Quantization Errors 

To determine the effects of quantization on the performance of an AID converter, 
we adopt a statistical approach. The dependence of the quantization error on the 
characteristics of the input signal and the nonlinear nature of the quantizer make 
a deterministic analysis intractable, except in very simple cases. 

In the statistical approach, we assume that the quantization error is random 
in nature. We model this error as noise that is added to the original (unquan- 
tized) signaI. If the input analog signal is within the range of the quantizer, the 
quantization error e,(n) is bounded in magnitude [i.e., leq(n)l c A/2], and the 
resulting error is called granular noise. When the input falls outside the range of 
the quantizer (clipping), eq(n) becomes unbounded and results in overload noke. 
This type of noise can result in severe signal distortion when it occurs. Our only 
remedy is to scale the input signa1 so that its dynamic range falls within the range 
of the quantizer. The following analysis is based on the assumption that there is 
no overload noise. 

The mathematical model for the quantization error eq(n) is shown in Fig. 9.10. 
To carry out the analysis, we make the following assumptions about the statistical 
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properties of e,(n):  

L The error e,  ( n )  is uniformly distributed over the range - A /2 < e, ( n )  < A /2. 
2. The error sequence {eq(n) )  is a stationary white noise sequence. In other 

words, the error eq(n)  and the error eq(m)  for rn # n are uncorrelated. 



Sec. 9.2 Analog-to-Digital Conversion 

(a) Actual system 

e q ( 4  

(b) Mathematical model 
Figure 9.10 Mathematical model of 
quantization noise. 

3. The error sequence { e 4 ( n ) ]  is uncorrelated with the signal sequence x ( n ) .  

4. The signal sequence x (n)  is zero mean and stationary. 

These assumptions do not hold, in general. However, they do hold when 
the quantization step size is small and the signal sequence x(n)  traverses several 
quantization levels between two successive samples. 

Under these assumptions, the effect of the additive noise e,(n) on the desired 
signal can be quantified by evaluating the signal-to-quantization noise (power) 
ratio (SQNR), which can be expressed on a logarithmic scale (in decibels or 
dB) as 

px SQNR = 10 loglo - 
pn 

where Px = cr: = ~ [ x ' ( n ) ]  is the signal power and P. = o: = ~ [ c : ( n ) ]  is the power 
of the quantization noise. 

If the quantization error is uniformly distributed in the range (-A/2, A / 2 )  
as shown in Fig. 9.11, the mean value of the error is zero and the variance (the 
quantization noise power) is 

e 
F i r e  9.11 Probability density 
function for the quaotization error. 
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By combining (9.2.5) with (9.2.7) and substituting the result into (9.2.6), the 
expression for the SQNR becomes 

PI SQNR = lolog - = 20 log 2 
P" a, 

(9.2,8) 
= 6.026 + 16.81 - 20 log dB 

4 

The last term in (9.2.8) depends on the range R of the Am converter and the 
statistics of the input signal. For example, if we assume that x ( n )  is Gaussian 
distributed and the range of the quantizer extends from -3a, to 30, (i.e., R = 6ux), 
then less than 3 out of every 1000 input signal amplitudes would result in an 
overload on the average. For R = 6ux, (9.2.8) becomes 

SQNR = 6.02b + 1.25 dB 

The formula in (9.2.8) is frequently used to specify the precision needed in an 
A/D converter. It simply means that each additional bit in the quantizer increases 
the signal-to-quantization noise ratio by 6 dB. (It is interesting to note that the 
same result was derived in Section 1.4 for a sinusoidal signal using a deterministic 
approach.) However, we should bear in mind the conditions under which this 
result has been derived. 

Due to limitations in the fabrication of A/D converters. their performance 
falls short of the theoretical value given by (9.2.8). As a result. the effective number 
of bits may be somewhat less than the number of bits in the A/D converter. For 
instance. a 16-bit converter may have only an effective 14 bits of accuracy. 

9.2.4 Oversampling AID Converters 

The basic idea in oversampling AID converters is to increase the sampling rate 
of the signal to the point where a low-resolution quantizer suffices. By oversam- 
pling. we can reduce the dynamic range of the signal values between successive 
samples and thus reduce the resolution requirements on the quantizer. As we 
have observed in the preceding section, the variance of the quantization error in 
A/D conversion is a: = ~ ' / 12 ,  where A = ~ / 2 ~ + ' .  Since the dynamic range of 
the signal, which is proportional to its standard deviation ox, should match the 
range R of the quantizer, it follows that A is proportional to ox. Hence for a given 
number of bits, the power of the quantization noise is proportional to the variance 
of the signal to be quantized. Consequently, for a given fixed SQNR, a reduction 
in the variance of the signal to be quantized allows us to reduce the number of 
bits in the quantizer. 

The basic idea for reducing the dynamic range leads us to consider differential 
quantization. To illustrate this point, let us evaluate the variance of the difference 
between two successive signal samples. Thus we have 
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The variance of d ( n )  is 

= ~ [ x ~ ( n ) ]  - 2E[x(n)x(n  - l)] + ~ [ x ' ( n  - I ) ]  (9.2.10) 

where y,,(l) is the value of the autoconelation sequence yxx(m) of x ( n )  evaluated 
at m = 1. If y, , ( l )  > 0.5, we observe that a: < a:. Under this condition, it 
is better to quantize the difference d ( n )  and to recover x(n)  from the quantized 
values { d , ( n ) ] .  To obtain a high correlation between successive samples of the 
signal, we require that the sampling rate be significantly higher than the Nyquist 
rate. 

An even better approach is to quantize the difference 

where a is a parameter selected to minimize the variance in d ( n ) .  This leads to 
the result (see Problem 9.7) that the optimum choice of a is 

and 
0,' = .,'[I - a 2]  

In this case, a j  < a:, since 0 5 a 5 1. The quantity ax(n - 1) is called a first-order 
predictor of x(n) .  

Figure 9.12 shows a more general differential predictive signal quantizer sys- 
tem. This system is used in speech encoding and transmission over telephone 
channels and is known as differential pulse code modulation (DPCM). The goal 
of the predictor is to provide an estimate 2 ( n )  of x(n)  from a linear combination 
of past values of x ( n ) ,  so as to reduce the dynamic range of the difference signal 
d ( n )  = x(n)  - i ( n ) .  Thus a predictor of order p has the form 

Coder Decoder 

Fire 9.U Encoder and decoder for differential predictive signal quantizer 
system. 
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The use of the feedback loop around the quantizer as shown in Fig. 9.12 is nec- 
essary to avoid the accumulation of quantization errors at the decoder. In this 
configuration, the error e(n) = d(n) - d9(n) is 

Thus the error in the reconstructed quantized signal x,(n) is equal to the quan- 
tization error for the sample d(n). The decoder for DPCM that reconstructs the 
signal from the quantized values is also shown in Fig. 9.12. 

The simplest form of differential predictive quantization is called delta mod- 
ulation (DM). In DM, the quantizer is a simple 1-bit (two-level) quantizer and the 
predictor is a first-order predictor, as shown in Fig. 9.13(a). Basically, DM pro- 
vides a staircase approximation of the input signal. At every sampling instant, the 
sign of the difference between the input sample x(n) and its most recent staircase 
approximation i ( n )  = ax,(n - 1) is determined, and then the staircase signal is 
updated by a step A in the direction of the difference. 

From Fig. 9.13(a) we observe that 

x, (n) = ax, (n - 1) + d,(n) (9.2.14) 

which is the discrete-time equivalent of an analog integrator. If a = 1. we have 
an ideal accumulator (integrator) whereas the choice a c 1 results in a "leaky 
integrator." Figure 9.13(c) shows an analog model that illustrates the basic prin- 
ciple for the practical implementation of a DM system. The analog lowpass filter 
is necessary for the rejection of out-of-band components in the frequency range 
between B and F,/2 .  since F, >> B due to oversampling. 

The crosshatched areas in Fig. 9.13(b) illustrate two types of quantization 
error in DM, slope-overload distortion and granular noise. Since the maximum 
slope A/T in x ( n )  is limited by the step size, slope-overload distortion can be 
avoided if max Idx(t)/dtl 5 A/T. The granular noise occurs when the DM tracks 
a relatively flat (slowly changing) input signal. We note that increasing A reduces 
overload distortion but increases the granular noise, and vice versa. 

One way to reduce these two types of distortion is to use an integrator in 
front of the DM, as shown in Fig. 9.14(a). This has two effects. First, it emphasizes 
the low frequencies of x ( r )  and increases the correlation of the signal into the DM 
input. Second, it simplifies the DM decoder because the differentiator (inverse 
system) required at the decoder is canceled by the DM integrator. Hence the 
decoder is simply a lowpass filter, as shown in Fig. 9.14(a). Furthermore, the two 
integrators at the encoder can be replaced by a single integrator placed before 
the comparator, as shown in Fig. 9.14(b). This system is known as sigma-delta 
modulation (SDM). 

SDM is an ideal candidate for A/D conversion. Such a converter takes 
advantage of the high sampling rate and spreads the quantization noise across the 
band up to Fs/2. Since F, >> B, the noise in the signal-free band B ( F ( F,/2  
can be removed by appropriate digital filtering. To illustrate this principle, let 
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F i r e  9.13 Delta modulation system and two types of quantization errors. 
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us consider the discrete-time model of SDM, shown in Fig. 9.15, where we have 
assumed that the comparator (l-bit quantizer) is modeled by an additive white 
noise source with variance u: = ~ ~ / 1 2 .  The integrator is modeled by the discrete- 
time system with system function 

Clock 

-- - - - -  - -  - 
f(t) 
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F i r e  9.14 Sigma-delta modulation system. 
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F i e  9.15 Discrete-time model of sigma-delta modulation. 

The z-transform of the sequence {d ,  (rt ) )  is 

Analog 
LPF 

where Hs(z) and H,, ( z )  are the signal and noise system functions, respectively. A 
good SDM system has a flat frequency response Hs(w) in the signal frequency 

- 
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band 0 5 F 5 B .  On the other hand, H,(z) should have high attenuation in the 
frequency band 0 5 F 5 B and low attenuation in the band B 5 F 5 F,/2. 

For the first-order SDM system with the integrator specified by (9.2.15), we 
have 

Hs(z )=z - '  H , ( z ) = l - z - '  (9.2.17) 

Thus H,(z)  does not distort the signal. The performance of the SDM system is 
therefore determined by the noise system function H n ( z ) ,  which has a magnitude 
frequency response 

nF 
IH,,(F)I = 2 sin - I (9.2.18) 

as shown in Fig. 9.16. The in-band quantization noise variance is given as 

where S , ( F )  = D:/F, is the power spectral density of the quantization noise. 
From this relationship we note that doubling F, (increasing the sampling rate by 
a factor of 2), while keeping B fixed, reduces the power of the quantization noise 
by 3 dB. This result is true for any quantizer. However, additional reduction may 
be possible by properly choosing the filter H ( z ) .  

For the first-order SDM, it can be shown (see Problem 9.10) that for F, >> 
2 8 ,  the in-band quantization noise power is 

Note that doubling the sampling frequency reduces the noise power by 9  dB of 
which 3 dB is due to the reduction in S,(F)  and 6 dB is due to the filter charac- 
teristic H.(F) .  An additional 6-dB reduction can be achieved by using a double 
integrator (see Problem 9.11). 

In summary, the noise power a; can be reduced by increasing the sam- 
pling rate to spread the quantization noise ppwer over a larger frequency band 
(- F,/2, F, /2) ,  and then shaping the noise power spectral density by means of an 

F i  9.16 Frequency (magnitude) response of noise system function. 
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Figure 9.17 Basic elements of an oversampling AID converter. 

b-bit 

Fti 

appropriate filter. Thus, SDM provides a 1-bit quantized signal at a sampling fre- 
quency F, = 2IB, where the oversampling (interpolation) factor I determines the 
SNR of the SDM quantizer. 

Next. we explain how to convert this signal into a b-bit quantized signal at 
the Nyquist rate. First, we recall that the SDM decoder is an analog lowpass filter 
with a cutoff frequency B. The output of this filter is an approximation to the 
input signal x ( r ) .  Given the 1-bit signal d,(n)  at sampling frequency F,, we can 
obtain a signal x,(n)  at a lower sampling frequency, say the Nyquist rate of 2B 
or somewhat faster, by resampling the output of the lowpass filter at the 2 B  rate. 
To avoid aliasing, we first filter out the out-of-band ( B ,  FT/2 )  noise by processing 
the wideband signal. The signal is then passed through the lowpass filter and 
resampled (downsampled) at the lower rate. The downsampling process is called 
decimation and is treated in great detail in Chapter 10. 

For example, if the interpolation factor is I = 256. the A/D converter output 
can be obtained by averaging successive non-overlapping blocks of 128 bits. This 
averaging would result in a digital signal with a range of values from zero to 
256(b * 8 bits) at the Nyquist rate. The averaging process also provides the 
required antialiasing filtering. 

Figure 9.17 illustrates the basic elements of an oversampling AD converter. 
Oversampling A/D converters for voice-band ($kHz) signals are currently fab- 
ricated as integrated circuits. Typically, they operate at a 2-MHz sampling rate, 
downsample to 8 kHz, and provide 16-bit accuracy. 
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9.3 DIGITAL-TO-ANALOG CONVERSION 

In Section 4.2.9 we demonstrated that a bandlimited lowpass analog signal, which 
has been sampled at the Nyquist rate (or faster), can be reconstructed from its 
samples without distortion. The ideal reconstruction formula or ideal interpolation 
formula derived in Section 4.2.9 is 

where the sampling interval T  = l/FJ = 1/2B, F, is the sampling frequency and 
B is the bandwidth of the analog signal. 

We have viewed the reconstruction of the signal x ( t )  from its samples as an 
interpolation problem and have described the function 

as the ideal interpolation function. The interpolation formula for x ( t ) .  given by 
(9.3.1). is basically a linear superposition of time-shifted versions of g ( t ) .  with each 
g ( t  - n T )  weighted by the corresponding signal sample x ( n T ) .  

Alternatively, we can view the reconstruction of the signal from its samples as 
a linear filtering process in which a discrete-time sequence of short pulses (ideally 
impulses) with amplitudes equal to the signal samples, excites an analog filter, as 
illustrated in Fig. 9.18. The analog filter corresponding to the ideal interpolator 
has a frequency response 

H ( F )  is simply the Fourier transform of the interpolation hnction g ( t ) .  In other 
words, H ( F )  is the frequency response of an analog reconstruction filter whose 

Input signal I 

Ideal analog 
lowpass filter 

H ( 0  
Reconstructed signal 

L 

OE sin E{l  - n T )  
X ( I )  = x ( n T )  IrT 

II=-m ? ( 1  - nT) 

F i r e  9.18 Signal reconstruction viewed as a filtering process. 
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Figure 9.19 Frequency response (a) and the impulse response (b) of an ideal 
low-pass filter. 

impulse response is h ( ~ )  = g ( t ) .  As shown in Fig. 9.19, the ideal reconstruction 
filter is an ideal lowpass filter and its impulse response extends for all time. Hence 
the filter is noncausal and physically nonrealizable. Although the interpolation 
fitter with impulse response given by (9.3.1) can be approximated closely with 
some delay, the resulting function is still impractical for most applications where 
DIA conversion is required. 

In this section we present some practical, albeit nonideal. interpolation tech- 
niques and interpret them as linear filters. Although many sophisticated poly- 
nomial interpolation techniques can be devised and analyzed, our discussion is 
limited to constant and linear interpolation. Quadratic and higher polynomial in- 
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terpolation is often used in numerical analysis, but is it less likely to be used in 
digital signal processing. 

9.3.1 Sample and Hold 

In practice, D/A conversion is usually performed by combining a D/A converter 
with a sample-and-hold (SM) and followed by a lowpass (smoothing) filter, as 
shown in Fig. 9.20. The D/A converter accepts at its input, electrical signals that 
correspond to a binary word, and produces an output voltage or current that is 
proportional to the value of the binary word. Ideally, its input-output characteristic 
is as shown in Fig. 9.21(a) for a 3-bit bipolar signal. The line connecting the dots is 
a straight line through the origin. In practical D/A converters, the line connecting 
the dots may deviate from the ideal. Some of the typical deviations from ideal 
are offset errors, gain errors, and nonlinearities in the input-output characteristic. 
These types of errors are illustrated in Fig. 9.21(b). 

An important parameter of a D/A converter is its settling time, which is 
defined as the time required for the output of the D/A converter to reach and 
remain within a given fraction (usually, f ~ L S B )  of the final value, after applica- 
tion of the input code word. Often. the application of the input code word results 
in a high-amplitude transient, called a "glitch." This is especially the case when 
two consecutive code words to the AID differ by several bits. The usual way to 
remedy this problem is to use a S/H circuit designed to serve as a "deglitcher." 
Hence the basic task of the S/H is to hold the output of the DIA converter con- 
stant at the previous output value until the new sample at the output of the D/A 
reaches steady state, then it samples and holds the new value in the next sampling 
interval. Thus the SM approximates the analog signal by a series of rectangular 
pulses whose height is equal to the corresponding value of the signal pulse. Fig- 
ure 9.22(a) illustrates the approximation of the analog signal x ( t )  by a S l H .  As 
shown, the approximation, denoted as i ( t ) ,  is basically a staircase function which 
takes the signal sample from the D/A converter and holds it for T seconds. When 
the next sample arrives, it jumps to the next value and holds it for T seconds, and 
SO on. 

When viewed as a linear filter, as shown in Fig. 9.22(b), the S/H has an 
impulse response 
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input 
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O 5 t i T  
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Analog 
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Fipre 921 (a) Ideal DIA converter characteristic and (b) typical deviations from 
ideal performance in practical D/A converters. 
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Sampkd & p a l  

Figure 9.22 (a) Approximation of an 
analog signal by a staircase; (b) linear 
fdtering interpretation; (c) impulse 
response of the SM. 

This is illustrated in Fig. 9.22(c). The corresponding frequency response is 

The magnitude and phase of H ( F )  are plotted in Figs. 9.23. For comparison, the 
frequency response of the ideal interpolator is superimposed on the magnitude 
characteristics. 

It is apparent that the SM does not possess a sharp cutoff frequency re- 
sponse characteristic. This is due to a large extent to the sharp transitions of 
its impulse response h ( t ) .  As a consequence, the S F l  passes undesirable diased 
frequency components (frequencies above F,/2) to its output. To remedy this 
problem, it is common practice to filter i ( t )  by passing it through a lowpass filter 



Sampling and Reconstruction of Signals Chap. 9 

Figure 9.23 Frequency response charactersitics of the S l f I .  

which highly attenuates frequency components above F,/2. In effect. the lowpass 
filter following the SIH smooths the signal i ( t )  by removing the sharp discontinu- 
ities. 

9.3.2 First-Order Hold 

A first-order hold approximates x ( t )  by straight-line segments which have a slope 
that is determined by the current sample x (n T )  and the previous sample x (n  T - T). 
An iilustration of this signal reconstruction techniques is given in Fig. 9.24. 

The mathematical relationship between the input samples and the output 
waveform is 
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Figure 9.U Signal reconstruction with a first-order hold. 

When viewed as a linear filter, the impulse response of the first-order hold is 

l + L ,  0 5 r z T  
T 

h(r )  = (9.3.7) 
1 T s r < 2 T  I o, 

T 
otherwise 

This impulse response is depicted in Fig. 9.25(a). The Fourier transform of h ( r )  
yields the frequency response, which can be expressed in the form 

where the phase O(F)  is 

These frequency response characteristics are graphically illustrated in Fig. 9.25(b) 
and (c). 

Since this reconstruction technique also suffers from distortion due to passage 
of frequency components above Fs/2, as can be observed from Fig. 9.25(b), it is 
followed by a lowpass filter that significantly attenuates frequencies above the 
folding frequency F, /2. 

The peaks in H ( F )  within the band IF1 5 F,/2 may be undesirable in some 
applications. In such a case it is possible to modify the impulse response by 
reducing the slope by some factor p < 1. This results in the impulse response h(r )  
illustrated in Fig. 9.26(a). The corresponding frequency response is given by 

The magnitude J H ( F ) (  is illustrated in Fig. 9.26(b) for #I = 0.5, /3 = 0.3, and 
p = 0.1, We note that the peak in H ( F )  is relatively small for p = 0.3 and 



Figure 9 2 5  Impulse response (a) and frequency response characteristics (b) and 
(c) for a first-order hold. 

770 
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Figare 926 Impulse response (a) and frequency (magnitude) response (b) for a 
modified kt-order hold. 

does not exist when B = 0.1. Thus this modified first-order hold exhibits better 
frequency response characteristics in the frequency range IF I 5 F,/2. 

9.3.3 Linear Interpolation with Delay 

The first-order hold performs signal reconstruction by computing the slope of the 
straight line based on the current sample x ( n T )  and the past sample x(nT  - T) of 
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the signal. In effect. this technique linearly extrapolates or attempts to linearly pre- 
dict the next sample of the signal based on the samples x ( n T )  and x(nT - T ) .  As 
a consequence, the estimated signal waveform i ( r )  contains jumps at the sample 
points. 

The jumps in ; ( t )  can be avoided by providing a one-sample delay in the re- 
construction process. Then successive sample points can be connected by straight- 
line segments. Thus the resulting interpolated signal i ( f )  can be expressed as 

We observe that at r = nT, 2 ( n T )  = x(nT - T )  and at t = nT + T ,  i ( n T  + T )  = 
x ( n T ) .  Therefore, x ( r )  has an inherent delay of T  seconds in interpolating the 
actual signal x ( f ) .  Figure 9.27 illustrates this linear interpolation technique. 

Viewed as a linear filter, the linear interpolator with a T-second delay has 
an impulse response 

r / T .  O s r < T  
h ( t )  = 2 -  t / T .  T 5 f < 2T 

l o .  
(9.3.12) 

otherwise 
The corresponding frequency response is 

The impulse response and frequency response characteristics of this interpolation 
filter are illustrated in Fig. 9.28. We observe that the magnitude characteristic 
falls off rapidly and contains small sidelobes beyond the sampling frequency F". 
Furthermore, its phase characteristic is linear due to the delay 7. By following 
this interpolator with a lowpass filter that has a sharp cutoff beyond the frequency 
Fs12, the high-frequency components in i ( t )  can be further reduced. 

F w e  9.27 Linear interpolation of x(r)  with a 7-second delay. 
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F m  9.28 Impulse response (a) and bequency response characteristics (b) and 
(c) for the linear interpolator with delay. 
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Digital section Analog section 

Digital 
signal 

Figure 939 Elements of an oversampling DIA converter. 

This concludes our discussion of signal reconstruction based on simple inter- 
polation techniques. The techniques that we have described are easily incorporated 
into the design of practical DIA converters for the reconstruction of analog signals 
from digital signals. We shall consider interpolation again in Chapter 10 in the 
context of changing the sampling rate in a digital signal processing system. 

I 

In~erpolation 
filter 

i 

9.3.4 Oversampling D/A Converters 

The elements of an oversampling DIA converter are shown in Fig. 9.29. As we 
observe, it is subdivided into a digital front end followed by an analog section. The 
digital section consists of an interpolator whose function is to increase the sampling 
rate by some factor I, and then is followed by a SDM. The interpolator simply 
increases the digital sampling rate by inserting I - 1 zeros between successive 
low rate samples. The resulting signal is then processed by a digital filter with 
cutoff frequency F, = B/F,  in order to reject the images (replicas) of the input 
signal spectrum. This higher rate signal is fed to the SDM, which creates a noise- 
shaped 1-bit sample. Each 1-bit sample is fed to the 1-bit DIA. which provides 
the analog interface to the antialiasing and smoothing filters. The output analog 
filters have a passband of 0 5 F 5 B hertz and serve to smooth the signal and to 
remove the quantization noise in the frequency band B 5 F 5 Fs/2 .  In effect, the 
oversampling DIA converter uses SDM with the roles of the analog and digital 
sections reversed compared to the A/D converter. 

In practice, oversampling DIA (and AID) converters have many advantages 
over the more conventional DIA (and A/D) converters. First, the high sampling 
rate and the subsequent digital filtering minimize or remove the need for complex 
and expensive analog antialiasing filters. Furthermore, any analog noise introduced 
during the conversion phase is filtered out. Also, there is no need for S/H circuits. 
Oversampling SDM A/D and DIA converters are very robust with respect to vari- 
ations in the analog-circuit parameters, are inherently linear, and have low cost. 

I 

Sigma 
delta 

modulator 

9.4 SUMMARY AND REFERENCES 

The major focus of this chapter was on the sampling and reconstruction of sig- 
nals. In particular, we treated the sampling of continuous-time signals and the 
subsequent operation of AD conversion. These are necessary operations in the 
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- Analog 
smoothing 

filter 
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digital processing of analog signals, either on a general-purpose computer or on a 
custom-designed digital signal processor. The related issue of D/A conversion was 
also treated. In addition to the conventional AID and D/A conversion techniques. 
we also described another type of AID and D/A conversion, based on the principle 
of oversampling and a type of waveform encoding called sigma-delta modulation. 
Sigma-delta conversion technology is especially suitable for audio band signals due 
to their relatively small bandwidth (less than 20 kHz) and in some applications. 
the requirements for high fidelity. 

The sampling theorem was introduced by Nyquist (1928) and later popular- 
ized in the classic paper by Shannon (1949). D/A and A/D conversion techniques 
are treated in a book by Sheingold (1986). Oversampling A/D and DIA conver- 
sion has been treated in the technical literature. Specifically, we cite the work of 
Candy (1986), Candy et al. (1981) and Gray (1990). 

P R O B L E M S  

9.1 Consider the sampling of the bandpass signal whose spectrum is illustrated in Fig. P9.1. 
Determine the minimum sampling rate Fv to avoid aliasing. 

9 2  Consider the sampling of the bandpass signal whose spectrum is illustrated in Fig. P9.2. 
Determine the minimum sampling rate F, to avoid aliasing. 

9 2  Prove that xr(t )  is generally a complex-valued signal and give the condition under 
which it is real. Assume that x ( t )  is a real-valued bandpass signal. 

9.4 Consider the two systems shown in Fig. P9.4. 
(a) Sketch the spectra of the various signals if x,( t )  has the Fourier transform shown 

in Fig. 9.4(b) and F, = 228. How are y l ( r )  and ~ ( i )  related to x.(t)? 

(b) Determine y l ( r )  and y;l(t) if x,( t )  = cos2x Fot, Fo = 20 Hz, and F, = 50 Hz or 
F, = 30 Hz. 
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XU(') 
L 

Figure P9.4 

9 5  A continuous-time signal x , ( t )  with bandwidth B and its echo x,{t - r )  arrive simul- 
taneously at a TV receiver. The received analog signal 

v2(t) 4 ( t I  
---c 

is processed by the system shown in Fig. P9.5. Is it possible to specify F, and H(:) 
so that y, ( t )  = x, (t) [i.e., remove the "ghost" x,(t - r )  from the received signal]? 
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9.6 A bandlimited continuous-time signal xa(r)  is sampled at a sampling frequency F, 2 
2B. Determine the energy Ed of the resulting discrete-time signat x ( n )  as a function 
of the energy of the analog signal, Ea, and the sampling period T = l / F J .  

9.7 Let x ( n )  be a zero-mean stationary process with variance 4 and autocorrelation y,(l). 
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(a) Show that the variance a: of the first-order prediction error 

is given by 

where p, (1) = y, (l)/y, (0) is the normalized autocorrelation sequence. 
(b) Show that (T,? attains its minimum value 

for a = y,(l)/y,(O) = ~ ~ ( 1 ) .  
(c) Under what conditions is a: < CT,?? 
(d) Repeat steps (a) to (c) for the second-order prediction error 

98 Consider a DM coder with input s ( n )  = A cos(ZnnF/F,). What is the condition for 
avoiding slope overload? Illustrate this condition graphically. 

9.9 Let a,,(t) bc a bandlimited signal with fixcd bandwidth B and variance rr'. 
(a) Show lhat the signal-LO-quantization noise ralio. SQNR = 10log,, ,(cr~/n,~). in- 

creases by 3 dB each time we douhlc the sampling frequency F, .  Assume thal 
thc quantization noisc model discussed in Section 9.2.3 is valid. 

(b) I f  wc wish lo increase the SQNR of a quanlizcr by doubling its sampling fre- 
quency. what is the most efficient way to do  it? Should we choose a linear 
rnu l~ ib i~  AID converter or an oversampling one? 

9.10 Consider the first-order SDM model shown in Fig. 9.15. 
(a) Show that the quantization noise power in the signal band (-B. B) is given by 

, 20: 2nB 
K = 7 [- - sin ( ~ n s ) ]  

(b) Using a two-term Taylor series expansion of the sine function and assuming that 
F; r r B ,  show that 

9.11 Consider the second-order SDM model shown in Fig. P9.11. 
(a) Determine the signal and noise system functions FIT(z) and H,,(z), respectively. 
(b) Plot the magnitude response for the noise system function and compare it with 

the one for the first-order SDM. Can you explain the 6-dB difference from these 
curves? 

(c) Show that the in-band quantization noise power a: is given approximately by 

which implies a 15-dB increase for every doubling of the sampling frequency. 
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9.12 Figure P9.12 illustrates the basic idea for a lookup table based sinusoidat signal gen- 
erator. The samples of one period of the signal 

are stored in memory. A digital sinusoidal signal is generated by stepping through 
the table and wrapping around at the end when the angle exceeds 21r. This can be 
done by using modulo-N addressing (i.e.. using a "circular" buffer). Samples of x ( n )  
are feeding the ideal D/A converter every T seconds. 
(a) Show that by changing F, we can adjust the frequency 4, of the resulting analog 

sinusoid. 
(b) Suppose now that F, = 1/T is fixed. How many distinct analog sinusoids can be 

generated using the given lookup table? Explain. 

Fire P9.12 

9.W Suppose that we represent an analog bandpass filter by the frequency response 

where C(f) is the frequency response of an equivalent lowpass filter, as shown in 
Fig. P9.13. 
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(a) Show that the impulse response c(r) of the equivalent lowpass filter is related to 
the impulse response h ( t )  of the bandpass filter as follows: 

(b) Suppose that the bandpass system with frequency response H(F) is excited by a 
bandpass signal of the form 

x(r) = ~ e [ u ( t ) e j ~ " ~ ~ ' ]  

where ~ ( r )  is the equivalent lowpass signal. Show that the filter output may be 
expressed as 

y ( r )  = ~e[v( r )e '*"~~ ' ]  

where 

(Hint: Use the frequency domain to prove this result.) 

- B 0 B Figure P9.13 

9.14* Consider the sinusoidal signal generator in Fig. P9.14, where both the stored sinusoidal 
data 

x(n)=cos($n) O s n s N - 1  

and the sampling frequency F, = 1/T are fixed. An engineer wishing to produce a 
sinusoid with period 2N suggests that we use either zero-order or first-order (linear) 
interpolation to double the number of samples per period in the original sinusoid as 
illustrated in Fig. P9.14(a). 
(a) Determine the signal sequences y(n) generated using zero-order interpolation 

and linear interpolation and then compute the total harmonic distortion (THD) 
in each case for N = 32. H. 128. 

(b) Repeat part (a) assuming that all sample values are quantized to 8 bits. 
(c) Show that the interpolated signal sequences y ( n )  can be obtained by the system 

shown in Fig. P9.14(b). The first module inserts one zero sample between suc- 
cessive samples of x(n). Determine the system H(z) and sketch its magnitude 
response for the zero-order interpolation and for the linear interpolation cases. 
Can you explain the difference in performance in terms of the frequency response 
functions? 
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Interpolated values 

Linear interpolation 

(a) Figure P9.13 (a) 

(d) Determine and sketch the spectra of the resulting sinusoids in each case both 
analytically [using the results in part (c)] and evaluating the DFT of the resulting 
signals. 

(e) Sketch the spectra of xi(n) and y(n), if x ( n )  has the spectrum shown in Fig. P9.14(c) 
for both zero-order and linear interpolation. Can you suggest a better choice for 
H(z)?  
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( c )  Figure F'9.13 (c) 

9.15 Let xa(t) be a time-limited signal: that is, xa(t) = 0 for It 1 > t. with Fourier transform 
X , ( F ) .  The function X,(F) is sampled with sampling interval 6 F  = l / T T .  
(a) Show that the function 

can be expressed as a Fourier series with coefficients 

(b) Show that X,,t F )  can hc recovered from the samples Xa(kL F) ,  -0s < k < oc if  
T, 1 2 r .  

(c) Show thal if  T, < 2 r .  there is "time-domain aliasing" that prevents exact rccon- 
slruction of X,(F). 

(d) Show that if T, 1 2 r .  perfect reconstruction of Xa(F)  from the samples X(k6F) 
is possible using the interpolation formula 

02 sin[(x/6 F ) ( F  - k6 F)] 
X ~ ( F ) =  C Xu(kBF) (n / JF ) (F -k6F)  



Multirate Digital Signal 
Processing 

In many practical applications of digital signal processing, one is faced with the 
problem of changing the sampling rate of a signal, either increasing it or decreasing 
it by some amount. For example, in telecommunication systems that transmit and 
receive different types of signals (e-g., teletype, facsimile. speech, video, etc.), there 
is a requirement to process the various signals at different rates commensurate with 
the corresponding bandwidths of the signals. The process of converting a signal 
from a given rate to a different rate is called sampling rate conversion. In turn, 
systems that employ multiple sampling rates in the processing of digital signals are 
called multirat~ digital signal processing systems. 

Sampling rate conversion of a digital signal can be accomplished in one of 
two general methods. One method is to pass the digital signal through a DIA 
converter, filter it if necessary, and then to resample the resulting analog signal at 
the desired rate (i.e., to pass the analog signal through an AID converter). The 
second method is to perform the sampling rate conversion entirely in the digital 
domain. 

One apparent advantage of the first method is that the new sampling rate 
can be arbitrarily selected and need not have any special relationship to the old 
sampling rate. A major disadvantage, however, is the signal distortion, introduced 
by the DIA converter in the signal reconstruction, and by the quantization effects 
in the AD conversion. Sampling rate conversion performed in the digital domain 
avoids this major disadvantage. 

In this chapter we describe sampling rate conversion and multirate signal 
processing in the digital domain. First we describe sampling rate conversion by a 
rational factor and present several methods for implementing the rate converter, in- 
cluding single-stage and multistage implementations. Then, we describe a method 
for sampling rate conversion by an arbitrary factor and discuss its implementation. 
Finally, we present several applications of sampling rate conversion in multirate 
signal processing systems, which include the implementation of narrowband fil- 
ters, digital filter banks, and quadrature mirror filters. We also discuss the use of 
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quadrature mirror filters in subband coding. transmultiplexers. and finally over- 
sampling A/D and D/A converters. 

10.1 INTRODUCTION 

The process of sampling rate conversion in the digital domain can be viewed as 
a linear filtering operation, as illustrated in Fig. lO.l(a). The input signal x ( n )  
is characterized by the sampling rate F, = 1/T, and the output signal y(m) is 
characterized by the sampling rate F! = l/T,., where T, and 7j, are the corre- 
sponding sampling intervals. In the main part of our treatment, the ratio F, /Fl is 
constrained to be rational, 

where D and I are relatively prime integers. We shall show that the linear filter 
is characterized by a time-variant impulse response. denoted as h ( t l .  m). Hence 
the input x(?r)  and the output y(m) are related by the convolution summation for 
time-variant systems. 

The sampling rate conversion process can also be understood from the point 
of view of digital resampling of the same analog signal. Let x ( r )  be the ana- 
log signal that is sampled at the first rate F, to generate x(t1).  The goal of 
rate conversion is to obtain another sequence j ~ ( n t )  directly from x ( n ) .  which 
is equal to the sampled values of x t t )  at a second rate F! .  As is depicted in 
Fig. lO.l(b), ! * ( m )  is a time-shifted version of x ( n ) .  Such a time shift can be 

(b 

Figure 10.1 Sampling rate conversion viewed as a linear filtering process. 
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reaiized by using a linear filter that has a flat magnitude response and a linear 
phase response (i.e., it has a frequency response of e-jWr1, where T, is the time 
delay generated by the filter). If the two sampling rates are not equal, the re- 
quired amount of time shifting will vary from sample to sample, as shown in 
Fig. lO.l(b). Thus the rate converter can be implemented using a set of linear 
filters that have the same flat magnitude response but generate different time 
delays. 

Before considering the general case of sampling rate conversion, we shall 
consider two special cases. One is the case of sampling rate reduction by an integer 
factor D, and the second is the case of a sampling rate increase by an integer factor 
I. The process of reducing the sampling rate by a factor D (downsampling by D) 
is called decimation. The process of increasing the sampling rate by an integer 
factor I (upsampIing by I) is called inferpolation. 

10.2 DECIMATION BY A FACTOR D 

Let us assume that the signal x i n )  with spectrum X(w)  is to be downsampled 
by an integer factor D. The spectrum X ( w )  is assumed to be nonzero in the 
frequency interval 0 5 )w[  5 ~r or. equivalently, (FI ( Fx/2.  W e  know that if we 
reduce the sampling rate simply by selecting every Dth value of x ( n ) ,  the resulting 
signaI will be an aliased version of x ( n ) ,  with a folding frequency of F,/2D. To 
avoid aliasing. we must first reduce the bandwidth of x in)  to Fmax = F,/2D or, 
equivalently, to w,,, = x / D .  Then we may downsample by D and thus avoid 
aliasing. 

The decimation process is illustrated in Fig. 10.2. The input sequence x ( n )  is 
passed through a lowpass filter. characterized by the impulse response hin)  and a 
frequency response HD(w).  which ideally satisfies the condition 

1 I4 5 x / D  
Ho(o) = 0: otherwise 

Thus the filter eliminates the spectrum of X(w)  in the range rr/D < o < a. Of 
course, the implication is that only the frequency components of x ( n )  in the range 
lo1 5 r/D are of interest in further processing of the signal. 

The output of the filter is a sequence v(n) given as 

Fpre 102 Decimation by a factor D. 
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which is then downsampled by the factor D to produce y ( m ) .  Thus 

y ( m )  = v ( m D )  

Although the filtering operation on x ( n )  is linear and time invariant, the 
downsampling operation in combination with the filtering results in a time-variant 
system. This is easily verified. Given the fact that x ( n )  produces y(m), we note 
that x(n  -no) does not imply y(n -no)  unless no is a multiple of D. Consequently, 
the overall linear operation (linear filtering followed by downsampling) on x ( n )  is 
not time invariant. 

The frequency-domain characteristics of the output sequence y ( m )  can be 
obtained by relating the spectrum of y(m) to the spectrum of the input sequence 
x ( n ) .  First, it is convenient to define a sequence C(n) as 

G(n) = (:(")' n = 0 , * D , f 2 D ,  . . .  
otherwise 

Clearly, 6(n)  can be viewed as a sequence obtained by multiplying v ( n )  with a 
periodic train of impulses p(n) ,  with period D,  as illustrated in Fig. 10.3. The 
discrete Fourier series representation of p(n)  is 

Hence 

and 

1 D-I 
p (n )  = - C pj2nknlD 

k, 

Figmre 103 Multiplication of v(n) with a periodic impulse train p(n) with period 
D = 3 .  
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Now the z-transform of the output sequence y ( m )  is 

where the last step follows from the fact that C(m) = 0, except at multiples of D. 
By making use of the relations in (10.2.5) and (10.2.6) in (10.2.8), we obtain 

where the last step follows from the fact that V(z) = H D ( z ) X ( z ) .  
By evaluating Y ( z )  in the unit circle, we obtain the spectrum of the output 

signal y(m). Since the rate of y(m) is Fy = 1/T,, the frequency variable, which we 
denote as w,, is in radians and is relative to the sampling rate F,, 

Since the sampling rates are related by the expression 

it follows that the frequency variables o, and 

are related by 

Thus, as expected, the frequency range 0 5 Iw,l 5 rr/D is stretched into the 
corresponding frequency range 0 5 Iw,/ _( n by the downsampling process. 
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We conclude that the spectrum Y (w?,). which is obtained by evaluating (10.2.9) 
on the unit circle, can be expressed as 

With a properly designed filter HD(w) .  the aliasing is eliminated and, consequently, 
all but the first term in (10.2.14) vanish. Hence 

for 0 5 iw,I 5 n. The spectra for the sequences x ( n ) ,  v ( t ~ ) ,  and y ( m )  are illustrated 
in Fig. 10.4. 

10.3 INTERPOLATION BY A FACTOR I 

An increase in the sampling rate by an integer factor of I can be accomplished 
by interpolating I - 1 new samples between successive values of the signal. The 
interpolation process can be accomplished in a variety of ways. We shall describe 
a process that preserves the spectral shape of the signal sequence x ( n ) .  

Let v ( m )  denote a sequence with a rate F, = IF,, which is obtained from 
x r n )  by adding I - 1 zeros between successive values of x ( n ) .  Thus 

"(m) = ( ~ ~ / ' ) ~  m = 0 , i 1 . i 2 1  . . . .  
otherwise 

(10.3.1) 

and its sampling rate is identical to the rate of y(rn). This sequence has a z- 
transform 

02 

The corresponding spectrum of v ( m )  is obtained by evaluating (10.3.2) on the unit 
circle. Thus 

V ( w y )  = X(wyl) (10.3.3) 

where w? denotes the frequency variable relative to the new sampling rate F, (i.e., 
w, = 27rF/F,.). Now the relationship between sampling rates is F, = IF, and 
hence, the frequency variables w, and w, are related according to the formula 
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The spectra X(w,) and V(w,) are illustrated in Fig. 10.5. We observe that the 
sampling rate increase, obtained by the addition of I - 1 zero samples between 
successive values of x ( n ) ,  results in a signal whose spectrum V(w,) is an I-fold 
periodic repetition of the input signal spectrum X(w,). 

Since only the frequency components of x ( n )  in the range 0 5 w, 5 1r/1 
are unique, the images of X(o) above w, = n / I  should be rejected by passing 
the sequence v(m)  through a lowpass filter with frequency response Hl(w,) that 
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Wx 
W ,  = - 

- - I Figure 105 Spectra of x ( n )  and tin) 

I where V(w, . )  = X l w , l ) .  

ideally has the characteristic 

C. 0 5 I W ~ !  5 Tr/i H , ( w ! )  = 0. otherwise 

where C is a scale factor required to properly normalize the output sequence y ( m ) .  
Consequently, the output spectrum is 

CX(w, . I ) .  0 5 1 ~ ~ ! 5 ~ / i  
= ( ,  otherwise 

The scale factor C is selected so that the output y(m) = x ( m / I )  for m = 0, 
&I.  +21. . . . . For mathematical convenience, we select the point m  = 0. Thus 

(10.3.7) 

Since o ,  = w , / l ,  (10.3.7) can be expressed as 

Therefore, C = I is the desired normalization factor. 
FinaIly, we indicate that the output sequence y(m)  can be expressed as a 

convolution of the sequence v(n) with the unit sample response h(n) of the lowpass 
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filter. Thus 
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Since v(k)  = 0 except at multiples of I ,  where u ( k I )  = x ( k ) ,  (10.3.9) becomes 

10.4 SAMPLING RATE CONVERSION BY A RATIONAL FACTOR /ID 

Having discussed the special cases of decimation (downsampling by a factor D) 
and interpolation (upsampling by a factor I ) ,  we now consider the general case 
of sampling rate conversion by a rational factor I / D .  Basically, we can achieve 
this sampling rate conversion by first performing interpolation by the factor I and 
then decimating the output of the interpolator by the factor D. In other words, a 
sampling rate conversion by the rational factor I / D  is accomplished by cascading 
an interpolator with a decimator, as illustrated in Fig. 10.6. 

We emphasize that the importance of performing the interpolation first and 
the decimation second, is to preserve the desired spectral characteristics of x ( n ) .  
Furthermore, with the cascade configuration illustrated in Fig. 10.6, the two filters 
with impulse response { h , ( l ) )  and ( h d ( l ) ]  are operated at the same rate, namely IF, 
and hence can be combined into a single lowpass filter with impulse response h( l )  
as illustrated in Fig. 10.7. The frequency response H(w,)  of the combined filter 
must incorporate the filtering operations for both interpolation and decimation, 
and hence it should ideafly possess the frequency response characteristic 

i 0 5 lu,l min(n/D, x / 1 )  
H(w') = (0: otherwise 

where w, = 2x F / F , ,  = 2rr F / I  F, = w , / l .  

4 I ' I ' , 
I I 
I I 

dn) upsampler Filur ; Filter Downsampier ?fm) 

Rate FI i t~ - h,cn 1 hdn 
- 1 D I 

I I ' I ' I 
1 , .  ' I ' 0 

Rate = I F, I 
Rate = FI = FY 

F w  10.6 Method for sampling rate conversion by a factor I / D .  
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Rate = IF, = F, 

Figure 10.7 Method for sampting rate conversion by a factor I / D .  

. ~ ( m )  

Ra~e = 

x(n) 

Rate = F, 

In the time domain. the output of the upsampler is the sequence 

I = O , f I , f 2 1 ,  . . .  v(1) = 
otherwise 

and the output of the linear time-invariant filter is 
m 

Downsampler 
1 D 

r 

Finally, the output of the sampling rate converter is the sequence { y ( m ) } ,  which is 
obtained by downsampling the sequence { w ( l ) )  by a factor of D. Thus 

Upsampler 
tr 

It is illuminating to express (10.4.4) in a different form by making a change 
in variable. Let 

k = L +  (10.4.5) 

where the notation Lr] denotes the largest integer contained in r .  With this change 
in variable, (10.4.4) becomes 

We note that 

r n D - l ? J I = r n D  modulo1 

v ( ~ )  

Consequently, (10.4.6) can be expressed as 

Lowpass w(C) 
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It is apparent from this form that the output y(m) is obtained by passing the 
input sequence x ( n )  through a time-variant filter with impulse response 

where h(k) is the impulse response of the time-invariant lowpass filter operating 
at the sampling rate 1 F,. We further observe, that for any integer k, 

Hence g(n, m) is periodic in the variable rn with period I. 
The frequency-domain relationships can be obtained by combining the results 

of the interpolation and decimation processes. Thus the spectrum at the output of 
the linear filter with impulse response h(1) is 

X I )  0 5 jowl _( min(lr/D, H / I )  (10.4.10) 
= (0 .  otherwise 

The spectrum of the output sequence y ( m ) ,  obtained by decimating the sequence 
v(n) by a factor of D, is 

where o, = Dw,. Since the linear filter prevents aliasing as implied by (10.4.10), 
the spectrum of the output sequence given by (10.4.11) reduces to  

I - (  O c / o y l ~ r n i n  (10.4.12) 

otherwise 

10.5 FILTER DESIGN AND IMPLEMENTATION FOR SAMPLING-RATE 
CONVERSION 

As indicated in the discussion above, sampling rate conversion by a factor I / D  can 
be achieved by first increasing the sampling rate by I ,  accomplished by inserting 
I - 1 zeros between successive values of the input signal x ( n ) ,  followed by linear 
filtering of the resulting sequence to eliminate the unwanted images of X(o), and 
finally, by downsampling the filtered signal by the factor D. In this section we 
consider the design and implementation of the linear filter. 
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10.5.1 Direct-Form FIR Filter Structures 

In principle. the simplest realization of the filter is the direct-form FIR structure 
with system function 

where { h ( k ) )  is the unit sample response of the FIR filter. The lowpass filter 
can be designed to have linear phase, a specified passband ripple and stopband 
attenuation. Any of the standard, well known FIR filter design techniques (e-g., 
window method, frequency sampling method) can be used to carry out this design. 
Thus we will have the filter parameters ( h ( k ) } .  which allow us to implement the 
FIR filter directly as shown in Fig. 10.8. 

Although the direct-form FIR filter realization illustrated in Fig. 10.8 is sim- 
ple, it is also very inefficient. The inefficiency results from the fact that the up- 
sampling process introduces I - 1 zeros between successive points of the input 
signal. If I is large, most of the signal components in the FIR filter are zero. Con- 
sequently, mosl of the multipfications and additions result in zeros. Furthermore. 
the downsampling process at the output of the filter implies that only one out of 

F I E  10.8 Direct-form realization of FIR filter in sampling rate conversion by 
factor I / D .  

.r(nj 

Upsampler ht l )  

I 

2 .  
3 
. . . . . . 

I 

h(Oj 
- ~ownsnrnp~cr 

.1 D 

- ""') 
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every D output samples is required at the output of the filter. Consequently, only 
one out of every D possible values at the output of the filter should be computed. 

To develop a more efficient filter structure, let us begin with a decimator that 
reduces the sampling rate by an integer factor D. From our previous discussion, 
the decimator is obtained by passing the input sequence x ( n )  through an FIR filter 
and then downsampling the filter output by a factor D, as illustrated in Fig. 10.9a. 
In this configuration, the filter is operating at the high sampling rate F,, while 
only one out of every D output samples is actually needed. The logical solution 
to this inefficiency problem is to embed the downsampling operation within the 
filter, as illustrated in the filter realization given in Fig. 10.9b. In this filter struc- 
ture, all the multiplications and additions are performed at the lower sampling 
rate F, /D.  Thus we have achieved the desired efficiency. Additional reduction in 
computation can be achieved by exploiting the symmetry characteristics of ( h ( k ) ) .  
Figure 10.10 illustrates an efficient realization of the decimator in which the FIR 
filter has linear phase, and hence {h(k)) is symmetric. 

Next, let us consider the efficient implementation of an interpolator, which 
is realized by first inserting I - 1 zeros between samples of x ( n )  and then filtering 
the resulting sequence. The direct-form realization is illustrated in Fig. 10.11. The 
major problem with this structure is that the filter computations are performed at 
the high sampling rate IF,. The desired simplification is achieved by first using the 
transposed form of the FIR filter, as illustrated in Fig. 10.12a, and then embedding 
the upsampler within the filter, as shown in Fig. 10.12b. Thus, all the filter multipli- 
cations are performed at the low rate F,, while the upsampling process introduces 
I  - 1 zeros in each of the filter branches of the structure shown in Fig. 10.12b. The 
reader can easily verify that the two filter structures in Fig. 10.12 are equivalent. 

It is interesting to note that the structure of the interpolator, shown in 
Fig. 10.12b, can be obtained by transposing the structure of the decimator shown 
in Fig. 10.9. We observe that the transpose of a decimator is an interpolator, and 
vice versa. These relationships are illustrated in Fig. 10.13, where (b) is obtained 
by transposing (a) and (d) is obtained by transposing (c). Consequently, a deci- 
mator is the dual of an interpolator, and vice versa. From these relationships, it 
follows that there is an interpolator whose structure is the dual of the decimator 
shown in Fig, 10.10, which exploits the symmetry in h(n) .  

10.5.2 Polyphase Filter Structures 

The computational efficiency of the filter structure shown in Fig. 10.12 can also 
be achieved by reducing the large FIR filter of length M into a set of smaller 
filters of length K = M / I .  where M is selected to be a rnultipie of I .  To demon- 
strate this point, let us consider the interpolator given in Fig. 10.11. Since the 
upsampling process inserts I - 1 zeros between successive values of x ( n ) ,  only K 
out of the M input values stored in the FIR filter at any one time are nonzero. 
At one time instant, these nonzero values coincide and are muttiplied by the fil- 
ter coefficients h(O), h(I), h(2I ) .  . . . , h ( M  - I ) .  In the following time instant, the 
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F i r e  10.9 Decimation by a factor D. 
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h(M - 2) 

h(M - 1) Figure 10.11 Direct-form realization of 
FIR filter in interpolation by a factor I .  

nonzero values of the input sequence coincide and are multiplied by the filter co- 
efficients h ( l ) .  h ( l  + 1). h ( 2 1  f 1 ) .  . . . h ( M  - I  + I), and so on* This observation 
leads us to define a set of smaller filters, called polyphase filters, with unit sample 
responses 

p ~ ( n )  = h ( k + n l )  k  =0.1, ..., I - 1  
(10.5.2) 

n =0,1, ..., K - 1 
where K = M / I  is an integer. 

From this discussion i t  follows that the set of I polyphase filters can be 
arranged as a parallel reaIization, and the output of each filter can be selected 
by a commutator as illustrated in Fig. 10.14. The rotation of the commutator is 
in the counterclockwise direction beginning with the point at rn = 0. Thus, the 
polyphase filters perform the computations at the low sampling rate F,, and the 
rate conversion results from the fact that I output samples are generated, one 
from each of the filters, for each input sample.' 

The decomposition of [h(k)] into the set of I subfilters with impulse response 
pk(n), k = 0, 1, . . . , I - 1, is consistent with our previous observation that the input 
signal was being filtered by a periodically time-variant linear filter with impulse 
response 

g ( n ,  m) = h(nI + ( m D ) t )  (10.5.3) 

where D = 1 in the case of the interpolator. We noted previously that g(n ,  m )  
varies periodically with period I. Consequently, a different set of coefficients are 
used to generate the set of I output sampies y(m), m = 0, 1, . . . , I - 1. 

Additional insight can be gained about the characteristics of the set of poly- 
phase subfilters by noting that pk(n) is obtained from h ( n )  by decimation with a 
factor I. Consequently, if the original filter frequency response H(w)  is flat over 
the range 0 5 Iwl 5 oil, each of the polyphase subfilters possesses a relatively flat 
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Input Output 

(c) (dl 

Fipre 10.13 Duality relationships obtained through transposition. 

Output 

x ( n )  
= PO(") 

Rate = F,  = IFx 

v(m)  - 
Rate = F, = IFx 

t D  

Rate = F' Rate = FJ 

Input 

Figore 10.14 Interpolation by use of polyphase filters. 

response over the range 0 5 JoJ 5 x (i.e., the polyphase subfilters are basically 
all-pass filters and differ primarily in their phase characteristics). This explains the 
reason for the term "polyphase" in describing-these filters. 

The polyphase filter can also be viewed as a set of I  subfilters connected to a 
common delay line. Ideally, the kth subfilter will generate a forward time shift of 
( k / I ) T , ,  for k = 0, 1. 2. . . . , I - 1, relative to the zeroth subfilter. Therefore, if the 
zeroth filter generates zero delay. the frequency response of the kth subfitter is 

A time shift of an integer number of input sampling intervals (e.g., IT,) can be 
generated by shifting the input data in the delay line by 1 samples and using the 
same subfilters. By combining these two methods, we can generate an output that 
is shifted forward by an amount ( I  + i / l ) T ,  relative to the previous output. 

By transposing the interpolator structure in Fig. 10.14, we obtain a commu- 
tator structure for a decimator based on the parallel bank of polyphase filters, as 
illustrated in Fig, 10.15. The unit sample responses of the polyphase filters are 
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?tm) 

Rate = F, ID 

x(n) 

Figure 10.15 Decimation by use of polyphase filters. 

now defined as 
p k ( n )  = h ( k + n D )  k=0 ,1 ,  . . . .  D -  1  

(10.5.4) 
n =0.1 ,....A' - 1  

where K = MID is an integer when A4 is selected to be a multiple of D. The 
commutator rotates in a counterclockwise direction starting with the filter po(n)  at 
m = 0. 

Although the two commutator structures for the interpolator and the deci- 
mator just described rotate in a counterclockwise direction, it is also possible to 
derive an equivalent pair of commutator structures having a clockwise rotation. 
In this alternative formulation, the sets of polyphase filters are defined to have 
impulse responses 

for the interpolator and decimator, respectively. 

10.5.3 Time-Variant Filter Structures 

Having described the filter implementation for a decimator and an interpolator, 
let us now consider the general problem of sampling rate conversion by the factor 
I / D .  In the general case of sampling rate conversion by a factor I / D ,  the filtering 
can be accomplished by means of the linear time-variant filter described by the 
response function 

g ( n , m )  = h(nI - (mD11) (10.5.7) 

where h(n)  is the impulse response of the low-pass FIR filter, which ideally, has 
the frequency response specified by (10.4.1). For convenience we select the length 
of the FIR filter ( h ( n ) )  to a multiple of I (i-e., M = KI). As a consequence, the 
set of coefficients { g ( n ,  m)) for each m = 0, 1, 2,  . . . , I - 1, contains K elements. 
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Since g ( n ,  m) is also periodic with period I, as demonstrated in (10.4.9), it fotlows 
that the output y(m) can be expressed as 

Conceptually, we can think of performing the computations specified by 
(10.5.8) by processing blocks of data of length K by a set of K filter coefficients 
g ( n ,  m - Lm/I J I), n = 0,1, . . . ? K - 1. There are I such sets of coefficients, one 
set for each block of I output points of y(m) .  For each block of I output points, 
there is a corresponding block of D input points of x ( n )  that enter in the compu- 
tation. 

The block processing algorithm for computing (10.5.8) can be visualized as 
illustrated in Fig. 10.16. A block of D input samples is buffered and shifted into 
a second buffer of length K, one sample at a time. The shifting from the input 
buffer to the second buffer occurs at a rate of one sample each time the quantity 
LmD/I J increases by one. For each output sample y ( l ) ,  the samples from the 
second buffer are multiplied by the corresponding set of filter coefficients g ( n ,  I) 
for n = 0, 1, . . . . K - 1, and the K products are accumulated to give y ( l ) ,  for I = 0, 

x(n) Coefficient storage 
, _ _ _ _ _ _ - - _ _ _ _ _ - - - - _ - - - - - - u - - - ~ - - - - - - - - -  

1 

length D 

Buffer 

Fire 10.16 Efficient implementation of sampling-rate conversion by block pro- 
cessing. 
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1, . . . , I  - 1. Thus this computation produces I outputs. It is then repeated for a 
new set of D  input samples, and so on. 

An alternative method for computing the output of the sample rate converter, 
specified by (10.5.8), is by means of an FIR filter structure with periodically varying 
filter coefficients. Such a structure is illustrated in Fig. 10.17. The input samples 
x ( n )  are passed into a shift register that operates at the sampling rate Fx and is of 
length K = M I I ,  where M is the length of the time-invariant FIR filter specified by 
the frequency response given by (10,4.1). Each stage of the register is connected to 
a hold-and-sample device that serves to couple the input sample rate F, to the out- 
put sample rate F,. = ( I / D ) F x .  The sample at the input to each hold-and-sample 
device is held until the next input sample arrives and then is discarded. The output 
samples of the hold-and-sample device are taken at times nt D / I .  m = 0, 1, 2. . . . . 
When both the input and output sampling times coincide (i.e.. when m  D / I  is an 
integer), the input to the hold-and-sample is changed first and then the output 
samples the new input. The K outputs from the K hold-and-sample devices are 
multiplied by the periodically time-varying coefficients g(n ,  m - [ m / l j l ) ,  for n = 0, 
1,. . . . K - 1, and the resulting products are summed to yield ~ ( m ) .  The compu- 
tations at the output of the hold-and-sample devices are repeated at the output 
sampling rate of F?. = ( I / D ) F , .  

Finally, rate conversion by a rational factor I I D  can also be performed by 
use of a polyphase filter having I subfilters. If we assume that the mth sample 

Fxgure 10.17 Efficient realization of sampling-rate conversion by a factor I / D .  
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y(m)  is computed by taking the output of the i,th subfilter with input data x(n) ,  
x(n - I), . . . , x(n - K +I),  in the delay tine, the next sample y(m + 1) is taken from 
the (i,+l)st sublilter after shifting lm+l new samples in the delay lines where i,+l = 
(i,,, + D)& I and 1,,,+1 is the integer part of (i, + D ) / I .  The integer i,+l should be 
saved to be used in determining the subtilter from which the next sample is taken. 

Let us now demonstrate the filter design procedure, first in the design of a 
decimator, second in the design of an interpolator, and finally, in the design of a 
rational sample-rate converter. 

Design a decirnator that downsamples an input signal x ( n )  by a factor D = 2. Use 
the Remez algorithm to determine the coefficients of the FIR filter that has a 0.1-dB 
ripple in the passband and is down by at least 30 dB in the stopband. Also determine 
the polyphase filter structure in a decimator realization that employs polyphase filters. 

Solotion A filter of length M = 30 achieves the design specifications given above. 
The impulse response of the FIR filter is given in Table 10.1 and the frequency 
response is illustrated in Fig. 10.18. Note that the cutoff frequency is o, = r/2. 

The polyphase filters obtained from h ( n )  have impulse responses 

Note that po(n) = h(2n) and pl ( n )  = h(2n + 1). Hence one filter consists of the even- 
numbered samples of h(n)  and the ather filter consists of the odd-numbered samples 
of h(n) .  

Example 105.2 

Design an interpolator that increases the input sampling rate by a factor of I = 5. Use 
the Remez algorithm to determine the coefficients of the F'IR filter that has 0.1-dB 
ripple in the passband and is down by at least 30 dB in the stopband. Also, determine 
the polyphase filter structure in an interpolator realization based on polyphase filters. 

Solution A filter of length M = 30 achieves the design specifications given above. 
The frequency response of the FIR filter is illustrated in Fig. 10.19 and its coefficients 
are given in Table 10.2. The cutoff frequency-is w, = n/5. 

The polyphase filters obtained from h(n)  have impulse responses 

Consequently, each filter has length 6. 

Design a sample-rate converter that increases the sampling rate by a factor 2.5. Use 
the Remez algorithm to determine the coefficients of the FIR filter that has 0.1-dB 
ripple in the passband and is down by at least 30 dB in the stopband. Specify the 
sets of time-varying coefficients g(n, m )  used in the realization of the sampling-rate 
converter according to the structure in Fig. 10.17. 

Sohrtion The FIR filter that meets the specrfications of this problem is exactly the 
same as the filter designed in Example 10.5.2. Its bandwidth is ~ / 5 .  
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TABLE 10.1 COEFFlClENTS OF LINEAR-PHASE FIR FILTER IN 
EXAMPLE 10.5.1 

FINITE IMPULSE RESPONSE (FIR) 
LINEAR-PHASE DIGITAL FILTER DESIGN 

REMEZ EXCHANGE ALGORITHM 

FILTER LENGTH = 30 

* * * * *  IMPULSE RESPONSE ** ' **  
HI 1) = 0.60256165E-02 = H( 30) 
H( 2) = -0.12817143E-01 = H( 29) 
H( 3 )  = -0.28582066E-02 = H( 28) 
H( 4) = 0.13663346E-01 = H( 27) 
H( 5) = -0.46688961E-02 = H( 26) 
H( 6 )  = -0.19704415E-01 = H( 25) 
H( 7) = 0.15984623E-01 = H( 24) 
H( 8) = 0.21384886E-01 = H( 23) 
H( 9) = -0.34979440E-01 = HI 22) 
H(10) = -0.15615522E-01 = H( 21) 
H(11) = 0.64006113E-01 = H( 201 
H(12) = -0.73451772E-02 = H( 19) 
H(13) = -0.11873185E+00 = H( 18) 
H(14) = 0.98047845E-01 = H{ 17) 
H(15) = 0.49225068E+00 = H( 16) 

BAND 1 BAND 2 
LOWER BAND EDGE 0.0000000 0.3100000 
UPPER BAND EDGE 0.2500000 0.5000000 
DESIRED VALUE 1.0000000 0.0000000 
WEIGHTING 2.0000000 1.0000000 
DEVIATION 0.0107151 0.0214302 
DEVIATION IN DB 0.0925753 -33.3794746 

EXTREMAL FREQUENCIES-MAXIMA OF THE ERROR CURVE 
0.0000000 0.0416667 0.0791667 0.1166666 0.1520833 
0.1854166 0.2145832 0.2395832 0.2500000 0.3100000 
0.3225000 0.3495833 0.3808333 0.4141666 0.4474499 
0.4829165 

The coefficients of the filter are given by (10.4.8) as 

By substituting I = 5 and D = 2, we obtain 

By evaluating g ( n ,  m )  for n = 0, 1,. . . , 5  and m = 0, 1, . . . , 4  we obtain the following 
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Relative frequency 

Figure 10.18 Magnitude response of linear-phase FIR filter of length M = 30 in 
Example 10.5.1. 

Relative frequency 

Figure 10.19 Magnitude response of linear-phase FIR filter of length M = 30 in 
Example 10.5.2. 

coefficients for the time-variant filter: 

A polyphase filter implementation would employ five subfilters, each of length 
six. To decimate the output of the polyphase filters by a factor of D = 2 simply means 
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TABLE 10.2 COEFFICIENTS OF LINEAR-PHASE FIR FILTER IN 
EXAMPLE 10.5.2 

FINITE IMPULSE RESPONSE (FIR) 
LINEAR-PHASE DIGITAL FILTER DESIGN 

REMEZ EXCHANGE ALGORITHM 

FILTER LENGTH = 30 

* * * * *  IMPULSE RESPONSE * * * * *  
H( 1) = 0.63987216E-02 = H( 301 
H( 2) = -0.14761304E-01 = H( 29) 
H( 3) = -0.10886577E-02 = H( 28) 
H( 4) = -0.28714957E-02 = H( 2 7 )  
H (  5) = 0.10486430E-01 = H( 26) 
H( 6) = 0.21477142E-01 = H( 25) 
H( 7) = 0.19479362E-01 = H( 2 4 )  
H( 8 )  r -0.31067431E-03 = H( 23) 
H( 9) = -0.30053033E-01 = H (  22) 
H(10) = -0,49877029E-01 = H( 21) 
R(11) = -0.373712853-01 = H( 20) 
H(12) = 0.18482896E-01 = H I  19) 
H(13) = 0+10747141E+00 = HI 18) 
H(14) = 0.19951098E+OO = H( 171 
H(15) = 0.25794828E+OO = H (  16) 

BAND 1 BAND 2 
LOWER BAND EDGE 0.0000000 0.1600000 
UPPER BAND EDGE 0.1000000 0.5000000 
DESIRED VALUE 1.0000000 0.0000000 
WEIGHTING 3.0000000 1.0000000 
DEVIATION 0.0097524 0.0292572 
DEVIATION IN DB 0.0842978 -30.6753349 

EXTREMAL. FREQUENCIES-MAXIMA OF THE ERROR CURVE 
0.0000000 0.0333333 0.0645834 0.0895833 0.1000000 
0.1600000 0.1745833 0.2016666 0.2370833 0.2704166 
0.3058332 0.3432498 0.3766665 0.4120831 0.4474997 
0.4829164 

that we take every other output from the polyphase filters. Thus the first output v(0) 
is taken from p d n ) .  the second output y(1) is taken from pz (n ) ,  the third from pd(n), 
the fourth from pl(n) ,  the fifth from p3(n),  and so on. 

10.6 MULTISTAGE IMPLEMENTATION OF SAMPLING-RATE 
CONVERSlON 

In practical applications of sampling-rate conversion we often encounter decima- 
tion factors and interpolation factors that are much iarger than unity. For exam- 
ple, suppose that we are given the task of altering the sampIing rate by the factor 
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I / D  = 130,453. Although, in theory. this rate alteration can be achieved exactly, 
the implementation would require a bank of 130 polyphase fiiters and may be 
computationally inefficient. In this section we consider methods for performing 
sampling-rate conversion for either D >> 1 and/or I >> 1 in multiple stages. 

First, let us consider interpolation by a factor I >> 1 and let us assume that 
I can be factored into a product of positive integers as 

Then, interpolation by a factor I can be accomplished by cascading L stages of 
interpolation and filtering, as shown in Fig. 10.20. Note that the filter in each of 
the interpolators eliminates the images introduced by the upsampling process in 
the corresponding interpolator. 

In a similar manner, decimation by a factor D, where D may be factored into 
a product of positive integers as 

can be implemented as a cascade of I stages of filtering and decimation as illus- 
trated in Fig. 10.21. Thus the sampIing rate at the output of the ith stage is 

where the input rate for the sequence { x ( n ) )  is Fo = F,. 
To ensure that no aliasing occurs in the overall decimation process, we can 

design each filter stage to avoid aliasing within the frequency band of interest. To 

I _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - - - _ I  I _ _ _ _ _ _ _ _ _ - _ _ - - _ _ _ - _ I  \ l _ - - _ _ _ - _ _ _ - - . - _ _ _ _ _ I  

Stage 1 Staee 2 11f2F1 Stage L 

Figure 10.20 Multistage implementation of interpolation by a factor I .  

I - - - - - - - - - - - - - - - - - - - #  m * . - - - - - - - - - - . - - - - - - s  \ I - -  + - - - - - - - - - - .  * - - - -  a 'I 

Stage 1 Stage 2 FX Stage J - D - 
0 1 0 2  

Figure 1021 Multistage implementation of decimation by a factor D. 
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elaborate, let us define the desired passband and the transition band in the overall 
decimator as 

Passband: 0 5 F _< F,, 

Transition band: FF 5 F _< F,, 

where Fx 5 F,/2 0. Then, aliasing in the band 0 _( F 5 F, is avoided by selecting 
the frequency bands of each filter stage as follows: 

Passband: 0 5 F 5 Fp, 

Transition band: F,, 5 F 5 Fi - F, (10.6.5) 

Stopband: F, - F, 5 F 5 
2 

For example, in the first filter stage we have Fl = F,/D, .  and the filter is 
designed to have the following frequency bands: 

Passband: 0 5 F 5 FF 

Transition band: FF 5 F 5 F1 - Fsc (10.6.6) 
I 

Stopband: FI - Fsc 5 F 5 - 
2 

After decimation by Dl, there is aliasing from the signal components that fall in 
the filter transition band. but the aliasing occurs at frequencies above F,,. Thus 
there is no aliasing in the frequency band 0 5 F 5 Fsc. By designing the filters in 
the subsequent stages to satisfy the specifications given in (10.6.5). we ensure that 
no aliasing occurs in the primary frequency band 0 5 F 2 F,,. 

Consider an audio-band signal with a nominal bandwidth of 4 kHz that has been 
sampled at a rate of 8 kHz. Suppose that we wish to isolate the frequency components 
below 80 Hz with a filter that has a passhand 0 5 F 5 75 and a transition band 
75 5 F 5 80. Hence F, = 75 Hz and F, = 80. The signal in the band 0 5 F 5 80 
may be decimated by the factor D = F,/2F,  = 50. We also specify that the filter 
have a passband ripple 6, = lo-* and a stopband ripple of h2 = lo4. 

The length of the linear phase FIR filter required to satisfy these specifications 
can be estimated from one of the well known formulas given in the literature. Re- 
call that a particularly simple formula for approximating the length M ,  attributed to 
Kaiser, is 

where Af is the normalized (by the sampling rate) width of the transition region [i-e., 
Af = (F, - F w ) / F 8 ] .  A more accurate formula proposed by Henmann et aI. (1973) 
is 
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where Dm(&, &) and f (61, 62) are defined as 

-[O.O0266(10g,~ 61)2 + 0.5941 log,, 61 + 0.42781 (10.6.9) 

Now a single FIR filter followed by a decimaror would require (using the Kaiser 
formula) a filter of (approximate) length 

As an alternative, let us consider a two-stage decimation process with Dl = 25 and 
Dz = 2. In the first stage we have the specifications F, = 320 Hz and 

Passband: 0 5 F 5 75 
Transition band: 75 < F 5 240 

61 
A l l = -  dZ1=A2 

2 

Note that we have reduced the passband ripple 6, by a factor of 2, so that the total 
passband ripple in the cascade of the two filters does not exceed At. On the other 
hand, the stopband ripple is maintained at d2 in both stages. Now the Kalser formula 
yields an estimate of MI as 

/ 

For the second stage, we have F2 = Fl/2 = 160 and the specifications 

Passband: 0 5 F 5 75 
Transition band: 75 < F 5 80 

5 
Af = - 

320 

Hence the estimate of the length M2 of the second filter is 

Therefore, the total length of the two FIR filters is approximately M~ $ M* = 387. 
This represents a reduction in the filter length by a factor of more than 13. 

The reader is encouraged to repeat the computation above with Dl = 10 and 
9 = 5. 

It is apparent from the computations in Example 10.6.1 that the reduction 
in the filter length results from increasing the factor Af ,  which appears in the 
denominator in (10.6.7) and (10.6.8). By decimating in multiple stages, we are 
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able to increase the width of the transition region through a reduction in the 
sampling rate. 

In the case of a multistage interpolator. the sampling rate at the output of 
the ith stage is 

F ; - l = l i F ,  i = J , J - 1  ...., 1 

and the output rate is Fo = IFJ when the input sampling rate is FJ. The corre- 
sponding frequency band specifications are 

Passband: 0 5 F 5 F, 

Transition band: F, c F 5 6 - Fsc 
The following example illustrates the advantages of multistage interpolation. 

Example 10.6.2 

Let us reverse the filtering problem described in Example 10.6.1 by beginning with a 
signal having a passband 0 5 F 5 75 and a transition band of 75 5 F 5 80. We wish 
to interpolate by a factor of 50. By selecting I I  = 2 and 1, = 25. we have basically a 
transposed iorrn of the decimation problem considered in Example 10.6.1. Thus we 
can simply transpose !he two-stage decirnator to achieve the two-stage in~erpolator 
with 1, = 2, l2 = 25. MI = 220. and M: x 167. 

10.7 SAMPLING-RATE CONVERSION OF BANDPASS SIGNALS 

A bandpass signal is a signal with frequency content concentrated in a narrow 
band of frequencies above zero frequency. The center frequency F, of the signal 
is generally much larger than the bandwidth B (i.e., F, >> B). Bandpass signals 
arise frequently in practice, most notably in communications, where information 
bearing signals such as speech and video are translated in frequency and then 
transmitted over such channels as wire lines, microwave radio, and satellites. 

In this section we consider the decimation and interpolation of bandpass 
signals. We begin by noting that any bandpass signal has an equivalent lowpass 
representation. obtained by a simple frequency translation of the bandpass signal. 
For example, the bandpass signal with spectrum X ( F )  shown in Fig. 10.22a can 
be translated to lowpass by means of a frequency translation of F,, where Fc 

is an appropriate choice of frequency (usually, the center frequency) within the 
bandwidth occupied by the bandpass signal. Thus we obtain the equivalent lowpass 
signal as illustrated in Fig. 10.22b. 

From Section 9.1 we recall that an analog bandpass signal can be represented 
as 

x(r) = A(r)  cos[2x Fct + 8(1)] 
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Bandpass signal 

(a) 

Equivalent lowpass signal 

tb) 

Figure 1022 Bandpass signal and its equivalent lowpass representation. 

where, by definition, 
u,(t) = A(t) cos0(t) 

 XI(^) = uc(t) f jG(t )  (10.7.4) 

A(t) is called the amplitude or envelope of the signal, @(I) is the phase, and u,(t) 
and u,(t) are called the qwdrature components of the signal. 

Physically, the translation of x(t) to lowpass involves multiplying (mixing) 
x(t) by the quadrature carriers cos 2~ Fct and sin 27t F,I and then lowpass filtering 
the two products to eliminate the frequency components generated around the 
frequency 2Fc (the double frequency terms). Thus all the information content 
contained in the bandpass signal is preserved in the Iowpass signal, and hence the 
latter is equivalent to the former. This fact is obvious from the spectral represen- 
tation of the bandpass signal, which can be written as 

X(F) = $[XI(F - Fc) + X;(-F - Fc)] (10.7.5) 

where Xl(f) is the Fourier transform of the equivalent lowpass signal xl(t) and 
X(F) is the Fourier transform of x(t), 
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It was shown in Section 9.1 that a bandpass signal of bandwidth B can be 
uniquely represented by samples taken at a rate of 2B samples per second. pro- 
vided that the upper band (highest) frequency is a multiple of the signal band- 
width B. On the other hand, if the upper band frequency is not a multiple of 
B, the sampling rate must be increased by a small amount to avoid aliasing. In 
any case, the sampling rate for the bandpass signal is bounded from above and 
below as 

The representation of discrete-time bandpass signals is basically the same as 
that for analog signals given by (10.7.1) with the substitution of t = nT, where 7 
is the sampling interval. 

10.7.1 Decimation and Interpolation by Frequency 
Conversion 

The mathematical equivalence between the bandpass signal x ( t )  and its equivalent 
lowpass representation XI([) provides one method for altering the sampling rate 
of the signal. Specifically, we can take the bandpass signal which has been sam- 
pled at rate F,, convert it to lowpass through the frequency conversion process 
illustrated in Fig. 10.23, and perform the sampling-rate conversion on the lowpass 
signal using the methods described previously. The Iowpass filters for obtaining 
the two quadrature components can be designed to have linear phase within the 

signal 

Oscillator Lr' 
sin 2xLn 

Lowpass 
filter u,(n) 

Figure 1023 Conversion of a bandpass signal to lowpass. 
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bandwidth of the signal and to approximate the ideal frequency response charac- 
teristic 

1, lo1 5 we12 
H ( w )  = [ 0. otherwise 

(10.7.7) 

where we is the bandwidth of the discrete-time bandpass signal (wB 5 x ) .  
If decimation is to be performed by an integer factor D, the antialiasing 

filter preceding the decimator can be combined with the lowpass filter used for 
frequency conversion into a single filter that approximates the ideal frequency 
response 

Iwl 5 ~ D / D  
H'(w) = { h: otherwise 

where wD is any desired frequency in the range 0 5 oD 5 rr. For example, we may 
select w~ = ws12 if we are interested only in the frequency range 0 5 w 5 ws /2D 
of the original signal. 

If interpolation is to be performed by an integer factor I on the frequency- 
translated signal, the filter used to reject the images in the spectrum should be 
designed to approximate the lowpass filter characteristic 

Iwl 5 we/21 
H1'o) = ( i: otherwise 

We note that in the case of interpolation, the lowpass filter normally used to reject 
the double-frequency components is redundant and may be omitted. Its function 
is essentially served by the image rejection filter H[(w). 

Finally, we indicate that sampling-rate conversion by any rational factor I /D 
can be accomplished on the bandpass signal as illustrated in Fig. 10.24. Again, 
the lowpass filter for rejecting the double-frequency components generated in the 
frequency-conversion process can be omitted. Its function is simply served by the 
image-rejectiontantialiasing filter following the interpolator, which is designed to 
approximate the ideal frequency response characteristic: 

I 0 5 ]wl 5 min(ws/2D, oB121)  
H ( w ) = [ ~ :  otherwise (10.7.10) 

Once the sampling rate of the quadrature signal components has been altered 
by either decimation or interpolation or both, a bandpass signal can be regener- 
ated by amplitude modulating the quadrature carriers coswcn and sinwcn by the 
corresponding signal components and then adding the two signals. The center 

signal - - - 
Flgurc 10.24 Sampling rate conversion of a bandpass signal. 

Filter 4 0  
t - 

u , b )  - 

"An) - - . 
x(n) 

Bmdndp... 

- 
Frequency 
m s l a t i r n  
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frequency o, is any desirable frequency in the range 

10.7.2 Modulation-Free Method for Decimation and 
Interpolation 

By restricting the frequency range for the signal whose frequency is to be altered. 
it is possible to avoid the carrier modulation process and to achieve frequency 
translation directly. In this case we exploit the frequency translation property 
inherent in the process of decimation and interpolation. 

To be specific, let us consider the decimation of the sampled bandpass signal 
whose spectrum is shown in Fig. 10.25. Note that the signal spectrum is confined 
to the frequency range 

rnn - (m + 1)rr 
< w C -  (10.7.12) 

D - D 
where m is a positive integer. A bandpass filter would normally be used to elim- 
inate signal frequency components outside the desired frequency range. Then 
direct decimation of the bandpass signal by the factor D results in the spectrum 
shown in Fig. 10.26a, for n z  odd. and Fig. 10.26b for nl even. In the case where 
rn is odd. there is an inversion of the spectrum of the signal. This inversion can 
be undone by multiplying each sample of the decimated signal by (-I)", 11 = 0. 
1. . . . . Note that violation of the bandwidth constraint given by (10.7.12) results in 
signal aliasing. 

Modulation-free interpolation of a bandpass signal by an integer factor I can 
be accomplished in a similar manner. The process of upsampling by inserting zeros 
between samples of ~ ( J I )  produces I images in the band 0 5 w 5 T. The desired 
image can be selected by bandpass filtering. Note that the process of interpola- 
tion also provides us with the opportunity to achieve frequency translation of the 
spectrum. 

Finally, modulation-free sampling rate conversion for a bandpass signal by 
a rational factor I / D  can be accomplished by cascading a decimator with an in- 
terpolator in a manner that depends on the choice of the parameters D and !. 
A bandpass filter preceding the sampling converter is usually required to isolate 
the signal frequency band of interest. Note that this approach provides us with a 
modulation-free method for achieving frequency translation of a signal by selecting 
D = I. 

F+ 10.2s Spectrum of a bandpass signal. 
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Figure 10.26 Spectrum of decimated bandpass signal. 

10.8 SAMPLING-RATE CONVERSION BY AN ARBITRARY FACTOR 

f 
In the previous sections of this chapter, we have shown how to perform sampling 
rate conversion exactly by a rational number I / D .  In some applications, it is either 
inefficient or, sometimes impossible to use such an exact rate conversion scheme. 
We first consider the following two cases. 

Case 1. We need to perform rate conversion by the rational number I / D ,  
where I is a large integer (e.g., I / D  = 1023/511). Although we can achieve 
exact rate conversion by this number, we would need a polyphase filter with 1023 
subfilters. Such an exact implementation is obviously inefficient in memory usage 
because we need to store a large number of filter coefficients. 

Case 2. In some applications, the exact conversion rate is not known when 
we design the rate converter, or the rate is continuously changing during the con- 
version process. For example, we may encounter the situation where the input and 
output samples are controlled by two independent clocks. Even though it is still 
possible to define a nominal conversion rate that is a rational number, the actual 
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rate would be slightly different, depending on the frequency difference between 
the two clocks. Obviously, it is not possible to design an exact rate converter in 
this case. 

To implement sampling rate conversion for applications similar to these 
cases, we resort to nonexact rate conversion schemes. Unavoidably, a nonexact 
scheme will introduce some distortion in the converted output signal. (It should 
be noted that distortion exists even in an exact rational rate converter because 
the polyphase filter is never ideal.) Such a converter will be adequate, as long 
as the total distortion does not exceed the specification required in the appli- 
cation. 

Depending on the application requirements and implementation constraints, 
we can use first-order, second-order, or higher-order approximations. We shall de- 
scribe first-order and second-order approximation methods and provide an analysis 
of the resulting timing errors. 

10.8.1 First-Order Approximation 

Let us denote the arbitrary conversion rate by r  and suppose that the input to the 
rate converter is the sequence ( x ( n ) ) .  We need to generate a sequence of output 
samples separated in time by 7 ; / r ,  where T, is the sample interval for {x(n)J, By 
constructing a polyphase filter with a large number of subfilters as just described, 
we can approximate such a sequence with a nonuniformly spaced sequence. With- 
out loss of generality, we can express I /r as 

where X. and I are positive integers and B is a number in the range 

Consequently, l / r  is bounded from above and below as 

I corresponds to the interpolation factor, which will be determined to satisfy the 
specification on the amount of tolerable distortion introduced by rate conversion. 
I is also equal to the number of polyphase filters. 

For example, suppose that r  = 2.2 and that we have determined, as we 
will demonstrate, that I = 6 polyphase filters are required to meet the distortion 
specification. Then 

so that k = 2. The time spacing between samples of the interpolated sequence is 
T , / l .  However, the desired conversion rate r = 2.2 for I = 6 corresponds to a 
decimation factor of 2.727, which falls between k = 2 and k = 3. In the first-order 
approximation, we achieve the desired decimation rate by selecting the output 
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Figure 10.27 Sample rate conversion hv use of first-order approximation. 

sample from the polyphase filter closest in time to the desired sampling time. This 
is illustrated in Fig. 10.27 for I = 6. 

In general, to perform rate conversion by a factor r, we employ a polyphase 
filter to perform interpolation and therefore to increase the frequency of the orig- 
inal sequence of a factor of I .  The time spacing between the samples of the 
interpolated sequence is equal to T,/I. If the ideal sampling time of the mth sam- 
ple, y (m) ,  of the desired output sequence is between the sampling times of two 
samples of the interpolated sequence, we select the sample closer to y(m) as its 
approximation. 
/ Let us assume that the mth selected sample'is generated by the (im)th subfilter 
using the input samples x ( n ) ,  x ( n  - I) ,  . . . , x(n - K + 1) in the delay line. The 
normalized sampling time enor (i.e., the time difference between the selected 
sampling time and the desired sampling time normalized by T,) is denoted by t,,,. 
The sign of t, is positive if the desired sampIing time leads the selected sampling 
time, and negative otherwise. It is easy to show that It, I 5 0.5/1. The normalized 
time advance from the mth output y(m) to the (m + 1)st output y(m + 1) is equal 
to ( l l r )  + tm. 

To  compute the next output, we first determine a number closest to i,/I + 
l / r  + tm + k,/l that is of the form 1,-] + i,+l/I, where both and i,+] are 
integers and i,+l < I .  Then, the (m + 1)st output y(m + 1) is computed using the 
(i,+l)th subfilter after shifting the signal in the delay line by lm+] input samples. 
The normalized timing error for the (m + 1)th sample is t,+l = (i,/l+ I / r  + tm) - 
(1,+] + i,+l/l). It is saved for the computation of the next output sample. 
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By increasing the number of subfilters used, we can arbitrarily increase the 
conversion accuracy. However, we also require more memory to store the large 
number of filter coefficients. Hence it is desirable to use as few subfilters as possible 
while keeping the distortion in the converted signal below the specification. The 
distortion introduced due to the sampling-time approximation is most conveniently 
evaluated in the frequency domain. 

Suppose that the input data sequence { x ( n ) }  has a flat spectrum from -w, 

to w,, where w, -= n, with a magnitude A. Its total power can be computed using 
Parseval's theorem, namely, 

From this discussion given, we know that for each output v ( r n ) ,  the time difference 
between the desired filter and the filter actually used is t,,, where ]t,,l 5 0.5/1. 
Hence the frequency response of these filters can be written as elWT and eJW"-'m', 

respectively. When I is large, wt, is small. By ignoring high-order errors. we can 
write the difference between the frequency responses as 

e~wr - ejw(r-r,) = ejwr (1 - e - j w ~ , ,  1 
(1 0.8.2) 

= eJWr (1 - COS utnl + j sin dn1) zz jeJWrwt,,, 

By using the bound Jr,,,l 5 O.S/ I ,  we obtain an upper bound for the total error 
power as 

This bound shows that the error power is inversely proportional to the square of the 
number of subfilters I. Therefore, the error magnitude is inversely proportional 
to I. Hence we call the approximation of the rate conversion method described 
above a first-order approximation. By using (10.8.3) and (10.8.1), the ratio of the 
signal-to-distortion due to a sampling-time error for the first-order approximation, 
denoted as SD,Rl,  is lower bounded as 

It can be seen from (10.8.4) that the signal-to-distortion ratio is proportional 
to the square of the number of subfilters. 

Example 10.8.1 

Suppose that the input signal has a flat spectrum between -0.8~ and 0.8~. Determine 
the number of subfilters to achieve a signal-to-distortion ratio of 50 dB. 
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Solution To achieve an SD,R z lo5, we set SDlRl = 1212/w: equal to ld. Thus 
we find that 

/ s w,g -c 230 subfilters 

10.8.2 Second-Order Approximation (Linear Interpolation) 

The disadvantage of the first-order approximation method is the large number of 
subfilters needed to achieve a specified distortion requirement. In the following 
discussion, we describe a method that uses linear interpolation to achieve the same 
performance with a reduced number of subfilters. 

The implementation of the linear interpolation method is very similar to the 
first-order approximation discussed above. Instead of using the sample from the 
interpolating filter closest to the desired conversion output as the approximation, 
we compute two adjacent samples with the desired sampling time falling between 
their sampling times, as is illustrated in Fig. 10.28. The normalized time spacing 

I I I I I I I  I I 1 l I  I I  
I I I I I I I  I I I I I  I f  
1 I I I l I I  I I I I I  I I  
I i I I I I I  I I I I I  1 1 . -  
I t I I I t 1  1 1 1 1 1  I 1  
I I i l I I I  I I I I I  ! I  

( I I I I I I I  I I I I I  I I  
I I I I I I I  I I I I I  I I  

ylm+I W1-a , )y l (m) tamy~(m)  

a Itm 

F i r e  1028 Sample rate conversion by use of linear interpolation. 
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between these two samples is l / I .  Assuming that the sampling time of the first 
sample lags the desired sampling time by r,. the sampling time of the second Sam- 
ple is then leading the desired sampling time by (I / / )  - r,. If we denote these 
two samples by yl (m)  and y2(m) and use linear interpolation, we can compute the 
approximation to the desired output as 

where a, = It,,,. Note that 0 5 a, 5 1. 
The implementation of linear interpolation is similar to that for the first- 

order approximation. Normally, both yl (m) and y ( m )  are computed using the ith 
and (i + 1)th subfilters, respectively, with the same set of input data samples in 
the delay line. The only exception is in the boundary case, where i = I - 1. In 
this case we use the ( I  - 1)th subfilter to compute gl(m). but the second sample 
j ? ( rn)  is computed using the zeroth subfilter after new input data are shifted into 
the delay line. 

To analyze the error introduced by the second-order approximation. we first 
write the frequency responses of the desired filter and the two subfilters used to 
compute v l  (m) and yz(m).  as ej"', eiw'r-'mr. and e~""- 'n~+"" ,  respectively. Because 
linear interpolation is a linear operation, we can also use linear interpolation to 
compute the frequency response of the filter that generates !-(n?) as 

= e~wr[(l - ) e - ~ ~ r , , ,  + a nt c ~ f i ~ ' - t m + l / / '  I 
(10.8.61 

= eJwT( l  - U,,)(COS wt, - j sin wt,,) 

+ e~~'a,[cos w(l/l - 1,) + j sin w(l/l - t,,,)] 

By ignoring high-order errors. we can write the difference between the desired 
frequency responses and the one given by (10.8.6) as 
e ~ o ~  - (1 - , ),jw(r-f,) - a e jw( t - fm+l / l )  

= ejwr {[l - (1 - a, ) cos cot, - a, cos w ( l / i  - 1, )] 

+ j[(l - a,) sin wr, - a, sin w(l/l - I,)]) 
(10.8.7) 

Using (1 - am)a, 5 $, we obtain an upper bound for the total error power as 
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This result indicates that the error magnitude is inversely proportional to 12. Hence 
we call the approximation using linear interpolation a second-order approximation. 
Using (10.8.8) and (10.8.1), the ratio of signal-to-distortion due to a sampling time 
error for the second-order approximation, denoted by SD,R2, is bounded from 
below as 

Therefore, the signal-to-distortion ratio is proportional to the fourth power of the 
number of subfilters. 

Example 10&2 

Determine the number of subfilters required to meet the specifications given in Ex- 
ample 10.8.1 when linear interpolation is employed. 

Solution To achieve SDIR > Id, we set SDIR2 = 8014/w4, equal to 10-5. Thus we 
obtain 

I z "=);/g zz 15 subfilters. 

From this example we see that the required number of subfilters for the 
second-order approximation is reduced by a factor of about 15 compared to the 
first-order approximation. However, we now need to compute two interpolated 
samples in this case, instead of one for the first-order approximation. Hence we 
have doubled the computational complexity. 

Linear interpolation is the simplest case of the class of approximation meth- 
ods based on Lagrange polynomials. It is also possible to use higher-order La- 
grange polynomial approximations (interpolation) to further reduce the number 
of subfilters required to meet specifications. However, the second-order approx- 
imation seems sufficient for most practical applications. The interested reader is 
referred to the paper by Ramstad (1984) for higher-order Lagrange interpolation 
methods. 

There are numerous practical applications of multirate signal processing. In this 
section we describe a few of these applications. 

10.9.1 Design of Phase Shifters 

Suppose that we wish to design a network that delays the signal x(n) by a fraction 
of a sample. Let us assume that the delay is a rational fraction of a sampling 
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Pipre 1029 Method for generating a delay in a diwete-time signal 

interval T, [i.e., d = ( k / I ) T , ,  where k and I are relatively prime positive integers]. 
In the frequency domain, the delay corresponds to a linear phase shift of the form 

The design of an all-pass linear-phase filter is relatively difficult. However, 
we can use the methods of sample-rate conversion to achieve a delay of ( k / I ) T , ,  
exactly, without introducing any significant distortion in the signal. To be specific, 
let us consider the system shown in Fig. 10.29. The sampling rate is increased by a 
factor 1 using a standard interpolator. The lowpass filter eliminates the images in 
the spectrum of the interpola~ed signal, and its output is delayed by k samples at 
the sampling rate I F , .  The delayed signal is decimated by a factor D = I. Thus 
we have achieved the desired delay of ( k / I ) T , .  

An efficient implementation of the interpolator is the polyphase filter illus- 
trated in Fig. 10.30. The delay of k samples is achieved by placinz the initial 
position of the commutator at the output of the kth subfilter. Since decimation by 

Delay by 
k samples - 

Lowpass 
filter IF; 

x (n)  

Fr 

Frgnre 1030 Polyphase filter structure for implementing the system shown in 
Fig. 10.29. 
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D = I means that we take one out of every I samples from the polyphase filter, the 
commutator position can be fixed to the output of the kth subfilter. Thus a delay 
in k/Z can be achieved by using only the kth subfilter of the polyphase filter. We 
note that the polyphase filter introduces an additional delay of (M - 1)/2 samples, 
where M is the length of its impulse response. 

Finally, we mention that if the desired delay is a nonrational factor of the 
sample interval T,, either the first-order or second-order approximation method 
described in Section 10.8 can be used to obtain the delay. 

10.9.2 Interfacing of Digital Systems with Different 
Sampling Rates 

In practice we frequently encounter the problem of interfacing two digital systems 
that are controlled by independently operating clocks. An analog solution to 
this problem is to convert the signal from the first system to analog form and 
then resample it at the input to the second system using the clock in this system. 
However, a simpler approach is one where the interfacing is done by a digital 
method using the basic sample-rate conversion methods described in this chapter. 

To be specific, let us consider interfacing the two systems with independent 
clocks as shown in Fig. 10.31. The output of system A at rate F, is fed to an 
interpolator which increases the sampling rate by I. The output of the interpolator 
is fed at the rate IF, to a digital sample-and-hold which serves as the interface to 
system B at the high sampling rate IF,. Signals from the digital sample-and-hold 
are read out into system B at the clock rate DF, of system B. Thus the output 
rate from the sample-and-hold is not synchronized with the input rate. 

In the special case where D = I and the two clock rates are comparable 
but not identical, some samples at the output of the sample-and-hold may be 
repeated or dropped at times. The amount of signal distortion resulting from this 
method can be kept small if the interpolator/decimator factor is large. By using 
linear interpolation in place of the digital sarfiple-and-hold, as we described in 
Section 10.8, we can further reduce the distortion and thus reduce the size of the 
interpolator factor. 

F i  1031 Interfacing of two digital systems with different sampling rates. 
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10.9.3 Implementation of Narrowband Lowpass Filters 

In Section 10.6 we demonstrated that a multistage implementation of sampling- 
rate conversion often provides for a more efficient realization, especially when the 
filter specifications are very tight (e.g., a narrow passband and a narrow transition 
band). Under similar conditions, a lowpass, linear-phase FIR filter may be more 
efficiently implemented in a multistage decimator-interpolator configuration. To 
be more specific, we can employ a multistage implementation of a decimator of 
size D, followed by a multistage implementation of an interpolator of size I ,  where 
I = D. 

We demonstrate the procedure by means of an example for the design of 
a lowpass filter which has the same specifications as the filter that is given in 
Example 10.6.1, 

Example 10.9.1 

Design a tinear-phase FIR filter that satisfies the following specifications: 

Sampling frequency: 8000 Hz 
Passband: 0 1  F 5 7 5  
Transition band: 75 5 F 5 80 
Stopband 801F14000  
Passband ripple: 6, = 
Stopband ripple: S~ = lo-4 

Solution If this filter were designed as a single-rate linear-phase FIR filter, the length 
of the filter required to meet the specifications is (from Kaiser's formula) 

M = 5152 

Now, suppose that we employ a multirate implementation of the lowpass filter 
based on a decimation and interpolation factor of D = I = 100. A single-stage 
implementation of the decimator-interpolator requires an FIR filter of length 

However, there is a significant savings in computational complexity by implementing 
the decimator and interpolator filters using their corresponding polyphase filters. If 
we employ linear-phase (symmetric) decimation and interpolation filters, the use of 
polyphase filters reduces the multiplication rate by a factor of 100. 

A significantly more efficient implementation is obtained by using two stages 
of decimation followed by two stages of interpolation. For example. suppose that we 
select Dl = 50, D2 = 2, 1, = 2, and l2 = 50. Then the required filter lengths are 

Thus we obtain a reduction in the overall filter length of 2(5480)/2(177+233) = 13.36. 
In addition, we obtain further reduction in the multiplication rate by using polyphase 
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filters. For the first stage of decimation, the reduction in multiplication rate is 50. while 
for the second stage the reduction in multiplication rate is 100. Further reductions 
can be obtained by increasing the number of stages of decimation and interpolation. 

10.9.4 Implementation of Digital Filter Banks 

Filter banks are generally categorized as two types, analysis filter banks and syn- 
thesis filter banks. An analysis filter bank consists of a set of filters, with system 
functions (H,(k)}, arranged in a parallel bank as illustrated in Fig. 10.32a. The 
frequency response characteristics of this filter bank splits the signal into a corre- 
sponding number of subbands. On the other hand, a synthesis filter bank consists 
of a set of filters with system functions {Gk(; ) ) .  arranged as shown in Fig. 10.32b, 
with corresponding inputs {_vkOz)}. The outputs of the filters are summed to form 
the synthesized signal ( ~ ( I I ) ] .  

Filter banks are often used for performing spectrum analysis and signal syn- 
thesis. When a filter hank is employed in the computation of the discrete Fourier 

- 
Analysis fiirer bank 

(a)  

G,(:) 

GN- ](z) ----: Synthesis (b) filter bank 

Figure 1032 A digital filter bank. 
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transform (DFT) of a sequence { x t n ) } ,  the filter bank is called a DFT filter bank. 
An analysis filter bank consisting of N filters ( H k ( z ) ,  k  = 0,1,. . . , N - 11 is called a 
uniform DFT filter bank if H k ( z ) .  k = 1 , 2 ,  . . . , N - 1, are derived from a prototype 
filter H o ( z ) ,  where 

Hence the frequency response characteristics of the filters ( H k ( z ) ,  k = 0, 1,. . . , 
N - 1} are simply obtained by uniformly shifting the frequency response of the pro- 
totype filter by multiples of 2 x l N .  In the time domain the filters are characterized 
by their impulse responses, which can be expressed as 

where { h o ( n ) }  is the impulse response of the prototype filter. 
The uniform DIT analysis filter bank can be realized as shown in Fig. 10.33a. 

where the frequency components in the sequence { x ( n ) }  are translated in frequency 
to lowpass by multiplying x (n) with the complex exponentials exp(- j2rrnklN ). k = 
1, . . . , N - 1, and the resulting product signals are passed through a lowpass filter 
with impulse response { h o ( n ) ] .  Since the output of the lowpass filter is relatively 
narrow in bandwidth, the signal can be decimated by a factor D 5 N. The resulting 
decimated output signal can be expressed as 

where { X k ( m ) }  are samples of the DFT at frequencies wk = 21rk/N.  
The corresponding synthesis filter for each element in the filter bank can 

be viewed as shown in Fig. 10.33b, where the input signal sequences ( Y k ( m ) ,  k  = 
0,  I , .  . . , N - 1) are upsampled by a factor of I = D, filtered to remove the 
images, and translated in frequency by multiplication by the complex exponentials 
{ e x p ( j 2 x n k / N ) ,  k  = 0, 1, . . . , N - 1). The resulting frequency-translated signals 
from the N filters are then summed. Thus we obtain the sequence 

where the factor 1 / N  is a normalization factor, { y , ( m ) }  represent samples of the 
inverse DFT sequence corresponding to { Y k ( m ) } ,  { g o ( n ) )  is the impulse response 
of the interpolation filter, and I = D. 
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Fwre 1033 A uniform DFT filter bank. 
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The relationship between the output {Xk(n) )  of the analysis filter bank and 
the input {Yk(m)]  to the synthesis filter bank depends on the application. Usu- 
ally, { Y k ( m ) )  is a modified version of ( X k ( m ) ] ,  where the specific modification is 
determined by the application. 

An alternative realization of the analysis and synthesis filter banks is illus- 
trated in Fig. 10.34. The filters are realized as bandpass filters with impulse re- 
sponses 

t D  - 

u(n) 
Y&m) 

go(") 

t D  

Y N - , ( ~ )  - 

gob) 

- 2nk 
Synthesis ok = - 

N 
(b) 

t D  

I 

- go(") 



Muhirate Digital Signal Processing Chap. 10 

Analysis 

(a) 

Synthesis 

(b) 

Figure 10.34 Alternative realization of a uniform DFT filter bank. 

The output of each bandpass filter is decimated by a factor D and multiplied by 
exp(-j2rrmk/N) to produce the DFT sequence (Xk(m)}. The modulation by the 
complex exponential allows us to shift the spectrum of the signal from wk = 2nk/N 
to = 0. Hence this realization is equivalent to the realization given in Fig. 10.33. 
The filter bank output can be written as 

The corresponding filter bank synthesizer can be realized as shown in 
Fig. 10.34b, where the input sequences are first multiplied by the exponential 
factors [exp(jZxkmD/N)], upsampled by the factor I = D, and the resulting Se- 
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quences are filtered by the bandpass interpolation filters with impulse responses 

where { g o ( n ) ]  is the impulse response of the prototype filter. The outputs of these 
filters are then summed to yield 

where I = D. 
In the implementation of digital filters banks, computational efficiency can be 

achieved by use of polyphase filters for decimation and interpolation. Of particular 
interest is the case where the decimation factor D is selected to be equal to the 
number N of frequency bands. When D = N, we say that the filter bank is criticallj~ 
sampled. 

For the analysis filter bank. let us define a set of N = D polyphase filters 
with impulse responses 

and the corresponding set of decimated input sequences 

Note that this definition of ( p k ( n ) ]  implies that the commutator lor the decimalor 
rotates clockwise. 

The structure of the analysis filter bank based on the use of polyphase filters 
can be obtained by substituting (10.9.10) and (10.9.11) into (10.9.7) and rearranging 
the summation into the form 

where N = D. Note that the inner summation represents the convolution of 
{ p n ( l ) )  with { x , , ( l ) ) .  The outer summation represents the N-point DFT of the 
filter outputs. The filter structure corresponding to this computation is illustrated 
in Fig. 10.35. Each sweep of the commutator results in N outputs, denoted as 
{ r , (m) ,  n = 0, 1, . . . , N - 1) from the N polyphase filters. The N-point DFT of 
this sequence yields the spectral samples ( X k ( m ) ] .  For large values of N, the FFT 
algorithm provides an efficient means for computing the DFT. 

Now suppose that the spectral samples { X k ( m ) ]  are modified in some manner, 
prescribed by the application, to produce (Yk(m)). A filter bank synthesis filter 
based on a polyphase filter structure can be realized in a similar manner. First, 
we define the impulse response of the N (D = I = N) polyphase filters for the 
interpolation filter as 
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Figure 1035 Digital filter bank structure for the computation of (10.9.12). 

and the corresponding set of output signals as 

Note that this definition of (qr ( n ) )  implies that the commutator for the interpolator 
rotates counterclockwise. 

By substituting (10.9.13) into (10.9.5), we can express the output u,(n) of the 
lth polyphase filter as 

The term in brackets is the N-point inverse DFT of {Yk(m)], which we denote as 
{ Y [  (m)). I-lence 

The synthesis structure corresponding to (10.9.16) is shown in Fig. 10.36. It is 
interesting to note that by defining the polyphase interpolation filter as in (10.9.13), 
the structure in Fig. 10.36 is the transpose of the polyphase analysis filter shown 
in Fig. 10.35. 

In our treatment of digital filter banks we considered the important case of 
critically sampled DFT filter banks, where D = N. Other choices of D and N 
can be employed in practice, but the implementation of the filters becomes more 
complex. Of particular importance is the oversampled DFT filter bank, where 
N = KD, D denotes the decimation factor and K is an integer that specifies the 
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Figure 10.36 Digital filler bank structure for the computation of (10.9.16). 

oversampling lactor. In this case it can be shown that the polyphase filter bank 
structures for the analysis and synthesis filters can be implemented by use of N 
subfilters and N-point DFTs and inverse DFTs. 

10.9.5 Subband Coding of Speech Signals 

A variety of techniques have been developed to efficiently represent speech signals 
in digital form for either transmission or storage. Since most of the speech energy 
is contained in the lower frequencies, we would like to encode the lower-frequency 
band with more bits than the high-frequency band. Subband coding is a method, 
where the speech signal is subdivided into several frequency bands and each band 
is digitally encoded separately. 

An example of a frequency subdivision is shown in Fig. 10.37a. Let us as- 
sume that the speech signal is sampled at a rate F, samples per second. The 
first frequency subdivision spIits the signal spectrum into two equal-width seg- 
ments, a lowpass signal (0 5 F 5 F,/4) and a highpass signal ( F , / 4  _( F 5 Ft:,/2). 
The second frequency subdivision splits the lowpass signal from the first stage 
into two equal bands, a lowpass signal (0 < F 5 Fr/8) and a highpass signal 
( F , / 8  5 F ( Fq/4). Finally, the third frequency subdivision splits the lowpass 
signal from the second stage into two equal bandwidth signals. Thus the sig- 
nal is subdivided into four frequency bands, covering three octaves, as shown in 
Fig. 10.37b. 

Decimation by a factor of 2 is performed after frequency subdivision. By 
allocating a different number of bits per sample to the signal in the four subbands, 
we can achieve a reduction in the bit rate of the digitalized speech signal. 
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signal --I filter 

Figure 1037 Block diagram of a subband specch coder. 

Filter design is particularly important in achieving good performance in sub- 
band coding. Aliasing resulting from decimation of the subband signals must be 
negligible. It is clear that we cannot use brickwall filter characteristics as shown in 
Fig. 10.38a, since such filters are physically unrealizable. A particularly practical 
solution to the aliasing problem is to use quadrature mirror filters (QMF), which 
have the frequency response characteristics shown in Fig. 10.38b. These filters are 
described in the following section. 

The synthesis method for the subband encoded speech signal is basically the 
reverse of the encoding process. The signals in adjacent lowpass and highpass 
frequency bands are interpolated, filtered, and combined as shown in Fig. 10.39. 
A pair of QMF is used in the signal synthesis for each octave of the signal. 

Subband coding is also an effective method to achieve data compression in 
image signal processing. By combining subband coding with vector quantization 
for each subband signal, Safranek et al. (1988) have obtained coded images with 
approximately $ bit per pixel, compared with 8 bits per pixel for the uncoded 
image. 

In general, subband coding of signals is an effective method for achieving 
bandwidth compression in a digital representation of the signal, when the signal 
energy is concentrated in a particular region of the frequency band. Multirate 
signal processing notions provide efficient implementations of the subband en- 
coder. 
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F m  10.38 Filter characteristics for subband ding. 

10.9.6 Quadrature Mlrror Filters 

The basic building block in applications of quadrature mirror filters (QMF) is 
the two-channel QMF bank shown in Fig. 10.40. This is a multirate digital filter 
structure that employs two decimators in the "signal analysis" section and two 
interpolators in the "signal synthesis" section. The lowpass and highpass filters in 
the analysis section have impulse responses ho(n) and hl  ( n ) ,  respectively. Similarly, 
the lowpass and highpass filters contained in the synthesis section have impulse 
responses go(n) and gl (n ) ,  respectively. 
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--' 

Figure 1039 Synthesis of subband-encoded signals. 

j y k  

Figure 10.40 Two-channel QMF bank. 
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is simply 

Now, suppose that we connect the analysis filter to the corresponding synthesis 
filter, so that X,o(w) = X,o(w) and X,l(w) = X,l(w).  Then, by substituting from 
(10.9.17) into (10.9.18), we obtain 

The first term in (10.9.19) is the desired signal output from the QMF bank. 
The second term represents the effect of aliasing, which we would like to eliminate. 
Hence we require that 

This condition can be simply satisfied by selecting Gu(w)  and G l ( w )  as 

Thus the second term in (10,9.19) vanishes. 
To elaborate. let us assume that Hu(w) is a lowpass filter and N l ( w )  is a 

mirror-image highpass filter. Then we can express Ho(o) and HI ( w )  as 

where H ( w )  is the frequency response of a lowpass filter. In the time domain. the 
corresponding relations are 

As a consequence, Hn(w) and H l ( o )  have mirror-image symmetry about the fre- 
quency w = 1r/2, as shown in Fig. 10.38b. To be consistent with the constraint in 
(10.9.21), we select the lowpass filter Go(w) as 

and the highpass filter Gl (w) as 

In the time domain, these relations become 

The scale factor of 2 in go(n) and gl(n) corresponds to the interpolation factor 
used to normalize the overall frequency response of the QMF. With this choice of 
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the filter characteristics, the component due to aliasing vanishes. Thus the aliasing 
resulting from decimation in the analysis section of the QMF bank is perfectly 
canceled by the image signal spectrum that arises due to interpolation. As a 
result, the two-channel QMF behaves as a linear, time-invariant system. 

If we substitute for Ho(w), Hl(w), Go(w). and Gl(w) into the first term of 
(10.9.19). we obtain 

Ideally, the two-channel QMF bank should have unity gain, 

I H ' ( ~ )  - ~ ~ ( w  - n)l  = 1 for all w (10.9.28) 

where H(w) is the frequency response of a lowpass filter. Furthermore, it is also 
desirable for the QMF to have linear phase. 

Now, let us consider the use of a linear phase filter H(w). Hence H(w) may 
be expressed in the form 

where N is the filter length. Then 

and 

Therefore, the overail transfer function of the two-channel QMF which employs 
linear-phase FIR filters is 

Note that the overall filter has a delay of N - I samples and a magnitude charac- 
teristic 

We also note that when N is odd, A(x12) = 0, because I H(n/2)1 = ]H(3n/2)l. 
This is an undesirable property for a QMF design. On the other hand, when N is 
even, 

which avoids the problem of a zero at w = n/2.  For N even, the ideal two-channel 
QMF should satisfy the condition 

A(o) = I H { ~ ) I ~  + I H ( ~  - n)i2 = 1 for all o (10.9.35) 
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which follows from (10.9.33). Unfortunately, the only filter frequency response 
function that satisfies (10.9.35) is the trivial function I H ( w ) \ ~  = cos2 ow. Conse- 
quently, any nontrivial linear-phase FIR filter H(w)  introduces some amplitude 
distortion. 

The amount of amplitude distortion introduced by a nontrivial linear phase 
FIR filter in the QMF can be minimized by optimizing the FIR filter coefficients. 
A particularly effective method is to select the filter coefficients of H ( o )  such that 
A(w) is made as flat as possible while simultaneously minimizing (or constraining) 
the stopband energy of H ( w ) .  This approach leads to the minimization of the 
integral squared error 

where u: is a weighting factor in the range 0 < w < 1. In performing the opti- 
mization, the filter impulse response is constrained to be symmetric (linear phase). 
This optimization is easily done numerically on a digital computer. This approach 
has been used by Johnston (1980). and Jain and Crochiere (1984) to design two- 
channel QMFs. Tables of optimum filter coefficients have been tabulated by John- 
ston (1980). 

As an alternative to linear-phase FIR filters. we can design an IIR filter that 
satisfies the all-pass constraint given by (10.9.28). For this purpose, elliptic filters 
provide especially efficient designs. Since the QMF would introduce some phase 
distortion, the signal at the output of the QMF can be passed through an all-pass 
phase equalizer designed to minimize phase distortion. 

In addition to these two methods for QMF design, one can also design the 
two-channel QMFs to eliminate completely both amplitude and phase distortion 
as well as canceling aliasing distortion. Smith and Barnwell (1984) have shown 
that such perfect reconstruction QMF can be designed by relaxing the linear-phase 
condition of the FIR lowpass filter H(w). To achieve perfect reconstruction, we 
begin by designing a linear-phase FIR halfband filter of length 2N - 1. 

A half-band filter is defined as a zero-phase FIR filter whose impulse response 
{ b ( n ) }  satisfies the condition 

Hence all the even-numbered samples are zero except at n = 0. The zero-phase 
requirement implies that b ( n )  = b (- n ) .  The frequency response of such a filter is 

where K is odd. Furthermore, B(w) satisfies the condition B(w) + B(n - w )  is equal 
to a constant for all frequencies. The typical frequency response characteristic of a 
half-band filter is shown in Fig. 10.41. We note that the filter response is symmetric 
with respect to n/2,  the band edges frequencies o, and o, are symmetric about 
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Figure 10.41 Frequency response characteristic of FIR half-band filler. 

w = n/2, and the peak passband and stopband errors are equal. We also note that 
the fitter can be made causal by introducing a delay of K samples. 

Now, suppose that we design an FIR half-band filter of length 2N - 1, where 
N is even, with frequency response as shown in Fig. 10.42(a). From B(w) we 
construct another half-band fifter with frequency response 

as shown in Fig. 10.42(b). Note that B+(w) is nonnegative and hence it has the 
spectral factorization 

or, equivalently, 

B+ (o) = I H ( ~ )  12e-jwcNL1' (30.9.41) 

where H(w) is the frequency response of an FIR filter of length N with real 
coefficients. Due to the symmetry of B,(w) with respect to o = n/Z, we also have 

or, equivalently, 

where a is a constant. Thus, by substituting (10.9.40) into (10.9.42), we obtain 

Since H ( z )  satisfies (10.9.44) and since aliasing is eiiminated when we have Go(z) = 
H I ( - z )  and G l ( z )  = -Ho(-z) ,  it follows that these conditions are satisfied by 
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F i p r e  10.42 Frequency response characteristics of half-band filters B(o) and 
B+(o). (From Vaidyanathan (1987)) 
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choosing Hi(z ) ,  G o ( z ) ,  and G l ( z )  as 

Thus aliasing distortion is eliminated and since f(o)/ x (w) is a constant, the QMF 
performs perfect reconstruction so that x ( n )  = crx(n - N + 1) .  However, we note 
that H ( z )  is not a linear-phase filter. 

The FIR fitters Ho(z), HI ( z ) ,  Go(z ) ,  and Gl  ( z )  in the two-channel QMF bank 
are efficiently realized as polyphase filters. Since I = D = 2, two polyphase filters 
are implemented for each decimator and two for each interpolator. However, if 
we employ linear-phase FIR filters, the symmetry properties of the analysis filters 
and synthesis filters allow us to simplify the structure and reduce the number of 
polyphase filters in the analysis section to two filters and to another two filters in 
the synthesis section. 

To demonstrate this construction, let us assume that the filters are linear- 
phase FIR filters of length N ( N  even), which have impulse responses given by 
(10.9.23). Then the outputs of the analysis filter pair, after decimation by a factor 
of 2, can be expressed as 

Now let us define the impulse response of two polyphase filters of length N / 2  as 

Then (10.9.46) can be expressed as 

1 =0 

This expression corresponds to the polyphase filter structure for the analysis 
section shown in Fig. 10.43. Note that the commutator rotates counterclockwise 
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Figure 10.43 Polyphase filter structure for the QMF bank. 

and that the filter with impulse response ( p o ( m ) )  processes the even-numbered 
samples of the input sequence and the filter with impulse response { p l ( m ) }  pro- 
cesses the odd-numbered samples of the input signal. 

In a similar manner. by using (10.9.26), we can obtain the structure for the 
polyphase synthesis section. which is also shown in Fig. 10.43. This derivation is 
left as an exercise for the reader (Problem 10.16). Note that the commutator also 
rotates counterclockwise. 

Finally. we observe that the polyphase filter structure shown in Fig. 10.43 is 
approximately four times more efficient than the direct-form FIR filter realization. 

t 0.9.7 Transmultiplexers 

Another application of rnultirate signal processing is in the design and irnplemen- 
tation of digital transmultiplexers which are devices for converting between time- 
division-multiplexed (TDM) signals and frequency-division-multiplexed (FDM) 
signals. 

In a transmultiplexer for TDM-to-FDM conversion, the input signal { x ( n ) }  
is a time-division multiplexed signal consisting of L signals, which are separated 
by a commutator switch. Each of these L signals are then modulated on different 
carrier frequencies to obtain an FDM signal for transmission. In a transmultiplexer 
for FDM-to-TDM conversion, the composite signal is separated by filtering into 
the L signal components which are then time-division multiplexed. 

In telephony. single-sideband transmission is used with channels spaced at 
a nominal 4-kHz bandwidth. Twelve channels are usually stacked in frequency 
to form a basic group channel, with a bandwidth of 48 kHz. Larger bandwidth 
FDM signals are formed by frequency translation of multiple groups into adjacent 
frequency bands. We shall confine our discussion to digital transmultiplexers for 
12-channel FDM and TDM signals. 

Let us first consider FDM-to-TDM conversion. The analog FDM signal is 
passed through an AID converter as shown in Fig. 10.44a. The digital signal is then 
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~p-( ,ignal converter 
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Decimalor 
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Figure 10.44 Block diagram of FDM-to-TDM transmultiplexer. 

signals 
s,(n) 

demodulated to baseband by means of single-sideband demodulators. The output 
of each demodulator is decimated and fed to commutator of the TDM system. 

To be specific, let us assume that the 12-channel FDM signal is sampled at 
the Nyquist rate of 96 kHz and passed through a filter-bank demodulator. The 
basic building block in the F D M  demodulator consists of a frequency converter, a 
lowpass filter, and a decimator, as illustrated in Fig. 10.44b. Frequency conversion 
can be efficiently implemented by the DFT filter bank described previousiy. The 
lowpass filter and decimator are efficiently implemented by use of the polyphase 
filter structure. Thus the basic structure for the FDM-to-TDM converter has the 
form of a DFT filter bank analyzer. Since the signal in each channel mupies  a 
4-kHz bandwidth, its Nyquist rate is 8 kHz, and hence the polyphase filter out- 
put can be decimated by a factor of 12. Consequently, the TDM commutator is 
operating at a rate of 12 x 8 kHz or 96 kHz. 

In TDM-to-FDM conversion, the 12-channel TDM signal is demultiplexed 
into the 12 individuai signals, where each signal has a rate of 8 kHz. The signal 

= Decimator - s 2 ( n )  
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modularor 

1 TDM 
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Figure 10.45 Block diagram of TDM-to-FDM transmultiplexer. 

t 
o = interpolator SSB 

in each channel is interpolated by a factor of 12 and .frequency converted by a 
single-sideband modulator. as shown in Fig. 10.45. The signal outputs from the 12 
single-sideband modulators are summed and fed to the D/A converter. Thus we 
obtain the analog FDM signal for transmission. As in the case of FDM-to-TDM 
conversion. the interpolator and the modulator filter are combined and efficiently 
implemented by use of a polyphase filter. The frequency translation can be ac- 
complished hy the DFT. Consequently, the TDM-to-FDM converter encompasses 
the basic principles introduced previously in our discussion of DFT filter bank 
synthesis. 

modulator DIA 
convertor 

10.9.8 Oversampling A/D and DIA Conversion 

FDM 
signal 

Our treatment of oversampling AID and DIA converters in Chapter 9 provides 
another example of rnultirate signal processing. Recall that an oversampling AID 
converter is implemented by a cascade of an analog sigma-delta modulator (SDM) 
followed by a digital antialiasing decimation filter and a digital highpass filter as 
shown in Fig. 10.46. The analog SDM produces a 1-bit per sample output at a very 
high sampling rate. This 1-bit per sample output is passed through a digital lowpass 
filter, which provides a high-precision (multiple-bit) output that is decimated to 
a lower sampling rate. This output is then passed to a digital highpass filter that 
serves to attenuate the quantization noise at the lower frequencies. 

The reverse operations take place in an oversampling D/A converter, as 
shown in Fig. 10.47. As illustrated in this figure, the digital signal is passed through 
a highpass filter whose output is fed to a digital interpolator (upsampler and anti- 
imaging filter). This high-sampling-rate signal is the input to the digital SDM that 
provides a high-sampling-rate I-bit per sample output. The 1-bit per sample output 

0 

Figore 10.46 Diagram of oversampling AID converter 
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precision d&ital signal per sample 

Figure 10.47 Diagram of oversampling D/A converter 

is then converted to an analog signal by lowpass filtering and further smoothing 
with analog filters. 

Figure 10.48 illustrates the block diagram of a commercial (Analog Devices 
ADSP-28 msp02) codec (encoder and decoder) for voice-band signals based on 
sigma-delta AID and D/A converters and analog front-end circuits needed as an 
interface to the analog voice-band signals. The nominal sampling rate (after dec- 
imation) is 8 kHz and the sampling rate of the SDM is 1 MHz. The codec has a 
65-dB SNR and harmonic distortion performance. 

10.10 SUMMARY AND REFERENCES 

The need for sampling rate conversion arises frequentiy in digital signal processing 
applications. In this chapter we first treated sampling rate reduction (decimation) 
and sampling rate increase (interpolation) by integer factors and then demon- 
strated how the two processes can be combined to obtain sampling rate conversion 
by any rational factor. Later, in Section 10.8, we described a method to achieve 
sampling rate conversion by an arbitrary factor. 

In general, the implementation of sampling rate conversion requires the use 
of a linear time-variant filter. We described methods for implementing such filters, 
including the class of polyphase filter structures, which are especially simple to 
implement. We also described the use of multistage implementations of multirate 
conversion as a means of simplifying the complexity of the filter required to meet 
the specifications. 

In the special case where the signal to be resampled is a bandpass signal, we 
described two methods for performing the sampling rate conversion, one of which 
involves frequency conversion, while the second is a direct conversion method that 
does not employ modulation. 

Finally, we described a number of applications that employ multirate signal 
processing, including the implementation of narrowband filters, phase shifters, fil- 
ter banks, subband speech coders, and transmuitiplexers. These are just a few of 
the many apptications encountered in practice where multirate signal processing 
is used. 

The first comprehensive treatment of multirate signal processing was given 
in the book by Crochiere and Rabiner (1983). In the technical literature, we cite 
the papers by Schafer and Rabiner (1973), and Crochiere and Rabiner (1975,1976, 
1981, 1983). The use of interpolation methods to achieve sampling rate conversion 
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by an arbitrary factor is treated in a paper by Ramstad (1984). A thorough tutorial 
treatment of multirate digitaf filters and filter bards, including quadrature mirror 
filters, is given by Vetterli (1987). and by Vaidyanathan (1990, 1993), where many 
references on various applications are cited. A comprehensive survey of digital 
transmultiplexing methods is found in the paper by Scheuermann and Gockler 
(1981). Subband coding of speech has been considered in many publications. The 
pioneering work on this topic was done by Crochiere (1977, 1981) and by Garland 
and hteban (1980). Subband coding has also been applied to coding of images. 
We mention the papers by Vetterli (1984), Woods and O'Neil (1986), Smith and 
Eddins (1988), and Safranek et af, (1988) as just a few examples. In closing, we 
wish to emphasize that rnultirate signal processing continues to be a very active 
research area. 

P R O B L E M S  

10.1 An analog signal x , ( t )  is bandlimited to the range 900 5 F < 1100 Hz. It is used as 
an input to the system shown in Fig. P1O.l. In this system, H ( w )  is an ideal lowpass 
filter with cutoff frequency F, = 125Hz. 

(a) Determine and sketch the spectra for the signals x ( n ) ,  w(n) ,  v ( n ) ,  and y(n).  
(b) Show that it is possible to obtain y ( n )  by samphg x,( t )  with period T = 4 

milliseconds. 
10.2 Consider the signal x(n)  = aau(n) ,  (a ( < 1. 

(a) Determine the spectrum X ( w ) .  
@) The signal x ( n )  is applied to a decirnator that reduces the rate by a factor of 2. 

Determine the output spectrum. 
(c) Show that the spectrum in part (b) is simply the Fourier transform of x(2.n). 

103 The sequence x ( n )  is obtained by sampling an analog signal with period T. From 
this signal a new signal is derived having the sampling period TI2 by use of a linear 
interpolation method described by the equation 

f x ( n P ) .  n even 
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(a) Show that this linear interpolation scheme can be realized by basic digital signal 
processing elements. 

(b) Determine the spectrum of y(n)  when the spectrum of x ( n )  is 

1, 0 5 101 5 0 . 2 ~  
= [ *, otherwise 

(c) Determine the spectrum of y ( n )  when the spectrum of x(n)  is 

~ ( ~ 1  = 1:: 0 . 7 ~  5 lwl 5 0 . 9 ~  
otherwise 

10.4 Consider a signal x ( n )  with Fourier transform 

X ( o )  = 0 for w,,, < lo1 5 YY 

fm < If[-< 
(a) Show that the signal x(n)  can be recovered from its samples x(rnD) if the sampling 

frequency o, = Zn /D  1 2 w , ( f ,  = l / D  2 2 f m ) .  
(b) Show that x ( n )  can be reconstructed using the formula 

where 

(c) Show that the bandlimited interpolation in part (b )  can be thought as a two-step 
process: First. increasing the sampling rate by a factor of D by inserting (D - I )  
zero samples between successive samples of the decimated signal x,(n) = x ( n D )  
and second, filtering the resulting signal using an ideal lowpass filter with cutoff 
frequency w,. 

105 In this problem we illustrate the concepts of sampling and decimation for discrete- 
time signals. To this end consider a signal x ( n )  with Fourier transform X ( w )  as in 
Fig. P10.5. 

Figure Pl05 

(a) Sampling x ( n )  with a sampling period D = 2 results to the signal 

Compute and sketch the signal x,(n) and its Fourier transform X,(w).  Can we 
reconstruct x ( n )  from x,(n)? How? 
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(b) Decimating x ( n )  by a factor of D = 2 produces the signal 

x d ( n )  = x ( 2 n )  all n  

Show that X Q ( W )  = X,(o /Z) .  Plot the signal xd(n )  and its transform Xd(w) .  Do 
we lose any information when we decimate the sampled signal x,(n)? 

10.6' Design a decimator that downsamples an input signal x ( n )  by a factor D = 5. Use 
the Remez algorithm to determine the coefficients of the FIR filter that has 0.1-dB 
ripple in the passband (0 5 w 5 n/5) and is down by at least 30 dB in the stopband. 
Also determine the corresponding polyphase filter structure for implementing the 
decimator. 

10.7* Design an interpolator that increases the input sampling rate by a factor of I = 2. Use 
the Rernez algorithm to determine the coefficients of the FIR fitter that has a 0.1-dB 
ripple in the passband (0 5 w 5 nt2) and is down by at least 30 dB in the stopband. 
Aiso, determine the corresponding polyphase filter structure for implementing the 
interpolator. 

108* Design a sample-rate converter that reduces the sampling rate by a factor g. Use the 
Remez algorithm to determine the coefficients of the FIR filler that has a 
0.1-dB ripple in the passband and is down by at least 30 dB in the stophand. Specify 
the sets of time-variant coefficients g ( n ,  m) and the corresponding coefficients in the 
polyphase filter realization of the sample-rate converter. 

10.9 Consider the two different ways of cascading a decimalor with an  interpolator shown 
in Fig. P10.9. 

(b) Figure P10.9 

(a) If D = I, show that the outputs of the two configurations are different. Hence. 
in general, the two systems are not identical. 

(b) Show that the two systems are identical if and only if D and I are relatively prime. 
10.10 Prove the equivalence of the two decimator and interpolator configurations shown 

in Fig. P1O.lO. These equivalent relations are called the "noble identities" (see 
Vaidyanathan, 1990). 

10.11 Consider an arbitrary digital filter with transfer function 

(a) Perform a twocomponent polyphase decomposition of H ( z )  by grouping the 
even-numbered samples h d n )  = h(2.n) and the odd-numbered samples h l ( n )  = 
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(b) 

figure PlO.10 

h(2n + 1). Thus show that H(:) can be expressed as 

and determine HI,(:) and HI (:I. 
(b) Generalize the result in part (a) by showing that H ( z )  can be decomposed into 

an D-component polyphase filter structure with transfer function 

Determine Hk(z). 
(c) For the IIR filter with transfer function 

determine Ho(z) and H I  ( z )  for the two-component decomposition. 
10.12 Design a two-stage decimator for the following specifications 

D = 100 
Passband: O i  F r 5 0  
Transition band: 50 5 F i 55 
Input sampling rate: 10,000 Hz 
Ripple: 6, = lo-', 82 = 

10.13 Design a linear phase FIR filter that satisfies the following specifications based on a 
single-stage and a two-stage multirate structure. 

Sampling rate: 10,000 Hz 
Passband: O i F i 6 0  
Transition band: 60 5 F 5 65 
Ripple: 6, = lo-'. & = lW3 

10.14 Prove that the half-band filter that satisfies (10.9.43) is always odd and the even 
coefficients are zero. 
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10.15 Design one-stage and two-stage interpolators to meet the following specification: 

I = 20 
Input sampling rate: 10.000 Hz 
Passband: O s F s 9 0  
Transition band: 9 0 5  Fr100 
Ripple: 6, = lo-?. = 

10.16 By using (10.9.26) derive the equations corresponding to the structure for the poly- 
phase synthesis section shown in Fig. 10.43. 

10.17 Show that the transpose of an L-stage interpolator for increasing the sampling rate by 
an integer factor I is equivalent to an L-stage decimator that decreases the sampling 
rate by a factor D = I .  

10.18 Sketch the polyphase filter structure for achieving a time advance of ( k / I ) T ,  in a 
sequence x (n). 

10.19 Prove the following expressions for an interpolator of order I .  
(a) The impulse response h ( n )  can be expressed as 

where 

p , ,  J .  J 7 = 0 . * 1 . * 2 1 , . . .  
otherwise 

(b) H ( z )  may be expressed as 

10.20* Zoom-frequency analysir Consider the system in Fig. P10.20a. 
(a) Sketch the spectrum of the signal ~ ( n )  = y R ( n )  + j y , ( n )  if the input signal x ( n )  

has the spectrum shown in Fig. P10.20b. 
(b) Suppose that we are interested in the analysis of the frequencies in the band 

fo s f ( fo + Af. where fo = n/6 and Af = x/3. Determine the cutoff of 
a lowpass filter and the decimation factor D required to retain the information 
contained in this band of frequencies. 

(c) Assume that 

where p = 40 and fk = k / p ,  k = 0,1, . . . , p -  1. Compute and plot the 1024-point 
DFT of x (n). 
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Figure P10.19 
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(d) Repeat part (b) for the signal x ( n )  given in part (c) by using an appropriately 
designed lowpass linear phase FIR filter to determine the decimated signal s ( n )  = 
s ~ t n >  + jsr(n1. 

( e )  Compute the 1024-point DFT of s ( n )  and investigate to see if you have obtained 
the expected results. 
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Linear Prediction and 
Optimum Linear Filters 

The design of filters to perform signal estimation is a problem that frequently 
arises in the design of communication systems, control systems, in geophysics, and 
in many other applications and disciplines. In this chapter we treat the problem 
of optimum filter design from a statistical viewpoint. The filters are constrained 
to be linear and the optimization criterion is based on the minimization of the 
mean-square error. As a consequence, only the second-order statistics (autocor- 
relation and crosscorrelation functions) of a stationary process are required in the 
determination of the optimum filters. 

Included in this treatment is the design of optimum filters for linear predic- 
tion. Linear prediction is a particularly important topic in digital signal processing, 
with applications in a variety of areas, such as speech signal processing, image pro- 
cessing, and noise suppression in communication systems. As we shall observe, 
determination of the optimum linear filter for prediction requires the solution of 
a set of linear equations that have some special symmetry. To solve these linear 
equations, we describe two algorithms, the Levinson-Durbin algorithm and the 
Schur algorithm. which provide the solution to the equations through computa- 
tionally efficient procedures that exploit the symmetry properties. 

The last section of the chapter treats an important class of optimum filters 
called Wiener filters. Wiener filters are widely used in many applications involving 
the estimation of signals corrupted with additive noise. 

11 .I INNOVATIONS REPRESENTATION OF A STATlONARY RANDOM 
PROCESS 

In this section we demonstrate that a wide-sense stationary random process can be 
represented as the output of a causal and causally invertible linear system excited 
by a white noise process. The condition that the system is causally invertible also 
allows us to represent the wide-sense stationary random process by the output of 
the inverse system, which is a white noise process. 
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Let us consider a wide-sense stationary process { x ( n ) }  with autocorrelation 
sequence { y x , ( m ) }  and power spectral density T , , ( f ) ,  If 1 _( i. We assume that 
T,,( f )  is real and continuous for all If ( (. f .  The z-transform of the autocorrela- 
tion sequence { y,, (m)} is 

m 

Txx(z)  = yxx(m)z--" (11.1.1) 
m=-m 

from which we obtain the power spectral density by evaluating r , , ( z )  on the unit 
circle [i.e. by substituting z = exp(j2n f  ) ] .  

Now, let us assume that log T,, ( z )  is analytic (possesses derivatives of all 
orders) in an annular region in the z-plane that includes the unit circle (i.e., rl < 

, tzl < r2 where rl < 1  and r: > 1) .  Then, log T x x ( z )  can be expanded in a Laurent 
series of the form 

m 

log T, , (z )  = C v(rn)z-" ( 1  1.1.2) 
m=-oc 

where the { u ( m ) }  are the coefficients in the series expansion. We can view { v ( m ) }  
as the sequence with i-transform V ( i )  = log T, , ( z ) .  Equivalently, we can evaluate 
log T x , ( z )  on the unit circle, 

OC 

log T,, ( f )  = C v ( m ) e - ~ ~ ~ f " ~  

so that the {v(rn)} are the Fourier coefficients in the Fourier series expansion of 
the periodic function log TI , (  f  ). Hence 

u ( m )  = [log T,,( f  ) ~ e j ~ " ~ " d f  m  = 0, k l .  . . . ii (11 .1 .4 )  
We observe that v ( m )  = v ( - m ) ,  since T,,( f )  is a real and even function of f .  

From (11.1 .2)  it follows that 

r X , ( : )  = exp C v(m)z-" 
[ m I m  ] 

where, by definition. a:, = exp[v(O)] and 

If (11.1 .5)  is evaluated on the unit circle, we have the equivalent representation of 
the power spectral density as 

r x x ( f )  = ~ E ; I H ( ~ ) I ~  
We note that 
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From the definition of H ( z )  given by (11.1.6),  it is clear that the causal part of 
the Fourier series in (11.1.3) is associated with H ( z )  and the anticausal part is 
associated with H ( z - I ) .  The Fourier series coefficients {v(m)) are the cepstral 
coeficients and the sequence { ~ ( r n ) )  is called the cepstrum of the sequence { y , , (m) ) ,  
as defined in Section 4.2.7. 

The filter with system function H ( z )  given by (11 .1 .6)  is analytic in the region 
1zI > rl < 1.  Hence, in this region, it has a Taylor series expansion as a causal 
system of the form 

m 

H ( z )  = h (n)z-" 
m=O 

The output of this filter in response to a white noise input sequence w ( n )  with 
power spectral density a: is a stationary random process { x ( n ) )  with power spec- 
tral density T,, ( f )  = a:, 1 H ( f  )/*. Conversely, the stationary random process { x ( n ) )  
with power spectral density T X x (  f) can be transformed into a white noise process 
by passing [ x ( n ) }  through a linear filter with system function l / H ( z ) .  We call 
this filter a noise whitening filter. Its output, denoted as { w ( n ) )  is called the inno- 
vations process associated with the stationary random process { x ( n ) ) .  These two 
relationships are illustrated in Fig. 11.1. 

The representation of the stationary stochastic process { x ( n ) }  as the output 
of an IIR filter with system function H ( z )  given by (11 .1 .8)  and excited by a white 
noise sequence [ w ( n ) )  is called the Wold representation. 

11.1.1 Rational Power Spectra 

Let us now restrict our attention to the case where the power spectral density of 
the stationary random process { x ( n ) )  is a rational function, expressed as 

where the polynomials B ( z )  and A ( z )  have roots that fall inside the unit circle in 
the :-plane. Then the linear filter H ( z )  for generating the random process { x ( n ) )  

, 1 k:;; 1 x(n)  1 zo h(k)w(n - k) 

White noise filter 

filter White noise 
Figure 111 Filters for generating 
(a) the random process x ( n )  from white - 

noise and (b) the inverse filter. 
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from the white noise sequence { w ( n ) )  is also rational and is expressed as 

k = l  

where {bk}  and {ak) are the filter coefficients that determine the location of the 
zeros and poles of H ( z ) ,  respectively. Thus H ( z )  is causal, stable, and minimum 
phase. Its reciprocal 1 / H  ( z )  is also a causal, stable, and minimum-phase linear 
system. Therefore, the random process { x ( n ) ]  uniquely represents the statistical 
properties of the innovations process { w ( n ) ) ,  and vice versa. 

For the linear system with the rational system function H ( z )  given by (11.1.10),  
the output x ( n )  is related to the input w ( n )  by the difference equation 

k= 1 1 =o 
We will distinguish among three specific cases. 

Autoregressive (AR) process. bo = 1. bk = 0 ,  k > 0 .  In this case, the 
linear filter H ( z )  = l / A ( z )  is an all-pole filter and the difference equation for the 
input-output relationship is 

n 

x ( n )  + x n r x ( n  - k) = w(n)  (11.1.12) 
k=l  

In turn, the noise-whitening filter for generating the innovations process is an 
all-zero filter. 

Moving average (MA) process. ak = 0 ,  k L 1. In this case, the linear filter 
H ( z )  = B ( z )  is an all-zero filter and the difference equation for the input-output 
relationship is 

4 

~ ( n )  = E b k l u ( n  - k )  (11.1.13) 
k=O 

The noise-whitening filter for the MA process is an all-pole filter. 

Autoregressive, moving average (ARMA) process. In this case, the lin- 
ear filter H ( z )  = B ( z ) / A ( z )  has both finite poles and zeros in the z-plane and the 
corresponding difference equation is given by (11.1.11).  The inverse system for 
generating the innovation process from x ( n )  is also a pole-zero system of the form 
1 / H  (2) = A ( z ) / B ( z ) .  

11 .I .2 Relationships Between the Filter Parameters and 
the Autocorrelation Sequence 

When the power spectral density of the stationary random process is a ratio- 
nal function, there is a basic relationship between the autocorrelation sequence 
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( y , , (m) )  and the parameters (ak} and (bk]  of the linear filter H ( z )  that generates 
the process by filtering the white noise sequence w(11). This relationship can be ob- 
tained by multiplying the difference equation in (11.1.11) by X'OI - t n )  and taking 
the expected value of both sides of the resulting equation. Thus we have 

P 

E [ x ( n ) x * ( n  - m)] = - Ear ~ [ . x ( n  - k ) x * ( t ~  - m)] 
k=l  

+ E  bk ~ [ w ( n  - k)x*(n - m ) ]  
li =O 

Hence 

where y,,(m) is the cross-correlation sequence between w(n)  and x-(n). 
The crosscorrelation y,,,(nz) is related to the filter impulse response. That is, 

where, in the last step, we have used the fact that the sequence ur(rt) is white. 
Hence 

By combining (11.1.17) with (1 1.1.15), we obtain the desired relationship 

This represents a nonlinear relationship between y,,(rn) and the parameters (up), 
(bk) .  

The relationship in (11.1.18) applies, in general, to the ARMA process. For 
an AR process, (11.1.18) simplifies to 
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Thus we have a linear relationship between y,, (m) and the {ak) parameters. These 
equations, called the Yule-Walker equations, can be expressed in the matrix 
form 

This correlation matrix is Toeplitz, and hence it can be efficiently inverted by use 
of the algorithms described in Section 11.3. 

Finally, by setting ak = 0, 1 ( k 5 p, and h ( k )  = bk ,  0 5 k 5 q ,  in (11.1.18), 
we obtain the relationship for the autocorrelation sequence in the case of a MA 
process, namely, 

I a 

1 t .2 FORWARD AND BACKWARD LINEAR PREDICTION 

Linear prediction is an important topic in digital signal processing with many prac- 
tical applications. In this section we consider the problem of linearly predicting 
the value of a stationary random process either forward in time or backward in 
time. This formulation leads to lattice filter structures and to some interesting 
connections to parametric signal models. 

11.2.1 Forward Linear Prediction 

Let us begin with the problem of predicting a future value of a stationary random 
process from observation of past values of the process. In particular, we consider 
the one-step forward linear predictor, which forms the prediction of the value x(n)  
by a weighted linear combination of the past values x (n  - I), x (n  -2), . . . , x(n  - p ) .  
Hence the linearly predicted value of x(n)  is 

where the { -ap(k)]  represent the weights in the linear combination- These weights 
are called the prediction coeflcients of the one-step forward linear predictor of 
order p. The negative sign in the definition of x ( n )  is for mathematical convenience 
and conforms with current practice in the technical literature. 
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predictor figure 113 Forward linear prediction 

The difference between the value x ( n )  and the predicted value x ( n )  is called 
the forward prediction error. denoted as f , (n ) :  

We view linear prediction as equivalent to linear filtering where the predictor 
is embedded in the linear filter, as shown in Fig. 11.2. This is called a prediction- 
error filler with input sequence { x ( n ) )  and output sequence { f , (n)) .  An equivalent 
realization for the prediction-error filter is shown in Fig. 11.3& This realization is 
a direct-form FIR filter with system function 

where, by definition, ap(0) = 1. 
As shown in Section 7.2.4, the direct-form FIR filter is equivalent to an all- 

zero lattice filter. The lattice filter is generally described by the following set of 

F w  113 Predictionerror filter 
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order-recursive equation: 

fob) = go(n) = x t n )  

g , (n)  = K;f , - l (n )  + g,-l(n - 1) m = 1 , 2 , .  . . , p 

where { K , ]  are the reflection coefficients and g,(n)  is the backward prediction 
error defined in the following section. Note that for complex-valued data, the 
conjugate of K ,  is used in the equation for g,(n) .  Figure 11.4 illustrates a 
p-stage lattice filter in block diagram form along with a typical stage showing 
the computations given by (11.2.4).  

As a consequence of the equivalence between the direct-form prediction- 
error FIR filter and the FIR lattice filter, the output of the p-stage lattice filter is 
expressed as 

P 

f p ( n ) = x n p ( k ) x ( n - k )  a p ( 0 ) = l  (1 1.2.5) 
I. =o 

Since (11.2.5) is a convolution sum, the z-transform relationship is 

or. equivalently. 

The mean-square value of the forward linear prediction error f p ( n )  is 

First Second 

Fqpre IL4 p-stage lattice filter 
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&/ is a quadratic function of the predictor coefficients and its minimization leads 
to the set of linear equations 

P 

yx.(l)= - xn , ( k ) y , , ( l  - k )  1 = 1.2 . . . . .  p (1 1.2.9) 
k= l  

These are called the normal equations for the coefficients of the linear predictor. 
The minimum mean-square prediction error is simply 

In the following section we extend the development above to the problem of 
predicting the value of a time series in the opposite direction. namely, backward 
in time. 

11.2.2 Backward Linear Prediction 

Let us assume that we have the data sequence x ( n ) ,  x ( n  - I ) ,  . . . . x (n  -p+l  ) from a 
stationary random process and we wishto predict the value x (n  - p )  of  the process. 
In this case we employ a one-step backward linear predicror of order p. Hence 

The difference between the value x(n  - p )  and the estimate i ( r r  - p )  is called the 
backward prediction error, denoted as g,(n): 

The backward linear predictor can be realized either by a direct-form FIR 
filter structure similar to the structure shown in Fig. 11.2 or as a lattice structure. 
The lattice structure shown in Fig. 11.4 provides the backward Iinear predictor as 
well as the forward linear predictor. 

The weighting coefficients in the backward Iinear predictor are the complex 
conjugates of the coefficients for the forward linear predictor, but they occur in 
reverse order. Thus we have 

bp(k)  = a ; ( p  - k )  k = O , l ,  . . . , p  (11.2.13) 
In the z-domain, the convolution sum in (11.2.12) becomes 

G p ( d  = B p ( z ) X I ~ )  (11.2.14) 
or, equivalently, 
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where B,(z) represents the system function of the FIR filter with coefficients 
b,(k) .  

Since b,(k)  = a * ( p  - k ) ,  G , ( ; )  is related to A,(Z)  

The relationship in (11.2.16) implies that the zeros of the FIR filter with system 
function B, ( z )  are simply the (conjugate) reciprocals of the zeros of A,(,.). Hence 
B p ( z )  is called the reciprocal or reverse polynoniial of A,(z) .  

Now that we have established these interesting relationships between the 
forward and backward one-step predictors, let us return to the recursive lattice 
equations in (11.2.4) and transform them to the z-domain. Thus we have 

If we divide each equation by X ( z ) ,  we obtain the desired results in the form 

Thus a lattice filter is described in the z-domain by the matrix equation 

The relations in (11.2.17) for A,(z)  and B,(z)  allow us to obtain the direct-form 
FIR filter coefficients (o,(k)] from the reflection coefficients (K,], and vice versa. 
These relationships were given in Section 7.2.4 by (7.2.51) through (7.253). 

The lattice structure with parameters K 1 ,  K2, . . . , K p  corresponds to a class 
of p direct-form F'IR filters with system functions A l ( z ) ,  A ~ ( z ) ,  . . . , AP(z) .  It is 
interesting to note that a characterization of this class of p FIR filters in direct form 
requires p ( p  + 1)/2 filter coefficients. In contrast, the lattice-form characterization 
requires only the p reflection coefficients ( K i } .  The reason the lattice provides a 
more compact representation for the class of p FIR filters is because appending 
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stages to the lattice does not alter the parameters of the previous stages. On the 
other hand, appending the pth stage to a lattice with ( p  - 1 )  stages is equivalent 
to increasing the Iength of an FIR filter by one coefficient, The resulting FIR filter 
with system function A,(:) has coefficients totally different from the coefficients 
of the lower-order FIR fitter with system function A,-1 ( z ) .  

The formula for determining the filter coefficients (a,(k)}  recursively is easily 
derived from polynomial relationships (1 1.2.18). We have 

By equating the coefficients of equal powers of :-' and recalling that a,(O) = 1 
for in = 1, 2,. . . , p, we obtain the desired recursive equation for the FIR filter 
coefficients in the form 

a,(O) = 1 

am ( m )  = K,, 

The conversion formula from the direct-form FIR filter coefficients {a,(k)j to 
the lattice reflection coefficients [ K , }  is also very simple. For the p-stage lattice we 
immediately obtain the reflection coefficient K ,  = a,(p). To obtain K P - , ,  . . . . K 1 ,  
we need the polynomials A,(z) for m = p - 1. . . . . I .  From (1 1.2.19) we obtain 

which is just a step-down recursion. Thus we compute all lower-degree polynomials 
A, (2) beginning with A,-1 ( z )  and obtain the. desired lattice reflection coefficients 
from the relation K ,  = a,(m). We observe that the procedure works as long 
as JK,/ # 1 for m = 1, 2,  .. ., p - 1. From this step-down recursion for the 
polynomials, it is relatively easy to obtain a formula for recursively and directly 
computing K, ,  m = p - 1, . . . , l .  For m = p - 1, . . . , 1, we have 

which is just the recursion in the Schiir-Cohn stability test for the polynomial 
A m ( z ) .  
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As just indicated, the recursive equation in (11.2.23) breaks down if any of 
the lattice parameters IKml = 1. If this occurs, it is indicative that the polynomial 
Am-l(z) has a root located on the unit circle. Such a root can be factored out from 
A,-,(z) and the iterative process in (11.2.23) carried out for the reduced-order 
system. 

Finally, let us consider the minimization of the rnean-square error in a back- 
ward linear predictor. The backward prediction error is 

and its mean-square value is 

zi = E [ I S ~ ( ~ ) ~ ' ]  

The minimization of &; with respect to the prediction coefficients yields the same 
set of linear equations as in (11.2.9). Hence the minimum mean-square error is 

rnin[&i] = E: = EL 
which is given by (11.2.10). 

11.2.3 The Optimum Reflection Coefficients for the 
Lattice Forward and Backward Predictors 

In Sections 11.2.1 and 11.2.2 we derived the set of linear equations which provide 
the predictor coefficients that minimize the mean-square value of the prediction 
error. In this section we consider the problem of optimizing the reflection coeffi- 
cients in the lattice predictor and expressing the reflection coefficients in terms of 
the forward and backward prediction errors. 

The forward prediction error in the lattice -filter is expressed as 

The minimization of E[l f ,  (n)12] with respect to the reflection coefficient K ,  yields 
the result 

-E[fm-l(n)g;- l (n - 111 
Km = ( 1  1.2.28) 

E[lgm-l (n - 1)l21 
or, equivalently, 

where EL-,  = E:-, = E[lg.-I (n - 1)12] = E[lfm-t (n)12]. 
We observe that the optimum choice of the reflection coefficients in the 

lattice predictor is the negative of the (normalized) crosscorrelation coefficients 
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between the forward and backward errors in the lattice.' Since it is apparent from 
(1 1.2.28) that K, ( ( 1. it follows that the minimum mean-square value of the 
prediction error, which can be expressed recursively as 

is a monotonically decreasing sequence. 

11.2.4 Relationship of an AR Process to Linear 
Prediction 

The parameters of an AR(p) process are intimately related to a predictor of order 
p for the same process. To see the relationship, we recall that in an AR(p) 
process, the autocorrelation sequence {y,,(rn)} is related to the parameters (ak} 
by the Yule-Walker equations given in (11.1.19) or (11.1.20). The corresponding 
equations for the predictor of order p are given by (11.2.9) and (11,2.10). 

A direct comparison of these two sets of relations reveals that there is a one- 
to-one correspondence between the parameters {ak) of the AR(p)  process and the 
predictor coefficients {ap(k)) of the pth-order predictor. In fact, if the underly- 
ing process { x ( n ) )  is AR(p), the prediction coefficients of the pth-order predictor 
are identical to [an]. Furthermore. the minimum MSE in the pth-order predictor 
EL is identical to a:. the variance of the white noise process. In this case. the 
prediction-error filter is a noise-whitening filter which produces the innovations 
sequence ( w ( n ) ] .  

11.3 SOLUTION OF THE NORMAL EQUATIONS 

In the preceding section we observed that the minimization of the mean-square 
value of the forward prediction error resulted in a set of linear equations for the 
coefficients of the predictor given by (11.2.9). These equations, called the normal 
equations, may be expressed in the compact form 

P 

~ o , ( k ) y , , ( l - k ) = O  I = 1 . 2  . . . . .  p (11.3.1) 
k=O a, (0) = 1 

The resulting minimum MSE (MMSE) is given by (11.2.10). If we augment 
(11.2.10) to the normal equations given by (11.3.1) we obtain the set of augmented 
normal equations, which may be expressed as 

We also noted that if the random process is an AR(p) process, the MMSE E{ = 0:. 

'The normalized crosscorrelation coefficients between the forward and backward error in the 
lattice (i.e.. (-K,]) are often called the partial correlation (PARCOR) coefficients. 
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In this section we describe two computationally efficient algorithms for solv- 
ing the normal equations. One algorithm, originally due to Levinson (1947) and 
modified by Durbin (1959), is called the Levinson-Durbin algorithm. This algo- 
rithm is suitable for serial processing and has a computation complexity of 0 ( p 2 ) .  
The second algorithm, due to Schiir (1917), also computes the reflection coeffi- 
cients in o ( ~ ~ )  operations but with parallel processors, the computations can be 
performed in O ( p )  time. Both algorithms exploit the Toeplitz symmetry property 
inherent in the autocorrelation matrix. 

We begin by describing the Levinson-Durbin algorithm. 

11.3.1 The Levinson-Durbin Algorithm 

The Levinson-Durbin algorithm is a computationally efficient algorithm for solving 
the normal equations in (11.3.1) for the prediction coefficients. This algorithm 
exploits the special symmetry in the autocorrelation matrix 

Note that T,(i, j )  = r,(i - j ) ,  so that the autocorrelation matrix is a Toeplirz 
matrix. Since T,(i, j) = r ; ( j ,  i), the matrix is also Hermitian. 

The key to the Levinson-Durbin method of solution, that exploits the 
Toeplitz property of the matrix, is to proceed recursively, beginning with a pre- 
dictor of order rn = 1 (one coefficient) and then to increase the order recursively, 
using the lower-order sotutions to obtain the solution to the next-higher order. 
Thus the solution to the first-order predictor obtained by solving (11.3.1) is 

and the resulting MMSE is 

Recall that a1 (1) = K1, the first reflection coefficient in the lattice filter. 
The next step is to solve for the coefficients (a2(l), az(2)) of the second-order 

predictor and express the solution in terms of al(1). The two equations obtained 
from (11.3.1) are 
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By using the solution in (11.3.4) to eliminate yx,(l), we obtain the solution 

Thus we have obtained the coefficients of the second-order predictor. Again, we 
note that a2(2) = K 2 ,  the second reflection coefficient in the lattice filter. 

Proceeding in this manner, we can express the coefficients of the mth-order 
predictor in terms of the coefficients of the (m - 1)st-order predictor. Thus we can 
write the coefficient vector a, as the sum of two vectors, namely. 

where a,,,-, is the predictor coefficient vector of the (m - 1)st-order predictor and 
the vector d,,,-l and the scalar K ,  are to be determined. Let us also partition the 
m x m autocorrelation matrix r,, as 

where yt-,  = [yxx(rn - 1) yxx(rn - 2) - .  yxx(l)] = (yL-,)'. the asterisk (*) de- 
notes the complex conjugate, and yk denotes the transpose of y,. The superscript 
b on y,-, denotes the vector yL-l = [yxx(l) y,, (2) . . . yxx(m - I ) ]  with ele- 
ments taken in reverse order. 

The solution to the equation rmam = -y, can be expressed as 

This is the key step in the Levinson-Durbin algorithm. From (11.3.10) we obtain 
two equations, namely, 

Since rm- lam- l  = -Y,-~, (11.3.11) yields the solution 

But YE-, is just y,-, with elements taken in reverse order and conjugated. There- 
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fore, the solution in (11.3.13) is simply 

dm-l = K ~ ~ E - ~  = K, (11.3.14) 

The scalar equation (11.3.12) can now be used to solve for K,. If we eliminate 
dm-] in (11.3.12) by using (11,3.14), we obtain 

Km[yxX(O) + ~ 2 - , a ~ - , ]  + ~E-~a , - l  = - y x x ( m )  
Hence 

yxx ( m )  + YE-1 am-1 
K, = - 

Yxx ( 0 )  + YE-] a:-, 
Therefore, by substituting the solutions in (1 1.3.14) and (11.3.15) into (1 1.3.8), 

we obtain the desired recursion for the predictor coefficients in the Levinson- 
Durbin algorithm as 

The reader should note that the recursive relation in (11.3.17) is identical to the 
recursive relation in (11.2.21) for the predictor coefficients, obtained from the 
polynomials Am(z)  and B, (2). Furthermore, Km is the reflection coefficient in the 
mth stage of the lattice predictor. This development clearly illustrates that the 
Levinson-Durbin algorithm produces the reflection coefficients for the optimum 
lattice prediction filter as well as the coefficients of the optimum direct-form FIR 
predictor. 

Finally, let us determine the expression f& the MMSE. For the mth-order 
predictor, we have 

where E: = y,,(O). Since the reflection coefficients satisfy the property that I K, 1 5 
1, the MMSE for the sequence of predictors satisfies the condition 
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This concludes the derivation of the Levinson-Durbin algorithm for solving 
the linear equations I?,&, = -y,, for m = 0, 1. . . . , p.  We observe that the linear 
equations have the special property that the vector on the right-hand side also 
appears as a vector in r,. In the more general case, where the vector on the 
right-hand side is some other vector, say c,, the set of linear equations can be 
solved recursively by introducing a second recursive equation to solve the more 
general linear equations r,b, = c,,,. The result is a generalized Levinson-Durbin 
algorithm (see Problem 11.12). 

The Levinson-Durbin recursion given by (11.3.17) requires O(m) multiplica- 
tions and additions (operations) to go from stage rn to stage m + 1. Therefore, for 
p stages it takes on the order of 1 +2 + 3  + . . . +p(p  + 1)/2, or 0 ( p 2 ) ,  operations to 
solve for the prediction filter coefficients, or the reflection coefficients, compared 
with 0 ( p 3 )  operations if we did not exploit the Toeplitz property of the correlation 
matrix. 

If the Levinson-Durbin algorithm is implemented on a serial computer or 
signal processor, the required computation time is on the order of o ( ~ ~ )  time 
units. On the other hand, if the processing is performed on a parallel processing 
machine utilizing as many processors as necessary to exploit the full parallelism 
in the algorithm, the multiplications as well as the additions required to compute 
(11.3.17) can be carried out simultaneousiy. Therefore. this computation can be 
performed in O(p) time units. However, the computation in (11.3.16) for the re- 
flection coefficients takes additional time. Certainly. the inner products involving 
the vectors a,-1 and y:,-, can be computed simultaneously by employing parallel 
processors. However. the addition of these products cannot be done simultane- 
ously, but instead, require O(logp) time units. Hence, the computations in the 
Levinson-Durbin algorithm, when performed by p parallel processors, can be ac- 
complished in 0 (p log p )  time. 

In the following section we describe another algorithm, due to Schiir (1937), 
that avoids the computation of inner products, and therefore is more suitable for 
parallel computation of the reflection coefficients. 

11.3.2 The Schiir Algorithm 

The Schiir algorithm is intimately related to a recursive test for determining the 
positive definiteness of a correlation matrix. To  be specific, let us consider the 
autocorrelation matrix r,+l associated with the augmented normal equations given 
by (11.3.2). From the elements of this matrix we form the function 

and the sequence of functions R , ( z )  defined recursively as 
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Schiir's theorem states that a necessary and sufficient condition for the cor- 
relation matrix to be positive definite is that IR,(oo)l < 1 for m = 1 , 2 , .  . . , p. 

Let us demonstrate that the condition for positive definiteness of the autocor- 
relation matrix rp+1 is equivalent to the condition that the reflection coefficients 
in the equivalent lattice filter satisfy the condition IK, I < 1, m = 1, 2, . . . , p. 

First, we note that Rg(co) = 0 .  Then, from (11.3.21) we have 

Hence R l ( m )  = y,, ( l ) / y x x  ( 0 ) .  We observe that Rl ( m )  = -KI. 
Second, we compute R ~ ( z )  according to (11.3.21) and evaluate the result at 

: z  = m. Thus we obtain 

Again, we observe that R 2 ( m )  = - K 2 .  B y  continuing this procedure, we find that 
R , ( w )  = - K m ,  for m = 1, 2, . . . , p. Hence the condition IR,(cm)l < 1 for m = 1,  
2, . . . , p, is identical to the condition I K ,  I < 1 for m = 1,2,  . . . , p, and ensures the 
positive definiteness of the autocorrelation matrix r,+l. 

Since the reflection coefficients can be obtained from the sequence of func- 
tions R, (Z) ,  m = I,  2 , .  . . , p,  we have another method for solving the normal 
equations. We call this method the Schiir algorithm. 

Schiir algorithm. Let us first rewrite R,(z)  as 

where 

Since KO = 0 and K, = - R, ( m )  for m = 1, '2, . . . , p, the recursive equation 
(11.3.21) implies the foIlowing recursive equations for the poIynomials P, (z) and 
Qm (2):  

Thus we have 

and 
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Next the reflection coefficient K2 is obtained by determining P2(z )  and Q 2 ( z )  from 
(11.3.25). dividing Pz(z) by Q 2 ( z )  and evaluating the result at z = m. Thus we find 
that 

where the terms involving z-p-' have been dropped. Thus we observe that the 
recursive equation in (11.3.25) is equivalent to (11.3.21). 

Based on these relationships. the Schiir algorithm is described by the follow- 
ing recursive procedure. 

Initialization. Form the 2 x ( p  + 1) generator matrix 

where the elements of the first row are the coefficients of Po(z) and the 
elements of the second row are the coefficients of Q o ( z ) .  
Step I .  Shift the second row of the generator matrix to the right by one 
place and discard the last element of this row. A zero is placed in the vacant 
position. Thus we obtain a new generator matrix, 

GI = [ 0 YXX(1) Y,x(l) YXX(2) . . .  yxx(p) 
0 YXX(0) yxx(1) YXIC1) * . *  y x x ( p - 1 )  

] (11.3.30) 

The (negative) ratio of the elements in the second column yield the reflection 
coefficient K 1  = - y x x ( l ) / y x x ( 0 ) .  
Step 2. Multiply the generator matrix by the 2 x 2 matrix 

Thus we obtain 

(1 1.3.32) 
Step 3. Shift the second row of VIGl by one place to the right and thus form 
the new generator matrix 

G2 = [ 0 0 y x x ( 2 ) + K l ~ x r ( l )  ~ . r x ( p ) + K l ~ x x ( p - l )  
0 0 ~ ~ ~ ( 0 )  + K ; y X x ( l )  - yX, (p  - 2) + K;y, , (p  - 1) 1 

(11.3.33) 
The negative ratio of the elements in the third column of G2 yields K2. 
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Steps 2 and 3 are repeated until we have solved for all p reflection coefficients. 
In general. the 2 x 2 matrix in step 2 is 

and multiplication of V, by G, yields V m G m .  In step 3 we shift the second row 
of VmGm one place to the right and obtain the new generator matrix G,+,. 

We observe that the shifting operation of the second row in each iteration 
is equivalent to multiplication by the delay operator z-l in the second recursive 
equation in (11.3.25). We also note that the division of the polynomial P,,,(z) by 
the polynomial Q,(z) and the evaluation of the quotient at z = w is equivalent 
to dividing the elements in the ( m  + 1)s t  column of G,. The computation of 
the p reflection coefficients can be accomplished by use of parallel processors in 
O ( p )  time units. Below we describe a pipelined architecture for performing these 
computations. 

Another way of demonstrating the relationship of the Schur algorithm to the 
Levinson-Durbin algorithm and the corresponding lattice predictor is to determine 
the output of the lattice filter obtained when the input sequence is the correlation 
sequence f y,,,(m), m = 0, 1. . . .). Thus, the first input to the lattice filter is y,,, (O), 
the second input is yx,(l), and so on [i.e., fo(n)  = y,.,(n)]. After the delay in 
the first stage, we have go(rr - I )  = y,,(n - I). Hence, for 12 = 1, thc ratio 
./c~(l)/g~(O) = y,,(l)/yX,(O), which is the negative of the reflection coefficient K I .  
Alternatively, we can express this relationship as 

Furthermore, go(0) = yxx(0) = E l .  At time n = 2, the input to the second stage 
is, according to (11.2.4). 

and after the unit of delay in the second stage, we have 

Now the ratio fi(2)/gl(l) is 

Hence 

By continuing in this manner, we a n  show that at the input to the mth lattice stage, 
the ratio f,-l(m)/g,-~(rn - 1) = - K .  and g.-~(m - 1) = EL-,. Consequently, 
the lattice filter coefficients obtained from the Levinson algorithm are identical 
to the coefficients obtained in the Schur algorithm. Furthermore, the lattice filter 
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structure provides a method for computing the reflection coefficients in the lattice 
predictor. 

A pipelined architecture for implementing the Schiir algorithm. Kung 
and Hu (1983) developed a pipelined lattice-type processor for implementing the 
Schiir algorithm. The processor consists of a cascade of p lattice-type stages. where 
each stage consists of two processing elements (PEs), which we designate as upper 
PEs denoted as A,, A?. . . . , Ap, and lower PEs denoted as B1, B2.  . . . , B,, as shown 
in Fig. 11.5. The PE designated as A1 is assigned the task of performing divisions. 
The remaining PEs perform one multiplication and one addition per iteration (one 
clock cycle). 

Initially, the upper PEs are loaded with the elements of the first row of the 
generator matrix Go.  as illustrated in Fig. 11.5. The lower PEs are loaded with the 
elements of the second row of the generator matrix Go. The computational process 
begins with the division PE, Al, which computes the first reflection coefficient as 
K l  = -y , , ( l ) /y , , (O) .  The value of K r  is sent simuitaneously to all the PEs in the 
upper branch and lower branch. 

The second step in the computation is to update the contents of all processing 
elements simultaneously. The contents of the upper and lower PEs are updated 
as follows: 

PEA,,,: A, t A,+KIB, m = 2 , 3  , . . . .  p 
PEB,:B,, t B , + K ; A ,  m = 1 , 2  , . . . .  p 

The third step involves the shifting of the contents of the upper PEs one 
place to the left. Thus we have 

At this point, PE A1 contains yx,(2) + K l y x , ( l )  while PE B1 contains y,,(O) + 
KT y , , ( l ) .  Hence the processor A1 is ready to begin the second cycle by computing 

Fire 11s Pipelined pardel processor for computing the reflection coefficients 



Sec. 11.4 Properties of the Linear Prediction-Error Filters 873 

the second reflection coefficient K2 = -Al/BI. The three computational steps 
beginning with the division AI/Bl are repeated until all p reflection coefficients 
are computed. Note that PE B1 provides the minimum mean-square error EL for 
each iteration. 

If rd  denotes the time for PE Al to perform a (complex) division and r,, 
is the time required to perform a (complex) multiplication and an addition, the 
time required to compute all p reflection coefficients is p(rd + r,,) for the Schur 
algorithm. 

11.4 PROPERTIES OF THE LINEAR PREDICTION-ERROR FILTERS 

Linear prediction filters possess several important properties, which we now de- 
scribe. We begin by demonstrating that the forward prediction-error fitter is min- 
imum phase. 

Minimum-phase property of the forward prediction-error fitter. We 
have already demonstrated that the reflection coefficients ( K ,  J are correlation co- 
efficients, and consequently, I K, I 5 1 for all i. This condition and the relation 
EL = ( I  - IK , , (Z )EL- ,  can be used to show that the zeros of the prediction-error 
filter are either all inside the unit circle or they are all on the unit circle. 

First. we show that if EL > 0, the zeros Iz, I < 1 for every i .  The proof is by 
induction. Clearly, for p = 1 the system function for the prediction-error filter is 

Hence zl = -Kl and E{ = (1 - IK1 J ~ ) E ~  > 0. Now, suppose that the hypothesis is 
true for p - 1. Then, if zi  is a root of A P ( z ) ,  we have from (11.2.16) and (11.2.18), 

Hence 

We note that the function Q(z) is all pass. In general, an all-pass function of the 
form 

satisfies the property that IP(z)l > 1 for lzl e 1, lP(z)l = 1 for lzl = 1, and 
IP(z)l < 1 for 121 > 1. Since Q(z) = -P(z)/z, it follows that lzil < 1 if IQ(z)I > 1. 
Clearly, this is the case since Q(zi) = 1/K, and ~ , f  > 0. 
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On the other hand, suppose that E;-, > 0 and E; = 0 .  In this case IKpI = 1 
and IQ(zi)l = 1. Since the MMSE is zero, the random process x ( n )  is called pre- 
dictable or deterministic. Specifically, a purely sinusoidal random process of the 
form 

M 
r ( n )  = 1 a k e j ( n ~ + & )  (11.4.5) 

L=l 

where the phases (8k) are statistically independent and uniformly distributed over 
( 0 , 2 ~ ) ,  has the autocorrelation 

k = l  

and the power density spectrum 

This process is predictable with a predictor of order p 2 M. 
To demonstrate the validity of the statement, consider passing this process 

through a prediction error filter of order p 2 M. The MSE at the output of this 
filter is 

By choosing M of the p zeros of the prediction-error filter to coincide with the 
frequencies { f k } ,  the MSE &/ can be forced to zero. The remaining p - M zeros 
can be selected arbitrarily to be anywhere inside the unit circle. 

Finally, the reader can prove that if a random process consists of a mixture 
of a continuous power spectral density and a discrete spectrum, the prediction- 
error filter must have at1 its roots inside the unit circle. 

Maximurn-phase property of the backward prediction-error filter. The 
system function for the backward prediction error filter of order p is 

Consequently, the roots of B P ( z )  are the reciprocals of the roots of the forward 
prediction-error filter with system function AP(z) .  Hence if A, ( z )  is minimum 
phase, then B,(z) is maximum phase. However, if the process x ( n )  is predictable, 
all the roots of B p ( z )  lie on the unit circle. 
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Whitening properly. Suppose that the random process x(n)  is an A R ( p )  
stationary random process that is generated by passing white noise with variance 
a: through an all-pole filter with system function 

Then the prediction-error filter of order p has the system function 

where the predictor coefficients a,(k) = ak. The response of the prediction-error 
filter is a white noise sequence {w(n ) } .  In this case the prediction-error filter 
whitens the input random process x ( n )  and is called a whitening filter, as indicated 
in Section 11.2. 

More generally, even if the input process x(n)  is not an AR process, the 
prediction-error filter attempts to remove the correlation among the signal samples 
of the input process. A s  the order of the predictor is increased, the predictor 
output i ( n )  becomes a closer approximation to x ( n )  and hence the difference 
f ( n )  = i ( n )  - ~ ( n )  approaches a white noise sequence. 

Orthogonality of the backward prediction errors. The backward pre- 
diction errors {g , (k )J  from different stages in the FIR lattice filter are orthogonal. 
That is, 

This property is easily proved by substituting for gm(n) and gT(n) into (11.4.12) 
and carrying out the expectation. Thus 

m I 

E[gm(n)g;(n)]  = x bm(k) b ; ( j )  ~ [ x ( n  - k)xb(n  - j ) ]  
k=O j=O 

But the normal equations for the backward linear predictor require that 

Therefore, 



876 Linear Prediction and Optimum Linear Filters Chap. 11 

Additional properties. There are a number of other interesting properties 
regarding the forward and backward prediction errors in the FIR lattice filter. 
These are given here for real-valued data. Their proof is left as an exercise for 
the reader. 

(a) E [ f ,  (n )x (n  - i ) ]  = 0,  l ~ i l r n  

(b )  E[g , (n )x (n  - i)] = 0, 0 5 i 5 m  - 1 

(c) E[f , (n )x (n ) ]  = E[g ,  (n )x (n  - m)] = Em 

(dl E [ f i ( n ) f j ( n ) l =  Ernax(i9 j l  

11.5 AR LATTICE AND ARMA LATTICE-LADDER FILTERS 

In Section 11.2 we showed the relationship of the all-zero FIR lattice to linear 
prediction. The linear predictor with transfer function, 

when excited by an input random process { x ( n ) } ,  produces an output that a p  
proaches a white noise sequence as p -t m. On the other hand, if the input 
process is an A R ( p ) ,  the output of A,(z) is white. Since A,(z)  generates a M A ( P )  
process when excited with a white noise sequence, the all-zero lattice is sometimes 
called a MA lattice. 

In the following section, we develop the lattice structure for the inverse filter 
l / A , ( z ) ,  called the A R  lattice, and the lattice-ladder structure for an ARMA 
process. 
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11.5.1 AR Lattice Structure 

Let us consider an all-pole system with system function 

I + C a p ( i l ) . ~ - ~  
k = l  

The difference equation for this I IR  system is 

Now suppose that we interchange the roles of the input and output [i.e., inter- 
change x ( n )  with y ( n )  in (17.5.3)] obtaining the difference equation 

P 

x ( n )  = - o , (k )x (n  - k )  + ~ ( n )  
k=1 

or, equivalently, 
n 

I=1 

We observe that (11.5.4) is a difference equation for an FIR system with 
system function A,(:).  Thus an all-pole IIR system can be converted to an all- 
zero system by interchanging the roles of the input and output. 

Based on this observation, we can obtain the structure of an A R ( p )  lattice 
from a MA(p) lattice by interchanging the input with the output. Since the M A ( p )  
lattice has y ( n )  = f p ( n )  as its output and x(n) = fo(n)  is the input, we let 

These definitions dictate that the quantities { f m ( n ) )  be computed in descending or- 
der. This computation can be accomplished by reirranging the recursive equation 
for { f , (n ) )  in (11.2.4) and solving for f , - ] ( n )  in terms of f ,(n).  Thus we obtain 

The equation for g,(n) remains unchanged. The result of these changes is the set 
of equations 

x(n) = f,(n) 

The corresponding structure for the AR@) lattice is shown in Fig. 11.6. Note that 
the all-pole lattice structure has an all-zero path with input go@) and output g,(n), 
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Figure 11.6 Lattice structure for an all-pole system 

which is identical to the all-zero path in the Ma(p) lattice structure. This is not 
surprising, since the equation for g, (n)  is identical in the two lattice structures. 

We also observe that the AR(p) and MA@) lattice structures are charac- 
terized by the same parameters, namely, the reflection coefficients {Ki). Conse- 
quently, the equations given in (11.2.21) and (11.2.23) for converting between the 
system parameters {a,(X-)} in the direct-form realizations of the all-zero system 
A,(:) and the lattice parameters { K i ]  of the MA(p) lattice structure, apply as well 
to the all-pole structures. 

11.5.2 ARMA Processes and Lattice-Ladder Filters 

The all-pole lattice provides the basic building block for lattice-type structures 
that implement IIR systems that contain both poles and zeros. To construct the 
appropriate structure, let us consider an ITR system with system function 

2 cq(k)z-k 
H ( z ) =  '=O c, (z) =- 

Ap( z )  
1 + x a,, (k)z-& 

Without loss of generality, we assume that p 2 q. 
This system is described by the difference equations 

obtained by viewing the system as a cascade of an all-pole system followed by an 
all-zero system. From (11.5.8) we observe that the output y ( n )  is simply a linear 
combination of delayed outputs from the all-pole system. 

Since zeros result from forming a linear combination of previous outputs, we 
can carry over this observation to construct a pole-zero system using the all-pole 
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lattice structure as the basic building block. We have clearly observed that g,(n) 
in the all-pole lattice can be expressed as a linear combination of present and past 
outputs. In fact, the system 

is an all-zero system. Therefore, any linear combination of { g m ( n ) j  is also an 
all-zero filter. 

Let us begin with an all-pole lattice filter with coefficients K,, 1 5 m 5 p, 
and add a ladder part by taking as the output, a weighted linear combination of 
{ g , ( n ) ) .  The result is a pole-zero filter that has the lattice-ladder structure shown 
in Fig. 11.7. Its output is 

where {pk) are the parameters that determine the zeros of the system. The system 
function corresponding to (11.5.10) is 

(a) Pole-zero system 

Inpul 

Jm- t (n )  

(b) mh stage of lattice 

Figure 11.7 Latticeladder structure for pole-zero system 

f P - l ( n )  
4 

g, ,- l (n) - 
x ( n )  = f p ( n )  

gp (n)  
Stage 
- 1 

- 

Stage 
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Stage 

1 

fP-* (n)  f i b )  
: ... 

g,-z(n)- g ~ ( ~ )  . ... 

" Po Pf 

f o b )  - 

go(") 

11 

Fp-! "  4 - 2  1 Bl 
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Since X(z) = F,(z) and Fo(z) = Go(z), (11.5.11), can be expressed as 

Therefore, 
4 

Cq ( 2 )  = z BkBk (2) (11.5.13) 
k=O 

This is the desired relationship that can be used to determine the weighting coef- 
ficients {&} as previously shown in Section 7.3.5. 

Given the polynomials Cq(z) and A,(z), where p 2 q ,  the reflection coef- 
ficients (Ki] are determined first from the coefficients {a,(k)). By means of the 
step-down recursive relation given by (11.2.22), we also obtain the polynomials 
Bk(z ) ,  k = 1 ,2 , .  . . , p. Then the ladder parameters can be obtained from (11.5.13), 
which can be expressed as 

nl-1 

= Cm-1 ( z )  + BmBm(i) 
or, equivalently, 

C ~ - I ( Z )  = C,(Z) -pmBm(~) m = P ,  P I 1 , .  . . , 1 (11.5.15) 

By running this recursive relation backward, we can generate all the lower-degree 
polynomials, Cm(z), m = p - 1 , .  . . , 1. Since bm(m) = 1, the parameters 8, are 
determined from (11.5.15) by setting 

When excited by a white noise sequence, this lattice-ladder filter structure 
generates an ARMA(p, q)  process that has a power density spectrum 

and an autocorrelation function that satisfies (11.1.18), where a:, in the variance 
of the input white noise sequence. 

11.6 WIENER FILTERS FOR FILTERING AND PREDICTION 

In many practical applications we are given an input signal { x ( n ) ] ,  consisting of 
the sum of a desired signal {s (n ) ]  and an undesired noise or interference { w ( n ) ) ,  
and we are asked to design a filter that suppresses the undesired interference 
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x(n)  O~rimum 
- linear - &I '*) 

filter 

w(n)  
Noise 

Fqme 11s Model for linear estimation 
problem 

component. In such a case, the objective is to design a system that filters out 
the additive interference while preserving the characteristics of the desired signal 
{ s ( n ) l .  

In this section we treat the problem of signal estimation in the presence of 
an additive noise disturbance. The estimator is constrained to be a linear filter 
with impulse response { h ( n ) } ,  designed so that its output approximates some spec- 
ified desired signal sequence { d ( n ) } .  Figure 11.8 illustrates the linear estimation 
problem. 

The input sequence to the filter is x(n)  = s ( n ) +  w ( n ) ,  and its output sequence 
is ~ ( n ) .  The difference between the desired signal and the filter output is the error 
sequence e ( n )  = d ( n )  - y (n) .  

We distinguish three special cases: 

I. If d ( n )  = s ( n ) ,  the linear estimation problem is referred to as filtering. 
2. If d ( n )  = s(n + D ) ,  where D  > 0, the linear estimation problem is referred to 

as signal prediction. Note that this problem is different than the prediction 
considered earlier in this chapter, where d ( n )  = x(n + D), D 2 0. 

3. If d ( n )  = s (n  - D ) ,  where D  > 0, the linear estimation problem is referred 
to as signal smoothing. 

Our treatment will concentrate on filtering and prediction. 
The criterion selected for optimizing the. filter impulse response {h ( n ) }  is 

the minimization of the mean-square error. Thk criterion has the advantages of 
simplicity and mathematical tractability. 

The basic assumptions are that the sequences { s ( n ) ) ,  { w ( n ) ) ,  and { d ( n ) }  are 
zero mean and wide-sense stationary. The linear filter will be assumed to be either 
FIR or IIR. If it is IIR, we assume that the input data { x ( n ) }  are available over 
the infinite past. We begin with the design of the optimum FIR filter. The opti- 
mum linear filter, in the sense of minimum mean-square error (MMSE), is called 
a Wiener filter. 

11.6.1 FIR Wiener Filter 

Suppose that the filter is constrained to be of length M with coefficients { h t ,  0 5 
k 5 M - 1). Hence its output y (n)  depends on the finite data record x ( n ) ,  
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The mean-square value of the error between the desired output d(n) and y(n) is 

Since this is a quadratic function of the filter coefficients, the minimization of EM 
yields the set of linear equations 

where y,,(k) is the autocorrelation of the input sequence (x(n)) and yd,(k) = 
E[d(n)xb(n - k)] is the crosscorretation between the desired sequence (d(n)) and 
the input sequence {x(n), 0 5 n 5 M - 1). The set of linear equations that specify 
the optimum filter is called the Wiener-Hopf equation. These equations are also 
called the normal equations, encountered earlier in the chapter in the context of 
linear one-step prediction. 

In general, the equations in (11.6.3) can be expressed in matrix form as 

where I'M is an M x M (Hermitian) Toeplitz matrix with elements rIk = y,,(l- k) 
and y, is the M x 1 crosscorrelation vector with elements ydr ( I ) ,  I = 0, I ,  . . . , M - 1. 
The solution for the optimum filter coefficients is 

and the resulting minimum MSE achieved by the Wiener filter is 

or, equivalently, 

MMSEM = 0; - ?;rilyd (1 1.6.7) 

where a: = E ld(n)12. 
Let us consider some special cases of (11.6.3). If we are dealing with filtering, 

the d(n) = s(n). Furthermore, if s(n) and w(n) are uncorrelated random sequences, 
as is usually the case in practice, then 
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and the normal equations in (11.6.3) become 

If we are dealing with prediction, then d ( n )  = s(n + D )  where D > 0. As- 
suming that s ( n )  and w(n)  are uncorrelated random sequences, we have 

Hence the equations for the Wiener prediction filter become 

In all these cases. the correlation matrix to be inverted is Toepkitz. Hence the 
(generalized) Levinson-Durbin algorithm may be used to solve for the optimum 
filter coefficients. 

Example 11.6.1 

Let us consider a signal x ( n )  = s ( n )  + w ( n ) ,  where s ( n )  is an AR(1) process that 
satisfies the difference equation 

where { ~ ( n ) )  is a white noise sequence with variance o: = 0.64, and { w ( n ) }  is a white 
noise sequence with variance at = 1. We will design a Wiener filter of length M = 2 
to  estimate { s ( n ) } .  

Solution Since ( s ( n ) )  is obtained by exciting a single-pole filter by white noise, the 
power spectral density of s ( n )  is 

- - 0.64 
1.36 - 1.2 cos 2x f 

The corresponding autocorrelation sequence { y , , ( m ) )  is 

The equations for the filter coefficients are 

Solution of these equations yields the result 
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The corresponding minimum MSE is 

MMSEz = 1 - h(O)y,,(O) - h(l)v,,(l) 

= 1 - 0.451 - (0.165)(0.6) 

This error can be reduced further by increasing the length of the Wiener filter (see 
Problem 11.27). 

11.6.2 Orthogonality Principle in Linear Mean-Square 
Estimation 

The normal equations for the optimum filter coefficients given by (11.6.3) can be 
obtained directly by applying the orthogonality principle in linear mean-square 
estimation. Simply stated. the mean-square error EM in (11.6.2) is a minimum if 
the filter coefficients ( h ( k ) J  are selected such that the error is orthogonal to each 
of the data points in the estimate, 

E[e(n)x*(n - I ) ]  = 0 I = 0,  1, . . . , M - 1 ( 1  1.6.12) 
where 

Conversely, if the filter coefficients satisfy (11.6.12), the resulting M S E  is a mini- 
mum. 

When viewed geometrically, the output of the filter, which is the estimate 

is a vector in the subspace spcnned by the data {x(k) ,-0 5 k 5 M - I } .  The error 
e(n) is a vector from d ( n )  to d (n )  [i.e., d ( n )  = e(n)  + d ( n ) ] ,  as shown in Fig. 11.9. 
The orthogonality principle states that the length EM = ~ ( e ( t l ) l *  is a minimum 
when e(n) is perpendicular to the data subspace [i-e., e(n) is orthogonal to each 
data point x ( k ) ,  0 5 k 5 M - 11. 

We note that the solution obtained fr?m the normal equations in (11.6.3) 
is unique if the data ( x ( n ) }  in the estimate d ( n )  are linearly independent. In this 
case, the correlation matrix I'M is nonsingular. On the other hand, if the data are 
linearly dependent, the rank of rM js less than M and therefore the solution is not 
unique. In this case, the estimate d ( n )  can be expressed as a linear combination 
of a reduced set of linearly independent data points equal to the rank of rM.  

Since the MSE is minimized by selecting the filter coefficients to satisfy the 
orthogonality principle, the residual minimum MSE is simply 

MMSEM = E[e(n)d' (n)]  (11.6.15) 

which yields the result given in (11.6.6). 
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1 

- ~ ( 1 )  

Figure 11.9 Geometric interpretation 
of linear MSE problem 

t 1.6.3 IIR Wiener Filter 

In the preceding section we constrained the filter to be FIR and obtained a set of 
M linear equations for the optimum filter coefficients. In this section we allow the 
filter to be infinite in duration (IIR) and the data sequence to be infinite as well. 
Hence the filter output is 

The filter coefficients are selected to minimize the mean-square error between the 
desired output d(n)  and v ( n ) ,  that is, 

C, = ~ l e ( n ) / *  

Application of the orthogonality principle leads to the Wiener-Hopf equa- 
tion. 

The residual MMSE is simply obtained by application of the condition given by 
(11.6.15). Thus we obtain 

MMSE, = min E, = 0; - C hOp(k)y&(k)  (11.6.19) 
k=O 

The Wiener-Hopf equation given by (11.6.18) cannot be solved directly with 
z-transform techniques, because the equation holds only for I 2 0. We shaII solve 
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for the optimum IIR Wiener filter based on the innovations representation of the 
stationary random process {x(n)j. 

Recall that a stationary random process { x ( n ) )  with autoconelation yxx(k) 
and power spectral density r,, ( f )  can be represented by an equivalent innova- 
tions process, { i  (n)) by passing {x (n)) through a noise-whitening filter with system 
function l/G(z), where G(z) is the minimum-phase part obtained from the spectral 
factorization of T,, (2): 

Txx(z) = a ,%(z )~ ( z - ' )  (11.6.20) 

Hence G ( z )  is analytic in the region ]zl > rl, where rl 1. 
Now, the optimum Wiener filter can be viewed as the cascade of the whiten- 

ing filter Z/G(z) with a second filter, say Q(z ) ,  whose output y(n) is identical to 
the output of the optimum Wiener filter. Since 

and e ( n )  == d ( n )  - y ( n ) ,  application of the orthogonality principle yields the new 
Wiener-Hopf equation as 

But since ( i (n))  is white, it follows that yii(l - k)  = 0 unless I = k. Thus we obtain 
the solution as 

The z-transform of the sequence { q ( l ) )  is 
w 

Q ( z )  = C 4 ( k ) ~ - ~  
k f O  

If we denote the z-transform of the two-sided crosscorrelation sequence ydi(k) by 
r d i  (z): 

and define [rdi(z)]+ as 

then 
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To determine [ r d i ( z ) ] + ,  we begin with the output of the noise-whitening filter, 
which can be expressed as 

bC 

where { v ( k ) ,  k 2 0) is the impulse response of the noise-whitening filter, 

Then 

ydi(k) = E[d(n) i3 (n  - k ) ]  
m 

= v ( m ) E [ d ( n ) r * ( n  - m - k ) ]  
m=O 

The z-transform of the crossco~elation yd; ( k )  is 

Therefore, 

Finally, the optimum IIR Wiener filter has the system function 

In summary, the solution for the optimum IIR Wiener filter requires that 
we perform a spectral factorization of r x x ( z )  to obtain G(z), the minimum-phase 
component, and then we solve for the causal part of r d r ( z ) / G ( z - ' ) .  The following 
example illustrates the procedure. 
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Example 1M2 

Let us determine the optimum IIR Wiener filter for the signal given in Example 11.6.1. 

Solution For this signal we have 

where CT,? = 1.8 and 

The z-transform of the crosscorrelation yd,(m) is 

Hence 

The optimum IIR filter has the system function 

and an impulse response 

hTr(n) = 5 9 ( J n  n z "  

We conclude this section by expressing the minimum MSE given by (11.6.19) 
in terms of the frequency-domain characteristics of the filter. First, we note that 
a: r E1d(n)l2 is simply the value of the autocorrelation sequence (ydd(k)} evalu- 
ated at k = 0. Since 

I 
ydd(k) = -$rdd (d(r)zk-'dz (11.6.34) 

h j  
it follows that 

(1 1.6.35) 

where the contour integral is evaluated along a closed path encircling the origin 
in the region of convergence of rdd(z). 
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The second term in (11.6.19) is also easily transformed to the frequency 
domain by application of Parseval's theorem. Since h,,,(k) = 0 for k < 0, we have 

where C is a closed contour encircling the origin that lies within the common 
region of convergence of Hop[ ( z )  and rdx (2-'1. 

By combining (11.6.35) with (11.6.36), we obtain the desired expression for 
the M M S E x  in the form 

1 
MMSE, = -$[rrd (z) - ~ ~ ~ t ( z ) r d ~ ( z - ' ) ~ - ~ d ~  (1 1.6?37) 

2 x j  c 

Example 11.63 

For the optimum Wiener filter derived in Example 11.6.2, the minimum MSE is 

1 
MMSE, = -fi [ 

2 n j  r (: - f ) ( l  - 0.6~) 

There is a single pole inside the unit circle at z = 5 .  By evaluating the residue at the 
pole, we obtain 

MMSE, = 0.444 

We observe that this MMSE is only slightly smaller than that for the optimum two-tap 
Wiener filter in Example 11.6.1. 

1 1.6.4 Noncausal Wiener Filter 

In the preceding section we constrained the optimum Wiener filter to be causal 
[i.e., hop(n)  = 0 for n < 01. In this section we drop this condition and allow the 
filter to include both the infinite past and the infinite future of the sequence { x ( n ) ]  
in forming the output y ( n ) ,  that is, 

The resulting filter is physically unrealizable. It can also be viewed as a smoothing 
$her in which the infinite future signal values are used to smooth the estimate 
d  (n) = y  ( n )  of the desired signal d ( n ) .  

Application of the orthogonality principle yields the Wiener-Hopf equation 
for the noncausal filter in the form 

and the resulting MMSE,, as 
CX; 

MMSE., = a: - h ( k ) y i X ( k )  
k=-00 
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Since (11.6.39) holds for -oc < I < -00, this equation can be transformed 
directly to yield the optimum noncausal Wiener filter as 

The MMSE,,. can also be simply expressed in the z-domain as 

MMSE,, = - fi[rddk) - H,~(Z) r d l  (z-')]z-'dz (11.6.42) 
2nj 

In the following example we compare the form of the optimal noncausal filter 
with the optimal causal filter obtained in the previous section. 

Example 11.6.4 

The optimum noncausal Wiener filter for the signal characteristics given in Exam- 
ple 11.6.1 is given by (11.4.41). where 

0.64 
l-dx ( z )  = (21 = 

(1 - 0 .6~- ' ) ( I  - 0.6:) 
and 

r x T i z )  = rry(2) -+ 1 

Then. 

This filter is clearly noncausal. 
The minimum MSE achieved by this filter is determined from evaluating 

(1 1.6.42). The integand is 

The only pole inside the unit circle is : = 5 .  Hence the residue is 

Hence the minimum achievable MSE obtained with the optimum noncausal Wiener 
filter is 

MMSE,, = 0.40 

Note that this is lower than the MMSE for the causal filler, as expected. 

11.7 SUMMARY AND REFERENCES 

The major focal point in this chapter is the design of optimum linear systems for 
linear prediction and filtering. The criterion for optimality is the minimization 
of the mean-square error between a specified desired filter output and the actual 
filter output. 
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In the development of linear prediction, we demonstrated that the equations 
for the forward and backward prediction errors specified a lattice filter whose 
parameters, the reflection coefficients ( K , ] ,  were simply related to the filter coef- 
ficients (a,  (k)} of the direct form FIR linear predictor and the associated prediction 
error filter. The optimum filter coefficients {K,) and (a,(k)} are easily obtained 
from the solution of the normal equations. 

We described two computationally efficient algorithms for solving the normal 
equations, the Levinson-Durbin algorithm and the Schiir algorithm. Both algo- 
rithms are suitable for solving a Toeplitz system of linear equations and have a 
computational complexity of o ( ~ ' )  when executed on a single processor. How- 
ever, with full parallel processing. the Schiir algorithm solves the normal equations 
in O ( p )  time, whereas the Levinson-Durbin algorithm requires O ( p  log p )  time. 

In addition to the all-zero lattice filter resulting from linear prediction, we 
also derived the AR lattice (all-pole) filter structure and the ARMA lattice-ladder 
(pole-zero) filter structure. Finally, we described the design of the class of opti- 
mum linear filters. called Wiener filters. 

Linear estimation theory has had a long and rich history of development 
over the past four decades. Kailath (1974) presents a historical account of the first 
three decades. The pioneering work of Wiener (1949) on optimum linear filtering 
for statistically stationary signals is especially significant. The generalization of 
the Wiener filter theory to dynarnical systems with random inputs was developed 
by Kalman (1960) and Kalman and Bucy (1961). Kalman filters are treated in 
the books by Meditch (1969), Brown (1983), and Chui and Chen (1987). The 
monograph by Kailath (1981) treats both Wiener and Kalman filters. 

There are numerous references on linear prediction and lattice filters. Tu- 
torial treatments on these subjects have been published in the journal papers by 
MakhouI (1975, 1978) and Friedlander (1982a. b). The books by Haykin (1991), 
Markel and Gray 1976), and Tretter (1976) provide comprehensive treatments of 
these subjects. Applications of linear prediction to spectral analysis are found in 
the books by Kay (1988) and Marple (1987). to geophysics in the book Robinson 
and Treitel (1980). and to adaptive filtering in the book by Haykin (1991). 

The Levinson-Durbin algorithm for solving the normal equations recursively 
was given by Levinson (1947) and later modified by Durbin (1959). Variations 
of this classical algorithm, called split Le inson algorithms, have been developed 
by Delsarte and Genin (1986) and by Krishna (1988). These algorithms exploit 
additional symmetries in the Toeplitz correlation matrix and save about a factor 
of 2 in the number of multiplications, 

The Schiir algorithm was originally described by Schiir (1917) in a paper 
published in German. An English translation of this paper appears in the book 
edited by Gohberg (1986). The Schiir algorithm is intimately related to the poly- 
nomials (A , ( z ) ) ,  which can be interpreted as orthogonal polynomiats. A treatment 
of orthogonal polynomials is given in the books by Szego (1967), Grenander and 
Szego (1958), and Geronimus (1958). The thesis of Vieira (1977) and the papers 
by Kailath et al. (1978), Delsarte et  al. (1978), and Youla and Kazanjian (1978) 
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provide additional results on orthogonal polynomials. Kailath (1985, 1986) pro- 
vides tutorial treatments of the Schiir algorithm and its retationship to orthogonal 
polynomials and the Levinson-Durbin algorithm. The pipelined parallel process- 
ing structure for computing the reflection coefficients based on the Schiir algorithm 
and the related problem of solving Toeplitz systems of linear equations is described 
in the paper by Kung and Hu (1983). Finally, we should mention that some ad- 
ditional computational efficiency can be achieved in the Schiir algorithm, by fur- 
ther exploiting symmetry properties of Toeplitz matrices, as described by Krishna 
(1988). This leads to the so-called split-Schiir algorithm, which is analogous to the 
split-Levinson algorithm. 

P R O B L E M S  

11.1 The power density spectrum of an AR process [ x ( n ) )  is given as 

where of, is the variance of the input sequence. 
(a) Determine the difference equation for generating the AR process when the ex- 

citation is white noise. 
(b) Determine the system function for the whitening filter. 

112 An ARMA process has an autocorrelation {y, , (m))  whose z-transform is given as 

(a) Determine the filter H ( z )  for generating [ x ( n ) )  from a white noise input sequence. 
Is H ( z )  unique? Explain. 

(b) Determine a stable linear whitening filter for the sequence I x ( n ) ) .  
1U Consider the ARMA process generated by the difference equation 

(a) Determine the system function of the whitening filter and its pales and zeros. 
(b) Determine the power density spectrum of { x ( n ) ) .  

1L4 Determine the lattice coefficients corresponding to the FIR filter with system function 

US Determine the reflection coefficients (K,) of the lattice filter corresponding to the 
FIR filter described by the system function 
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11.6 (a) Determine the zeros and sketch the zero pattern for the FIR lattice filter with 
reflection coefficients 

(b) Repeat part (a) but with K3 = -1. 
(c) You should have found that the zeros lie on the unit circle. Can this result be 

generalized? How? 
11.7 Determine the impulse response of the FIR filter that is described by the lattice 

coefficients K1 = 0.6, K2 = 0-3, K3 = 0.5, and K4 = 0.9. 
11.8 In Section 11.2.4 we indicated that the noise-whitening filter A,(z) for a causal AR(p) 

process is a forward linear prediction-error filter of order p. Show that the backward 
linear prediction-error filter of order p is the noise-whitening filter of the correspond- 
ing anticausal AR(p) process. 

11.9 Use the orthogonality principle to determine the normal equations and the resulting 
minimum MSE for a forward predictor of order p that predicts m samples (m > 1) 
into the future (m-step forward predictor). Sketch the prediction error filter. 

11.10 Repeat Problem 11.9 for an m-step backward predictor. 
11.11 Determine a Levinson-Durbin recursive algorithm for solving for the coefficients of 

a backward prediction-error filter. Use the result to show that coefficients of the 
forward and backward predictors can be expressed recursively as 

1l.U The Levinson-Durbin algorithm described in Section 11.3.1 solved the linear equa- 
tions 

where the right-hand side of this equation has elements of the autocorrelation se- 
quence that are also elements of the matrix I'. Let us consider the more general 
problem of solving the linear equations 

where c, is an arbitrary vector. (The vector b, is not related to the coefficients of 
the backward predictor.) Show that the solution to r,b, = c, can be obtained from 
a generalized Levinson-Durbin algorithm which is given recursively as 

where bl ( l )  = c(l)/y,,(O) = c ( l ) / ~ , /  and u,,,(k) is given by (11,3.17). Thus a second 
recursion is required to solve the equation r,b, = k. 

1Ll3 Use the generalized Levinson-Durbin algarithm ta solve the normal equations recur- 
sively for the m-step forward and backward predictors. 
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lL14 Show that the transformation 

in the Schur algorithm satisfies the special property 

where 

Thus V, is called a J-rotation matrix. Its role is to rotate or hyperbolate the row of 
G,  to lie along the first coordinate direction (Kailath, 1985). 

1LI.5 Prove the additional properties (a) through (1) of the prediction- error filters given in 
Section 11 -4. 

11.16 Extend the additional properties (a) through (I) of the prediction error filters given 
in Section 11.4 to complex-valued signals. 

11.17 Determine the reflection coefficient K3 in terms of the autocorrelations (y,,(rn)] from 
the Schiir algorithm and compare your result with the expression for K 3  obtained 
from the Levinson-Durbin algorithm. 

11.18 Consider a infinite-length (p = cm) one-step forward predictor for a stationary random 
process [ x ( n ) ]  with a power density spectrum of T,, (f ). Show that the mean-square 
error of the prediction-error filter can be expressed as 

lL19 Determine the output of an infinite-length ( p  = ca) m-step forward predictor and 
the resulting mean-square error when the input signal is a first-order autoregressive 
process of the form 

1l.24 An AR(3) process { x ( n ) )  is characterized by the autocorrelation sequence y,,(O) = 1,  
y,,(l) = 4, y,,(2) = i, and y,,(3) = &. 
(a) Use the Schtir algorithm to determine the three reflection coefficients K , ,  K2, and 

K3.  

(b) Sketch the lattice filter for synthesizing ( x ( n ) )  from a white noise excitation. 
1L21 The purpose of this problem is to show that the polynomials {A,(.?)), which are the 

system functions of the forward prediction-error filters of order m, m = 0 ,  1, . . . , p, 
can be interpreted as orthogonal on the unit circle. Toward this end, suppose that 
T;,( f )  is the power spectral density of a zero-mean random process ( x ( n ) )  and let 
[A,(z)} ,  m = 0, 1, .  . . , p ) ,  be the system functions of the corresponding prediction- 
error filters. Show that the polynomials {A, (z ) )  satisfy the orthogonality property 

1 U  Determine the system function of the all-pole filter described by the lattice coefficients 
K1 = 0.6, Kz = 0.3, K3 = 0.5, and K4 = 0.9. 



Chap. 11 Problems 895 

11.23 Determine the parameters and sketch the lattice-ladder filter structure for the system 
with system function 

11.24 Consider a signal x ( n )  = s(n) + w ( n ) ,  where s(n )  is an A R ( 1 )  process that satisfies 
the difference equation 

where { v ( n ) ]  is a white noise sequence with variance o: = 0.49 and ( u ) ( n ) ]  is a 
white noise sequence with variance a:, = 1. The processes ( v ( n ) ]  and ( w ( n ) ]  are 
uncorrelated. 
( a )  Determine the autocorrelation sequences { y, ,(m)] and { y,, ( m ) ] .  
(b) Design a Wiener filter of length M = 2 to estimate { s ( n ) } .  
(c) Determine the MMSE for M = 2. 

11.25 Determine the optimum causal IIR Wiener filter for the signal given in Problem 11.24 
and the corresponding MMSE,. 

11.26 Deterrninc rhe systcm function for the noncausal IIR Wiener filter for the signal given 
in Problem 1 I .24 and the corresponding MMSE,, . 

11.27 Determine thc optimum FIR Wiener filter of length M = 3 for the signal in Ex- 
ampic I 1  .h.l and the corresponding MMSE3. Compare MMSE3 with MMSE,  and 
comment on thc difference. 

11.28 An A R ( 2 )  process is defined by the difference equation 

where {ul(n)) is a white noise process with variance 0:. Use the Yule-Walker equa- 
tions to  solve for the values of the autocorrelation y x , ( 0 ) ,  y , , ( l ) .  and y,,(2). 

11.29 An observed random process ( x ( n ) ]  consists of the sum of an A R ( p )  process of the 
form 

and a white noise process { w ( n ) ]  with variance 0;. The random pTocess { v ( n ) )  is also 
white with variance a:. The sequences { v ( n ) )  and { w ( n ) )  are uncorrelated. 

Show that the observed process ( x ( n )  = s ( n )  + w ( n ) }  is A R M A ( p ,  p )  and de- 
termine the coefficients of the numerator polynomial ( M A  component) in the corre- 
sponding system function. 



Power Spectrum Estimation 

In this chapter we are concerned with the estimation of the spectral characteristics 
of signals characterized as random processes. Many of the phenomena that occur 
in nature are best characterized statistically in terms of averages. For example, 
meteorological phenomena such as the fluctuations in air temperature and pressure 
are best characterized statistically as random processes. Thermal noise voltages 
generated in resistors and electronic devices are additional examples of physical 
signals that are well modeled as random processes. 

Due to the random fluctuations in such signals, we must adopt a statisti- 
cal viewpoint, which deals with the average characteristics of random signals. In 
particular, the autocorrelation function of a random process is the appropriate 
statistical average that we will use for characterizing random signals in the time 
domain, and the Fourier transform of the autocorrelation function. which yields 
the power density spectrum, provides the transformation from the time domain to 
the frequency domain. 

Power spectrum estimation methods have a relatively long history. For a 
historical perspective, the reader is referred to the paper by Robinson (1982) and 
the book by Marple (1987). Our treatment of this subject covers the classical power 
spectrum estimation methods based on the periodogram, originally introduced by 
Schuster (1898), and by Yule (1927), who originated the modem model-based or 
parametric methods. These methods were subsequently developed and applied by 
Walker (1931), Bartlett (1948). Parzen (1957), Blackman and Tukey (1958), Burg 
(1967), and others. We also describe the method of Capon (1969) and methods 
based on eigenanalysis of the data correlation matrix. 

12.1 ESTIMATION OF SPECTRA FROM FINITE-DURATION 
OBSERVATlONS OF SIGNALS 

The basic problem that we consider in this chapter is the estimation of the power 
density spectrum of a signal from the observation of the signal over a finite time 
interval. As we will see, the finite record length of the data sequence is a major 
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limitation on the quality of the power spectrum estimate. When dealing with 
signals that are statistically stationary, the longer the data record, the better the 
estimate that can be extracted from the data. On the other hand, if the signal 
statistics are nonstationary, we cannot select an arbitrarily long data record to 
estimate the spectrum. In such a case, the length of the data record that we 
select is determined by the rapidity of the time variations in the signal statistics. 
Ultimately, our goal is to select as short a data record as possible that still allows 
us to resolve the spectral characteristics of different signal components in the data 
record that have closely spaced spectra. 

One of the problems that we encounter with classical power spectrum estima- 
tion methods based on a finite-length data record is the distortion of the spectrum 
that we are attempting to estimate. This problem occurs in both the computation 
of the spectrum for a deterministic signal and the estimation of the power spec- 
trum of a random signal. Since it is easier to observe the effect of the finite length 
of the data record on a deterministic signal, we treat this case first. Thereafter, we 
consider only random signals and the estimation of their power spectra. 

12.1.1 Computation of the Energy Density Spectrum 

Let us consider the computation of the spectrum of a deterministic signal from 
a finite sequence of data. The sequence x ( n )  is usually the result of sampling a 
continuous-time signal x , ( t )  at some uniform sampling rate F,. Our objective is 
to obtain an estimate of the true spectrum from a finite-duration sequence x(n) .  

Recall that if x ( t )  is a finite-energy signal, that is, 
ffi 

E = J__ 1xa(t)l2dr < 

then its Fourier transform exists and is given as 
OC 

Xu ( F )  = lm ~ ~ ( ~ ) ~ ' " " d t  

From Parseval's theorem we have 
a, 

(12 .1 .1)  

The quantity I X , ( F ) ~ ~  represents the distribution of signal energy as a func- 
tion of frequency, and hence it is called the energy density spectrum of the signal, 
that is, 

s,,(F) = I X , ( F ) I ~  (12.1.2) 

as described in Chapter 4. Thus the total energy in the signal is simply the integral 
of S x x ( F )  over all F [i.e., the total area under S x x ( F ) ] .  

It is also interesting to note that S x x ( F )  can be viewed as the Fourier trans- 
form of another function, R,,(T),  called the autocorrelation function of the 
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finite-energy signal xu ( t ) .  defined as 
CC 

R x x ( r )  = [_ x;(r )xu (t + =)d l  

Indeed, it easily follows that 
a3 

J_, ~ ~ , ( s ) e - j ~ " ~ ' d s  = Sxx(F) = I X , ( F ) ~ ~  (12.1.4) 

so that R,,(s)  and Sxx(F) are a Fourier transform pair. 
Now suppose that we compute the energy density spectrum of the signal x , ( r )  

from its samples taken at the rate FT samples per second. To ensure that there is 
no spectral aliasing resulting from the sampling process, the signal is assumed to 
be prefiltered, so that, for practical purposes, its bandwidth is limited to B hertz. 
Then the sampling frequency F5 is selected such that FT :, 228. 

The sampled version of x,( t)  is a sequence x ( n ) .  -cx c 11 i oc. which has a 
Fourier transform (voltage spectrum) 

3C 

X ( w )  = z . ~ ( I I ) E - ~ ' ~ "  

n=-3E 

or, equivalently, 
N' 

X ( f )  = z x(rl)e-''"'" (12.1 . S )  
11=-31' 

Recall that X( f) can be expressed in terms of the voltage spectrum of the analog 
signal x, (r )  as 

where f = F/F,  is the normalized frequency variable. 
In the absence of aliasing. within the fundamental range IF1 5 F,/2 .  we have 

Hence the voltage spectrum of the sampled signal is identical to the voltage spec- 
trum of the analog signal. As a consequence, the energy density spectrum of the 
sampled signal is 

We can proceed further by noting that the autocorrelation of the sampled 
signal, which is defined as 

M 

rn(k )  = x x*(n)x (n  + k) (12.1.9) 
n=-cu 

has the Fourier transform (Wiener-Khintchine theorem) 
30 

S,, ( f ) = x rxx (k)c-jhkf 
k=-w 
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Hence the energy density spectrum can be obtained by the Fourier transform of 
the autocorrelation of the sequence ( x ( n ) ) .  

The relations above lead us to distinguish between two distinct methods for 
computing the energy density spectrum of a signal x , ( t )  from its samples x ( n ) .  One 
is the direct method, which involves computing the Fourier transform of ( ~ ( n ) ) ,  and 
then 

S , , ( f )  = l ~ ( f  ) 1 2  

The second approach is called the indirect method because it requires two steps. 
First, the autocorrelation rxx(k)  is computed from x ( n )  and then the Fourier trans- 
form of the autocorrelation is computed as in (12.1.10) to obtain the energy density 
spectrum. 

In practice, however, only the finite-duration sequence x ( n ) ,  0 5 n  5 ZV - 1, is 
available for computing the spectrum of the signal. In effect, limiting the duration 
of the sequence x ( n )  to N points is equivalent to multiplying x ( n )  by a rectangular 
window. Thus we have 

i ( n )  = x(n)w(n) = 
O s n 5 N - 1  
otherwise 

From our discussion of FIR filter design based on the use of windows to limit the 
duration of the impulse response, we recall that multiplication of two sequences is 
equivalent to convolution of their voltage spectra. Consequently, the frequency- 
domain relation corresponding to (12.1.12) is 

Recall from our discussion in Section 8.2.1 that wnvolution of the window 
function W ( f )  with X ( f )  smooths the spectrum X ( f  ), provided that the spectrum 
W ( f )  is relatively narrow compared to X ( f ) .  But this condition implies that 
the window w ( n )  be sufficiently long (i.e., ZV must be sufficiently large) such that 
W ( f )  is narrow compared to X (f ). Even if W  ( f )  is narrow compared to X  ( f ) ,  
the convolution of X(  f )  with the sidelobes of W ( f )  results in sidelobe energy in 
X( f ) ,  in frequency bands where the true signal spectrum X ( f )  = 0. This sidelobe 
energy is called leakage. The following example illustrates the leakage problem. 

Example E L 1  

A signal with (voltage) spectrum 

X(f) = 1;. If l C 0.1 . otherwise 
is convolved with the rectangular window of length N = 61. Determine the spectrum 
of X( f) given by (12.1.13). 
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Frequency (cycles/sample) 

Figure Spectrum obtained by convolving an M = 61 rectangular window 
with the ideal lowpass spectrum in Example 12.1.1. 

Solution The spectral characteristic W (  f )  for the length N = 61 rectansular window 
is illustrated in Fig. 8.2(b). Note that the width of the main lobe of the window 
function is Aw = 4x161 or A f  = 2/61, which is narrow compared to X ( f  ). 

The convolution of X (  f )  with W (  f )  is illustrated in Fig. 12.1. We note that 
energy has leaked into the frequency band 0.1 < If 1 5 0.5. where X ( f )  = 0. A part 
of this is due to the width of the main lobe in W ( f ) ,  which causes a broadenin& or 
smearing of X (  f )  outside the range 1 f  J ( 0.1. However, the sidelobe energy in X ( f )  
is due to the presence of the sidelobes of W ( f ) ,  which are convolved with X ( f ) .  
The smearing of X ( f )  for If 1 > 0.1 and the sidelobes in the range 0.1 5 1 f  1 _< 0.5 
constitute the leakage. 

Just as in the case of FIR fitter design, we can reduce sidelobe leakage by 
selecting windows that have low sijelobes. This implies that the windows have a 
smooth time-domain cutoff instead of the abrupt cutoff in the rectangular window. 
Although such window functions reduce sidelobe leakage, they result in an increase 
in smoothing or broadening of the spectral characteristic X( f ). For example, the 
use of a Blackman wipdow of length N = 61 in Example 12.1.1 results in the 
spectral characteristic X( f) shown in Fig. 12.2. The sidelobe leakage has certainty 
been reduced, but the spectral width has been increased by about 50%. 

The broadening of the spectrum being estimated due to windowing is particu- 
larly a problem when we wish to resolve signals with closely spaced frequency corn- 
ponents. For example, the signal with spectral characteristic X( f )  = XI (f )+X2( f ), 
as shown in Fig. 12.3, cannot be resolved as two separate signals unless the width 
of the window function is significantly narrower than the frequency separation Af. 
Thus we observe that using smooth time-domain windows reduces leakage at the 
expense of a decrease in frequency resolution. 
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Frequency (cycles/sample) 

Figure 12.2 Spectrum obtained by convolving an M = 61 Blackman window wilh 
the ideal lowpass spectrum in Example 12.1.1. 

It is clear from this discussion that the energy density spectrum of the win- 
dowed sequence { x ( n ) )  is an approximation of the desired spectrum of the sequence 
{ x ( n ) ) .  The spectral density obtained from { i ( n ) ) ' i s  

.I X C f ,  
X,U) X2U) 

The spectrum given by (12.1.14) can be computed numerically at a set of N 
frequency points by means of the DFT. Thus 

- 

Then 

I 
- f Figure lU Two narrowband signal 

0 * A f + -  0.5 spectra. 
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and hence 

which is a distorted version of the true spectrum Sxx(k/N). 

12.1.2 Estimation of the Autocorrelation and Power 
Spectrum of Random Signals: The Periodogram 

The finite-energy signals considered in the preceding section possess a Fourier 
transform and are characterized in the spectral domain by their energy density 
spectrum. On the other hand, the important class of signals characterized as sta- 
tionary random processes do not have finite energy and hence do not possess a 
Fourier transform. Such signals have finite average power and hence are charac- 
terized by a power density spectrum. If x(r) is a stationary random process, its 
autocorrelation function is 

where E [ . ]  denotes the statistical average. Then, via the Wiener-Khintchine the- 
orem, the power density spectrum of the stationary random process is the Fourier 
transform of the autocorrelation function, that is, 

In practice, we deal with a single realization of the random process from 
which we estimate the power spectrum of the process. We do not know the true 
autocorrelation function yxx(r) and as a consequence, we cannot compute the 
Fourier transform in (12.1.19) to obtain T, , (F) .  On the other hand, from a single 
realization of the random process we can compute the time-average autocorrela- 
tion function 

where 2To is the observation interval. If the stationary random process is ergodic 
in the first and second moments (mean and autocorrelation function), then 

1 (12.1.21) 
= lim - 

This relation justifies the use of the time-average autocorrelation R,,(r) as 
an estimate of the statistical autocorrelation function yxx(r) .  Furthermore, the 
Fourier transform of Rxx(r) provides an estimate P, , (F)  of the power density 
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spectrum, that is, 

The actual power density spectrum is the expected value of P x x ( F )  in the limit as 
TO + 63, 

r , , ( F )  = Iim E [ P I X ( F ) ]  
&I-' 00 

From (12.1.20) and (22.1.22) we again note the two possible approaches to 
computing P, , (F) ,  the direct method as given by (12.1.22) or the indirect method, 
in which we obtain R x x ( s )  first and then compute the Fourier transform. 

We shall consider the estimation of the power density spectrum from samples 
of a single realization of the random process. In particular, we assume that x,( t )  
is sampled at a rate F, > 2 8 ,  where B is the highest frequency contained in the 
power density spectrum of the random process. Thus we obtain a finite-duration 
sequence x(n),  0 5 n 5 N - 1, by sampling x , ( t ) .  From these samples we can 
compute the time-average autocorrelation sequence 

and then compute the Fourier transform 

The normalization factor N - Iml in (12.1.24) results in an estimate with mean 
value 

1 N-m-1 

E[r:,(m>] = - x E[x*(n)x(n + m)] 
N -  lml nEo (12.1.26) 

where yx,(m) is the true (statistical) autocorrelation sequence of x(n).  Hence 
r:,(m) is an unbiased estimate of the autocorrelation function yxx(m).  The variance 
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of the estimate r:,(m) is approximately 

vartr:, ( m ) ]  
N x [tyXx(n)l2 + yA(n - m)y,,(n + n*)] (12.1.27) 

tN - lml12 ,,=-m 

which is a result given by Jenkins and Watts (1968). Clearly, 

lim var[r:, (m)] = 0 
N-* 

provided that 

Since E[r:,(m)] = y,,(m) and the variance of the estimate converges to zero as 
N -+ m, the estimate r:,(m) is said to be consistent. 

For large values of the lag parameter m, the estimate r:,(m) given by (12.1.24) 
has a large variance, especially as m approaches N. This is due to the fact that 
fewer data points enter into the estimate for large lags. As an alternative to 
(12.1.24) we can use the estimate 

which has a bias of [ m  1 y,, (m)/N, since its mean value is 

However, this estimate has a smaller variance, given approximately as 

We observe that r,,(m) is asymptotically unbiased, that is, 

lim E[r,,(m)] = yxx (m) 
N - * x  

(12.1.32) 

and its variance converges to zero as N oo. Therefore, the estimate rXx(m) is 
also a consistent estimate of yx,(m). 

We shall use the estimate r,,(m) given by (12.1.29) in our treatment of power 
spectrum estimation. The corresponding estimate of the power density spectrum is 
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If we substitute for r,,(m) from (12.1.29) into (12.1.33), the estimate P x x ( f )  can 
also be expressed as 

where X (  f )  is the Fourier transform of the sample sequence x ( n ) .  This well known 
form of the power density spectrum estimate is called the periodogram. It was orig- 
inally introduced by Schuster (1898) to detect and measure "hidden periodicities" 
in data. 

From (12.1.33), the average value of the periodogram estimate P x x ( f )  is 

The interpretation that we give to (12.1.35) is that the mean of the estimated 
spectrum is the Fourier transform of the windowed autocorrelation function 

where the window function is the (triangular) Bartlett window. Hence the mean 
of the estimated spectrum is 

where W B ( f )  is the spectral characteristic of the Bartlett window. The relation 
(12.1.37) illustrates that the mean of the estimated spectrum is the convolution of 
the true power density spectrum r x x (  f )  with the Fourier transform W B (  f )  of the 
Bartlett window. Consequently, the mean of the estimated spectrum is a smoothed 
version of the true spectrum and suffers from the same spectral leakage problems 
which are due to the finite number of data points. 

We observe that the estimated spectrum is asymptotically unbiased, that is, 

However, in general, the variance of the estimate P x x ( f )  does not decay to zero 
as N -, w. For example, when the data sequence is a Gaussian random process, 
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the variance is easily shown to be (see Problem 12.4) 

which, in the limit as N -+ m, becomes 

Hence we conclude that the periodogram is not a consistent estimate of the true 
power density spectrum (i.e., it does not converge to the true power density spec- 
trum). 

In summary, the estimated autocorrelation rXx(m)  is a consistent estimate of 
the true autocorrelation function yx, (m). However, its Fourier transform Pxx ( f  ), 
the periodogram, is not a consistent estimate of the true power density spectrum. 
We observed that P,, (f) is an asymptotically unbiased estimate of F I X  (f ), but for 
a finite-duration sequence. the mean value of PIX( f) contains a bias, which from 
(12.1.37) is evident as a distortion of the true power density spectrum. Thus the 
estimated spectrum suffers from the smoothing effects and the leakage embodied 
in the Bartlett window. The smoothing and leakage ultimately limit our ability to 
resolve closely spaced spectra. 

The problems of leakage and frequency resolution that we have just de- 
scribed as well as the problem that the periodogram is not a consistent estimate 
of the power spectrum, provide the motivation for the power spectrum estima- 
tion methods described in Sections 12.2, 12.3, and 12.4. The methods described 
in Section 12.2 are classical nonparametric methods, which make no assumptions 
about the data sequence. The emphasis of the classical methods is on obtaining a 
consistent estimate of the power spectrum through some averaging or smoothing 
operations performed directly on the periodogram or on the autocorrelation. As 
we will see, the effect of these operations is to reduce the frequency resolution 
further, while the variance of the estimate is decreased. 

The spectrum estimation methods described in Section 12.3 are based on 
some model of how the data were generated. In general, the model-based methods 
that have been developed over the past two decades provide significantly higher 
resolution than do the classical methods. 

Additional methods are described in Sections 12.4 and 12.5. One of these 
methods, due to Capon (1969), is based on minimizing the variance in the spec- 
tral estimate. The methods described in Section 12.5 are based on an eigen- 
valueleigenvector decomposition of the data correlation matrix. 

12.1.3 The Use of the DFT in Power Spectrum Estimation 

As given by (12.1.14) and (12.1.34), the estimated energy density spectrum SIX( f) 
and the periodograrn P x x ( f ) ,  respectively, can be computed by use of the Dm, 
which in turn is efficiently computed by a F'FT algorithm. If we have N data points, 
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we compute as a minimum the N-point DFT. For example, the computation yields 
samples of the periodograrn 

at the frequencies fk = k / N .  
In practice, however, such a sparse sampling of the spectrum does not provide 

a very good representation or a good picture of the continuous spectrum estimate 
P,, (f ). This is easily remedied by evaluating PI, (f) at additional frequencies. 
Equivalently, we can effectively increase the length of the sequence by means of 
zero padding and then evaluate PIX( f) at a more dense set of frequencies. Thus 
if we increase the data sequence length to L points by means of zero padding and 
evaluate the L-point DFT, we have 

We emphasize that zero padding and evaluating the DFT at L > N points 
does not improve the frequency resolution in the spectral estimate. It simply 
provides us with a method for interpolating the values of the measured spectrum 
at more frequencies. The frequency resolution in the spectral estimate P,, (I) is 
determined by the length N of the data record. 

Example 12.1.2 

A sequence of N = 16 samples is obtained by sampling an analog signal consisting of 
two frequency components. The resulting discrete-time sequence is 

where A f  is the frequency separation. Evaluate the power spectrum P(f) = 
( l / ~ ) l ~ ( f ) l *  at the frequencies h = k / L ,  k  = 0, 1, ..., L  - 1 ,  for L  = 8, 16, 32, 
and 128 for values of A f = 0.06 and A f  = 0.01. 

SoIution By zero padding, we increase the datasequence to obtain the power spec- 
trum estimate P',(k/L). The results for A f = 0.06 are plotted in Fig. 12.4. Note that 
zero padding does not change the resolution, but it does have the effect of interpo- 
lating the spectrum P , , ( f ) .  In this case the frequency separation A f  is sufficiently 
large so that the two frequency components are resolvable. 

The spectral estimates for A f  = 0.01 are shown in Fig. 12.5. In this case the 
two spectral components are not resolvable. Again, the effect of zero padding is to 
provide more interpolation, thus giving us a better picture of the estimated spectrum. 
It does not improve the frequency resolution. 

When only a few points of the periodogram are needed, the Goertzel algo- 
rithm described in Chapter 6 may provide a more efficient computation. Since the 
Goertzel algorithm has been interpreted as a linear filtering approach to comput- 
ing the DFT, it is clear that the periodogram estimate can be obtained by passing 
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Figure lL4 Spectra of two sinusoids with frequency separation A f = 0.06. 

the signal through a bank of parallel tuned filters and squaring their outputs (see 
Problem 12.5). 

12.2 NONPARAMETRtC METHODS FOR POWER SPECTRUM 
ESTIMATION 

The power spectrum estimation methods described in this section are the classical 
methods developed by Bartlett (1948), Blackman and Tukey (1958), and Welch 
(1967). These methods make no assumption about how the data were generated 
and hence are called nonparametric. 
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Figure 125 Spectra of two sinusaids with frequency separation A! = 0.01. 

Since the estimates are based entirely on a finite record of data, the frequency 
resolution of these methods is, at best, equal to the spectral width of the rectangular 
window of length N, which is approximately 1 / N  at the -3-dB points. We shall be 
more precise in specifying the frequency resolution of the specific methods. All the 
estimation techniques described in this section decrease the frequency resolution 
in order to reduce the variance in the spectral estimate, 

First, we describe the estimates and derive the mean and variance of each. A 
comparison of the three methods is given in Section 12.2.4. Although the spectral 
estimates are expressed as a function of the continuous frequency variable f ,  in 
practice, the estimates are computed at discrete frequencies via the FFT algorithm. 
The FFT-based computational requirements are considered in Section 12.2.5. 
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12.2.1 The Bartlett Method: Averaging Periodograms 

Bartlett's method for reducing the variance in the periodogram involves three 
steps. First, the N-point sequence is subdivided into K nonoverlapping segments. 
where each segment has length M. This results in the k' data segments 

For each segment, we compute the periodogram 

Finally, we average the periodograms for the K segments to obtain the Bartlett 
power spectrum estimate [Bartlett (1 948)] 

The statistical properties of this estimate are easily obtained. First, the mean 
value is 

= E[P::'(f ) j  

From (12.1.35) and (12.1.37) we have the expected value for the single periodogram 
as 

where 

is the frequency characteristics of the Bartlett window 

1 0. otherwise 

From (12.2.5) we observe that the true spectrum is now convolved with the 
frequency characteristic WB( f )  of the Bartlett window. The effect of reducing the 
length of the data from N points to M = N/K results in a window whose spectral 
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width has been increased by a factor of K .  Consequently, the frequency resolution 
has been reduced by a factor K. 

In return for this reduction in resolution, we have reduced the variance. The 
variance of the Bartlett estimate is 

1 
= -var[~J;)(f)] 

K 
If we make use of (12.1.38) in (12.2.8), we obtain 

Therefore, the variance of the Bartlett power spectrum estimate has been reduced 
by the factor K .  

12.2.2 The Welch Method: Averaging Modified 
Periodograrns 

Welch (1967) made two basic modifications to the Bartlett method. First, he a1- 
lowed the data segments to overlap. Thus the data segments can be represented as 

i = O . l ,  . . . ,  L- 1 

where iD is the starting point for the ith sequence. Observe that if D = M, 
the segments do not overlap and the number L of data segments is identical to 
the number K in the Bartlett method. However, if D = M / 2 ,  there is 50% 
overlap between successive data segments and L = 2K segments are obtained. 
Alternatively, we can form K data segments each of length 2M. 

The second modification made by Welch to the Bartlett method is to window 
the data segments prior to computing the periodogram. The result is a "modified" 
periodogram 

where U is a normalization factor for the power in the window function and is 
selected as 

The Welch power spectrum estimate is the average of these modified periodograms, 
that is. 



91 2 Power Spectrum Estimation Chap. 12 

The mean value of the Welch estimate is 

1 L-I 
E[PZ(f  I = E E[F;;)( f )] 

1 4  

= ~[p:t)(f)] 

But the expected value of the modified periodogram is 

1 M- 1  M - I  

~[p:;)(f)] = - E E w(n)w(rn)~[ri(n)x~(m)]e-j~~(~-~) 
n d  m=O 

Since 

substitution for yxx(n )  from (12.2.16) into (12.2.15) yields 

where, by definition, 

The normalization factor U ensures that 

The variance of the Welch estimate is 

In the case of no overlap between successive data segments (L = K),  Welch has 
shown that 

1 
v a r [ ~ z (  f )] = - v a r [ ~ ~ ~ ' (  f ) j  

L 
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In the case of 50% overlap between successive data segments (L = 2K). 
the variance of the Welch power spectrum estimate with the Bartlett (triangular) 
window, also derived in the paper by Welch, is 

Although we considered only the triangular window in the computation of 
the variance, other window functions may be used. In general, they will yield 
a different variance. In addition, one may vary the data segment overlapping 
by either more or less than the 50% considered in this section in an attempt to 
improve the relevant characteristics of the estimate. 

12.2.3 The Blackman and Tukey Method: Smoothing the 
Periodogram 

Blackman and Tukey (1958) proposed and analyzed the method in which the 
sample autocorrelation sequence is windowed first and then Fourier transformed 
to yield the estimate of the power spectrum. The rationale for windowing the 
estimated autocorrelation sequence rxx(rn) is that, for large lags, the estimates 
are less reliable because a smaller number (N - m) of data points enter into the 
estimate. For values of m approaching N, the variance of these estimates is very 
high, and hence these estimates should be given a smaller weight in the formation 
of the estimated power spectrum. Thus the Blackman-Tukey estimate is 

where the window function w ( n )  has length 2M - 1 and is zero for Irnl > M. 
With this definition for w ( n ) ,  the limits on the sum in (12.2.23) can be extended to 
( - 6 3 , ~ ) .  Hence the frequency-domain equivalent expression for (12.2.23) is the 
convolution integral 

where P,,( f )  is the periodogram. It is clear from (12.2.24) that the effect of win- 
dowing the autocorrelation is to smooth the periodogram estimate, thus decreasing 
the variance in the estimate at the expense of reducing the resolution. 

The window sequence w(n)  should be symmetric (even) about m = 0 to 
ensure that the estimate of the power spectrum is real. Furthermore, it is desirable 
to select the window spectrum to be nonnegative, that is, 

This condition ensures that pET( f )  2 0 for [ f [ 1 112, which is a desirable property 
for any power spectrum estimate. We should indicate, however, that some of the 
window functions we have introduced do not satisfy this condition. For example, 
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in spite of their low sidelobe levels, the Hamming and Hann (or Hanning) windows 
do not satisfy the property in (12.2.25) and. consequently, may result in negative 
spectrum estimates in some parts of the frequency range. 

The expected value of the Blackman-Tukey power spectrum estimate is 

where from (12.1.37) we have 

and WB(f) is the Fourier transform of the Bartlett window. Substitution of 
(12.2.27) into (12.2.26) yields the double convolution integral 

Equivalently, by working in the time domain, the expected value of the 
Blackman-Tukey power spectrum estimate is 

where the Bartlett window is 

10, otherwise 
Clearly, we should select the window length for w ( n )  such that M << N, that 
is, w ( n )  should be narrower than ws(m) to provide additional smoothing of the 
periodogram. Under this condition, (12.2.28) becomes 

since 

= w ( f  - e )  
The variance of the Blackman-Tukey power spectrum estimate is 
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where the mean can be approximated as in (12.2.31). The second moment in 
(11.2.33) is 

On the assumption that the random process is Gaussian (see Problem 12.5), we 
find that 

(12.2.35) 
Substitution of (12.2.35) into (12.2.34) yields 

The first term in (12.2.36) is simply the square of the mean of P A T ( f  ), which 
is to be subtracted out according to (12.2.33). This leaves the second term in 
(12.2.36), which constitutes the variance. For the case in which N >> M, the 
functions sin rr (8 + a )  N / N  sin rr(8 + a )  and sin lr (8 - a ) N / N  sin rr (8  - a )  are relatively 
narrow compared to W ( f )  in the vicinity of 8 = - a  and 0 = a ,  respectively. 
Therefore, 

25 
r x x ( - a ) W ( f  + a )  + r x K ( a ) W ( f  - a )  

N 

With this approximation, the variance of P,B,'( f )  becomes 

where in the last step we made the approximation 
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We shall make one additional approximation in (12.2.38). When W ( f )  is 
narrow compared to the true power spectrum TI,( f ) .  (12.2.38) is further approx- 
imated as 

var[pAT~f)l zz r:r(f ['I" w Z ( 0 ) d ~  I 

12.2.4 Performance Characteristics of Nonparametric 
Power Spectrum Estimators 

In this section we compare the quality of the Bartlett, Welch, and Blackman and 
Tukey power spectrum estimates. As a measure of quality, we use the ratio of its 
variance to the square of the mean of the power spectrum estimate that is, 

where A = B, W,  or BT for the three power spectrum estimates. The reciprocal of 
this quantity, called the vnriabilicy, can also be used as a measure of performance. 

For reference, the periodopram has a mean and variance 

where 

sin 2x f N 
varrn.,fi l= c , ( ~ I  [ I +  (-)'I 

1 sinrrfN 
W,Cf, = Tj - ( sin af ) 

For large N (i.e., N + m), 

1 P 

(12.2.45) 

var[Px* If 11 + r,2, ( f  1 
Hence, as indicated previously, the periodogram is an asymptotically unbiased 
estimate of the power spectrum, but it is not consistent because its variance does 
not approach zero as N increases toward infinity. 

Asymptotically, the periodogram is characterized by the quality factor 

The fact that Q p  is fixed and independent of the data length N is another indication 
of the poor quality of this estimate. 
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Bartlett power spectrum estimate. The mean and variance of the Bartlett 
power spectrum estimate are 

and 

As N + oo and M + w, while K = N / M  remains fixed, we find that 
1/2 

~[p&(f I] -+ rxx(f w ~ ( f  )df = rxx(f )wB(~) = rxx(f 
(12.2.50) 

1 
var[p: (f )I + r:' (f 

We observe that the Bartlett power spectrum estimate is asymptotically unbi- 
ased and if K is allowed to increase with an increase in N ,  the estimate is also con- 
sistent. Hence, asymptotically, this estimate is characterized by the quality factor 

N Q B = K = -  (12.2.51) 
M 

The frequency resolution of the Bartlett estimate, measured by taking the 
3-dB width of the main lobe of the rectangular window, is 

0.9 
Af = - (12.2.52) 

M 
Hence, M = 0.9/A f and the quality factor becomes 

Welch power spectrum estimate. The mean and variance of the Welch 
power spectrum estimate are 

where 

and 

r J  (f ) for no overlap 

for 50% overlap and 
E rZ(f )' triangular window 
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As N -t ao and M -, cm, the mean converges to 

and the variance converges to zero, so that the estimate is consistent. 
Under the two conditions given by (12.2.56) the quality factor is 

N L = -  for no overlap 

Q w = / 8 L  M' 16N for 50% overlap and 
(12.2.58) 

-- -- 
9 9M ' triangular window 

On the other hand, the spectral width of the triangular window at the 3-dB points is 

Consequently, the quality factor expressed in terms of Af and N is 

0.78NA f, for no overlap 
for 50% overlap and (12.2.60) 
triangular window 

Blackman-Tukey power spectrum estimate. The mean and variance of 
this estimate are approximated as 

In 
E [ e T ( f  11 = Lln ril(@)W(f - 

(12.2.61) 

m=-(M-1) 

where w ( m )  is the window sequence used to taper the estimated autocorrelation 
sequence. For the rectangular and Bartlett (triangular) windows we have 

L 2 W1(n)  = ( 2 M / N .  rectangular window 
2M/3N, triangular window (12.2.62) 

n=-(M-1) 

It is clear from (12.2.61) that the mean value of the estimate is asymptotically 
unbiased. Its quality factor for the triangular window is 

Since the window length is 2M - 1, the frequency resolution measured at the 3-dB 
points is 

and hence 
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TABLE 12.1 QUALITY OF POWER 
SPECTRUM ESTIMATES 

Estimate Quality Factor 

Bartlett 1.11NAf 
Welch 1.39NAf 

(50% overlap) 
Blackman-Tukey 2.34N A f  

These results are summarized in Table 12.1. It is apparent from the results 
we have obtained that the Welch and Blackman-Tukey power spectrum estimates 
are somewhat better than the Bartlett estimate. However, the differences in per- 
formance are relatively small. The main point is that the quality factor increases 
with an increase in the length N of the data. This characteristic behavior is not 
shared by the periodogram estimate. Furthermore, the quality factor depends on 
the product of the data length N and the frequency resolution Af. For a de- 
sired level of quality. A f can be decreased (frequency resolution increased) by 
increasing the length N of the data, and vice versa. 

12.2.5 Computational Requirements of Nonparametric 
Power Spectrum Estimates 

The other important aspect of the nonparametric power spectrum estimates is 
their computational requirements. For this comparison we assume the estimates 
are based on a fixed amount of data N and a specified resolution A f .  The radix- 
2 FFT algorithm is assumed in all the computations. We shall count only the 
number of complex multiplications required to compute the power spectrum esti- 
mate. 

Bartlett power spectrum estimate 

FFT length = M = 0.9/A f 

N 
Number of FFTs = - = 1.11NAf 

M 

Number of computations = 

Welch power spectrum estimate (50% overlap) 

FFT length = M = 1.28/A f 

2N 
Number of FITS = - = 1.56NA f 

M 

Number of computations = 
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In addition to the 2 N / M  FFTs, there are additional multiplications required 
for windowing the data. Each data record requires M multiplications. Therefore, 
the total number of computations is 

1 28 5.12 
Total computations = 2N + N log, - = N logz - 

Qf Qf 

Blackman-Tukey power spectrum estimate. In the Blackman-Tukey 
method. the autocorrelation r,,(rn) can be computed efficiently via the FFT al- 
gorithm. However, if the number of data points is large, it may not be possible to 
compute one N-point DFT. For example, we may have N = 1 6  data points but 
only the capacity to perform 1024-point DFTs. Since the autocorrelation sequence 
is windowed to 2M - 1 points where M << N, it is possible to compute the desired 
2M - 1 points of r , , (m)  by segmenting the data into K = N / 2 M  records and then 
computing 2M-point DFTs and one 2M-point IDFT via the FFT algorithm. Rader 
(1970) has described a method for performing this computation (see Problem 12.7). 

If we base the computational complexity of the Blackman-Tukey method on 
this approach, we obtain the following computational requirements. 

FFT length = 2M = 1.28/A f 

Number of FFTs = 2K + 1 = 2 
h' 

( & ) + I * ~  

N 1.28 
Number of computations = - (M log, 2M) = N log, - 

M A f  

We can neglect the additional M multiplications required to window the autocor- 
relation sequence r,,(rn), since it is a relatively small number. Finally, there is the 
additional computation required to perform the Fourier transform of the windowed 
autocorrelation sequence. The FIT algorithm can be used for this computation 
with some zero padding for purposes of interpolating the spectral estimate. As a 
result of these additional computations, the number of computations is increased 
by a small amount. 

From these results we conclude that the Welch method requires a little more 
computational power than do the other two methods. The Bartlett method appar- 
ently requires the smallest number of computations. However, the differences in 
the computational requirements of the three methods are relatively small. 

12.3 PARAMETRIC METHODS FOR POWER SPECTRUM ESTIMATION 

The nonparametric power spectrum estimation methods described in the preceding 
section are relatively simple, well understood, and easy to compute using the FFT 
algorithm. However, these methods require the availability of long data records in 
order to obtain the necessary frequency resolution required in many applications. 
Furthermore, these methods suffer from spectral leakage effects, due to window- 
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ing. that are inherent in finite-length data records. Often, the spectral leakage 
masks weak signals that are present in the data, 

From one point of view. the basic limitation of the nonparametric methods is 
the inherent assumption that the autocorrelation estimate r,,(m) is zero for m 2 N, 
as implied by (12.1.33).  This assumption severely limits the frequency resolution 
and the quality of the power spectrum estimate that is achieved. From another 
viewpoint, the inherent assumption in the periodogram estimate is that the data 
are periodic with period N. Neither one of these assumptions is realistic. 

In this section we describe power spectrum estimation methods that do not 
require such assumptions. In fact, these methods extrapolate the values of the 
autocorreiation for lags m > N. Extrapolation is possible if we have some a priori 
information on how the data were generated. In such a case a model for the signal 
generation can be constructed with a number of parameters that can be estimated 
from the observed data. From the model and the estimated parameters, we can 
compute the power density spectrum implied by the model. 

In effect, the modeling approach eliminates the need for window functions 
and the assumption that the autocorrelation sequence is zero for Iml 2 N. As a 
consequence, pararnefric (model-based) power spectrum estimation methods avoid 
the problem of leakage and provide better frequency resolution than do the FFT- 
based, nonparametrjc methods described in the preceding section. This is espe- 
cially true in applications where short data records are available due to  time-variant 
or transient phenomena. 

The parametric methods considered in this section are based on modeling 
the data sequence x ( n )  as the output of a linear system characterized by a rational 
system function of the form 

2 b ~ i - ~  
B ( z )  H ( L ) = - =  (12.3.1) 

A ( z )  I + 2 a&:-' 
k=l 

The corresponding difference equation is 

where w ( n )  is the input sequence to the system and the observed data, x ( n ) ,  
represents the output sequence. 

In power spectrum estimation, the input sequence is not observable. How- 
ever, if the observed data are characterized as a stationary random process. then 
the input sequence is also assumed to be a stationary random process. In such a 
case the power density spectrum of the data is 

r , x ( f  = I H ( ~  )l2rWw(f 1 
where Tww( f )  is the power density spectrum of the input sequence and H (  f )  is 
the frequency response of the model. 
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Since our objective is to estimate the power density spectnun r,,(f), it is 
convenient to assume that the input sequence w(n) is a zero-mean white noise 
sequence with autocorrelation 

yw,(m) = u,2,6(m) 

where a: is the variance (i.e., a: = ~[lw(n)l*]). Then the power density spectrum 
of the observed data is simply 

~ ( f  ) 1 2  r,,cf) = = 
lA(f )I2 

(12.3.3) 

In Section 11.1 we described the representation of a stationary random process as 
given by (12.3.3). 

In the model-based approach, the spectrum estimation procedure consists 
of two steps. Given the data sequence x(n), 0 _( n _( N - 1, we estimate the 
parameters {ak] and (bkJ of the model. Then from these estimates, we compute 
the power spectrum estimate according to (12.3.3). 

Recall that the random process x(n) generated by the pole-zero model in 
(12.3.1) or (12.3.2) is called an au~oregressive-moving average (ARMA) process of 
order ( p ,  q)  and it is usually denoted as ARMA ( p ,  q). If q = 0 and bo = 1, the 
resulting system model has a system function H ( z )  = l / A ( z )  and its output x(n) 
is called an autoregressive (AR) process of order p ,  This is denoted as AR(p). 
The third possible model is obtained by setting A ( z )  = 1, so that H ( z )  = B ( i ) .  Its 
output x ( n )  is called a moving average (MA) process of order q and denoted as 
MA(!?)* 

Of these three linear models the AR model is by far the most widely used. 
The reasons are twofold. First, the AR model is suitable for representing spectra 
with narrow peaks (resonances). Second, the AR model results in very simple 
linear equations for the AR parameters. On the other hand, the MA model, as 
a general rule, requires many more coefficients to represent a narrow spectnun. 
Consequently, it is rarely used by itself as a model for spectrum estimation. By 
combining poles and zeros, the ARMA model provides a more efficient represen- 
tation, from the viewpoint of the number of model parameters, of the spectrum 
of a random process. 

The decomposition theorem due to Wold (1938) asserts that any ARMA or 
MA process can be represented uniquely by an AR model of possibly infinite order, 
and any ARMA or AR process can be represented by a MA model of possibly 
infinite order. In view of this theorem, the issue of model selection reduces to 
selecting the model that requires the smallest number of parameters that are also 
easy to compute. Usually, the choice in practice is the AR model. The ARMA 
model is used to a lesser extent. 

Before describing methods for estimating the parameters in an AR(p), MAlq), 
and ARMA(p, q) models, it is useful to establish the basic relationships between 
the model parameters and the autocorrelation sequence y,,(m). In addition, we 
relate the AR model parameters to the coefficients in a linear predictor for the 
process x (n). 
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12.3.1 Relationships Between the Autocorrelation and 
the Model Parameters 

In Section 11.1.2 we established the basic relationships between the autocorrelation 
(yxx(m)} and the model parameters {ak} and {bk}. For the ARMA(p, q) process, 
the relationship given by (11.1.18) is 

The relationships in (12.3.4) provide a formula for determining the model 
parameters {ak) by restricting our attention to the case m > q. Thus the set of 
linear equations 

can be used to solve for the model parameters {ak} by using estimates of the 
autocorrelation sequence in place of yxx(m) for m 2 q. This problem is discussed 
in Section 12.3.8. 

Another interpretation of the relationship in (12.3.5) is that the values of 
the autocorrelation yxx(m) for m > q are uniquely determined from the pole 
parameters (ak} and the values of yXx(m) for 0 5 m 5 p. Consequently, the linear 
system model automatically extends the values of the autocorrelation sequence 
yxx(m) form > P. 

If the pole parameters (ak) are obtained from (12.3.5), the result does not 
help us in determining the MA parameters (bk}, because the equation 

4-m P 

~ ~ C h ( k ) b t + m = ~ ~ x ( m ) + C a k ~ ~ ~ t m - k )  o < m ~ q  
k=O k s l  

depends on the impulse response h(n) .  Although the impulse response can be 
expressed in terms of the parameters (bk} by long division of B(z )  with the known 
A(z), this approach results in a set of nonlinear equations for the MA pararn- 
eters. 
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If we adopt an AR(p) model for the observed data, the retationship between 
the AR parameters and the autocorrelation sequence is obtained by setting q = 0 
in (12.3.4). Thus we obtain 

In this case, the AR parameters (an] are obtained from the solution of the Yule- 
Walker or normal equations 

and the variance a:, can be obtained from the equation 

The equations in (12.3.7) and (12.3.8) are usually combined into a single matrix 
equation of the form 

Since the correlation matrix in (12.3.7), or in (12.3.9), is Toepiitz, it can be effi- 
ciently inverted by use of the Levinson- Durbin algorithm. 

Thus all the system parameters in the AR(p) model are easily determined 
from knowledge of the autocorrelation sequence yxx(rn) for 0 5 m 5 p. Further- 
more, (12.3.6) can be used to extend the autocorrelation sequence for rn > p, once 
the {ak) are determined. 

Finally, for completeness, we indicate that in a MA(q) model for the observed 
data, the autocorrelation sequence yxx(m) is related to the MA parameters ( bk )  by 
the equation 

which was established in Section 11.2. 
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With this background established, we now describe the power spectrum es- 
timation methods for the A R ( p ) ,  A R M A ( p ,  q), and M A ( q )  models. 

12.3.2 The Yule-Walker Method for the AR Model 
Parameters 

In the Yule-Walker method we simply estimate the autocorrelation from the 
data and use the estimates in (12.3.7) to solve for the A R  model parameters. 
In this method it is desirable to use the biased form of the autocorrelation esti- 
mate, 

1  N-m-1 

rxx(rn) = - x e ( n ) x ( n  + rn) rn 2 0 (12.3 .11)  
n=o 

to ensure that the autocorrelation matrix is positive semidefinite. The result is 
a stable AR model. Although stability is not a critical issue in power spec- 
trum estimation, it is conjectured that a stable AR model best represents the 
data. 

The Levinson-Durbin algorithm described in Chapter 11 with r,,(m) substi- 
tuted for y,,(m) yields the AR parameters. The corresponding power spectrum 
estimate is 

where i i p (k )  are estimates of the AR parameters obtained from the Levinson- 
Durbin recursions and 

I, 

is the estimated minimum mean-square value for the pth-order predictor. An 
example illustrating the frequency resolution capabilities of this estimator is given 
in Section 12.3.9. 

In estimating the power spectrum of sinusoidat signals via A R  models, Lacoss 
(1971)  showed that spectral peaks in an AR spectrum estimate are proportional 
to the square of the power of the sinusoidal signal. On the other hand, the area un- 
der the peak in the power density spectrum is linearly proportional to the power of 
the sinusoid. This characteristic behavior holds for all AR model-based estimation 
methods. 

12.3.3 The Burg Method for the AR Model Parameters 

The method devised by Burg (1968)  for estimating the A R  parameters can be 
viewed as an order-recursive least-squares lattice method, based on the minimiza- 
tion of the forward and backward errors in linear predictors, with the constraint 
that the AR parameters satisfy the Levinson-Durbin recursion. 



926 Power Spectrum Estimation Chap. 12 

To derive the estimator, suppose that we are given the data x(n),  n = 0, 
1, . . . , N - 1, and let us consider the forward and backward linear prediction esti- 
mates of order m, given as 

m 

i ( n )  = - x a. ( k ) x  (n - k )  
k = l  

(12.3.14) 
m 

i ( n  - rn) = - x o - ( k ) x ( n  + k - m )  
k=l 

and the corresponding forward and backward errors fm(n) and g,(n) defined as 
f.(n) = x ( n )  - i ( n )  and gm(n) = x(n - m )  - i ( n  - m )  where a,(k) ,  0 5 k 5 
m - 1, m = 1, 2 ,  . . . , p, are the prediction coefficients. The least-squares error 
is 

This error is to be minimized by selecting the prediction coefficients, subject 
to the constraint that they satisfy the Levinson-Durbin recursion given by 

am(k)  = a,-, ( k )  + K,Q;,-~ (m - k )  1 5 k 5 m - 1 (12.3.16) 

where K ,  = a,(m) is the mth reflection coefficient in the lattice filter realization 
of the predictor. When (12.3.16) is substituted into the expressions for fm(n)  
and g,(n), the result is the pair of order-recursive equations for the forward and 
backward prediction errors given by (11.2.4). 

Now, if we substitute from (11.2.4) into (12.3.16) and perform the minimiza- 
tion of E,,, with respect to the complex-valued reflection coefficient K,,,, we obtain 
the result 

The term in the numerator of (12.3.17) is an estimate of the crosscorrelation be- 
tween the forward and backward prediction errors. With the normalization factors 
in the denominator of (12.3.17), it is apparent that lK ,  1 < 1, so that the all-pole 
model obtained from the data is stable. The reader should note the similarity of 
(12.3.17) to its statistical counterparts given by (1 1.2.29). 

We note that the denominator in (12.3.17) is simply the least-squares estimate 
of the forward and backward errors, EL-,  and EL-,,  respectively. Hence (12.3.17) 
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can be expressed as 

where E:-, + ,!?iPl is an estimate of the total squared error Em. We leave it as 
an exercise for the reader to verify that the denominator term in (12.3.18) can be 
computed in an order-recursive fashion according to the relation 

where in, i,'; +,6: is the total least-squares error. This result is due to Andersen 
(1 978). 

To summarize, the Burg algorithm computes the reflection coefficients in 
the equivalent lattice structure as specified by (12.3.18) and (12.3.19). and the 
Levinson-Durbin algorithm is used to obtain the AR model parameters. From 
the estimates of the AR parameters. we form the power spectrum estimate 

The major advantages of the Burg method for estimating the parameters of 
the AR model are (1) it results in high frequency resolution, (2) it yields a stable 
AR model, and (3) it is computationally efficient. 

The Burg method is known to have several disadvantages, however. First, 
it exhibits spectral line splitting at high signal-to-noise ratios. [see the paper by 
Fougere et al. (1976)l. By line splitting, we mean that the spectrum of x ( n )  may 
have a single sharp peak, but the Burg method may result in two or more closely 
spaced peaks. For high-order models, the method also introduces spurious peaks. 
Furthermore, for sinusoidal signals in noise, the Burg method exhibits a sensitivity 
to the initial phase of a sinusoid, especially in short data records. This sensitivity 
is manifest as a frequency shift from the true frequency, resulting in a phase de- 
pendent frequency bias. For more details on some of these limitations the reader 
is referred to the papers of Chen and Stegen (1974), Uirych and Clayton (1976), 
Fougere et al. (1976), Kay and Marple (1979), Swingler (1979a, 1980), Hemng 
(1980), and Thorvaldsen (1981). 

Several modifications have been proposed to overcome some of the more 
important limitations of the Burg method: namely, the line splitting, spurious 
peaks, and frequency bias. Basically, the modifications involve the introduction 
of a weighting (window) sequence on the squared forward and backward er- 
rors. That is, the least-squares optimization is performed on the weighted squared 
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which, when minimized, results in the reflection coefficient estimates 

In particular, we mention the use of a Hamming window used by Swingler 
(1979b), a quadratic or parabolic window used by Kaveh and Lippert (1983), the 
energy weighting method used by Nikias and Scott (1982), and the data-adaptive 
energy weighting used by Helme and Nikias (1985). 

These windowing and energy weighting methods have proved effective in 
reducing the occurrence of line splitting and spurious peaks, and are also effective 
in reducing frequency bias. 

The Burg method for power spectrum estimation is usually associated with 
maximum entropy spectrum estimation, a criterion used by Burg (1967, 1975) as a 
basis for AR modeling in parametric spectrum estimation. The problem considered 
by Burg was how best to extrapolate from the given values of the autocorrelation 
sequence yxx(m), 0 ( m 5 p, the values for m > p, such that the entire autocorre- 
lation sequence is positive semidefinite. Since an infinite number of extrapolations 
are possible, Burg postulated that the extrapolations be made on the basis of maxi- 
mizing uncertainty (entropy) or randomness, in the sense that the spectrum T,, ( f )  
of the process is the flattest of all spectra which have the given autocorrelation 
values yXx(m), 0 5 rn 5 p. In particular the entropy per sample is proportional to 
the integraI [see Burg (1975)l 

(12.3.23) 

Burg found that the maximum of this integral subject to the (p + 1) constraints 

is the AR(p) process for which the given autocorrelation sequence yxx(m), 0 i 
m 5 p is related to the AR parameters by the equation (12.3.6). This solution 
provides an additional justification for the use of the AR model in power spectrum 
estimation. 

In view of Burg's basic work in maximum entropy spectral estimation, the 
Burg power spectrum estimation procedure is often called the maximum entropy 
method (MEM). W e  should emphasize, however, that the maximum entropy spec- 
trum is identical to the AR-model spectrum only when the exact autocorrelation 
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yxx(m) is known. When only an estimate of yxx(m) is available for 0 5 rn 5 p, the 
AR-model estimates of Yule-Walker and Burg are not maximum entropy spec- 
tral estimates. The general formulation for the maximum entropy spectrum based 
on estimates of the autocorrelation sequence results in a set of nonlinear equa- 
tions. Solutions for the maximum entropy spectrum with measurement errors in 
the correlation sequence have been obtained by Newman (1981) and Schott and 
McClellan (1 984). 

12.3.4 Unconstrained Least-Squares Method for the AR 
Model Parameters 

As described in the preceding section, the Burg method for determining the pa- 
rameters of the AR model is basically a least-squares lattice algorithm with the 
added constraint that the predictor coefficients satisfy the Levinson recursion. As 
a result of this constraint, an increase in the order of the A R  model requires only 
a single parameter optimization at each stage. In contrast to this approach, we 
may use an unconstrained least-squares algorithm to determine the A R  parame- 
ters. 

To elaborate, we form the forward and backward linear prediction estimates 
and their corresponding forward and backward errors as indicated in (12.3.14) and 
(12.3.15). Then we minimize the sum of squares of both errors, that is, 

(12.3.25) 
which is the same performance index as in the Burg method. However, we do not 
impose the Levinson-Durbin recursion in (12.3.25) for the AR parameters. The 
unconstrained minimization of EP with respect to the prediction coefficient. yields 
the set of Iinear equations 

where, by definition, the autocorrelation rxx (1, k) is 

N- I  

r,,(l. k )  = x [ x ( n  - k)x*(n - 1 )  + x(n - p + l ) x * (n  - p + k)] (12.3.27) 
n=p 

The resulting residual least-squares error is 
D 
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Hence the unconstrained least-squares power spectrum estimate is 

The correlation matrix in (12.3.21)' with elements r,,(l, k), is not Toeplitz, so 
that the Levinson-Durbin algorithm cannot be applied. However, the correlation 
matrix has sufficient structure to make it possible to devise computationally effi- 
cient algorithms with computational complexity proportional to p2. Marple (1980) 
devised such an algorithm, which has a lattice structure and employs Levinson- 
Durbin-type order recursions and additional time recursions. 

This form of the unconstrained least-squares method described has also been 
called the unwindowed data least-squares method. It has been proposed for spec- 
trum estimation in several papers, including the papers by Burg (1967), Nuttall 
(1976), and Ulrych and Clayton (1976). Its performance characteristics have been 
found to be superior to the Burg method, in the sense that the unconstrained ieast- 
squares method does not exhibit the same sensitivity to such problems as line split- 
ting, frequency bias, and spurious peaks. In view of the computational efficiency of 
Marple's algorithm, which is comparable to the efficiency of the Levinson-Durbin 
algorithm, the unconstrained least-squares method is very attractive. With this 
method there is no guarantee that the estimated AR parameters yield a stable 
AR model. However, in spectrum estimation, this is not considered to be a 
problem. 

12.3.5 Sequential Estimation Methods for the AR Model 
Parameters 

The three power spectrum estimation methods described in the preceding sections 
for the AR model can be classified as block processing methods. These methods 
obtain estimates of the AR parameters from a block of data, say x(n) ,  n = 0, 
1,.  . . , N - 1. The AR parameters, based on the block of N data points, are then 
used to obtain the power spectrum estimate. 

In situations where data are available on a continuous basis, we can still 
segment the data into blocks of N points and perform spectrum estimation on 
a block-by-block basis. This is often done in practice, for both real-time and 
non-real-time applications. However, in such applications, there is an alternative 
approach based on sequential (in time) estimation of the AR model parameters as 
each new data point becomes available. By introducing a weighting function into 
past data samples, it is possible to deemphasize the effect of older data samples 
as new data are received. 

Sequential lattice methods based on recursive least squares can be employed 
to optimally estimate the prediction and reflection coefficients in the lattice re- 
alization of the forward and backward linear predictors. The recursive equa- 
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tions for the prediction coefficients relate directly to the AR model parameters. 
In addition to the order-recursive nature of these equations, as implied by the 
lattice structure, we can also obtain time-recursive equations for the reflection 
coefficients in the lattice and for the forward and backward prediction coeffi- 
cients. 

Sequential recursive least-squares algorithms are equivalent to the uncon- 
strained least-squares, block processing method described in the preceding sec- 
tion. Hence the power spectrum estimates obtained by the sequential recursive 
least-squares method retain the desirable properties of the block processing algo- 
rithm described in Section 12-3.4. Since the AR parameters are being continuously 
estimated in a sequential estimation algorithm, power spectrum estimates can be 
obtained as often as desired, from once per sample to once every N samples. By 
properly weighting past data samples, the sequential estimation methods are par- 
ticularly suitable for estimating and tracking time-variant power spectra resulting 
from nonstationary signal statistics, 

The computational complexity of sequential estimation methods is generally 
proportional to p ,  the order of the AR process. As a consequence, sequential 
estimation algorithms are computationally efficient and, from this viewpoint, may 
offer some advantage over the block processing methods. 

There are numerous references on sequential estimation methods. The pa- 
pers by Griffiths (1975), Friedlander (1982a, b), and Kalouptsidis and Theodoridis 
(1987) are particularly relevant to the spectrum estimation problem. 

12.3.6 Selection of AR Model Order 

One of the most important aspects of the use of the AR model is the selection 
of the order p. As a general rule, if we select a model with too low an or- 
der, we obtain a highly smoothed spectrum. On the other hand, if p is selected 
too high, we run the risk of introducing spurious low-level peaks in the spec- 
trum. We mentioned previously that one indication of the performance of the 
AR model is the mean-square value of the residual error, which, in general, is 
different for each of the estimators described above. The characteristic of this 
residual error is that it decreases as the order of the AR model is increased. 
We can monitor the rate of decrease and decide to terminate the process when 
the rate of decrease becomes relatively slow. It is apparent, however, that this 
approach may be imprecise and ill-defined, and other methods should be investi- 
gated. 

Much work has been done by various researchers on this problem and many 
experimental results have been given in the literature [e.g., the papers by Gersch 
and Sharpe (1973), Ulrych and Bishop (1975), Tong (1975, 1977), Jones (1976), 
Nuttall (1976), Berryman (1978), Kaveh and Bruzzone (1979), and Kashyap 
(1980)j. 

Two of the better known criteria for selecting the model order have been 
proposed by Akaike (1969, 1974). With the first, called the Jinal prediction error 
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(FPE) criterion, the order is selected to minimize the performance index 

where &:, is the estimated variance of the linear prediction error. This perfor- 
mance index is based on minimizing the mean-square error for a one-step predictor. 

The second criterion proposed by Akaike (1974), called the Akaike i n f o m -  
tion criterion (AIC), is based on selecting the order that minimizes 

Note that the term 3GP decreases and therefore ln6& also decreases as the order 
of the AR model is ~ncreased. However, 2p/N increases with an increase in p. 
Hence a minimum value is obtained for some p. 

An alternative information criterion, proposed by Rissanen (1983), is based 
on selecting the order that minimizes the description length (MDL), where MDL 
is defined as 

A fourth criterion has been proposed by Parzen (1974). This is called the 
criterion autoregressive transfer (CAT) function and is defined as 

where 

The order p is selected to minimize CAT(p). 
In applying this criteria, the mean should be removed from the data. Since 

&:, depends on the type of spectrum estimate we obtain, the model order is also 
a function of the criterion. 

The experimental results given in the references just cited indicate that 
the model-order selection criteria do not yield definitive results. For example, 
Ulrych and Bishop (1975), Jones (1976), and Berryman (1978), found that the 
FPE(p) criterion tends to underestimate the model order. Kashyap (1980) showed 
that the AIC criterion is statistically inconsistent as N - oo. On the other 
hand, the MDL information criterion proposed by Rissan n is statistically con- 
sistent. Other experimental results indicate that for sma . data lengths, the or- 
der of the AR model shouid be selected to be in the range N / 3  to N / 2  for 
good resdts. It is apparent that in the absence of any prior information re- 
garding the physical process that resulted in the data, one should try differ- 
ent model orders and different criteria and, finally, consider the different 
results. 
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12.3.7 MA Model for Power Spectrum Estimation 

As shown in Section 12.3.1, the parameters in a MA(q) model are related to the 
statistical autocorrelation yxx(m)  by (12.3.10). However, 

where the coefficients (dm}  are related to the MA parameters by the expression 

Clearly, then. 

and the power spectrum for the MA(q) process is 

It is apparent from these expressions that we do not have to solve for the MA 
parameters ( bk }  to estimate the power spectrum. The estimates of the autocorre- 
lation yx,(m) for jnzl 5 q suffice. From such estimates we compute the estimated 
MA power spectrum. given as 

4 

pEA({) = C rxr(m)e-~2nfm (12.3.39) 
m=-q 

which is identical to the classical (nonparametric) power spectrum estimate de- 
scribed in Section 12.1. 

There is an alternative method for determining {bk }  based on a high-order 
AR approximation to the MA process. To be specific, let the MA(q) process be 
modeled by an AR(p) model, where p >> q .  Then B(z) = l /A (z ) ,  or equivalently, 
B ( z ) A ( r )  = 1. Thus the parameters {bk}  and {ak}  are related by a convolution sum, 
which can be expressed as 

where {in] are the parameters obtained by fitting the data to an AR(p) model. 
Although this set of equations can be easily solved for the {bk}, a better fit is 

obtained by using a least-squares error criterion. That is, we form the squared error 

which is minimized by selecting the MA(q) parameters {bk) .  The result of this 
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minimization is 
b = - ~ ; ; r ~ ~  

where the elements of I&, and r,, are given as 

p- i 

raa(i)  = xi,,&, + i i = l , 2 ,  . . . , q  

This least squares method for determining the parameters of the MA(q) 
model is attributed to Durbin (1959). It has been shown by Kay (1988) that this 
estimation method is approximately the maximum likelihood under the assumption 
that the observed process is Gaussian. 

The order q of the MA model may be determined empirically by several 
methods. For example, the AIC for MA models has the same form as for AR 
models, 

27 AIC(q) = In oi, + - (12.3.44) 
N 

where cr:, is an estimate of the variance of the white noise. Another approach, 
proposed by Chow (1972b), is to filter the data with the inverse MA(q) filter and 
test the filtered output for whiteness. 

12.3.8 ARMA Model for Power Spectrum Estimation 

The Burg algorithm, its variations, and the least-squares method described in the 
previous sections provide retiable high-resolution spectrum estimates based on 
the AR model. An ARMA model provides us with an opportunity to improve on 
the AR spectrum estimate, perhaps, by using fewer model parameters. 

The ARMA model is particularly appropriate when the signal has been cor- 
rupted by noise. For example, suppose that the data x ( n )  are generated by an 
AR system, where the system output is corrupted by additive white noise. The 
z-transform of the autocorrelation of the resultant signal can be expressed as 

where 4 is the variance of the additive noise. Therefore, the process x(n )  is 
ARMA(p, p), where p is the order of the autocorrelation process. This rela- 
tionship provides some motivation for investigating ARMA models for power 
spectrum estimation. 

As we have demonstrated in Section 12.3.1, the p rameters of the ARMA 
model are related to the autocorrelation by the equa: on in (12.3.4). For lags 



Sec. 12.3 Parametric Methods for Power Spectrum Estimation 935 

Irnl > q,  the equation involves only the AR parameters (ar) .  With estimates 
substituted in place of yxx(m), we can solve the p equations in (12.3.5) to obtain 
&. For high-order models, however, this approach is likely to yield poor estimates 
of the AR parameters due to the poor estimates of the autocorrelation for large 
lags. Consequently, this approach is not recommended. 

A more reliable method is to construct an overdetermined set of linear equa- 
tions for rn > q, and to use the method of least squares on the set of overdeter- 
mined equations, as proposed by Cadzow (1979). To elaborate, suppose that 
the autocorrelation sequence can be accurately estimated up to lag M, where 
M > p + q.  Then we can write the following set of linear equations: 

rxr(q-1) . . .  r x x ( q - p + l )  rxx (q + 1) 

(12.3.46) 
or equivalently, 

Since Rxx is of dimension (M - q )  x p, and M - q > p we can use the least-squares 
criterion to solve for the parameter vector a. The result of this minimization is 

This procedure is called the least-squares modified Yule-Walker method. A 
weighting factor can also be applied to the autocorrelation sequence to deempha- 
size the less reliable estimates for large lags. 

Once the parameters for the A R  part of the model have been estimated as 
indicated above, we have the system 

The sequence x(n) can now be filtered by the FIR filter i ( z )  to yield the sequence 

The cascade of the ARMA(p, q) model with i ( r )  is approximately the MA(q) 
process generated by the model B(z ) .  Hence we can apply the MA estimate given 
in the preceding section to obtain the MA spectrum. To be specific, the filtered 
sequence v(n) for p 5 n 5 N-1 is used to form the estimated correlation sequences 
r,,(m), from which we obtain the MA spectrum 
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First, we observe that the parameters {bk}  are not required to determine the power 
spectrum. Second, we observe that r,,(m) is an estimate of the autocorrelation for 
the MA model given by (12.3.10). In forming the estimate r, , (m),  weighting (e.g., 
with the Bartlett window) may be used to deemphasize correlation estimates for 
large lags. In addition, the data may be filtered by a backward filter, thus creating 
another sequence, say vb(n), so that both v(n) and vb(n) can be used in forming 
the estimate of the autocorrelation r,,(m), as proposed by Kay (1980). Finally, 
the estimated ARMA power spectrum is 

The problem of order selection for the ARMA(p, q )  model has been inves- 
tigated by Chow (1972a, b) and Bruuone and Kaveh (1980). For this purpose the 
minimum of the AIC index 

can be used, where 6:,, is an estimate of the variance of the input error. An 
additional test on the adequacy of a particular ARMA(p, q) model is to filter the 
data through the model and test for whiteness of the output data. This requires that 
the parameters of the MA model be computed from the estimated autocorrelation, 
using spectral factorization to determine B(z) from D ( z )  = B(Z)B(Z-I). 

For additional reading on ARMA power spectrum estimation, the reader is 
referred to the papers by Graupe et al. (1975), Cadzow (1981, 1982), Kay (1980), 
and Friedlander (1982b). 

12.3.9 Some Experimental Results 

In this section we present some experimental results on the performance of AR 
and ARMA power spectrum estimates obtained by using artificially generated data. 
Our objective is to compare the spectral estimation methods on the basis of their 
frequency resolution, bias, and their robustness in the presence of additive noise. 

The data consist of either one or two sinusoids and additive Gaussian noise. 
The two sinusoids are spaced Af apart. Clearly, the underlying process is 
ARMA(4,4). The results that are shown employ an AR(p) model for these 
data. For high signal-to-noise ratios (SNRs) we expect the AR(4) to be adequate. 
However, for low SNRs, a higher-order AR model is needed to approximate the 
ARMA(4,4) process. The results given below are consistent with this statement. 
The SNR is defined as 10logl, where a2 is variance of the additive noise 
and A is the amplitude of the sinusoid. 

In Fig. 12.6 we illustrate the results for N = 20 data points based on an AR(4) 
model with a SNR = 20 dB and Af = 0.13. Note that the Yule-Walker method 
gives an extremely smooth (broad) spectral estimate with small peaks. If Af is 
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Frequency (cycles/sample) 

Figure 126 Comparison of AR spectrum estimation methods. 

decreased to A f = 0.07, the Yule-Walker method no longer resolves the peaks as 
illustrated in Fig. 12.7. Some bias is also evident in the Burg method. Of course, by 
increasing the number of data points the Yule-Walker method eventually is able 
to resolve the peaks. However, the Burg and least-squares methods are clearly 
superior for short data records. 

The effect of additive noise on the estimate is illustrated in Fig. 12.8 for the 
least-squares method. The effect of filter order on the Burg and least-squares 
methods is illustrated in Figs. 12.9 and 12.10, respectively. Both methods exhibit 
spurious peaks as the order is increased to p = 12. 

The effect of initial phase is illustrated in Figs. 12.11 and 12.12 for the Burg 
and least-squares methods. It is clear that the least-squares method exhibits less 
sensitivity to initial phase than the Burg algorithm. 

An example of line splitting for the Burg method is shown in Fig. 12.13 with 
p = 12. It does not occur for the AR(8) model. The least-squares method did 
not exhibit line splitting under the same conditions. On the other hand, the line 
splitting on the Burg method disappeared with an increase in the number of data 
points N. 

Figures 12.14 and 12.15 illustrate the resolution properties of the Burg and 
least-squares methods for Af = 0.07 and N = 20 points at low SNR (3 dB). 
Since the additive noise process is ARMA, a higher-order AR mode1 is required 
to provide a good approximation at low SNR. Hence the frequency resolution 
improves as the order is increased. 
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Agure 12.7 Comparison of AR spectrum estimation methods. 
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Figure 12.9 Effect of filter order of Burg method. 
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Figure 12.11 Effect of initial phase on Burg method. 
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Figure JZ15 Frequency resolution of LS method with N = 20 points. 

The FPE for the Burg method is illustrated in Fig. 12.16 for an SNR = 3 dB. 
For this SNR the optimum value is p = 12 according to the FPE criterion. 

The Burg and least-squares methods were also tested with data from a nar- 
rowband process, obtained by exciting a four-pole (two pairs of complex-conjugate 
poles) narrowband filter and selecting a portion of the output sequence for the data 
record. Figure 12.17 illustrates the superposition of 20 data records of 20 points 
each. We observe a relatively small variability. In contrast, the Burg method 
exhibited a much larger variability, approximately a factor of 2 compared to the 
least-squares method. The results shown in Figs. 12.6 through 12.17 are taken 
from Poole (1981). 

Finally, we show in Fig. 12.18 the ARMA(10,lO) spectral estimates obtained 
by Kay (1980) for two sinusoids in noise using the least-squares ARMA method 
described in Section 12.3.8, as an illustration of the quality of power spectrum 
estimation obtained with the ARMA model. 

12.4 MiNlMUM VARIANCE SPECTRAL ESTIMATION 

The spectral estimator proposed by Capon (1969) was intended for use in large 
seismic arrays for frequency-wave number estimation. It was later adapted to 
single-time-series spectrum estimation by Lacoss (1971), who demonstrated that 
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F i r e  I218 ARMA (10, 10) power 
spectrum estimates from paper by Kay 
(1980). Reprinted with permission from 
the IEEE. 

the method provides a minimum variance unbiased estimate of the spectral corn- 
ponents in the signal. 

Following the development of Lawss, let us consider an FIR filter with coef- 
ficients at, 0 I k I p,  to be determined. Unlike the linear prediction problem, we 
do not constrain ao to be unity. Then, if the observed data x(n) ,  0 5 n 5 N - 1, 
are passed through the filter, the response is 
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X' ( n )  = [ x ( n )  x(n - 1)  - - - x(n - p )  is the data vector and a is the filter coef- 
ficient vector. if  we assume that E[x(n) ]  = 0, the variance of the output sequence is 

where I?,, is the autocorrelation matrix of the sequence x ( n ) ,  with elements y,,(m). 
The filter coefficients are selected so that at the frequency fi, the frequency 

response of the FIR filter is normalized to unity, that is, 

This constraint can also be written in matrix form as 

where 

By minimizing the variance $ subject to the constraint (12.4.3), we obtain an 
FIR filter that passes the frequency component f, undistorted, while components 
distant from f, are severely attenuated. The result of this minimization is shown 
by Lacoss to lead to the coefficient vector 

= r i $ * ( h ) f l t  ( h ) r l j ~ * ( f , )  (12,4.4) 

If i is substituted into (12.4.2), we obtain the minimum variance 

The expression in (12.4.5) is the minimum variance power spectrum estimate 
at the frequency fi. By changing fi over the range 0 5 f, 5 0.5, we can obtain 
the power spectrum estimate. It should be noted that although E( f )  changes with 
the choice of frequency, r,-,' is computed only once. As demonstrated by Lacoss 
(1971), the computation of the quadratic form El( f )r,-,'E*( f )  can be done with a 
single DFT. 

With an estimate R,, of the autocorrelation matrix substituted in place of 
I?,,, we obtain the minimum variance power spectrum estimate of Capon as 

1 
pEV<f  1 = (12.4.6) 

E'(f  )R,-,'E*(f 
It has been shown by Lacoss (1971) that this power spectrum estimator yields 
estimates of the spectral peaks proportional to the power at that frequency. In 
constrast, the AR methods described in Section 12.3 result in estimates of the 
spectral peaks proportional to the square of the power at that frequency. 

This minimum variance method is basically a filter bank implementation for 
the spectrum estimator. It differs basicaHy from the filter bank interpretation of 
the periodogram in that the filter coefficients in the Capon method are optimized. 
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Experiments on the performance of this method compared with the per- 
formance of the Burg method have been done by Lacoss (1971) and others. In 
general, the minimum variance estimate in (12.4.6) outperforms the nonparametric 
spectral estimators in frequency resolution, but it does not provide the high fre- 
quency resolution obtained from the AR methods of Burg and the unconstrained 
least squares. Extensive comparisons between the Burg method and the mini- 
mum variance method have been made in the paper by Lacoss. Furthermore, 
Burg (1972) demonstrated that for a known correlation sequence, the minimum 
variance spectrum is related to the AR model spectrum through the equation 

where ~ f l ( f ,  k) is the AR power spectrum obtained with an AR(k) model. Thus 
the reciprocal of the minimum variance estimate is equal to the average of the 
reciprocals of all spectra obtained with AR(k) models for I 5 k 5 p. Since 
low-order AR models, in general, do not provide good resolution, the averaging 
operation in (12.4.7) reduces the frequency resolution in the spectral estimate. 
Hence we conclude that the A R  power spectrum estimate of order p is superior 
to the minimum variance estimate of order p + 1. 

The relationship given by (12.4.7) represents a frequency-domain relationship 
between the Capon minimum variance estimate and the Burg AR estimate. A 
time-domain relationship between these two estimates also can be established as 
shown by Musicus (1985). This has led to a computationally efficient algorithm 
for the minimum variance estimate. 

Additional references to the method of Capon and comparisons with other 
estimators can be found in the literature. We cite the papers of Capon and Good- 
man (1971), Marzetta (1983), Marzetta and Lang (1983, 1984), Capon (19831, and 
McDonough (1 983). 

12.5 EIGENANALYSIS ALGORITHMS FOR SPECTRUM ESTIMATION 

In Section 12.3.8 we demonstrated that an AR(p) process corrupted by additive 
(white) noise is equivalent to an ARMA(p, p) process. In this section we con- 
sider the special case in which the signal components are sinusoids corrupted by 
additive white noise. The algorithms are based on an eigen-decomposition of the 
correlation matrix of the noise-corrupted signal. 

From our previous discussion on the generation of sinusoids in Chapter 4, 
we recall that a real sinusoidal signal can be generated via the difference equation, 

where a1 = 2 cos 2n fk, az = 1, and initially, x ( -  I )  = -1, x(-2) = 0. This system 
has a pair of complex-conjugate poles (at f = f and f = - fk) and therefore 
generates the sinusoid x(n)  = cos2x fkn, for n 2 r 
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In general, a signal consisting of p sinusoidal components satisfies the differ- 
ence equation 

ZP 
x(n)  = - C o m x ( n  - rn) (12.5.2) 

m s l  

and corresponds to the system with system function 

The polynomial 

has 2 p  roots on the unit circle which correspond to the frequencies of the sinusoids. 
Now, suppose that the sinusoids are corrupted by a white noise sequence 

w ( n )  with ~ [ t w ( n ) l ~ ]  = a:,. Then we observe that 

If we substitute x ( n )  = y(n)  - w ( n )  in (12.5.21, we obtain 

m=l 

or, equivalently, 

where, by definition, a0 = 1. 
We observe that (12.5.6) is the difference equation for an AIRMA(p ,  p )  pro- 

cess in which both the AR and MA parameters are identical. This symmetry is a 
characteristic of the sinusoidal signals in white noise. The difference equation in 
(12.5.6) may be expressed in matrix form as 

Y'a = Wta (12.5.7) 

where Yr = [ y (n)  y(n - 1 )  - - - y(n - 2 p ) ]  is the observed data vector of di- 
mension ( 2 p  + I ) ,  W' = [ w (n)  w (n - 1) . . w ( n  - 2 p )  ] is the noise vector, 
and a = [l  a1 az, is the coemcient vector. 

If we premultiply (12.5.7) by Y and take the expected value, we obtain 

where we have used the assumption that the sequence w(n)  is zero mean and 
white, and X is a deterministic signal. 
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The equation in (12.5.8) is in the form of an eigenequation, that is, 

where cri is an eigenvalue of the autocorrelation matrix r,. Then the parameter 
vector a is an eigenvector associated with the eigenvalue a:. The eigenequation 
in (12.5.9) forms the basis for the Pisarenko harmonic decomposition method. 

12.5.1 Pisarenko Harmonic Decomposition Method 

For p randomly-phased sinusoids in additive white noise, the autocorrelation val- 
ues are 

P 

~ ~ ( 0 )  = 0: + C Pi 
i=l 

(12.5.10) 
D 

y,, (k) = Pi cos 2 r h  k k # 0 
i=l 

where Pi = ~ f / 2  is the average power in the ith sinusoid and Ai is the correspond- 
ing amplitude. Hence we may write 

cos21rf~ cos2xf2 . . .  cos 2x fp YY.v(~) - 4rf2 * cos 47r fp ] [! ] = [yYj:)] (12.5.11) 

cos2rpfi cos2rpf2 . . . cos 27rpfp Pp YVV(P) 
If we know the frequencies f,, 1 5 i 5 p, we can use this equation to determine 
the powers of the sinusoids. In place of yxx(m), we use the estimates rxx(rn). Once 
the powers are known, the noise variance can be obtained from (12.5.10) as 

The problem that remains is to determine the p frequencies fi ,  1 5 i 5 
p, which, in turn, require knowledge of the eigenvector a corresponding to the 
eigenvalue a:. Pisarenko (1973) observed [see also Papoulis (1984) and Grenander 
and Szego (1958)] that for an ARMA process consisting of p sinusoids in additive 
white noise, the variance cr; corresponds to the minimum eigenvalue of r, when 
the dimension of the autocorrelation matrix equals or exceeds (2p + 1) x ( 2 p  + 1). 
The desired ARMA coefficient vector corresponds to the eigenvector associated 
with the minimum eigenvalue. Therefore, the frequencies fi, 1 5 i 5 p are 
obtained from the roots of the polynomiaI in (12.5.4), where the coefficients are 
the elements of the eigenvector a corresponding to the minimum eigenvalue a:. 

In summary, the Pisarenko harmonic decomposition method proceeds as 
follows. First we estimate I?,, from the data (i.e., we form the autocorrela- 
tion matrix Ryv). Then we find the minimum eigenvalue and the corresponding 
minimum eigenvector. The minimum eigenvector yields the parameters of the 
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ARMA(2p, 2 p )  model. From (12.5.4.) we can compute the roots that constitute 
the frequencies {A} .  By using these frequencies, we can solve (12.5.11) for the 
signal powers {Pi] by substituting the estimates r,!,(rn) for y,,(m). 

As will be seen in the following example, the Pisarenko method is based on 
the use of a noise subspace eigenvector to estimate the frequencies of the sinusoids. 

Example 1U.1 

Suppose that we are given the autocorrelation values yyy(0) = 3, y?,.(l) = I ,  and 
~ ~ ~ ( 2 )  = 0 for a process consisting of a single sinusoid in additive white noise. Deter- 
mine the frequency, its power, and the variance of the additive noise. 

Solution The correlation matrix is 

The minimum eigenvalue is the smallest root of the characteristic polynomial 

Therefore, the eigenvalues are hi = 3, h2 = 3 + &. A3 = 3 - &. 
The variance of the noise is 

The corresponding eigenvalue is the vector that satisfies (12.5.9), that is, 

The solution is a, = -& and a1 = 1. 
The next step is to use the value a1 and a2 to determine the roots of the 

polynomial in (12.5.4). We have 

z2-Az+1=0 .. 
Thus 

Note that l z l l  = ]zzl = 1, so that the roots are on the unit circle. The corresponding 
frequency is obtained from 

which yields f! = i. Finally, the power of the sinusoid is 

and its amplitude is A = = m. 
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As a check on our computations, we have 

a:! = Y,,(O) - PI 

= 3 - 4  
which agrees with A,,,,,. 

12.5.2 Eigen-decomposition of the Autocorrelation Matrix 
for Slnusoids in White Noise 

In the previous discussion we assumed that the sinusoidal signal consists of p real 
sinusoids. For mathematical convenience we shall now assume that the signal 
consists of p complex sinusoids of the form 

where the amplitudes (Ai) and the frequencies ( f i )  are unknown and the phases 
(4,) are statistically independent random variables uniformly distributed on (O,2n).  
Then the random process x ( n )  is wide-sense stationary with autocorrelation func- 
tion 

D 

where. for complex sinusoids, P, = A; is the power of the ith sinusoid. 
Since the sequence observed is y ( n )  = x(m)  + w(n),  where w(n)  is a white 

noise sequence with spectral density a:, the autocorrelation function for y(n) is 

Hence the M x M autocorrelation matrix for y(n) can be expressed as 

where I?,, is the autocorrelation matrix for the signal x ( n )  and a;,I is the autocor- 
relation matrix for the noise. Note that if select M > p, r,, which is of dimension 
M x M is not of full rank, because its rank is p. However, I?,?, is full rank because 
u:,I is of rank M. 

In fact, the signal matrix I?,, can be represented as 
P 

r,, = pisis: 
i = l  

where H denotes the conjugate transpose and si is a signal vector of dimension M 
defined as 

si = [I, e i b X ,  e ~ 4 n f 1 ,  . . -, e ~ Z n ( M - l ) f ,  1 (12.5.18) 

Since each vector (outer p r o a ~  -t) sis? is a matrix of rank 1 and since there are p 
vector products, the matrix I?,, is of rank p. Note that if the sinusoids were real, 
the correlation matrix r,, has rank 2p. 
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Now, let us perform an eigen-decomposition of the matrix ryy. Let the 
eigenvalues (Ai) be ordered in decreasing value with )cl 1 A2 2 A3 . - 1. AM and 
let the corresponding eigenvectors be denoted as {vi, i = 1, . . . , M). We assume 
that the eigenvectors are normalized so that v r  - vj = S i j .  In the absence of noise 
the eigenvalues )ci , i = I ,  2, . . . , p, are nonzero while )cp+1 = )cpS2 = . . . = AM = 
0. Furthermore, it follows that the signal correlation matrix can be expressed 
as 

r,, = C i i v i v ;  
i=l 

Thus, the eigenvectors v;, i = 1, 2, . . . , p span the signal subspace as do the 
signal vectors si ,  i = 1, 2, . . . , p. These p eigenvectors for the signal subspace are 
called the principal eigenvectors and the corresponding eigenvalues are called the 
principal eigenvalues. 

In thdpresence of noise, the noise autocorrelation matrix in (12.5.16) can be 
represented as 

By substituting (12.5.19) and (12.5.20) into (12.5.16), we obtain 

This eigen-decomposition separates the eigenvectors into two sets. The set {vi, i = 
1, 2, . . . , p), which are the principal eigenvectors, span the signal subspace, while 
the set {vi, i = p + 1, . . . , MI, which are orthogonal to the principal eigenvectors, 
are said to belong to the noise subspace. Since the signal vectors {si, i = 1,2, . . . , pj 
are in the signal subspace, it follows that the IS;'} are simply linear combinations 
of the principal eigenvectors and are also orthogonal to the vectors in the noise 
subspace. 

In this context we see that the Pisarenko method is based on an estimation of 
the frequencies by using the orthogonality property between the signal vectors and 
the vectors in the noise subspace. For complex sinusoids, if we select M = p + 1 
(for real sinusoids we select M = 2 p  + I), there is only a single eigenvector in 
the noise subspace (corresponding to the minimum eigenvalue) which must be 
orthogonal to the signal vectors. Thus we have 

But (12.5.22) implies that the frequencies ( A }  can be determined by solving for 
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the zeros of the polynomial 

all of which lie on the unit circle. The angles of these roots are 2nJ, i = 1. 
2, . . . , p .  

When the number of sinusoids is unknown, the determination of p may 
prove to be difficult, especially if the signal level is not much higher than the noise 
level. In theory, if M > p + 1, there is a multiplicity (M - p)  of the minimum 
eigenvalue. However, in practice the ( M- p )  small eigenvalues of R,,, will probably 
be different. By computing all the eigenvalues it may be possible to determine p 
by grouping the M - p small (noise) eigenvalues into a set and averaging them to 
obtain an estimate of a:. Then, the average value can be used in (12.5.9) along 
with R, to determine the corresponding eigenvector. 

12.5.3 MUSIC Algorithm 

The multiple signal classification (MUSIC) method is also a noise subspace fre- 
quency estimator. To develop the method, let us first consider the "weighted" 
spectral estimate 

M 

where {vk ,  k = p  + 1,. . . . M} are the eigenvectors in the noise subspace, { w k J  are 
a set of positive weights, and s ( f )  is the complex sinusoidal vector 

~ ( f )  = [ I ,  ,.i2nf, e j 4 x f ,  A * ,  , i 2 n ( M - l ) f  1 (12.5.25) 
Note that at f = f,, s ( f , )  = s;, SO that at any one of the p sinusoidal frequency 
components of the signal, we have 

Hence, the reciprocal of P( f )  is a sharply peaked function of frequency and pro- 
vides a method for estimating the frequencies of the sinusoidal components. Thus 

1 1 

Although theoretically 1 / P (  f )  is infinite at f = fi, in practice the estimation errors 
result in finite values for 1 / P  ( f )  at all frequencies. 

The MUSIC sinusoidal frequency estimator proposed by Schmidt (1981, 
1986) is a special case of (12.5.27) in which the weights wk = 1 for all k .  Hence 
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The estimate of the sinusoidal frequencies are the peaks of PMusrc(f). Once the 
sinusoidal frequencies are estimated, the power of each of the sinusoids can be 
obtained by solving (12.5.11). 

12.5.4 ESPRIT Algorithm 

ESPRIT (estimation of signal parameters via rotational invariance techniques) is 
yet another method for estimating frequencies of a sum of sinusoids by use of 
an eigen-decomposition approach. As we observe from the development that 
follows, which is due to Roy et al. (1986), ESPRlT exploits an underlying rota- 
tional invariance of signal subspaces spanned by two temporally displaced data 
vectors. 

We again consider the estimation of p complex-valued sinusoids in additive 
white noise. The received sequence is given by the vector 

where x ( n )  is the signal vector and w(n) is the noise vector. To exploit the de- 
terministic character of the sinusoids, we define the time-displaced vector z(n) = 
y(n + I). Thus 

With these definitions we can express the vectors y(n) and z(n) as 

where a = [UI ,a2, . . . , up]' ,  ai = ~ ; e ~ @ ' ,  and a is a diagonal p x p matrix consist- 
ing of the relative phase between adjacent tim-e samples of each of the complex 
sinusoids, 

Note that the matrix a relates the time-displaced vectors y(n) and z(n) and can 
be called a rotation operator. We also note that @ is unitary. The matrix S is the 
M x p Vandermonde matrix specified by the column vectors 

si = [I, e j 2 x f l ,  eJ4afi, . . , ej l r (M- ' ) f , ]  i = 1 , 2 , , . . , p  (12.5.33) 

Now the autocovariance matrix for the data vector y(n) is 



954 Power Spectnrm Estimation Chap. 12 

where P is the p x p diagonal matrix consisting of the powers of the complex 
sinusoids, 

We observe that P is a diagonal matrix since complex sinusoids of different 
frequencies are orthogonaI over the infinite interval. However, we should empha- 
size that the ESPRIT algorithm does not require P to be diagonal. Hence the 
algorithm is applicable to the case in which the covariance matrix is estimated 
from finite data records. 

The crosscovariance matrix of the signal vectors y(n) and z(n) is 

where 
I?, = E[w(n)w H(n + I ) ]  

0 0 0 . . -  0 0 
1 0 0 . .+ 0 (12.5.37) 

= u: [O .;- 1 :] =dQ 
. * .  

0 0 0 . . .  
The auto and crosscovariance matrices I?,, and I?,; are given as 

LY;,(M - 2)  Y;y(M -3) Yy,(l) J 
where yyy ( m )  = E [y*  (n) y (n +m)]. Note that both l', and l',, are Toeplitz matrices. 

Based on this formulation, the problem is to determine the frequencies { A )  
and their powers (Pi J from the autocorrelation sequence (yyy(rn)) .  

From the underlying model, it is clear that the matrix S P S ~  has rank p. 
Consequently, r,, given by (12.5.34) has (M - p) identical eigenvalues equal to 
a:. Hence 

ryy - U ~ I  = spsR = cyy (12.5.40) 

From (12.5.36) we also have 

Now, let us consider the matrix C ,  - AC,,, which can be written as 
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Clearly, the column space of S P S ~  is identical to the column space of SPaHSH. 
Consequently, the rank of C,, - AC,, is equal to p. However, we note that if 
h = exp(j2rfi), the ith row of (I - AQH) is zero and, hence the rank of [I - 
aH exp(j2xfi)l is p - I .  But Ai = exp(j2rfi), i = 1, 2 , .  . . , p, are the generalized 
eigenvalues of the matrix pair (C,,, C,,). Thus the p generalized eigenvalues {A;) 
that Iie on the unit circle correspond to the elements of the rotation operator 
a. The remaining M - p generalized eigenvalues of the pair {C!,., Cy:} which 
correspond to the common null space of these matrices, are zero [i.e., the (M - p) 
eigenvalues are at the origin in the complex plane]. 

Based on these mathematical relationships we can formulate an algorithm 
(ESPRIT) for estimating the frequencies ($1. The procedure is as follows: 

I. From the data, compute the autocorrelation values ry,.(m), m = 1, 2, . . . . M ,  
and form the matrices R,,. and R,, corresponding to estimates of I?!.,, and 
r . v z .  

2. Compute the eigenvalues of R!!. For M > p, the minimum eigenvalue is an 
estimate of a:. 

3. Compute c?, = R,! - I?:I and c,: = R,., - cifQ, where Q is defined in 
(12.5.37). 

4. Compute the generalized eigenvalues of the matrix pair ( c ~ ,  c!.]. The p 
generalized eigenvalues of these matrices that lie on (or near) the unit circle 
determine the (estimate) elements of @ and hence the sinusoidal frequencies. 
The remaining M - p eigenvalues will lie at (or near) the origin. 

One method for determining the power in the sinusoidal components is to 
solve the equation in (12.5.11) with ryY(rn) substituted for y,,(m). 

Another method is based on the computation of the generalized eigenvectors 
(v, 1 corresponding to the generalized eigenvalues (Ai 1. We have 

(C,! - ki Cyz)vj = SP(I - Aj @ , H ) ~ H ~ i  = 0 (12.5.43) 

Since the column space of (C,, -Ai .C,J is identical to the column space spanned by 
the vectors Is,, j # i} given by (12.5.33), it follows that the generalized eigenvector 
vi is orthogonal to s,, j # i. Since P is diagonal, it follows from (12.5.43) that the 
signal powers are 

12.5.5 Order Selection Criteria 

The eigenanalysis methods described in this section for estimating the frequencies 
and the powers of the sinusoids, also provide information about the number of 
sinusoidal components. If there are p sinusoids, the eigenvalues associated with the 
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signal subspace are (A, +a:,, i = 1 , 2 .  . . , p )  while the remaining (M -p) eigenvalues 
are all equal to a:. Based on this eigenvalue decomposition, a test can be designed 
that compares the eigenvalues with a specified threshold. An alternative method 
also uses the eigenvector decomposition of the estimated autocorrelation matrix 
of the observed signal and is based on matrix perturbation analysis. This method 
is decribed in the paper by Fuchs (1988). 

Another approach based on an extension and modification of the AIC crite- 
rion to the eigen-decomposition method, has been proposed by Wax and Kailath 
(1985). If the eigenvalues of the sample autocorrelation matrix are ranked so that 
A1 3 A2 3 . - .  3 AM. where M > p, the number of sinusoids in the signal subspace 
is estimated by selecting the minimum value of M D L ( p ) ,  given as 

where 

N: number of samples used to estimate the M 
autocorrelation lags 

Some results on the quality of this order selection criterion are given in the paper 
by Wax and Kailath (1985). The M D L  criterion is guaranteed to be consistent. 

12.5.6 Experimental Results 

In this section we illustrate with an example, the resolution characteristics of the 
eigenanalysis-based spectral estimation algorithms and compare their performance 
with the model-based methods and nonparametric methods. The signal sequence 
is 

4 

x ( n )  = z ~ i e j ' ~ ~ ~ " " '  + w ( n )  

where A, = 1, i = 1, 2, 3, 4, {$ i }  are statistically independent random variables 
uniformly distributed on (0, h), { w ( n ) )  is a zero-mean, white noise sequence with 
variance ui, and the frequencies are fi  = -0.222, f2 = -0.166, f3 = 0.10, and 
f4 = 0.122. The sequence { x ( n ) ,  0 5 n 5 1023) is used to estimate the number 
of frequency components and the corresponding values of their frequencies for 
a: = 0.1, 0.5, 1.0, and M = 12 (length of the estimated autocorrelation). 
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I 1 
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Figure 12.19 Power spectrum estimates from Blackman-Tukey method. 

Figures 12.19, 12.20, 12.21, and 12.22 illustrate the estimated power spectra 
of the signal using the Blackman-Tukey method, the minimum variance method 
of Capon, the AR Yule-Walker method, and the MUSIC algorithm, respectively. 
The results from the ESPRIT algorithm are given in Table 12.2. From these results 
it is apparent that (1) the Blackman-Tukey method does not provide sufficient 

F i r e  11#) Power spectrum estimates from minimum variance method. 
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Figure 1221 Power spectrum estimates from Yule-Walker AR method. 

resolution to estimate the sinusoids from the data; (2) the minimum variance 
method of Capon resolves only the frequencies f ~ ,  f2 but not f3 and f4; (3) the 
AR methods resolve all frequencies for a: = 0.1 and a: = 0.5; and (4) the MUSIC 
and ESPRIT algorithms not only recover all four sinusoids, but their performance 
for different values of a:, is essentially indistinguishable. We further observe that 

SNR's 0: = 0.1. 
at = 0-5. and 0: = 1.0 

art vimully 
indistinguishable 
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F-gue 1222 Power spectrum estimates from MUSIC algorithm. 
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TABLE 12.2 ESPRIT ALGORITHM 

0.1 -0.2227 -0.1668 -0.1224 -0.10071 
0.5 -0.2219 -0.167 -0.121 0.0988 
1 .O -0.222 -0.167 0.1199 0.1013 

Truevalues -0.222 -0.166 0.122 0.100 

the resolution properties of the minimum variance method and the AR method is 
a function of the noise variance. These results clearly demonstrate the power of 
the eigenanalysis-based algorithms in resolving sinusoids in additive noise. 

In conclusion, we should emphasize that the high-resolution, eigenanalysis- 
based spectral estimation methods described in this section, namely MUSIC and 
ESPRIT, are not only applicable to sinusoidal signals, but apply more generally 
to the estimation of narrowband signals. 

12.6 SUMMARY AND REFERENCES 

Power spectrum estimation is one of the most important areas of research and ap- 
plications in digital signal processing. In this chapter we have described the most 
important power spectrum estimation techniques and algorithms that have been 
developed over the past century, beginning with the nonparametric or classical 
methods based on the periodograrn and concluding with the more modem para- 
metric methods based on AR, MA, and ARMA linear models. Our treatment 
is limited in scope to single-time-series spectrum estimation methods, based on 
second moments (autocorrelation) of the statistical data. 

The parametric and nonparametric methods that we described have been 
extended to multichannel and multidimensional spectrum estimation. The tutorial 
paper by McClellan (1982) treats the multidimensional spectrum estimation prob- 
lem, while the paper by Johnson (1982) treats the multichannel spectrum estima- 
tion problem. Additional spectrum estimation methods have been developed for 
use with higher-order cumulants that involve the bispectrum and the trispectrum. 
A tutorial paper on these topics has been published by Nikias and Raghuveer 
(1 987). 

As evidenced from our previous discussion, power spectrum estimation is an 
area that has attracted many researchers and, as a result, thousands of papers have 
been published in the technical literature on this subject. Much of this work has 
been concerned with new algorithms and techniques, and modifications of exist- 
ing techniques. Other work has been concerned with obtaining an understanding 
of the capabilities and limitations of the various power spectrum methods. In 
this context the statistical properties and limitations of the classical nonparametric 
methods have been thoroughly analyzed and are well understood. The parametric 
methods have also been investigated by many researchers, but the analysis of their 
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performance is difficult and, consequently, fewer results are available. Some of the 
papers that have addressed the problem of performance characteristics of paramet- 
ric methods are those of Kromer (1969), Lacoss (1971), Berk (1974), Baggeroer 
(1976), Sakai (1979), Swingler (1980), Lang and McClellan (1980), and Tufts and 
Kumaresan (1982). 

In addition to the references already given in this chapter on the various 
methods for spectrum estimation and their performance, we should include for 
reference some of the tutorial and survey papers. In particular, we cite the tutorial 
paper by Kay and Marple (1981), which includes about 280 references, the paper 
by Brillinger (1974), and the Special Issue on Spectral Estimation of the IEEE 
Proceedings, September 1982. Another indication of the widespread interest in 
the subject of spectrum estimation and analysis is the recent publication of texts 
by Gardner (1987), Kay (1988), and Marple (1987), and the IEEE books edited 
by Childers (1978) and Kesler (1986). 

Many computer programs as we11 as software packages that implement the 
various spectrum estimation methods described in this chapter are available. One 
software package is available through the IEEE (Programs for Digital Signal Pro- 
cessing, IEEE Press, 1979); others are available commercially. 

P R O B L E M S  

12.1 (a) By expanding (12.1.23), taking the expected value, and finally taking the limit as 
TO -+ oo, show that the right-hand side converges to T, , (F) .  

(b) Prove that 

m=-N 

122 For zero mean, jointly Gaussian random variables, X1, X 2 ,  X3, X4, it is well known 
[see Papoulis (1984)] that 

Use this result to derive the mean-square value of ri,(rn), given by (12.1.27) and the 
variance, which is 

var[r:,(m>l = E[lr:,(m)l21 - iE[r:,(m)l12 

113 By use of the expression for the fourth joint moment for Gaussian random variables, 
show that 

(a) E[PJZ(fi)PJJ(f2)] = u: 

+ 

sin ~ ( f l  - f2)N i N sin X ( ~ I  - f2)  
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(b) cov[ Pxx ( f ~  )Pxr  ( f i l l  = 0; [ [sin N sinrr(f1 ~ ( f l  + + f 2 ) N I 2  f2) 

+ i sin x ( f ~  - f2)N 
N sin ~ ( / 1  - f2) 1'1 

sin 21r f  N 
(c) var[Pxx( f  ) ]  = 0: ( 1  + (-)'I under the condition that the sequence x ( n )  

is a zero-mean white Gaussian noise sequence with variance 4. 
12.4 Generalize the results in Problem 12.3 to a zero-mean Gaussian noise process with 

power density spectrum T , , ( f ) .  Then derive the variance of the periodogram P,,( f  ), 
as given by (12.1.38). (Hint Assume that the colored Gaussian noise process is the 
output of a linear system excited by white Gaussian noise. Then use the appropriate 
relations given in Appendix A.) 

125 Show that the periodogram values at frequencies fk = k / L ,  k = 0, 1 , .  . . . L - I, given 
by (12.1.41) can be computed by passing the sequence through a bank of N IIR filters. 
where each filter has an impulse response 

hk(, , )  = e-ib"k/N u ( n )  

and then compute the magnitude-squared value of the filter outputs at n = N .  Note 
that each filter has a pole on the unit circle at the frequency fi.. 

12.6 Prove that the normalization factor given by (12.2.12) ensures that (12.2.19) is satisfied. 
12.7 Let us consider the use of the DFT (computed via the FFT algorithm) to compute 

the autocorrelation of the complex-valued sequence x ( n ) ,  that is, 

Suppose the size M of the FFT is much smaller than that of the data length N .  
Specifically, assume that N  = K M .  
(a )  Determine the steps needed to section x ( n )  and compute rxx(rn)  for - (M/2)  + 1 5 

m _( ( M f 2 )  - 1, by using 4K M-point DFTs and one M-point JDFT 
(b) Now consider the following three sequences.xl(n), x2(n) ,  and x3(n) ,  each of du- 

ration M. Let the sequences x ,  ( n )  and x 2 ( n )  have arbitrary values in the range 
0 I n  5 (M/2) - 1, but are zero for (M/2)  5 n 5 M - 1. The sequence x3(n)  is 
defined as 

Determine a simple relationship among the M-point DFTs X l ( k ) ,  X z ( k ) .  and 
X3(k) .  

(c) By using the result in part (b), show how the computation of the DFTs in part 
(a) can be reduced in number from 4 K  to 2 K .  

lL8 The Bartlett method is used to estimate the power spectrum of a signal x ( n ) .  We 
know that the power spectrum consists of a single peak with a 3-dB bandwidth of 
0.01 cycle per sample, but we do not know the location of the peak. 
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fa) Assuming that N is large, determine the value of M = N / K  so that the spectral 
window is narrower than the peak. 

(b) Explain why it is not advantageous to increase M beyond the value obtained in 
Pan (a). 

1L9 Suppose we have N = 1 0 0  samples from a sample sequence of a random process. 
(a) Determine the frequency resolution of the Banlett, Welch (50% overlap), and 

Blackman-Tukey methods for a quality factor Q = 10. 
(b) Determine the record lengths (M)  for the Bartlett, Welch (50% overlap), and 

Blackman-Tukey methods. 
12.10 Consider the problem of continuously estimating the power spectrum from a sequence 

x ( n )  based on averaging periodograms with exponential weighting into the past. Thus 
with P,':'( f) = 0,  we have 

where successive periodograms are assumed to be uncorrelated and ur is the (expo- 
nential) weighting factor. 
(a) Determine the mean and variance of P,';'( f ) for a Gaussian random process. 
(b) Repeat the analysis of part (a) for the case in which the modified periodogram 

defined by Welch is used in the averaging with no overlap. 
U.11 The periodopram in the Bartlett method can be expressed as 

where ri::(rn) is the estimated autocorrelation sequence obtained from the ith block 
of data. Show that P:,:)( f) can be expressed as 

where 
~ ( j )  = [ I  eihl ei4"J . . . e j Z x i M - l ) /  I' 

and therefore, 

ZZU Derive the recursive order-update equation given in (12.3.19). 
12.13 Determine the mean and the autocorrelation of the sequence x(n), which is the output 

of a ARMA (I, 1) process described by the difference equation 

where w ( n )  is a white noise process with variance a:. 
E l 4  Determine the mean and the autocorrelation of the sequence x(n) generated by the 

MA(2) process described by the difference equation 

where w(n)  is a white noise process with variance 0:. 



Chap. 12 Problems 

E l 5  An MA(2) process has the autocorrelation sequence 

(0 ,  otherwise 
(a) Determine the coefficients of the MA(2) process that have the foregoing auto- 

correlation. 
(b) Is the solution unique? If not, give all the possible solutions. 

U.16 An MA(2) process has the autocorrelation sequence 

(a) Determine the coefficients of the minimum-phase system for the MA(2) process. 
(b) Determine the coefficients of the maximum-phase system for the MA(2) process. 
(c) Determine the coefficients of the mixed-phase system for the MA(2) process. 

U.17 Consider the linear system described by the difference equation 

where x ( n )  is a wide-sense stationary random process with zero mean and autocorre- 
lation 

y x x ( m )  = (i)'"' 
(a) Determine the power density spectrum of the output y(n) .  
(b) Determine the autocorrelation y,,(m) of the output. 
(c) Determine the variance a; of the output. 

12.18 From (12.3.6) and (12-3.9) we note that an AR(p) stationary random process satisfies 
the equation 

where o,(k) are the prediction coefficients of the linear predictor of order p and ~2 
is the minimum mean-square prediction error. If the (p + 1) x (p + 1) autocorrelation 
matrix F,, in (12.3.9) is positive definite, prove that: 
(a) The reflection coefficients IK,I < 1 for 1 5 m i p. 
(b) The polynomial 

has all its roots inside the unit circle (i.e., it is minimum phase). 
1219 Consider the AR(3) process generated by the equation 

where w(n) is a stationary white noise process with variance 0:. 
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(a) Determine the coefficients of the optimum p = 3 linear predictor. 
(b) Determine the autocorrelation sequence yII(m), 0 5 rn 5 5. 
(c) Determine the reflection coefficients corresponding to the p = 3 linear predictor. 

1ZU)* An AR(2) process is described by the difference equation 

where w(n) is a white noise process with variance u:,. 
(a) Determine the parameters of the MA(2), MA(4). and MA(8) models which pro- 

vide a minimum mean-square error fit to the data x(n). 
(b) Plot the true spectrum and those of the MA(q), q = 2,4, 8, spectra and compare 

the results. Comment on how well the MA(q) models approximate the AR(2) 
process. 

I231 An MA(2) process is described by the difference equation 

where w(n) is a white noise process with variance a;. 
(a) Determine the parameters of the AR(2), AR(4). and AR(8) models that provide 

a minimum mean-square error fit to the data x(n). 
(b) Plot the true spectra m and those of the AR(p), p = 2. 4. 8. and compare 

the results. Comment on how well the AR(p) models approximate the MA(2) 
process. 

12.22 The 2-transform of the autocorrelation yS,(m)of an ARMA(1, 1) process is 

(a) Detennine the minimum-phase system function H(z). 
(b) Determine the system function H(z) for a mixed-phase stable system. 

12.23 Consider a FIR filter with coefficient vector 

(a) Determine the reflection coefficients for the corresponding FIR lattice filter. 
(b) Determine the values of the reflection coefficients in the limit as r + 1. 

I224 An AR(3) process is characterized by the prediction coefficients 

(a) Determine the reflection coefficients. 
(b) Determine y,,(m) for 0  5 m 5 3. 
(c) Detennine the mean-square prediction error. 

1225 The autocorrelation sequence for a random process is 

I 
1, m=O 

-0.5, rn = f l  
yXx(m) = 0.625, m = f 2  

-0.6875, m = f3 
0  otherwise 
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Determine the system functions A,(z) for the prediction-error filters for m = 1,2, 3, 
the reflection coefficients ( K , ) ,  and the corresponding mean-square prediction errors. 

12.26 (a) Determine the power spectra for the random processes generated by the following 
difference equations. 
(1) x(n) = -0,8lx(n - 2) + w(n) - w(n - 1) 
(2) x(n) = w(n) - w(n - 2) 
(3) x ( n )  = -0.81x(n-2)+ w(n) 
where w(n) is a white noise process with variance a:. 

(b) Sketch the spectra for the processes given in part (a). 
(c) Determine the autocorrelation y,,(m) for the processes in (2) and (3). 

1227 The autocorrelation sequence for an AR process x(n) is 

(a) Determine the difference equation for x(n). 
(b) Is your answer unique? If not, give any other possible solutions. 

1238 Repeat Problem 12,27 for an AR process with autocorrelation 
rrm 

yxI (m ) = a)"' cos - 
2 

where 0 < a < 1. 
1229 The Bartlett method is used to estimate the power spectrum of a signal from a se- 

quence x ( n )  consisting of N = 2400 samples. 
(a) Determine the smallest length M of each segment in the Bartlett method that 

yields a frequency resolution of Af = 0.01. 
(b) Repeat part (a) for A f = 0.02. 
(c) Determine the quality factors Q B  for parts (a) and (b). 

I230 Prove that a FIR filter with system function 

and reflection coefficients lKkI < 1 for 1 5 k p - 1 and IK,I > 1 is maximum phase 
[all the roots of Ap(z) lie outside the unit circle]. 

l2.31 A random process x(n) is characterized by the power density spectrum 

where a: is a constant (scale factor). 
(a) If we view T,,( f )  as the power spectrum at the output of a linear pole-zero 

system H(z) driven by white noise, detennine H(z). 
(b) Determine the system function of a stable system (noise-whitening filter) that 

produces a white noise output when excited by x(n). 
l2.32 The N-point DFT of a random sequence x(n) is 

Assume that E[x(n)] = 0 and E[x(n)x(n + m)] = a,26(m) [i.e., x(n) is a white noise 
process]. 
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(a) Detennine the variance of X ( k ) .  
(b) Determine the autocorrelation of X ( k ) .  

l233 Suppose that we represent an A R M A t p ,  q )  process as a cascade of a M A ( q )  followed 
by an A R ( p )  model. The input-output equation for the M A ( q )  model is 

where w ( n )  is a white noise process. The input-output equation for the A R ( p )  model 
is 

x ( n ) + e o k x ( n  - t )  = v ( n )  
k=l 

(a) By computing the autocorrelation of v ( n ) ,  show that 

k=O 
(b) Show that 

where y,,(m) = E[v(n  + m ) x m ( n ) ] :  
12.34 Determine the autocorrelation y,,(m) of the random sequence 

where the amplitude A and the frequency w are (known) constants and 9 is a uni- 
formly distributed random phase over the interval (0,27r).  

1235 Suppose that the A R ( 2 )  process in Problem 12.20 is corrupted by an additive white 
noise process v ( n )  with variance a:. Thus we have 

(a) Determine the difference equation for y(n)  and thus demonstrate that y ( n )  is an 
A R M A ( 2 , 2 )  process. Detennine the coefficients of the A R M A  process. 

(b) Generalize the result in part (a) to an AR(p) process 

and 

1236 (a) Determine the autocorrelation of the random sequence 

where { A k }  are constant amphtudes, {ok} are constant frequencies, and {#kJ are 
mutually statistically independent and uniformly distributed random phases. The 
noise sequence w ( n )  is white with variance a:. 

(b) Determine the power density spectrum of x(n).  
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1237 The harmonic decomposition problem considered by Pisarenko can be expressed as 
the solution to the equation 

The solution for a can be obtained by minimizing the quadratic form a*'I'?,.a subject to 
the constraint that a"a = 1. The constraint can be incorporated into the performance 
index by means of a Lagrange multiplier. Thus the performance index becomes 

By minimizing & with respect to a, show that this formulation is equivalent to the 
Pisarenko eigenvalue problem given in (12.5.9) with the Lagrange multiplier play- 
ing the role of the eigenvalue. Thus show that the minimum of & is the minimum 
eigenvalue a:. 

U.38 The autocorrelation of a sequence consisting of a sinusoid with random phase in noise 
is 

y,,(rn) = P c o s 2 ~  f im + a~,&(rn) 

where fi  is the frequency of the sinusoidal, P is its power, and 02, is the variance of 
the noise. Suppose that we attempt to fit an AR(2) model to the data. 
(a) Determine the optimum coefficients of the AR(2) model as a function of IT:, 

and f,. 
(b) Determine the reflection coefficients K1 and Kz corresponding to the AR(2) 

model parameters. 
(c) Determine the limiting values of the AR(2) parameters and ( K , ,  Kt) as a: + 0. 

US9 This problem involves the use of crosscorrelation to detect a signal in noise and esti- 
mate the time delay in the signal. A signal x(n) consists of a pulsed sinusoid corrupted 
by a stationary zero-mean white noise sequence. That is, 

where w(n) is the noise with variance a: and the signal is 

~ ( n )  = Acos-n, O i n i ~ - l  
= 0, otherwise 

The frequency w is known but the delay no, which is a positive integer, is unknown, 
and is to be determined by crosscorrelating x(n) with y(n). Assume that N , M +no. 
Let 

N-1 

rxy(m) = C y(n - m)x(n) 
n=O 

denote the crosscorrelation sequence between x(n) and y(n). In the absence of noise 
this function exhibits a peak at delay m = no. Thus no is determined with no error. 
The presence of noise can lead to errors in determining the unknown delay. 
(a) For m = no, determine E[rx,(no)]. Also, determine the variance, var[r,,(no)], 

due to the presence of the noise. In both calculations. assume that the double 
frequency term averages to zero. That is, M >> 2n/w+ 

(b) Determine the signal-to-noise ratio, defined as 

SNR = {EIrxy 
var[rxy (no)) 
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(c) What is the effect of the pulse duration M on the SNR? 
l2.40* Generate 100 samples of a zero-mean white noise sequence w(n)  with variance a: = 

&, by using a uniform random number generator. 
(a) Compute the autocorrelation of w(n) for 0 5 m 5 15. 
(b) Compute the periodogram estimate PI, (f) and plot it. 
(c) Generate 10 different realizations of w(n)  and compute the corresponding sample 

autocorrelation sequences rk(m) ,  1 I k 5 10 and 0 5 m 5 15. 
(d) Compute and plot the average periodogram for part (c): 

(e) Comment on the results in parts (a) through (d). 
12.41* A random signal is generated by passing zero-mean white Gaussian noise with unit 

variance through a filter with system function 

1 
H ( z )  = (1  + oi-l  + 0.99~-"(1 - an:-I + 0 . 9 8 ~ 2 )  

(a) Sketch a typical plot of the theoretical power spectrum TXlf f )  lor a small value 
of the parameter a (i.e., 0 -C a c 0.1). Pay careful attention to the value of the 
two spectral peaks and the value of P,,(w) for o = ~ 1 ' 2 .  

(b) Let a  = 0.1. Determine the section length M required to resolve the spectral 
peaks of T,,(f)  when using Bartlett's method. 

(c) Consider the Btackman-Tukey method of smoothing the periodogram. How 
many lags of the correlation estimate must be used to obtain resolution compa- 
rable to that of the Bartlett estimate considered in part (h)? How many data 
must be used if the variance of the estimate is to be comparable to that of a 
four-section Bartlett estimate? 

(d) For a = 0.05, fit an AR(4) model to 100 samples of the data based on the 
Yule-Walker method and plot the power spectrum. Avoid transient effects by 
discarding the first 200 samples of the data. 

(e) Repeat part (d) with the Burg method. 
(f) Repeat parts (d) and (e) for 50 data samples and comment on similarities and 

differences in the results. 



Appendix A 
Random Signals, Correlation 
Functions, and Power Spectra 

In this appendix we provide a brief review of the characterization of random 
signals in terms of statistical averages expressed in both the time domain and the 
frequency domain. The reader is assumed to have a background in probability 
theory and random processes, at the level given in the books of Helstrom (1990) 
and Peebles (1987). 

Random Processes 

Many physical phenomena encountered in nature are best characterized in statis- 
tical terms. For example. meteorological phenomena such as air temperature and 
air pressure fluctuate randomly as a function of time. Thermal noise voltages gen- 
erated in the resistors of electronic devices, such as a radio or television receiver, 
are also randomly fluctuating phenomena. These are just a few examples of ran- 
dom signals. Such signals are usually modeled as infinite-duration infinite-energy 
signals. 

Suppose that we take the set of waveforms corresponding to the air temper- 
ature in different cities around the world. For e&h city there is a corresponding 
wavefonn that is a function of time, as illustrated in Fig. A.1. The set of all possible 
waveforms is called an ensemble of time functions or, equivalently, a random pro- 
cess. The waveform for the temperature in any particular city is a single realization 
or a sample function of the random process. 

Similarly, the thermal noise voltage generated in a resistor is a single real- 
ization or a sample function of the random process consisting of all noise voltage 
waveforms generated by the set of all resistors. 

The set (ensemble) of all possible noise waveforms of a random process 
is denoted as X ( t ,  S), where r represents the time index and S represents the 
set (sample space) of a11 possible sample functions. A single waveform in the 
ensemble is denoted by x(t, s). Usually, we drop the variable s (or S) for notational 
convenience, so that the random process is denoted as X ( t )  and a single realization 
is denoted as x(t). 
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Having defined a random process X ( t )  as an ensemble of sample functions, let 
us consider the values of the process for any set of time instants 11 > 12 > + .  - > t,, 
where n is any positive integer. In general, the samples X,, = x ( r , ) ,  i = 1,2, . . . , n 
are n random variables characterized statistically by their joint probability density 
function (PDF) denoted as p(x, , ,  x,,, . . . , x i , )  for any n. 

Stationary Random Processes 

Suppose that we have n samples of the random process X ( t )  at r = 4 ,  i = 1, 
2 , .  . . , n, and another set of n samples displaced in time from the first set by an 
amount 7 .  Thus the second set of samples are X,;,, = X ( t i  + T ) ,  i = 1,2, . . . , n, as 
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shown in Fig. A.1. This second set of n random variables is characterized by the 
joint probability density function p(x,,+,, . . . , x,~,,). The joint PDFs of the two sets 
of random variables may or may not be identical. When they are identical, then 

for all r and all n, then the random process is said to be stationary in the strict 
sense. In other words, the statistical properties of a stationary random process are 
invariant to a translation of the time axis. On the other hand, when the joint PDFs 
are different, the random process is nonstationary. 

Statistical (Ensemble) Averages 

Let us consider a random process X(t) sampled at time instant t = ti. Thus X(ti) 
is a random variable with PDF p(x,). The lth moment of the random variable is 
defined as the expected value of x1(ti), that is, 

(A.2) 

In general, the value of the lth moment depends on the time instant ti, if the PDF 
of X ,  depends on t,. When the process is stationary, however, p(x,+,) = p(x,) for 
all r .  Hence the PDF is independent of time and, consequently, the Ith moment 
is independent of time (a constant). 

Next, let us consider the two random variables X,, = X(ti), i = 1, 2, corre- 
sponding to samples of X(t) taken at r = tl and t = t2. The statistical (ensemble) 
correlation between XI, and X, is measured by the joint moment 

EtXt, X, 1 = Irn Irn xt,xr2 p(xt, xt2)dxldx2 
-00 -03 

(A-3) 

Since the joint moment depends on the time instants tl and 12, it is denoted as 
yxx(tl, t2) and is called the autocorrelation function of the random process. When 
the process X(r) is stationary, the joint PDF of the pair (X,,, X,2) is identical to 
the joint PDF of the pair (X,,+,, X,,,) for any arbitrary r .  This implies that the 
autocorrelation function of X(r) depends on the time difference tl - t2 = r.  Hence 
for a stationary real-valued random process the autocorrelation function is 

On the other hand, 

Therefore, yxx(t) is an even function. We also note that yx,(0) = E(x~) is the 
average power of the random process. 

There exist nonstationary processes with the property that the mean value 
of the process is a constant and the autocorrelation function satisfies the property 
yxx (tl, f2 )  = yxx (tl - t2). Such a process is called wide-sense stationary. Clearly, 
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wide-sense stationarity is a less stringent condition than strict-sense stationarity. 
In our treatment we shall require only that the processes be wide-sense stationary. 

Related to the autocorrelation function is the autocovariance function, which 
is defined as 

where m ( r l )  = E ( X , , )  and m(t2 )  = E(X, , )  are the mean values of X,, and X,, 
respectively. When the process is stationary, 

where 7 = tl - 12. Furthermore, the variance of the process is a: = c,,(O) = 
Yxx ( 0 )  - m:. 
Statistical Averages for Joint Random Processes 

Let X ( t )  and Y ( t )  be two random processes and let X ,  = X(r i ) ,  i = 1, 2, . . . , n ,  
and Y,; E Y ( $ ) ,  j = 1, 2 , .  . . , m, represent the random variables at times tl > 12 > 

. . > t ,  and t i  > t i  > . . . > r;, respectively. The two sets of random variables are 
characterized statistically by the joint PDF 

for any set of time instants { t i }  and {r;}  and for any positive integer values of m 
and n .  

The crosscorrelation function of X ( t )  and Y ( t ) ,  denoted as yx,(t l ,  q ) ,  is defined 
by the joint moment 

~ X y ( f l ,  12) E(XrI Y,) = ( A . 8 )  

and the crosscovariance is 

When the random processes are jointly and individually stationary, we have 
yXy( t l ,  12) = yxy(tl  - f2) and cxy  (11, t2) = cx,(tl - t ~ ) .  In this case 

The random processes X ( t )  and Y ( t )  are said to be statistically independent 
if and only if 

for aU choices of t i ,  ti' and for all positive integers n and rn. The processes are said 
to be uncorrelated if 

yxy(tl r2) = E ( X I ,  )E(Yt2) (A.11) 

SO that cx, ( t l ,  12) = 0 .  
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A complex-valued random process Z ( t )  is defined as 

where X ( I )  and Y ( t )  are random processes. The joint PDF of the complex-valued 
random variables Z ,  = Z ( t i ) ,  i = 1, 2 , .  . . , is given by the joint PDF of the 
components ( X t i ,  Y f , ) ,  i = 1, 2 , .  . . , n. Thus the PDF that characterizes Z , ,  i = 1, 
2 , . . . . n  is 

A complex-valued random process Z ( t )  is encountered in the representation 
of the in-phase and quadrature components of the lowpass equivalent of a nar- 
rowband random signal or noise. An important characteristic of such a process is 
its autocorrelation function, which is defined as 

y,:(tt 7 12) = E ( Z ! ,  Z; 

= E [ ( X t ,  + j Y t , ) ( X f 2  - j y , , ) ]  (A.13) 

When the random processes X ( t )  and Y ( t )  are jointly and individually stationary, 
the autocorrelation function of Z ( t )  becomes 

where r  = t l  - r2. The complex conjugate of (A.13) is 

Y,*,(z) = E ( Z ;  Zt , - r )  = y z z ( - r )  ( A . 1 4 )  

Now, suppose that Z ( t )  = X ( I )  + j Y ( t )  and W ( t )  = U ( t )  + j V ( t )  are two 
complex-valued random processes. Their crosscorrelation function is defined as 

When X ( r ) ,  Y ( t ) ,  U ( t ) ,  and V ( t )  are pairwise stationary, the crosscorrelation func- 
tions in (A.15) become functions of the time difference r = t l  - 12. In addition, 
we have 

Y ; ~ ( T )  = E ( Z l W r , - r )  = E ( Z ; + , W l , )  = y w , ( - r )  ( A . 1 6 )  

Power Denslty Spectrum 

A stationary random process is an infinite-energy signal and hence its Fourier 
transform does not exist. The spectral characteristic of a random process is ob- 
tained according to the Wiener-Khinchine theorem, by computing the Fourier 
transform of the autocorrelation function. That is, the distribution of power with 
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frequency is given by the function 
30 

FIX ( F )  = 1 vII (r)e'jbFTdr 
00 

The inverse Fourier transform is given as 

yxx ( r )  = ~ ~ , ( ~ ) e j " ~ ' d ~  

We observe that 

( A .  19) 

Since E (x:) = y,, (0) represents the average power of the random process, which 
is the area under r x x ( F ) ,  it follows that rx , (F)  is the distribution of power as a 
function of frequency. For this reason, r x x ( F )  is called the power density spectrum 
of the random process. 

If the random process is real, yIx ( r )  is real and even and hence r,, ( F )  is real 
and even. If the random process is complex valued, yx,(r) = ~ ; ~ ( - r )  and, hence 

Therefore, r , , (F)  is always real. 
The definition of the power density spectrum can be extended to two jointly 

stationary random processes X ( t )  and Y(t) ,  which have a crosscorrelatio~ function 
yI,(r). The Fourier transform of yx,(r) is 

which is called the cross-power density spectrum. It is easily shown that rT,(F) = 
r, ,(-F).  For real random processes, the condition is r Y x ( F )  = FIX(-F). 

Discrete-Time Random Signals 

This characterization of continuous-time random signals can be easily carried over 
to discrete-time signals. Such signals are usually obtained by uniformly sampling 
a continuous-time random process. 

A discrete-time random process Xtn) consists of an ensemble of sample se- 
quences x(n) .  The statistical properties of X ( n )  are simiiar to the characterization 
of X ( t ) ,  with the restriction that n is now an integer (time) variable. To be specific, 
we state the form for the important moments that we use in this text. 
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The Ith moment of X(n) is defined as 

and the autocorrelation sequence is 

Similarly, the autocovariance is 

, For a stationary process, we have the special forms (m = n - k )  

where rn, = E ( X , )  is the mean of the random process. The variance is defined as 
a' = cx, (0) = y,, (0) - rn: . 

For a complex-valued stationary process Z ( n )  = X ( n )  + j Y ( n ) ,  we have 

and the crosscorrelation sequence of two complex-valued stationary sequences is 

As in the case of a continuous-time random process, a discrete-time random 
process has infinite energy but a finite average power and is given as 

By use of the Wiener-Khinchine theorem, we obtain the power density spectrum 
of the discrete-time random process by computing the Fourier transform of the 
autocorrelation sequence yxx(m),  that is, 

The inverse transform relationship is 

We observe that the average power is 

so that T , , ( f )  is the distribution of power as a function of frequency, that is, 
r,, ( f )  is the power density spectrum of the random process X ( n ) .  The properties 
we have stated for r , , ( F )  also hold for r,,(f). 
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Time Averages for a Discretelime Random Process 

Although we have characterized a random process in terms of statistical averages, 
such as the mean and the autocorrelation sequence, in practice, we usually have 
available a single realization of the random process. Let us consider the problem 
of obtaining the averages of the random process from a single realization. To 
accomplish this, the random process must be ergodic. 

By definition, a random process X(n) is ergodic if, with probability 1, all 
the statistical averages can be determined from a single sample function of the 
process. In effect, the random process is ergodic if time averages obtained from 
a single realization are equal to the statistical (ensemble) averages. Under this 
condition we can attempt to estimate the ensemble averages using time averages 
from a single realization. 

To illustrate this point, let us consider the estimation of the mean and the 
autocorrelation of the random process from a single realization x ( n ) .  Since we 
are interested only in these two moments, we define engodicity with respect to 
these parameters. For additional details on the requirements for mean ergodicity 
and autocorrelation ergodicity which are given below, the reader is referred to the 
book of Papoulis (1984). 

Mean-Ergodic Process 

Given a stationary random process X(n) with mean 

let us form the time a ,erage 

In general, we view f ix  in (A.31) as an estimate of the statistical mean whose 
value will vary with the different realizations of the random process. Hence G, is 
a random variable with a PDF p(&,). Let us compute the expected value of tit, 
over all possible realizations of X ( n ) .  Since the summation and the expectation 
are linear operations we can interchange them, so that 

Since the mean value of the estimate is equal to the statistical mean, we say that 
the estimate f ix  is unbiased. 

Next, we compute the variance of A,. We have 
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But 

Therefore, 

If var(m,) -t 0 as N -t m, the estimate converges with probability 1 to the 
statistical mean m,. Therefore, the process X (n) is mean ergodic if 

Under this condition, the estimate h, in the limit as N + oo becomes equal to 
the statistical mean, that is, 

I N  
mx = lirn - C x(n) 

N + m  2 N  + 1 n=-N 
(A.35) 

Thus the time-average mean, in the limit as N -t oo, is equal to the ensemble 
mean. 

A sufficient condition for (A.34) to hold is.if 

which implies that c,,(m) 0 as m -t oo. This condition holds for most zero-mean 
processes encountered in the physical worid. 

Correlation-Ergodic Processes 

Now, let us consider the estimate of the autocorrelation yxx(m) from a single 
realization of the process. Following our previous notation, we denote the estimate 
(for a complex-valued signal, in general) as 

2 x*(n)x(n + m )  r x x ( m )  = - (A.37) 
2N + 1 n=-N 
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Again, we regard r,,(m) as a random variable for any given lag m, since it is a 
function of the particular realization. The expected value (mean value over all 
realizations) is 

Therefore, the expected value of the time-average autocorrelation is equal to the 
statistical average. Hence we have an unbiased estimate of yxx(m). 

To determine the variance of the estimate rxx(m), we compute the expected 
value of lrXx(m)l2 and subtract the square of the mean value. Thus 

var[rxx(m)] = ~ [ l r ~ ~ ( m ) l * ]  - l ~ ~ ~ ( m ) l *  (A.39) 

But 

1 N N  
E[lrxx(m>12] = - (2N + x E[xn(n)x(n + m)xQ)x*(k + m)] (A.40) 

n = - N  k=-N 

The expected value of the term x*(n)x(n + m)x(k)xa(k + r n )  is just the autocorre- 
lation sequence of a random process defined as 

u,,, (n) = x' (n)x (n + m) 
Hence (A.40) may be expressed as 

and the variance is 

If var[r,,(m)] + 0 as N -+ cm, the estimate r,, (m) converges with probability 
1 to the statistical autocorrelation yxx(m). Under these conditions, the process is 
correlation ergodic and the time-average correlation is identical to the statistical 
average, that is, 

I N  
lim - x x*(n)x(n + m) = yxx(m) (A.43) 

N-+W 2N + 1 nr-N 

In our treatment of random signals, we assume that the random processes are 
mean ergodic and correlation ergodic, so that we can deal with time averages of 
the mean and the autocorrelation obtained from a single realization of the process. 



Appendix B 
Random Number Generators 

In some of the examples given in the text, random numbers are generated to sim- 
ulate the effect of noise on signals and to illustrate how the method of correlation 
can be used to detect the presence of a signal buried in noise. In the case of 
periodic signals, the correlation technique also allowed us to estimate the period 
of the signal. 

In practice, random number generators are often used to simulate the effect 
of noiselike signals and other random phenomena encountered in the physical 
world. Such noise is present in electronic devices and systems and usually limits 
our ability to communicate over large distances and to be able to detect relatively 
weak signals. By generating such noise on a computer, we are able to study 
its effects through simulation of communication systems, radar detection systems, 
and the like and to assess the performance of such systems in the presence of 
noise. 

Most computer software libraries include a uniform random number gener- 
ator. Such a random number generator generates a number between zero and 
1 with equal probability. We call the output of €he random number generator a 
random variable. If A denotes such a random variable, its range is the interval 
O I A  j l .  

We know that the numerical output of a digital computer has limited preci- 
sion, and as a consequence, it is impossible to represent the continuum of numbers 
in the interval O 5 A 5 1. However, we can assume that our computer represents 
each output by a large number of bits in either fixed point or floating point. Conse- 
quently, for all practical purposes, the number of outputs in the interval 0 5 A 5 I 
is sufficiently large, so that we are justified in assuming that any value in the 
interval is a possible output from the generator. 

The uniform probability density function for the random variable A, denoted 
as p(A), is illustrated in Fig. B.la. We note that the average value or mean value 
of A, denoted as m ~ ,  is r n ~  = 4. The integral of the probability density function, 
which represents the area under p(A), is called the probability distribution function 
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(b) Figure B.1 

of the random variable A and is defined as 

For any random variable, this area must always be unity, which is the maximum 
value that can be achieved by a distribution function. Hence 

F(1) = Lm p ( x ) d x  = 1 (B.2) 

and the range of F(A) is 0 5 F(A) 5 1 for 0 5 A 5 1. 
If we wish to generate uniformly distributed noise in an interval (b, b + 1) 

it can simply be accomplished by using the output A of the random number gen- 
erator and shifting it by an amount b. Thus a new random variable B can be 
defined as 

which now has a mean value r n ~  = b + $. For example, if b = -;, the random 
variable B is uniformly distributed in the interval (-5,  i), as shown in Fig. B.2a. 
Its probability distribution function F ( B )  is shown in Fig. B.2b. 

A uniformly distributed random variable in the range (0.1) can be used 
to generate random variables with other probability distribution functions. For 
example, suppose that we wish to generate a random variable C with probability 
distribution function F ( C ) ,  as illustrated in Fig. B.3. Since the range of F(C) is 
the interval (0, I), we begin by generating a uniformly distributed random variable 
A in the range (0,l) .  If we set 

then 
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(b) Figure B.2 

I Figure B 3  

Thus we solve (B.4) for C and the solution in (B.5) provides the value of C 
for which F(C)  = A .  By this means we obtain a new random variable C with 
probability distribution F ( C ) .  This inverse mapping from A to C is illustrated in 
Fig. B.3. 

Example B.l 

Generate a random variable C that has the linear probability density function shown 
in Fig. B.4a, that is, 

0. otherwise 

Solution This random variable has a probability distribution function 

which is illustrated in Fig. B.4b. We generate a uniformly distributed random variable 
A and set FCC) = A .  Hence 
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(b) Figure B.4 

Upon solving for C, we obtain 

c = 2 f i  

Thus we generate a random variable C with probability function F(C). as shown in 
Fig. B.4b. 

In Example B.2 the inverse mapping C = F-' (A)  was simple. In some cases 
it is not. This problem arises in trying to generate random numbers that have a 
normal distribution function. 

Noise encountered in physical systems is often characterized by the normal or 
Gaussian probability distribution, which is illustrated in Fig. B.5. The probability 
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density function is given by 

where u2 is the variance of C ,  which is a measure of the spread of the probability 
density function p(C). The probability distribution function F ( C )  is the area under 
p(C)  over the range (-00, C ) .  Thus 

Unfortunately, the integral in (B.7) cannot be expressed in terms of simple func- 
tions. Consequently, the inverse mapping is difficult to achieve. 

A way has been found to circumvent this problem. From probability the- 
ory it is known that a (Rayleigh distributed) random variable R, with probability 
distribution function 

is related to a pair of Gaussian random variables C and D, through the transfor- 
mation 

D = R sin O (B.10) 

where O is a uniformly distributed variable in the interval (O,2x). The parameter 
a2 is the variance of C and D. Since (B.8) is easily inverted, we have 

and hence 

where A is a uniformly distributed random variable in the interval (0, 1). Now if 
we generate a second uniformly distributed random variable B and define 

then from (B.9) and (B.10), we obtain two statistically independent Gaussian dis- 
tributed random variables C and D. 

The method described above is often used in practice to generate Gaussian 
distributed random variables. As shown in Fig. B.5, these random variables have 
a mean value of zero and a variance a2. If a nonzero mean Gaussian random 
variable is desired, then C and D can be trandated by the addition of the mean 
value. 

A subroutine implementing this method for generating Gaussian distributed 
random variables is given in Fig. B.6. 
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SUBROUTINE GAUSS CONVERTS A UNIFORM RANDOM 
SEQUENCE XIN IN [ 0,1] TO A GAUSSIAN R A N W M  
SEQUENCE WITH G(0,SIGMAC*2) 
PARAMETERS : 

XIN :UNIFORM IN I0.1 I RAMXlM NUMBER 
B :UNIFORM IN I 0.1 I RANDOM NUMBER 

SIGMA :STANDARD DEVIATION OF THE GAUSSIAN 

YOVT :OUTPUT FROM THE GENERATOR 

SUBROUTINE GAUSS 9XIN.B.SIGMA.YOVT) 
PI=4.O*ATAN (1.0) 

B=2.0*PI'B 

RtSQRT (2.0*(SIGMA"2)CALOG(1.0/(1.0-XIN))) 
YOUT=RCCOS (B) 
RETURN 

END 
NOTE: TO USE THE ABOVE SUBROUTINE FOR A 

GAUSSIAN W M  NUMBER GENERATOR 

YOU MUST PROVIDE AS INPUT 'IWO UNIFORM RANDOM NUMBERS 

XIN AND B 
XIN AND B MUST BE STATISTICALLY INDEPENDENT 

F ~ r e  B.6 Subroutine for generating Gaussian random variables 



Tables of Transition 
Coefficients for the Design of 
Linear-Phase FIR Filters 

In Section 8.2.3 we described a design method for linear-phase FIR filters that 
involved the specification of H,(w) at a set of equally spaced frequencies wl; = 
2n(k +cr)/M, where cr = 0 or a = i, k = 0, 1.. . . , (M - 1)/2 for M odd and k = 0, 
1. 2 . .  . . . ( M / 2 )  - 1 for M even, where M is the length of the filter. Within the 
passband of the filter, we select H,(wk) = 1, and in the stopband, Hr(wk) = 0. For 
frequencies in the transition band, the values of Hr(wk) are optimized to minimize 
the maximum sidelobe in the stopband. This is called a minima optimization 
criterion. 

The optimization of the values of Hr(w) in the transition band has been per- 
formed by Rabiner et al. (1970) and tables of transition values have been provided 
in the published paper. A selected number of the tables for lowpass FIR filters 
are included in this appendix. 

Four tables are given. Table C.l lists the transition coefficients for the 
case a = 0 and one coefficient in the transition band for both M odd and M 
even. Table C.2 lists the transition coefficients for the case a = 0, and two 
coefficients in the transition band for M odd and M even. Table C.3 lists the 
transition coefficients for the case a = 4, M even and one coefficient in the 
transition band. Finally, Table C.4 lists the transition coefficients for the case 
a = 4. M even, and two coefficients in the transition band. The tables also in- 
clude the level of the maximum sidelobe and a bandwidth parameter, denoted 
as BW. 

To use the tables, we begin with a set of specifications, including (I) the 
bandwidth of the filter, which can be defined as ( k / M ) ( B W  + a ) ,  where BW is 
the number of consecutive frequencies at which H(wd = 1, (2) the width of the 
transition region, which is roughly 2n/M times the number of transition coeffi- 
cients, and (3) the maximum tolerable sidelobe in the stopband. The length of the 
filter can be selected from the tables to satisfy the specifications. 



TABLE C.l TRANSITION COEFFICIENTS FOR a = 0 

M Odd M Even 

BW Minimax 71 BW Minimax TI 

M = 15 M = 1 6  
1 -42.30932283 0.433782% 1 -39.75363827 0.42631836 
2 -41.26299286 0.41793823 2 -37.61346340 0.40397949 
3 -41.25333786 0.41047636 3 -36.57721567 0.39454346 
4 -41.94907713 0.40405884 4 -35.87249756 0.38916626 
5 -44.37124538 0.39268189 5 -35.31695461 0.38840332 
6 -56.01416588 0.35766525 6 -35.51951933 0.40155639 

M = 33 M = 32 
1 -43.03163004 0.42994995 1 -42.24728918 0.42856445 
2 -42.42527%2 0.41042481 2 -41.29370594 0.40773926 
3 -42.40898275 0.40141601 3 -41.03810358 0.3%62476 
4 -42.45948601 0,3%41724 4 -40.934%323 0.38925171 
6 -42.52403450 0.39161377 5 -40.85183477 0.37897949 
8 -42.44085121 0.39039917 8 -40.75032616 0.36990356 

10 -42.11079407 0.39192505 10 -40.54562140 0.35928955 
12 -41.92705250 0.39420166 12 -39.93450451 0.34487915 
14 -44.69430351 0.38552246 14 -38.91 993237 0.34407349 
15 -56.18293285 0.35360718 

M = 65 M = M  
1 -43.16935%8 0.42919312 1 -42.96059322 0.42882080 
2 -42.61945581 0.40903320 2 -42.30815172 0.40830689 
3 -42.70906305 0.39920654 3 -42.32423735 0.39807129 
4 -42.86997318 0.39335937 4 -42.43565893 0.391 77246 
5 -43.01999664 0.38950806 5 -42.55461407 0.38742065 
6 -43.14578819 0.38679809 6 -42.66526604 0.38416748 

10 -43,44808340 0.38129272 10 -43.01104736 0.37609863 
14 -43.546844% 0.37946167 14 -43.28309%5 0.37089233 
18 -43.48173618 0.37955322 18 -43.56508827 0.36605225 
22 -43.19538212 0.38162842 22 -43.%245098 0.35977783 
26 -42.44725609 0.38746948 26 -44.60516977 0.34813232 
30 -44.76228619 0.38417358 30 -43.81448936 0.29973144 
31 -59.21673775 0.35282745 

M=125 M = 128 
1 -43.20501566 0.42899170 1 -43.15302420 0.42889404 
2 -42.66971111 0.40867310 2 -42.59092569 0.40847778 
3 -42.77438974 0.39868774 3 -42.67634487 0.39838257 
4 -42.95051050 039268189 4 -42.84038544 0.39226685 
6 -43.25854683 0.38579101 5 -42.99805641 0.38812256 
8 -43.47917461 0.38195801 7 -43.25537014 0.38281250 

10 -43.63750410 0,37954102 10 -43.52547789 0.3782638 
18 -43.95589399 0.37518311 18 -43.93180990 0.37251587 
26 -44.059131 15 0.37384033 26 -44.18097305 0.36941528 
34 -44.05672455 037371826 34 -44.40153408 0.36686401 
42 -43.94708776 0.37470093 42 -44.67161417 0.36394453 
50 -43.58473492 0.37797851 50 -45.17186594 0.35902100 
58 -42.14925432 0.39086304 58 -46.92415667 0.34273681 
59 -42.60623W 0.39063110 62 -49.46298973 0.28751221 
60 -44.78062010 0.38383713 
61 -56.22547865 035263062 

Source: Rabincr ct al. (1970); @ 1970 IEEE; reprinted with permission. 
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TABLE C.2 TRANSlTlON COEFFICIENTS FOR u = 0 

M Odd 

Minimax TI 

M = 15 
-70.60540585 0.09500122 
-69.26168156 0.10319824 
-69.91973495 0.10083618 
- 75.51 172256 0.08407953 
- 103.45078300 0.05180206 

M = 33 
-70.60%7541 0.09497070 
-68.16726971 0.10585937 
-67.13149548 0.10937500 
-66.53917217 0.10965576 
-67.23387909 0.10902100 
-67.85412312 0.10502930 
-69.08597469 0.10219727 
-75.86953640 0.08137207 
- 104.04059029 0.05029373 

M = 65 
-70.66014957 0.0(1472656 
-6X.X%22307 0.10404663 
-67.90234470 0.1072021 5 
-67.24003792 0.1 0726929 
-Mi.tWMS%O 0.1068087 
-66.27541 188 0.10548706 
-65.9641 7046 0.1M6309 
-66.lMW629 0.10649414 
-66.76456833 0.10701904 
-68.13407993 0.10327148 
-75.98313046 0.08M9458 
- 104.92083740 0.04978485 

M = 125 
-70.68010235 0.09464722 
-68.941576% 0.103W015 
-68.19352627 0.10682373 
-67.34261 131 0.10668945 
-67.09767151 0.10587158 
-67.058012% 0.10523682 
-67.17504501 0.10372925 
-67.22918987 0.10316772 
-67.11609936 0.10303955 
-66.71271324 0.10313721 
-66.62364197 0.10561523 
-69.28378487 0.10061646 
-70.35782337 0.0%636% 
-75.94707718 0.08054886 
-104.09012318 0.04991760 

M Even 

Minimax TI 

M = 16 
-65.27693653 0.10703 125 
-62.85937929 0.12384644 
-62.96594906 0.12827148 
-66.03942485 0.12130127 
-71.73997498 0.11066284 

M = 32 
-67.37020397 0.096105% 
-63.931046% 0.11263428 
-62.49787903 0.11931763 
-61.28204536 0.12541504 
-60.82049131 0.12907715 
-59,74928167 0.12068481 
-62,48683357 0.1304150 
-70.64571857 0.1 1017914 

Source: Rabiner et al. (1970); @ 1970 IEEE; reprinted with permission. 
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TABLE C.3 TRANSITION 
COEFFICIENTS FOR a = 

BW Minimax TI 

Source: R a b i i r  ct al. (1970); @ 1970 
IEEE; reprinted with permission. 
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TABLE C.4 TRANSITION COEFFICIENTS FOR 
a =  $ 

BW Minimax 71 T2 

M = 16 
1 -77.26126766 0.05309448 0.41784180 
2 -73.81026745 0.M175293 0.4936921 1 
3 -73.02352142 0.07862549 0.51966134 
4 -77.95156193 0.07042847 0.51158076 
5 -105.23953247 0.04587402 0.46%7784 

M = 32 
1 -80.49464130 0.04725342 0.40357383 
2 -73.925 13466 0.07094727 0.49129255 
3 -72.40863037 0.08012695 0.52153983 
5 -70.95047379 0.08935547 0.54805908 
7 -70.22383976 0.09403687 0.56031410 
9 -69.94402790 0.09628906 0.56637987 

11 -70.82423878 0.09323731 0.56226952 
13 - 104.85642624 0.04882812 0.48479068 

M z f d  
1 -80.80974960 0.04658203 0.40168723 
2 -75.1 1772251 0.0675%44 0.48390015 
3 -72,66662025 0.07886%3 0.51850058 
4 -71.85610867 0.08393555 0.53379876 
5 -71.34401417 0.08721924 0.5431 1474 
9 -70.32861614 0.09371948 0.56020256 
13 -69.34809303 0.09761963 0.56903714 
17 -68.06640258 0.10051880 0.57543691 
21 -67.99149132 0.10289307 0.58007699 
25 -69.32065105 0.10068359 0.5772%56 
29 -105.72U62339 0.04923706 0.48767025 

M = 128 
1 -80.89347839 0.04639893 0.40117195 
2 -77.22580583 0.06295776 0.47399521 
3 -73.43786240 0.07648926 0.51361278 
4 -71.93675232 0.08345947 0.53266251 
6 -71.10850430 0.08880615 0.54769675 
9 -70.53600121 0.09255371 0.55752959 
17 -69.95890045 0.09628906 0.56676912 
25 -69.29977322 0.09834595 0.57137301 
33 -68.75139713 0.10077515 0.57594641 
41 -67.89687920 0.10183716 0.57863142 
49 -66.76120186 0.10264282 0.58123560 
57 -69.21525860 0.10157471 0.579463% 
61 - 104.57432938 0.04970703 0.48900685 

Source: Rabiner et al. (1970); @ 1970 IEEE; 
reprinted with petmission. 
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As an illustration, the filter design for which M = 15 and 

corresponds to a = 0, BW = 4, since H,(ok) = 1 at the four consecutive fre- 
quencies wk = 2nk/15, k = 0, 1, 2, 3, and the transition coefficient is TI at the 
frequency wk = 8n/15. The value given in Table C.1 for M = 15 and BW = 4 is 
TI = 0.40405884. The maximum sidelobe is at -41.9 dB, according to Table C.1. 



Appendix D 
List of MATLAB Functions 

In this Appendix, we list several MATLAB functions that the student can use to 
solve some of the problems numerically. The list includes the most relevant MAT- 
LAB functions for each of the chapters, but it is not exhaustive. However, this list 
is cumulative in the sense that once a function is listed in any chapter. it is not re- 
peated in subsequent chapters. These MATLAB functions are obtained from two 
sources: (1) the student version of MATLAB and (2) the book entitled Digital Sig- 
nal Processing Using MA TLAB. (PWS Kent 1996), by V.K. Ingle and J.G. Proakis. 

Our primary objective in listing these MATLAB functions is to inform the 
student who is not familiar with MATLAB of the existence of these functions and 
to encourage the student to use them in the solution of some of the homework 
problems. 

CHAPTER 1 

sin(x), cos(x), tan(x) trigonometric functions 
abs(x) absolute values of a vector x with real or complex 

components. 
real(x) takes the real part of each components of the vector 

5.  

conj(x) 

errp(r) 
sum ( x )  

prod(=) 

angle(=) 

log(x) 

takes the imaginary part of each component of the 
vector x. 
complex-conjugate of each component of x .  
ex(cosy + j sin y), where z = x + j y .  

sum of the (real or complex) components of the vec- 
tor x. 
product of the (real or complex) components of the 
vector x .  
computes the phase angles of each component of the 
vector x .  
computes the natural logarithm of each of the ele- 
ments of x .  



List of MATLAB Functions App. D 

CHAPTER 2 

CHAPTER 3 

roots(a) 

computes the logarithm to the base 10 of the elements 
of x. 
computes the square root of the elements of x .  

convolution of the two (vector) sequences x and h. 

folds the (vector) sequence x. 
solves the difference equation with coefficients 

a = [ao ,a~ ,  . . . ,a , ]  

b = [bo ,61,. . . ,6,] 

x = input sequence 

implements an FIR filter with input x and coeffi- 
cients b. 
generates a length N random sequence that is uniform 
in the interval (0,l).  
generates a length N sequence of Guassian random 
variables with zero mean and unit variance. 
computes the crosscorrelation of the two sequences x 
and y. 

computes the autocorrelation of the sequence x. 

computes the roots of the polynomial with coefficients 

computes the residues in a partial fraction expansion, 
where 

b = coefficients of numerator polynomial 
[bo. bl,  . . - b ~ ]  

a = coefficients of denominator polynomial 
[ao, a1, . . - U N ]  

computes the result of dividing b by a in a polynomial 
part p and a remainder r. 
computes the coefficients of the polynomial p with 
roots r. 
plots the poles and zeros in the z-plane given the co- 
efficient vectors b and a. 
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mter(b, a ,  x ,  xic) implements the filter given by a difference equation 
with coefficient vector b and a, input x and initial 
conditions xi,. 

CHAPTER 4 

h q z ( b ,  a, N )  computes an N-point complex frequency response vec- 
tor and an N-point frequency vector w, uniform over 
the interval 0 < o < H, for filter with coefficient vec- 
tor b and a .  

freqz(b, a,  N ,  'whole') same computation as freqz(b, a ,  N), except that the 
frequence range is 0 < w c 2rr. 

f"eqz(b, a ,  w )  computes the frequency response of the system at the 
frequencies specified by the vector w. 

lFPdelay(b, a, N )  computes the group delay of the filter with numera- 
tor polynomial having coefficients b and denominator 
polynomial with coefficients a, at N points over the 
interval (0. rr), 

grpdelay(b, a,  N ,  'whole') same as above, except that the frequency range is 0 < 
0 < 2 H .  

CHAPTER 5 

dfs(z, N )  computes the discrete fourier series (DFS) coefficient 
array for the periodic signal sequence x with period 
N. 

idfs(%!, N )  computes the signal sequence from the DFS coeffi- 
cient array y. 

rem(n, N )  determines the remainder after dividing n by N. 
mod(n, N )  computes n mod N. 

df'(z, N )  computes the N-paint DFT of the data sequence x.  

idft(X, N )  computes the N-point inverse DFT of X .  
ovrlpsav(x, h, N )  implements the overlap-save method to perform block 

convoIution where N is the block length. 

CHAPTER 6 

CHAPTER 7 

implements a radix-2 N-point FFT algorithm. 
implements a radix-2, N-point inverse FFT algorithm. 
rearranges the outputs of fft so that the zero fre- 
quency component is the center of the spectrum. 

converts a direct form structure to the cascade form. 
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sigdx) 

ss2tf(A, B, C, D, iu) 

ss2zp(A, D, C, D, iu) 

CHAPTER 8 

boxcar(M) 
bartlett(M) 
h&g(M) 

converts a cascade structure to the direct form struc- 
ture. 
converts direct form to the parallel form structure. 
converts a parallel form to the direct form structure. 
converts a FIR direct form structure to an all-zero 
latice structure. 
converts an all-zero lattice structure to the direct form 
structure. 
converts direct form IIR structure to pole-zero lattice- 
ladder structure. 
converts a lattice-ladder structure to the direct form 
IIR structure. 
implements the cascade form IIR and FIR realization 
of a filter with input sequence x. 
implements the parallel form IIR realization of a dil- 
ter with input sequence x. 
implements the FIR lattice filter realization with input 
sequence x. 
implements the lattice-ladder realization of a filter 
with input sequence x. 
rounds the components of the vector x to the nearest 
integer 
rounds (truncates) the component of the vector x to 
the nearest integer toward zero. 
each component of x is set to +I if it is positive and 
-1 if it is negative. 
computes the transfer function H ( x )  of a system given 
the state-space description of the form 

from the iuth input. 
computes the transfer function H ( s )  and expresses it 
in factored form, thus, giving the poles and zeros of 
H ( s ) .  

generates an M-point rectangular window. 
generates an M-point Bartlett window. 
generates an M-point Hanning window. 
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chebiap(N, R,) 

freqs(b, 6, w )  

butter(N, wn) 

chebyl(N, R,,, wn) 

cheby2(N, A,, w n )  

ellip(N, Rp, A,, wn) 

biliear(z, p, k,  fs) 

bilinear(num, den, fs) 

remez(N, f, m, 'w') 
butter(N, wn,  'high') 

bntter(N, wn,  'bandpass') 

chebyl(N, R,, wn, 'high') 

generates an M-point Hamming window. 
generates an M-point Blackman window. 
generates an M-point kaiser window. 
provides the coefficients of an analog lowpass Butter- 
worth filter of order N, with normalized frequency, in 
cascade form. 
provides the coefficients of an analog lowpass Cheby- 
shev filter of order N, with normalized frequency and 
passband ripple Rp, in cascade form. 
provides the coefficients of an analog lowpass elliptic 
filter of order N, passband ripple Rp,  stopband attenu- 
ation AZ, with normalized frequency, in cascade form. 
computes the frequency response of an analog filter, 
with w in rad/sec. 
designs a digital lowpass Butterworth fitter of order 
N and cutoff frequency wn. 
designs a digital lowpass Chebyshev filter of order N 
passband ripple Rp,  and cutoff frequency on. 
designs a Type 2 lowpass Chebyshev filter or order 
N, stopband ripple A, and cutoff frequency wn. 
designs a digital lowpass elliptic filter of order N, pass- 
band ripple R,, stopband ripple A,, and cutoff fre- 
quency on. 
uses the bilinear transformation to convert an analog 
filter with zeros z, poles p, and gain k, into a digital 
filter, with fs being the sample frequency in Hz. 
uses the bilinear transformation to convert an ana- 
log filter with numerator polynomial coefficients num, 
denominator potynomial coefficients den, and sample 
frequency fs, into a digital filter. 
uses the Remez algorithm to determine the coeffi- 
cients of an optimum equiripple, linear phase FIR fil- 
ter of length N + l, from frequency specifications f 
and gains m for each band. 
same description as above with 'ftype' used to specify 
a Hilbert transform or differentiator. 
designs a highpass Butterworth filter of order N and 
3-dB cutoff frequency on .  
designs a 2N-order bandpass Butterworth filter, with 
3-dB passband w l  c w < w2, where o n  = [ol, 021. 
designs a highpass Chebyshev filter of order N, pass- 
band ripple R,, and cutoff frequency wn. 
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ellilp(N, R,, A,, wn) designs an elliptic bandpass filter of order N, pass- 
band ripple R p ,  stopband attenuation A,, and cutoff 
frequencies wn = [w l ,  w2]. 

Ip2bp(num, den, wo, Bw)  transforms an analog lowpass filter to an analog band- 
pass filter. 

IpZbs(num, den, wo, Bw)  transforms an analog lowpass filter to an analog band- 
stop filter. 

lp2hp(num, den, wo) transforms an analog lowpass filter to an analog high- 
pass filter. 

Ip2lp(num, den, wo) transforms an analog lowpass filter to an analog low- 
pass filter with cutoff frequency wo. 

polyfit(~, y, n) finds a polynomial p such that p ( x )  fits the data in a 
vector y in a least squares sense. 

CHAPTER 9 

spline(x, y , xi) cubic spline data interpolation. 
spline(nt,, x , t) uses cubic spline interpolation, where x and nt, are 

arrays containing samples x ( n )  at nz,, and t is an ar- 
ray that contains a fine grid at which the function is 
evaluated. 

CHAPTER 10 

dnsample(x , M )  downsamples the sequence x by the factor M .  
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Index 

valiance. 903 
k. 14.741 

maximum. 35%363 
minimum 359-363 
mixed, 359-363 
response. 3 1 1 

Pisarrnko method. 948-950 
Poles. 172. 

complex conjugate. 193-194. 2 18-2 19 
distinn, 178179. 189-191.217 
laation. 178-181 
multipk-order, 179, 19 1- 192 

Polyphase f i l m ,  797-8M3 
for decimation. 800 
for interpolation, 797 

Power 
definition, 49 
signal. 50 

Power dmsity spcctmm, 235-240 
definition. 236 
estimation of (see Power spectrum 

enlmation) 
pcridic signals, 235-240. 250-253 
random sipnals. AS-A7 
ractanpuiar pulse train. 237-2.40 

Power spectrum estimation 
C a p  (minimum variance) method. 

942-945 
direct method. 899 
eigenanalysis algorithms, 95(&959 

ESPRIT. 953-955 
MUSIC. 952 
order sekclion. 955-956 
Pisarenko. 948-950 

expsrimntal results. 936-942 
from finite data. 902-908 
indirect method, 899 
Icakage, 899 
nonpammctric rnethds, 908-920 

Banlen. 910-91 1.917 
Blockman-Tukey, 9 13-9 16,9 1 8 9  19 
computational requirements, 9 19-920 
prfonnancc chuacuristics, 9 16-919 
Welch, 91 1-913, 917-918 

parametric (model-based) methods, 
92&942 

AR model, 924 
AR model order selection, 93 1-932 
ARMA mode!, 924.93-936 
Burg method. 925-928 
least-squares. 929-930 
MA model. 924,933-934 
maximum entropy method. 928 
&I ppramew~. 92L924 . 
modified Burg, 928 
relation to linur prediction. 923-924 
sequermnl lessc squares. 9-931 
Yule-W&r. 925 

lrsc of DFT. 906-908 
Prediction coeficients, 857 
Redi- filter, 512, 858 

01,873476 
Rincipd agmvalucs. 951 
W i i t y  density function, A I-A3 
Robobility dismbution function. B1-B2 

Prony's method, 706-708 
Pseudorandom sequencer 

Barker sequence. 148 
maximal-length shifi register sequences, 

148-149 

Quadrature components, 740 
Quadram mirror filters 

for perfect rcconsrruction, 8 3 W 1  
for subband coding, 832 

Quality, 916-919 
of Banlen estimate. 9 17 
01 Blackman-Tukey esrimate. 91 8-9 19 
of Welch estimate, 9 17-9 18 

Quantization, 21-22. 33-38. 750-753 
in AID conversion, 75CL753 
differential. 756 
d~ffcmnlisl predictive. 757 
dynamic range, 35, 561, 751 
error. 37. 42, 582-598 
in filter coefficients. 569-582 
mund~ng, 35.565-567 
truncation. 35. 564-565 
level, 35. 750 
resolution. 35. 561 
step size, 35. 56 1 

Quantization effects 
in AID conversion. 37-38, 75.3-756 
in computation of DR. 486-493 

dircct compltation. 487489 
FFT algorithms. 489493 

In filter codficients. 569-582 
fixed-point numbers. 557-560 

one's complemenr, 558-559 
sign-magnitude. 558 
table of bipolar codes, 752 
two's complement. 559-560 

Roadng-point numbers, 561-564 
iimit cycks. 583-587 

dead band. 584 
overtlow. 58&589 
zeminput. 584 

scaling to prevent overflow, 588-589 
statistical chaiac~erization. 590-598 

Quantivr 
midrise, 750 
midtread, 750 
rcsolutim. 75CL752 
un~fom. 750 

Random number generators. B 1-86 
Gaussian random variable. B4-B6 

submutine for. B6 
Random processes, 327-330. A I-A I0 

averages. A3-A8 
autocornlation. A3 
autocovatiana, A4 
for discrete-time signals, A&A7 
e x p c t d  value, A3 
moments. A3 
power. A3 

cmla!ioncrgodic, A9-A I0 
discrete-time, A6-A7 
crgodic, A8 
jointly stationary, A2-A3 

meanlrgodic. A8-A9 
power density spectrum. ASA6 
response of linear s y s ~ m s ,  327-330 

aurocorrelaion, 327-329 
cnpccred value, 328 
powtr density spectrum, 329-330 

sample function, A 1 
stationary. A3 

wide-scnse, A3 
time-averages. A8-A9 

Random signals (see Random processes) 
Rational z-bansfoms. t 88-1 % 

poles, 172-174 
zeros, 172-174 

Recursive systems, 1 16-1 18 
Refmnccs. RI-R15 
Reflection coefficients, 5 12. 536. 863-864 
Resonator (see Digital resonator) 
Reverse (resiprocall polynomial. 515. 861 

backward system function, 515. 861 
Round-off error, 565-567, 590-598 

Sample function. A1 
Sample-and-hold. 748749. 765 
Sampiing, 9. 21.23.269-279. 742-746 

aliasing effacts. 27-28. 27 1-279 
of analog signals, 23-33, 269-279. 

742-746 
01 bandpass signals. 742-746 
of discrete-time signals. 782-845 
frequency, 23 
frequency domain, 3%-399 
interval. 23 
Nyquist rate. 30 
period. 23 
periodic. 23 
rate, 23 
of sinusoidal signals, 24-28 
thaorcm. 29-30 
timedomain, 24-28.269-279 
uniform, 23 

Sampling-rare conversion. 782-845 
applications of. 821-845 

for DFT filter banks. 825-831 
for interfacing, 823 
for lowpass filttrs. 824 
for oversampling A/D and DIA. 

843-844 
for phase shihcrs. 821-822 
for subband coding, 83 1-832 
for uansmultipkxing. 841443 

by Prbiuary frtor.  815-821 
of bandpass signals. 8 10-8 1 5 
decimntion, 784-787 
filter design for. 792-806 
inlapolation. 784, 787-790 
multistage, 8068 10 
polyphase filters for. 797400 
by rational f m ,  790-792 

Sampling theorem. 29-30, 26%279 
Schiir algorithm 8-72 

piplined archiuaurc for, 872-873 
split-Schiir algorithm. 892 



SchurCohn stability test. 213-215 
conversion to iattlce coeffic~ents, 

21.V214 
Shanks' method. 709-710 
S i g m a d l a  modulation. 758 
Skgn magn~tude representalion. 558 
Signal tlowgraphs. 52 1-526 
Signals, 2-3 

analog. 8 
antisymrneuic. 5 1 
aperiodic. 50 
bandpass, 280. 738-742 

complex envelope. 740 
envelope. 741 
quadrature components. 740 

continuous-t~rne. 8 
determintstic. I I 
digital. I I 
discrete-time, 9, 42-55 
elecvocardiogram (ECG). 7 
equivalent lowpius. 740 
harmonically related. 19 
mul~ichanncl. 7 
multidimens~onal. 7 
natural. 282 

frequency ranges. 282-283 
periodic. 15 
mdom. 12. A I-A I0 

correlalitmsrgtxl~c. A9-A 10 
erpcxiic. A9 
expected value or. A4 
mean-erg~dic. A9-A 10 
momenrr of. A4-A7 
statistically independent. A4 
strict-wna statlonav. A3 
time-avenges. AR-A I0 
wi&-sense stationary. A3 
unbiased. A8 
uncomlated. A4 

seismic, 283 
sinusoidal. 14 
spxch. 2-3 
symrncmc, 5 1 

Signal subspace. 95 1 
Sinusoidal generators (see Oscillators) 
Spectrum. 230-232 

analysis. 232 
estimation of. 232. 896-959 

line, 237 
Set O ~ O  Power spectrum estimation 
Split-radix algorithms. 470473 
Stability of LTl systems, 208-217 

of Jsond&r syslcms. 215-217 
Stability miangle. 2 16 
SW-spece analysis, 539-566 

definition of s w ,  540 
for difference equations. 540-542 
Ln state-space madcl. 542 
w t p  equation. 542 
relation to impulse response. 551-553 

solution of state-space equations. 
54 s544 

state quations. 542 
state space. 54 1 
state-space realizations 

cascade form. 555 
coupled f m ,  556 
minimal, 546 
normal (diagonal) form, 555 
parallel form, 555 

staw lmnsifon matrix, 544 
state variables, 539 
zdornain, 550-554 
zero-input response. 544 
zero-state response. 544 

Steady-stale response. 206-207, 314-316 
Structures. 11 1-1 18 

direct form 1, 11 1-1 12 
direct form 11, 11 5 1  14 

Subband coding, 83 1-833 
Superposition princ~ple. 65 
superposition summation, 76 
System. 3. 5E-59 

dynamic. 62 
finite memory. 62 
infinite memory, 62 
inverse, 356 
invertible. 356 
relaxed, 59 

System function 181-184. 31%321 
of all-pole system. 183 
of all-zero system. 182-183 
of LTI systems. 182-183 
relation to frequency response. 3 19-32 1 

System identification. 355, 365364 
System modeling. 855 
System responses 

forced, 96-97 
impuir. 108-1 10 
natunl (free), 97, 204 
of rdaxed pole-zero systtms, 172- 184 
sMy-st=, 206-207 
of systems with initial conditions. 

204206 
transient 107, 206-207 
zero-input, 97 
zero-state. % 

Toeplitz matrix. 865. 883 
Erne averngcs, ASA10 
Time-limitcd signals. 281 
Transient response. 107, 206-207. 314315 
Transition band, 619 
Trans+ srmcturts, 52 1-526 
Truncation error. 35, 564-565 
Two's complement reprrsenlarion, 559 

Uniform diaribution, 487488, 565-568, 
755 

Unjr circk. 265, 267 
Unit sample (impulse) response. 108-1 10 

Unlt sample sequence, 45 

Welch method. 91 1-913, 917-918.919-920 
Wideband s~gnal. 28 1 
W~ener filters. 7 15, 88&8!30 

for filurinp. 88 1 
FlR strucrurc, 715. 881-884 
IIR structure, 885-889 
noncausal. 889490 
for prediction. 881 
for smoothing. 881 

Wimer-Hopf quation, 882 
W~ner-Khintchine theorem. 299 
Wtndow functions. 626 
Wold represenlation, 854 
Wolfer sunspot numbers, 10 

autoconelation, 127-128 
graph. 128 
table. 127 

Yule-Walker equations. 857 
modified. 935 

Yulc-Walker rncthod. 925 

Zeru-input Irnear. 98 
Zerc-input response. 97 
Zero-order hold. 38. 765 
Zero pdd~ng. 400 
Zero-state linear. 98 
Zeros, 172 
Zoom frequency analysis, 8 5 M 5  1 
:-~ransforrns 

definition, 151-152 
bilateral ltwc-sided). 15 1-152 
unilateral lone-sidcd). 197-202 

inverse. I& 172. 184-1 97 
by contour integration. 160-1 6 1. 

184-186 
by Ppnial fraction~xpansion, 188-197 
by power series, 186-188 

properties, 161-172 
convolution. 168-169 
comlatton, 169-1 70 
differentiation, 166-1 67 
initld value theorem I72 
linearity. 161-163 
multipli~ltion, 170-171 
Parscval's relation, 171-172 
scaling. 1 6 4 1  65 
u b k  of, 173 
time m v d .  166 
time shihng. 163-164 

W i d .  172-184 
region of convergewe (ROC). 152-160 
relationship of Fortria mnsform. 

264-265 
ublc of, 174 
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