e —

ot

Signals and Systems

UNIVERSIDAD
DE CANTARPIA

BIBLIOT-ICA

i LT

o s




PRENTICE-HALL SIGNAL PROCESSING SERIES

Alan V. Oppenheim, Editor

ANDREWS and Hunt Digital Image Restoration

BRIGHAM  The Fast Fourier Transform

BUrRDIC  Underwater Acoustic System Analysis

CASTLEMAN  Digital Image Processing

CRrocHIERE and RABINER  Mullirate Digital Signal Processing
DubGeoN and MEerserReAU Multidimensional Digital Signal Processing
Hamming  Digital Filters, 2e

HAYKIN, ED. Array Signal Processing

LEa, ED.  Trends in Speech Recognition

LiM, 0. Speech Enhancement

McCLELLAN and Raper Number Theory in Digital Signal Processing
OPPENHEIM, ED. Applications of Digital Signal Processing

OPPENHEM, WILLSKY, with YOUNG Signals and Systems

OPPENHEIM and ScHAFer Digital Signal Processing

RABINER and GoLp Theory and Applications of Digital Signal Processing
RABINER and Sciarer Digital Processing of Speech Signals

RoBiNson and TReiTEL Geophysical Signal Analysis

TRIBOLET  Seismic Applications of Homomorphic Signal Processing




Contents

Preface xiii

1

Introduction 1

2

Signals and Systems 7

2.0 Introduction 7

2.1 Signals 7 ,

2.2 Transformations of the Independent Variable 12
2.3 Basic Continuous-Time Signals 17

2.4 Basic Discrete-Time Signals 26

2.5 Systems 35

2.6 Properties of Systems = 39 |
2.7 Summary 45 * :
Problems 45 7

vil



ear Time-Invariant Systems 69

3.0
3.1
3.2
33
34
3.5
3.6

3.7
3.8

4

Introduction 69

The Representation of Signals in Terms of Impulses 70
Discrete-Time LTI Systems: The Convolution Sum 75
Continuous-Time LTI Systems: The Convolution Integral 88
Properties of Linear Time-Invariant Systems 95

Systems Described by Differential and Difference Equations 101
Block-Diagram Representations

of LTI Systems Described by Differential Equations 111
Singularity Functions 120

Summary 125

Problems 125

srier Analysis for Continuous-Time
inals and Systems 161

4.0
4.1

4.2
43
4.4
4.5
4.6
4.1
4.8
4.9

4.10
4.11

4.12
4.13

viii

Introduction 161

The Response of Continuous-Time LTI Systems

to Complex Exponentials 166

Representation of Periodic Signals:

The Continuous-Time Fourier Series 168

Approximation of Periodic Signals Using Fourier Series

and the Convergence of Fourier Series 179

Representation of Aperiodic Signals:

The Continuous-Time Fourier Transform 186

Periodic Signals and the Continuous-Time Fourier Transform 196
Properties of the Continuous-Time Fourier Transform 202
The Convolution Property 212

The Modulation Property 219

Tables of Fourier Properties

and of Basic Fourier Transform and Fourier Scries Pairs 223
The Polar Representation of Continuous-Time Fourier Transforms 226
The Frequency Response of Systems Characterized

by Linear Constant-Cocflicient Differential Equations 232
First-Order and Second-Order Systems 240

Summary 250

Problems 251

Contents

Fourier Analysis for Discrete-Time
Signals and Systems 291

5.0 Introduction 291
5.1 The Response of Discrete-Time LTI Systems
to Complex Exponentials 293
5.2 Representation of Periodic Signals:
The Discrete-Time Fourier Series 294
5.3 Representation of Aperiodic Signals:
The Discrete-Time Fourier Transform 306
5.4 Periodic Signals and the Discrete-Time Fourier Transform 314
5.5 Properties of the Discrete-Time Fourier Transform 321
5.6 The Convolution Property 327
5.7 The Modulation Property 333
5.8 Tables of Fourier Properties
and of Basic Fourier Transform and Fourier Series Pairs 335
5.9 Duality 336
5.10 The Polar Representation of Discrete-Time Fourier Transforms 343
5.11 The Frequency Response of Systems Characterized
by Linear Constant-Coefficient Difference Equations 345
5.12 First-Order and Sccond-Order Systems 352
5.13 Summary 362
Problems 364

6

Filtering 397

6.0 Introduction 397

6.1 ldeal Frequency-Selective Filters 401

6.2 Nonideal Frequency-Selective Filters 406

6.3 Examples of Continuous-Time Frequency-Selective Filters
Described by Differential Equations 408

6.4 Examples of Discrete-Time Frequency-Selective Filters
Described by Difference Equations 413

6.5 The Class of Butterworth Frequency-Selective Filters 422

6.6 Summary 427
Problems 428

Contents




lodulation 447

7.0 Introduction 447

7.1 Continuous-Time Sinusoidal Amplitude Modulation

449

7.2 Some Applications of Sinusoidal Amplitude Modulation 459

7.3 Single-Sideband Amplitude Modulation 464

7.4 Pulse Amplitude Modulation and Time-Division Multiplexing 469

7.5 Discrete-Time Amplitude Modulation 473
7.6 Continuous-Time Frequency Modulation 479
7.7 Summary 487

Problems 487

8

ampling 513

he

8.0 Introduction 513

8.1 Representation of a Continuous-Time Signal by Its Samples:

The Sampling Theorem 514
8.2 Reconstruction of a Signal

from Its Samples Using Interpolation 521
8.3 The Effect of Undersampling: Aliasing 527

8.4 Discrete-Time Processing of Continuous-Time Signals

8.5 Sampling in the Frequency Domain 540
8.6 Sampling of Discrete-Time Signals 543

8.7 Discrete-Time Decimation and Interpolation 548

8.8 Summary 553
Problems 355

9

Laplace Transform 573

9.0 Introduction 573

9.1 The Laplace Transform 573

9.2 The Region of Conver ence for Laplace Transforms

9.3 The Inverse Laplace Transform 387

9.4 Geometric Evaluation of the Fourier Transform
from the Pole-Zcro Plot 590

531

579

Contents

R e

\ ey

ot : SRV Lo B PUE
95 k15r‘operties of the Laplace Transform 596
9.6 Some Laplace Transform Pairs 603
9.7 Analysis and Characterization of LTI Systems
Using the Laplace Transform 604
9.8 The Unilateral Laplace Transform 614
9.9 Summary 616
Problems 616

10

The z-Transform 629

10.0 Introduction 629
10.1 The z-Transform 630
10.2 The Region of Convergence for the z-Transform 635
10.3 The Inverse z-Transform 643
10.4 Geometric Evaluation of the Fourier Transform
from the Pole-Zero Plot 646
10.5 Properties of the z-Transform 649
10.6 Some Common z-Transform Pairs 654
10.7 Analysis and Characterization
of LTI Systems Using z-Transforms 655
10.8 Transformations between Continuous-Time
and Discrete-Time Systems 658
10.9 The Unilateral z-Transform 667
10.10 Summary 669
Problems 670

1

Linear Feedback Systems 635

11.0 Introduction 685
11.1 Linear Feedback Systems 689
11.2 Some Applications and Consequences of Feedback 690
11.3 Root-Locus Analysis of Linear Feedback Systems 700
11.4 The Nyquist Stability Criterion 713
11.5 Gain and Phase Margins 724
11.6 Summary 732
Problems 733

Contents

xi




fow. e L

ppendix  Partial Fraction Expansion 767
A.0 Introduction 767

A.1 Partial Fraction Expansion and Continuous-Time Signals and Systems 769
A.2 Partial Fraction Expansion and Discrete-Time Signals and Systems 774

bliography 777

dex 783

xii Contents

Preface

This book is designed as a text for an undergraduate course in signals and systems.
While such courses are frequently found in electrical engineering curricula, the
concepts and techniques that form the core of the subject are of fundamental impor-
tance in all engineering disciplines. In fact the scope of potential and actual applica-
tions of the methods of signal and system analysis continues to expand as engineers
are confronted with new challenges involving the synthesis or analysis of complex
processes. For these reasons we feel that a course in signals and systems not only is an
essential element in an engineering program but also can be one of the most rewarding,
exciting, and useful courses that engineering students take during their undergraduate
education.

Our treatment of the subject of signals and systems is based on lecture notes that
were developed in teaching a first course on this topic in the Department of Electrical
Engineering and Computer Science at M.LT. Our overall approach to the topic has
been guided by the fact that with the recent and anticipated developments in tech-
nologies for signal and system design and implementation, the importance of having
equal familiarity with techniques suitable for analyzing and synthesizing both con-

tinuous-time and discrete-time systems has increased dramatically. To achieve this

goal we have chosen to develop in parallel the methods of analysis for continuous-time
and discrete-time signals and systems. This approach also offers a distinct and
extremely important pedagogical advantage. Specifically, we are able (o draw on the
similarities between continuous- and discrete-time methods in order to share insights
and intuition developed in each domain. Similarly, we can exploit the differences
between them to sharpen an understanding of the distinct properties of each.

In organizing the material, we have also considered it essential to introduce the
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student to some of the important uscs of the basic methods that are developed in the
book. Not only does this provide the student with an appreciation for the range of
applications of the techniques being learned and for directions of further study, but
it also helps to deepen understanding of the subject. To achieve this goal we have
included introductory treatments on the subjects of filtering, modulation, sampling,
discrete-time processing of continuous-time signals, and feedback. In addition, we
have included a bibliography at the end of the book in order to assist the student who
is interested in pursuing additional and more advanced studies of the methods and
applications of signal and system analysis.

The book's organization also reflects our conviction that full mastery of a subject
of this nature cannot be accomplished without a significant amount of practice in
using and applying the basic tools that are developed. Consequently, we have included
a collection of more than 350 end-of-chapter homework problems of several types.
Many, of course, provide drill on the basic methods developed in the chapter. There
are also numerous problems that require the student to apply these methods to
problems of practical importance. Others require the student to delve into extensions
of the concepts developed in the text. This variety and quantity will hopefully provide
instructors with considerable flexibility in putting together homework sets that are
tailored to the specific needs of their students. Solutions to the problems are available
to instructors through the publisher. In addition, a self-study course consisting of a
set of video-tape lectures and a study guide will be available to accompany this text.

Students using this book are assumed to have a basic background in calculus
as well as some experience in manipulating complex numbers and some exposure to
differential equations. With this background, the book is self-contained. In particular,
no prior experience with system analysis, convolution, Fourier analysis, or Laplace
and z-transforms is assumed. Prior to learning the subject of signals and systems
most students will have had a course such as basic circuit theory for electrical
engineers or fundamentals of dynamics for mechanical engineers. Such subjects touch
on some of the basic ideas that are developed more fully in this text. This background
can clearly be of great value to students in providing additional perspective as they
proceed through the book.

A briefintroductory chapter provides motivation and perspective for the subject
of signals and systems in general and our treatment of it in particular. We begin Chap-
ter 2 by introducing some of the elementary ideas related to the mathematical repre-
sentation of signals and systems. In particular we discuss transformations (such as
time shifts and scaling) of the independent variable of a signal. We also introduce some
of the most important and basic continuous-time and discrete-time signals, namely real
and complex exponentials and the continuous-time and discrete-time unit step and unit
impulse. Chapter 2 also introduces block diagram representations of interconnections
of systems and discusses several basic system properties ranging from causality to
linearity and time-invariance. In Chapter 3 we build on these last two properties,
together with the sifting property of unit impulses to develop the convolution sum
representation for discrete-time linear, time-invariant (LTI) systems and the convolu-
tion integral representation for continuous-time LT} systems. In this treatment we
use the intuition gained from our development of the discrete-time case as an aid in
deriving and understanding its continuous-time counterpart. We then turn to a dis-
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cussion of systems characterized by linear constant-coefficient differential and differ-
ence equations. In this introductory discussion we review the basic ideas involved in
solving linear differential equations (to which most students will have had some
previous exposure), and we also provide a discussion of analogous methods for linear
difference equations. However, the primary focus of our development in Chapter 3
is not on methods of solution, since more convenient approaches are developed later
using transform methods. Instead, in this first look, our intent is to provide the student
with some appreciation for these extremely important classes of systems, which will
be encountered often in subsequent chapters. Included in this discussion is the
introduction of block diagram representations of LTI systems described by difference
equations and differential equations using adders, coefficient multipliers, and delay
elements (discrete-time) or integrators (continuous-time). In later chapters we return
to this theme in developing cascade and parallel structures with the aid of transform
methods. The inclusion of these representations provides the student not only with a
way in which to visualize these systems but also with a concrete example of the
implications (in terms of suggesting alternative and distinctly different structures for
implementation) of some of the mathematical properties of LTI systems. Finally,
Chapter 3 concludes with a brief discussion of singularity functions—steps, impulses,
doublets, and so forth—in the context of their role in the description and analysis of
continuous-time LTI systems. In particular, we stress the interpretation of these
signals in terms of how they are defined under convolution—for example, in terms of
the responses of LTI systems to these idealized signals.

Chapter 4 contains a thorough and self-contained development of Fourier analy-
sis for continuous-time signals and systems, while Chapter 5 deals in a parallel fashion
with the discrete-time case. We have included some historical information about the
development of Fourier analysis at the beginning of Chapters 4 and 5, and at several
points in their development to provide the student with a feel for the range of dis-
ciplines in which these tools have been used and to provide perspective on some of
the mathematics of Fourier analysis. We begin the technical discussions in both
chapters by emphasizing and illustrating the two fundamental reasons for the impor-
tant role Fourier analysis plays in the study of signals and systems: (1) extremely
broad classes of signals can be represented as weighted sums or integrals of complex
exponentials; and (2) the response of an LTI system to a complex exponential input is
simply the same exponential multiplied by a complex number characteristic of the sys-
tem. Following this, in each chapter we first develop the Fourier series representation
of periodic signals and then derive the Fourier transform representation of aperiodic
signals as the limit of the Fourier series for a signal whose period becomes arbitrarily
large. This perspective emphasizes the close relationship between Fourier series and
transforms, which we develop further in subsequent sections. In both chapters we have
included a discussion of the many important properties of Fourier transforms and
series, with special emphasis placed on the convolution and modulation properties.
These two specific properties, of course, form the basis for filtering, modulation, and
sampling, topics that are developed in detail in later chapters. The last two sections in
Chapters 4 and 5 deal with the use of transform methods to analyze LTI systems
characterized by differential and difference equations. To supplement these discussions
(and later treatments of Laplace and z-transforms) we have included an Appendix
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at the end of the book that contains a description of the method of partial fraction
cx pansion. We usc this method in several examples in Chapters 4 and 5 to illustrate
how the response of LTI systems described by differential and difference equations
can be calculated with relative ease. We also introduce the cascade and parallel-form
realizations of such systems and use this as a natural lead-in to an examination of the
basic building blocks for these systems—namely, first- and second-order systems.
Our treatment of Fourier analysis in these two chapters is characteristic of the
nature of the parallel treatment we have developed. Specifically, in our discussion in
Chapter 5, we are able to build on much of the insight developed in Chapter 4 for the
continuous-time case, and toward the end of Chapter 5, we emphasize the complete

duality in continuous-time and discrete-time Fourier representations. In addition,

we bring the special nature of each domain into sharper focus by contrasting the differ-
ences between continuous- and discrete-time Fourier analysis.

Chapters 6, 7, and 8 deal with the topics of filtering, modulation, and sampling,
respectively. The treatments of these subjects are intended not only to introduce the
student to some of the important uses of the techniques of Fourier analysis but also
to help reinforce the understanding of and intuition about frequency domain methods.
In Chapter 6 we present an introduction to filtering in both continuous-time and
discrete-time. Included in this chapter are a discussion of ideal frequency-selective
filters, examples of filters described by differential and difference equations, and an
introduction, through examples such as an automobile suspension system and the
class of Butterworth filters, to a number of the qualitative and quantitative issues and
tradeoffs that arise in filter design. Numerous other aspects of filtering are explored
in the problems at the end of the chapter.

Our treatment of modulation in Chapter 7 includes an in-depth discussion of
continuous-time sinusoidal amplitude modulation (AM), which begins with the most
straightforward application of the modulation property to describe the effect of
modulation in the frequency domain and to suggest how the original modulating
signal can be recovered. Following this, we develop a number of additional issues and
applications based on the modulation property such as: synchronous and asynchro-
nous demodulation, implementation of frequency-selective filters with variable center
frequencies, frequency-division multiplexing, and single-sideband modulation. Many
other examples and applications are described in the problems. Three additional
topics are covered in Chapter 7. The first of these is pulse-amplitude modulation and
time-division multiplexing, which forms a natural bridge to the topic of sampling in
Chapter 8. The second topic, discrete-time amplitude modulation, is readily developed
based on our previous treatment of the continuous-time case. A variety of other dis-
crete-time applications of modulation are developed in the problems. The third and
final topic, frequency modulation (FM), provides the reader with a look at a non-
linear modulation problem. Although the analysis of FM systems is not as straight-
forward as for the AM case, our introductory treatment indicates how frequency
domain methods can be used to gain a significant amount of insight into the charac-
teristics of FM signals and systems.

Our treatment of sampling in Chapter 8 is concerned primarily with the sampling
theorem and its implications. However, to place this subject in perspective we begin
by discussing the general concepts of representing a continuous-time signal in terms
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of its samples and the reconstruction of signals using interpolation. After having used
frequency domain methods to derive the sampling theorem, we use both the frequency
and time domains to provide intuition concerning the phenomenon of aliasing
resulting from undersampling. One of the very important uses of sampling is in the
discrete-time processing of continuous-time signals, a topic that we explore at some
length in this chapter. We conclude our discussion of continuous-time sampling with
the dual problem of sampling in the frequency domain. Following this, we turn to the
sampling of discrete-time signals. The basic result underlying diserete-time sampling
is developed in a manner that exactly parallels that used in continuous time, and the
application of this result to problems of decimation, interpolation, and transmodula-
tion are described. Again a variety of other applications, in both continuous- and
discrete-time, are addressed in the problems.

Chapters 9 and 10 treat the Laplace and z-transforms, respectively. For the most
part, we focus on the bilateral versions of these transforms, although we briefly discuss
unilateral transforms and their use in solving differential and difference equations
with nonzero initial conditions. Both chapters include discussions on: the close rela-
tionship between these transforms and Fourier transforms; the class of rational trans-
forms and the notion of poles and zeroes; the region of convergence of a Laplace or
z-transform and its relationship to properties of the signal with which it is associated;
inverse transforms using partial fraction expansion; the geometric evaluatio:. of system
functions and frequency responses from pole-zero plots; and basic transform prop-
erties. In addition, in each chapter we examine the properties and uses of system
functions for LTI systems. Included in these discussions are the determination of sys-
tem functions for systems characterized by differential and difference equations, and
the use of system function algebra for interconnections of LTI systems. Finally,
Chapter 10 uses the techniques of Laplace and z-transforms to discuss transformations
for mapping continuous-time systems with rational system functions into discrete-
time systems with rational system functions. Three important examples of such trans-
formations are described and their utility and properties are investigated.

The tools of Laplace and z-transforms form the basis for our examination of
linear feedback systems in Chapter 11. We begin in this chapter by describing a number
of the important uses and properties of feedback systems, including stabilizing unstable
systems, designing tracking systems, and reducing system sensitivity. In subsequent
sections we use the tools that we have developed in previous chapters to examine three
topics that are of importance for both continuous-time and discrete-time feedback
systems. These are root locus analysis, Nyquist plots and the Nyquist criterion, and
log magnitude/phase plots and the concepts of phase and gain margins for stable
feedback systems.

The subject of signals and systems is an extraordinarily rich one, and a variety
of approaches can be taken in designing an introductory course. We have written
this book in order to provide instructors with a great deal of flexibility in structuring
their presentations of the subject. To obtain this flexibility and to maximize the use-
fulness of this book for instructors, we have chosen to present thorough, in-depth
treatments of a cohesive set of topics that forms the core of most introductory courses
on signals and systems. In achieving this depth we have of necessity omitted the intro-
ductions to topics such as descriptions of random signals and state space models that
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are sometimes included in first courses on signals and systems. Traditionally, at many
schools, including M.LT., such topics are not included in introductory courses but
rather are developed in far more depth in courses explicitly devoted to their investiga-
tion. For example, thorough treatments of state space methods are usually carried out
in the more general context of multi-input/multi-output and time-varying systems,
and this generality is often best treated after a firm foundation is developed in the
topics in this book. However, whereas we have not included an introduction to state
space in the book, instructors of introductory courses can easily incorporate it into the
treatments of differential and difference equations in Chapters 2-5.

A typical one-semester course at the sophomore-junior level using this book
would cover Chapters 2, 3, 4, and 5 in reasonable depth (although various topics in
each chapter can be omitted at the discretion of the instructor) with selected topics
chosen from the remaining chapters. For example, one possibility is to present several
of the basic topics in Chapters 6, 7, and 8 together with a treatment of Laplace and
z-transforms and perhaps a brief introduction to the use of system function concepts
to analyze feedback systems. A variety of alternate formats are possible, including one
that incorporates an introduction to state space or one in which more focus is
placed on continuous-time systems (by deemphasizing Chapters 5 and 10 and the
discrete-time topics in Chapters 6, 7, 8, and 11). We have also found it useful to intro-
duce some of the applications described in Chapters 6, 7, and 8 during our development
of the basic material on Fourier analysis. This can be of great value in helping to
build the student’s intuition and appreciation for the subject at an earlier stage of the
course.

In addition to these course formats this book can be used as the basic text for a
thorough, two-semester sequence on linear systems. Alternatively, the portions of the
book not used in a first course on signals and systems, together with other sources
can form the basis for a senior elective course. For example, much of the material in
this book forms a direct bridge to the subject of digital signal processing as treated in
the book by Oppenheim and Schafer.t Consequently, a senior course can be con-
structed that uses the advanced material on discrete-time systems as a lead-in to a
course on digital signal processing. In addition to or in place of such a focus is one
that leads into state space methods for describing and analyzing linear systems.

As we developed the material that comprises this book, we have been fortunate
to have received assistance, suggestions, and support from numerous colleagues,
students, and friends. The ideas and perspectives that form the heart of this book
were formulated and developed over a period of ten years while teaching our M.LT.
course on signals and systems, and the many colleagues and students who taught the
course with us had a significant influence on the evolution of the course notes on which
this book is based. We also wish to thank Jon Delatizky and Thomas Slezak for their
help in generating many of the figure sketches, Hamid Nawab and Naveed Malik for
preparing the problem solutions that accompany the text, and Carey Bunks and David
Rossi for helping us to assemble the bibliography included at the end >f the book.
In addition the assistance of the many students who devoted a significant number of

tA. V. Oppenheim and R.W. Schafer, Digital Signal Processing (Englewood Cliffs, N.J.
Prentice-Hall, Inc., 1975).
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hours to the reading and checking of the galley and page proofs is gratefully
acknowledged.

We wish to thank M.L.T. for providing support and an invigorating environment
in which we could develop our ideas. In addition, some of the original course notes
and subsequent drafts of parts of this book were written by A.V.O. while holding a
chair provided to M.LT. by Cecil H. Green; by A.S.W. first at Imperial College of
Science and Technology under a Senior Visiting Fellowship from the United
Kingdom’s Science Research Council and subsequently at Le Laboratoire des Sig-
naux et Systémes, Gif-sur-Yvette, France, and L'Université de Paris-Sud; and by
1.T.Y. at the Technical University Delft, The Netherlands under fellowships from the
Cornelius Geldermanfonds and the Nederlandse organisatie voor zuiver-wetenschap-
pelijk onderzoek (Z.W.0.). We would like to express our thanks to Ms. Monica Edel-
man Dove, Ms. Fifa Monserrate, Ms. Nina Lyall, Ms. Margaret Flaherty, Ms.
Susanna Natti, and Ms. Helene George for typing various drafts of the book and to
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notes and the book. The encouragement, patience, technical support, and enthusiasm
provided by Prentice-Hall, and in particular by Hank Kennedy and Bernard Goodwin,
have been important in bringing this project to fruition.

SUPPLEMENTARY MATERIALS:

The following supplementary materials were developed to accompany Signals and Sys-
tems. Further information about them can be obtained by filling in and mailing the card
included at the back of this book. :

Videocourse—A set of 26 videocassettes closely integrated with the Signals and Sys-
tems text and including a large number of demonstrations is available. The videotapes
were produced by MIT in a professional studio on high quality video masters, and are
available in all standard videotape formats. A videocourse manual and workbook accom-

pany the tapes.

Workbook—A workbook with over 250 problems and solutions is available either for
use with the videocourse or separately as an independent study aid. The workbook

includes both recommended and optional problems.
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research directed at gaining an understanding of the human auditory system. Another

example is the development of an understanding and a characterization of the eco-
nomic system in a particular geographical area in order to be better able to predict
what its response will be to potential or unanticipated inputs, such as crop failures,
new oil discoveries, and so on.

In other contexts of signal and system analysis, rather than analyzing existing
systems, our interest may be focused on the problem of designing systems to process
signals in particular ways. Economic forecasting represents one very common example
of such a situation. We may, for example, have the history of an economic time series,
such as a set of stock market averages, and it would be clearly advantageous to be
able to predict the future behavior based on the past history of the signal. Many

systems, typically in the form of computer programs, have been developed and refined

to carry out detailed analysis of stock market averages and to carry out other kinds of

economic forecasting. Although most such signals are not totally predictable, it is an
interesting and important fact that from the past history of many of these signals,
their future behavior is somewhat predictable; in other words, they can at least be
approximately extrapolated.

A second very common set of applications is in the restoration of signals that

have been degraded in some way. One situation in which this often arises is in speech

Tommunication when a significant amount of background noise is present, For exam-
ple, when a pilot is communicating with an air traffic control tower, the communica-
tion can be degraded by the high level of backgreund noise in the cockpit. In this and
many similar cases, it is possible to design systems that will retain the desired signal, in
this case the pilot’s voice, and reject (at least approximately) the unwanted signal, i.e.
the noise. Another example in which it has been useful to design a system for restora-
tion of a degraded signal is in restoring old recordings. In acoustic recording a system
is used to produce a pattern of grooves on a record from an input signal that is the
recording artist’s voice. In the early days of acoustic recording a mechanical recording
horn was typically used and the resulting system introduced considerable distortion in
the result. Given a set of old recordings, it is of interest to restore these to a quality
that might be consistent with modern recording techniques. With the appropriate
design of a signal processing system, it is possible to significantly enhance old
recordings.

A third application in which it is of interest to design a system to process signals
in a certain way is the general area of image restoration and image enhancement, In
receiving images from deep space probes, the image is typically a degraded version of
the scene being photographed because of limitations on the imaging equipment,
possible atmospheric effects, and perhaps errors in signal transmission in returning the
images to earth. Consequently, images returned from space are routinely processed by
a system to compensate for some of these degradations. In addition, such images are
usually processed to enhance certain features, such as lines (corresponding, for exam-
ple, to river beds or faults) or regional boundaries in which there are sharp contrasts
in color or darkness. The development of systems to perform this processing then
becomes an issue of system design.

Another very important class of applications in which the concepts and tech-

niques of signal and system analysis arise are those in which we wish to modify the .
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characteristics of a given system, perhaps through the choice of specific input signals

or by combining the system with other systems. Illustrative of this kind of application

is the control of chemical plants, a general area typically referred to as process control.
In this class of applications, sensors might typically measure physical signals, such as
temperature, humidity, chemical ratios, and so on, and on the basis of these measure-
ment signals, a regulating system would generate control signals to regulate the
ongoing chemical process. A second example is related to the fact that some very high
performance aircraft represent inherently unstable physical systems, in other words,
their aerodynamic characteristics are such that in the absence of carefully designed
control signals, they would be unflyable. In both this case and in the previous example
of process control, an important concept, referred to as feedback, plays a major role,
and this concept is one of the important topics treated in this text.

The examples described above are only a few of an extraordinarily wide variety
of applications for the concepts of signals and systems. The importance of these con-
cepts stems not only from the diversity of phenomena and processes in which they
arise, but also from the collection of ideas, analytical techniques, and methodologies
that have been and are being developed and used to solve problems involving signals
and systems. The history of this development extends back over many centuries, and
although most of this work was motivated by specific problems, many of these ideas
have proven to be of central importance to problems in a far larger variety of applica-
tions than those for which they were originally intended. For example, the tools of
Fourier analysis, which form the basis for the frequency-domain analysis of signals
and systems, and which we will develop in some detail in this book, can be traced from
problems of astronomy studied by the ancient Babylonians to the development of
mathematical physics in the eighteenth and nineteenth centuries. More recently, these
concepts and techniques have been applied to problems ranging from the design of
AM and FM transmitters and receivers to the computer-aided restoration of images.
From work on problems such as these has emerged a framework and some extremely
powerful mathematical tools for the representation, analysis, and synthesis of signals
and systems. .

In some of the examples that we have mentioned, the signals vary continuously
in time, whereas in others, their evolution is described only at discrete points 1n time.

For example, in the restoration of old recordings we are concerned with audio signals
that vary continuously. On the other hand, the daily closing stock market average is
by its very nature a signal that evolves at discrete points in time (i.e., at the close of
each day). Rather than a curve as a function of a continuous variable, then, the closing
stock average is a sequence of numbers associated with the discrete time instants at
which it is specified. This distinction in the basic description of the evolution of signals
and of the systems that respond to or process these signals leads naturally to two par-
allel frameworks for signal and system analysis, one for phenomena and processes,
that are descrnibed in gonfinuous time and one for those that are described in discrete
time. The concepts and techniques associated both with continuous-time signals and
systems and with discrete-time signals and systems have a rich history and are concep-
tually closely related. Historically, however, because their applications have in the past
been sufficiently different, they have for the most part been studied and developed
somewhat separately. Continuous-time signals and systems have very strong roots in
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problems associated with physics and, in the more recent past, with electrical circuits

and communications. The techniques of discrete-time signals and systems have strong
Toots in numerical analysis, statistics, and time-series analysis associated with such
applications as the analysis of economic and demographic data. Over the past several
decades the disciplines of continuous-time and discrete-time signals and systems have
become increasingly entwined and the applications have become highly interrelated. A
strong motivation for this interrelationship has been the dramatic advances in technol-
ogy for the implementation of systems and for the generation of signals. Specifically,
the incredibly rapid development of high-speed digital computers, integrated circuits,
and sophisticated high-density device Tabrication techniques has made it increasingly
Fdvantageous (o consider processing continuous-time signals by representing them
by equally spaced time samples (i.e., by converting them to discrete-time signals). As
we develop in detail in Chapter 8, it is a remarkable fact that under relatively mild

restrictions a continuous-time signal can be represented tofally by such a set of

samples.
Because of the growing interrelationship between continuous-time signals and

systems and discrete-time signals and systems and because of the close relationship
among the concepts and techniques associated with each, we have chosen in this text
to develop the concepts of continuous-time and discrete-time signals and systems in

arallg]. Because many of are similar (but not identical), by treating them
in parallel, insight and intuition can be shared and both the similarities and differences
become better focused. Furthermore, as will be evident as we proceed through the
material, there are some concepts that are inherently easier to understand in one frame-
work than the other and, once understood, the insight is easily transferable.

As we have so far described them, the notions of signals and systems are ex-
tremely general concepts. At this level of generality, however, only the most sweeping
Statements can be made about the nature of signals and systems, and their properties
can be discussed only in the most elementary terms. On the other hand, an important
and fundamental notion in dealing with signals and systems is that by carefully choos-

ing subclasses of each with particular properties that can then be exploited, we can

analyze and characterize these signals and systems in great depth. The principal focus

Th this book is a particular class of systems which we will refer to as linear time-invari-

ant systems, The properties of linearity and time invariance that define this class lead
to a remarkable set of concepts and techniques which are not only of major practical
importance, but also intellectually satisfying.

~Xs we have indicated in this introduction, signal and system analysis has a long
history out of which have emerged some basic techniques and fundamental principles
which have extremely broad areas of application. Also, as exemplified by the continu-
ing development of integrated-circuit technology and its applications, signal and sys-
tem analysis is constantly evolving and developing in response to new problems,
techniques, and opportunities. We fully expect this development to accelerate in pace
as improved technology makes possible the implementation of increasingly complex
systems and signal processing techniques. In the future we will see the tools and con-
cepts of signal and system analysis applied to an expanding scope of applications.
In some of these areas the techniques of signal and system analysis are proving tu have
direct and immediate application, whereas in other fields that extend far beyond those

4 Introduction Chap. 1

Clw v

A -~ i ! ‘ =
I

that are classically considered to be within the domain of science and engineering, it is the

set of ideas embodied in these techniques more than the specific techniques themselves
that are proving to be of value in approaching and analyzing comblex problems. For
these reasons, we feel that the topic of signal and system analysis represents a body of
knowledge that is of essential concern to the scientist and engineer. We have chosen
the set of topics presented in this book, the organization of the presentation, and the
problems in each chapter in a way that we feel will most help the reader to obtain a
solid foundation in the fundamentals of signal and system analysis; to gain an under-
standing of some of the very important and basic applications of these fundamentals
to problems in filtering, modulation, sampling, and feedback system analysis; and to
develop some perspective into an extremely powerful approach to formulating and
solving problems as well as some appreciation of the wide variety of actual and
potential applications of this approach.
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Figure 2.1 Example of a recording of speech. [Adapted from Applications of
Digital Signal Processing, A.V. Oppenheim, ed. (Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1978), p. 121.] The signal represents acoustic pressure varia-
lions as a function of time for the spoken words “should we chase.” The top
line of the figure corresponds to the word “should,” the second line to the word
“we,” and the last two to the word “chase” (we have indicated the approximate
beginnings and endings of each successive sound in each word).

Signals are represented mathematically as functions of one or more independent
variables, For example, a speech signal would be represented mathematically by
acoustic pressure as a function of time, and a picture is represented as a brightness
function of two spatial variables. In this book we focus attention on signals involving
a single independent variable. For convenience we will generally refer to the indepen-
Jent vanable as time, although it may not in fact represent time in specific applications.
For example, signals representing variations with depth of physical quantities such as
density, porosity, and electrical resistivity are used in geophysics to study the structure
of the earth. Also, knowledge of the variations of air pressure, temperature, and wind
speed with altitude are extremely important in meteorological investigations. Figure
2.3 depicts a typical example of annual average vertical wind profile as a function of
height. The measured variations of wind speed with height are used in examining

8 Signals and Systems Chap. 2

Figure 2.2 A monochromatic picture.

Speed (knots)
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Height {feet)

Figure 2.3 Typical annual average vertical wind profile. (Adapteu from
Crawford and Hudson, National Severe Storms Laboratory Report, ESSA
ERLTM-NSSL 48, August 1970.)

weather patterns as well as wind conditions that may affect an aircraft during final
approach and landing.

In Chapter 1 we indicated that there are two basic types of signals, continuous-
time signals and discrete-time signals. In the case of continuous-time signals the
independent variable is continuous, and thus these signals are defined for a continuum
of values of the independent variable. On the other hand, discrete-time signals are
only defined at discrete times, and consequently for these signals the independent
variable takes on only a discrete set of values, A speech signal as a function of time
and atmospheric pressure as a function of altitude are examples of continuous-time

Sec. 2.1 Signals 9



signals. The weekly Dow Jones stock market index is an example of a discrete-time
signal and is illustrated in Figure 2.4. Other examples of discrete-time signals can be
found in demographic studies of population in which various attributes, such as
average income, crime rate, or pounds of fish caught, are tabulated versus such
discrete variables as years of schooling, total population, or type of fishing vessel,
respectively. In Figure 2.5 we have illustrated another discrete-time signal, which in
this case is an example of the type of species-abundance relation used in ecological
studies. Here the independent variable is the number of individuals corresponding to
any particular species, and the dependent variable is the number of species in the
ecological community under investigation that have a particular number of individuals.

400
350 |- ee??]
4
3005091171 1 Teee?] Te11 1
250} P <
200 |
150§
100 |

50 -

0

Jan. 5, 1929 Jan. 4, 1930

Figure 2.4 An example of a discrete-time signal: the weekly Dow-Jones stock
market index from January 5, 1929 to January 4, 1930.

80|
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l;.‘ a0 |
2 |
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2 2
. tI1]131n,ngt-ct”r#rm‘,,,-L
0 5 10 15 20 25 30 35

Number of individuals per species

Figure 2.5 Signal representing the species-abundance relation of an ecological
community. [Adapted from E. C. Pielou, An Introduction to Mathematical Ecol-

ogy (New York: Wiley, 1969).]
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{a}

x{n]

Figure 2.6 Graphical representations of (a) continuous-time and (b) discrete-
time signals.

The nature of the signal shown in Figure 2.5 is quite typical in that th:ze are several
abundant species and many rare ones with only a few representatives.

To distinguish between continuous-time and discrete-time signals we will use the
symbol ¢ to denote the continuous-time variable and » for the discrete-time variable.
In addition, for continuous-time signals we will enclose the independent variable in
parentheses { - ), whereas for discrete-time signals we will use brazkets [ - ] to enclose
the independent variable. We will also have frequent occasions when it will be uselul
to represent signals graphically. Itlustrations of a continuous-time signal x{¢) and of a
discrete-time signal x[s] are shown in Figure 2.6. It is important to note that the dis-
crete-time signal x[n] is defined only for integer values of the independent variable.
Our choice of graphical representation for x[n] emphasizes this fact, and for further
emphasis we will on occasion refer to x[n] as a discrete-time sequence.

A discrete-time signal x[n] may represent a phenomenon for which the indepen-
dent variable is inherently discrete. Signals such as species-abundance relations or
demographic data such as those mentioned previously are examples of this. On the
other hand, a discrete-time signal x[n] may represent successive samples of an
underlying phenomenon for which the independent variable is continuous. For
example, the processing of speech on a digital computer requires the use of a discrete-
time sequence representing the values of the continuous-time speech signal at discrete
points in time, Also, pictures in newspapers, or in this book {or that matter, actually
consist of a very fine grid of points, and each of these points represents a sample of

Sec. 2.1 Signals 11
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the brightness of the corresponding point in the original image. No matter what the
origin of the data, however, the signal x[n] is defined only for integer values of n. It
makes no more sense to refer to the 3Jth sample of a digital speech signal than it does
to refer to the number of species having 4} representatives.

Throughout most of this book we will treat discrete-time signals and continuous-
time signals separately but in parallel so that we can draw on insights developed in one
setling to aid our understanding of the other. In Chapter 8 we return to the question

of sampling, and in that context we will bring continuous-time and discrete-time ’

concepts together in order to examine the relationship between a continuous-time
signal and a discrete-time signal obtained from it by sampling.

.2 TRANSFORMATIONS OF THE INDEPENDENT VARIABLE

In many situations it is important to consider signals related by a modification of the
independent variable. For example, as illustrated in Figure 2.7, the signal x[—n] is
obtained from the signal x[n] by a reflection about n = 0 (i.e. by reversing the signal).
Similarly, as depicted in Figure 2.8, x(—1) is obtained from the signal x(r) by a reflec-
tion about t = 0. Thus, if x(¢) represents an audio signal on a tape recorder, then
x(—1) is the same tape recording played backward. As a second example, in Figure
2.9 we have illustrated three signals, x(¢), x(2r), and x(¢/2), that are related by linear
scale changes in the independent variable. If we again think of the example of x(¢) as
a tape recording, then x(2t) is that recording played at twice the speed, and x(¢/2) is
the recording played at half-speed.

x{n]

B mmr,x J]
i

(a)

x[-n)

e

{b)

Figure 2.7 (a) A discrete-time signal x{a]; (b) its reflection, x{—n], about
n=0,
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Figure 2.8 (a) A continuous-time signal x(t); (b) its reflection, x(—1), about

\
N4 0
{b}
t=0.
x(t)
t
x(2t)
x(1/2)

Figure 2.9 Continuous-time signals

t related by time scaling.
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A third example of a transformation of the independent variable is illustrated in
Figure 2.10, in which we have two signals x{n]} and x[n — n,] that are identical in shape
but that are displaced or shifted relative to each other. Similarly, x(¢ — t,) represents
a time-shifted version of x(¢). Signals that are related in this fashion arise in applica-
tions such as sonar, seismic signal processing, and radar, in which several receivers
at different locations observe a signal being transmitted through a medium (water,
rock, air, etc.). In this case the difference in propagation time from the point of origin
of the transmitted signal to any two reccivers resultsina time shift between the signals
measured by the two receivers.

x[n)

ﬂﬂ A

0 Q|1 ;

x[n—ngl

L1 "
0 qlulp n

Mo

Figure 2.10 Discrete-time signals related by a time shift.

In addition to their use in representing physical phenomena such as the time shift
in a sonar signal and the reversal of an audio tape, transformations of the independent
variable are extremely useful in examining some of the important properties that
signals may possess. In the remainder of this section we discuss these properties, and
later in this chapter and in Chapter 3 we use transformations of the independent
variable as we analyze the properties of systems.

A signal x(1) or x[n] is referred to as an even signal if it is identical with its
reflection about the origin, that is, in continuous time if

x(—1) = x(1) (2.1a)
or in discrete time if
x[—n) = x[n] (2.1b)
A signal is referred to as odd if
x(—1) = —x(8) (2.2a)
x{—n) = —x[n] (2.2b)
14 Signals and Systems Chap. 2
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Note that an odd signal must necessarily be O at t = 0 or n = 0. Examples of even and

odd continuous-time signals are shown in Figure 2.11.

oY
(

(a)

IM(‘“(

Figure 2.11 (a) An even continuous-
time sighal; (b) an odd continuous-time
(b} signal.

An important fact is that any signal can be broken into a sum of two signals, one
of which is even and one of which is odd: To see this, consider the signal

gv(x()} = 4x(0) + x(—0)] @3)
which is referred to as the even part of x(t). Similarly, the odd part of x(t) is given by
od{x()} = §{x(1) — x(—1) 24)

It is a simple exercise to check that the ever. part is in fact even, that the odd part is
odd, and that x(¢) is the sum of the two. Exactly analogous definitions hold in the dis-
crete-time case, and an example of the even-odd decomposition of a discrete-time
signal is given in Figure 2.12.

Throughout our discussion of signals and systems we will have occasion to refer
to periodic signals, both in continuous time and in discrete time. A periodic continucus-
time signal x(¢) has the property that there is a positive value of T for which

x(t)=x(t+T) foralls (2.5)

In this case we say that x(r) is periodic with period T. An excmple of such a signal
is given in Figure 2.13. From the figure or from eq. (2.5) we can readily deduce that
if x(f) is periodic with period T, then x(¢) = x(t + mT ) for al} ¢ and for any integer
m. Thus, x(¢) is also periodic with pe iod 27, 3T, 4T, ... . The fundamental period T,
of x(f) is the smallest positive value of T for which eq. (2.5) holds. Note that this
definition of the fundamental period works except if x(¢) is 2 constant. In this case
the fundamental period is undefined since x(¢) is periodic for any choice of T (so
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Figure 2.12  The even-odd decomposition of a discrete-time signal,
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Figure 2.13 Continuous-time periodic signal.

there is no smallest positive value). Finally, a signal x(¢) that is not periodic will be |

referred to as an aperiodic signal.
Periodic signals are defined analogously in discrete time. Specifically, a discrete-

time signal x[n] is periodic with period N, where N is a positive integer, if

x[n} = x[n + N} for all n (2.6)
If eq. (2.6) holds, then x{n] is also periodic with period 2N, 3N, ..., and the funda-
mental period N, is the smallest positive value of N for which eq. (2.6) holds.
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2.3 BASIC CONTINUOUS-TIME SIGNALS

In this section we introduce several particularly important continuous-time signals.
Not only do these signals occur frequently in nature, but they also serve as basic
building blocks from which we can construct many other signals. In this and sub-
sequent chapters we will find that constructing signals in this way will allow us to
examine and understand more deeply the properties of both signals and systems.

2.3.1 Continuous-Time Complex
Exponential and Sinusoidal Signals

The continuous-time complex exponential signal is of the form
x(t) = Ce* 2.7

where C and a are, in general, complex numbers. Depending upon the values of these
parameters, the complex exponential can take on several different characteristics. As
illustrated in Figure 2.14, if C and a are real [in which case x(t) is called a real expo-
nential), there are basically two types of behavior. If a is positive, then as ¢ increases
x(¢) is a growing exponential, a form that is used in describing a wide variety of phe-

x{t}

A0

(a)

A <L0o

x{t)

C

\\——_

t

{b}

Figure 2.14 Continuous-time real exponential x(t) = Ce¥: (a) a> 0;
(b)y a<O.
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nomena, including chain reactions in atomic explosions or complex chemical reactions
and the uninhibited growth of populations such as in bacterial cultures. If a is nega-
tive, then x(t) is a decaying exponential. Such signals also find wide use in describing
radioactive decay, the responses of RC circuits and damped mechanical systems, and
many other physical processes. Finally, we note that for a = 0, x(t) is constant.

A second important class of complex exponentials is obtained by constraining a
to be purely imaginary. Specifically, consider

x(f) = el (2.8)
An important property of this signal is that it is periodic. To verify this, we recall
from eq. (2.5) that x(¢) will be periodic with period T'if
elost = plowtt+T) (2.9)
or, since
elont+T) — plantplant
we must have that
el = | ’ (2.10)
If w, = 90, then x(t) = 1, which is periodic for any value of T. If @y # 0, then the
fundamental period T, of x(¢), that is, the smallest positive value of T for which eq.
(2.10) holds, is given by
_
N
Thus, the signals e’ and e~/** both have the same fundamental period.
A signal closely related to the periodic complex exponential is the sinusoidal
signal

@.11)

x(t) = A cos (wyt + @) (2.12)

as shown in Figure 2.15. With the units of t as seconds, the units of ¢ and w, are radians
and radians per second, respectively. It is also common to write w, = 2r f,, where f;
has the units of cycles per second or Hertz (Hz). The sinusoidal signal is also periodic
with fundamental period T, given by eq. (2.11). Sinusoidal and periodic complex

x(t) = A cos {wyt + ¢}

2n
T, = <%
° "

Acoso/

-

Figure 2.15 Continuous-time sinusoidal signal.
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exponential signals are also used to describe the characteristics of many physical
processes. The response of an LC circuit is sinusoidal, as is the simple harmonic motion
of a mechanical system consisting of a mass connected by a spring to a stationary
support. The acoustic pressure variations corresponding to a single musical note are
also sinusoidal.

By using Euler’s relation,t the complex exponential in eq. (2.8) can be written
in terms of sinusoidal signals with the same fundamental period;

el = cos w,t + j sin w,t To(2.13)

Similarly, the sinusoidal signal of eq. (2.12) can be written in terms of periodic complex
exponentials, again with the same fundamental period:

Acos(w,f + ¢) = -g—e/‘e/""‘ + %e"*e"‘”" Lo (219

Note that the two exponentials in eq. (2.14) have complex amplitudes, Alternatively,
we can express a sinusoid in terms of the complex exponential signal as

A cos (wof + @) = A Refe 9 (2.15)

where if ¢ is a complex number, Gie{c} denotes its real part. We will also use the
notation gm{c} for the imaginary part of c.

From eq. (2.11) we sce that the fundamental period T, of a continuous-time
sinusoidal signal or a periodic complex exponential is inversely proportional to{cw, |,
which we will refer to as the fundamental frequency. From Figure 2.16 we see graph-
ically what this means. If we decrease thezmagnitude of w,, we slow down the rate of
oscillation and therefore increase the period. Exactly the oppcsite effects occur if we
increase the magnitude of w,. Consider now the case w, = 0. In this case, as we
mentioned earlier, x(¢) is constant and therefore is periodic “vith period T for any
positive value of T Thus, the fundamental period of a constant signal is undefined.
On the other hand, there is no ambiguity in d=fining the fundamental frequency of 2
constant signal to be zero. That is, a constant signal has a zero rate of oscillation.

Periodic complex exponentials will play a central role in a substantial part of our
treatment of signals and systems, On several occasions we will fiad it useful to consider
the notion of harmonically related complex exponentials, that is, sets of periodic
exponentials with fundamental frequencies that are all multipies of a single positive
frequency w,:

(1) = etk k=041, +2,... (2.16)

For k =0, ¢,(¢) is a constant, while for any other value of k, ¢,(r) is periodic with
fundamental period 2n/( k |w,) or fundamental frequency | k]e,. Since a signal that
is periodic with period 7 is also periodic with period mT for any positive integer m,
we see that all of the ¢,(r) have a common period of 2n/w,. Our use of the term
“harmonic” is c:«isistent with its use in music, where it refers to tones resulting from
variations in acoustic pressure at frequencies which are harmonically telated.

tEuler’s relation and other basic ideas related to the manipulation of complex numbers and
exponentials are reviewed in the first few problems at the end of the chapter.,
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Figure 2.16 Relationship between the fundamental frequency and period for
continuous-time sinusoidal signals; here @, > w2 > w), which implies that
Ty < Ty <Tsy
The most general case of a complex exponential can be expressed and interpreted
in terms of the two cases we have examined so far: the real exponential and the periodic
complex exponential. Specifically, consider a complex exponential Ce®, where C is
expressed in polar form and a in rectangular form. That is,

C=|Cle”

20 Signals and Systems Chap. 2

a=r -+ jw,
Then
Ce* == |Cle/ae(r+}m)t —_ | Cl pffellant+8) (2173)

Using Euler’s relation we can expand this further as
Ce* = |Cle" cos (ot + 8) + j| C|e sin (wyt -+ )

=|Cle" cos (wot + 0) + j|C|e cos (wyt + § — Z (2.17b)
2

Thus, for r = 0 the real and imaginary parts of a complex exponential are sinusoidal.
For r > 0 they correspond to sinusoidal signals multiplied by a growing exponential,
and for r < 0 they correspond to sinusoidal signals multiplied by a decaying expo-
nential. These two cases are shown in Figure 2.17. The dashed lines in Figure 2.17
correspond to the functions 4|C|e”. From eq. (2.17a) we see that|C|e* is the
magnitude of the complex exponential. Thus, the dashed curves act as an envelope
for the oscillatory curve in Figure 2.17 in that the peaks of the oscillations just reach
these curves, and in this way the envelope provides us with a convenient way in which
to visualize the general trend in the amplitude of the oscillations. Sinusoidal signals
multiplied by decaying exponentials are commonly referred to as damped sinusoids.
Examples of such signals arise in the response of RLC circuits and in mechanical
systems containing both damping and restoring forces, such as automotive suspension

systems,
———r(""?\———,\"/\ /\ /\
——_&(_&V‘\v \/ \/ t
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Figure 2,17 (a) Growing sinusoidal signal x(¢) = Ce:* cos (wot + 6), r > 9;
(b) decaying sinusoid x(t) = Ce cos (wot + 8), r < 0.

Sec. 23 Basic Continuous-Time Signals 21




[ SRS Cowln L Sy - o SIS
2.3.2 The Continuous-Time Unit Step
and Unit Impulse Functions

Another basic continuous-time signal is the unit step function

. 0, t <0
u(t) = i (2.18)
1, t>0
which is shown in Figure 2.18. Note that it is discontinuous at t = 0. As with the
ult)
1
Figure 2.18 Continuous-time unit step
0 1 function.

complex exponential, the unit step function will be very important in our examination
of the properties of systems. Another signal that we will find to be quite useful is the
continuous-time wunit impulse function &(t), which is related to the unit step by the
equation

u(t) = j 8(x) dt (2.19)
That is, u(t) is the running integral of the unit impulse function. This suggests that
_ du(n) '
() = o (2.20)

There is obviously some formal difficuity with this as a definition of the unit impulse
function since u(r) is discontinuous at 1 = 0 and consequently is formally not differ-
cntiable. We can, however, interpret eq. (2.20) by considering u(¢) as the limit of a
continuous function. Thus, let us define uA(r) as indicated in Figure 2.19, so that u(r)
equals the limit of u,(f) as A — 0, and let us define J,(¢) as

d,(1) = di;;t@ .20

as shown in Figure 2.20.
We observe that d,(¢) has unity area for any value of A and is zero outside the
interval 0 < 1 < A. As A — 0, §,(¢) becomes narrower and higher, as it maintains

u, {t)

5, (1)
1 1
a
t
0 A t 0 A t
Figure 2.19 Continuous approximation 1o Figure 2.20 Derivative of na(t).
the unit step.
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its unit area, Its limiting form,
i) = Lmz a.(1) (2.22)

will be depicted as shown in Figure 2.21. More generally, a scaled impulse k8(f) will
have an area k and thus

[ Ko@) de = kutr)
A scaled impulse is shown in Figure 2.22. Although the “value” at ¢ = 0 is infinite,

the height of the arrow used to depict the scaled impulse will be chosen to be represen-
tative of its area.

8(t} ké{t)

0 t 0 t

Figure 2.21 Unit impulse, Figure 2,22 Scaled impulse.

The graphical interpretation of the running integral of eq. (2.19) is illustrated
in Figure 2.23. Since the area of the continuous-time unit impulse é(z) is concentrated
at v = 0, we see that the running integral is 0 for t < O and 1 for r > 0. Also, we note
that the relationship in eq. (2.19) between the continuous-time unit step and impulse
can be rewritten in a different form by changing the variable of integration from 1 to

=17,

u(ry = [ 8(e) de = fa(: — 6)(—do)

Interval of integration

&(r}

- e ——

(a)

Interval of integration

[N SO

(b}

Figure 2.23 Running integral given in ¢q. (2.19): (a) t < 0; (b} ¢+ > 0.
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or, equivalently,
u(t) = j: 5(t — o) do (2.23)

The interpretation of this form of the relationship between «(r) and () is given
in Figure 2.24. Since in this case the area of §(+ — o) is concentrated at the point
o =1, we again see that the integral in eq. (2.23) is O for t < 0 and | for ¢t > 0. This
type of graphical interpretation of the behavior of the unit impulse under integration
will be extremely useful in Chapter 3.

interval of integration
A

5{t-o) _

{a)

Interval of integration
A

Figure 2.24 Relationship given in eq.
(b} (223): (@)t <0;(b)r > 0.

Although the preceding discussion of the unit impulse is somewhat informal, it
is adequate for our present purposes and does provide us with some important intuition
into the behavior of this signal. For example, it will be important on occasion to
consider the product of an impulse and a more well-behaved continuous-time function.
The interpretation of this quantity is most readily developed using the definition of
(1) according to eq. (2.22). Thus, let us consider x, (1) given by )

Xl(l) = x(1) 5(\(’)
In Figure 2.25(a) we have depicted the two time functions x(¢) and 8,(¢), and in Figure
2.25(b) we see an enlarged view of the nonzero portion of their product. By construc-

tion, x,(r) is zero outside the interval 0 < ¢ < A. For A sufficiently small so that x(f)
is approximately constant over this interval,

x(1) 84(0) = x(0) 8.(1)
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5, (t)
x(t}
0A t
(a)
8, (t)
x({0) =~

0 A t
b ‘

Figure 2.25 The product x(r)da(t): (a) graphs of both functiors; (b) enlarged
view of the nonzero portion of their product.

Since 8(¢) is the limit as A — 0 of §,(¢), it follows that
x(1) 8(t) = x(0) 6(t) (2.24)

By the same argument we have an analogous expression for an impulse concentrated
at an arbitrary point, say, t,. That is, ’

x(1)o(t — 1,) = X(’d)a(’ -~ 1)

In Chapter 3 we provide another interpretation of the unit impulse using some
of the concepts that we will develop for our study of systems. The interp-:tation of §(¢)
that we have given in the present section, combined with this later discussion, will
provide us with the insight that we require in order to use the impulse in our study of
signals and systems.t

1The unit impulse and other related functions (which are often collectively referred to as
singularity functions) have been thoroughly studied in the field of fnathematics under the alternative
names of generalized functions and the theory of distributions, For a discussion of this subject see the
book Distribution Theory and Transform Analysis, by A. H, Zemanian (New York: McGraw-Hill
Book Company, 1965) or the more advanced text Fourier Analysis and Generalized Functions, by
M. J. Lighthill (New York: Cambridge University Press, 1958). For brief introductions to the subject,
see The Fourier Integral and Its Applications, by A. Papoulis (New York: McGraw-Hill Book Com-
pany, 1962), or Linear Systems . nalysis, by C. L. Liu and J. W. S, Liu (New York: McGraw-Hill
Book Company, 1975). Our discussion of singularity functions in Sectior 3.7 is closely related in
spirit to the mathematical theory described in these texts and thus provides an jnformal introduction
to concepts that underlie this topic in mathematics as well as a discussion of the basic properties of
these functions that we will use in our treatment of signals and systems,
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4 BASIC DISéRETE-TIME SIGNALS

For the discrete-time case, there are also a number of basic signals that play an impor-
tant role in the analysis of signals and systems. These signals are direct counterparts
of the continuous-time signals described in Section 2.3, and, as we will see, many of
the characteristics of basic discrete-time signals are directly analogous to properties
of basic continuous-time signals. There are, however, several important differences in
discrete time, and we will point these out as we examine the properties of these signals.

2.4.1 The Discrete-Time Unit Step
and Unit Impulse Sequences

The counterpart of the continuous-time step function is the discrete-time unit step, ‘

denoted by u[n] and defined by
0, n<0
=1 aso0

The unit step sequence is shown in Figure 2.26. As we discussed in Section 2.3, a second

(2.25)

uln)

0 n

Figure 2.26 Unit step sequence.

very important continuous-time signal is the unit impulse. In discrete time we define

the unit impulse (or unit sample) as
0, n=x0
ofn) = . (2.26)
1, n=20

which is shown in Figure 2.27. Throughout the book we will refer to 8[n] interchange-
ably as the unit sample or unit impulse. Note that unlike its continuous-time counter-
part, there are no analytical difficulties in defining dfn].

&{n)
———&0—0—0—0—0—&:—1—0%0——-
0 n
Figure 2.27 Unit sample (impulse).
The discrete-time unit sample possesses many properties that closely parajlel

the characteristics of the continuous-time unit impulse. For example, since d[n] is
nongzero (and equal to 1) only for n = 0, it is immediately seen that

x[n] é[n] = x[0] d[n] 2.27)
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which is the discrete-time counterpart of eq. (2.24). In addition, while the continuous-
time impulse is formally the first derivative of the continuous-time unit step, the
discrete-time unit impulse is the first difference of the discrete-time step

o[} = uln] — ufn — 1] (2.28)

Similarly, while the continuous-time unit step is the running integral of &(¢), the
discrete-time unit step is the running sum of the unit sample. That is,

ufn) = ?";_ 5[] (2.29)

SR e

e

which is illustrated in Figure 2.28. Since the only nonzero value of the unit sample is

Interval of summation

__—&—-——ﬁ
_________ 1 51m]
|
i
|
n 0 m
(a)

[} n m
{b)

Figure 2.28 Running sum of eq. (2.29): (a)yn < 0; (b) n > 0.

at the point at which its argument is zero, we see from the figure that the running sum
ineq. (2.29)is 0 forn < Oand | forn > 0. Also, in analogy with the alternative form
of eq. (2.23) for the relationship between the continuous-time unit step and impulse,
the discrete-time unit step can also be written in terms of the unit sample as

uln) = :20 oln — (2.30)

which can be obtained from eq. (2.29) by changing the variable of summation from m
to k = n — m. Equation (2.30) is illustrated in Figure 2.29, which is the discrete-time

counterpart of Figure 2.24.

2.4.2 Discrete-Time Complex
Exponential and Sinusoidal Signals

As in continuous time, an important signal in discrete time is the complex exponential
signal or sequence, defined by
x[n] = Ca” (2.31)
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Interval of summation
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!

|

!

0 n k
[b)

Figure 2.29 Relationship given in eq. (2.30): (@) n < 0; (b) n > 0.

where C and o are in general complex numbers. This could alternatively be exprcsscd
in the form
x[n] = Ce*» (2.32)
where
o= e’

Although the discrete-time complex exponential sequence in the form of eq. (2.32)
is more analogous to the form of the continuous-time complex exponential, it is

often more convenient to express the discrete-time complex exponential sequence ih*

the form of eq. (2.31).

If C and « are real, we can have one of several types of behavior, as illustrated
in Figure 2.30. Basically if |a| > I, the signal grows exponentially with n, while if
je| < 1, we have a decaying exponential. Furthermore, if « is positive, all the values
of Ca~ are of the same sign, but if « is negative, then the sign of x[n] alternates.
Note also that if @ = 1, then x[n] is a constant, whereas if &« = —1, x[n] alternates
in value between +C and —C. Real discrete-time exponentials are often used to
describe population growth as a function of generation and return on investment as a
function of day, month, or quarter.

Another important complex exponential is obtained by using the form given in
eq. (2.32) and by constraining f to be purely imaginary. Specifically, consider

x[n) = el (2.33)
As in the continuous-time case, this signal is closely related to the sinusoidal signal
xn] = Acos (Qyn + @) (2.34)

If we take n to be dimensionless, then both Q, and ¢ have units of radians. Three
examples of sinusoidal sequences are shown in Figure 2.31. As before, Euler’s relation
allows us to relate complex exponentials and sinusoids:
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x[n]
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(d)

Figure 230 x[n) = Car: (@) a>1; (b) 0 <a <1 ) -1 <a<0;
@ a<—1I.
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/™M = cos Qon + j sin Qun (2.35)
x{n} = cos (27n/12) and
A cos (Qun + ¢) = _,21_ elelnon | % e tem10mn (2.36)

Similarly, a general complex exponential can be written and interpreted in terms of
real exponentials and sinusoidal signals. Specifically, if we write C and « in polar form

C=]|C|e”
o = Iale/no
then
Car = {Clla]" cos (Qen + 8) + j|C||a|" sin (Qen + 8) 2.37)

Thus for |a| = |, the real and imaginary parts of a complex exponential sequence are
sinusoidal. For {a| < 1, they correspond to sinusoidal sequences multiplied by a
decaying exponential, and for |« | > 1, they correspond to sinusoidal sequences mul-
tiplied by a growing exponential. Examples of these signals are depicted in Figure

x[n] = cos (8an/31} 2.32,
//
/7
. . . -~
e ///
I 5] 1 t I ] YTy -I
1 ) 3 1 n - -.T?TTTT?. , i
Y X LA 7 ’ n
(a) \\\
(b} N o
~N \\
\\ AN
~
» & . \\\
x[n] = cos (n/B) S~

——

\*11” | l“n” |

Figure 2.32 (a) Growing djscrete-time sinusoidal signal; (b) decaying discrete-time sinusoid.
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Figure 231 Discrete-time sinusoidal signals. 2.4.3 Periodicity Properties of Discrete-Time Complex Exponentials

Let us now continue our examination of the signal e/~ Recal: first the following two
properties of its continuous-time counterpart e’=: (1) the larger the magnitude of w,,
the higher the rate of oscillation in the signdl; and (2) e/> is pzriodic for any value of
,. In this sect.nn we describe the discrete-time versions of both of these properties,
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and as we will see, there are definite differences between each of these and its con-

tinuous-time counterpart.

The fact that the discrete-time version of the first property is different from the
continuous-time property is a direct consequence of another extremely important
distinction between discrete-time and continuous-time complex exponentials. To see
what this difference is, consider the complex exponential with frequency (Q, + 2x):

)OI — o I2xnpf0en — o J6en (2.38)

From eq. (2.38) we see that the exponential at frequency (Q, -+ 2x) is the same as that
at frequency Q,. Thus, we have a very different situation from the continuous-time
case, in which the signals e/ are all distinct for distinct values of @,. In discrete time,
these signals are not distinct, as the signal with frequency Q, is identical to the signals
with frequencies (Q, 4 27), (Q, & 4x), and so on. Therefore, in considering discrete-
time exponentials, we need only consider an interval of length 2z in which to choose
Q,. Although, according to eq. (2.38), any 2= interval will do, on most occasions we
will use the interval 0 < Q, < 2= or the interval —n < Q, < 7. ‘

Because of the periodicity implied by eq. (2.38), the signal e’%" does not have a
continually increasing rate of oscillation as Q, is increased in magnitude. Rather,
as we increase Q, from 0, we obtain signals with increasing rates of oscillation until
we reach Q, = n. Then, however, as we continue to increase Q,, we decrease the
rate of oscillation until we reach Q, = 2z, which is the same as Q, = 0. We have
illustrated this point in Figure 2.33. Therefore, the low-frequency (that is, slowly
varying) discrete-time exponentials have values of Q, near 0, 2%, or any other even
multiple of 7, while the high frequencies (corresponding to rapid variations) are located
near Q, = 4z and other odd multiples of =.

The second property we wish to consider concerns the periodicity of the discrete-
time complex exponential. In order for the signal e/ to be periodic with period
N > 0 we must have that

e /0o +N) = pi0en (2.39)
or, equivalently,
/MmN = | (2.40)

For eq. (2.40) to hold, Q,¥ must be a multiple of 2x. That is, there must be an
integer m so that

QN = 2tm (2.41)
or, equivalently,
Q _m
=4 (2.42)

According to eq. (2.42), the signal /™" is not periodic for arbitrary values of Q,.
It is periodic only if Q,/2x is a rational number, as in eq. (2.42). Clearly, these same
observations also hold for discrete-time sinusoidal signals. For example, the sequence
in Figure 2.31(a) is periodic with period 12, the signal in Figure 2.31(b) is periodic
with period 31, and the signal in Figure 2.31(c) is not periodic.

Using the calculations that we have just made, we can now examine the funda-
mentaj period and frequency of discrete-time complex exponentials, where we define
the fundamental frequency of a discrete-time periodic signal as we did in continuous
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x{n] = cos (#n/d)
ie)

il

I

xln} = cos (Ira/2)

x{n} * cos m

uin} =cos lvn/2t

[

T

I””
Il

Figure 2.33 Discrete-time sinusoidal sequences for several different frequencies.
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time. That s, if x[n] is periodic with fundamental period N, its fundamental frequency

is 2n/N. Consider, then, a periodic complex exponential x[n] = e/ with Q, #0.
As we have just seen, Q, must satisfy eq. (2.42) for some pair of integers m and N, with
N > 0. InProblem 2.17 it is shown that if Q, 5= 0, and if N and m have no factors in
common, then the fundamental period of x[n] is N. Assuming that this is the case and
using eq. (2.42), we find that the fundamental frequency of the periodic signal e/0 is

2 Q,
S it (2.43)
Note that the fundamental period can also be written as
_ {(2n
N=nm(g) (2.44)

These last two expressions again differ from their continuous-time counterparts as can
be seen in Table 2.1 in which we have summarized some of the differences between the
continuous-time signal e’> and the discrete-time signal e/, Note that as in the con-
tinuous-time case, the constant discrete-time signal resulting from setting Q,=0
has a fundamental frequency of 0 and its fundamental period is undefined. For more
discussion of the properties of periodic discrete-time exponentials, see Problems 2.17
and 2.18.

TABLE 2.1 DIFFERENCES BETWEEN THE SIGNALS efwst AND e/flen,

Distinct signals for distinct Identical signals for exponentials
values of wg at frequencies separated by 2n

Periodic for any choice of wy Periodic only if

Do="§

for some integers N > 0 and m.

Fundamental frequency Fundamental frequencyt
wWo 9‘0
m

Fundamental period Fundamental periodt

we = 0: undefined Q¢ = 0: undcfined
3 (2
wy #0: @9 Qo # 0: "'(ﬁ“;)

tThese statements assume that m and N do not have any factors in

common.
Ay |

As in continuous time, we will find it useful on occasion to consider sets of
harmonically related periodic exponentials, that is, periodic exponentials that are all
periodic with period N. From eq. (2.42) we know that these are precisely the signals
that are at frequencies that are multiples of 2x/N. That is,
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bl ¢
(2.45)
In the continuous-time case all of the harmonically related complex exponentials,

e @ik =0, 41, 42, ... are distinct. However, because of eq. (2.38), this is not
the case in discrete time. Specifically,

Sron[n] = eltk+MIx/NIs
= eIInneJk(Zx/N), - ¢k[n]

This implies that there are only N distinct periodic exponentials in the set given in
eq. (2.45). For example, ¢,[n], ¢,[n), . .., dn_,[n] are all distinct, and any other ¢,(n)
is identical to one of these (e.g., §nln] = ¢oln) and @_,[n} = dy_,[n]).

Finally, in order to gain some additional insight into the issue of periodicity for
discrete-time complex exponentials, consider a discrete-time sequence obtained by
taking samples of a continuous-time exponential, e/ at equally spaced points in time:

x[n] = e/t = gltwiT)n (2.47

From eq. (2.47) we see that x[n] is itself a discrete-time exponential with Q, = w,T.
Therefore, according to our preceding analysis, x[n] will be periodic only if w,7/2r
is a rational number. Identical statements can be made for discrete-time sequernces
obtained by taking equally spaced samples of continuous-time periodic sinusoidal
signals. For example, if

(2.46)

x(t) = cos 2nt (2.48)

then the three discrete-time signals in Figure 2.31 can be thought of as being defined
b

d x{n} = x(nT) = cos 2rnnT (2.49)
for different choices of T. Specifically, T = 5 for Figure 2.31(a), T = +4 for Figure
2.31(b), and T =4z for Figure 2.31(c). If we think of discrete-time sinusoidal
sequences as being obtained as in eq. (2.47), then we see that although the sequence
x[n) may not be periodic, its envelope x(r) is periodic. This can be directly seenin Figure
2.31(c), where the eye provides the visual interpolation between the discrete sequence
values to prcaice the continuous-time periodic envelope. The use of the concept of
sampling to gain insight into the periodicity of discrete-time sinv:aidal sequences is
explored further in Problem 2.18.

2.5 SYSTEMS

A system can be viewed as any process that results in the transformation of signals.

Thus, a system has an input signal and an output signal which is related to the input
through the system transformation. For example, a high-fidelity system takes a
recorded audio signal and generates a reproduction of that signal. If the hi-fi system
has tone controls, we can change the characteristics of the system, that is, the tonal
quality of the reproduced signal, by adjusting the controls. An automobile can also be
viewed as a system in which the input is the depression of the accelerator pedal and
the output is the motion of the vehicle. An image-enhancement system transforms an
input image into an output image which has some desired properties, such as improved
contrast.
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As we have stated earlier, we will be interested in both continuous-time and
discrete-time systems. A continuous-lime system is one in which continuous-time input
signals are transformed into continuous-time output signals. Such a system will be
represented pictorially as in Figure 2.34(a), where x(¢) is the input and y(f) is the
output. Alternatively, we will represent the input-output relation of a continuous-
time system by the notation

x(t) —> y(1) (2.50)
Similarly, a discrete-time system, that is, one that transforms discrete-time inputs into
discrete-time outputs, will be depicted as in Figure 2.34(b) and will be represented
symbolically as

x{n] — y[n} (2.51)
In most of this book we will treat discrete-time systems and continuous-time systems
separately but in parallel. As we have already mentioned, this will allow us to use
insights gained in one setting to aid in our understanding of the other. In Chapter 8
we will bring continuous-time and discrete-time systems together through the concept
of sampling and will develop some insights into the use of discrete-time systems to
process continuous-time signals that have been sampled. In the remainder of this sec-
tion and continuing through the following section, we develop some of the basic
concepts for both continuous-time and discrete-time systems.

e
x{t) Continuous-time vit

system

(a)

Discrete-time

system vinl
Figure 2.34 (a) Continuous-time

{b) system; (b) discrete-time system.

x[n}

One extremely important idea that we will use throughout this book is that of an
interconnection of systems. A series or cascade interconnection of two systems is illus-
trated in Figure 2.35(a). We will refer to diagrams such as this as block diagrams.
Here the output of System 1 is the input to System 2, and the overall system transforms
an input by processing it first by System 1 and then by System 2. Similarly, one can
define a series interconnection of three or more systems. A parallel interconnection of
two systems is illustrated in Figure 2.35(b). Here the same input signal is applied to
Systems 1 and 2. The symbol “@" in the figure denotes addition, so that the output of
the parallel interconnection is the sum of the outputs of Systems 1 and 2. We can also
define parallel interconnections of more than two systems, and we can combine both
cascade and parallel interconnections to obtain more compl.cated interconnections.
An example of such an interconnection is given in Figure 2.35(c).t

Interconnections such as these can be used to construct new systems out of

tOn occasion we will also use the symbol ® in our pictorial representation of systems to
denote the operation of multiplying two signals (sce, for example, Figure P2.24-1 in Problem 2.24).
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(b}

Qutput

|nput ===

System 3

lc)

Figure 2.35 Interconnections of systems: (a) series (cascade) interconnection;

(b) parallel interconnection; © series/paraliel interconnection.

n systems t0 compute complicated arithmetic

existing ones. For example, we can desig 1 rithn
blocks, as illustrated in Figure

expressions by interconnecting basic arithmetic building
2.36 for the calculation of

Jin) = @xin} — x[n1)* 2.52)
In this figure the «j” and “—" signs next to the “®” symbol indicate that the signal

x[n)* is to be subtracted from the signal 2x{n]. By convention, if no “+’t or —— signs
are present next to a “@” symbol, we will assume that the ccrresponding signals are

to be added. )
iding & mechanism that allows us to build new systems,

In addition to prov > ) o
interconnections also allow us to view an existing system as &n mtcrcon{lectmn ofits
onnections of basic

component parts. For example, electrical circuits involve interc

x[n} re———g

j———»vlnl

Figure 2.36  System for the calculation of yln] = @x{1 — x{n)?)?.
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circuit elements (resistors, capacitors, inductors). Similarly, the operation of an auto-
mobile can be broken down into the interconnected operation of the carburetor,
pistons, crankshaft, and so on. Viewing a complex system in this manner is often useful
in facilitating the analysis of the properties of the system. For example, the response
characteristics of an RLC circuit can be directly determined from the characteristics
of its components and the specification of how they are interconnected.

Another important type of system interconnection is a feedback interconnection,
an example of which is illustrated in Figure 2.37. Here the output of System 1 is the
input to System 2, while the output of System 2 is fed back and added to the external
input to produce the actual input to System 1. Feedback systems arise in a wide variety
of applications. For example, a speed governor on an automobile senses vehicle veloc-
ity and adjusts the input from the driver in order to keep the speed at a safe level.
Also, electrical circuits are often usefully viewed as containing feedback interconnec-
tions. As an example, consider the circuit depicted in Figure 2.38(a). As indicated in

thput ﬂ\ System 1 Output

System 2

Figure 2.37 Feedback interconnection.

iy U iz(tl‘

C)?ih) =c q R vit)
(a)
i +f;\ iy (0 Capacitor vit)
i w =2 [ i ar
ipft) Resistor
iz(0 = 42

(b}

Figure 2.38 (a) Simple electrical circuit; (b) block diagram in which the circuit
is depicted as the feedback interconnection of the two circuit elements.
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Figure 2.38(b), this system can be viewed as the feedback interconnection of the two
circuit elements. In Section 3.6 we use feedback interconnections in our description of
the structure of a particularly important class of systems, and Chapter 11 is devoted to
a detailed analysis of the properties of feedback systems.

. 2.6 PROPERTIES OF SYSTEMS

In this section we introduce and discuss a number of basic properties of continuous-
time and discrete-time systems. These properties have both physical and mathematical
interpretations, and thus by examining them we will also develop some insights into
and facility with the mathematical representation that we have described for signals
and systems.

2.6.1 Systems with and without Memory

A system is said to be memoryless if its output for each value of the independent vari-
able is dependent only on the input at that same time. For example, the system in eq.
(2.52) and illustrated in Figure 2.36 is memoryless, as the value of y[n] at any par-
ticular time n, depends only on the value of x[r] at that time. Similarly, a resistor is
a memoryless system; with the input x(z) taken as the current and with the voltage
taken as the output y(1), the input-output relationship of a resistor is

y(t) = Rx(t) (2.53)

where R is the resistance. One particularly simple memoryless system is the identity
system, whose output is identical to its input. That is,

o) = x(6)
is the input-output relationship for the continuous-time identity system, and
) = xln)

is the corresponding relationship in discrete time.
An example of a system with memory is

= 3 k] (2.54)
and a second example is
Wy=x(t—1) (2.55)

A capacitor is another example of a system with memory, since if the input is taken to
be the current and voltage is the output, then

¢
¥t = —é— f x(1) dr (2.56)
where C is the capacitance.
2.6.2 Invertibility and Inverse Systems

A system is said to be invertible if distinct inputs lead to distinct outputs. Said another
way, a system is invertible if by observing its output, we can deterniine its input.
That is, as illustrated in Figure 2.39(a) for the discrete-time case, we can construct an
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inverse system which when cascaded with the original system yields an output z[n]
equal to the input x{n] to the first system. Thus, the series interconnection in Figure
2.39(a) has an overall input—output relationship that is the same as that for the identity
system.
An example of an invertible continuous-time system is

(1) = 2x(1) . (2.57)
for which the inverse system is

() = $y(0) (2.58)
This example is illustrated in Figure 2.39(b). Another example of an invertible system
is that defined by eq. (2.54). For this system the difference between two successive

values of the output is precisely the last input value. Therefore, in this case the inverse
system is

z[n} = yln] — yin — 1] (2.59)
as illustrated in Figure 2.39(c). Examples of noninvertible systems are
yinj=10 (2.60)
that is, the system that produces the zero output sequence for any input sequence, and
W) = x¥(1) (2.61)
x{n)=——] System yin) :::f;:: p————1z[n] = x[n]

(a)

yit)
x(t) 1 it} = 2x(t) > z(t) = 3y{t) e 2(1) = x(1}
(b)
" y(n]
xlo}——1 ylnl = I x[k] z{n) = y(n] ~yln = 1} }——>2z[n] = x[n]
N
{c)

Figure 2.39 Concept of an inverse system for: (a) a general invertible system;
(b) the invertible system described by eq. (2.57); (c) the invertible system defined
in eq. (2.54).

2.6.3 Causality

A system is causal if the output at any time depends only on values of the input at
the present time and in the past. Such a system is often referred to as being nonantici-
pative, as the system output does not anticipate future values of the input. Conse-
quently, if two inputs to a causal system are identical up to some time ¢, or n,, the
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corresponding outputs must also be equal up to this same time. The motion of an auto-
mobile is causal since it does not anticipate future actions of the driver. Similarly, the

systems described by egs. (2.55) and (2.56) are causal, but the systems defined by
yin) = x[n} — x[n + 1] (2.62)
and
W) = x(t + 1) (2.63)
are not. Note also that all memoryless systems are causal.

Although causal systems are of great importance, they do not by any means
constitute the only systems that are of practical significance. For example, causality
is not of fundamental importance in applications, such as image processing, in which
the independent variable is not time. Furthermore, in processing data for which time
is the independent variable but which have already been recorded, as often happens
with speech, geophysical, or meteorological signals, to name a few, we are by no means
constrained to process those data causally. As another example, in many applications,
including stock market analysis and demographic studies, we may be interested in
determining a slowly varying trend in data that also contain high-frequency fluctua-
tions about this trend. In this case, a possible approach is to average data over an
interval in order to smooth out the fluctuations and keep only the trend. An example
of a noncausal averaging system is

1 +M
y[n] = T Tx S, x[n— k) (2.64)

M
2.6.4 Stability

Stability is another important system property. Intuitively, a stzeble system is one in
which small inputs lead to responses that do not diverge. Suppose that we consider the
situation depicted in Figure 2.40. Here we have a ball resting on a surface. In Figure
2.40(a) that surface is a hill with the ball at the crest, while in Figuce 2.40(b) the surface
is a valley, with the ball at the base. If we imagine a system whose input is 2 horizontal
acceleration applied to the ball and whose output is the ball's vertical position, then the
system depicted in Figure 2.40(a) is unstable, because an arbitrari'y small perturbation
in the horizontal position of the ball leads to the ball rolling down the hiil. On the
other hand, the system of Figure 2.40(b) is stable, because small horizontal accelera-
tions lead to small perturbations in vertical position. Similarly, ary of the phenomena
mentioned in preceding sections, such as chain reactions and population growth, that
can be represented by growing exponentials are examples of the 1esponses of unstable
systems, while phenomena, such as the response of a passive RC circuit, that lead to
decaying exponentials are examples of the responses of stable systems.

x(t}
Iy(l)
Figure 2.40 Examples of (a) an un-
x{t) b(t) stable system; and (b) a stable system.
= Here, the input is a horizontal accelera-
tion applied to the ball, and the output
(a} {b) is its vertical position.
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The preccdmg paragraph provldes us wlth an intuitive understandmg of the
concept of stability. Basically, if the input to a stable system is bounded (i.e., if its
magnitude does not grow without bound), then the output must also be bounded and
therefore cannot diverge. This is the definition of stability that we will use throughout
this book. To illustrate the use of this definition, consider the system defined by eq.
(2.64). Suppose that the input x[n] is bounded in magnitude by some number, say, B,
for all values of n. Then it is easy to see that the largest possible magnitude for yn)is
also B, because yfn] is the average of a finite set of values of the input. Therefore,
¥{n] is bounded and the system is stable. On the other hand, consider the system
described by eq. (2.54). Unlike the system in eq. (2.64), this system sums all of the past
values of the input rather than just a finite set of values, and the system is unstable,
as this sum can grow continually even if x[n} is bounded. For example, suppose that
x[n] = u[n], the unit step, which is obviously a bounded input since its largest value
is 1. In this case the output of the system of eq. (2.54) is

Al = 3 ulk] = (n+ Duln) (2.65)
That is, y[0] = 1, y[1] = 2, y[2} = 3, and so on, and y[n] grows without bound.

The properties and concepts that we have examined so far in this section are of
great importance, and we examine some of these in far greater detail later in the book.
There remain, however, two additional properties—time invariance and linearity—
that play a central role in the subsequent chapters of this book, and in the remainder
of this section we introduce and provide initial discussions of these two very important
concepts.

2.6.5 Time Invariance

A system is time-invariant if a time shift in the input signal causes a time shift in the
output signal. Specifically, if y[n] is the output of a discrete-time, time-invariant system
when x[n] is the input, then y[n — n,] is the output when x[n — n,} is applied. In con-
tinuous time with y(¢) the output corresponding to the input x(¢), a time-invariant
system will have y(r — 1,) as the output when x(¢ — ¢,) is the input.

To illustrate the procedure for checking whether a system is time-invariant or
not and at the same time to gain some msnght into thls property, let us consider the
continuous-time system defined by

W) = sin [x(n)] (2.66)
To check if this system is time-invariant or time-varying, we proceed as follows. Let
x,(t) be any input to this system, and let

»(0) = sin [x, ()] (2.67)
_be the corresponding output. Then consider a second input obtained by shifting x,(r):
X (1) = x,(t — ) (2.68)

The output corresponding to this input is
y2(8) = sin [x, ()] = sin [x,(t — ¢,)) (2.69)
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Similarly, from eq. (2.67),
(¢t — o) = sin [x;(t — to)] (2.70)
Comparing egs. (2.69) and (2.70), we see that y,(t) = y,(t — t,), and.therefore this

system is time-invariant.
As a second example, consider the discrete-time system

yln} = nx[n] (2.71)
and consider the responses to two inputs x,{n] and x,[n], where x,[{n] = x,[n — n,):
yiln] = nx,(n] (2.72)
yaln] = nxy{n] = nx,[n — n,] (2.73)
However, if we shift the output y,[n], we obtain
Piln ~ "9] = (n — no)x,[n — ny] # y,[n] (2.79)

Thus we conclude that this system is time-varying. Equation (2.71) represents a system
with a time-varying gain. Therefore, shifting the input will result in different values of
the gain multiplying values of the shifted input. Note that if th: gain is constant, as
in eq. (2.57), then the system is time-invariant. Other examples of time-invariant
systems are given by eqs. (2.53)-(2.64).

2.6.6 Linearity

A linear system, in continuous time or discrete time, is one that pcssesses the important
property of superposition: If an input consists of the weighted sum of several signals,
then the output is simply the superposition, that is, the weighted sum, of the responses
of the system to each of those signals. Mathematically, let y,(r) be the response of a
continuous-time system to x,{t) and let y,(¢) be the output corresponding to the input
x,{(1). Then the system is linear if:

1. The response to x,{t) -+ x,(¢) is y, (£} 4 y,(t).
2. The response to ax,(r) is ay,(r), where a is any complex constant.

The first of these two properties is referred to as the additivity property of a linear
system; the second is referred to as the scaling or homogeneity pioperty. Although we
have written this definition using continuous-time signals, the same definition holds
in discrete time. The systems speciiied by eqs. (2.53)2.60), (2.€2)~(2.64), and (2.7})
are linear, while those defined by eqs. (2.61) and (2.66) are nonlinear. Note that a
system can be linear without being time-invariant, as in eq. (2.71), and it can be time-
invariant without being linear, as in eqgs. (2.61) and (2.66).t
The two properties defining a linear system can be combined into a single
statement which is written below for the discrete-time case:
ax,[n] + bx,[n) —> ay,[n] + by,[n} (2.75)
1t is also possible for a system to be additive but not homogeneous or homogeneous but
not additive. In cither case the system is nonlinear, as it violates onc of the two propertics of linearity,

We will not be particularly concerned with such systems, but we have included several exampies in
Problem 2.27.
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where a and b are
from the definition of linearity that if xdn), k=1,2,3,..., are a set of inputs to a
discrete-time linear system with corresponding outputs y,[n], k = 1,2,3,..., then
the response to a linear combination of these inputs given by

o} = 3 axidnl = ayx,[n] + ayx,0n] + ax,fn] + . . k2-76)

yin} = ; aydn] = a,y,[n] + @ y,[n] + azpyn) + ... (2.77)

This very important fact is known as the superposition property, which holds for linear
systems in both continuous time and discrete time.
. Linear systems possess another important property, which is that zero input
yields zero output. For example, if x{n] — y[n], then the scaling property tells us that
0=0-xn)]—>0-yn]=0 (2.78)
Consider then the system
n]l = 2x[n] 4 3 (2.79)
From eq. (2.78) we see that this system is not linear, since y[n] = 3 if x[n] = 0. This
may seem surprising, since eq. (2.79) is a linear equation, but this system does violate
Fhe zero-infzero-out property of linear systems. On the other hand, this system falls
into the class of incrementally linear systems described in the next paragraph.

An incrementally linear system in continuous or discrete time is one that
resp{)nds linearly to changes in the input. That is, the difference in the responses to any
two inputs to an incrementally linear system is a linear (i.e., additive and homogene-
ous) function of the difference between the two inputs. For example, if x,[n] and x,[n]

are two inputs to the system specified by eq. (2.79), and if y,[n] and y,[n] are the
corresponding outputs, then

yilnl = yaln) = 2x,[n] + 3 — (2x,[n] + 3} = 2{x,[n] — x,[n]} (2.80)
It i§ stra‘ightforward to verify (Problem 2.33) that any incrementally linear system
can be visualized as shown in Figure 2.41 for the continuous-time case. That is, the

Yo (U}

it} - Linear .
system \*J = vit}  Figure 2.41 Structure of an incremen-

tally linear system.

response of such a system equals the sum of the response of a linear system and of
another signal that is unaffected by the input. Since the output of the linear system is
zero if the input is zero, we sce that this added signal is precisely the zero-input
response of the overall system. For example, for the system specified by eq. (2.79) the
output consists of the sum of the response of the linear system
x[n] — 2x[n]
and the zero-input response
Yoln} =3
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any complex constants. Furthermore, it is straightforward to show
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Because of the structure of incrementally linear systems suggesfed by Figure 2.41 many
of the characteristics of such systems can be analyzed using the techniques we will
develop for linear systems. In this book we analyze one particularly important class of

incrementally linear systems which we introduce in Section 3.5.

2.7 SUMMARY

In this chapter we have developed a number of basic concepts related to continuous-
and discrete-time signals and systems. In particular we introduced a graphical repre-
sentation of signals and used this representation in performing transformations of the
independent variable. We also defined and examined several basic signals both in
continuous time and in discrete time, and we investigated the concept of periodicity
for continuous- and discrete-time signals.

In developing some of the elementary ideas related to systems, we introduced
block diagrams to facilitate our discussions concerning the interconnection of systems,
and we defined a number of important properties of systems, including causality,
stability, time invariance, and linearity. The primary focus in this book will be on
systems possessing the last two of these properties, that is, on the class of linear, time-
invariant (LTI) systems, both in continuous time and in discrete time. These systems
play a particularly important role in system analysis and design, in part due to the fact
that many systems encountered in nature can be successfully modeled as lincar and
fime-invariant. Furthermore, as we shall see, the properties of linearity and time
invariance allow us to analyze in detail the characteristics of LTI systems. In Chapter 3
we develop a fundamental representation for this class of systerns that will be of great
use in developing many of the important tools of signal and system analysis.

PROBLEMS

The first seven problems for this chapter serve as a review 3f the topic of complex
numbers, their representation, and several of their basic properties. As we will use complex
numbers extensively in this book, it is important that readers familiarize themselves with the

fundamental ideas considered and used in these problems.
The complex number z can be expressed in several ways. The Cartesian or rectangular .

form for z is given by
=x+Jy

where j = 4/ —1 and x and y are real numbers referred to respectively as the real part and
the imaginary part of 2. As we indicated in the chapter, we will oft:n use the notation

x=0e{z}, y=49mlz)
The complex number z can also be represented in polar form as
z = rel?
where r > 0 is the magnitude of z and @ is the angle or phase of z. These quantities will often

be written as
r=lzl, 0=4z
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The relationship between these two representations of complex numbers can be deter-

mined either from Euler’s relation

e =cosf + jsin 0 (P2.0-1)

or by plotting z in the complex plane, as shown in Figure P2.0. Here the coordinate axes are
(R {2} along the horizontal axis and 97 {z} along the vertical axis. With respect to this
graphical representation, x and y are the Cartesian coordinates of z, and r and & are its polar

coordinates.
Im
Ypomm—— 2
I
[2 ]
]
(I
x Gle
Figure P2.0
2.1. (a) Using Euler’s relation or Figure P2.0, determine expressions for x and y in terms

2.2,

2.3.

2.4.
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of rand 6.

(b) Determine expressions for r and @ in terms of x and y.

(c) If we are given only r and tan 8, can we uniquely determine x and y? Explain your
answer.

Using Euler’s relation, derive the following relationships.

(@) cos 0 = L (e + 19

(b) sin@ = 2_11,_(,_,,, o)

(©) cos? @ = J(1 + cos 26)

(@) (sin O)sin §) = } cos (6 — @) — Jcos (8 + &)

(e) sin (0 + ¢) = sin @ cos ¢ + cos § sin ¢

Let z, be a complex number with polar coordinatcs rg, 8, and Cartesian coordinates
Xg, Yo. Determine expressions for the Cartesian coordinates of the following complex
numbers in terms of xo and y,. Plot the points zo, z;, z,, z,, z,, and z, in the complex
plane when ro = 2, 04 = #/4 and when r, = 2, 6, = 7/2. Indicate on your plots the
real and imaginary parts of each point.

(a) z; = roe=/® b) z; =r

(d) z4 = roe/t-0+=n (e) z5 = roeltdetn)

Let z denote a complex variable

(©) z; = roeltern

=X +jy =re
The complex conjugate of z is denoted by z* and is given by
2% = X — jy = re~1®

Derive each of the following relations, where z, z,, and z, are arbitrary complex
numbers. '
(a) zz* = r?

(®) 5= et

©) z+ 2* =20 (2}
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2.5.

2.6.

2.7.

2.8,

I S B P
d) z—z2* =2j9m {z)
@ (z; + z2)* = 2f + 2%
(f) (az,z;)* = az¥*z%, where a is any real number
z\* _ 2t
(g) (Zz) -

2%

2y _ 1[zy2% + zfz,
® m’e{zz}--. 2[ 2,23 ]
Express each of the following complex numbers in Cartesian form and plot them in
the complex plane, indicating the real and imaginary parts of each number.

3444
@) 17— %

jiQ2 -+

® TEha =N
(1 /)2
2 :
(c) 2j a3 "‘J)
(@) destn/®)
(e) ﬂ el (23x14)
) jelt1i=ia
() 3e/*r + 2e/7% )
(h) The complex number z whose magnitude is {z| == ./2 azl whose angle is

Kz = —n/4
o 0 -5y

e~ Ix/3
»T=7

Express each of the following complex numbers in polar form and plot them in the
complex plane, indicating the magnitude and angle of each number.

@ 1+//73 ®) -5 (©) ~5-5

@ 3 +4j © (0 ~j/7) 0 4+

2 — j(6 )
® T - 05 » L
el=’d — 1

G jQ A+ jremss W VT +)2/Z e (D T+/7%

Derive the following relations, where z, z,, and z, are arbitrary complex numbers.
@) (&) e

(b) z,2¥ + z%z, = 2R (z,23) = 2 R {z}2,}

© |z] =1z%)

@ |z,2,} = |z, || 22|

(&) Re {2} < |z|, Im {2} < |z|

D |zy2% + 2F22| < 2242,

@ (2] =202 <z + 222 < (20| + |22 )2

The relations considered in this problem are used on many occasions throughout this
book.

(a) Prove the validity of the following expression:

- N, o=
T, am =41 — ¥

(b) Show that if |&| < 1, then

+7J

for any complex number a 3 1
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Loy Show aiko if [a] ' 1, then
=
(d) Evaluate
T ar
n=k

assuming that {et| < 1.

/ 2.9. (a) A continuous-time signal x(¢) is shown in Figure P2.9(a). Sketch and label carefully
. each of the following signals.
X() x(t~2)
X (i) x(1 — &)
¥ (iif) x(2r -+ 2)
x (iv) x(2 — 1/3)
S X () + x@2 = Dlu(l — 1)
S o) X6 A+ ) — 6 — )]
8 (b) For the signal h(#) depicted in Figure P2.9(b), sketch and label carefully each of the
following signals.
¥ (@ h(t+3)
x (i) A@2 —2)
@iy Al — 20)
4 (iv) 4h(1/4)
) YAOu() + h(—u(r)
(i b2 86+ 1)
x (vii) ROt + 1) — u(t — 1))
/ (c) Consider again the signals x(s) and A(f) shown in Figure P2.9(a) and (b), respectively.
Sketch and label carefully each of the following signals,
x () x(Dh( + 1)
x () x(A(—1)

x(t}

2

(a}

h{t}

(b) Figure P2.9
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/ 2.10. (a) A discrete-time signal x[n] is shown in Figure P2.10(a). Sketch and label carefully

Gy a0~ DR — 1)
o ) *(1 — Oh(r = 1)
(v) x(2 — 42)h(r + 4

each of the following signals.

LN 0))
X (D)

(iii)
); (iv)
¥ (V)
y o)

x[n — 2}

x[4 — n)

x{2n}

x[2n + 1]

x{n}u[2 — n]

x[n — 1)0[n — 3]
Jxfn] + §(—1)ln]

- (vii)
: ; 4 (viii) x{n?]
v (b) For the signal h[n] depicted in Figure P2.10(b), sketch and label carefully each of
/ the following signals.
iy A2 —nl
(i) hin + 2
(iii) A{—nuln] + hin]
Gv) Aln + 2] + A[—1 — n]
) h[3n]é[n — 1)
i) Aln + 1{un + 3] — u[—n}}

x[n]
1
]]l] ‘
]7
St o1 2348 n
{a)
hin}
2
3
3

(b}

Figure P2.10
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Lo L () Cortmsider the signals x{n} and A[n] used in parts (a) and (b). Sketch and label care-
fully each of the following signals.
(1) Alnlx[—n) (i) x[n -+ 2}Al1 — 2n)
/ (iii) x{1 ~ n}hln + 4] (iv) x[n — 1}4n — 3]
/ 2.11. Although, as mentioned in the text, we will focus our attention on signals with one
/ independent variable, on occasion it will be instructive to consider signals with two
independent variables in order to illustrate particular concepts involving signals and
systems. A two-dimensional signal d(x, y) can often be usefully visualized as a picture
where the brightness of the picture at any point is used to represent the value of d(x, y)
at that point. For example, in Figure P.2.11(a) we have depicted a picture representing
the signal d(x, y) which takes on the value 1 in the shaded portion of the (x, y)-plane
and zero elsewhere.
y
1,-1<x<1and-1 <y =<1
dix, y)
{0, elsewhere
1 3
(a)
1, inside shaded region
y fx. y) = { 0, outside
x
{b) Figure P2.11
(a) Consider the signal d(x, y) depicted in Figure P2.11(a). Sketch each of the following.
(i) dx+1,y~-2) (i) d(x/2,2y)
(i) d(y, 3x) @iv) d(x — y, x - »)
(v) d(Q/x, 1y)
(b) For the signal f(x, y) illustrated in Figure P2.11(b), sketch cach of the following.
@ fx=-3y+2
() f(x, -y
Gi) S}y, 2x)
v) /@ —x,—1—y)
v fQ2y —1,x/342)
(vi) f(xcos8@ — ysinf, xsin + ycos8), 8 = n/4
(vii) f(x, yu(} — »)
50 Signals and Systems  Chap. 2
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212 D:e.ier}ﬁinc a‘nd sketch the éve
Label your sketches carefully.

x(t}
. e 1
1
1 2 1
(a)
x({t)
)( / -2 —I‘I :l t
(b)

The tine
x(ty=tfort>0

X
)‘\/ The line
// k

x{t} = -2t for t <0
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-
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Figure P2.12
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£ 2.13. In this prob.lcm'wc explore several of the properties of even and odd signals.

w (a) Show that if x[»} is an odd signal, then

2 afn) =

ne -

‘/(b) Show that if x,{n] is an odd sngnal and x,[n] is an even signal, then xl[n]xz[n] is an
odd signal.
_(l (¢) Let x[n] be an arbitrary signal with even and odd parts denoted by

x[n] = &Y {x[n]}

x[n] = 0d (x[n]}
Show that
+oa +oo 4 oo
2 XM= ¥ xim+ 3 x3n
¥t (d) Although parts (a)-(c) have been stated in terms of discrete-time signals, the
analogous properties are also valid in continuous time. To demonstrate this, show
that

Jj: x(e) dt = J_’: xXe)de + J'j: xX(t) dt

where x,(r) and x,(¢) are, respectively, the even and odd parts of x(¢).

4 2.14. (a) Let x.[n] shown in Figure P2.14(a) be the even part of a signal x[n]. Given that
¥ x{n} = 0 for n < 0, determine and carefully sketch x{n) for all .
v (b) Let x,[n] shown in Figure P2.14(b) be the odd part of a signal x[n]. Given that
x[n] = 0 for n < 0 and x{0] = 1, determine and carefully sketch x{n).
« (© Let x,(1) shown in Figure P2.14(c) be the even part of a signal x(¢). Also, in Figure
P2.14(d) we have depicted the signal x(¢ +4- 1)u(—r — 1), Determine and carefully

;//—\ sketch the odd part of x(s).

\ 2.15. If x(r) is a continuous-time signal, we have seen that x(21) is a “speeded-up” version
of x(r), in the sense that the duration of the signal is cut in half. Similarly, x(¢/2)
represents a “slowed-down™ version of x(f), with the time scale of the signal spread
out to twice its original scale. The concepts of “slowing down” or “speeding up” a
signal are somewhat different in discrete time, as we will see in this problem.

To begin, consider a discrete-time signal x{n], and define two related signals,
which in some sense represent, respectively, “speeded-up™ and “slowed-down” versions
of x[n]:

»iln] = x{2n)
(] = x[nf2}, neven
yas {0, # odd

« (a) For the signal x{n] depicted in Figure P2.15, plot y,[n] and y,[n] as defined above.
o (b) Let x{(¢) be a continuous-time signal, and let y,(r) = x(21), y,(¢) = x(¢/2). Consider
the following statements:
(1) If x(¢) is periodic, then y,(f) is periodic.
(2) If y,(r) is periodic, then x(r) is periodic.
(3) If x(r) is periodic, then y,(¢) is periodic.
(4) If y,(r) is periodic, then x(¢) is periodic.
Determine if each of these statements is true, and if so, determine the relationship
between the fundamental periods of the two signals considered in the statement. If
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Lol o s =
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x,[n]
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1
(b)
X, (t)
1
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{c)
x{t + 1jul-t~ 1}
1
§ N\
-2 -1 0 t
(d)
Figure P2.14
x[n)
—4 -1 0 4 n

Figure P2,15

the statement is not true, produce a counterexample, Do the same for the following
statements. _ o
(i) If x[n] is periodic, then y,[n] is periodic.
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(u) If y,[n] is periodic, }hen ,v;[n] is pcr}b‘dic.
(i) If x{n) is periodic, then y,[n] is periodic.
(iv) If y,[n) is periodic, then x[n] is periodic.
2.16. Determine whether i i i iodi
o mine whelhe fﬁf,;:r;:zf:] Zl;rtj}:)cdf'ollowmg signals is periodic. If a signal is peri-
(@) x(f) = 2cos (3t + n/4)
®) x(r) = e/te-1)
(© x[n} = cos (8an/7 + 2)
(d) x[n] = eltrs-n
(&) x(t) = [sin (¢+ — r/6))2
() x[n} = cos (nn?/8)
@ x[n} =,,..Z_~ {Oln —3m) — 6fn — 1 — Im)}
(h)  x(¢) = [cos 2m1]u(r)
@ x(r) = &¥ {[cos Qanu(r))
@ x(1) = &¥ ([cos (27t + m/d)]u(s)}
(k) xln] = cos (n/4) cos (nn/4)
0 x{n) = 2 cos (rn/4) + sin (mnf8) — 2 cos (nn/2 + n/6)

+oo

(m) x(1) = 3 e-u-inn
2.17. (a) Consider the periodic discrete-time exponential signal
x[n] = e/m2siN)a
Show that the fundamental period Ny of this signal is given by
Ny = Nfged (m, N) (P2.17-1)
.where ged (m3 }Y) is the greatest common divisor of m and N, that is, the largest
integer that divides both m and N an integral numbcr of times. For ex’ample
ged (2,3) =1, ged (2,4) = 2, ged (8,12) =4
Note.that No = Nif m and N have no factors in common.
(h) Consider the following set of harmonically related periodic exponential signals
Siln] = ext2aiin
Find the fundamental peri i i
Find period and/or frequency for these signals for all integer values

(c) Repeat part (b) for
Prln] = ek 2/8)n

2.18. Let x{t) be the continuous-time complex exponential signal
x(1) = elwt

(\;V.llh func.iamcr.ual frequgncy @, and fundamental period T, = 2njw,. Consider the

Iscrete-time signal obtained by taking equally spaced samples of x(¢). That is

. »

x[n] = x(nT) = elwer?

) Showl' that x(] is.pcriodic if and only if T/T, is a rational number, that is if and
only if some multiple of the sampling interval exactly equals a multinle of thc' period

~of x(n).
(b) Suppose that x[n] is periodic, that is, that
Tr__»
=y (P2.18-1)
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where p and g are integers. What are the fundamental period and fundamental
frequency of x{n)? Express the fundamental frequency as a fraction of w,T.

(¢) Again assuming that T/T, satisfies eq. (P2.18-1), determine precisely how many
periods of x(f) are needed to obtain the samples that form a single period of x{n).

2.19. (a) Let x(r) and y(r) be periodic signals with fundamental periods T, and T, respec-
tively. Under what conditions is the sum
x(1) + y(0)
periodic, and what is the fundamental period of this signal if it is periodic?
(b) Let x[n] and y{n) be periodic signals with fundamental periods Ny and N3, respec-
tively. Under what conditions is the sum
x{n] + ¥n}
periodic, and what is the fundamental period of this signal if it is periodic?

(¢) Consider the signals
2mt 167t

x(f) = cos 5 + 2sin =5
y(t) = sin nt

‘Show that
2(1) = x()y(1)

is periodic, and write z(¢) as a linear combination of harmonicaily related complex
exponentials. That is, find a number 7 and complex numbers ¢, so that

2(1) = T cielkan/mi
k
2.20. (a) Consider a system with input x(¢) and with output (1) given by
Y= T x0)8¢t—nT)

(i) Is this system linear?
(i) Is this system time-invariant?
For each part, if your answer is yes, show why this is so. If your answer is no,

produce a counterexample.
(b) Suppose that the input to this system is
x(t) = cos 27t

Sketch and label carefully the output y(r) for each of the following values of T.
T=Libh
All of your sketches should have the same horizontal and vertical scales.

(¢) Repeat part (b) for
x(t) = € cos 2mt

2.21. In this problem we examine a few of the properties of the unit impulse function.
(a) Show that
821y =4 8(n

Hint: Examine J4(2t) (see Figure 2,20).

(b) What is 8[21]7
(©) In Section 2.3 we defined the continuous-time unit impulse as the limit of the

signal 8,(¢). More precisely, we defined several of the properties of 8(r) by examining
the corresponding properties of da(¢). For example, since the signal ua(r) defined by

ualt) == j " SamydT
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dunverges 10 the unit st’e‘p" -
u(t) = ‘],‘T, ualt) (P221-1)

we could then interpret &(s) through the equation

u(r) = j 5(¢) dv

or by viewing d(¢) as the formal derivative of u(t).
e ﬁh}s type of c.ilscusslon is important, as we are in effect trying to define d(s)
Osnggl |Its ;éroperues rather than by specifying its value for each t, which is not
:)he l:nict:.inn;lpu]hap‘t;r?.we provide a very simple characterization of the behavior of
se that is extremely useful in the stud i i i i

y of linear, time-invariant sys-

:Zzlls,c:z:r tl:e. pres:ent,t:lowcver, we concentrate on demonstrating that the impgr
ept in using the unit impulse is to understand fow i :

' n us . . ow it behaves. i
consider the six signals depicted in Figure P2.21. Show that s s

1
3t

2 (1)
1
3 1
a l l
.-} a
i 2 t A 2a .
(@) ib)
3 () "
1
A 1
a
4 a t ~A A 1
{c) (d)
)
2
KY
-4
LJ ' t (
-1
a
(e} i

Figuse P2.21
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each “behaves like an’

CedLly

impulse” as A — 0 in“lhat, if we let

() = f " r(n)de

then

lim wl(r) = u(t)

A—0
In each case sketch and label carefully the signal «i(r). Note that

ri(0) = r&(0) =0 for all A

Therefore, it is not enough to define or to think of J(t) as being zero for ¢ # 0 and
infinite for ¢ = 0. Rather, it is properties such as eq. (P2.21-1) that define the
impulse. In Section 3.7 we will define a whole class of signals known as singularity
functions which are related to the unit impulse and which are alsc defined in terms
of their properties rather than their values.

(d) The role played by u(f), 5(), and other singularity functions in the study of linear,

time-invariant systems is that of idealizations of physical phenomena, and, as we
will see, the use of these idealizations allows us to obtain an exceedingly impor-
tant and very simple representation of such systems. In using s.ngularity functions
we need, however, to be careful. In particular we must remember that they are
idealizations, and thus whenever we perform a calculation using them we are
implicitly assuming that this calculation represents an accurate description of the
behavior of the signals that they are intended to idealize. To illustrate this consider
the equation

x(£) 8(r) = x(0) 6(t) (P2.21-2)
This equation is based on the observation that
x(0) 8a(r) = x(0) dalt) (F2.21-3)

Taking the limit of this refationship then yields the idealized one given by eq.
(P2.21-2). However, a more careful examination of our derivation of eq. (P2.21-3)
shows that the approximate equality (P2.21-3) reaily only mekes sense if x{r) is
continuous at ¢ = 0. If it is not, then we will not have x(¢) == x(0) for ¢ small.
To make this point clearer, consider thé unit step signal u(t). Recall from eq.
(2.18) that u(z) = 0 for t < O and u(t) =1 for ¢ > 0, but that 'ts value at r = O is
not defined [note, for example, that us(0) = 0 for all A while u%(0) = § (from
part (c))). The fact that u(0) is not defined is not particularly botaersome, as long 2s
the calculations we perform using x(¢) do not rely on a specific zheice for u(0). For
example, if f(¢) is a signal that is continuous at / = 0, then the value of

f_': f(oo) da

does not depend upon a choice for #(0). On the other hand, the fact that u(0) is
undefined is significant in that it means that certain calculaticns involving singu-
larity functions are undefined. Consider trying to define a value for the product
u(t) 8(t). To see that this cannot be defined, show that

Jim fua(e) =0

but
Jlim (ualr) 3a(6)] = $6(D)

In general, we can define the product of two signals without any di®iculty as
long as the signals do not contain singularities (discontinuities, irapulses or the other
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s:nguxgrnfles introuuced m.bechon 3.7) whose locations coincide. When the focations
do coincide, the product is undefined. As an example, show that the signal

&) = f;: u(1) 0(t — 1) dr

is identical to u(t); is, it i i iti
o ident oz_i o u(t); thatis, it is O for r < 0, it equals I for 7 > 0, and it is undefined
22. In this chapter we introduced a number of i
general propert i
@ System g o oo properties of systems. In particular,
(1) Memoryless
(2) Time-invariant
(3) Linear
(4) Causal
(5) Stable
petermme w;u'ch of these properties hold and which do not hold for each of the follow
ing systems. Justify your answers. In each exampl )
. ple (1) or y{n] denotes th -
put, and x(r) or x[n] is the system input. A & fhe system out
¥ (@) y(1) = exw
F M) ynl = x{nlx{n — 1]
dx(t)
¥ = &)
(©) y(t) ar
+ @ Hlnl = x{—n]
£ © Ynl = x{n — 2] — 2x[n — 17]
v O YO =x(t—1)—xU — 1)
¢ ® ¥(0) = [sin (6N)x(1)
n+d
+ ) Hnl= 3 x[k]
k=n-2

£ O 3l = nxln
£ O A= f () dt
X &) yln] = sv {x{n]}

0
v O =" 1<0
¥ {x(l)+x(l~]00), >0

{ m) y(1) = {0’ x() <0
X(’) + .\’(I — ]O()), _\r(,) > 0

x[n], n>1

+ @ Y=o, n=
xn+1), n< —1
x{n], nz1

+ (©) yn] = {0, n=20
VIR n<< —1

-+ ® »(0) = x(/2)
<« @ yn) = 2n]

2.23. Ani a cept i icati
himportant concept in many communications applications is the correlation between

58

:]v]v.o sngr?als. In t!u: problems at the end of Chapter 3 we will have more to say about

colsttoplc andl will provide some indication of how it is used in practice. For now we
ntent ourselves with a brief introduction t i i .

0 co. i

erosentior rrelation functions and some of their

Let x(r) and y(1) be two signals; then the correlation function $.,(t) is defined

Signals and Systems Chap. 2

bo() =[xt + eitr) de

The function ¢,,(¢) is usually referred to as the autocorrelation function of the signal

x(1), while @,,(¢) is often called a cross-correlation function.

(a) What is the relationship between @,,(1) and §,.(r)?

(b) Compute the odd part of ¢,.(r).

(¢) Suppose that y(1) = x(t + T). Express §,,(¢) and §,,(s) in terms of x(t).

(d) It is often important in practice to compute the correlation function (1), where
h(r) is a fixed given signal but where x(¢) may be any of a wide variety of signals.
In this case what is done is to design a system with input x(f) and output D).
Is this system linear? Is it time-invariant? Is it causal? Explain your answers.

(e) Do any of your answers to part (d) change if we take as the output @ a(f) rather
than ¢,,(n?

7( 2.24. Consider the system shown in Figure P2.24-1. Here the square root operation produces

the positive square root.

Delay of Square
1 second

Square root y(t)

QD—' Multiply by 2

x{t}—e

Square

Figure P2.24-1

¥ (a) Find an explicit relationship between y(¢) and ;r(r).
¥ (b) Is this system linear?

¥ (¢) Is it time-invariant?
* D) What is the response y{(¢) when the input is as shown in Figure P2.24-27

x(t}
2t

1

- Figure P2.24-2

)( 2.25. (a) 1s the following statement true or fake?
v The series interconnection of two linear, time-invariant systems is itself a linear,
time-invat.ant system.
Justify your answer.

59
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(b) l§,v(’§t_~4_nllow‘_,f, Yatemenk fie: or (ﬁ‘g& e " s

Thc.scncs connection of two nonlinear systems is itself nonlinear,
Justify your answer.

7{ (c) Consider three systems with the following input-output relationships;

System 1

System 2

System 3

Suppose that these s

. ; ystems are connected in serjes
Find the Input-output relationship for the overal] i

_ Jxlnr2), n even
o) = {0, n odd
Hn) = x[n} + dxln — 1) + 1xln — 2]
Ynl = x{2n)

system linear? Is jt time-invariant ?

System 1

(d) Consider a second series intercon

yin)

Figure P2.25

case the three systems are specified by the following equations:
System 1 ynl = x[<a)

System 2
System 3

Ynl = axn ~ 1] ++ bxlu} + exn + 1]
An] = x[~n}

.Here a, b, and ¢ are real numbers,
interconnected system. Under wh

(?vcrall system have cach of the following propertics ?
(I) The overall system is linear and time-invariant,
(ii) The Input-output relationship of the overall system is identjcal to that of

System 2.

(iii) The overall system is causal,

Determine if each of the followin

system. If it is not, find two input

+ @) y(1) = x(r — 4)
¥ (@) yln] = nxfn

x[n — 1],
¥ (@ = o,

x{n),
¥ (8 M) =x[l - )

n> 1
n=20
n<< -1

£ O = 3 (g

) yn] = {.:[[/1]4‘ 1],
xfn],

(m) y[n] = xf2n]

n>0
n< -1

g .systcms is invertible. If it is, construct the inverse
signals to the system that have the same output.

¥ B y(1) = cos [x(r)]
K@ )= f " xmdr

'f () Ml = xiulxjn — 1]

x (W} 1) = f’ e~U=ny(r)y dr
. o dx(r)
@ M) == i
O ¥ =x@20)

() yn] = {;["/2], n e;:,
s n o

Signals and Systems

as depicted in Figure P2.25,
nterconnected system. Is this

nection of the form of Figure P2.25, where in this

Find the input-output relationship for the overall
at conditions on the numbers a, b, and ¢ does the
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2.27. In the text we discussed the fact that the property of linearity for a system is equivalent
to the system possessing both the additivity property and the homogeneity property.
For convenience we repeat these two properties here:

1. Let x,(r) and x,(+) be any two inputs to a system with corresponding outputs
¥1(t) and y, (). Then the system is additive if

() + x2(t) —> y1(0) + y:(0)

2. Let x(¢) be any input to a system with corresponding output y(f). Then the
system is homogeneous if

ex(t) —> cy(1) . (P2.27-1)

where ¢ is an arbitrary complex constant.

The analogous definitions can be stated for discrete-time systems,

K () Determine if each of the systems defined in parts (i)(iv) is additive and/or homo-
geneous. Justify your answers by providing a proof if one of these two properties
holds, or a counterexample if it does not hold.

X @)y = Qe {x[n])

2

K 0 = 5[ 20]

x[nlx{n — 2]

w (i) yn) =¢{ xln —1]

0, xin—-11=0
¥ (iv) The continuous-time system whose output ¥(s) is zero for all times at which
the input x(t) is not zero. At each point at which x(r) = 0 the output is an
impulse of area equal to the derivative of x(¢) at that instant. Assume that al}
inputs permitted for this system have continuous derivatives,

/( (b) A system is called real-linear if it is additive and if equation (P2.27-1) holds for ¢
an arbitrary real number. One of the systems considered in part (a) is not linear but
is real-linear. Which one is it? :

7( (c) Show that if a system is either additive or homogeneous, it has the property that

if the input is identically zero, then the output is also identically zero.

X (d) Determine a system (either in continuous or in discrete time) that is neither additive
nor homogeneous but which has a zero output if the input is identically zero.

A (e) From part (c) can you conclude that if the input to a linear system is zero between
times ¢, and ¢, in continuous time or between times », and n, in discrete time, then
its output must also be zero between these same times? Explain your answer.

2.28. Consider the discrete-time system that performs the following operation. At each time
n, it computes

y x[n—11£0

rn} = |x{n] — x[n — 17]
roln) = {afn 4 1] — x[n — 1))
r.[n} = |x[n + 13} — x[n)}
It then determines the largest of these. Then the system output y{n] is given by
Hnl = xln + 11t r,fn] = max (r,[n), roln], r_[x])
HAn] = x{n} if roln} = max (r,1n), roln), r_[n})

ym) = xin = 13 if r_{n) = max (r,In), roln], r_{n])
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e hOW G ) bailvaluds, s sysltl‘n“s’nmply chooses the middle value of
three numbers x{n —~ 1), x{n), and x{n + 1). This operation is referred to as median
filtering, and it is sometimes used if the signal x[n] contains occasional large, spuri-
oOus values that represent distortion of the information carried in the signal. For

|

example, in deep-space communication, the signal received on earth may contain
short bursts of erratic behavior, resulting from some type of interference, Median
filtering represents one method for partially removing such bursts. There are many
alternative methods for attempting to achieve this same goal, and the relative

merits of these depend upon the characteristics of the original, undisturbed signal
and of the interfering signal.

(b) Show that the system described above i homogeneous but not additive,
(c) In Chapter 6 we consider in greater detail the problem of filtering, that is, of using

4 system to process a received signal in order to remove inteiference that may be
present. As we will see, there are trade-offs that must be considered in the design
of such a system. In the remainder of this problem we provide a brief look at filter-
ing by examining three candidate systems:

System 1; A median filter
System 2: An averaging system:
Al = s — 1] + xin) + x[n = m
System 3: An averager that places more weight on the signal
value at the present time:
An) = txln — 1] + $xln) + Jxin + 13
We suppose that the input signal x{n] consists of the sum of a desired signal x4fn]

and an interfering signal x[n):

X[n] = x,[n] + x,[n]

(i)  Assume first that xn] = 0, and compute the outputs from each of the three
systems with x,[n] taken first as in Figure P2.28(a), and then as in Figure
P2.28(b). As can be seen, each of these systems introduces distortion; that is,

application,
(if) Consider next the case in which x[n] is the sum of x,[n] as given in Figure

desired signal is expected to have isolated peaks, distortion can be expected,
but if the desired signal varies only mildly, and the interference consists only
of occasional bursts, then the peak-suppressing character of median filtering
will help in removing the interference.

(iii) Consider the case in which x,[n] is again given by Figure P2.28(a), but where
xdn] = (=1, Compute the outputs of the three systems in this case. Note
that System 3 is perfectly suited to the rejection of this noise.

Signals and Systems Chap. 2
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o

{c)
Figure P2.28

(iv) Note that Systems 2 and 3 are linear, and therefore a scz;:ing of tl:cdar:;;loin:g:
i i i i les that portion of the output du

f the interfering signal simply sca ! ! )
i(:lterferencc. On the other hand, System 1 is not linear, and thus one might
expect a very different-looking response to the inputs x,[n]f—; x(n) ar;d x:l[rg

ilus is poi late the outputs of Systems 1 an

kxfn}. To illustrate this point, calcu
;‘henl[x],[n] is as in Figure P2.28(a) and“:x‘[n] = §(—~1)y". Compare these
responses to those you determined in part (iii).

2.29. (a) Consider a time-invariant system with input x(¢) and output y(¢). Show that if

x(t) is periodic with period 7, then so is y(¢). Show that the analogous result also
holds in discrete time.

(b) Consider the system

Hn] = x¥[n)
i i han
iodic i | period of the cutput is smaller t
i eriodic input so that the fundamenta riod ¢
:;:: ?u?\(l;arrnental period of x[n)]. Find a second periodic input where the fundamental
periods of x[n] and y{n]} are the same.

. . . . inear
(c) Provide an example (either in continuous time or in discrete time) of a |

. . . in
time-varying system and a periodic input to this system for which the corresponding
output is not periodic.
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Shov. . .lausa ., ..racc.
ing statement:
For any time 1, and any input x(¢) so that x(1) = 0 for ¢ < t,, the corre-
sponding output y(r) must also be zero for 1 < ¢,
The analogous statement can be made for discrete-time linear systems.
(b) Find a nonlinear system that satisfies this condition but is not causal.
() Find a nonlinear system that is causal but does not satisfy this condition.
(d) Show that invertibility for a discrete-time linear system is equivalent to the following
statement :
The only input that produces the output y[n] =0 forall  is x{n) =0 for all n.
The analogous statement is also trye for continuous-time linear systems.
(e) Find a nonlinear system that satisfies the condition of part (d) but is not invertible.

In this problem we illustrate one of the most important consequences of the properties
of linearity and time invariance., Specifically, once we know the response of a linear
system or of a linear time-invariant (LTI) system to a single input or the responses to
several inputs, we can directly compute the responses 1o many other input signals.
Much of the remainder of this book deals with a thorough exploitation of this fact in
order to develop results and techniques for analyzing and synthesizing LTI systems.

(a) Consider an LTI system whose response to the signal x,{r) in Figure P2.31-1(a) is

x {1 vt

2
"__I 1
1 § 1
1 0 2 t ¢ 1 2 t
{a) {b)
xa (1) xalU)
2

{e) ' {d)

x{t)

M

o 1 L t

{e)

Figure P2.31-1
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. ;:hc si;n‘al' );,(r) iilﬁ%lfﬁted in Figure P2.3l-1(b).‘ Dete.rmn.)e and sl;:tcl}(\ )carcfully

the response of the system to the input x,(¢) depicted in Fxgure P2 -1(c ) o the

(b) Determine and sketch the response of the system considered in part (a
i t) shown in Figure P2.31-1(d). . .

() lSnup:pto);:(t;at a second LTI system has the following output y{r) when the input
is the unit step x(¢) = u(f):

¥() = e~u(t) + u(—1 — 1)
Determine and sketch the response of this system to the input x(¢) shown in Figure
: 1-1 e y . . . -. .

(d) ls:‘\zx:posi )that a particular discrete-time linear (but Possnb!y not tlm]c m\[',adm:;2
system has the responses y,[n], y2{n], and y;{n] to the input sn.gnals x,[trlt1 :s):sz stém d
x,[n], respectively, as illustrated in Figure P2.‘31-2(a). If the mp?ut to this sy
x[n] ;xs illustrated in Figure P2.31-2(b), what 1s‘the output y[n.] Figure PL31.262)

(&) If an LTI system has the response y,[n] to the input x,[n] as in Fig . X

i d x,3[n]?
hat would its responses be to x,[n} and x3 . L
)] X a;articulm linear system has the prop?rty that the response to t* is cos
What is the response of this system to the input

Xi(f) =7+ 612 — 475 + /€17

vy [nl
xy In] ' 1e
1 .
DY st I..
—¢+04-J—o—o—o—o—0—o—7‘ - 0123 n
0
y2in] 2
Xz[n]
1 1
1 SN 1T
—oo_o PUDPPP =°°"oal 3 n
01 n -1
y3ln}
x50} 3 1 )
012 4
RS
-1
{a)
x[n} 2
1
~ Lo
OO 0—&- & ® n
T o

-2
(b}

Figure P2.31-2
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1+ 410

x(t) = T+ 72 ?

Hint: See part (a) of Problem 2.8,

2.32. Consider the feedback system of Figure P2.32. Assume that y[n] = 0 for n < 0.
(a) Sketch the output when x[n) = &[n).
(b) Sketch the output when x[n] = u[n].

x[n] yln) =e[n~1) r"-y[n]

Figure P2.32

2.33. (a) Let S denote an incrementally linear system, and let x,[n] be an arbitrary input
signal to .S with corresponding output »i[n]. Consider the system illustrated in
Figure P2.33-1. Show that this system is linear and that, in fact, the cverall input-
output relationship between x[n] and y{n] does not depend on the particular choice
of x,[n).

+
x[n] S yin)

x, [} vy (n]

Figure P2.33-1

(b) Use the result of part (a) to show that .S can be represented in the form shown in
Figure 2.41,

(¢) Which of the following systems are incrementally linear 7 Justify your answers, and
if a system is incrcmemally linear, identify the linear system L and the zero-input
response yy[n) or yy(r) for the representation of the system as shown in Figure

241,

) ynl = n + x[n) + 24[n + 4]

3 nf2, neven

@) ) = [(n =02+ 5 odd
k= —oa

_ ) —xn— 1)+ 3 ifx[0)>0

(W) sl = {x[n] —an—11=3  ifxj0] <o

(iv) The system depicted in Figure P2.33-2(a).
(v} The system depicted in Figure P2.33-2(b).

(d) Suppose that a particular incrementally linear system has a representation as in
Figure 2.41, with £ denoting the linear system and Yoln] the zero-input response.
Show that § is time-invariant if and only if L is a time-invariant system and y,{n}
is constant,

Signals and Systems Chap. 2

cos (rn)

x{n}——¢

e e

Chap. 2 Problems

z[n] F;I
;$ vin] 2ln] = v2{n]

+ ylnl:

win]

1 win] = x?[n]

(b}

Figure P2.33-2
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impulse, both in discrete and in continuous time, is that it can be used as a building
block to represent very general signals. This fact, together with the properties of super-
position and time invariance, will allow us to develop a complete characterization of
any LTI system in terms of its response to a unit impulse. This representation, referred
to as the convolution sum in the discrete-time case and the convolution integral in
continuous time, provides considerable analytical convenience in dealing with LTI
systems. Following our development of the convolution sum in Section 3.2 and the
convolution integral in Section 3.3, we use these characterizations in Section 3.4 to
examine some of the other properties of LTI systems. In Sections 3.5 and 3.6 we intro-
duce the class of continuous-time systems described by linear constant-coefficient
differential equations and its discrete-time counterpart, the class of systems described
by linear constant-coefficient difference equations. We will return to examine these
two very important classes of systems on numerous occasions in subsequent chapters

as we continue our development of the techniques for analyzing signals and LTI
systems.

" THE REPRESENTATION OF SIGNALS
IN TERMS OF IMPULSES

As mentioned in Section 3.0, the continuous-time unit impulse and the discrete-time
unit impulse can each be used as the basic signal from which we can construct an
extremely broad class of signals. To see how this construction is developed, let us
first examine the discrete-time case. Consider the signal x[n] depicted in Figure 3.1(a).
In the remaining parts of this figure we have depicted five time-shifted, scaled unit
impulse sequences, where the scaling on each impulse equals the value of x[n] at the
particular time instant at which the unit sample is located. For example,

=16[n + 1] = {X[_”’ n=-l
0, n#= —|
x[0], n=90
0, nx=0
x[1), n=1
0, nz1
Therefore, the sum of the five sequences, in the figure, that is
X[—2]8fn +- 2] - x{— 1] 8[n + 1] + x[0]} &[] + x[1}3[n — 1) -1- x[2) é[n — 2) (3.3)

cquals x{n] for —2 < n < 2. More generally, by including additional shifted, scaled
impulses, we can write that

x[0)o[n) = {

x[1]é[n — 1) = {

xn) = ... 4 x[=3)8[n -+ 3) + x[—2] [n - 21 x[— 1} 8[n + 1] 4 x[0] &[n}
+ x[1] éfn — 1) + x[2) 8{n — 2} + x[3) 6[n — 3] + . .. 3.4)
For any value of n only one of the terms on the right-hand side of eq. (3.4) is nonzero,

and the scaling on that term is precisely x[n]. Writing this summation in a more
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'As we will see in the next section, one of the important characteristics of the unit

o
fsi-

<

z

(a}
1 x[-218(n + 2]
_3_5—2—7 01 23 4 n
)
x[-15(n + 1]
_.1 .
—1—5—5107234~~~ n
(c)
x{0)8[n)
4-3-2-1 01 23 4 n
{d)
I x{1}6ln~1]
—4-3-2-1 0 1 2 3 4 n
le)
x(2)8{n~2]
. 2
“4-3-2-1 01 ] 3 4 n

{f)

Figure 3.1 Decomposition of a discrete-time signal into a weighted sum of (
shifted impulses. ‘ ;
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"c'o’rifpactiiorifn; we have
xfn] = 5 x[k160n — &) 3.5)

This corresponds to the representation of an arbitrary sequence as a linear combina-
tion of shifted unit impulses &[n — k], where the weights in this linear combination
are x[k]. As an example, consider x[n} = ufn], the unit step. In this case since ufk] = 0
for k < Oand uk] = 1 for k > 0, eq. (3.5) becomes

uln] = éi; o[n — k)

which is identical to the expression we derived in Section 2.4 {see eq. (2.30)). Equation
(3.5) is called the sifting property of the discrete-time unit impulse.

For the continuous-time case a corresponding representation can be developed
again in terms of the unit impulse. Specifically, consider the pulse or “staircase”
approximation, £(¢), to a continuous-time signal x(¢), as illustrated in Figure 3.2(a).
In a manner similar to the discrete-time case, this approximation can be expressed as
a linear combination of delayed pulses as illustrated in Figure 3.2(a)-(e). If we define

1
-, O<r<aA
Sa(ry ={A (3.6)

0, otherwise
then, since Ad,(r) has unit amplitude, we have the expression

50) = i x(kD) 4(t — kA)A (3.7)

From Figure 3.2 we see that, as in the discrete-time case, for any value of t, exactly
one term in the summation on the right-hand side of eq. (3.7) is nonzero.

As we let A approach 0, the approximation £(¢) becomes better and better, and
in the limit equals x(1). Therefore,

x(1) = lim 3 x(ka) 8, — kA)A (3.8)

Also, as A — 0, the summation in €q. (3.8) approaches an integral. This can be seen
most easily by considering the graphical interpretation of eq. (3.8) illustrated in
Figure 3.3. Here we have illustrated the signals x(1), 8,(t — 1), and their product.
We have also indicated a shaded region whose area approaches the area under
x(1)du(t — 7) as A — 0. Note that the shaded region has an area equal to x(mA)
wherer — A < mA < 4, Furthermore, for this value of ¢ only the term with k = m is
nonzero in the summation in eq. (3.8), and thus the right-hand side of this equation
also equals x(mA). Consequently, we have from ¢q. (3.8) and from the preceding
argument that x(1) equals the limit as A — 0 of the area under x(1)d,(r — 1). Moreover,
from eq. (2.22), we know that the limit as A —» 0 of 8,(1) is the unit impulse function
4(t). Consequently,

x(1) = j: x(1) 6(t — ) dr (3.9)

As in discrete time we refer to €q. (3.9) as the sifting property of the continuous-time
impulse. We note that for the specific example of x(r) = u(1), eq. (3.9) becomes
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x{~24)8, (t + 24)A

x{—24) H ‘

-24 -4

(b}
x(-4)8, (t + A)A
x(-4)
-4 0
lc)
x(0)8, (1}
x{4}
0 A
{d}
x(A)5 , (1~ A)

‘ [‘IX(M
A 24
(

Figure 3.2 Staircase approximation to a continuous-time signal.
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S, (t~1)
1
t—-A t T
(b}
X(r)aA“_”é
/ x(ma) - 1
7 a
i
t-a t r
"‘—A_..’ Figure 3.3  Graphical
3 raphical interpretat;
{c) . (3.9) pretation of
u(t) = fmu(r)é t— D) dp = j"
. (t — 1) dr = , St ~1)dr (3.10)

since u(r) =0 for 1 < 0and wr) =1forr>
€xpression derived in Section 2.3 [see eq. (2.23)).

) Note- that we could have derived eq. (3.9) direct!

1{71pulls; discussed in Section 2.3.2. Specificaily

signal 6(t — 1) (for ¢ fixed) is a unit im ’

i r pulse locatg:d at T = t. Thus, i
1gure 3.4(c), the signal x(1) 3(t — 1) equals X(0) 8(r — 1) [ice., it is a sc:lse:hi?n“;zl;:

att = t Wl[h areca Cquﬂ‘ to Ulc Va'ue OrX 1)]. CO“SCqUe“” the inte lill of this sj llal
( ) Y, 4 h S s g

0. Equation (3.10) is identical to the

tly using properties of the unit
as illustrated in Figure 3.4(b) the

L x(1) 8t — 1) dy = fﬁ_ xX(1) 8t — 1) dr = x(1) j TS = e = x(1)
Allflough this derivation follows dir 3
derivation given in e
and in particular ¢

cctly from Section 2.3.2 we have |
Sec 3.2, ¢ included th
qs. (3.6)~(3.9) to stress the stmilarities with the discrete-time cas:

o emphasize the interpretation of €q. (3.9) as representing the
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Lol ey . L e e FERs g iy G

x(r}

(a)

8t-1)

-

(b}

x{r)8{t~7) = x{t)8(t - 7}
x(t)

Figure 3.4 (a) Arbitrary signal x(1);
(b) impulse &(r — 1) as a function

T of t with 1 fixed; (c) product of these
(c} two signals.

signal x(r) as a “sum” (i.e., an integral) of weighted, shifted impulses. In the next two
sections we use this representation of signals in discrete and continuous time to help
us obtain an important characterization of the response of LTI systems.

3.2 DISCRETE-TIME LTI SYSTEMS: THE CONVOLUTION SUM

Consider a discrete-time linear system and an arbitrary input x[»] to that system. As
we saw in Section 3.1, we can express x{n] as a linear combination of shifted unit
samples, in the form of eq. (3.5), which we repeat here for convenience.

[eq. (3.5)] xin} = .:Z.-.. (k] 8[n — k]

Using the superposition property of linear systems [egs. (2.75) and (2.76)], the output’
y[n] can be expressed as a linear combination of the responses of the system :o shifted-

“unit samples. Specifically, if we let h,[n] denote the response of a linear system to the

shifted unit sample d[n — k], then the response of the system to an arbitrary input
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B2

L. anb  : _resse....

yin] = kﬁ;’ (k) h, ] G.11)

According to eq. (3.11), if we know the response of a linear system to the set of
displaced unit samples, we can construct the Tesponse to an arbitrary input. An
interpretation of eq. (3.11) is illustrated in Figure 3.5, In Figure 3.5(2) we have illus-
trated a particular signal x[n] that is nonzero only forn = —1,0, and 1. This signal
is applied as the input to a linear System whose responses to the signals &[n + 1],
d[n), and é[n — 1] are depicted in Figure 3.5(b). Since x[n] can be written as a linear
combination of 8[n +- 1], 8[n), and d[n — 1], superposition allows us to write the
fesponse to x[n] as a linear combination of the responses to the individual shifted
impulses. The individual shifted and scaled impulses that comprise x[n] are illustrated

are pictured on the right-hand side. Finally, in Figure 3.5(d) we have depicted the
actual input x{n], which is the sum of its components in Figure 3.5(c) and the actual
output y[n], which by superposition is the sum of jis components in Figure 3.5(c).
Thus, the response at time » of a linear system s simply the superposition of the
responses due to each successive input value,

In general, of course, the responses hy[n] need not be related to each other for
different values of £, However, if the linear system is also time-invariant, then

hin] = hy[n — k] 3.12)
Specifically, since Oln — k} is a time-shifted version of &[n), the response A, [n] is a

x[n)

h_yln) ho [n] ) hy [n]

(b}

Figure 3.5 Graphical interpretation of the response of a discrete-time linear
system as expressed in cq. (3.11).
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x{-118(n+1]

x[0] §{n}

x[1)&[n~1)

x[n)

i S

{c}

{d}

Figure 3.5 (cont.)

G
x[-11h_,{n

x[1]hy [n]

y(n)
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tifuc-suifted chrsmn of ‘hgln}. For notational convenience we will drop the subscript

on fi,[n] and define the unit impulse (sample) response, hn], as

hln] = holn) (3.13)
(i.e., 8[n} — h[n)). Then for an LTI system, eq. (3.11) becomes
Yl = 5 xlkMhin — k] (3.14)

This result is referred to as the convolution Sum or superposition sum, and the operation
on the right-hand side of eq. (3.14) is known as the convolution of the sequences
x[n] and A{n] which we will represent symbolically as y[n] = x[n] + h{n]. Note that
¢q. (3.14) expresses the response of an LTI System to an arbitrary input in terms of
its response to the unit impulse. From this fact we immediately see that an LTI
system is completely characterized by its impulse response. We will develop a number
of the implications of this observation in this and in the following chapters.

The interpretation of eq. (3.14) is similar to that given previously for eq. (3.11),
where in this case the response due to the input x{k] applied at time & is x[k] hln — k),
which is simply a shifted and scaled version of Afn]. As before, the actual output is the
superposition of all these responses. Thus at any fixed time n, the output YIn] consists
of the sum over all values of & of the numbers x{k} A[n — k). As illustrated in Figure
3.6, this interpretation of €q. (3.14) leads directly to a very useful way in which to
visualize the calculation of YIn] using the convolution sum., Specifically, consider the
evaluation of the output for some specific value of #. In Figure 3.6(a) we have depicted
hlk], and in Figure 3.6(b) we have shown hln — k] as a function of k with n fixed.
Note that Aln — k] is obtained from h{k] by reflection about the origin, followed by a
shift to the right by n if » is positive and to the left by [n}if n is negative. Finally, in
Figure 3.6(c) we have illustrated x[k). The output y[n] for this specific value of n is then
calculated by weighting each value of x[k] by the corresponding value of Afn — k),
that is, by multiplying the corresponding points in Figure 3.6(b) and (c), and then
summing these products. To illustrate this procedure, we now consider two examples,

hik]

] e—

{a)

Flgure 3.6 Interpretation of €q. (3.14). The signal Aln — k) (as a function of &
with a fixed) is obtained by reflection and shifting from the unit sample response
hlk). The response ¥[n) is obtained by multiplying the signals x[k] and hin — k)
in (b) and (c) and then by summing the products over all values of k.
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SRR C e Eerd oy it
hin ~X)
r?tt!tITTTTIIIIIII]]] ]]IITT?-
0 n k
(b}
x[k]
TI]]I' IIIIITf‘
0 k
{c)
Figure 3.6 cont.
Example 3.1 N
Let us consider an input x[x] and unit sample response Afn] given by
x[n] = arufn}
Hn] = uln]
i — —1 — k], and A1 — &},
i 1. In Figure 3.7 we have shown Afk), h[—k], Al ; s
::;xtlig :[:fk] forn g= 0, —1, and -1, and Aln — k] for an arbltra.ry pc_)smve value
of n ar"nd an arbitrary negative value of n. Finally, x[k] is illustrated in Figure 3.7.(g).
From this figure we note that for n < 0 there is no overlap between the nonzero points
in x{k] and A[n — k). Thus, for n < 0, x{k}h[n — k] = 0 for all values of k, and hence
yn] =0, n < 0. For n > 0, x[k]Jh{n — k] is given by
X ok, 0<k<n
Hhkipn - K = {O, - otherwise
Thus, for n > 0,
n) =3, a*
K=0
and using the result of Problem 2.8, we can write this as
) = } :2‘“ forn>0
79
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[ h{-1 -k])

-10
{c) k

n>0

(e} k

N k

x[k] = a*ulk]

k

{g)

Figure 3.7 Gra

phical interpretation i
for Bxammlen p of the calculation of the convolution sum

[ A :
Thus, for all n, y[n] is gi

[T
! : ST |

ven by
it = (F =25 )ut)

and is sketched in Figure 3.8.

yin = (1282720 uga

1-a

0 n

Figure 3.8 Output for Example 3.1.

Example 3.2
As a second example, consider the two sequences x{n] and A{n] given by

1, 0o<<n<4
0, otherwise
an, 0<n<L6

0, otherwise

x{n] = {

Hln} = {

These signals are depicted in Figure 3.9. In order to calculate the convolution of these
two signals, it is convenient to consider five separate intervals for n. This is illustrated
in Figure 3.10.

Interval 1. For n < 0 there is no overlap between the nonzero portions of

x[k] and A[n — k], and consequently y[n} = 0.

Interval 2. For 0 < n < 4 the product x[k}h[n — k] is given by
ok, 0<k<n
0, otherwise

_x[k]h[n — k] = {

Thus, in this interval,
"
)’[’1] = Z an-k
k=0
Changing the variable of summation from ktor =n — k we obtain

. ] ,_l—d"’l
Ar}= 2 o =74
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(a)

h{n)

0 12345¢67

(b}
Figure 3.9 The signals to be convolved in Example 3.2,
Interyal 3.

n—-k
x{k]h[n—k]:{a R 0< k<4

0, otherwise
Thus, in this interval

4 4 —_ -5 n—4 _ wn+l
y[n] = Z ark — o Z (a-—')k = a__n; ad = o arr
k=0 k=0

—a! 1—-a

Interval 4. Forn> ¢ butr —6<4 (ie, for 6 < n < 10),
o=k, —-0)<k<4
K — k] = { “-O<ks
0, otherwise
so that

4
Any= 3 arx

=n—6

Lettingr =k — » + 6 we obtain

— a= e

I—e 1 =71
Interval 5. For (n — 6) <4, or equivalently » > 10,
between the nonzero portions of x{k] and A{n — k), and hence

ynl=0

10-» 10-n 1 — =11 an-4 — o7
n) = s = g6 X1y = g6
Hn) z Z (@)

Linear Time-Invariant Systems

M
0123435

Forn> 4butn — 6 <0(e,4 <n<e), x[kJA{n — k]is given by

there is no overlap

Chap. 3

g ¢ s
Se P i i Ho nd
S i,
L xlk]
0o 4 ,
(a)

hin—x)
6<n<10

hin=) n>10
. J”Im-
e S ¥ n k
" n-6

i i le 3.2.
Figure 3.10 Graphical interpretation of the convolution performed in Examp!
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[ .o mmarg. ithen).. . bt o b
0, n<o
—_— gt

;‘*» 0<n<4
oar—4 an+1

yn) = T 4<n<é6
o4 — g7
T 6<n<10
0, 10 < n

which is pictured in Figure 3.11.

yin)
0 4 6 10

n

Figure 3.11 Result of performing the convolution in Example 3.2,

These two examples illustrate the usefulness of
the convolution sum graphically. In the remainder
number of important properties of cony
occasions.

The first basic
that is,

interpreting the calculation of
of this section we €xamine a
olution that we wil] find useful on many

property of convolution is that it js 4 commutative operation,

x[n] * A[n] = hn} » x[n] ' (3.15)
This is proved in a straightforward manner by means of a substitution of vanables in
eq. 3.14). In particular, letting r = n — % or, equivalently, k = n — roeq. (3.14)
becomes

x[n] » hln) = ‘E x[k} hin — k] = 2 xn— 4 hr) = hin] « x[n) (3.16)
Thus, we see that with this substitution of variables, the roles
interchanged, According to ¢q. (3.16), the output of an LTI system with input x{n)
and unit sample response Afn] is identical to the output of an LTI system with input
h[n] and unit sample responsc x{n]. For example, we could have calculated the convo-
lution in Example 3.2 by first reflecting and shifting x[k], then by multiplying the
signals x[n — k] and hlk), and finally by summing the products for all values of £.
A second useful property of convolution is that jt js associative, that js,

x[n) > (hy[n) = haln]) = (x[n) hy[n)) « hyn) 3.17)
This property is proven by a straightfor
involved, and an example verifying this

of x{n] and An] are

ward manipulation of the summations
property is given in Problem 3.5. The
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associative pro is indicated in Figure 3.12(a) and (b). The
i tion of the associative property is in . 3.1 .
ml'tt::i::t:ilown in these block diagrams are LTI systems with the 1.nd|cated }Jmt ;?gxlptl;
:Z:ponses This pictorial representation is a particularly conl;/er?lt:nttzlv:’xyr;::t v:hat 0
] i i nd it also reemphasizes
te LTI systems in block diagrams, a >mph '
?nir;)?ﬂsc response of an LTI system completely characterizes its behavior.

w(n]
x[n} hy In) h, [n] > y[n}

la)

x[n] =1 h[n} = h,[n} * hy{n] pe————y(n]

{b)

x[n} =———===p{ h(n} = h,[n] * t,[n] v(n)

{c}

Figure 3.12 Associative prf)pcrty O.f
convolution and the implication of this
and the commutative property for the
{d) series interconnection of LTI systems.

x[n} h,[n] hy {n} > y(n]

In Figure 3.12(a), yln) = win] » hyln)
= (x[{n] * h,[n]) * hy[n]

In Figure 3.12(b), y[n] = x{n] * A[n)
= x[n] * (h,[n] * hs[n])

ies i i in
According to the associative property, the series nonter_connccu;nbof ';'};,cist::nsi?;?:er-
Figure 3.12(a) is equivalent to the single systenf in Figure 3.12(b). in be gener
l'g rbitrary number of LTI systems in cascade. Also, as a conseq nes o
o [O.'an' p roperty in conjunction with the commutative pr9p§x‘ty of convo uf thé
e assocu;twe'tpsa& le response of a cascade of LTI systems is independent ot !
o OV_CfaI Uf;: the s itcms are cascaded. This can be seen for the case of two sys emo}
Ofd?f p Wh'lf rence {o Figure 3.12. From the commutative property, the syste_mtive
agam b3y lr26(lf) is equivalent to the system of Figure 3.l?(c). Then, fromht_h;:1 at‘s;osx:te e
;l'i::ty., this is in turn equivalent to the system of Figure 3.12(d). whic
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{ . ade¢ . . natio. _..wo Sowaus as n £ v o |
. ot lgure 3.12(a) but with 14

{ e ord

ascade 3nterchanged. We note also that because of the associatj e

convolution, the expression He property of

_ ' Y] = X{n] » h,[n] » h, [n]

1s unambiguous. That is, according to eq. (3.17), i

Wwe convolve these signals, o

A third Property of convolution j (SLril

. A th nisth j i

ton distris 25 adition T S the distributive property, that is, that convolu-
. Xn] # (hy[n) + hy[n]) = X{n] * Ay[n) + x[n] « hy[n)

This can also be verified in a straig

hz.as a useful interpretation, Cons

Figure 3.13(a). The two s

are added.

htforward manner Agai istributi
' - Agam, the distrib
ider two LTI syst 26 fndin

ystems A,[n] ang hy[n] have i

! operty
ems in Parallel, as indicated jn
dentical inputs and their outputs

x[0] —— §

x[n] hy[n] + b, (n) yln]
Figure 3.13 Interpretation of the dis-

o (ribun‘ve. property of convolution for a
paralle] Interconnection of LTI systems
Since

. Yiln} = x[n] » h,[n)
Yaln] = x{n} » h,[n)
the system of Figure 3.13(a) has output

Hn) = x{n] h[n) + x[n] * hy[n]

corresponding to the right-hand side of €q. (3.19). The system of Figure 3 13(b) h
. as

property of convolution, a p:
:mglc LTI.syslem whose unit sample response is the
€sponses in the paralle] combination,
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In this section we have derived several important results for discrete. ume LTI
systems. Specifically, we have derived the convolution sum formula for the output of
an LTI system, and from this have seen that the unit sample response completely
characterizes the behavior of the system. We have also examined several important
properties of convolution (commutativity, associativity, and distributivity) and from
these have deduced several properties concerning the interconnection of LTI systems,
It is important to emphasize that the results in this section hold in general only for
LTI systems. In particular, the unit impulse response of a nonlinear system does nor
completely characterize the behavior of the system. For example, consider a system
with unit impulse response

1, n=20,1

3.22
0, otherwise G2

o = |
There is exactly one LTI system with this as its unit impulse response, and we can
find it by substituting eq. (3.22) into the convolution sum, eq. (3.14), to obtain

Mnl = x{n) + x{n — 1 (3.23)

However, there are many nonlinear systems with this response to the input §fn]. For
example, both of the following systems have this property:

ynl = (x[n] + x{n — 1))
Yn} = max (x[n], x[{n — 1])

In addition, it is not true in general that the order in which nonlinear systems are
cascaded can be changed without changing the overall response. For example, if we
have two memoryless systems, one being multiplication by 2 and the other squaring
the input, then if we multiply first and square second, we obtain

Vn) = 4x{n)?
However, if we multiply by 2 after squaring, we have
y[n) = 2x{n)?

Thus, being able to interchange the order of systems in a cascade is a characteristic
particular to LTI systems. In fact, as shown in Problem 3.20, we nezd both linearity
and time invariance in order for this property to be true in general,

As the preceding discussion indicates, discrete-time LTI systems have a number
of propertics not possessed by other classes of systems. As we will see, these properties
help to facilitate the analysis of LTI systems and allow us to gain a detailed under-
standing of their behavior. The basis for our initial analysis in this section into the
properties of LTI sysiems was the convolution sum, which we derived using the
properties of superposition and time-invariance together with the representation of
input signals as weighted sums of shifted impulses. In the next section we derive an
analogous representation for the response of a continuous-time LTI system, agwin
using superposition, time invariance, and the sifting property of the unit impulse,
In Scction 3.4 we use the representations in this and the next section to obtain very
explicit characterizations for LTI systems of the properties introduced in Section 2.6.
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3 c'um//vubus-r/ME LTI SYSTEMS :
THE CONVOLUTION INTEGRAL

[

In analogy with the results derived and discussed in the preceding section, the goal
of this section is to obtain a complete characterization of a continuous-time LT
system in terms of its unit impulse response. Specifically, consider a linear system with
input x(¢) and output y(¢). In Section 3.1, eqgs. (3.8) and (3.9), we saw how an arbi-
trary continuous-time signal could be expressed as the limiting form of a linear
combination of shifted pulses:

X0 = lim 5 x(kA) 8,(t — ka)a (3.24)

where d,(¢) is given by eq. (3.6). Proceeding in an analogous manner to Section 3.2,
let us define Iﬂ,,(t) as the response of an LTI system to the input 8,(r — kA). Then,
from eq. (3.24) and the superposition property of linear systems,

YO =lim 5 xka) hyu (325)

3.5. In Figure 3.14(a) we have depicted the input x(¢) and its approximation £(1), while
in Figure 3.14(b)~(d), we have shown the fesponses of the system to three of the
weighted pulses in the expression for £(t). Then the output p(r) corresponding to £(r) is

Sa(r — kA) corresponds to a shifted unit impulse as A — 0, the response /i,,,,(t) becomes
the response to such an impulse in the limit. Therefore, if we let h,(t) denote the
response at time ¢ to the unit impulse 8(s — 7) located at time 7, then

YO =lim 55 x(ka) h,,(0a (326)

As A — 0, the summation on the right-hand side becomes an integral, as can be seen
graphically in Figure 3.15. Therefore,

W) = j: x(7) h (1) dr (.27

The interpretation of €q. (3.27) is exactly analogous to the one for eq. (3.25).
As we showed in Section 3.1, any input x(¢) can be represented as

x(t) = f: x(@) 8(t — 7) dr

That is, we can intuitively think of x(t) as a “sum” of weighted shifted impulses,
where the weight on the impulse §(t — 1) is x(t) dr. With this interpretation, eq.
(3.27) simply represents the superposition of the responses to each of these inputs,
and, by linearity, the weight on the response h(t) to the shifted impulse §(r — 1) is
also x(t) dr.

Equation (3.27) represents the general form of (ae response of a linear system
in continuous time. If ip addition to being linear the system is also time-invariant,
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Figure 3.14 Graphical interpretation of the response of a continuous
linear system as expressed in eq. (3.25).
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Shaded area = x{kA)h, {1}

X i
R e ; Figure 3.15  Graphical illustration of
egs. (3.26) and 3.27).

then h(t) = ho(t — 1). Agai .
v - Again for notational i :
and define the unir impulse response ) o convenience we will drop the subscript

. h(t) = hy(z)
[i-e., 6(t) — A(®)]. In this case, eq. (3.27) becomes (3:28)

Yt) = j_’: x(Oh(t — 1) dr (3.29)

.Equatloﬂ 3.29 y Iele[led to as [hC COnVOIlI’[OII l’"”e ral or the su '3 ion inte ral
- - 8. l r h Supe, 051‘[‘ )
1S tlle cOn"]luOuS't“]le C.Ountel‘part Of the COHVO]UtiOn sum Or eq (3 14) alld corre-~
Spo“ds 'to.a leICSCl)laIIOH Or a continUOUS'[imc L] I S)’Stem iﬂ terms‘ Of itS response
to a lm.ll mlpulse. Ihe CODVOlullon Of two Signals X(’) and h([ W“ € repre
y y ) l b T pl’ Sented
)’(‘) X(l) * ‘1(1) 3 30
h]le (] ha hOSen t [+ me s ] (0] (IC ote 0o Ie-[]me( a‘ nd)
W Wi ve C O use th sa ymbo *
) s ] t not b i i
' th dlSCrc
C()nt“]uous-tlﬂlc C()nvolutloﬂ, thC context Wi“ gencra”y bc Sufﬁc‘ tt i i
en (o] dlStlngulsh
Cont. -ti i i T 1 S 1 T Screte-
) muous-time con VOIU“OH Sat]SﬁCS the same p OPC tieS di CuSSCd [o] dl cret

time convolution. In i i
. particular, continuous-t ion i
. - - . . - me co J
ciative, and distributive. That is, rvolution is commutave, asso-

x(8) * h(t) = hr) » x(t) (commutativity) 3.31)

x(0) % [hy(0) * h(0)] = [x(2) * (1)) * hy (1) (associativity) (3.32)
t - .
T:( )+ [A, (1) + h (D] = [x(e) » h (1)) + [x(2) * hy(0)) (distributivity) (3.33)
o ::;Etr;;;er:es all have the same implications as those discussed for discret t:
« - AA§ a consequence of the commutatjve property, the roles of input :; lm?
> gna

overall i i
over m‘n:lr;{;1;lfs‘¢:ur]cs;zi(?nsc-: is .unaffected by the order of the cascaded systems. Finall
oyt of s;:ngllestnb?nve ;;lroperty, a parallel combination of LTI S).lst;?nas xys’
- System whose impulse response j indivj
lmpullsc‘rcsponscs in the parallel configuration onse s fhe sum of the individuat
tisi i i |
mportant to emphasize again that these properties are particular to LTI
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PRt = 2t

S el ot
systems. Just as in discrete

W Vi . B P RTS y e
time, 2 nonlinear continuous-time system is ot completeiy
characterized by its response to a unit impulse. Also, the overall impulse response of
a cascade of two nonlinear systems (or even linear but time-varying systems) does
depend upon the order in which the systems are cascaded.

The procedure for evaluating the convolution integral is quite similar to that
for its discrete-time counterpart, the convolution sum. Specifically, in eq. (3.29) we see
that for any value of ¢ the output y(f) is a weighted integral of the input, where the
weight on x(z) is At — 7). To evaluate this integral for a specific value of f we first
obtain the signal h(t — 1) (regarded as a function of  with ¢ fixed) from A(t) by a
reflection about the origin plus a shift to the right by ¢ if ¢ > 0 or a shift to the left
by |¢|for t < 0. We next multiply together the signals x(r) and h(t — 1), and y(t) is
obtained by integrating the resulting product from 7 = —oo to 7 = +o0. To illus-
trate the evaluation of the convolution integral, let us consider two examples.

K

Example 3.3
Let x(f) be the input to an LTI system with unit impulse response A(t), where

x(t) == e~*u(t)
h(t) = u(t)

where a > 0. In Figure 3.16 we have depicted the functions A(t), x(1), and A(t — 1)
for a negative value of ¢ and for a positive value of 1. From this figure we see that for
t < 0 the product of x(t) and A{t — t) is zero and consequently y(f) is zero. For ¢t > 0,

e 0<t <t

x(Dh(t — 1) = {

0, otherwise

From this expression we can compute y(f) for ¢ > 0 as

t 1 H
1) = ~ar d = — —_p—ar
»(t) L e t =€ .
=L e
Thus, for all ¢, y(t) is
o) = L — emutr)

which is pictured in Figure 3.17.

hir)

(a)

Figure 3.16 Calculation of the convolution integral for Example 3.3.
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Figure 3,17 Response of the system in Example 3

-3 with impulse response
A1) = u(t) 1o the input x(¢) = ealy(r), :

Example 3.4

Consider the convolution of the following two signals:

1, O<r<rT
x(¢t) ==

0, otherwise

1, O0<r<2r
h(t) = { .

0, otherwise

As in Example 3.2 for discrete-time convolution

, it is convenient to consider the
evaluation of y(¢+) in separate intervals. In Figure 3.

18 we have sketched x(1) and have
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Figure 3.18 Signals x(t and A(t ~ 1) for different values of 7 for Example 34,
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X(Vh(t — 1) =0 and consequently »i) =

x(r)hit~ 1)
) o<t<T
ot 7
(a)
x(r)h{t~ 7}
t T<i<or
t-7T
o T T
(b)
x(t)h{t - 1)
2T
t-7T 2T <1< 3T
. Il;‘igure 3.19  Product X(Dh(t — 1) for
- Xample 3.4 for the three ranges of
o » values of / for which this product is not

identically zero. (See Figure 3.18)

tion can be carried out graphically,

0,

with the result that

r<o
i, O<r<T
A =Tt — T3, T<r<or
TP TR AT, T <y <ap
0, T <y

which is depicted in Figure 3.20,

yit)

0 T 21 37 : pgure 320 Signal M) = x(r) » h(y)

for Example 3.4,
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From these examples we see, as we did for discrete-time convolution, that it is
generally useful to consider the graphical evaluation of the convolution integral.

3.4 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS

In the preceding two sections we developed the extremely important representations
of continuous-time and discrete-time LTI systems in terms of their unit impulse
responses. In discrete time this representation takes the form of the convolution sum,
while its continuous-time counterpart is the convolution integral, both of which we
repeat here for convenience.

Yol = B sklhn — k= 5 HkIxtn — k] = x[n] » Hr] (3.34)

ey = J': x(D)h(t — 1) dr = j_: BEx(t — 1) dt = x(1) » () (3.35)

As we have emphasized, one consequence of these representations is that the charac-
teristics of an LTI system are completely determined by its irapulse response. We
have already deduced properties concerning series and paralle! interconnections of
LTI systems from this fact, and in this section we use the characterization of LTI
systems in terms of their impulse responses in examining sev:ral other important
system properties.

3.4.1 LY/ Systems with and without Memory

Recall from Section 2.6.1 that a system is memoryless if its output at any time depends
only on the value of the input at that same time.-From eq. (3.34) we see that the only
way that this can be true for a discrete-time LTI system is if Ajn] = 0 for n 5= 0. In
this case the impulse response has the form

h{n) = K §[n} (3.36)
where K = h[0] is a constant, and the system is then specified by the relation
yn] = Kx[n] (.37

If a discrete-time LTI system has an impulse response Afn] which is not identically
zero for n % 0, then the system has memory. An example of an LTI system with
memory is the system given by eq. (3.23). The impulse response for this system, given
in eq. (3.22), is nonzero forn = 1.

From ¢q. (3.35) we can deduce similar properties of continuous-time LTI
systems with and without memory. In particular, a continuous-time LTI system is
memoryless if 4(r) = O for v 5« 0, and such a memoryless system has the form

) = Kx(1) (3.38)
for some constant K. This system has the impulse response

h(t) = Ké(1) 3.39
Sec. 3.4 Properties of Linear Time-Invariant Systems 95
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unit impulse. In this case, the convolution sum and integral formulas imply that
X[n] = x[n] » &[]
- . x(8) = x(f) (1)
which are nothing more than the familiar sifting properties

x[n] = k_’z_j_ x[K] 8[n — k)

x(f) = f_’: x(®) 8(t — 1) de

3.4.2 Invertibility of LT/ Systems

esponse A,(f) so that 2(1) = x(1) i
eh _ = , that is, so that th ies i ion in Fi
1.21(a) is identical to the identity system in Figure ;:28;“63 thCFCOHHCCUOﬂ e

esponse in Figure 3 21Qa) is Aty » h (
' ‘ . 1), we have th iti i
Or it to be the impulse response of tlhe inverse systzr(x:lo'ndmon hath most sty

h(t) = hy(e) = 8(r) (3.40)

imilarly, in discrete time th i
. . ¢ unit sample response of the
ystem with unit sample response A[n] must salt)isfy ne fmverse sysem for i

hln) * hy[n) = 8n)

x(t) h{t) L m 2(1)

{a)

Figure 3.21 Conce i
: pt of an invers
it ldentn;r ;Ymm (0 system  for  continuous-time LT;
t Systems. The system with impulse
response Ay(t) is the inverse of the
system with impulse response h(t)
if
{b) Bt) + hi(e) = 8(r). ©
tample 3.5
C T .
onsider the LT] system consisting of a pure time shift

W) = x(t — t,) (3.42)
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Such a system is called a delay if t, > O and an advahcc if 1o <0 "I'he xmpulsc
response for this system can be obtained immediately from eq. (3.42) by taking the

input equal to &(f),
h(e) = 8(t — 1) (3.43)
Therefore,
x(t — to) = x(D* 50t — 1) @.44)

That is, the convolution of a signal with a shifted impulse simply shifts the signal.
The inverse for this system can be obtained very easily. All we must do to recover
the input is to shift the output back. That is, if we take
hy(1) = 8t + )
then
B(0) » hy(£) = 6@t — to) » 8(t + 15) = O(1)
Similarly, a pure time shift in discrete time has the unit sample response d[n — n,]
and its inverse has sample response d[n + n,).
Example 3.6
Consider an LTI system with unit impulse response
h{n} = uln] (3.45)
Then using the convolution sum, we can calculate the response of this system to an
arbitrary input:
4o
Anl = k?:_] x{kYuln — K] (3.46)
Since uln — k] equals O for (n — k) < 0 and I for (n — k) = 0, eq. (3.46) becomes
Mnl= 3 i (3.47)
koo

That s, this system, which we first encountered in Section 2.6 [see eq. (2.54)), is a
summer or accumulator that computes the running sum of ali the values of the input
up to the present time. As we saw in Section 2.6.2, this system is invertible, and its

inverse is given by -
Hn} = x{n] — xin — 1] (3.48)

which is simply a first difference operation. If we let x{n] = &{n, we find that the impulse
response of the inverse system is
ky[n) = 8fn} — 8[n — 1] (3.49)

That this is the unit sample response of the inverse to the LTI system specified by eq.
(3.45), or equivalently by eq. (3.47), can be verified by dire:t calculation:

H{n} # by[n] = uln] * {Ofn] —~ &[n ~ 1]}

= uln] + &[n) — ulr} *» O[n — 1} (3:50)
= uln) — uln — 1]
= d[n}

3.4.3 Causality for LTIl Systems

In Section 2.6 we introduced the concept of causality—the output of a causal system
depends only o.. the present and past values of the input. By using the convolutior
sum and integral given in egs. (3.34) and (3.35), we can relate t5is property to a
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¢¢ . -ondi i ifi; pOnS: i
Q.. .- 1L operty Lo he inpuse respunse of an L1 system. Speciﬁcaily in
¥[n] must not depend on x[k] for

order for a discrete-time LTI system to be causal
k > n. From €q. (3.34) we see that this will be th:: case if

‘ hln] =0 forn < (3.51
In this case, €q. (3.34) becomes o

Ml = 3 k] hn — k] = ki; hlk] x{n — k] (3.52)
Similarly, a continous-time LTI system is causal if

. . h(t) =0 forr <0 (3.53)
and in this case the convolution integral is-given by ‘

W) = L‘ xX(t) h(t — 1) dr = f " () (0 — 1) dr (3.54)

Both the summer (Aln]) = ufn]) and its i °
= nd its inverse (4ln) = 6[n) — i
i : [n] — &[n — 1)), i
ir:alrlr;g:lc 3.6, satisfy eq. (3.51) and therefore are causal. The [pure t]i)mge:;g"?ed'l;
p response A(t) = §(r — t,) is causal for fo = 0 (when the time shift is a oy

but is noncausal for Iy < 0 (in which case the time shift is an advance) aete,

3.4.4 Stabijlity for LTt S ystems

R . .

b:c:gego(r)rlxniicttloln 2.6(.14 that a system is stabfe if every bounded input produces a
| ou - 10 order to determine conditions und ic

stable, consider an input x[n] that is bounded in magnitudeer‘ e LT systems are

Ix[a}]l] < B foralln (3.55)

» 8 > g
Ihe“ usin the COHVO]U(IO]] sum, we obta“l an CXpICSSlOD 101 the ma l“tude O‘ the

|inl) =| 55 k] xfn — k) (3.56)

Since the magpitude of a
' sum of a set of numbers js n 1
magnitudes of the numbers, we can deduce from €q. (3 g;{ﬁii e the sum of he

bill< 8 1kl — &) (3.5)

‘ q' ( . ) ,
I rom e 3 55 we havc “lat Xl” k' << B 10[ a” Va]ues 0‘ k alld n I ogethe
( ) , . hlS t g th r

bidl<s _‘2_: [Hk)  for all (3.58)

From this we can co

nclude that j it i i
mable, that ¢ at if the unit Impulse response is absolutely sum-

400

2 | Hlk]] < oo (3.59)

then eq. (3.58) implj i i i
: ) implies that Yn]is bounded in magnitude and hence that the sys

table, Therefore, o is

€q. (3.59) is a sufficient condition to guarantee the stability of a
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discrete-time LTI system. In fact, this condition is also a necessary condition, since,

as shown in Problem 3.21, if eq, (3.59) is not satisfied, there are bounded inputs that
result in unbounded outputs. Thus, the stability of a discrete-time LTI system is

completely equivalent to eq. (3.59).
In continuous time we obtain an analogous characterization of stability in terms

of the impulse response of an LTI system. Specifically, if | x(¢)| < B for all ¢, then, in
analogy with egs. (3.56)-(3.58), we find that

1501 =| [ hawxte — 0y ds
S INLCTEIE:

< Bj__ | h(z)| dt
Therefore, the system is stable if the impulse response is absolutely integrable,
[T1h@) de < o (3.60)

and, as in discrete time, if eq. (3.60) is not satisfied, there ars bounded inputs that
produce unbounded outputs. Therefore, the stability of a continuous-time LTI
system is equivalent to eq. (3.60).

As an example, consider a system that is a pure time shift in either continuous

or discrete time. In this case

+oo paed

X | = 3 |6(n — nol| =1

j_*:gh(r) [dr = j_’:w(r — ) =1

and we conclude that both these systems are stable. This should not be surprising,
since if a signal is bounded in magnitude, so is-any time-shiftec version of that signal.

As a second example, consider the accumulator described in Example 3.6. As
we discussed in Section 2.6.4, this is an unstable system sinze if we apply a con-
stant input to an accumuiator, the output grows without bcund. That this system
is unstable can also be seen from the fact that its impulse response u[n} is not absolutely

summable:
5 1l = 55 ul) = oo
Similarly, consider an integrator, the continuous-time connterpart of the

accumulator:
() = f x(t) dr (361

This is an unstable system for precisely the same reason as that given for the accu-
mulator (i.e., a constant input gives rise to an output that grows without bound). The
impulse response for this system can be found by letting x(f) == J(¢), in which case we
find that

() = j " 8(x) di = u(r)
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+uo o~
[ 1@ = [ e =
. 0
which corroborates our statement that eq, (3.61) represents an unstable system

3.4.5 The Unit S tep Response of an LTI § ystem

SI;SIS;;l?;efeding ;;aArts of this section we have seen that the representation of an LTI
1em 10 terms of its unit impulse response allows us to obtain ver explicit ¢

tt}e]:ziZZC?O?fO?y:;eET?ropertles. Specifically, since hln] or A(r) comp{et'cll; detcrhr;ir:ecs
and cavsal system, we ha\fe been able to relate properties such as stabilit

properties of those signals, to deduce that if hln] = 8[n — .
.thc system must be a time shift, to determine that A(r) = 1t rponde e
Integrator, and so on. ) eor
o LT’{I:;r;exrsn :n%;]l}er' sng;:al th.at 1s also used quite often in describing the behavior
v ;((,) _s is the Wumt step response, s{n] or s(f), that is, the output when
ot © thercf— u(t): e will ﬁnd it gseful on occasion to refer to the step
Convom}on-sum " ore it is \'avorthwhlle relating it to the impulse response. From the
LTI oyt -Sum epresent?tlon, we knf)w that the step response of a discrete-time

ystem is the convolution of the unit step with the unit sample response

s[n} = uln) » Aln]
Ho i
wever, by the commutative property of convolution, we know that sfn)

= h[n] * uln], and therefore s[n] can be viewed as the response of a discrete-time LTI

system with unit sample res i
ter ponse un] to the input Afn). As i
unit tmpulse response of an accumulator, Therefore vl e have seen, rlis the

sip = 37 k] (3.62)

ko~

responds to an

From this equation and from Example 3.6 we see that hfn] ¢

s[n] using the relation o be recovered from

hln) = s{n] — s{n — 1] (3.63)

s = " h(e) dr
and, from eq. (3.64),t f"“ (3.64)
d.
o= %’(’Q =0 (3.65)

Ihcre ore, 1n bo n [o] a d dlSClth time l]le uni €p re: ponse ¢ o l)c
f y 1 b th continu us an > t st S an alS

8! S . .
']thU hout thi book we will use both of the notations indicated in eq. (3.65 to dcuolc
first dCllVa“VCS. Analogous notation will also be used for hlgh0| dcllVﬁllVCS ( )
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used to characterize an LTI system, since we can calculate the unit impulse response
from it. In Problem 3.14 expressions analogous to the convolution sum and convo-
lution integral are derived for the representation of an LTI system in terms of its

unit step response,

. 3.5 SYSTEMS DESCRIBED BY DIFFERENTIAL

AND DIFFERENCE EQUATIONS

An extremely important class of continuous-time systems is that for which the input
and output are related through a linear constant-coefficient differential equation.
Equations of this type arise in the description of a wide variety of systems and physical
phenomena. The response of an RLC circuit can be described in terms of a differential
equation, as can the response. of a mechanical system containing restoring and
damping forces. Also, the kinetics of a chemical reaction and the kinematics of the
motion of an object or vehicle are usually described by differential equations.

Correspondingly, an important class of discrete-time systams is that for which
the input and output are related through a linear constant-coefficiznt difference equation.
Equations of this type are used to describe the sequential behavior of many different
processes, including return on investment as a function of time and a sampled speech
signal as the response of the human vocal tract to excitation ;rom the vocal cords.
Such equations also arise quite frequently in the specification of discrete-time systems
designed to perform particular desired operations on the input signal. For example,
the system discussed in Section 2.6 [see eq. (2.64)] that computes the average value
of the input over an interval is described by a difference equation.

Throughout this book there will be many occasions in which we will consider
and examine systems described by linear constant-coefficient diffzrential and difference
equations. In thi. section we introduce and describe these classes of systems, first in
continuous time and then in discrete time. In subsequent chapters *.~ develop addi-
tional tools for the analysis of signals and systems that will provide us with useful
methods for solving linear constant-coefficient differential and difference equations
and for analyzing the properties of systems described by such equations. '

3.5.1 Linear Constant-Coefficient Differential Equations

To bring out the important ideas concerning systems specificd by iincar constant-
coeflicient differential equations, we begin by examining an example. Specifically,
consider a continuous-time system whose input and output are related by the

equation
YD 1 2y = x(1) (3.66)

Equation (3.66) describes the system response implicitly, and we must solve the differ-
ential equation to obtain an explicit expression for the system output as a function of
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:jr.n:rmpu't. To review the usual mgthod for the solution of linear constant-coefficient
iflerential equations,t let us consider this example with a particular input signal:
. x(t) = Klcos w,t]u(t
where K is a real number. o0 e6n

The complete solution to e i
q. (3.66) consists of the sum of a 1 I
Y1), and a homogeneous solution, y,(t): particular solion,

) = y,(0) + y(0) (3.68)

where the particular solution satisfies eq. (3.66 i
‘ . (3.66) and i
geneous differential equation % 069 70t a solution of the homo-

dy(r)
g t0=0 (3.69)

n P rticular s lutloll 10] thc 1 A q 3 67 we ()I)SC ve tha
To fi d a particul r so nput 1IVEén in eq. .
- ( ) g ( ), r h t for

x(1) = Re[Ke')
3.70
We then hypothesize a solution of the form o
Y,(1) = Qe[ Yeion) (3.71)

where Y is a complex n ituti . )
yields P umber. Substituting these two expressions into eq. (3.66)

el j, Yol 4 2 Yer}) = Qe(Kelo) (3.72)

Since eq. (3.70) must be true for all ¢
( > 0, the comple i i
on both sides of the equation must be equal, Thatpisx mpliudes of the exponenials

Jjo, Y +2Y=K

or
Y ~jo K+ 2= Kﬁ e’ (3.73)
where ° VAo '
0 = tan™! ((ﬂ)
3.74
Therefore, 2 @74

V(1) = G Yero)

K
= mcos (ot — 6), t>0

) 1Our discussion of the solution of linear constant- i iferenti : -
;mlc;“we assume thaf the reader has some familiarity :ji'::x i:ei:smr:l:?ctri:ll.n;::i’f\:iccvgui:or:i(::n bmg
(24 CdC.J)n t:;cc;so‘[l;itrl}?;] 3( ordmary‘ differential equations such as Ordinary D:ﬂe;ential Equ::i::u .
n Illlrot/u(‘lian./ 0 }o and G C. .Rom (“{ahham. Mass,: Blaisdell Publishing Co., 1969) or
Prentice Hal ]n:: ]r;é,]m’)'l Diflerential Equations by E. A, Coddington (Englewood Cl'i"s NJ.:
Comersof Sk S e, AT st G el ctions i
(New York: McGraw-Hill Bo<'>k Company, 3969). As"nf::’nion:g’i)r; thy e A" o anq = 9. Kuh
we present another very useful method for solving linear different; | o the folk.)wmg chap}ers
for our purposes, 1 - '8 i f 13l equations that will be sufficient
are inclupdc(?in the r;::;:l:i"; &i“;?;l':rfl;?;::;;:volvmg the solution of differential equations

(3.75)
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In order to determine y,(f), we hyi)othcsize a solution of the form

»(t) = Ade” (3.76)

Substituting this into eq. (3.69) gives
Aset + 24e* = Ae’(s + 2)=0 3.97
From this equation we see that we must take s = —2 and that 4e”* is a solution to

eq. (3.69) for any choice of 4. Combining this with eqs. (3.68) and (3.75), we find that
for t > 0, the solution of the differential equation is

y(8) = Ae™* + 72%51- cos (et — 0), t>0
[]

Note from eq. (3.78) that the differential equation (3.66) does not completely
specify the output y(¢) in terms of the input x(¢). Specifically, in eq. (3.78) the constant
A has not as yet been determined. This is a basic property of a system described by a
differential equation: In order to have the output completely determined by the input,
we need to specify auxiliary conditions on the differential equation. In the example,
we need to specify the value of y(r) at some given instant of time. This will determine
A and conscquently will determine y(¢) for all time. For example, if we specify

¥(0) = 3, (3.19)

('3.78)

then, from eq. (3.78),
K cos @
A=y, — 3.80
o~ TiTol G50
Therefore, for ¢ > 0,
y(©) = poe™ + 77‘_ﬁ—a)?[cos (wot — 0) — e cos 8], t>0
For t <0, x(t) = 0 and therefore y(t) satisfies the homcgeneous differential
equation (3.69). As we have seen, solutions to this equation are of the form Be™,
and using the auxiliary condition given in eq. (3.79), we find that
Y =ye™, <0
Combining the solutions for ¢ > 0 and ¢ < 0, we then have that

Y() = yoe ¥ + 74_’fr_0707[cos (@4t — 8) — €72 cos BJu(r) (3.81)

Therefore, by specifying an auxiliary condition for the differential equation
(3.66), we obtain an explicit expression for the output y(f) in terms of the input x(?),
and we can then investigate the properties of the system specified in this fashion.
For example, consider the system specified by eq. (3.66) with auxiliary condition
given by eq. (3.79). Let us first determine if this system is linear. Recall that as shown
in Section 2.6.6, a linear system has the property that zero input produces zero
output. However, if we let K = 0 in our example, x(r) = 0 [see eq. (3.67)], but from

€q. (3.81) we see that

y(t) =y
Therefore, this system is definitely not linear if yo 5% 0. It is lirear, however, if the
auxiliary condition is zero. To see this, let x,(f) and x,(f) be two input signals, and
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Fiee 2 1(8) 20w ,(1) be 1né corresponding responses. That is,

DO 2,0 = %,0 (3.82)
D20 4 2p,0) = x,0) (3.83)

and also y,(r) and y,(r) must satisfy the auxiliary condition
Y10 =»,(0)0=0 (3.84)

Consider next the input x,(1) = ax,(f) + Bx,(1), where & and B are any com-
plex numbers. Then, using eqgs. (3.82) and (3.83), it is not difficult to see that
;) = ay,(r) + By.(t) satisfies the differential equation

DO 4 29,0 = x,00) (3:85)
and also, from eq. (3.84),
730 = a3,(0) + fy(0) = 0 - (3.86)

Therefore, y,(r) is the response corresponding to x,(f), and thus the system is linear.

Although the sysiem specified by eq. (3.66) with the auxiliary condition of
eq. (3.79) is not linear for a nonzero auxiliary condition, it is incrementally linear.
Specifically, in eq. (3.81) we see that the solution consists of two terms. The first is
the response due to the nonzero auxiliary condition alone, while the second term is
the response if y, = 0, that is, the linear response of the system assuming that the
auxiliary condition is zero. This fact generalizes to all systems characterized by linear
constant-coefficient differential equations. That is, any such system is incrementally
linear and therefore can be thought of conceptually as having the form depicted in
Figure 3.22. Thus, if the auxiliary conditions are zero for a system specified by a

Response to auxiliary
conditions alone

Linear system specitied by
linear constant coefficient w
differential equation with it
zero auxiliary conditions

x(1} ]

Figure 3.22  Incrementally linear structure of a system specified by a linear
constant-coefficient differential equation.

linear constant-coefficient differential equation, the system is linear, and the overall
response of a system with nonzero auxiliary conditions is simply the sum of the
response of the linear system with zero auxiliary conditions and the response to the
auxiliary conditions alone. In most of this book we will be concerned with linear
systems, and therefore in the remainder of our discussion in this section we will
restrict our attention to the linear case (i-e., to the case of zero auxiliary conditions).
Because of the decomposition shown in Figure 3.22, analysis of the lincar case yiclds
considerable insights into the properlies of systems with nonzero auxiliary conditions.
In Section 9.8 we adapt one of the tools we will develop for the analysis of linear
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‘ systems to ;llow us to analyze systems specified by linear constant-coefficient differ-

i i i ili ditions.

ential equations with nonzero auxiliary cond ) .

Inqaddition to linearity, a second question about the: propertx'es of lmf:ar s;;tent\s
specified by differential equations concerns their causality. Specxﬁgial.ly,tle grr ee;ﬁ :1

i i ified by a linear constant-coeflicient difie

have causality for a linear system spect ) ar o cren i

i icular choice for the auxiliary conditions
equation, we must make a particu ' _ . ( ;
s;lstem This is the condition of initial rest which specxﬁes. that if the mputT x(t) ixrs;
applied to the system, and x(r) = 0 for t < t,, then y(£) alsc? iszerofort < t,. Toga
some understanding of this condition, consider the following example.

Example 3.7 - N
Let us first consider a linear system described by eq. (3.66) and an auxiliary condition
specitied at a fixed point in time. Specifically,

y0) =0 (3.87
As we have just seen, these two equations together specify a linear system, Consider
the following two inputs:

x, (=0 for all ¢ (3.88)
0, r<-1 (3.89)
x(f) = {1, > —1

Since the system isblinear, the response y;(f) to the input x,(r) is
yiny=20 forall ¢ (3.90)
Now consider the solution to the differential equ.ation foy x(1) = x5(2). For t > ~1,
x,(1) = 1. Therefore, if we seek a particular solution that is constant,
»iy =1, 1> —1
we find, upon substitution into eq. (3.66) that
2Y =1
Including the homogeneous solution, we obtain
yi(f) = Ae"* +}, 1> —1 (3.91)
and, to satisfy eq. (3.87) we must take 4 = —14, which yields I
ya) = — je7¥, t> -1 3.92)
To find y,(r) for + < ~1, we first note that x4(f) = 0 for t < —1. Thus the particular
solution is zero for ¢ < —1, and consequently
y2{f) = Be™ ¥, t << —1 (3.93)
Since the two pieces of the solution in eq. (3.92) and (3.93) must match at 1 = -1,
we can determine B from the equation
‘ } — le? = Be?
which yields :
ya(f) = (§ — Jeem2t+D), t < —1 (3.94)

Note that since x,(f) = x,(¢) for # < —1, it must be true that »i(1) ;y,(r) fo:
t < —1 i1 this system is causal. However, comparing. eqs. (3.90)‘ and (3.94) we se
that this is not the case and conclude that the system is not causa..
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Consider now a second linear system specified by eq. (3.66) and the assump-
tion of initial rest. Then the response y,(r) to the input x,(z) is still given by eq. (3.90),
but the response to x,(f) given in eq. (3.89) is different from that given in egs. (3.92)
and (3.94). Specifically, since x;(f) = 0 for + < —1, initial rest implies that y,(t) = 0
for ¢ < —1. To find the response for t > —1, we must solve eq. (3.66) with the condi-
tion specified by initial rest, that is,

»(=1)=0 (3.95)
As before, the general form of the solution for y,(1) for 1 > —1 is given by eq. (3.91),
but in this case A is chosen to satisfy eq. (3.95). This yields the solution

) =4 —je b > 1 (3.96)
and by the assumption of initial rest we can write the solution for all time as
y2(0) = [} — Je 2+ Vlu(r + 1) (.97

From this we see that we do satisfy the condition for causality. That is, x,(f) = x,(#)
= 0fort < —1, and also y,(¢t) = y,(t) =0 for 1 < —1.

Intuitively, specifying the ayxiliary condition at a fixed point in time as we did
in eq. (3.87), leads to a noncausal system, as the response to inputs that are nonzero
before this fixed time, such as x,(¢) in eq. (3.89), must in some sense anticipate this
future condition. On the other hand, the condition of initial rest does not specify the
auxiliary condition at a fixed point in time but rather adjusts this point in time so
that the response is zero until the input becomes nonzero, and consequently the
phenomenon of the response anticipating the future does not occur. In fact, Prob-
lem 2.30 demonstrates that a linear system is causal if and only if whenever x(¢) = 0
for 1 < t,, then y(f) = 0 for t < t,. This is nothing more than the condition of nitial
rest.

Note that in the example we made use of a basic consequence of initial rest.
Specifically, if we make the initial rest assumption, and if x(¢) = 0 for ¢t < ¢,, then we
need only solve for y(¢) for ¢t > ¢, and this solution can be obtained from the differ-
ential equation and the condition y(t,) = 0, which in this case is called an initial
condition.

In addition to guaranteeing linearity and causality, initial rest also implies
time invariance. To see this consider the system described by eq. (3.66), which is
initially at rest, and let y,(¢) be the response to an input x,(r), which is zero for t < ¢,.
That is,

dy,(t
DO 1 2,0 = x,0) (3.99)
Yilte) = (3.99)
Now consider the input
x()=x(t—T) (3.100)
From Figure 3.23 it can be secen that x,(¢) is zero for t < t, - T. Therefore, the
response y,(¢) to this input must satisfy the differential cquation

D10 4 2,0 = .00
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(3.101) .

x, ()

[~

%, (1) = xy (t =T}

N

ot T

Figure 3.23 Tllustration of the fact that if x1(r) =0 for 1 <to and x2(t) =
xi(t = T), then x2(¢) = 0 for t < to +T.

with the initial condition
Yalty + T) =0 (3.102)

Using egs. (3.98) and (3.99), it is straightforward to show that y,(t — T) satisfies
eqs. (3.101) and (3.102), and thus that

1O =yt—-T)

A general Nth-order linear constant-coefficient differential equation is given by

(3.104)

(3.103)

Yo diy(n) &g dx(D)
x};o O dr kZ;o b'f dr
The order refers to the highest derivative of the output y(¢) appearing in the ¢quation.
In the case when N = 0, eq. (3.101) reduces to .
1 ¥, dx() (3.105)
=— b .
) = P
That is, y(1) is an explicit function of the input x(1) anFl its deriva'tives. For N 12 !.
eq. (3.104) specifies the output implicitly in terms of the input. In thxs.case the analysis
of eq. (3.104) proceeds just as in our example. The solution y(f) c*_onsxsts of two parts,
a homogeneous solution and a particular solution. Also, as in the example, the

differential equation (3.104) does not completely specify 'tl}e output in ter{ns of tgc
input. In the general case we need a set of auxiliary conditions corresponding to the
values of )
dy(t ay(t)
y(), *%L) , g
time. Furthermore, the system specified by eq. (3..1.04) and these
if all of these auxiliary conditions are zero.
linear with the response due to the auxiliary

at some point in !
auxiliary conditions will be linear only
Otherwise, the system is incrementally
107
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must assume initial rest. That is, if x(f) = 0 for 1 <{ 1, we assume that y(f) = 0 for
1 << to, and lhcrchre the response for 1 > 1, can be calculated from the differential
equation (3.104) with the initial conditions.

dy(t V-t
yag) = Q) o D) g
In th!s case, not only is the system linear and causal, it is also time-invariant. In the
remainder of this book we will be focusing our attention primarily on LTI s. stems
and therefore when we consider systems described by differential equations {ve wili
make the assumption of initial rest. In this case the output y(t) can, of co,urse be
comPutcd by solving the differential equation in the manner outlincd,in this sec;ion
?md illustrated in more detail in several problems at the end of the chapter. However
in Chapter 4 we will develop some tools for the analysis of continuou;-time LTI'
sy.stems tl‘lat will greatly facilitate the solution of differential equations and in particular
KE;II provide us wi.th a convenient method for calculating the impulse rcsl;onse for
initia;y;)t:trxlsesi'pec1ﬁed by linear constant-coefficient differential equations that are

3.5.2 Linear Constant-Coefficient Difference Equations

The discrete-time counterpart of ¢ i i
‘ g. (3.104) is the Nth-order linear constant- i
difference equation anteoeteient

kg"; ayln — k] = f% box[n — k] (3.106)

A.n equa.tion of t.his type can be solved in a manner exactly analogous to that for
dnfTerentxal equations (see Problem 3.31).f Specifically, the solution y[n] can be
written as the sum of a particular solution to eq. (3.106) and a solution to the homo-
geneous equation

kaJu ayfn — k] =0 (3.107)

As in the continuous-time case, €q. (3.106) does not completely specify the output in
terms of the input, and to do this, we must also specify some auxiliary conditions
Furthermore, the system described by eq. (3.106) and the auxiliary conditions is'
incrementally linear, consisting of the sum of the response to the auxiliary condition
alone and the linear response to the input assuming zcro auxiliary conditions 'I'husS
a system described by eq. (3.106) is linear if the auxiliary conditions are zcr(; ’
Although all these properties can be developed following an approac.h that

.TFor a detailed treatment of the methods for solving linear constant-coefficient diffe

equations, we refer the reader to Finite Difference Equations by H. Levy and F l_.(:ssmane(rl"zlncc
York: Macmillan, Inc., 1961) or The Calculus of Finite Differences by L. M Milné-’l‘homscn (New
York:. Macmillan, Inc., 1933). In Chapter 5 we present another mcthod. for solving diffe o
cqruau:ns that greatly facilitates the analysis of LTI systems that are so-described. In :dditi:;m\s:
:t:l:;‘tiot;sr.cnder to .he problems at the end of this chapter that deal with the solution of difference
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conditions alone adde : . due - oL L ot discussion for differen
ded to the tesponse due to the input assuming zero auxiliary directly parallels our discussion for differen

conditions (Figure 3.22). Furthermore, for the system to be linear and causal, we

tial equations, the discrete-time case offers
an alternative path. This stems from the observation that eq. (3.106) can be rearranged
in the form

b

yinl = aio {ki boxln — K] — 2'_':1 awyln — k]} (3.108)

This equation directly expresses the output at time n in terms of previous values
of the input and output. From this we can immediately see the need for auxiliary
conditions. In order to calculate y[n}, we need to know yfn—1}, ..., — N].
Therefore, if we are given the input for all n and a set of auxiliary conditions such as
J=NLA-N+1,..., y[—1), eq. (3.108) can then be solved for successive values
of y[n).

An equation of the form of eq. (3.106) or (3.108) is called a recursive equation,
since it specifies a recursive procedure for determining the output in terms of the
input and previous outputs. In the special case when N = 0, eq. (3.108) reduces to

yinl = i (%—i)x[n - (3.109)

This is the discrete-time counterpart of the continuous-time system given in eq.
(3.105). In this case y{n) is an explicit function of the present and previous values of
the input. For this reason eg. (3.109) is called a nonrecursive 2quation, since we do
not recursively use previously computed values of the output tc compute the present
value of the output. Therefore, just as in the case of the systera given in eq. (3.105),
we do not need auxiliary conditions in order to determine y{n]. Furthermore, €q.
(3.109) describes an LTI system, and by direct computation th: impulse response of
this system is found to be

k, ‘ p

hln) = {80’ 0sns M (3.110)
0, otherwisc

That is, eq. (3.109) is nothing more than the convolution sum. Note that the impulse
response for this system has finite duration; that is, it is nonzero only over a finite
time interval. Because of this property the system specified ty eq. (3.109) is often
called a finite impulse response (FIR) system.

Although we do not require auxiliary conditions for the case of N =0, such
conditions are needed for the recursive case when N > 1. To yain some insight into
the behavior and properties of recursive difference equations, consider the first-order

example
yln] — 43l — 11 = xln] (3.111)
which can be expressed in the form
y[n] = xn} + $yin — 1] (3.112)
Suppose it is known that y[—1] = a and that the input is
x{n] = K dln] (3.113)

where K is an arhitrary complex number. We can solve for succesive values of yin]
for n > 0 as follows:
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initial-rest assumption is made, the system is causal, linear, and time-invariant. A
we will be concentrating our attention on LTI systems, we will usually make the

assumption of initial rest when considering systems described by difference equations.

) = x{(1] + $y10] = (UK + $a)

M2} = x[2] + Pl = (DK + fa) ‘(3.114)
. In Chapter 5, we will develop tools for the analysis of discrete-time LTI systems
that will provide us with a very useful and efficient method for solving linear constant-
' coefficient difference equations and for analyzing the properties of the LTI systems
yn) = x{n] + yln — 11 = ('K + $a), n>0 that they describe. As in our example, we will see that the LTI system specified by

the general recursive difference equation (3.108) has an impulse response of infinite 5
duration as long as it truly is recursive, that is, as long as at least one ofthea,, k =1, g
..., N, is nonzero. Because of this characteristic, a system specified by a recursive
difference equation is often called an infinite impulse response (IIR) system. We refer

={rK+ d)rta, n>=0
By rearranging eq. (3.111) in the form

) yln — 11 = 2{y[n] — x[n}} (3.115)
and again using the known value of y[—1] = a, we can also determine y[n} forn < 0 the reader to the problems at the end of the chapter for more detailed illustrations
’ of the ideas introduced in this section concerning the solution of difference equations

Specifically,
and the analysis of the systems they describe.

V=2 =2y[—1] — x[-1]} = 2a
V=31 = 2{y[—2] — x[—2]} = 2%a
=4} = 2{y[-3] — x[~3]} = 2% (3.116)

3.6 BLOCK-DIAGRAM REPRESENTATIONS
OF LTI SYSTEMS DESCRIBED BY DIFFERENTIAL
AND DIFFERENCE EQUATIONS

M=nl = 20l=n + 1] = xl=n+ 1} = 227a = })""'a
Combining egs. (3.114) and (3.116) we have that for all values of n,
Hnl= @' a + K@) uln] (3.117)

fropm eq. (3.117) we again see the need for auxiliary conditions. Since this
lequauon is a valid solution of eq. (3.111) for any value of a, this value must be specified
in order for y[n) to be determined as a function of the input. Also, if K = 0, the input
is zefo, 'and we see that the output will be zero only if the auxiliary conditi:)n is zero
If t'hls is the case, then the system described by eq. (3.111) is linear. This can be:
venﬁe;i dix}'ectly, much as we did in the continuous-time case (see Prob’lem 3.31)
urt rermore, as in continuous time, to ensure the linearity and causali ‘
§ystcm described by eq. (3.111), we must make the assumptioz of initiuasla:::zt 0;:::
is, we assume that if x{n] = 0 for n < n,, then y[n] = 0 for n < n,. In this cz;se we
f‘?efj only solve the difference equation forward in time for n > n ostarting with the
{nmal condition y[ne] = 0. Under this condition the system dcscri:)ed by eq. (3.111)
is not 'only linear and causal, but it is also time-invariant. Linearity fol]o;vs i”rom
the zero initial condition, while time invariance can be verified in exactly the same
fashion as was used in continuous time (Problem 3.31). From eq. (3.117) we then
have lhz}t under the assumption of initial rest, the unit impulse response for this LTI
system is

hin) = (}yuln)
Note lha.l this system has an impulse resonse that has infinite duration.
/'\s |'ndicated at the beginning of this section, al} the obscrvations we have made
for this simple example carry over to the general case of a system described b ‘e
(3.106). For the system to be linear, the auxiliary conditions must be zero, and i);’ tl?é
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One of the important uses of the tools of LTI system analysis isin the design of systems
with specified characteristics. Often in practice, the type of system chosen for a design
is described by a differential equation in continuous time or a difference equation in
discrete time. The reason for these choices is that many of the physical components
and systems that are commonly used to implement LTI system designs are themselves
described by differential and difference equations. For example, RLC circuits and
circuits containing operational amplifiers are described by linear differential equa-
tions. Also, systems described by linear difference equations are readily implemented
as computer algorithms on a general-purpose digital computer or with special-
purpose hardware. In this section we introduce block-diagram representations for
systems described by differential and difference equations. We will do this first in
discrete time and then in continuous time. The representations described here and
in Chapters 4 and 5 allow us to develop some understanding about the issues asso-
ciated with the implementation of such systems.

3.6.1 Represciitations for LT! Systems
Described by Difference E quations

As expressed in eq. (3.108) a linear constant-coefficient difference equation can be
viewed as an algorithm for computing successive values of y[n] as a linear combination
of its past values and the present and past values of the input. In implementing such
an LTI system on a digital computer or in special-purpos: hardware we would
explicitly implement this algorithm. While eq. (3.108) suggests one way of organizing
the computations, there are, in fact, a variety of alternatives, each of which represents
a different structure or realization of the LTI system described by eq. (3.108). In this
section we discuss two of these structures, and other reaiizations are described in

Chapter 5.
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It is generally convenient to dévelop and describe each of these altcrnativc‘ N

implementations by representing and manipulating eq. (3.108) pictorially. To develop
such a pictorial representation we note that the evaluation of eq. (3.108) requires three
basic operations: addition, multiplication by a coefficient, and delay. Thus, let us
define three basic network elements, as indicated in Figure 3.24. To see how these

%z (n]
x, [n] P x, [n] +x,1n}
{a)
a
x(n) - ax[n}
(b}

Figure 3.24 Basic elements for the
block-diagram representation of discrete-
x{n] D x{n—1] time LTI systems described by linear
constant-coefficient difference equations:
() an adder; (b) multiplication by a
{c) coeflicient; (c) a unit delay.

basic el‘erfu.:ms can be used, we consider several examples. First consider the LTI
system initially at rest and described by the first-order equation

yinl + ayln — 1] = bx[n} (3.118)
which can be rewritten in a form that directly suggests a recursive algorithm
y[n) = —ay[n — 1] + bx[n} (3.119)

This algorithm is represented pictorially in Figure 3.25. Note that the delay element

b f’;‘\

x[n} yin)

o,
Figure 3.25 Block-diagram representa-
-a tion for the LTI system described by
yln-1) eq. (3.118).

rcquil:es memory: at any point in time n, we need to store y[n -— 1] so that it can be
used in the computation of y[n]. Also note that Figure 3.25 is an example of a feed-
bac.k system, since the output is fed back through a delay and a coefficient multipli-
cation and is then added to bx[n]. The presence of feedback is a direct consequence
of the recursive nature of eq. (3.119).
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Consider next the nonrecursive LTI system
yin} = box[n] + byxln — 1] (3.120)
The algorithm suggested by eq. (3.120) is illustrated in Figure 3.26. Note that this

system also requires one delay element. Also, there is no feedback in this block
diagram, since previous values of the output are not used in the calculation of the

present value.

b, ~~
4 + yln]

x[n}) >

Figure 3.26 Block-diagram representa-
b, tion for the LTI system described by
x[n—1}1 eq. (3.120).

As a third example, consider the LTI system initially at rest and described by
the ecuation
yln) + ayln — 1] = box(n] + byx[n — 11 (3.120)
We can again interpret eq. (3.121) as specifying an algorittm for calculating y{n}
recursively:
yinl = —ayln — 1] + bexln) + bixln — 1) (3.122)
This algorithm is represented graphically in Figure 3.27. Note that this algorithm
can be viewed as the cascade of the two LTI systems depictzd in Figures 3.25 and
3.26 (with b = 1 in Figure 3.25). That is, we calculate
wln] = box[n] + byxn — 1} (3.123)
and
yn = —ayln — 11 + win] (3.124)
However, since the overall response of the cascade of two LTI systems does not
depend upon the order in which the two systems are cascaded, we can reverse the
order of the two systems in Figure 3.27 to obtain an alternative algorithm for com-
puting the response of the LTI system specified by eq. (3.121). This system is iltustrated
in Figure 3.28. From this figure we see that

by win]

»- y[n]

x{n]

T

Figure 3.27 Block-diagram representation for the LTI system specified by
eq. (3.121).
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y(n]

z[n-1] z[n=-1]

-a b,

Figure 3.28 Alternative block-diagram representation for the LTI system
described by eq. (3.121); (compare to Figure 3.27).

z[n) = —az[n — 1] + x[n] (3.125)

Mn) = bozln] + b,z[n — 1] (3.126)

It can be directly verified that y[n] as defined in eqs. (3.125) and (3.126) does satisfy

the difference equation (3.121), but we already know that this must be true because

of the commutativity of convolution and the implication this has for interchanging
the order of LTI systems in cascade.

With Figure 3.28 drawn in the form shown, there is no obvious advantage to

this configuration over that in Figure 3.27. However, upon examining Figure 3.28,

we see that the two delays have the same input (i.e., they require the storage of the

same quantity) and consequently can be collapsed into a single delay, as indicated in

Figure 3.29. Since each delay element requires memory, the configuration in Figure

3.29 is more efficient than the one in Figure 3.27, since it requires the storage of only

one number, while the other requires that two values be stored at each point in time.

) o )

xin) + » y{n]

—-a b‘

Figure 3.29 Block-diagram representation requiring a single delay element for
the LTI system described by eq. (3.121); (compare to Figure 3.28).

This same basic idea can be applied to the general recursive equation (3.108).
For convenience we repeat that equation here with M == N. If M 3 N, then the
appropriate coefficients a, or b, can be set to zero:

yin) = i{f}, bixln — k] - ﬁll ayln — k]} (3.127)

a,

The algorithm implied by this equation is illustrated in Figure 3.30. This algorithm
for realizing the difference equation (3.127) is called the direct form I realization, and
from the figurc we see that we can interpret this algorithm as the cascade of a non-
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it Sea o SRR T s

x{n} »>

(=)
=]

+—<

+
f
+

o

-

b,
b,
lp———-’—_"c
-. bN -1 : :
bN l

D

Figure 3.30 Direct form 1 realization for the LTI systein descrived by
eq. (3.127).

recursive system . ‘ -
[n} = b.x[n — kj} .12
w(n) ’Z% Xl
and a recursive system

yln} = ;l;{ - kZ:')l a,yln — k1 + WI"]} (3.129)

By reversing the order of these two systems, we obtain the conﬁgur:.mop dcpnfcted
in Figure 3.31, which represents an alternative structure for the realization of ¢q.
(3.127). The corresponding difference equations are

z[n} = ;,]—[~ 2”; a,z[n — k} + x[n]} (3.130)
ylnl = i byz[n — K] (3.131)

As before, we note that the two chains of delays in Figure 3:31 'have the. same mp\;;

and lhcre'forc can be collapsed into a single chain, res‘uhmg; in the dlre'ct forf{nth

realization depicted in Figure 3.32. In this conﬁguratuzin, ;rr;lplzr?;r;tal:;r;l;n em:
i i i ts instead of the e

difference equation requires only N delay clemc'n inste )

required ianigurc 3.30. The direct form 11 realization 1s sometimes referred to as a

i 115
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3 canonic realization, since it requires the minimum number of delay elements (i.e., it

requires the minimum amount of storage) needed in order to implement eq. (3.127).

y[n]

3.6.2 Representations for LTI Systems
D_escribed by Differential Equations

In analyzing continuous-time systems specified by differential equations, we can

eq.(3.132)asan interconnection of these basic elements in a manner exactly analogous
to that carried out for the implementation of difference equations. In fact, comparing
eqs. (3.127) and (3.132), it is straightforward to verify that Figure 3.30 represents the
{3.132), and Figure 3.32 is its direct form Il realization,

direct form 1 realization of eq.

O
O—2

-l
2
!
]
g
'd
&
5
. - . 2 proceed in an exactly analogous fashion. Consider the general linear constant-
. . . : . . .
3 3 ry z S coefficient differential equation (3.104). For convenience, we assume that M = N X
g0 (where if this is not true we simply set the appropriate a, or b, to zer»), and in this
~ O » o - o g case we can rewrite eq. (3.104) in the form
N5 o
- FE 1 (& kx() & dy(0)
° ~ Kl f 4 1) = — b et a b .
£ v i z Fl =e 0] ao{kg L e } (3.132)
I o
: E g The right-hand side of this equation involves three basic cperations; addition,
(“‘\ ,5 o - g g ‘%f’? multiplication by a coefficient, and differentiation. Therefore, it we define the three
e 4o » . . . 3 - » N
/ \_/ \ ) * ( )‘ — A% e basic network elements indicated in Figure 3.33, we can consider implementing
o 8
2 “ Xy (1)
< £Eg
K En >
L
= X, () V - x, (1) + x,(t)
=
) {a} A
£
G
=]
CA ) ) g
= a
1 8 x(t) ax{t)
g
- E
& & Y i £1 8 o)
g :
- Figure 3.33 Ore possible set of basic o
o 1 O +! o < clements for the block-diagram represen- B
_ é tation of continuous-time LTI systems .
-:— ® x(t) D ‘—’—:Q described by linear constant-coefficient i
3 t differential equztions: (a) an adder; (b)
o § multiplication by a coefficient; (c) a
% {c} differentiator. ¢
2 ;
K]
E
e
b
-
]
™
g
&

system described by eq. (3.127)'; (compare to Figure 3.30).

O\
lJ where D is interpreted here as a differentiator and x{n] and y{n] are replaced by x(t)
and y(1).
A practical difficulty with the hardware implementation of a linear constant-
% coefficient differential equation using the elements of Figure 3.33 is that a differentia-
tion element is often difficult to realize. An alternative, which is particulariy well
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T
suited to the use of operational amplifiers, is suggested by converting the Nth-order N § \
differential equation (3.104) into an integral equation. Specifically, define the successive £ % ¥
integrals of y(1): 8 :
<] &
Yot) = »(1) (3.133) g
' + + . ‘__@4————-— = §
Yol = Y0+ u@)) = [*_y(w) (3.134) . B :
3 L
yat) = y(O) * u(t) * u(?) . - . s s %
g (3.135) s Z K g
= yalyrud) = [_(["_yioydo)de Z g
> 3
and, more generally, the kth integral of y(r) is given by ~ ~ E
' z T I o K] = =
Yol)) = Y@ * 1)) = [ yu (@) e (3.136) E 3 ; | f1 %8
e - s
Similarly, we can define the successive integrals Xo(t) of x(7). L 3 g
Consider again the differential eq. (3.104), which we repeat here for convenience, (.Dv e (+) —(+ .. —-—(94——-———- a 5 ;
again assuming that M = N: 2 &8
X dy() _ o, dix(1) a8 ;
kgak‘?’l‘k‘——kg bk—mr— (3.137) 1 é?;'
Note that if we assume initial rest, then the Nth integral of a*y(f)/dt* is precisely X =3
Yv_n(t) since the initial conditions for the integration are zero. Similarly the Nth
integral of d*x(1)/dt* is x(..(f). Therefore, taking the Nth integral of eq. (3.137), =
we obtain the equation o =
N N & E g
3 ayw-olt) = 2 bixov-ol) (3.138) 3 g :
k=0 k=0 3 ﬁ
Since yo,(t) = y(1), eq. (3.138) can be reexpressed as .~ o — ~ % ;
] N N-1 b o
$0 = 115 b = 5 asyorsi0) (3.139) - . & ;
~ k=0 K=o £ z z ‘I; 4l€’ =
Implementation of eq. (3.139) utilizes the adder and coefficient multiplier as 3 ;. ! ! ";:
were indicated in Figure 3.33. In place of the differentiator, we use an integrator as R Eﬁ §
defined in Figure 3.34. This element has u(r) as its impulse response, and it can be b Q/f {(t) + — %3 ;
& ol
58 ';
x(t) ! el RS B
LA / / x{r) dr  Figure 3.34 Pictorial representation of b ~ D " = B
- an integrator. GJ‘# Ed :
L3
implemented using an operational amplifier. The development of the direct form I B - o 'g 3: 1
and direct form 11 realization of eq. (3.139) exactly parallels that for the implemen- : g Z K As
tation of difference cquations. The resulting realizations are illustrated in Figurcs 9 a
3.35 and 3.36. Note that the direct form II realization requires only N integrators S~ ~ -9
while direct form I uses 2N integrators. As before, the direct form 1I configuration is é g i‘
sometimes called canonic, as it requires the minimum number of integrators needed Q2 :
in any rcalization of the LTI system described by eq. (3.139) or, cquivalently, by ,:
eq. (3.132). In Chapter 4 we introduce two other canonic structures for the realization g
of LTI systems described by such equations. " ;
119
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SINGULARITY FUNCTIONS

In our initial discussion of the continuous-time unit impulse function, we described
the unit impulse as the limiting form of a rectangular pulse which became progressively
narrower and higher but maintained unity area. Although this interpretation does
provide some valuable intuition into the nature of &(f), there are limitations to
viewing the impulse in this fashion. In this section we would like to reconsider the
unit impulse and other similar signals and to interpret them in the context of convo-
lution and continuous-time LTI systems.

In Section 3.4 we saw that 8(¢) is the impulse response of the identity system.
That is,

_ x(1) = x(1) * 6(1) (3.140)
for any signal x{r). Therefore, if we take x(t) = 6(1), we have that
8(t) = (1) » 6(1) (3.141)

Equation (3.140) is a basic property of the unit impulse, and it also has a significant
implication for our previous definition of 4(:) as the limiting form of a rectangular
pulse. Specifically, let 8,(r) correspond to the rectangular pulse as defined in Figure
2.20, and let

rat) = 0a(1) * 4(1) (3.142)

Then r,(¢) is as sketched in Figure 3.37. If we wish to interpret &(¢) as the limit as
A — 0 of 84(r), then, by virtue of eq. (3.141), the limit as A —» 0 for r,(r) must also
be a unit impulse. In a similar manner, we can argue that the limit as A — 0 of
ra(t) * ra(2) or ra(¢) * 84(f) must be a unit impulse, and so on. Thus, we sce that for
consistency, if we define the unit impulse as the limiting form of some signal, then
in fact there are an infinite number of very dissimilar-looking signals all of which
behave like an impulse in the limit.

ra it

i

Figure 3.37 The signal ra(¢) defined in
eq. (3.142).

0 24 t

The key words in the preceding paragraph are “bchave like an impulse.”
Most frequently, a function or signal is defined by what it is at each value of the
independent variable, and it is this perspective that leads us to choose a definition for
the impulse as the limiting form of a signal such as a rectangular pulse. However,
the primary importanc: of the unit impulse is not what it is at each value of ¢, but
rather what it does under convolution. Thus, from the point of view of linear systems
analysis, we may alternatively define the unit impulse as that signal for which

x(r) = x(1) = 8(t) (3.143)
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N for Anly );(l). In't‘fx.iﬁ Scnsc, all the sigﬂéisf&ferrcd toin the bfeccding baragraph behave

like 2 unit impulse in the limit because if we replace §(r) by any of these signals,
then eq. (3.143) is satisfied in the limit.

All the properties of the unit impulse that we need can be gbtained from the
operational definition given by eq. (3.143). For example, if we let x(f) = 1 for ail ¢,
then

1 = x(t)

(1) » 8(6) = 8(1) * x(t) = j_: S(O)x(t — 1) de

= j: 8(x) dr

so that the unit impulse has unit area. Furthermore, if we take an arbitrary signal
g(1), reverse it to obtain g(—1), and then convolve this with 6(z), we obtain

g~ =g(~*80) = [ se—né@

which for t = 0 yields

g0 = [ () @) dr (3.144)
Therefore, the operational definition of &(t) given by eq. (3.14.3) implies eq. (3.1.44).
On the other hand, eq. (3.144) implies eq. (3.143). To see this, let x(t) be a given
signal, fix a time 1, and define

gr) = x(t — 1)
Then, using eq. (3.144), we have that

x(t) = g(0) = f: g(t) é(r) dr = f: x(t — 1) 8(1) dt

which is precisely eq. (3.143). Therefore eq. (3.144) is an equivalent op.erar.iona!
definition of the unit impulse. That is, the unit impulse is the signal which when
multiplied by an arbitrary signal g(f) and then integrated from —oo to ..*-oc produc:es
the value g(0). In a similar fashion we can define any signal operationally by its
behavior when multiplied by any other signal g(t) and then irtegrated from --co to
oo,
i Since we will be concerned principally with LTI systems and thus with coavolu-
tion. the characterization of (¢) given in eq. (3.143) will be the one to which we will
refe; most. On the other hand, eq. (3.144) is useful in determining some of the other
properties of the unit impulse. For example, consider the sigral f(¢) &(r), where f(8)

" is an arbitrary signal. Then, from eq. (3.144),

[ g1 6:) dx = g(0)/©) (3.145)
On the other hand, if we consider the signal f(0) &(r), we see that
[ 80/ @ 8) de = 2O S© (3.146)

Comparing €qs. (3.145) and (3.146), we see that the two signais F(08() and £(0) 5(9)
behave identically when multiplied by g(t) and then integrated from —o00 to oo,
Consequently, using this form of the operational definition of signals, we conclude
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S0)6(0) = £(0) 5(r) (3.147)
whichisa property that we derived by alternative means in Section 2.3 [see eq. (2.24)]
The unit 1mPulse is one of a class of signals known as singularity functions.
each f’f which can be defined operationally in terms of its behavior under convolution’
Consider the LTI system for which the output is the derivative of the input .
_ dx(1)

y(0) = &0 (3.148)

The unit impulse response of this system is the derivati it i
‘ ative of the unit impulse which

is called the unit doublet, u,(t). From the convolution i

is called the untt & ' representation for LTI systems,

d
B0 = xt)  ,0) (3.149)

for any signal x(¢). Just as eq. (3.143) serves as the i iti

. - (.14 operational definition of &(t
we will take eq. (3.14.9) as the operational definition of u,(f). Similarly, we can dcﬁ(n)é
u,(t), the second derivative of §(¢), as the impulse response of an LTI system which
takes the second derivative of the input

dl
d);?) = x(1) * uy(1) (3.150)

From eq. (3.149) we see that

dix()  d(d
0 = L (D) — 50y 1,0 1) (3.151)

dt

and therefore
u, (1) = uy () » u, (1) (3.152)
In general, u,(f), k > 0, is the kth derivative of 6(r) and thus is the impulse response

of a system that takes the kth derivative of the in i i
put. Since this system can be obtai
as the cascade of & differentiators, we have that fned

w () = u, (1) *...xu,t) (3.153)
k times
. lEach ol;’ tt:jese singularity functions has properties which, as with the unit
impulse, can be derived from its operational definition. For example, i i
the constant signal x(1) = 1, then ple, 1 we consider

d.
0= —fig) =x(t) +u,(t) = f u (Dx(@ — 1) dr

—oo

+ oo

=[Tuw@ar

5o that the unit doublet has zero area. Mor i
' . eover, if we convolve the si —_
with u,(r), we obtain tenal 8(=1)

f 8 — Duy(e) de = g(—) » (1) = B0 = _BCD
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which for ¢ = 0 yields
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—g© = [ s@u@ (3.154)

In an analogous manner we can derive related properties of u,(f) and higher-order
singularity functions, and several of these properties are considered in Problem 3.39.
In addition to singularity functions which are derivatives of different orders of

the unit impulse, we can also define signals that represent successive integrals of the
unit impulse function. As we saw in Section 3.4, the unit step is the impulse response

of an integrator
¥(1t) = J_“ x(z) dt
Therefore,
u(t) = j 5(x) dt j (3.155)

and we also have an operational definition of u(r):
(1) » u(f) = J’ " x(r) dr (3.156)

Similarly, we can define the system that consists of a cascade of two integrators. Its
impulse response is denoted by u_,(1), which is simply the convolution of u(f), the
impulse response of one integrator, with itself:

() = uf) = u(t) = Jf u(r) dr (2.157)

Since u(r) equals O for 1 < 0 and equals 1 for ¢ > 0, we see that
u_,(f) = tu(t) {3.158)

This signal, which is referred to as the unit ramp function, is shcwa in Figure 3.38.

u_,(t)

Slope = 1

t Figure 3.38 Un:t ramp function.

Also, we can obtain an operational definition for the behavior of u_,(#) under convo-
lution from egs. (3.156) and (3.157):
x(t) % u_y (1) == x(t) * ut) * u(t)

= (Jl. x(0) da) * u(t) = Ji,(]r:_ x(o) da) dt

In an analogous fashion we can define higher-order integrals of () as the
impulse responses of cascades of integrators:

(3.159)

() = ) + o .. wul) = j_ Uy () dt (3.160)
k times -
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‘I'he coﬁVolution of x(t) with u_,(£), u_ (1), . . ., generate correspondingly higher-order
integrals of x(r). Also, note that the integrals in eq. (3.160) can be evaluated directly
(Problem 3.40), as was done in eq. (3.158), to obtain

k-1
u_y(t) = (_Ic.’__mu(r) (3.161)
Thus, unlike the derivatives of &(f), the successive integrals of the unit impulse are
functions that can be defined for each value of ¢ [eq. (3.161)] as well as by their behav-
ior under convolution.
At times it will be useful to use an alternative notation for &(t) and u(s),
specifically

8() = u(t) (3.162)
u(t) = u_,(0) (3.163)

With this notation u,(t) for k > 0 denotes the impulse response of a cascade of k
differentiators, wy(f) is the impulse response of the identity system, and for k <0,
u, (1) is the impulse response of a cascade of | k| integrators. Furthermore, since .a
differentiator is the inverse system to an integrator,

u(t) * u (1) = 8(t)
or, in our alternative notation,
u_y () * uy (1) = 1() (3.164)

More generally, from eqs. (3.153), (3.160), and (3.164) we see that for k and r any
integers,

w (1) * u(6) = u, . (1) (3.165)

If k and r are both positive, eq. (3.165) states that a cascade of k differentiators
followed by r more differentiators yields an output that is the (k -+ r)th derivative
of the input. Similarly, if k is negative and r is ncgative, we have a cascade of |k|
integrators followed by another | 7| integrators. Also, if k is negative and r is positive,
we have a cascade of k integrators followed by r differentiators, and eq. (3.165) tells
us that the overall system is equivalent to a cascade of |k + r| integrators if (k + r)
< 0, a cascade of (k +4 r) differentiators if (k + r) > 0, or the identity system if
(k + r) == 0. Therefore, by defining singularity functions in terms of their behavior
under convolution, we obtain a characterization for them that allows us to manipulate
them with relative ease and to interpret them directly in terms of their significance
for LTI systems. Since this is our primary concern in this book, the operational
definition for singularity functions that we have given in this section will suffice for
our purposes.t

tAs mentioned in the footnote on p. 25, singularity functions have been heavily studied in
the field of mathematics under the alternative names of generalized functions and distribution theory.
The approach we have taken in this section is actually closely allied in spirit with the rigorous approach
taken in the references given on p. 25.
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In this chapter we have developed very important representatio.ns for LTI systex:ns, A
both in discrete time and continuous time. In discrete time we derived a repfesentan.on £
of signals as weighted sums of shifted unit impulses, and we then us.cd this to derive , .
the convolution-sum representation for the response of a discrete-time L:l'I sy'stem. by
In continuous time we derived an analogous representation of continuogs-nme signals
as weighted integrals of shifted unit impulses, and we used this to derive the convo-
lution integral representation for continuous-time LTI systems. These representations
are extremely important, as they allow us to compute the response of an LTI system .
to an arbitrary input in terms of its response to a unit impulse. Moreover, the convo- o
lution sum and integral provided us with the means in Section 3.4 to analyze .the :
properties of LTI systems and in particular to relate many.LTI system }')ro'pcrtles,
including causality and stability, to corresponding progemes of the‘ I{mt impulse
response. Also in Section 3.7 we developed an interpretation f’f the unit impulse _and s
other related singularity functions in terms of their behavior under convolution. :
This interpretation is particularly useful in the analysis of LTI systems. _

An important class of continuous-time systems are those described by l{near
constant-coefficient differential equations, and their discrete-time countergart,.lmear
constant-coefficient difference equations, play an equally iraportant role in discrete
time. In Section 3.5 we reviewed methods for solving equa‘ions of t?ese types, and
discussed the properties of causality, linearity, and timf,: invariance for sysfems‘ de-
scribed by such equations. We also introduced pictona} r_epresentapogs for these
systems which are useful in describing structures for their 'mplemeniation.

PROBLEMS

3.1. Compute the convoluticn y[n] = x[n] * h{n} of the following pairs of signals.
(2) xln) = aruln),
r O pn, 77
% (b) x[n) = hln) = arufn]
X © x[n] = 2"u{—n}
h[n) = uln)
1 X @ xn} = (—1y(ul—n] — ul—n — 8]}
) hn) = uln) — uln — 8]
X (e) x{n} and Aln} as in Figure P3.1(a).
(f) x{n) and hln] as in Figure P3.1(b).
() x[n} and h[n} as in Figure P3.1(c).
g, om0
¢ () xin} = 1 for all n, hin} = {4"’ nao
( 0
\ x @) xln} = uln) — ul—nl, hin) = {4‘”" :3 0
A £ () xfn] = (—4ruln — 4]
’ hin] = 472 — n]
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Wodwd  beioE xbnlon . 5 U S T ' . () x(1) as in Figure P3.2(h).
1 1 4 h(f) = e [u(t — 1) — u(t — 2))
~~ (m) x(r) and h(r) as in Figure P3.2(i).
1012345 n 012346567 8910111213141516 n 7
(a)
a hit) x(t} hiy) x{t)
3
2 x[n) hin} 1 2
1 One period of sinwt 1
1 1 .
1 1 -
A ‘I‘-JJ-- 1 t |1U2 t | 1 2 3 1 1 2 6 t
-2-10 12 n 012345 n (@) b) (0
-1
(b} )
hit) x{t) hit)
4
2
x{n] 2
1 1 7 Slope = a 2
{ D __——*—_
t 1 t
-10123 n RN _ ;'
lc) () (e}
Figure P3.1
3.2. For each of the following pairs of waveforms, use the convolution integral to find the & x(t) h{t) x(t b(t}
response y(f) of the LTI system with impulse response A(¢) to the input x(¢). Sketch & ‘
/ your results. i 1 \ 0<A<<Y ‘ 1
X A @ x)) = etu(r) . a4 — '
Do this both when & % f§ and when & = f, 3
’ h(e) = e™2'utr) ( ﬂ ﬂ) i f _‘ ul [T] Lt 1 _LJ_ —_— e
7L / (b) x(1) = ult) — 2u(t — 2) + u(t — 5) :t 3 1 1 _:; t |-3l-—2 ! -1 l 1 {213}t 1 t
- h(t) = e*u(l — 1) & ' 1
¥/ (©) x(t)=eu() i} : i) i -
h(t) = u(t — 1) ;%

7( / @) x(1) = e ¥ult + 2) + e¥u(—1 -+ 2)
A1) = €u(t - 1)
e, t <0
% @ x0) = {c" - 2e7, t>0

h(r) as in Figure P3.2(a)

¥ (f) x(r) and h(s) as in Figure P3.2(b). ' 1 I/_] : - 1 \
1 - ] ]

() x(r) as in Figure P3.2(c).
¥ = (=2 — - 1 2t 12t 0o 1 2 t
hit) =u(—2 —1) l_/1L

(h) x(r) = 8(r) — 20(+ — 1) + 6@t — 2), and k(r) as in Figure P3.2(d).
{ (i) x(¢) and A(s) as in Figure P3.2(c).
X () x(r) and h(s) as in Figure P3.2(f). e
\(( (k) x(r) and A(r) as in Figure P3.2(g). b Figure P3.2

x(1) x(t) h(x)

() (i}
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o 7{33 (a) As we have seen'in Section 3.1, a discrete-time linear (and possibly time-varying)

>{( 3.4.

\ﬂ 3.5.
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system is characterized by its responses hfn] to delayed unit samples d[n — k.
For each of the following choices for A[n), determine an explicit relationship
between the input x{r] and output y[n] of the linear system so specified.

Q) Axln] = Oln — K]

Gi) ] = [g[n — k), k even

k odd
(i) hxln] = O[2n — k)
@iv) hx[n) = kuln — k]
(v) hiln) = kOln — 2k] + 3kd[n — k]
. _ [0ln — Kk + 1), k odd
o) Ayln] = {5u[n — kj, k even
() Which of the systems in part (a) are causal and which are not? Justify your
answers.
(¢) Determine and sketch the response of each of the systems of part (a) to the input
x{n] = u[n].
Consider a linear system with the following response to 8(f — 1):
h(1) = u(t — 1) — Wt — 27)

(a) Is this system time-invariant?
(b) Is it causal?
(c) Determine the response of this system to each of the following two inputs:

0 xi()=ult —1) —ulf=3)

(1) x5(f) = e™'u(t)
One of the important properties of convolution, in both continuous and discrete time,
is the associativity property. In this problem we will check and illustrate this property.
(a) Prove the equality

[x(2) » k()] + (1) = x(2) » [A(e) * g(1)] (P3.5-1)

by showing that both sides of eq. (P3.5-1) equal
j " J'" XDt — T — 6)dr do

(b) Consider two LTI systems with unit sample responses h,[n} and h,[n] shown in
Figure P3.5-1. These two systems are cascaded as shown in Figure P3.5-2. Let
x{n) = uln).

(i) Compute y{n] by first computing w{n} = x{n}+ h,[r] and then y[n] = win] »
hyln), that is, y[n] = {x[n] » h,[n]} * hsfn).

(ii) Now find y{n} by first convolving A;[1] and hy[n] to obtain g[n] = hy[n] * Ay[n],
and then convolving x[n] with g[n] to obtain y[n] = x[n} + {A;fn] + hy[n]}.

The answer to (i) and (ii) should be identical, illustrating the associative property

of discrete-time convolution.

(¢) Consider the cascade of two LTI systems as in Figure P3.5-2, where in this case

h,[n] = sin 8n
hy[n) = a"uln), lal < 1
and where the input is

x[n} = &n] —adln —1]

Determine the output y{n). (Hint: The use of the associative and commutative prop-
erties of convolution should greatly facilitate the solution in this case.)
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hy [n] = (=31 uln]

) e
L o (2]

ol

hy(n] = ulni + g uln=1]

Figure P3.5-1

win}
+{ hy(nl p———m—yin]

x{n} et hy [n}

Figure P3.5-2

X 3.6. (a) Consider the interconnection of LTI systems depicme_d in Figure P3.6-1. Express
¥  the overall impulse response Aln] in terms of hylnd, hyin), hslnl. hain), and hs{n}.

hy[n]
+
x(n} ~—s-1 h,{n] ¥ vinl
> h,[n] h4(ﬂ] =
|
h5[n]
Figure P3.6-1

(b) Determine Aln} when

r y[n) = 4@y {uln] — un — 31}
hyln] = hafn] = (n -+ Du{n]
hun) = 8[n — 11

hyfn) = 8ln] — 48[n — 3]

(¢) Sketch the response of the system of part (b) if x{n] is as in Figure P3.6-2.
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Figure P3.6-2

7( 3.7. C_onsider the casca.de interconnection of three causal LTI systems illustrated in
Figure P3.7-1. The impulse response h,[n] is given by

hyln] = un) — uln — 2)

x[n} 1 h,[n] hy [0} h, (n] yin]

Figure P3,7-1

and the overall impulse response is as shown in Figure P3.7-2.

-1 01234567 n  Figure P3.7-2
(a) Find the impulse response A;[n].
(b) Find the response of the overall system to the input
x[n) =é8[n) — dln — 1)
% 3.8.r(a) Consider an LTI system with input and output related through the equation

yn = J" e"00x(r — 2) dt

](( ) What is the impulse response h(¢) for this system?
b) Determine th i i i in Fi
peerT e response of this system when the input x{(r) is as shown in Figure

x{t)

-1 2 t  Figure P3.8-1
(¢) Consider the interconnection of LTI systems depicted in Figure P3.8-2. Here A(r)

is as in part (a). Determine the output y(r) when the in i in gi
. \ put x(r) is again given b;
Figure P3.8-1. Perform this calculation in two ways: s e ’
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hi{t)

x(1) =4 ylt}

L]
s(t—1) hit)
L]

Figure P3.8-2

(i) Compute the overall impulse response of the interconnected system and then

use the convolution integral to evaluate y(1).
(i) Use the result of part (b), together with the properties of convolution, to deter-

mine y(¢) without evaluating 2 convolution integral.
3.9. (a) Let h(r) be the triangular pulse shown in Figure P3.9-i(a), and let x(f) be the

h{t)

Figure P3.9-1

impulse train depicted in Figure P3.9-1(b). That is,
)= 5 86— kT (P3.9-1)
km—oe

Determine and sketch (1) = x(£) » h(2) for the following values of 7.

(@) T=4

x (i) T=2

x (iii) T =32
() T=1

-tu(f). Determine and

() Consider an LTI system with impulse response W) =e
(P3.9-1) with

sketch the output y(#) when the input x(¢) is the impulsc train of eq.
T=1.
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©) Let' x(t) be the impulse train
*0) = 3, (=1} 8¢ — K (P3.9-2)

Determine and sketch the output of the LTI s ith i
‘ e an ystem with impulse response h(s
depicted in Figure P3.9-2 when x(r) in eq. (P3.9-2) is the input. P ®

hit}

Figure P3.9-2

\ﬁ 3.10. Determine if each of the following statements or equations is true in general. Provide
proofs for those you believe to be true and counterexamples for those that y.ou think
_are false.
X (a) x[n] + {n]g[n]} = {x(n]* hin}gln] -
X (b) arx{n)* anhln] = a*{x[n] » An]}
( (c) If y(£) = x(t) « h(r), then y(2¢) = 2x(21) » h(21).
f () If yfn) = x{n] » K{n, then y[2n] = 2x{[2n] » H[2n].
x () If x(¢) and Ah(r) are odd, then y(t) = x(¢) » h(r) is even.
« ) If y(r) = x(2) * h(r), then 8¥ {y()} = x(t) » ¥ {h(N} + EY {x(1)] » A().
3.11. (a) If
x(t) =0, |t} > T,
and
k(1) =0, |[t|> T,
then :

“x(t)* h(t) =0, [t} > T
for §omc positive number T';. Express T, in terms of T, and T;.

(b) A discrete-time LTI system has input x[n), impulse response A[n], and output y[n]
.If k[n} is known to be zero everywhere outside the interval N, g,n < N, and x[ni
is kn.own to be zero everywhere outside the interval N, <X n < N,, then tlhe output
y.[n] is constrained to be zero everywhere except on some interval Ny < n << N,

(i) Determine N, and N in terms of No, Ny, N, and N;. ’
(i) If the interval Ny < n < N, is of length M), N; < n < N is of length M
and N, < n < Ny is of length M,, express M, in terms of M, and M, v

(c) Consider a discrete-time LTI system, with the property that if the inputx,\.'[n] =0
for ?ll n > 10, then the output yr] = 0 for all n > 15. What condition must A[n}
the impulse response of the system, satisfy for this to be true? '

(d) Consider an LTI system with impulse response in Figure P3.11. Over what interval
must we know x(¢) in order to determine y(0)?

hit)

1 P

-2 -1 6 t Figure P3.11
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3.12. Let x,(r) and x,(s) be two periodic signals, with a common period of T,. It is not to

difficult to check that the convolution of x;(f) and x,(¢) does not converge. However, b
it is somelimes useful to consider a form of convolution for such signals that is referred e
to as periodic convolution. Specifically, we define the periodic convolution of x,(f) and L

x,(f) as

o) = L’ 2 (Oxalt — T dT = x:1(0) B X200 (P3.12-1)

Note that we are integrating over exactly one period.
(a) Show that y{¢) is periodic with period Ty,
(b) Consider the signal
a+Ts
yalt) = j xy(D)x,(t — 7) dT

where a is an arbitrary real number. Show that

O = i)

Hint: Write a = kT, -+ b, where 0<b<T,

(¢) Compute the periodic convolution of the signal
we take Ty = 1.

1s depicted in Figure P3.12-1, where

X, {t)

%, {t)

1h I__] ﬂ -
1 1 3 5 :
y 0 3 1V 3 2 23 !

- 3t Figure P3.12-1

() Show that periodic convolution is commutative and associative; that is,
X,(6) B x2(1) = x,(8) @ x,(8)

and
x,(0) ® [xa(t) @ x3(D] = [x1(0) B X2 @ x3(1)
¢ convolution y{n} of two discrete-time

In a similar fashion we can define the periodi i
This is given by the expression

periodic signr i x,[n] and x,[n] with common period Ng.
Ny—1
Al =8, xilkixidn — k)

Again we can check that yln] is periodic with period Ny and that we can actually
calculate it by summing over any Ny consecutive values of k, that is,
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Anl = kE xy[klxy[n — k)
for any integer m.
(e) Consider the signals x,[n] and x,[n] depicted in Figure P3.12-2. These signals are

periodic with period 6. Compute and sketch their periodic convolution using
Ny = 6.

x4 [n}

X2 ]

e el

12 n

Figure P3.12-2

(f) Since these signals are periodic with period 6, they are also periodic with period 12.
Compute the periodic convolution of x,[n) and x,{n] using Ny = 12.

(2) In general, if x,[n] and x,[x] are periodic with period N, what is the relationship
between their periodic convolution computed using Ny = N and that obtained
using Ny = kN for k a positive integer?

7( 3.13. We define the area under a continuous-time signal v(f) as
+o0
A, = j ole) dr

Show that if y(r) = x(¢) = h(1), then
A, = A Ay

3.14. (a) Show that if the response of an LTI system to x(1) is the output y(s), then the
response of the system to

is y'(1). Do this problem in three different ways:
¥ (iy Directly from the properties of linearity and time invariance and the fact that
X)) = lim X0 =X = h)
A0 h

¥ (ii) By differentiating the convolution integral.
(iii) By examining the system in Figure P3.14.

x(l)——v-[—\ﬂ——>| bit} ylt}
Figure P3.14
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(b) Demonstrate the validity of the following relationships.

@y y() = x()+ K@)
(i) ) = (J., x(7) dr) s H(D) = J:-[x’(‘t) « KD dT = x(1) .(J:-;.u) dt)

Hint: These are easily done using block diagrams as in (iii) of part (a) and the
fact that u,(r) » u_,(f) = &().

(c) An LTI system has the response y(f) = sin g? to the input x(1) = e~3u(r). Use
the result of part (a) to aid you in determining the impulse response of this system.

(@) A second LTI system has the response 1) = (¢ — Du(?) to the input x(t) =
(sin Hu(r). What is the impulse response for this system?

(e) Compute the convolution of the two signals in Problem 3.2(b) using the fact that

W = @ hds

() Let s(¢) be the unit step response of a continuous-time LTI system. Use part (b)
to deduce that the response y(f) to the input x(s) is given by

o = | " sl — 1) dt ®3.141)

Show also that

x(f) = J
(g) Use eq. (P3.14-1) to determine the response of an LTI systera with step response
s(0) = (e3¢ — 2e7% + Du(f)

" v — 1) de (P3.14-2)

to the input x(¢) = eu(s).

(h) Let s[n] be the unit step response of a discrete-time LTI svstem. What are the
discrete-time counterparts of egs. (P3.14-1) and (P3.14-2)7

(i) Use the discrete-time version of equation (P3.14-1) to deterinine the response of
an LTI system with step response

s = (Wl + 1)
to the input
] = (—§yutr)

3.15. We are given a certain linear time-invariant system with impulse response ko(f). We
are told that when the input is x4(f), the output is yo(t), which is sketched in Figure
P1.15. We are then given the following set of inputs to linear time-invariant systems
with the indicated impulse responses.

Input x(1) Impulse Response h{t)
(@) x(1) = 2xo() k(t) = ho(0)
(b) x(1) = xo{f) — Xolt — 2) K) = ho(1)
(©) x(1) = xo(t —2) By = kot + 1
@) x(1) = xo(—) h(e) = ho()
© x(8) = xo(—1) h(t) = ho(—0)
) x(1) = x5(0) k() = mp()

[Here x}(1), h4(1) denote the first derivatives of xg(¢) and k()]
In each of these cases, determine whether or not we have given encugh informa-
tion to determine the output »(r) when the input is x(¢) and the system has impulse
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t Figure P3.15

response h(r). If it is possible to determine y(r), provide an accurate sketch of it with
numerical values clearly indicated on the graph.
An important class of continuous-time LTI systems, are those whose responses to the
unit impulse consist of trains of equally spaced impulses. That is, if the input to such a
system is x(f) = 8(¢), then output is
4o

K= 3 ho(t — nT) (P3.16-1)
where T > 0 is the impulse spacing and the hy are specified constants.

Systems of this type can be implemented in the form of tapped delay lines. An
example of a tapped delay line is illustrated in Figure P3.16-1 for a system with impulse
response

3
Y, hd(t — nT)
A=0
The system labeled “Delay T” in the figure is an ideal delay, whose output y(1) is a
delayed version of its input x(s), i.e., ¥(f) = x(t — 7). After each such delay (and
before the first one) the signal is “tapped” off, multiplied by a constant gain (ho, hy, hz.
etc.), and the output is the sum of these weighted, delayed versions of the input, As we

~ will see at the end of this problem, tapped delay lines are of great practical value for
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the design and implementation of LTI systems with specified response characteristics.

X Detay x{t - T) Delay x(t - 2T} Delay x{t - 3T)
T T T
g hy hy hy
+ + + »{ + t
Vs Y vt

Figure P3.16-1

(a) Consider the LTI system with impulse response given by eq. (P3.16-1). Suppose
that the input to this system is itself an impulse train

x(t) = f x,0(t — nT)
Show that the output y(¢) is also an impulse train
o
Yy = T 300t —nT)

where the coefficients {y,} are determined as the discrete-time convolution of the
sequences {x,} and {A,}:
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Yu = f Xiha_x (P3.16-2)

ke

(b) What is the impulse response of a system consisting of the cascade of three identical
tapped delay lines, each as in Figure P3.16-1, withhe = L hy = —1,h = hy = 0?

(¢) Consider the tapped delay line illustrated in Figure P3.16-2, where the gain at each
tap is equal to the delay time 7. Suppose that the input to this system is

x(f) = e~"u(t)
Carefully sketch the output y(r). What does y() look like in the limit as T — 0,
i.e., as we have shorter and shorter delays between the taps and as the tap gains

get smaller and smaller. If we call this limiting form of the output y(f), show that
for any given value of 7> 0

-1—_7_70’0(1 +7

forms an envelope for ¥{1), i.e., that this signal is a smooth curve connecting the
successive peaks of y(f).

x{t} Delay . Delay o Delay .
T T

Delay
T T

+ e o o o Yt

(A (W a
Figure P3.16-2

(d) Consider a system with an impulse response that is piecewise constant. That is,
Ky=h, forn<t<n+l (P3.16-3)

The signal A(f) is illustrated in Figure P3.16-3. Show that this system can be imple-
mented as the cascade of a tapped-delay line with impulse response as in eq. (P3.16-1)
and the LTI system depicted in Figure P3.16-4.

(e) Show that we can also implement the system specified by eq. (P3.16-3) as the
cascade of a tapped-delay line and an integrator. Do this by determining what the”
tap coefficients must be so that K(r) has the desired form.

h{t)

hy hy

Figure P3,16-3
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1.17. Our development of the convolution sum representation for discrete-time LTI system:
was based on using the unit sample function as a building block for the representation
of arbitrary input signals. This representation, together with knowledge of the response
to d[n] and the property of superposition, allowed us to represent the system response
to an arbitrary input in terms of a convolution. In this problem we consider the use of

other signals as building blocks for the construction of arbitrary input signals.

Consider the following set of signals:
$ln) = (Jyruln)
$uln) = $ln — K}, k=0, +1, £2, £3,...
(a) Show that an arbitrary signal can be represented in the form

x[n} = k:ﬁ:}‘_ a,Pln — k)

by determining an explicit expression for the coefficient ay in terms of the values
of the signal x{n]. (Hint: What is the representation for &{n]?)

(b) Let r[n] be the response of an LTI system to the input x[n] = @[ Find an expres-
sion for the response y{x] to an arbitrary input x[} in terms of r(n] and x{n].

(¢) Show that y{n] can written as

¥l = yin] » xln] * rln]

[IT{ po— ey {1)

Figure P3.16-4

Note that by using either of the two methods described above we can obtain a
system with an impulse response that is a staircase approximation of any desired
impulse response. In this problem we have chosen the time interval T between taps to
be unity, but any value of T could be used, and the result is that we can obtain arbitrarily
accurate staircase approximations using tapped delay lines. This fact, together with the
development of inexpensive components for the implementation of tapped-delay lines,
has made the use of systems of this type quite attractive in many applications.

(f) As a final observation it is worth noting that it is relatively easy to compute the
convolution of A(t) in eq. (P3.16-3) with another signal of the same kind

x()=x, for n<t<n-+] ' (P3.16-4)

Specifically, use the result of part (a) and (d), together with associative and com-

mutative properties of convolution to show that the convolution x(f) » A(r) can be

determined as follows:

(i) Compute the discrete convolution in eq. (P3.16-2) where 4, and x, are given
in eqs. (P3.16-3) and (P3.16-4) respectively.

(ii) Then x(1) + A(t) = y, for t = n + 1, and its values forn + 1 <t <n-+2lie
on the straight line connecting y, and y,,, (see Figure P3.16-5)

(g) Apply the technique of part (f) to convolve the signals depicted in Figure P3.16-6.

by finding the signal y[n}
(d) Use the result of part (c) to express the impulse response of the system in terms of
r[n}. Also, show that

7
.

ylr] s ¢lnl = éln)

3.18. Just as we saw for discrete-time signals and systems in Problem 3.17, it is possible to
consider representing continuous-time LTI systems using basic input signals other than
shifted unit impulses. For example, in this problem we consider ar LTI system that has
the response g(t) depicted in Figure P3.18(b) to the input p(¢) shown in Figure P3.18(a).

x{t} * h{t}

plt) - :

Ys

x{t}
Ye Ces 1
1
5 6 7 t
-1 1 t

ta) :
Ya
Figure P3.16-5 alt)
2 ¥

1 r—-l‘ 1
o 1 1 1]
-3 -2 12 |3 |4 5 1t -2 -1 1 2 |3 |4 t
1+ Y

{e}

(b}

Figure P3.16-6
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(a) Show that the input signal x(s) of Figure P3.18(c) can be represented by

x(t) = .:5:.,, a,p(t — n)

and find the values of a,.

(b) Write down an expression for the response ¥(1) to the input x(¢) shown in Figure
P3.18(c) in terms of the responses to the building block inputs p(t — n). Sketch y(1).

(c) Find the system response to the unit ramp input u_,(f).

(d) Find the step and impulse responses of this system. [Hint: Part (c) and Problem 3.14
should be of use here.}

(e) Find a block diagram representation of the system in terms of the following ele-
ments: integrators, differentiators, ideal! unit delay elements (i.e., the output of
such a delay equals the input delayed by 1 second), adders, and elements for the
multiplication of a signal by a constant coefficient.

Consider a discrete-time LTI system with unit sample response
hn] = (n + Daruln]

3.19

where |a] < 1.
Show that the step response of this system is given by

1
s[n] = [(a T @ f l)za'- + @ i l)(" + l)a"]u[n]

Hint: Note that

ﬁ k + Dax = —iNZH ox
k=0 T da S

3.20. In the text we saw that the overall input-output relationship of the cascade of two LTI
systems does not depend on the order in which they are cascaded. This fact, known as
the commutativity property, depends on both the linearity and the time invariance of
both systems. In this problem we provide several examples to illustrate this point.
(a) Consider two discrete-time systems A and B, where system A is an LTI system with

unit sample response hfn] = (§)*uln). System B, on the other hand, is linear but
time-varying. Specifically, if the input to system B is w{a], its output z[n} is given by

z{n] = nw[n]

Show that the commutativity property does not hold for these two systems by
computing the response of each of the systems depicted in Figure P3.20-1 to the
input x[n] = dln].

System System

System System
yste YO bt y[n) x[n] =177y A vinl

x{n | m——>

{a) {b)
Figure P3.20-1
(b) Suppose that we replace system B in each of the interconnected systems of Figure
P3.20-1, by the system with the following relationship between its input w{n] and
output z{a]:
z[n) = win) 4+ 2

Repeat the calculations of part (a) in this case.
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(c) What is the overall input—output relationship for the system of Figure P3.20-27

Muttiply Differentiate
by t
+
7 G )———" ylt)
Differentiate M\gl;u:ly

Figure P3.20-2

3.21. In the text we showed that if Afx] is absolutely summable,
bo
B 1K < o0

then the LTI system is stable. This means that absolute summability is a sufficient
condition for stability. In this problem we shall show that it is also a necessary condi-
tion. Consider an LTI system with impulse response Afn}, which we assume is not
absolutely summable, that is,

LCIEES

(a) Suppose that the input to this system is
0 if {—n] =0
x[n} =3 H[—n]} e
]—h[——_l;ﬂ lfh[ n] 5 0
Does this input signal represent a bounded input ? If so, wha is the smallest number
B such that
|x[n)| < B for ali n?

(b) Calculate the output at i =0 for this particular choice of input. Does this resv,f'u
prove the contention that absolute summability is a necessary condition for stabil-
ity ? )

(¢) In a similar fashion, show that a continuous-time LTI system is stable if and only
if its impulse response is absolutely integrable. B

3.22. Consider the cascade of two systems shown in Figure P3.22. The first system, A, is
known to be LTI. The second system, B, is known to be the ir.verse of system A. Let

(1) denote the response of system A to x,(), and let y,(#) be the response of system

A to x,(1).
LTl yit)
x (1) w———p-{ System Sy:em x{t}
A

Figure P3.22

(a) What is the response of system B to the input ay,(£) + by:(s), where a and b are

constants?
(b) What is the response of system B to the input »(t—1?
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(¢) to denote this signal, as it represents the electrical equivalent of the acoustic
signal, and we can go from one to the other via acoustic-electrical conversion sys-

tems.

3.23. Determine if each of the following statements concerning LTI systems is true or false.

Justify your answers.

(a) If h(s) is the impulse response of an LTI system, and h(¢) is periodic and nonzero,
the system is unstable.

(b) The inverse of a causal LTI system is always causal.

() If |An]} << K for each n, where K is a given number, then the LTI system with
h[n] as its impulse response is stable.

(d) If a discrete-time LTI system has an impulse response A[n] of finite duration, the
system is stable.

(e) If an LTI system is causal, it is stable.

() The cascade of a noncausal LTI system with a causal one is necessarily noncausal.

(&) A continuous-time LTI system is stable if and only if its step response s(¢) is abso-
lutely integrable, that is,

The important point to note is that the system with impulse response given s
by eq. (P3.25-1) is invertible. Therefore, we can find an LTI system with impulse s
response g(¢) so that :
¥1) » g(8) = x(0)
and thus, by processing the electrical signal y(¢) in this fashion and then converting
back to an acoustic signal, we can remove the troublesome echoes.
The required impulse response g() is also an impulse train,

#0) = T80 80 = KT)

Determine the algebraic equations that the successive gx must satisfy, and solve 0
for go, £1, and g, in terms of the hy. (Hint: you may find the result of part (a) of B
Problem 3.16 to be of value)
(b) Suppose that kg =1, by = 4,and b, =0 for all { > 2. What is g(t) in this case?
(c) A good model for the generation of echos is illustrated in Figure P3.25, Hence each
successive echo represents a fed-back version of y(f), delayed by T seconds and
scaled by . Typically 0 <& <1, as successive echos are attenuated.

+oo
j Is()|dr < o0
(M) A discrete-time LTI system is causal if and only if its step response s[n} is zero
forn < 0.
7( 3.24. The following are the impulse responses of LTI systems, in either continuous or dis-
crete time. Determine whether each system is stable and/or causal. Justify your answers.
¥ @) Aln) = (3yuln]
7 (®) hln} = (0.99yuln + 3]

%(e) hln] = (0.99yu{—n] @ m "
X (@) hln) = @yul2 — )
S (e) Hnl = (=}ruln} + (1.01yuln — 1]
) Hn) = (—ruln] + (1.01y{l — 7]
+(g) hln] = "(%)’”["] & Delay
X (h) h(r) = e ¥u(t — 1) Y S

igure P2,

M A= e du(l — 1)
¥ G) k() = e'u(t -+ 100)
£ &) k(1) = eu(—1 —1)
M) h(r) = e~ 4!
J @) b0 = remutt)
(n) h(‘) = (28_‘ — e(l"lDO)/lDO)u(l)

3.25. One important use of inverse systems is in situations in which one wishes to remove
distortions of some type. A good example of this is the problem of removing echoes
from acoustic signals. For example, if an auditorium has a perceptible echo, then an
initial acoustic impulse will be followed by attenuated versions of the sound at regularly
spaced intervals. Consequently, an often used model for this phenomenon is an LTI
system with an impulse response consisting of a train of impulses.

(i) What is the impulse response of this system (assume initial rest, e, y(H=0

for t < 0if x(f) = 0 for t <0)?
(ii) Show that the system is stable if 0 < & < 1 and uastable ifa> 1.
(iii) What is g(s) in this case? Construct a realization of this inverse system using
adders, coefficient multipliers, and T-second delay elements.
Although we have phrased this discussion in terms of continuous-time systems
because of the application we have been considering, the same general ideas hold in

discrete time. That is, the LTI system with impulse response
Hin} = ,?;o 5in — kN)

is invertible and has as its inverse an LTI system with imoulse response
glil = £ guln — kN]

It is not difficult to check that the g¢ satisfy the same algebraic equations as in part (a).
(d) Consider now the discrete-time LTI system with impulse ;esponse :

Ho) = :};__ 8ln — kN)

) = ?’_johk&(: —kT) (3.25-1)

Here the echoes occur T seconds apart, and h, represents the gain factor on the kth

echo resulting from an initial acoustic impulse.

(a) Suppose that x{r) represents the original acoustic signal (the music produced by
an orchestra, for example) and that y(t) = x(r) » h(r) is the actual signal that is
heard if no processing is done to remove the echoces. In order to remove the distor-
tion introduced by the echoes, assume that a microphone is used to sense y{r) and

that the resulting signal is transduced into an electrical signal. We will also use This system is not invertible. Find two inputs that produce the same output.
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3.26. In Problem 2.23 we introduced and examined some of the basic properties of correla-
tion functions for continuous-time signals. The discrete-time counterpart of the correla-
tion function has essentially the same properties as those in continous time, and both

are extremely important in numerous applications (as is discussed in the following two
problems). In this problem we introduce the discrete-time correlation function and

examine several more of its properties.
Let x[n] and y[n] be two real-valued discrete-time signals. The autocorrelation

functions ¢ <] and @,,[n} of x[n] and y[n), respectively, are defined by the expressions

bodr) = 3 _xtm + nixlm)
polr = 3 _ym o+ i)

and the cross-correlation functions are given by

4),,[/1] = i x{m -+ nlylm]

¢yx["] = iim yim + mx{m]

As in continuous time, these functions poOssess certain symmetry properties. Spe-

cifically, ¢..n] and ,,[n] are even functions, while §,,{n] = é,.—n}

(a) Compute the autocorrelation sequences for the signals xilnl, x5[n), X3
x4[n) depicted in Figure P3.26.

[n], and

1 x, (n) 1 1‘ %, [n)
0 2
0123 n -1 L 1 n
-1 -1
2 x5 {n} x4{n}
1 11 1] ]\
l ¢—o—0—0—o—
-1 01 o 0 5 o

Figure P3.26

(b) Compute the cross-correlation sequences

¢,l,,[n], iz, Li=412 3,4
for xdn), i =1,2,3,4,8s shown in Figure P3.26. .
(c) Let x{n] be the input to an LTI system with unit sample response h{n], and let the
corresponding output be y{n}. Find expressions for $.,[n] and $,,[n) in terms of
¢ ..[n) and Afn}. Show how @,,[n] and $,,In] can each be viewed as the output of
LTI systems with @.xln] as the input (do this by explicitly specifying the impulse
response of each of the two systems)-
(@) Let hln] = x,[n] in Figure P3.26, and let yin] be the output of the LTI system with
impulse response h{n] when the input x[n] also equals x,[n}. Calculate ¢ ,,inl and

$,,In} using the results of part {c).

144 Linear Time-invariant Systems Chap. 3

- | ‘

3.27. Let hy(0), ha(2), and hs(1), as sketched in Figure P3.27
LTI systems. These three signals are known as Walsh functions and are of considerable
practical importance because they can be easily generated by digital logic circuitry
and because multiplication by these functions can be simply implem~ated by a polarity-
reversing switch.

hy i) hy {t) hy{t)
1 1
! 1 1 l
12 3 4 t 1 2 3 4 t
-1F -1t
Figure P3.27

(a) Determine and sketch a choice for x,(1), a continuous-time signal, that has the
following properties.
@ xi(0)is real.
(i) x (n=0fort < 0.
(i) | x(01 < 1 for allt > 0.
(V) y1 () = x1 () * hy(r) is as large as possible at 1 = 4.
(b) Repeat part (a) for x,(f) and x;(1), by making yalt) = X2(8) ha(f) and ya(n) =
x5(0) * ha(D each as large as possible at £ = 4.
(c) What is the value of
Yo = x{1) * hD), i
at time t =4 fori,j = 1,2,3?
(d) Show how to realize an LTI system for each impulse response hit) as the cascade
of a tapped-delay line and an integrator (see Problera 3.16).

The system with impulse response h() is known as the matched filter for the
signal x(¢) because the impulse response is tuned to x,() in order to produce the manxi-
mum output signal. In the next problem we relate the concept of a ma‘ched filter to
that of the correlation function for continuous-time signals and provide some insight
into the applications of these ideas.

3.28. The cross-correlation function between two continuous-time real signals x(#) and y(1) is
given by

¢x.v(’) = jh. x(t + )¥(r) dt (P328-1)

The autocorrelation function of a signal x(¢) is obtained by setting ¥(1) = x(1) in eq.
(P3.28-1).
+on
$axlt) = j x{t + T)x(1) dt

. (a) Compute the autocorrelation function for each of the two signals x; () and x,(f)

depicted in Figure P3.28-1.
(b) Let x(s) be a given signal and assume that x{f) is of finite duration, i.e., that
x(1) = Oforr <0 and ¢ > T. Find the impulse response of an LTI system so that

$.(t — T) is the output if x(f) is the input.
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x4 (1) xp 0

1
I 1 l
1] 2 t o 1 2 I3 4 5|6I7 t

(a)

{b)
Figure P3.28-1

The system determined in part (b) is a matched filter for the signal x(¢). That this
definition of matched filter is identical to the one introduced in Problem 3.27 can be
seen from the following. .

(c) Let x(¢) be as in part (b), and let y(f) denote the response to this signal of an LTI
system with real impulse response h(f). Assume that A1) = 0 for t < 0 and for
t> T. Show that the choice for k(r) that maximizes p(7T) subject to the con-
straint that

T
J h () dt = M a fixed positive number (P3.28-2)
o

is a scalar multiple of the impulse response determined in part (b). [Hint:
Schwartz's inequality states that

J': w(tyo(t) di < [ j: (1) d:]'” [ f V1) dr]m

for any two signals u(r) and (r). Use this to obtain a bound on ¥(T).]
The constraint given by eq. (P3.28-2) simply provides a scaling to the impulse
response, as increasing M merely changes the scalar multiplier mentioned in part (c).
Thus, we see that the particular choice for h(¢) in parts (b) and (c) is matched to the

signal x(¢) to produce maximum output. This is an extremely important property in a

number of applications, as we will now indicate.

In communication problems one often wishes to transmit one of a small number
of possible pieces of information. For example, if a complex message is encoded into a
sequence of binary digits, we can imagine a system that transmits the information bit
by bit. Each bit can then be transmitted by sending one signal, say xo(#), if the bitis a
zero, or a different signal x,(r), if a 1 is to be communicated. In this case the receiving
system for these signals must be capable of recognizing if xo(f) or x,(f) has been received.
Intuitively, what makes sense is to have two systems in the receiver, one “tuned” to
xo(f) and one to x,(r), where by “runed” we mean that the system gives a large output
after the signal to which it is tuned is received. The property of producing a large output
when a particular signal is received is exactly what the matched filter possesses.

In practice there is always distortion and interference in the transmission and
reception processes. Consequently we want to maximize the difference between the
response of a matched filter to the input to which it is matched and the response of the
filter to one of the other possible signals that can be transmitted. To illustrate this
point, consider the following.

Linear Time-Invariant Systems Chap. 3

oL R TR S

(e)

Chap. 3

wy . ‘. P St 2R O D

(d) Consider the two signals x,(f) a

i ; y : . Vot

k] DRUEILE

nd x,(¢) depicted in Figure P3.28-2. Let L, denote
the matched filter for xo(r), and let L, denote the matched filter for x,(s).

x5 t) ‘ x, (1}
1 1
1 1 1 !
1 2 3 4 t 1 2 3 4 1
...1 - -1

Figure P3.28-2

(i) Sketch the responses of L to x,(f) and x,(¢). Do the same for Ly.

(ii) Compare the values of these responses at ¢ = 4. How might you modify x,(f)
so that the receiver would have even an easier job of distinguishing between
xo{t) and x,(¢) in that the response of L¢ to x,(r) and L, to xo(f) would both
be zero at ¢t = 47

Another application in which matched filters and correl.tion functions piay an
important role is in radar systems. The underlying principle of radar is that an
electromagnetic pulse transmitted at a target will be reflected by the target and will
subsequently return to the sender with a delay proportion:] to the distance to the
target. Ideally, the received signal will simply be a shifted und possibly scaled ver-
sion of the original transmitted signal.

(i) Let p(t) be the original pulse that is sent out. Show that

$,,(0) = max é,,(0
Use this to deduce that if the waveform received bact by the sender is
x(r) = ap(t — 1)
where & is a positive constant, then

¢u(’0) = m:“x ¢x;(f)

Hint: Use Schwartz’s inequality.

Thus, the way in which simple radar ranging systems work is based on using a

matched filter for the transmitted waveform p(f) and noting the time at which the

output of this system reaches a maximum.

(i) For p(¢) and x(¢) as in Figure P3.28-3, sketch ¢@,,(). Assuming a propagation
velocity of ¢ = 3 x 10® meters/sec, determine the distance from the trans-
mitter to the target.

(iii) Since this technique for estimating travel time looks at the peak of a correla-
tion function, it is useful to use pulse shapes p(r) that have sharply peaked
correlation functions. This is important due to the inevitable presence of dis-
tortion and interference in the received waveform. Which of the two pulses in
Figure P3.28-4 would you prefer to use?
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Figure P3.28-4

A discrete-time LTI system has its input-output relation characterized by the difference
_equation

ynl = xln] — 2x[n — 2] + x[n — 31 — 3x[n — 4]
Determine and sketch the unit sample response for this system.
Consider the LTI system initially at rest and described by the difference equation

yin] + 2yln — 11 = xin] + 2x{n — 2]

Find the response of this system to the input depicted in Figure P3.30 by solving the
difference equation recursively.

x[n)

e

-2-1 0123 ; n  Figure 1’3.30

In this problem we parallel our discussion of Section 3.5.1 in order to present one
standard method for solving linear constant-coefficient difference equations. Spe-
cifically, consider the difference equation

vnl — pln — 1] = x{n) (P3.31-1)
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and suppose that
x{n) = K(cos Qomuln] (P3.31-2)

Assume that the solution y[x] consists of the sum of a particular solution y,in} to
eq. (P3.31-1) forn >0 and a homogeneous solution y,{n} satisfying the equation

wlnl — dnln — 11=0
(a) If we assume that yun] = Az}, what value must be chosen for z,?
(b) If we assume that forn>0
y,ln) = B cos (Qon + [2))
what are the values of B and 07 (Hint: In analogy with continuous time, it is
convenient to view
x[n] = R {Ke/muln]} and

where Y is a complex number to be determined.)

(c) Suppose that we provide the auxiliary condition
0} =0

Verify that eq. (P3.31-1) together with eq. (P3.31-3) specify a linear system. Show
that this system is not causal by comparing the responses of the system to the fol-
lowing two inputs

yin] = Qe { Ye/2uln]}

(P3319)

x{n} =10 forall n
) {0, n< =2
Al =1 4z 2

(d) Consider the system described by eq. (P3.31-1) and the assu.nption cf initial rest.
Show that this is a causal LTI system.

(¢) Suppose that the LTI system described by eq. (P3.31-1) and initiaily at rest has
as its input the signal specified by €q. (P3.31-2). Since x[n] =: 0 for n <0, we have
that y{n) = 0forn <0. Also, from parts (a) and (b) we have that y[x] has the form

Jin) = Azg + Bcos (Qon + )

for n > 0. In order to solve for the unknown constant A4, we must specify a value
for yln} for some n > 0. Use the condition of initial rest and eqs. (P3.31-1) and
(P3.31-2) to determine »{0). From this value determine the constant A. The result
of this calculation yields the solution to the difference equation (P3.31-1) under the
condition of initial rest, when the input is given by eq. (P3.31-2).

. A $100,000 mortgage is to be retired by equal monthly payments of D dollars. Interest,
compounded monthly, is charged at a rate of 12%, per annum cn the unpaid balance;
for example, after the first month, the tota! debt equals

$100,000 + (0—1'—;3)5100,000 = $101,000
The problem is to determine D such that after a specified time the mortgage is paid in
full, leaving a net balance of zero.
(a) To set up the problem, let y{n) denote the unpaid balance just after the nth monthly
payment. Assume that the principal is borrowed in month 0 and monthly payments
begin in month 1. Show that y[n] satisfies the difference equ 1tion

i) —pn—11=—D a1 (P3.32-1)
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with initial condition o -
»{0] = $100,000

wherey is a constant that you should determine.
(b) Solve the difference equation of part (a) to determine

yn} forn>0

Hint: The particular solution of eq. (P3.32-1) is a constant Y. Find the value of Y
and express y{n} for n > 1 as the sum of the particular and homogeneous solu-
tions. Determine the unknown constant in the homogeneous solution by directly
calculating {1} from eq. (P3.32-1) and comparing it to your solution.

(c) If the mortgageisto be retired in 30 years, after 360 monthly payments of D dollars,
determine the appropriate value of D.

(d) What is the total payment to the bank over the 30-year period?

(e) Why do banks make loans?

3.33. (a) Consider the homogeneous differential equation

& din)
2 ax g =0 (P3.33-1)

Show that if s, is a solution of the equation
N
pls) = kE_Jo aysk =0 (P3.33-2)

then Ae** is a solution of eq. (P3.33-1), where A is an arbitrary complex constant.
(b) The polynomial p(s) in €q. (P3.33-2) can be factored in terms of its roots, Sy, ..« 5n
pls) = ayls — 5,)7(s — s2)* ... (s — s~

where the s, are the distinct solutions of eq. (P3.33-2) and the o, are their multi-

plicities. Note that
g,y 4+0,+...+0, =N

In general, if g, > 1, then not only is Ae* a solution of eq. (P3.33-1), but

so is At/e*+ as long as j is an integer greater than or equal to zero and less than or

equal to (o, — 1)- To illustrate this, show that if o, = 2, then Are** is a solution

of eq. (P3.33-1). [Hint: Show that if s is an arbitrary complex number, then

N d*(Ate”) _ o dp(s) ,
2 ax g = Aplsuer + A =gz e)
Thus, the most general solution of eq. (P3.33-1) is
a1

S Y Agte

i=1 j=0

where the A, are arbitrary complex constants.
(c) Solve the following homogeneous differential equations with the specified auxiliary

conditions.
@ LA 3D 4 0y = 0; #0) =0, y(© =2
iy L2 13240 4 2y = 0; WO =1, YO0 =1
Gty L2 4 3 B 1 2400) = 0 H0) =0, ¥(0) =0
(v LA 2 20D 1y =0; yO) =1, y© =1
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v o) DAL D0 By m0; O =L YO =1 YO =2

o L2012 D0 4 500 = 0; W) =1, YO =1

7( (d) Consider the homogeneous difference equation

N
kEO axyin — k1 =0 (P3.33-3)
Show that if z, is a solution of the equation
N .
kzo az =0 (P3.33-4)

then Az} is a solution of eq. (P3.33-3), where 4 is an arbitrary constant.
As it is more convenient for the moment to work with polynomials that have
only nonnegative powers of z, consider the equation obtained by multiplying both
sides of eq. (P3.33-4) by zV:

N
pz) = :Zo a ¥k =0 (P3.33-5)
The polynomial p(z) can be factored as
pl2) = aolz — 2,y ... (2 — 27

where z4, . . . , 2, are the distinct roots of p(z2).
(e) Show that if yn} = nz»"}, then

ﬁ axyn — k] = -d—pg(z—)z"‘" + (1 — N)yp()zr=V=!
k=0 ¥4

Use this fact to show that if o, = 2, then both Az; and Bz ! are solutions of ea.
(P3.33-3), where 4 and B are arbitrary complex constants. More generally, one can
use this same procedure to show that if o, > 1, then

n! n=r
Ar!in - r)!z

is a solution of eq. (P3.33-3), for r = 0,1, RN P
(f) Solve the following homogeneous difference equations with the specified auxiliary

conditions:

Gy ym +Pln =10+ Pl —21=0; A0 =1,
(i) ynl = 2Dn — 1} +Hyn—21 = 0; Ao =1,
(i) ylm) — 29— 1+l =21 = 0; A0 =1,

) i) — Lot — 1+ ln =2 =0 A0 =0,

3.34. In the text we described one method for s
equations, and another method for doing t
assumption of initial rest is ma
tion is LTI and causal, then in princip

yi—1] = —6
M1} =0
H10] =21

A-11=1

olving linear constant-coefficient difference
his was illustrated in Problem 3.31. If the

de so that the system described by the differential equa-

le we can determine the unit impulse response

h[n] using either of these procedures. In Chapter 5 we describe another method that

allows us to determine A[n] in a much neater
another approach, which basically shows that

homogeneous equation with appropriate initial conditions.

tHere we are using the factorial notation. That is, k!

defined to be 1.
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(a) Consider the system initially at rest and described by the equation
wnl = yn — 11 = x{n]) (P3.34-1)
AssumAing that x[») = d{n], what is y{0]? What equation does h{n] satisfy forn> 1,
and with what auxiliary condition? Solve this equation to obtain a closed-form
expression for A{n).
(b) Consider next the LTI system initially at rest and described by the difference
equation
yn] — Jyin — 1 = x[n] + 2x[n — 1} (P3.34-2)

This system is depicted in Figure P3.34(a) as a cascade of two LTI systems that
are initially at rest. Because of the properties of LTI systems we can reverse the
order of the systems in the cascade to obtain an alternative representation of the
same overall system, as illustrated in Figure P3.34(b). From this fact, use the result
of part (a) to determine the impulse response for the system described by eq.
(P3.34-2).

z[n]

x{n] = zin] = xln] + 2x{n =1}

yln} =3vln =1} =z[n] p=——yin]

{a)

wln}

x[n}=—s1 win) —%w{n - 11 = x[n} yinl = wlnl + 2wln— 1] f—>yln}

(b)

Figure P3.34

(c) Consider again the system of part (a) with A[n] denoting its impulse response. Show
that the response y[n] to an arbitrary input x[n] is in fact given by the convolution
sum

yin) =m§w Hin — mixim (P3.34-3)

Do this by verifying that eq. (P3.34-3) satisfies the difference equation (P3.34-1).
(d) Consider the LTI system initially at rest and described by the difference equation

k"go apyln — k) = aln) (P3.34-4)

Assuming that a, = 0, what is 0 if x[n] == 6[n])? Using this, specify the homo-
geneous cquation and initial conditions that the impulse response of this system
must satisfy.

Consider next the causal LTI system described by the difference equation

N
$ audn — Kl = kgﬂ bexln — K (P3.34-5)

k=0

Express the impulse response of this system in terms of that for the LTI system
described by eq. (P3.34-4).
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(e) There is an alternative method for determining the impulse response of the LTI
system described by eq. (P3.34-5). Specifically, given the condition of initial rest,
ji.e., in this case W—Nl=y—-N+ N=...= y{—1] =0, solve eq. (P3.34-5)
recursively when x[n] = o[n] in order to determine y[0], . . ., IM]. What equation
does h[n) satisfy for n = M? What are the appropriate initial conditions for this
equation 7

(f) Find the impulse responses of the causal LTI systems described bv the following
equations.
() ) — yin — 21 = xn)
(i) yn] — Hn — 21 = xn] + 2x[n — 1}
(iii) y{n] — yln — 2] = 2x[n] — 3x{n — 4]
() n) — /T yln — 11 + Pl — 2] = x{n)
Use either of the methods outlined in parts (d) and (e).

1.35, In this problem we consider a procedure that is the continuous-time counterpart of the
technique developed in Problem 3.34. Again we will see that the problem of determin-
ing the impulse response h(f) for t > O for an LTI system initialiy at rest and described
by a linear constant-coefficient differential equation reduces to the problem of solving
the homogeneous equation with appropriate initial conditions.

(a) Consider the LTI system initially at rest and described by the differential equation

VR

d_ya(’—’—) + 20 = x(0) (P3.35-1)

Suppose that x(1) = &(). In order to determine the value of y(r) immediately after
the application of the unit impulse, consider integrating eq (£3.35-1) from t = 0"
to t = 0* (i.e., from “just before” to “just after” the application of the impulse).
This yields

700y = y07) + 2 Yy = | " sy dr =1 (P3.35-2)
0" 0

Since the system is initially at rest and x(¢) = 0 for ¢ <0, ¥07) = 0. Therefore, we

see that y(0*) =1, as if this is the case y(1) contains only a step at f = 0, and

consequently its integral fromt =0"to f=0"is0. Since x(¢) = 0 for 1 > 0, we

see that the impulse response of our system is the soluticn of the homogeneous

equation

dy(r) _
= + 21y =0
with initial condition
y0*) =1
Solve this differential equation to obtain the impulse response h(f) for this system.
Check your result by showing that
+oo
) = J. h(t — ox(1) dT

satisfies eq. (P3.35-1) for any input x(¢).
(b) To generalize this argument, consider an LTI system initia:ly at rest and described

by the differential equation

N dk
£ o 2D - (P3.35-3)

with x(1) = &{(r). Assume the condition of initial rest which, since x(1) = 0 for

163

Chap. 3 Problems




154

[ I (SRS b . i
t < 0, implies that
- dy . dn-t
»(0 =£(0)=~-=7,,—~%
Integrate both sides of eq. (P3.35-3) once fromt =0~ tot = 0*,and use eq. (P3.35-4)
and an argument similar to that used in part (a) to show that the resuiting equation
is satisfied with

©)=0 (P3.35-4)

dy dnN-1
yoy =Zen=... 7—2(0*) =0 (P3.35-5a)
and
dn-1 1
o = (P3.35-5b)

Consequently the system’s impulse response for 1 > 0 can be obtained by solving the
homogeneous equation

with initial conditions given by eq. (P3.35-5).
(c) Consider now the causal LTI system described by the differential equation

N d* y(1) M d*x(1)
kgo ax dlk = kz-lo bk '—d?;-‘ (P335-6)

Express the impulse response of this system in terms of that for the system of part (b).
(Hint: examine Figure P3.35).

{ M
a d"wk(x) —_— wit) > b, d* wit)

N
x{t}—s{ I = I
=0 dt vl = k=0 de*

. ——ylt)

Figure P3.35

(d) Apply the procedures outlined in parts (b) and (c) to find the impulse responses for
the LTI systems initially at rest and described by the following differential equa-
tions.

() 420 3 2D 4 2y = x0)

(i) L2 4 2 B 1 25(0) = »(1)

(€) Use the result of parts (b) and (c) to deduce that if M = N in eq. (P3.35-6), then
the impulse response /i(t) will contain singularity terms concentrated at f = 0. In
particular, k() will contain a term of the form

M=N
3 o)
r=0

where the &, are constants and the u,(1) are the singularity functions defined in
Section 3.7.

(f) Find the impulse responses for the causal LTI systems described by the following
differential equations.

M 20 420 =3 L) x

2
Giy 220 1 s D 4 6 = D) 1o L0 | 4 80 4 3000

Linear Time-Invariant Systems Chap. 3

3.37.

3.38.

snsider the LTI system initially at rest and described by the difference equation
yinl — $pn — 1) + ol =2} = 6xin] — xln — 1] + Sxfn — 2]
:a) Determine a closed-form expression for the unit step response of this system in two
ways:

(i) By solving the difference equation directly by (1) assuming 2 particular solution
of the form y{n] = Y for n > 0 and solving for Y; (2) finding the homogeneous
solution, which will have two unspecified constants; and (3) directly calculating
{0} and y[1} and using these values to determine the constants by equating
yln) and y,[n} + yln)forn =20 and 1.

(i) By first solving for the unit impulse response (see Problem 3.34) and then using
the convolution sum.

(b) Find the output of the system when the input is
x{n] = (—4r

Use either of the two methods given above, where in the first case you should

assume a particular solution of the form

ylnl = Y(=i»
(¢) What is the response of the system if
x{n} = (=4yuln — 21 + 3uln — 41
(d) Construct the direct form 11 realization for this system.

Consider the continuous-time LTI system initially at rest and described by the differ-
ential equation

forn>0

-’lly(l) 1 %(I_Q . 2}'(!) — X(!) (P3.37-‘-)

dt?
(a) Determine the step response of this system in two ways:
(i) By solvingthe differential equation directly, that is, by (1) assuming a particular
solution y(t) = Y for t > 0 and solving for Y; (2) finding the homogeneous
solution, which will have two unspecified constants; and (3) by using the initial
rest conditions ¥(0) = »(0) = 0 to determine the constants by equating »(f)
and y'(t) with y,(£) + () and y(1) + yi(t), respestively, at 2 = 0.
(ii) By first solving for the unit impulse response (sez Problem 3.35) and then
using the convolution integral.
(b) Repeat (i) of part (a) for the input
x(f) = e~ H(cos 3Nu(r)
In this case the particular solution for ¢ > 0 is of the form
¥ = Re [Ye— i3}
(c) Construct the direct form 11 realizations for the LTI system described by eq.
(P3.37-1).
Determine the direct form It realization for each of the following LT1 systems, ail of
which are assumed to be at rest initially.
(@) in) —yln — 11+l =31 = x{n} — 5x{n — 4]
d*y(1) dWt) _ o _ 4 4200
®) 45" + 25 = X0 =3
© ylr = xln] — x{n — 1)+ 2x{n — 31 — 3x{n — 4}
) iy — 20
©® g =0 =27
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() 7i§_l)+2—i,(—,l‘)~2y(t)=xo)+‘—i§f—')+3j x(r) dt

3.39. In Section 3.7 we characterized the unit doublet through the equation
Xy v () = j_: Xt — Duy(x) dt = x'(0) (P3.39-1)
for any signal x(¢). From this equation we derived the fact that
[T e@mmdr = —¢'O (23392

(a) Show that eq. {P3.39-2) is an equivalent characterization of u,(r) by showing that
eq. (P3.39-2) implies eq. (P3.39-1). [Hint: Fix t and define the signal g(1) =
x(t — 1).]

) “Thus we have seen that characterizing the unit impulse or unit doublet by how

x‘t behaves under convolution is equivalent to characterizing how it behaves under

integration when multiplied by an arbitrary signal g(f). In fact, as indicated in

§ection 3.7, the equivalence of these operational definitions holds for all signals and
in particular for all singularity functions.

(b) Let f(¢) be a given signal. Show that

F(Ouy(6) = f©Ous(0) — £70) o)
by showing that both have the same operational definitions.
(¢) What is the value of
j x(u(7) d1?
(d) Find an expression for S(Hu,(¢) analogous to that considered in part (b) for
S(uy(0).
3.40. Show by induction that

wl) = i

1
1)!u(t) fork =1,2,3...

341, Il'.l analogy with the continuous-time singularity functions, we can define a set of
discrete-time signals. Specifically, let

u_y{n] = uln]
ugln} = 6ln)
u[n) = O[n) — Oln — 11
and define
u[n) = w{n] » PRI AR k>0
k times
up[n] = u_yln) # uoylnl oo owouylnl, k<0
1k | times
Note that
x{n} + 8{n] = xin]
x[n) * uln} = z..:— x[m)
x{n} » w,[n) = x[n] — x{n — 1)
156 Linear Time-Invariant Systems Chap. 3
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which are the counterparts of the operational definitions of 8(n), «(r), and u, () given in
the text in eqs. (3.143), (3.156), and (3.149), respectively.

(a) What is

§ xmiluyml?

(b) Show that
s [n} = *0Juy[n} — (11 — {03} 6n — 11
= x{1jusfn} — {x{1] — x(01} dln)

(c) Sketch the signals #,{n] and u,{n).

(d) Sketch u_,[n] and u_s[n}.

(e) Show that in genetal for k>0,

ual] = YKL (o) — il ~ K = 11 ®3.41-1)
x itk — n)! '

Hint: Use induction. From part (c) you should have that ux[n] satisfies eq. (P3.41-1)
for k = 2 and 3. Then, assuming it is true for u{n), write g, in terms of [}
and show it is also true for ux,1lnl

(f) Show that in general for k > 0,

i) = (""Ikk_‘])‘?’u[n1 (P3.41-2)

Hint: Again use induction. Note that
u_eerrln] — u_xanln — 1] = u_xln) (P3~41'3)

Assuming that eq. (P3.41-2) is valid for u_x{nl, use eq. (P3.41-3) to show that it
is valid for u_xyninl as well.
3.42. In this chapter we have used several properties and ideas that greatly facilitate the
analysis of LTI systems. Among these are two that we wish to examine 2 bit more
closely in this problem. As we will see, in certain very special cases one must be careful

in using these properties, which otherwise hold without qualification.

(a) One of the basic and most important prbpertics of convolution (in both continuous
and discrete time) is that of associativity. That is, if x(1), (1), and g(#) are three
signals, then

x(t) » [g(¢) » (D)) = [x(2) » £(D) » h(r) = [x(t) » K1) * 8(1) (P3.42-1)
This fact is true, in general, as jong as all three expressions in eg. (P3.42-1) are well
defined and finite. As this is usually the case in practice, we will in general use the
associativity property without comment or assumption. However, there are some
cases in which this is not the case. For example, consider the system depicted in
Figure P3.42 with A(t) = u,(r) and g(1) = u(r). Compute the response of this system
to the input

x(n =1 for all ¢ ) ;
Do this in the three different ways suggested by ¢q. (P3.42-1) and by the figure: ;
(i) By first convolving the two impulse responses and then convolving the result ;

with x(r).
(i) By convolving x(r) first with u(¢) and then convolving the result with #(1). :
(iii) By convolving x(r) first with u(r) and then convolving the result with uy(£). - :

(b) Repeat part (a) for

x(t) =€~
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Figure P3.42

and
h(t) = e”'u(t)
g(r) = uy(r) + 60

(c¢) Do the same for
x[n} =
Hn} = (yuln]
gln} = 6ln] — } 6ln — 1]

Thus, in general, we have that the associativity property of convolution holds if
and only if the three expressions in eq. (P3.42-1) make sense (i.e., their interpretations
in terms of LTI systems are meaningful). For example, in part (a) differentiating a
constant and then integrating makes sense, but the process of integrating the constant

from t = —oo and then differentiating does not, and it is only in such cases that

associativity breaks down.
Closely related to the discussion above is an issue involving inverse systems.

Specifically, consider the LTI system with impulse response h(r) = u(t). As we saw in
part (a), there are inputs, specifically x(¢) = nonzero constant, for which the output of
this system is infinite, and thus it is meaningless to consider the question of inverting
such outputs to recover the input. However, if we limit ourselves to inputs that do yield

finite outputs, that is, that satisfy
\ f Cx(@) drl < (P3.42:2)

then the system is invertibie, and the LTI system with impulse response (1) is its

inverse.

(d) Show that the LTI system with impulse response u,(t) is not invertible. (Hint: Find
two different inputs that both yield zero output for all time.) However, show that
it is invertible if we limit ourselves to inputs that satisfy eq. (P3.42-2). [Hint: In
Problem 2.30 we showed that an LTI system is invertible if no input other than
x(r) = 0 yields an output that is zero for all time; are there two inputs x(¢) that

satisfy eq. (P3.42-2) and that yield identically zero responses when convolved

with 4, (0N
What we have illustrated in this problem is the following:

1. 1f x(r), A(), and g(1) are three signals and if x(1) + g(t), x(6) = h(t), and
h(r) + g(t) are all well defined and finite, then the associativity property,

¢q. (P3.42-1), holds.
2. Let h(1) be the impulse response of an LTI system, and suppose that the

Linear Time-Invariant Systéms Chap. 3
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impulse response g{¢) of a second system has the property that
h(ry » 8(8) = 6()) (P3.42-3)

Then from (1) we know that for all inputs x(1) for which x(1) » k() and x(1) * gt
are both well defined and finite, the two cascades of systems depicted in Figure
P3.42 both act as the identity system, and thus the two LTI systems can be regarded
as inverses of one another. For example, if ) = u(t) and g(t) = u,(f), then as
long as we restrict ourselves to inputs satisfying eq. (P3.42-2), we can regard these
two systems as inverses.

Therefore, we see that the associativity property of eq. (P3.42-1) and the defini-
tion of LTI inverses as given in eq: (P3.42-3) are valid as long as all the convolutions
that are involved are finite. As this is certainly the case in any realistic problem, we will
in general use these properties without comment or qualification. Note that although
we have phrased most of our discussion in terms of continuous-time signals and sys-
tems, the same points can also be made in discrete time {as should be evident from part

©)
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Once we have these representations we can again proceed as we did in Chapter
3. That is, because of the superposition property, the response of an LTI system to
any input consisting of a linear combination of basic signals is the linear combination
of the individual responses to each of these basic signals. In Chapter 3 these responses
were all shifted versions of the unit impulse response, and it was this fact that gave
us the representations for LTI systems that we found so useful. As we will find in
this and the next chapter, the response of an LTI system to a complex exponential
also has a particularly simple form, and it is this fact that will provide us with another
convenient representation for LTI systems and consequently with another way in
which to analyze these systems and gain insight into their properties. The framework
of Fourier analysis that we build in this chapter and in Chapter 5 plays an extremely
important role in the study of signals and systems. We will use this framework exten-
sively throughout the remainder of the book.

The development of the techniques of Fourier analysis has a long history
involving a great many individuals and the investigation of many different physical
phenomena.t The concept of using “trigonometric sums,” that is, sums of harmoni-
cally related sines and cosines or periodic complex exponentials, to describe periodic
phenomena goes back at least as far as the Babylonians, who used ideas of this type
in order to predict astronomical events.t The modern history of this subject begins
in 1748 with L. Euler, who examined the motion of a vibrating string. In Figure 4.1
we have indicated the first few normal modes of such a string. If we consider the
vertical deflection f(x) of the string at time ¢ and at a distance x along the string,
then for any fixed instant of time ¢, the normal modes are harmonically related sinu-
soidal functions of x. What Euler noted was that if the configuration of a vibrating
string at some point in time is a linear combination of these normal modes, so is its
configuration at any subsequent time. Furthermore, Euler showed that one could
calculate the coefficients for the linear combination at the later time in a very straight-
forward manner from the coefficients at the earlier time. In doing this Euler had
performed the same type of calculation as we will in the next section in deriving one
of the properties of trigonometric sums that make them so useful for the analysis
of LTI systems. Specifically, we will see that if the input to an LTI system is expressed
as a linear combination of periodic complex exponentials or sinusoids, the output
can also be expressed in this form, with coefficients that are conveniently expressed

1The historical material in this chapter was taken from several references: I. Gratton-Guiness,
Joseph Fourier 1768-1830 (Cambridge, Mass.: The MIT Press, 1972); G. F. Simmons, Differential
Equations: With Applications and Historical Notes (New York: McGraw-Hill Book Company, 1972);
C. Lanczos, Discourse on Fourier Series (London: Oliver and Boyd, 1966); R, E. Edwards, Fourier
Series: A Modern Introduction (New York: Holt, Rinehart and Winston, Inc,, 1967); and A.D.
Aleksandrov, A. N. Kolmogorov, and M. A. Lavrent'ev, Mathematics: lts Content, Methods, and
Meaning, trans. S. H. Gould, Vol. 11; trans. K. Hirsch, Vol. 111 (Cambridge, Mass.: The MIT Press,
1963). In particular, a far more complete account of Fourier’s life and contributions can be found in
the book of Gratton-Guiness. Other specific references are cited in several places in the chapter.

1H. Dym and H. P. McKean, Fourier Series and Integrals (New York: Academic Press, 1972).
This text and the book of Simmons referenced above also contain discussions of the vibrating-
string problem and its role in the development of Fourier analysis.
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Figure 4.1 Normal modes of a vibrating string (solid lines indicate the con-
figuration of each of these modes at some fixed time instant ¢). :

in terms of those of the input. As we will see, this greatly facilitates the analysis of
LTI systems. ’

The property described in the preceding paragraph would not be particularly
useful unless it were true that a large class of interesting functions could be represented
by linear combinations of complex exponentials. In the middle of the eighteenth
century this point was the subject of heated debate. In 1753, D. Bernoulli argued on
physical grounds that all physical motions of a string could be represented by linear
combinations of normal modes, but he did not pursue this mathematically and his
ideas were not widely accepted. In fact, Euler himself discarded trigonometric series,
and in 1759 J. L. Lagrange strongly criticized the use of trigonometric series in the
examination of vibrating strings. His criticism was based on his own belief that it
was impossible to represent signals with corners (i.e., with discontinuous slopes),
using trigonometric series. Since such a configuration arises from the plucking of a
string (i.e., pulling it taut and then releasing it), Lagrange argued that trigonometric
series were of very limited use.

It was in this somewhat hostile and skeptical environment that Jean Baptiste
Joseph Fourier (Figure 4.2) presented his ideas half a century later. Fourier was
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Figure 4.2 Jean Baptiste Joseph
Fourier [picture from J.B.J. Fourier,
Oeuvres de Fourier, Vol. 11 (Paris:
Gauthier-Villars et Fils, 1890)).

born on March 21, 1768, in Auxerre, France, and by the time of his entrance into the
controversy concerning trigonometric series he had already had a lifetime of experi-
ences. His many contributions, and in particular those concerned with the series and
transform that carry his name, are made even more impressive by the circumstances
under which he worked. His revolutionary discoveries, although not completely
appreciated during his own lifetime, have had a major impact on the development of
mathematics and have been and still are of great importance in an extremely wide
range of scientific and engineering disciplines.

In addition to his studies in mathematics, Fourier led an active political life.
In fact, during the years that followed the French Revolution his activities almost
led to his downfall, as he narrowly avoided the guillotine on two separate occasions.
Subscquently, Fourier became an associate of Napoleon Bonaparte, accompanied
him on his expeditions to Egypt (during which Fourier collected the information he
would use later as the basis for his treatises on egyptology), and in 1802 was appointed
by Bonaparte to the position of prefect of a region of France centered in Grenoble.
It was there, while serving as prefect, that Fourier developed his ideas on trigonomet-
ric series.

The physical motivation for Fourier's work was the phenomenon of heat
propagation and diffusion. This in itself was a significant step in that most previous
research in mathematical physics had dealt with rational and celestial mechanics.
By 1807, Fourier had completed a substantial portion of his work on heat diffusion,
and on December 21, 1807, he presented these results to the Institut de France. In
his work Fourier had found series of harmonically related sinusoids to be useful in
representing the temperature distribution through a body. In addition, he claimed
that “any” periodic signal could be represented by such a series. While his treatment
of this topic was significant, many of the basic idcas behind it had been discovered by
others. Also, Fourier's mathematical arguments were still imprecise, and it remained
for P. L. Dirichlet in 1829 to provide precise conditions under which a periodic
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signal could be represented by a Fourier series.t
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Thus, Fourier did not actually
contribute to the mathematical theory of Fourier series. However, he did have the
clear insight to see the potential for this series representation, and it was to a great
extent his work and his claims that spurred much of the subsequent work on Fourier
series. In addition, Fourier took this type of representation one very large step further
than any of his predecessors. Specifically, he obtained a representation for aperiodic
signals—not as weighted sums of harmonically related sinusoids—but as weighted
integrals of sinusoids that are not all harmonically related. As with the Fourier
series, the Fourier integral or transform remains one of the most powerful tools for
the analysis of LTI systems.

Four distinguished mathematicians and scientists were appointed to examine
the 1807 paper of Fourier. Three of the four, S. F. Lacroix, G. Monge, and P. S.
Laplace, were in favor of publication of the paper, but the fourth, J. L. Lagrange,
remained adamant in the rejection of trigonometric series that he had put forth 50
years earlier. Because of Lagrange’s vehement objections, Fourier’s paper never
appeared. After several other attempts to have his work accepted and published by
the Institut de France, Fourier undertook the writing of another version of his work,
which appeared as the text Théorie analytique de la chaleur.3 This book was published
in 1822, 15 years after Fourier had first presented his results to the Institut de France.

Toward the end of his life Fourier received some of the recognition he deserved,
but the most significant tribute to him has been the enormous impact of his work on
so many disciplines within the fields of mathematics, science, and engineering. The
theory of integration, point-set topology, and eigenfunction expansions are just a
few examples of topics in mathematics that have their roots in the analysis of Fourier
series and integrals.§ Much as with the original studies of vibration and heat dif-
fusion, there are numerous problems in science and engineering in which sinusoidal
signals, and therefore Fourier series and transforms, play an important role. For
example, sinusoidal signals arise naturally in describing the periodic behavior of the
earth’s climate. Alternating-current sources gerierate sinusoidal voltages and currents,
and, as we will see, the tools of Fourier analysis enable us to analyze the response of
an LTI system, such as a circuit, to such sinusoidal inputs. Also, as illustrated in
Figure 4.3, waves in the ocean consist of the linear combination of sinusoidal waves
with different spatial periods or wavelengths. Signals transmitted by radio and televi-
sion stations are sinusoidal in nature as well, and as a quick perusal of any text on
Fourier analysis will show, the range of applications in which sinusoidal signals
arise and in which the tools of Fourier analysis are useful extends far beyond these
few examples.

£

tBoth S. D. Poisson and A. L. Cauchy had obtained results about convergence ~f Fourier
series before 1829, but Dirichlet's work represented such a significant extension of their results that
he is usually credited with being the first to consider Fourier series convergence in a rigorous fashion.

1Sce the English translation: ). B. ). Fourier, The Analytical Theory of Heat, trans. A,
Freeman (Cambridge, 1878).

§For more on the impact of Fourier's work on mathematics, see W. A. Coppel, “J. B.
Fourier—On the Occasion of His Two Hundredth Birthday,” American Mathematical Monthly, 76
(1969), 468-83.
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Figure 4.3  Ship encountering the superposition of three wave trains, each with a different
spatial period. When these waves reinforce one another, a very large wave can result. In
more severe sea conditions, a giant wave indicated by the dotted line could result. Whether
such a reinforcement occurs at any location depends upon the relative phases of the com-
ponents that are superposed (see Section 4.10). [Adapted from an illustration by P. Mion
in “Nightmare waves are all too real to deepwater sailors,” by P. Britton, Smithsonian 8
(February 1978), pp. 64-65). ’

In this chapter we develop some of the basic tools of continuous-time Fourier
analysis in much the same manner as that used by Euler, Bernoulli, Lagrange, Fourier,
Dirichlet, and those that followed after them. As we introduce and describe these
tools we will begin to establish some insight into the utility of Fourier analysis and
the frequency-domain (i.e., Fourier series or Fourier transform) representation of
signals and systems. Although the original work of Fourier and his contemporaries
was concerned solely with phenomena in continuous time, the essential ideas of
Fourier analysis carry over to discrete time and provide us with extremely powerful
techniques for the analysis of discrete-time LTI systems. The development of discrete-
time Fourier analysis is the subject of Chapter 5. With this understanding of frequency-
domain methods in hand in both continuous and discrete time, we will then be in a
position to apply these techniques to several topics of great practical importance.
In Chapter 6 we take up the subject of filtering (i.e., the design of systems with par-
ticular response characteristics to sinusoids at different frequencies). The topic of
modulation is addressed in Chapter 7, and, in particular, in that chapter we develop
the basic ideas behind the operation of amplitude modulation (AM) communication
systems. In Chapter 8 we use continuous- and discrete-time Fourier analysis tech-
niques together as we investigate the sampling of continuous-time signals and the
processing of sampled signals using discrete-time systems.

4.1 THE RESPONSE OF CONTINUOUS-TIME
LTI SYSTEMS TO COMPLEX EXPONENTIALS

As we indicated in the preceding section, it is advantageous in the study of LTI sys-
tems to represent signals as linear combinations of basic signals that possess the
following two properties:

1. The set of basic signals can be uied to construct a broad and useful class of
signals.
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2. The response of an LTI system to each basic signal should be simple enough in
structure to provide us with a convenient representation for the response of the
system to any signal constructed as a linear combination of these basic signals.

For continuous-time LTI systems both of these advantages are provided by the set
of complex exponentials of the form e*, where s is a general complex number. In
Sections 4.2-4.5 we consider in some detail the first of these properties. In this section
we consider the second property and in this way provide motivation for the use of
Fourier series and transforms in the analysis of LTI systems. '

The importance of complex exponentials in the study of LTI systems stems from
the fact shown below that the response of an LTI system to a complex exponential
input is the same complex exponential with only a change in amplitude, that is,

et —> H(s)e" (CHY)

where the complex amplitude factor H(s) will in general be a function of the complex
variable 5. A signal for which the system output is just a (possibly complex) constant
times the input is referred to as an eigenfunction of the system, and the amplitude

factor is referred to as the eigenvalue. .

To show that complex exponentials are indeed eigenfunctions of LTI systems,
let us consider an LTI system with impulse response h(f). For an input x(r) we can
determine the output through the use of the convolution integral, so that with x(r)
of the form x(r) = e we have from eq. (3.29) that

o) = j: ho)x(t — 1) dt

= " h@)ere ™ dr 4.2)

Expressing '™ as e”e™"* and noting that e can be moved outside the integral,
eq. (4.2) becomes .

WE) = e j: h(z)e™ de 4.3)

Thus, the response to e* is of the form

W) = H(s)e" “4
where H(s) is a complex constant whose value depends on s and which ir related to
the system impulsc responsc by

H(s) = j " hw)e de (4.5)

Thus, we have shown that any complex exponential is an eigenfunction of an LTI
system, The constant H(s) for a specified value of s is then the eigenvalue associated

with the eigenfunction e*.
The u€efulness for the analysis of LTI systems of decomposing more general

signals in terms of eigenfunctions can be seen from an example. Let x(f) correspond
to a linear combination of three complex exponentials, that is,

x(1) = a,e" + ae + aze™ 4.6)
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The response to each separately is just

a,e’ —»> a, H(s)e*

a,e’ —> a,H(s;)e™!

a,e* — a,H(s;)e*

and from the superposition property given in egs. (3.1) and (3.2), the response to the
sum is the sum of the responses, so that

y(&) = a, H(s)e™" + a H(s,)e + a Hisy)e™ 4.7
More generally,

; ae™ —» ; a, H(s, e 4.%)

Thus, for an LTI system, if we know the eigenvalues F(s,), then the response to a
linear combination of complex exponentials can be constructed in a straightforward
manner.

It was precisely this fact that Euler discovered for the problem of the vibrating
string, and this observation provided Fourier with the motivation to consider the
question of how broad a class of signals could be represented as a linear combination
of complex exponentials. In Sections 4.2 and 4.3 we use an approach very similar to
that used by Fourier as we consider the representation of periodic signals in terms of
complex exponentials and the properties of such representations. In Section 4.4 we
extend these results in precisely the manner originally used by Fourier to more
general aperiodic signals. Although in general the variable s is complex and of the
form o + jo, throughout this chapter we restrict it to be purely imaginary so that
s = jw, and thus we consider only complex exponentials of the form e, In Chapter
9 we consider the more general case of s complex as we develop the transform that
carries the name of one of Fourier’s 1807 examiners, P. S. Laplace.

4.2 REPRESENTATION OF PERIODIC SIGNALS:
THE CONTINUOUS-TIME FOURIER SERIES

4.2.1 Linear Combinations of Harmonically
Related Complex Exponentials

Recall from Chapter 2 that a signal is periodic if for some positive, nonzero value of T,
x(t) = x(t + T) for all ¢ 4.9

The fundamental period T, of x(r) is the minimum positive, nonzero value of 7' for
which eq. (4.9) is satisfied, and the value 2a/T, is referred to as the fundamental

frequency.
In Chapter 2 we also introduced two basic periodic signals, the sinusoid
x(r) = cos w,t (4.10)
and the periodic complex exponential
x(1) = el .11
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Both of these signals are periodic with fundamental frequency @, and fundamental
period Ty = 21/w,. Associated with the signal in eq. (4.11) is the set of harmonically
related complex exponentials

$.(t) = er*e, k=0,+1,+2,... 4.12)
As we discussed in Section 2.3, each of these signals has a fundamental frequency
that is a multiple of w,, and therefore each is periodic with period T, (although for
1 k| > 2 the fundamental period of ¢,(¢) is a fraction of Ty). Thus, a linear combination
of harmonically related complex exponentials of the form :

x(f) = kif_:, a e (4.13)

is also periodic with period To. In eq. (4.13), the term for k = 0 is a dc or constant
term. The two terms for k = -+1 and k = —1 both have fundamental period equal
to T, and are collectively referred to as the fundamental components, Or as the first
harmonic components. The two terms for k = 42 and k = —2 are periodic with
half the period (or equivalently twice the frequency) of the fundamental components
and are referred to as the second harmonic components. More generally, the compo-
nents for k = 4N and k = —N are referred to as the Nth harmonic components.

The representation of a periodic signal in the form of eq. (4.13) is referred to as
the Fourier series representation. Before developing the properties of this representa-
tion, let us consider an example.

Example 4.1
Consider a periodic signal x(1), with fundamental frequency 27, which is expressed in
the form of eq. (4.13) as

x(0) = k_i}: ayelk~ 4.14)
where
ap =1
ay =a. =%
a, =a,=1%
a;=a.,=1%
Rewriting eq. (4.14) collecting together each pair of harmonic components, we obtain
X(f) =1 + %(e/hr -+ e-/zu) -+ _}:(e/hu + e—juu)
+ .&(eIG"l + e—}dxl)
Equivalently, using Fuler’s relation we can write x(¢) in the form
x(1) = 1 + } cos 2mr + cos 4mt + § cos 6nt 4.16)

In Figure 4.4 we illustrate graphically for this example how the signal x(r) is built up

from its harmonic components.

Equation (4.16) is an example of an alternate form for the Fourier series of
real periodic signals. Specifically, suppose that x(¢) is real and can be represented in
the form of eq. (4.13). Then since x*(r) = x(1), we obtain

4 oo

x() = 3 afe e
km-oa

(4.15)
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x, (1) = %cos 2n1 xo (1) + %, (1)
t t
x4{t) = cos 4wt xolt) + %, (1) + x,(t)
t t
x4{t) = '} cos6mt x(t) = xg (1) + x (1) + x,01) + x4(1)
t t

Figure 4.4 Construction of the signal x(t) in Example 4.1 as a linear combi-
nation of harmonically related sinusoidal signals.

Replacing k by —k in the summation, we have cquivalently
x(1) = i a* elke
km—o

which, by comparison with eq. (4.13), requires that a, = a*, or equivalently that
af =a_, (4[7)
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Note that this is the case in Example 4.1, where the a, are in fact real and a, = a_,.
To derive the alternative forms of the Fourier series, we first rearrange the
summation in eq. (4.13) as

) = a0+ 5 laneo b a_ye o)
k=)
Using (4.17), this becomes

x(t) =a, + g [axel > + afe ' ]

Since the two terms inside the summation are complex conjugates of each other, this
can be expressed as

x() = ao + gl 2Refa,e’) (4.18)
If a, is expressed in polar form ast
a, = A.e!™
then eq. (4.18) becomes
(1) = ap + 3 20efdyelrener)
That is, -
x(0) = ao + 2 3 Ay cos (kaoot + 6,) 4.19)

Equation (4.19) is one commonly encountered form for the Fourier series of real
periodic signals in continuous time. Another form is obtained by writing a, in rec-
tangular form as

a, = B, +jCs

where B, and C, are both real. With this expression for a,, eq. (4.18) takes the form
x(f) = ag + 2 3, [By cos karet — Cy sin kaot] (4.20)
k=1 . .

In Example 4.1 the a, are all real and therefore both representations, egs. (4.19) and
(4.20), reduce to the same form, eq. (4.16).

Thus, we see that for real periodic functions the Fourier series in terms of com-
plex exponentials as given in eq. (4.13) is mathematically equivalent to either of the
two forms in egs. (4.19) and (4.20) using trigonometric functions. Altirough the latter
two are common forms for Fourier series,} the complex exponential form of eq.
(4.13) is particularly convenient for our purposes and thus we will use that form
almost exclusively.

Equation (4.17) is an example of one of many properties possessed by Fourier
series and transforms. These properties are often quite useful in gaining insight and
for computational purposes. We defer a discussion of the majority of these properties

11f z is a complex number, then its polar form is z = re’®, where r and 0 are real numbers.
The number r is positive and is called the magnitude of z, which we will usually write as [z]. Also,
the number 8 is called the angle or phase of z and will be denoted by Jz. For more on the
manipulation of polar and rectangular forms for complex numbers, see the problems at the end of
Chapter 2,

1In fact, in his original work Fourier used the sine-cosine form of the Fourier series given in

eq. (4.20).
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until Section 4.6 in which we develop them within the broader context of the Fourier
transform. One of the most important of these properties, however, we have essentially
developed already. Let x(t) be a periodic signal with a Fourier series representation
given by eq. (4.13), and suppose that we apply this signal as the input to an LT!
system with impulse response f(¢). In general, if the input to an LTI system is periodic
with period T, then the output is also periodic with the same period. We can verify
this fact directly by calculating the Fourier series coefficients of the output in terms of
those of the input. Using the fact that each of the complex exponentials in eq. (4.13)
is an eigenfunction of the system, it follows from eq. (4.8) that the output y{r) is given
by

y@) = k-f‘:,“ a, H(kw,)el =" (4.21)
where, from eq. (4.5), the eigenvalues H(kw,) aret
H(kw,) = j_*" h(z)e~ ko dr (4.22)

That is, if {a,} is the set of Fourier series coefficients for the input x(r), then
{a, H(kw,)} is the set of ccefficients for the output y(r).
Example 4.2
Consider the periodic signal x(f) discussed in Example 4.1, and let this signal be the
input to an LTI system with impulse response
h() = e™*u(t)
To calculate the output y(1), we first compute H(k@,):

H(kwy) = J " emtemskent d
o

1 oo
= e T T SR aioT
1 +fka)oe ¢ o
-1
T 1+ jkw,
Therefore, using eqs. (4.14), (4.21), and (4.23), together with the fact that @, = 27 in
this example, we obtain

(4.23)

+3
) = k'z_] byelkint (4.24)
with by = axH(k2m):

!

b= 7(5 -I-lj2n)’ b =53 —lj2n)

br=3(; —lj47t) “.25)

b= o= 3

1Equation (4.22) is just the special case of eq. (4.5) when s = jkwo. Note that in terms of the
notation of eq. (4.5), we should write H(jkwo) in eq. (4.22). However, in this chapter we will be
concerned only with values of 5 = jw, Therefore, to simplify the notation, we will suppress j and
write H(w) instead of H{(jw). :
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Note that y(r) must be a real signal, since it is the convolution of x(f) and h(»),
which are both real. This can be checked by examining eq. (4.25) and observing that
bt = b_y. Therefore, y(t) can also be expressed in either of the forms given by eqs.
(4.19) and (4.20):

3
wH)y=1+2 kZ‘.l Dy cos 2kt + 6x) (4.26)
3
y)y=1+2 E| [Ex cos 2kt — F sin 27kt) 4.27
k=
where .
by = Dyel?s = E; + jFy, k=123 (4.28)

These coefficients can be evaluated directly from eq. (4.25). For example,
1

D, =|bxl=m'

E, = Qefb,) =

8, = b, = —tan"! (27}

1 _ R
i M e At (R 7

In Figure 4.5 we have sketched y(r) and each of the terms in its Fourier series repre-
sentation given by eq. (4.26). Comparing this with Figure 4.4, we sce that each term is
a sinusoid at the same frequency as the corresponding term of x(¢) but with a different
magnitude and phase.

4.2.2 Determination of the Fourier Series
Representation of a Periodic Signal

Assuming that a given periodic signal can be represented with e series of eq.
(4.13), it is necessary to know how to determine the coefficients a,. Multiplying both
sides of eq. (4.13) by e™/**, we obtain

x(@)e e = 3 g et o (4.29)
fpat™y

Integrating both sides from 0 to T = 2nfw,, we have
Te

T on
J ) x(l)e""“’" dt = J’ E a,,e”‘“’"e""“’" dt
° [

km—oo

Here T, is the fundamental period of x(s), and consequently we are integrating over
one period. Interchanging the order of integration and summation yields

T +oe Ts
[ e sedt = ¥ a [ et (4.30)
0 k= —ce 0

The evaluation of the bracketed integral is straightforward. Rewriting this integral
using Euler’s formula, we obtain

Ty Ts Te
J- elth=meet df — J cos (k — n)wet dt + j J.o sin (k — n)w,t dt 4.31)
[} [

For k # n, cos (k — n)w,t and sin (k — n)w,f are periodic sinusoids with fundamental
period (Tofjk — n|). Therefore, in eq. (4.31) we are integrating over an interval (of
length To) that s an integral number of periods of these signals. Since the integral
may be viewed as measuring the total area under these functions over the interval,
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Figure 4.5 The signal y(¢) in Example 4.2, obtained by applying x(r) in Ex-
ample 4.1 (Figure 4.4) as the input to the LTI system with impulse response
h(t) = e~tu(t). Referring to Figure 4.4, yo(t) is the response to xolt), a(t) is
the response to x;{r), and so on.

we see that for k s n, both of the integrals on the right-hand side of eq. (4.31) are
zero. For k == n, the integrand on the left-hand side of eq. (4.31) equals 1, and thus
the integral cquals T,. In summary we then have that

jr' gk -ment Jp — {To’ k=n
° 0, k+#n

and consequently the right-hand side of eq. (4.30) reduces to Toa,. Therefore,

174 Fourier Analysis for Continuous-Time Signals and Systems Chap. 4

1 Te

a, = = x(t)e~ I dt 4.32)

which is the equation we have sought for determining the coefficients. Furthermore,
note that in evaluating eq. (4.31) the only fact that we used concerning the interval of
integration was that we were integrating over an interval of length Ty, which is an
integral number of periods of cos (k — nw,t and sin (k — n)w,!. Therefore, if we let

J denote integration over any interval of length T, we have that
T

T,, k=n

0, k=n

Consequently, if we integrate eq. (4.29) over any interval of length T}, we can perform
exactly the same steps as we did in going from eq. (4.30) to eq. (4.32). The result is
the expression

J' eltk-mant gy —
Te

ay= - | X(Oem d (4.33)
oJr,

To summarize, if x(¢) has a Fourier series representation [i.e., if it can be ex-
pressed as a linear combination of harmonically related complex exponentials in the
form of eq. (4.13)], then the coefficients are given by eq. (4.33). This pair of equations,
rewritten below, defines the Fourier series of a periodic signal.

4+ on

x(t) = RZ- a,elkort (4.34)

ay = -}— (e~ dy (4.35)

0Jr,

Equation (4.34) is often referred to as the synthesis equation and eq. (4.35) as the
analysis equation. The coefficients {a,} are often called the Fourier series coefficients or
the spectral coefficients of x(t). These complex coefficients measure the portion of
the signal x(¢) that is at each harmonic of the fundamental component. The coeffi-
cient g, is the dc or constant component of x(¢) and is given by eq. (4.35) with k = 0.
That is,

4= Tl‘ x() dt (4.36)

o Jr,
which is simply the average value of x(¢) over one period. We note that the term
“spectral coefficient” is derived from problems such as the spectroscopic decomposi-
tion of light into spectral lines (i.e., into its elementary components at different
frequencies). The intensity of any line in such a decomposition is a direct measure of
the fraction of the total light energy at the frequency corresponding to the line.
Equations (4.34) and (4.35) were known to both Euler and Lagrange in the
middle of the eighteenth century. How ever, they discarded this line of analysis without
having examined the question of how large a class of periodic signals could, in fact,
be represented in this fashion. Before we turn to this question in the next section, let
us illustrate the Fourier series by means of a few examples.
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Example 4.3

Consider the signal
x(t) = sin Wo!

One approach to determining the Fourier series coefficients for this example would be
to apply eq. (4.35). For this simple case, however, it is easier simply to expand the
sinusoidal function as a linear combination of complex exponentials and identify by
inspection the Fourier series coefficients. Specifically, we can express sin Wyt as

. 1 1
in Wol = == Joof = Jwot
sin Mgt e 2] [4

2j
Thus,
S D
2f 2j
ax =0, k# +1or—1
Example 4.4
Let

x(f) = 1 + sin ot + 2 cos Wyt + 08 (2&)01 + %—)

. As with Example 4.3, we can again expand x(¢) directly in terms of complex expo-
nentials so that

X(l) =1 4 le[e/m.l — e-lmd] + [e/nnl + e—[m.l] + _;_[el(lwn!fn/4) + e-j(zcu.un/n]
Collecting terms, we obtain
- = l Jove! ( __.l_) = Jaset _l__ (n/ ) J 2ot (1 = Jx/ -J2
,\(t)—l+(l+2j>e "+l —g5)e +(28' 4)el? +7e/‘“)e“"

Thus, the Fourier series coefficients for this example are

ap =1

a=(1tg) =17
a"=(l—'2!7)=1+-%-j

a = %eﬂnm = 3[42(1 +7)
a., = _;_e—ﬂ-/u = 3[42(1 -

ay =0, |k|>2

1n Figure 4.6 we have plotted the magnitude and phase of ax on bar graphs in which
each line represents either the magnitude or the phase of the corresponding harmonic

component of x(r).

176 Fourier Analysis for Continuous-Time Signals and Systems Chap. 4

1 1]

l'k

Al

-3-2-1 0 1

|

3 k

)

1
—3‘-10‘23 K

Figure 4.6 Plots of the magnitude and phase of the Fourier coefficients of the
signal considered in Example 4.4,

Example 4.5
The periodic square wave, sketched in Figure 4.7 and defined over one period as
1) ltl < Tl
x(t) = 4.37
© 0, T,<|t|<%‘! (“4.37)

is a signal that we will encounter on several occasions. This signal is periodic with
fundamental period To and fundamental frequency @e = 27T

x{t)

I Y

2T, T, ~Ta-Ti 1 To To 2T, t

Figure 4.7 Periodic square wave.

To determine the Fourier series coefficients for x(¢), we will use eq. (4.35). Because
of the symmetry of x(t) about { = 0 it is most convenient to choose the interval over
which the integration is performed as —(Tol2) <t < To/2, although any interval of
length 7 is equally valid and thus will lead to the same result. Using these limits of
integration and substituting from eq. (4.37), we have first for k = 0 that
L (™ g =20 (4.38)

ag = T—o . To
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As mentioned previously, a, has the interpretation of being the average value of x(r)

which in this case equals the fraction of each period during which x(¢) = 1. For k 3£ 0 while from eq. (4.38),

we obtain ap =14
o = %_ J»r. o= thow gp == o L r' From eq. (4.41) it is clear that ax = 0 for k even. Also, sin (7k[2) alternates between
01, JkwoTo -1 +1 for successive odd values of k. Therefore,
We may rewrite this as = 1
ay =4y =
o= 2 [e/kw.n — o~ IkeweTy 1
kw Ty 27 ] (4.39) ay=4a_3= "735

Noting that the term in brackets is sin ko7, the coefficients ax can be expressed as

_ 2sin kwoT, _ sin kw7,
e % P o k#0 (4.40)
Here we have used the fact that @7, = 27.

Graphical representations of the Fourier series coeflicients for this example fo
a ﬁx?d value of T, and several values of T, are shown in Figure 4.8. For T, i 4Tr
x(r) is a symmetric square wave (i.c., one that is unity for half the peri'od andozer fh
half the period). In this case @7, = 7/2, and from eq. (4.40), o

o =T, ko (4.41)

For this particular example, the Fourier coefficients are real, and consequently
they can be depicted graphically with only a single graph. More generally, of course,
the Fourier coefficients are complex, and consequently two graphs corresponding to
real and imaginary parts or magnitude and phase of each coefficient would be required.

4.3 APPROXIMATION OF PERIODIC SIGNALS
USING FOURIER SERIES
AND THE CONVERGENCE OF FOURIER SERIES

il

4'[' L B LR

{b)
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SSSS— 111111
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Figure 4.8  Fourier series coefficients for the periodic s :
quarc wave: (a) Tp = 4T
(b) To = 8T1; (c) To = 16T YTo =411
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Although Euler and Lagrange would have been happy with the results of Examples
4.3 and 4.4, they would have objected to Example 4.5, since x(1) is discontinuous
while each of the harmonic components is continuous. Fourier, on the other hand,
considered the same example and maintained that the Fourier series representation
of the square wave is valid. In fact, Fourier maintained that any periodic signal could
be represented by 2 Fourier series. Although this is not quite true, it is true that Fourier
series can be used to represent an extremely large class of periodic signals, which
includes the square wave and all other signals with which we will be concerned in
this book.

To gain an understanding of the square-wave example and more generally of
the question of the validity of Fourier series representations, let us first look at the
problem of approximating a given periodic signal x(¢) by a linzar combination of 2
finite number of harmonically related complex exponentials, that is, by a finite series
of the form

xy(t) = k}l!‘_,N ael* (4.42)

Let ey(r) denote the approximation errof, which is given by
+N
en(t) = x(f) — xx0) = x(1) — k};N ael*e¢ (4.43)

In order to determine how good any particulat approximation is, we need to specify
a quantitative measure of the size of the approximation error. The criterion that we
will use is the total squared-error magnitude over one period:

By = [, lewF de = [ exOei() (4.44)
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In general, for any signal 2(r) the quantity

E= j°|z(:)|2d1

is often referred to as the energy in z(r) over the time interval a < 1 < b. This ter-
minology is motivated by the fact that if z(¢) corresponds to the current flowing into
a 1-Q resistor, then E is the total energy dissipated in the resistor over the time interval
a << t < b. With respect to eq. (4.44), E, then represents the energy in the approx-
imation error over one period.

As shown in Problem 4.8, the particular choice for the coefficients a, in eq.
(4.42) that minimize the energy in the error is given by

a, =L | x(yerew de (4.45)

T, Jr, :
Comparing eqs. (4.45) and (4.35), we see that this is identical to the expression used
to determine the Fourier series coefficients. Thus, if x(r) has a Fourier series repre-
sentation, the best approximation using only a finite number of harmonically related
complex exponentials is obtained by truncating the Fourier series to the desired
number of terms. As N increases, new terms are added but the previous ones remain
unchanged and E,, decreases. If, in fact, x(t) has a Fourier series representation, then
the limit of Ey as N — oo is zero.

Let us turn now to the question of the validity of the Fourier series representation
for periodic signals. For any such signal we can attempt to obtain a set of Fourier
coefficients through the use of eq. (4.35). However, in some cases the integral in eq.
(4.35) may diverge; that is, the value obtained for some of the a, may be infinite.
Moreover, even if all of the coefficients obtained from eq. (4.35) are finite, when these
coefficients are substituted into the synthesis equation (4.34), the resulting infinite
series may not converge to the original signal x(f).

It happens, however, that there are no convergence difficulties if x(¢) is con-
tinuous. That is, every continuous periodic signal has a Fourier series representation
so that the energy Ey in the approximation error approaches 0 as N goes to oo.
This is also true for many discontinuous signals. Since we will find it very useful to
use discontinuous signals, such as the square wave of Example 4.5, it is worthwhile
to investigate the issue of convergence in a bit more detail. There are two somewhat
different conditions that a periodic signal can satisfy to guarantee that it can be
represented by a Fourier series. In discussing these we will not attempt to provide a
complete mathematical justification. More rigorous treatments can be found in many
texts on Fourier analysis.t

One class of periodic signals that are representable through the Fourier series
is that comprising signals which are square-integrable over a period. That is, any
signal x(t) in this class has finite energy over a single period:

1See, for example, R. V. Churchill, Fourier Series and Boundary Value Problems, 2nd ed.
(New York: McGraw-Hill Book Company, 1963); W. Kaplan, Operational Methods for Linear Sys-
tems (Reading, Mass.: Addison-Wesley Publishing Company, 1962); and the book by Dym and
McKean referenced on p. 162.
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[ 1x0r <o (4.46)

When this condition is satisfied, we are guaranteed that the coefficients a, obtained
from eq. (4.35) are finite. Furthermore, let x,(f) be the approximation to x(¢) obtained
by using these coefficients for |k | < N:

+N
xp(t) = k_Z‘IN a,elront 4.47)

Then, we are guaranteed that limy.. Ey = 0, where E, is defined in eq. (4.44).
That is, if we define

e(t) = x(1) — k:zl a etk (4.48)
then
[lewpar=0 (4.49)

As we will see in an example at the end of this section, eq. (4.49) does not imply that
the signal x(¢) and its Fourier series representation

+08

S a,elten (4.50)

ka—oo

are equal at every value of r. What it does say is that there is no energy in
their difference.

The type of convergence guaranteed when x(t) is square-integrable is often
useful. In fact, most of the periodic signals that we consider do have finite energy over
a single period and consequently do have Fourier series representations. However,
an alternate set of conditions, developed by P. L. Dirichlet, and also satisfied by
essentially all of the signals with which we will be concerned guarantees that x(¢)
will in fact be equal to x(t) except at isolated values of ¢ for which x(¢) is discontinuous.
At these values of ¢ the infinite series of eq. (4.50) converges to the “average” value
of the discontinuity(i.e., halfway between the values on either side of the discontinuity).

The Dirichlet conditions are as follows:

Condition 1. Over any period x(t) must be absolutely integrable, that is,
j |x(r)| dt < oo (@.51)
Te

As with square integrability, this guarantees that each coefficient a, will be finite, since

IRES j (e e = = f ()| dr

So if
j Ix()| dt < oo
T
then
la ] < o0
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A periodic signal that violates the first Dirichlet condition is

x(r)=—i—» o<t

where x(¢) is periodic with period 1. This signal is illustrated in Figure 4.9(a).
Condition 2. In any finite interval of time, x(¢) is of bounded variation, that

is, there are no more than a finite number of maxima and minima during any single

period of the signal.
An example of a time function that meets condition 1 but not condition 2 is

x(t) = sin (%f) ,

as illustrated in Figure 4.9(b). For this function (periodic with Ty = 1)

0<t < (4.52)

1
j | x()]dr <1
¢
1t has, however, an infinite number of maxima and minima in the interval.

Condition 3. In any finite interval of time there are only a finite number of
discontinuities. Furthermore, each of these discontinuities must be finite.

An example of a time function that violates condition 3 is illustrated in Figure
4.9(c). The signal x(t) (of period T = 8) is composed of an infinite number of sections
each of which is half the height and half the width of the previous section. Thus, the
area under one period of the function is clearly less than 8. However, there are an
infinite number of finite discontinuities, thereby violating condition 3.

As can be seen from the examples given in Figure 4.9, the signals that do not
satisfy the Dirichlet conditions are generally pathological in nature and thus are not
particularly important in the study of signals and systems. For this reason the question
of convergence of Fourier series will not play a particularly significant role in the
remainder of the book. For a periodic signal that varies continuously, we know that
the Fourier series representation converges and equals the original signal at every value
of 1. For a periodic signal with discontinuities the Fourier series representation equals
the signal everywhere except at the isolated points of discontinuity, at which the series
converges to the average value of the signal on either side of the discontinuity. In
this case the difference between the original signal and its Fourier series representation
contains no energy, and consequently the two signals can be thought of as being the
same for all practical purposes. Specifically, since the signals differ only at isolated
points, the integrals of both signals over any interval arc identical. For this rcason,
the two signals behave identically under convolution and consequently are identical
from the standpoint of the analysis of LTI systems,

Thus, the Fourier series of a periodic signal with several discontinuities docs
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Figure 4.9 Signals that violate the Dirichlet conditions: (a) the signal x(1),
periodic with period 1, with x(1) = 1/t for 0 <+ <] (this signal violates the
first Dirichlet condition); (b) the periodic signal of eq. (4.52) which violates the
second Dirichlet condition; (c) a signal, periodic with period 8, that violates
the third Dirichlet condition (for 0 <<t < 8 the value of xif) decreases by a
factor of 2 whenever the distance from ¢ to 8 decreases by a factor of 2; that is
) =10<1<4 xtt)= 12,4t <6, x(1)=1/4, 6=t < 7, x(t) = 1/8,
7<<t <15, etcl]
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provide a useful representation of the original signal. To understand how the Fourier

series converges for such a signal, let us return to the example of a square wave.

Example 4.6t

In 1898, an American physicist, Albert Michelson, constructed a harmonic analyzer,
a device that for any periodic signal x(r) would compute the truncated Fourier series
approximation of eq. (4.47) for values of N up to 80. Michelson tested his device on
many functions, with the expected result that xn(r) looked very much like x(¢). How-
ever, when he tried the square wave, he obtained an important and to him, very sur-
prising result. Michelson was concerned about the behavior he observed and thought
that his device might have had a defect. He wrote about this problem to the famous
mathematical physicist Josiah Gibbs, who investigated it and reported his explanation
in 1899.

What Michelson had observed is illustrated in Figure 4.10, where we have shown
xn() for several values of N for x(t) a symmetric square wave (To = 4T}). In each
case the partial sum is superimposed on the original square wave. Since the square
wave satisfies the Dirichlet conditions, the limit as N — oo of xn(r) at the disconti-
nuities should be the average value of the discontinuity. We see from Figure 4.10 that
this is in fact the case, since for any N, xy(1) has exactly that value at the discontinuities.
Furthermore, for any other value of 1, say ¢ =1, we are guaranteed that

lim xy(t;) = x(t1)
Neeoo

Therefore, we also have that the squared error in the Fourier series representation of
the square wave has zero area, as in eq. (4.49).

For this example, the interesting effect that Michelson observed is that the behav-
jor of the partial sum in the vicinity of the discontinuity exhibits ripples and that the
peak amplitude of these ripples does not seem to decrease with increasing N. Gibbs
showed that this is in fact the case. For a discontinuity of unity height the partial sum
exhibits a maximum value of 1.09 (i.e., an overshoot of 9% of the height of the dis-
continuity) no matter how large N becomes. One must be careful to interpret this
correctly. As stated before, for any fixed value of 1, say t = t;, the partial sums will
converge to the correct value, and at the discontinuity will converge to one-half the
sum of the values of the signal on either side of the discontinuity. However, the closer
t, is chosen to the point of discontinuity, the larger N must be in order to reduce the
error below a specified amount. Thus, as N increases, the ripples in the partial sums
become compressed toward the discontinuity, but for any finite value of N, the peak
amplitude of the ripples remains constant. This behavior has come to be known as the
Gibbs phenomenon. The implication of this phenomenon is that the truncated Fourier
series approximation xy(1) of a discontinuous signal x(r) will in general exhibit high-
frequency ripples and overshoot near the discontinuities, and if such an approximation
is used in practice, a Jarge enough value of N should be chosen so as to guarantee that
the total energy in these ripples is insignificant. In the limit, of course, we know that
the energy in the approximation error vanishes and that the Fourier series representa-
tion of a discontinuous signal such as the square wave converges.

{The historical information used in this example is taken from the book by Lanczos referenced

on p. 162.
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Figure 4.10 Convergence of the Fourier series representation of a :quare wave: an illus-
tration of the Gibbs phenomenon. Here we have depicted the finite series approximation

N
xn(t) = kZNake/*w for several values of N.
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"' 4.4 REPRESENTATION OF APERIODIC SIGNALS:
THE CONTINUOUS-TIME FOURIER TRANSFORM

4.4.1 Development of the Fourier Transform
Representation of an Aperiodic Signal

In the preceding two sections we saw how a periodic signal could be represented as a
linear combination of harmonically related complex exponentials. In fact, these
results can be cxtended to develop a representation of aperiodic signals as linear
combinations of complex exponentials. The introduction of this representation is
one of Fourier’s most important contributions, and our development of the Fourier
transform follows very closely the approach he used in his original work.

Consider again the periodic square wave discussed in Example 4.5. The Fourier
series coeflicients are given by eq. (4.40) as

__ 2sin kw,T,

a, = “toT. (4.53)
where T, is the period and w, = 2n/T,. In Figure 4.8 we plotted these coefficients for
a fixed value of T, and several choices for T,. In Figure 4.11 we have repeated this
figure with several modifications. Specifically, we have plotted }‘jg_,"rather than a,,
and we have also modified the horizontal spacing in each plot. The significance of
these changes can be seen by examining eq. (4.53). Multiplying a, by T, we obtain

_ 2sin kw,T, _ 2sin oT,
Toay /(O)o = ) L-;m,, (454)

Thus, with w thought of as a continuous variable, the function (2 sin ®7T,)/w repre-
sents the envelope of T,a,, and these coefficients are simply equally spaced samples
of this envelope. Also, for fixed T, the envelope of Ta, is independent of T,. However,
from Figure 4.11 we see that as T, increases (or, equivalently, w, decreases), the enve-
lope is sampled with a closer and closer spacing. As T, becomes arbitrarily large, the
original periodic square wave approaches a rectangular pulse (i.e., all that remains
in the time domain is an aperiodic signal corresponding to one period of the square
wave). Also, the Fourier series coefficients, multiplied by T', become more and more
closely spaced samples of the envelope, 50 in some sense (which we will specify shortly)
the set of Fourier series coefficients approaches the envelope function as T, — oo.

This example illustrates the basic idea behind Fourier’s development of a
representation for aperiodic signals. Specifically, we think of an aperiodic signal as
the limit of a periodic signal as the period becomes arbitrarily large, and we examine
the limiting behavior of the Fourier series representation for this signal. Consider a
general aperiodic signal x{¢) that is of finite duration. That is, for some number T,
x(t) = 0if|t| > T,. Such a signal is illustrated in Figure 4.12(a). From this aperiodic
signal we can construct a periodic signal X(¢) for which x(¢) is one period, as indicated
in Figure 4.12(b). As we choose the period T, to be larger, X(¢) is identical to x(¢)
over a longer interval, and as T, — oo, %(¢) is equal to x(r) for any finite valuc of 1.

Let us now examine the effect of this on the Fourier series representation of (7).
R.writing egs. (4.34) and (4.35) here for convenience, with the integral in eq. (4.35)
carried out over the interval —T/2 < t < Ty/2, we have
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Figure 411 Fourier coefficients and their envelope for the veriodic square
wave: (a) To = 4Ty, (b) Ty = 3T1; (C) To = I6T|.

x(t)

[1)]

Figure 4.12 (a) Aperiodic signal 1(r); (b) periodic signal x(r), constructed to
be equal to x{r) over one period.
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W= % e 4.55

Sie de 0= 3 ae (4.59)
To/2

Foune” = | EOe e d (4.56)
0 J-Ty/2

Since ¥(f) = x{t) for |t| < T,/2 and also since x(r) = 0 outside this interval, eq.
(4.56) can be rewritten as

1 To/2 i 1 me T
= = x(t @t = — x(f)e=F> dt
% =T, J, (e T, ). "0

Therefore, defining the envelope X(w) of T,a, as

Xw) = Jm x(t)e™ " dt | @.57

we have that the coefficients a, can be expressed as
g, = A X(kooy) (4.58)
T,

Combining cqs. (4.58) and (4.55), ¥(r) can be expressed in terms of X(w) as

=5 %—X(kwo)e”“‘"‘
* 0

or equivalently, since 27/T, = w,,
W)=+ 5 Xkoye o, (4.59)
2n km—oo
As T, — oo, X(t) approaches x(1), and consequently eq. (4.59) becomes a represen-
tation of x(r). Furthermore, wy,— 0 as Ty — oo, and the right-hand side of eq.
{4.59) passes to an integral. This can be seen by considering the graphical inter-

pretation of eq. (4.59), illustrated in Figure 4.13. Each term in the summation on the

X{wle*

Area = Xtkwg e koot o)

Xikeglethot |- ————————

% (k + Nwg

kwq w

Figure 4.13  Graphical interpretation of eq. (4.59).

right-hand side of eq. (4.39) is the area of a rectangle of height X(kw,)e’*> and width
w, (here ¢ is regarded as fixed). As w, — 0, this by definition converges to the integral
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of X(w)e’'. Therefore, using the fact that i(t)—» x(t‘) aé i ——"oo, €gs. (4-—..59) and“” )

(4.57) become

X)) = 21—7: J: X(w)e™ do (4.60)

X(w) = j: x(f)e= " dt (4.61)

Equations (4.60) and (4.61) are referred to as the Fourier transform pair with
the function X(w) as given by eq. (4.61) referred to as the Fourier transform or Fourier
integral of x(t) and eq. (4.60) as the inverse Fourier transform equation. The synthesis
equation (4.60) plays a role for aperiodic signals similar to that of eq. (4.34) for
periodic signals, since both correspond to a decomposition of a signal into a linear
combination of complex exponentials. For periodic signals these complex exponentials
have amplitudes {a,]} as given by eq. (4.35) and occur at a discrete set of harmonically
related frequencies kw,, k=0, +1, +2,.... For aperiodic signals these complex
exponentials occur at a continuum of frequencies and, according to the synthesis
equation (4.60), have “amplitude” X(w)(dw/2n). In analogy with the terminology
used for the Fourier series coefficients of a periodic signal, the transform X(w) of
an aperiodic signal x(r) is commonly referred to as the spectrum of x(1), as it provides
us with the information concerning how x(t) is composed of sinusoidal signals at
different frequencies.

4.4.2 Convergence of Fourier Transforms

Although the argument we used in deriving the Fourier transform pair assumed
that x(r) was of arbitrary but finite duration, eqs. (4.60) and (4.61) remain valid for
an extremely broad class of signals of infinite duration. In fact, our derivation of
the Fourier transform suggests that a set of conditions like those requi.ed for the
convergence of Fourier series should also apply here, and indeed that can be shown to
be the case.t Specifically, consider X(w) evaluated according to eq. (4.61), and let
%(¢) denote the signal obtained by using X(w) in the right-hand side of eq. (4.60).
That is,

1

2
What we would like to know is when eq. (4.60) is valid [i.e., when 2(¢) is a valid rep-
resentation of the original signal x(1)]. If x(r) is square-integrable so that

oo

£(0) = A J " Xw)e do

tFor a mathematically rigorous discussion of the Fourier transform and of its properties and
applications, see R. Bracewell, The Fourier Transform and Its Applications (New York: McGraw-Hill
Book Company, 1965); A, Papoulis, The Fourier Integral and Its Applications (New York: McGraw-
Hill Book Company, 1962); E. C. Titchmarsh, Introduction to the Theo.y of Fourier Integrals (Oxford:
Clarendon Press, 1948); and the book by Dym and McKean referenced on p, 162,
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then we are guaranteed that X(w) is finite [i.e., eq. (4.61) converges] and that, with
e(r) denoting the error between £() and x(9) [i.e., e(t) = 2(1) — x(0),

j le@rdt =0 (4.63)

Equations (4.62) and (4.63) are the aperiodic counterparts of egs. (4.46) and 4.49)
for periodic signals. Thus, as with periodic signals, if x{1) is square-integrable, then
although x(¢) and its Fourier representation £(¢) may differ significantly at individual
values of 1, there is no energy in their difference.

Just as with periodic signals, there is an alternative set of conditions which are
sufficient to ensure that 2(r) is equal to x(¢) for any 7 except at a discontinuity, where
it is equal to the average value of the discontinuity. These conditions, again referred
to as the Dirichlet conditions, require that:

1. x(r) be absolutely integrable, that is,

f : Ix(@)]di < oo (4.64)

2. x(¢) have a finite number of maxima and minima within any finite interval.

3. x(¢) have a finite number of discontinuities within any finite interval. Further-
more, each of these discontinuitics must be finite.

Therefore, absolutely integrable signals that are continuous or have several discon-
tinuities have Fourier transforms.

Although the two alternative sets of conditions that we have given are sufficient
to guarantee that a signal has a Fourier transform, we will see in the next section that
periodic signals, which are neither absolutely integrable nor square-integrable over
an infinite interval, can be considered to have Fourier transforms if impulse functions
are permitted in the transform. This has the advantage that the Fourier series and
Fourier transform can be incorporated in a common framework, and we will find this
to be very convenient in subsequent chapters. Before examining this point further
in the next section, let us first consider several examples of the Fourier transform.

4.4.3 Examples of Continuous-Time Fourier Transforms

Example 4.7
Consider the signal
x(t) = e~*tu(r)
If a < 0, then x(¢) is not absolutely integrable and hence X(w) does not exist. For
a> 0, X(w) is obtained from eq. (4.61) as

- \ »
— —at p— jort = — —{st Jalt
X(w) = L e~ve=Jo dt TTjet R
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X(w) = a>0

1
atjo

Since this particular Fourier transform has both real and imaginary parts, to plot it
as a function of @ we express X () in terms of its magnitude and phase:

1 ) :

X(w)| = , = —tan-t | = A

| X(@O) = = LX(w) tan (a) . 3

Each of these components is sketched in Figure 4.14. Note that if a is complex rather :

than real, then x(f) is absolutely integrable as long as B«¢{a} > 0, and in this case the
preceding calculation yields the same form for X(). That is,

1
X(CD) = mt (Rse{a} >0
| Xtw) |
1/a
1/a /2
L]
I |
L T
I )
-a a w
{a)
X X{w)
_________________ M2
——{n/4
i
! a
-3 1 w
|
~x/4 -
SIS T2
{b}

Figure 4.14  Fourier transform of the signal x(1) = e~2u(s), a > 90, considered
in Example 4.7,

Example 4.8
Let

X([) = e—clll
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where @ > 0. This signal is sketched in Figure 4.15. The spectrum of this signal is

[] r
eatem o dp + j e-atemIot dy
0

X() = J"" e-ellg=lor df =

1 1
—a—jw+a+jco
_ 2a
—al+m2

In this case X () is real, and it is illustrated in Figure 4.16.

x{t)

Figure 4.15 Signal x(s) = e~=l! of Example 4.8.

X{w)

o —_———

—-a w

Figure 4.16 Fourier transform of the signal considered in Example 4.8 and
depicted in Figure 4.15.

Example 4.9
Now let us determine the spectrum of the unit impulse

. x(6) = 8(1) (4.65)
Substituting into eq. (4.61) we sce that

X(@) = j: S(r)e=te dt = 1 (4.66)

That is, the unit impulse has a Fourier transform representation consisting of equal
contributions at all frequencies.
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4.10
Consider the rectangular pulse signal

0) {l’ <7y 4.67
x(t) = .

0, 1> T, “67
as shown in Figure 4.17(2). Applying eq. (4.61), we find that the Fourier transform of
this signal is

Tt .
X(©) = J' e-sor dp = 280 2T (4.68)
-1
as sketched in Figure 4.17(b).

x(t)

1

X{w}

27,

—\V/\ /\VL
w
V§L _'_/\/ ’ Figure 4.17 The rectangular pulse
Tl TI

signal of Iixample 4.9 and its Fourier
] transform.

As we discussed at the beginning of this section, the signal given by eq. (4.67)
can be thought of as the limiting form of a periodic square wave as the period becomes
arbitrarily large. Therefore, we might expect that the coavergence of the synthesis
equation for this signal would behave in a manner similer to that observed for the
~quare wave (see Example 4.6). This is, in fact, the case. Specifically, consider the
inverse Fourier transform representation for the rectangular pulse signal:
sin 0T

7

. 1 4o »
(1) = m 2 e dw

Then, since x(t) is squaie-integrable, we know that
4o
[ 1x0 - st ar = 0

Furthermore, because x(¢) satisfies the Dirichlet conditions, we know that 2() = x{1)
except at the points of discontinuity, f == £:T, where it converges to 4, which is the
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average of the values of x(¢) on both sides of the discontinuity. In addition, the con-
vergence of £(r) to x(t) exhibits the Gibbs phenomenon, much as was illustrated for
the periodic square wave in Figure 4.10. Specifically, in analogy with the finite Fourier
series approximation of eq. (4.42), consider the following integral over a finite length
interval of frequencies:

1 [ _sin T,
ﬁ o ZTe"‘"dw

Then as W — oo, this signal converges to x(f) everywhere except at the discontinuities.

Moreover, this signal exhibits ripples near the discontinuities. The peak amplitude of .

these ripples does not decrease as W increases, although the ripples do become com-
pressed toward the discontinuity, and the energy in the ripples converges to zero.

Example 4.11
Consider the signal x(¢r) whose Fourier transform is given by

1, Jjeoj<Ww
X(w) = (4.69)
0 lo|> W
This transform is illustrated in Figure 4.18(b). Using the synthesis equation (4.60), we
can determine x(1):

sin Wt
7l

L
x(t) = ﬁf el d@ = (4.70)
-w

which is depicted in Figure 4.18(a).

x(t)

{a)

X{w)

(b)

Figure 4,18 Fourier transform pair of Example 4.11.

Comparing Figures 4.17 and 4.18 or, cquivalently, eqgs. (4.67) and (4.68) with
€qs. (4.69) and (4.70), we see an interesting relationship. In each case the Fourier
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transform pair consists of a (sin x)/x function and a rectangular pulse. However in
Example 4.10 it is the signal x(¢) that is a pulse, while in Example 4.11, it is the trans-
Sform X(w). The special relationship that is apparent here is a direct consequence of
the duality property for Fourier transforms, which we discuss in detail in Section
4.6.6.

The functions given in egs. (4.68) and (4.70) and others of this same general
form play a very important role in Fourier analysis and in the study of LTI systems.
For this reason one such function has been given a special name, the sinc function,
which is defined as

L

sinc (x) = El-n,an—x @.7)

and which is plotted in Figure 4.19. Both of the signals in eqs. (4.68) and (4.70) can
be expressed in terms of the sinc function:

2sin 0T, _ 2T, sinc (9-7-1)

w b4
sin Wt - Zsinc (_P_V_t
nt n n
sinc {x)
1
=~ TN / N\ -
A K_7
-3 - -1 0 1 2 3 x

Figurc 4.19 The sinc function.

As one last comment we note that we can gain some insight into one other
property of the Fourier transform by examining Figure 4.18, which we have redrawn
in Figurc 4.20 for several different values of W. From this figure we see that as W
increases, X(w) becomes broader while the main peak of x(¢) at t = 0 becomes higher
and the width of the first lobe of this signal (i.e., the part of the signal for {¢] <
n/W) becomes narrower. In fact, in the limit as W — oo, X(w) == 1 for all W, and
consequently from Example 4.9, we see that x(¢) in eq. (4.70) converges to an impulse
as W — 0, The behavior depicted in Figure 4.20 is an example of the inverse rela-
tionship that exists between the time and frequency domains, and we can see a similar
effect in Figurc 4.17, where an increase in T, broadens x(f) but makes X{w) narrower,
In Section 4.6.5 we provide an explanation for this behavior in the context of the
scaling property of the Fourier transform.
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—1/W, /W,
=n/W, a/W,
x1(w) x;‘w)
1 1
-W; W, w -W, W, w
(a) (b)
x4{1)
W,/n
\_/—K/W3 n/W:\-—/ 1
X3 {w)
1
-W, W, w
(c}

Figure 4.20 Fourier transform pair of Figure 4.18 for several different values of W.

4.5 PERIODIC SIGNALS AND THE
CONTINUOUS-TIME FOURIER TRANSFORM

In the preceding section we developed the Fourier transform for aperiodic signals
by considering the behavior of the Fourier series of periodic signals as the period
is made arbitrarily Jong. As this result indicates, the Fourier series and Fourier
transform representations are closely related, and in this scction we investigate
this refationship further and also develop a Fourier transform representation for
periodic signals.
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4.5.1 Fourier Series Coefficients as Samples
of the Fourier Transform of One _Period

As a first step, recall from our derivation of the Fourier transform that the important
observiation that we made was that the Fourier coefficients of a periodic signal x(r)
could be obtained from samples of an envelope that we found to be equal to the
Fourier transform of an aperiodic signal x(f) which is equal to one period of X(1).
Specifically, let %(r) have fundamental period T,, as illustrated in Figure 4.21. As
we saw in the preceding section, if x(¢) is taken as

x(0), —-Izi’srszzﬁ
x(t) = T T 4.72)
B ) 1
0, t < 5 or t> 3
()
Ty —Tof2 Tol2 To t

Figure 4.21 Periodic signal.

then the Fourier coefficients a, of %(f) can b¢ expressed in terms of samples of the
Fourier transform X(w) of x(¢):

Te/2 Te/2

= [ xererdr = | x@ererdr
0 J=Ty/2 . 0 J-T/2
—_ 1 ™ - - Jkaret — __1__
=1 | O dt = X(hwn) @4.73)

However, since the Fourier coefficients a, can be obtained by integrating over any
interval of length T, [see eq. (4.35)), we can actually obtain a more general statement
than that given in eq. (4.73). Specifically, let s be an arbitrary point in time, and define
the signal x(r) to be equal to %(r) over the interval s <t < s4-T, and zero elsewhere.
That is,

x(1), t T
x()) = (1) s<tSs+ 7T, ] (4.74)
0, t<s or t>s+71,
Then the Fourier serics coeflicients of X(r) are given by
a, = 7,'_X(ka»o) (4.75)
0

where X(w) is the Fourier transform of x(f) as defined in eq. (4.74). Note that eq.
(4.75) is valid for any choice of 5, and not just the choice of s = —T,/2 used in egs.
(4.72) and (4.73). This does not, however, mean that the trarsform X(w) is the same
for all values of 5, but it docs imply that the set of samples X(kw,) is independent of s.
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Rather than provide a demonstration of the validity of eq. (4.75) in general,
we illustrate it by means of the following example.
Example 4.12

Let %(¢) be the periodic square wave with period T illustrated in Figure 4.22(a), and
let x,(f) and x,(r) be as depicted in Figure 4.22(b) and (c). These signals are each equal

x(1)
1 L i
~To T, 0T To t
(a)
x, (1)
-1, 0 T, t
(b}
x,(t)
o T, To-T, T, 1

(c)

1} .
Figure 4.22 (a) Periodic square wave %(r); (b, c) two aperiodic signals each of
which equals %(¢) over a different interval of length 7).

to (1) over different intervals of length T,. As we saw in Example 4.10, the Fourier
transform of x,(r) is given by

L 4.76)
The Fourier transform of x,(t) can be calculated from eq. (4.61):
L T, Ta
X (w) = J x (et dt = I el dy 4 et dt

e 0 T-T

= _l_“ — eg~JwTi] _‘_e-lmﬁ[elaﬂ’l -1]
jo jo

1 1
= L p~JaTi/2pleTi/2 . = loTi/2 e lw =T/ plaTi/2 . p-joTi/2
=7 ¢ [e e ] +j ¢ {e e~ /oTi/2)
= 2 gin (@T1\(,- rani2 - Jo(h=1i/2)
= 2 sin ( ] )[e te ] @17

The transforms X, () and X:(@) are definitely not equal. In fact, X,(®) is real for
all values of @, whereas Xa(@) is not. However, for @ = k@, eq. (4.77) becomes
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Xakeg) = k_Z_COo sin (szoTx)[e-/m.mz 4 e~ kenTrglkanTi/z]

Since w,T, = 27, this reduces to

Xz(kmo) = L sin (M)[e—jhmﬂll + elknuﬂ/l]

ka)o 2
4 ka)oT.) kwo T,
= i (*25T1) cos (dehe )
Then using the trigonometric identity sin 2x = 2 (sin x) (cos x), we find that '
Xyktwog) = 2 EDTL) _ v, ko)
[}

which substsrtiates the result stated in eq. (4.75) that the Fourier coefficients of a
periodic signal can be obtained from samples of the Fourier transform of an aperiodic
signal that equals the original periodic signal over any arbitrary interval of length T,
and that is-zero outside this interval.

4.5.2 The Fourier Transform for Periodic Signals

We now wish to consider the Fourier transform of a periodic signal. As we will see,
we can construct the Fourier transform of such a signal directly from its Fourier series
representation. The resulting Fourier transform for a periodic signal consists of a train
of impulses in frequency, with the areas of the impulses proportional to the Fourier
series coefficients. This will turn out to be a very important representation, as it will
facilitate our treatment of the application of Fourier analysis techniques to problems
of modulation and sampling.

To suggest the general result, let us consider a signal x{r) with Fourier transfcrm
X(w) which is a single impulse of area 2z at ® = ¢, that is,

X(w) = 2n8(w — ;) (4.78)

To determine the signal x(¢) for which this is the Fourier transform we can apply
the inverse transform relation (4.60) to obtain

x(t) = %EJ‘ 2r6(w — @,)e’ dw

= gl

More generally, if X(w) is of the form of a linear combination of impulses equally
spaced in frequency, that is,

X(w) = :Y‘:, 2na,6{w — ko,) 4.79)
k= oo
then the application of eq. (4.60) yields
Xt)= S aeltev (4.80)
km—on

We see that eq. (4.80) corresponds exactly to the Fourier series representation of a
periodic signal, as specified by eq. (4.34). Thus, the Fourier trunsform o. a periodic
signal with Fourier serics coefficients {a,} can be interpreted 2s a train of impulses
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occurring at the harmonically related frequencies and for which the area of the impulse
at the kth harmonic frequency kw, is 2r times the kth Fourier series coefficient a,.

Example 4.13
Consider again the square wave illustrated in Figure 4.22(a). The Fourier series
coefficients for this signal are
__sin kw7,
T Tk
and its Fourier transform is

X@) = ¥ 288D 50 — ke

-—

which is sketched in Figure 4.23 for T, = 47,. In comparison with Figure 4.8, the
only differences are a proportionality factor of 2 and the use of impulses rather than
a bar graph.

-~ //‘[\\ / \\

’/I\\

< h) e Y

~3- AN /) T 4
~NY/

Figure 4.23 Fourier transform of a symmetric periodic square wave.

Example 4.14
Let
x(f) = sin Wy

The Fourier series coefficients for this example are

01==77
1
a_,y =-—§7
ax =0, ks~ 1or —1!

Thus, the Fourier transform is as shown in Figure 4.24(a). Similarly, for
x(r) = cos Wyt
the Fourier series coefficients are
ay =a_, =1}
ar =0, k#1or—1

The Fourier transform of this signal is depicted in Figure 4.24(b). These two transforms
will be of great importance when we analyze modulation systems in Chapter 7.
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X{w)

=/
1

—xlj

(a)

X{w)

P 2
R

o 0 “o Figure 4.24 Fourier transforms of (a)

by - x(1) = sin wp?; (b) x(#) = cos wo!.

Example 4.15
A signal that we will find extremely useful in our analysis of sampling systems in Chap-
ter 8 is the periodic impulse train given by

x(f) = »:25.. 5(t — kT)

as drawn in Figure 4.25(a). This signal is periodic with fundamental period T

x{t)
t 1 | t t
-2T -7 [ T 27 t
{a)
X{w)
2x
T
_Ax _2r [} 2 4n w
N T T T

(b}

Figure 4.25 (a) Periodic impulse train; (b) its Fourier tr.unsform.
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To determine the Fourier transform of this signal, we first compute its Fourier
series coefficients:
+Tt2 1
a = = O(1)e koot (ff = =
T ) on T
Inserting this into eq. (4.79) gives
_2n 3 ( 2nk>
X(w) = Thi_)w& w— ==
The transform of an impulse train in time is thus itself an impulse train in frequency,
as sketched in Figure 4.25(b). Here again we see an illustration of the relationship
between the time and the frequency domains. As the spacing between the impulses in
time (i.e., the period) gets longer, the spacing between impulses in frequency (the
fundamental frequency) gets smaller.

4.6 PROPERTIES OF THE CONTINUOUS-TIME
FOURIER TRANSFORM

In this and in the following two sections, we consider a number of properties of the
Fourier transform. As we shall see, these properties provide us with a significant
amount of insight into the transform and into the relationship between the time-
domain and frequency-domain descriptions of a signal. In addition, many of these
properties are often useful in reducing the complexity of the evaluation of Fourier
iransforms or inverse transforms. Furthermore, as described in the preceding section,
there is a close relationship between the Fourier series and Fourier transform repre-
sentations of a periodic signal, and using this relationship it is possible to translate
many of the propertics we develop for Fourier transforms into corresponding prop-
erties for Fourier series. For this reason we have omitted the derivation of these
Fourier series properties. Several of the omitted derivations are considered in Prob-
lem 4.9. In Section 4.9 we summarize all the propertics for both the series and
transform and in addition provide a table of the series and transform representations
of some of the basic signals that we have already encountered or will find of use in
the remainder of this chapter and in subsequent chapters.

Throughout this discussion we will be referring frequently to time functions
and their Fourier transforms, and we will find it convenient to use a shorthand
notation to indicate the relationship between a signal and its transform. Recall that
a signal x(¢) and its Fourier transform X(w) are related by the Fourier transform
synthesis and analysis equations
[eq. (4.60)] () = 7‘7? j X(@)e™ de 4.81)

+

[eq. (4.61)] X(@) = j: x(t)e™ ™ dt (4.82)

We will sometimes refer to X(w) with the notation F{x(f)} and to x(r) with the notation
F-{X(w)}. We will also refer to x(1) and X(w) as a Fourier transform pair with the
notation

§
x() > X(w)
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Thus, with reference to Example 4.7,

L Fle *u(t)}

a+ jw
-at — 1 1
erun =75 Ia+jw}
and
v, 1
e "u(t) < g

4.6.1 Linearity of the Fourier Transform

If
F
x () <> X(0)
and
F
x,() > Xy(o)
then

g
ax,(t) + bx, (0 LN aX,(@) + bX,(w) | (4.83)

In words, the Fourier transform of a linear combination of twe signals is the same
linear combination of the transforms of the individual compoaents. The linearity
property is easily extended to a linear combination of an arbitrary number of com-
ponents. The proof of eq. (4.83) follows directly by application of eq. (4.82).

4.6.2 Symmetry Properties of the FourierATransform

If x(r) is a real-valued time function, then

X(—w) = X*(w) [x(2) real] (4.84)

where * denotes the complex conjugate. This is referred to as conjugate symmetry.
The conjugate symmetry of the Fourier transform follows by evaluating the complex
conjugate of eq. (4.82):

X*Hw) = [ [ xtrer dz]‘
= J‘:‘ x*(0)el™ dt
Using the fact that x(f) is real so that x*(f) = x(s), we have
X*(w) = j: x(t)e’ di = X(— )
where the second equality follows from eq. (4.82) evaluated at —w.

Sec. 4.6 Properties of the Continuous-Time Fourier Transform 203




R SRR

Lo N Lot [N R Vot i L [
Referring to Example 4.7, with x(¢) = e u(t),
1
Xw) = a+jo
and
) = Ly
X( a))—a_jw—X (@)

Also, in Section 4.2 we discussed the Fourier series analog of this property. Specifi-
cally, if x(1) is periodic and real, then from eq. (4.17),
a, = a*,
An illustration of this property was given in Example 4.2.
As one consequence of eq. (4.84), if we express X(w) in rectangular form as
X(w) = Re(X(w)} + jam{X(w)}
then if x(¢) is real,
Ge(X(w)} = Re(X(—a))
Im{X(@)} = —9m{X(—w)}
That is, the real part is an even function of frequency and the imaginary part is an
odd function of frequency. Similarly, if we express X(w) in polar form as
X(@) = | X(@)| e

then it follows from eq. (4.84) that | X(w)] is an even function of @ and 8(w) is an odd
function of w. Thus, when computing or displaying the Fourier transform of a
real-valued function of time, the real and imaginary parts or magnitude and phase of
the transform need only be generated or displayed for positive frequencies, as the
values for negative frequencies can be determined directly from the values for @ > 0
using the relationships just derived.

As a further consequence of eq. (4.84), if x(¢) is both real and even, then X(w)
will also be real and even. To see this, we write

X(—w) = J: x(O)e™ dt
or with the substitution of variables T = —,
X(—w) = J‘j: x(—1)e /o  dy
Since x(—1) = x(1), we have
X(—w) = J‘:: x(v)e et dr

= X(w)

Thus, X(w) is an even function. This, together with eq. (4.84), also requires that
X*(w) = X(w) {i.e., that X(w) is real]. Example 4.8 illustrates this property for the
real, even signal ¢, In a similar manncr it can be shown that if x(r) is an odd time
function so that x(r) = —x(—1), then X(w) is pure imaginary and odd.

The analogous property for Fourier series is that a periodic, real, even signal
x(1) has real and even Fourier cocfficients (i.e., a, == a_,), whereas if x(¢) is odd, the
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coefficients are odd and pure imaginary. The first of these two cases is illustrated

in Example 4.5 for the periodic square wave.

Finally, as was discussed in Chapter 2, a real function x(¢) can always be ex-
pressed in terms of the sum of an even function x,(¢) = 8¥{x(r)} and an odd function
x,(t) = od{x(s)}: that is,

x(1) = x (1) + x,(1)

From the linearity of the Fourier transform,
Fx(0} = Fx. (0} + F{x,()}

and from the discussion above, ${x,(¢)} is a real function and F{x,(r)} is pure imagi-
nary. Thus, we can conclude that with x(¢) real,

X)) <> X(o)
BV(x()) <= Re(X(w))
od(x()} <> Jam{X(w))
4.6.3 Time Shifting
I
x(1) <«— X(w)
then

(4.85)

, x(t — tg) S e ' X(w)

To establish this property, consider
Flx(t — 1)) = | X — tg)e o di (4.86)
Letting o0 = ¢ — ¢, in (4.86), we have ]
F{x(t — 1)} = IM x{g)e /et dg = ¢~ /@n X (10)

One consequence of this property is that a signal which is shifted in time does not
have the magnitude of its Fourier transform aitered. That is, if we express X{(w) in
polar form as
Fx(1)) = X(@) = | X(w)| e’

then

Flx(t — 1)} = e/ X(w) = | X(w)] e/ -l
Thus, the effect of a time shift on a signal is to introduce a phase chift in its transform
which is a linear function of w.

4.6.4 Differentiation and Integration
Let x(¢) be a signal with Fourier transform X{w). Then, by differentiating both sides
of the Fourier transform synthesis equation (4.81), we obtain

‘1';5’) = 7];‘ jr jwX(w)e’ dw

N
<>
o
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Therefore,

‘%f'_) &, jex) (4.87)

Thisis a particularly important property as it replaces the operation of differentiation
in the time domain with that of multiplication by jw in the frequency domain. We
will find this to be extremely useful in our discussion in Section 4.11 on the use of
Fourier transforms for the analysis of LTI systems described by differential equations.

Since differentiation in time corresponds to multiplication by jo in the frequency .

domain, one might conclude that integration should involve division by jw in the
frequency domain. This js indeed the case, but it is only one part of the picture. The
precise relationship is

j sy dr <> j—i‘—)X(co)—i-nX(O) () (4.88)

The impulse term on the right-hand side of eq. (4.88) reflects the dc or average value

that can result from the integration.
To gain some understanding of this property, consider the unit step signal u(?).
In Figure 4.26 we have illustrated the even—odd decomposition of u(r), which can

ult)

(a)

ev{ulti} =3

-

b}
od|ultf=ult) - 3

1
2

-

Figure 4.26 Even-odd decomposition
{c) of the continuous-time unit step.
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be written as

u(t) = 3 + [u(t) — 4] (4.89)
Consider first the odd part v(¢) = u(t) — 4. Since v'(t) = u'(t) = &(t), we have from
the differentiation property that

516} = 5 {24 = jo¥ () (4.90)
and since the Fourier transform of the unit impulse is 1, we conclude that
=1 ‘

V) = 5 4.91)

Note that since v(r) is real and odd, we must have that ¥(w) is pure imaginary and
odd, which is readily verified from eq. (4.91).

Consider next the even part of u(f), which is the constant signal }. That is,
&v{u(f)} is a periodic signal at zero frequency, and hence its Fourier transform is an
impulse at e = 0. Specifically, using eq. (4.79), we obtain

5{}} = nd(w) (4.92)
and combining the transforms of the even and odd parts of u(f), we find that
1
Fu()} = i + né(w) (4.93)

This result agrees with the integration property, eq. (4.88). That is, with x(7) = (¢),
we have that X(w) = 1 and the integral of x(t) is u(r). With these substitutions, eq.
(4.88) yields eq. (4.93). Furthermore, we have seen that the impulse term in eq. (4.93)
comes directly from the nonzero dc value of u(f).

Finally, note that we can apply the differentiation property (4.87) to recover
the transform of the impulse, that is,

& = did(:-) BN Jw[j—l—w + 716((9):]j

The right-hand side of this expression reduces to 1 since wd’w) = 0, and thus
F
o) <« 1
4.6.5 Time and Frequency Scaling

1If

X S Xw)
then

xat) <> I—CI—ITY(-‘;%) (4.94)

where a is a real constant. This property follows dircctly frem the definition of the
Fourier transform. Specifically,

F{x(ar)} = j: x(at)e™"" dt

G
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Using the substitution of variables t = at, we obtain

%f x(t)e~ /w9t dr, a>0
F(x(ar)} = -

——% J x(t)e~ /@ dr, a<0
which corresponds to relation (4.94). Thus, aside from the amplitude factor of 1/{a],
linear scaling in time by a factor of a corresponds to a linear scaling in frequency by
a factor of 1/a, and vice versa. A common illustration of relation (4.94) is the effect
on frequency content that results when an audio tape is recorded at one speed and
played back at a difTerent speed. If the playback speed is higher than the recording
speed, corresponding to compression in time (i.e., a > 1), then the spectrum is
expanded in frequency (i.e., the audible effect is that the playback frequencies are
higher). Conversely, the played-back signal will contain lower frequencies if the
playback speed is slower than the recording speed (2 < 1). For example, if a recording
of the sound of a small bell ringing is played back at a reduced speed, the result will

sound like the chiming of a larger and deeper-sounding bell.

The scaling property is another example of the inverse relationship between time
and frequency that we have already encountered on several occasions. For example,
we have seen that as we increase the period of a sinusoidal signal, we decrease its
frequency. Also, as we saw in Example 4.11 (see Figure 4.20), if we consider the
transform

X(w) = 1, lw| < W

0, lo|> W
then as we increase W, the inverse transform of X(w) becomes narrower and higher
and approaches an impulse as W — oo. Finally, in Example 4.15 we saw that the
spacing in frequency between impulses in the Fourier transform of a periodic impulse

train is inversely proportional to the spacing in time.

On several occasions in the remainder of this book we will encounter the con-
sequences of the inverse relationship between the time and frequency domains. In
addition, the reader may very well come across the implications of this property in a
wide variety of other topics in science and engineering. One example is the uncertainty
principle in physics. Another such implication is illustrated in Problem 4.35.

4.6.6 Duality

By comparing the transform and inverse transform relations (4.81) and (4.82), we
observe that there is a definite symmetry (i.e., that these equations are similar but
not quite identical in form). In fact, this symmetry leads to a property of the Fourier
transform known as duality. In Example 4.11 we alluded to this property when we
noted the striking relationship that exists between the Fourier transform pairs of
Examples 4.10 and 4.11. In the first of these examples we derived the Fourier trans-
form pair

1, t|<T 5 i .
x40 = el <T, X, (@) =2309Ts _ o7 sinc (“’_Tl) (4.95)
0, |t} > T @ 7
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while in Example 4.11 we considered the pair

sin Wt _ W . (Wt) § L lel<w
x,(f) =2 = —sinc {—] <«—> X,(w)= 4.96

20 it n n (@) {0, lo|> W “.96)
These two Fourier transform pairs and the relationship between them are depicted

in Figure 4.27.

B¢
%, (0 1 {w)
2T,
: - r X
-— T, T,
-T, T t N \/ v AP
x,{t} Kple)
Wir
1
- x % .
w w
1 -W w w

Figure 4.27 Relationship between the Fourier transform pair of eqs. (4.95) and (4.96).

The symmetry exhibited by these two examples extends to Fourier transforms
in general. Specifically, consider two functions related through the integral expression

fwy= | gyt dv @97

By comparing eq. (4.97) with the Fourier synthesis and analysis equations (4.81)
and (4.82), we see that with u = w and v = 1,
J(w) = F{g(t)} (4.93)
while with v =t and v = o,
)
g(—o) = 5=5{/(1)] (4.99)

That is, if we are given the Fourier transform pair for the tirie function g(1),

§
gty <> f(») (4.100)
and then consider the function of time f{1), its Fourier transform pair is
¥
f) <+ 2ng(—w) (4.101)
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The implications of these last two equations are significant. For example, suppose that

®) 1, o] < M 4102
V) = .
8 0, fu>M )
Then, from eq. (4.97),
_2sinuM __ . uM
Sy = 25U — 2 sine (_n ) (4.103)

This result, together with eq. (4.98) or, equivalently, eq. (4.100), yields the transform
pair in eq. (4.95) for M = T,, while if we use eq. (4.99) or (4.101) we obtain the pair
in eq. (4.96) with M = W. Therefore, the property of duality allows us to obtain both
of these dual transform pairs from one evaluation of eq. (4.97). This can often be
useful in reducing the complexity of the calculations involved in determining trans-
forms and inverse transforms. To illustrate the use of duality, we consider the following
example.

Example 4.16
Suppose that we would like to calculate the Fourier transform of the signal

x(1) = (4.104)

2
141
I we let
2
Sy = m
then from eq. (4.100) we have the Fourier transform pair
¥ 2
g «—> f(w)= BT
From Example 4.8 we then see that
§(1) = e~
Furthermore, using the transform pair given by eq. (4.101), we conclude that since

S(t) = x(1), then
X(w) = F(f()) = 2ng(—~w) = 2me~ '« (4.105)

The duality property can also be used to determine or to suggest other properties
of Fourier transforms. Specifically, if there are characteristics of a time function that
have implications with regard to the Fourier transform, then the same characteristics
associated with a frequency function will have dual implications in the time domain.
For example, we know that a periodic time function has a Fourier transform that
is a train of weighted, equally spaced impulses. Because of duality, a time function
that is a train of weighted, equally spaced impulses will have a Fourier transform
that is periodic in frequency. This is a consequence of egs. (4.98) and (4.99) and can
be verified directly from eqs. (4.81) and (4.82). Similarly, the properties of the Fourier
transform considered in Sections 4.6.2-4.6.5 also imply dual properties. For example,
in Section 4.6.4 we saw that differentiation in the time domain corresponds to mul-
tiplication by jw in the frequency domain. From the preceding discussion we might
then suspect that multiplication by j¢ in the time domain corresponds roughly to
differentiation in the frequency domain. To determine the precise form of this dual
property, we can proceed in a fashion exactly analogous to that used in Section
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4.6.4. Specifically, if we differentiate the analysis equation (4.82) with respect to ,
we obtain

iﬁ%’)= J —jtx(t)e™"*" dt (4.106)
That is,
—jex() <> d—‘}'(a‘,i) (4.107)

Similarly, we can derive the dual properties to eqs. (4.85) and (4.88;. These are

Pl <> X — o) (4.108)

and

—;?Tx(z)+_ 2x(0) 6(t) < f X(n) dy (4.109)

4.6.7 Parseval’s Relation

If x(t) and X(w) are a Fourier transform pair, then

f_“ Lx(0) ]2 dt = 7’7_‘ J‘: | X(o)|? do> (4.110)

This expression, referred to as Parseval’s relation, follows from direct application of
the Fourier transform. Specifically,

~+

J:t | x(8)|* dt = J_: x(x*() dt = Jt: x(l)[—zli ﬁt X*()e I dmjlj e

Reversing the order of integration gives

[ixor =t [T x@] [ xoema]do

But the bracketed term is simply the Fourier transform of x(t); thus,

[Tixora= g [ 1xer o

The quantity on the left-hand side of eq. (4.110) is the totai energy in the signal
x(1). Parseval’s relation, eq. (4.110), says that this total energy may be determined
either by computing the energy per unit time (x(r}?) and integrating over ail time,
or by computing the energy per unit frequency (| X(w)!*/2n) and integratiag over
all frequencies. For this reason | X(w)!? is often referred to &s the energy-density
spectrum of the signal x(¢) (see also Problem 6.6).
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The energy in a periodic signal is infinite and consequently eq. (4.110) is not
useful for that class of signals. However, as considered in Problem 4.14, for periodic
signals there is an analogous relationship. Specifically,

—TI_OJ;"X(’)P‘I': kgmmm @.111)

where the a, are the Fourier series coefficients of x(¢) and T, is its period. Thus, for
the periodic case Parseval’s relation relates the energy in one period of the time
function to the energy in the Fourier series coefficients. Furthermore, the quantity
|a,|? has the interpretation as that part of the energy per period contributed by the
kth harmonic.

There are many other properties of the Fourier transform pair in addition to
those we have already discussed. In the next two sections we present two specific
properties that play particularly central roles in the study of LTI systems and their
applications. The first of these, discussed in Section 4.7, is referred to as the convolu-
tion property and it forms the basis for our discussion of filtering in Chapter 6. The
second, discussed in Section 4.8, is referred to as the modulation property and it
provides the foundation for our discussion of modulation in Chapter 7 and sampling
in Chapter 8. In Section 4.9 we summarize the properties of the Fourier transform.

1.7 THE CONVOLUTION PROPERTY

One of the most important properties of the Fourier transform with regard to its
use in dealing with LTI systems is its effect on the convolution operation. To derive
the relation, consider an LTI system with impulse response /i(z), output y(f), and input
x(1), so that

) = [ x@htt — 5y dr @112
We desire Y(w), which is
Y@ =50} = [ [ x@htt — o) dele s di @113

Interchanging the order of integration and noting that x(r) does not depend on ¢,
we have

Y = [ x(r)[j: h(t — 7)e o dz] dr (4.114)

By the shifting property (4.85), the bracketed term is simply e~ /" H{). Substituting
this into eq. (4.114) yields

Y(@) = j: x(r)e~ H(ew) dt = H(w) j: x(2)e P dr @4.115)

The integral is F{x(¢)}, and hence
Y(w) = H(w)X(w)
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y(t) = h(t) * x(£) < Y(0) = H(@)X(w) 4.116)

This property is essentially a consequence of the fact that complex exponentials
are eigenfunctions of LTI systems, and can alternatively be derived by recalling our
interpretation of the Fourier transform synthesis equation as an expression for x(f)
as a linear combination of complex exponentials. Specifically, referring back to eq.
(4.59), we expressed x(f) as the limit of a sum, that is,

1 (" N T~ et
x(0) == J:.. X(@)e™ do> = lim = 3 X(kwy)e = w, @.117)

The response of a linear system with impulse response /() to a complex exponential
ekt s, from eq. (4.4), H(kw,)e***, where '

Hko,) = J’ e tren de (4.118)
From superposition [see eq. (4.8)] we then have that
L § pkoge o, —» o 33 X(ko)H(koge e,
2n k=—oo 2n k=—o

and thus from eq. (4.117) we see that the response of the linear system to x(¢) is

() = lim 2L 3 X(kwo)H(kwy)e o,
o0 LT km—oo

. , (4.119)
=5 L X(w)H(w)e! do
Since y(¢) and its Fourier transform Y{(w) are related by
W) = 217 f Y(w)e'™ do (4.120)
we can identify Y(w) from eq. (4.119), yielding _
Y(w) = X(w)H(w) 4.121)

as we had derived previously.

This alternative derivation of this very important property of Fourier transforms
emphasizes again that H(w), the Fourier transform of the system impulse response,
is simply the change in complex amplitude experienced by a complex exponential
of frequency w, as it passes through a linear time-invariant system. The function
H(w) is generally referred to as the frequency response of the system, and it plays as
important a role in the analysis of LTI systems as does its inverse transform, the
unit impulse response. For one thing, since A(¢) completely characterizes an LTI
system, then so must H(w). In addition, many of the propertics of LTI systems can
be conveniently interpreted in terms of H(w). For example, in Section 3.3 we saw
that the impulse response of the cascade of two LTI systems is the convolution of
the impulse responses of the individual systems and that the overall response does
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not dspend on the order in which the systems are cascaded. Using eq. (4.116), we can
rephrase this in terms of frequency responses. As illustrated in Figure 4.28, the overall
freguency response of the cascade of two systems is simply the product of the indi-
vidual frequency responses, and from this it is clear that the overall response does not
depend on the order of cascade.

x{t) H, (W) Hy (w) yit}

{a)

x{t) ot H, (W] H {00) sy (1)

{b)
Figure 4.28 Three equivalent LTI sys-
x Hatw) Hy (w) Vi) tems. Here each block represents an
LTI system with the indicated frequency
{c) response.

It is also important to note that the frequency response cannot be defined for
every LTI system. If, however, an LTI system is stable, then, as we saw in Section
3.4 and Problem 3.21, its impulse response is absolutely integrable. That is,

j'"u.(z)ld: < oo (4.122)

Equation (4.122) is one of the three Dirichlet conditions which together guarantee
the existence of the Fourier transform H(w) of A(z). Thus, assuming that A(t) satisfies
the other two conditions, as essentially all signals of physical or practical significance
do, we sce that a stable LTI system has a frequency response H(w). If, however, an
LTI system is unstable, that is, if

j*"|h(1)|d:= oo

then the Fourier transform may not exist, and in this case the response of the system
to a sinusoidal input is infinite. (Sce Problem 5.27 for an illustration and explanation
of this point in the context of discrete-time LTI systems.) :
. Therclore, in using Fourier analysis to study LTI systems, we will be restricting
oursclves to systems with impulse responses that possess Fourier transforms. In
order to use transform technigues to examine those unstable LTI systems that do not
have finite-valued frequency responses, we will have to consider a generalization of
the continuous-time Fourier transform, the Laplace transform. We defer this discus-
sion to Chapter 9, and until then we will consider the many problems and practical
applications that we can analyze using Fourier transforms.
To illustrate the convolution property further, let us consider several examples.
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Example 4.17

Consider a continuous-time LTI system with impulse response

k() = 8(t ~ to) (4.123)
The frequency response of this system is given by
H(w) = g™lot (4.124)
Thus, for any input x(¢) with Fourier transform X(®), the Fourier transform of the
output is
Y(0) = H(w)X(®) @.129)

= g~ Jots X(w)

This result, in fact, is consistent with the shifting property of Section 4.6.3. Speci-
fically, as was discussed in Chapter 3 (see Example 3.5), a system for which the impulse
response is 6(¢ — 1o) applies a time shift of £ to the input, that is,

A1) = x{t — to)
Thus, the shifting property (4.85) also yields eq. (4.125). Note that either from our
discussion in Section 4.6.3 or directly from eq. (4.124), we see that the frequency
response of a system which is a pure time shift has unity magnitude at all frequencies
and has a phase characteristic that is a linear function of .
Example 4.18

As a second example, let us examine a differentiator, that is, an LTI system for which
the input x(r) and the output y(¢) are related by )

W) = d—;—i’—)

From the differentiation property of Section 4.6.4,
Y(w) = jowX(w) (4.126)

Consequently, from eq. (4.116) it follows that the frequency response H(w) of a
differentiator is

H(®) =j® (4.127)

Example 4.19

Suppose that we now have an integrator, that is, an LTI system specified by the
equation

W) = f _ x(1) dt

The impulse response for this system is the unit step #(r), and, therefore from eq. (4.93)
the frequency response of this system is

|
H{(w) =i + nd(w)
Then, using eq. (4.116), we have that
Y(w) = H(w)X(w) =jin(co) + nX(w) §(w) =j-’a-))((m) + nX(0) 6(w)

which is precisely the integration property of eq. (4.88).
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Example 4.20
Consider the response of an LTI system with impulse response
h(t) = e~*u(1), a>0
to the input signal
x(#) = e~bulr), b>0
From Example 4.7 we have that the Fourier transforms of x(¢) and A(r), are
1
XY =556
1
H®) =556
Therefore,
1
Y(®) = T 4.12
@ = G5 T o (4.128)
To determine the output y(r) we wish to obtain the inverse transform of Y(w). This is
most simply done by expanding Y(w) in a partial fraction expansion. As we shall see,
such expansions are extremely useful in evaluating many inverse Fourier transforms,
including those that arise in calculating the response of an LTI system described by a
differential equation. We discuss this at more length in Section 4.11, and in the Appen-
dix we develop the general method for performing a partial fraction expansion. We
will illustrate the basic idea behind the partial fraction expansion for this example.
Suppose first that b # a. In this case we can express Y() in the form
A B
where A and B are constants to be determined. Sctting the right-hand sides of eqs.
(4.128) and (4.129) equal, we obtain
A + B _ 1
atjo T b+jo (at+jo)b + jw)
or
A +jw) + Bla + jw) =1 . (4.130)
Since this must hold for all values of @, the coefficient of w in the left-hand side of
eq. (4.130) must be zero, and the remaining terms must sum to I. That s,
A+B=0
and
Ab 4+ Ba =1
Solving these equations, we find that
1
4= b=a” ~8
and therefore
i 1 |
Y = =lev7e ~ 57wl @130
In the Appendix we present a more efficient but equivalent method for performing
partial fraction expansions in general.
The inverse transform of each of the two terms in eq. (4.131) can be recognized
by inspection, and, using the linearity property of Section 4.6.1, we have
216 Fourier Analysis for Continuous-Time Signals and Systems Chap. 4
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1 "
H) = plemult) — e>u(r)]
The partial fraction expansion of eq. (4.131) is not valid if b = a. However, for this
case,
_ 1
YO =g ¥ior

Recognizing this as
1 _,.d [ 1 }
@tjor ~/dolatie
we ¢an use the dual of the differentiation property as given in eq. (4.107). Thus,

i
—at < >
e u(t) a-+jo

—a i . d 1 _ 1
te”ut) > ]da)[a +ja>] T (@ +jw)?
and consequently,

() = te”u(l)

Example 4.21
Suppose that we now consider the LTI system with impulse response
h(t) = e~"u(t)
and consider the input

3
x() = 3, axel**
k=a=-1

where
ap =1, a|=a_l=}
a3 =a., =}, ay=a.;=1}
Then
|
H®@) = 57
3
X(w) = Z, 2na, 0(w — 27tk)
km-
and thus

Y(@) = HE@X@) = P 2, H@AK) S(@ — 2mk)

2 2na
- k-Z—l (1 +j£75k) S(e — 2mk)

Converting this back to a Fourier series representation, we obtain

3
yn= 3 (Tq%)e”'“

k==-3
which is identical to the response obtained in Example 4.2 [sce egs. (4.24) and (4.25)].

4.7.1 Periodic Convolution

In Example 4.21 the convolution property was applied to the convolution of a
periodic signal with an aperic dic signal. If both signals are periodic, then the con-
volution integral does not converge. This reflects the fact that an LTI system with
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periodic impulse response is unsta
response. However, it is sometimes useful to consider a form of convolution for
periodic signals with equal periods, referred to as periodic convolution. The periodic

convolution of two signals %,(f) and %,(f) with common period T, is defined as

() = L 7,(0)F,(t — 1) de (4.132)

This operation is similar to usual convolution, which is sometimes called aperiodic
convolution. As illustrated in Figure 4.29, we see that, just as with aperiodic convolu-

MAAMAN

=2T,

Xy i) | |
I I
| |
{ |
\ |
1 4 1
0 :TD T
: |
| i
| 1
: |
Xplt—=1) l :
/l l :/l /\ /]
! !
M !
) !
! i
. :
) 10 vl T
co
————

Interval of integration of length T,

Figure 4.29 Periodic convolution of two continuous-time periodic signals.

tion, periodic convolution also involves multiplying X,(z) by a reversed and shifted
version of %,(t), but in this case the product is integrated over a single period. As ¢
changes, one period of ,(t — 1) slides out of the interval of integration and the next
one slides in. If ¢ is changed by Ty, then the periodic signal X,(t — ) will have been
shifted through a full period and therefore will look exactly as it did before the shift.
From this we can deduce that the result of periodic convolution is a periodic signal
$(t). Furthermore, as shown in Problem 3.12, the result of periodic convolution does
not depend on which interval of length 7, is chosen for the integration in eq.(4.132),
and also from Problem 4.16 we have that if {a,}, {6,], and {c,}denote the Fourier series
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coefficients of X,(t), X,(¢), and y(r), respectively, then

Fi

¢, = Toaih, (4.133)

which is the counterpart of the convolution property for periodic convolution.

& 4.8 THE MODULATION PROPERTY

The convolution property states that convolution in the time domain corresponds
to multiplication in the frequency domain. Because of the duality between the time
and frequency domains, we would expect a dual property to also hold (i.e., that
multiplication in the time domain corresponds to convolution in the frequency
domain). Specifically,

) = sOp() <S> R(@)= 515@)* K@) 4139

This can be shown by using the duality relations of Section 4.6.6 together with the
convolution property, or by directly using the Fourier transform relations in a
manner analogous to the procedure used in deriving the convolution property.

Multiplication of one signal by another can be thought of as using one signal
to scale or modulate the amplitude of the other, and consequently the multiplication
of two signals is often referred to as amplitude modulation. For this reason eq. (4.134)
is called the modulation property. As we shall see in Chapters 7 and 8 this property
has several very important applications. To illustrate eq. (4.134) and to suggest several
of the applications that we will discuss in these subsequent chapters, let us consider
several examples.

Example 4.22 .
Let s(r) be a signal whose spectrum S(w) is depicted in Figure 4.30(a). Also consider
the signal p(f) defined by
p(t) = cos Wyt
Then
P(w) = nd(w — @) + 7@ + W)
as sketched in Figure 4.30(b), and the spectrum R(®) of r(t) = s(f)p(1) is obtained by
an application of eq. (4.134), yielding

R(w) = 2175(m) o P(0) = }S(0 — @) + 1S(@ + @y) (4.135)

which is sketched in Figure 4.30(c). Here we have assumed that @, > @, so that the
two nonzero portions of R{®) do not overlap. Thus, we see that the spectrum of r(¢)
consists of the sum of two shifted and scaled versions of S(w).

From eq. (4.135) and from Figure 4.30 it is intuitively clear that all of the infor-
mation in the signal s(¢) is preserved when we multiply this signal by a sinusoidal signal,
although the information has been shifted to higher frequencies. This fact forms the
basis for sinusoidal amplitude modulation systems, and in the next example we provide
a glimpse of how we can recover the original signal s(¢) from the amplitude modulated
signal r{s).
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Figure 4.30 Use of the modulation property in Example 4.22.

Example 4.23
Let us now consider r(f) as obtained in Example 4.22, and let

£(n) = r(np(t)
where, again, p(1) = cos wgt. Then, R(@), P(w), and G(w) are as shown in Figure 4.31.

R{w)

—wyg wy w
{a)
n Plw) n
—wq [57Y w
(b}
Glw}
Al
Ala / A4
/:\ /:\
- 2wg Wy Wy 2wy w

(c)

Figure 4.31 Spectra of the signals considered in Example 4.23.
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From Figure 4.31(c) and the linearity of the Fourier transform, we see that
g(¢) is the sum of 4s(r) and a signal with a spectrum that is nonzero only at higher
frequencies (centered around =:2m,). Suppose then that we apply the signal g(r) as
the input to an LTI system with frequency response K () that is constant at low fre-
quencies (say, for || < ®,) and zero at high frequencies (for |@} > ). Then the
output of this system will have as its spectrum H(@)G(@), which, because of the parti-
cular choice of H(co), will be a scaled replica of S(w). Therefore, the output itself will
be a scaled version of s(¢). In Chapter 7 we expand significantly on this idea as we
develop in detail the fundamentals of amplitude modulation.

Example 4.24
Again consider a signal r(¢) defined as the product of two signals

r(r) = s(0)p(r)

where p(¢) is now taken to be a periodic impulse train

W)= 3 &~ kT) 4.136)

As is illustrated in Figure 4.32, we see that r(¢) is an impulse train with the amplitudes
of the impulses equal to samples of s(f) spaced at time intervals of length T apart. That
is,

+o0

() = s(O)p(t) = k:}i s0) 8@~ KT) = 5 _skT) 5 ~ kT)

—en

s(t)

0 t
fa)
plt)
/
-2T7 -T 0 T 27 3T 4T t
{b)
r{t)
/’— ~ -
’ N rd ~
4 \\ ’/, \\
/] N ~<
/ - -~ .
' f
-27 -T 0 T 27 t

{c)

Figzre 4.32  Product of a signal s(r) and a periodic impuise train.

Sec. 4.8  The Modulation Property 221

A

L gt e T e




A [CE——. b e bl Coanr {

Recall from Example 4.15 that the spectrum of the periodic impulse train p(f) is itself
a periodic impulse train. Specifically,

and consequently from the modulation property

Rw) = 2]—7[[5(0)) * P(0)] = -IT k:i:.,, S(w) (5(&) _ %&)

1 & 2nk

=7,.2.5 (0 -%F)

That is, R(w) consists of periodically repeated replicas of S(w) as illustrated in Figure
4.33(c) for 2n/T > @), 50 that the nonzero portions of R(w) do not overlap. From this
figure we see that, just as in the preceding example, if r(t) is applied as the input to
an LTI system with frequency response that is constant for |@| < @, and zero for
higher frequencies, then the output of this system will be proportional to. s(1). This is
the basic idea behind sampling, and in Chapter 8 we explore the implications of this

example in some depth.

S{w)
A
~ly U‘ w
{a)
Plw)
2
T
" ax _ 21 0 21 ar 61
T T T T T
(b)
Rlw)
ﬁ\,
Tax e, 0 @ 2 i )
T T T T T

(c)

Figure 4.33 Effect in the frequency domai. of multiplying a signal by a periodic

impulsc train.
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4.9 TABLES OF FOURIER PROPERTIES AND
FOURIER TRANSFORM AND FOURIER SERIES PAIRS

.In the preceding three sections and in the problems, we have considered some of the
important properties of the Fourier transform. These are summarized in Table 4.1.
As we discussed at the beginning of Section 4.6, many of these properties have
counterparts for Fourier series, and these are summarized in Table 4.2. In most

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Aperiodic signal Fourier transform
x(1) X ()
) Y(w)
ax(t) 4 by(t) aX(w) + bY(w)
x(t — o) e~ Jote X (w)
elovx(t) X(w — wo)
x*(1) X*(—w)
x(—1) X(~w)
1 [}
x(ar) } Tal X(;)
x(t) s ¥{(1) X (@) Y(w)
(A1) LX@ Y@
E0) joX(@)
:_ (1) dt l-‘a X (@) + 1X(0) 5(e)
Is
1x() j 3‘!(5 X(w)

X() = X*(—w)
1Re[X(w)) = Re{X(—w)}
x(1) real Im{X(w)} = —Im{X(—w)}
| X(@)] = | X(—a)]
LX) = ~JLX(—w)

x{r) = 8v{x(1)} [x(1) reall RefX (o))
xo(t) = 0d{x(1)} [x(¢) real] Jam{X(w)}

Duality
o0
S = Jlm glv)e i dy

5
g(1) «<—> f(w)

F
() <—> 2ng(—w)
Parseval’s Relation for Aperiodic Signals

J'_: IXORdr = 2‘—" _[_':1,\'((0) 1 do
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cases these properties can be deduced directly from the corresponding property in

Table 4.1 using the discussion of Section 4.5, in which the Fourier series was incor-

TABLE 4.2 PROPERTIES OF FOURIER SERIES

Periodic signal Fourier series coefficients
x(l)} periodic with ax
y(t)) period To [
Ax(t) + By(t) Aax + Bbi
x(t = fo) aye-1k2aTae
eIM(zl/To)'X(,) Ax-M
x*() at,
X(—l) Q.x
T < Te )
x(ot), ¢ > 0 (permdnc with period T) ax
L x()y(t — 1) dt Toaxbx
L]
+os
x(1)A1) . Y abka
dx(t) 4 2n
dt jk Toak
14
. - 1
x(¢t) dt {finite-valued and periodic =TT |9k
j..,, only if a = 0) (/k(Zn/To))
ax = a,
Refar} = Rela_x}
x(t) real dm{ax) = —9Im{a-x}
|axl = |a-x|
Lax = —Ja_x
x (1) = sv(x(r)} [x(¢) real) Refax)
xot) = 0d[x(r)] [x(¢) real) jsmlax}

Parseval's Relation for Periodic Signals
+ o0

TL., J;.IX(r)Pdt = 2 lah

oorated into the framework of the Fourier transform. In some cases, however, as with
« convolution property or Parseval’s relation, the transform property as it applies
“riodic signals and the Fourier transform is not useful for periodic signals and
“eries, although a modified version is.
. in Table 4.3 we have assembled a list of many of the basic and important
em pairs. We will encounter many of these repeatedly as we apply
*r analysis in our examination of signals and systems. All of these
“t for the last one in the table, have been considered as examples
The last one is considered in Problem 4.19.
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TABLE 4.3 BASIC FOURIER TRANSFORM PAIRS

Fourier series coefficients

Signal Fourier transform (if periodic)
Hoo 408
3 agelkwe 2 3 apd(w — kwo) ax
km—oo km—oo
Jewer 2n8(w ~ ay =1
€ #6(e — wo) ax =0, otherwise
may =1
cos wot a{d(w — wo) + 6w + wo)) ar=ar=3
ax = 0, otherwise
1
sin wol Z 18w — wo) — 8w + wo)) a=Taa =y
4 ax =0, otherwise
ap =1, ax=0,k++0
x(r) =1 2né(w)

(has this Fourier series rcpresen-)
tation for any choice of To >0

Periodic square wave

1, tl<T .
X(l) ={ To S 2sinkweT _ woTy .: kewoTy . sin kwo T
0, Ty < [']S—z- kEnT&(m kwo) —n—smc (—7'-—-—-) = =

and
x(t ++ To) = x(1)

+ o0 +

ST 8t — nT) zy a(m—z_;—") ax =5 forallk
nm oo km oo

b <t . (0T _ 2sin 0T
x(0) “{o, > T 27y sine (Z1) = 242 =
W .. (Wt\ _sin Wi 1, lol< W
Fone(F) =8| xer={p 01T -
&(t) 1 ’ —
1

u(t) s + né(w) —
8(t — to) e~Jot _
e~ou(s), Refa} > 0 P +‘jw —
te=onu(r), Refa} > 0 m _

ln-l —a
= l)!e 11(1), 1 ) =

Mefa} > 0 (a + o)
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THE POLAR REPRESENTATION
OF CONTINUOUS-TIME FOURIER TRANSFORMS

4.10.1 The Magnitude and Phase of Fourier Transforms

In the preceding sections we have developed some insights into the properties of
Fourier transforms and have seen some of the ways in which the tools of Fourier
analysis can be used effectively in the study of signals and systems. From the synthesis
equation (4.60) we know that we can recover a signal x(¢) from its Fourier transform
X(w), and therefore we can conclude that X(w) must contain all the information in
x(r). We have already gained some understanding of how this information is embed-
ded in X(w) by examining how various possible characteristics of x(f) (real, even,
time-shifted, etc.) manifest themselves as corresponding properties of X(w). In this
section we discuss the polar representation of the Fourier transform and by doing so
we will gain more insight into its characteristics. .
The polar or magnitude-phase representation of X(w) is

X(w) = | X(w)|e/** (4.137)

From the synthesis equation (4.60) we can think of X(w) as providing us with a
decomposition of the signal x(¢) into a “sum” of periodic complex exponentials at
different frequencies. In fact, as mentioned earlier | X(w)|? has the interpretation as
the energy-density spectrum of x(f). That is, | X{w)[*dew/2n can be thought of as the
amount of the energy in the signal x(¢) that lies in the frequency band betweed
and @ + dow.

While | X(w)] provides us with the information about the relative magnitudes
of the complex exponentials that make up x(f), < X(w) provides us with information
concerning the relative phases of these exponentials. Depending upon what this
phase function is, we can obtain very different looking signals, even if the magnitude
function remains unchanged. For example, consider again the example illustrated in
Figure 4.3. In this case, a ship encounters the superposition of three wave trains,
each of which can be modeled as a sinusoidal signal. Depending upon the relative
phases of these three sinusoids (and, of course, on their magnitudes), the amplitude
of their sum may be quite small or very large. The implications of phase for the ship,
therefore, are quite significant. To see the effect of phase in more detail, consider the
signal

x(t) = 1 + }cos 2nt + @,) + cos (4t + @,) -+ § cos (6nt + §,) (4.138)

In Figure 4.4 we depicted x(r) in the case when ¢, = ¢, = ¢, = 0. In Figure 4.34
we itlustrate x(¢) for this and for several other choices for the ¢,. As this figure demon-
strates, the resulting signals can differ significantly, depending upon the values of the

.

Therefore, we see that changes in the phase function of X(w) lead to changes
in the time-domain characteristics of the signal x(t). In some instances phase distortion
may be important, whereas in others it is not. For example, consider the human
auditory system. If X{(w) is the Fourier transform of a signal corresponding to an
individual spoken sound (such as a vowel), then a human being would be able to
recognize this sound even if the signal were distorted by a change in the phase of X{(w).
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{a)

{b)

ADAAADADAL,
/\,/\v/\,/\v/\}\/\,/\/\/\

Figure 4.34 The signal x(r) given in eq. (4.138) for several different choices of
the phase angles ¢y, 2, $3: (a) ¢y =¢2 =93 =0; (b) 1 =4 rad, §; =
8 rad., ¢3 =12 rad.; (c) ¢ = 6 rad.,, ¢ = —2.7 rad,, ¢3 =093 rad.;
(d) ¢y = 1.2rad., §2 = 4.1 rad., ¢35 = —7.02 rad.

For example, the sound would be recognizable if the acoustic signal produced had a

Fourier transform cequal to | X(w)] (i.c., a signal with zero phase and the same magni-
tude function). On the other hand, although mild phase distortions such as those
affecting individual sounds do not lead to a loss of intelligibility, more severe phase
distortions of speech certainly do. For example, if x(f) is a tape recording of a sentence,
then the signal x(—t) represents the sentence being played backward. From Table
4.1, we know that

S{x(—1) = X(—w)

where X(w) is the Fourier transform of x(¢). Furthermore, since x(f) is real,
| X(—w)| = | X(@)] and L X(—w) = —<L X(w). That is, the spectrum of a sentence
played in reverse has the same magnitude function as the spectrum of the original
sentence and differs only in phase, where there is a sign reversal. Clearly, this phase
change has a significant impact on the recognizability of the recording. ‘

A second illustrative example of the effect and importance of phase is found in
examining images. A black-and-white picture can be thought of as a signal x(t,, t,)
with two independent variables. Here ¢, denotes the horizontal coordinate of a point
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on a picture, t, is the vertical coordinate, and x(¢,, t,) is the brightness of the image
at the point (t,, 1,). Although we will not examine signals with two independent
variables at any length in this book, we will use examples of them (i.e., pictures) on
several occasions because such examples are extremely useful in visualizing some of
the concepts that we will develop. In the present context, in order to discuss the
effect of phase for images, we need to introduce Fourier analysis for signals with two
independent variables. For our purposes we do not need to develop this topic in any
detail but can simply observe that the techniques of two-dimensional Fourier analysis
are quite similar to those that we have developed for signals with one independent
variable. Specifically, in two dimensions we decompose a signal x(t,, ¢,) into a sum
(integral) of products of complex exponentials that oscillate at possibly different
rates in each of the two directions, that is, signals of the form

elwmelmm

The result of this decomposition is a two-dimensional Fourier transform X(w,, @,)
which contains the information about how the signal x(t,, t,) is constructed from these
basic signals. Several elementary aspects of two-dimensional Fourier analysis are
addressed in Problem 4.26. : .

Returning to the question of phase in pictures, we note that in viewing a picture,
some of the most important information for the eyes is contained in the edges and
regions of high contrast. Intuitively, regions of maximum and minimum intensity
in a picture are places at which the complex exponentials at different frequencies are
in phase. Therefore, it seems plausible to expect the phase of the Fourier transform
of a picture to contain much of the information in the picture, and in particular the
phase should capture the information about the edges. To substantiate this expecta-
tion, in Figure 4.35(a) we have repeated the picture of Fourier shown in Figure 4.2.
In Figure 4.35(b) we have depicted the magnitude of Fourier’s transform, where in
this image the horizontal axis is @,, the vertical is w,, and the brightness of the image
at the point (,, ®,) is proportional to the magnitude of the transform X(w,, ®,) of
the image in Figure 4.35(a). Similarly, the phase of this transform is depicted in Figure
4.35(c). Figure 4.35(d) is the result of setting the phase [Figure 4.35(c)} of X(w,, @,) to
zero (without changing its magnitude) and inverse transforming. In Figure 4.35(c)
the magnitude of X(®,, ;) was set equal to 1, but the phase was kept unchanged.
Finally, in Figure 4.35(f) we have depicted the image obtained by inverse transforming
the function obtained by using the phase in Figure 4.35(c) and the magnitude of the
transform of a completely different image, specifically the picture shown in Figure 2.2!
These figures clearly illustrate the importance of phase in representing images.

Returning to signals with a single independent variable, there is one particular
type of phase distortion that is quite easy to visualize. This is the case of linear phase
in which the phase shift at frequency o is a linear function of w. Specifically, if we
modify { X(w) by adding to it aw, then, from eq. (4.137), the resulting Fourier
transform is X(w)e’**, and from the time-shifting property (4.85), the resulting signal
is x(t + a). That is, it is simply a time-shifted version of the original signal. In this
case, the phases of the complex exponentials at different frequencies are shifted
so that the relative phases of these signals at time ¢ + « are identical to the relative
phases of the original signal at time /. Therefore, when these exponentials are super-
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posed, we obtain a shifted version of x(t). If the phase shift is a nonlinear function
of o, then each complex exponential will be shifted in 2 manner that results in a change
in the relative phases. When these exponentials are superposed, we obtain a signal
that may look considerably different than x(f). This is precisely what is illustrated in
Figure 4.34. Figure 4.34(b) is an example of linear phase, while Figure 4.34(c) and (d)
depict two examples of nonlinear phase.

4.10.2 Bode Plots

In Section 4.7 we saw that the Fourier transforms of the input and output of an
LTI system with frequency response H{w) are related by
Y(0) = H(w)X(w)

or, equivalently, in terms of the polar representation, we have that

| Y(w)| = | H(@)|| X(@)] (4.139)

LY (w) = LH@) + LX(@) (4.140)
Because of the multiplicative form of eq. (4.139) the magnitude of the freqﬁcncy
response of an LTI system is sometimes referred to as the gain of the system.

As we will find in the remainder of this chapter and in subsequent chapters, it is
often convenient to represent Fourier transforms graphically when using frequency-
domain techniques to examine LTI systems. Earlier in this chapter we used a graphical
representation for X(w) consisting of separate plots of | X(w)| and J X(w) as functions
of w. Although this representation is useful and in fact will be used extensively
throughout this book, egs. (4.139) and (4.140) suggest a modification to this represen-
tation that is also of great value in LTI system analysis. Specifically, note that if we
have plotted < H(w) and < X{(w) as a function of w, then { ¥(w) can be obtained by
adding the corresponding points on these two graphs. Similarly, if we plot log | H(w)|
and log | X(w)], we can add these to obtain log | Y{(w)|. Such a representation using
the logarithm of the magnitude function often facilitates the graphical manipulations
that are performed in analyzing LTI systems. For example, since the frequency
response of the cascade of LTI systems is the product of the individual frequency re-
sponses, we can obtain plots of the log magnitude and phase of the overall frequency
response simply by adding the corresponding plots for each of the component systems.

The most widely known graphical representation of the type just described is
the Bode plot. In this representation the quantities J{ H(w) and 20 log,, | H(w)| are
plotted versus frequency. The latter of these quantities, which is proportional to the
log-magnitude, is referred to as the magnitude expressed in decibels (abbreviated
dB). Thus, 0 dB corresponds to a value of | H(w)| equal to 1; 20 dB is equivalent to
| H(w)| = 10; —20 dB corresponds to | H(w)| = 0.1; 40 dB is the same as | Hw)|=
100; and so on. Also it is useful to note that 1dB is approximately equivalent to
| H(w)| = 1.12, and 6 dB approximately corresponds to | H(w)| = 2. Typical Bode
plots are illustrated in Figure 4.36. In these plots a logarithmic scale is usually used
for w. Not only does this allow us to obtain adequate resolution when the frequency
range of interest is large, but also the shape of a particular response curve does not
change if frequency is scaled (sce Problem 4.46). Also, as we shall see in the next
two sections, the use of a logarithmic frequency scale greatly facilitates the plotting
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Figure 4.35 (a) Picture of Fourier; (b) magnitude of the two-dimensional Fourier trans-
form of {a); (c) phase of the Fourier transform of (a); (d) picture whose Fourier transform
has magnitude as in (b) and phase equal to zero; (¢) picture whose Fourier transform
has magnitude equal to 1 and phase as in (c); (f) picture whose Fourier transform has
phase as in (c) and magnitude equal to that of the transform of the picture in Figure 2.2.

of these curves for LTI systems described by diffcrential equatio 1s. Note also that
in Figure 4.36 we have plotted the magnitude and phase curves for positive o only-
As we discussed in Section 4.6, if h(1) is real, then | H(®)| is an even function of @
and J H(w) is an odd function. Because of this, the plots for negative o are super-
fluous and can be obtained immediately from the plots for positive @.

is for Continuous-Time Signals and Systems Chap. 4
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Figure 4.35 (cont.)

20 logyg | Hlw) |

1 | 1

10 100 1000
w
Figure 436 Typical Bode plots (note that o is plotted using a logarithmic scalc).
:As we continue our development of the tools of signal and system analysis,
we wnl.l encounter numerous situations in which it is more convenient to plot | X(w)|
on a linear scale, and we will also find many places in which plotting log | X(w)] is
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to be preferred. For example, in Chapters 6 to 8 we will encounter LTI systems whose
magnitude functions are zero over different ranges of frequency and 1 over others.
Since log (0) = — oo, the Bode plot is not particularly useful for these systems, and
the use of a linear scale for | X(w)} is far more convenient. On the other hand, in the
next two sections we will consider a class of systems for which Bode plots are of
great value. In addition, because the logarithm expands the scale for small values of
| X(w) ], Bode plots are often useful in displaying the fine detail of frequency responses
near zero. For these reasons we have introduced both the linear and logarithmic
graphical representations for the magnitude of Fourier transforms, and we will use

each as is appropriate.

11 THE FREQUENCY RESPONSE OF SYSTEMS
CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT
DIFFERENTIAL EQUATIONS

4.11.1 Calculation of Frequency and Impulse Responses
for LTI Systems Characterized
by Differential Equations

As we discussed in Sections 3.5 and 3.6, a particularly important and useful class
of continuous-time LTI systems are those for which the input and output satisfy a
linear constant-coefficient differential equation of the form

N k M k
Y a d“—dfk(t) = $ 5,0 4.141) -
k=0 k

dr*
In this section we consider the question of determining the frequency response of
such an LTI system. In principle, this could be done using the technique reviewed in

Chapter 3 for solving equations such as eq. (4.141). Specifically, we could use that
procedure to determine the impulse response of the LTI system, and then by taking

the Fourier transform of the impulse response, we would obtain the frequency .

response. However, because of the properties of the Fourier transform discussed
in preceding sections, there is a much simpler and much more direct procedure which
we will describe for obtaining the frequency response. Once the frequency response
is so obtained, the impulse response can then be determined using the inverse trans-
form, and as we will see, the technique of partial fraction expansion makes this pro-
cedure an extremely useful method for calculating the impulse response and thus for
characterizing and computing responses of LTI systems described by linear constant-
coefficient differential equations. :

To outline the procedure alluded to in the preceding paragraph, consider an

LTI system characterized by eq. (4.141). We know from the convolution property

that
Y(w) = H(w)X(w)
or, equivalently,
Hw) = /’{,% (4.142)
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where X(w), Y(w), and H(w) are the Fourier transforms of the input x(¢), output

%)(l), and impulse response h(f), respectively. Here, of course, we are assuming implic-
itly that these three Fourier transforms all exist. Next, consider applying the Fourier
transform to both sides of eq. (4.141) to obtain

N d*y(1) M X (1
From the linearity property (4.83) this becomes
Y d*y(1) H d*x(t
py a,,ﬁ[ 20— 5 b x( )} (4.144)

and from the differentiation property (4.87),

N M

5 ajorY©) = 3 bljo)X(@)
or, equivalently,

v@)| & aGor | = x@)| & bujor]
Thus, from eq. (4.142),

Y(w) _ kﬁo by(jo)*

H(w) = X(CD) - kio ak(jw)k

(4.145)

From eq. (4.145) we observe that H(w) is a rational function, that is, it is a ratio of
polynomials in (jw). The coefficients of the numerator polynomial are the same
coefficients as those that appear on the right-hand side of eq. (4.141), and the coeffi-
cients of the denominator polynomial are the same coefficients as appear on the left
side of eq. (4.141). Thus, we see that the frequency response given in eq. (4.145) for
_the LTI system characterized by eq. (4.141) can be written down directly by
inspection.

Example 4.25

Consider the LTI system that is initially at rest and that is characterized by

DO+ ayte) = x(0) (4.149)

with @ > 0. From eq. (4.145), the frequency response is
1

jo +a
Comparing this with Example 4.7, we see that eq. (4.147) is the Fourier transform of
e~*u(r). Thus, the impulse response of the system is recognized as

M) = e*u(f)

Hw) = (4.147)

Example 4.26
Consider an LTI system initially at rest that is characterized by the differential equation

LRl O Y10 B WA .. O BN

dr3 dt dt
From eq. (4.145), the frequency response is
(o) +2
H(®) = r——5 5 ire———
(@) (&) ¥ ajo) ¥ 3 (4.148)
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by a linear constant- coefﬁcncm dlfferentlal equauon can be written as the product
of first- and second-order terms. This implies that such an LTI system can be realized
as the cascade of first- and second-order systems. For this reason first- and second-
order systems play an extremely important role in the analysis and synthesis of linear
systems, and we will discuss their properties in more detail in the next section.

To illustrate the form of a cascade structure, consider for convenience the case
when N is even, M = N, and H(w) is represented as the product of second-order

terms alone:

B1s

R AR T

2
H(w Box + Biu{jw) + (jw) 4.155
@ =g 1 et ey (@139
This-corresponds to multiplying together pairs of the remaining first-order terms in
both the numerator and denominator of eq. (4.154).
Having H(w) in the form of eq. (4.155), we can then realize the LTI system with
this frequency response as a cascade of N/2 second-order systems, each of which is

described by a differential equation of the form

-]

ch second-order

2
VO 1 0, DD 4 4 y1) = o + 1 B0 1 LXO - (4156)
In Section 3.6 we saw how to realize such a differential equation using adders, coeffi-
cient multipliers, and integrators, and in Figure 4.37 we have illustrated the cascade
realization of a sixth-order system using the direct form II realization (Figure 3.36)
for each subsystem of the form of eq. (4.156). Note that the cascade structure for a
given H(w) is by no means unique. For example, we have arbitrarily paired second-
order numerator polynomials with second-order denominator polynomials and have
also chosen an arbitrary pairing of the first-order terms in eq. (4.154) that are to be
multiplied together. Problems 4.50 and 4.51 contain examples that illustrate the
cascade structure and also indicate the flexibility in the choice of a cascade structure
for an LTI system with a given rational frequency response.

The second realization that we can now describe is the parallel-form structure
which is obtained by performing a partial fraction expansion of H(w) in eq. (4.145)
or, equivalently, in eq. (4.153). For simplicity, let us assume that all of the v, in
€q. (4.153) are distinct and that M = N. In this case, a partial fraction expansion

yields

Bz
Bz

Ty
T

(H—
\
o

Ox
©

/b 54
H(w) = (ﬁ) + 5t (4.157)

Again, in order to obtain an implementation involving only real coefficients, we can
add together the pairs involving complex conjugate v,'s to obtain
b You + 714(j) N3O A
H =(_~> ot 71, J0) L 4.158

(@) ay g + o (jo) -+ (jw)? u I-Zl: v -+ jo ( )
Thus, using eq. (4.158), we can realize the LTI system with frequency response H(w)
as the parallel interconnection of LTI systems with frequency responses corresponding
to each term in cq. (4.158). To illustrate the paraliel-form structure, consider the
case in which N is even and H(w) is represented as a sum of only second-order terms:

Bry

Figure 4.37 Cascade structure with a direct form II realization of ea

subsystem.

1
Ty
~ey

bg/ag

x(t)
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&1 ag + a2, (Jjo) + (jo)

This corresponds to adding together pairs of the remaining first-order terms in eq.
(4.158). In Figure 4.38 we have illustrated the parallel-form realization for a sixth-
order system where we have used the direct form II realization of Figure 3.36 for
each term in eq. (4.159). Other examples of parallel-form structures are considered
in Problems 4.50 and 4.51.

From the discussions in this section and in Section 3.6 the reader can see that
there are a wide variety of possible structures that can be chosen for the implemen-
tation of LTI systems described by linear constant-coefficient differential equations.
While all of these are equivalent in the sense that they ideally provide realizations of
the same specified frequency response, there is the unavoidable fact that in practice
implementations corresponding to different structures do not. perform identically.
For example, in any real system it is impossible to set the coefficients in a structure to
the precise values desired and in fact these coefficient values may drift over time due,
for example, to temperature variations. This raises the issue of the sensitivity of a
realization to changes in its parameters, and in general different structures have
different sensitivity properties. While we will not discuss this topic in this book,
the methods of analysis we have developed provide the foundation for the examination
of this and related questions which are of great importance in the choice of a structure
for the implementation of an LTI system.t

In this section we have seen that the properties of the Fourier transform greatly
facilitate the analysis of LTI systems characterized by linear constant-coefficient
differential equations and in fact reduce many of the necessary calculations to straight-
forward algebraic manipulations. It is important to note, however, that not all LTI
systems described by linear constant-coefficient differential equations have frequency
responses. For example, if we had considered the case of a < 0 in Example 4.25,
then the impulse response of the system specified by eq. (4.146) and the assumption
of initial rest is still given by e™*u(f), but in this case A(¢) is not absolutely integrable
and H{w) does not exist. Thus, the expression for the frequency response in eq. (4.147)
or more generally in eq. (4.145) yields the frequency response of an LTI system only
when the system has a frequency response (i.e., when its impulse response is absolutely
integrable or equivalently when the system is stable). Therefore, whenever we consider
the use of the tools of Fourier analysis for LTI systems described by differential
equations we will be assuming implicitly that the system has a frequency response,
which can, of course, be checked by computing the impulse response and seeing if
it is absolutely integrable. In Chapter 9 we develop techniques very similar to those
described here that can be used for stable and unstable systems.

1We refer the interested reader to S.J. Mason and H.J. Zimmermann, Electronic Circuits,
Signals, and Systems (New York : John Wiley and Sons, Inc., 1960) for a brief, general introduction
to the subject of sensitivity and to A, V. Oppenheim and R. W. Schafer, Digital Signal Processing
(Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975) for a discussion of sensitivity and a number of
other issues that arise in the choice of a structure for implementation. While the discussion in Digiral
Signal Processing focuses on discrete-time systems, the general concepts introduced and discussed
therein are also relevant for the implementation of continuous-time systems.
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H(w) = (%s) + R Yox + P1:(jw) (4.159)
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Figure 4.38 Parallel-form realization with a direct form II realization jor each second-
order subsystem.
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FIRST-ORDER AND SECOND-ORDER SYSTEMS

As we have just seen in the preceding section, first- and second-order systems re.pre:sem
basic building blocks out of which we can construct parallel or cascade rea‘hzatlons
of systems with higher-order frequency responses. In this section we investigate the
properties of these basic systems in somewhat greater detail.

4.12.1 First-Order Systems

The differential equation for a first-order system is often expressed in the form

: "Ldf‘) + () = x(2) (4.160)

where 1 is a coefficient whose significance will be made clear shortly. The correspond-
ing frequency response for the first-order system is

1

H@) = sy

(4.161)
and its impulse response is

h(r) = —i—e""u(!) (4.162)
which is sketched in Figure 4.39(a). In addition, the step response of the system is

given by
s() = h(t) * u(t) = [1 — e7"*Ju(r) (4.163)

hit)

{a)

-

‘ (b)

Figure 4.39 (a) Impulse response and (b) step response of a first-order system.
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.39(b). The parameter ¢ is called the time constant of the
system, and it controls the rate at which the first-order system responds. For example,
as illustrated in Figure 4.39, at ¢ = 1 the impulse response has reached (1/e) times
its value at £ = 0, and the step response is within I/e of its final value. Therefore,
as 7 is decreased, the impulse response decays more sharply, and the rise time of the
step response becomes shorter. That is, the step response rises more sharply toward
its final value.

Figure 4.40 depicts the Bode plot of the frequency response of eq. (4.161),
where we have plotted the log magnitude and angle of H(w) versus w, using a loga-
rithmic scale for w. In this figure we illustrate another advantage in using a
logarithmic frequency scale, as we can, without too much difficulty, obtain a useful
approximate Bode plot for a first-order system. To see this, let us first examine the

plot of the log magnitude of the frequency response. Specifically, from eq. (4.161)
we obtain

20log,, | H(@)| = —10 log, , [(wr)? + 1] (4.164)

From this we see that for ot < 1, the log magnitude is approximately zero, while
for wt > 1, the log magnitude is approximately a linear function of log, o (w). That s,

20
3dB
-~ 0d8 Asymptotic
3 approximation
I
o ~20]-
o
K]
(=]
o~
~40 |-
~60 ! { | {
0.1/r 17 10/r 100/r
w
/4
Asymptotic
o approximation
3
I
» /4
-'/2 E D —
—3x/4 ! 1 I i
0.1/r tir 10/r 100/r
W
Figure 4.40 Bode plot for a first-order system.
Sec.4.12 First-Order and Second-Order Systems 20




EC ARG DU NS NN St 1o set K

{5 s b L. { I Lo B

20 log,, | H(w)| = 0‘ for w:<< lJ/1:
20 log,, | H(w)| = —20 log,, (wr) = —20 log,, (@) — 20 log,, ()
forw>> 1/t (4.165b)

In other words, for a first-order system, the low and high frequency asymptotes of
the log magnitude are straight lines. The low frequency asymptote {given by eq.
(4.165a)] is just the 0 dB line, while the high frequency asymptote [specified by eq.
(4.165b)} corresponds to a decrease of 20 dB in | H(w)| for every decade, i.e., factor
of 10, in w. This is sometimes referred to as the “20 dB per decade™ asymptote.

Note that the two asymptotic approximations given in eq. (4.165) are equal at
the point log,, (@) = —log,, (t), or equivalently w = 1/7. Interpreted graphically,
this means that the two straight-line asymptotes meet at @ = 1/7, and this suggests
a straight-line approximation to the magnitude plot. That is, our approximation to
20 log,, | H(w)| equals O for & < 1/ and is given by eq. (4.165b) for w > 1/z. This
approximation is also sketched (as a dashed line) in Figure 4.40. The point.at which
the slope of the approximation changes is precisely @ = I/t which, for this reason,
is often referred to as the break frequency. Also, note that at @ = 1/t the two terms
[(wr)* and 1]in the logarithm in eq. (4.164) are equal. Thus at this point the actual
value of the magnitude is

20 log,olH(—:-)l — —1010g,, (2) = —3dB (4.166)

For this reason the point @ == 1/t is sometimes called the 3dB point. From Figure
4.40 we see that only near the break frequency is there any significant error in the
straight-line approximate Bode plot. Thus, if we wish to obtain a more accurate
sketch of the Bode plot, we need only modify the approximation near the break

frequency.
It is also possible to obtain a useful straight-line approximation to I H(w).

Specifically,

N\Y

0 wgg—l
T

o H@) = tan o) = {—Ellog, 0 + 1] L <ol @i

_r w >

(4.165a)

=

2
Note that this approximation decreases linearly (from 0 to —n/2) as a function of
w in the range

o

0.1

<ol
T

|

Also, zero is the correct asymptotic value of  H(w) for o /7, and —=n/2 is the
correct asymptotic value of J H(w) for @ > 1/r. Furthermore, the approximation
1grees with the actual value of  H(w) at the break frequency @ = 1/1, at which point

{H(%) -5 (4.168)

This asymptotic approximation is also plotted in Figure 4.40, and from this we can
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see how, if desired, we can modify the straight-line approximétion tdpol;:tgain a vn;ch)ri
accurate sketch of J H(w).

. From this first-order system we can again see the inverse relatio..ship between
time and frequency. As we make 7 smaller, we speed up the time response of the
system {i.e., A() becomes more compressed toward the origin] and we simultaneously
make the break frequency large [i.e., H(w) becomes broader since | H(w)| = 1 for
a larger range of frequencies). This can also be seen by multiplying thc impulse
response by T and observing the relationship between tA(r) and H(w):

1
Jjot + 1
Thus, .rh(l) i§ a function of 1/t and H(w) is a function of wr, and from this we see that
changing 1 is essentially equivalent to a scaling in time and frequency.

th(t) = eu(t), H(w)=

4.12.2 Second-Order Systems

The linear constant-coefficient differential equation for a second-order system is
d?y(1) dy(t
LA + 200, 20 + w2y = wix(t) (4.169)

Equatiops of this type arise in many physical systems, including RLC circuits and
mechanical systems, such as the one illustrated in Figure 4.41, composed of a spring,

l-—» y(t) (disptaceraent)

==t x(t} {applied force)

Spring k

AA
v
Mass

r~ m
Dashlf)ot b Q O

Figure 4.41 Second-order system consisting of a spring and dashpot attached
to a movable mass and a fixed support.

NANNNNNANNNNNS

a mass,_and a viscous damper or dashpot. The input is the applizd force x(f), and the
output is the displacement of the mass y(r) from some equilibrium position at which
the spring exerts no restoring force. The equation of motion for this system is

i d;);gx) = x(t) — ky(t) — b i':#“)

or

& b
20+ 240+ (£ =

Comparing this to eq. (4.169), we see that if we identify

w, = ’i.
m

(4.170)
(=52
2. km
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then [except for a scale factor of k on x(#)] the equation of motion for the system of

Figure 4.41 reduces to eq. (4.169).
The frequency response for the second-order system of eq. (4.169) is
2

)
= e 4.171
H@) = oy T Xw,Go) T o @171
The denominator of H(w) can be factored to yield
2
H(w) = D
@ == e o = e
where
= —{w, + 0,/* — 1
cl C n + n C (4172)

¢ = —{w, — 0. /(" — 1
For { # 1, ¢, and ¢, are different, and we can perform a partial fraction expansion
to obtain

M M /
H(w) “teo—c jo—c - (4.173)
where

(4.174)

M= T
In this case we can immediately obtain the impulse response for the system as
h(t) = M[e' — e Ju(t) (4.175)
If¢ = 1, then ¢, = ¢, = —w,, and

H(w) = (4.176)

W,
(jo + @,)?
From Table 4.1 we find that in this case the impulse response is
h(t) = wkte *u(t) 4.177)
Note that from egs. (4.172), (4.174), (4.175), and (4.177), we can see that
h()/w, is a function of w,¢. Furthermore, eq. (4.171) can be rewritten as

_ 1
Ty a2y e

from which we see that the frequency response is a function of w/w,. Thus, changing

w, is essentially identical to a time and frequency scaling.
The parameter { is referred to as the damping ratio and the parameter w, as
the undamped natural frequency. The motivation for this terminology becomes clear

when we take a more detailed look at the impulse response and the step response of -

a second-order system, First, from eq. (4.172) we see that for 0 < { <1, ¢, and c;
are complex, and we can rewrite the impulse response in ¢q. (4.175) in the form

o) = 522 e (/T 0] = exp [/ T= D)
- %%%[sin (@,/T= C)u(0) (4.178)

Thus, for 0 < { < 1 the second-order system has an impulse response that
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has a damped oscillatory behavior, and in this case the system is refer}ed .to as i;ein
underdamped. If { > 1, both ¢, and ¢, are real and the ir;lpulse response is the diﬁ'erg-
ence between two decaying exponentials. In this case the system is overdamped. The
E::]s:l?f ]C j tl), wltlxen)c} =(,, I8 galled the critically damped case. The impulse resp;)nses

iplied by 1/w,) for second-order i i !
versus 1 Fhoute 20 systems with different values of { are plotted

hit)/w, t=0.1
£=0.2
'r t=04

(a)

sit}

¢=0.1
£=0.2
t=04
$=07
£21 v
1-—-
N —
L i 1 1 1 I t 1 1 1 1 1 t
1l 2 3 t
w, W, w,

{b}

Figure 4.42 (a) Impulse responses and (b) ste

. ) p responses for second-
systems with different values of the damping ratio {. nd-order

The step_ response of a second-order system can be calculated from eq. (4.175)
for { == 1. This yie'<'s the expression

t - ! — eGl' e("l
s(t) = k() » ue) { I+ M[?l- - }u(i) (4.179) -
For { = 1, we can usc eq. (4.177) to obtain

s(0) = [1 — = — @, te~*Ju(r) (4.180)
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The step response of a second-order system is plotted versus ¢ in Figure 4.42(b) for
several values of {. From this figure we see that in the underdamped case, the step
response exhibits both overshoot (i.e., the step response exceeds its final value) and
ringing (i.e., oscillatory behavior). For { =1, the step response has the fastest
response (i.e., the shortest rise time) that is possible without overshoot. As [ increases
beyond 1, the response becomes slower. This can be seen from eqs. (4.172) and (4.179).
As [ increases, ¢, becomes smaller in magnitude, while ¢, increases in magnitude.
Therefore, although the time constant (1/|c,[) of e decreases, the time constant
(/1) of e increases, and it is this fact that leads to the slow response for large
values of {. In terms of our spring-dashpot example, as we increase the magnitude of
the damping coeflicient b beyond the critical value at which { in eq. (4.170) equals 1,
the motion of the mass becomes more and more sluggish. Finally, note that, as we
have said, the value of w, essentially controls the time scale of the responses A(r)
and s(t). For example, in the underdamped case we have that the larger w, is, the
more compressed is the impulse response as a function of ¢ and the higher the fre-
quency of the oscillations in both A(r) and s(r). In fact, from eq. (4.178) we see that
the frequency of the oscillations in A(f) and s(1) is w,/1 — %, which does increase
with increasing w,. Note, however, that this frequency depends explicitly on the
damping ratio and does not equal (and is in fact smaller than) w, except in the un-
damped case, { = 0. For our spring-dashpot example, we therefore conclude that
the rate of oscillation of the mass equals w, when no dashpot is present, and the
oscillation frequency decreases when we include the dashpot.

In Figure 4.43 we have depicted the Bode plot of the frequency response given
in eq. (4.171) for several values of {. In this case we have plotted 20 log,, | H(w)| and
& H(w) versus w, using a logarithmic frequency scale. As in the first-order case, the
logarithmic frequency scale leads to linear high- and low-frequency asymptotes for the
log magnitude. Specifically, from eq. (4.171) we have that

20 log,, | H(@)| = —10 log,, {[1 — (ai").)’]’ + 4(2(%)2} (4.181)

From this expression we can deduce that

20log,, | H{w)| =0 forw € w, (4.182a)

2010, | H(®@)| = —40l0g,, () = —40 log,, () + 40 log. (@)

wn
for w > w, (4.182b)

Therefore the low frequency asymptote of the log magnitude is the O dB line, while
the high frequency asymptote (given by eq. (4.182b)) has a slope of —40dB per
decade, i.e. | H(w)| decreases by 40 dB for every increase in w of a factor of 10. Also,
note that the two straight linc asymptotes meet at the point w = a,. Thus, we obtain
a straight-line approximation to the log magnitude by using the approximation given
in eq. (4.182a) for w < w, and using the straight linc of eq. (4.182b) for @ > w,.
For this reason, w, is known as the break frequency of the second-order system.
This approximation is also plotted (as a dashed line) in Figure 4.43.

We can also obtain a straight-line approximation to < H(w) whose exact
expression can be obtained from eq. (4.171) as

& H(w) = —tan™ (—2“—“’/9-1—) (4.183)

I — (0fw,)’
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Figure 4.43 Bode plots for second-order systems with several diffcrent values
of damping 1+ 0 {.

Our approximation to < H(w) is

0 w<0lw,
& H(w) = ——Z—[]og,o (a“’-;) + 1] Olo, <o < 0w,  (4.184)
—7 w > 10w,

which is also plotted in Figure 4.43. Note that the approximation and the actual
value again are equal at the break frequency @ = ¢,, where

It is important to observe that the asymptotic approximations we have obtained
for a second-order system do not depend on {, while the actual plots of | H{w)| and
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4 H(w) certainly do, and thus to obtain an accurate sketch, especially near the
break frequency w = w,, one must take this discrepancy into account by modifying
the approximations to conform more closely to the actual plots. This discrepancy is
most pronounced for small values of {. In particular, note that in this case the actual
log-magnitude has a peak around ® = ®,. In fact, straightforward calculations

using eq. (4.181) show that for { < ~/ 22 == 0.707, | H(w)| has a maximum value at

Waax = Opn/ 1 — 20 (4.185)
and the value at this maximum point is
1
Hwu)| = s 1
| H@ou)| = 57— (4.186)

For { > 0.707, however, H(w) decreases monotonically as w increases from zero.
The fact that H(w) can have a peak is extremely important in the design of RLC
circuits. In some applications one may want to design such a circuit so that it has a
sharp peak in the magnitude of its frequency response at some specified frequency,
thereby providing large amplifications for sinusoids at frequencies within a narrow
band. The quality Q of such a circuit is defined to be a measure of the sharpness of
the peak. For a second-order circuit described by an equation of the form of eq.
(4.169), Q is usually taken as

o=

2L

and from Figure 4.43 and eq. (4.186) we see that this definition has the proper behav-
jor: the less damping there is in the system, the sharper the peak in | H(w)|.

In the preceding section and again at the start of this section, we indicated that
first- and sccond-order systems can be used as basic building blocks for more complex
LTI systems with rational frequency responses. One consequence of this is that the
Bode plots given in this section essentially provide us with all of the information
we need to construct Bode plots for arbitrary rational frequency responses. Specifi-
cally, in this section we have described the Bode plots for the frequency responses
given by egs. (4.161) and (4.171). In addition, we can readily obtain the Bode plots for

Hw) =1+ jor

=12 (2

and

from Figures 4.40 and 4.43 by using the fact that
— -7 1|
20 log, | H(@)| = —20 Iogso 775!

and

4 (H@) = =& (ﬁ(%))

Furthermore, since a rational [requency response can be factored into the product
of first- and second-order terms, its Bode plot can be obtained by summing the plots

for each of the terms. For example, consider

H(w) = I

(1 + joX1 + jo/100)
The Bode plots for the two first-order factors in H(w) are shown in Figure 4.44(a)
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those of its first-order factors: (a) Bode plot for 1/(1 + jw); (b) Bode plot for

Figure 4.44 Construction of the Bode plot of a higher-order frequency response from
1/(1 + jw/100); (c) Bode piot for Li(w) = 1/[(1 + jo)l + jo/100)].
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and (b), while the Bode plot for H(w) is depicted in Figure 4.44(c). Here the actual
Bode plot and the asymptotic approximation are each obtained by summing the
corresponding curves for the two first-order factors. Several other examples of the
construction of Bode plots in this manner are considered in Problem 4.45.

Finally, note that in our discussion of first-order systems we restricted our
attention to values of T > 0, and for second-order systems we examined only the
case when { > 0and w? > 0. Itis not difficult to check that if any of these parameters
are negative, then the corresponding impulse respopse is not absolutely integrable.
Thus, in this section we have restricted attention to those first- and second-order
systems which are stable and consequently for which we can define frequency

responses.

.13 SUMMARY

In this chapter we have developed the tools of Fourier analysis for continuous-time
signals and systems. As we discussed in Sections 4.1 and 4.2, one of the primary
motivations for the use of Fourier analysis is the fact that complex exponential signals
are eigenfunctions of continuous-time LTI systems. That is, if the input to an LTI
system is a complex exponential, then the output is simply that same complex expo-
nential scaled by a complex constant. The other important property of complex
exponentials is that a wide variety of signals can be represented as weighted sums or
integrals of these basic signals. In this chapter we have focused our attention on the
set of periodic complex exponentials. Using these signals we considered the Fourier
series representation of periodic signals and the Fourier transform representation of
aperiodic signals, and we also described in detail the relationship between these
representations.

The Fourier transform possesses a wide variety of important properties that
describe how different characteristics of signals are reflected in their transforms.
Among these properties are two that have particular significance for our study of
signals and systems. The first of these is the convolution property. Because of this
property one is led to the description of an LTI system in terms of its frequency
response. This description plays a fundamental role in the frequency-domain
approach to the analysis of LTI systems which we will explore at greater length in
subsequent chapters. A second property of the Fourier transform that has extremely
important implications is the modulation property. This property provides the basis
for the frequency-domain analysis of modulation and sampling systems which we
examine further in Chapters 7 and 8.

Finally, in this chapter we have seen that the tools of Fourier analysis are
particularly well suited to the examination of LTI systems characterized by linear
constant-coefficient differential equations. Specifically, we have found that the
frequency response for such a sysiem could be determined by inspection and that the
technique of partial fraction expansion could then be used to facilitate the calculation
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of the impulse response of the system. The form of the frequercy response for LTI
systems specified by differential equations also led us directly to the development of
the cascade and parallel-form structures for the implementation of such LTI systems.
These structures point out the important role played by first- and second-order
systems. We discussed the properties of these basic systems at some length and in the
process utilized a convenient graphical representation, the Bode plot, for displaying
the magnitude and phase of the frequency response of an LTI system.

The purpose of this chapter has been to introduce and to develop some facility
with the tools of Fourier analysis and some appreciation for the value of the fre-
quency domain in analyzing and understanding the properties of continuous-time
signals and systems. In Chapter 5 we develop an analogous set of tools for the discrete-
time case, and in Chapters 6 through 8 we will use the techniques of continuous- and
discrete-time Fourier analysis as we examine the topics of filtering, modulation,
and sampling.

&

PROBLEMS

4.1. Determine the Fourier series representations for each of the following signals.
e (a) e/200¢
Y (b) cos[n(t — 1)/4]
¥ (c) cos 4t -+ sin 8¢
o (d) cos 4¢ + sin 6¢
\)( (e) x(¢) is periodic with period 2, and
x(£) = e for -1 <1 <1

(f) x(¢) as illustrated in Figure P4.1(a)
X ® x(t) =1 + cos 2ns)[cos (107t + 1n/4))
x (h) x(r) is periodic with period 2, and
O<t<t
1<t <2

(1 —t) + sin 27y,

x(1) = [
1 + sin 27y,

X (i) x(r) as depicted in Figure P4.1(b)
= (i x(¢) as depicted in Figure P4.1(c)
X (k) x(¢) as depicted in Figure P4.1(d).
X () x(r) is periodic with period 4 and

{sin e 02
x(t) =

0 214
« (m) x(¢) as depicted in Figure P4.1(c)
(n) x(#) as depicted in Figure P4.1(f).
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Figure Pd.1

4.2. One technique for building a dc power supply is to take an ac signal and full-wave-
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rectify it. That is, we put the ac signdl x(¢) through a system which produces y{1) ==
| x(e)] as its output.
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(z;) Sketch the inputb and output waveforms if x(r) = cos r. What are the fundamental

periods of the input and output?
(b) If x(¢) = cos ¢, determine the coefficients of the Fourizr series for the output »{¢).
(c) What is the amplitude of the dc component of the input signal ? What is the ampli-
) tude of the dc component of the output signal?

4.3. As we have seen in this chapter, the concept of an eigenfurction is an extremely impor-
tant tool in the study of LTI systems. It is also true that the same can be said of linear
but time-varying systems. Specifically, consider such a system with input x{(¢) and
output y(r). We say that a signal §(1) is an eigenfunction of the system if

) —> Ad(n)

That is, if x(¢) = ¢(r), then y(r) = A¢(r), where the complex constant A is called the
eigenvalue associated with ¢(t).
X (a) Suppose that we can represent the input x(¢) to our system as a linear combination
of eigenfunctions ¢,(1), each of which has a correspoading eigenvalue 1.

+o0
x(1) = kE; cxPult)
Express the output y(¢) of the system in terms of {c;}, {$x(1)}, and {4:}.
7((b) Consider the system characterized by the differential equation

_pdB0 L dx)
A =gt Ty

Is this system linear? Is this system time-invariant?
X (¢) Show that the set of functions
Pulr) = 1
are eigenfunctions of the system in part (b). For each ¢4(¢), determine the cor-
responding eigenvalue A,.
x @ Determine the output of this system if

x(r) = 1010 + 3t - Qe 1
4.4)&::) Consider an LTI system with impulse response
h(t) = e~ *u(r)

Find the Fourier series representation of the output y() for each of the following
inpufs.

(i) x(t) = cos 2mr

(i) x(1) = sin4nr + cos (67t + n/4)

mnmw:ido—m

(i) <) = ¥ (=17 8¢ =)

(v) x(1) is the periodic square wave depicted in Figure P4.4,

x{t)

e
geNnEnEakiRnEnEninEs

Figure P44
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(b) Repeat part (a) for
sin 27t + cos 47, 0<r<1

h(f) =
{0 otherwise

(¢) Repeat part (a) for
h(t) = ¢4l

As we have seen, the techniques of Fourier analysis are of value in examining continu-
ous-time LTI systems because periodic complex exponentials are eigenfunctions for
LTI systems. In this problem we wish to substantiate the following statement: Although
some LTI systems may have additional eigenfunctions, the complex exponentials are
the only signals that are eigenfunctions for every LTI system.

Y (a) What are the eigenfunctions of the LTI system with unit impulse response h(t) =

6(r)? What are the associated eigenvalues?

7( () Consider the LTI system with unit impulse response h(t) = 8(+ — T). Find a signal

that is not of the form e but that is an eigenfunction with eigenvalue 1. Similarly,
find eigenfunctions with eigenvalues 4 and 2 which are not complex exponentials.
(Hint: You can find impulse trains that meet these requirements.)

X () Consider a stable LTI system with impulse response h(t) that is real and even. Show

.{ 4.6. Consider the signal

that cos @f and sin cof are eigenfunctions of this system.

(d) Consider the LTI system with impulse response A(f) = u(r). Suppose that d() is
an eigenfunction of this system with eigenvalue A. Find the differential equation
that ¢() must satisfy and solve this differential equation. This result together with
those of the preceding parts should prove the validity of the statement made at the
beginning of the problem.

x(t) = cos 21t
Since x(¢) is periodic with a fundamental period of 1, it is also periodic with a period
of N, where N is any positive integer. What are the Fourier series coefficients of x(#)
if we regard it as a periodic signal with period 3?

4.7. Two time functions u(#) and o(¢) are said to be orthogonal over the interval (a, b) if

254

J *u(t) v*(t) dt = 0 (P4.7-1)

If, in addition,
J'”|u(:)|z di=1= J'lv(:);z dt

the functions are said to be normalized and hence arc called orthonormal. A set of
functions {@,(1)} is called an orthogonal (orthonormal) set if each pair of functions in

this set is orthogonal (orthonormal).

(2) Consider the pairs of signals (r) and v(t) depicted in Figure P4.7. Determine if
each pair is orthogonal over the interval (0, 4).

(b) Are the functions sin m@,t and sin nwor orthogonal over the interval (0, T), where
T = 2n/w,? Are they orthonormal?

(¢) Repeat part (b) for the functions ¢ (1) and ¢,(1), where

du() = VLT-[COS kgt + sin kﬂ)ol.]

(d) Show that the set of functions @1{t) = e/*= arc orthogonal over any interval of
length T = 21/w,. Are they also orthonormal?
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Figure P4.7

<+ (€) Let x(¢) be an arbitrary signal and let x,(¢) and x,(¢) be, respectively, the odd and
even parts of x(¢). Show that x,(r) and x.(r) are orthogonal over the interval
(—T,T)forany T.
() Show "@at if {@u(0)) is a set of orthogonal signals on the interval (g, 5}, then the set
{(1//Ax)hi(n)} is orthonormal, where
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Ay = J' 1) |2 dt
() Let {§1)} be a set of orthonormal signals on the interval (a, b), and consider a
signal of the form
x(t) = Z‘ a )
where the a, are complex constants. Show that
b
[(1xtor i = Shaif?

(h) Suppose that ¢,(s), ..., (1) are nonzero only over the time interval 0 < ¢ < T
and that they are orthonormal over this time interval. Let L, denote the LTI system
with impulse response

hir) = ¢LT ~ 1) (P4.7-2)
Show that if § () is applied to this system, then the output at time Tis 1 if { =
and 0if i % j. The system with impulse response given by eq. (P4.7-2) was referred
1o in Problems 3.27 and 3.28 as the matched filter for the signal §(¢).

4.8. The purpose of this problem is to show that the representation of an arbitrary periodic
signal by a Fourier series, or more generally asa linear combination of any set of orthog-
onal functions, is computationally efficient and in fact is very useful for obtaining
good approximations of signals.t

Specifically, let (${0)}, i =0, £1, £2, ..., bea set of orthonormal functions on
the interval a < ¢ < b, and let x(¢) be a given signal. Consider the following approxi-

mation of x(r) over the interval a <{ ¢t < b:

+N
2 = 3 adln (P4.8-1)
where the a; are constants (in general, complex). To measure the deviation between
x(r) and the series approximation £ (1), we consider the error ey(r) defined as
en(t) = x(t) — (1) (P4.8-2)

A reasonable and widely used criterion for measuring the quality of the approximation
is the energy in the error signal over the interval of interest, that is, the integral of the
squared-error magnitude over the interval a < ¢ < b:

E= I * len()]? dt (P4.8-3)
(a) Show that E is minimized by choosing
b

a= j XOPHe) dt (PA.8-4)

Hint: Use eqs. (P4.8-1)-(P4.8-3) to express E in terms of a,, dr), and x(r). Then,
express a, in rectangular coordinates as a; = b; + jc,, and show that the equations

=0 and =— = 0. = 0, + . j['2, ey -4
0[), 36, ! ! N

are satisficd by the a, as given in eq. (P4.8-4).
(b) How does the result of part (a) change if the {¢,(1)] are orthogonal but not ortho-
normal, with

b
A= [ 1gdor

1See Problem 4.7 for the definitions of orthogonal and orthonormal functions.
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Let §,(1) = erov and choose any interval of lenglh 7o = 27/@y. Show ihat the
a, that minimize E are as given in eq. (4.45).

(d) The set of Walsh functions are an often-used set of orthonormal functions (see
Problem 3.27). The first five Walsh functions, (1), §1(t), . . . , §u(r), are illustrated
in Figure P4.8, where we have scaled time so that the @(r) are nonzero over the
interval 0 < t < 1 and are orthonormal on this interval. Let x(¢) = sin at. Find

the approximation of x(¢) of the form

20) = %, adio

#o (1)
1
1 t
{a)
¢ {8}
1
3 1 t
._].‘
{b)
¢2l‘t;
]
1
N R
_] =
{c}
$,lt)
1
R
-1k
{d)
(1)
l—j r—-l
] I I I
-1}
(e} Figure P4.8
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is minimized.
(e) Show that £4(¢) in eq. (P4 8-1) and ex(t) in eq. (P4.8-2) are orthogonal if the a;
are chosen as in eq. (P4.8-4).

The results of parts (a) and (b) are extremely important in that they show that
each coefficient a; is independent of all other a;'s, i # j. Thus, if we add more terms to
the approximation [e.g., if we compute the approximation £x,(1)], the coefficients of
dL), i =1,..., N, previously determined will not change. In contrast to this, con-
sider another type of series expansion, the polynomial Taylor series. The infinite Taylor
series for ¢ is given by ¢ =1 + ¢ + ¢2/2! 4 ... but as we shall show, when we con-
sider a finite polynomial series and the error criterion of eq. (P4.8-3), we get a very
different result.

Specifically, let @o(r) = 1, ¢1(f) = ¢, Pa(r) = 12, and so on.

(f) Are the ¢,(+) orthogonal over the interval 0 < r <{ 17
(2) Consider an approximation of x(r) = & over the interval 0 < ¢t </ 1 of the form

Ror) = ao¢o(l)
Find the value of a, that minimizes the energy in the error signal over the interval.
(h) We now wish to approximate e’ by a Taylor series using two terms 2y(f) =
ag + ayt. Find the optimum values for a, and a,. [Hint: Compute E in terms of
a, and a,, and then solve the simultaneous equations

JE - 0E

9:1: = and Ja, =0
Note that your answer for a, has changed from its value in part (g), where there was
only one term in the series. Further, as you increase the number of terms in the
series, that coefficient and all others will continue to change. We can thus see the
advantage to be gained in expanding a function using orthogonal terms.}

4.9, Let x(r) be a periodic signal, with fundamental period T, and Fourier series coefficients
a,. Consider each of the following signals. The Fourier series coefficients for each can
be expressed in terms of the aj as is done in Table 4.2. Show that the expression in
Table 4.2 is correct for each of these signals.

@) x(t — to)
(b) x(—1)
x © X’(l)
@ J x(1) dt (for this part, assume that a; = 0)

dx(t

7( © ( )
) x(al), o > 0 (for this part, determine the period of the signal)

4.10.1 As we discussed in the text, the origins of Fourier analysis can be found in problems
of mathematical physics. In particular, the work of Fourier was motivated by his
investigation of heat diffusion. In this problem we illustrate how Fourier series enter
into this investigation.

Consider the problem of determining the temperature at a given depth beneath

1This problem has been adapted from A, Sommerfeld, Partial Differential Equations in Physics
(New York: Academic Press, 1949), pp. 68-71.
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the surface of the earth as a funcnon of time, where we assume that the temperature
at the surface is a given function of time T(¢), periodic with period 1 (where the unit of
time is one year). Let T(x, 1) denote the temperature at a depth x below the surface at
time . This function obeys the heat diffusion equation
IT(x, 1) _ 2 02T(x, 1)
3 2 T (P4.10-1)
with auxiliary condition
T, 1) =T() (P4.10-2)

Here k is the heat diffusion constant for the earth (k > 0). Suppose that we expand
T(¢) in a Fourier series

T = +}:3' ayelntn (P4.10-3)

Similarly, let us expand T(x, f) at any given depth x in a Fourier series in 1:

. +o0
T, ) = 3, bix)ein2n (P4.10-4)
where the Fourier coefficients b,(x) depend upon depth x.

(a) Use egs. (P4.10-1)-(P4.10-4) to show that b,(x) satisfies the differential equation

d2by(x) _

47:
T = ()

(P4.10-53)

with auxiliary condition

5,(0) = a, (P4.10-5b)
Since eq. (P4.10-5a) is a second-order equation, we need a sccond auxiliary condi-
tion. On physical grounds we can argue that far below the earth’s surface the varia-
tions in temperature due to surface fluctuations shouid disappear. That is,

lim T(x, 1) {P4.10-5¢)

(b) Show that the solution to eq. (P4.10-5) is
g, exp[—~/ZR[A] (1 + ))x/k),  n=0
a,exp{—/28[n](1 — )x/k), <0
(c) Thus, the ‘:mperature oscillations at depth x are damped and phase-shifted ver-
sions of the temperature oscillations at the surface. To see this more clearly, let
T(t) = ao + a, sin 27t
(so that a, represents the mean yearly temperature). Sketch 7'(¢) and T(x, 1) over

a one-year period for
x=k _7[..
V2

ao =2, and a, = 1. Note that at this depth the temperature oscillations are
not only significantly damped, but the phase shift is such that it is warmest in winter
and coldest in summer. This is exactly why vegetable cellars are constructed!
4.11. Consider the closed contour, shown in Figure P4.11, As illustrated, we can view this
curve as being traced out by the tip of a rotating vector of varying length. Let r(@)
denote the length of the vector as a function of the angle 8. Then r(6) is periodic in 8
with period 27, and thus has a Fourier series representation. Let {e;]} denote the Fourier
coeflicients of r(0).

= a constant

bu(x) = {
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(a) Consider now the projection x(0) of the vector r(0) onto the x axis, as indicated
in the figure. Determine the Fourier coefficients for x(0) in terms of the ax’s.
(b) Consider the sequence of coefficients

bk = ake/’“'/‘

Sketch the figure in the plane that corresponds to this set of coefficients.
(¢) Repeat part (b) if
by = ak‘s[k]
(d) Sketch figures in the plane such that r() is not constant but does have each of the
following propertics:
(i) r(0)is even.
(i) The fundamental period of r() is .
(iti) The fundamental period of r(8) is n/2.
4.12. (a) A continuous-time periodic signal x(r) with period T is said to be odd-harmonic
if in its Fourier series representation
X(l) = ;2 akelk(h/rn (P4‘]2-1)

a, = 0 for every even integer k.
(i) Show that if x(¢) is odd-harmonic, then

xy = ~x(t + s (P4.12-2)

(ii) Show that if x(r) satisfies eq. (P4.12-2), then it is odd-harmonic.
(b) Suppose that x(r) is an odd-harmonic periodic signal with period 2, such that

x(t) =1t for0 <t <!

Sketch x(r) and find its Fourier scrics cocflicients.

(¢} Analogously, we could define an even-harmonic function as one for which ay =0
for k odd in the representation in eq. (P4.12-1). Could T be the fundamental period
for such a signal ? Explain your answer.

(d) More generally, show that T is the fundamental period of x(¢) in eq. (P4.12-1) if
one of two things happens:

1. Either ay or a_, is nonzero.
or
2. There are two integers k and / that have no common factors and arc¢ such
that both ax and g, are nonzero.
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4.13. Let x(r) be a real, periodic signal with Fourier series representation given in tue sine-

cosine form of eq. (4.20):
x(t) =aq +2 g}l [Bi cos kot — Cy sin k] (P4.13-1)

(a) Find the exponential Fourier series representation of the even and odd parts of

x(f); that is, find the coefficients &, and f, in terms of the coefficients in eq.
(P4.13-1) so that

EV{x()) = k:f_;'“ tpelkent

+o0
od{x()} = kZ Pretkos
(b) What is the relationship between a, and &_x of part (a)? What is the relationship

between B, and §_?

(c) Suppose that the signals x(¢) and z(f) shown in Figure P4.13 have the sine-cosine
series representations

x() =ay + 2 é‘,l [Bk cos (-2—7{#) - Cgsin (2—725-)]

t
2() = do + 2 /?-;'1 [E,‘ cos (#) — F, sin (Z_’;L’)]
Sketch the signal

Y0 = 4(ap + do) + 2 :; {[Bk + %E,‘] cos (27‘3—’“> + Fysin (L’;.’)}

x{t)

VNN

-3 -2

z(t}

NI
Uy

Figure P4.13

‘4,14, In this problem we derive the Fourier series counterparts of two important properties

of the continuous-time Fourier transform—the modulation property and I'arseval’s
theorem. Let x(f) and y{(r) both be continuous-time periodic signals having period T,
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with Fourier series representations given by

0= 5 aern K0 = 2 byesken (P4.14-1)
\‘, (a) Show that the Fourier series coefficients of the signal
A1) = XON) = 3_ene
are given by the discrete convolution
o = :Z; bk -n
" signals |

compute the Fourier series coefficients of the
14,

*(f). Express the by in eq. (P4.14-1) ip
rove Parseval’s theorem for peri-

(b) Use the result of part (a) to .
x, (1), x2(0), and x,(r) depicted in Figure P4

(c) Suppose that y(t) in eq. (P4.14-1) equals x
terms of the ax and use the result of part (a) to p

xy (1)
cos 20t

i i RRRARRAAN AIANRRARRARALARRADG
"¢‘|’l]l‘\I4'1|A‘l|‘ll\‘]yl‘|’|‘\‘. - ‘t‘i‘lll‘n-!llullv‘Hy‘lllll‘l : ‘\"‘“‘"""“!" T

|
—ally

]

2(t) cos 20mt
xalt where z(t} is as in Figure P4.1 {f)

'\‘ill,li,l\ i“l‘i‘,l”i\ ,

,l‘""I"""l"""""]‘ 3

(b}

x3{1)

|
e cos 20wt

~
rE t

lc)

Figure P4.14
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4.15. Suppose that a periodic continuous-time signal is the input to an LTI system. The signal
x(1) has a Fourier series representation

x(t) = § aikletkin/ad
km=—co

where @ is a real number between 0 and 1, and the frequency respense of the system

is given by
1 o} < W

0 l|ol>W
in order for the output of the system to have at least 90% of the

H(w) == {

How large must ¥ be
average energy per period of x(1)?

4.16. In the text and in Problem 3.12 we defined the periodic convolution of two periodic
signals %;(f) and %,(¢) that have the same period T,. Specifically, the periodic con-

volution of these signals is defined as
Pty = £, (N ® Xa(e) = L (1) (¢ — 1) dT (P4.16-1)

As shown in Problem 3.12, any interval of length T, can be used in the integral in eq.
(P4.16-1), and (1) is also periodic with period To.
@) If %,(0), %,(1), and y(£) have Fourier series representations

400 400
() = kz qelkamar %) = kE bye k(T

() = +Z— crelt /T

k=—o8
show that
¢ = Toaxby

(b) Consider the periodic signal (1) depicted in Figure P4.16-1. This signal is the
result of the periodic convolution of another periodic signal Z(r) with itself. Find
#() and then use part (a) to determine the Fourier series representation for (¢).

N NN L

1
7 -5 -3 -2 0
Figure P4.16-1

Xt

2

(c) Suppose now that x,(f) and x,3{f) are the finite-duration signals illustrated in Figure
P4.16-2(a) and (b). Consider forming the periodic signals ;(r) and £,(1), which
consist of periodically repeated versions of x,(r) and x,(¢) as illustrated for 2,(0)
in Figure P4.16-2(c). Let y{t) be the usual, aperiodic convolution of x4 (1) and x1(t),

Y1) = xi (1) » x3(0)
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{b)
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1
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(c)

Figure P4.16-2

and let 7(¢) be the periodic convolution of %,(r) and %,(5),
F@) = 2,() & %2(1)
Show that if T, is large enough, we can recover (1) completely from one period
of y(r), that is,
y), [1] < Tof2

o= [0 1] > Tol2

(d) Let T =1 and let x,() and x,(¢) be as in Figure P4.16-2(a) and (b). Use the results

of parts (a) and (c) to find a representation of y(1) = x3{1) * x,() of the form

rress

ym:[ $ centamin, (| <Tof2
0, [t} > Tof2

+ 4.17. Compute the Fourier transform of each of the following signals.

¥ (b) e2*u(—t -+ 1)

=< (&) e Mult -+ 2) — ult — 3)}

X () w() + 2603 — 21)

7(g) x(t) = {0, 11> 1 x () kgo axd(t — kT), el <1
G) [re=? sin 41)u(t) )( () sin¢ + cos (27 + n/4)

sin [ 2t — ')] YO\ () as in Figure P4.17(5)

€ (k) [ e n(t—1)
(m) x(1) as in Figure P4.17(c) Y (n) x{r) as in Figure P4.17(d)
® 3 e

K (@) [e7*" cos wothu(r), o >0
(c) e~ sin 2t
1 & (e) x(r)as in Figure P4.17(a)
1 4-cosme, [+11<1

1 — 12 0<t <l
© x(r) = {0, otherwise neme
Chap. 4
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(a) 19}

x{t)

Ne Loddi el

12 0t -6 -5 -4 -3 -2-% 0 1 2

(C) (d)
Figure P4.17

4.18. The following are the Fourier transforms of continuous-time signals. Determine the
continuous-time signal corresponding to each transform.
_2 sin [3( — 2n)]
¥ (@) X(w) o =
b)Y X(w) = cos (4w + n/3)
(¢) X () as given by the magnitude and phase plots of Figure P4.18(a)

e
N

L X(w)

Xl

. 3w
W
(a)
X{w)
1
-3 ~2 -1 a I
| 4 I
-1
(b)
Figure I’4.18
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4.19.
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@) X(@) =20 — 1) - &@ + 1] + @ — 27) + dw + 2m)]
(e) X(w) as in Figure P4.18(b)

Use properties of the Fourier transform to show by induction that the Fourier trans-
form of

x(1) = (;l—t—"__l—l)!e“"u(t), a>0

1
(a +jor
Often one would like to determine the Fourier transform of a signal which is defined
experimentally, by a set of measured values or by a trace on an oscilloscope, for which
no closed-form analytic expression for the signal is known. Alternatively, one might
wish to evaluate the Fourier transform of a signal that is defined precisely in closed form
but is so complicated that the evaluation of its transform is virtually impossible. In
both cases, however, one can use numerical methods to obtain an approximation to
the Fourier transform to any desired accuracy. One such method is outlined in part

(a) and is based on a piece-wise polynomial approximation of the signal to be

transformed.

() If the function x(¢) to be transformed is sufficiently smooth, x(t) may be approxi-
mated by a small number of polynomial pieces. In the following discussion, only
first-order polynomials will be considered; the extension to higher-order poly-
nomials follows in a straightforward manner. Figure P4.20-1 shows a function x{(r}

Figure P4.20-1

and a function ¢(+) comprising straight-line segments (the points ¢; indicate
the beginning and end points of the lincar segments). Since $(1) = x(1), then
O(w) = X(w). By evaluating the transform @®(w), show that

(D(w) = (,Olz 2‘: k,(.'_/"”‘

Determine the k, in terms of the time instants 1o, £y, /3, . . ., and the values of x()
at these times.

() Suppose that x(1) is the trapezoid shown in Figure P4.20-2. Since x(f) already
consists of linear scgments no approximation is necessary. Determine X(w) in
this case.

Fourier Analysis for Continuous-Time Signals and Systems Chap. 4

-1, -, t t, t

Figure P4.20-2

(c) Suppose that we want to evaluate numerically the Fourier transform of a signal
x(¢) which is known to be time-limited, that is,

x(t) =0 for|t|> T
Furthermore, suppose that we choose the points ¢, sufficiently close together so
that the first-order polynomial approximation ¢() is sufficiently accurate to ensure

that the absolute error, |x(r) — ¢(s)}, is bounded by some constant € for |¢| < T,
that is,

EO=|x(t) —d|<e for|t|<T

[Note: Since x(¢) is time-limited, E(¢) = O for {¢| > T.] Show that the energy of the
error in the Fourier transform approximation, ®(w), to X(¢) is less than 4nTe?2,
that is

f | X(@) — ()|t do < 4nTe?

4.21. (a) Let x(¢) be a real, odd signal. Show that X(w) = F{x(r)} is pure imaginary and odd.

(b) What property does the Fourier transform of a signal x(¢) hive if x(—1) = x*(1)?
(c) Consider a system with input x(¢) and output

»(r) = Ble{x(n)

Express the Fourier transform of y(¢) in terms of that for x(r).
(d) Show that if x(t) and y(r) are two arbitrary signals with Fourier transforms Y(w)
and Y(w), respectively, then

f X(Oy*(0) dt = iszf " X() YHw) dw

This result is a generalization of Parseval’s theorem.
(e} Let x(¢) be a given signal with Fourier transform X(w). Detine the signal

_d*x(n)
/(’) - dﬁ
(1) Suppose that
X(w)={’ jol < 1
0 Jw|>1

What is the value of
+4oa
[ Torar

(if) What is the inverse Fourier transform of f(w/4)?
(f) Derive the modulation property

M) <> L ix@) Y
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(g) Show that if the impulse response h(1) of a continuous-time LTI system is real,
then the response of the system to x(1) = cos Wy is given by
1) = Re{H (wo)e/'}
where H(w) is the system frequency response.

4.22. Consider the signal
e, 01«1
xo(t) =

0, elsewhere

Determine the Fourier transform of each of the signals shown in Figure P4.22. You
should be able to do this by explicitly evaluating only the transform of x,(f) and then
using properties of the Fourier transform.

xy {0 X, (t}
xol=1) X {t) xg{t)
-1
-1 0 ) t 1 t
—xg{-t}
{a) (b)
xolt + 1) X3 (1) xa 1)
Xt txg{t)
-1 0 1 t 0 1 1

(c) (d)

Figure P4.22

4.23. A real, continuous-time function x(r) has a Fourier transform X(w) whose magnitude

obeys the relation
InjX()| = —|o|

Find x(¢) if x(¢) is known to be:

(a) an even function of time

(b) an odd function of time

4.24. (a) Determine which of the real signals depicted in Figure P4.24, if any, have Fourier

transforms that satisfy each of the following:
(i) Re{X(w) =0
(i) 9m{X(@)} =0
(iii) There exists a real ¢ such that e/*= X (@) is real.

(iv) r X(@)dw =0

) J " wX(@)do =0

(vi) X(w) periodic
(b) Construct a signal that has properties (i), (iv), and (v} and does not have the others.
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x(t) = t2e-M

{#)
Figure P4.24
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the Fourier transform of the signal x(s) depicte

x{t)

-1 0 1 2 3 t  Figure P4.25

(2) Find 4 X(w).
(b) Find X(0).

(o) Find j " X(w) do.

* 2sin @

@ E.valuateJ~ X(w) = el2o deo.

-0

(e) Evaluate Jw | X(w)|* dw.

() Sketch the inverse Fourier transform of Re{ X (w)}.
Note: you should perform al! of these calculations without explicitly evaluating X(w).

4.26. As mentioned in the text, the techniques of Fourier analysis can be extended to signals

270

having two independent variables. These techniques play as important a role in some

applications, such as’ image processing, as their one-dimensional counterparts do in
others. In this problem we introduce some of the elementary ideas of two-dimensional
Fourier analysis.

Let x(z,, ¢2) be a signal depending upon the two-independent variables ¢, and 15.
The two-dimensional Fourier transform of x(ty, t,) is defined as

+ oo +oo
X{(w,, w;) = J J x(ty, tp)eJ@mrend dry dty

(a) Show that this double inte.gral can be performed as two successive one-dimensional
Fourier transforms, first in ¢, with f; regarded as fixed, and then in t,.

(b) Use the result of part (a) to determine the inverse transform, that is, an expression
for x(t1, t,) in terms of X(@;, ).

(c) Determine the two-dimensional Fourier transforms of the following signals:
(@) x(1y, 12) = e+ 2ty — Du(2 — 1)

@iy x(1y, tz) = [f)_l“l-ml =t sn=

otherwise
_ fertnd=lut ifo<t <1lor0<t;, <1 (or both)
({ii) x(ry, 12) = {0 otherwise

(iv) x(ty, t3) as depicted in Figure P4.26-1
) e-in+nl-in-nl

tz

xlty, tz) = 1 in shaded area
and O outside

Figure P4.26-1
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¢l mensional Fourier transform is

X(@,, ;) = z—% 8(w; — 20,)

(e) Let x(ty, 1;) and h(t,, t3) be two signals with two-dimensional Fourier transforms
X(w,, @) and H(w,, ®,). Determine the transforms of the following signals in
terms of X(w,;, w,) and H(w,, ®,).

) x(ty =Ty, t, —T))
(i) x(at,, bty)

i) e ) = [ [ xtw b = 1,10 — ) dry dry

(f) Just as one can define two-dimensional Fourier transforms, one can also consider
two-dimensional Fourier series for periodic signals with two independent variables.
Specifically, consider a signal x(t,, ¢,)} which satisfies the equation

x(ty, 1) = x(ty + Ty, 12) = x(t), 12 + T2) forall ¢4, ¢,

This‘ sigr}al is periodic with period T} in the i direction and with period T3 in the
t, direction. Such a signal has a series representation of the form

+ +o8
xX(ty, )= % 3 apee!merntram)

where ’ !
w; = 2”/7‘], W, = 27‘[/T2
Find an expression for a,,, in terms of x(ty, ¢;).
(g) Determine the Fourier series coefficients a,,, for the following signals:
(1) cos (2nty + 2t,)
(2) The signal illustrated in Figure P4.26-2.

x{t,, t;) = 1 in skaded areas and
0 elsevihere

Figure P4.26-2
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4.27. (a) Compute the convolution of each of the following pairs of signals x(r) and A(r) by
calculating X(w) and H(w), using the convolution property, and inverse transform-

i d ing.

\ @) x(6) = re”2u(t), h(t) = e~ 4u(t)
k i) x(1) = re~2u(z), h(t) = te™*'u(t)
\ (i) x(1) = e~tu(r), k(1) = eu(~1n

(b) Suppose that x(f) = e™“~Du(t — 2) and h(s) is as depicted in Figure P4.27. Verify

'\/ hi1)

1

[ 1

-1 3 t Figure P4.27

the convolution property for this pair of signals by showing that the Fourier
transform of y(£) == x(r) * h(f) equals H(w)X(w).

4.28. As we pointed out in Chapter 3, the convolution integral representation for continuous-
time LTI systems emphasizes the fact that an LTI system is completely specified by its
response to 8(r). It is also true, as illustrated in Problems 3.17 and 3.18, that continuous-
time or discrete-time LTI systems are also completely specified by their responses to
other specific inputs. On the other hand, there are some inputs for which this is not the
case; that is, many different LTI systems may have the identical response to one of

these inputs.
{a) To itlustrate this point, show that the threc LT! systems with impulse responses

h (1) = u(t)
ha(r) = —28(1) + Se”2u(2)
hy(t) = 2te”"u(t)

all have the same response to x(f) = cos f.
(b) Find the impulse response of another LTI system with the same response 1o

cos 1.

4.29. 1n Problems 2.23 and 3.28 we defined and examined several of the properties and uses
of correlation functions. In this problem we examine the properties of such functions
in the frequency domain. Let x(r) and y(1) be two real signals. The cross-correlation
function @,,(¢) is defined as

+ o0
$o() = j x(t + Dy(r) dT
Similarly, we can define ¢,.(r), §..(1), and $,,(1) {the last two of these are called the
autocorrelation functions of the signals x(¢) and y(r), respectively). Let @, (@), 9, . (),
B, (@), and d, (w) denote the Fourier transforms of $,,(1), B,(), $ax(r), and §,,(1),
respectively.

(n) What is the relationship between b, () and &, (0)?

(b) Find an expression for ®,,(®) in terms of X{w) and Y(w).

(¢) Show that I, (w) is real and nonnegative for cvery @.

(d) Suppose now that x(¢) is the input to an LTI system with a real-valued impulse
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response and with frequency response H(w), and that y(¢) is the i
. \ , output. Find expres-
sions for d>,,(g)? and ®,,(®) in terms of @, ,(w) and K (w). P pres
(e) {).eth)(r(;) be as is illustrated in Figure P4.29, and let the LTI system impulse response
e h(t) = e~*u(t), a > 0. Compute P, (@), D, (®), and D, (@) usi
) xx y y i S| t
of the preceding parts of this problem. ” A using the results

x{t}
]

0 !t Figure P4.29

(f) Suppose that we are'givcn the following Fourier transform of a function ¢(r):
2
Olw) = w? 4- 100
(@) w? + 25
Find thc? impulsc. responses of two causal, stable LTI systems that both have auto-
correlation functions equal to ¢(r). Which one of these has a stable, causal inverse ?
4.30. As we pointed out in this chapter, LTI systems with impu!se responses that have the
general form .of. the sinc funcflon play an important role in LTI system analysis, The
reason f_‘or this lmp.ortancc will become clear in Chapters € through 8 when we discuss
tfh;a] topics qf filtering, modulation, and sampling. In this problem and several that
ollow we zive some indication of the special properties or systems i
; 0
(a) Consider the signal ’ g > of this type.
x(t) = cos 27t + sin 67z

Suppose th?t this signal is the input to each of the LTI systems with impuise
responses given below. Determine the output in each czse,

G) () = sin 47t

7t

. — [sin 47te){sin 87c)

() h(r) = "——5—

(iii) A(r) = [sin 47tr){cos 87s]

nt

{b) Consider an LTI system with impulse response
__sin2mt
h(t) = —

]?eterminc the output y (1) for each of the following input waveforms x(r)
(l) x,(t) = the symmetric square wave depicted in Figire P4.30(a) o
(ii) x2(¢) = the symmetric square wave depicted in Figure P4.30(b)
(iii) x5{6) = x,(f) cos 5m '

(V) xult) = iﬁ 51 - lgﬁ)

(v) xs(t) is a real signal whose frequency response for paositive frequencies has
a_conslant phase angle of /2 and whose magnitude ior @ > 0 is sketched in
Figure P4.30(c).

i) x(t) = ]‘_':sz
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i
wis
i
wi—
wie
wia

{b)
X (o)t

2n

{ 1 L
2x 61 10m 4r w

o)
Figure P4.30

4.31, Consider the interconnection of four LTI systems depicted in Figure P4.31, where

mo = 755

]‘Iz(w) — e-jlum/we

i

Ciped
It

o A

its real part, R€{H(w)}. This problem is concerned with deriving and examining some

of the implications of this property, which is generally refer-ed to as real-part suffi-

ciency.

(a) Prove the property of real-part sufficiency by examining the signal h,(¢), which is
the even part of A(f). What is the Fourier transform of 4,(+)? Indicate how A(f) can
be recovered from A, ().

(b) If the real part of the frequency response of a causal system is

Re{H(w)} = cos w
what is h(s)?
(c) Show that A(t) can be recovered from A,(r), the odd part of A(¢), for every value of ¢
except ¢+ = 0. Note that if h(r) does not contain any singularities [5(¢), u,(f), u2(2),
etc.] at ¢ = 0, then the frequency response

H(o) = j_‘” h(t)e=tot dt

will not criange if the value of A(r) is set to some arbitary :inite vaiue at the single
point ¢ = 0. Thus, in this case, show that H(c) is also completcty specified by its
imaginary part.

(d) Assume now that A(¢) does not have any singularities at + = 0. Then, in parts (a)
and (b) we have seen that either the real or imaginary part of H(w) completely
determines H(w). In this part we will derive an explicit relationship between Hx(w)
and H(®), the real and imaginary parts of K (w), under these conditions. To begin,
note that since A{f) is causal,

h(0) = h(Du(s) (P4.32-1)

except perhaps at ¢ = 0. Since A(r) contains no singularitizs at ¢ = 0, the Fourier
transforms of both sides of eq. (P4.32-1) must be identizal. Use this fact, together
with the modulation property, to show that
H@) =L [T HD (P4.32.2)
nj., w—n "

Use eq. (P4.32-2) to determine an expression for Hg(w) in zerms of H, () and one

_sin 3@t for H{w) in terms of Hp(w).
ha(t) = — (e) Tne operation
_ 1 % x(1)
1) = u(t = iU X
hy(t) = u(®) YO = — f_ e dt (P4.32-3)
+ b () ha (0 vl is called the Hilbert transform. We have just seen that for a real, causal impulse
x(t) hy (1) ¢ ! ‘ response (), the real and imaginary parts of its transform can be determined from

one another using the Hilbert transform.

Hy (w) | Now consider eq. (P4.32-3) and regard y(¢) as the output of an LTI systemn
| __] with input x(¢). Show that the frequency response of this system is
tigure P4.31 -f, >0
Figure H(w) = { -J
/s w<0

(a) Determine and sketch H,(w). ] \
(b) What is the impulse response h(t) ’of lhe‘ entire system?
(c) What is the output y(f) when the input is

x(1) = sin 20 + cos (W t]2)?

4.33.

{f) What is the Hilbert transform of the signal x(¢) = cos 3¢?

(a) Let x(¢) have Fourier transform X(w), and let p(¢) be periodic with fundamental
frequency @, and Fourier series representation

4o

ponse H(w) of a continuous-time LT}

i (1) == ayelrnt
) is that H(w) is completely specified by p ,..Z...

4.32. An important property of the frequency res
system with a real, causal impulse response h(r
Chap. 4 3 Chap. 4 Problems 275
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What is the Fourier transform of -
Ho) = x(0)p() (P4.33-1)

(b) Suppose that X(w) is as depicted in Figure P4.33-1. Sketch the spectrum of y(1)
in eq. (P4.33-1) for each of the following choices for pt).

X(w)

1

-1 i1 w  Figure P4.33-1

() plr) = cos (12)

(i) p(t) =cost

(i) p(r) = cos 2¢

Giv) p() = (sin (sin 2r)

(v) p(r) = cos 2t — cos !

(vi) p(0) = ...2.:',., 8@t — mn)

wi) p) = %6 — 2mn)

wiii) p) = 30t — 4mn)

@ p= % 8¢—2mn)—} Z,., 81 — )

x) pl)= ’tlk-\:pcriodic square wave shown in Figure P4.33-2

plt)

-3n -2n -r - E

ol

Figure P4.33-2

4.34. (a) Consider the system depicted in Figure P4.34, where
L _ sin(3Wi2)
x(r) = nt
plt) = cos 2Wt + 4 cos 8wt
k=—oo

Find the Fourier series representation for »o).

x(()———??——‘ yin

jgure P4.34
plt) Figure

i i .4
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(b) Suppose now that x{r) is real and is given by

4oe
x(t) = 3, aiet™
kAo

p(1) = cos Wt
_sin (W1/2)
WOy ===

What is y(£)?
(c) What is y(¢} if x(¢) and A(¢) are as in part (b), but

p(t) =sin Wt

(d) Again consider x(¢) and A(¢) as in part (b). How would you choose p(¢) in the system
of Figure P4.34 if you wished to determine the real part of any particular Fourier
coefficient of x(r)? How would you choose p(f) to determine the imaginary part of
the coefficient ?

4.35. In the text we pointed out on several occasions that there is an inverse relationship
between time and frequency. In this problem we examine in more detail one partic-
ular example of the consequences of this inverse relationship and in so doing intro-
duce some qualitative concepts that are of great importance in signal and system
analysis.

Let H(w) be the frequency response of a continuous-time LTI system, and sup-
pose that H(w) is real, even, and positive. Also, assume that

max {H (@)} = H(0)

(a) Show that:
(i) The impulse response, A(t), is real.
(ii) max {[A(6)]} = A(0).
Hint: If f(t, @) is a complex function of two variables, then

_|' : £, ©) do

+ o0
<[ it o)l do
One important concept in system analysis is the bandwidth of an LTI system.
There are many different mathematical ways in which to define bandwidth, but they
all are related to the qualitative and intuitive idea that a system with frequency response
G(w) essentially “stops” signals of the form e/** for values of w where G(®) vanishes or
is small and “passes” those complex exponentials in the band of frequency where G(w)
is not small. The width of this band is the bandwidth. These ideas will be made much
clearer in our discussion of filtering in Chapter 6, but for now we will consider a special
definition of bandwidth for those systems with frequency responses that have the
properties specified previously for H(w). Specifically, one definition of the bandwidth
B, of such a system is the width of a rectangle of height /#(0), which has an area equal
to the arca under H(w). This is illustrated in Figure P4.35-1. Note that since H(0) =
max,, H{w), the frequencies within the band indicated in the figure are those for which
H{(w) is largest. The exact choice of the width in Figure P4.35-1 is of course a bit arbi-
trary, but we have chosen one definition that allows us to compare different systems
and to make precise a very important time—frequency relationship.
(b) What is the bandwidth of the system with frequency resp onse

1, loj<w

H(w) ={
0, |w|>W
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Area of rectangle =
i area under H{w)

F—Bw—" w Figure P4.35-1

i i i i of H(w).
¢) Find an expression for the bandwidth B, in terms . )
© Let s(s) denote the step response of our system. An 1mporlan} m-easure oﬁthc
speed of response of a system is the rise time, which again h.as a qua!natlve deﬁfl!tlt)ln,
leading to many possible mathematical definitions, one of which we will use. Intuitively,

the rise time of a system is a measure of how fast the step response rises from zero to its
final value,
s(o0) = lim s(1)
fmon

" Thus, the smaller the rise time, the faster the response of the system. For oursystem we

will define the rise time ¢, to be

_ $(0)
= hO)

Since
s = h)

= max, h(r), we see that ¢, has the inter-

f the property that 4(0) : 1as the
e P ld ta from zero to s{(co) while maintaining the

retation as the time it would take to go 0 L
fnaximum rate of change of s(¢). This is illustrated in Figure P4.35-2.
(d) Find an expression for ¢, in terms of H(w).
(e) Combine the results of parts (c) and (d) to show that
B.t, =21 (P4.35-l).

fy both the rise time and bandwidth of our

independently speci of o
s e, 1 , small), then eq. (P4.35-1) implies

system. For example, if we want a fast system (¢,

sit)

s{eo)

Figure P4.35-2

278 Fourier Analysis for Continuous-Time Signals and Systems  Chap. 4

. . N
; ! et Skt PO Wi el

that the system must have a large bandwidth. This is a fundamental trade-off that
is of central importance in many problems of system design.

4.36. (a) Consider two LTI systems with impulse responses h(t) and g(¢), respectively, and
suppose that these systems are inverses of one another. Suppose also that both
systems have. frequency responses, denoted by H(®) and G{®), respectively, What
is the relationship between H(®w) and G(@)?

(b) Consider the continuous-time LTI systemn with frequency response
H(w) = {1, 2 <ol <3
0, otherwise
(i) Isit possible to find an input x(r) to this system so that the output is as depicted
in Figure P4.297 If so, find such an x(¢). If not, explain why not.
(ii) Is this system inveriible ? Explain your answer.

(¢} Consider an auditorium with an echo problem. As discussed in Problem 3.25,
we can model the acoustics of the auditorium as an LTI system with an impulse
response consisting of an impulse train, with the kth impulse in the train corre-
sponding to the kth echo. Suppose that in this particular case the impulse response
is given by

h(t) = kio e *To(t — kT)

where the factor e *T represents the attenuation of the kth echo.

In order to make a high-quality recording from the stage, the effect of the
echoes must be removed by performing some processing of the sounds sensed by
the recording equipment. In Problem 3.25 we used convolutional technigues to
consider one example of the design of such a processor (for a different echc model).
In this problem we will use frequency-domain techniques. Specifically, let G{w)
denote the frequency response of the LTI system to be used to process the sensed
acoustic signal. Choose G{w) so that the echoes are completely removed and the
resulting signal is a faithful reproduction of the original stage sounds.

(d) Find a differential equation for the inverse.of the system with impulse response

) = 26(6) + u, (1)
(e) Consider the LTI system initially at rest and described by the differential equation

LA 4 DD 4 gy = 220 4 38X(0) 4 oy

The inverse of this system is also initially at rest and described by a differential
equation. Find the differential equation describing the inverse. Also, find theimpulse
responses /() and g{¢) of the original system and its inverse. .
4.37. A real-valued continuous-time function x(¢) has a Fourier transform X () whose mag-
nitude and phase are illustrated in Figure P4.37-1.

The functions x,(r), x(r), x(¢), and x,(t) have Fourier transforms whose magni-
tudes are identical to X (o) but whose phase functions differ, as shown in Figure P4.37-2.
The phase functions X, (@) and L X, (@) are formed by adding linear phase to
L X(w). The function ¢ X (w) is formed by reflecting <{ X () about @ = 0, and
4 X,(w) is obtained by a combination of reflection and addition of linear phase. Using
the properties of Fourier transforms, determine expressions for x, (1), x3(9), x(t), and
x4(t) in terms of x{r).
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Figure P4.37-1

4.38. In this problem we provide additional examples of the effects of nonlinear changes in

phase.
(a) Consider a continuous-time LTI system with frequency response
_a— jo
H(®) a-+jo

where a > 0. What is the magnitude of H(w)? What is < H(w)? What is the

impulse response of this system?
(b) Let the input to the system of part (a) be
x(1) = e7du(r), b>0
-+ a? What is the output when b = a?

What is the output (1) when b
) when a takes on the following values:

(c) Let b =2. Sketch y(¢) in part (b

(i a=1
Gi) a=2
(iii) a = 4

ut of the system of part (a) with a =1, when the input is
cos (1//F) -+ cos t + cos WAL

Roughly sketch both the input and the output.

(d) Determine the outp
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™ ~Stope = -a

- -Slope-=d

-=1-a/2
-7 (d}

Figure P4.37-2
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application in problems involving imperfect measuring
the temperature of a liquid.

1t is often reasonable to model such a device as an LTI system, which, because of the
response characteristics of the measuring element (e.g., the mercury in a thermometer),
does not respond instantaneously to temperature changes. In particular, assume that
the response of this device to a unit step in temperature is

sy =0 — e~ u(t)

4.39. Inverse systems often find
devices. For example, consider a device for measuring

(P4.39-1)

(a) Design a compensating system which, when provided with the output of the
measuring device, produces an output equal to the instantaneous temperature of

the liquid.

(b) One of the problems that often arises in using inverse systems as compensators for

measuring devices is that gross inaccuracies in indicated temperature may occur

if the actual output of the measuring device contains errors, due to small, erratic

phenomena in the device. Since there always are such error sources in real systems,
measuring device

one must take them into account. To itlustrate this, consider a
whose overall output can be modeled as the sum of the response of the measuring
device characterized by €q. (P4.39-1) and an interfering “noise” signal n(f). This is
depicted in Figure P4.39(a), where we have also included the inverse system of part
(a), which now has as its input the overall output of the measuring device. Suppose
that n(¢) = sin @r. What is the contribution of n(¢) to the output of the inverse
system, and how does this output change as @ is increased?

Actual measuring device

Inverse system
to LTI model
of measuring
device

LTI model of
measuring device
st = (1 —e ) ult)

Compensating
system

Perfect measuring ’
device
s(t} = ult)

Figure P4.39

(c) The issuc raised in part (b) is an imporiant one in many applications of LTI
system analysis. Specifically, we are confronted with the fundamental trade-off
between the speed of response of a system and its abilities to attenuate high-

frequency interference.

1n part (b) we saw that this trade-off implied that by attempting 10 speed up
the response of a measuring device (by means of an inverse system), we produced a
d also amplify corrupting sinusoidal signals. To illustrate this

system that woul
t responds instantaneously t0

concept further, consider a measuring device tha
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changes in temperature but w};" h also is corrup ol A " .
ich also is corrupted b i " 0
chanes ! 015 C y noise. The res
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