Introduction to Signals and Systems

Douglas K. Lindner Virginia Polytechnic Institute and State University

> GIFT OF THE ASLA FOUNDATION NOT FOR RE-SALE

ĐẠI HỌC QUỐC GIA HÀ NỘI

TRUNGTÂM THÔNG TIN. THƯ VIÊN

No A_ DO/2601

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok Bogotá Caracas Lisbon London Madrid Mexico City Milan New Delhi Seoul Singapore Sydney Taipei Toronto

Table of Contents

1	Intro	oduction to Signals and Systems	1
	1.1	A Little Philosophy	2
	1.2	Basic Concepts	3
	1.3	Mathematical Modeling	5
	1.4	Signals and Systems	7
	1.5	Continuous-Time and Discrete-Time Signals and Systems	14
	1.6	Organization of the Material	14
	1.7	How to Use MATLAB with This Book	16
2	Real	Functions	19
	2.1	Continuous-Time Functions	19
	2.2	Common Functions	22
	2.3	Discrete-Time Functions	28
	2.4	Homework for Chapter 2	32
3	Revi	ew of Complex Variables	35
	3.1	Complex Numbers	36
	3.2	Complex Functions	42
	3.3	Homework for Chapter 3	49
4	Revi	iew of Matrix Theory	53
	4.1	Basic Definitions and Elementary Operations	54
	4.2	Vectors	60
	4.3	Homework for Chapter 4	65
5	Intr	oduction to Signals	67
	5.1	Definition of a Signal	68
	5.2	Time Scaling, Time Shifting, and Limits of Signals	76
	5.3	Signals Defined on Intervals	84
	5.4	Digital Waveforms	90
	5.5	Signals as Sums of Sinusoids	95

C	ontents
-	Unicentes

5.6	Chapter Summary	98
5.7	Homework for Chapter 5	99
Intro	oduction to Systems	105
6.1	Definition of a System	107
6.2	System Representations	111
6.3	Electrical Networks	116
6.4	Mass-Spring-Damper System	120
6.5	Proof-Mass Actuators	124
6.6	Chapter Summary	128
6.7	Homework for Chapter 6	130
Four	ier Series and Fourier Transforms	133
7.1	Introduction to Fourier Series	135
7.2	Three Representations of a Fourier Series	142
7.3	Computational Formulas for the Fourier Series Coefficients	149
7.4	Definition of the Fourier Transform	159
7.5	Properties of the Fourier Transform and the Generalized Fourier Transform	165
7.6	Chapter Summary	174
7.7	Homework for Chapter 7	178
Spect	tral Content of a Signal	187
8.1	Amplitude and Phase Spectra	189
8.2	Energy and Power Signals	200
8.3	Energy Spectral Density	204
8.4	Power Spectral Density	213
8.5	Power Calculations for Periodic Signals	215
8.6	Spectral Content of a Signal: An Example	223
8.7	Static Nonlinearities	232
8.8	MATLAB Experiments	239
8.9	Chapter Summary	243
8.10	Homework for Chapter 8	245
The	Laplace Transform	255
9.1	Definition of the Laplace Transform	256
9.2	Properties of the Laplace Transform	262
9.3	Partial Fraction Expansion	268
9.4	Laplace Transform Solution to Differential Equations	274

x

+6

7

8

Contents

xi

	9.5	Relationship to Fourier Transforms	270
	9.6	Chapter Summary	279 282
	9.7	Homework for Chapter 9	282
	T		
10		nsfer Functions and State Space Representations	291
	10.1	The Transfer Function	293
	10.2	Block Diagrams	306
	10.3	Examples of Block Diagrams	311
	10.4	Block Diagram Reduction	317
	10.5	All-Integrator Block Diagrams and State Space Representations	324
	10.6	Chapter Summary	336
	10.7	Homework for Chapter 10	339
1	Intro	oduction to Realization Theory	355
	11.1	Calculation of a Transfer Function from a State Space Representation	357
	11.2	Two Realizations	365
	11.3	Equivalent Dynamical Systems	373
	11.4	State Equations from Physical Laws	378
	11.5	Multivariable Systems	386
	11.6	Chapter Summary	393
	11.7	Homework for Chapter 11	394
2		Convolution Representation and the ier Transfer Function	405
	12.1	The Convolution Representation	406
	12.2	Graphical Convolution	412
	12.3	The Relationship Between the Convolution Integral and Other System Representations	417
	12.4	The Fourier Transfer Function	423
	12.5	Chapter Summary	427
	12.6	Homework for Chapter 12	429
3	Prop	erties of Systems	437
	13.1	Definition of the System Properties	439
	13.2	Discussion of Properties of Systems	446
	13.3	BIBO Stability	452
	13.4	BIBO Stability of Transfer Functions and State Space Representations	457

	C		40
1.1.1.1	Con	<u>tter</u>	LS

	13.5	Properties of System Representations	465
	13.6	Static Nonlinearities	469
	13.7	Chapter Summary	473
	13.8	Homework for Chapter 13	475
14	The	Frequency Response Theorem 🛛 🛷	485
	14.1	The Frequency Response Theorem Using Laplace Transforms	487
	14.2	The Frequency Response Theorem Using Fourier Transforms	492
	14.3	The Frequency Response Function	496
	14.4	Graphical Interpretations of the Frequency Response Function	502
	14.5	The Bandwidth of a System	511
	14.6	Ideal Filters	519
	14.7	Introduction to Filtering	524
	14.8	Chapter Summary	535
	14.9	Homework for Chapter 14	537
15	Signa	al and System Analysis in the Frequency Domain	551
	15.1	Introduction to Signal and System Interaction	553
	15.2	Interpretation of the Frequency Response Theorem	561
	15.3	Propagation of a Pulse Train Through a Network	568
	15.4	Propagation of Energy Signals Through a System	579
	15.5	Tracking for Linear Motors	586
	15.6	Amplitude Modulation and Frequency Division Multiplexing	591
	15.7	Chapter Summary	596
	15.8	Homework for Chapter 15	597
16	Bode	Plots	615
	16.1	Introduction to Bode Plots	617
	16.2	Bode Plots of Constants and Real Poles and Zeros	620
	16.3	Bode Plots of Two Complex Poles and Zeros	630
	16.4	Graphical Construction of Bode Plots	640
	16.5	Chapter Summary	648
	16.6	Homework for Chapter 16	650
17	Intro	oduction to Discrete-Time Signals and Systems	653
	17.1	Introduction to Discrete-Time Signals	656
	17.2	Introduction to Sampling	660
	17.3	Coding and Quantization	665
	17.4	Digital-to-Analog Converters	670

xii

xiii Contents 673 Introduction to Discrete-Time Systems 17.5 677 Introduction to Digital Filters 17.6 681 Homework for Chapter 17 17.7 The z-Transform and the Discrete-Time Fourier Transform 685 18 686 The Two-Sided z-Transform 18.1 693 Properties of the Two-Sided z-Transform 18.2 700 The One-Sided z-Transform 18.3 703 18.4 **Discrete-Time Fourier Transform** 711 18.5 Chapter Summary Homework for Chapter 18 716 18.6 723 Sampling 19 19.1 Fourier Transform of a Sampled Signal 725 19.2 **Reconstruction of Signals from Their Samples** 730 19.3 Aliasing and the Nyquist Sampling Theorem 734 19.4 Zero-Order Hold 742 19.5 An Example 746 19.6 Chapter Summary 754 19.7 Homework for Chapter 19 755 20 Spectral Content of Discrete Signals 763 20.1 **Discrete-Time Energy Signals** 765 20.2 **Discrete-Time Power Signals** 773 20.3 Computing the Fourier Transform: The DFT 781 20.4 Examples of the DFT 788 20.5 Chapter Summary 797 20.6 Homework for Chapter 20 800 21 **Discrete-Time System Representations** 809 21.1 **Discrete Convolution** 810 21.2 Difference Equations and Transfer Functions 816 21.3 Block Diagrams and Network Structures 824 21.4 **DTFT** Transfer Function 833 21.5 Discrete State Space Representations 835 Network Interconnection Structures 21.6 844 21.7 Chapter Summary 849 21.8 Homework for Chapter 21

849

Pro	perties of Discrete-Time Systems	
22.1	Properties of Systems	
22.2	Properties of System Representations	
22.3	BIBO Stability	
22.4	Relationships Between System Representations	
22.5	Continuous-to-Discrete System Transformations	
22.6	Chapter Summary	
22.7	Homework for Chapter 22	
Freq	uency Domain Analysis of Discrete-Time Systems	14
23.1	Frequency Response Theorem for Discrete Systems	
23.2	Relationship to Continuous-Time Signals	
23.3	Classification of Frequency Response Functions	
23.4	IIR Filter Design	
23.5	Linear Phase FIR Filters	
23.6	System Response to Arbitrary Input Signals	
23.7	Chapter Summary	
23.8	Homework for Chapter 23	
Nome	enclature	
tome		
Index		

961