
www.allitebooks.com

http://www.allitebooks.org

Fundamentals of
Python:

First Programs

Kenneth A. Lambert

Martin Osborne, Contributing Author

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

Fundamentals of Python: First Programs
Kenneth A. Lambert

Executive Editor: Marie Lee

Acquisitions Editor: Brandi Shailer

Senior Product Manager: Alyssa Pratt

Development Editor: Ann Shaffer

Associate Product Manager: Stephanie
Lorenz

Associate Marketing Manager: Shanna
Shelton

Content Project Manager: Jennifer Feltri

Art Director: Faith Brosnan

Image credit: © istockphoto/Pei Ling Hoo

Cover Designer: Wing-ip Ngan,
Ink design, Inc.

Compositor: GEX Publishing Services

© 2012 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2011920241

ISBN-13: 978-1-111-82270-5

ISBN-10: 1-111-82270-0

Course Technology
20 Channel Center

Boston, Massachusetts 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit course.cengage.com.

Purchase any of our products at your local college store or at our preferred
online store www.cengagebrain.com.

Some of the product names and company names used in this book have
been used for identification purposes only and may be trademarks or regis-
tered trademarks of their respective manufacturers and sellers.

Any fictional data related to persons or companies or URLs used through-
out this book is intended for instructional purposes only. At the time this
book was printed, any such data was fictional and not belonging to any real
persons or companies.

Course Technology, a part of Cengage Learning, reserves the right to revise this
publication and make changes from time to time in its content without notice.

The programs in this book are for instructional purposes only.
They have been tested with care, but are not guaranteed for any particular
intent beyond educational purposes. The author and the publisher do not
offer any warranties or representations, nor do they accept any liabilities
with respect to the programs.Printed in the United States of America

1 2 3 4 5 6 7 15 14 13 12 11

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

[CHAPTER] 1 INTRODUCTION 1
1.1 Two Fundamental Ideas of Computer Science: Algorithms and Information

Processing ...2
1.1.1 Algorithms ..2
1.1.2 Information Processing..4

1.1 Exercises..5
1.2 The Structure of a Modern Computer System...6

1.2.1 Computer Hardware ..6
1.2.2 Computer Software..8

1.2 Exercises..10
1.3 A Not-So-Brief History of Computing Systems...10

1.3.1 Before Electronic Digital Computers ...11
1.3.2 The First Electronic Digital Computers (1940–1950)15
1.3.3 The First Programming Languages (1950–1965).................................16
1.3.4 Integrated Circuits, Interaction, and Timesharing (1965–1975)18
1.3.5 Personal Computing and Networks (1975–1990)19
1.3.6 Consultation, Communication, and Ubiquitous Computing

(1990–Present)..21
1.4 Getting Started with Python Programming..23

1.4.1 Running Code in the Interactive Shell ...23
1.4.2 Input, Processing, and Output...25
1.4.3 Editing, Saving, and Running a Script ..28
1.4.4 Behind the Scenes: How Python Works ...29

1.4 Exercises..30
1.5 Detecting and Correcting Syntax Errors...31
1.5 Exercises..32

Suggestions for Further Reading ...32
Summary ...33
Review Questions ...35
Projects..37

[CHAPTER] 2 SOFTWARE DEVELOPMENT, DATA TYPES, AND
EXPRESSIONS 39

2.1 The Software Development Process ...40
2.1 Exercises..43
2.2 Case Study: Income Tax Calculator...43

2.2.1 Request ...43
2.2.2 Analysis ...44
2.2.3 Design...44
2.2.4 Implementation (Coding) ..45
2.2.5 Testing ..46

Table of Contents

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

2.3 Strings, Assignment, and Comments...47
2.3.1 Data Types..47
2.3.2 String Literals...48
2.3.3 Escape Sequences ...50
2.3.4 String Concatenation ...50
2.3.5 Variables and the Assignment Statement ..51
2.3.6 Program Comments and Docstrings...52

2.3 Exercises..53
2.4 Numeric Data Types and Character Sets ..54

2.4.1 Integers ...54
2.4.2 Floating-Point Numbers..55
2.4.3 Character Sets ..55

2.4 Exercises..57
2.5 Expressions ...58

2.5.1 Arithmetic Expressions ..58
2.5.2 Mixed-Mode Arithmetic and Type Conversions60

2.5 Exercises..63
2.6 Using Functions and Modules ...63

2.6.1 Calling Functions: Arguments and Return Values................................64
2.6.2 The math Module ...65
2.6.3 The Main Module..66
2.6.4 Program Format and Structure ...67
2.6.5 Running a Script from a Terminal Command Prompt68

2.6 Exercises..70
Summary ...70
Review Questions ...72
Projects..73

[CHAPTER] 3 CONTROL STATEMENTS 75
3.1 Definite Iteration: The for Loop...76

3.1.1 Executing a Statement a Given Number of Times76
3.1.2 Count-Controlled Loops ...77
3.1.3 Augmented Assignment ...79
3.1.4 Loop Errors: Off-by-One Error..80
3.1.5 Traversing the Contents of a Data Sequence..80
3.1.6 Specifying the Steps in the Range ...81
3.1.7 Loops That Count Down..82

3.1 Exercises..83
3.2 Formatting Text for Output ...83
3.2 Exercises..86
3.3 Case Study: An Investment Report..87

3.3.1 Request ...87
3.3.2 Analysis ...87
3.3.3 Design...88
3.3.4 Implementation (Coding) ..88
3.3.5 Testing ..90

3.4 Selection: if and if-else Statements ...91
3.4.1 The Boolean Type, Comparisons, and Boolean Expressions91
3.4.2 if-else Statements ...92

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

3.4.3 One-Way Selection Statements...94
3.4.4 Multi-way if Statements ..95
3.4.5 Logical Operators and Compound Boolean Expressions.....................97
3.4.6 Short-Circuit Evaluation ...99
3.4.7 Testing Selection Statements ...100

3.4 Exercises..101
3.5 Conditional Iteration: The while Loop ..102

3.5.1 The Structure and Behavior of a while Loop102
3.5.2 Count Control with a while Loop..104
3.5.3 The while True Loop and the break Statement105
3.5.4 Random Numbers..107
3.5.5 Loop Logic, Errors, and Testing ...109

3.5 Exercises..109
3.6 Case Study: Approximating Square Roots...110

3.6.1 Request ...110
3.6.2 Analysis ...110
3.6.3 Design...110
3.6.4 Implementation (Coding) ..112
3.6.5 Testing ..113
Summary ...113
Review Questions ...116
Projects..118

[CHAPTER] 4 STRINGS AND TEXT FILES 121
4.1 Accessing Characters and Substrings in Strings..122

4.1.1 The Structure of Strings..122
4.1.2 The Subscript Operator...123
4.1.3 Slicing for Substrings ...124
4.1.4 Testing for a Substring with the in Operator125

4.1 Exercises..126
4.2 Data Encryption ...126
4.2 Exercises..129
4.3 Strings and Number Systems...129

4.3.1 The Positional System for Representing Numbers............................130
4.3.2 Converting Binary to Decimal ..131
4.3.3 Converting Decimal to Binary ..132
4.3.4 Conversion Shortcuts...133
4.3.5 Octal and Hexadecimal Numbers ...134

4.3 Exercises..136
4.4 String Methods ...136
4.4 Exercises..140
4.5 Text Files ...141

4.5.1 Text Files and Their Format..141
4.5.2 Writing Text to a File ..142
4.5.3 Writing Numbers to a File ..142
4.5.4 Reading Text from a File ...143
4.5.5 Reading Numbers from a File ...145
4.5.6 Accessing and Manipulating Files and Directories on Disk...............146

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

4.5 Exercises..148
4.6 Case Study: Text Analysis...148

4.6.1 Request ...149
4.6.2 Analysis ...149
4.6.3 Design...150
4.6.4 Implementation (Coding) ..151
4.6.5 Testing ..152
Summary ...153
Review Questions ...154
Projects..156

[CHAPTER] 5 LISTS AND DICTIONARIES 159
5.1 Lists ...160

5.1.1 List Literals and Basic Operators ..160
5.1.2 Replacing an Element in a List ...163
5.1.3 List Methods for Inserting and Removing Elements165
5.1.4 Searching a List..167
5.1.5 Sorting a List..168
5.1.6 Mutator Methods and the Value None ...168
5.1.7 Aliasing and Side Effects..169
5.1.8 Equality: Object Identity and Structural Equivalence........................171
5.1.9 Example: Using a List to Find the Median of a Set of Numbers172
5.1.10 Tuples ...173

5.1 Exercises..174
5.2 Defining Simple Functions ..175

5.2.1 The Syntax of Simple Function Definitions175
5.2.2 Parameters and Arguments..176
5.2.3 The return Statement...177
5.2.4 Boolean Functions..177
5.2.5 Defining a main Function...178

5.2 Exercises..179
5.3 Case Study: Generating Sentences ..179

5.3.1 Request ...179
5.3.2 Analysis ...179
5.3.3 Design...180
5.3.4 Implementation (Coding) ..182
5.3.5 Testing ..183

5.4 Dictionaries...183
5.4.1 Dictionary Literals ...183
5.4.2 Adding Keys and Replacing Values ...184
5.4.3 Accessing Values...185
5.4.4 Removing Keys ..186
5.4.5 Traversing a Dictionary ...186
5.4.6 Example: The Hexadecimal System Revisited....................................188
5.4.7 Example: Finding the Mode of a List of Values189

5.4 Exercises..190

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

5.5 Case Study: Nondirective Psychotherapy ...191
5.5.1 Request ...191
5.5.2 Analysis ...191
5.5.3 Design...192
5.5.4 Implementation (Coding) ..193
5.5.5 Testing ..195
Summary ...195
Review Questions ...196
Projects..198

[CHAPTER] 6 DESIGN WITH FUNCTIONS 201
6.1 Functions as Abstraction Mechanisms...202

6.1.1 Functions Eliminate Redundancy..202
6.1.2 Functions Hide Complexity ..203
6.1.3 Functions Support General Methods with Systematic Variations204
6.1.4 Functions Support the Division of Labor ...205

6.1 Exercises..205
6.2 Problem Solving with Top-Down Design...206

6.2.1 The Design of the Text-Analysis Program ...206
6.2.2 The Design of the Sentence-Generator Program..............................207
6.2.3 The Design of the Doctor Program ...209

6.2 Exercises..210
6.3 Design with Recursive Functions ..211

6.3.1 Defining a Recursive Function..211
6.3.2 Tracing a Recursive Function ..213
6.3.3 Using Recursive Definitions to Construct Recursive Functions214
6.3.4 Recursion in Sentence Structure ...214
6.3.5 Infinite Recursion...215
6.3.6 The Costs and Benefits of Recursion..216

6.3 Exercises..218
6.4 Case Study: Gathering Information from a File System219

6.4.1 Request ...219
6.4.2 Analysis ...220
6.4.3 Design...222
6.4.4 Implementation (Coding) ..224

6.5 Managing a Program’s Namespace ..227
6.5.1 Module Variables, Parameters, and Temporary Variables227
6.5.2 Scope...228
6.5.3 Lifetime ..229
6.5.4 Default (Keyword) Arguments ..230

6.5 Exercises..232
6.6 Higher-Order Functions (Advanced Topic) ..233

6.6.1 Functions as First-Class Data Objects ..233
6.6.2 Mapping..234
6.6.3 Filtering ..236
6.6.4 Reducing...237
6.6.5 Using lambda to Create Anonymous Functions...............................237
6.6.6 Creating Jump Tables ..238

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

6.6 Exercises..239
Summary ...240
Review Questions ...242
Projects..244

[CHAPTER] 7 SIMPLE GRAPHICS AND IMAGE PROCESSING 247
7.1 Simple Graphics ...248

7.1.1 Overview of Turtle Graphics ...248
7.1.2 Turtle Operations...249
7.1.3 Object Instantiation and the turtle Module252
7.1.4 Drawing Two-Dimensional Shapes ...254
7.1.5 Taking a Random Walk..255
7.1.6 Colors and the RGB System..256
7.1.7 Example: Drawing with Random Colors ..257
7.1.8 Examining an Object’s Attributes ..259
7.1.9 Manipulating a Turtle’s Screen ..259
7.1.10 Setting up a cfg File and Running IDLE..260

7.1 Exercises..261
7.2 Case Study: Recursive Patterns in Fractals..262

7.2.1 Request ...263
7.2.2 Analysis ...263
7.2.3 Design...264
7.2.4 Implementation (Coding) ..266

7.3 Image Processing ...267
7.3.1 Analog and Digital Information ...267
7.3.2 Sampling and Digitizing Images ...268
7.3.3 Image File Formats ..268
7.3.4 Image-Manipulation Operations ...269
7.3.5 The Properties of Images ..270
7.3.6 The images Module ..270
7.3.7 A Loop Pattern for Traversing a Grid ..274
7.3.8 A Word on Tuples..275
7.3.9 Converting an Image to Black and White ..276
7.3.10 Converting an Image to Grayscale..278
7.3.11 Copying an Image ..279
7.3.12 Blurring an Image ..280
7.3.13 Edge Detection ..281
7.3.14 Reducing the Image Size ...282

7.3 Exercises..284
Summary ...285
Review Questions ...286
Projects..288

[CHAPTER] 8 DESIGN WITH CLASSES 293
8.1 Getting Inside Objects and Classes ...294

8.1.1 A First Example: The Student Class..295
8.1.2 Docstrings ..298
8.1.3 Method Definitions..298

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

8.1.4 The __init__ Method and Instance Variables................................299
8.1.5 The __str__ Method..300
8.1.6 Accessors and Mutators ...300
8.1.7 The Lifetime of Objects ..301
8.1.8 Rules of Thumb for Defining a Simple Class.....................................302

8.1 Exercises..303
8.2 Case Study: Playing the Game of Craps ...303

8.2.1 Request ...303
8.2.2 Analysis ...303
8.2.3 Design...304
8.2.4 Implementation (Coding) ..306

8.3 Data-Modeling Examples...309
8.3.1 Rational Numbers ..309
8.3.2 Rational Number Arithmetic and Operator Overloading..................311
8.3.3 Comparison Methods...312
8.3.4 Equality and the __eq__ Method ..314
8.3.5 Savings Accounts and Class Variables ...315
8.3.6 Putting the Accounts into a Bank..317
8.3.7 Using pickle for Permanent Storage of Objects.............................319
8.3.8 Input of Objects and the try-except Statement............................320
8.3.9 Playing Cards ...321

8.3 Exercises..325
8.4 Case Study: An ATM..325

8.4.1 Request ...325
8.4.2 Analysis ...325
8.4.3 Design...327
8.4.4 Implementation (Coding) ..329

8.5 Structuring Classes with Inheritance and Polymorphism...................................331
8.5.1 Inheritance Hierarchies and Modeling ...332
8.5.2 Example: A Restricted Savings Account..333
8.5.3 Example: The Dealer and a Player in the Game of Blackjack335
8.5.4 Polymorphic Methods..340
8.5.5 Abstract Classes ...340
8.5.6 The Costs and Benefits of Object-Oriented Programming...............341

8.5 Exercises..343
Summary ...343
Review Questions ...345
Projects..346

[CHAPTER] 9 GRAPHICAL USER INTERFACES 349
9.1 The Behavior of Terminal-Based Programs and GUI-Based Programs............350

9.1.1 The Terminal-Based Version...350
9.1.2 The GUI-Based Version..351
9.1.3 Event-Driven Programming..353

9.1 Exercises..355
9.2 Coding Simple GUI-Based Programs ...355

9.2.1 Windows and Labels ..356
9.2.2 Displaying Images ..357
9.2.3 Command Buttons and Responding to Events...................................358
9.2.4 Viewing the Images of Playing Cards ...360

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.2.5 Entry Fields for the Input and Output of Text363
9.2.6 Using Pop-up Dialog Boxes ..365

9.2 Exercises..366
9.3 Case Study: A GUI-Based ATM..367

9.3.1 Request ...367
9.3.2 Analysis ...367
9.3.3 Design...368
9.3.4 Implementation (Coding) ..369

9.4 Other Useful GUI Resources ..372
9.4.1 Colors ...373
9.4.2 Text Attributes..373
9.4.3 Sizing and Justifying an Entry ...374
9.4.4 Sizing the Main Window...375
9.4.5 Grid Attributes ...376
9.4.6 Using Nested Frames to Organize Components................................380
9.4.7 Multi-Line Text Widgets ...381
9.4.8 Scrolling List Boxes ...384
9.4.9 Mouse Events ...387
9.4.10 Keyboard Events ..388

9.4 Exercises..389
Summary ...390
Review Questions ...391
Projects..392

[CHAPTER] 10 MULTITHREADING, NETWORKS, AND CLIENT/SERVER
PROGRAMMING 395

10.1 Threads and Processes ...396
10.1.1 Threads...397
10.1.2 Sleeping Threads..400
10.1.3 Producer, Consumer, and Synchronization ..402

10.1 Exercises..409
10.2 Networks, Clients, and Servers..409

10.2.1 IP Addresses ...409
10.2.2 Ports, Servers, and Clients...411
10.2.3 Sockets and a Day/Time Client Script..412
10.2.4 A Day/Time Server Script ...414
10.2.5 A Two-Way Chat Script...416
10.2.6 Handling Multiple Clients Concurrently ...418
10.2.7 Setting Up Conversations for Others ...420

10.2 Exercises..422
10.3 Case Study: A Multi-Client Chat Room ...423

10.3.1 Request ..423
10.3.2 Analysis ..423
10.3.3 Design...424
10.3.4 Implementation (Coding) ..425
Summary ...427
Review Questions ...428
Projects..430

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[ONLINE CHAPTER] 11 SEARCHING, SORTING, AND COMPLEXITY ANALYSIS

11.1 Measuring the Efficiency of Algorithms
11.1.1 Measuring the Run Time of an Algorithm
11.1.2 Counting Instructions
11.1.3 Measuring the Memory Used by an Algorithm

11.1 Exercises
11.2 Complexity Analysis

11.2.1 Orders of Complexity
11.2.2 Big-O Notation
11.2.3 The Role of the Constant of Proportionality

11.2 Exercises
11.3 Search Algorithms

11.3.1 Search for a Minimum
11.3.2 Linear Search of a List
11.3.3 Best-Case, Worst-Case, and Average-Case Performance
11.3.4 Binary Search of a List
11.3.5 Comparing Data Items

11.3 Exercises
11.4 Sort Algorithms

11.4.1 Selection Sort
11.4.2 Bubble Sort
11.4.3 Insertion Sort
11.4.4 Best-Case, Worst-Case, and Average-Case Performance Revisited

11.4 Exercises
11.5 An Exponential Algorithm: Recursive Fibonacci
11.6 Converting Fibonacci to a Linear Algorithm
11.7 Case Study: An Algorithm Profiler

11.7.1 Request
11.7.2 Analysis
11.7.3 Design
11.7.4 Implementation (Coding)
Summary
Review Questions
Projects

[APPENDIX] A PYTHON RESOURCES 433
A.1 Installing Python on Your Computer ..434
A.2 Using the Terminal Command Prompt, IDLE, and Other IDEs......................434

[APPENDIX] B INSTALLING THE images LIBRARY 437

[APPENDIX] C API FOR IMAGE PROCESSING 439

[APPENDIX] D TRANSITION FROM PYTHON TO JAVA AND C++ 441

GLOSSARY 443

INDEX 455

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PREFACE
Welcome to Fundamentals of Python: First Programs. This text is intended for a
course in programming and problem-solving. It covers the material taught in a
typical Computer Science 1 course (CS1) at the undergraduate level.

This book covers five major aspects of computing:

1 Programming Basics—Data types, control structures, algorithm devel-
opment, and program design with functions are basic ideas that you need
to master in order to solve problems with computers. This book exam-
ines these core topics in detail and gives you practice employing your
understanding of them to solve a wide range of problems.

2 Object-Oriented Programming (OOP)—Object-Oriented
Programming is the dominant programming paradigm used to develop
large software systems. This book introduces you to the fundamental
principles of OOP and enables you to apply them successfully.

3 Data and Information Processing—Most useful programs rely on data
structures to solve problems. These data structures include strings,
arrays, files, lists, and dictionaries. This book introduces you to these
commonly used data structures, with examples that illustrate criteria for
selecting the appropriate data structures for given problems.

4 Software Development Life Cycle—Rather than isolate software
development techniques in one or two chapters, this book deals with
them throughout in the context of numerous case studies. Among other
things, you’ll learn that coding a program is often not the most difficult
or challenging aspect of problem solving and software development.

5 Contemporary Applications of Computing—The best way to learn
about programming and problem solving is to create interesting programs
with real-world applications. In this book, you’ll begin by creating applica-
tions that involve numerical problems and text processing. For example,
you’ll learn the basics of encryption techniques such as those that are used
to make your credit card number and other information secure on the
Internet. But unlike many other introductory texts, this one does not
restrict itself to problems involving numbers and text. Most contemporary
applications involve graphical user interfaces, event-driven programming,
graphics, and network communications. These topics are presented in
optional, standalone chapters.

PREFACE [xiii]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PREFACE[xiv]

Why Python?
Computer technology and applications have become increasingly more sophisti-
cated over the past two decades, and so has the computer science curriculum, espe-
cially at the introductory level. Today’s students learn a bit of programming and
problem–solving, and are then expected to move quickly into topics like software
development, complexity analysis, and data structures that, twenty years ago, were
relegated to advanced courses. In addition, the ascent of object-oriented program-
ming as the dominant paradigm of problem solving has led instructors and text-
book authors to bring powerful, industrial-strength programming languages such as
C++ and Java into the introductory curriculum. As a result, instead of experiencing
the rewards and excitement of solving problems with computers, beginning com-
puter science students often become overwhelmed by the combined tasks of mas-
tering advanced concepts as well as the syntax of a programming language.

This book uses the Python programming language as a way of making the
first year of computer science more manageable and attractive for students and
instructors alike. Python has the following pedagogical benefits:

� Python has simple, conventional syntax. Python statements are very close to
those of pseudocode algorithms, and Python expressions use the conven-
tional notation found in algebra. Thus, students can spend less time learn-
ing the syntax of a programming language and more time learning to solve
interesting problems.

� Python has safe semantics. Any expression or statement whose meaning
violates the definition of the language produces an error message.

� Python scales well. It is very easy for beginners to write simple programs in
Python. Python also includes all of the advanced features of a modern pro-
gramming language, such as support for data structures and object-oriented
software development, for use when they become necessary.

� Python is highly interactive. Expressions and statements can be entered at
an interpreter’s prompts to allow the programmer to try out experimental
code and receive immediate feedback. Longer code segments can then be
composed and saved in script files to be loaded and run as modules or
standalone applications.

� Python is general purpose. In today’s context, this means that the language
includes resources for contemporary applications, including media comput-
ing and networks.

� Python is free and is in widespread use in industry. Students can download
Python to run on a variety of devices. There is a large Python user com-
munity, and expertise in Python programming has great resume value.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To summarize these benefits, Python is a comfortable and flexible vehicle for
expressing ideas about computation, both for beginners and for experts as well. If
students learn these ideas well in the first course, they should have no problems
making a quick transition to other languages needed for courses later in the cur-
riculum. Most importantly, beginning students will spend less time staring at a
computer screen and more time thinking about interesting problems to solve.

Organization of the Book
The approach of this text is easygoing, with each new concept introduced only
when it is needed.

Chapter 1 introduces computer science by focusing on two fundamental
ideas, algorithms and information processing. A brief overview of computer hard-
ware and software, followed by an extended discussion of the history of comput-
ing, sets the context for computational problem solving.

Chapters 2 and 3 cover the basics of problem solving and algorithm develop-
ment using the standard control structures of expression evaluation, sequencing,
Boolean logic, selection, and iteration with the basic numeric data types.
Emphasis in these chapters is on problem solving that is both systematic and
experimental, involving algorithm design, testing, and documentation.

Chapters 4 and 5 introduce the use of the strings, text files, lists, and diction-
aries. These data structures are both remarkably easy to manipulate in Python
and support some interesting applications. Chapter 5 also introduces simple func-
tion definitions as a way of organizing algorithmic code.

Chapter 6 explores the technique and benefits of procedural abstraction with
function definitions. Top-down design, stepwise refinement, and recursive design
with functions are examined as means of structuring code to solve complex prob-
lems. Details of namespace organization (parameters, temporary variables, and
module variables) and communication among software components are discussed.
An optional section on functional programming with higher-order functions
shows how to exploit functional design patterns to simplify solutions.

Chapter 7 focuses on the use of existing objects and classes to compose pro-
grams. Special attention is paid to the interface, or set of methods, of a class of
objects and the manner in which objects cooperate to solve problems. This chapter
also introduces two contemporary applications of computing, graphics and image
processing—areas in which object-based programming is particularly useful.

PREFACE [xv]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PREFACE[xvi]

Chapter 8 introduces object-oriented design with class and method defini-
tions. Several examples of simple class definitions from different application
domains are presented. Some of these are then integrated into more realistic
applications, to show how object-oriented software components can be used to
build complex systems. Emphasis is on designing appropriate interfaces for
classes that exploit inheritance and polymorphism.

Chapters 9 and 10 cover advanced material related to two important areas of
computing: graphical user interfaces and networks. Although these two chapters
are entirely optional, they give students challenging experiences at the end of the
first course. Chapter 9 contrasts the event-driven model of GUI programs with
the process-driven model of terminal-based programs. The creation and layout of
GUI components are explored, as well as the decomposition of a GUI-based pro-
gram using the model/view/controller pattern. Chapter 10 introduces multi-
threaded programs and the construction of simple network-based client/server
applications.

Chapter 11 covers some topics addressed at the beginning of a traditional
CS2 course, and is available on the publisher’s Web site. This chapter introduces
complexity analysis with big-O notation. Enough material is presented to enable
you to perform simple analyses of the running time and memory usage of algo-
rithms and data structures, using search and sort algorithms as examples.

Special Features
This book explains and develops concepts carefully, using frequent examples and
diagrams. New concepts are then applied in complete programs to show how
they aid in solving problems. The chapters place an early and consistent emphasis
on good writing habits and neat, readable documentation.

The book includes several other important features:
� Case studies—These present complete Python programs ranging from the

simple to the substantial. To emphasize the importance and usefulness of
the software development life cycle, case studies are discussed in the frame-
work of a user request, followed by analysis, design, implementation, and
suggestions for testing, with well-defined tasks performed at each stage.
Some case studies are extended in end-of-chapter programming projects.

� Chapter objectives and chapter summaries—Each chapter begins with a set
of learning objectives and ends with a summary of the major concepts cov-
ered in the chapter.

� Key terms and a glossary—When a technical term is introduced in the text,
it appears in boldface. Definitions of the key terms are also collected in a
glossary.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� Exercises—Most major sections of each chapter end with exercise ques-
tions that reinforce the reading by asking basic questions about the mate-
rial in the section. Each chapter ends with a set of review exercises.

� Programming projects—Each chapter ends with a set of programming
projects of varying difficulty.

� A software toolkit for image processing—This book comes with an open-
source Python toolkit for the easy image processing discussed in Chapter 7.
The toolkit can be obtained from the student downloads page on
www.course.com, or at http://home.wlu.edu/~lambertk/python/

� Appendices—Three appendices include information on obtaining Python
resources, installing the toolkit, and using the toolkit’s interface.

Supplemental Resources
The following supplemental materials are available when this book is used in a
classroom setting. All of the teaching tools available with this book are provided
to the instructor on a single CD-ROM.

Electronic Instructor’s Manual
The Instructor’s Manual that accompanies this textbook includes:

� Additional instructional material to assist in class preparation, including
suggestions for lecture topics.

� Solutions to all the end-of-chapter materials, including the Programming
Exercises.

ExamView®

This textbook is accompanied by ExamView, a powerful testing software package
that allows instructors to create and administer printed, computer (LAN-based),
and Internet exams. ExamView includes hundreds of questions that correspond to
the topics covered in this text, enabling students to generate detailed study guides
that include page references for further review. These computer-based and
Internet testing components allow students to take exams at their computers, and
save the instructor time because each exam is graded automatically.

PowerPoint Presentations
This book comes with Microsoft PowerPoint slides for each chapter. These are
included as a teaching aid either to make available to students on the network for
chapter review, or to be used during classroom presentations. Instructors can
modify slides or add their own slides to tailor their presentations.

PREFACE [xvii]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PREFACE[xviii]

Distance Learning
Course Technology is proud to offer online courses in WebCT and Blackboard.
For more information on how to bring distance learning to your course, contact
your local Cengage Learning sales representative.

Source Code
The source code is available at www.cengagebrain.com—and also is available on the
Instructor Resources CD-ROM. If an input file is needed to run a program, it is
included with the source code.

Solution files
The solution files for all programming exercises are available at www.cengagebrain.com
and are available on the Instructor Resources CD-ROM. If an input file is needed to
run a programming exercise, it is included with the solution file.

We Appreciate Your Feedback
We have tried to produce a high-quality text, but should you encounter any
errors, please report them to lambertk@wlu.edu or computerscience@cengage.com. A
list of errata, should they be found, as well as other information about the book,
will be posted on the Web site http://home.wlu.edu/~lambertk/python/ and with the
student resources at www.cengagebrain.com.

Acknowledgments
I would like to thank my contributing author, Martin Osborne, for many years of
advice, friendly criticism, and encouragement on several of my book projects. To
my colleague, Joshua Stough, and our students at Washington and Lee University for
classroom testing this book over several semesters.

In addition, I would like to thank the following reviewers for the time and
effort they contributed to Fundamentals of Python: Paul Albee, Central Michigan
University; Andrew Danner, Swarthmore College; Susan Fox, Macalester
College; Robert Franks, Central College; and Jim Slack, Minnesota State
University, Mankato. Also, thank you to the following reviewers who contributed
their thoughts on the original book proposal: Christian Blouin, Dalhousie
University; Margaret Iwobi, Binghamton University; Sam Midkiff, Purdue
University; and Ray Morehead, West Virginia University.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Also, thank you to the individuals at Course Technology who helped to assure
that the content of all data and solution files used for this text were correct and
accurate: Chris Scriver, MQA Project Leader and Serge Palladino, MQA Tester.

Finally, thanks to several other people whose work made this book possible:
Ann Shaffer, Developmental Editor; Brandi Shailer, Acquisitions Editor, Course
Technology; Alyssa Pratt, Senior Product Manager, Course Technology; and
Jennifer Feltri, Content Project Manager, Course Technology.

Dedication
To my students in Computer Science 111
Kenneth A. Lambert

Lexington, VA

PREFACE [xix]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

After completing this chapter, you will be able to
� Describe the basic features of an algorithm
� Explain how hardware and software collaborate in a com-

puter’s architecture
� Give a brief history of computing
� Compose and run a simple Python program
As a reader of this book, you almost certainly have played a

video game and listened to music on a CD player. It’s likely that you
have watched a movie on a DVD player and prepared a snack in a
microwave oven. Chances are that you have made at least one phone
call to or from a cell phone. You and your friends have most likely
used a desktop computer or a laptop computer, not to mention digi-
tal cameras and handheld music and video players.

All of these devices have something in common: they are or
contain computers. Computer technology makes them what they
are. Devices that rely on computer technology are almost every-
where, not only in our homes, but also in our schools, where we
work, and where we play. Computer technology plays an important
role in entertainment, education, medicine, manufacturing, commu-
nications, government, and commerce. It has been said that we have
digital lifestyles and that we live in an information age with an infor-
mation-based economy. Some people even claim that nature itself
performs computations on information structures present in DNA
and in the relationships among subatomic particles.

It’s difficult to imagine our world without computers, although
we don’t think about the actual computers very much. It’s also hard
to imagine that the human race did without computer technology

[CHAPTER] Introduction 1

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

for thousands of years, and that the world as we know it has been so involved in
and with computer technology for only the past 25 years or so.

In the chapters that follow, you will learn about computer science, which is
the study of computation that has made this new technology and this new world
possible. You will also learn how to use computers effectively and appropriately to
enhance your own life and the lives of others.

1.1 Two Fundamental Ideas of Computer
Science: Algorithms and Information
Processing
Like most areas of study, computer science focuses on a broad set of interrelated
ideas. Two of the most basic ones are algorithms and information processing.
In this section, these ideas are introduced in an informal way. We will examine
them in more detail in later chapters.

1.1.1 Algorithms

People computed long before the invention of modern computing devices, and
many continue to use computing devices that we might consider primitive. For
example, consider how merchants made change for customers in marketplaces
before the existence of credit cards, pocket calculators, or cash registers. Making
change can be a complex activity. It probably took you some time to learn how to
do it, and it takes some mental effort to get it right every time. Let’s consider
what’s involved in this process.

The first step is to compute the difference between the purchase price and
the amount of money that the customer gives the merchant. The result of this
calculation is the total amount that the merchant must return to the purchaser.
For example, if you buy a dozen eggs at the farmers’ market for $2.39 and you
give the farmer a $10 bill, she should return $7.61 to you. To produce this
amount, the merchant selects the appropriate coins and bills that, when added to
$2.39, make $10.00.

Few people can subtract three-digit numbers without resorting to some man-
ual aids, such as pencil and paper. As you learned in grade school, you can carry
out subtraction with pencil and paper by following a sequence of well-defined
steps. You have probably done this many times but never made a list of the

CHAPTER 1 Introduction[2]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

specific steps involved. Making such lists to solve problems is something com-
puter scientists do all the time. For example, the following list of steps describes
the process of subtracting two numbers using a pencil and paper:

Step 1 Write down the two numbers, with the larger number above the
smaller number and their digits aligned in columns from the right.

Step 2 Assume that you will start with the rightmost column of digits and
work your way left through the various columns.

Step 3 Write down the difference between the two digits in the current
column of digits, borrowing a 1 from the top number’s next column
to the left if necessary.

Step 4 If there is no next column to the left, stop. Otherwise, move to the
next column to the left, and go to Step 3.

If the computing agent (in this case a human being) follows each of these
simple steps correctly, the entire process results in a correct solution to the given
problem. We assume in Step 3 that the agent already knows how to compute the
difference between the two digits in any given column, borrowing if necessary.

To make change, most people can select the combination of coins and bills
that represent the correct change amount without any manual aids, other than
the coins and bills. But the mental calculations involved can still be described in a
manner similar to the preceding steps, and we can resort to writing them down
on paper if there is a dispute about the correctness of the change.

The sequence of steps that describes each of these computational processes is
called an algorithm. Informally, an algorithm is like a recipe. It provides a set of
instructions that tells us how to do something, such as make change, bake bread,
or put together a piece of furniture. More precisely, an algorithm describes a
process that ends with a solution to a problem. The algorithm is also one of the
fundamental ideas of computer science. An algorithm has the following features:

1 An algorithm consists of a finite number of instructions.

2 Each individual instruction in an algorithm is well defined. This means that
the action described by the instruction can be performed effectively or be
executed by a computing agent. For example, any computing agent capa-
ble of arithmetic can compute the difference between two digits. So an
algorithmic step that says “compute the difference between two digits”
would be well defined. On the other hand, a step that says “divide a number
by 0” is not well defined, because no computing agent could carry it out.

1.1 Two Fundamental Ideas of Computer Science: Algorithms and Information Processing [3]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3 An algorithm describes a process that eventually halts after arriving at a
solution to a problem. For example, the process of subtraction halts after
the computing agent writes down the difference between the two digits
in the leftmost column of digits.

4 An algorithm solves a general class of problems. For example, an algo-
rithm that describes how to make change should work for any two
amounts of money whose difference is greater than or equal to $0.00.

Creating a list of steps that describe how to make change might not seem like
a major accomplishment to you. But the ability to break a task down into its com-
ponent parts is one of the main jobs of a computer programmer. Once we write
an algorithm to describe a particular type of computation, a machine can be built
to do the computing. Put another way, if we can develop an algorithm to solve a
problem, we can automate the task of solving the problem. You might not feel
compelled to write a computer program to automate the task of making change,
because you can probably already make change yourself fairly easily. But suppose
you needed to do a more complicated task—such as sorting a list of 100 names.
In that case, a computer program would be very handy.

Computers can be designed to run a small set of algorithms for performing
specialized tasks such as operating a microwave oven. But we can also build com-
puters, like the one on your desktop, that are capable of performing a task
described by any algorithm. These computers are truly general-purpose problem-
solving machines. They are unlike any machines we have ever built before, and
they have formed the basis of the completely new world in which we live.

Later in this book, we introduce a notation for expressing algorithms and
some suggestions for designing algorithms. You will see that algorithms and algo-
rithmic thinking are critical underpinnings of any computer system.

1.1.2 Information Processing

Since human beings first learned to write several thousand years ago, they have
processed information. Information itself has taken many forms in its history, from
the marks impressed on clay tablets in ancient Mesopotamia, to the first written
texts in ancient Greece, to the printed words in the books, newspapers, and maga-
zines mass-produced since the European Renaissance, to the abstract symbols of
modern mathematics and science used during the past 350 years. Only recently,
however, have human beings developed the capacity to automate the processing of
information by building computers. In the modern world of computers, informa-
tion is also commonly referred to as data. But what is information?

CHAPTER 1 Introduction[4]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Like mathematical calculations, information processing can be described with
algorithms. In our earlier example of making change, the subtraction steps
involved manipulating symbols used to represent numbers and money. In carry-
ing out the instructions of any algorithm, a computing agent manipulates infor-
mation. The computing agent starts with some given information (known as
input), transforms this information according to well-defined rules, and produces
new information, known as output.

It is important to recognize that the algorithms that describe information
processing can also be represented as information. Computer scientists have been
able to represent algorithms in a form that can be executed effectively and effi-
ciently by machines. They have also designed real machines, called electronic
digital computers, which are capable of executing algorithms.

Computer scientists more recently discovered how to represent many other
things, such as images, music, human speech, and video, as information. Many of
the media and communication devices that we now take for granted would be
impossible without this new kind of information processing. We examine many of
these achievements in more detail in later chapters.

1.1 Exercises
These short end-of-section exercises are intended to stimulate your thinking
about computing.

1 List three common types of computing agents.

2 Write an algorithm that describes the second part of the process of mak-
ing change (counting out the coins and bills).

3 Write an algorithm that describes a common task, such as baking a cake
or operating a DVD player.

4 Describe an instruction that is not well defined and thus could not be
included as a step in an algorithm. Give an example of such an instruction.

5 In what sense is a desktop computer a general-purpose problem-solving
machine?

6 List four devices that use computers and describe the information that
they process. (Hint: Think of the inputs and outputs of the devices.)

1.1 Two Fundamental Ideas of Computer Science: Algorithms and Information Processing [5]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.2 The Structure of a Modern Computer
System
We now give a brief overview of the structure of modern computer systems. A
modern computer system consists of hardware and software. Hardware consists
of the physical devices required to execute algorithms. Software is the set of these
algorithms, represented as programs in particular programming languages. In
the discussion that follows, we focus on the hardware and software found in a
typical desktop computer system, although similar components are also found in
other computer systems, such as handheld devices and ATMs (automatic teller
machines).

1.2.1 Computer Hardware

The basic hardware components of a computer are memory, a central processing
unit (CPU), and a set of input/output devices, as shown in Figure 1.1.

[FIGURE 1.1] Hardware components of a modern computer system

Human users primarily interact with the input and output devices. The input
devices include a keyboard, a mouse, and a microphone. Common output devices
include a monitor and speakers. Computers can also communicate with the exter-
nal world through various ports that connect them to networks and to other
devices such as handheld music players and digital cameras. The purpose of most
of the input devices is to convert information that human beings deal with, such
as text, images, and sounds, into information for computational processing. The
purpose of most output devices is to convert the results of this processing back to
human-usable form.

Input device Output device

CPU

Memory

CHAPTER 1 Introduction[6]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Computer memory is set up to represent and store information in electronic
form. Specifically, information is stored as patterns of binary digits (1s and 0s).
To understand how this works, consider a basic device such as a light switch,
which can only be in one of two states, on or off. Now suppose there is a bank of
switches that control 16 small lights in a row. By turning the switches off or on,
we can represent any pattern of 16 binary digits (1s and 0s) as patterns of lights
that are on or off. As we will see later in this book, computer scientists have dis-
covered how to represent any information, including text, images, and sound, in
binary form.

Now, suppose there are 8 of these groups of 16 lights. We can select any
group of lights and examine or change the state of each light within that collec-
tion. We have just developed a tiny model of computer memory. This memory
has 8 cells, each of which can store 16 bits of binary information. A diagram of
this model, in which the memory cells are filled with binary digits, is shown in
Figure 1.2. This memory is also sometimes called primary or internal or
random access memory (RAM).

[FIGURE 1.2] A model of computer memory

The information stored in memory can represent any type of data, such as
numbers, text, images, or sound, or the instructions of a program. We can also
store in memory an algorithm encoded as binary instructions for the computer.
Once the information is stored in memory, we typically want to do something
with it—that is, we want to process it. The part of a computer that is responsible
for processing data is the central processing unit (CPU). This device, which is
also sometimes called a processor, consists of electronic switches arranged to
perform simple logical, arithmetic, and control operations. The CPU executes an
algorithm by fetching its binary instructions from memory, decoding them, and
executing them. Executing an instruction might involve fetching other binary
information—the data—from memory as well.

1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1
1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
1 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1
1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1
0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0

Cell 7
Cell 6
Cell 5
Cell 4
Cell 3
Cell 2
Cell 1
Cell 0

1.2 The Structure of a Modern Computer System [7]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The processor can locate data in a computer’s primary memory very quickly.
However, these data exist only as long as electric power comes into the computer.
If the power fails or is turned off, the data in primary memory are lost. Clearly, a
more permanent type of memory is needed to preserve data. This more perma-
nent type of memory is called external or secondary memory, and it comes in
several forms. Magnetic storage media, such as tapes and hard disks, allow bit
patterns to be stored as patterns on a magnetic field. Semiconductor storage
media, such as flash memory sticks, perform much the same function with a dif-
ferent technology, as do optical storage media, such as CDs and DVDs. Some
of these secondary storage media can hold much larger quantities of information
than the internal memory of a computer.

1.2.2 Computer Software

You have learned that a computer is a general-purpose, problem-solving machine.
To solve any computable problem, a computer must be capable of executing any
algorithm. Because it is impossible to anticipate all of the problems for which
there are algorithmic solutions, there is no way to “hardwire” all potential algo-
rithms into a computer’s hardware. Instead, we build some basic operations into
the hardware’s processor and require any algorithm to use them. The algorithms
are converted to binary form and then loaded, with their data, into the com-
puter’s memory. The processor can then execute the algorithms’ instructions by
running the hardware’s more basic operations.

Any programs that are stored in memory so that they can be executed later
are called software. A program stored in computer memory must be represented
in binary digits, which is also known as machine code. Loading machine code
into computer memory one digit at a time would be a tedious, error-prone task
for human beings. It would be convenient if we could automate this process to
get it right every time. For this reason, computer scientists have developed
another program, called a loader, to perform this task. A loader takes a set of
machine language instructions as input and loads them into the appropriate
memory locations. When the loader is finished, the machine language program is
ready to execute. Obviously, the loader cannot load itself into memory, so this is
one of those algorithms that must be hardwired into the computer.

Now that a loader exists, we can load and execute other programs that make
the development, execution, and management of programs easier. This type of
software is called system software. The most important example of system soft-
ware is a computer’s operating system. You are probably already familiar with at
least one of the most popular operating systems, such as Linux, Apple’s Mac OS,

CHAPTER 1 Introduction[8]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and Microsoft Windows. An operating system is responsible for managing and
scheduling several concurrently running programs. It also manages the com-
puter’s memory, including the external storage, and manages communications
between the CPU, the input/output devices, and other computers on a network.
An important part of any operating system is its file system, which allows human
users to organize their data and programs in permanent storage. Another impor-
tant function of an operating system is to provide user interfaces—that is, ways
for the human user to interact with the computer’s software. A terminal-based
interface accepts inputs from a keyboard and displays text output on a monitor
screen. A modern graphical user interface (GUI) organizes the monitor screen
around the metaphor of a desktop, with windows containing icons for folders,
files, and applications. This type of user interface also allows the user to manipu-
late images with a pointing device such as a mouse.

Another major type of software is called applications software, or simply
applications. An application is a program that is designed for a specific task, such
as editing a document or displaying a Web page. Applications include Web
browsers, word processors, spreadsheets, database managers, graphic design pack-
ages, music production systems, and games, among many others. As you begin to
learn to write computer programs, you will focus on writing simple applications.

As you have learned, computer hardware can execute only instructions that
are written in binary form—that is, in machine language. Writing a machine lan-
guage program, however, would be an extremely tedious, error-prone task. To
ease the process of writing computer programs, computer scientists have devel-
oped high-level programming languages for expressing algorithms. These lan-
guages resemble English and allow the author to express algorithms in a form
that other people can understand.

A programmer typically starts by writing high-level language statements in a
text editor. The programmer then runs another program called a translator to
convert the high-level program code into executable code. Because it is possible
for a programmer to make grammatical mistakes even when writing high-level
code, the translator checks for syntax errors before it completes the translation
process. If it detects any of these errors, the translator alerts the programmer via
error messages. The programmer then has to revise the program. If the transla-
tion process succeeds without a syntax error, the program can be executed by the
run-time system. The run-time system might execute the program directly on
the hardware or run yet another program called an interpreter or virtual
machine to execute the program. Figure 1.3 shows the steps and software used in
the coding process.

1.2 The Structure of a Modern Computer System [9]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 1.3] Software used in the coding process

1.2 Exercises
1 List two examples of input devices and two examples of output devices.

2 What does the central processing unit (CPU) do?

3 How is information represented in hardware memory?

4 What is the difference between a terminal-based interface and a graphical
user interface?

5 What role do translators play in the programming process?

1.3 A Not-So-Brief History of Computing
Systems
Now that we have in mind some of the basic ideas of computing and computer
systems, let’s take a moment to examine how they have taken shape in history.
Figure 1.4 summarizes some of the major developments in the history of comput-
ing. The discussion that follows provides more details about these developments.

Create high-level
language program

User inputs

Other error messages

Syntax error messages

Program
outputs

Text editor Translator

Run-time
system

CHAPTER 1 Introduction[10]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

[FIGURE 1.4] Summary of major developments in the history of computing

1.3.1 Before Electronic Digital Computers

Ancient mathematicians developed the first algorithms. The word “algorithm”
comes from the name of a Persian mathematician, Muhammad ibn Musa
Al-Khawarizmi, who wrote several mathematics textbooks in the ninth century.

Before 1800
Approximate Dates Major Developments

Mathematicians develop and use algorithms
Abacus used as a calculating aide
First mechanical calculators built by Pascal and Leibniz
Jacquard’s loom
Babbage’s Analytical Engine
Boole’s system of logic
Hollerith’s punch card machine

1930s Turing publishes results on computability
Shannon’s theory of information and digital switching

1940s First electronic digital computers
1950s First symbolic programming languages

Transistors make computers smaller, faster, more durable,
less expensive
Emergence of data-processing applications

1800–1930

Integrated circuits accelerate the miniaturization of hardware
First minicomputers
Time-sharing operating systems
Interactive user interfaces with keyboards and monitors
Proliferation of high-level programming languages
Emergence of a software industry and the academic study of
computer science and computer engineering

1975–1990 First microcomputers and mass-produced personal computers
Graphical user interfaces become widespread
Networks and the Internet

1990s Optical storage for multimedia applications, images, sound,
and video
World Wide Web and e-commerce
Laptop computers

2000–present Embedded computing
Wireless computing
Computers used in enormous variety of cars, household
appliances, and industrial equipment

1960–1975

1.3 A Not-So-Brief History of Computing Systems [11]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

About 2,300 years ago, the Greek mathematician Euclid, the inventor of geome-
try, developed an algorithm for computing the greatest common divisor of two
numbers.

A device known as the abacus also appeared in ancient times. The abacus
helped people perform simple arithmetic. Users calculated sums and differences
by sliding beads on a grid of wires (see Figure 1.5a). The configuration of beads
on the abacus served as the data.

[a]

[b]

CHAPTER 1 Introduction[12]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[c]
[FIGURE 1.5] Some early computing devices

In the seventeenth century, the French mathematician Blaise Pascal
(1623–1662) built one of the first mechanical devices to automate the process of

1.3 A Not-So-Brief History of Computing Systems [13]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

addition (see Figure 1.5b). The addition operation was embedded in the configu-
ration of gears within the machine. The user entered the two numbers to be
added by rotating some wheels. The sum or output number appeared on another
rotating wheel. The German mathematician Gottfried Leibnitz (1646–1716) built
another mechanical calculator that included other arithmetic functions such as
multiplication. Leibnitz, who with Newton also invented calculus, went on to
propose the idea of computing with symbols as one of our most basic and general
intellectual activities. He argued for a universal language in which one could
solve any problem by calculating.

Early in the nineteenth century, the French engineer Joseph Jacquard
(1752–1834) designed and constructed a machine that automated the process of
weaving (see Figure 1.5c). Until then, each row in a weaving pattern had to be set
up by hand, a quite tedious, error-prone process. Jacquard’s loom was designed to
accept input in the form of a set of punched cards. Each card described a row in a
pattern of cloth. Although it was still an entirely mechanical device, Jacquard’s
loom possessed something that previous devices had lacked—the ability to exe-
cute an algorithm automatically. The set of cards expressed the algorithm or set
of instructions that controlled the behavior of the loom. If the loom operator
wanted to produce a different pattern, he just had to run the machine with a dif-
ferent set of cards.

The British mathematician Charles Babbage (1792–1871) took the concept of
a programmable computer a step further by designing a model of a machine that,
conceptually, bore a striking resemblance to a modern general-purpose computer.
Babbage conceived his machine, which he called the Analytical Engine, as a
mechanical device. His design called for four functional parts: a mill to perform
arithmetic operations, a store to hold data and a program, an operator to run the
instructions from punched cards, and an output to produce the results on
punched cards. Sadly, Babbage’s computer was never built. The project perished
for lack of funds near the time when Babbage himself passed away.

In the last two decades of the nineteenth century, a U.S. Census Bureau stat-
istician named Herman Hollerith (1860–1929) developed a machine that auto-
mated data processing for the U.S. Census. Hollerith’s machine, which had the
same component parts as Babbage’s Analytical Engine, simply accepted a set of
punched cards as input and then tallied and sorted the cards. His machine greatly
shortened the time it took to produce statistical results on the U.S. population.
Government and business organizations seeking to automate their data process-
ing quickly adopted Hollerith’s punched card machines. Hollerith was also one of
the founders of a company that eventually became IBM (International Business
Machines).

Also in the nineteenth century, the British secondary school teacher George
Boole (1815–1864) developed a system of logic. This system consisted of a pair of

CHAPTER 1 Introduction[14]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

values, TRUE and FALSE, and a set of three primitive operations on these val-
ues, AND, OR, and NOT. Boolean logic eventually became the basis for design-
ing the electronic circuitry to process binary information.

A half a century later, in the 1930s, the British mathematician Alan Turing
(1912–1954) explored the theoretical foundations and limits of algorithms and
computation. Turing’s essential contributions were to develop the concept of a
universal machine that could be specialized to solve any computable problems,
and to demonstrate that some problems are unsolvable by computers.

1.3.2 The First Electronic Digital Computers (1940–1950)

In the late 1930s, Claude Shannon (1916–2001), a mathematician and electrical
engineer at MIT, wrote a classic paper titled “A Symbolic Analysis of Relay and
Switching Circuits.” In this paper, he showed how operations and information in
other systems, such as arithmetic, could be reduced to Boolean logic and then to
hardware. For example, if the Boolean values TRUE and FALSE were written as
the binary digits 1 and 0, one could write a sequence of logical operations that
computes the sum of two strings of binary digits. All that was required to build an
electronic digital computer was the ability to represent binary digits as on/off
switches and to represent the logical operations in other circuitry.

The needs of the combatants in World War II pushed the development of
computer hardware into high gear. Several teams of scientists and engineers in
the United States, England, and Germany independently created the first genera-
tion of general-purpose digital electronic computers during the 1940s. All of
these scientists and engineers used Shannon’s innovation of expressing binary dig-
its and logical operations in terms of electronic switching devices. Among these
groups was a team at Harvard University under the direction of Howard Aiken.
Their computer, called the Mark I, became operational in 1944 and did mathe-
matical work for the U.S. Navy during the war. The Mark I was considered an
electromechanical device, because it used a combination of magnets, relays, and
gears to store and process data.

Another team under J. Presper Eckert and John Mauchly, at the University
of Pennsylvania, produced a computer called the ENIAC (Electronic Numerical
Integrator and Calculator). The ENIAC calculated ballistics tables for the
artillery of the U.S. Army toward the end of the war. Because the ENIAC used
entirely electronic components, it was almost a thousand times faster than the
Mark I.

Two other electronic digital computers were completed a bit earlier than the
ENIAC. They were the ABC (Atanasoff-Berry Computer), built by John
Atanasoff and Clifford Berry at Iowa State University in 1942, and the Colossus,

1.3 A Not-So-Brief History of Computing Systems [15]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

constructed by a group working under Alan Turing in England in 1943. The
ABC was created to solve systems of simultaneous linear equations. Although the
ABC’s function was much narrower than that of the ENIAC, the ABC is now
regarded as the first electronic digital computer. The Colossus, whose existence
had been top secret until recently, was used to crack the powerful German
Enigma code during the war.

The first electronic digital computers, sometimes called mainframe
computers, consisted of vacuum tubes, wires, and plugs, and filled entire rooms.
Although they were much faster than people at computing, by our own current
standards, they were extraordinarily slow and prone to breakdown. Moreover, the
early computers were extremely difficult to program. To enter or modify a pro-
gram, a team of workers had to rearrange the connections among the vacuum
tubes by unplugging and replugging the wires. Each program was loaded by liter-
ally hardwiring it into the computer. With thousands of wires involved, it was
easy to make a mistake.

The memory of these first computers stored only data, not the program that
processed the data. As we have seen, the idea of a stored program first appeared
100 years earlier in Jacquard’s loom and in Babbage’s design for the Analytical
Engine. In 1946, John von Neumann realized that the instructions of the pro-
grams could also be stored in binary form in an electronic digital computer’s
memory. His research group at Princeton developed one of the first modern
stored-program computers.

Although the size, speed, and applications of computers have changed dra-
matically since those early days, the basic architecture and design of the elec-
tronic digital computer have remained remarkably stable.

1.3.3 The First Programming Languages (1950–1965)

The typical computer user now runs many programs, made up of millions of lines
of code, that perform what would have seemed like magical tasks 20 or 30 years
ago. But the first digital electronic computers had no software as we think of it
today. The machine code for a few relatively simple and small applications had to
be loaded by hand. As the demand for larger and more complex applications
grew, so did the need for tools to expedite the programming process.

In the early 1950s, computer scientists realized that a symbolic notation
could be used instead of machine code, and the first assembly languages
appeared. The programmers would enter mnemonic codes for operations, such as
ADD and OUTPUT, and for data variables, such as SALARY and RATE, at a
keypunch machine. The keystrokes punched a set of holes in a small card for
each instruction. The programmers then carried their stacks of cards to a system

CHAPTER 1 Introduction[16]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

operator, who placed them in a device called a card reader. This device trans-
lated the holes in the cards to patterns in the computer’s memory. A program
called an assembler then translated the application programs in memory to
machine code, and they were executed.

Programming in assembly language was a definite improvement over pro-
gramming in machine code. The symbolic notation used in assembly languages
was easier for people to read and understand. Another advantage was that the
assembler could catch some programming errors before the program actually
executed. However, the symbolic notation still appeared a bit arcane when com-
pared with the notations of conventional mathematics. To remedy this problem,
John Backus, a programmer working for IBM, developed FORTRAN (Formula
Translation Language) in 1954. Programmers, many of whom were mathemati-
cians, scientists, and engineers, could now use conventional algebraic notation.
FORTRAN programmers still entered their programs on a keypunch machine,
but the computer executed them after they were translated to machine code by a
compiler.

FORTRAN was considered ideal for numerical and scientific applications.
However, expressing the kind of data used in data processing—in particular, tex-
tual information—was difficult. For example, FORTRAN was not practical for
processing information that included people’s names, addresses, Social Security
numbers, and the financial data of corporations and other institutions. In the
early 1960s, a team led by Rear Admiral Grace Murray Hopper developed
COBOL (Common Business Oriented Language) for data processing in the
United States Government. Banks, insurance companies, and other institutions
were quick to adopt its use in data-processing applications.

Also in the late 1950s and early 1960s, John McCarthy, a computer scientist
at MIT, developed a powerful and elegant notation called LISP (List Processing)
for expressing computations. Based on a theory of recursive functions (a subject
covered in Chapter 6 of this book), LISP captured the essence of symbolic infor-
mation processing. A student of McCarthy’s, Stephen “Slug” Russell, coded the
first interpreter for LISP in 1960. The interpreter accepted LISP expressions
directly as inputs, evaluated them, and printed their results. In its early days,
LISP was used primarily for laboratory experiments in an area of research known
as artificial intelligence. More recently, LISP has been touted as an ideal lan-
guage for solving any difficult or complex problems.

Although they were among the first high-level programming languages,
FORTAN and LISP have survived for decades. They have undergone many mod-
ifications to improve their capabilities and have served as models for the develop-
ment of many other programming languages. COBOL, by contrast, is no longer
in active use but has survived mainly in the form of legacy programs that must
still be maintained.

1.3 A Not-So-Brief History of Computing Systems [17]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

These new, high-level programming languages had one feature in common:
abstraction. In science or any other area of enquiry, an abstraction allows human
beings to reduce complex ideas or entities to simpler ones. For example, a set of
10 assembly language instructions might be replaced with an equivalent algebraic
expression that consists of only five symbols in FORTRAN. Put another way, any
time you can say more with less, you are using an abstraction. The use of abstrac-
tion is also found in other areas of computing, such as hardware design and infor-
mation architecture. The complexities don’t actually go away, but the abstractions
hide them from view. The suppression of distracting complexity with abstractions
allows computer scientists to conceptualize, design, and build ever more sophisti-
cated and complex systems.

1.3.4 Integrated Circuits, Interaction, and Timesharing
(1965–1975)

In the late 1950s, the vacuum tube gave way to the transistor as the mechanism
for implementing the electronic switches in computer hardware. As a solid-state
device, the transistor was much smaller, more reliable, more durable, and less
expensive to manufacture than a vacuum tube. Consequently, the hardware com-
ponents of computers generally became smaller in physical size, more reliable, and
less expensive. The smaller and more numerous the switches became, the faster
the processing and the greater the capacity of memory to store information.

The development of the integrated circuit in the early 1960s allowed com-
puter engineers to build ever smaller, faster, and less expensive computer hard-
ware components. They perfected a process of photographically etching
transistors and other solid-state components onto very thin wafers of silicon,
leaving an entire processor and memory on a single chip. In 1965, Gordon
Moore, one of the founders of the computer chip manufacturer Intel, made a
prediction that came to be known as Moore’s Law. This prediction states that
the processing speed and storage capacity of hardware will increase and its cost
will decrease by approximately a factor of 2 every 18 months. This trend has held
true for the past 40 years. For example, there were about 50 electrical compo-
nents on a chip in 1965, whereas by 2000, a chip could hold over 40 million com-
ponents. Without the integrated circuit, men would not have gone to the moon
in 1969, and we would not have the powerful and inexpensive handheld devices
that we now use on a daily basis.

Minicomputers the size of a large office desk appeared in the 1960s. The
means of developing and running programs also were changing. Until then, a
computer was typically located in a restricted area with a single human operator.

CHAPTER 1 Introduction[18]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programmers composed their programs on keypunch machines in another room
or building. They then delivered their stacks of cards to the computer operator,
who loaded them into a card reader, and compiled and ran the programs in
sequence on the computer. Programmers then returned to pick up the output
results, in the form of new stacks of cards or printouts. This mode of operation,
also called batch processing, might cause a programmer to wait days for results,
including error messages.

The increases in processing speed and memory capacity enabled computer
scientists to develop the first time-sharing operating system. John McCarthy,
the creator of the programming language LISP, recognized that a program could
automate many of the functions performed by the human system operator. When
memory, including magnetic secondary storage, became large enough to hold
several users’ programs at the same time, they could be scheduled for concurrent
processing. Each process associated with a program would run for a slice of time
and then yield the CPU to another process. All of the active processes would
repeatedly cycle for a turn with the CPU until they finished.

Several users could now run their own programs simultaneously by entering
commands at separate terminals connected to a single computer. As processor
speeds continued to increase, each user gained the illusion that a time-sharing
computer system belonged entirely to him or her.

By the late 1960s, programmers could enter program input at a terminal and
also see program output immediately displayed on a CRT (Cathode Ray Tube)
screen. Compared to its predecessors, this new computer system was both highly
interactive and much more accessible to its users.

Many relatively small and medium-sized institutions, such as universities,
were now able to afford computers. These machines were used not only for data
processing and engineering applications, but also for teaching and research in the
new and rapidly growing field of computer science.

1.3.5 Personal Computing and Networks (1975–1990)

In the mid-1960s, Douglas Engelbart, a computer scientist working at the
Stanford Research Institute (SRI), first saw one of the ultimate implications of
Moore’s Law: eventually, perhaps within a generation, hardware components
would become small enough and affordable enough to mass produce an individ-
ual computer for every human being. What form would these personal computers
take, and how would their owners use them? Two decades earlier, in 1945,
Engelbart had read an article in The Atlantic Monthly titled “As We May Think”
that had already posed this question and offered some answers. The author,
Vannevar Bush, a scientist at MIT, predicted that computing devices would serve

1.3 A Not-So-Brief History of Computing Systems [19]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

as repositories of information and, ultimately, of all human knowledge. Owners of
computing devices would consult this information by browsing through it with
pointing devices, and contribute information to the knowledge base almost at
will. Engelbart agreed that the primary purpose of the personal computer would
be to augment the human intellect, and he spent the rest of his career designing
computer systems that would accomplish this goal.

During the late 1960s, Engelbart built the first pointing device or mouse. He
also designed software to represent windows, icons, and pull-down menus on a
bit-mapped display screen. He demonstrated that a computer user could not
only enter text at the keyboard but could also directly manipulate the icons that
represent files, folders, and computer applications on the screen.

But for Engelbart, personal computing did not mean computing in isolation.
He participated in the first experiment to connect computers in a network, and
he believed that soon people would use computers to communicate, share infor-
mation, and collaborate on team projects.

Engelbart developed his first experimental system, which he called NLS
(oNLine System) Augment, on a minicomputer at SRI. In the early 1970s, he
moved to Xerox PARC (Palo Alto Research Center) and worked with a team
under Alan Kay to develop the first desktop computer system. Called the Alto,
this system had many of the features of Engelbart’s Augment, as well as e-mail
and a functioning hypertext (a forerunner of the World Wide Web). Kay’s group
also developed a programming language called Smalltalk, which was designed to
create programs for the new computer and to teach programming to children.
Kay’s goal was to develop a personal computer the size of a large notebook,
which he called the Dynabook. Unfortunately for Xerox, the company’s manage-
ment had more interest in photocopy machines than in the work of Kay’s vision-
ary research group. However, a young entrepreneur named Steve Jobs visited the
Xerox lab and saw the Alto in action. In 1984, Apple Computer, the now-famous
company founded by Steve Jobs, brought forth the Macintosh, the first successful
mass-produced personal computer with a graphical user interface.

While Kay’s group was busy building the computer system of the future in
their research lab, dozens of hobbyists gathered near San Francisco to found the
Homebrew Computer Club, the first personal computer users group. They met
to share ideas, programs, hardware, and applications for personal computing. The
first mass-produced personal computer, the Altair, appeared in 1975. The Altair
contained Intel’s 8080 processor, the first microcomputer chip. But from the
outside, the Altair looked and behaved more like a miniature version of the early
computers than the Alto. Programs and their input had to be entered by flipping
switches, and output was displayed by a set of lights. However, the Altair was
small enough for personal computing enthusiasts to carry home, and I/O devices
eventually were invented to support the processing of text and sound.

CHAPTER 1 Introduction[20]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

The Osborne and the Kaypro were among the first mass-produced interactive
personal computers. They boasted tiny display screens and keyboards, with floppy
disk drives for loading system software, applications software, and users’ data files.
Early personal computing applications were word processors, spreadsheets, and
games such as PacMan and SpaceWar!. These computers also ran CP/M (Control
Program for Microcomputers), the first PC-based operating system.

In the early 1980s, a college dropout named Bill Gates and his partner Paul
Allen built their own operating system software, which they called MS-DOS
(Microsoft Disk Operating System). They then arranged a deal with the giant
computer manufacturer IBM to supply MS-DOS for the new line of PCs that the
company intended to mass-produce. This deal proved to be a very advantageous
one for Gates’ company, Microsoft. Not only did Microsoft receive a fee for each
computer sold, but it also was able to get a head start on supplying applications
software that would run on its operating system. Brisk sales of the IBM PC and
its “clones” to individuals and institutions quickly made MS-DOS the world’s
most widely used operating system. Within a few years, Gates and Allen had
become billionaires, and within a decade, Gates had become the world’s richest
man, a position he held for 13 straight years.

Also in the 1970s, the U.S. Government began to support the development
of a network that would connect computers at military installations and research
universities. The first such network, called ARPANET (Advanced Research
Projects Agency Network), connected four computers at SRI, UCLA (University
of California at Los Angeles), UC Santa Barbara, and the University of Utah.
Bob Metcalfe, a researcher associated with Kay’s group at Xerox, developed a
software protocol called Ethernet for operating a network of computers. Ethernet
allowed computers to communicate in a local area network (LAN) within an
organization and also with computers in other organizations via a wide area net-
work (WAN). By the mid 1980s, the ARPANET had grown into what we now
call the Internet, connecting computers owned by large institutions, small organi-
zations, and individuals all over the world.

1.3.6 Consultation, Communication, and Ubiquitous
Computing (1990–Present)

In the 1990s, computer hardware costs continued to plummet, and processing
speed and memory capacity skyrocketed. Optical storage media, such as compact
discs (CDs) and digital video discs (DVDs), were developed for mass storage. The
computational processing of images, sound, and video became feasible and wide-
spread. By the end of the decade, entire movies were being shot or constructed

1.3 A Not-So-Brief History of Computing Systems [21]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and played back using digital devices. The capacity to create lifelike three-
dimensional animations of whole environments led to a new technology called
virtual reality. New devices appeared, such as flatbed scanners and digital cameras,
which could be used along with the more traditional microphone and speakers to
support the input and output of almost any type of information.

Desktop and laptop computers now not only perform useful work but also
give their users new means of personal expression. The past decade has seen the
rise of computers as communication tools, with e-mail, instant messaging, bulletin
boards, chat rooms, and the amazing World Wide Web. With the rise of wireless
technology, all of these capabilities are now available almost everywhere on tiny,
handheld devices. Computing is becoming ubiquitous, yet also less visible.

Perhaps the most interesting story from this period concerns Tim Berners-
Lee, the creator of the World Wide Web. In the late 1980s, Berners-Lee, a theo-
retical physicist doing research at the CERN Institute in Geneva, Switzerland,
began to develop some ideas for using computers to share information. Computer
engineers had been linking computers to networks for several years, and it was
already common in research communities to exchange files and send and receive
e-mail around the world. However, the vast differences in hardware, operating sys-
tems, file formats, and applications still made it difficult for users who were not
adept at programming to access and share this information. Berners-Lee was
interested in creating a common medium for sharing information that would be
easy to use, not only for scientists but also for any other person capable of manip-
ulating a keyboard and mouse and viewing the information on a monitor.

Berners-Lee was familiar with Vannevar Bush’s vision of a web-like consulta-
tion system, Engelbart’s work on NLS Augment, and also with the first widely
available hypertext systems. One of these systems, Apple Computer’s Hypercard,
broadened the scope of hypertext to hypermedia. Hypercard allowed authors to
organize not just text but also images, sound, video, and executable applications
into webs of linked information. However, a Hypercard database sat only on stand-
alone computers; the links could not carry Hypercard data from one computer to
another. Furthermore, the supporting software ran only on Apple’s computers.

Berners-Lee realized that networks could extend the reach of a hypermedia
system to any computers connected to the net, making their information available
worldwide. To preserve its independence from particular operating systems, the
new medium would need to have universal standards for distributing and present-
ing the information. To ensure this neutrality and independence, no private corpo-
ration or individual government could own the medium and dictate the standards.

Berners-Lee built the software for this new medium, which we now call the
World Wide Web, in 1992. The software used many of the existing mechanisms
for transmitting information over the Internet. People contribute information to

CHAPTER 1 Introduction[22]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the Web by publishing files on computers known as Web servers. The Web server
software on these computers is responsible for answering requests for viewing the
information stored on the Web server. To view information on the Web, people use
software called a Web browser. In response to a user’s commands, a Web browser
sends a request for information across the Internet to the appropriate Web server.
The server responds by sending the information back to the browser’s computer,
called a Web client, where it is displayed or rendered in the browser.

Although Berners-Lee wrote the first Web server and Web browser software, he
made two other, even more important contributions. First, he designed a set of rules,
called HTTP (Hypertext Transfer Protocol), which allows any server and browser to
talk to each other. Second, he designed a language, HTML (Hypertext Markup
Language), which allows browsers to structure the information to be displayed on
Web pages. He then made all of these resources available to anyone for free.

Berners-Lee’s invention and gift of this universal information medium is a truly
remarkable achievement. Today there are millions of Web servers in operation
around the world. Anyone with the appropriate training and resources—companies,
government, nonprofit organizations, and private individuals—can start up a new
Web server or obtain space on one. Web browser software now runs not only on
desktop and laptop computers, but also on handheld devices such as cell phones.

This concludes our not-so-brief overview of the history of computing. If you
want to learn more about this history, consult the sources listed at the end of this
chapter. We now turn to an introduction to programming in Python.

1.4 Getting Started with Python Programming
Guido van Rossum invented the Python programming language in the early
1990s. Python is a high-level, general-purpose programming language for solving
problems on modern computer systems. The language and many supporting tools
are free, and Python programs can run on any operating system. You can down-
load Python, its documentation, and related materials from www.python.org. You
can find instructions for downloading and installing Python in Appendix A. In
this section, we show you how to create and run simple Python programs.

1.4.1 Running Code in the Interactive Shell

Python is an interpreted language, and you can run simple Python expressions and
statements in an interactive programming environment called the shell. The easiest
way to open a Python shell is to launch the IDLE. This is an integrated program

1.4 Getting Started with Python Programming [23]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

development environment that comes with the Python installation. When you do
this, a window named Python Shell opens. Figure 1.6 shows a shell window on
Mac OS X. A shell window running on a Windows system or a Linux system
should look similar, if not identical, to this one.

[FIGURE 1.6] Python shell window

A shell window contains an opening message followed by the special symbol
>>>, called a shell prompt. The cursor at the shell prompt waits for you to enter
a Python command. Note that you can get immediate help by entering help at
the shell prompt or selecting Help from the window’s drop-down menu.

When you enter an expression or statement, Python evaluates it and displays its
result, if there is one, followed by a new prompt. The next few lines show the evalu-
ation of several expressions and statements. In this example, the results are displayed
in italics, although they would not actually appear in italics on the computer screen.

>>>ƒ3ƒ+ƒ4ƒ
7
>>>ƒ3
3
>>>ƒ“Pythonƒisƒreallyƒcool!”
'Pythonƒisƒreallyƒcool!'
>>>ƒnameƒ=ƒ“KenƒLambert”
>>>ƒname
'KenƒLambert'
>>>ƒ“Hiƒthereƒ“ƒ+ƒname
'HiƒthereƒKenƒLambert'
>>>ƒprint('Hiƒthere')
Hiƒthere
>>>ƒprint(“Hiƒthere”,ƒname)
HiƒthereƒKenƒLambert
>>>ƒ

CHAPTER 1 Introduction[24]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To quit the Python shell, you can either select the window’s close box or
press the Control+D key combination.

The Python shell is useful for experimenting with short expressions or state-
ments to learn new features of the language, as well as for consulting documenta-
tion on the language. The means of developing more complex and interesting
programs are examined in the rest of this section.

1.4.2 Input, Processing, and Output

Most useful programs accept inputs from some source, process these inputs, and
then finally output results to some destination. In terminal-based interactive pro-
grams, the input source is the keyboard, and the output destination is the termi-
nal display. The Python shell itself is such a program; its inputs are Python
expressions or statements. Its processing evaluates these items. Its outputs are the
results displayed in the shell.

The programmer can also force the output of a value by using the print
function. The simplest form for using this function looks like the following:

print(<expression>)

This example shows you the basic syntax (or grammatical rule) for using the
print function. The angle brackets (the < and > symbols) enclose a type of
phrase. In actual Python code, you would replace this syntactic form, including
the angle brackets, with an example of that type of phrase. In this case,
<expression> is shorthand for any Python expression.

When running the print function, Python first evaluates the expression and
then displays its value. In the example shown earlier, print was used to display
some text. The following is another example:

>>>ƒprint('Hiƒthere')
Hiƒthere

In this example, the text 'Hiƒthere' is the text that we want Python to dis-
play. In programming terminology, this piece of text is referred to as a string. In
Python code, a string is always enclosed in quotation marks. However, the print
function displays a string without the quotation marks.

You can also write a print function that includes two or more expressions sep-
arated by commas. In such a case, the print function evaluates the expressions and

1.4 Getting Started with Python Programming [25]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

displays their results, separated by single spaces, on one line. The syntax for a
print statement with two or more expressions looks like the following:

ƒprint(<expression>,ƒ…ƒ,ƒ<expression>)

Note the ellipsis in this syntax example. The ellipsis indicates that you could
include multiple expressions after the first one. Whether it outputs one or multi-
ple expressions, the print function always ends its output with a newline. In
other words, it displays the values of the expressions, and then it moves the cur-
sor to the next line on the console window.

To begin the next output on the same line as the previous one, you can place
the expression end="", which says end the line with an empty string, at the end
of the list of expressions, as follows:

print(<expression>,ƒend="")ƒ

As you create programs in Python, you’ll often want your programs to ask
the user for input. You can do this by using the input function. This function
causes the program to stop and wait for the user to enter a value from the key-
board. When the user presses the return or enter key, the function accepts the
input value and makes it available to the program. A program that receives an
input value in this manner typically saves it for further processing.

The following example receives an input string from the user and saves it for
further processing. The user’s input is in italics.

>>>ƒnameƒ=ƒinput(“Enterƒyourƒname:ƒ“)
Enterƒyourƒname:ƒKenƒLambert
>>>ƒname
'KenƒLambert'
>>>ƒprint(name)
KenƒLambert
>>>ƒ

The input function does the following:

1 Displays a prompt for the input. In this example, the prompt is
“Enterƒyourƒname:ƒ“.

2 Receives a string of keystrokes, called characters, entered at the keyboard
and returns the string to the shell.

CHAPTER 1 Introduction[26]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

How does the input function know what to use as the prompt? The text in
parentheses, “Enter your name: “, is an argument for the input function that
tells it what to use for the prompt. An argument is a piece of information that a
function needs to do its work.

The string returned by the function in our example is saved by assigning it to
the variable name. The form of an assignment statement with the input function
is the following:

<variableƒidentifier>ƒ=ƒinput(<aƒstringƒprompt>)

A variable identifier, or variable for short, is just a name for a value. When
a variable receives its value in an input statement, the variable then refers to this
value. If the user enters the name “Ken Lambert” in our last example, the value
of the variable name can be viewed as follows:

>>>ƒname
'KenƒLambert'

The input function always builds a string from the user’s keystrokes and
returns it to the program. After inputting strings that represent numbers, the
programmer must convert them from strings to the appropriate numeric types. In
Python, there are two type conversion functions for this purpose, called int
(for integers) and float (for floating-point numbers). The next session inputs
two integers and displays their sum:

>>>ƒfirstƒ=ƒint(input(“Enterƒtheƒfirstƒnumber:ƒ“))
Enterƒtheƒfirstƒnumber:ƒ23
>>>ƒsecondƒ=ƒint(input(“Enterƒtheƒsecondƒnumber:ƒ“))
Enterƒtheƒsecondƒnumber:ƒ44
>>>ƒprint(“Theƒsumƒis”,ƒfirstƒ+ƒsecond)
Theƒsumƒisƒ67
>>>ƒ

Note that the int function is called with each result returned by the input
function. The two numbers are added, and then their sum is output. Table 1.1
summarizes the functions introduced in this subsection.

1.4 Getting Started with Python Programming [27]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 1.1] Basic Python functions for input and output

1.4.3 Editing, Saving, and Running a Script

While it is easy to try out short Python expressions and statements interactively
at a shell prompt, it is more convenient to compose, edit, and save longer, more
complex programs in files. We can then run these program files or scripts either
within IDLE or from the operating system’s command prompt without opening
IDLE. Script files are also the means by which Python programs are distributed
to others. Most important, as you know from writing term papers, files allow you
to save, safely and permanently, many hours of work.

To compose and execute programs in this manner, you perform the
following steps:

1 Select the option New Window from the File menu of the shell window.

2 In the new window, enter Python expressions or statements on separate
lines, in the order in which you want Python to execute them.

3 At any point, you may save the file by selecting File/Save. If you do this,
you should use a .py extension. For example, your first program file
might be named myprogram.py.

4 To run this file of code as a Python script, select Run Module from the
Run menu or press the F5 key (Windows) or the Control+F5 key (Mac
or Linux).

FUNCTION WHAT IT DOES

float(<aƒstringƒofƒdigits>) Converts a string of digits to a floating-
point value.

int(<aƒstringƒofƒdigits>) Converts a string of digits to an integer value.

input(<aƒstringƒprompt>) Displays the string prompt and waits for
keyboard input. Returns the string of
characters entered by the user.

print(<expression>,ƒ…ƒ, Evaluates the expressions and displays
ƒƒƒƒƒƒ<expression>) them, separated by one space, in the

console window.

<stringƒ1>ƒ+ƒ<stringƒ2> Glues the two strings together and returns
the result.

CHAPTER 1 Introduction[28]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The command in Step 4 reads the code from the saved file and executes it. If
Python executes any print functions in the code, you will see the outputs as
usual in the shell window. If the code requests any inputs, the interpreter will
pause to allow you to enter them. Otherwise, program execution continues invisi-
bly behind the scenes. When the interpreter has finished executing the last
instruction, it quits and returns you to the shell prompt.

Figure 1.7 shows an IDLE window containing a complete script that
prompts the user for the width and height of a rectangle, computes its area, and
outputs the result:

[FIGURE 1.7] Python script in an IDLE window

When the script is run from the IDLE window, it produces the interaction
with the user in the shell window shown in Figure 1.8.

[FIGURE 1.8] Interaction with a script in a shell window

This can be a slightly less interactive way of executing programs than entering
them directly at Python’s interpreter prompt. However, running the script from
the IDLE window will allow you to construct some complex programs, test them,
and save them in program libraries that you can reuse or share with others.

1.4.4 Behind the Scenes: How Python Works

Whether you are running Python code as a script or interactively in a shell, the
Python interpreter does a great deal of work to carry out the instructions in your
program. This work can be broken into a series of steps, as shown in Figure 1.9.

1.4 Getting Started with Python Programming [29]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 1.9] Steps in interpreting a Python program

1 The interpreter reads a Python expression or statement, also called the
source code, and verifies that it is well formed. In this step, the inter-
preter behaves like a strict English teacher who rejects any sentence that
does not adhere to the grammar rules, or syntax, of the language. As
soon as the interpreter encounters such an error, it halts translation with
an error message.

2 If a Python expression is well formed, the interpreter then translates it to
an equivalent form in a low-level language called byte code. When the
interpreter runs a script, it completely translates it to byte code.

3 This byte code is next sent to another software component, called the
Python virtual machine (PVM), where it is executed. If another error
occurs during this step, execution also halts with an error message.

1.4 Exercises
1 Describe what happens when the programmer enters the string

“Greetings!” in the Python shell.

2 Write a line of code that prompts the user for his or her name and saves
the user’s input in a variable called name.

3 What is a Python script?

4 Explain what goes on behind the scenes when your computer runs a
Python program.

Python code

User inputs Other error messages

Syntax error messages

Program
outputs

Byte code

Syntax Checker
and Translator

Python Virtual
Machine (PVM)

CHAPTER 1 Introduction[30]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

1.5 Detecting and Correcting Syntax Errors
Programmers inevitably make typographical errors when editing programs, and
the Python interpreter will nearly always detect them. Such errors are called
syntax errors. The term syntax refers to the rules for forming sentences in a lan-
guage. When Python encounters a syntax error in a program, it halts execution
with an error message. The following sessions with the Python shell show several
types of syntax errors and the corresponding error messages:

>>>ƒlengthƒ=ƒint(input(“Enterƒtheƒlength:ƒ“))
Enterƒtheƒlength:ƒ44

>>>ƒprint(lenth)
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<pyshell#1>”,ƒlineƒ1,ƒinƒ<module>
NameError:ƒnameƒ'lenth'ƒisƒnotƒdefined

The first statement assigns an input value to the variable length. The next
statement attempts to print the value of the variable lenth. Python responds that
this name is not defined. Although the programmer might have meant to write
the variable length, Python can read only what the programmer actually entered.
This is a good example of the rule that a computer can read only the instructions
it receives, not the instructions we intend to give it.

The next statement attempts to print the value of the correctly spelled vari-
able, but Python still generates an error message.

>>>ƒƒprintƒlength
ƒƒFileƒ“<pyshell#1>”,ƒlineƒ1
ƒƒƒƒprintƒlength
ƒƒƒƒ^
SyntaxError:ƒunexpectedƒindent

In this error message, Python explains that this line of code is unexpectedly
indented. In fact, there is an extra space before the word print. Indentation is
significant in Python code. Each line of code entered at a shell prompt or in a
script must begin in the leftmost column, with no leading spaces. The only
exception to this rule occurs in control statements and definitions, where nested
statements must be indented one or more spaces.

1.5 Detecting and Correcting Syntax Errors [31]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You might think that it would be painful to keep track of indentation in a
program. However, in compensation, the Python language is much simpler than
other programming languages. Consequently, there are fewer types of syntax
errors to encounter and correct, and a lot less syntax for you to learn!

In our final example, the programmer attempts to add two numbers, but for-
gets to include the second one:

>>>ƒ3ƒ+ƒƒƒ
ƒƒƒƒ3ƒ+ƒ
SyntaxError:ƒinvalidƒsyntax

In later chapters, you will learn more about other kinds of program errors
and how to repair the code that generates them.

1.5 Exercises
1 Suppose your script attempts to print the value of a variable that has not

yet been assigned a value. How does the Python interpreter react?

2 Miranda has forgotten to complete an arithmetic expression before the
end of a line of code. How will the Python interpreter react?

3 Why does Python code generate fewer types of syntax errors than code
in other programming languages?

Suggestions for Further Reading
John Battelle, The Search: How Google and Its Rivals Rewrote the Rules
of Business and Transformed Our Culture (New York: Portfolio
Trade, 2006).

Tim Berners-Lee, Weaving the Web: The Original Design and Ultimate
Destiny of the World Wide Web (New York: Harper-Collins, 2000).

Paul Graham, Hackers and Painters: Big Ideas from the Computer Age
(Sebastopol, CA: O’Reilly, 2004).

Katie Hafner and Matthew Lyon, Where Wizards Stay Up Late:
The Origins of the Internet (New York: Simon and Schuster, 1996).

CHAPTER 1 Introduction[32]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Michael E. Hobart and Zachary S. Schiffman, Information Ages:
Literacy, Numeracy, and the Computer Revolution (Baltimore: The
Johns Hopkins University Press, 1998).

Georges Ifrah, The Universal History of Computing: From the Abacus to
the Quantum Computer (New York: John Wiley & Sons, Inc., 2001).

John Markoff, What the Doormouse Said: How the Sixties Counterculture
Shaped the Personal Computer Industry (New York: Viking, 2005).

Summary
� One of the most fundamental ideas of computer science is the algo-

rithm. An algorithm is a sequence of instructions for solving a prob-
lem. A computing agent can carry out these instructions to solve a
problem in a finite amount of time.

� Another fundamental idea of computer science is information process-
ing. Practically any relationship among real-world objects can be
represented as information or data. Computing agents manipulate
information and transform it by following the steps described in
algorithms.

� Real computing agents can be constructed out of hardware devices.
These consist of a central processing unit (CPU), a memory, and
input and output devices. The CPU contains circuitry that executes
the instructions described by algorithms. The memory contains
switches that represent binary digits. All information stored in mem-
ory is represented in binary form. Input devices such as a keyboard
and flatbed scanner and output devices such as a monitor and speakers
transmit information between the computer’s memory and the exter-
nal world. These devices also transfer information between a binary
form and a form that human beings can use.

� Some real computers, such as those in wristwatches and cell phones,
are specialized for a small set of tasks, whereas a desktop or laptop
computer is a general-purpose problem-solving machine.

� Software provides the means whereby different algorithms can be run
on a general-purpose hardware device. The term “software” can refer
to editors and interpreters for developing programs, an operating sys-
tem for managing hardware devices, user interfaces for communicat-
ing with human users, and applications such as word processors,
spreadsheets, database managers, games, and media-processing
programs.

Summary [33]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� Software is written in programming languages. Languages such as
Python are high level; they resemble English and allow authors to
express their algorithms clearly to other people. A program called an
interpreter translates a Python program to a lower-level form that can
be executed on a real computer.

� The Python shell provides a command prompt for evaluating and
viewing the results of Python expressions and statements. IDLE is an
integrated development environment that allows the programmer to
save programs in files and load them into a shell for testing.

� Python scripts are programs that are saved in files and run from a ter-
minal command prompt. An interactive script consists of a set of input
statements, statements that process these inputs, and statements that
output the results.

� When a Python program is executed, it is translated into byte code.
This byte code is then sent to the Python virtual machine (PVM) for
further interpretation and execution.

� Syntax is the set of rules for forming correct expressions and state-
ments in a programming language. When the interpreter encounters a
syntax error in a Python program, it halts execution with an error
message. Two examples of syntax errors are a reference to a variable
that does not yet have a value and an indentation that is unexpected.

CHAPTER 1 Introduction[34]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

REVIEW QUESTIONS [35]

REVIEW QUESTIONS
1 Which of the following are examples of algorithms?

a A dictionary
b A recipe
c A set of instructions for putting together a utility shed
d The spelling checker of a word processor

2 Which of the following contain information?

a My grandmother’s china cabinet
b An audio CD
c A refrigerator
d A book
e A running computer

3 Which of the following are general-purpose computing devices?

a A cell phone
b A portable music player
c A laptop computer
d A programmable thermostat

4 Which of the following are input devices?

a Speakers
b Microphone
c Printers
d A mouse

5 Which of the following are output devices?

a A digital camera
b A keyboard
c A flatbed scanner
d A monitor

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 1 Introduction[36]

6 What is the purpose of the CPU?

a Store information
b Receive inputs from the human user
c Decode and execute instructions
d Send output to the human user

7 Which of the following translates and executes instructions in a
programming language?

a A compiler
b A text editor
c A loader
d An interpreter

8 Which of the following outputs data in a Python program?

a The input statement
b The assignment statement
c The print statement
d The main function

9 What is IDLE used to do?

a Edit Python programs
b Save Python programs to files
c Run Python programs
d All of the above

10 What is the set of rules for forming sentences in a language called?

a Semantics
b Pragmatics
c Syntax
d Logic

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROJECTS
1 Open a Python shell, enter the following expressions, and observe the

results:

a 8

b 8 * 2

c 8 ** 2

d 8 / 12

e 8 // 12

f 8 / 0

2 Write a Python program that prints (displays) your name, address, and
telephone number.

3 Evaluate the following code at a shell prompt: print(“Yourƒname
is”, name). Then assign name an appropriate value, and evaluate the
statement again.

4 Open an IDLE window, and enter the program from Figure 1.7 that
computes the area of a rectangle. Load the program into the shell by
pressing the F5 key, and correct any errors that occur. Test the program
with different inputs by running it at least three times.

5 Modify the program of Project 4 to compute the area of a triangle. Issue
the appropriate prompts for the triangle’s base and height, and change
the names of the variables appropriately. Then, use the formula
.5ƒ*ƒbaseƒ*ƒheight to compute the area. Test the program from
an IDLE window.

6 Write and test a program that computes the area of a circle. This pro-
gram should request a number representing a radius as input from the
user. It should use the formula 3.14 * radius ** 2 to compute the
area, and output this result suitably labeled.

7 Write and test a program that accepts the user’s name (as text) and age
(as a number) as input. The program should output a sentence contain-
ing the user’s name and age.

PROJECTS [37]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 1 Introduction[38]

8 Enter an input statement using the input function at the shell prompt.
When the prompt asks you for input, enter a number. Then, attempt to
add 1 to that number, observe the results, and explain what happened.

9 Enter an input statement using the input function at the shell prompt.
When the prompt asks you for input, enter your first name, observe the
results, and explain what happened.

10 Enter the expression help() at the shell prompt. Follow the instructions
to browse the topics and modules.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After completing this chapter, you will be able to
� Describe the basic phases of software development: analysis,

design, coding, and testing
� Use strings for the terminal input and output of text
� Use integers and floating-point numbers in arithmetic

operations
� Construct arithmetic expressions
� Initialize and use variables with appropriate names
� Import functions from library modules
� Call functions with arguments and use returned values

appropriately
� Construct a simple Python program that performs inputs,

calculations, and outputs
� Use docstrings to document Python programs
This chapter begins with a discussion of the software develop-

ment process, followed by a case study in which we walk through
the steps of program analysis, design, coding, and testing. We also
examine the basic elements from which programs are composed.
These include the data types for text and numbers and the expres-
sions that manipulate them. The chapter concludes with an intro-
duction to the use of functions and modules in simple programs.

[CHAPTER]
SOFTWARE DEVELOPMENT,

Data Types, and Expressions2

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.1 The Software Development Process
There is much more to programming than writing lines of code, just as there is
more to building houses than pounding nails. The “more” consists of organiza-
tion and planning, and various conventions for diagramming those plans.
Computer scientists refer to the process of planning and organizing a program as
software development. There are several approaches to software development.
One version is known as the waterfall model.

The waterfall model consists of several phases:

1 Customer request—In this phase, the programmers receive a broad
statement of a problem that is potentially amenable to a computerized
solution. This step is also called the user requirements phase.

2 Analysis—The programmers determine what the program will do. This
is sometimes viewed as a process of clarifying the specifications for the
problem.

3 Design—The programmers determine how the program will do its task.

4 Implementation—The programmers write the program. This step is
also called the coding phase.

5 Integration—Large programs have many parts. In the integration phase,
these parts are brought together into a smoothly functioning whole, usu-
ally not an easy task.

6 Maintenance—Programs usually have a long life; a lifespan of 5 to
15 years is common for software. During this time, requirements change,
errors are detected, and minor or major modifications are made.

The phases of the waterfall model are shown in Figure 2.1. As you can see,
the figure resembles a waterfall, in which the results of each phase flow down to
the next. However, a mistake detected in one phase often requires the developer
to back up and redo some of the work in the previous phase. Modifications made
during maintenance also require backing up to earlier phases.

Although the diagram depicts distinct phases, this does not mean that devel-
opers must analyze and design a complete system before coding it. Modern soft-
ware development is usually incremental and iterative. This means that analysis
and design may produce a rough draft, skeletal version, or prototype of a system
for coding, and then back up to earlier phases to fill in more details after some
testing. For purposes of introducing this process, however, we treat these phases
as distinct.

CHAPTER 2 Software Development, Data Types, and Expressions[40]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

[FIGURE 2.1] The waterfall model of the software development process

Programs rarely work as hoped the first time they are run; hence, they
should be subjected to extensive and careful testing. Many people think that
testing is an activity that applies only to the implementation and integration
phases; however, you should scrutinize the outputs of each phase carefully. Keep
in mind that mistakes found early are much less expensive to correct than those
found late. Figure 2.2 illustrates some relative costs of repairing mistakes when
found in different phases. These are not just financial costs but also costs in time
and effort.

Implementation

Test

Analysis

Verify

Integration

Test

Maintenance

Design

Verify

Customer request

Verify

2.1 The Software Development Process [41]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 2.2] Relative costs of repairing mistakes that are found in different phases

Keep in mind that the cost of developing software is not spread equally over
the phases. The percentages shown in Figure 2.3 are typical.

[FIGURE 2.3] Percentage of total cost incurred in each phase of the development process

You might think that implementation takes the most time and, therefore,
costs the most. However, as you can see in Figure 2.3, maintenance is actually the
most expensive part of software development. The cost of maintenance can be
reduced by careful analysis, design, and implementation.

Integration 8%

Implementation 8%

Maintenance 68%

Design 8%

Analysis 8%

Software Development Phase

Cost of

Correcting

a Fault

Analysis Design Implementation Integration Maintenance

CHAPTER 2 Software Development, Data Types, and Expressions[42]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As you read this book and begin to sharpen your programming skills, you
should remember two points:

1 There is more to software development than writing code.

2 If you want to reduce the overall cost of software development, write
programs that are easy to maintain. This requires thorough analysis,
careful design, and a good coding style. We will have more to say about
coding styles throughout the book.

2.1 Exercises
1 List four phases of the software development process, and explain what

they accomplish.

2 Jack says that he will not bother with analysis and design but proceed
directly to coding his programs. Why is that not a good idea?

2.2 Case Study: Income Tax Calculator
Most of the chapters in this book include a case study that illustrates the software
development process. This approach may seem overly elaborate for small pro-
grams, but it scales up well when programs become larger. The first case study
develops a program that calculates income tax.

Each year, nearly everyone with an income faces the unpleasant task of com-
puting his or her income tax return. If only it could be done as easily as suggested
in this case study. We start with the customer request phase.

2.2.1 Request

The customer requests a program that computes a person’s income tax.

2.2 Case Study: Income Tax Calculator [43]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.2.2 Analysis

Analysis often requires the programmer to learn some things about the problem
domain, in this case, the relevant tax law. For the sake of simplicity, let’s assume
the following tax laws:

� All taxpayers are charged a flat tax rate of 20%.
� All taxpayers are allowed a $10,000 standard deduction.
� For each dependent, a taxpayer is allowed an additional $3,000 deduction.
� Gross income must be entered to the nearest penny.
� The income tax is expressed as a decimal number.
Another part of analysis determines what information the user will have to

provide. In this case, the user inputs are gross income and number of dependents.
The program calculates the income tax based on the inputs and the tax law and
then displays the income tax. Figure 2.4 shows the proposed terminal-based
interface. Characters in italics indicate user inputs. The program prints the rest.
The inclusion of an interface at this point is a good idea because it allows the cus-
tomer and the programmer to discuss the intended program’s behavior in a con-
text understandable to both.

[FIGURE 2.4] The user interface for the income tax calculator

2.2.3 Design

During analysis, we specify what a program is going to do. In the next phase, design,
we describe how the program is going to do it. This usually involves writing an
algorithm. In Chapter 1, we showed how to write algorithms in ordinary English. In
fact, algorithms are more often written in a somewhat stylized version of English
called pseudocode. Here is the pseudocode for our income tax program:

Input the gross income and number of dependents
Compute the taxable income using the formula
Taxable income = gross income - 10000 - (3000 * number of dependents)
Compute the income tax using the formula

Enter the gross income: 150000.00
Enter the number of dependents: 3
The income tax is $26200.00

CHAPTER 2 Software Development, Data Types, and Expressions[44]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tax = taxable income * 0.20
Print the tax

Although there are no precise rules governing the syntax of pseudocode, in
your pseudocode you should strive to describe the essential elements of the pro-
gram in a clear and concise manner. Note that this pseudocode closely resembles
Python code, so the transition to the coding step should be straightforward.

2.2.4 Implementation (Coding)

Given the preceding pseudocode, an experienced programmer would now find it
easy to write the corresponding Python program. For a beginner, on the other
hand, writing the code can be the most difficult part of the process. Although the
program that follows is simple by most standards, do not expect to understand
every bit of it at first. The rest of this chapter explains the elements that make it
work and much more.

“””
Program:ƒtaxform.py
Author:ƒKenƒLambert

Computeƒaƒperson'sƒincomeƒtax.

1.ƒSignificantƒconstants
ƒƒƒƒƒƒƒtaxƒrate
ƒƒƒƒƒƒƒstandardƒdeduction
ƒƒƒƒƒƒƒdeductionƒperƒdependent
2.ƒTheƒinputsƒare
ƒƒƒƒƒƒƒgrossƒincome
ƒƒƒƒƒƒƒnumberƒofƒdependents
3.ƒComputations:
ƒƒƒƒƒƒƒtaxableƒincomeƒ=ƒgrossƒincomeƒ-ƒtheƒstandardƒdeductionƒ-
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒaƒdeductionƒforƒeachƒdependent
ƒƒƒƒƒƒƒincomeƒtaxƒ=ƒisƒaƒfixedƒpercentageƒofƒtheƒtaxableƒincome
4.ƒTheƒoutputsƒare
ƒƒƒƒƒƒƒtheƒincomeƒtax
“””

#ƒInitializeƒtheƒconstants
TAX_RATEƒ=ƒ0.20
STANDARD_DEDUCTIONƒ=ƒ10000.0
DEPENDENT_DEDUCTIONƒ=ƒ3000.0

continued

2.2 Case Study: Income Tax Calculator [45]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

#ƒRequestƒtheƒinputs
grossIncomeƒ=ƒfloat(input(“Enterƒtheƒgrossƒincome:ƒ“))
numDependentsƒ=ƒint(input(“Enterƒtheƒnumberƒofƒdependents:ƒ“))

#ƒComputeƒtheƒincomeƒtax
taxableIncomeƒ=ƒgrossIncomeƒ-ƒSTANDARD_DEDUCTIONƒ-ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒDEPENDENT_DEDUCTIONƒ*ƒnumDependents
incomeTaxƒ=ƒtaxableIncomeƒ*ƒTAX_RATE

#ƒDisplayƒtheƒincomeƒtax
print(“Theƒincomeƒtaxƒisƒ$”ƒ+ƒstr(incomeTax))

2.2.5 Testing

Our income tax program can run as a script from an IDLE window. If there are
no syntax errors, we will be able to enter a set of inputs and view the results.
However, a single run without syntax errors and with correct outputs provides
just a slight indication of a program’s correctness. Only thorough testing can
build confidence that a program is working correctly. Testing is a deliberate
process that requires some planning and discipline on the programmer’s part. It
would be much easier to turn the program in after the first successful run to meet
a deadline or to move on to the next assignment. But your grade, your job, or
people’s lives might be affected by the slipshod testing of software.

Testing can be performed easily from an IDLE window. The programmer just
loads the program repeatedly into the shell and enters different sets of inputs. The
real challenge is coming up with sets of inputs that can reveal an error. An error at
this point, also called a logic error or a design error, is an unexpected output.

A correct program produces the expected output for any legitimate input.
The tax calculator’s analysis does not provide a specification of what inputs are
legitimate, but common sense indicates that they would be numbers greater than
or equal to 0. Some of these inputs will produce outputs that are less than 0, but
we will assume for now that these outputs are expected. Even though the range of
the input numbers on a computer is finite, testing all of the possible combinations
of inputs would be impractical. The challenge is to find a smaller set of inputs,
called a test suite, from which we can conclude that the program will likely be
correct for all inputs. In the tax program, we try inputs of 0, 1, and 2 for the num-
ber of dependents. If the program works correctly with these, we can assume that
it will work correctly with larger values. The test inputs for the gross income are a
number equal to the standard deduction and a number twice that amount (10000
and 20000, respectively). These two values will show the cases of a minimum

CHAPTER 2 Software Development, Data Types, and Expressions[46]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

expected tax (0) and expected taxes that are less than or greater than 0. The pro-
gram is run with each possible combination of the two inputs. Table 2.1 shows the
possible combinations of inputs and the expected outputs in the test suite.

[TABLE 2.1] The test suite for the tax calculator program

If there is a logic error in the code, it will almost certainly be caught using
these data. Note that the negative outputs are not considered errors. We will see
how to prevent such computations in the next chapter.

2.3 Strings, Assignment, and Comments
Text processing is by far the most common application of computing. E-mail, text
messaging, Web pages, and word processing all rely on and manipulate data con-
sisting of strings of characters. This section introduces the use of strings for the
output of text and the documentation of Python programs. We begin with an
introduction to data types in general.

2.3.1 Data Types

In the real world, we use data all the time without bothering to consider what
kind of data we’re using. For example, consider this sentence: “In 2007, Micaela
paid $120,000 for her house at 24 East Maple Street.” This sentence includes at
least four pieces of data—a name, a date, a price, and an address—but of course
you don’t have to stop to think about that before you utter the sentence. You cer-
tainly don’t have to stop to consider that the name consists only of text charac-
ters, the date and house price are numbers, and so on. However, when we use
data in a computer program, we do need to keep in mind the type of data we’re

NUMBER OF DEPENDENTS GROSS INCOME EXPECTED TAX

0 10000 0

1 10000 –600

2 10000 –1200

0 20000 2000

1 20000 1400

2 20000 800

2.3 Strings, Assignment, and Comments [47]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

using. We also need to keep in mind what we can do with (what operations can
be performed on) particular data.

In programming, a data type consists of a set of values and a set of opera-
tions that can be performed on those values. A literal is the way a value of a data
type looks to a programmer. The programmer can use a literal in a program to
mention a data value. When the Python interpreter evaluates a literal, the value it
returns is simply that literal. Table 2.2 shows example literals of several Python
data types.

[TABLE 2.2] Literals for some Python data types

The first two data types listed in Table 2.2, int and float, are called
numeric data types, because they represent numbers. You’ll learn more about
numeric data types later in this chapter. For now, we will focus on character
strings—which are often referred to simply as strings.

2.3.2 String Literals

In Python, a string literal is a sequence of characters enclosed in single or double
quotation marks. The following session with the Python shell shows some exam-
ple strings:

>>>ƒ'Helloƒthere!'
'Helloƒthere!'
>>>ƒ“Helloƒthere!”
'Helloƒthere!'
>>>ƒ''
''
>>>ƒ“”
''
>>>

TYPE OF DATA PYTHON TYPE NAME EXAMPLE LITERALS

Integers int -1, 0, 1, 2

Real numbers float -0.55, .3333, 3.14, 6.0

Character strings str “Hi”, “”, 'A', '66'

CHAPTER 2 Software Development, Data Types, and Expressions[48]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The last two string literals ('' and “”) represent the empty string. Although it
contains no characters, the empty string is a string nonetheless. Note that the empty
string is different from a string that contains a single blank space character, “ “.

Double-quoted strings are handy for composing strings that contain single
quotation marks or apostrophes. Here is a self-justifying example:

>>>ƒ“I'mƒusingƒaƒsingleƒquoteƒinƒthisƒstring!”
“I'mƒusingƒaƒsingleƒquoteƒinƒthisƒstring!”
>>>ƒprint(“I'mƒusingƒaƒsingleƒquoteƒinƒthisƒstring!”)
I'mƒusingƒaƒsingleƒquoteƒinƒthisƒstring!
>>>

Note that the print function displays the nested quotation mark but not the
enclosing quotation marks. A double quotation mark can also be included in a
string literal if one uses the single quotation marks to enclose the literal.

When you write a string literal in Python code that will be displayed on the
screen as output, you need to determine whether you want to output the string as a
single line or as a multi-line paragraph. If you want to output the string as a single
line, you have to include the entire string literal (including its opening and closing
quotation marks) in the same line of code. Otherwise, a syntax error will occur. To
output a paragraph of text that contains several lines, you could use a separate
print function call for each line. However, it is more convenient to enclose the
entire string literal, line breaks and all, within three consecutive quotation marks
(either single or double) for printing. The next session shows how this is done:

>>>ƒprint(“””Thisƒveryƒlongƒsentenceƒextendsƒallƒtheƒwayƒto
theƒnextƒline.”””)
Thisƒveryƒlongƒsentenceƒextendsƒallƒtheƒwayƒto
theƒnextƒline.

Note that the first line in the output ends exactly where the first line ends in
the code.

When you evaluate a string in the Python shell without the print function,
you can see the literal for the newline character, \n, embedded in the result, as
follows:

>>>ƒ“””Thisƒveryƒlongƒsentenceƒextendsƒallƒtheƒwayƒto
theƒnextƒline.ƒ“””
'Thisƒveryƒlongƒsentenceƒextendsƒallƒtheƒwayƒto\ntheƒnextƒline.'
>>>

2.3 Strings, Assignment, and Comments [49]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.3.3 Escape Sequences
The newline character \n is called an escape sequence. Escape sequences are the
way Python expresses special characters, such as the tab, the newline, and the
backspace (delete key), as literals. Table 2.3 lists some escape sequences in Python.

[TABLE 2.3] Some escape sequences in Python

Because the backslash is used for escape sequences, it must be escaped to
appear as a literal character in a string. Thus, print(“\\”) would display a sin-
gle \ character.

2.3.4 String Concatenation
You can join two or more strings to form a new string using the concatenation
operator +. Here is an example:

>>>ƒ“Hiƒ“ƒ+ƒ“there,ƒ“ƒ+ƒ“Ken!”
'Hiƒthere,ƒKen!'
>>>

The * operator allows you to build a string by repeating another string a given
number of times. The left operand is a string, and the right operand is an integer.
For example, if you want the string “Python” to be preceded by 10 spaces, it would
be easier to use the * operator with 10 and one space than to enter the 10 spaces by
hand. The next session shows the use of the * and + operators to achieve this result:

>>>ƒ“ƒ“ƒ*ƒ10ƒ+ƒ“Python”
'ƒƒƒƒƒƒƒƒƒƒPython'
>>>

ESCAPE SEQUENCE MEANING

\b Backspace

\n Newline

\t Horizontal tab

\\ The \ character

\' Single quotation mark

\” Double quotation mark

CHAPTER 2 Software Development, Data Types, and Expressions[50]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.allitebooks.com

http://www.allitebooks.org

2.3.5 Variables and the Assignment Statement

As we saw in Chapter 1, a variable associates a name with a value, making it easy to
remember and use the value later in a program. You need to be mindful of a few
rules when choosing names for your variables. For example, some names, such as
if, def, and import, are reserved for other purposes and thus cannot be used for
variable names. In general, a variable name must begin with either a letter or an
underscore (_), and can contain any number of letters, digits, or other underscores.
Python variable names are case sensitive; thus, the variable WEIGHT is a different
name from the variable weight. Python programmers typically use lowercase letters
for variable names, but in the case of variable names that consist of more than one
word, it’s common to begin each word in the variable name (except for the first one)
with an uppercase letter. This makes the variable name easier to read. For example,
the name interestRate is slightly easier to read than the name interestrate.

Programmers use all uppercase letters for the names of variables that contain
values that the program never changes. Such variables are known as symbolic
constants. Examples of symbolic constants in the tax calculator case study are
TAX_RATE and STANDARD_DEDUCTION.

Variables receive their initial values and can be reset to new values with an
assignment statement. The form of an assignment statement is the following:

<variable name> = <expression>

The Python interpreter first evaluates the expression on the right side of the
assignment symbol and then binds the variable name on the left side to this value.
When this happens to the variable name for the first time, it is called defining or
initializing the variable. Note that the = symbol means assignment, not equality.
After you initialize a variable, subsequent uses of the variable name in expressions
are known as variable references.

When the interpreter encounters a variable reference in any expression, it
looks up the associated value. If a name is not yet bound to a value when it is ref-
erenced, Python signals an error. The next session shows some definitions of
variables and their references:

>>>ƒfirstNameƒ=ƒ“Ken”
>>>ƒsecondNameƒ=ƒ“Lambert”
>>>ƒfullNameƒ=ƒfirstNameƒ+ƒ“ƒ“ƒ+ƒsecondName
>>>ƒfullName
'KenƒLambert'
>>>

2.3 Strings, Assignment, and Comments [51]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The first two statements initialize the variables firstName and secondName
to string values. The next statement references these variables, concatenates the
values referenced by the variables to build a new string, and assigns the result to
the variable fullName. The last line of code is a simple reference to the variable
fullName, which returns its value.

Variables serve two important purposes in programs. They help the program-
mer keep track of data that change over the course of time. They also allow the
programmer to refer to a complex piece of information with a simple name. Any
time you can substitute a simple thing for a more complex one in a program, you
make the program easier for programmers to understand and maintain. Such a
process of simplification is called abstraction, and it is one of the fundamental
ideas of computer science. Throughout this book, you’ll learn about other
abstractions used in computing, including functions, modules, and classes.

The wise programmer selects names that inform the human reader about the
purpose of the data. This, in turn, makes the program easier to maintain and
troubleshoot. A good program not only performs its task correctly, but it also
reads like an essay in which each word is carefully chosen to convey the appropri-
ate meaning to the reader. For example, a program that creates a payment sched-
ule for a simple interest loan might use the variables rate, initialAmount,
currentBalance, and interest.

2.3.6 Program Comments and Docstrings

We conclude this subsection on strings with a discussion of program comments.
A comment is a piece of program text that the interpreter ignores but that pro-
vides useful documentation to programmers. At the very least, the author of a
program can include his or her name and a brief statement about the purpose of
the program at the beginning of the program file. This type of comment, called a
docstring, is a multi-line string of the form discussed earlier in this section. Here
is a docstring that begins a typical program for a lab session:

“””
Program:ƒcircle.py
Author:ƒKenƒLambert
Lastƒdateƒmodified:ƒ2/10/11

Theƒpurposeƒofƒthisƒprogramƒisƒtoƒcomputeƒtheƒareaƒofƒaƒcircle.
Theƒinputƒisƒanƒintegerƒorƒfloating-pointƒnumberƒrepresentingƒthe
radiusƒofƒtheƒcircle.ƒTheƒoutputƒisƒaƒfloating-pointƒnumber
labeledƒtheƒareaƒofƒtheƒcircle.
“””

CHAPTER 2 Software Development, Data Types, and Expressions[52]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In addition to docstrings, end-of-line comments can document a program.
These comments begin with the # symbol and extend to the end of a line. An
end-of-line comment might explain the purpose of a variable or the strategy used
by a piece of code, if it is not already obvious. Here is an example:

>>>ƒRATEƒ=ƒ0.85ƒƒƒ# Conversion rate for Canadian to US dollars

Throughout this book, both types of documentation are colored in green.
Good documentation can be as important in a program as its executable

code. Ideally, program code is self-documenting, so a human reader can instantly
understand it. However, a program is often read by people who are not its
authors, and even the authors might find their own code inscrutable after months
of not seeing it. The trick is to avoid documenting code that has an obvious
meaning, but to aid the poor reader when the code alone might not provide suffi-
cient understanding. With this end in mind, it’s a good idea to do the following:

1 Begin a program with a statement of its purpose and other information
that would help orient a programmer called on to modify the program at
some future date.

2 Accompany a variable definition with a comment that explains the vari-
able’s purpose.

3 Precede major segments of code with brief comments that explain their
purpose. The case study program presented earlier in this chapter does this.

4 Include comments to explain the workings of complex or tricky sections
of code.

2.3 Exercises
1 Let the variable x be “dog” and the variable y be “cat”. Write the val-

ues returned by the following operations:

a x + y

b “the “ + x + “ chases the “ + y

c x * 4

2 Write a string that contains your name and address on separate lines
using embedded newline characters. Then write the same string literal
without the newline characters.

2.3 Strings, Assignment, and Comments [53]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3 How does one include an apostrophe as a character within a string
literal?

4 What happens when the print function prints a string literal with
embedded newline characters?

5 Which of the following are valid variable names?

a length

b _width

c firstBase

d 2MoreToGo

e halt!

6 List two of the purposes of program documentation.

2.4 Numeric Data Types and Character Sets
The first applications of computers were to crunch numbers. Although text and
media processing have lately been of increasing importance, the use of numbers
in many applications is still very important. In this section, we give a brief
overview of numeric data types and their cousins, character sets.

2.4.1 Integers

As you learned in mathematics, the integers include 0, all of the positive whole
numbers, and all of the negative whole numbers. Integer literals in a Python
program are written without commas, and a leading negative sign indicates a
negative value.

Although the range of integers is infinite, a real computer’s memory places a
limit on the magnitude of the largest positive and negative integers. The most
common implementation of the int data type in many programming languages
consists of the integers from –2,147,483,648 (–231) to 2,147,483,647 (231 – 1).
However, the magnitude of a long integer can be quite large, but is still limited
by the memory of your particular computer. As an experiment, try evaluating the
expression 2147483647 ** 100, which raises the largest positive int value to
the 100th power. You will see a number that contains many lines of digits!

CHAPTER 2 Software Development, Data Types, and Expressions[54]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.4.2 Floating-Point Numbers

A real number in mathematics, such as the value of pi (3.1416…), consists of a
whole number, a decimal point, and a fractional part. Real numbers have infinite
precision, which means that the digits in the fractional part can continue forever.
Like the integers, real numbers also have an infinite range. However, because a
computer’s memory is not infinitely large, a computer’s memory limits not only
the range but also the precision that can be represented for real numbers. Python
uses floating-point numbers to represent real numbers. Values of the most com-
mon implementation of Python’s float type range from approximately –10308 to
10308 and have 16 digits of precision.

A floating-point number can be written using either ordinary decimal notation
or scientific notation. Scientific notation is often useful for mentioning very large
numbers. Table 2.4 shows some equivalent values in both notations.

[TABLE 2.4] Decimal and scientific notations for floating-point numbers

2.4.3 Character Sets

Some programming languages use different data types for strings and individual
characters. In Python, character literals look just like string literals and are of the
string type. But they also belong to several different character sets, among them
the ASCII set and the Unicode set. (The term ASCII stands for American

DECIMAL NOTATION SCIENTIFIC NOTATION MEANING

3.78 3.78e0 3.78 × 100

37.8 3.78e1 3.78 × 101

3780.0 3.78e3 3.78 × 103

0.378 3.78e-1 3.78 × 10-1

0.00378 3.78e-3 3.78 × 10-3

2.4 Numeric Data Types and Character Sets [55]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Standard Code for Information Interchange.) In the 1960s, the original ASCII set
encoded each keyboard character and several control characters using the inte-
gers from 0 through 127. An example of a control character is Control+D, which
is the command to terminate a shell window. As new function keys and some
international characters were added to keyboards, the ASCII set doubled in size
to 256 distinct values in the mid-1980s. Then, when characters and symbols were
added from languages other than English, the Unicode set was created to support
65,536 values in the early 1990s.

Table 2.5 shows the mapping of character values to the first 128 ASCII
codes. The digits in the left column represent the leftmost digits of an
ASCII code, and the digits in the top row are the rightmost digits. Thus,
the ASCII code of the character 'R' at row 8, column 2 is 82.

[TABLE 2.5] The original ASCII character set

0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT

1 LF VT FF CR SO SI DLE DCI DC2 DC3

2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS

3 RS US SP ! “ # $ % & `

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ‘ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ DEL

CHAPTER 2 Software Development, Data Types, and Expressions[56]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Some might think it odd to include characters in a discussion of numeric
types. However, as you can see, the ASCII character set maps to a set of integers.
Python’s ord and chr functions convert characters to their numeric ASCII codes
and back again, respectively. The next session uses the following functions to
explore the ASCII system:

>>>ƒord('a')
97
>>>ƒord('A')
65
>>>ƒchr(65)
'A'
>>>ƒchr(66)
'B'
>>>

Note that the ASCII code for 'B' is the next number in the sequence after
the code for 'A'. These two functions provide a handy way to shift letters by a
fixed amount. For example, if you want to shift three places to the right of the
letter 'A', you can write chr(ord('A') + 3).

2.4 Exercises
1 Which data type would most appropriately be used to represent the

following data values?

a The number of months in a year

b The area of a circle

c The current minimum wage

d The approximate age of the universe (12,000,000,000 years)

e Your name

2 Explain the differences between the data types int and float.

3 Write the values of the following floating-point numbers in Python’s
scientific notation:

a 355.76

b 0.007832

c 4.3212

4 Consult Table 2.5 to write the ASCII values of the characters '$' and '&'.

2.4 Numeric Data Types and Character Sets [57]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.5 Expressions
As we have seen, a literal evaluates to itself, whereas a variable reference evaluates
to the variable’s current value. Expressions provide an easy way to perform oper-
ations on data values to produce other data values. When entered at the Python
shell prompt, an expression’s operands are evaluated, and its operator is then
applied to these values to compute the value of the expression. In this section, we
examine arithmetic expressions in more detail.

2.5.1 Arithmetic Expressions

An arithmetic expression consists of operands and operators combined in a man-
ner that is already familiar to you from learning algebra. Table 2.6 shows several
arithmetic operators and gives examples of how you might use them in Python code.

[TABLE 2.6] Arithmetic operators

In algebra, you are probably used to indicating multiplication like this: ab.
However, in Python, we must indicate multiplication explicitly, using the multi-
plication operator (*), like this: a * b. Binary operators are placed between their
operands (a * b, for example), whereas unary operators are placed before their
operands (-a, for example).

The precedence rules you learned in algebra apply during the evaluation of
arithmetic expressions in Python:

� Exponentiation has the highest precedence and is evaluated first.
� Unary negation is evaluated next, before multiplication, division, and

remainder.

OPERATOR MEANING SYNTAX

- Negation -a

** Exponentiation a ** b

* Multiplication a * b

/ Division a / b

// Quotient a // b

% Remainder or modulus a % b

+ Addition a + b

- Subtraction a - b

CHAPTER 2 Software Development, Data Types, and Expressions[58]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� Multiplication, both types of division, and remainder are evaluated before
addition and subtraction.

� Addition and subtraction are evaluated before assignment.
� With two exceptions, operations of equal precedence are left associative,

so they are evaluated from left to right. Exponentiation and assignment
operations are right associative, so consecutive instances of these are eval-
uated from right to left.

� You can use parentheses to change the order of evaluation.

Table 2.7 shows some arithmetic expressions and their values.

[TABLE 2.7] Some arithmetic expressions and their values

The last two lines of Table 2.7 show attempts to divide by 0, which result in
an error. These expressions are good illustrations of the difference between syn-
tax and semantics. Syntax is the set of rules for constructing well-formed expres-
sions or sentences in a language. Semantics is the set of rules that allow an agent
to interpret the meaning of those expressions or sentences. A computer generates
a syntax error when an expression or sentence is not well formed. A semantic
error is detected when the action that an expression describes cannot be carried
out, even though that expression is syntactically correct. Although the expressions
45 / 0 and 45 % 0 are syntactically correct, they are meaningless, because a com-
puting agent cannot carry them out. Human beings can tolerate all kinds of syn-
tax errors and semantic errors when they converse in natural languages. By
contrast, computing agents can tolerate none of these errors.

EXPRESSION EVALUATION VALUE

5 + 3 * 2 5 + 6 11

(5 + 3) * 2 8 * 2 16

6 % 2 0 0

2 * 3 ** 2 2 * 9 18

-3 ** 2 -(3 ** 2) -9

(3) ** 2 9 9

2 ** 3 ** 2 2 ** 9 512

(2 ** 3) ** 2 8 ** 2 64

45 / 0 Error: cannot divide by 0

45 % 0 Error: cannot divide by 0

2.5 Expressions [59]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

With the exception of exact division, when both operands of an arithmetic
expression are of the same numeric type (int, long, or float), the resulting
value is also of that type. When each operand is of a different type, the resulting
value is of the more general type. Note that the float type is more general than
the int type. The quotient operator // produces an integer quotient, whereas
the exact division operator / always produces a float. Thus, 3ƒ//ƒ4 produces 0,
whereas 3ƒ/ƒ4 produces .75.

Although spacing within an expression is not important to the Python inter-
preter, programmers usually insert a single space before and after each operator
to make the code easier for people to read. Normally, an expression must be
completed on a single line of Python code. When an expression becomes long or
complex, you can move to a new line by placing a backslash character \ at the
end of the current line. The next example shows this technique:

>>>ƒ3ƒ+ƒ4ƒ*ƒ\
2ƒ**ƒ5
131
>>>

Make sure to insert the backslash before or after an operator. If you break lines in
this manner in IDLE, the editor automatically indents the code properly.

As you will see shortly, you can also break a long line of code immediately
after a comma. Examples include function calls with several arguments.

2.5.2 Mixed-Mode Arithmetic and Type Conversions

When working with a handheld calculator, we do not give much thought to the
fact that we intermix integers and floating-point numbers. Performing calcula-
tions involving both integers and floating-point numbers is called mixed-mode
arithmetic. For instance, if a circle has radius 3, we compute the area as follows:

>>>ƒ3.14ƒ*ƒ3ƒ**ƒ2
28.26

How do we perform a similar calculation in Python? In a binary operation on
operands of different numeric types, the less general type (int) is temporarily and
automatically converted to the more general type (float) before the operation is
performed. Thus, in the example expression, the value 9 is converted to 9.0 before
the multiplication.

CHAPTER 2 Software Development, Data Types, and Expressions[60]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Remember that Python has different operators for quotient and exact divi-
sion. For instance,

3ƒ//ƒ2ƒ*ƒ5.0ƒyieldsƒ1ƒ*ƒ5.0, which yieldsƒ5.0

whereas

3ƒ/ƒ2ƒ*ƒ5ƒyieldsƒ1.5ƒ*ƒ5, which yieldsƒ7.5

In general, when you want the most precise results, you should use exact division.
You must use a type conversion function when working with the input of

numbers. A type conversion function is a function with the same name as the data
type to which it converts. Because the input function returns a string as its value,
you must use the function int or float to convert the string to a number before
performing arithmetic, as in the following example:

>>>ƒradiusƒ=ƒinput("Enterƒtheƒradius:ƒ")
Enterƒtheƒradius:ƒ3.2
>>>ƒradius
'3.2'
>>>ƒfloat(radius)
3.2
>>>ƒfloat(radius)ƒ**ƒ2ƒ*ƒ3.14
32.153600000000004

Table 2.8 lists some common type conversion functions and their uses.

[TABLE 2.8] Type conversion functions

Note that the int function converts a float to an int by truncation, not by
rounding to the nearest whole number. Truncation simply chops off the number’s

CONVERSION FUNCTION EXAMPLE USE VALUE RETURNED

int(<a number or a string>) int(3.77) 3

int(“33”) 33

float(<a number or a string>) float(22) 22.0

str(<any value>) str(99) '99'

2.5 Expressions [61]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

fractional part. The round function rounds a float to the nearest int as in the
next example:

>>>ƒint(6.75)
6
>>>ƒround(6.75)
7

Another use of type conversion occurs in the construction of strings from
numbers and other strings. For instance, assume that the variable profit refers
to a floating-point number that represents an amount of money in dollars and
cents. Suppose that, to build a string that represents this value for output, we
need to concatenate the $ symbol to the value of profit. However, Python does
not allow the use of the + operator with a string and a number:

>>>ƒprofitƒ=ƒ1000.55
>>>ƒprint('$'ƒ+ƒprofit)
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<stdin>”,ƒlineƒ1,ƒinƒ<module>
TypeError:ƒcannotƒconcatenateƒ'str'ƒandƒ'float'ƒobjects

To solve this problem, we use the str function to convert the value of profit to
a string and then concatenate this string to the $ symbol, as follows:

>>>ƒprint('$'ƒ+ƒstr(profit))
$1000.55

Python is a strongly typed programming language. The interpreter checks
data types of all operands before operators are applied to those operands. If the
type of an operand is not appropriate, the interpreter halts execution with an
error message. This error checking prevents a program from attempting to do
something that it cannot do.

CHAPTER 2 Software Development, Data Types, and Expressions[62]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.5 Exercises
1 Let x = 8 and y = 2. Write the values of the following expressions:

a x + y * 3

b (x + y) * 3

c x ** y

d x % y

e x / 12.0

f x // 6

2 Let x = 4.66. Write the values of the following expressions:

a round(x)

b int(x)

3 How does a Python programmer round a float value to the nearest
int value?

4 How does a Python programmer concatenate a numeric value to a
string value?

5 Assume that the variable x has the value 55. Use an assignment state-
ment to increment the value of x by 1.

2.6 Using Functions and Modules
Thus far in this chapter, we have examined two ways to manipulate data within
expressions. We can apply an operator such as + to one or more operands to pro-
duce a new data value. Alternatively, we can call a function such as round with
one or more data values to produce a new data value. Python includes many use-
ful functions, which are organized in libraries of code called modules. In this
section, we examine the use of functions and modules.

2.6 Using Functions and Modules [63]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6.1 Calling Functions: Arguments and Return Values

A function is a chunk of code that can be called by name to perform a task.
Functions often require arguments, that is, specific data values, to perform their
tasks. Arguments are also known as parameters. When a function completes its
task (which is usually some kind of computation), the function may send a result
back to the part of the program that called that function in the first place. The
process of sending a result back to another part of a program is known as
returning a value.

For example, the argument in the function call round(6.5) is the value 6.5,
and the value returned is 7. When an argument is an expression, it is first evalu-
ated, and then its value is passed to the function for further processing. For
instance, the function call abs(4 – 5) first evaluates the expression 4 - 5 and
then passes the result, -1, to abs. Finally, abs returns 1.

The values returned by function calls can be used in expressions and statements.
For example, the function call print(abs(4 - 5) + 3) prints the value 4.

Some functions have only optional arguments, some have required
arguments, and some have both required and optional arguments. For example,
the round function has one required argument, the number to be rounded.
When called with just one argument, the round function exhibits its default
behavior, which is to return the nearest float with a fractional part of 0.
However, when a second, optional argument is supplied, this argument, a num-
ber, indicates the number of places of precision to which the first argument
should be rounded. For example, round(7.563, 2) returns 7.56.

To learn how to use a function’s arguments, consult the documentation on
functions in the shell. For example, Python’s help function displays information
about round, as follows:

>>>ƒhelp(round)

Helpƒonƒbuilt-inƒfunctionƒroundƒinƒmoduleƒbuiltin:

round(...)
ƒƒƒƒround(number[,ƒndigits])ƒ->ƒfloatingƒpointƒnumber

ƒƒƒƒRoundƒaƒnumberƒtoƒaƒgivenƒprecisionƒinƒdecimalƒdigitsƒ(defaultƒ0ƒdigits).
ƒƒƒƒThisƒreturnsƒanƒintƒwhenƒcalledƒwithƒoneƒargument,ƒotherwiseƒtheƒsameƒtypeƒas
ƒƒƒƒnumber.ƒndigitsƒmayƒbeƒnegative.

Each argument passed to a function has a specific data type. When writing
code that involves functions and their arguments, you need to keep these data

CHAPTER 2 Software Development, Data Types, and Expressions[64]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

types in mind. A program that attempts to pass an argument of the wrong data
type to a function will usually generate an error. For example, one cannot take
the square root of a string, but only of a number. Likewise, if a function call is
placed in an expression that expects a different type of operand than that returned
by the function, an error will be raised. If you’re not sure of the data type associ-
ated with a particular function’s arguments, read the documentation.

2.6.2 The math Module

Functions and other resources are coded in components called modules.
Functions like abs and round from the __builtin__ module are always avail-
able for use, whereas the programmer must explicitly import other functions
from the modules where they are defined.

The math module includes several functions that perform basic mathematical
operations. The next code session imports the math module and lists a directory
of its resources:

>>>ƒimportƒmath
>>>ƒdir(math)
['__doc__',ƒ'__file__',ƒ'__name__',ƒ'__package__',ƒ'acos',ƒ'acosh',ƒ'asin',ƒ
'asinh',ƒ'atan',ƒ'atanh',ƒ'ceil','copysign',ƒ'cos',ƒ'cosh',ƒ'degrees',ƒ'e',ƒ
'exp',ƒ'fabs',ƒ'factorial',ƒ'floor',ƒ'fmod',ƒ'frexp',ƒ'fsum',ƒ'hypot',ƒ
'isinf',ƒ'isnan',ƒ'ldexp',ƒ'log',ƒ'log10',ƒ'log1p',ƒ'modf',ƒ'pi',ƒ'pow',ƒ
'radians',ƒ'sin',ƒ'sinh',ƒ'sqrt',ƒ'tan',ƒ'tanh',ƒ'trunc']

This list of function names includes some familiar trigonometric functions as well
as Python’s most exact estimates of the constants π and e.

To use a resource from a module, you write the name of a module as a quali-
fier, followed by a dot (.) and the name of the resource. For example, to use the
value of pi from the math module, you would write the following code: math.pi.
The next session uses this technique to display the value of π and the square root
of 2:

>>>ƒmath.pi
3.1415926535897931
>>>ƒmath.sqrt(2)
1.4142135623730951

2.6 Using Functions and Modules [65]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Once again, help is available if needed:

>>>ƒhelp(math.cos)

Helpƒonƒbuilt-inƒfunctionƒcosƒinƒmoduleƒmath:

cos(...)
ƒƒƒƒcos(x)

ƒƒƒƒReturnƒtheƒcosineƒofƒxƒ(measuredƒinƒradians).

Alternatively, you can browse through the documentation for the entire module
by entering help(math). The function help uses a module’s own docstring and
the docstrings of all its functions to print the documentation.

If you are going to use only a couple of a module’s resources frequently, you
can avoid the use of the qualifier with each reference by importing the individual
resources, as follows:

>>>ƒfromƒmathƒimportƒpi,ƒsqrt
>>>ƒprint(pi,ƒsqrt(2))
3.14159265359ƒ1.41421356237
>>>

Programmers occasionally import all of a module’s resources to use without
the qualifier. For example, the statement from math import * would import all
of the math module’s resources.

Generally, the first technique of importing resources (that is, importing just
the module’s name) is preferred. The use of a module qualifier not only reminds
the reader of a function’s purpose, but also helps the interpreter to discriminate
between different functions that have the same name.

2.6.3 The Main Module

In the case study, earlier in this chapter, we showed how to write documentation
for a Python script. To differentiate this script from the other modules in a pro-
gram (and there could be many), we call it the main module. Like any module,
the main module can also be imported. Instead of launching the script from a ter-
minal prompt or loading it into the shell from IDLE, you can start Python from

CHAPTER 2 Software Development, Data Types, and Expressions[66]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the terminal prompt and import the script as a module. Let’s do that with the
taxform.py script, as follows:

>>>ƒimportƒtaxform
Enterƒtheƒgrossƒincome:ƒ120000
Enterƒtheƒnumberƒofƒdependents:ƒ2
Theƒincomeƒtaxƒisƒ$20800.0

After importing a main module, you can view its documentation by running
the help function:

>>>ƒhelp(taxform)

DESCRIPTION
ƒƒƒƒProgram:ƒtaxform.py
ƒƒƒƒAuthor:ƒKen

ƒƒƒƒComputeƒaƒperson'sƒincomeƒtax.

ƒƒƒƒ1.ƒSignificantƒconstants
ƒƒƒƒƒƒƒƒƒƒƒtaxƒrate
ƒƒƒƒƒƒƒƒƒƒƒstandardƒdeduction
ƒƒƒƒƒƒƒƒƒƒƒdeductionƒperƒdependent
ƒƒƒƒ2.ƒTheƒinputsƒare
ƒƒƒƒƒƒƒƒƒƒƒgrossƒincome
ƒƒƒƒƒƒƒƒƒƒƒnumberƒofƒdependents
ƒƒƒƒ3.ƒComputations:
ƒƒƒƒƒƒƒƒƒƒƒnetƒincomeƒ=ƒgrossƒincomeƒ-ƒtheƒstandardƒdeductionƒ-
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒaƒdeductionƒforƒeachƒdependent
ƒƒƒƒƒƒƒƒƒƒƒincomeƒtaxƒ=ƒisƒaƒfixedƒpercentageƒofƒtheƒnetƒincome
ƒƒƒƒ4.ƒTheƒoutputsƒare
ƒƒƒƒƒƒƒƒƒƒƒtheƒincomeƒtax

2.6.4 Program Format and Structure

This is a good time to step back and get a sense of the overall format and struc-
ture of simple Python programs. It’s a good idea to structure your programs as
follows:

� Start with an introductory comment stating the author’s name, the purpose
of the program, and other relevant information. This information should
be in the form of a docstring.

2.6 Using Functions and Modules [67]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� Then, include statements that do the following:

• Import any modules needed by the program.

• Initialize important variables, suitably commented.

• Prompt the user for input data and save the input data in variables.

• Process the inputs to produce the results.

• Display the results.

Take a moment to review the income tax program presented in the case study
at the beginning of this chapter. Notice how the program conforms to this basic
organization. Also, notice that the various sections of the program are separated
by whitespace (blank lines). Remember, programs should be easy for other pro-
grammers to read and understand. They should read like essays!

2.6.5 Running a Script from a Terminal Command Prompt

Thus far in this book, we have been developing and running Python programs exper-
imentally in IDLE. When a program’s development and testing are finished, the pro-
gram can be released to others to run on their computers. Python must be installed
on a user’s computer, but the user need not run IDLE to run a Python script.

One way to run a Python script is to open a terminal command prompt win-
dow. On a computer running Windows, this is the DOS command prompt win-
dow; to open it, select the Start button, select All Programs, select Accessories,
and then select Command Prompt. On a Macintosh or UNIX-based system, this
is a terminal window. A terminal window on a Macintosh is shown in Figure 2.5.

[FIGURE 2.5] A terminal window on a Macintosh

After the user has opened a terminal window, she must navigate or change
directories until the prompt shows that she is attached to the directory that contains
the Python script. For example, if we assume that the script named taxform.py is in

CHAPTER 2 Software Development, Data Types, and Expressions[68]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the pythonfiles directory under the terminal’s current directory, Figure 2.6 shows
the commands to change to this directory and list its contents.

[FIGURE 2.6] Changing to another directory and listing its contents

When the user is attached to the appropriate directory, she can run the script
by entering the command python scriptname.py at the command prompt.
Figure 2.7 shows this step and a run of the taxform script.

[FIGURE 2.7] Running a Python script in a terminal window

All Python installations also provide the capability of launching Python
scripts by double-clicking the files from the operating system’s file browser. On
Windows systems, this feature is automatic, whereas on Macintosh and UNIX-
based systems, the .py file type must be set to launch with the Python launcher
application. When you launch a script in this manner, however, the command
prompt window opens, shows the output of the script, and closes. To prevent this
fly-by-window problem, you can add an input statement at the end of the script
that pauses until the user presses the enter or return key, as follows:

input(“Pleaseƒpressƒenterƒorƒreturnƒtoƒquitƒtheƒprogram.ƒ“)

2.6 Using Functions and Modules [69]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.6 Exercises
1 Explain the relationship between a function and its arguments.

2 The math module includes a pow function that raises a number to a
given power. The first argument is the number, and the second argument
is the exponent. Write a code segment that imports this function and
calls it to print the values 82 and 54.

3 Explain how to display a directory of all of the functions in a given module.

4 Explain how to display help information on a particular function in a
given module.

Summary
� The waterfall model describes the software development process in

terms of several phases. Analysis determines what the software will do.
Design determines how the software will accomplish its purposes.
Implementation involves coding the software in a particular program-
ming language. Testing and integration demonstrate that the software
does what it is intended to do as it is put together for release.
Maintenance locates and fixes errors after release and adds new fea-
tures to the software.

� Literals are data values that can appear in a program. They evaluate to
themselves.

� The string data type is used to represent text for input and output.
Strings are sequences of characters. String literals are enclosed in pairs
of single or double quotation marks. Two strings can be combined by
concatenation to form a new string.

� Escape characters begin with a backslash and represent special charac-
ters such as the delete key and the newline.

� A docstring is a string enclosed by triple quotation marks and provides
program documentation.

� Comments are pieces of code that are not evaluated by the interpreter
but can be read by programmers to obtain information about a program.

CHAPTER 2 Software Development, Data Types, and Expressions[70]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� Variables are names that refer to values. The value of a variable is ini-
tialized and can be reset by an assignment statement. In Python, any
variable can name any value.

� The int data type represents integers. The float data type repre-
sents floating-point numbers. The magnitude of an integer or a float-
ing-point number is limited by the memory of the computer, as is the
number’s precision in the case of floating-point numbers.

� Arithmetic operators are used to form arithmetic expressions.
Operands can be numeric literals, variables, function calls, or other
expressions.

� The operators are ranked in precedence. In descending order, they are
exponentiation, negation, multiplication (*, /, and % are the same),
addition (+ and – are the same), and assignment. Operators with a
higher precedence are evaluated before those with a lower precedence.
Normal precedence can be overridden by parentheses.

� Mixed-mode operations involve operands of different numeric data
types. They result in a value of the more inclusive data type.

� The type conversion functions can be used to convert a value of one
type to a value of another type after input.

� A function call consists of a function’s name and its arguments or
parameters. When it is called, the function’s arguments are evaluated,
and these values are passed to the function’s code for processing.
When the function completes its work, it may return a result value to
the caller.

� Python is a strongly typed language. The interpreter checks the types
of all operands within expressions and halts execution with an error if
they are not as expected for the given operators.

� A module is a set of resources, such as function definitions.
Programmers access these resources by importing them from their
modules.

� A semantic error occurs when the computer cannot perform the
requested operation, such as an attempt to divide by 0. Python pro-
grams with semantic errors halt with an error message.

� A logic error occurs when a program runs to a normal termination
but produces incorrect results.

Summary [71]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 2 Software Development, Data Types, and Expressions[72]

REVIEW QUESTIONS
1 What does a programmer do during the analysis phase of software

development?

a Codes the program in a particular programming language
b Writes the algorithms for solving a problem
c Decides what the program will do and determines its user interface
d Tests the program to verify its correctness

2 What must a programmer use to test a program?

a All possible sets of legitimate inputs
b All possible sets of inputs
c A single set of legitimate inputs
d A reasonable set of legitimate inputs

3 What must you use to create a multi-line string?

a A single pair of double quotation marks
b A single pair of single quotation marks
c A single pair of three consecutive double quotation marks
d Embedded newline characters

4 What is used to begin an end-of-line comment?

a / symbol
b # symbol
c % symbol

5 Which of the following lists of operators is ordered by decreasing
precedence?

a +, *, **
b *, /, %
c **, *, +

6 The expression 2 ** 3 ** 2 evaluates to which of the following values?

a 64
b 512
c 8

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7 The expression round(23.67) evaluates to which of the following values?

a 23
b 23.7
c 24.0

8 Assume that the variable name has the value 33. What is the value of
name after the assignment statement name = name * 2 executes?

a 35
b 33
c 66

9 Write an import statement that imports just the functions sqrt and log
from the math module.

10 What is the purpose of the dir function and the help function?

PROJECTS
In each of the projects that follow, you should write a program that contains an
introductory docstring. This documentation should describe what the program will
do (analysis) and how it will do it (design the program in the form of a pseudocode
algorithm). Include suitable prompts for all inputs, and label all outputs appropri-
ately. After you have coded a program, be sure to test it with a reasonable set of
legitimate inputs.

1 The tax calculator program of the case study outputs a floating-point
number that might show more than two digits of precision. Use the
round function to modify the program to display at most two digits of
precision in the output number.

2 You can calculate the surface area of a cube if you know the length of an
edge. Write a program that takes the length of an edge (an integer) as
input and prints the cube’s surface area as output.

PROJECTS [73]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 2 Software Development, Data Types, and Expressions[74]

3 Five Star Video rents new videos for $3.00 a night, and oldies for $2.00 a
night. Write a program that the clerks at Five Star Video can use to calculate
the total charge for a customer’s video rentals. The program should prompt
the user for the number of each type of video and output the total cost.

4 Write a program that takes the radius of a sphere (a floating-point num-
ber) as input and outputs the sphere’s diameter, circumference, surface
area, and volume.

5 An object’s momentum is its mass multiplied by its velocity. Write a pro-
gram that accepts an object’s mass (in kilograms) and velocity (in meters
per second) as inputs and then outputs its momentum.

6 The kinetic energy of a moving object is given by the formula
KE=(1/2)mv2, where m is the object’s mass and v is its velocity. Modify
the program you created in Project 5 so that it prints the object’s kinetic
energy as well as its momentum.

7 Write a program that calculates and prints the number of minutes in a year.

8 Light travels at 3 * 108 meters per second. A light-year is the distance a
light beam travels in one year. Write a program that calculates and dis-
plays the value of a light-year.

9 Write a program that takes as input a number of kilometers and prints the
corresponding number of nautical miles. Use the following approximations:

� A kilometer represents 1/10,000 of the distance between the North
Pole and the equator.

� There are 90 degrees, containing 60 minutes of arc each, between
the North Pole and the equator.

� A nautical mile is 1 minute of an arc.

10 An employee’s total weekly pay equals the hourly wage multiplied by the
total number of regular hours plus any overtime pay. Overtime pay equals
the total overtime hours multiplied by 1.5 times the hourly wage. Write a
program that takes as inputs the hourly wage, total regular hours, and
total overtime hours and displays an employee’s total weekly pay.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After completing this chapter, you will be able to:
� Write a loop to repeat a sequence of actions a fixed number

of times
� Write a loop to traverse the sequence of characters in a string
� Write a loop that counts down and a loop that counts up
� Write an entry-controlled loop that halts when a condition

becomes false
� Use selection statements to make choices in a program
� Construct appropriate conditions for condition-controlled

loops and selection statements
� Use logical operators to construct compound Boolean

expressions
� Use a selection statement and a break statement to exit a loop

that is not entry-controlled
All the programs you have studied so far in this book have con-

sisted of short sequences of instructions that are executed one after
the other. Even if we allowed the sequence of instructions to be
quite long, this type of program would not be very useful. Like
human beings, computers must be able to repeat a set of actions.
They also must be able to select an action to perform in a particular
situation. This chapter focuses on control statements—statements
that allow the computer to select or repeat an action.

[CHAPTER] Control Statements 3

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.1 Definite Iteration: The for Loop
We begin our study of control statements with repetition statements, also known
as loops, which repeat an action. Each repetition of the action is known as a pass
or an iteration. There are two types of loops—those that repeat an action a pre-
defined number of times (definite iteration) and those that perform the action
until the program determines that it needs to stop (indefinite iteration). In this
section, we examine Python’s for loop, the control statement that most easily
supports definite iteration.

3.1.1 Executing a Statement a Given Number of Times

When Dr. Frankenstein’s monster came to life, the good doctor exclaimed, “It’s
alive! It’s alive!” A computer can easily print these exclamations not just twice,
but a dozen or a hundred times. Here is a for loop that does so four times:

>>>ƒforƒeachPassƒinƒrange(4):
ƒƒƒƒƒƒƒprint(“It'sƒalive!”,ƒend="ƒ")

It'sƒalive!ƒIt'sƒalive!ƒIt'sƒalive!ƒIt'sƒalive!
>>>

This loop repeatedly calls one function—the print function. The constant 4 on
the first line tells the loop how many times to call this function. If we want to
print 10 or 100 exclamations, we just change the 4 to 10 or to 100. The form of
this type of loop is

forƒ<variable>ƒinƒrange(<anƒintegerƒexpression>):
ƒƒƒƒ<statement-1>
ƒƒƒƒ
ƒƒƒƒ<statement-n>

The first line of code in a loop is sometimes called the loop header. For
now, the only relevant information in the header is the integer expression, which
denotes the number of iterations that the loop performs. The colon (:) ends the
loop header. The loop body comprises the statements in the remaining lines of
code, below the header. Note that the statements in the loop body must be
indented and aligned in the same column. These statements are executed in sequence
on each pass through the loop.

CHAPTER 3 Control Statements[76]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Now let’s explore how Python’s exponentiation operator might be imple-
mented in a loop. Recall that this operator raises a number to a given power. For
instance, the expression 2 ** 3 computes the value of 23, or 2 * 2 * 2. The
following session uses a loop to compute an exponentiation for a non-negative
exponent. We use three variables to designate the number, the exponent, and the
product. The product is initially 1. On each pass through the loop, the product is
multiplied by the number and reset to the result. To allow us to trace this
process, the value of the product is also printed on each pass.

>>>ƒnumberƒ=ƒ2
>>>ƒexponentƒ=ƒ3
>>>ƒproductƒ=ƒ1
>>>ƒforƒeachPassƒinƒrange(exponent):
ƒƒƒƒƒƒƒproductƒ=ƒproductƒ*ƒnumber
ƒƒƒƒƒƒƒprint(product,ƒendƒ=ƒ"ƒ")

2ƒ4ƒ8
>>>ƒproduct
8

As you can see, if the exponent were 0, the loop body would not execute, and
the value of product would remain as 1, which is the value of any number raised
to the zero power.

The use of variables in the preceding example demonstrates that our expo-
nentiation loop is an algorithm that solves a general class of problems. The user of
this particular loop not only can raise 2 to the 3rd power, but also can raise any
number to any non-negative power, just by substituting different values for the
variables number and exponent.

3.1.2 Count-Controlled Loops

When Python executes the type of for loop just discussed, it actually counts
from 0 to the value of the header’s integer expression minus 1. On each pass

3.1 Definite Iteration: The for Loop [77]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

through the loop, the header’s variable is bound to the current value of this
count. The next code segment demonstrates this fact:

>>>ƒforƒcountƒinƒrange(4):
ƒƒƒƒƒƒƒprint(count,ƒendƒ=ƒ"ƒ")

0ƒ1ƒ2ƒ3
>>>

Loops that count through a range of numbers are also called count-
controlled loops. The value of the count on each pass is often used in computa-
tions. For example, consider the factorial of 4, which is 1 * 2 * 3 * 4 = 24. A code
segment to compute this value starts with a product of 1 and resets this variable
to the result of multiplying it and the loop’s count plus 1 on each pass, as follows:

>>>ƒproductƒ=ƒ1
>>>ƒforƒcountƒinƒrange(4):
ƒƒƒƒƒƒƒproductƒ=ƒproductƒ*ƒ(countƒ+ƒ1)

>>>ƒproduct
24

Note that the value of count + 1 is used on each pass, to ensure that the
numbers used are 1 through 4 rather than 0 through 3.

To count from an explicit lower bound, the programmer can supply a second
integer expression in the loop header. When two arguments are supplied to range,
the count ranges from the first argument to the second argument minus 1. The next
code segment uses this variation to simplify the code in the loop body:

>>>ƒproductƒ=ƒ1
>>>ƒforƒcountƒinƒrange(1,ƒ5):
ƒƒƒƒƒƒƒproductƒ=ƒproductƒ*ƒcount

>>>ƒproduct
24
>>>

CHAPTER 3 Control Statements[78]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The only thing in this version to be careful about is the second argument of
range, which should specify an integer greater by 1 than the desired upper
bound of the count. Here is the form of this version of the for loop:

forƒ<variable>ƒinƒrange(<lowerƒbound>,ƒ<upperƒboundƒ+ƒ1>):
ƒƒƒƒ<loopƒbody>

Accumulating a single result value from a series of values is a common opera-
tion in computing. Here is an example of a summation, which accumulates the
sum of a sequence of numbers from a lower bound through an upper bound:

>>>ƒlowerƒ=ƒint(input(“Enterƒtheƒlowerƒbound:ƒ“))
Enterƒtheƒlowerƒbound:ƒ1
>>>ƒupperƒ=ƒint(input(“Enterƒtheƒupperƒbound:ƒ“))
Enterƒtheƒupperƒbound:ƒ10
>>>ƒsumƒ=ƒ0
>>>ƒforƒcountƒinƒrange(lower,ƒupperƒ+ƒ1):
ƒƒƒƒƒƒƒsumƒ=ƒsumƒ+ƒcount

>>>ƒsum
55
>>>

3.1.3 Augmented Assignment

Expressions such as x = x + 1 or x = x + 2 occur so frequently in loops that
Python includes abbreviated forms for them. The assignment symbol can be
combined with the arithmetic and concatenation operators to provide
augmented assignment operations. Following are several examples:

aƒ=ƒ17
sƒ=ƒ“hi”

aƒ+=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ+ƒ3
aƒ-=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ-ƒ3
aƒ*=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ*ƒ3
aƒ/=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ/ƒ3
aƒ%=ƒ3ƒƒƒƒƒƒƒƒƒƒƒ#ƒEquivalentƒtoƒaƒ=ƒaƒ%ƒ3
sƒ+=ƒ“ƒthere”ƒƒƒƒ#ƒEquivalentƒtoƒsƒ=ƒsƒ+ƒ“ƒthere”

3.1 Definite Iteration: The for Loop [79]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

All these examples have the format

<variable>ƒ<operator>=ƒ<expression>

which is equivalent to

<variable>ƒ=ƒ<variable>ƒ<operator>ƒ<expression>

Note that there is no space between <operator> and =. The augmented
assignment operations and the standard assignment operation have the same
precedence.

3.1.4 Loop Errors: Off-by-One Error

The for loop is not only easy to write, but also fairly easy to write correctly. Once
we get the syntax correct, we need to be concerned about only one other possible
error: the loop fails to perform the expected number of iterations. Because this
number is typically off by one, the error is called an off-by-one error. For the
most part, off-by-one errors result when the programmer incorrectly specifies the
upper bound of the loop. The programmer might intend the following loop to
count from 1 through 4, but it actually counts from 1 through 3:

forƒcountƒinƒrange(1,ƒ4):ƒƒƒ#ƒCountƒfromƒ1ƒthroughƒ4,ƒweƒthink
ƒƒƒƒprint(count)

Note that this is not a syntax error, but rather a logic error. Unlike syntax errors,
logic errors are not detected by the Python interpreter, but only by the eyes of a
programmer who carefully inspects a program’s output.

3.1.5 Traversing the Contents of a Data Sequence

Although we have been using the for loop as a simple count-controlled loop,
the loop itself actually visits each number in a sequence of numbers generated

CHAPTER 3 Control Statements[80]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

by the range function. The next code segment shows what these sequences
look like:

>>>ƒlist(range(4))
[0,ƒ1,ƒ2,ƒ3]
>>>ƒlist(range(1,ƒ5))
[1,ƒ2,ƒ3,ƒ4]
>>>

In this example, the sequence of numbers generated by the function range is
fed to Python’s list function, which returns a special type of sequence called a
list. Strings are also sequences of characters. The values contained in any
sequence can be visited by running a for loop, as follows:

forƒ<variable>ƒinƒ<sequence>:
ƒƒƒ<doƒsomethingƒwithƒvariable>

On each pass through the loop, the variable is bound to or assigned the next
value in the sequence, starting with the first one and ending with the last one.
The following code segment traverses or visits all the elements in two sequences
and prints the values contained in them on single lines:

>>>ƒforƒnumberƒinƒ[1,ƒ2,ƒ3]:
ƒƒƒƒƒƒƒprint(number,ƒendƒ=ƒ"ƒ")

1ƒ2ƒ3
>>>ƒforƒcharacterƒinƒ“Hiƒthere!”:
ƒƒƒƒƒƒƒprint(character,ƒendƒ=ƒ"ƒ")

Hƒiƒƒƒtƒhƒeƒrƒeƒ!
>>>

3.1.6 Specifying the Steps in the Range

The count-controlled loops we have seen thus far count through consecutive
numbers in a series. However, in some programs we might want a loop to skip
some numbers, perhaps visiting every other one or every third one. A variant of

3.1 Definite Iteration: The for Loop [81]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Python’s range function expects a third argument that allows you to nicely skip
some numbers. The third argument specifies a step value, or the interval
between the numbers used in the range, as shown in the examples that follow:

>>>ƒlist(range(1,ƒ6,ƒ1))ƒƒƒƒ#ƒSameƒasƒusingƒtwoƒarguments
[1,ƒ2,ƒ3,ƒ4,ƒ5]
>>>ƒlist(range(1,ƒ6,ƒ2))ƒƒƒƒ#ƒUseƒeveryƒotherƒnumber
[1,ƒ3,ƒ5]
>>>ƒlist(range(1,ƒ6,ƒ3))ƒƒƒƒ#ƒUseƒeveryƒthirdƒnumber
[1,ƒ4]
>>>

Now, suppose you had to compute the sum of the even numbers between 1
and 10. Here is the code that solves this problem:

>>>ƒsumƒ=ƒ0
>>>ƒforƒcountƒinƒrange(2,ƒ11,ƒ2):
ƒƒƒƒƒƒƒsumƒ+=ƒcount

>>>ƒsum
30
>>>

3.1.7 Loops That Count Down

All of our loops until now have counted up from a lower bound to an upper
bound. Once in a while, a problem calls for counting in the opposite direction,
from the upper bound down to the lower bound. For example, when the top-10
singles tunes are released, they might be presented in order from lowest (10th) to
highest (1st) rank. In the next session, a loop displays the count from 10 down to 1
to show how this would be done:

>>>ƒforƒcountƒinƒrange(10,ƒ0,ƒ-1):
ƒƒƒƒƒƒƒprint(count,ƒend="ƒ")

10ƒ9ƒ8ƒ7ƒ6ƒ5ƒ4ƒ3ƒ2ƒ1
>>>ƒlist(range(10,ƒ0,ƒ-1))
[10,ƒ9,ƒ8,ƒ7,ƒ6,ƒ5,ƒ4,ƒ3,ƒ2,ƒ1]

CHAPTER 3 Control Statements[82]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the step argument is a negative number, the range function generates a
sequence of numbers from the first argument down to the second argument plus 1.
Thus, in this case, the first argument should express the upper bound, and the
second argument should express the lower bound minus 1.

3.1 Exercises
1 Write the outputs of the following loops:

a forƒcountƒinƒrange(5):
ƒƒƒprint(countƒ+ƒ1,ƒend="ƒ")

b forƒcountƒinƒrange(1,ƒ4):
ƒƒƒprint(count,ƒend="ƒ")

c forƒcountƒinƒrange(1,ƒ6,ƒ2):
ƒƒƒprint(count,ƒend="ƒ")

d forƒcountƒinƒrange(6,ƒ1,ƒ-1):
ƒƒƒprint(count,ƒend="ƒ")

2 Write a loop that prints your name 100 times. Each output should begin
on a new line.

3 Explain the role of the variable in the header of a for loop.

4 Write a loop that prints the first 128 ASCII values followed by the
corresponding characters (see the section on characters in Chapter 2).

5 Assume that the variable testString refers to a string. Write a loop
that prints each character in this string, followed by its ASCII value.

3.2 Formatting Text for Output
Before turning to our next case study, we need to examine more closely the for-
mat of text for output. Many data-processing applications require output that has
a tabular format. In this format, numbers and other information are aligned in
columns that can be either left-justified or right-justified. A column of data is
left-justified if its values are vertically aligned beginning with their leftmost char-
acters. A column of data is right-justified if its values are vertically aligned begin-
ning with their rightmost characters. To maintain the margins between columns

3.2 Formatting Text for Output [83]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

of data, left-justification requires the addition of spaces to the right of the datum,
whereas right-justification requires adding spaces to the left of the datum. A col-
umn of data is centered if there are an equal number of spaces on either side of
the data within that column.

The total number of data characters and additional spaces for a given datum
in a formatted string is called its field width.

The print function automatically begins printing an output datum in the
first available column. The next example, which displays the exponents 7 through
10 and the values of 107 through 1010, shows the format of two columns pro-
duced by the print function:

>>>ƒforƒexponentƒinƒrange(7,ƒ11):
ƒƒƒƒƒƒƒprint(exponent,ƒ10ƒ**ƒexponent)

7ƒ10000000
8ƒ100000000
9ƒ1000000000
10ƒ10000000000
>>>

Note that when the exponent reaches 10, the output of the second column shifts
over by a space and looks ragged. The output would look neater if the left col-
umn were left-justified and the right column were right-justified. When we for-
mat floating-point numbers for output, we often would like to specify the
number of digits of precision to be displayed as well as the field width. This is
especially important when displaying financial data in which exactly two digits of
precision are required.

Python includes a general formatting mechanism that allows the programmer
to specify field widths for different types of data. The next session shows how to
right-justify and left-justify the string “four” within a field width of 6:

>>>ƒ“%6s”ƒ%ƒ“four”ƒƒƒƒƒƒƒƒ#ƒRightƒjustify
'ƒƒfour'
>>>ƒ“%-6s”ƒ%ƒ“four”ƒƒƒƒƒƒƒ#ƒLeftƒjustify
'fourƒƒ'

The first line of code right-justifies the string by padding it with two spaces to
its left. The next line of code left-justifies by placing two spaces to the string’s right.

CHAPTER 3 Control Statements[84]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The simplest form of this operation is the following:

<formatƒstring>ƒ%ƒ<datum>

This version contains a format string, the format operator %, and a single
data value to be formatted. The format string can contain string data and other
information about the format of the datum. To format the string data value in our
example, we used the notation %<field width>s in the format string. When the
field width is positive, the datum is right-justified; when the field width is nega-
tive, you get left-justification. If the field width is less than or equal to the datum’s
print length in characters, no justification is added. The % operator works with
this information to build and return a formatted string.

To format integers, you use the letter d instead of s. To format a sequence of
data values, you construct a format string that includes a format code for each
datum and place the data values in a tuple following the % operator. The form of
the second version of this operation follows:

<formatƒstring>ƒ%ƒ(<datum-1>,ƒ…,ƒ<datum-n>)

Armed with the format operation, our powers of 10 loop can now display the
numbers in nicely aligned columns. The first column is left-justified in a field
width of 3, and the second column is right-justified in a field width of 12.

>>>ƒforƒexponentƒinƒrange(7,ƒ11):
ƒƒƒƒƒƒƒprint(“%-3d%12d”ƒ%ƒ(exponent,ƒ10ƒ**ƒexponent))

7ƒƒƒƒƒƒ10000000
8ƒƒƒƒƒ100000000
9ƒƒƒƒ1000000000
10ƒƒ10000000000

The format information for a data value of type float has the form:

%<fieldƒwidth>.<precision>f

3.2 Formatting Text for Output [85]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

where .<precision> is optional. The next session shows the output of a
floating-point number without, and then with, a format string:

>>>ƒsalaryƒ=ƒ100.00
>>>ƒprint(“Yourƒsalaryƒisƒ$”ƒ+ƒstr(salary))
Yourƒsalaryƒisƒ$100.0
>>>ƒprint(“Yourƒsalaryƒisƒ$%0.2f”ƒ%ƒsalary)
Yourƒsalaryƒisƒ$100.00
>>>

Here is another, minimal, example of the use of a format string, which says to use
a field width of 6 and a precision of 3 to format the float value 3.14:

>>>ƒ“%6.3f”ƒ%ƒ3.14
'ƒ3.140'

Note that Python adds a digit of precision to the number’s string and pads it with
a space to the left to achieve the field width of 6. This width includes the place
occupied by the decimal point.

3.2 Exercises
1 Assume that the variable amount refers to 24.325. Write the outputs of

the following statements:

a print(“Yourƒsalaryƒisƒ$%0.2f”ƒ%ƒamount)

b print(“Theƒareaƒisƒ%0.1f”ƒ%ƒamount)

c print(“%7f”ƒ%ƒamount)

2 Write a code segment that displays the values of the integers x, y, and z
on a single line, such that each value is right-justified in six columns.

3 Write a format operation that builds a string for the float variable
amount that has exactly two digits of precision and a field width of zero.

4 Write a loop that outputs the numbers in a list named salaries. The
outputs should be formatted in a column that is right-justified, with a
field width of 12 and a precision of 2.

CHAPTER 3 Control Statements[86]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Case Study: An Investment Report
It has been said that compound interest is the eighth wonder of the world. Our
next case study, which computes an investment report, shows why.

3.3.1 Request

Write a program that computes an investment report.

3.3.2 Analysis

The inputs to this program are the following:
� An initial amount to be invested (a floating-point number)
� A period of years (an integer)
� An interest rate (a percentage expressed as an integer)
The program uses a simplified form of compound interest, in which the

interest is computed once each year and added to the total amount invested. The
output of the program is a report in tabular form that shows, for each year in the
term of the investment, the year number, the initial balance in the account, the
interest earned for that year, and the ending balance for that year. The columns
of the table are suitably labeled with a header in the first row. Following the out-
put of the table, the program prints the total amount of the investment balance
and the total amount of interest earned for the period. The proposed user inter-
face is shown in Figure 3-1.

[FIGURE 3.1] The user interface for the investment report program

Enter the investment amount: 10000.00
Enter the number of years: 5
Enter the rate as a %: 5
Year Starting balance Interest Ending balance
 1 10000.00 500.00 10500.00
 2 10500.00 525.00 11025.00
 3 11025.00 551.25 11576.25
 4 11576.25 578.81 12155.06
 5 12155.06 607.75 12762.82
Ending balance: $12762.82
Total interest earned: $2762.82

3.3 Case Study: An Investment Report [87]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3.3 Design

The four principal parts of the program perform the following tasks:

1 Receive the user’s inputs and initialize data.

2 Display the table’s header.

3 Compute the results for each year, and display them as a row in the table.

4 Display the totals.
The third part of the program, which computes and displays the results, is a

loop. The following is a slightly simplified version of the pseudocode for the pro-
gram, without the details related to formatting the outputs:

Input the starting balance, number of years, and interest rate
Set the total interest to 0.0
Print the table’s heading
For each year

compute the interest
compute the ending balance
print the year, starting balance, interest, and ending balance
update the starting balance
update the total interest

print the ending balance and the total interest

Ignoring the details of the output at this point allows us to focus on getting
the computations correct. We can translate this pseudocode to a Python program
to check our computations. A rough draft of a program is called a prototype.
Once we are confident that the prototype is producing the correct numbers, we
can return to the design and work out the details of formatting the outputs.

The format of the outputs is guided by the requirement that they be aligned
nicely in columns. We use a format string to right-justify all of the numbers on each
row of output. We also use a format string for the string labels in the table’s header.
After some trial and error, we come up with field widths of 4, 18, 10, and 16 for the
year, starting balance, interest, and ending balance, respectively. We can also use
these widths in the format string for the header.

3.3.4 Implementation (Coding)

The code for this program shows each of the major parts described in the design,
set off by end-of-line comments. Note the use of the many variables to track the

CHAPTER 3 Control Statements[88]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.3 Case Study: An Investment Report [89]

various amounts of money used by the program. Wisely, we have chosen names
for these variables that clearly describe their purpose. The format strings in the
print statements are rather complex, but we have made an effort to format them
so the information they contain is still fairly readable.

“””
Program:ƒinvestment.py
Author:ƒKen

Computeƒanƒinvestmentƒreport.

1.ƒTheƒinputsƒare
ƒƒƒƒƒƒƒstartingƒinvestmentƒamount
ƒƒƒƒƒƒƒnumberƒofƒyears
ƒƒƒƒƒƒƒinterestƒrateƒ(anƒintegerƒpercent)

2.ƒTheƒreportƒisƒdisplayedƒinƒtabularƒformƒwithƒaƒheader.

3.ƒComputationsƒandƒoutputs:
ƒƒƒƒƒƒƒforƒeachƒyear
ƒƒƒƒƒƒƒƒƒƒcomputeƒtheƒinterestƒandƒaddƒitƒtoƒtheƒinvestment
ƒƒƒƒƒƒƒƒƒƒprintƒaƒformattedƒrowƒofƒresultsƒforƒthatƒyear

4.ƒTheƒendingƒinvestmentƒandƒinterestƒearnedƒareƒalsoƒdisplayed.
“””

Acceptƒtheƒinputs
startBalanceƒ=ƒfloat(input(“Enterƒtheƒinvestmentƒamount:ƒ“))
yearsƒ=ƒint(input(“Enterƒtheƒnumberƒofƒyears:ƒ“))
rateƒ=ƒint(input(“Enterƒtheƒrateƒasƒaƒ%:ƒ“))

#ƒConvertƒtheƒrateƒtoƒaƒdecimalƒnumber
rateƒ=ƒrateƒ/ƒ100

#ƒInitializeƒtheƒaccumulatorƒforƒtheƒinterest
totalInterestƒ=ƒ0.0

#ƒDisplayƒtheƒheaderƒforƒtheƒtable
print(“%4s%18s%10s%16s”ƒ%ƒ\
ƒƒƒƒƒƒ(“Year”,ƒ“Startingƒbalance”,
ƒƒƒƒƒƒƒ“Interest”,ƒ“Endingƒbalance”))
#ƒComputeƒandƒdisplayƒtheƒresultsƒforƒeachƒyear
forƒyearƒinƒrange(1,ƒyearsƒ+ƒ1):
ƒƒƒƒinterestƒ=ƒstartBalanceƒ*ƒrate
ƒƒƒƒendBalanceƒ=ƒstartBalanceƒ+ƒinterest
ƒƒƒƒprint(“%4d%18.2f%10.2f%16.2f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒ(year,ƒstartBalance,ƒinterest,ƒendBalance))

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Control Statements[90]

ƒƒƒƒstartBalanceƒ=ƒendBalance
ƒƒƒƒtotalInterestƒ+=ƒinterest

#ƒDisplayƒtheƒtotalsƒforƒtheƒperiod
print(“Endingƒbalance:ƒ$%0.2f”ƒ%ƒendBalance)
print(“Totalƒinterestƒearned:ƒ$%0.2f”ƒ%ƒtotalInterest)

3.3.5 Testing

When testing a program that contains a loop, we should focus first on the input
that determines the number of iterations. In our program, this value is the number
of years. We enter a value that yields the smallest possible number of iterations,
then increase this number by 1, then use a slightly larger number, such as 5, and
finally we use a number close to the maximum expected, such as 50 (in our problem
domain, probably the largest realistic period of an investment). The values of the
other inputs, such as the investment amount and the rate in our program, should
be reasonably small and stay fixed for this phase of the testing. If the program pro-
duces correct outputs for all of these inputs, we can be confident that the loop is
working correctly.

In the next phase of testing, we examine the effects of the other inputs on the
results, including their format. We know that the other two inputs to our pro-
grams, the investment and the rate, already produce correct results for small val-
ues. A reasonable strategy might be to test a large investment amount with the
smallest and largest number of years and a small rate, and then with the largest
number of years and the largest reasonable rate. Table 3-1 organizes these sets of
test data for the program.

[TABLE 3.1] The data sets for testing the investment program

INVESTMENT YEARS RATE

100.00 1 5

100.00 2 5

100.00 5 5

100.00 50 5

10000.00 1 5

10000.00 50 5

10000.00 50 20

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.4 Selection: if and if-else Statements
We have seen that computers can plow through long sequences of instructions
and that they can do so repeatedly. However, not all problems can be solved in
this manner. In some cases, instead of moving straight ahead to execute the next
instruction, the computer might be faced with two alternative courses of action.
The computer must pause to examine or test a condition, which expresses a
hypothesis about the state of its world at that point in time. If the condition is
true, the computer executes the first alternative action and skips the second alter-
native. If the condition is false, the computer skips the first alternative action and
executes the second alternative. In other words, instead of moving blindly ahead,
the computer exercises some intelligence by responding to conditions in its envi-
ronment. In this section, we explore several types of selection statements, or
control statements, that allow a computer to make choices. But first, we need to
examine how a computer can test conditions.

3.4.1 The Boolean Type, Comparisons, and Boolean
Expressions

Before you can test conditions in a Python program, you need to understand the
Boolean data type, which is named for the nineteenth century British mathe-
matician George Boole. The Boolean data type consists of only two data values—
true and false. In Python, Boolean literals can be written in several ways, but
most programmers prefer the use of the standard values True and False.

Simple Boolean expressions consist of the Boolean values True or False,
variables bound to those values, function calls that return Boolean values, or
comparisons. The condition in a selection statement often takes the form of a
comparison. For example, you might compare value A to value B to see which
one is greater. The result of the comparison is a Boolean value. It is either true or
false that value A is greater than value B. To write expressions that make compar-
isons, you have to be familiar with Python’s comparison operators, which are
listed in Table 3-2.

3.4 Selection: if and if-else Statements [91]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 3.2] The comparison operators

The following session shows some example comparisons and their values:

>>>ƒ4ƒ==ƒ4
True
>>>ƒ4ƒ!=ƒ4
False
>>>ƒ4ƒ<ƒ5
True
>>>ƒ4ƒ>=ƒ3
True
>>>ƒ“A”ƒ<ƒ“B”
True
>>>

Note that == means equals, whereas = means assignment. As you learned in
Chapter 2, when evaluating expressions in Python, you need to be aware of
precedence—that is, the order in which operators are applied in complex expres-
sions. The comparison operators are applied after addition but before assignment.

3.4.2 if-else Statements

The if-else statement is the most common type of selection statement. It is
also called a two-way selection statement, because it directs the computer to
make a choice between two alternative courses of action.

The if-else statement is often used to check inputs for errors and to respond
with error messages if necessary. The alternative is to go ahead and perform the
computation if the inputs are valid.

COMPARISON OPERATOR MEANING

== Equals

!= Not equals

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

CHAPTER 3 Control Statements[92]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, suppose a program inputs the area of a circle and computes and out-
puts its radius. Legitimate inputs for this program would be positive numbers.
But, by mistake, the user could still enter a zero or a negative number. Because the
program has no choice but to use this value to compute the radius, it might crash
(stop running) or produce a meaningless output. The next code segment shows
how to use an if-else statement to locate (trap) this error and respond to it:

importƒmath

areaƒ=ƒfloat(input(“Enterƒtheƒarea:ƒ“))
ifƒareaƒ>ƒ0:
ƒƒƒƒradiusƒ=ƒmath.sqrt(areaƒ/ƒmath.pi)
ƒƒƒƒprint(“Theƒradiusƒis”,ƒradius)
else:
ƒƒƒƒprint(“Error:ƒtheƒareaƒmustƒbeƒaƒpositiveƒnumber”)

Here is the Python syntax for the if-else statement:

ifƒ<condition>:
ƒƒƒƒ<sequenceƒofƒstatements-1>
else:
ƒƒƒƒ<sequenceƒofƒstatements-2>

The condition in the if-else statement must be a Boolean expression—that
is, an expression that evaluates to either true or false. The two possible actions
each consist of a sequence of statements. Note that each sequence must be
indented at least one space beyond the symbols if and else. Lastly, note the use of
the colon (:) following the condition and the word else. Figure 3-2 shows a flow
diagram of the semantics of the if-else statement. In that diagram, the dia-
mond containing the question mark indicates the condition.

[FIGURE 3.2] The semantics of the if-else statement

true

false
?

sequence of statements 1 sequence of statements 2

3.4 Selection: if and if-else Statements [93]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Our next example prints the maximum and minimum of two input numbers.

firstƒ=ƒint(input(“Enterƒtheƒfirstƒnumber:ƒ“))
secondƒ=ƒint(input(“Enterƒtheƒsecondƒnumber:ƒ“))
ifƒfirstƒ>ƒsecond:
ƒƒƒƒmaximumƒ=ƒfirst
ƒƒƒƒminimumƒ=ƒsecond
else:
ƒƒƒƒmaximumƒ=ƒsecond
ƒƒƒƒminimumƒ=ƒfirst
print(“Maximum:”,ƒmaximum)
print(“Minimum:”,ƒminimum)

Python includes two functions, max and min, that make the if-else statement
in this example unnecessary. In the following example, the function max returns the
largest of its arguments, whereas min returns the smallest of its arguments:

firstƒ=ƒint(input(“Enterƒtheƒfirstƒnumber:ƒ“))
secondƒ=ƒint(input(“Enterƒtheƒsecondƒnumber:ƒ“))
print(“Maximum:”,ƒmax(first,ƒsecond))
print(“Minimum:”,ƒmin(first,ƒsecond))

3.4.3 One-Way Selection Statements

The simplest form of selection is the if statement. This type of control state-
ment is also called a one-way selection statement, because it consists of a con-
dition and just a single sequence of statements. If the condition is True, the
sequence of statements is run. Otherwise, control proceeds to the next statement
following the entire selection statement. Here is the syntax for the if statement:

ifƒ<condition>:
ƒƒƒƒ<sequenceƒofƒstatements>

Figure 3-3 shows a flow diagram of the semantics of the if statement.

CHAPTER 3 Control Statements[94]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 3.3] The semantics of the if statement

Simple if statements are often used to prevent an action from being per-
formed if a condition is not right. For example, the absolute value of a negative
number is the arithmetic negation of that number, otherwise it is just that num-
ber. The next session uses a simple if statement to reset the value of a variable to
its absolute value:

>>>ƒifƒxƒ<ƒ0:
ƒƒƒxƒ=ƒ-x
>>>

3.4.4 Multi-Way if Statements

Occasionally, a program is faced with testing several conditions that entail more
than two alternative courses of action. For example, consider the problem of con-
verting numeric grades to letter grades. Table 3-3 shows a simple grading scheme
that is based on two assumptions: that numeric grades can range from 0 to 100
and that the letter grades are A, B, C, and F.

[TABLE 3.3] A simple grading scheme

LETTER GRADE RANGE OF NUMERIC GRADES

A All grades above 89

B All grades above 79 and below 90

C All grades above 69 and below 80

F All grades below 70

true

false
?

sequence of statements

3.4 Selection: if and if-else Statements [95]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Expressed in English, an algorithm that uses this scheme would state that if
the numeric grade is greater than 89, then the letter grade is A, else if the
numeric grade is greater than 79, then the letter grade is B, …, else (as a default
case) the letter grade is F.

The process of testing several conditions and responding accordingly can be
described in code by a multi-way selection statement. Here is a short Python
script that uses such a statement to determine and print the letter grade corre-
sponding to an input numeric grade:

numberƒ=ƒint(input(“Enterƒtheƒnumericƒgrade:ƒ“))
ifƒnumberƒ>ƒ89:
ƒƒƒƒletterƒ=ƒ'A'
elifƒnumberƒ>ƒ79:
ƒƒƒƒletterƒ=ƒ'B'
elifƒnumberƒ>ƒ69:
ƒƒƒƒletterƒ=ƒ'C'
else:
ƒƒƒƒletterƒ=ƒ'F'
print(“Theƒletterƒgradeƒis”,ƒletter)

The multi-way if statement considers each condition until one evaluates to True
or they all evaluate to False. When a condition evaluates to True, the corre-
sponding action is performed and control skips to the end of the entire selection
statement. If no condition evaluates to True, then the action after the trailing
else is performed.

The syntax of the multi-way if statement is the following:

ifƒ<condition-1>:
ƒƒƒƒ<sequenceƒofƒstatements-1>

elifƒ<condition-n>:
ƒƒƒƒ<sequenceƒofƒstatements-n>
else:
ƒƒƒƒ<defaultƒsequenceƒofƒstatements>

Once again, indentation helps the human reader and the Python interpreter
to see the logical structure of this control statement.

CHAPTER 3 Control Statements[96]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.4.5 Logical Operators and Compound Boolean Expressions

Often a course of action must be taken if either of two conditions is true. For exam-
ple, valid inputs to a program often lie within a given range of values. Any input
above this range should be rejected with an error message, and any input below this
range should be dealt with in a similar fashion. The next code segment accepts only
valid inputs for our grade conversion script and displays an error message otherwise:

numberƒ=ƒint(input(“Enterƒtheƒnumericƒgrade:ƒ“))
ifƒnumberƒ>ƒ100:
ƒƒƒƒprint(“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”)
elifƒnumberƒ<ƒ0:
ƒƒƒƒprint(“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”)
else:
ƒƒƒƒ#ƒTheƒcodeƒtoƒcomputeƒandƒprintƒtheƒresultƒgoesƒhere

Note that the first two conditions are associated with identical actions. Put
another way, if either the first condition is true or the second condition is true,
the program outputs the same error message. The two conditions can be com-
bined in a Boolean expression that uses the logical operator or. The resulting
compound Boolean expression simplifies the code somewhat, as follows:

numberƒ=ƒint(input(“Enterƒtheƒnumericƒgrade:ƒ“))
ifƒnumberƒ>ƒ100ƒorƒnumberƒ<ƒ0:
ƒƒƒƒprint(“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”)
else:
ƒƒƒƒ#ƒTheƒcodeƒtoƒcomputeƒandƒprintƒtheƒresultƒgoesƒhere

Yet another way to describe this situation is to say that if the number is
greater than or equal to 0 and less than or equal to 100, then we want the pro-
gram to perform the computations and output the result; otherwise, it should
output an error message. The logical operator and can be used to construct a
different compound Boolean expression to express this logic:

numberƒ=ƒint(input(“Enterƒtheƒnumericƒgrade:ƒ“))
ifƒnumberƒ>=ƒ0ƒandƒnumberƒ<=ƒ100:
ƒƒƒƒ#ƒTheƒcodeƒtoƒcomputeƒandƒprintƒtheƒresultƒgoesƒhere
else:
ƒƒƒƒprint(“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”)

3.4 Selection: if and if-else Statements [97]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Python actually includes all three Boolean or logical operators, and, or, and
not. Both the and operator and the or operator expect two operands. The and
operator returns True if and only if both of its operands are true, and returns
False otherwise. The or operator returns False if and only if both of its
operands are false, and returns True otherwise. The not operator expects a single
operand and returns its logical negation, True, if it’s false, and False if it’s true.

The behavior of each operator can be completely specified in a truth table for
that operator. Each row below the first one in a truth table contains one possible
combination of values for the operands and the value resulting from applying the
operator to them. The first row contains labels for the operands and the expression
being computed. Figure 3-4 shows the truth tables for and, or, and not.

[FIGURE 3.4] The truth tables for and, or, and not

A not A

True False

False True

A B A or B

True True True

True False True

False True True

False False False

A B A and B

True True True

True False False

False True False

False False False

CHAPTER 3 Control Statements[98]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The next example verifies some of the claims made in the truth tables in
Figure 3-4:

>>>ƒAƒ=ƒTrue
>>>ƒBƒ=ƒFalse
>>>ƒAƒandƒB
False
>>>ƒAƒorƒB
True
>>>ƒnotƒA
False

The logical operators are evaluated after comparisons but before the assign-
ment operator. The not operator has a higher precedence than both the and
operator and the or operator, which have the same precedence. Thus, in our
example, not A and B evaluates to False, whereas notƒ(A and B) evaluates
to True. Table 3-4 summarizes the precedence of the operators discussed thus far
in this book.

[TABLE 3-4] Operator precedence, from highest to lowest

3.4.6 Short-Circuit Evaluation

The Python virtual machine sometimes knows the value of a Boolean expression
before it has evaluated all of its parts. For instance, in the expression (A and B),
if A is false, then so is the expression, and there is no need to evaluate B.

TYPE OF OPERATOR OPERATOR SYMBOL

Exponentiation **

Arithmetic negation -

Multiplication, division, remainder *, /, %

Addition, subtraction +, -

Comparison ==, !=, <, >, <=, >=

Logical negation not

Logical conjunction and disjunction and, or

Assignment =

3.4 Selection: if and if-else Statements [99]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Likewise, in the expression (A or B), if A is true, then so is the expression, and
again there is no need to evaluate B. This approach, in which evaluation stops as
soon as possible, is called short-circuit evaluation.

There are times when short-circuit evaluation is advantageous. Consider the
following example:

countƒ=ƒint(input(“Enterƒtheƒcount:ƒ“))
sumƒ=ƒint(input(“Enterƒtheƒsum:ƒ“))
ifƒcountƒ>ƒ0ƒandƒsumƒ//ƒcountƒ>ƒ10:
ƒƒƒƒprint(“averageƒ>ƒ10”)
else:
ƒƒƒƒprint(“countƒ=ƒ0ƒorƒaverageƒ<=ƒ10”)

If the user enters 0 for the count, the condition contains a potential division by
zero; however, because of short-circuit evaluation the division by zero is avoided.

3.4.7 Testing Selection Statements

Because selection statements add extra logic to a program, they open the door for
extra logic errors. Thus, take special care when testing programs that contain
selection statements.

The first rule of thumb is to make sure that all of the possible branches or
alternatives in a selection statement are exercised. This will happen if the test
data include values that make each condition true and also each condition false.
In our grade-conversion example, the test data should definitely include numbers
that produce each of the letter grades.

After testing all of the actions, you should also examine all of the conditions.
For example, when a condition contains a single comparison of two numbers, try
testing the program with operands that are equal, with a left operand that is less
by one, and with a left operand that is greater by one, to catch errors in the
boundary cases.

Finally, you need to test conditions that contain compound Boolean expres-
sions using data that produce all of the possible combinations of values of the
operands. As a blueprint for testing a compound Boolean expression, use the
truth table for that expression.

CHAPTER 3 Control Statements[100]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.4 Exercises
1 Assume that x is 3 and y is 5. Write the values of the following

expressions:

a x == y

b x > y - 3

c x <= y - 2

d x == y or x > 2

e x != 6 and y > 10

f x > 0 and x < 100

2 Assume that x refers to a number. Write a code segment that prints the
number’s absolute value without using Python’s abs function.

3 Write a loop that counts the number of space characters in a string.
Recall that the space character is represented as ' '.

4 Assume that the variables x and y refer to strings. Write a code segment
that prints these strings in alphabetical order. You should assume that
they are not equal.

5 Explain how to check for an invalid input number and prevent it being
used in a program. You may assume that the user enters a number.

6 Construct truth tables for the following Boolean expressions:

a notƒ(AƒorƒB)

b notƒAƒandƒnotƒB

7 Explain the role of the trailing else part of an extended if statement.

8 The variables x and y refer to numbers. Write a code segment that
prompts the user for an arithmetic operator and prints the value
obtained by applying that operator to x and y.

9 Does the Boolean expression countƒ>ƒ0ƒandƒtotalƒ//ƒcountƒ>ƒ0
contain a potential error? If not, why not?

3.4 Selection: if and if-else Statements [101]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5 Conditional Iteration: The while Loop
Earlier we examined the for loop, which executes a set of statements a definite
number of times specified by the programmer. In many situations, however, the
number of iterations in a loop is unpredictable. The loop eventually completes its
work, but only when a condition changes. For example, the user might be asked
for a set of input values. In that case, only the user knows the number she will
enter. The program’s input loop accepts these values until the user enters a spe-
cial value or sentinel that terminates the input. This type of process is called
conditional iteration. In this section, we explore the use of the while loop to
describe conditional iteration.

3.5.1 The Structure and Behavior of a while Loop

Conditional iteration requires that a condition be tested within the loop to deter-
mine whether the loop should continue. Such a condition is called the loop’s
continuation condition. If the continuation condition is false, the loop ends. If
the continuation condition is true, the statements within the loop are executed
again. The while loop is tailor-made for this type of control logic. Here is
its syntax:

while <condition>:
<sequence of statements>

The form of this statement is almost identical to that of the one-way selec-
tion statement. However, the use of the reserved word while instead of if indi-
cates that the sequence of statements might be executed many times, as long as
the condition remains true.

Clearly, something eventually has to happen within the body of the loop to
make the loop’s continuation condition become false. Otherwise, the loop will
continue forever, an error known as an infinite loop. At least one statement in
the body of the loop must update a variable that affects the value of the condi-
tion. Figure 3-5 shows a flow diagram for the semantics of a while loop.

CHAPTER 3 Control Statements[102]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 3.5] The semantics of a while loop

The following example is a short script that prompts the user for a series of
numbers, computes their sum, and outputs the result. Instead of forcing the user
to enter a definite number of values, the program stops the input process when
the user simply presses the return or enter key. The program recognizes this
value as the empty string. We first present a rough draft in the form of a
pseudocode algorithm:

set the sum to 0.0
input a string
while the string is not the empty string

convert the string to a float
add the float to the sum
input a string

print the sum

Note that there are two input statements, one just before the loop header and
one at the bottom of the loop body. The first input statement initializes a variable
to a value that the loop condition can test. This variable is also called the loop
control variable. The second input statement obtains all of the other input val-
ues, including one that will terminate the loop. Note also that the input must be
received as a string, not a number, so the program can test for an empty string. If
the string is not empty, we assume that it represents a number, and we convert it

true

false
?

statement

3.5 Conditional Iteration: The while Loop [103]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to a float. Here is the Python code for this script, followed by a trace of a sam-
ple run:

sumƒ=ƒ0.0
dataƒ=ƒinput(“Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ“)
whileƒdataƒ!=ƒ“”:
ƒƒƒƒnumberƒ=ƒfloat(data)
ƒƒƒƒsumƒ+=ƒnumber
ƒƒƒƒdataƒ=ƒinput(“Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ“)
print(“Theƒsumƒis”,ƒsum)

Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ3
Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ4
Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ5
Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:
Theƒsumƒisƒ12.0

On this run, there are four inputs, including the empty string. Now, suppose we
run the script again, and the user enters the empty string at the first prompt. The
while loop’s condition is immediately false, and its body does not execute at all!
The sum prints as 0.0, which is just fine.

The while loop is also called an entry-control loop, because its condition is
tested at the top of the loop. This implies that the statements within the loop can
execute zero or more times.

3.5.2 Count Control with a while Loop

You can also use a while loop for a count-controlled loop. The next two code
segments show the same summations with a for loop and a while loop,
respectively.

sumƒ=ƒ0
forƒcountƒinƒrange(1,ƒ100001):
ƒƒƒƒsumƒ+=ƒcount
print(sum)

sumƒ=ƒ0
countƒ=ƒ1
whileƒcountƒ<=ƒ100000:
ƒƒƒƒsumƒ+=ƒcount
ƒƒƒƒcountƒ+=ƒ1
print(sum)

CHAPTER 3 Control Statements[104]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Although both loops produce the same result, there is a tradeoff. The second
code segment is noticeably more complex. It includes a Boolean expression and
two extra statements that refer to the count variable. This loop control variable
must be explicitly initialized before the loop header and incremented in the loop
body. The count variable must also be examined in the explicit continuation con-
dition. This extra manual labor for the programmer is not only time-consuming,
but also potentially a source of new errors in loop logic.

By contrast, a for loop specifies the control information concisely in the header
and automates its manipulation behind the scenes. However, we will soon see prob-
lems for which a while loop is the only solution. Therefore, you must master the
logic of while loops and also be aware of the logic errors that they could produce.

The next example shows two versions of a script that counts down, from an
upper bound of 10 to a lower bound of 1. It’s up to you to decide which one is
easier to understand and write correctly.

forƒcountƒinƒrange(10,ƒ0,ƒ-1):
ƒƒƒƒprint(count,ƒend="ƒ")

countƒ=ƒ10
whileƒcountƒ>=ƒ1:
ƒƒƒƒprint(count,ƒend="ƒ")
ƒƒƒƒcountƒ-=ƒ1

3.5.3 The while True Loop and the break Statement

Although the while loop can be complicated to write correctly, it is possible to
simplify its structure and thus improve its readability. The first example script of
this section, which contained two input statements, is a good candidate for such
improvement. This loop’s structure can be simplified if we receive the first input
inside the loop, and break out of the loop if a test shows that the continuation
condition is false. This implies postponing the actual test until the middle of the
loop. Python includes a break statement that will allow us to make this change in
the program. Here is the modified script:

sumƒ=ƒ0.0
whileƒTrue:
ƒƒƒƒdataƒ=ƒinput(“Enterƒaƒnumberƒorƒjustƒenterƒtoƒquit:ƒ“)

continued

3.5 Conditional Iteration: The while Loop [105]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ƒƒƒƒifƒdataƒ==ƒ“”:
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒnumberƒ=ƒfloat(data)
ƒƒƒƒsumƒ+=ƒnumber
print(“Theƒsumƒis”,ƒsum)

The first thing to note is that the loop’s entry condition is the Boolean value
True. Some readers may become alarmed at this condition, which seems to imply
that the loop will never exit. However, this condition is extremely easy to write
and guarantees that the body of the loop will execute at least once. Within this
body, the input datum is received. It is then tested for the loop’s termination
condition in a one-way selection statement. If the user wants to quit, the input
will equal the empty string, and the break statement will cause an exit from the
loop. Otherwise, control continues beyond the selection statement to the next
two statements that process the input.

Our next example modifies the input section of the grade-conversion pro-
gram to continue taking input numbers from the user until she enters an accept-
able value. The logic of this loop is similar to that of the previous example.

whileƒTrue:
ƒƒƒƒnumberƒ=ƒint(input(“Enterƒtheƒnumericƒgrade:ƒ“))
ƒƒƒƒifƒnumberƒ>=ƒ0ƒandƒnumberƒ<=ƒ100:
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprint(“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”)
print(number)ƒƒƒ#ƒJustƒechoƒtheƒvalidƒinput

A trial run with just this segment shows the following interaction:

Enterƒtheƒnumericƒgrade:ƒ101
Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0
Enterƒtheƒnumericƒgrade:ƒ-1
Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0
Enterƒtheƒnumericƒgrade:ƒ45
45

Some computer scientists argue that a while True loop with a delayed exit
violates the spirit of the while loop. However, in cases where the body of the
loop must execute at least once, this technique simplifies the code and actually
makes the program’s logic clearer. If you are not persuaded by this reasoning and
still want to test for the continuation and exit at the top of the loop, you can use a

CHAPTER 3 Control Statements[106]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Boolean variable to control the loop. Here is a version of the numeric input loop
that uses a Boolean variable:

doneƒ=ƒFalse
whileƒnotƒdone:
ƒƒƒƒnumberƒ=ƒint(input(“Enterƒtheƒnumericƒgrade:ƒ“))
ƒƒƒƒifƒnumberƒ>=ƒ0ƒandƒnumberƒ<=ƒ100:
ƒƒƒƒƒƒƒƒdoneƒ=ƒTrue
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprint(“Error:ƒgradeƒmustƒbeƒbetweenƒ100ƒandƒ0”)
print(number)ƒƒƒ#ƒJustƒechoƒtheƒvalidƒinput

For an interesting discussion of this issue, see Eric Roberts’s article, “Loop
Exits and Structured Programming: Reopening the Debate”, ACM SIGCSE
Bulletin, Volume 27, Number 1, March 1995, pp. 268–272.

3.5.4 Random Numbers

The choices our algorithms have made thus far have been completely determined
by given conditions that are either true or false. Many situations, such as games,
include some randomness in the choices that are made. For example, we might
toss a coin to see who kicks off in a football game. There is an equal probability
of a coin landing heads-up or tails-up. Likewise, the roll of a die in many games
entails an equal probability of the numbers 1 through 6 landing face-up. To simu-
late this type of randomness in computer applications, programming languages
include resources for generating random numbers. Python’s random module
supports several ways to do this, but the easiest is to call the function randint
with two integer arguments. The function randint returns a random number
from among the numbers between the two arguments and including those num-
bers. The next session simulates the roll of a die 10 times:

>>>ƒimportƒrandom
>>>ƒforƒrollƒinƒrange(10):
ƒƒƒƒƒƒƒprint(random.randint(1,ƒ6),ƒend="ƒ")

2ƒ4ƒ6ƒ4ƒ3ƒ2ƒ3ƒ6ƒ2ƒ2
>>>

Although some values are repeated in this small set of calls, over the course of a
large number of calls, the distribution of values approaches true randomness.

3.5 Conditional Iteration: The while Loop [107]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

We can now use randint, selection, and a loop to develop a simple guessing
game. At start-up, the user enters the smallest number and the largest number in
the range. The computer then selects a number from this range. On each pass
through the loop, the user enters a number in an attempt to guess the number
selected by the computer. The program responds by saying “You’ve got it,” “Too
large, try again,” or “Too small, try again.” When the user finally guesses the cor-
rect number, the program congratulates him and tells him the total number of
guesses. Here is the code, followed by a sample run:

importƒrandom

smallerƒ=ƒint(input(“Enterƒtheƒsmallerƒnumber:ƒ“))
largerƒ=ƒint(input(“Enterƒtheƒlargerƒnumber:ƒ“))
myNumberƒ=ƒrandom.randint(smaller,ƒlarger)
countƒ=ƒ0
whileƒTrue:
ƒƒƒƒcountƒ+=ƒ1
ƒƒƒƒuserNumberƒ=ƒint(input(“Enterƒyourƒguess:ƒ“))
ƒƒƒƒifƒuserNumberƒ<ƒmyNumber:
ƒƒƒƒƒƒƒƒprint(“Tooƒsmall”)
ƒƒƒƒelifƒuserNumberƒ>ƒmyNumber:
ƒƒƒƒƒƒƒƒprint(“Tooƒlarge”)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprint(“Congratulations!ƒYou'veƒgotƒitƒin”,ƒcount,ƒ“tries!”)
ƒƒƒƒƒƒƒƒbreak

Enterƒtheƒsmallerƒnumber:ƒ1
Enterƒtheƒlargerƒnumber:ƒ100
Enterƒyourƒguess:ƒ50
Tooƒsmall
Enterƒyourƒguess:ƒ75
Tooƒlarge
Enterƒyourƒguess:ƒ63
Tooƒsmall
Enterƒyourƒguess:ƒ69
Tooƒlarge
Enterƒyourƒguess:ƒ66
Tooƒlarge
Enterƒyourƒguess:ƒ65
You'veƒgotƒitƒinƒ6ƒtries!

CHAPTER 3 Control Statements[108]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.5.5 Loop Logic, Errors, and Testing

Because while loops can be the most complex control statements, to ensure their
correct behavior, careful design and testing are needed. Testing a while loop must
combine elements of testing used with for loops and with selection statements.

Errors to rule out during testing the while loop include an incorrectly initial-
ized loop control variable, failure to update this variable correctly within the loop,
and failure to test it correctly in the continuation condition. Moreover, if one sim-
ply forgets to update the control variable, the result is an infinite loop, which does
not even qualify as an algorithm! To halt a loop that appears to be hung during
testing, type Control+c in the terminal window or in the IDLE shell.

Genuine condition-controlled loops can be easy to design and test. If the
continuation condition is already available for examination at loop entry, check it
there and provide test data that produce 0, 1, and at least 5 iterations.

If the loop must run at least once, use a while True loop and delay the
examination of the termination condition until it becomes available in the body
of the loop. Ensure that something occurs in the loop to allow the condition to
be checked and a break statement to be reached eventually.

3.5 Exercises
1 Translate the following for loops to equivalent while loops:

a forƒcountƒinƒrange(100):
ƒƒƒprint(count)

b forƒcountƒinƒrange(1,ƒ101):
ƒƒƒprint(count)

c forƒcountƒinƒrange(100,ƒ0,ƒ-1):
ƒƒƒprint(count)

2 The factorial of an integer N is the product of all of the integers between 1
and N, inclusive. Write a while loop that computes the factorial of a
given integer N.

3 The log2 of a given number N is given by M in the equation N = 2M.
The value of M is approximately equal to the number of times N can be
evenly divided by 2 until it becomes 0. Write a loop that computes this
approximation of the log2 of a given number N.

3.5 Conditional Iteration: The while Loop [109]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Control Statements[110]

4 Describe the purpose of the break statement and the type of problem
for which it is well suited.

5 What is the maximum number of guesses necessary to guess correctly a
given number between the numbers N and M?

6 What happens when the programmer forgets to update the loop control
variable in a while loop?

3.6 Case Study: Approximating Square Roots
Users of pocket calculators or Python’s math module do not have to think about
how to compute square roots, but the people who built those calculators or wrote
the code for that module certainly did. In this case study, we open the hood and
see how this might be done.

3.6.1 Request

Write a program that computes square roots.

3.6.2 Analysis

The input to this program is a positive floating-point number or an integer. The
output is a floating-point number representing the square root of the input num-
ber. For purposes of comparison, we also output Python’s estimate of the square
root using math.sqrt. Here is the proposed user interface:

Enterƒaƒpositiveƒnumber:ƒ3
Theƒprogram'sƒestimate:ƒ1.73205081001
Python'sƒestimate:ƒƒƒƒƒƒ1.73205080757

3.6.3 Design

In the seventeenth century, Sir Isaac Newton discovered an algorithm for approx-
imating the square root of a positive number. Recall that the square root y of a
positive number x is the number y such that y2 = x. Newton discovered that if

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.6 Case Study: Approximating Square Roots [111]

one’s initial estimate of y is z, then a better estimate of y can be obtained by tak-
ing the average of z together with x/z. The estimate can be transformed by this
rule again and again, until a satisfactory estimate is reached.

A quick session with the Python interpreter shows this method of successive
approximations in action. We let x be 25 and our initial estimate, z, be 1. We
then use Newton’s method to reset z to a better estimate and examine z to check
it for closeness to the actual square root, 5. Here is a transcript of our interaction:

>>>ƒxƒ=ƒ25
>>>ƒyƒ=ƒ5ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒactualƒsquareƒrootƒofƒx
>>>ƒzƒ=ƒ1ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒOurƒinitialƒapproximation
>>>ƒzƒ=ƒ(zƒ+ƒxƒ/ƒz)ƒ/ƒ2ƒƒƒƒ#ƒOurƒfirstƒimprovement
>>>ƒz
13.0
>>>ƒzƒ=ƒ(zƒ+ƒxƒ/ƒz)ƒ/ƒ2ƒƒƒƒ#ƒOurƒsecondƒimprovement
>>>ƒz
7.0
>>>ƒzƒ=ƒ(zƒ+ƒxƒ/ƒz)ƒ/ƒ2ƒƒƒƒ#ƒOurƒthirdƒimprovementƒ–ƒgotƒit!
>>>ƒz
5.0
>>>

After three transformations, the value of z is exactly equal to 5, the square root
of 25. To include cases of numbers, such as 2 and 10, with irrational square
roots, we can use an initial guess of 1.0 to produce floating-point results.

We now develop an algorithm to automate the process of successive transfor-
mations, because there might be many of them, and we don’t want to write them
all. Exactly how many of these operations are required depends on how close we
want our final approximation to be to the actual square root. This closeness
value, called the tolerance, can be compared to the difference between and the
value of x and the square of our estimate at any given time. While this difference
is greater than the tolerance, the process continues; otherwise, it stops. The tol-
erance is typically a small value, such as 0.000001.

Our algorithm allows the user to input the number, uses a loop to apply
Newton’s method to compute the square root, and prints this value. Here is the
pseudocode, followed by an explanation:

set x to the user’s input value
set tolerance to 0.000001
set estimate to 1.0
while True

set estimate to (estimate + x / estimate) / 2

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Control Statements[112]

set difference to abs(x - estimate ** 2)
if difference <= tolerance:

break
output the estimate

Because our initial estimate is 1.0, the loop must compute at least one new
estimate. Therefore, we use a while True loop. This loop transforms the esti-
mate before determining whether it is close enough to the tolerance value to stop
the process. The process should stop when the difference between the square of
our estimate and the original number becomes less than or equal to the tolerance
value. Note that this difference may be positive or negative, so we use the abs
function to obtain its absolute value before examining it.

A more orthodox use of the while loop would compare the difference to the
tolerance in the loop header. However, the difference must then be initialized
before the loop to a large and rather meaningless value. The algorithm presented
here captures the logic of the method of successive approximations more cleanly
and simply.

3.6.4 Implementation (Coding)

The code for this program is straightforward.

“””
Program:ƒnewton.py
Author:ƒKen

Computeƒtheƒsquareƒrootƒofƒaƒnumber.

1.ƒTheƒinputƒisƒaƒnumber.

2.ƒTheƒoutputsƒareƒtheƒprogram'sƒestimateƒofƒtheƒsquareƒroot
ƒƒƒusingƒNewton'sƒmethodƒofƒsuccessiveƒapproximations,ƒand
ƒƒƒPython'sƒownƒestimateƒusingƒmath.sqrt.
“””

importƒmath

#ƒReceiveƒtheƒinputƒnumberƒfromƒtheƒuser
xƒ=ƒfloat(input(“Enterƒaƒpositiveƒnumber:ƒ“))

#ƒInitializeƒtheƒtoleranceƒandƒestimate
toleranceƒ=ƒ0.000001
estimateƒ=ƒ1.0

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary [113]

#ƒPerformƒtheƒsuccessiveƒapproximations
whileƒTrue:
ƒƒƒƒestimateƒ=ƒ(estimateƒ+ƒxƒ/ƒestimate)ƒ/ƒ2
ƒƒƒƒdifferenceƒ=ƒabs(xƒ-ƒestimateƒ**ƒ2)
ƒƒƒƒifƒdifferenceƒ<=ƒtolerance:
ƒƒƒƒƒƒƒƒbreak

#ƒOutputƒtheƒresult
print(“Theƒprogram'sƒestimate:”,ƒestimate)
print(“Python'sƒestimate:ƒƒƒƒƒ“,ƒmath.sqrt(x))

3.6.5 Testing

The valid inputs to this program are positive integers and floating-point numbers.
The display of Python’s own most accurate estimate of the square root provides a
benchmark for assessing the correctness of our own algorithm. We should at least
provide a couple of perfect squares, such as 4 and 9, as well as numbers whose
square roots are inexact, such as 2 and 3. A number between 1 and 0, such as .25,
should also be included. Because the accuracy of our algorithm also depends on
the size of the tolerance, we might alter this value during testing as well.

Summary
� Control statements determine the order in which other statements are

executed in a program.
� Definite iteration is the process of executing a set of statements a

fixed, predictable number of times. The for loop is an easy and con-
venient control statement for describing a definite iteration.

� The for loop consists of a header and a set of statements called the
body. The header contains information that controls the number of
times that the body executes.

� The for loop can count through a series of integers. Such a loop is
called a count-controlled loop.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� During the execution of a count-controlled for loop, the statements
in the loop’s body can reference the current value of the count using
the loop header’s variable.

� Python’s range function generates the sequence of numbers in a
count-controlled for loop. This function can receive one, two, or
three arguments. A single argument M specifies a sequence of num-
bers 0 through M – 1. Two arguments M and N specify a sequence of
numbers M through N – 1. Three arguments M, N, and S specify a
sequence of numbers M up through N – 1, stepping by S, when S is
positive, or M down through N + 1, stepping by S, when S is negative.

� The for loop can traverse and visit the values in a sequence. Example
sequences are a string of characters and a list of numbers.

� A format string and its operator % allow the programmer to format
data using a field width and a precision.

� An off-by-one error occurs when a loop does not perform the
intended number of iterations, there being one too many or one too
few. This error can be caused by an incorrect lower bound or upper
bound in a count-controlled loop.

� Boolean expressions contain the values True or False, variables bound
to these values, comparisons using the relational operators, or other
Boolean expressions using the logical operators. Boolean expressions
evaluate to True or False and are used to form conditions in programs.

� The logical operators and, or, and not are used to construct com-
pound Boolean expressions. The values of these expressions can be
determined by constructing truth tables.

� Python uses short-circuit evaluation in compound Boolean expressions.
The evaluation of the operands of or stops at the first true value, whereas
the evaluation of the operands of and stops at the first false value.

� Selection statements are control statements that enable a program to
make choices. A selection statement contains one or more conditions
and the corresponding actions. Instead of moving straight ahead to
the next action, the computer examines a condition. If the condition is
true, the computer performs the corresponding action and then moves
to the action following the selection statement. Otherwise, the com-
puter moves to the next condition if there is one or to the action fol-
lowing the selection statement.

CHAPTER 3 Control Statements[114]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� A two-way selection statement, also called an if-else statement, has
a single condition and two alternative courses of action. A one-way
selection statement, also called an if statement, has a single condition
and a single course of action. A multi-way selection statement, also
called an extended if statement, has at least two conditions and three
alternative courses of action.

� Conditional iteration is the process of executing a set of statements
while a condition is true. The iteration stops when the condition
becomes false. Because it cannot always be anticipated when this will
occur, the number of iterations usually cannot be predicted.

� A while loop is used to describe conditional iteration. This loop con-
sists of a header and a set of statements called the body. The header
contains the loop’s continuation condition. The body executes as long
as the continuation condition is true.

� The while loop is an entry-control loop. This means that the contin-
uation condition is tested at loop entry, and if it is false, the loop’s
body will not execute. Thus, the while loop can describe zero or
more iterations.

� The break statement can be used to exit a while loop from its body.
The break statement is usually used when the loop must perform at
least one iteration. The loop header’s condition in that case is the
value True. The break statement is nested in an if statement that
tests for a termination condition.

� Any for loop can be converted to an equivalent while loop. In a
count-controlled while loop, the programmer must initialize and
update a loop control variable.

� An infinite loop occurs when the loop’s continuation condition never
becomes false and no other exit points are provided. The primary
cause of infinite loops is the programmer’s failure to update a loop
control variable properly.

� The function random.randint returns a random number in the
range specified by its two arguments.

Summary [115]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Control Statements[116]

REVIEW QUESTIONS
1 How many times does a loop with the header for count in

range(10): execute the statements in its body?

a 9 times
b 10 times
c 11 times

2 A for loop is convenient for

a making choices in a program
b running a set of statements a predictable number of times
c counting through a sequence of numbers
d describing conditional iteration

3 What is the output of the loop forƒcountƒinƒrange(5):
print(count)?

a 1 2 3 4 5
b 1 2 3 4
c 0 1 2 3 4

4 When the function range receives two arguments, what does the second
argument specify?

a the last value of a sequence of integers
b the last value of a sequence of integers plus 1
c the last value of a sequence of integers minus 1

5 Consider the following code segment:

xƒ=ƒ5
yƒ=ƒ4
ifƒxƒ>ƒy:
ƒƒƒprint(y)
else:
ƒƒƒprint(x)

What value does this code segment print?

a 4
b 5

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

REVIEW QUESTIONS [117]

6 A Boolean expression using the and operator returns True when

a both operands are true
b one operand is true
c neither operand is true

7 By default the while loop is an

a entry-controlled loop
b exit-controlled loop

8 Consider the following code segment:

ƒƒƒcountƒ=ƒ5
ƒƒƒwhileƒcountƒ>ƒ1:
ƒƒƒƒƒƒprint(count,ƒend="ƒ")
ƒƒƒƒƒƒcountƒ-=ƒ1

What is the output produced by this code?

a 1 2 3 4 5
b 2 3 4 5
c 5 4 3 2 1
d 5 4 3 2

9 Consider the following code segment:

ƒƒƒcountƒ=ƒ1
ƒƒƒwhileƒcountƒ<=ƒ10:
ƒƒƒƒƒƒprint(count,ƒend="ƒ")

Which of the following describes the error in this code?

a The loop is off by 1.
b The loop control variable is not properly initialized.
c The comparison points the wrong way.
d The loop is infinite.

10 Consider the following code segment:

ƒƒƒsumƒ=ƒ0.0
ƒƒƒwhileƒTrue:

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Control Statements[118]

ƒƒƒƒƒƒnumberƒ=ƒinput(“Enterƒaƒnumber:ƒ“)
ƒƒƒƒƒƒifƒnumberƒ==ƒ“”:
ƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒsumƒ+=ƒfloat(number)

How many iterations does this loop perform?

a none
b at least one
c zero or more
d ten

PROJECTS
1 Write a program that accepts the lengths of three sides of a triangle as

inputs. The program output should indicate whether or not the triangle
is an equilateral triangle.

2 Write a program that accepts the lengths of three sides of a triangle as
inputs. The program output should indicate whether or not the triangle
is a right triangle. Recall from the Pythagorean theorem that in a right
triangle, the square of one side equals the sum of the squares of the other
two sides.

3 Modify the guessing-game program of Section 3.5 so that the user thinks
of a number that the computer must guess. The computer must make no
more than the minimum number of guesses.

4 A standard science experiment is to drop a ball and see how high it
bounces. Once the “bounciness” of the ball has been determined, the
ratio gives a bounciness index. For example, if a ball dropped from a
height of 10 feet bounces 6 feet high, the index is 0.6, and the total dis-
tance traveled by the ball is 16 feet after one bounce. If the ball were to
continue bouncing, the distance after two bounces would be 10 ft + 6 ft +
6 ft + 3.6 ft = 25.6 ft. Note that the distance traveled for each successive
bounce is the distance to the floor plus 0.6 of that distance as the ball
comes back up. Write a program that lets the user enter the initial height
of the ball and the number of times the ball is allowed to continue
bouncing. Output should be the total distance traveled by the ball.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5 A local biologist needs a program to predict population growth. The
inputs would be the initial number of organisms, the rate of growth (a
real number greater than 0), the number of hours it takes to achieve this
rate, and a number of hours during which the population grows. For
example, one might start with a population of 500 organisms, a growth
rate of 2, and a growth period to achieve this rate of 6 hours. Assuming
that none of the organisms die, this would imply that this population
would double in size every 6 hours. Thus, after allowing 6 hours for
growth, we would have 1000 organisms, and after 12 hours, we would
have 2000 organisms. Write a program that takes these inputs and dis-
plays a prediction of the total population.

6 The German mathematician Gottfried Leibniz developed the following
method to approximate the value of π:

π/4 = 1 – 1/3 + 1/5 – 1/7 + . . .

Write a program that allows the user to specify the number of iterations
used in this approximation and that displays the resulting value.

7 Teachers in most school districts are paid on a schedule that provides a
salary based on their number of years of teaching experience. For exam-
ple, a beginning teacher in the Lexington School District might be paid
$30,000 the first year. For each year of experience after this first year, up
to 10 years, the teacher receives a 2% increase over the preceding value.
Write a program that displays a salary schedule, in tabular format, for
teachers in a school district. The inputs are the starting salary, the per-
centage increase, and the number of years in the schedule. Each row in
the schedule should contain the year number and the salary for that year.

8 The greatest common divisor of two positive integers, A and B, is the
largest number that can be evenly divided into both of them. Euclid’s
algorithm can be used to find the greatest common divisor (GCD) of two
positive integers. You can use this algorithm in the following manner:

a Compute the remainder of dividing the larger number by the
smaller number.

b Replace the larger number with the smaller number and the smaller
number with the remainder.

c Repeat this process until the smaller number is zero.

The larger number at this point is the GCD of A and B. Write a pro-
gram that lets the user enter two integers and then prints each step in
the process of using the Euclidean algorithm to find their GCD.

PROJECTS [119]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 3 Control Statements[120]

9 Write a program that receives a series of numbers from the user and
allows the user to press the enter key to indicate that he or she is finished
providing inputs. After the user presses the enter key, the program
should print the sum of the numbers and their average.

10 The credit plan at TidBit Computer Store specifies a 10% down pay-
ment and an annual interest rate of 12%. Monthly payments are 5% of
the listed purchase price, minus the down payment. Write a program
that takes the purchase price as input. The program should display a
table, with appropriate headers, of a payment schedule for the lifetime of
the loan. Each row of the table should contain the following items:

� the month number (beginning with 1)
� the current total balance owed
� the interest owed for that month
� the amount of principal owed for that month
� the payment for that month
� the balance remaining after payment

The amount of interest for a month is equal to balance * rate / 12. The
amount of principal for a month is equal to the monthly payment minus
the interest owed.

11 In the game of Lucky Sevens, the player rolls a pair of dice. If the dots
add up to 7, the player wins $4; otherwise, the player loses $1. Suppose
that, to entice the gullible, a casino tells players that there are lots of
ways to win: (1, 6), (2, 5), etc. A little mathematical analysis reveals that
there are not enough ways to win to make the game worthwhile; how-
ever, because many people’s eyes glaze over at the first mention of math-
ematics, your challenge is to write a program that demonstrates the
futility of playing the game. Your program should take as input the
amount of money that the player wants to put into the pot, and play the
game until the pot is empty. At that point, the program should print the
number of rolls it took to break the player, as well as maximum amount
of money in the pot.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After completing this chapter, you will be able to:
� Access individual characters in a string
� Retrieve a substring from a string
� Search for a substring in a string
� Convert a string representation of a number from one base to

another base
� Use string methods to manipulate strings
� Open a text file for output and write strings or numbers to

the file
� Open a text file for input and read strings or numbers from

the file
� Use library functions to access and navigate a file system
Much about computation is concerned with manipulating text.

Word processing and program editing are obvious examples, but text
also forms the basis of e-mail, Web pages, and text messaging. In
this chapter, we explore strings and text files, which are useful data
structures for organizing and processing text.

[CHAPTER] Strings and Text Files4

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1 Accessing Characters and Substrings in
Strings
In Chapters 1 and 2 we used strings for input and output. We also combined
strings via concatenation to form new strings. In Chapter 3, you learned how to
format a string and to visit each of its characters with a for loop. In this section,
we examine the internal structure of a string more closely, and you will learn how
to extract portions of a string called substrings.

4.1.1 The Structure of Strings

Unlike an integer, which cannot be factored into more primitive parts, a string is
a data structure. A data structure is a compound unit that consists of several
smaller pieces of data. A string is a sequence of zero or more characters. When
working with strings, the programmer sometimes must be aware of a string’s
length and the positions of the individual characters within the string. A string’s
length is the number of characters it contains. Python’s len function returns this
value when it is passed a string, as shown in the following session:

>>>ƒlen(“Hiƒthere!”)
9
>>>ƒlen(“”)
0
>>>ƒ

The positions of a string’s characters are numbered from 0, on the left, to the
length of the string minus 1, on the right. Figure 4.1 illustrates the sequence of
characters and their positions in the string “Hi there!”. Note that the ninth
and last character, '!', is at position 8.

[FIGURE 4.1] Characters and their positions in a string

The string is an immutable data structure. This means that its internal data
elements, the characters, can be accessed, but the structure itself cannot be modified.

H rehti e

0 654321 7

!

8

CHAPTER 4 Strings and Text Files[122]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1.2 The Subscript Operator

Although a simple for loop can access any of the characters in a string, some-
times you just want to inspect one character at a given position without visiting
them all. The subscript operator makes this possible. The form of a subscript
operator is the following:

<aƒstring>[<anƒintegerƒexpression>]

The first part of the subscript operator is the string you want to inspect. The
integer expression in brackets indicates the position of the particular character in
the string that you want to inspect. The integer expression is also called an index.
In the following examples, the subscript operator is used to access characters in
the string “Alan Turing:”

>>>ƒnameƒ=ƒ“AlanƒTuring”
>>>ƒname[0]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒExamineƒtheƒfirstƒcharacter
'A'
>>>ƒname[3]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒExamineƒtheƒfourthƒcharacter
'n'
>>>ƒname[len(name)]ƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒOops!ƒAnƒindexƒerror!
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<stdin>”,ƒlineƒ1,ƒinƒ<module>
IndexError:ƒstringƒindexƒoutƒofƒrange
>>>ƒname[len(name)ƒ-ƒ1]ƒƒƒƒƒƒƒƒƒ#ƒExamineƒtheƒlastƒcharacter
'g'
>>>ƒname[-1]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒShorthandƒforƒtheƒlastƒone
'g'
>>>ƒ

Note that attempting to access a character using a position that equals the string’s
length results in an error. The positions usually range from 0 to the length minus 1.
However, Python allows negative subscript values to access characters at or near
the end of a string. The programmer counts backward from -1 to access charac-
ters from the right end of the string.

4.1 Accessing Characters and Substrings in Strings [123]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The subscript operator is also useful in loops where you want to use the
positions as well as the characters in a string. The next code segment uses a
count-controlled loop to display the characters and their positions:

>>>ƒdataƒ=ƒ“Hiƒthere!”
>>>ƒforƒindexƒinƒrange(len(data)):
ƒƒƒƒƒƒƒprint(index,ƒdata[index])
ƒ
0ƒH
1ƒi
2ƒƒ
3ƒt
4ƒh
5ƒe
6ƒr
7ƒe
8ƒ!
>>>

4.1.3 Slicing for Substrings

Some applications extract portions of strings called substrings. For example, an
application that sorts filenames according to type might use the last three charac-
ters in a filename, called its extension, to determine the file’s type (exceptions to
this rule, such as the extensions “.py” and “.html”, will be considered later in
this chapter). On a Windows file system, a filename ending in “.txt” denotes a
human-readable text file, whereas a filename ending in “.exe” denotes an exe-
cutable file of machine code. You can use Python’s subscript operator to obtain a
substring through a process called slicing. To extract a substring, the program-
mer places a colon (:) in the subscript. An integer value can appear on either side
of the colon. Here are some examples that show how slicing is used:

>>>ƒnameƒ=ƒ“myfile.txt”
>>>ƒname[0:]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒentireƒstringƒ
'myfile.txt'
>>>ƒname[0:1]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒfirstƒcharacter
'm'

continued

CHAPTER 4 Strings and Text Files[124]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

>>>ƒname[0:2]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒfirstƒtwoƒcharacters
'my'
>>>ƒname[:len(name)]ƒƒƒƒƒƒƒ#ƒTheƒentireƒstring
'myfile.txt'
>>>ƒname[-3:]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTheƒlastƒthreeƒcharacters
'txt'
>>>ƒ

Generally, when two integer positions are included in the slice, the range of char-
acters in the substring extends from the first position up to but not including the
second position. When the integer is omitted on either side of the colon, all of
the characters extending to the end or the beginning are included in the sub-
string. Note that the last line of code provides the correct range to obtain the
filename’s three-character extension.

4.1.4 Testing for a Substring with the in Operator

Another problem involves picking out strings that contain known substrings.
For example, you might want to separate filenames with a .txt extension. A slice
would work for this, but using Python’s in operator is much simpler. When used
with strings, the left operand of in is a target substring, and the right operand is
the string to be searched. The operator in returns True if the target string is
somewhere in the search string, or False otherwise. The next code segment
traverses a list of filenames and prints just the filenames that have a .txt
extension:

>>>ƒfileListƒ=ƒ[“myfile.txt”,ƒ“myprogram.exe”,ƒ“yourfile.txt”]
>>>ƒforƒfileNameƒinƒfileList:
ƒƒƒƒƒƒƒifƒ“.txt”ƒinƒfileName:
ƒƒƒƒƒƒƒƒƒƒprint(fileName)
ƒ
myfile.txt
yourfile.txt
>>>ƒ

4.1 Accessing Characters and Substrings in Strings [125]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1 Exercises
1 Assume that the variable data refers to the string “myprogram.exe”.

Write the values of the following expressions:

a data[2]

b data[-1]

c len(data)

d data[0:8]

2 Assume that the variable data refers to the string “myprogram.exe”.
Write the expressions that perform the following tasks:

a Extract the substring “gram” from data.

b Truncate the extension “.exe” from data.

c Extract the character at the middle position from data.

3 Assume that the variable myString refers to a string. Write a code seg-
ment that uses a loop to print the characters of the string in reverse order.

4 Assume that the variable myString refers to a string, and the variable
reversedString refers to an empty string. Write a loop that adds the
characters from myString to reversedString in reverse order.

4.2 Data Encryption
As you might imagine, data traveling on the information highway is vulnerable to
spies and potential thieves. It is easy to observe data crossing a network, particu-
larly now that more and more communications involve wireless transmissions.
For example, a person can sit in a car in the parking lot outside any major hotel
and pick up transmissions between almost any two computers if that person runs
the right sniffing software. For this reason, many applications now use data
encryption to protect information transmitted on networks. Some application
protocols have been updated to include secure versions that use data encryption.
Examples of such versions are FTPS and HTTPS, which are secure versions of
FTP and HTTP for file transfer and Web page transfer, respectively.

CHAPTER 4 Strings and Text Files[126]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Encryption techniques are as old as the practice of sending and receiving
messages. The sender encrypts a message by translating it to a secret code, called
a cipher text. At the other end, the receiver decrypts the cipher text back to its
original plaintext form. Both parties to this transaction must have at their dis-
posal one or more keys that allow them to encrypt and decrypt messages. To give
you a taste of this process, let us examine an encryption strategy in detail.

A very simple encryption method that has been in use for thousands of years
is called a Caesar cipher. Recall that the character set for text is ordered as a
sequence of distinct values. This encryption strategy replaces each character in
the plaintext with the character that occurs a given distance away in the sequence.
For positive distances, the method wraps around to the beginning of the
sequence to locate the replacement characters for those characters near its end.
For example, if the distance value of a Caesar cipher equals five characters, the
string “invaders” would be encrypted as “nsafijwx.” To decrypt this cipher text
back to plaintext, you apply a method that uses the same distance value but looks
to the left of each character for its replacement. This decryption method wraps
around to the end of the sequence to find a replacement character for one near
its beginning.

The next two Python scripts implement Caesar cipher methods for any
strings that contain lowercase letters and for any distance values between 0 and
26. Recall that the ord function returns the ordinal position of a character value
in the ASCII sequence, whereas chr is the inverse function.

“””
File:ƒencrypt.py
Encryptsƒanƒinputƒstringƒofƒlowercaseƒlettersƒandƒprints
theƒresult.ƒƒTheƒotherƒinputƒisƒtheƒdistanceƒvalue.
“””

plainTextƒ=ƒinput(“Enterƒaƒone-word,ƒlowercaseƒmessage:ƒ“)
distanceƒ=ƒint(input(“Enterƒtheƒdistanceƒvalue:ƒ“))
codeƒ=ƒ“”
forƒchƒinƒplainText:
ƒƒƒƒordValueƒ=ƒord(ch)
ƒƒƒƒcipherValueƒ=ƒordValueƒ+ƒdistance
ƒƒƒƒifƒcipherValueƒ>ƒord('z'):
ƒƒƒƒƒƒƒƒcipherValueƒ=ƒord('a')ƒ+ƒdistanceƒ-ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(ord('z')ƒ-ƒordValueƒ+ƒ1)
ƒƒƒƒcodeƒ+=ƒƒchr(cipherValue)
print(code)

4.2 Data Encryption [127]

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

“””
File:ƒdecrypt.py
Decryptsƒanƒinputƒstringƒofƒlowercaseƒlettersƒandƒprints
theƒresult.ƒƒTheƒotherƒinputƒisƒtheƒdistanceƒvalue.
“””

codeƒ=ƒinput(“Enterƒtheƒcodedƒtext:ƒ“)
distanceƒ=ƒint(input(“Enterƒtheƒdistanceƒvalue:ƒ“))
plainTextƒ=ƒ''
forƒchƒinƒcode:
ƒƒƒƒordValueƒ=ƒord(ch)
ƒƒƒƒcipherValueƒ=ƒordValueƒ-ƒdistance
ƒƒƒƒifƒcipherValueƒ<ƒord('a'):
ƒƒƒƒƒƒƒƒcipherValueƒ=ƒord('z')ƒ-ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(distanceƒ-ƒ(ord('a')ƒ-ƒordValueƒ+ƒ1))
ƒƒƒƒplainTextƒ+=ƒchr(cipherValue)
print(plainText)

Here are some executions of the two scripts from a terminal command prompt.
The user’s inputs are in italics.

>ƒpythonƒencrypt.py
Enterƒaƒone-word,ƒlowercaseƒmessage:ƒinvaders
Enterƒtheƒdistanceƒvalue:ƒ5
nsafijwx
>ƒpythonƒdecrypt.py
Enterƒtheƒcodedƒtext:ƒnsafijwx
Enterƒtheƒdistanceƒvalue:ƒ5
invaders

These scripts could easily be extended to cover all of the characters, including
spaces and punctuation marks.

Although it worked reasonably well in ancient times, a Caesar cipher would be
no match for a competent spy with a computer. Assuming that there are 128 ASCII
characters, all you would have to do is write a program that would run the same
line of text through the extended decrypt script with the values 0 through 127,
until a meaningful plaintext is returned. It would take less than a second to do
that on most modern computers. The main shortcoming of this encryption strat-
egy is that the plaintext is encrypted one character at a time, and each encrypted
character depends on that single character and a fixed distance value. In a sense,
the structure of the original text is preserved in the cipher text, so it might not be
hard to discover a key by visual inspection.

CHAPTER 4 Strings and Text Files[128]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A more sophisticated encryption scheme is called a block cipher. A block
cipher uses a plaintext character to compute two or more encrypted characters,
and each encrypted character is computed using two or more plaintext characters.
This is accomplished by using a mathematical structure known as an invertible
matrix to determine the values of the encrypted characters. The matrix provides
the key in this method. The receiver uses the same matrix to decrypt the cipher
text. The fact that information used to determine each character comes from a
block of data makes it more difficult to determine the key.

4.2 Exercises
1 Write the encrypted text of each of the following words using a Caesar

cipher with a distance value of 3:

a python

b hacker

c wow

2 Consult the Table of ASCII values in Chapter 2 and suggest how you
would modify the encryption and decryption scripts in this section to
work with strings containing all of the printable characters.

3 You are given a string that was encoded by a Caesar cipher with an
unknown distance value. The text can contain any of the printable ASCII
characters. Suggest an algorithm for cracking this code.

4.3 Strings and Number Systems
When you perform arithmetic operations, you use the decimal number system.
This system, also called the base ten number system, uses the ten characters 0,
1, 2, 3, 4, 5, 6, 7, 8, and 9 as digits. As we saw in Chapter 1, the binary number
system is used to represent all information in a digital computer. The two digits in
this base two number system are 0 and 1. Because binary numbers can be long
strings of 0s and 1s, computer scientists often use other number systems, such as
octal (base eight) and hexadecimal (base 16) as shorthand for these numbers.

4.3 Strings and Number Systems [129]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To identify the system being used, you attach the base as a subscript to the num-
ber. For example, the following numbers represent the quantity 41510 in the
binary, octal, decimal, and hexadecimal systems:

415ƒinƒbinaryƒnotationƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ1100111112
415ƒinƒoctalƒnotationƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ6378
415ƒinƒdecimalƒnotationƒƒƒƒƒƒƒƒƒƒƒƒƒƒ41510
415ƒinƒhexadecimalƒnotationƒƒƒƒƒƒƒƒƒƒ19F16

The digits used in each system are counted from 0 to n - 1, where n is the
system’s base. Thus, the digits 8 and 9 do not appear in the octal system. To rep-
resent digits with values larger than 910, systems such as base 16 use letters.
Thus, A16 represents the quantity 1010, whereas 1016 represents the quantity 1610.
In this section, we examine how these systems actually represent numeric quanti-
ties and how to translate from one notation to another.

4.3.1 The Positional System for Representing Numbers

All of the number systems we have examined use positional notation—that is, the
value of each digit in a number is determined by the digit’s position in the number.
In other words, each digit has a positional value. The positional value of a digit is
determined by raising the base of the system to the power specified by the position
(baseposition). For an n-digit number, the positions (and exponents) are numbered
from n - 1 down to 0, starting with the leftmost digit and moving to the right. For
example, as Figure 4.2 illustrates, the positional values of the three-digit number
41510 are 100 (102), 10 (101), and 1 (100), moving from left to right in the number.

[FIGURE 4.2] The first three positional values in the base 10 number system

To determine the quantity represented by a number in any system from base 2
through base 10, you multiply each digit (as a decimal number) by its positional

Positional values 100 10 1
Positions 2 1 0

CHAPTER 4 Strings and Text Files[130]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

value and add the results. The following example shows how this is done for a
three-digit number in base 10:

41510ƒ=

4ƒ*ƒ102ƒ+ƒ1ƒ*ƒ101ƒ+ƒ5ƒ*ƒ100ƒ=

4ƒ*ƒ100ƒ+ƒ1ƒ*ƒ10ƒ+ƒ5ƒ*ƒ1ƒƒƒ=

400ƒƒƒƒƒ+ƒ10ƒƒƒƒƒ+ƒ5ƒƒƒƒƒƒƒ=ƒ415

4.3.2 Converting Binary to Decimal

Like the decimal system, the binary system also uses positional notation. However,
each digit or bit in a binary number has a positional value that is a power of 2. In
the discussion that follows, we occasionally refer to a binary number as a string of
bits or a bit string. You determine the integer quantity that a string of bits repre-
sents in the usual manner: multiply the value of each bit (0 or 1) by its positional
value and add the results. Let’s do that for the number 11001112:

11001112ƒ=

1ƒ*ƒ26ƒ+ƒ1ƒ*ƒ25ƒ+ƒ0ƒ*ƒ24ƒ+ƒ0ƒ*ƒ23ƒ+ƒ1ƒ*ƒ22ƒ+ƒ1ƒ*ƒ21ƒ+ƒ1ƒ*ƒ20ƒ=

1ƒ*ƒ64ƒ+ƒ1ƒ*ƒ32ƒ+ƒ0ƒ*ƒ16ƒ+ƒ0ƒ*ƒ8ƒ+ƒ1ƒ*ƒ4ƒ+ƒ1ƒ*ƒ2ƒ+ƒ1ƒ*ƒ1ƒ=

64ƒƒƒƒƒ+ƒ32ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ+ƒ4ƒƒƒƒƒ+ƒ2ƒƒƒƒƒ+ƒ1ƒƒƒƒƒ=ƒ103

Not only have we determined the integer value of this binary number, but
we have also converted it to decimal in the process! In computing the value of a
binary number, we can ignore the values of the positions occupied by 0s and sim-
ply add the positional values of the positions occupied by 1s.

We can code an algorithm for the conversion of a binary number to the
equivalent decimal number as a Python script. The input to the script is a string
of bits, and its output is the integer that the string represents. The algorithm uses
a loop that accumulates the sum of a set of integers. The sum is initially 0. The
exponent that corresponds to the position of the string’s leftmost bit is the length
of the bit string minus 1. The loop visits the digits in the string from the first to
the last (left to right), also counting from the largest exponent of 2 down to 0 as

4.3 Strings and Number Systems [131]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

it goes. Each digit is converted to its integer value (1 or 0), multiplied by its posi-
tional value, and the result is added to the ongoing total. A positional value is
computed by using the ** operator. Here is the code for the script, followed by
some example sessions at a terminal prompt:

“””
File:ƒbinarytodecimal.py
Convertsƒaƒstringƒofƒbitsƒtoƒaƒdecimalƒinteger.
“””

bstringƒ=ƒinput(“Enterƒaƒstringƒofƒbits:ƒ“)
decimalƒ=ƒ0
exponentƒ=ƒlen(bstring)ƒ-ƒ1
forƒdigitƒinƒbstring:
ƒƒƒƒdecimalƒ=ƒdecimalƒ+ƒint(digit)ƒ*ƒ2ƒ**ƒexponent
ƒƒƒƒexponentƒ=ƒexponentƒ-ƒ1
print(“Theƒintegerƒvalueƒis”,ƒdecimal)

>ƒpythonƒbinarytodecimal.py
Enterƒaƒstringƒofƒbits:ƒ1111
Theƒintegerƒvalueƒisƒ15
>ƒpythonƒbinarytodecimal.py
Enterƒaƒstringƒofƒbits:ƒ101
Theƒintegerƒvalueƒisƒ5

4.3.3 Converting Decimal to Binary

How are integers converted from decimal to binary? One algorithm uses division
and subtraction instead of multiplication and addition. This algorithm repeatedly
divides the decimal number by 2. After each division, the remainder (either a 0 or
a 1) is placed at the beginning of a string of bits. The quotient becomes the next
dividend in the process. The string of bits is initially empty, and the process con-
tinues while the decimal number is greater than 0.

Let’s code this algorithm as a Python script and run it to display the interme-
diate results in the process. The script expects a non-negative decimal integer as
an input and prints the equivalent bit string. The script checks first for a 0 and
prints the string '0' as a special case. Otherwise, the script uses the algorithm

CHAPTER 4 Strings and Text Files[132]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

just described. On each pass through the loop, the values of the quotient, remain-
der, and result string are displayed. Here is the code for the script, followed by a
session to convert the number 34:

“””
File:ƒdecimaltobinary.py
Convertsƒaƒdecimalƒintegerƒtoƒaƒstringƒofƒbits.
“””

decimalƒ=ƒint(input(“Enterƒaƒdecimalƒinteger:ƒ“))
ifƒdecimalƒ==ƒ0:ƒ
ƒƒƒƒprintƒ(0)
else:
ƒƒƒƒprint(“QuotientƒRemainderƒBinary”)
ƒƒƒƒbstringƒ=ƒ“”
ƒƒƒƒwhileƒdecimalƒ>ƒ0:
ƒƒƒƒƒƒƒƒremainderƒ=ƒdecimalƒ%ƒ2
ƒƒƒƒƒƒƒƒdecimalƒ=ƒdecimalƒ//ƒ2
ƒƒƒƒƒƒƒƒbstringƒ=ƒstr(remainder)ƒ+ƒbstring
ƒƒƒƒƒƒƒƒprint(“%5d%8d%12s”ƒ%ƒ(decimal,ƒremainder,ƒbstring))
ƒƒƒƒprint(“Theƒbinaryƒrepresentationƒis”,ƒbstring)

>ƒpythonƒdecimalToBinary.py
Enterƒaƒdecimalƒinteger:ƒ34
QuotientƒRemainderƒBinary
ƒƒƒ17ƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒƒƒƒ0
ƒƒƒƒ8ƒƒƒƒƒƒƒ1ƒƒƒƒƒƒƒƒƒƒ10
ƒƒƒƒ4ƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒƒ010
ƒƒƒƒ2ƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒƒ0010
ƒƒƒƒ1ƒƒƒƒƒƒƒ0ƒƒƒƒƒƒƒ00010
ƒƒƒƒ0ƒƒƒƒƒƒƒ1ƒƒƒƒƒƒ100010ƒ
Theƒbinaryƒrepresentationƒisƒ100010

4.3.4 Conversion Shortcuts

There are various shortcuts for determining the decimal integer values of some
binary numbers. One useful method involves learning to count through the num-
bers corresponding to the decimal values 0 through 8, as shown in Table 4.1.

4.3 Strings and Number Systems [133]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 4.1] The numbers 0 through 8 in binary

Note the rows that contain exact powers of 2 (2, 4, and 8 in decimal). Each
of the corresponding binary numbers in that row contains a 1 followed by a num-
ber of zeroes that equal the exponent used to compute that power of 2. Thus, a
quick way to compute the decimal value of the number 100002 is 24 or 1610.

The rows whose binary numbers contain all ones correspond to decimal
numbers that are one less than the next exact power of 2. For example, the num-
ber 1112 equals 23 - 1, or 710. Thus, a quick way to compute the decimal value of
the number 111112 is 25 - 1, or 3110.

4.3.5 Octal and Hexadecimal Numbers

The octal system uses a base of eight and the digits 0…7. Conversions of octal to
decimal and decimal to octal use algorithms similar to those discussed thus far
(using powers of 8 and dividing by 8, instead of 2). But the real benefit of the
octal system is the ease of converting octal numbers to and from binary. With
practice, you can learn to do these conversions quite easily by hand, and in many
cases by eye. To convert from octal to binary, you start by assuming that each
digit in the octal number represents three digits in the corresponding binary
number. You then start with the leftmost octal digit and write down the corre-
sponding binary digits, padding these to the left with 0s to the count of 3, if

DECIMAL BINARY

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

CHAPTER 4 Strings and Text Files[134]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

necessary. You proceed in this manner until you have converted all of the octal
digits. Figure 4.3 shows such a conversion:

[FIGURE 4.3] The conversion of octal to binary

To convert binary to octal, you begin at the right and factor the bits into
groups of three bits each. You then convert each group of three bits to the octal
digit they represent.

As the size of a number system’s base increases, so does the system’s expres-
sive power, its ability to say more with less. As bit strings get longer, the octal
system becomes a less useful shorthand for expressing them. The hexadecimal or
base-16 system (called “hex” for short), which uses 16 different digits, provides a
more concise notation than octal for larger numbers. Base 16 uses the digits 0…9
for the corresponding integer quantities and the letters A...F for the integer
quantities 10...15.

The conversion between numbers in the two systems works as follows. Each
digit in the hexadecimal number is equivalent to four digits in the binary number.
Thus, to convert from hexadecimal to binary, you replace each hexadecimal digit
with the corresponding 4-bit binary number. To convert from binary to hexadeci-
mal, you factor the bits into groups of four and look up the corresponding hex
digits. (This is the kind of stuff that hackers memorize). Figure 4.4 shows a map-
ping of hexadecimal digits to binary digits.

[FIGURE 4.4] The conversion of hexadecimal to binary

Hexadecimal

Binary

43F

0100 0011 1111

Octal

Binary

437

100 011 111

4.3 Strings and Number Systems [135]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.3 Exercises
1 Translate each of the following numbers to decimal numbers:

a 110012

b 1000002

c 111112

2 Translate each of the following numbers to binary numbers:

a 4710

b 12710

c 6410

3 Translate each of the following numbers to binary numbers:

a 478

b 1278

c 648

4 Translate each of the following numbers to decimal numbers:

a 478

b 1278

c 648

5 Translate each of the following numbers to decimal numbers:

a 4716

b 12716

c AA16

4.4 String Methods
Text processing involves many different operations on strings. For example,
consider the problem of analyzing someone’s writing style. Short sentences con-
taining short words are generally considered more readable than long sentences
containing long words. A program to compute a text’s average sentence length
and the average word length might provide a rough analysis of style.

CHAPTER 4 Strings and Text Files[136]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Let’s start with counting the words in a single sentence and finding the aver-
age word length. This task requires locating the words in a string. Fortunately,
Python includes a set of string operations called methods that make tasks like
this one easy. In the next session, we use the string method split to obtain a list
of the words contained in an input string. We then print the length of the list,
which equals the number of words, and compute and print the average of the
lengths of the words in the list.

>>>ƒsentenceƒ=ƒinput(“Enterƒaƒsentence:ƒ“)
Enterƒaƒsentence:ƒThisƒsentenceƒhasƒnoƒlongƒwords.
>>>ƒlistOfWordsƒ=ƒsentence.split()
>>>ƒprint(“Thereƒare”,ƒlen(listOfWords),ƒ“words.”)
Thereƒareƒ6ƒwords.
>>>ƒsumƒ=ƒ0
>>>ƒforƒwordƒinƒlistOfWords:
ƒƒƒƒƒƒƒsumƒ+=ƒlen(word)

>>>ƒprint(“Theƒaverageƒwordƒlengthƒis”,ƒsumƒ/ƒlen(listOfWords))
Theƒaverageƒwordƒlengthƒisƒ4.5
>>>

A method behaves like a function, but has a slightly different syntax. Unlike a
function, a method is always called with a given data value called an object,
which is placed before the method name in the call. The syntax of a method call
is the following:

<anƒobject>.<methodƒname>(<argument-1>,ƒ…,ƒ<argument-n>)

Methods can also expect arguments and return values. A method knows
about the internal state of the object with which it is called. Thus, the method
split in our example builds a list of the words in the string object to which
sentence refers and returns it.

In short, methods are as useful as functions, but you need to get used to the
dot notation, which you have already seen when using a function associated with
a module. In Python, all data values are in fact objects, and every data type
includes a set of methods to use with objects of that type.

Table 4.2 lists some useful string methods. You can view the complete list and
the documentation of the string methods by entering dir(str) or help(str) at
a shell prompt. Note that some arguments are enclosed in square brackets ([]).
These indicate that the arguments are optional and may be omitted when the
method is called.

4.4 String Methods [137]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 4.2] Some useful string methods, with the code letter s used to refer to any string

STRING METHOD WHAT IT DOES

s.center(width) Returns a copy of s centered within the
given number of columns.

s.count(sub [, start [, end]]) Returns the number of non-overlapping
occurrences of substring sub in s. Optional
arguments start and end are interpreted as
in slice notation.

s.endswith(sub) Returns True if s ends with sub or False
otherwise.

s.find(sub [, start [, end]]) Returns the lowest index in s where
substring sub is found. Optional arguments
start and end are interpreted as in slice
notation.

s.isalpha() Returns True if s contains only letters or
False otherwise.

s.isdigit() Returns True if s contains only digits or
False otherwise.

s.join(sequence) Returns a string that is the concatenation of
the strings in the sequence. The separator
between elements is s.

s.lower() Returns a copy of s converted to lowercase.

s.replace(old, new [, count]) Returns a copy of s with all occurrences
of substring old replaced by new. If the
optional argument count is given, only the
first count occurrences are replaced.

s.split([sep]) Returns a list of the words in s, using sep as
the delimiter string. If sep is not specified,
any whitespace string is a separator.

s.startswith(sub) Returns True if s starts with sub or False
otherwise.

s.strip([aString]) Returns a copy of s with leading and trailing
whitespace (tabs, spaces, newlines) removed.
If aString is given, remove characters in
aString instead.

s.upper() Returns a copy of s converted to uppercase.

CHAPTER 4 Strings and Text Files[138]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The next session shows these methods in action:

>>>ƒsƒ=ƒ“Hiƒthere!”
>>>ƒlen(s)ƒƒƒ
9
>>>ƒs.center(11)
'ƒHiƒthere!ƒ'
>>>ƒs.count('e')
2
>>>ƒs.endswith(“there!”)
True
>>>ƒs.startswith(“Hi”)
True
>>>ƒs.find('the')
3
>>>ƒs.isalpha()
False
>>>ƒ'abc'.isalpha()
True
>>>ƒ“326”.isdigit()
True
>>>ƒwordsƒ=ƒs.split()
>>>ƒwords
['Hi',ƒ'there!']
>>>ƒ“”.join(words)
'Hithere!'
>>>ƒ“ƒ“.join(words)
'Hiƒthere!'
>>>ƒs.lower()
'hiƒthere!'
>>>ƒs.upper()
'HIƒTHERE!'
>>>ƒs.replace('i',ƒ'o')
'Hoƒthere!'
>>>ƒ“ƒHiƒthere!ƒ“.strip()
'Hiƒthere!'
>>>

Now that you know about the string method split, you are in a position
to use a more general strategy for extracting a filename’s extension than the one
used earlier in this chapter. The method split returns a list of words in the
string upon which it is called. This method assumes that the default separator

4.4 String Methods [139]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

character between the words is a space. You can override this assumption by
passing a period as an argument to split, as shown in the next session:

>>>ƒ“myfile.txt”.split(“.”)
['myfile',ƒ'txt']
>>>ƒ“myfile.py”.split(“.”)
['myfile',ƒ'py']
>>>ƒ“myfile.html”.split(“.”)
['myfile',ƒ'html']
>>>

Note that the extension, regardless of its length, is the last string in each list. You
can now use the subscript [-1], which also extracts the last element in a list, to
write a general expression for obtaining any filename’s extension, as follows:

filename.split(“.”)[-1]

4.4 Exercises
1 Assume that the variable data refers to the string “Python rules!”.

Use a string method from Table 4.2 to perform the following tasks:

a Obtain a list of the words in the string.

b Convert the string to uppercase.

c Locate the position of the string “rules”.

d Replace the exclamation point with a question mark.

2 Using the value of data from Exercise 1, write the values of the follow-
ing expressions:

a data.endswith('i')

b “ totally “.join(data.split())

CHAPTER 4 Strings and Text Files[140]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 Text Files
Thus far in this book, we have seen examples of programs that have taken input
data from users at the keyboard. Most of these programs can receive their
input from text files as well. A text file is a software object that stores data on a
permanent medium such as a disk, CD, or flash memory. When compared to
keyboard input from a human user, the main advantages of taking input data
from a file are the following:

� The data set can be much larger.
� The data can be input much more quickly and with less chance of error.
� The data can be used repeatedly with the same program or with different

programs.

4.5.1 Text Files and Their Format

Using a text editor such as Notepad or TextEdit, you can create, view, and
save data in a text file. Your Python programs can output data to a text file, a
procedure explained later in this section. The data in a text file can be viewed as
characters, words, numbers, or lines of text, depending on the text file’s format
and on the purposes for which the data are used. When the data are treated as
numbers (either integers or floating-points), they must be separated by white-
space characters—spaces, tabs, and newlines. For example, a text file containing
six floating-point numbers might look like

34.6ƒ22.33ƒ66.75
77.12ƒ21.44ƒ99.01

when examined with a text editor. Note that this format includes a space or a
newline as a separator of items in the text.

All data output to or input from a text file must be strings. Thus, numbers
must be converted to strings before output, and these strings must be converted
back to numbers after input.

4.5 Text Files [141]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5.2 Writing Text to a File

Data can be output to a text file using a file object. Python’s open function,
which expects a file pathname and a mode string as arguments, opens a connec-
tion to the file on disk and returns a file object. The mode string is 'r' for
input files and 'w' for output files. Thus, the following code opens a file object
on a file named myfile.txt for output:

>>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'w')

If the file does not exist, it is created with the given pathname. If the file already
exists, Python opens it. When data are written to the file and the file is closed,
any data previously existing in the file are erased.

String data are written (or output) to a file using the method write with the
file object. The write method expects a single string argument. If you want
the output text to end with a newline, you must include the escape character \n
in the string. The next statement writes two lines of text to the file:

>>>ƒf.write(“Firstƒline.\nSecondƒline.\n”)

When all of the outputs are finished, the file should be closed using the method
close, as follows:

>>>ƒf.close()

Failure to close an output file can result in data being lost.

4.5.3 Writing Numbers to a File

The file method write expects a string as an argument. Therefore, other types
of data, such as integers or floating-point numbers, must first be converted to
strings before being written to an output file. In Python, the values of most data
types can be converted to strings by using the str function. The resulting strings
are then written to a file with a space or a newline as a separator character.

CHAPTER 4 Strings and Text Files[142]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The next code segment illustrates the output of integers to a text file. Five
hundred random integers between 1 and 500 are generated and written to a text
file named integers.txt. The newline character is the separator.

importƒrandom
fƒ=ƒopen(“integers.txt”,ƒ'w')
forƒcountƒinƒrange(500):
ƒƒƒƒnumberƒ=ƒrandom.randint(1,ƒ500)
ƒƒƒƒf.write(str(number)ƒ+ƒ“\n”)
f.close()

4.5.4 Reading Text from a File

You open a file for input in a manner similar to opening a file for output. The
only thing that changes is the mode string, which, in the case of opening a file for
input, is 'r'. However, if the pathname is not accessible from the current work-
ing directory, Python raises an error. Here is the code for opening myfile.txt
for input:

>>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'r')

There are several ways to read data from an input file. The simplest way is to
use the file method read to input the entire contents of the file as a single
string. If the file contains multiple lines of text, the newline characters will be
embedded in this string. The next session shows how to use the method read:

>>>ƒtextƒ=ƒf.read()
>>>ƒtext
'Firstƒline.\nSecondƒline.\n'
>>>ƒprint(text)
Firstƒline.
Secondƒline.

>>>

After input is finished, another call to read would return an empty string, to
indicate that the end of the file has been reached. To repeat an input, the file
must be re-opened. It is not necessary to close the file.

4.5 Text Files [143]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Alternatively, an application might read and process the text one line at a
time. A for loop accomplishes this nicely. The for loop views a file object as a
sequence of lines of text. On each pass through the loop, the loop variable is
bound to the next line of text in the sequence. Here is a session that re-opens our
example file and visits the lines of text in it:

>>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'r')
>>>ƒforƒlineƒinƒf:
ƒƒƒƒƒƒƒprint(line)

Firstƒline.

Secondƒline.

>>>ƒ

Note that print appears to output an extra newline. This is because each line of
text input from the file retains its newline character.

In cases where you might want to read a specified number of lines from a file
(say, the first line only), you can use the file method readline. The readline
method consumes a line of input and returns this string, including the newline. If
readline encounters the end of the file, it returns the empty string. The next
code segment uses our old friend the while True loop to input all of the lines of
text with readline:

>>>ƒfƒ=ƒopen(“myfile.txt”,ƒ'r')
>>>ƒwhileƒTrue:
ƒƒƒƒƒƒƒlineƒ=ƒf.readline()
ƒƒƒƒƒƒƒifƒlineƒ==ƒ“”:
ƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒprint(line)

Firstƒline.

Secondƒline.

>>>ƒ

CHAPTER 4 Strings and Text Files[144]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5.5 Reading Numbers from a File

All of the file input operations return data to the program as strings. If these strings
represent other types of data, such as integers or floating-point numbers, the program-
mer must convert them to the appropriate types before manipulating them further. In
Python, the string representations of integers and floating-point numbers can be con-
verted to the numbers themselves by using the functions int and float, respectively.

When reading data from a file, another important consideration is the format of
the data items in the file. Earlier, we showed an example code segment that output
integers separated by newlines to a text file. During input, these data can be read with
a simple for loop. This loop accesses a line of text on each pass. To convert this line
to the integer contained in it, the programmer runs the string method strip to
remove the newline and then runs the int function to obtain the integer value.

The next code segment illustrates this technique. It opens the file of random
integers written earlier, reads them, and prints their sum.

fƒ=ƒopen(“integers.txt”,ƒ'r')
sumƒ=ƒ0
forƒlineƒinƒf:
ƒƒƒƒlineƒ=ƒline.strip()
ƒƒƒƒnumberƒ=ƒint(line)
ƒƒƒƒsumƒ+=ƒnumber
print(“Theƒsumƒis”,ƒsum)

Obtaining numbers from a text file in which they are separated by spaces is a
bit trickier. One method proceeds by reading lines in a for loop, as before. But
each line now can contain several integers separated by spaces. You can use the
string method split to obtain a list of the strings representing these integers,
and then process each string in this list with another for loop.

The next code segment modifies the previous one to handle integers sepa-
rated by spaces and/or newlines.

fƒ=ƒopen(“integers.txt”,ƒ'r')
sumƒ=ƒ0
forƒlineƒinƒf:
ƒƒƒƒwordlistƒ=ƒline.split()
ƒƒƒƒforƒwordƒinƒwordlist:
ƒƒƒƒƒƒƒƒnumberƒ=ƒint(word)
ƒƒƒƒƒƒƒƒsumƒ+=ƒnumber
print(“Theƒsumƒis”,ƒsum)

4.5 Text Files [145]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note that the line does not have to be stripped of the newline, because split
takes care of that automatically.

Table 4.3 summarizes the file operations discussed in this section. Note
that the dot notation is not used with open, which returns a new file object.

[TABLE 4.3] Some file operations

4.5.6 Accessing and Manipulating Files and Directories
on Disk

When designing Python programs that interact with files, it’s a good idea to
include error recovery. For example, before attempting to open a file for input,
the programmer should check to see if a file with the given pathname exists on
the disk. Tables 4.4 and 4.5 explain some file system functions, including a func-
tion (os.path.exists) that supports this checking. They also list some func-
tions that allow your programs to navigate to a given directory in the file system,
as well as perform some disk housekeeping. The functions listed in Tables 4.4 and
4.5 are self-explanatory, and you are encouraged to experiment. For example, the

METHOD WHAT IT DOES

open(pathname, mode) Opens a file at the given pathname and returns a
file object. The mode can be 'r', 'w', 'rw', or
'a'. The last two values, 'rw' and 'a', mean
read/write and append, respectively.

f.close() Closes an output file. Not needed for input files.

f.write(aString) Outputs aString to a file.

f.read() Inputs the contents of a file and returns them as a
single string. Returns '' if the end of file is
reached.

f.readline() Inputs a line of text and returns it as a string,
including the newline. Returns '' if the end of file
is reached.

CHAPTER 4 Strings and Text Files[146]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

following code segment will print all of the names of files in the current working
directory that have a .py extension:

importƒos
currentDirectoryPathƒ=ƒos.getcwd()
listOfFileNamesƒ=ƒos.listdir(currentDirectoryPath)
forƒnameƒinƒlistOfFileNames:
ƒƒƒƒifƒ“.py”ƒinƒname:
ƒƒƒƒƒƒƒƒprint(name)

[TABLE 4.4] Some file system functions

[TABLE 4.5] More file system functions

os.path MODULE FUNCTION WHAT IT DOES

exists(path) Returns True if path exists and False otherwise.

isdir(path) Returns True if path names a directory and
False otherwise.

isfile(path) Returns True if path names a file and False
otherwise.

getsize(path) Returns the size of the object names by path
in bytes.

os MODULE FUNCTION WHAT IT DOES

chdir(path) Changes the current working directory to path.

getcwd() Returns the path of the current working directory.

listdir(path) Returns a list of the names in directory
named path.

mkdir(path) Creates a new directory named path and places it
in the current working directory.

remove(path) Removes the file named path from the current
working directory.

rename(old, new) Renames the file or directory named old to new.

rmdir(path) Removes the directory named path from the
current working directory.

4.5 Text Files [147]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.5 Exercises
1 Write a code segment that opens a file named myfile.txt for input and

prints the number of lines in the file.

2 Write a code segment that opens a file for input and prints the number
of four-letter words in the file.

3 Assume that a file contains integers separated by newlines. Write a code
segment that opens the file and prints the average value of the integers.

4 Write a code segment that prints the names of all of the items in the
current working directory.

5 Write a code segment that prompts the user for a filename. If the file
exists, the program should print its contents on the terminal. Otherwise,
it should print an error message.

4.6 Case Study: Text Analysis
In 1949, Dr. Rudolf Flesch published The Art of Readable Writing, in which he
proposed a measure of text readability known as the Flesch Index. This index is
based on the average number of syllables per word and the average number of
words per sentence in a piece of text. Index scores usually range from 0 to 100,
and indicate readable prose for the following grade levels:

In this case study, we develop a program that computes the Flesch Index for a
text file.

FLESCH INDEX GRADE LEVEL OF READABILITY

0–30 College

50–60 High School

90–100 Fourth Grade

CHAPTER 4 Strings and Text Files[148]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.6.1 Request

Write a program that computes the Flesch Index and grade level for text stored
in a text file.

4.6.2 Analysis

The input to this program is the name of a text file. The outputs are the number
of sentences, words, and syllables in the file, as well as the file’s Flesch Index and
Grade Level Equivalent.

During analysis, we consult experts in the problem domain to learn any
information that might be relevant in solving the problem. For our problem, this
information includes the definitions of sentence, word, and syllable. For the pur-
poses of this program, these terms are defined in Table 4.6.

[TABLE 4.6] Definitions of items used in the text-analysis program

Note that the definitions of word and sentence are approximations. Some
words, such as “doubles” and “syllables,” end in “es” but will be counted as hav-
ing one syllable, and an ellipse (“…”) will be counted as three sentences.

Flesch’s formula to calculate the index F is the following:

F = 206.835 – 1.015 � (words / sentences) – 84.6 � (syllables / words)

The Flesch-Kincaid Grade Level Formula is used to compute the
Equivalent Grade Level G:

G = 0.39 � (words / sentences) + 11.8 � (syllables / words) – 15.59

Word Any sequence of non-whitespace characters.

Sentence Any sequence of words ending in a period, ques-
tion mark, exclamation point, colon, or semicolon.

Syllable Any word of three characters or less; or any vowel
(a, e, i, o, u) or pair of consecutive vowels, except
for a final -es, -ed, or -e that is not -le.

4.6 Case Study: Text Analysis [149]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.6.3 Design

This program will perform the following tasks:

1 Receive the filename from the user, open the file for input, and input
the text.

2 Count the sentences in the text.

3 Count the words in the text.

4 Count the syllables in the text.

5 Compute the Flesch Index.

6 Compute the Grade Level Equivalent.

7 Print these two values with the appropriate labels, as well as the counts
from tasks 2–4.

The first and last tasks require no design. Let’s assume that the text is input as a
single string from the file and is then processed in tasks 2–4. These three tasks can
be designed as code segments that use the input string and produce an integer value.
Task 5, computing the Flesch Index, uses the three integer results of tasks 2–4 to
compute the Flesch Index. Lastly, task 6 is a code segment that uses the same integers
and computes the Grade Level Equivalent. The five tasks are listed in Table 4.7,
where text is a variable that refers to the string read from the file.

[TABLE 4.7] The tasks defined in the text analysis program

TASK WHAT IT DOES

count the sentences Counts the number of sentences in text.

count the words Counts the number of words in text.

count the syllables Counts the number of syllables in text.

compute the Flesch Index Computes the Flesch Index for the given
numbers of sentences, words, and syllables.

compute the grade level Computes the Grade Level Equivalent for the
given numbers of sentences, words, and
syllables.

CHAPTER 4 Strings and Text Files[150]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.6 Case Study: Text Analysis [151]

All the real work is done in the tasks that count the items:
� Add the number of characters in text that end the sentences. These char-

acters were specified in analysis, and the string method count is used to
count them in the algorithm.

� Split text into a list of words and determine the text length.
� Count the syllables in each word in text.

The last task is the most complex. For each word in the text, we must count
the syllables in that word. From analysis, we know that each distinct vowel counts
as a syllable, unless it is in the endings -ed, -es, or -e (but not -le). For now, we
ignore the possibility of consecutive vowels.

4.6.4 Implementation (Coding)

The main tasks are marked off in the program code with a blank line and a
comment.

“””
Program:ƒtextanalysis.py
Author:ƒKen
ComputesƒandƒdisplaysƒtheƒFleschƒIndexƒandƒtheƒGrade
LevelƒEquivalentƒforƒtheƒreadabilityƒofƒaƒtextƒfile.
“””

#ƒTakeƒtheƒinputs
fileNameƒ=ƒinput(“Enterƒtheƒfileƒname:ƒ“)
inputFileƒ=ƒopen(fileName,ƒ'r')
textƒ=ƒinputFile.read()

#ƒCountƒtheƒsentences
sentencesƒ=ƒtext.count('.')ƒ+ƒtext.count('?')ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒtext.count(':')ƒ+ƒtext.count(';')ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒtext.count('!')

#ƒCountƒtheƒwords
wordsƒ=ƒlen(text.split())

#ƒCountƒtheƒsyllables
syllablesƒ=ƒ0
forƒwordƒinƒtext.split():
ƒƒƒƒforƒvowelƒinƒ['a',ƒ'e',ƒ'i',ƒ'o',ƒ'u']:
ƒƒƒƒƒƒƒƒsyllablesƒ+=ƒword.count(vowel)

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 4 Strings and Text Files[152]

ƒƒƒƒforƒendingƒinƒ['es',ƒ'ed',ƒ'e']:
ƒƒƒƒƒƒƒƒifƒword.endswith(ending):
ƒƒƒƒƒƒƒƒƒƒƒƒsyllablesƒ-=ƒ1
ƒƒƒƒifƒword.endswith('le'):
ƒƒƒƒƒƒƒƒsyllablesƒ+=ƒ1

#ƒComputeƒtheƒFleschƒIndexƒandƒGradeƒLevel
indexƒ=ƒ206.835ƒ-ƒ1.015ƒ*ƒ(wordsƒ/ƒsentences)ƒ-ƒ\
ƒƒƒƒƒƒƒƒ84.6ƒ*ƒ(syllablesƒ/ƒwords)
levelƒ=ƒround(0.39ƒ*ƒ(wordsƒ/ƒsentences)ƒ+ƒ11.8ƒ*ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(syllablesƒ/ƒwords)ƒ-ƒ15.59)

#ƒOutputƒtheƒresults
print(“TheƒFleschƒIndexƒis”,ƒindex)
print(“TheƒGradeƒLevelƒEquivalentƒis”,ƒlevel)
print(sentences,ƒ“sentences”)
print(words,ƒ“words”)
print(syllables,ƒ“syllables”)

4.6.5 Testing

Although the main tasks all collaborate in the text analysis program, they can be
tested more or less independently, before the entire program is tested. After all,
there is no point in running the complete program if you are unsure that even
one of the tasks does not work correctly.

This kind of procedure is called bottom-up testing. Each task is coded and
tested before it is integrated into the overall program. After you have written
code for one or two tasks, you can test them in a short script. This script is called
a driver. For example, here is a driver that tests the code for computing the
Flesch Index and the Grade Level Equivalent without using a text file:

“””
Program:ƒfleschdriver.py
Author:ƒKen
TestƒdriverƒforƒFleschƒIndexƒandƒGradeƒlevel.
“””

sentencesƒ=ƒint(input(“Sentences:ƒ“))
wordsƒ=ƒint(input(“Words:ƒ“))
syllablesƒ=ƒint(input(“Syllables:ƒ“))

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary [153]

indexƒ=ƒ206.835ƒ-ƒ1.015ƒ*ƒ(wordsƒ/ƒsentences)ƒ-ƒ\
ƒƒƒƒƒƒƒƒ84.6ƒ*ƒ(syllablesƒ/ƒwords)
print(“FleschƒIndex:”,ƒindex)
levelƒ=ƒround(0.39ƒ*ƒ(wordsƒ/ƒsentences)ƒ+ƒ11.8ƒ*ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(syllablesƒ/ƒwords)ƒ-ƒ15.59)
print(“GradeƒLevel:ƒ“,ƒlevel)

This driver allows the programmer not only to verify the two tasks, but also to
obtain some data to use when testing the complete program later on. For exam-
ple, the programmer can supply a text file that contains the number of sentences,
words, and syllables already tested in the driver, and then compare the two test
results.

In bottom-up testing, the lower-level tasks must be developed and tested
before those tasks that depend on the lower-level tasks.

When you have tested all of the parts you can integrate them into the com-
plete program. The test data at that point should be short files that produce the
expected results. Then, you should use longer files. For example, you might see if
plaintext versions of Dr. Seuss’s Green Eggs and Ham and Shakespeare’s Hamlet
produce grade levels of 5th grade and 12th grade, respectively. Or you could test
the program with its own source program file—but we predict that its readability
will seem quite low, because it lacks most of the standard end-of-sentence marks!

Summary
� A string is a sequence of zero or more characters. The len function

returns the number of characters in its string argument. Each charac-
ter occupies a position in the string. The positions range from 0 to
the length of the string minus 1.

� A string is an immutable data structure. Its contents can be accessed,
but its structure cannot be modified.

� The subscript operator [] can be used to access a character at a given
position in a string. The operand or index inside the subscript opera-
tor must be an integer expression whose value is less than the string’s
length. A negative index can be used to access a character at or near
the end of the string, starting with -1.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 4 Strings and Text Files[154]

� A subscript operator can also be used for slicing—to fetch a substring
from a string. When the subscript has the form [<start>:], the sub-
string contains the characters from the start position to the end of
the string. When the form is [:<end>], the positions range from the
first one to end - 1. When the form is [<start>:<end>], the posi-
tions range from start to end - 1.

� The in operator is used to detect the presence or absence of a sub-
string in a string. Its usage is <substring> in <a string>.

� A method is an operation that is used with an object. A method can
expect arguments and return a value.

� The string type includes many useful methods for use with string
objects.

� A text file is a software object that allows a program to transfer data to
and from permanent storage on disk, CDs, or flash memory.

� A file object is used to open a connection to a text file for input
or output.

� The file method write is used to output a string to a text file.
� The file method read inputs the entire contents of a text file as a

single string.
� The file method readline inputs a line of text from a text file as

a string.
� The for loop treats an input file as a sequence of lines. On each pass

through the loop, the loop’s variable is bound to a line of text read
from the file.

REVIEW QUESTIONS
For questions 1–6, assume that the variable data refers to the string “No way!”.

1 The expression len(data) evaluates to

a 8

b 7

c 6

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[155]

2 The expression data[1] evaluates to

a 'N'

b 'o'

3 The expression data[-1] evaluates to

a '!'

b 'y'

4 The expression data[3:6] evaluates to

a 'way!'

b 'way'

c ' wa'

5 The expression data.replace(“No”, “Yes”) evaluates to

a 'No way!'

b 'Yo way!'

c 'Yes way!'

6 The expression data.find(“way!”) evaluates to

a 2

b 3

c True

7 A Caesar cipher locates the coded text of a plaintext character

a A given distance to the left or the right in the sequence of characters
b In an inversion matrix

8 The binary number 111 represents the decimal integer

a 111

b 3

c 7

REVIEW QUESTIONS

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 4 Strings and Text Files[156]

9 Which of the following binary numbers represents the decimal integer
value 8?

a 11111111

b 100

c 1000

10 Which file method is used to read the entire contents of a file in a
single operation?

a readline

b read

c a for loop

PROJECTS
1 Write a script that inputs a line of plaintext and a distance value and out-

puts an encrypted text using a Caesar cipher. The script should work for
any printable characters.

2 Write a script that inputs a line of encrypted text and a distance value
and outputs plaintext using a Caesar cipher. The script should work for
any printable characters.

3 Modify the scripts of Projects 1 and 2 to encrypt and decrypt entire files
of text.

4 Octal numbers have a base of eight and the digits 0–7. Write the scripts
octalToDecimal.py and decimalToOctal.py, which convert numbers
between the octal and decimal representations of integers. These scripts
use algorithms similar to those of the binaryToDecimal and
decimalToBinary scripts developed in Section 4.3.

5 A bit shift is a procedure whereby the bits in a bit string are moved to the
left or to the right. For example, we can shift the bits in the string 1011
two places to the left to produce the string 1110. Note that the leftmost
two bits are wrapped around to the right side of the string in this opera-
tion. Define two scripts, shiftLeft.py and shiftRight.py, that expect
a bit string as an input. The script shiftLeft shifts the bits in its input
one place to the left, wrapping the leftmost bit to the rightmost position.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[157]PROJECTS

The script shiftRight performs the inverse operation. Each script
prints the resulting string.

6 Use the strategy of the decimal to binary conversion and the bit shift left
operation defined in Project 5 to code a new encryption algorithm. The
algorithm should add 1 to each character’s numeric ASCII value, convert
it to a bit string, and shift the bits of this string one place to the left. A
single-space character in the encrypted string separates the resulting bit
strings.

7 Write a script that decrypts a message coded by the method used in
Project 6.

8 Write a script named copyfile.py. This script should prompt the user
for the names of two text files. The contents of the first file should be
input and written to the second file.

9 Write a script named dif.py. This script should prompt the user for the
names of two text files and compare the contents of the two files to see if
they are the same. If they are, the script should simply output “Yes”. If
they are not, the script should output “No”, followed by the first lines of
each file that differ from each other. The input loop should read and
compare lines from each file. The loop should break as soon as a pair of
different lines is found.

10 The Payroll Department keeps a list of employee information for each pay
period in a text file. The format of each line of the file is the following:

<lastƒname>ƒ<hourlyƒwage>ƒ<hoursƒworked>

Write a program that inputs a filename from the user and prints to the
terminal a report of the wages paid to the employees for the given
period. The report should be in tabular format with the appropriate
header. Each line should contain an employee’s name, the hours worked,
and the wages paid for that period.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After completing this chapter, you will be able to:
� Construct lists and access items in those lists
� Use methods to manipulate lists
� Perform traversals of lists to process items in the lists
� Define simple functions that expect parameters and return

values
� Construct dictionaries and access entries in those dictionaries
� Use methods to manipulate dictionaries
� Decide whether a list or a dictionary is an appropriate data

structure for a given application
As data-processing problems have become more complex, com-

puter scientists have developed data structures to help solve them. A
data structure combines several data values into a unit so they can be
treated as one thing. The data elements within a data structure are
usually organized in a special way that allows the programmer to
access and manipulate them. As you saw in Chapter 4, a string is a
data structure that organizes text as a sequence of characters. In this
chapter, we explore the use of two other common data structures:
the list and the dictionary. A list allows the programmer to manipu-
late a sequence of data values of any types. A dictionary organizes
data values by association with other data values rather than by
sequential position.

Lists and dictionaries provide powerful ways to organize data in
useful and interesting applications. In addition to exploring the use
of lists and dictionaries, this chapter also introduces the definition of
simple functions. These functions help to organize program code, in
much the same manner as data structures help to organize data.

[CHAPTER] Lists and Dictionaries5

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.1 Lists
A list is a sequence of data values called items or elements. An item can be of
any type. Here are some real-world examples of lists:

� A shopping list for the grocery store
� A to-do list
� A roster for an athletic team
� A guest list for a wedding
� A recipe, which is a list of instructions
� A text document, which is a list of lines
� The words in a dictionary
� The names in a phone book

The logical structure of a list is similar to the structure of a string. Each of
the items in a list is ordered by position. Like a character in a string, each item in
a list has a unique index that specifies its position. The index of the first item is
0, and the index of the last item is the length of the list minus 1. As sequences,
lists and strings share many of the same operators, but include different sets of
methods. We now examine these in detail.

5.1.1 List Literals and Basic Operators

In Python, a list is written as a sequence of data values separated by commas. The
entire sequence is enclosed in square brackets ([and]). Here are some example lists:

[1951,ƒ1969,ƒ1984]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒAƒlistƒofƒintegers

['apples',ƒ'oranges',ƒ'cherries']ƒƒƒƒ#ƒAƒlistƒofƒstrings

[]ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒAnƒemptyƒlist

You can also use other lists as elements in a list, thereby creating a list of lists.
Here is one example of such a list:

[[5,ƒ9],ƒ[541,ƒ78]]

CHAPTER 5 Lists and Dictionaries[160]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

It is interesting that when the Python interpreter evaluates a list literal, each
of the elements is evaluated as well. When an element is a number or a string,
that literal is included in the resulting list. However, when the element is a
variable or any other expression, its value is included in the list, as shown in the
following session:

>>>ƒimportƒmath
>>>ƒxƒ=ƒ2
>>>ƒ[x,ƒmath.sqrt(x)]
[2,ƒ1.4142135623730951]
>>>ƒ[xƒ+ƒ1]
[3]
>>>ƒ

You can also build lists of integers using the range and list functions intro-
duced in Chapter 3. The next session shows the construction of two lists and
their assignment to variables:

>>>ƒfirstƒ=ƒ[1,ƒ2,ƒ3,ƒ4]
>>>ƒsecondƒ=ƒlist(range(1,ƒ5))
>>>ƒfirst
[1,ƒ2,ƒ3,ƒ4]
>>>ƒsecond
[1,ƒ2,ƒ3,ƒ4]
>>>ƒ

The function len and the subscript operator [] work just as they do for
strings:

>>>ƒlen(first)
4
>>>ƒfirst[0]
1
>>>ƒfirst[2:4]
[3,ƒ4]
>>>

5.1 Lists [161]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Concatenation (+) and equality (==) also work as expected for lists:

>>>ƒfirstƒ+ƒ[5,ƒ6]
[1,ƒ2,ƒ3,ƒ4,ƒ5,ƒ6]
>>>ƒfirstƒ==ƒsecond
True
>>>

The print function strips the quotation marks from a string, but does not
alter the look of a list:

>>>ƒprint(“1234”)
1234
>>>ƒprint([1,ƒ2,ƒ3,ƒ4])
[1,ƒ2,ƒ3,ƒ4]
>>>ƒ

To print the contents of a list without the brackets and commas, you can use
a for loop, as follows:

>>>ƒforƒelementƒinƒ[1,ƒ2,ƒ3,ƒ4]:
ƒƒƒƒƒƒƒƒprint(element,ƒend="ƒ")

1ƒ2ƒ3ƒ4
>>>ƒ

Finally, you can use the in operator to detect the presence or absence of a
given element:

>>>ƒ3ƒinƒ[1,ƒ2,ƒ3]
True
>>>ƒ0ƒinƒ[1,ƒ2,ƒ3]
False
>>>ƒ

Table 5.1 summarizes these operators and functions, where L refers to a list.

CHAPTER 5 Lists and Dictionaries[162]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 5.1] Some operators and functions used with lists

5.1.2 Replacing an Element in a List

The examples discussed thus far might lead you to think that a list behaves more or
less like a string. However, there is one huge difference. Because a string is
immutable, its structure and contents cannot be changed. But a list is changeable—
that is, it is mutable. At any point in its lifetime, elements can be inserted, removed,
or replaced. The list itself maintains its identity, but its state—its length and its
contents—can change.

OPERATOR OR FUNCTION WHAT IT DOES

L[<an integer expression>] Subscript used to access an element at the
given index position.

L[<start>:<end>] Slices for a sublist. Returns a new list.

L + L List concatenation. Returns a new list
consisting of the elements of the two
operands.

print(L) Prints the literal representation of the list.

len(L) Returns the number of elements in the list.

list(range(<upper>)) Returns a list containing the integers in the
range 0 through upper - 1.

==, !=, <, >, <=, >= Compares the elements at the
corresponding positions in the operand
lists. Returns True if all the results are true,
or False otherwise.

for <variable> in L: Iterates through the list, binding the
<statement> variable to each element.

<any value> in L Returns True if the value is in the list or
False otherwise.

5.1 Lists [163]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The subscript operator is used to replace an element at a given position, as
shown in the next session:

>>>ƒexampleƒ=ƒ[1,ƒ2,ƒ3,ƒ4]
>>>ƒexample
[1,ƒ2,ƒ3,ƒ4]
>>>ƒexample[3]ƒ=ƒ0
>>>ƒexample
[1,ƒ2,ƒ3,ƒ0]
>>>ƒ

Note that the subscript is used to reference the target of the assignment
statement, which is not the list but an element’s position within it. Much of list
processing involves replacing each element, with the result of applying some
operation to that element. We now present two examples of how this is done.

The first session shows how to replace each number in a list with its square:

>>>ƒnumbersƒ=ƒ[2,ƒ3,ƒ4,ƒ5]
>>>ƒnumbers
[2,ƒ3,ƒ4,ƒ5]
>>>ƒindexƒ=ƒ0
>>>ƒwhileƒindexƒ<ƒlen(numbers):
ƒƒƒƒƒƒƒƒnumbers[index]ƒ=ƒnumbers[index]ƒ**ƒ2ƒ
ƒƒƒƒƒƒƒƒindexƒ+=ƒ1

>>>ƒnumbers
[4,ƒ9,ƒ16,ƒ25]
>>>ƒ

Note that the code uses a while loop over the index rather than a for loop over
the list elements, because the index is needed to access the positions for the
assignments.

The next session uses the string method split to extract a list of the words
in a sentence. These words are then converted to uppercase letters within the list:

>>>ƒsentenceƒ=ƒ“Thisƒexampleƒhasƒfiveƒwords.”
>>>ƒwordsƒ=ƒsentence.split()
>>>ƒwords
['This',ƒ'example',ƒ'has',ƒ'five',ƒ'words.']
>>>ƒindexƒ=ƒ0

continued

CHAPTER 5 Lists and Dictionaries[164]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

>>>ƒwhileƒindexƒ<ƒlen(words):
ƒƒƒƒƒƒƒƒwords[index]ƒ=ƒwords[index].upper()
ƒƒƒƒƒƒƒƒindexƒ+=ƒ1

>>>ƒwords
['THIS',ƒ'EXAMPLE',ƒ'HAS',ƒ'FIVE',ƒ'WORDS.']
>>>ƒ

You can also replace a sublist of elements within a list by slicing. The slice
operator appears on the left side of the assignment operator, while the sublist
of replacements appears on the right. The next example replaces the first three
elements of a list with new ones:

>>>ƒnumbersƒ=ƒlist(range(6))
>>>ƒnumbers
[0,ƒ1,ƒ2,ƒ3,ƒ4,ƒ5]
>>>ƒnumbers[0:3]ƒ=ƒ[11,ƒ12,ƒ13]
>>>ƒnumbers
[11,ƒ12,ƒ13,ƒ3,ƒ4,ƒ5]
>>>ƒ

5.1.3 List Methods for Inserting and Removing Elements
The list type includes several methods for inserting and removing elements.
These methods are summarized in Table 5.2, where L refers to a list. To learn
more about these methods, enter help(list) in a Python shell.

[TABLE 5.2] List methods for inserting and removing elements

LIST METHOD WHAT IT DOES

L.append(element) Adds element to the end of L.

L.extend(aList) Adds the elements of aList to the end
of L.

L.insert(index, element) Inserts element at index if index is less than
the length of L. Otherwise, inserts element at
the end of L.

L.pop() Removes and returns the element at the end
of L.

L.pop(index) Removes and returns the element at index.

5.1 Lists [165]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The method insert expects an integer index and the new element as argu-
ments. When the index is less than the length of the list, this method places the
new element before the existing element at that index, after shifting elements
to the right by one position. At the end of the operation, the new element occu-
pies the given index position. When the index is greater than or equal to the
length of the list, the new element is added to the end of the list. The next ses-
sion shows insert in action:

>>>ƒexampleƒ=ƒ[1,ƒ2]
>>>ƒexample
[1,ƒ2]
>>>ƒexample.insert(1,ƒ10)
>>>ƒexample
[1,ƒ10,ƒ2]
>>>ƒexample.insert(3,ƒ25)
>>>ƒexample
[1,ƒ10,ƒ2,ƒ25]
>>>ƒ

The method append is a simplified version of insert. The method append
expects just the new element as an argument and adds the new element to the
end of the list. The method extend performs a similar operation, but adds
the elements of its list argument to the end of the list. The next session shows the
difference between append and extend:

>>>ƒexampleƒ=ƒ[1,ƒ2]
>>>ƒexample
[1,ƒ2]
>>>ƒexample.append(10)
>>>ƒexample
[1,ƒ2,ƒ10]
>>>ƒexample.extend([11,ƒ12,ƒ13])
>>>ƒexample
[1,ƒ2,ƒ10,ƒ11,ƒ12,ƒ13]
>>>ƒ

The method pop is used to remove an element at a given position. If the
position is not specified, pop removes and returns the last element. If the position
is specified, pop removes the element at that position and returns it. In that case,

CHAPTER 5 Lists and Dictionaries[166]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the elements that followed the removed element are shifted one position to the
left. The next session removes the last and first elements from the example list:

>>>ƒexample
[1,ƒ2,ƒ10,ƒ11,ƒ12,ƒ13]
>>>ƒexample.pop()
13
>>>ƒexample
[1,ƒ2,ƒ10,ƒ11,ƒ12]
>>>ƒexample.pop(0)
1
>>>ƒexample
[2,ƒ10,ƒ11,ƒ12]
>>>ƒ

5.1.4 Searching a List

After elements have been added to a list, a program can search for a given
element. The in operator determines an element’s presence or absence, but
programmers often are more interested in the position of an element if it is
found (for replacement, removal, or other use). Unfortunately, the list type
does not include the convenient find method that is used with strings. Recall
that find returns either the index of the given substring in a string or -1 if the
substring is not found. Instead of find, you must use the method index to locate
an element’s position in a list. It is unfortunate that index raises an error when
the target element is not found. To guard against this unpleasant consequence,
you must first use the in operator to test for presence and then the index
method if this test returns True. The next code segment shows how this is done
for an example list and target element:

aListƒ=ƒ[34,ƒ45,ƒ67]
targetƒ=ƒ45
ifƒtargetƒinƒaList:
ƒƒƒƒprint(aList.index(target))
else:
ƒƒƒƒprint(-1)

5.1 Lists [167]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.1.5 Sorting a List

Although a list’s elements are always ordered by position, it is possible to impose
a natural ordering on them as well. In other words, you can arrange some ele-
ments in numeric or alphabetical order. A list of numbers in ascending order and
a list of names in alphabetical order are sorted lists. When the elements can be
related by comparing them for less than and greater than as well as equality, they
can be sorted. The list method sort mutates a list by arranging its elements in
ascending order. Here is an example of its use:

>>>ƒexampleƒ=ƒ[4,ƒ2,ƒ10,ƒ8]
>>>ƒexample
[4,ƒ2,ƒ10,ƒ8]
>>>ƒexample.sort()
>>>ƒexample
[2,ƒ4,ƒ8,ƒ10]

5.1.6 Mutator Methods and the Value None

All of the functions and methods examined in previous chapters return a value
that the caller can then use to complete its work. Mutable objects (such as lists)
have some methods devoted entirely to modifying the internal state of the object.
Such methods are called mutators. Examples are the list methods insert,
append, extend, and sort. Because a change of state is all that is desired, a
mutator method usually returns no value of interest to the caller. Python never-
theless automatically returns the special value None even when a method does
not explicitly return a value. We mention this now only as a warning against the
following type of error. Suppose you forget that sort mutates a list, and instead
you mistakenly think that it builds and returns a new, sorted list and leaves the
original list unsorted. Then, you might write code like the following to obtain
what you think is the desired result:

>>>ƒaListƒ=ƒaList.sort()

CHAPTER 5 Lists and Dictionaries[168]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Unfortunately, after the list object is sorted, this assignment has the result of set-
ting the variable aList to the value None. The next print statement shows that
the reference to the list object is lost:

>>>ƒprint(aList)
None

Later in this book, you will learn how to make something useful out of None.

5.1.7 Aliasing and Side Effects

As you learned earlier, numbers and strings are immutable. That is, you cannot
change their internal structure. However, because lists are mutable, you can
replace, insert, or remove elements. The mutable property of lists leads to some
interesting phenomena, as shown in the following session:

>>>ƒfirstƒ=ƒ[10,ƒ20,ƒ30]
>>>ƒsecondƒ=ƒfirst
>>>ƒfirst
[10,ƒ20,ƒ30]
>>>ƒsecond
[10,ƒ20,ƒ30]
>>>ƒfirst[1]ƒ=ƒ99
>>>ƒfirst
[10,ƒ99,ƒ30]
>>>ƒsecond
[10,ƒ99,ƒ30]
>>>ƒ

In this example, a single list object is created and modified using the sub-
script operator. When the second element of the list named first is replaced,
the second element of the list named second is replaced also. This type of
change is what is known as a side effect. This happens because after the assign-
ment second = first, the variables first and second refer to the exact same
list object. They are aliases for the same object, as shown in Figure 5.1. This
phenomenon is known as aliasing.

5.1 Lists [169]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 5.1] Two variables refer to the same list object

If the data are immutable strings, aliasing can save on memory. But as you
might imagine, aliasing is not always a good thing when side effects are possible.
Assignment creates an alias to the same object rather than a reference to a copy
of the object. To prevent aliasing, you can create a new object and copy the con-
tents of the original to it, as shown in the next session:

>>>ƒthirdƒ=ƒ[]
>>>ƒforƒelementƒinƒfirst:
ƒƒƒƒƒƒƒthird.append(element)
ƒ
>>>ƒfirst
[10,ƒ99,ƒ30]
>>>ƒthird
[10,ƒ99,ƒ30]
>>>ƒfirst[1]ƒ=ƒ100
>>>ƒfirst
[10,ƒ100,ƒ30]
>>>ƒthird
[10,ƒ99,ƒ30]
>>>ƒ

The variables first and third refer to two different list objects, although their
contents are initially the same, as shown in Figure 5.2. The important point is
that they are not aliases, so you don’t have to be concerned about side effects.

[FIGURE 5.2] Two variables refer to different list objects

first

0 1 2

10 99 30

third

0 1 2

10 99 30

first

second
0 1 2

10 99 30

CHAPTER 5 Lists and Dictionaries[170]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A simpler way to copy a list is to use a slice over all of the positions, as follows:

>>>ƒthirdƒ=ƒfirst[:]

5.1.8 Equality: Object Identity and Structural Equivalence

Occasionally, programmers need to see whether two variables refer to the exact
same object or to different objects. For example, you might want to determine
whether one variable is an alias for another. The == operator returns True if the
variables are aliases for the same object. Unfortunately, == also returns True if
the contents of two different objects are the same. The first relation is called object
identity, whereas the second relation is called structural equivalence. The ==
operator has no way of distinguishing between these two types of relations.

Python’s is operator can be used to test for object identity. It returns True if the
two operands refer to the exact same object, and it returns False if the operands refer
to distinct objects (even if they are structurally equivalent). The next session shows the
difference between == and is, and Figure 5.3 depicts the objects in question.

>>>ƒfirstƒ=ƒ[20,ƒ30,ƒ40]
>>>ƒsecondƒ=ƒfirst
>>>ƒthirdƒ=ƒ[20,ƒ30,ƒ40]
>>>ƒfirstƒ==ƒsecond
True
>>>ƒfirstƒ==ƒthird
True
>>>ƒfirstƒisƒsecond
True
>>>ƒfirstƒisƒthird
False
>>>ƒ

[FIGURE 5.3] Three variables and two distinct list objects

0 1 2

20 30 40

third

0 1 2

20 30 40

first

second

5.1 Lists [171]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.1.9 Example: Using a List to Find the Median of a Set of
Numbers

Researchers who do quantitative analysis are often interested in the median of a
set of numbers. For example, the U.S. Government often gathers data to deter-
mine the median family income. Roughly speaking, the median is the value that is
less than half the numbers in the set and greater than the other half. If the number
of values in a list is odd, the median of the list is the value at the midpoint when
the set of numbers is sorted; otherwise, the median is the average of the two values
surrounding the midpoint. Thus, the median of the list [1, 3, 3, 5, 7] is 3, and the
median of the list [1, 2, 4, 4] is also 3. The following script inputs a set of numbers
from a text file and prints their median:

“””
File:ƒmedian.py
Printsƒtheƒmedianƒofƒaƒsetƒofƒnumbersƒinƒaƒfile.
“””

fileNameƒ=ƒinput(“Enterƒtheƒfilename:ƒ“)
fƒ=ƒopen(fileName,ƒ'r')
ƒƒƒƒ
#ƒInputƒtheƒtext,ƒconvertƒitƒtoƒnumbers,ƒand
#ƒaddƒtheƒnumbersƒtoƒaƒlist
numbersƒ=ƒ[]
forƒlineƒinƒf:
ƒƒƒƒwordsƒ=ƒline.split()
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒnumbers.append(float(word))

#ƒSortƒtheƒlistƒandƒprintƒtheƒnumberƒatƒitsƒmidpoint
numbers.sort()
midpointƒ=ƒlen(numbers)ƒ//ƒ2
print(“Theƒmedianƒis”,ƒend="ƒ")
ifƒlen(numbers)ƒ%ƒ2ƒ==ƒ1:
ƒƒƒƒprint(numbers[midpoint])
else:
ƒƒƒƒprint((numbers[midpoint]ƒ+ƒnumbers[midpointƒ-ƒ1])ƒ/ƒ2)

Note that the input process is the most complex part of this script. An accumula-
tor list, numbers, is set to the empty list. The for loop reads each line of text
and extracts a list of words from that line. The nested for loop traverses this list
to convert each word to a number. The list method append then adds each

CHAPTER 5 Lists and Dictionaries[172]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

number to the end of numbers, the accumulator list. The remaining lines of code
locate the median value. When run with an input file whose contents are

3ƒ2ƒ7ƒ
8ƒ2ƒ1
5

the script produces the following output:

Theƒmedianƒisƒ3.0

5.1.10 Tuples

A tuple is a type of sequence that resembles a list, except that, unlike a list, a
tuple is immutable. You indicate a tuple literal in Python by enclosing its ele-
ments in parentheses instead of square brackets. The next session shows how to
create several tuples:

>>>ƒfruitsƒ=ƒ(“apple”,ƒ“banana”)
>>>ƒfruits
('apple',ƒ'banana')
>>>ƒmeatsƒ=ƒ(“fish”,ƒ“poultry”)
>>>ƒmeats
('fish',ƒ'poultry')
>>>ƒfoodƒ=ƒmeatsƒ+ƒfruits
>>>ƒfood
('fish',ƒ'poultry',ƒ'apple',ƒ'banana')
>>>ƒveggiesƒ=ƒ[“celery”,ƒ“beans”]
>>>ƒtuple(veggies)
('celery',ƒ'beans')

You can use most of the operators and functions used with lists in a similar
fashion with tuples. For the most part, anytime you foresee using a list whose
structure will not change, you can, and should, use a tuple instead. For example,
the set of vowels and the set of punctuation marks in a text-processing application
could be represented as tuples of strings.

5.1 Lists [173]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.1 Exercises
1 Assume that the variable data refers to the list [5, 3, 7]. Write the

values of the following expressions:

a data[2]

b data[-1]

c len(data)

d data[0:2]

e 0 in data

f data + [2, 10, 5]

g tuple(data)

2 Assume that the variable data refers to the list [5, 3, 7]. Write the
expressions that perform the following tasks:

a Replace the value at position 0 in data with that value’s negation.

b Add the value 10 to the end of data.

c Insert the value 22 at position 2 in data.

d Remove the value at position 1 in data.

e Add the values in the list newData to the end of data.

f Locate the index of the value 7 in data, safely.

g Sort the values in data.

3 What is a mutator method? Explain why mutator methods usually return
the value None.

4 Write a loop that accumulates the sum of all of the numbers in a list
named data.

5 Assume that data refers to a list of numbers, and result refers to an
empty list. Write a loop that adds the nonzero values in data to the
result list.

6 Write a loop that replaces each number in a list named data with its
absolute value.

7 Describe the costs and benefits of aliasing, and explain how it can be avoided.

8 Explain the difference between structural equivalence and object identity.

CHAPTER 5 Lists and Dictionaries[174]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.2 Defining Simple Functions
Thus far, our programs have consisted of short code segments or scripts. Some of
these have used built-in functions to do useful work. Some of our scripts might
also be useful enough to package as functions to be used in other scripts.
Moreover, defining our own functions allows us to organize our code in existing
scripts more effectively. This section provides a brief overview of how to do this.
We’ll examine functions in more detail in Chapter 6.

5.2.1 The Syntax of Simple Function Definitions

Most of the functions used thus far expect one or more arguments and return a
value. Let’s define a function that expects a number as an argument and returns
the square of that number. First, we consider how the function will be used. Its
name is square, so you can call it like this:

>>>ƒsquare(2)
4
>>>ƒsquare(6)
36
>>>ƒ

The definition of this function consists of a header and a body. Here is the code:

defƒsquare(x):
ƒƒƒƒ“””Returnsƒtheƒsquareƒofƒx.ƒ“””
ƒƒƒƒreturnƒxƒ*ƒx

The function’s header contains the function’s name and a parenthesized list of
argument names. The function’s body contains the statements that execute when
the function is called. Our function contains a single return statement, which
simply returns the result of multiplying its argument, named x, by itself. Note
that the argument name, also called a parameter, behaves just like a variable in
the body of the function. This variable does not receive an initial value until the
function is called. For example, when the function is called with the argument 6,
the parameter x will have the value 6 in the function’s body.

5.2 Defining Simple Functions [175]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Our function also contains a docstring. This string contains information
about what the function does. It is displayed in the shell when the programmer
enters help(square).

A function can be defined in a Python shell, but it is more convenient to define
it in an IDLE window, where it can be saved to a file. Loading the window into the
shell then loads the function definition as well. Like variables, functions generally
must be defined in a script before they are actually called in that same script.

Our next example function computes the average value in a list of numbers.
The function might be used as follows:

>>>ƒaverage([1,ƒ3,ƒ5,ƒ7])
4.0

Here is the code for the function’s definition:

defƒaverage(list):
ƒƒƒƒ“””Returnsƒtheƒaverageƒofƒtheƒnumbersƒinƒlist.”””
ƒƒƒƒsumƒ=ƒ0
ƒƒƒƒforƒnumberƒinƒlist:
ƒƒƒƒƒƒƒƒsumƒ+=ƒnumber
ƒƒƒƒreturnƒsumƒ/ƒlen(list)

The syntax of a function definition contains a header and a body. The header
consists of the reserved word def, followed by the function’s name, followed by a
parenthesized list of parameters and a colon, as follows:

defƒ<functionƒname>(<parameter-1>,ƒ…,ƒ<parameter-n>):
ƒƒƒƒ<body>

The function’s body contains one or more statements.

5.2.2 Parameters and Arguments

A parameter is the name used in the function definition for an argument that is
passed to the function when it is called. For now, the number and positions of
the arguments of a function call should match the number and positions of the
parameters in that function’s definition. Some functions expect no arguments, so
they are defined with no parameters.

CHAPTER 5 Lists and Dictionaries[176]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.2.3 The return Statement

The programmer places a return statement at each exit point of a function when
that function should explicitly return a value. The syntax of the return state-
ment is the following:

returnƒ<expression>

Upon encountering a return statement, Python evaluates the expression and
immediately transfers control back to the caller of the function. The value of
the expression is also sent back to the caller. If a function contains no return
statement, Python transfers control to the caller after the last statement in the
function’s body is executed, and the special value None is automatically returned.

5.2.4 Boolean Functions

A Boolean function usually tests its argument for the presence or absence of
some property. The function returns True if the property is present, or False
otherwise. The next example shows the use and definition of the Boolean func-
tion odd, which tests a number to see whether it is odd.

>>>ƒodd(5)
True
>>>ƒodd(6)
False

defƒodd(x):
ƒƒƒƒ“””ReturnsƒTrueƒifƒxƒisƒoddƒorƒFalseƒotherwise.”””
ƒƒƒƒifƒxƒ%ƒ2ƒ==ƒ1:
ƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒFalse

Note that this function has two possible exit points, in either of the alternatives
within the if/else statement.

5.2 Defining Simple Functions [177]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.2.5 Defining a main Function

In scripts that include the definitions of several cooperating functions, it is often
useful to define a special function named main that serves as the entry point for
the script. This function usually expects no arguments and returns no value. Its
sole purpose is to take inputs, process them by calling other functions, and print
the results. The definition of the main function and the other function defini-
tions can appear in no particular order in the script, as long as main is called at
the very end of the script.

The next example shows a complete script that is organized in the manner
just described. The main function prompts the user for a number, calls the
square function to compute its square, and prints the result. You can define the
main and the square functions in any order. When Python loads this module,
the code for both function definitions is loaded and compiled, but not executed.
Note that main is then called as the last step in the script. This has the effect of
transferring control to the first instruction in the main function’s definition.
When square is called from main, control is transferred from main to the first
instruction in square. When a function completes execution, control returns to
the next instruction in the caller’s code.

“””
File:ƒcomputesquare.py
Illustratesƒtheƒdefinitionƒofƒaƒmainƒfunction.
“””

defƒmain():
ƒƒƒƒ“””Theƒmainƒfunctionƒforƒthisƒscript.”””
ƒƒƒƒnumberƒ=ƒfloat(input(“Enterƒaƒnumber:ƒ“))
ƒƒƒƒresultƒ=ƒsquare(number)
ƒƒƒƒprint(“Theƒsquareƒof”,ƒnumber,ƒ“is”,ƒresult)

defƒsquare(x):
ƒƒƒƒ“””Returnsƒtheƒsquareƒofƒx.”””
ƒƒƒƒreturnƒxƒ*ƒx

#ƒTheƒentryƒpointƒforƒprogramƒexecution
main()

Like all scripts, the preceding script can be run from IDLE, imported into the
shell, or run from a terminal command prompt. We will start defining and using
a main function in most of our case studies from this point forward.

CHAPTER 5 Lists and Dictionaries[178]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.2 Exercises
1 What roles do the parameters and the return statement play in a

function definition?

2 Define a function named even. This function expects a number as an
argument and returns True if the number is divisible by 2, or it returns
False otherwise. (Hint: a number is evenly divisible by 2 if the remain-
der is 0.)

3 Use the function even to simplify the definition of the function odd
presented in this section.

4 Define a function named sum. This function expects two numbers,
named low and high, as arguments. The function computes and returns
the sum of all of the numbers between low and high, inclusive.

5 What is the purpose of a main function?

5.3 Case Study: Generating Sentences
Can computers write poetry? We’ll attempt to answer that question in this case
study by giving a program a few words to play with.

5.3.1 Request

Write a program that generates sentences.

5.3.2 Analysis

Sentences in any language have a structure defined by a set of grammar rules.
They also include a set of words from the vocabulary of the language. The
vocabulary of a language like English consists of many thousands of words, and
the grammar rules are quite complex. For the sake of simplicity, our program will
generate sentences from a simplified subset of English. The vocabulary will con-
sist of sample words from several parts of speech, including nouns, verbs, articles,
and prepositions. From these words, you can build noun phrases, prepositional
phrases, and verb phrases. From these constituent phrases, you can build sen-
tences. For example, the sentence, “The girl hit the ball with the bat,” contains

5.3 Case Study: Generating Sentences [179]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

three noun phrases, one verb phrase, and one prepositional phrase. Table 5.3
summarizes the grammar rules for our subset of English.

[TABLE 5.3] The grammar rules for the sentence generator

The rule for Noun phrase says that it is an Article followed by (+) a Noun.
Thus, a possible noun phrase is “the bat.” Note that some of the phrases in the
left column of Table 5.3 also appear in the right column as constituents of other
phrases. Although this grammar is much simpler than the complete set of rules
for English grammar, you should still be able to generate sentences with quite a
bit of structure.

The program will prompt the user for the number of sentences to generate.
The proposed user interface follows:

>ƒpythonƒgenerator.py
Enterƒtheƒnumberƒofƒsentences:ƒ3
THEƒBOYƒHITƒTHEƒBATƒWITHƒAƒBOY
THEƒBOYƒHITƒTHEƒBALLƒBYƒAƒBAT
THEƒBOYƒSAWƒTHEƒGIRLƒWITHƒTHEƒGIRL

>ƒpythonƒgenerator.py
Enterƒtheƒnumberƒofƒsentences:ƒ2
AƒBALLƒHITƒAƒGIRLƒWITHƒTHEƒBAT
AƒGIRLƒSAWƒTHEƒBATƒBYƒAƒBOY

5.3.3 Design

Of the many ways to solve the problem in this case study, perhaps the simplest is
to assign the task of generating each phrase to a separate function. Each function
builds and returns a string that represents its phrase. This string contains words
drawn from the parts of speech and also from other phrases. When a function
needs an individual word, it is selected at random from the words in that part of

PHRASE ITS CONSTITUENTS

Sentence Noun phrase + Verb phrase

Noun phrase Article + Noun

Verb phrase Verb + Noun phrase + Prepositional phrase

Prepositional phrase Preposition + Noun phrase

CHAPTER 5 Lists and Dictionaries[180]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.3 Case Study: Generating Sentences [181]

speech. When a function needs another phrase, it calls another function to build
that phrase. The results, all strings, are concatenated with spaces and returned.

The function for Sentence is the easiest. It just calls the functions for Noun
phrase and Verb phrase and concatenates the results, as in the following:

defƒsentence():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒsentence.”””
ƒƒƒƒreturnƒnounPhrase()ƒ+ƒ“ƒ“ƒ+ƒverbPhrase()ƒ+ƒ“.”

The function for Noun phrase picks an article and a noun at random from the
vocabulary, concatenates them, and returns the result. We assume that the vari-
ables articles and nouns refer to collections of these parts of speech, and
develop these later in the design. The function random.choice returns a ran-
dom element from such a collection.

defƒnounPhrase():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnounƒphrase.”””
ƒƒƒƒreturnƒrandom.choice(articles)ƒ+ƒ“ƒ“ƒ+ƒrandom.choice(nouns)

The design of the remaining two phrase-structure functions is similar.
The main function drives the program with a count-controlled loop:

defƒmain():
ƒƒƒƒ“””Allowsƒtheƒuserƒtoƒinputƒtheƒnumberƒofƒsentences
ƒƒƒƒtoƒgenerate.”””
ƒƒƒƒnumberƒ=ƒint(input(“Enterƒtheƒnumberƒofƒsentences:ƒ“))
ƒƒƒƒforƒcountƒinƒrange(number):
ƒƒƒƒƒƒƒƒprint(sentence())

The variables articles and nouns used in the program’s functions refer to
the collections of actual words belonging to these two parts of speech. Two other
collections, named verbs and prepositions, also will be used. The data struc-
ture used to represent a collection of words should allow the program to pick one
word at random. Because the data structure does not change during the course of
the program, you can use a tuple of strings. Four tuples serve as a common pool
of data for the functions in the program, and are initialized before the functions
are defined.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.3.4 Implementation (Coding)

When functions use a common pool of data, you should define or initialize the data
before the functions are defined. Thus, the variables for the data are initialized just
below the import statement.

“””
Program:ƒgenerator.py
Author:ƒKen
Generatesƒandƒdisplaysƒsentencesƒusingƒsimpleƒgrammar
andƒvocabulary.ƒƒWordsƒareƒchosenƒatƒrandom.
“””

importƒrandom

articlesƒ=ƒ(“A”,ƒ“THE”)

nounsƒ=ƒ(“BOY”,ƒ“GIRL”,ƒ“BAT”,ƒ“BALL”,)

verbsƒ=ƒ(“HIT”,ƒ“SAW”,ƒ“LIKED”)

prepositionsƒ=ƒ(“WITH”,ƒ“BY”)

defƒsentence():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒsentence.”””
ƒƒƒƒreturnƒnounPhrase()ƒ+ƒ“ƒ“ƒ+ƒverbPhrase()

defƒnounPhrase():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnounƒphrase.”””
ƒƒƒƒreturnƒrandom.choice(articles)ƒ+ƒ“ƒ“ƒ+ƒrandom.choice(nouns)

defƒverbPhrase():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒverbƒphrase.”””
ƒƒƒƒreturnƒrandom.choice(verbs)ƒ+ƒ“ƒ“ƒ+ƒnounPhrase()ƒ+ƒ“ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒprepositionalPhrase()

defƒprepositionalPhrase():
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒprepositionalƒphrase.”””
ƒƒƒƒreturnƒrandom.choice(prepositions)ƒ+ƒ“ƒ“ƒ+ƒnounPhrase()

defƒmain():
ƒƒƒƒ“””Allowsƒtheƒuserƒtoƒinputƒtheƒnumberƒofƒsentences
ƒƒƒƒtoƒgenerate.”””
ƒƒƒƒnumberƒ=ƒint(input(“Enterƒtheƒnumberƒofƒsentences:ƒ“))
ƒƒƒƒforƒcountƒinƒrange(number):
ƒƒƒƒƒƒƒƒprint(sentence())

main()

CHAPTER 5 Lists and Dictionaries[182]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.3.5 Testing

Poetry it’s not, but testing is still important. The functions developed in this case
study can be tested in a bottom-up manner. To do so, you must initialize the data
first. Then you can run the lowest-level function, nounPhrase, immediately to
check its results, and you can work up to sentences from there.

On the other hand, testing can also follow the design, which took a top-down
path. You might start by writing headers for all of the functions and simple
return statements that return the function’s names. Then you can complete the
code for the sentence function first, test it, and proceed downward from there.
The wise programmer can also mix bottom-up and top-down testing as needed.

5.4 Dictionaries
Lists organize their elements by position. This mode of organization is useful
when you want to locate the first element, the last element, or visit each element
in a sequence. However, in some situations, the position of a datum in a structure
is irrelevant; we’re interested in its association with some other element in the
structure. For example, you might want to look up Ethan’s phone number but
don’t care where that number is in the phone book.

A dictionary organizes information by association, not position. For exam-
ple, when you use a dictionary to look up the definition of “mammal,” you don’t
start at page 1; instead, you turn directly to the words beginning with “M.”
Phone books, address books, encyclopedias, and other reference sources also
organize information by association. In computer science, data structures
organized by association are also called tables or association lists. In Python,
a dictionary associates a set of keys with data values. For example, the keys in
Webster’s Dictionary comprise the set of words, whereas the associated data values
are their definitions. In this section, we examine the use of dictionaries in data
processing.

5.4.1 Dictionary Literals

A Python dictionary is written as a sequence of key/value pairs separated by com-
mas. These pairs are sometimes called entries. The entire sequence of entries is

5.4 Dictionaries [183]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

enclosed in curly braces ({ and }). A colon (:) separates a key and its value. Here
are some example dictionaries:

A phone book: {'Savannah':'476-3321', 'Nathaniel':'351-7743'}

Personal information: {'Name':'Molly', 'Age':18}

You can even create an empty dictionary—that is, a dictionary that contains no
entries. You would create an empty dictionary in a program that builds a diction-
ary from scratch. Here is an example of an empty dictionary:

{}

The keys in a dictionary can be data of any immutable types, including other
data structures, although keys normally are strings or integers. The associated
values can be of any types. Although the entries may appear to be ordered in a
dictionary, this ordering is not significant, and the programmer should not rely
on it.

5.4.2 Adding Keys and Replacing Values

You add a new key/value pair to a dictionary by using the subscript operator [].
The form of this operation is the following:

<aƒdictionary>[<aƒkey>]ƒ=ƒ<aƒvalue>

The next code segment creates an empty dictionary and adds two new entries:

>>>ƒinfoƒ=ƒ{}
>>>ƒinfo[“name”]ƒ=ƒ“Sandy”
>>>ƒinfo[“occupation”]ƒ=ƒ“hacker”
>>>ƒinfo
{'name':ƒ'Sandy',ƒ'occupation':ƒ'hacker'}
>>>ƒ

CHAPTER 5 Lists and Dictionaries[184]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The subscript is also used to replace a value at an existing key, as follows:

>>>ƒinfo[“occupation”]ƒ=ƒ“manager”
>>>ƒinfo
{'name':ƒ'Sandy',ƒ'occupation':ƒ'manager'}
>>>ƒ

Here is a case of the same operation used for two different purposes, insertion of
a new entry and modification of an existing entry. As a rule, when the key is
absent from the dictionary, it and its value are inserted; when the key already
exists, its associated value is replaced.

5.4.3 Accessing Values

You can also use the subscript to obtain the value associated with a key. However,
if the key is not present in the dictionary, Python raises an error. Here are some
examples, using the info dictionary, which was set up earlier:

>>>ƒinfo[“name”]
'Sandy'
>>>ƒinfo[“job”]
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<stdin>”,ƒlineƒ1,ƒinƒ<module>
KeyError:ƒ'job'
>>>ƒ

If the existence of a key is uncertain, the programmer can test for it using the dic-
tionary method has_key, but a far easier strategy is to use the method get. This
method expects two arguments, a possible key and a default value. If the key is in
the dictionary, the associated value is returned. However, if the key is absent, the
default value passed to get is returned. Here is an example of the use of get with
a default value of None:

>>>ƒprint(info.get(“job”,ƒNone))
None
>>>ƒ

5.4 Dictionaries [185]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.4.4 Removing Keys

To delete an entry from a dictionary, one removes its key using the method pop.
This method expects a key and an optional default value as arguments. If the key
is in the dictionary, it is removed, and its associated value is returned. Otherwise,
the default value is returned. If pop is used with just one argument, and this key
is absent from the dictionary, Python raises an error. The next session attempts to
remove two keys and prints the values returned:

>>>ƒprint(info.pop(“job”,ƒNone))
None
>>>ƒprint(info.pop(“occupation”))
manager
>>>ƒinfo
{'name':ƒ'Sandy'}
>>>ƒ

5.4.5 Traversing a Dictionary

When a for loop is used with a dictionary, the loop’s variable is bound to each
key in an unspecified order. The next code segment prints all of the keys and
their values in our info dictionary:

forƒkeyƒinƒinfo:
ƒƒƒprint(key,ƒinfo[key])

Alternatively, you could use the dictionary method items() to access a list of
the dictionary’s entries. The next session shows a run of this method with a dic-
tionary of grades:

>>>ƒgradesƒ=ƒ{90:”A”,ƒ80:”B”,ƒ70:”C”}
>>>ƒgrades.items()
[(80,ƒ'B'),ƒ(90,ƒ'A'),ƒ(70,ƒ'C')]

CHAPTER 5 Lists and Dictionaries[186]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note that the entries are represented as tuples within the list. A tuple of variables
can then access the key and value of each entry in this list within a for loop:

forƒ(key,ƒvalue)ƒinƒgrades.items():
ƒƒƒprint(key,ƒvalue)

On each pass through the loop, the variables key and value within the tuple are
assigned the key and value of the current entry in the list.

If a special ordering of the keys is needed, you can obtain a list of keys using
the keys method and process this list to rearrange the keys. For example, you
can sort the list and then traverse it to print the entries of the dictionary in alpha-
betical order:

theKeysƒ=ƒlist(info.keys())
theKeys.sort()
forƒkeyƒinƒtheKeys:
ƒƒƒprint(key,ƒinfo[key])

To see the complete documentation for dictionaries, you can run help(dict)
at a shell prompt. Table 5.4 summarizes the commonly used dictionary operations,
where d refers to a dictionary.

continued

DICTIONARY OPERATION WHAT IT DOES

len(d) Returns the number of entries in d.

aDict[key] Used for inserting a new key, replacing a value,
or obtaining a value at an existing key.

d.get(key [, default]) Returns the value if the key exists or returns the
default if the key does not exist. Raises an error if
the default is omitted and the key does not exist.

d.pop(key [, default]) Removes the key and returns the value if the key
exists or returns the default if the key does not
exist. Raises an error if the default is omitted and
the key does not exist.

list(d.keys()) Returns a list of the keys.

list(d.values()) Returns a list of the values.

5.4 Dictionaries [187]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 5.4] Some commonly used dictionary operations

5.4.6 Example: The Hexadecimal System Revisited

In Chapter 4, we discussed a method for converting numbers quickly between the
binary and the hexadecimal systems. Now let’s develop a Python function that
uses that method to convert a hexadecimal number to a binary number. The
algorithm visits each digit in the hexadecimal number, selects the corresponding
four bits that represent that digit in binary, and adds these bits to a result string.
You could express this selection process with a complex if/else statement, but
there is an easier way. If you maintain the set of associations between hexadecimal
digits and binary digits in a dictionary, then you can just look up each hexadeci-
mal digit’s binary equivalent with a primitive operation. Such a dictionary is
sometimes called a lookup table. Here is the definition of the lookup table
required for hex-to-binary conversions:

hexToBinaryTableƒ=ƒ{'0':'0000',ƒ'1':'0001',ƒ'2':'0010',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'3':'0011',ƒ'4':'0100',ƒ'5':'0101',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'6':'0110',ƒ'7':'0111',ƒ'8':'1000',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'9':'1001',ƒ'A':'1010',ƒ'B':'1011',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'C':'1100',ƒ'D':'1101',ƒ'E':'1110',
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ'F':'1111'}

DICTIONARY OPERATION WHAT IT DOES

list(d.items()) Returns a list of tuples containing the keys and
values for each entry.

d.has_key(key) Returns True if the key exists or False otherwise.

d.clear() Removes all the keys.

for key in d: key is bound to each key in d in an
unspecified order.

CHAPTER 5 Lists and Dictionaries[188]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The function itself, named convert, is simple. It expects two parameters: a string
representing the number to be converted and a table of associations of digits.
Here is the code for the function, followed by a sample session:

defƒconvert(number,ƒtable):
ƒƒƒ“””Buildsƒandƒreturnsƒtheƒbaseƒtwoƒrepresentationƒof
ƒƒƒnumber.”””
ƒƒƒbinaryƒ=ƒ''
ƒƒƒforƒdigitƒinƒnumber:
ƒƒƒƒƒƒbinaryƒ=ƒtable[digit]ƒ+ƒbinary
ƒƒƒreturnƒbinary

>>>ƒconvert(“35A”,ƒhexToBinaryTable)
'101001010011'

Note that you pass hexToBinaryTable as an argument to the function. The
function then uses the associations in this particular table to perform the conver-
sion. The function would serve equally well for conversions from octal to binary,
provided that you set up and pass it an appropriate lookup table.

5.4.7 Example: Finding the Mode of a List of Values

The mode of a list of values is the value that occurs most frequently. The following
script inputs a list of words from a text file and prints their mode. The script uses a
list and a dictionary. The list is used to obtain the words from the file, as in earlier
examples. The dictionary associates each unique word with the number of its occur-
rences in the list. The script also uses the function max, first introduced in Chapter 3,
to compute the maximum of two values. When used with a single list argument, max
returns the largest value contained therein. Here is the code for the script:

fileNameƒ=ƒinput(“Enterƒtheƒfilename:ƒ“)
fƒ=ƒopen(fileName,ƒ'r')
ƒƒƒƒ
#ƒInputƒtheƒtext,ƒconvertƒitsƒwordsƒtoƒuppercase,ƒand
#ƒaddƒtheƒwordsƒtoƒaƒlist
wordsƒ=ƒ[]
forƒlineƒinƒf:
ƒƒƒƒwordsInLineƒ=ƒline.split()
ƒƒƒƒforƒwordƒinƒwordsInLine:
ƒƒƒƒƒƒƒƒwords.append(word.upper())

continued

5.4 Dictionaries [189]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

#ƒObtainƒtheƒsetƒofƒuniqueƒwordsƒandƒtheir
#ƒfrequencies,ƒsavingƒtheseƒassociationsƒin
#ƒaƒdictionary
theDictionaryƒ=ƒ{}
forƒwordƒinƒwords:
ƒƒƒƒnumberƒ=ƒtheDictionary.get(word,ƒNone)
ƒƒƒƒifƒnumberƒ==ƒNone:
ƒƒƒƒƒƒƒƒ#ƒwordƒenteredƒforƒtheƒfirstƒtime
ƒƒƒƒƒƒƒƒtheDictionary[word]ƒ=ƒ1
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒ#ƒwordƒalreadyƒseen,ƒincrementƒitsƒnumber
ƒƒƒƒƒƒƒƒtheDictionary[word]ƒ=ƒnumberƒ+ƒ1

#ƒFindƒtheƒmodeƒbyƒobtainingƒtheƒmaximumƒvalue
#ƒinƒtheƒdictionaryƒandƒdeterminingƒitsƒkey
theMaximumƒ=ƒmax(theDictionary.values())
forƒkeyƒinƒtheDictionary:
ƒƒƒƒifƒtheDictionary[key]ƒ==ƒtheMaximum:
ƒƒƒƒƒƒƒƒprint(“Theƒmodeƒis”,ƒkey)
ƒƒƒƒƒƒƒƒbreak

5.4 Exercises
1 Give three examples of real-world objects that behave like a dictionary.

2 Assume that the variable data refers to the dictionary {“b”:20, “a”:35}.
Write the values of the following expressions:

a data[“a”]

b data.get(“c”, None)

c len(data)

d data.keys()

e data.values()

f data.pop(“b”)

g data # After the pop above

3 Assume that the variable data refers to the dictionary {“b”:20, “a”:35}.
Write the expressions that perform the following tasks:

a Replace the value at the key “b” in data with that value’s negation.

b Add the key/value pair “c”:40 to data.

c Remove the value at key “b” in data, safely.

d Print the keys in data in alphabetical order.
CHAPTER 5 Lists and Dictionaries[190]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5 Case Study: Nondirective Psychotherapy
In the early 1960s, the MIT computer scientist Joseph Weizenbaum developed a
famous program called doctor that could converse with the computer user, mim-
icking a nondirective style of psychotherapy. The doctor in this kind of therapy is
essentially a good listener who responds to the patient’s statements by rephrasing
them or indirectly asking for more information. To illustrate the use of data
structures, we develop a drastically simplified version of this program.

5.5.1 Request

Write a program that emulates a nondirective psychotherapist.

5.5.2 Analysis

Figure 5.4 shows the program’s interface as it changes throughout a sequence of
exchanges with the user.

[FIGURE 5.4] A session with the doctor program

Good morning, I hope you are well today.
What can I do for you?

>> My mother and I don't get along
Why do you say that your mother and you don't get along

>> she always favors my sister
You seem to think that she always favors your sister

>> my dad and I get along fine
Can you explain why your dad and you get along fine

>> he helps me with my homework
Please tell me more

>> quit
Have a nice day!

5.5 Case Study: Nondirective Psychotherapy [191]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When the user enters a statement, the program responds in one of two ways:

1 With a randomly chosen hedge, such as “Please tell me more.”

2 By changing some key words in the user’s input string and appending
this string to a randomly chosen qualifier. Thus, to “My teacher always
plays favorites,” the program might reply, “Why do you say that your
teacher always plays favorites?”

5.5.3 Design

The program consists of a set of collaborating functions that share a common
data pool.

Two of the data sets are the hedges and the qualifiers. Because these collec-
tions do not change and their elements must be selected at random, you can use
tuples to represent them. Their names, of course, are hedges and qualifiers.

The other set of data consists of mappings between first-person pronouns and
second-person pronouns. For example, when the program sees “I” in a patient’s
input, it should respond with a sentence containing “you.” The best type of data
structure to hold these correlations is a dictionary. This dictionary is named
replacements.

The main function displays a greeting, displays a prompt, and waits for user
input. The following is pseudocode for the main loop:

output a greeting to the patient
while True

prompt for and input a string from the patient
if the string equals “Quit”

output a sign-off message to the patient
break

call another function to obtain a reply to this string
output the reply to the patient

Our therapist might not be an expert, but there is no charge for its services.
What’s more, our therapist seems willing to go on forever. However, if the
patient must quit to do something else, she can do so by typing quit to end the
program.

The reply function expects the patient’s string as an argument and returns
another string as the reply. This function implements the two strategies for mak-
ing replies suggested in the analysis phase. A quarter of the time a hedge is war-
ranted. Otherwise, the function constructs its reply by changing the persons in
the patient’s input and appending the result to a randomly selected qualifier. The

CHAPTER 5 Lists and Dictionaries[192]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5 Case Study: Nondirective Psychotherapy [193]

reply function calls yet another function, changePerson, to perform the com-
plex task of changing persons.

defƒreply(sentence):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒreplyƒtoƒtheƒsentence.”””
ƒƒƒƒprobabilityƒ=ƒrandom.randint(1,ƒ4)
ƒƒƒƒifƒprobabilityƒ==ƒ1:
ƒƒƒƒƒƒƒƒreturnƒrandom.choice(hedges)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒrandom.choice(qualifiers)ƒ+ƒchangePerson(sentence)

The changePerson function extracts a list of words from the patient’s string.
It then builds a new list wherein any pronoun key in the replacements dictionary
is replaced by its pronoun/value. This list is then converted back to a string and
returned.

defƒchangePerson(sentence):
ƒƒƒƒwordsƒ=ƒsentence.split()
ƒƒƒƒreplyWordsƒ=ƒ[]
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒreplyWords.append(replacements.get(word,ƒword))
ƒƒƒƒreturnƒ“ƒ“.join(replyWords)ƒ

Note that the attempt to get a replacement from the replacements dictionary
either succeeds and returns an actual replacement pronoun, or the attempt fails
and returns the original word. The string method join glues together the words
from the replyWords list with a space character as a separator.

5.5.4 Implementation (Coding)

The structure of this program is similar to that of the sentence generator devel-
oped in the first case study of this chapter. The three data structures are initial-
ized near the beginning of the program, and they never change. The three
functions collaborate in a straightforward manner. Here is the code:

“””
Program:ƒdoctor.py
Author:ƒKen
Conductsƒanƒinteractiveƒsessionƒofƒnondirectiveƒpsychotherapy.
“””

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 5 Lists and Dictionaries[194]

importƒrandom

hedgesƒ=ƒ(“Pleaseƒtellƒmeƒmore.”,
ƒƒƒƒƒƒƒƒƒƒ“Manyƒofƒmyƒpatientsƒtellƒmeƒtheƒsameƒthing.”,
ƒƒƒƒƒƒƒƒƒƒ“Pleaseƒcontinue.”)

qualifiersƒ=ƒ(“Whyƒdoƒyouƒsayƒthatƒ“,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Youƒseemƒtoƒthinkƒthatƒ“,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“Canƒyouƒexplainƒwhyƒ“)

replacementsƒ=ƒ{“I”:”you”,ƒ“me”:”you”,ƒ“my”:”your”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“we”:”you”,ƒ“us”:”you”,ƒ“mine”:”yours”}ƒ

defƒreply(sentence):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒreplyƒtoƒtheƒsentence.”””
ƒƒƒƒprobabilityƒ=ƒrandom.randint(1,ƒ4)
ƒƒƒƒifƒprobabilityƒ==ƒ1:
ƒƒƒƒƒƒƒƒreturnƒrandom.choice(hedges)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒrandom.choice(qualifiers)ƒ+ƒchangePerson(sentence)

defƒchangePerson(sentence):
ƒƒƒƒ“””Replacesƒfirstƒpersonƒpronounsƒwithƒsecondƒperson
ƒƒƒƒpronouns.”””
ƒƒƒƒwordsƒ=ƒsentence.split()
ƒƒƒƒreplyWordsƒ=ƒ[]
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒreplyWords.append(replacements.get(word,ƒword))
ƒƒƒƒreturnƒ“ƒ“.join(replyWords)ƒ

defƒmain():
ƒƒƒƒ“””Handlesƒtheƒinteractionƒbetweenƒpatientƒandƒdoctor.”””
ƒƒƒƒprint(“Goodƒmorning,ƒIƒhopeƒyouƒareƒwellƒtoday.”)
ƒƒƒƒprint(“WhatƒcanƒIƒdoƒforƒyou?”)
ƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒsentenceƒ=ƒinput(“\n>>ƒ“)
ƒƒƒƒƒƒƒƒifƒsentence.upper()ƒ==ƒ“QUIT”:
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“Haveƒaƒniceƒday!”)
ƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒprint(reply(sentence))

main()

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.5.5 Testing

As in the sentence-generator program, the functions in this program can be
tested in a bottom-up or a top-down manner. As you will see, the program’s
replies break down when the user addresses the therapist in the second person,
uses contractions (for example, I’m and I’ll), and in many other ways. As you’ll
see in the Projects at the end of this chapter, with a little work you can make the
replies more realistic.

Summary
� A list is a sequence of zero or more elements. The elements can be of

any types. The len function returns the number of elements in its list
argument. Each element occupies a position in the list. The positions
range from 0 to the length of the list minus 1.

� Lists can be manipulated with many of the operators used with
strings, such as the subscript, concatenation, comparison, and in
operators. Slicing a list returns a sublist.

� The list is a mutable data structure. An element can be replaced with
a new element, added to the list, or removed from the list.
Replacement uses the subscript operator. The list type includes
several methods for insertion and removal of elements.

� The method index returns the position of a target element in a list.
If the element is not in the list, an error is raised.

� The elements of a list can be arranged in ascending order by calling
the sort method.

� Mutator methods are called to change the state of an object. These
methods usually return the value None. This value is automatically
returned by any function or method that does not have a return
statement.

� Assignment of one variable to another variable causes both variables to
refer to the same data object. When two or more variables refer to the
same data object, they are aliases. When that data value is a mutable object
such as a list, side effects can occur. A side effect is an unexpected change
to the contents of a data object. To prevent side effects, avoid aliasing by
assigning a copy of the original data object to the new variable.

Summary [195]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 5 Lists and Dictionaries[196]

� A tuple is quite similar to a list, but has an immutable structure.
� A function definition consists of a header and a body. The header con-

tains the function’s name and a parenthesized list of argument names.
The body consists of a set of statements.

� The return statement returns a value from a function definition.
� The number and positions of arguments in a function call must match

the number and positions of required parameters specified in the
function’s definition.

� A dictionary associates a set of keys with values. Dictionaries organize
data by content rather than position.

� The subscript operator is used to add a new key/value pair to a
dictionary or to replace a value associated with an existing key.

� The dict type includes methods to access and remove data in a
dictionary.

� The for loop can traverse the keys of a dictionary. The methods keys
and values return access to a dictionary’s keys and values, respectively.

� Bottom-up testing of a program begins by testing its lower-level func-
tions and then testing the functions that depend on those lower-level
functions. Top-down testing begins by testing the program’s main
function and then testing the functions on which the main function
depends. These lower-level functions are initially defined to return
their names.

REVIEW QUESTIONS
For questions 1–6, assume that the variable data refers to the list [10, 20, 30].

1 The expression data[1] evaluates to

a 10

b 20

2 The expression data[1:3] evaluates to

a [10, 20, 30]

b [20, 30]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3 The expression data.index(20) evaluates to

a 1

b 2

c True

4 The expression data + [40, 50] evaluates to

a [10, 60, 80]

b [10, 20, 30, 40, 50]

5 After the statement data[1] = 5, data evaluates to

a [5, 20, 30]

b [10, 5, 30]

6 After the statement data.insert(1, 15), the original data evaluates to

a [15, 10, 20, 30]

b [10, 15, 30]

c [10, 15, 20, 30]

For questions 7–9, assume that the variable info refers to the dictionary
{“name”:”Sandy”, “age”:17}.

7 The expression list(info.keys()) evaluates to

a (“name”, “age”)

b [“name”, “age”]

8 The expression info.get(“hobbies”, None) evaluates to

a “knitting”

b None

c 1000

9 The method to remove an entry from a dictionary is named

a delete

b pop

c remove

10 Which of the following are immutable data structures?

a dictionaries and lists
b strings and tuples

REVIEW QUESTIONS [197]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 5 Lists and Dictionaries[198]

PROJECTS
1 A group of statisticians at a local college has asked you to create a set of

functions that compute the median and mode of a set of numbers, as
defined in Section 5.4. Define these functions in a module named
stats.py. Also include a function named mean, which computes the
average of a set of numbers. Each function should expect a list of num-
bers as an argument and return a single number. Each function should
return 0 if the list is empty. Include a main function that tests the three
statistical functions with a given list.

2 Write a program that allows the user to navigate the lines of text in a
file. The program should prompt the user for a filename and input the
lines of text into a list. The program then enters a loop in which it prints
the number of lines in the file and prompts the user for a line number.
Actual line numbers range from 1 to the number of lines in the file. If
the input is 0, the program quits. Otherwise, the program prints the line
associated with that number.

3 Modify the sentence-generator program of Case Study 5.3 so that it
inputs its vocabulary from a set of text files at startup. The filenames are
nouns.txt, verbs.txt, articles.txt, and prepositions.txt.
(Hint: Define a single new function, getWords. This function should
expect a filename as an argument. The function should open an input file
with this name, define a temporary list, read words from the file, and add
them to the list. The function should then convert the list to a tuple and
return this tuple. Call the function with an actual filename to initialize
each of the four variables for the vocabulary.)

4 Make the following modifications to the original sentence-generator
program:

a The prepositional phrase is optional. (It can appear with a certain
probability.)

b A conjunction and a second independent clause are optional: The
boy took a drink and the girl played baseball.

c An adjective is optional: The girl kicked the red ball with a sore foot.

You should add new variables for the sets of adjectives and conjunctions.

5 In Chapter 4, we developed an algorithm for converting from binary to
decimal. You can generalize this algorithm to work for a representation
in any base. Instead of using a power of 2, this time you use a power of

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the base. Also, you use digits greater than 9, such as A…F, when they
occur. Define a function named repToDecimal that expects two argu-
ments, a string and an integer. The second argument should be the base.
For example, repToDecimal(“10”, 8) returns 8, whereas
repToDecimal(“10”, 16) returns 16. The function should use a
lookup table to find the value of any digit. Make sure that this table (it is
actually a dictionary) is initialized before the function is defined. For its
keys, use the 10 decimal digits (all strings) and the letters A…F (all
uppercase). The value stored with each key should be the integer that the
digit represents. (The letter 'A' associates with the integer value 10, and
so on.) The main loop of the function should convert each digit to
uppercase, look up its value in the table, and use this value in the compu-
tation. Include a main function that tests the conversion function with
numbers in several bases.

6 Define a function decimalToRep that returns the representation of an
integer in a given base. The two arguments should be the integer and the
base. The function should return a string. It should use a lookup table
that associates integers with digits. Include a main function that tests the
conversion function with numbers in several bases.

7 Write a program that inputs a text file. The program should print all of
the unique words in the file in alphabetical order.

8 A file concordance tracks the unique words in a file and their frequen-
cies. Write a program that displays a concordance for a file. The pro-
gram should output the unique words and their frequencies in
alphabetical order.

9 In Case Study 5.5, when the patient addresses the therapist personally,
the therapist’s reply does not change persons appropriately. To see an
example of this problem, test the program with “you are not a helpful
therapist.” Fix this problem by repairing the dictionary of replacements.

10 Conversations often shift focus to earlier topics. Modify the therapist
program to support this capability. Add each patient input to a history
list. Then, occasionally choose an element at random from this list,
change persons, and prepend the qualifier “Earlier you said that” to this
reply. Make sure that this option is triggered only after several exchanges
have occurred.

PROJECTS [199]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After completing this chapter, you will be able to:
� Explain why functions are useful in structuring code in a

program
� Employ top-down design to assign tasks to functions
� Define a recursive function
� Explain the use of the namespace in a program and exploit it

effectively
� Define a function with required and optional parameters
� Use higher-order functions for mapping, filtering, and

reducing
Design is important in many fields. The architect who designs a

building, the engineer who designs a bridge or a new automobile,
and the politician, advertising executive, or army general who
designs the next campaign must organize the structure of a system
and coordinate the actors within it to achieve its purpose. Design is
equally important in constructing software systems, some of which
are the most complex artifacts ever built by human beings. In this
chapter, we explore the use of functions to design software systems.

[CHAPTER] Design with Functions6

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.1 Functions as Abstraction Mechanisms
Thus far in this book, our programs have consisted of algorithms and data struc-
tures, expressed in the Python programming language. The algorithms in turn
are composed of built-in operators, control statements, calls to built-in functions,
and programmer-defined functions, which were introduced in Chapter 5.

Strictly speaking, functions are not necessary. It is possible to construct any
algorithm using only Python’s built-in operators and control statements.
However, in any significant program, the resulting code would be extremely
complex, difficult to verify, and almost impossible to maintain.

The problem is that the human brain can wrap itself around just a few things
at once (psychologists say three things comfortably, and at most seven). People
cope with complexity by developing a mechanism to simplify or hide it. This
mechanism is called an abstraction. Put most plainly, an abstraction hides detail
and thus allows a person to view many things as just one thing. We use abstrac-
tions to refer to the most common tasks in everyday life. For example, consider
the expression “doing my laundry.” This expression is simple, but refers to a
complex process that involves fetching dirty clothes from the hamper, separating
them into whites and colors, loading them into the washer, transferring them to
the dryer, and folding them and putting them into the dresser. Indeed, without
abstractions, most of our everyday activities would be impossible to discuss, plan,
or carry out. Likewise, effective designers must invent useful abstractions to con-
trol complexity. In this section, we examine the various ways in which functions
serve as abstraction mechanisms in a program.

6.1.1 Functions Eliminate Redundancy

The first way that functions serve as abstraction mechanisms is by eliminating
redundant, or repetitious, code. To explore the concept of redundancy, let’s look
at a function named sum, which returns the sum of the numbers within a given
range of numbers. Here is the definition of sum, followed by a session showing
its use:

defƒsum(lower,ƒupper):
ƒƒƒ“””
ƒƒƒArguments:ƒAƒlowerƒboundƒandƒanƒupperƒbound
ƒƒƒReturns:ƒtheƒsumƒofƒtheƒnumbersƒbetweenƒtheƒarguments
ƒƒƒƒƒƒƒƒƒƒƒƒandƒincludingƒthem
ƒƒƒ“””

continued

CHAPTER 6 Design with Functions[202]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ƒƒƒresultƒ=ƒ0
ƒƒƒwhileƒlowerƒ<=ƒupper:
ƒƒƒƒƒƒresultƒ+=ƒlower
ƒƒƒƒƒƒlowerƒ+=ƒ1
ƒƒƒreturnƒresult

>>>ƒsum(1,ƒ4)ƒƒƒƒƒƒ#ƒTheƒsummationƒofƒtheƒnumbersƒ1..4
10
>>>ƒsum(50,ƒ100)ƒƒƒ#ƒTheƒsummationƒofƒtheƒnumbersƒ50..100
3825

If the sum function didn’t exist, the programmer would have to write the
entire algorithm every time a summation is computed. In a program that must
calculate multiple summations, the same code would appear multiple times. In
other words, redundant code would be included in the program. Code redun-
dancy is bad for several reasons. For one thing, it requires the programmer to
laboriously enter or copy the same code over and over again, and to get it correct
every time. Then, if the programmer decides to improve the algorithm by adding
a new feature or making it more efficient, he or she has to revise each instance of
the redundant code throughout the entire program. As you can imagine, this
would be a maintenance nightmare.

By relying on a single function definition, instead of multiple instances of
redundant code, the programmer frees herself to write only a single algorithm in
just one place—say, in a library module. Any other module or program can then
import the function for its use. Once imported, the function can be called as
many times as necessary. When the programmer needs to debug, repair, or
improve the function, she needs to edit and test only the single function defini-
tion. There is no need to edit the parts of the program that call the function.

6.1.2 Functions Hide Complexity

Another way that functions serve as abstraction mechanisms is by hiding compli-
cated details. To understand why this is true, let’s return again to the sum func-
tion. Although the idea of summing a range of numbers is simple, the code for
computing a summation is not. We’re not just talking about the amount or length
of the code, but also about the number of interacting components. There are
three variables to manipulate, as well as count-controlled loop logic to construct.

6.1 Functions as Abstraction Mechanisms [203]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Now suppose, somewhat unrealistically, that only one summation is per-
formed in a program, and in no other program, ever again. Who needs a function
now? Well, it all depends on the complexity of the surrounding code. Remember
that the programmers responsible for maintaining a program can wrap their
brains around just a few things at a time. If the code for the summation is placed
in a context of code that is even slightly complex, the increase in complexity
might be enough to result in conceptual overload for the poor programmers.

A function call expresses the idea of a process to the programmer, without
forcing him or her to wade through the complex code that realizes that idea. As
in other areas of science and engineering, the simplest accounts and descriptions
are generally the best.

6.1.3 Functions Support General Methods with Systematic
Variations

An algorithm is a general method for solving a class of problems. The individual
problems that make up a class of problems are known as problem instances.
The problem instances for our summation algorithm are the pairs of numbers
that specify the lower and upper bounds of the range of numbers to be summed.
The problem instances of a given algorithm can vary from program to program,
or even within different parts of the same program. When you design an algo-
rithm, it should be general enough to provide a solution to many problem
instances, not just one or a few of them. In other words, a function should
provide a general method with systematic variations.

The sum function contains both the code for the summation algorithm and
the means of supplying problem instances to this algorithm. The problem
instances are the data sent as arguments to the function. The parameters or argu-
ment names in the function’s header behave like variables waiting to be assigned
data whenever the function is called.

If designed properly, a function’s code captures an algorithm as a general
method for solving a class of problems. The function’s arguments provide the
means for systematically varying the problem instances that its algorithm solves.
Additional arguments can broaden the range of problems that are solvable. For
example, the sum function could take a third argument that specifies the step to
take between numbers in the range. We will examine shortly how to provide
additional arguments that do not add complexity to a function’s default uses.

CHAPTER 6 Design with Functions[204]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.1.4 Functions Support the Division of Labor

In a well-organized system, whether it is a living thing or something created by
humans, each part does its own job or plays its own role in collaborating to
achieve a common goal. Specialized tasks get divided up and assigned to special-
ized agents. Some agents might assume the role of managing the tasks of others
or coordinating them in some way. But, regardless of the task, good agents mind
their own business and do not try to do the jobs of others.

A poorly organized system, by contrast, suffers from agents performing tasks
for which they are not trained or designed, or from agents who are busybodies
who do not mind their own business. Division of labor breaks down.

In a computer program, functions can enforce a division of labor. Ideally,
each function performs a single coherent task, such as computing a summation
or formatting a table of data for output. Each function is responsible for using
certain data, computing certain results, and returning these to the parts of the
program that requested them. Each of the tasks required by a system can be
assigned to a function, including the tasks of managing or coordinating the use of
other functions. In the sections that follow, we examine several design strategies
that employ functions to enforce a division of labor in programs.

6.1 Exercises
1 Anne complains that defining functions to use in her programs is a lot of

extra work. She says she can finish her programs much more quickly if
she just writes them using the basic operators and control statements.
State three reasons why her view is shortsighted.

2 Explain how an algorithm solves a general class of problems and how a
function definition in particular can support this property of an
algorithm.

6.1 Functions as Abstraction Mechanisms [205]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.2 Problem Solving with Top-Down Design
One popular design strategy for programs of any significant size and complexity is
called top-down design. This strategy starts with a global view of the entire prob-
lem and breaks the problem into smaller, more manageable subproblems—a process
known as problem decomposition. As each subproblem is isolated, its solution
is assigned to a function. Problem decomposition may continue down to lower
levels, because a subproblem might in turn contain two or more lower-level
problems to solve. As functions are developed to solve each subproblem, the
solution to the overall problem is gradually filled out in detail. This process is
also called stepwise refinement.

Our early program examples in Chapters 1–4 were simple enough that they
could be decomposed into three parts—the input of data, its processing, and the
output of results. None of these parts required more than one or two statements
of code, and they all appeared in a single sequence of statements.

However, beginning with the text-analysis program of Chapter 4, our case
study problems became complicated enough to warrant decomposition and
assignment to additional programmer-defined functions. Because each problem
had a different structure, the design of the solution took a slightly different path.
This section revisits each program, to explore how their designs took shape.

6.2.1 The Design of the Text-Analysis Program

Although we did not actually structure the text-analysis program (Section 4.7) in
terms of programmer-defined functions, we can now explore how that could have
been done. The program requires fairly simple input and output components, so
these can be expressed as statements within a main function. However, the pro-
cessing of the input is complex enough to decompose into smaller subprocesses,
such as obtaining the counts of the sentences, words, and syllables and calculating
the readability scores. Generally, you develop a new function for each of these
computational tasks. The relationships among the functions in this design are
expressed in the structure chart shown in Figure 6.1. A structure chart is a dia-
gram that shows the relationships among a program’s functions and the passage
of data between them.

CHAPTER 6 Design with Functions[206]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 6.1] A structure chart for the text-analysis program

Each box in the structure chart is labeled with a function name. The main
function at the top is where the design begins, and decomposition leads us to the
lower-level functions on which main depends. The lines connecting the boxes are
labeled with data type names, and arrows indicate the flow of data between them.
For example, the function countSentences takes a string as an argument and
returns the number of sentences in that string. Note that all functions except one
are just one level below main. Because this program does not have a deep struc-
ture, the programmer can develop it quickly just by thinking of the results that
main needs to obtain from its collaborators.

6.2.2 The Design of the Sentence-Generator Program
From a global perspective, the sentence-generator program (Section 5.3) consists
of a main loop in which sentences are generated a user-specified number of
times, until the user enters 0. The I/O and loop logic are simple enough to place
in the main function. The rest of the design involves generating a sentence.

string
int

syllablesIn

main

string
int

countSentences

string
int

countWords

string
int

countSyllables

3 ints
float

fleschIndex

3 ints
float

gradeLevel

6.2 Problem Solving with Top-Down Design [207]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here, you decompose the problem by simply following the grammar rules for
phrases. To generate a sentence, you generate a noun phrase followed by a verb
phrase, and so on. Each of the grammar rules poses a problem that is solved by a
single function. The top-down design flows out of the top-down structure of the
grammar. The structure chart for the sentence generator is shown in Figure 6.2.

[FIGURE 6.2] A structure chart for the sentence-generator program

The structure of a problem can often give you a pattern for designing the
structure of the program to solve it. In the case of the sentence generator,
the structure of the problem comes from the grammar rules, although they are
not explicit data structures in the program. In later chapters, we will see many
examples of program designs that also mirror the structure of the data being
processed.

The design of the sentence generator differs from the design of the text ana-
lyzer in one other important way. The functions in the text analyzer all receive
data from the main function via parameters or arguments. By contrast, the func-
tions in the sentence generator receive their data from a common pool of data
defined at the beginning of the module and shown at the bottom of Figure 6.2.
This pool of data could equally well have been set up within the main function and
passed as arguments to each of the other functions. However, this alternative also
would require passing arguments to functions that do not actually use them. For

string

string string

string

string

string
string

string
string

string

main

sentence

verbPhrase

prepositionalPhrasenounPhrase

articles nouns

Data Pool

prepositions verbs

CHAPTER 6 Design with Functions[208]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

example, prepositionalPhrase would have to receive arguments for articles
and nouns as well as prepositions, so that it could transmit the first two struc-
tures to nounPhrase. Using a common pool of data rather than function argu-
ments in this case simplifies the design and makes program maintenance easier.

6.2.3 The Design of the Doctor Program

At the top level, the designs of the doctor program (Section 5.5) and the sentence-
generator program are similar. Both programs have main loops that take a single
user input and print a result. The structure chart for the doctor program is
shown in Figure 6.3.

[FIGURE 6.3] A structure chart for the doctor program

The doctor program actually processes the input by responding to it as an
agent would in a conversation. Thus, the responsibility for responding is dele-
gated to the reply function. Note that the two functions main and reply have
distinct responsibilities. The job of main is to handle user interaction with the
program, whereas reply is responsible for implementing the “doctor logic” of
generating an appropriate reply. The assignment of roles and responsibilities to
different actors in a program is also called responsibility-driven design. The

string

string

string

string
string

string
string

main

hedges

Data Pool

replacements

qualifiers

reply

changePerson

6.2 Problem Solving with Top-Down Design [209]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

division of responsibility between functions that handle user interaction and func-
tions that handle data processing is one that we will see again and again in the
coming chapters.

If there were only one way to reply to the user, the problem of how to reply
would not be further decomposed. However, because there are at least two
options, reply is given the task of implementing the logic of choosing one of
them, and asks for help from other functions, such as changePerson, to carry
out each option.

Separating the logic of choosing a task from the process of carrying out a
task makes the program more maintainable. To add a new strategy for replying,
you add a new choice to the logic of reply, and then add the function that car-
ries out this option. If you want to alter the likelihood of a given option, you just
modify a line of code in reply.

The data flow scheme used in the doctor program combines the strategies
used in the text analyzer and the sentence generator. The doctor program’s func-
tions receive their data from two sources. The patient’s input string is passed as
an argument to reply and changePerson, whereas the qualifiers, hedges, and
pronoun replacements are looked up in a common pool of data defined at the
beginning of the module. Once again, the use of a common pool of data allows
the program to grow easily, as new data sources, such as the history list suggested
in Programming Project 5.10, are added to the program.

We conclude this section with an old adage that captures the essence of top-
down design. When in doubt about the solution to a problem, pass the buck to
someone else. If you choose the right agents, the buck ultimately stops at an
agent who has no doubt about how to solve the problem.

6.2 Exercises
1 Draw a structure chart for one of the solutions to the programming proj-

ects of Chapters 4 and 5. The program should include at least two func-
tion definitions other than the main function.

2 Describe the processes of top-down design and stepwise refinement.
Where does the design start, and how does it proceed?

CHAPTER 6 Design with Functions[210]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.3 Design with Recursive Functions
In top-down design, you decompose a complex problem into a set of simpler
problems and solve these with different functions. In some cases, you can decom-
pose a complex problem into smaller problems of exactly the same form. In these
cases, the subproblems can all be solved by using the same function. This design
strategy is called recursive design, and the resulting functions are called recursive
functions.

6.3.1 Defining a Recursive Function

A recursive function is a function that calls itself. To prevent a function from
repeating itself indefinitely, it must contain at least one selection statement. This
statement examines a condition called a base case to determine whether to stop
or to continue with another recursive step.

Let’s examine how to convert an iterative algorithm to a recursive function.
Here is a definition of a function displayRange that prints the numbers from a
lower bound to an upper bound:

defƒdisplayRange(lower,ƒupper):
ƒƒƒƒ“””Outputsƒtheƒnumbersƒfromƒlowerƒtoƒupper.”””
ƒƒƒƒwhileƒlowerƒ<=ƒupper:
ƒƒƒƒƒƒƒƒprint(lower)
ƒƒƒƒƒƒƒƒlowerƒ=ƒlowerƒ+ƒ1

How would we go about converting this function to a recursive one? First, you
should note two important facts:

1 The loop’s body continues execution while lower <= upper.

2 When the function executes, lower is incremented by 1, but upper
never changes.

The equivalent recursive function performs similar primitive operations, but
the loop is replaced with a selection statement, and the assignment statement is

6.3 Design with Recursive Functions [211]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

replaced with a recursive call of the function. Here is the code with these
changes:

defƒdisplayRange(lower,ƒupper):
ƒƒƒƒ“””Outputsƒtheƒnumbersƒfromƒlowerƒtoƒupper.”””
ƒƒƒƒifƒlowerƒ<=ƒupper:
ƒƒƒƒƒƒƒƒprint(lower)
ƒƒƒƒƒƒƒƒdisplayRange(lowerƒ+ƒ1,ƒupper)

Although the syntax and design of the two functions are different, the same algorith-
mic process is executed. Each call of the recursive function visits the next number in
the sequence, just as the loop does in the iterative version of the function.

Most recursive functions expect at least one argument. This data value is
used to test for the base case that ends the recursive process, and also is modified
in some way before each recursive step. The modification of the data value
should produce a new data value that allows the function to reach the base case
eventually. In the case of displayRange, the value of the argument lower is
incremented before each recursive call so that it eventually exceeds the value of
the argument upper.

Our next example is a recursive function that builds and returns a value.
Earlier in this chapter, we defined an iterative version of the sum function that
expects two arguments named lower and upper. The sum function computes
and returns the sum of the numbers between these two values. In the recursive
version, sum returns 0 if lower exceeds upper (the base case). Otherwise, the
function adds lower to the sum of lower + 1 and upper and returns this result.
Here is the code for this function:

defƒsum(lower,ƒupper):
ƒƒƒƒ“””Returnsƒtheƒsumƒofƒtheƒnumbersƒfromƒlowerƒtoƒupper.”””
ƒƒƒƒifƒlowerƒ>ƒupper:
ƒƒƒƒƒƒƒƒreturnƒ0
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒlowerƒ+ƒsum(lowerƒ+ƒ1,ƒupper)

The recursive call of sum adds up the numbers from lower + 1 through upper.
The function then adds lower to this result and returns it.

CHAPTER 6 Design with Functions[212]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.3.2 Tracing a Recursive Function

To get a better understanding of how recursion works, it is helpful to trace its
calls. Let’s do that for the recursive version of the sum function. You add an
argument for a margin of indentation and print statements to trace the
two arguments and the value returned on each call. The first statement on each
call computes the indentation, which is then used in printing the two arguments.
The value computed is also printed with this indentation just before each call
returns. Here is the code, followed by a session showing its use:

defƒsum(lower,ƒupper,ƒmargin):
ƒƒƒƒ“””Returnsƒtheƒsumƒofƒtheƒnumbersƒfromƒlowerƒtoƒupper,
ƒƒƒƒandƒoutputsƒaƒtraceƒofƒtheƒargumentsƒandƒreturnƒvalues
ƒƒƒƒonƒeachƒcall.”””
ƒƒƒƒblanksƒ=ƒ“ƒ“ƒ*ƒmargin
ƒƒƒƒprint(blanks,ƒlower,ƒupper)
ƒƒƒƒifƒlowerƒ>ƒupper:
ƒƒƒƒƒƒƒƒprint(blanks,ƒ0)
ƒƒƒƒƒƒƒƒreturnƒ0
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒresultƒ=ƒlowerƒ+ƒsum(lowerƒ+ƒ1,ƒupper,ƒmarginƒ+ƒ4)
ƒƒƒƒƒƒƒƒprint(blanks,ƒresult)
ƒƒƒƒƒƒƒƒreturnƒresult
ƒƒƒƒƒ
>>>ƒsum(1,ƒ4,ƒ0)
1ƒ4
ƒƒƒƒ2ƒ4
ƒƒƒƒƒƒƒƒ3ƒ4
ƒƒƒƒƒƒƒƒƒƒƒƒ4ƒ4
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ5ƒ4
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ0
ƒƒƒƒƒƒƒƒƒƒƒƒ4
ƒƒƒƒƒƒƒƒ7
ƒƒƒƒ9
10
10
>>>

The displayed pairs of arguments are indented further to the right as the calls of
sum proceed. Note that the value of lower increases by 1 on each call, whereas
the value of upper stays the same. The final call of sum returns 0. As the recur-
sion unwinds, each value returned is aligned with the arguments above it and
increases by the current value of lower. This type of tracing can be a useful
debugging tool for recursive functions.

6.3 Design with Recursive Functions [213]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.3.3 Using Recursive Definitions to Construct Recursive
Functions

Recursive functions are frequently used to design algorithms for computing values
that have a recursive definition. A recursive definition consists of equations that
state what a value is for one or more base cases and one or more recursive cases.
For example, the Fibonacci sequence is a series of values with a recursive defini-
tion. The first and second numbers in the Fibonacci sequence are 1. Thereafter,
each number in the sequence is the sum of its two predecessors, as follows:

1ƒ1ƒ2ƒ3ƒ5ƒ8ƒ13ƒ.ƒ.ƒ.

More formally, a recursive definition of the nth Fibonacci number is the
following:

Fib(n)ƒ=ƒ1,ƒwhenƒnƒ=ƒ1ƒorƒnƒ=ƒ2
Fib(n)ƒ=ƒFib(nƒ–ƒ1)ƒ+ƒFib(nƒ–ƒ2),ƒforƒallƒnƒ>ƒ2

Given this definition, you can construct a recursive function that computes and
returns the nth Fibonacci number. Here it is:

ƒdefƒfib(n):
ƒƒƒƒƒ“””ReturnsƒtheƒnthƒFibonacciƒnumber.”””
ƒƒƒƒƒifƒnƒ<ƒ3:
ƒƒƒƒƒƒƒƒƒreturnƒ1
ƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒreturnƒfib(nƒ–ƒ1)ƒ+ƒfib(nƒ–ƒ2)

Note that the base case as well as the two recursive steps return values to
the caller.

6.3.4 Recursion in Sentence Structure

Recursive solutions can often flow from the structure of a problem. For example,
the structure of sentences in a language can be highly recursive. A noun phrase
(such as “the ball”) can be modified by a prepositional phrase (such as “on the

CHAPTER 6 Design with Functions[214]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

bench”), which also contains another noun phrase. If you use this modified version
of the noun phrase rule in the sentence generator (Section 5.3), the nounPhrase
function would call the prepositionalPhrase function, which in turn calls
nounPhrase again. This phenomenon is known as indirect recursion. To keep
this process from going on forever, nounPhrase must also have the option to not
generate a prepositional phrase. Here is a statement of the modified rule, which
expresses an optional phrase within the square brackets:

Nounƒphraseƒ=ƒArticleƒNounƒ[Prepositionalƒphrase]

The code for a revised nounPhrase function generates a modifying prepositional
phrase approximately 25% of the time:

defƒnounPhrase():
ƒƒƒƒ“””Returnsƒaƒnounƒphrase,ƒwhichƒisƒanƒarticleƒfollowed
ƒƒƒƒbyƒaƒnounƒandƒanƒoptionalƒprepositionalƒphrase.”””
ƒƒƒƒphraseƒ=ƒrandom.choice(articles)ƒ+ƒ“ƒ“ƒ+ƒrandom.choice(nouns)
ƒƒƒƒprobƒ=ƒrandom.randint(1,ƒ4)
ƒƒƒƒifƒprobƒ==ƒ1:
ƒƒƒƒƒƒƒƒreturnƒphraseƒ+ƒ“ƒ“ƒ+ƒprepositionalPhrase()
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒphrase

You can use a similar strategy to generate sentences that consist of two or more
independent clauses connected by conjunctions, such as “One programmer uses
recursion and another programmer uses loops.”

6.3.5 Infinite Recursion

Recursive functions tend to be simpler than the corresponding loops, but still
require thorough testing. One design error that might trip up a programmer
occurs when the function can (theoretically) continue executing forever, a situa-
tion known as infinite recursion. Infinite recursion arises when the programmer
fails to specify the base case or to reduce the size of the problem in a way that
terminates the recursive process. In fact, the Python virtual machine eventually

6.3 Design with Recursive Functions [215]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

runs out of memory resources to manage the process, so it halts execution with
an error message. The next session defines a function that leads to this result:

>>>ƒdefƒrunForever(n):
ƒƒƒƒƒƒƒifƒnƒ>ƒ0:
ƒƒƒƒƒƒƒƒƒƒrunForever(n)
ƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒrunForever(nƒ-ƒ1)
ƒƒƒƒ
>>>ƒrunForever(1)
Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<stdin>”,ƒlineƒ1,ƒinƒ<module>
ƒƒFileƒ“<stdin>”,ƒlineƒ3,ƒinƒrunForever
RuntimeError:ƒmaximumƒrecursionƒdepthƒexceeded
>>>

The Python virtual machine keeps calling runForever(1) until there is no
memory left to support another recursive call. Unlike an infinite loop, an infinite
recursion eventually halts execution with an error message.

6.3.6 The Costs and Benefits of Recursion

Although recursive solutions are often more natural and elegant than their itera-
tive counterparts, they come with a cost. The run-time system on a real computer,
such as the Python virtual machine, must devote some overhead to recursive func-
tion calls. At program startup, the PVM reserves an area of memory named a call
stack. For each call of a function, the PVM must allocate on the call stack a small
chunk of memory called a stack frame. In this type of storage, the system places
the values of the arguments and the return address for the particular function call.
Space for the function call’s return value is also reserved in its stack frame. When a
call returns or completes its execution, the return address is used to locate the next
instruction in the caller’s code, and the memory for the stack frame is deallocated.
The stack frames for the process generated by displayRange(1, 3) are shown
in Figure 6.4. The frames in the figure include storage for the function’s argu-
ments only.

CHAPTER 6 Design with Functions[216]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 6.4] The stack frames for displayRange(1, 3)

Although this sounds like a complex process, the PVM handles it easily.
However, when a function invokes hundreds or even thousands of recursive calls,
the amount of extra resources required, both in processing time and in memory
usage, can add up to a significant performance hit. When, because of a design
error, the recursion is infinite, the stack frames are added until the PVM runs out
of memory, which halts the program with an error message.

By contrast, the same problem can often be solved using a loop with a con-
stant amount of memory, in the form of two or three variables. Because the
amount of memory needed for the loop does not grow with the size of the prob-
lem’s data set, the amount of processing time for managing this memory does not
grow, either.

Despite these words of caution, we encourage you to consider developing
recursive solutions when they seem natural, particularly when the problems
themselves have a recursive structure. Testing can reveal performance bottlenecks
that might lead you to change the design to an iterative one. Smart compilers
also exist that can optimize some recursive functions by translating them to itera-
tive machine code. Finally, as we will see later in this book, some problems with
an iterative solution must still use an explicit stack-like data structure, so a recur-
sive solution might be simpler and no less efficient.

Top of the stack

Call 4
lower
upper

lower
upper

lower
upper

lower
upper

Call 3

Call 2

Call 1

4

3

3

3

2

3

1

3

6.3 Design with Recursive Functions [217]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recursion is a very powerful design technique that is used throughout com-
puter science. We will return to it in later chapters.

6.3 Exercises
1 In what way is a recursive design different from top-down design?

2 The factorial of a positive integer n, fact(n), is defined recursively as
follows:

fact(n)ƒ=ƒ1,ƒwhenƒnƒ=ƒ1
fact(n)ƒ=ƒnƒ*ƒfact(nƒ–ƒ1),ƒotherwise

Define a recursive function fact that returns the factorial of a given
positive integer.

3 Describe the costs and benefits of defining and using a recursive function.

4 Explain what happens when the following recursive function is called
with the value 4 as an argument:

defƒexample(n):
ƒƒƒƒifƒnƒ>ƒ0:
ƒƒƒƒƒƒƒƒprint(n)
ƒƒƒƒƒƒƒƒexample(nƒ-ƒ1)

5 Explain what happens when the following recursive function is called
with the value 4 as an argument:

defƒexample(n):
ƒƒƒƒƒifƒnƒ>ƒ0:
ƒƒƒƒƒƒƒƒƒƒprint(n)
ƒƒƒƒƒƒƒƒƒƒexample(n)
ƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒexample(nƒ–ƒ1)

CHAPTER 6 Design with Functions[218]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6 Explain what happens when the following recursive function is called
with the values “hello” and 0 as arguments:

defƒexample(aString,ƒindex):
ƒƒƒƒifƒindexƒ<ƒlen(aString):
ƒƒƒƒƒƒƒƒexample(aString,ƒindexƒ+ƒ1)
ƒƒƒƒƒƒƒƒprint(aString[index],ƒend="")

7 Explain what happens when the following recursive function is called
with the values “hello” and 0 as arguments:

defƒexample(aString,ƒindex):
ƒƒƒƒifƒindexƒ==ƒlen(aString):
ƒƒƒƒƒƒƒƒreturnƒ“”
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒaString[index]ƒ+ƒexample(aString,ƒindexƒ+ƒ1)

6.4 Case Study: Gathering Information from a
File System
Modern file systems come with a graphical browser, such as Microsoft’s Windows
Explorer or Apple’s Finder. These browsers allow the user to navigate directories
by selecting icons of folders, opening these by double-clicking, and selecting
commands from a drop-down menu. Information on a directory or a file, such as
the size and contents, is also easily obtained in several ways.

Users of terminal-based user interfaces must rely on entering the appropriate
commands at the terminal prompt to perform all of these functions. In this case
study, we develop a simple terminal-based file system navigator that provides
some information about the system. In the process, we will have an opportunity
to exercise some skills in top-down design and recursive design.

6.4.1 Request

Write a program that allows the user to obtain information about the file system.

6.4 Case Study: Gathering Information from a File System [219]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 6 Design with Functions[220]

6.4.2 Analysis

File systems are tree-like structures, as shown in Figure 6.5.

[FIGURE 6.5] The structure of a file system

At the top of the tree is the root directory. Under the root are files and subdirec-
tories. Each directory in the system except the root lies within another directory
called its parent. For example, in Figure 6.5, the root directory contains four files
and two subdirectories. On a UNIX-based file system, the path to a given file or
directory in the system is a string that starts with the / (forward slash) symbol (the
root), followed by the names of the directories traversed to reach the file or direc-
tory. The / (forward slash) symbol also separates each name in the path. Thus,
the path to the file for this chapter on Ken’s laptop might be the following:

/Users/KenLaptop/Book/Chapter6/Chapter6.doc

On a Windows-based file system, the \ symbol is used instead of the / symbol.
The program we will design in this case study is named filesys.py. It pro-

vides some basic browsing capability, as well as options that allow you to search for a
given filename and find statistics on the number of files and their size in a directory.

D

D D
F F

F F

F F

F F

D
F F

D = directory

F = file

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

At program startup, the current working directory (CWD) is the directory contain-
ing the Python program file. The program should display the path of the CWD, a
menu of command options, and a prompt for a command, as shown in Figure 6.6.

[FIGURE 6.6] The command menu of the filesys program

When the user enters a command number, the program runs the command,
which may display further information, and the program displays the CWD and
command menu again. An unrecognized command produces an error message,
and command number 7 quits the program. Table 6.1 summarizes what the com-
mands do.

[TABLE 6.1] The commands in the filesys program

COMMAND WHAT IT DOES

List the current Prints the names of the files and directories in the
working directory current working directory (CWD).

Move up If the CWD is not the root, move to the parent
directory and make it the CWD.

Move down Prompts the user for a directory name. If the name is
not in the CWD, print an error message; otherwise,
move to this directory and make it the CWD.

Number of files in Prints the number of files in the CWD and all of its
the directory subdirectories.

Size of the directory Prints the total number of bytes used by the files in
in bytes the CWD and all of its subdirectories.

Search for a filename Prompts the user for a search string. Prints a list of
all the filenames (with their paths) that contain the
search string, or “String not found.”

Quit the program Prints a signoff message and exits the program.

/Users/KenLaptop/Book/Chapter6
1 List the current directory
2 Move up
3 Move down
4 Number of files in the directory
5 Size of the directory in bytes
6 Search for a filename
7 Quit the program
Enter a number:

6.4 Case Study: Gathering Information from a File System [221]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 6 Design with Functions[222]

6.4.3 Design

You can structure the program according to two sets of tasks: those concerned
with implementing a menu-driven command processor, and those concerned with
executing the commands. The first group of operations includes the main func-
tion. In the following discussion, we work top-down and begin by examining the
first group of operations.

As in many of the programs we have examined recently in this book, the
main function contains a driver loop. This loop prints the CWD and the menu,
calls other functions to input and run the commands, and breaks with a signoff
message when the command is to quit. Here is the pseudocode:

functionƒmain()
ƒƒƒƒwhileƒTrue
ƒƒƒƒƒƒƒƒprint(os.getcwd())
ƒƒƒƒƒƒƒƒprint(MENU)
ƒƒƒƒƒƒƒƒSetƒcommandƒtoƒacceptCommand()
ƒƒƒƒƒƒƒƒrunCommand(command)
ƒƒƒƒƒƒƒƒifƒcommandƒ==ƒQUIT
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“Haveƒaƒniceƒday!”)
ƒƒƒƒƒƒƒƒƒƒƒƒbreak

Note that MENU and QUIT are variables initialized to the appropriate strings
before main is defined. The acceptCommand function loops until the user enters
a number in the range of the valid commands. These commands are specified in a
tuple named COMMANDS that is also initialized before the function is defined. The
function thus always returns a valid command number.

The runCommand function expects a valid command number as an argument.
The function uses a multi-way selection statement to select and run the operation
corresponding to the command number. When the result of an operation is
returned, it is printed with the appropriate labeling.

That’s it for the menu-driven command processor. Although there are other
possible approaches, this design makes it possible to add new commands to the
program fairly easily.

The operations required to list the contents of the CWD, move up, and
move down are fairly simple and need no real design work. They involve the use
of functions in the os and os.path modules to list the directory, change it, and
test a string to see if it is the name of a directory. The implementation shows the
details.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.4 Case Study: Gathering Information from a File System [223]

The other three operations all involve traversals of the directory structure in
the CWD. During these traversals, every file and every subdirectory are visited.
Directory structure is in fact recursive: each directory can contain files (base
cases) and other directories (recursive steps). Thus, we can develop a recursive
design for each operation.

The countFiles function expects the path of a directory as an argument
and returns the number of files in this directory and all of its subdirectories. If
there are no subdirectories in the argument directory, the function just counts the
files and returns this value. If there is a subdirectory, the function moves down to
it, counts the files (recursively) in it, adds the result to its total, and then moves
back up to the parent directory. Here is the pseudocode:

functionƒcountFiles(path)
ƒƒƒƒSetƒcountƒtoƒ0
ƒƒƒƒSetƒlystƒtoƒos.listdir(path)
ƒƒƒƒforƒelementƒinƒlyst
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element)
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒ1
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒcountFiles(os.getcwd())
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒƒreturnƒcount

The countBytes function expects a path as an argument and returns the total
number of bytes in that directory and all of its subdirectories. Its design is quite
similar to countFiles.

The findFiles function accumulates a list of the filenames, including their
paths, that contain a given target string, and returns this list. Its structure is similar
to the other two recursive functions, but the findFiles function builds a list
rather than a number. When the function encounters a target file, its name is
appended to the path, and then the result string is appended to the list of files. We
use the module variable os.sep to obtain the appropriate slash symbol (/ or \) on
the current file system. When the function encounters a directory, it moves to that
directory, calls itself with the new CWD, and extends the files list with the result-
ing list. Here is the pseudocode:

functionƒfindFiles(target,ƒpath)
ƒƒƒƒfilesƒ=ƒ[]
ƒƒƒƒlystƒ=ƒos.listdir(path)

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 6 Design with Functions[224]

ƒƒƒƒforƒelementƒinƒlyst
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element):
ƒƒƒƒƒƒƒƒƒƒƒƒifƒtargetƒinƒelement:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfiles.append(pathƒ+ƒos.sepƒ+ƒelement)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒfiles.extend(findFiles(target,ƒos.getcwd()))
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒreturnƒfiles

The trick with recursive design is to spot elements in a structure that can be
treated as base cases (such as files) and other elements that can be treated as
recursive steps (such as directories). The recursive algorithms for processing
these structures flow naturally from these insights.

6.4.4 Implementation (Coding)

Near the beginning of the program code, we find the important variables, with
the functions listed in a top-down order.

“””
Program:ƒfilesys.py
Author:ƒKen

Providesƒaƒmenu-drivenƒtoolƒforƒnavigatingƒaƒfileƒsystem
andƒgatheringƒinformationƒonƒfiles.
“””

importƒos,ƒos.path

QUITƒ=ƒ'7'

COMMANDSƒ=ƒ('1',ƒ'2',ƒ'3',ƒ'4',ƒ'5',ƒ'6',ƒ'7')

MENUƒ=ƒ“””1ƒƒƒListƒtheƒcurrentƒdirectory
2ƒƒƒMoveƒup
3ƒƒƒMoveƒdown
4ƒƒƒNumberƒofƒfilesƒinƒtheƒdirectory
5ƒƒƒSizeƒofƒtheƒdirectoryƒinƒbytes
6ƒƒƒSearchƒforƒaƒfilename
7ƒƒƒQuitƒtheƒprogram”””

defƒmain():
ƒƒƒƒwhileƒTrue:

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.4 Case Study: Gathering Information from a File System [225]

ƒƒƒƒƒƒƒƒprint(os.getcwd())
ƒƒƒƒƒƒƒƒprint(MENU)
ƒƒƒƒƒƒƒƒcommandƒ=ƒacceptCommand()
ƒƒƒƒƒƒƒƒrunCommand(command)
ƒƒƒƒƒƒƒƒifƒcommandƒ==ƒQUIT:
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“Haveƒaƒniceƒday!”)
ƒƒƒƒƒƒƒƒƒƒƒƒbreak

defƒacceptCommand():
ƒƒƒƒ“””Inputsƒandƒreturnsƒaƒlegitimateƒcommandƒnumber.”””
ƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒcommandƒ=ƒinput(“Enterƒaƒnumber:ƒ“)
ƒƒƒƒƒƒƒƒifƒnotƒcommandƒinƒCOMMANDS:
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“Error:ƒcommandƒnotƒrecognized”)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒcommand

defƒrunCommand(command):
ƒƒƒƒ“””Selectsƒandƒrunsƒaƒcommand.”””
ƒƒƒƒifƒcommandƒ==ƒ'1':
ƒƒƒƒƒƒƒƒlistCurrentDir(os.getcwd())
ƒƒƒƒelifƒcommandƒ==ƒ'2':
ƒƒƒƒƒƒƒƒmoveUp()
ƒƒƒƒelifƒcommandƒ==ƒ'3':
ƒƒƒƒƒƒƒƒmoveDown(os.getcwd())
ƒƒƒƒelifƒcommandƒ==ƒ'4':
ƒƒƒƒƒƒƒƒprint(“Theƒtotalƒnumberƒofƒfilesƒis”,ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountFiles(os.getcwd()))
ƒƒƒƒelifƒcommandƒ==ƒ'5':
ƒƒƒƒƒƒƒƒprint(“Theƒtotalƒnumberƒofƒbytesƒis”,ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountBytes(os.getcwd()))
ƒƒƒƒelifƒcommandƒ==ƒ'6':
ƒƒƒƒƒƒƒƒtargetƒ=ƒinput(“Enterƒtheƒsearchƒstring:ƒ“)
ƒƒƒƒƒƒƒƒfileListƒ=ƒfindFiles(target,ƒos.getcwd())
ƒƒƒƒƒƒƒƒifƒnotƒfileList:
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“Stringƒnotƒfound”)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒforƒfƒinƒfileList:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint(f)

defƒlistCurrentDir(dirName):
ƒƒƒƒ“””Printsƒaƒlistƒofƒtheƒcwd'sƒcontents.”””
ƒƒƒƒlystƒ=ƒos.listdir(dirName)
ƒƒƒƒforƒelementƒinƒlyst:ƒprint(element)

defƒmoveUp():
ƒƒƒƒ“””Movesƒupƒtoƒtheƒparentƒdirectory.”””
ƒƒƒƒos.chdir(“..”)

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 6 Design with Functions[226]

defƒmoveDown(currentDir):
ƒƒƒƒ“””Movesƒdownƒtoƒtheƒnamedƒsubdirectoryƒifƒitƒexists.”””
ƒƒƒƒnewDirƒ=ƒinput(“Enterƒtheƒdirectoryƒname:ƒ“)
ƒƒƒƒifƒos.path.exists(currentDirƒ+ƒos.sepƒ+ƒnewDir)ƒandƒ\
ƒƒƒƒƒƒƒos.path.isdir(newDir):
ƒƒƒƒƒƒƒƒos.chdir(newDir)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprint(“ERROR:ƒnoƒsuchƒname”)

defƒcountFiles(path):
ƒƒƒƒ“””Returnsƒtheƒnumberƒofƒfilesƒinƒtheƒcwdƒand
ƒƒƒƒallƒitsƒsubdirectories.”””
ƒƒƒƒcountƒ=ƒ0
ƒƒƒƒlystƒ=ƒos.listdir(path)
ƒƒƒƒforƒelementƒinƒlyst:
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element):
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒ1
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒcountFiles(os.getcwd())
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒƒreturnƒcount

defƒcountBytes(path):
ƒƒƒƒ“””Returnsƒtheƒnumberƒofƒbytesƒinƒtheƒcwdƒand
ƒƒƒƒallƒitsƒsubdirectories.”””
ƒƒƒƒcountƒ=ƒ0
ƒƒƒƒlystƒ=ƒos.listdir(path)
ƒƒƒƒforƒelementƒinƒlyst:
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element):
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒos.path.getsize(element)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒcountBytes(os.getcwd())
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒƒreturnƒcount

defƒfindFiles(target,ƒpath):
ƒƒƒƒ“””Returnsƒaƒlistƒofƒtheƒfilenamesƒthatƒcontain
ƒƒƒƒtheƒtargetƒstringƒinƒtheƒcwdƒandƒallƒitsƒsubdirectories.”””
ƒƒƒƒfilesƒ=ƒ[]
ƒƒƒƒlystƒ=ƒos.listdir(path)
ƒƒƒƒforƒelementƒinƒlyst:
ƒƒƒƒƒƒƒƒifƒos.path.isfile(element):
ƒƒƒƒƒƒƒƒƒƒƒƒifƒtargetƒinƒelement:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfiles.append(pathƒ+ƒos.sepƒ+ƒelement)

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.5 Managing a Program’s Namespace [227]

ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(element)
ƒƒƒƒƒƒƒƒƒƒƒƒfiles.extend(findFiles(target,ƒos.getcwd()))
ƒƒƒƒƒƒƒƒƒƒƒƒos.chdir(“..”)
ƒƒƒƒreturnƒfiles

main()

6.5 Managing a Program’s Namespace
Throughout this book, we have tried to behave like good authors by choosing our
words (the code used in our programs) carefully. We have taken care to select
variable names that reflect their purpose in a program or the character of the
objects in a given problem domain. Of course, these variable names are meaning-
ful only to us, the human programmers. To the computer, the only “meaning” of a
variable name is the value to which it happens to refer at any given point in pro-
gram execution. The computer can keep track of these values easily. However, a
programmer charged with editing and maintaining code can occasionally get lost
as a program gets larger and more complex. In this section, you learn more about
how a program’s namespace—that is, the set of its variables and their values—is
structured and how you can control it via good design principles.

6.5.1 Module Variables, Parameters, and Temporary Variables

We begin by analyzing the namespace of the doctor program of Case Study 5.5.
This program includes many variable names; for the purposes of this example,
we will focus on the code for the variable replacements and the function
changePerson.

replacementsƒ=ƒ{“I”:”you”,ƒ“me”:”you”,ƒ“my”:”your”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“we”:”you”,ƒ“us”:”you”,ƒ“mine”:”yours”}

defƒchangePerson(sentence):
ƒƒƒƒ“””Replacesƒfirstƒpersonƒpronounsƒwithƒsecondƒperson
ƒƒƒƒpronouns.”””
ƒƒƒƒwordsƒ=ƒsentence.split()
ƒƒƒƒreplyWordsƒ=ƒ[]
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒreplyWords.append(replacements.get(word,ƒword))
ƒƒƒƒreturnƒ“ƒ“.join(replyWords)ƒ

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This code appears in the file doctor.py, so its module name is doctor. The
names in this code fall into four categories, depending on where they are
introduced:

1 Module variables. The names replacements and changePerson are
introduced at the level of the module. Although replacements names a
dictionary and changePerson names a function, they are both consid-
ered variables. You can see the module variables of the doctor module
by importing it and entering dir(doctor) at a shell prompt. When
module variables are introduced in a program, they are immediately
given a value.

2 Parameters. The name sentence is a parameter of the function
changePerson. A parameter name behaves like a variable and is intro-
duced in a function or method header. The parameter does not receive a
value until the function is called.

3 Temporary variables. The names words, replyWords, and word are
introduced in the body of the function changePerson. Like module
variables, temporary variables receive their values as soon as they are
introduced.

4 Method names. The names split and join are introduced or defined
in the str type. As mentioned earlier, a method reference always uses an
object, in this case, a string, followed by a dot and the method name.

Our first simple programs contained module variables only. The use of func-
tion definitions brought parameters and temporary variables into play. We now
explore the significance of these distinctions.

6.5.2 Scope

In ordinary writing, the meaning of a word often depends on its surrounding
context. For example, in the sports section of the newspaper, the word “bat”
means a stick for hitting baseballs, whereas in a story about vampires it means a
flying mammal. In a program, the context that gives a name a meaning is called
its scope. In Python, a name’s scope is the area of program text in which the
name refers to a given value.

Let’s return to our example from the doctor program to determine the scope
of each variable. For reasons that will become clear in a moment, it will be easiest
if we work outward, starting with temporary variables first.

The scope of the temporary variables words, replyWords, and word is the
area of code in the body of the function changePerson, just below where each

CHAPTER 6 Design with Functions[228]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

variable is introduced. In general, the meanings of temporary variables are
restricted to the body of the functions in which they are introduced, and are
invisible elsewhere in a module. The restricted visibility of temporary variables
befits their role as temporary working storage for a function.

The scope of the parameter sentence is the entire body of the function
changePerson. Like temporary variables, parameters are invisible outside the
function definitions where they are introduced.

The scope of the module variables replacements and changePerson
includes the entire module below the point where the variables are introduced.
This includes the code nested in the body of the function changePerson. The
scope of these variables also includes the nested bodies of other function defini-
tions that occur earlier. This allows these variables to be referenced by any func-
tions, regardless of where they are defined in the module. For example, the
reply function, which calls changePerson, might be defined before
changePerson in the doctor module.

Although a Python function can reference a module variable for its value, it
cannot under normal circumstances assign a new value to a module variable.
When such an attempt is made, the PVM creates a new, temporary variable of
the same name within the function. The following script shows how this works:

xƒ=ƒ5

defƒf():
ƒƒƒƒxƒ=ƒ10ƒƒƒƒƒƒƒƒ#ƒAttemptƒtoƒresetƒx

f()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDoesƒtheƒtop-levelƒxƒchange?
print(x)ƒƒƒƒƒƒƒƒƒƒ#ƒNo,ƒthisƒdisplaysƒ5

When the function f is called, it does not assign 10 to the module variable x;
instead, it assigns 10 to a temporary variable x. In fact, once the temporary vari-
able is introduced, the module variable is no longer visible within function f. In
any case, the module variable’s value remains unchanged by the call. There is a
way to allow a function to modify a module variable, but in Chapter 8, we
explore a better way to manage common pools of data that require changes.

6.5.3 Lifetime

A computer program has two natures. On the one hand, a program is a piece of
text containing names that a human being can read for a meaning. Viewed from
this perspective, variables in a program have a scope that determines their visibility.

6.5 Managing a Program’s Namespace [229]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

On the other hand, a program describes a process that exists for a period of time
on a real computer. Viewed from this other perspective, a program’s variables
have another important property called a lifetime. A variable’s lifetime is the
period of time during program execution when the variable has memory storage
associated with it. When a variable comes into existence, storage is allocated for
it; when it goes out of existence, storage is reclaimed by the PVM.

Module variables come into existence when they are introduced via assign-
ment and generally exist for the lifetime of the program that introduces or
imports those module variables. Parameters and temporary variables come into
existence when they are bound to values during a function call, but go out of exis-
tence when the function call terminates.

The concept of lifetime explains the existence of two variables called x in our
last example session. The module variable x comes into existence before the tem-
porary variable x and survives the call of function f. During the call of f, storage
exists for both variables, so their values remain distinct. A similar mechanism for
managing the storage associated with the parameters of recursive function calls
was discussed in the previous section.

6.5.4 Default (Keyword) Arguments

A function’s arguments are one of its most important features. Arguments provide
the function’s caller with the means of transmitting information to the function.
Adding an argument or two to a function can increase its generality by extending
the range of situations in which the function can be used. However, programmers
often use a function in a restricted set of “essential” situations, in which the extra
arguments might be an annoyance. In these cases, the use of the extra arguments
should be optional for the caller of the function. When the function is called
without the extra arguments, it provides reasonable default values for those argu-
ments that produce the expected results.

For example, Python’s range function can be called with one, two, or three
arguments. When all three arguments are supplied, they indicate a lower bound,
an upper bound, and a step value. When only two arguments are given, the step
value defaults to 1. When a single argument is given, the step is assumed to be 1,
and the lower bound automatically is 0.

The programmer can also specify optional arguments with default values in
any function definition. Here is the syntax:

defƒ<functionƒname>(<requiredƒargs>,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ<key-1>ƒ=ƒ<val-1>,ƒ…ƒ<key-n>ƒ=ƒ<val-n>)

CHAPTER 6 Design with Functions[230]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The required arguments are listed first in the function header. These are the ones
that are “essential” for the use of the function by any caller. Following the
required arguments are one or more default or keyword arguments. These are
assignments of values to the argument names. When the function is called with-
out these arguments, their default values are automatically assigned to them.
When the function is called with these arguments, the default values are overrid-
den by the caller’s values.

For example, suppose we define a function, repToInt, to convert string rep-
resentations of numbers in a given base to their integer values (see Chapter 4).
The function expects a string representation of the number and an integer base as
arguments. Here is the code:

defƒrepToInt(repString,ƒbase):
ƒƒƒƒ“””ConvertsƒtheƒrepStringƒtoƒanƒintƒinƒtheƒbase
ƒƒƒƒandƒreturnsƒthisƒint.”””
ƒƒƒƒdecimalƒ=ƒ0
ƒƒƒƒexponentƒ=ƒlen(repString)ƒ-ƒ1
ƒƒƒƒforƒdigitƒinƒrepString:
ƒƒƒƒƒƒƒƒdecimalƒ=ƒdecimalƒ+ƒint(digit)ƒ*ƒbaseƒ**ƒexponent
ƒƒƒƒƒƒƒƒexponentƒ-=ƒ1
ƒƒƒƒreturnƒdecimal

As written, this function can be used to convert string representations in bases 2
through 10 to integers. But suppose that 75% of the time, programmers use the
repToInt function to convert binary numbers to decimal form. If we alter the
function header to provide a default of 2 for base, those programmers will be
very grateful. Here is the proposed change, followed by a session that shows its
impact:

defƒrepToInt(repString,ƒbaseƒ=ƒ2):
ƒ
>>>ƒrepToInt(“10”,ƒ10)
10
>>>ƒrepToInt(“10”,ƒ8)ƒƒƒ#ƒOverrideƒtheƒdefaultƒtoƒhere
8
>>>ƒrepToInt(“10”,ƒ2)ƒƒƒ#ƒSameƒasƒtheƒdefault,ƒnotƒnecessaryƒ
2
>>>ƒrepToInt(“10”)ƒƒƒƒƒƒ#ƒBaseƒ2ƒbyƒdefault
2
>>>

6.5 Managing a Program’s Namespace [231]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When using functions that have default arguments, you must provide the
required arguments and place them in the same positions as they are in the
function definition’s header. The default arguments that follow can be supplied in
two ways:

1 By position. In this case, the values are supplied in the order in which
the arguments occur in the function header. Defaults are used for any
arguments that are omitted.

2 By keyword. In this case, one or more values can be supplied in any
order, using the syntax <key> = <value> in the function call.

Here is an example of a function with one required argument and two default
arguments and a session that shows these options:

defƒexample(required,ƒoption1ƒ=ƒ2,ƒoption2ƒ=ƒ3):
ƒƒƒƒprint(required,ƒoption1,ƒoption2)

>>>ƒexample(1)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒUseƒallƒtheƒdefaults
1ƒ2ƒ3
>>>ƒexample(1,ƒ10)ƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒOverrideƒtheƒfirstƒdefault
1ƒ10ƒ3
>>>ƒexample(1,ƒ10,ƒ20)ƒƒƒƒƒƒƒƒƒ#ƒOverrideƒallƒtheƒdefaults
1ƒ10ƒ20
>>>ƒexample(1,ƒoption2ƒ=ƒ20)ƒƒƒ#ƒOverrideƒtheƒsecondƒdefault
1ƒ2ƒ20
>>>ƒexample(1,ƒoption2ƒ=ƒ20,ƒoption1ƒ=ƒ10)ƒƒ#ƒNoteƒtheƒorder
1ƒ10ƒ20
>>>

Default arguments are a powerful way to simplify design and make functions
more general.

6.5 Exercises
1 Where are module variables, parameters, and temporary variables intro-

duced and initialized in a program?

2 What is the scope of a variable? Give an example.

3 What is the lifetime of a variable? Give an example.

CHAPTER 6 Design with Functions[232]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.6 Higher-Order Functions (Advanced Topic)
Like any skill, a designer’s knack for spotting the need for a function is developed
with practice. As you gain experience in writing programs, you will learn to spot
common and redundant patterns in the code. One pattern that occurs again and
again is the application of a function to a set of values to produce some results.
Here are some examples:

� All of the numbers in a text file must be converted to integers or floats
after they are input.

� All of the first-person pronouns in a list of words must be changed to the
corresponding second-person pronouns in the doctor program.

� Only scores above the average are kept in a list of grades.
� The sum of the squares of a list of numbers is computed.

In this section, we learn how to capture these patterns in a new abstraction
called a higher-order function. For these patterns, a higher-order function expects
a function and a set of data values as arguments. The argument function is applied
to each data value, and a set of results or a single data value is returned. A higher-
order function separates the task of transforming each data value from the logic of
accumulating the results.

6.6.1 Functions as First-Class Data Objects
In Python, functions can be treated as first-class data objects. This means that
they can be assigned to variables (as they are when they are defined), passed as
arguments to other functions, returned as the values of other functions, and
stored in data structures such as lists and dictionaries. The next session shows
some of the simpler possibilities:

>>>ƒabsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒSeeƒwhatƒaƒfunctionƒlooksƒlike
<built-inƒfunctionƒabs>
>>>ƒimportƒmath
>>>ƒmath.sqrt
<built-inƒfunctionƒsqrt>
>>>ƒfƒ=ƒabsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒfƒisƒanƒaliasƒforƒabs
>>>ƒfƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒEvaluateƒf
<built-inƒfunctionƒabs>
>>>ƒf(-4)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒApplyƒfƒtoƒanƒargument
4

continued

6.6 Higher-Order Functions (Advanced Topic) [233]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 6 Design with Functions[234]

>>>ƒfuncsƒ=ƒ[abs,ƒmath.sqrt]ƒƒƒƒ#ƒPutƒtheƒfunctionsƒinƒaƒlist
>>>ƒfuncs
[<built-inƒfunctionƒabs>,ƒ<built-inƒfunctionƒsqrt>]
>>>ƒfuncs[1](2)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒApplyƒmath.sqrtƒtoƒ2
1.4142135623730951
>>>ƒ

Passing a function as an argument to another function is no different from
passing any other datum. The function argument is first evaluated, producing the
function itself, and then the parameter name is bound to this value. The function
can then be applied to its own argument with the usual syntax. Here is an exam-
ple, which simply returns the result of an application of any single-argument
function to a datum:

>>>ƒdefƒexample(functionArg,ƒdataArg):
ƒƒƒƒƒƒƒreturnƒfunctionArg(dataArg)

>>>ƒexample(abs,ƒ-4)
4
>>>ƒexample(math.sqrt,ƒ2)
1.4142135623730951
>>>ƒ

6.6.2 Mapping

The first type of useful higher-order function to consider is called a mapping.
This process applies a function to each value in a sequence (such as a list, a
tuple, or a string) and returns a new sequence of the results. Python includes a
map function for this purpose. Suppose we have a list named words that con-
tains strings that represent integers. We want to replace each string with the

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

corresponding integer value. The map function easily accomplishes this, as the
next session shows:

>>>ƒwordsƒ=ƒ[“231”,ƒ“20”,ƒ“-45”,ƒ“99”]
>>>ƒmap(int,ƒwords)ƒƒƒƒƒƒƒƒƒƒƒ#ƒConvertƒallƒstringsƒtoƒints
<mapƒobjectƒatƒ0x14cbd90>
>>>ƒwordsƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒOriginalƒlistƒisƒnotƒchanged
['231',ƒ'20',ƒ'-45',ƒ'99']
>>>ƒwordsƒ=ƒlist(map(int,ƒwords))ƒƒƒ#ƒResetƒvariableƒtoƒchangeƒit
>>>ƒwords
[231,ƒ20,ƒ-45,ƒ99]
>>>ƒ

Note that map builds and returns a new map object, which we feed to the list
function to view the results. We could have written a for loop that does the same
thing, but that would entail several lines of code instead of the single line of code
required for the map function. Another reason to use the map function is that, in
programs that use lists, we might need to perform this task many times; relying
on a for loop for each instance would entail multiple sections of redundant code.
Moreover, the conversion to a list is only necessary for viewing the results; a map
object can be passed directly to another map function to perform further transfor-
mations of the data.

Another good example of a mapping pattern is in the changePerson func-
tion of the doctor program. This function builds a new list of words with the
pronouns replaced.

defƒchangePerson(sentence):
ƒƒƒƒ“””Replacesƒfirstƒpersonƒpronounsƒwithƒsecondƒperson
ƒƒƒƒpronouns.”””
ƒƒƒƒwordsƒ=ƒsentence.split()
ƒƒƒƒreplyWordsƒ=ƒ[]
ƒƒƒƒforƒwordƒinƒwords:
ƒƒƒƒƒƒƒƒreplyWords.append(replacements.get(word,ƒword))
ƒƒƒƒreturnƒ“ƒ“.join(replyWords)ƒ

6.6 Higher-Order Functions (Advanced Topic) [235]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

We can simplify the logic by defining an auxiliary function that is then mapped
onto the list of words, as follows:

defƒchangePerson(sentence):
ƒƒƒƒ“””Replacesƒfirstƒpersonƒpronounsƒwithƒsecondƒperson
ƒƒƒƒpronouns.”””

ƒƒƒƒdefƒgetWord(word):ƒ
ƒƒƒƒƒƒƒƒreplacements.get(word,ƒword)

ƒƒƒƒreturnƒ“ƒ“.join(map(getWord,ƒsentence.split())

Note that the definition of the function getWord is nested within the function
changePerson. Furthermore, the map object is passed directly to the string
method join without converting it to a list.

As you can see, the map function is extremely useful; any time we can elimi-
nate a loop from a program, it’s a win.

6.6.3 Filtering

A second type of higher-order function is called a filtering. In this process, a
function called a predicate is applied to each value in a list. If the predicate
returns True, the value passes the test and is added to a filter object (similar to a
map object). Otherwise, the value is dropped from consideration. The process is a
bit like pouring hot water into a filter basket with coffee. The good stuff to drink
comes into the cup with the water, and the coffee grounds left behind can be
thrown on the garden.

Python includes a filter function that is used in the next example to pro-
duce a list of the odd numbers in another list:

>>>ƒdefƒodd(n):ƒreturnƒnƒ%ƒ2ƒ==ƒ1

>>>ƒlist(filter(odd,ƒrange(10)))
[1,ƒ3,ƒ5,ƒ7,ƒ9]
>>>ƒ

As with the function map, the result of the function filter can be passed
directly to another call of filter or map. List processing often consists of several
mappings and filterings of data, which can be expressed as a series of nested func-
tion calls.

CHAPTER 6 Design with Functions[236]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6.6.4 Reducing

Our final example of a higher-order function is called a reducing. Here we take a
list of values and repeatedly apply a function to accumulate a single data value. A
summation is a good example of this process. The first value is added to the sec-
ond value, then the sum is added to the third value, and so on, until the sum of
all the values is produced.

The Python functools module includes a reduce function that expects a
function of two arguments and a list of values. The reduce function returns the
result of applying the function as just described. The following example shows
reduce used twice—once to produce a sum and once to produce a product:

>>>ƒfromƒfunctoolsƒimportƒreduceƒ
>>>ƒdefƒadd(x,ƒy):ƒreturnƒxƒ+ƒy

>>>ƒdefƒmultiply(x,ƒy):ƒreturnƒxƒ*ƒy

>>>ƒdataƒ=ƒ[1,ƒ2,ƒ3,ƒ4]
>>>ƒreduce(add,ƒdata)
10
>>>ƒreduce(multiply,ƒdata)
24
>>>ƒ

6.6.5 Using lambda to Create Anonymous Functions

Although the use of higher-order functions can really simplify code, it is some-
what onerous to have to define new functions to supply as arguments to the
higher-order functions. For example, the functions add and multiply will never
be used anywhere else in a program, because the operators + and * are already
available. It would be convenient if we could define a function “on the fly,” right
at the point of the call of a higher-order function, especially if it is not needed
anywhere else.

Python includes a mechanism called lambda that allows the programmer to
create functions in this manner. A lambda is an anonymous function. It has no
name of its own, but contains the names of its arguments as well as a single
expression. When the lambda is applied to its arguments, its expression is evalu-
ated, and its value is returned.

6.6 Higher-Order Functions (Advanced Topic) [237]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The syntax of a lambda is very tight and restrictive:

lambdaƒ<argname-1,ƒ...,ƒargname-n>:ƒ<expression>

All of the code must appear on one line and, although it is sad, a lambda cannot
include a selection statement, because selection statements are not expressions.
Nonetheless, lambda has its virtues. We can now specify addition or multiplica-
tion on the fly, as the next session illustrates:

>>>ƒdataƒ=ƒ[1,ƒ2,ƒ3,ƒ4]
>>>ƒreduce(lambdaƒx,ƒy:ƒxƒ+ƒy,ƒdata)ƒƒƒƒ#ƒProduceƒtheƒsum
10
>>>ƒreduce(lambdaƒx,ƒy:ƒxƒ*ƒy,ƒdata)ƒƒƒƒ#ƒProduceƒtheƒproduct
24
>>>ƒ

The next example shows the use of range, reduce, and lambda to simplify
the definition of the sum function discussed earlier in this chapter:

defƒsum(lower,ƒupper):
ƒƒƒƒ“””Returnsƒtheƒsumƒofƒtheƒnumbersƒfromƒlowerƒtoƒupper.”””
ƒƒƒƒifƒlowerƒ>ƒupper:
ƒƒƒƒƒƒƒƒreturnƒ0
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒreduce(lambdaƒx,ƒy:ƒxƒ+ƒy,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrange(lower,ƒupperƒ+ƒ1))

6.6.6 Creating Jump Tables

This chapter’s case study contains a menu-driven command processor. When the
user selects a command from a menu, the program compares this number to each
number in a set of numbers, until a match is found. A function corresponding to
this number is then called to carry out the command. The function runCommand
implemented this process with a long, multi-way selection statement. With more
than three options, such statements become tedious to read and hard to maintain.
Adding or removing an option also becomes tricky and error-prone.

CHAPTER 6 Design with Functions[238]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A simpler way to design a command processor is to use a data structure
called a jump table. A jump table is a dictionary of functions keyed by command
names. At program startup, the functions are defined and then the jump table is
loaded with the command names and their associated functions. The function
runCommand uses its command argument to look up the function in the jump
table and then calls this function. Here is the modified version of runCommand:

defƒrunCommand(command):ƒƒƒƒƒƒƒƒ#ƒHowƒsimpleƒcanƒitƒget?
ƒƒƒƒjumpTable[command]()

Note that this function makes two important simplifying assumptions: the command
string is a key in the jump table, and its associated function expects no arguments.

Let’s assume that the functions insert, replace, and remove are keyed to
the commands '1', '2', and '3', respectively. Then the setup of the jump table
is straightforward:

#ƒTheƒfunctionsƒnamedƒinsert,ƒreplace,ƒandƒremoveƒ
#ƒareƒdefinedƒearlier

jumpTableƒ=ƒ{}
jumpTable['1']ƒ=ƒinsert
jumpTable['2']ƒ=ƒreplace
jumpTable['3']ƒ=ƒremove

Maintenance of the command processor becomes a matter of data management,
wherein we add or remove entries in the jump table and the menu.

6.6 Exercises
1 Write the code for a mapping that generates a list of the absolute values

of the numbers in a list named numbers.

2 Write the code for a filtering that generates a list of the positive numbers
in a list named numbers. You should use a lambda to create the auxiliary
function.

3 Write the code for a reducing that creates a single string from a list of
strings named words.

6.6 Higher-Order Functions (Advanced Topic) [239]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4 Modify the sum function presented in Section 6.1 so that it includes
default arguments for a step value and a function. The step value is used
to move to the next value in the range. The function is applied to each
number visited, and the function’s returned value is added to the running
total. The default step value is 1, and the default function is a lambda
that returns its argument (essentially an identity function). An example
call of this function is sum(1, 100, 2, math.sqrt), which returns the
sum of the square roots of every other number between 1 and 100. The
function can also be called as usual, with just the bounds of the range.

5 Three versions of the summation function have been presented in this
chapter. One uses a loop, one uses recursion, and one uses the reduce
function. Discuss the costs and benefits of each version, in terms of pro-
grammer time and computational resources required.

Summary
� A function serves as an abstraction mechanism by allowing us to view

many things as one thing.
� A function eliminates redundant patterns of code by specifying a

single place where the pattern is defined.
� A function hides a complex chunk of code in a single named entity.
� A function allows a general method to be applied in varying situations.

The variations are specified by the function’s arguments.
� Functions support the division of labor when a complex task is

factored into simpler subtasks.
� Top-down design is a strategy that decomposes a complex problem

into simpler subproblems and assigns their solutions to functions. In
top-down design, we begin with a top-level main function and gradu-
ally fill in the details of lower-level functions in a process of stepwise
refinement.

� Cooperating functions communicate information by passing
arguments and receiving return values. They also can receive
information directly from common pools of data.

� A structure chart is a diagram of the relationships among cooperating
functions. The chart shows the dependency relationships in a top-
down design, as well as data flows among the functions and common
pools of data.

CHAPTER 6 Design with Functions[240]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� Recursive design is a special case of top-down design, in which a com-
plex problem is decomposed into smaller problems of the same form.
Thus, the original problem is solved by a single recursive function.

� A recursive function is a function that calls itself. A recursive function
consists of at least two parts: a base case that ends the recursive
process and a recursive step that continues it. These two parts are
structured as alternative cases in a selection statement.

� The design of recursive algorithms and functions often follows the
recursive character of a problem or a data structure.

� Although it is a natural and elegant problem-solving strategy, recur-
sion can be computationally expensive. Recursive functions can
require extra overhead in memory and processing time to manage the
information used in recursive calls.

� An infinite recursion arises as the result of a design error. The pro-
grammer has not specified the base case or reduced the size of the
problem in such a way that the termination of the process is reached.

� The namespace of a program is structured in terms of module variables,
parameters, and temporary variables. A module variable, whether it
names a function or a datum, is introduced and receives its initial value
at the top level of the module. A parameter is introduced in a function
header and receives its initial value when the function is called. A tempo-
rary variable is introduced in an assignment statement within the body of
a function definition.

� The scope of a variable is the area of program text within which it has
a given value. The scope of a module variable is the text of the module
below the variable’s introduction and the bodies of any function defini-
tions. The scope of a parameter is the body of its function definition.
The scope of a temporary variable is the text of the function body
below its introduction.

� Scope can be used to control the visibility of names in a namespace.
When two variables with different scopes have the same name, a vari-
able’s value is found by looking outward from the innermost enclosing
scope. In other words, a temporary variable’s value takes precedence
over a parameter’s value and a module variable’s value when all three
have the same name.

� The lifetime of a variable is the duration of program execution during
which it uses memory storage. Module variables exist for the lifetime
of the program that uses them. Parameters and temporary variables
exist for the lifetime of a particular function call.

Summary [241]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 6 Design with Functions[242]

� Functions are first-class data objects. They can be assigned to vari-
ables, stored in data structures, passed as arguments to other func-
tions, and returned as the values of other functions.

� Higher-order functions can expect other functions as arguments
and/or return functions as values.

� A mapping function expects a function and a list of values as argu-
ments. The function argument is applied to each value in the list and
a map object containing the results is returned.

� A predicate is a Boolean function.
� A filtering function expects a predicate and a list of values as argu-

ments. The values for which the predicate returns True are placed in
a filter object and returned.

� A reducing function expects a function and a list of values as argu-
ments. The function is applied to the values, and a single result is
accumulated and returned.

� A jump table is a simple way to design a command processor. The
table is a dictionary whose keys are command names and whose values
are the associated functions. A function for a given command name is
simply looked up in the table and called.

REVIEW QUESTIONS
1 Top-down design is a strategy that

a develops lower-level functions before the functions that depend on
those lower-level functions

b starts with the main function and develops the functions on each
successive level beneath the main function

2 The relationships among functions in a top-down design are shown in a

a syntax diagram
b flow diagram
c structure chart

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

REVIEW QUESTIONS [243]

3 A recursive function

a usually runs faster than the equivalent loop
b usually runs more slowly than the equivalent loop

4 When a recursive function is called, the values of its arguments and its
return address are placed in a

a list
b dictionary
c set
d stack frame

5 The scope of a temporary variable is

a the statements in the body of the function where the variable is
introduced

b the entire module in which the variable is introduced
c the statements in the body of the function after the statement

where the variable is introduced

6 The lifetime of a parameter is

a the duration of program execution
b the duration of its function’s execution

7 The expression list(map(math.sqrt, [9, 25, 36])) evaluates to

a 70

b [81, 625, 1296]

c [3.0, 5.0, 6.0]

8 The expression list(filter(lambda x: x > 50, [34, 65, 10,
100])) evaluates to

a []

b [65, 100]

9 The expression reduce(max, [34, 21, 99, 67, 10]) evaluates to

a 231

b 0

c 99

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 6 Design with Functions[244]

10 A data structure used to implement a jump table is a

a list
b tuple
c dictionary

PROJECTS
1 Package Newton’s method for approximating square roots (Case Study 3.6)

in a function named newton. This function expects the input number as an
argument and returns the estimate of its square root. The script should also
include a main function that allows the user to compute square roots of
inputs until she presses the enter/return key.

2 Convert Newton’s method for approximating square roots in Project 1 to
a recursive function named newton. (Hint: The estimate of the square
root should be passed as a second argument to the function.)

3 Elena complains that the recursive newton function in Project 2 includes
an extra argument for the estimate. The function’s users should not have to
provide this value, which is always the same, when they call this function.
Modify the definition of the function so that it uses a keyword parameter
with the appropriate default value for this argument, and call the function
without a second argument to demonstrate that it solves this problem.

4 Restructure Newton’s method (Case Study 3.6) by decomposing it into
three cooperating functions. The newton function can use either the
recursive strategy of Project 1 or the iterative strategy of Case Study 3.6.
The task of testing for the limit is assigned to a function named
limitReached, whereas the task of computing a new approximation is
assigned to a function named improveEstimate. Each function expects
the relevant arguments and returns an appropriate value.

5 A list is sorted in ascending order if it is empty or each item except the
last one is less than or equal to its successor. Define a predicate isSorted
that expects a list as an argument and returns True if the list is sorted, or
returns False otherwise. (Hint: For a list of length 2 or greater, loop
through the list and compare pairs of items, from left to right, and return
False if the first item in a pair is greater.)

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROJECTS [245]

6 Add a command to this chapter’s case study program that allows the user to
view the contents of a file in the current working directory. When the com-
mand is selected, the program should display a list of filenames and a prompt
for the name of the file to be viewed. Be sure to include error recovery.

7 Write a recursive function that expects a pathname as an argument. The
pathname can be either the name of a file or the name of a directory. If the
pathname refers to a file, its name is displayed, followed by its contents.
Otherwise, if the pathname refers to a directory, the function is applied to
each name in the directory. Test this function in a new program.

8 Lee has discovered what he thinks is a clever recursive strategy for printing
the elements in a sequence (string, tuple, or list). He reasons that he can
get at the first element in a sequence using the 0 index, and he can obtain
a sequence of the rest of the elements by slicing from index 1. This strat-
egy is realized in a function that expects just the sequence as an argument.
If the sequence is not empty, the first element in the sequence is printed
and then a recursive call is executed. On each recursive call, the sequence
argument is sliced using the range 1:. Here is Lee’s function definition:

defƒprintAll(seq):
ƒƒƒƒifƒseq:
ƒƒƒƒƒƒƒƒprint(seq[0])
ƒƒƒƒƒƒƒƒprintAll(seq[1:])

Write a script that tests this function and add code to trace the argument
on each call. Does this function work as expected? If so, explain how it
actually works, and describe any hidden costs in running it.

9 Write a program that computes and prints the average of the numbers in
a text file. You should make use of two higher-order functions to simplify
the design.

10 Define and test a function myRange. This function should behave like
Python’s standard range function, with the required and optional
arguments, but should return a list. Do not use the range function in
your implementation! (Hints: Study Python’s help on range to determine
the names, positions, and what to do with your function’s parameters.
Use a default value of None for the two optional parameters. If these
parameters both equal None, then the function has been called with just
the stop value. If just the third parameter equals None, then the function has
been called with a start value as well. Thus, the first part of the function’s
code establishes what the values of the parameters are or should be. The rest
of the code uses those values to build a list by counting up or down.)

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After completing this chapter, you will be able to:
� Use the concepts of object-based programming—classes,

objects, and methods—to solve a problem
� Develop algorithms that use simple graphics operations to

draw two-dimensional shapes
� Use the RGB system to create colors in graphics applications

and modify pixels in images
� Develop recursive algorithms to draw recursive shapes
� Write a nested loop to process a two-dimensional grid
� Develop algorithms to perform simple transformations of

images, such as conversion of color to grayscale
Until about 20 years ago, computers processed numbers and

text almost exclusively. At the present time, the computational pro-
cessing of images, video, and sound is becoming increasingly impor-
tant. Computers have evolved from mere number crunchers and
data processors to multimedia platforms utilizing a wide array of
applications and devices, such as digital music players and digital
cameras.

Ironically, all of these exciting tools and applications still rely on
number crunching and data processing. However, because the sup-
porting algorithms and data structures can be quite complex, they
are often hidden from the average user. In this chapter, we explore

[CHAPTER]
SIMPLE GRAPHICS AND

Image Processing7

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

some basic concepts related to two important areas of media computing—graphics
and image processing. We also examine object-based programming, a type of
programming that relies on objects and methods to control complexity and solve
problems in these areas.

7.1 Simple Graphics
Graphics is the discipline that underlies the representation and display of geo-
metric shapes in two- and three-dimensional space. Python comes with a large
array of resources that support graphics operations. However, these operations
are complex and not for the faint of heart. To help you ease into the world of
graphics, this section provides an introduction to a gentler set of graphics
operations known as Turtle graphics. A Turtle graphics toolkit provides a
simple and enjoyable way to draw pictures in a window and gives you an
opportunity to run several methods with an object. In the next few sections, we
use Python’s turtle module to illustrate various features of object-based
programming.

7.1.1 Overview of Turtle Graphics

Turtle graphics were originally developed as part of the children’s programming
language Logo, created by Seymour Papert and his colleagues at MIT in the late
1960s. The name is intended to suggest a way to think about the drawing
process. Imagine a turtle crawling on a piece of paper with a pen tied to its tail.
Commands direct the turtle as it moves across the paper and tell it to lift or lower
its tail, turn some number of degrees left or right, and move a specified distance.
Whenever the tail is down, the pen drags along the paper, leaving a trail. In this
manner, it is possible to program the turtle to draw pictures ranging from the
simple to the complex.

In the context of a computer, of course, the sheet of paper is a window on a
display screen, and the turtle is an icon, such as an arrowhead. At any given
moment in time, the turtle is located at a specific position in the window. This
position is specified with (x, y) coordinates. The coordinate system for Turtle
graphics is the standard Cartesian system, with the origin (0, 0) at the center of a
window. The turtle’s initial position is the origin, which is also called the home.

In addition to its position, a turtle also has several other attributes, as
described in Table 7.1.

CHAPTER 7 Simple Graphics and Image Processing[248]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 7.1] Some attributes of a turtle

Together, these attributes make up a turtle’s state. The concept of state is a
very important one in object-based programming. Generally, an object’s state is
the set of values of its attributes at any given point in time.

The turtle’s state determines how the turtle will behave when any operations
are applied to it. For example, a turtle will draw when it is moved if its pen is cur-
rently down, but it will simply move without drawing when its pen is currently
up. Operations also change a turtle’s state. For instance, moving a turtle changes
its position, but not its direction, width, or color.

7.1.2 Turtle Operations

In Chapter 5, you learned that every data value in Python is actually an object.
The types of objects are called classes. Included in a class are all of the methods
(or operations) that apply to objects of that class. Because a turtle is an object,
its operations are also defined as methods. Table 7.2 lists the methods of the
Turtle class. In this table, the variable t refers to any particular Turtle object.
Don’t be concerned if you don’t understand all the terms used in the table. You’ll
learn more about these graphics concepts throughout this chapter.

Heading Specified in degrees, the heading or direction increases in value as
the turtle turns to the left, or counterclockwise. Conversely, a
negative quantity of degrees indicates a right, or clockwise, turn.
The turtle is initially facing east, or 0 degrees. North is 90 degrees.

Color Initially black, the color can be changed to any of more than
16 million other colors.

Width This is the width of the line drawn when the turtle moves. The
initial width is 1 pixel. (You’ll learn more about pixels shortly.)

Down This attribute, which can be either true or false, controls
whether the turtle’s pen is up or down. When true (that is, when
the pen is down), the turtle draws a line when it moves. When
false (that is, when the pen is up), the turtle can move without
drawing a line.

7.1 Simple Graphics [249]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 7.2] The Turtle methods

Turtle METHOD WHAT IT DOES

t = Turtle() Creates a new Turtle object and opens its
window.

t.home() Moves t to the center of the window and then
points t east.

t.up() Raises t’s pen from the drawing surface.

t.down() Lowers t’s pen to the drawing surface.

t.setheading(degrees) Points t in the indicated direction, which is
specified in degrees. East is 0 degrees, north is
90 degrees, west is 180 degrees, and south is
270 degrees.

t.left(degrees) Rotates t to the left or the right by the
t.right(degrees) specified degrees.

t.goto(x, y) Moves t to the specified position.

t.forward(distance) Moves t the specified distance in the current
direction.

t.pencolor(r, g, b) Changes the pen color of t to the specified
t.pencolor(string) RGB value or to the specified string, such as

'red'. Returns the current color of t when the
arguments are omitted.

t.fillcolor(r, g, b) Changes the fill color of t to the specified RGB
t.fillcolor(string) value or to the specified string, such as 'red'.

Returns the current fill color of t when the
arguments are omitted.

t.begin_fill() Enclose a set of turtle commands that will draw
t.end_fill() a filled shape using the current fill color.

t.width(pixels) Changes the width of t to the specified number
of pixels. Returns t’s current width when the
argument is omitted.

t.hideturtle() Makes the turtle invisible or visible.
t.showturtle()

t.position() Returns the current position (x, y) of t.

t.heading() Returns the current direction of t.

t.isdown() Returns True if t’s pen is down or False
otherwise.

CHAPTER 7 Simple Graphics and Image Processing[250]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The set of methods of a given class of objects make up its interface. This is
another important idea in object-based programming. Programmers who use
objects interact with them through their interfaces. Thus, an interface should con-
tain all of the information necessary to use an object of a given class. This informa-
tion includes method headers and documentation about the method’s arguments,
values returned, and changes to the state of the associated objects. As you have seen
in previous chapters, Python’s docstring mechanism allows the programmer to view
an interface for an entire class or an individual method by entering expressions of
the form help(<class name>) or help(<class name>.<method name>) at a
shell prompt.

Now that you have the information necessary to use a Turtle object, let’s
define a function named drawSquare. This function expects a Turtle object, a
pair of integers that indicate the coordinates of the square’s upper-left corner, and
an integer that designates the length of a side. The function begins by lifting the
turtle up and moving it to the square’s corner point. It then points the turtle due
south—270 degrees—and places the turtle’s pen down on the drawing surface.
Finally, it moves the turtle the given length and turns it left by 90 degrees, four
times. Here is the code for the drawSquare function:

defƒdrawSquare(t,ƒx,ƒy,ƒlength):
ƒƒƒƒ“””Drawsƒaƒsquareƒwithƒtheƒgivenƒturtle,ƒan
ƒƒƒƒupper-leftƒcornerƒpointƒ(x,ƒy),ƒandƒaƒside’sƒlength.”””
ƒƒƒƒt.up()
ƒƒƒƒt.goto(x,ƒy)
ƒƒƒƒt.setheading(270)
ƒƒƒƒt.down()
ƒƒƒƒforƒcountƒinƒrange(4):
ƒƒƒƒƒƒƒƒt.forward(length)
ƒƒƒƒƒƒƒƒt.left(90)

As you can see, this function exercises half a dozen methods in the turtle’s inter-
face. Almost all you need to know in many graphics applications are the interfaces
of the appropriate objects and the geometry of the desired shapes. Two other
important classes used in Python’s Turtle graphics system are Screen, which rep-
resents a turtle’s associated window, and Canvas, which represents the area in
which a turtle can move and draw lines. A canvas can be larger than its window,
which displays just the area of the canvas visible to the human user. We will have
more to say about these two objects later, but first let’s examine how to create and
manipulate a turtle.

7.1 Simple Graphics [251]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.1.3 Object Instantiation and the turtle Module

Before you apply any methods to an object, you must create the object. To be pre-
cise, you must create an instance of the object’s class. The process of creating an
object is called instantiation. In the programs you have seen so far in this book,
Python automatically created objects such as numbers, strings, and lists when it
encountered them as literals. The programmer must explicitly instantiate other
classes of objects, including those that have no literals. The syntax for instantiating
a class and assigning the resulting object to a variable is the following:

<variableƒname>ƒ=ƒ<classƒname>(<anyƒarguments>)

The expression on the right side of the assignment, also called a constructor,
resembles a function call. The constructor can receive as arguments any initial
values for the new object’s attributes, or other information needed to create the
object. As you might expect, if the arguments are optional, reasonable defaults are
provided automatically. The constructor then manufactures and returns a new
instance of the class.

The Turtle class is defined in the turtle module (note carefully the
spelling of both names). The following code then imports the Turtle class for
use in a session (note that if you want to try this out yourself, you should skip to
Section 7.1.10 and then return here):

>>>ƒfromƒturtleƒimportƒTurtle
>>>ƒ

The next code segment creates and returns a Turtle object and opens a
drawing window. The window is shown in Figure 7.1.

>>>ƒtƒ=ƒTurtle()ƒƒƒƒƒƒƒƒƒƒƒ

As you can see, the turtle’s icon is located at the home position in the center of
the window, facing east and ready to draw. The window is resizable; we show how
to set the window’s initial dimensions shortly.

CHAPTER 7 Simple Graphics and Image Processing[252]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 7.1] Drawing window for a turtle

Let’s continue with the first turtle named t, and tell it to draw the letter T. It
begins at the home position, turns 90 degrees left, and moves north 30 pixels to
draw a vertical line. Then it turns 90 degrees left again to face west, picks its pen
up, and moves 10 pixels. The turtle next turns to face due east, puts its pen down,
and moves 20 pixels to draw a horizontal line. Finally, we hide the turtle. The
session with the code follows. Figure 7.2 shows screenshots of the window after
each line segment is drawn.

>>>ƒt.left(90)ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTurnƒtoƒfaceƒnorth
>>>ƒt.forward(30)ƒƒƒƒƒƒƒƒƒ#ƒDrawƒverticalƒline
>>>ƒt.left(90)ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒTurnƒtoƒfaceƒwest
>>>ƒt.up()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒPrepareƒto moveƒwithoutƒdrawing
>>>ƒt.forward(10)ƒƒƒƒƒƒƒƒƒ#ƒMoveƒtoƒbeginningƒofƒhorizontalƒline
>>>ƒt.setheading(0)ƒƒƒƒƒƒƒ#ƒTurnƒtoƒfaceƒeast
>>>ƒt.down()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒPrepareƒtoƒdraw
>>>ƒt.forward(20)ƒƒƒƒƒƒƒƒƒ#ƒDrawƒhorizontalƒline
>>>ƒt.hideturtle()ƒƒƒƒƒƒƒƒ#ƒMakeƒtheƒturtleƒinvisible

[FIGURE 7.2] Drawing vertical and horizontal lines for the letter T

7.1 Simple Graphics [253]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To close a turtle’s window, you click its close box. An attempt to manipulate a
turtle whose window has been closed raises an error.

7.1.4 Drawing Two-Dimensional Shapes

Many graphics applications use vector graphics, or the drawing of simple two-
dimensional shapes, such as rectangles, triangles, and circles. Most of these
shapes can be represented as sets of vertices connected by line segments. For
example, a triangle has three vertices and a pentagon has five vertices. Each ver-
tex is a tuple of coordinates, and the set of vertices can be contained in a list.
Using this information, you can define a drawPolygon Python function to draw
most two-dimensional shapes. This function expects a Turtle object and a list of
at least three vertices as arguments. The function raises the turtle’s pen and
moves it to the last vertex. The function then lowers the pen and moves the turtle
to each vertex in the list, starting with the first one. The code for this function,
followed by a call to draw a polygon, follows. A screenshot of the result is shown
in Figure 7.3.

defƒdrawPolygon(t,ƒvertices):
ƒƒƒƒ“””Drawsƒaƒpolygonƒfromƒaƒlistƒofƒvertices.
ƒƒƒƒTheƒlistƒhasƒtheƒformƒ[(x1,ƒy1),ƒ...,ƒ(xn,ƒyn)].”””
ƒƒƒƒt.up()
ƒƒƒƒ(x,ƒy)ƒ=ƒvertices[-1]
ƒƒƒƒt.goto(x,ƒy)
ƒƒƒƒt.down()
ƒƒƒƒforƒ(x,ƒy)ƒinƒvertices:
ƒƒƒƒƒƒƒƒt.goto(x,ƒy)
ƒƒ

>>>ƒfromƒturtleƒimportƒTurtle
>>>ƒtƒ=ƒTurtle()
>>>ƒt.hideturtle()
>>>ƒdrawPolygon(t,ƒ[(20,ƒ20),ƒ(-20,ƒ20),ƒ(-20,ƒ-20)])

Note that the for loop in the drawPolygon function includes the tuple (x, y)
where you would normally expect a single loop variable. This loop traverses a list of
tuples, so on each pass through the loop, the variables x and y in the tuple (x, y)
are assigned the corresponding values within the current tuple in the list.

CHAPTER 7 Simple Graphics and Image Processing[254]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 7.3] Drawing a polygon

7.1.5 Taking a Random Walk

Animals often appear to wander about randomly, but they are often searching for
food, shelter, a mate, and so forth. Or, they might be truly lost, disoriented, or
just out for a stroll. Let’s get a turtle to wander about randomly. A turtle engages
in this harmless activity by repeatedly turning in a random direction and moving
a given distance. The following script defines a function randomWalk that expects
as arguments a Turtle object, the number of turns, and distance to move after
each turn. The distance argument is optional and defaults to 20 pixels. When
called in this script, the function performs 40 random turns with a distance of
40 pixels. Figure 7.4 shows one resulting output.

fromƒturtleƒimportƒTurtle
importƒrandom

defƒrandomWalk(t,ƒturns,ƒdistanceƒ=ƒ20):
ƒƒƒƒ“””Turnsƒaƒrandomƒnumberƒofƒdegreesƒandƒmoves
ƒƒƒƒaƒgivenƒdistanceƒforƒaƒfixedƒnumberƒofƒturns.”””
ƒƒƒƒforƒxƒinƒrange(turns):
ƒƒƒƒƒƒƒƒt.left(random.randint(0,ƒ360))
ƒƒƒƒƒƒƒƒt.forward(distance)

randomWalk(Turtle(),ƒ40)

7.1 Simple Graphics [255]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 7.4] A random walk

7.1.6 Colors and the RGB System

The rectangular display area on a computer screen is made up of colored dots
called picture elements or pixels. The smaller the pixel, the smoother the lines
drawn with them will be. The size of a pixel is determined by the size and resolu-
tion of the display. For example, one common screen resolution is 1680 pixels by
1050 pixels, which, on a 20-inch monitor, produces a rectangular display area that
is 17 inches by 10.5 inches. Setting the resolution to smaller values increases the
size of the pixels, making the lines on the screen appear more ragged.

Each pixel represents a color. While the turtle’s default color is black, you
can easily change it to one of several other basic colors, such as red, yellow, or
orange, by running the pencolor method with the corresponding string as an
argument. For example, the following code segment changes the turtle’s pen
color (and the outline of the turtle’s icon as well) to red:

>>>ƒt.pencolor("red");

To provide the full range of several million colors available on today’s computers,
we need a more powerful representation scheme. Among the various schemes for
representing colors, the RGB system is a fairly common one. The letters stand
for the color components of red, green, and blue, to which the human retina is
sensitive. These components are mixed together to form a unique color value.
Naturally, the computer represents these values as integers, and the display hard-
ware translates this information to the colors you see. Each color component can
range from 0 through 255. The value 255 represents the maximum saturation of
a given color component, whereas the value 0 represents the total absence of that
component. Table 7.3 lists some example colors and their RGB values.

CHAPTER 7 Simple Graphics and Image Processing[256]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 7.3] Some example colors and their RGB values

You might be wondering how many total RGB color values are at your dis-
posal. That number would be equal to all of the possible combinations of three
values, each of which has 256 possible values, or 256 * 256 * 256, or 16,777,216
distinct color values. Although the human eye cannot discriminate between adja-
cent color values in this set, the RGB system is called a true color system.

Another way to consider color is from the perspective of the computer memory
required to represent a pixel’s color. In general, N bits of memory can represent 2N

distinct data values. Conversely, N distinct data values require at least log2N bits of
memory. In the old days, when memory was expensive and displays came in black
and white, only a single bit of memory was required to represent the two color val-
ues. Thus, when displays capable of showing 8 shades of gray came along, 3 bits of
memory were required to represent each color value. Early color monitors might
have supported the display of 256 colors, so 8 bits were needed to represent each
color value. Each color component of an RGB color requires 8 bits, so the total
number of bits needed to represent a distinct color value is 24. The total number of
RGB colors, 224, happens to be 16,777,216.

7.1.7 Example: Drawing with Random Colors

The Turtle class includes a pencolor method for changing the turtle’s drawing
color. This method expects integers for the three RGB components as arguments.
The next script draws squares that are black, gray, and of two random colors at the
corners of the turtle’s window. The output is shown in Figure 7.5. (Note that the
actual colors do not appear in this book.)

COLOR RGB VALUE

Black (0, 0, 0)

Red (255, 0, 0)

Green (0, 255, 0)

Blue (0, 0, 255)

Yellow (255, 255, 0)

Gray (127, 127, 127)

White (255, 255, 255)

7.1 Simple Graphics [257]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

fromƒturtleƒimportƒTurtle
importƒrandom

defƒdrawSquare(t,ƒx,ƒy,ƒlength):
ƒƒƒƒ“””ƒDrawsƒaƒsquareƒwithƒtheƒupper-leftƒcornerƒ(x,ƒy)
ƒƒƒƒandƒtheƒgivenƒlength.ƒ“””
ƒƒƒƒt.up()
ƒƒƒƒt.goto(x,ƒy)
ƒƒƒƒt.setheading(270)
ƒƒƒƒt.down()
ƒƒƒƒforƒcountƒinƒrange(4):
ƒƒƒƒƒƒƒƒt.forward(length)
ƒƒƒƒƒƒƒƒt.left(90)

defƒmain():
ƒƒƒƒtƒ=ƒTurtle()
ƒƒƒƒ#ƒLengthƒofƒtheƒsquare
ƒƒƒƒlengthƒ=ƒ40
ƒƒƒƒ#ƒRelativeƒdistancesƒtoƒcornersƒofƒwindowƒfromƒcenter
ƒƒƒƒwidthƒ=ƒt.screen.window_width()ƒ//ƒ2
ƒƒƒƒheightƒ=ƒt.screen.window_height()ƒ//ƒ2
ƒƒƒƒ#ƒDrawƒinƒupper-leftƒcorner
ƒƒƒƒdrawSquare(t,ƒ-width,ƒheight,ƒlength)
ƒƒƒƒ#ƒGray
ƒƒƒƒt.pencolor(127,ƒ127,ƒ127)
ƒƒƒƒ#ƒDrawƒinƒlower-leftƒcorner
ƒƒƒƒdrawSquare(t,ƒ-width,ƒlengthƒ-ƒheight,ƒlength)
ƒƒƒƒ#ƒFirstƒrandomƒcolor
ƒƒƒƒt.pencolor(random.randint(0,ƒ255),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrandom.randint(0,ƒ255),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrandom.randint(0,ƒ255))
ƒƒƒƒ#ƒDrawƒinƒupper-rightƒcorner
ƒƒƒƒdrawSquare(t,ƒwidthƒ-ƒlength,ƒheight,ƒlength)
ƒƒƒƒ#ƒSecondƒrandomƒcolor
ƒƒƒƒt.pencolor(random.randint(0,ƒ255),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrandom.randint(0,ƒ255),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒrandom.randint(0,ƒ255))
ƒƒƒƒ#ƒDrawƒinƒlower-rightƒcorner
ƒƒƒƒdrawSquare(t,ƒwidthƒ-ƒlength,ƒlengthƒ-ƒheight,ƒlength)
ƒƒƒ
main()

CHAPTER 7 Simple Graphics and Image Processing[258]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 7.5] Four colored squares

7.1.8 Examining an Object’s Attributes

The Turtle methods shown in the examples thus far modify a Turtle object’s
attributes, such as its position, heading, and color. These methods are called
mutator methods, meaning that they change the internal state of a Turtle
object. Other methods, such as position(), simply return the values of a Turtle
object’s attributes without altering its state. These methods are called accessor
methods. The next code segment shows some accessor methods in action:

>>>ƒfromƒturtleƒimportƒTurtle
>>>ƒtƒ=ƒTurtle()
>>>ƒt.position()
(0.0,ƒ0.0)
>>>ƒt.heading()
0.0
>>>ƒt.isdown()
True

7.1.9 Manipulating a Turtle’s Screen

As mentioned earlier, a Turtle object is associated with instances of the classes
Screen and Canvas, which represent the turtle’s window and the drawing area
underneath it. The Screen object’s attributes include its width and height in

7.1 Simple Graphics [259]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

pixels, and its background color, among other things. You access a turtle’s Screen
object using the notation t.screen, and then call a Screen method on this
object. The methods window_width() and window_height() were used in an
earlier example to locate the corners of a turtle’s window. The following code
resets the screen’s background color, which is white by default, to orange:

>>>ƒfromƒturtleƒimportƒTurtle
>>>ƒtƒ=ƒTurtle()
>>>ƒt.screen.bgcolor("orange")

7.1.10 Setting up a cfg File and Running IDLE

We have covered only a few of the commonly used methods to get you started
with Turtle graphics programming. You can find a complete list with descriptions
of their effects in the Python documentation. However, before you actually run a
program with Python’s turtle module, you need to set up a configuration file,
and then launch IDLE in a slightly different manner than before.

A Turtle graphics configuration file, which has the file name turtle.cfg, is a
text file that contains the initial settings of several attributes of Turtle, Screen,
and Canvas objects. Python creates default settings for these attributes, which you
can find in the Python documentation. For example, the default window size is
1 ⁄2 of your computer monitor’s width and 3⁄4 of its height, and the window’s title is
“Python Turtle Graphics.” If you want an initial window size of 300 by 200 pixels
instead, you can override the default size by including the specific dimensions in a
configuration file. The attributes in the file used for our examples are as follows:

widthƒ=ƒ300
heightƒ=ƒ200
using_IDLEƒ=ƒTrue
colormodeƒ=ƒ255

To create a file with these settings, open a text editor, enter the settings as shown,
and save the file as turtle.cfg in your current working directory (the one
where you are saving your Python script files).

Now you must launch IDLE in a new way. Instead of double-clicking on its
application icon from a window, you must open a terminal window (see Chapter 1)
and navigate to your current working directory using the commands to change
directories (either cd pathname or cd ..). From there, you run IDLE as a

CHAPTER 7 Simple Graphics and Image Processing[260]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

command at the command prompt, with the –n option. For example, the follow-
ing command launches IDLE for Python 3.1.2 in this manner:

>ƒidle3.1ƒ-n

At this point, you should see a shell window, as usual, and you should be able to
run the Turtle graphics examples discussed in this section. Be sure, however, to
open existing Python script files from this IDLE window’s File menu, rather than
launching them from your file system window.

7.1 Exercises
1 Explain the importance of the interface of a class of objects.

2 What is object instantiation? What are the options at the programmer’s
disposal during this process?

3 Define a function named drawLine. This function expects a Turtle
object and four integers as arguments. The integers represent the end-
points of a line segment. The function should draw this line segment
with the turtle and do no other drawing.

4 Describe what happens when you run the pencolor() method with a
Turtle object.

5 Turtle graphics windows do not expand in size. What do you suppose hap-
pens when a Turtle object attempts to move beyond a window boundary?

6 Add arguments to the function drawSquare so that it uses these
arguments to draw a square of a specified color.

7 The function drawRectangle expects a Turtle object and the coordi-
nates of the upper-left and lower-right corners of a rectangle as argu-
ments. Define this function, which draws the outline of the rectangle.

8 Define a fillRectangle function that takes the coordinates of a rectan-
gle’s upper-left and lower-right corner points and three integers represent-
ing an RGB value as arguments. The function should fill the rectangle in
the given color. To fill a rectangle, you run the turtle’s pencolor and
fillcolor methods with the color, and place the code for drawing the
rectangle between the method calls t.begin_fill() and t.end_fill().
You may call the drawRectangle function from Exercise 7 in your imple-
mentation to draw the rectangle.

7.1 Simple Graphics [261]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.2 Case Study: Recursive Patterns in Fractals
In this case study, we develop an algorithm that uses Turtle graphics to display
a special kind of curve known as a fractal object. Fractals are highly repetitive
or recursive patterns. A fractal object appears geometric, yet it cannot be
described with ordinary Euclidean geometry. Strangely, a fractal curve is not
one-dimensional, and a fractal surface is not two-dimensional. Instead, every
fractal shape has its own fractal dimension. To understand what this means, let’s
start by considering the nature of an ordinary curve, which has a precise finite
length between any two points. By contrast, a fractal curve has an indefinite
length between any two points. The apparent length of a fractal curve depends
on the level of detail in which it is viewed. As you zoom in on a segment of a
fractal curve, you can see more and more details, and its length appears greater
and greater. Consider a coastline, for example. Seen from a distance, it has
many wiggles but a discernible length. Now put a piece of the coastline under
magnification. It has many similar wiggles, and the discernible length increases.
Self-similarity under magnification is the defining characteristic of fractals and
is seen in the shapes of mountains, the branching patterns of tree limbs, and
many other natural objects.

One example of a fractal curve is the c-curve. Figure 7.6 shows the first six
levels of c-curves and a level-10 c-curve. The level-0 c-curve is a simple line
segment. The level-1 c-curve replaces the level-0 c-curve with two smaller level-0
c-curves that meet at right angles. The level-2 c-curve does the same thing for
each of the two line segments in the level-1 c-curve. This pattern of subdivision
can continue indefinitely, producing quite intricate shapes. In the remainder of
this case study, we develop an algorithm that uses Turtle graphics to display a
c-curve.

CHAPTER 7 Simple Graphics and Image Processing[262]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 7.6] C-curves of levels 0 through 6 and a c-curve of level 10

7.2.1 Request

Write a program that allows the user to draw a particular c-curve in varying
degrees.

7.2.2 Analysis

The proposed interface is shown in Figure 7.7. The program should prompt the
user for the level of the c-curve. After this integer is entered, the program should
display a Turtle graphics window in which it draws the c-curve.

7.2 Case Study: Recursive Patterns in Fractals [263]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 7.7] The interface for the c-curve program

7.2.3 Design

An N-level c-curve can be drawn with a recursive function. The function receives
a Turtle object, the end points of a line segment, and the current level as argu-
ments. At level 0, the function draws a simple line segment. Otherwise, a level N
c-curve consists of two level N - 1 c-curves, constructed as follows:

Let xm be (x1 + x2 + y1 - y2) // 2.

Let ym be (x2 + y1 + y2 - x1) // 2.

The first level N - 1 c-curve uses the line segment (x1, y1), (xm, ym), and
level N - 1, so the function is called recursively with these arguments.

The second level N - 1 c-curve uses the line segment (xm, ym), (x2, y2), and
level N - 1, so the function is called recursively with these arguments.

CHAPTER 7 Simple Graphics and Image Processing[264]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.2 Case Study: Recursive Patterns in Fractals [265]

For example, in a level-0 c-curve, let (x1, y1) be (50, -50) and (x2, y2) be (50, 50).
Then, to obtain a level-1 c-curve, use the formulas for computing xm and ym to
obtain (xm, ym), which is (0, 0). Figure 7.8 shows a solid line segment for the level-0
c-curve and two dashed line segments for the level-1 c-curve that result from these
operations. In effect, the operations produce two shorter line segments that meet at
right angles.

[FIGURE 7.8] A level-0 c-curve (solid) and a level-1 c-curve (dashed)

Here is the pseudocode for the recursive algorithm:

functionƒcCurve(t,ƒx1,ƒy1,ƒx2,ƒy2,ƒlevel)
ƒƒƒifƒlevelƒ==ƒ0:
ƒƒƒƒƒƒdrawLine(x1,ƒy1,ƒx2,ƒy2)
ƒƒƒelse
ƒƒƒƒƒƒxmƒ=ƒ(x1ƒ+ƒx2ƒ+ƒy1ƒ-ƒy2)ƒ//ƒ2
ƒƒƒƒƒƒymƒ=ƒ(x2ƒ+ƒy1ƒ+ƒy2ƒ-ƒx1)ƒ//ƒ2
ƒƒƒƒƒƒcCurve(t,ƒx1,ƒy1,ƒxm,ƒym,ƒlevelƒ-ƒ1)
ƒƒƒƒƒƒcCurve(t,ƒxm,ƒym,ƒx2,ƒy2,ƒlevelƒ-ƒ1)

The function drawLine uses the turtle to draw a line between two given
endpoints.

(50,50)

(0,0)

(50,-50)

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 7 Simple Graphics and Image Processing[266]

7.2.4 Implementation (Coding)

The program includes the three function definitions of cCurve, drawLine, and
main. Because drawLine is an auxiliary function, its definition is nested within
the definition of cCurve.

“””
Programƒfile:ƒccurve.py
Author:ƒKen

Thisƒprogramƒpromptsƒtheƒuserƒforƒtheƒlevelƒof
aƒc-curveƒandƒdrawsƒaƒc-curveƒofƒthatƒlevel.
“””

fromƒturtleƒimportƒTurtle

defƒcCurve(t,ƒx1,ƒy1,ƒx2,ƒy2,ƒlevel):
ƒƒƒƒ“””Drawsƒaƒc-curveƒofƒtheƒgivenƒlevel.”””

ƒƒƒƒdefƒdrawLine(x1,ƒy1,ƒx2,ƒy2):
ƒƒƒƒƒƒƒƒ“””Drawsƒaƒlineƒsegmentƒbetweenƒtheƒendpoints.”””
ƒƒƒƒƒƒƒƒt.up()
ƒƒƒƒƒƒƒƒt.goto(x1,ƒy1)
ƒƒƒƒƒƒƒƒt.down()
ƒƒƒƒƒƒƒƒt.goto(x2,ƒy2)
ƒƒƒƒƒƒ
ƒƒƒƒifƒlevelƒ==ƒ0:
ƒƒƒƒƒƒƒƒdrawLine(x1,ƒy1,ƒx2,ƒy2)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒxmƒ=ƒ(x1ƒ+ƒx2ƒ+ƒy1ƒ-ƒy2)ƒ//ƒ2
ƒƒƒƒƒƒƒƒymƒ=ƒ(x2ƒ+ƒy1ƒ+ƒy2ƒ-ƒx1)ƒ//ƒ2
ƒƒƒƒƒƒƒƒcCurve(t,ƒx1,ƒy1,ƒxm,ƒym,ƒlevelƒ-ƒ1)
ƒƒƒƒƒƒƒƒcCurve(t,ƒxm,ƒym,ƒx2,ƒy2,ƒlevelƒ-ƒ1)

defƒmain():
ƒƒƒƒlevelƒ=ƒint(input(“Enterƒtheƒlevelƒ(0ƒorƒgreater):ƒ“))
ƒƒƒƒtƒ=ƒTurtle()
ƒƒƒƒt.hideturtle()
ƒƒƒƒcCurve(t,ƒ50,ƒ-50,ƒ50,ƒ50,ƒlevel)

main()

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3 Image Processing
Over the centuries, human beings have developed numerous technologies for
representing the visual world, the most prominent being sculpture, painting,
photography, and motion pictures. The most recent form of this type of tech-
nology is digital image processing. This enormous field includes the principles
and techniques for the following:

� The capture of images with devices such as flatbed scanners and digital
cameras

� The representation and storage of images in efficient file formats
� Constructing the algorithms in image-manipulation programs such as

Adobe Photoshop

In this section, we focus on some of the basic concepts and principles used to
solve problems in image processing.

7.3.1 Analog and Digital Information

Representing photographic images in a computer poses an interesting problem.
As you have seen, computers must use digital information which consists of
discrete values, such as individual integers, characters of text, or bits in a bit
string. However, the information contained in images, sound, and much of the
rest of the physical world is analog. Analog information contains a continuous
range of values. You can get an intuitive sense of what this means by contrasting
the behaviors of a digital clock and a traditional analog clock. A digital clock
shows each second as a discrete number on the display. An analog clock displays
the seconds as tick marks on a circle. The clock’s second hand passes by these
marks as it sweeps around the clock’s face. This sweep reveals the analog nature
of time: between any two tick marks on the analog clock, there is a continuous
range of positions or moments of time through which the second hand passes.
You can represent these moments as fractions of a second, but between any two
such moments are others that are more precise (recall the concept of precision
used with real numbers). The ticks representing seconds on the analog clock’s
face thus represent an attempt to sample moments of time as discrete values,
whereas time itself is continuous, or analog.

Early recording and playback devices for images and sound were all analog
devices. If you examine the surface of a vinyl record under a magnifying glass,
you will notice grooves with regular wave patterns. These patterns directly
reflect, or analogize, the continuous wave forms of the recorded sounds.

7.3 Image Processing [267]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Likewise, the chemical media on photographic film directly reflect the continu-
ous color and intensity values of light reflected from the subjects of photographs.

Somehow, the continuous analog information in a real visual scene must be
mapped into a set of discrete values. This conversion process also involves sam-
pling, a technology we consider next.

7.3.2 Sampling and Digitizing Images

A visual scene projects an infinite set of color and intensity values onto a two-
dimensional sensing medium, such as a human being’s retina or a scanner’s
surface. If you sample enough of these values, the digital information can
represent an image that is more or less indistinguishable to the human eye
from the original scene.

Sampling devices measure discrete color values at distinct points on a two-
dimensional grid. These values are pixels, which were introduced earlier in this
chapter. In theory, the more pixels that are sampled, the more continuous and
realistic the resulting image will appear. In practice, however, the human eye
cannot discern objects that are closer together than 0.1 mm, so a sampling of
10 pixels per linear millimeter (250 pixels per inch and 62,500 pixels per square
inch) would be plenty accurate. Thus, a 3-inch by 5-inch image would need

3 * 5 * 62,500 pixels/inch2 = 937,500 pixels

which is approximately one megapixel. For most purposes, however, you can set-
tle for a much lower sampling size and, thus, fewer pixels per square inch.

7.3.3 Image File Formats

Once an image has been sampled, it can be stored in one of many file formats. A
raw image file saves all of the sampled information. This has a cost and a bene-
fit: the benefit is that the display of a raw image will be the most true to life, but
the cost is that the file size of the image can be quite large. Back in the days when
disk storage was still expensive, computer scientists developed several schemes to
compress the data of an image to minimize its file size. Although storage is now
cheap, these formats are still quite economical for sending images across net-
works. Two of the most popular image file formats are JPEG (Joint Photographic
Experts Group) and GIF (Graphic Interchange Format).

Various data-compression schemes are used to reduce the file size of a JPEG
image. One scheme examines the colors of each pixel’s neighbors in the grid. If
any color values are the same, their positions rather than their values are stored,

CHAPTER 7 Simple Graphics and Image Processing[268]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

thus potentially saving many bits of storage. Before the image is displayed, the
original color values are restored during the process of decompression. This
scheme is called lossless compression, meaning that no information is lost. To
save even more bits, another scheme analyzes larger regions of pixels and saves a
color value that the pixels’ colors approximate. This is called a lossy scheme,
meaning that some of the original color information is lost. However, when the
image is decompressed and displayed, the human eye usually is not able to detect
the difference between the new colors and the original ones.

A GIF image relies on an entirely different compression scheme. The com-
pression algorithm consists of two phases. In the first phase, the algorithm ana-
lyzes the color samples to build a table, or color palette, of up to 256 of the
most prevalent colors. The algorithm then visits each sample in the grid and
replaces it with the key of the closest color in the color palette. The resulting
image file thus consists of at most 256 color values and the integer keys of the
image’s colors in the palette. This strategy can potentially save a huge number of
bits of storage. The decompression algorithm uses the keys and the color palette
to restore the grid of pixels for display. Although GIF uses a lossy compression
scheme, it works very well for images with broad, flat areas of the same color,
such as cartoons, backgrounds, and banners.

7.3.4 Image-Manipulation Operations

Image-manipulation programs either transform the information in the pixels or
alter the arrangement of the pixels in the image. These programs also provide
fairly low-level operations for transferring images to and from file storage.
Among other things, these programs can do the following:

� Rotate an image
� Convert an image from color to grayscale
� Apply color filtering to an image
� Highlight a particular area in an image
� Blur all or part of an image
� Sharpen all or part of an image
� Control the brightness of an image
� Perform edge detection on an image
� Enlarge or reduce an image’s size
� Apply color inversion to an image
� Morph an image into another image

7.3 Image Processing [269]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You’ll learn how to write Python code that can perform some of these
manipulation tasks later in this chapter, and you will have a chance to practice
others in the programming projects.

7.3.5 The Properties of Images

When an image is loaded into a program such as a Web browser, the software
maps the bits from the image file into a rectangular area of colored pixels for dis-
play. The coordinates of the pixels in this two-dimensional grid range from (0, 0)
at the upper-left corner of an image to (width - 1, height - 1) at the lower-right
corner, where width and height are the image’s dimensions in pixels. Thus, the
screen coordinate system for the display of an image is somewhat different
from the standard Cartesian coordinate system that we used with Turtle graphics,
where the origin (0,0) is at the center of the rectangular grid. The RGB color
system introduced earlier in this chapter is a common way of representing the
colors in images. For our purposes, then, an image consists of a width, a height,
and a set of color values accessible by means of (x, y) coordinates. A color value
consists of the tuple (r, g, b), where the variables refer to the integer values of its
red, green, and blue components, respectively.

7.3.6 The images Module

To facilitate our discussion of image-processing algorithms, we now present a
small module of high-level Python resources for image processing. This package
of resources, which is named images, allows the programmer to load an image
from a file, view the image in a window, examine and manipulate an image’s RGB
values, and save the image to a file. The images module is a non-standard, open-
source Python tool. You can find installation instructions in Appendix B, but
placing the file images.py and some sample image files in your current working
directory will get you started.

The images module includes a class named Image. The Image class repre-
sents an image as a two-dimensional grid of RGB values. The methods for the
Image class are listed in Table 7.4. In this table, the variable i refers to an
instance of the Image class.

CHAPTER 7 Simple Graphics and Image Processing[270]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 7.4] The Image methods

Before we discuss some standard image-processing algorithms, let’s try out
the resources of the images module. This version of the images module accepts
only image files in GIF format. For the purposes of this exercise, we also assume
that a GIF image of my cat, Smokey, has been saved in a file named smokey.gif
in the current working directory. The following session with the interpreter does
three things:

1 Imports the Image class from the images module

2 Instantiates this class using the file named smokey.gif

3 Draws the image

The resulting image display window is shown in Figure 7.9. Although the
actual image is in color, with green grass surrounding the cat, in this book the
colors are not visible.

Image METHOD WHAT IT DOES

iƒ=ƒImage(filename) Loads and returns an image from a file with the
given filename. Raises an error if the filename is
not found or the file is not a GIF file.

iƒ=ƒImage(width,ƒ Creates and returns a blank image with the given
ƒƒƒƒƒƒƒƒƒƒheight) dimensions. The color of each pixel is white, and

the filename is the empty string.

i.getWidth() Returns the width of i in pixels.

i.getHeight() Returns the height of i in pixels.

i.getPixel(x, y) Returns a tuple of integers representing the RGB
values of the pixel at position (x, y).

i.setPixel(x,ƒy,ƒ Replaces the RGB value at the position (x, y) with
ƒƒƒƒƒƒƒƒƒƒƒ(r,ƒg,ƒb)) the RGB value given by the tuple (r, g, b).

i.draw() Displays i in a window. The user must close the
window to return control to the method’s caller.

i.clone() Returns a copy of i.

i.save() Saves i under its current filename. If i does not yet
have a filename, save does nothing.

i.save(filename) Saves i under filename. Automatically adds a
.gif extension if filename does not contain it.

7.3 Image Processing [271]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

>>>ƒfromƒimagesƒimportƒImage
>>>ƒimageƒ=ƒImage(“smokey.gif”)
>>>ƒimage.draw()ƒ

[FIGURE 7.9] An image display window

Python raises an error if it cannot locate the file in the current directory, or if
the file is not a GIF file. Note also that the user must close the window to return
control to the caller of the method draw. If you are working in the shell, the shell
prompt will reappear when you do this. The image can then be redrawn, after
other operations are performed, by calling draw again.

Once an image has been created, you can examine its width and height, as
follows:

>>>ƒimage.getWidth()
198
>>>ƒimage.getHeight()
149
>>>ƒ

Alternatively, you can print the image’s string representation:

>>>ƒprint(image)
Filename:ƒsmokey.gif
Width:ƒƒ198
Height:ƒ149
>>>

The method getPixel returns a tuple of the RGB values at the given coor-
dinates. The following session shows the information for the pixel at position
(0, 0), which is at the image’s upper-left corner.

CHAPTER 7 Simple Graphics and Image Processing[272]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

>>>ƒimage.getPixel(0,ƒ0)
(194,ƒ221,ƒ114)

Instead of loading an existing image from a file, the programmer can create a
new, blank image. The programmer specifies the image’s width and height; the
resulting image consists of all white pixels. Such images are useful for creating
backgrounds or drawing simple shapes, or creating new images that receive infor-
mation from existing images.

The programmer can use the method setPixel to replace an RGB value at
a given position in an image. The next session creates a new 150 by 150 image.
The pixels along a horizontal line at the middle of the image are then replaced
with new blue pixels. The images before and after this transformation are shown
in Figure 7.10. The loop visits every pixel along the row of pixels whose y coordi-
nate is the image’s height divided by 2.

>>>ƒimageƒ=ƒImage(150,ƒ150)
>>>ƒimage.draw()
>>>ƒblueƒ=ƒ(0,ƒ0,ƒ255)
>>>ƒyƒ=ƒimage.getHeight()ƒ//ƒ2
>>>ƒforƒxƒinƒrange(image.getWidth()):
ƒƒƒƒƒƒƒimage.setPixel(x,ƒy,ƒblue)

>>>ƒimage.draw()

[FIGURE 7.10] An image before and after replacing the pixels

7.3 Image Processing [273]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Finally, you can save an image under its current filename or a different file-
name. Use the save operation to write an image back to an existing file using the
current filename. The save operation can also receive a string parameter for a
new filename. The image is written to a file with that name, which then becomes
the current filename. The following code saves the new image using the filename
horizontal.gif:

>>>ƒimage.save(“horizontal.gif”)

If you omit the .gif extension in the filename, the method adds it automatically.

7.3.7 A Loop Pattern for Traversing a Grid

Most of the loops we have used in this book have had a linear loop structure—
that is, they visit each element in a sequence or they count through a sequence of
numbers using a single loop control variable. By contrast, many image-processing
algorithms use a nested loop structure to traverse a two-dimensional grid of
pixels. Figure 7.11 shows such a grid. Its height is 3 rows, numbered 0 through 2.
Its width is 5 columns, numbered 0 through 4. Each data value in the grid is
accessed with a pair of coordinates using the form (<column>, <row>). Thus,
the datum in the middle of the grid, which is shaded, is at position (2, 1). The
datum in the upper-left corner is at the origin of the grid, (0, 0).

[FIGURE 7.11] A grid with 3 rows and 5 columns

A nested loop structure to traverse a grid consists of two loops, an outer one
and an inner one. Each loop has a different loop control variable. The outer loop
iterates over one coordinate, while the inner loop iterates over the other coordinate.

3210

0

1

2

4

CHAPTER 7 Simple Graphics and Image Processing[274]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here is a session that prints the pairs of coordinates visited when the outer loop
traverses the y coordinates:

>>>ƒwidthƒ=ƒ2
>>>ƒheightƒ=ƒ3
>>>ƒforƒyƒinƒrange(height):
ƒƒƒƒƒƒƒforƒxƒinƒrange(width):
ƒƒƒƒƒƒƒƒƒƒprint((x,ƒy))
ƒƒƒƒƒƒƒprint()

(0,ƒ0)ƒ(1,ƒ0)
(0,ƒ1)ƒ(1,ƒ1)
(0,ƒ2)ƒ(1,ƒ2)
>>>ƒ

As you can see, this loop marches across a row in an imaginary 2 by 3 grid, prints
the coordinates at each column in that row, and then moves on to the next row.
The following template captures this pattern, which is called a row-major
traversal. We use this template to develop many of the algorithms that follow.

forƒyƒinƒrange(height):
ƒƒƒƒforƒxƒinƒrange(width):
ƒƒƒƒƒƒƒƒdoƒsomethingƒatƒpositionƒ(x,ƒy)

7.3.8 A Word on Tuples

Many of the algorithms obtain a pixel from the image, apply some function to the
pixel’s RGB values, and reset the pixel with the results. Because a pixel’s RGB val-
ues are stored in a tuple, manipulating them is quite easy. Python allows the
assignment of one tuple to another in such a manner that the elements of the
source tuple can be bound to distinct variables in the destination tuple. For exam-
ple, suppose you want to increase each of a pixel’s RGB values by 10, thereby
making the pixel brighter. You first call getPixel to retrieve a tuple and assign it
to a tuple that contains three variables, as follows:

>>>ƒ(r,ƒg,ƒb)ƒ=ƒimage.getPixel(0,ƒ0)

7.3 Image Processing [275]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

You can now see what the RGB values are by examining the following variables:

>>>ƒr
194
>>>ƒg
221
>>>ƒb
114

The task is completed by building a new tuple with the results of the computa-
tions and resetting the pixel to that tuple:

>>>ƒimage.setPixel(0,ƒ0,ƒ(rƒ+ƒ10,ƒgƒ+ƒ10,ƒbƒ+ƒ10))

The elements of a tuple cannot be bound to variables when that tuple is
passed as an argument to a function. For example, the function average com-
putes the average of the numbers in a 3-tuple as follows:

>>>ƒdefƒaverage(triple):
ƒƒƒƒƒƒ(a,ƒb,ƒc)ƒ=ƒtriple
ƒƒƒƒƒƒreturnƒ(aƒ+ƒbƒ+ƒc)ƒ//ƒ3

>>>ƒaverage((40,ƒ50,ƒ60))
50
>>>ƒ

Armed with these basic operations, we can now examine some simple image-
processing algorithms. Some of the algorithms visit every pixel in an image and
modify its color in some manner. Other algorithms use the information from an
image’s pixels to build a new image. For consistency and ease of use, we represent
each algorithm as a Python function that expects an image as an argument. Some
functions return a new image, whereas others simply modify the argument image.

7.3.9 Converting an Image to Black and White

Perhaps the easiest transformation is to convert a color image to black and white.
For each pixel, the algorithm computes the average of the red, green, and blue
values. The algorithm then resets the pixel’s color values to 0 (black) if the aver-
age is closer to 0, or to 255 (white) if the average is closer to 255. The code for
the function blackAndWhite follows. Figure 7.12 shows Smokey the cat before

CHAPTER 7 Simple Graphics and Image Processing[276]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and after the transformation. (Keep in mind that the original image is a color
image; the colors are not visible in this book.)

defƒblackAndWhite(image):
ƒƒƒƒ“””Convertsƒtheƒargumentƒimageƒtoƒblackƒandƒwhite.”””
ƒƒƒƒblackPixelƒ=ƒ(0,ƒ0,ƒ0)
ƒƒƒƒwhitePixelƒ=ƒ(255,ƒ255,ƒ255)
ƒƒƒƒforƒyƒinƒrange(image.getHeight()):
ƒƒƒƒƒƒƒƒforƒxƒinƒrange(image.getWidth()):
ƒƒƒƒƒƒƒƒƒƒƒƒ(r,ƒg,ƒb)ƒ=ƒimage.getPixel(x,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒaverageƒ=ƒ(rƒ+ƒgƒ+ƒb)ƒ//ƒ3
ƒƒƒƒƒƒƒƒƒƒƒƒifƒaverageƒ<ƒ128:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimage.setPixel(x,ƒy,ƒblackPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒimage.setPixel(x,ƒy,ƒwhitePixel)

[FIGURE 7.12] Converting a color image to black and white

Note that the second image appears rather stark, like a woodcut.
The function can be tested in a short script, as follows:

fromƒimagesƒimportƒImage

#ƒCodeƒforƒblackAndWhite’sƒfunctionƒdefinitionƒgoesƒhere

defƒmain(filenameƒ=ƒ“smokey.gif”):
ƒƒƒƒimageƒ=ƒImage(filename)
ƒƒƒƒprint(“Closeƒtheƒimageƒwindowƒtoƒcontinue.ƒ“)
ƒƒƒƒimage.draw()
ƒƒƒƒblackAndWhite(image)
ƒƒƒƒprint(“Closeƒtheƒimageƒwindowƒtoƒquit.ƒ“)
ƒƒƒƒimage.draw()

main()

7.3 Image Processing [277]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note that the main function includes an optional argument for the image filename.
Its default should be the name of an image in the current working directory.

7.3.10 Converting an Image to Grayscale

Black-and-white photographs are not really just black and white, but also contain
various shades of gray known as grayscale. (In fact, the original color images of
Smokey the cat, which you saw earlier in this chapter, are reproduced in grayscale
in this book.) Grayscale can be an economical color scheme, wherein the only
color values might be 8, 16, or 256 shades of gray (including black and white at
the extremes). Let’s consider how to convert a color image to grayscale. As a first
step, you might try replacing the color values of each pixel with their average, as
follows:

averageƒ=ƒ(rƒ+ƒgƒ+ƒb)ƒ//ƒ3
image.setPixel(x,ƒy,ƒ(average,ƒaverage,ƒaverage))

Although this method is simple, it does not reflect the manner in which the dif-
ferent color components affect human perception. The human eye is actually
more sensitive to green and red than it is to blue. As a result, the blue component
appears darker than the other two components. A scheme that combines the
three components needs to take these differences in luminance into account. A
more accurate method would weight green more than red and red more than
blue. Therefore, to obtain the new RGB values, instead of adding up the color
values and dividing by 3, you should multiply each one by a weight factor and
add the results. Psychologists have determined that the relative luminance pro-
portions of green, red, and blue are .587, .299, and .114, respectively. Note that
these values add up to 1. The next function, grayscale, uses this strategy, and
Figure 7.13 shows the results.

defƒgrayscale(image):
ƒƒƒƒ“””Convertsƒtheƒargumentƒimageƒtoƒgrayscale.”””
ƒƒƒƒforƒyƒinƒrange(image.getHeight()):
ƒƒƒƒƒƒƒƒforƒxƒinƒrange(image.getWidth()):
ƒƒƒƒƒƒƒƒƒƒƒƒ(r,ƒg,ƒb)ƒ=ƒimage.getPixel(x,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒrƒ=ƒint(rƒ*ƒ0.299)
ƒƒƒƒƒƒƒƒƒƒƒƒgƒ=ƒint(gƒ*ƒ0.587)
ƒƒƒƒƒƒƒƒƒƒƒƒbƒ=ƒint(bƒ*ƒ0.114)
ƒƒƒƒƒƒƒƒƒƒƒƒlumƒ=ƒrƒ+ƒgƒ+ƒb
ƒƒƒƒƒƒƒƒƒƒƒƒimage.setPixel(x,ƒy,ƒ(lum,ƒlum,ƒlum))

CHAPTER 7 Simple Graphics and Image Processing[278]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 7.13] Converting a color image to grayscale

A comparison of the results of this algorithm with those of the simpler one
using the crude averages is left as an exercise for you.

7.3.11 Copying an Image

The next few algorithms do not modify an existing image, but instead use that
image to generate a brand new image with the desired properties. One could cre-
ate a new, blank image of the same height and width as the original, but it is
often useful to start with an exact copy of the original image that retains the pixel
information as well. The Image class includes a clone method for this purpose.
The method clone builds and returns a new image with the same attributes as
the original one, but with an empty string as the filename. The two images are
thus structurally equivalent but not identical, as discussed in Chapter 5. This
means that changes to the pixels in one image will have no impact on the pixels
in the same positions in the other image. The following session demonstrates the
use of the clone method:

>>>ƒfromƒimagesƒimportƒImage
>>>ƒimageƒ=ƒImage(“smokey.gif”)
>>>ƒimage.draw()
>>>ƒnewImageƒ=ƒimage.clone()ƒƒƒƒƒ#ƒCreateƒaƒcopyƒofƒimage
>>>ƒnewImage.draw()
>>>ƒgrayscale(newImage)ƒƒƒƒƒƒƒƒƒƒ#ƒChangeƒinƒsecondƒwindowƒonly
>>>ƒnewImage.draw()
>>>ƒimage.draw()

7.3 Image Processing [279]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.3.12 Blurring an Image

Occasionally, an image appears to contain rough, jagged edges. This condition,
known as pixilation, can be mitigated by blurring the image’s problem areas.
Blurring makes these areas appear softer, but at the cost of losing some definition.
We now develop a simple algorithm to blur an entire image. This algorithm resets
each pixel’s color to the average of the colors of the four pixels that surround it.
The function blur expects an image as an argument and returns a copy of that
image with blurring. The function blur begins its traversal of the grid with posi-
tion (1, 1) and ends with position (width - 2, height - 2). Although this means that
the algorithm does not transform the pixels on the image’s outer edges, you do not
have to check for the grid’s boundaries when you obtain information from a pixel’s
neighbors. Here is the code for blur, followed by an explanation:

defƒblur(image):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnewƒimageƒwhichƒisƒaƒblurred
ƒƒƒƒcopyƒofƒtheƒargumentƒimage.”””

ƒƒƒƒdefƒtripleSum(triple1,ƒtriple2):ƒƒƒƒƒƒƒƒƒƒƒƒ#1ƒƒƒ
ƒƒƒƒƒƒƒƒ(r1,ƒg1,ƒb1)ƒ=ƒtriple1
ƒƒƒƒƒƒƒƒ(r2,ƒg2,ƒb2)ƒ=ƒtriple2
ƒƒƒƒƒƒƒƒreturnƒ(r1ƒ+ƒr2,ƒg1ƒ+ƒg2,ƒb1ƒ+ƒb2)

ƒƒƒƒnewƒ=ƒimage.clone()
ƒƒƒƒforƒyƒinƒrange(1,ƒimage.getHeight()ƒ–ƒ1):
ƒƒƒƒƒƒƒƒforƒxƒinƒrange(1,ƒimage.getWidth()ƒ–ƒ1):
ƒƒƒƒƒƒƒƒƒƒƒƒoldPƒ=ƒimage.getPixel(x,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒleftƒ=ƒimage.getPixel(xƒ-ƒ1,ƒy)ƒƒƒ#ƒToƒleft
ƒƒƒƒƒƒƒƒƒƒƒƒrightƒ=ƒimage.getPixel(xƒ+ƒ1,ƒy)ƒƒ#ƒToƒright
ƒƒƒƒƒƒƒƒƒƒƒƒtopƒ=ƒimage.getPixel(x,ƒyƒ-ƒ1)ƒƒƒƒ#ƒAbove
ƒƒƒƒƒƒƒƒƒƒƒƒbottomƒ=ƒimage.getPixel(x,ƒyƒ+ƒ1)ƒ#ƒBelow
ƒƒƒƒƒƒƒƒƒƒƒƒsumsƒ=ƒreduce(tripleSum,ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#2
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ[oldP,ƒleft,ƒright,ƒtop,ƒbottom])
ƒƒƒƒƒƒƒƒƒƒƒƒaveragesƒ=ƒtuple(map(lambdaƒx:ƒxƒ/ƒ5,ƒsums))ƒƒ#3
ƒƒƒƒƒƒƒƒƒƒƒƒnew.setPixel(x,ƒy,ƒaverages)
ƒƒƒƒreturnƒnew

The code for blur includes some interesting design work. In the following
explanation, the numbers noted appear to the right of the corresponding lines
of code:

� At #1, the nested auxiliary function tripleSum is defined. This function
expects two tuples of integers as arguments and returns a single tuple con-
taining the sums of the values at each position.

CHAPTER 7 Simple Graphics and Image Processing[280]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� At #2, five tuples of RGB values are wrapped in a list and passed with the
tripleSum function to the reduce function. This function repeatedly
applies tripleSum to compute the sums of the tuples, until a single tuple
containing the sums is returned.

� At #3, a lambda function is mapped onto the tuple of sums, and the
resulting list is converted to a tuple. The lambda function divides each
sum by 5. Thus, you are left with a tuple of the average RGB values.

Although this code is still rather complex, try writing it without map and
reduce, and then compare the two versions.

7.3.13 Edge Detection

When artists paint pictures, they often sketch an outline of the subject in pencil
or charcoal. They then fill in and color over the outline to complete the painting.
Edge detection performs the inverse function on a color image: it removes the
full colors to uncover the outlines of the objects represented in the image.

A simple edge-detection algorithm examines the neighbors below and to the
left of each pixel in an image. If the luminance of the pixel differs from that of
either of these two neighbors by a significant amount, you have detected an edge,
and you set that pixel’s color to black. Otherwise, you set the pixel’s color to white.

The function detectEdges expects an image and an integer as parameters.
The function returns a new black-and-white image that explicitly shows the edges
in the original image. The integer parameter allows the user to experiment with
various differences in luminance. Figure 7.14 shows the image of Smokey the cat
before and after detecting edges with luminance thresholds of 10 and 20. Here is
the code for function detectEdges:

defƒdetectEdges(image,ƒamount):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnewƒimageƒinƒwhichƒtheƒ
ƒƒƒƒedgesƒofƒtheƒargumentƒimageƒareƒhighlightedƒand
ƒƒƒƒtheƒcolorsƒareƒreducedƒtoƒblackƒandƒwhite.”””

ƒƒƒƒdefƒaverage(triple):
ƒƒƒƒƒƒƒƒ(r,ƒg,ƒb)ƒ=ƒtriple
ƒƒƒƒƒƒƒƒreturnƒ(rƒ+ƒgƒ+ƒb)ƒ//ƒ3

ƒƒƒƒblackPixelƒ=ƒ(0,ƒ0,ƒ0)
ƒƒƒƒwhitePixelƒ=ƒ(255,ƒ255,ƒ255)
ƒƒƒƒnewƒ=ƒimage.clone()

continued

7.3 Image Processing [281]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 7 Simple Graphics and Image Processing[282]

ƒƒƒƒforƒyƒinƒrange(image.getHeight()ƒ–ƒ1):
ƒƒƒƒƒƒƒƒforƒxƒinƒrange(1,ƒimage.getWidth()):
ƒƒƒƒƒƒƒƒƒƒƒƒoldPixelƒ=ƒimage.getPixel(x,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒleftPixelƒ=ƒimage.getPixel(xƒ-ƒ1,ƒy)
ƒƒƒƒƒƒƒƒƒƒƒƒbottomPixelƒ=ƒimage.getPixel(x,ƒyƒ+ƒ1)
ƒƒƒƒƒƒƒƒƒƒƒƒoldLumƒ=ƒaverage(oldPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒleftLumƒ=ƒaverage(leftPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒbottomLumƒ=ƒaverage(bottomPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒabs(oldLumƒ-ƒleftLum)ƒ>ƒamountƒorƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒabs(oldLumƒ-ƒbottomLum)ƒ>ƒamount:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnew.setPixel(x,ƒy,ƒblackPixel)
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnew.setPixel(x,ƒy,ƒwhitePixel)
ƒƒƒƒreturnƒnew

[FIGURE 7.14] Edge detection: the original image, a luminance threshold of 10, and a luminance
threshold of 20

7.3.14 Reducing the Image Size

The size and the quality of an image on a display medium, such as a computer
monitor or a printed page, depend on two factors: the image’s width and height in
pixels and the display medium’s resolution. Resolution is measured in pixels, or
dots per inch (DPI). When the resolution of a monitor is increased, the images
appear smaller, but their quality increases. Conversely, when the resolution is
decreased, images become larger, but their quality degrades. Some devices, such as
printers, provide good-quality image displays with small DPIs such as 72, whereas
monitors tend to give better results with higher DPIs. You can set the resolution
of an image itself before the image is captured. Scanners and digital cameras have
controls that allow the user to specify the DPI values. A higher DPI causes the
sampling device to take more samples (pixels) through the two-dimensional grid.

In this section, we ignore the issues raised by resolution and learn how to
reduce the size of an image once it has been captured. (For the purposes of this

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

discussion, the size of an image is its width and height in pixels.) Reducing an
image’s size can dramatically improve its performance characteristics, such as load
time in a Web page and space occupied on a storage medium. In general, if the
height and width of an image are each reduced by a factor of N, the number of
color values in the resulting image is reduced by a factor of N 2.

A size reduction usually preserves an image’s aspect ratio (that is, the ratio of
its width to its height). A simple way to shrink an image is to create a new image
whose width and height are a constant fraction of the original image’s width and
height. The algorithm then copies the color values of just some of the original
image’s pixels to the new image. For example, to reduce the size of an image by a
factor of 2, you could copy the color values from every other row and every other
column of the original image to the new image.

The Python function shrink exploits this strategy. The function expects the orig-
inal image and a positive integer shrinkage factor as parameters. A shrinkage factor of
2 tells Python to shrink the image to 1 ⁄2 of its original dimensions, a factor of 3 tells
Python to shrink the image to 1⁄3 of its original dimensions, and so forth. The algo-
rithm uses the shrinkage factor to compute the size of the new image and then creates
it. Because a one-to-one mapping of grid positions in the two images is not possible,
separate variables are used to track the positions of the pixels in the original image and
the new image. The loop traverses the larger image (the original) and skips positions
by incrementing its coordinates by the shrinkage factor. The new image’s coordinates
are incremented by 1, as usual. The loop continuation conditions are also offset by the
shrinkage factor to avoid range errors. Here is the code for the function shrink:

defƒshrink(image,ƒfactor):
ƒƒƒƒ“””Buildsƒandƒreturnsƒaƒnewƒimageƒwhichƒisƒaƒsmaller
ƒƒƒƒcopyƒofƒtheƒargumentƒimage,ƒbyƒtheƒfactorƒargument.”””
ƒƒƒƒwidthƒ=ƒimage.getWidth()
ƒƒƒƒheightƒ=ƒimage.getHeight()
ƒƒƒƒnewƒ=ƒImage(widthƒ//ƒfactor,ƒheightƒ//ƒfactor)
ƒƒƒƒoldYƒ=ƒ0
ƒƒƒƒnewYƒ=ƒ0
ƒƒƒƒwhileƒoldYƒ<ƒheightƒ-ƒfactor:
ƒƒƒƒƒƒƒƒoldXƒ=ƒ0
ƒƒƒƒƒƒƒƒnewXƒ=ƒ0
ƒƒƒƒƒƒƒƒwhileƒoldXƒ<ƒwidthƒ-ƒfactor:
ƒƒƒƒƒƒƒƒƒƒƒƒoldPƒ=ƒimage.getPixel(oldX,ƒoldY)
ƒƒƒƒƒƒƒƒƒƒƒƒnew.setPixel(newX,ƒnewY,ƒoldP)
ƒƒƒƒƒƒƒƒƒƒƒƒoldXƒ+=ƒfactor
ƒƒƒƒƒƒƒƒƒƒƒƒnewXƒ+=ƒ1
ƒƒƒƒƒƒƒƒoldYƒ+=ƒfactor
ƒƒƒƒƒƒƒƒnewYƒ+=ƒ1
ƒƒƒƒreturnƒnew

7.3 Image Processing [283]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Reducing an image’s size throws away some of its pixel information. Indeed,
the greater the reduction, the greater the information loss. However, as the
image becomes smaller, the human eye does not normally notice the loss of visual
information, and therefore the quality of the image remains stable to perception.

The results are quite different when an image is enlarged. To increase the
size of an image, you have to add pixels that were not there to begin with. In this
case, you try to approximate the color values that pixels would receive if you took
another sample of the subject at a higher resolution. This process can be very
complex, because you also have to transform the existing pixels to blend in with
the new ones that are added. Because the image gets larger, the human eye is in a
better position to notice any degradation of quality when comparing it to the
original. The development of a simple enlargement algorithm is left as an exer-
cise for you.

Although we have covered only a tiny subset of the operations typically per-
formed by an image-processing program, these operations and many more use
the same underlying concepts and principles.

7.3 Exercises
1 Explain the advantages and disadvantages of lossless and lossy image file-

compression schemes.

2 The size of an image is 1680 pixels by 1050 pixels. Assume that this
image has been sampled using the RGB color system and placed into a
raw image file. What is the minimum size of this file in megabytes?
(Hint: There are 8 bits in a byte, 1024 bits in a kilobyte, and 1000 kilo-
bytes in a megabyte.)

3 Describe the difference between Cartesian coordinates and screen
coordinates.

4 Describe how a row-major traversal visits every position in a two-
dimensional grid.

5 How would a column-major traversal of a grid work? Write a code seg-
ment that prints the positions visited by a column-major traversal of a
2 by 3 grid.

6 Explain why one would use the clone method with a given object.

7 Why does the blur function need to work with a copy of the
original image?

CHAPTER 7 Simple Graphics and Image Processing[284]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary
� Object-based programming uses classes, objects, and methods to solve

problems.
� A class specifies a set of attributes and methods for the objects of

that class.
� The values of the attributes of a given object make up its state.
� A new object is obtained by instantiating its class. An object’s

attributes receive their initial values during instantiation.
� The behavior of an object depends on its current state and on the

methods that manipulate this state.
� The set of a class’s methods is called its interface. The interface is

what a programmer needs to know to use objects of a class. The infor-
mation in an interface usually includes the method headers and docu-
mentation about arguments, return values, and changes of state.

� Turtle graphics is a lightweight toolkit used to draw pictures in a
Cartesian coordinate system. In this system, the Turtle object has a
position, a color, a line width, a direction, and a state of being down
or up with respect to a drawing window. The values of these attributes
are used and changed when the Turtle object’s methods are called.

� The RGB system represents a color value by mixing integer compo-
nents that represent red, green, and blue intensities. There are 256
different values for each component, ranging from 0, indicating
absence, to 255, indicating complete saturation. There are 224 differ-
ent combinations of RGB components for 16,777,216 unique colors.

� A grayscale system uses 8, 16, or 256 distinct shades of gray.
� Digital images are captured by sampling analog information from a

light source, using a device such as a digital camera or a flatbed scan-
ner. Each sampled color value is mapped to a discrete color value
among those supported by the given color system.

� Digital images can be stored in several file formats. A raw image for-
mat preserves all of the sampled color information, but occupies the
most storage space. The JPEG format uses various data-compression
schemes to reduce the file size, while preserving fidelity to the original
samples. Lossless schemes either preserve or reconstitute the

Summary [285]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

original samples upon decompression. Lossy schemes lose some of
the original sample information. The GIF format is a lossy scheme
that uses a palette of up to 256 colors and stores the color information
for the image as indexes into this palette.

� During the display of an image file, each color value is mapped onto a
pixel in a two-dimensional grid. The positions in this grid correspond
to the screen coordinate system, in which the upper-left corner is at
(0, 0), and the lower-right corner is at (width – 1, height – 1).

� A nested loop structure is used to visit each position in a two-
dimensional grid. In a row-major traversal, the outer loop of this
structure moves down the rows using the y-coordinate, and the inner
loop moves across the columns using the x-coordinate. Each column
in a row is visited before moving to the next row. A column-major
traversal reverses these settings.

� Image-manipulation algorithms either transform pixels at given positions
or create a new image using the pixel information of a source image.
Examples of the former type of operation are conversion to black and
white and conversion to grayscale. Blurring, edge detection, and altering
the image size are examples of the second type of operation.

REVIEW QUESTIONS
1 The interface of a class is the set of all its

a objects
b attributes
c methods

2 The state of an object consists of

a its class of origin
b the values of all of its attributes
c its physical structure

3 Instantiation is a process that

a compares two objects for equality
b builds a string representation of an object
c creates a new object of a given class

CHAPTER 7 Simple Graphics and Image Processing[286]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

REVIEW QUESTIONS [287]

4 The print function

a creates a new object
b copies an existing object
c prints a string representation of an object

5 The clone method

a creates a new object
b copies an existing object
c returns a string representation of an object

6 The origin (0, 0) in a screen coordinate system is at

a the center of a window
b the upper-left corner of a window

7 A row-major traversal of a two-dimensional grid visits all of the positions
in a

a row before moving to the next row
b column before moving to the next column

8 In a system of 256 unique colors, the number of bits needed to represent
each color is

a 4
b 8
c 16

9 In the RGB system, where each color contains three components with
256 possible values each, the number of bits needed to represent each
color is

a 8
b 24
c 256

10 The process whereby analog information is converted to digital
information is called

a recording
b sampling
c filtering
d compressing

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 7 Simple Graphics and Image Processing[288]

PROJECTS
1 Define a function drawCircle. This function should expect a Turtle

object, the coordinates of the circle’s center point, and the circle’s radius
as arguments. The function should draw the specified circle. The algo-
rithm should draw the circle’s circumference by turning 3 degrees and
moving a given distance 120 times. Calculate the distance moved with
the formula 2.0 * π * radius / 120.0.

2 Modify this chapter’s case study program (the c-curve) so that it draws
the line segments using random colors.

3 The Koch snowflake is a fractal shape. At level 0, the shape is an equilateral
triangle. At level 1, each line segment is split into four equal parts, pro-
ducing an equilateral bump in the middle of each segment. Figure 7.15
shows these shapes at levels 0, 1, and 2.

[FIGURE 7.15] First three levels of a Koch snowflake

At the top level, the script uses a function drawFractalLine to draw three
fractal lines. Each line is specified by a given distance, direction (angle), and
level. The initial angles are 0, -120, and 120 degrees. The initial distance
can be any size, such as 200 pixels. The function drawFractalLine is
recursive. If the level is 0, then the turtle moves the given distance in the
given direction. Otherwise, the function draws four fractal lines with 1⁄3 of
the given distance, angles that produce the given effect, and the given level
minus 1. Write a script that draws the Koch snowflake.

4 The twentieth century Dutch artist Piet Mondrian developed a style of
abstract painting that exhibited simple recursive patterns. To generate
such a pattern with a computer, one would begin with a filled rectangle

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROJECTS [289]

in a random color and then repeatedly fill two unequal subdivisions with
random colors, as shown in Figure 7.16 (actual colors not shown).

[FIGURE 7.16] Generating a simple recursive pattern in the style of Piet Mondrian

As you can see, the algorithm continues the process of subdivision until
an “aesthetically right moment” is reached. In this version, the algorithm
divides the current rectangle into portions representing 1⁄3 and 2⁄3 of its
area and alternates these subdivisions along the horizontal and vertical
axes. Design, implement, and test a script that uses a recursive function
to draw these patterns. You should use the fillRectangle function
developed in Exercise 7.1, 8.

5 Define and test a function named posterize. This function expects an
image and a tuple of RGB values as arguments. The function modifies the
image like the blackAndWhite function, but uses the given RGB values
instead of black.

6 Define a second version of the grayscale function that uses the
allegedly crude method of simply averaging each RGB value. Test
the function by comparing its results with those of the other version
discussed in this chapter.

7 Inverting an image makes it look like a photographic negative. Define
and test a function named invert. This function expects an image as an
argument and resets each RGB component to 255 minus that compo-
nent. Be sure to test the function with images that have been converted
to grayscale and black and white as well as color images.

8 Old-fashioned photographs from the nineteenth century are not quite
black and white and not quite color, but seem to have shades of gray,
brown, and blue. This effect is known as sepia. Write and test a function
named sepia that converts a color image to sepia. This function should
first call grayscale to convert the color image to grayscale. A code

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 7 Simple Graphics and Image Processing[290]

segment for transforming the grayscale values to achieve a sepia effect
follows. Note that the value for green does not change.

ifƒredƒ<ƒ63:
ƒƒƒƒredƒ=ƒint(redƒ*ƒ1.1)
ƒƒƒƒblueƒ=ƒint(blueƒ*ƒ0.9)
elifƒredƒ<ƒ192:
ƒƒƒƒredƒ=ƒint(redƒ*ƒ1.15)
ƒƒƒƒblueƒ=ƒint(blueƒ*ƒ0.85)
else:
ƒƒƒƒredƒ=ƒmin(int(redƒ*ƒ1.08),ƒ255)
ƒƒƒƒblueƒ=ƒint(blueƒ*ƒ0.93)

9 Darkening an image requires adjusting all of its pixels toward black as a
limit, whereas lightening an image requires adjusting them toward white as
a limit. Because black is RGB (0, 0, 0) and white is RGB (255, 255, 255),
adjusting the three RGB values of each pixel by the same amount in either
direction will have the desired effect. Of course, the algorithms have to
avoid exceeding either limit during the adjustments.

Lightening and darkening are actually special cases of a process known as
color filtering. A color filter is any RGB triple applied to an entire
image. The filtering algorithm adjusts each pixel by the amounts speci-
fied in the triple. For example, you can increase the amount of red in an
image by applying a color filter with a positive red value and green and
blue values of 0. The filter (20, 0, 0) would make an image’s overall color
slightly redder. Alternatively, you can reduce the amount of red by apply-
ing a color filter with a negative red value. Once again, the algorithms
have to avoid exceeding the limits on the RGB values.

Develop three algorithms for lightening, darkening, and color filtering as
three related Python functions, lighten, darken, and colorFilter.
The first two functions should expect an image and a positive integer as
arguments. The third function should expect an image and a tuple of
integers (the RGB values) as arguments. The following session shows
how these functions can be used with the images image1, image2, and
image3, which are initially white:

>>>ƒdarken(image1,ƒ128)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒConvertsƒtoƒgray
>>>ƒdarken(image2,ƒ64)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒConvertsƒtoƒdarkƒgray
>>>ƒcolorFilter(image3,ƒ(255,ƒ0,ƒ0))ƒƒƒ#ƒConvertsƒtoƒred

Note that the function colorFilter should do most of the work.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROJECTS [291]

10 The edge-detection function described in this chapter returns a black-
and-white image. Think of a similar way to transform color values so
that the new image is still in its original colors but the outlines within it
are merely sharpened. Then, define a function named sharpen that per-
forms this operation. The function should expect an image and two inte-
gers as arguments. One integer should represent the degree to which the
image should be sharpened. The other integer should represent the
threshold used to detect edges. (Hint: A pixel can be darkened by making
its RGB values smaller.)

11 To enlarge an image, one must fill in new rows and columns with color
information based on the colors of neighboring positions in the original
image. Develop and test a function named enlarge. This function should
expect an image and an integer factor as arguments. The function should
build and return a new image that represents the expansion of the original
image by the factor. (Hint: Copy each row of pixels in the original image
to one or more rows in the new image. To copy a row, use two index vari-
ables, one that starts on the left of the row and one that starts on the
right. These two indexes converge to the middle. This will allow you to
copy each pixel to one or more positions of a row in the new image.)

12 Each image-processing function that modifies its image argument has
the same loop pattern for traversing the image. The only thing that
varies is the code used to change each pixel within the loop. Section 6.6
of this book, on higher-order functions, suggests a simpler design pattern
for such code. Design a single function, named transform, which
expects an image and a function as arguments. When this function is
called, it should be passed another function that expects a tuple of inte-
gers and returns a tuple of integers. This is the function that transforms
the information for an individual pixel (such as converting it to black and
white or grayscale). The transform function contains the loop logic for
traversing its image argument. In the body of the loop, the transform
function accesses the pixel at the current position, passes it as an argu-
ment to the other function, and resets the pixel in the image to the func-
tion’s value. Write and test a script that defines this function and uses it
to perform at least two different types of transformation on an image.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After completing this chapter, you will be able to:
� Determine the attributes and behavior of a class of objects

required by a program
� List the methods, including their parameters and return types,

that realize the behavior of a class of objects
� Choose the appropriate data structures to represent the

attributes of a class of objects
� Define a constructor, instance variables, and methods for a

class of objects
� Recognize the need for a class variable and define it
� Define a method that returns the string representation of

an object
� Define methods for object equality and comparisons
� Exploit inheritance and polymorphism when developing classes
� Transfer objects to and from files
This book has covered the use of many software tools in computa-

tional problem solving. The most important of these tools are the
abstraction mechanisms for simplifying designs and controlling the
complexity of solutions. Abstraction mechanisms include functions,
modules, objects, and classes. In each case, we have begun with an
external view of a resource, showing what it does and how it can be
used. For example, to use a function in the built-in math module, you
import it, run help to learn how to use the function correctly, and
then include it appropriately in your code. You follow the same proce-
dures for built-in data structures such as strings and lists, and for library
resources such as the Turtle and Image classes covered in Chapter 7.
From a user’s perspective, you shouldn’t be concerned with how a
resource performs its task. The beauty and utility of an abstraction is
that it frees you from the need to be concerned with such details.

[CHAPTER] Design with Classes8

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Unfortunately, not all useful abstractions are built in. You will sometimes
need to custom design an abstraction to suit the needs of a specialized application
or suite of applications you are developing. When designing your own abstrac-
tion, you must take a different view from that of users and concern yourself with
the inner workings of a resource. The programmer who defines a new function
or constructs a new module of resources is using the resources provided by others
to build new software components. In this chapter, we take an internal view of
objects and classes, showing how to design, implement, and test another useful
abstraction mechanism—a class.

Programming languages that allow the programmer to define new classes of
objects are called object-oriented languages. These languages also support a
style of programming called object-oriented programming. Unlike object-
based programming, which simply uses ready-made objects and classes within
a framework of functions and algorithmic code, object-oriented programming
sustains an effort to conceive and build entire software systems from cooperating
classes. We begin this chapter by exploring the definitions of a few classes. We
then discuss how cooperating classes can be organized into complex software sys-
tems. This strategy is rather different from the strategy of procedural design with
functions discussed in Chapter 6. The advantages and disadvantages of each
design strategy will become clear as we proceed.

8.1 Getting Inside Objects and Classes
Programmers who use objects and classes know several things:

� The interface or set of methods that can be used with a class of objects
� The attributes of an object that describe its state from the user’s point

of view
� How to instantiate a class to obtain an object

Like functions, objects are abstractions. A function packages an algorithm in
a single operation that can be called by name. An object packages a set of data
values—its state—and a set of operations—its methods—in a single entity that
can be referenced with a name. This makes an object a more complex abstraction
than a function. To get inside a function, you must view the code contained in its
definition. To get inside an object, you must view the code contained in its class.
A class definition is like a blueprint for each of the objects of that class. This
blueprint contains

� Definitions of all of the methods that its objects recognize
� Descriptions of the data structures used to maintain the state of an object,

or its attributes, from the implementer’s point of view

CHAPTER 8 Design with Classes[294]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1 Getting Inside Objects and Classes [295]

To illustrate these ideas, we now present a simple class definition for a course-
management application, followed by a discussion of the basic concepts involved.

8.1.1 A First Example: The Student Class

A course-management application needs to represent information about students
in a course. Each student has a name and a list of test scores. We can use these as
the attributes of a class named Student. The Student class should allow the user
to view a student’s name, view a test score at a given position (counting from 1),
reset a test score at a given position, view the highest test score, view the average
test score, and obtain a string representation of the student’s information. When a
Student object is created, the user supplies the student’s name and the number of
test scores. Each score is initially presumed to be 0.

The interface or set of methods of the Student class is described in Table 8.1.
Assuming that the Student class is defined in a file named student.py, the next
session shows how it could be used:

>>>ƒfromƒstudentƒimportƒStudent
>>>ƒsƒ=ƒStudent(“Maria”,ƒ5)
>>>ƒprint(s)
Name:ƒMaria
Scores:ƒ0ƒ0ƒ0ƒ0ƒ0
>>>ƒs.setScore(1,ƒ100)
>>>ƒprint(s)
Name:ƒMaria
Scores:ƒ100ƒ0ƒ0ƒ0ƒ0ƒ
>>>ƒs.getHighScore()
100
>>>ƒs.getAverage()
20
>>>ƒs.getScore(1)
100
>>>ƒs.getName()
'Maria'
>>>

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 8.1] The interface of the Student class

The syntax of a simple class definition is the following:

classƒ<classƒname>(<parentƒclassƒname>):
ƒƒƒ<methodƒdefinition-1>
ƒƒƒ…
ƒƒƒ<methodƒdefinition-n>

The class definition syntax has two parts: a class header and a set of method defi-
nitions that follow the class header. The class header consists of the class name
and the parent class name.

The class name is a Python identifier. Although built-in type names are not
capitalized, Python programmers typically capitalize their own class names to dis-
tinguish them from variable names.

The parent class name refers to another class. All Python classes, including
the built-in ones, are organized in a tree-like class hierarchy. At the top, or root,
of this tree is the most abstract class, named object, which is built in. Each class
immediately below another class in the hierarchy is referred to as a subclass,
whereas the class immediately above it, if there is one, is called its parent class. If
the parenthesized parent class name is omitted from the class definition, the new
class is automatically made a subclass of object. In the example class definitions
shown in this book, we explicitly include the parent class names. More will be said
about the relationships among classes in the hierarchy later in this chapter.

Student METHOD WHAT IT DOES

sƒ=ƒStudent(name, number) Returns a Student object with the given name
and number of scores. Each score is initially 0.

s.getName() Returns the student’s name.

s.getScore(i) Returns the student’s ith score. i must range
from 1 through the number of scores.

s.setScore(i, score) Resets the student’s ith score to score. i must
range from 1 through the number of scores.

s.getAverage() Returns the student’s average score.

s.getHighScore() Returns the student’s highest score.

s.__str__() Same as str(s). Returns a string
representation of the student’s information.

CHAPTER 8 Design with Classes[296]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The code for the Student class follows, and its structure is explained in the
next few subsections:

“””
File:ƒstudent.py
Resourcesƒtoƒmanageƒaƒstudent'sƒnameƒandƒtestƒscores.
“””

classƒStudent(object):
ƒƒƒƒ“””Representsƒaƒstudent.”””

ƒƒƒƒdefƒ__init__(self,ƒname,ƒnumber):
ƒƒƒƒƒƒƒƒ“””ConstructorƒcreatesƒaƒStudentƒwithƒtheƒgivenƒname
ƒƒƒƒƒƒƒƒandƒnumberƒofƒscoresƒandƒsetsƒallƒscoresƒtoƒ0.”””
ƒƒƒƒƒƒƒƒself._nameƒ=ƒname
ƒƒƒƒƒƒƒƒself._scoresƒ=ƒ[]
ƒƒƒƒƒƒƒƒforƒcountƒinƒrange(number):
ƒƒƒƒƒƒƒƒƒƒƒƒself._scores.append(0)

ƒƒƒƒdefƒgetName(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstudent'sƒname.”””
ƒƒƒƒƒƒƒƒreturnƒself._name
ƒƒ
ƒƒƒƒdefƒsetScore(self,ƒi,ƒscore):
ƒƒƒƒƒƒƒƒ“””Resetsƒtheƒithƒscore,ƒcountingƒfromƒ1.”””
ƒƒƒƒƒƒƒƒself._scores[iƒ-ƒ1]ƒ=ƒscore

ƒƒƒƒdefƒgetScore(self,ƒi):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒithƒscore,ƒcountingƒfromƒ1.”””
ƒƒƒƒƒƒƒƒreturnƒself._scores[iƒ-ƒ1]
ƒƒƒ
ƒƒƒƒdefƒgetAverage(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒaverageƒscore.”””
ƒƒƒƒƒƒƒƒreturnƒsum(self._scores)ƒ/ƒlen(self._scores)
ƒƒƒƒ
ƒƒƒƒdefƒgetHighScore(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒhighestƒscore.”””
ƒƒƒƒƒƒƒƒreturnƒmax(self._scores)
ƒ
ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒtheƒstudent.”””
ƒƒƒƒƒƒƒƒreturnƒ“Name:ƒ“ƒ+ƒself._nameƒƒ+ƒ“\nScores:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ“ƒ“.join(map(str,ƒself._scores))

8.1 Getting Inside Objects and Classes [297]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1.2 Docstrings

The first thing to note is the positioning of the docstrings in our code. They can
occur at three levels. The first level is that of the module. Its purpose should be
familiar to you by now. The second level is just after the class header. Because
there might be more than one class defined in a module, each class can have a
docstring that describes its purpose. The third level is located after each method
header. Docstrings at this level serve the same role as they do for function defini-
tions. When you enter help(Student) at a shell prompt, the interpreter prints
the documentation for the class and all of its methods.

8.1.3 Method Definitions

All of the method definitions are indented below the class header. Because methods
are a bit like functions, the syntax of their definitions is similar. Note, however, that
each method definition must include a first parameter named self, even if that
method seems to expect no arguments when called. When a method is called with
an object, the interpreter binds the parameter self to that object so that the
method’s code can refer to the object by name. Thus, for example, the code

s.getScore(4)

binds the parameter self in the method getScore to the Student object refer-
enced by the variable s. The code for getScore can then use self to access that
particular object’s test scores.

Otherwise, methods behave just like functions. They can have required
and/or optional arguments, and they can return values. They can create and use
temporary variables. A method automatically returns the value None when it
includes no return statement.

CHAPTER 8 Design with Classes[298]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1.4 The __init__ Method and Instance Variables

Most classes include a special method named __init__. Here is the code for this
method in the Student class:

defƒ__init__(self,ƒname,ƒnumber):
ƒƒƒƒ“””Allƒscoresƒareƒinitiallyƒ0.”””
ƒƒƒƒself._nameƒ=ƒname
ƒƒƒƒself._scoresƒ=ƒ[]
ƒƒƒƒforƒcountƒinƒrange(number):
ƒƒƒƒƒƒƒƒself._scores.append(0)

Note that __init__ must begin and end with two consecutive underscores. This
method is also called the class’s constructor, because it is run automatically when
a user instantiates the class. Thus, when the code segment

sƒ=ƒStudent(“Juan”,ƒ5)

is run, Python automatically runs the constructor or __init__ method of the
Student class. The purpose of the constructor is to initialize an individual
object’s attributes. In addition to self, the Student constructor expects two
arguments that provide the initial values for these attributes. From this point on,
when we refer to a class’s constructor, we mean its __init__ method.

The attributes of an object are represented as instance variables. Each individ-
ual object has its own set of instance variables. These variables serve as storage for
its state. The scope of an instance variable (including self) is the entire class defini-
tion. Thus, all of the class’s methods are in a position to reference the instance vari-
ables. The lifetime of an instance variable is the lifetime of the enclosing object. An
object’s lifetime will be discussed in more detail later in this chapter.

Within the class definition, the names of instance variables must begin with
self. In this code, the instance variables self._name and self._scores are
initialized to a string and a list, respectively.

Python programmers are encouraged to begin the part of an instance vari-
able’s name following the dot with a single underscore, as in self._name. They
can use this convention to distinguish instance variable names from those of
temporary variables. For example, if we had used the statement scores = []
to initialize the list of test scores, the Python interpreter would have created a
temporary variable within the constructor rather than an instance variable. The

8.1 Getting Inside Objects and Classes [299]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

storage for this variable would be discarded at the end of the method, leaving the
new Student object with no instance variable for its test scores.

8.1.5 The __str__ Method

Many built-in Python classes usually include an __str__ method. This method
builds and returns a string representation of an object’s state. When the str
function is called with an object, that object’s __str__ method is automatically
invoked to obtain the string that str returns. For example, the function call
str(s) is equivalent to the method call s.__str__(), and is simpler to write.
The function call print(s) also automatically runs str(s) to obtain the object’s
string representation for output. Here is the code for the __str__ method in the
Student class:

defƒ__str__(self):
ƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒtheƒstudent.”””
ƒƒƒƒreturnƒ“Name:ƒ“ƒ+ƒself._nameƒƒ+ƒ“\nScores:ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒ“ƒ“.join(map(str,ƒself._scores))

The programmer can return any information that would be relevant to the users
of a class. Perhaps the most important use of __str__ is in debugging, when you
often need to observe the state of an object after running another method.

8.1.6 Accessors and Mutators

Methods that allow a user to observe but not change the state of an object are
called accessors. Methods that allow a user to modify an object’s state are called
mutators. The Student class has just one mutator method. It allows the user to
reset a test score at a given position. The remaining methods are accessors. Here
is the code for the mutator method setScore:

defƒsetScore(self,ƒi,ƒscore):
ƒƒƒƒ“””Resetsƒtheƒithƒscore,ƒcountingƒfromƒ1.”””
ƒƒƒƒself._scores[iƒ-ƒ1]ƒ=ƒscore

In general, the fewer the number of changes that can occur to an object, the
easier it is to use it correctly. That is one reason Python strings are immutable. In
the case of the Student class, if there is no need to modify an attribute, such as a
student’s name, we do not include a method to do that.

CHAPTER 8 Design with Classes[300]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1.7 The Lifetime of Objects

Earlier, we said that the lifetime of an object’s instance variables is the lifetime of
that object. What determines the span of an object’s life? We know that an object
comes into being when its class is instantiated. When does an object die? In
Python, an object becomes a candidate for the graveyard when it can no longer
be referenced by the program that created it. For example, the next session cre-
ates two references to the same Student object:

>>>ƒsƒ=ƒStudent(“Sam”,ƒ10)
>>>ƒcsci111ƒ=ƒ[s]
>>>ƒcsci111
[<__main__.Studentƒinstanceƒatƒ0x11ba2b0>]
>>>ƒs
<__main__.Studentƒinstanceƒatƒ0x11ba2b0>
>>>

As long as one of these references survives, the Student object can remain
alive. Continuing this session, we now sever both of these references to the
Student object:

>>>ƒsƒ=ƒNone
>>>ƒcsci111.pop()
<__main__.Studentƒinstanceƒatƒ0x11ba2b0>
>>>ƒprint(s)
None
>>>ƒcsci111
[]
>>>

The Student object still exists, but the interpreter will eventually recycle its stor-
age during a process called garbage collection. For all intents and purposes, this
object has expired, and its storage will eventually be used to create other objects.

8.1 Getting Inside Objects and Classes [301]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1.8 Rules of Thumb for Defining a Simple Class

We conclude this section by listing several rules of thumb for designing and
implementing a simple class:

1 Before writing a line of code, think about the behavior and attributes of
the objects of the new class. What actions does an object perform, and
how, from the external perspective of a user, do these actions access or
modify the object’s state?

2 Choose an appropriate class name, and develop a short list of the meth-
ods available to users. This interface should include appropriate method
names and parameter names, as well as brief descriptions of what the
methods do. Avoid describing how the methods perform their tasks.

3 Write a short script that appears to use the new class in an appropriate
way. The script should instantiate the class and run all of its methods.
Of course you will not be able to execute this script until you have com-
pleted the next few steps, but it will help to clarify the interface of your
class and serve as an initial test bed for it.

4 Choose the appropriate data structures to represent the attributes of the
class. These will be either built-in types such as integers, strings, and
lists, or other programmer-defined classes.

5 Fill in the class template with a constructor (__init__ method) and an
__str__ method. Remember that the constructor initializes an object’s
instance variables, whereas __str__ builds a string from this informa-
tion. As soon as you have defined these two methods, you can test your
class by instantiating it and printing the resulting object.

6 Complete and test the remaining methods incrementally, working in a
bottom-up manner. If one method depends on another, complete the
second method first.

7 Remember to document your code. Include a docstring for the module,
the class, and each method. Do not add these as an afterthought. Write
them as soon as you write a class header or a method header. Be sure to
examine the results by running help with the class name.

CHAPTER 8 Design with Classes[302]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.1 Exercises
1 What are instance variables, and what role does the name self play in

the context of a class definition?

2 Explain what a constructor does.

3 The Student class has no mutator method that allows a user to change
a student’s name. Define a method setName that allows a user to change a
student’s name.

4 The method getAge expects no arguments and returns the value of an
instance variable named _age. Write the code for the definition of this
method.

5 How is the lifetime of an object determined? What happens to an object
when it dies?

8.2 Case Study: Playing the Game of Craps
College students are known to study hard and play hard. In this case study, we
develop some classes that cooperate to allow students to play and study the
behavior of the game of craps.

8.2.1 Request

Write a program that allows the user to play and study the game of craps.

8.2.2 Analysis

A player in the game of craps rolls a pair of dice. If the sum of the values on this
initial roll is 2, 3, or 12, the player loses. If the sum is 7 or 11, the player wins.
Otherwise, the player continues to roll until the sum is 7, indicating a loss, or
the sum equals the initial sum, indicating a win.

During analysis, you decide which classes of objects will be used to model the
behavior of the objects in the problem domain. The classes often become evident
when you consider the nouns used in the problem description. In this case, the
two most significant nouns in our description of a game of craps are “player” and

8.2 Case Study: Playing the Game of Craps [303]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8 Design with Classes[304]

“dice.” Thus, the classes will be named Player and Die (the singular, as a player
will use two instances).

Analysis also specifies the roles and responsibilities of each class. You can
describe these in terms of the behavior of each object in the program. A Die
object can be rolled and its value examined. That’s about it. A Player object can
play a complete game of craps. During the course of this game, the player keeps
track of the rolls of the dice. After a game is over, the player can be asked for a
history of the rolls and for the game’s outcome. The player can then play another
game, and so on.

The user interface for this program prompts the user for the number of
games to play. The program plays that number of games and generates and
displays statistics about the results for that round of games. These results, our
“study” of the game, include the number of wins, losses, rolls per win, rolls per
loss, and winning percentage, for the given number of games played.

Here is a sample session with the program:

>>>ƒplayOneGame()
(2,ƒ2)ƒ4
(2,ƒ1)ƒ3
(4,ƒ6)ƒ10
(6,ƒ5)ƒ11
(4,ƒ1)ƒ5
(5,ƒ6)ƒ11
(3,ƒ5)ƒ8
(3,ƒ1)ƒ4

Youƒwin!
>>>ƒplayManyGames()
Enterƒtheƒnumberƒofƒgames:ƒ100
Theƒtotalƒnumberƒofƒwinsƒisƒ49
Theƒtotalƒnumberƒofƒlossesƒisƒ51
Theƒaverageƒnumberƒofƒrollsƒperƒwinƒisƒ3.37
Theƒaverageƒnumberƒofƒrollsƒperƒlossƒisƒ4.20
Theƒwinningƒpercentageƒisƒ0.490
>>>ƒ

8.2.3 Design

During design, you choose the appropriate data structures for the instance vari-
ables of each class and develop its methods using pseudocode, if necessary. You
can work from class interfaces provided by analysis or develop the interfaces as

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the first step of design. The interfaces of the Die and Player classes are listed in
Table 8.2.

[TABLE 8.2] The interfaces of the Die and Player classes

A Die object has a single attribute, an integer ranging in value from 1
through 6. At instantiation, the instance variable self._value is initialized to 1.
The method roll modifies this value by resetting it to a random number from
1 to 6. The method getValue returns this value. The method __str__ returns
its string representation. The Die class can be coded immediately without further
design work.

A Player object has three attributes, a pair of dice and a history of rolls in its
most recent game. We represent each roll as a tuple of two integers and the set of
rolls as a list of these tuples. At instantiation, the instance variable self._rolls
is set to an empty list.

The method __str__ converts the list of rolls to a formatted string that
contains a roll and the sum from that roll on each line.

Player METHOD WHAT IT DOES

p = Player() Returns a new player object.

p.play() Plays the game and returns True if there is a win,
False otherwise.

p.getNumberOfRolls() Returns the number of rolls.

p.__str__() Same as str(p). Returns a formatted string
representation of the rolls.

Die METHOD WHAT IT DOES

d = Die() Returns a new die object whose initial value is 1.

d.roll() Resets the die’s value to a random number between 1
and 6.

d.getValue() Returns the die’s value.

d.__str__() Same as str(d). Returns the string representation of
the die’s value.

8.2 Case Study: Playing the Game of Craps [305]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8 Design with Classes[306]

The play method implements the logic of playing a game and tracking its
results. Here is the pseudocode:

Create a new list of rolls
Roll the dice and add their values to the rolls list
If sum of the initial roll is 2, 3, or 12, return false
If the sum of the initial roll is 7 or 11, return true
While true

Roll the dice and add their values to the rolls list
If the sum of the roll is 7, return false
Else if the sum of the roll equals the initial sum, return true

Note that the rolls list, which is an instance variable, is reset to an empty list on
each play. That allows the same player to play multiple games.

The script that defines the Player and Die classes also includes two func-
tions. The role of these functions is to interact with the human user by receiving
inputs, playing the games, and displaying their results. The playManyGames
function prompts the user for the number of games, creates a single Player
object, plays the games and gathers data on the results, processes these data, and
displays the required information. We also include a simpler function
playOneGame that plays just one game and displays the results.

8.2.4 Implementation (Coding)

The Die class is defined in a file named die.py. The Player class and the top-
level functions are defined in a file named craps.py. Here is the code for the
two modules:

“””
File:ƒdie.py

ThisƒmoduleƒdefinesƒtheƒDieƒclass.
“””

fromƒrandomƒimportƒrandint

classƒDie(object):
ƒƒƒƒ“””Thisƒclassƒrepresentsƒaƒsix-sidedƒdie.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Theƒinitialƒfaceƒofƒtheƒdie.”””
ƒƒƒƒƒƒƒƒself._valueƒ=ƒ1

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.2 Case Study: Playing the Game of Craps [307]

ƒƒƒƒdefƒroll(self):
ƒƒƒƒƒƒƒƒ“””Resetsƒtheƒdie'sƒvalueƒtoƒaƒrandomƒnumberƒ
ƒƒƒƒƒƒƒƒbetweenƒ1ƒandƒ6.”””
ƒƒƒƒƒƒƒƒself._valueƒ=ƒrandint(1,ƒ6)

ƒƒƒƒdefƒgetValue(self):
ƒƒƒƒƒƒƒƒreturnƒself._value

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒreturnƒstr(self._value)ƒƒƒ

“””
File:ƒcraps.py

Thisƒmoduleƒstudiesƒandƒplaysƒtheƒgameƒofƒcraps.
“””

fromƒdieƒimportƒDie

classƒPlayer(object):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Hasƒaƒpairƒofƒdiceƒandƒanƒemptyƒrollsƒlist.”””
ƒƒƒƒƒƒƒƒself._die1ƒ=ƒDie()
ƒƒƒƒƒƒƒƒself._die2ƒ=ƒDie()
ƒƒƒƒƒƒƒƒself._rollsƒ=ƒ[]

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepƒofƒtheƒhistoryƒofƒrolls.”””
ƒƒƒƒƒƒƒƒresultƒ=ƒ“”
ƒƒƒƒƒƒƒƒforƒ(v1,ƒv2)ƒinƒself._rolls:
ƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒresultƒ+ƒstr((v1,ƒv2))ƒ+ƒ“ƒ“ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(v1ƒ+ƒv2)ƒ+ƒ“\n”
ƒƒƒƒƒƒƒƒreturnƒresult

ƒƒƒƒdefƒgetNumberOfRolls(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumberƒofƒtheƒrollsƒinƒoneƒgame.”””
ƒƒƒƒƒƒƒƒreturnƒlen(self._rolls)

ƒƒƒƒdefƒplay(self):
ƒƒƒƒƒƒƒƒ“””Playsƒaƒgame,ƒsavesƒtheƒrollsƒforƒthatƒgame,ƒ
ƒƒƒƒƒƒƒƒandƒreturnsƒTrueƒforƒaƒwinƒandƒFalseƒforƒaƒloss.”””
ƒƒƒƒƒƒƒƒself._rollsƒ=ƒ[]
ƒƒƒƒƒƒƒƒself._die1.roll()
ƒƒƒƒƒƒƒƒself._die2.roll()
ƒƒƒƒƒƒƒƒ(v1,ƒv2)ƒ=ƒ(self._die1.getValue(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._die2.getValue())

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8 Design with Classes[308]

ƒƒƒƒƒƒƒƒself._rolls.append((v1,ƒv2))
ƒƒƒƒƒƒƒƒinitialSumƒ=ƒv1ƒ+ƒv2
ƒƒƒƒƒƒƒƒifƒinitialSumƒinƒ(2,ƒ3,ƒ12):
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒƒƒƒƒelifƒinitialSumƒinƒ(7,ƒ11):
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒself._die1.roll()
ƒƒƒƒƒƒƒƒƒƒƒƒself._die2.roll()
ƒƒƒƒƒƒƒƒƒƒƒƒ(v1,ƒv2)ƒ=ƒ(self._die1.getValue(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._die2.getValue())
ƒƒƒƒƒƒƒƒƒƒƒƒself._rolls.append((v1,ƒv2))
ƒƒƒƒƒƒƒƒƒƒƒƒsumƒ=ƒv1ƒ+ƒv2
ƒƒƒƒƒƒƒƒƒƒƒƒifƒsumƒ==ƒ7:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒsumƒ==ƒinitialSum:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒreturnƒTrue

#ƒFunctionsƒthatƒinteractƒwithƒtheƒuserƒtoƒplayƒtheƒgames

defƒplayOneGame():
ƒƒƒƒ“””Playsƒaƒsingleƒgameƒandƒprintsƒtheƒresults.”””
ƒƒƒƒplayerƒ=ƒPlayer()
ƒƒƒƒyouWinƒ=ƒplayer.play()
ƒƒƒƒprint(player)
ƒƒƒƒifƒyouWin:
ƒƒƒƒƒƒƒƒprint(“Youƒwin!”)
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒprint(“Youƒlose!”)

defƒplayManyGames():
ƒƒƒƒ“””Playsƒaƒnumberƒofƒgamesƒandƒprintsƒstatistics.”””
ƒƒƒƒnumberƒ=ƒint(input(“Enterƒtheƒnumberƒofƒgames:ƒ“))
ƒƒƒƒwinsƒ=ƒ0
ƒƒƒƒlossesƒ=ƒ0
ƒƒƒƒwinRollsƒ=ƒ0
ƒƒƒƒlossRollsƒ=ƒ0
ƒƒƒƒplayerƒ=ƒPlayer()
ƒƒƒƒforƒcountƒinƒrange(number):
ƒƒƒƒƒƒƒƒhasWonƒ=ƒplayer.play()
ƒƒƒƒƒƒƒƒrollsƒ=ƒplayer.getNumberOfRolls()
ƒƒƒƒƒƒƒƒifƒhasWon:
ƒƒƒƒƒƒƒƒƒƒƒƒwins += 1
ƒƒƒƒƒƒƒƒƒƒƒƒwinRolls += rolls
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒlosses += 1
ƒƒƒƒƒƒƒƒƒƒƒƒlossRolls += rolls

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.3 Data-Modeling Examples [309]

ƒƒƒƒprint(“Theƒtotalƒnumberƒofƒwinsƒis”,ƒwins)
ƒƒƒƒprint(“Theƒtotalƒnumberƒofƒlossesƒis”,ƒlosses)
ƒƒƒƒprint(“Theƒaverageƒnumberƒofƒrollsƒperƒwinƒisƒ%0.2f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒ(winRollsƒ/ƒwins))
ƒƒƒƒprint(“Theƒaverageƒnumberƒofƒrollsƒperƒlossƒisƒ%0.2f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒ(lossRollsƒ/ƒlosses))
ƒƒƒƒprint(“Theƒwinningƒpercentageƒisƒ%0.3f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒ(winsƒ/ƒnumber))

8.3 Data-Modeling Examples
As you have seen, objects and classes are useful for modeling objects in the real
world. In this section, we explore several other examples.

8.3.1 Rational Numbers

We begin with numbers. A rational number consists of two integer parts, a numer-
ator and a denominator, and is written using the format numerator / denominator.
Examples are 1/2, 1/3, and so forth. Operations on rational numbers include arith-
metic and comparisons. Python has no built-in type for rational numbers. Let us
develop a new class named Rational to support this type of data.

The interface of the Rational class includes a constructor for creating a
rational number, an str function for obtaining a string representation, and acces-
sors for the numerator and denominator. We will also show how to include meth-
ods for arithmetic and comparisons. Here is a sample session to illustrate the use
of the new class:

>>>ƒoneHalfƒ=ƒRational(1,ƒ2)
>>>ƒoneSixthƒ=ƒRational(1,ƒ6)
>>>ƒprint(oneHalf)
1/2
>>>ƒprint(oneHalfƒ+ƒoneSixth)
2/3
>>>ƒoneHalfƒ==ƒoneSixth
False
>>>ƒoneHalfƒ>ƒoneSixth
True

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note that this session uses the built-in operators +, ==, and < with objects of the
new class, Rational. Python allows the programmer to overload many of the
built-in operators for use with new data types.

We develop this class in two steps. First, we take care of the internal repre-
sentation of a rational number and also its string representation. The constructor
expects the numerator and denominator as arguments and sets two instance vari-
ables to this information. This method then reduces the rational number to its
lowest terms. To reduce a rational number to its lowest terms, you first compute
the greatest common divisor (GCD) of the numerator and the denominator,
using Euclid’s algorithm, as described in Programming Project 8 of Chapter 3.
You then divide the numerator and the denominator by this GCD. These tasks
are assigned to two other Rational methods, _reduce and _gcd. Because these
methods are not intended to be in the class’s interface, their names begin with the
_ symbol. Performing the reduction step in the constructor guarantees that it will
not have to be done in any other operation. Here is the code for the first step:

“””
File:ƒrational.py
Resourcesƒtoƒmanipulateƒrationalƒnumbers.
“””

classƒRational(object):
ƒƒƒƒ“””Representsƒaƒrationalƒnumber.”””

ƒƒƒƒdefƒ__init__(self,ƒnumer,ƒdenom):
ƒƒƒƒƒƒƒƒ“””Constructorƒcreatesƒaƒnumberƒwithƒtheƒgivenƒnumerator
ƒƒƒƒƒƒƒƒandƒdenominatorƒandƒreducesƒitƒtoƒlowestƒterms.”””
ƒƒƒƒƒƒƒƒself._numerƒ=ƒnumer
ƒƒƒƒƒƒƒƒself._denomƒ=ƒdenom
ƒƒƒƒƒƒƒƒself._reduce()

ƒƒƒƒdefƒnumerator(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumerator.”””
ƒƒƒƒƒƒƒƒreturnƒself._numer
ƒƒ
ƒƒƒƒdefƒdenominator(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒdenominator.”””
ƒƒƒƒƒƒƒƒreturnƒself._denom
ƒƒƒ
ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒtheƒnumber.”””
ƒƒƒƒƒƒƒƒreturnƒstr(self._numer)ƒ+ƒ“/”ƒ+ƒstr(self._denom)

continued

CHAPTER 8 Design with Classes[310]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ƒƒƒƒdefƒ_reduce(self):
ƒƒƒƒƒƒƒƒ“””Helperƒtoƒreduceƒtheƒnumberƒtoƒlowestƒterms.”””
ƒƒƒƒƒƒƒƒdivisorƒ=ƒself._gcd(self._numer,ƒself._denom)
ƒƒƒƒƒƒƒƒself._numerƒ=ƒself._numerƒ//ƒdivisor
ƒƒƒƒƒƒƒƒself._denomƒ=ƒself._denomƒ//ƒdivisor

ƒƒƒƒdefƒ_gcd(self,ƒa,ƒb):
ƒƒƒƒƒƒƒƒ“””Euclid'sƒalgorithmƒforƒgreatestƒcommonƒdivisor.”””
ƒƒƒƒƒƒƒ(a,ƒb)ƒ=ƒ(max(a,ƒb),ƒmin(a,ƒb))
ƒƒƒƒƒƒƒƒwhileƒbƒ>ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒ(a,ƒb)ƒ=ƒ(b,ƒaƒ%ƒb)
ƒƒƒƒƒƒƒƒreturnƒa

ƒƒƒƒ#ƒMethodsƒforƒarithmeticƒandƒcomparisonsƒgoƒhere

You can now test the class by instantiating numbers and printing them. When
you are satisfied that the data are being represented correctly, you can move on to
the next step.

8.3.2 Rational Number Arithmetic and Operator
Overloading

We now add methods to perform arithmetic with rational numbers. Recall that
the earlier session used the built-in operators for arithmetic. For a built-in type
such as int or float, each arithmetic operator corresponds to a special method
name. You will see many of these methods by entering dir(int) or dir(str) at
a shell prompt, and they are listed in Table 8.3. The object on which the method
is called corresponds to the left operand, whereas the method’s second parameter
corresponds to the right operand. Thus, for example, the code x + y is actually
shorthand for the code x.__add__(y).

[TABLE 8.3] Built-in arithmetic operators and their corresponding methods

OPERATOR METHOD NAME

+ __add__

- __sub__

* __mul__

/ __div__

% __mod__

8.3 Data-Modeling Examples [311]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To overload an arithmetic operator, you just define a new method using the
appropriate method name. The code for each method applies a rule of rational
number arithmetic. The rules are listed in Table 8.4.

[TABLE 8.4] Rules for rational number arithmetic

Each method builds and returns a new rational number that represents the
result of the operation. Here is the code for the addition operation:

defƒ__add__(self,ƒother):
ƒƒƒƒ“””Returnsƒtheƒsumƒofƒtheƒnumbers.”””
ƒƒƒƒ#Selfƒisƒtheƒleftƒoperandƒandƒotherƒisƒtheƒrightƒoperand
ƒƒƒƒnewNumerƒ=ƒself._numerƒ*ƒother._denomƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒother._numerƒ*ƒself._denom
ƒƒƒƒnewDenomƒ=ƒself._denomƒ*ƒother._denom
ƒƒƒƒreturnƒRational(newNumer,ƒnewDenom)

Note that the parameter self is viewed as the left operand of the operator,
whereas the parameter other is viewed as the right operand. The instance vari-
ables of the rational number named other are accessed in the same manner as
the instance variables of the rational number named self.

Operator overloading is another example of an abstraction mechanism. In
this case, programmers can use operators with single, standard meanings even
though the underlying operations vary from data type to data type.

8.3.3 Comparison Methods

You can compare integers and floating-point numbers using the operators ==,
!=, <, >, <=, and >=. When the Python interpreter encounters one of these oper-
ators, it uses a corresponding method defined in the float or int class. Each of
these methods expects two arguments. The first argument, self, represents the
operand to the left of the operator, and the second argument represents the

TYPE OF OPERATION RULE

Addition n1/d1 + n2/d2 = (n1d2 + n2d1) / d1d2

Subtraction n1/d1 - n2/d2 = (n1d2 - n2d1) / d1d2

Mutiplication n1/d1 * n2/d2 = n1n2 / d1d2

Division n1/d1 / n2/d2 = n1d2 / d1n2

CHAPTER 8 Design with Classes[312]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

other operand. Table 8.5 lists the comparison operators and the corresponding
methods.

[TABLE 8.5] The comparison operators and methods

To use the comparison operators with a new class of objects, such as rational
numbers, the class must include these methods with the appropriate comparison
logic. However, once the implementer of the class has defined methods for ==
and <, the remaining methods can be defined in terms of these two.

Let’s implement < here and wait on == until the next section. The simplest
way to compare two rational numbers is to compare the product of the extremes
and the product of the means. The extremes are the first numerator and the sec-
ond denominator, whereas the means are the second numerator and the first
denominator. Thus, the comparison of 1/6 and 2/3 translates to 1 * 3 < 2 * 6.
The implementation of the __lt__ method for rational numbers uses this strat-
egy, as follows:

defƒ__lt__(self,ƒother):
ƒƒƒƒ“””Compares two rational numbers, self and other, using <.”””
ƒƒƒƒextremesƒ=ƒself._numerƒ*ƒother._denom
ƒƒƒƒmeansƒ=ƒother._numerƒ*ƒself._denom
ƒƒƒƒƒƒƒƒƒreturnƒextremesƒ<ƒmeans

When objects of a new class are comparable, it’s a good idea to include the
comparison methods in that class. Then, other built-in methods, such as the
sort method for lists, will be able to use your objects appropriately.

OPERATOR MEANING METHOD

== Equals __eq__

!= Not equals __neq__

< Less than __lt__

<= Less than or equal __le__

> Greater than __gt__

>= Greater than or equal __ge__

8.3 Data-Modeling Examples [313]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.3.4 Equality and the __eq__ Method

Equality is a different kind of relationship from the other types of comparisons.
Not all objects are comparable using less than or greater than, but any two
objects can be compared for equality or inequality. For example, when the vari-
able twoThirds refers to a rational number, it does not make sense to say
twoThirds < “hi there”, but it does make sense to say twoThirds != “hi
there” (true, they aren’t the same). Put another way, the first expression should
generate a semantic error, whereas the second expression should return True.

The Python interpreter picks out equality from the other comparisons by
looking for an __eq__ method when it encounters the == and != operators.
Thus, you can include an __eq__ method in a class to support equality tests with
any types of objects. Here is the code for this method in the Rational class:

defƒ__eq__(self,ƒother):
ƒƒƒƒ“””Testsƒselfƒandƒotherƒforƒequality.”””
ƒƒƒƒifƒselfƒisƒother:ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒObjectƒidentity?
ƒƒƒƒƒƒƒƒreturnƒTrue
ƒƒƒƒelifƒtype(self)ƒ!=ƒtype(other):ƒƒƒƒ#ƒTypesƒmatch?
ƒƒƒƒƒƒƒƒreturnƒFalse
ƒƒƒƒelse:
ƒƒƒƒƒƒƒƒreturnƒself._numerƒ==ƒother._numerƒandƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._denomƒ==ƒother._denom

Note that the method first tests the two operands for object identity using
Python’s is operator. The is operator returns True if self and other refer to
the exact same object. If the two objects are distinct, the method then uses
Python’s type function to determine whether or not they are of the same type. If
they are not of the same type, they cannot be equal. Finally, if the two operands
are of the same type, the second one must be a rational number, so it is safe to
access the components of both operands to compare them for equality in the last
alternative.

As a rule of thumb, you should include an __eq__ method in any class where
a comparison for equality uses a criterion other than object identity, and also
include the other comparison methods when the objects are comparable using
less than or greater than.

CHAPTER 8 Design with Classes[314]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.3.5 Savings Accounts and Class Variables

Turning to the world of finance, banking systems are easily modeled with classes.
For example, a savings account allows owners to make deposits and withdrawals.
These accounts also compute interest periodically. A simplified version of a
savings account includes an owner’s name, PIN, and balance as attributes. The
interface for a SavingsAccount class is listed in Table 8.6.

[TABLE 8.6] The interface for SavingsAccount

When the interest is computed, a rate is applied to the balance. If you assume
that the rate is the same for all accounts, then it does not have to be maintained as
an instance variable. Instead, you can use a class variable. A class variable is visible
to all instances of a class and does not vary from instance to instance. While it nor-
mally behaves like a constant, in some situations a class variable can be modified.
But when it is, the change takes effect for the entire class.

To introduce a class variable, we place the assignment statement that initial-
izes it between the class header and the first method definition. For clarity, class
variables are written in uppercase only. The code for SavingsAccount shows the
definition and use of the class variable RATE. Completion of some methods is left
as an exercise for you.

SavingsAccount METHOD WHAT IT DOES

aƒ=ƒSavingsAccount(name,ƒpin, Returns a new account with the given
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbalanceƒ=ƒ0.0) name, PIN, and balance.

a.deposit(amount) Deposits the given amount to the
account’s balance.

a.withdraw(amount) Withdraws the given amount from
the account’s balance.

a.getBalance() Returns the account’s balance.

a.getName() Returns the account’s name.

a.getPin() Returns the account’s PIN.

a.computeInterest() Computes the account’s interest and
deposits it.

__str__(a) Same as str(a). Returns the string
representation of the account.

8.3 Data-Modeling Examples [315]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

classƒSavingsAccount(object):
ƒƒƒƒ“””ThisƒclassƒrepresentsƒaƒSavingsƒaccount
ƒƒƒƒwithƒtheƒowner'sƒname,ƒPIN,ƒandƒbalance.”””

ƒƒƒƒRATEƒ=ƒ0.02

ƒƒƒƒdefƒ__init__(self,ƒname,ƒpin,ƒbalanceƒ=ƒ0.0):
ƒƒƒƒƒƒƒƒself._nameƒ=ƒname
ƒƒƒƒƒƒƒƒself._pinƒ=ƒpin
ƒƒƒƒƒƒƒƒself._balanceƒ=ƒbalance

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒresultƒ=ƒƒ'Name:ƒƒƒƒ'ƒ+ƒself._nameƒ+ƒ'\n'ƒ
ƒƒƒƒƒƒƒƒresultƒ+=ƒ'PIN:ƒƒƒƒƒ'ƒ+ƒself._pinƒ+ƒ'\n'ƒ
ƒƒƒƒƒƒƒƒresultƒ+=ƒ'Balance:ƒ'ƒ+ƒstr(self._balance)
ƒƒƒƒƒƒƒƒreturnƒresult

ƒƒƒƒdefƒgetBalance(self):
ƒƒƒƒƒƒƒƒreturnƒself._balance

ƒƒƒƒdefƒgetName(self):
ƒƒƒƒƒƒƒƒreturnƒself._name

ƒƒƒƒdefƒgetPin(self):
ƒƒƒƒƒƒƒƒreturnƒself._pin

ƒƒƒƒdefƒdeposit(self,ƒamount):
ƒƒƒƒƒƒƒƒ“””Depositsƒtheƒgivenƒamountƒandƒreturnsƒthe
ƒƒƒƒƒƒƒƒnewƒbalance.”””
ƒƒƒƒƒƒƒƒself._balanceƒ+=ƒamount
ƒƒƒƒƒƒƒƒreturnƒself._balance

ƒƒƒƒdefƒwithdraw(self,ƒamount):
ƒƒƒƒƒƒƒƒ“””Withdrawsƒtheƒgivenƒamount.
ƒƒƒƒƒƒƒƒReturnsƒNoneƒifƒsuccessful,ƒorƒan
ƒƒƒƒƒƒƒƒerrorƒmessageƒifƒunsuccessful.”””
ƒƒƒƒƒƒƒƒifƒamountƒ<ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ'Amountƒmustƒbeƒ>=ƒ0'
ƒƒƒƒƒƒƒƒelifƒself._balanceƒ<ƒamount:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ'Insufficientƒfunds'
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._balanceƒ-=ƒamount
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒNone

ƒƒƒƒdefƒcomputeInterest(self):
ƒƒƒƒƒƒƒƒ“””Computes,ƒdeposits,ƒandƒreturnsƒtheƒinterest.”””
ƒƒƒƒƒƒƒƒinterestƒ=ƒself._balanceƒ*ƒSavingsAccount.RATE
ƒƒƒƒƒƒƒƒself.deposit(interest)
ƒƒƒƒƒƒƒƒreturnƒinterest

CHAPTER 8 Design with Classes[316]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When referenced, a class variable must be preceded by the class name and a
dot, as in SavingsAccount.RATE. Class variables are visible both inside a class
definition and to external users of the class.

In general, you should use class variables only for symbolic constants or to
maintain data held in common by all objects of a class. For data that are owned
by individual objects, you must use instance variables instead.

8.3.6 Putting the Accounts into a Bank

Savings accounts only make sense in the context of a bank. A very simple bank
allows a user to add new accounts, remove accounts, get existing accounts, and
compute interest on all accounts. A Bank class thus has these four basic opera-
tions (add, remove, get, and computeInterest) and a constructor. This class,
of course, also includes the usual str function for development and debugging.
We assume that both SavingsAccount and Bank are defined in a file named
bank.py. Here is a sample session that uses a Bank object and some
SavingsAccount objects. The interface for Bank is listed in Table 8.7.

>>>ƒfromƒbankƒimportƒBank,ƒSavingsAccount
>>>ƒbankƒ=ƒBank()
>>>ƒbank.add(SavingsAccount(“Wilma”,ƒ“1001”,ƒ4000.00))
>>>ƒbank.add(SavingsAccount(“Fred”,ƒ“1002”,ƒ1000.00))
>>>ƒprint(bank)
Name:ƒƒƒƒFred
PIN:ƒƒƒƒƒ1002
Balance:ƒ1000.00
Name:ƒƒƒƒWilma
PIN:ƒƒƒƒƒ1001
Balance:ƒ4000.00
>>>ƒaccountƒ=ƒbank.get(“1000”)
>>>ƒprint(account)
None
>>>ƒaccountƒ=ƒbank.get(“1001”)
>>>ƒprint(account)
Name:ƒƒƒƒWilma
PIN:ƒƒƒƒƒ1001
Balance:ƒ4000.00
>>>ƒaccount.deposit(25.00)
4025
>>>ƒprint(account)
Name:ƒƒƒƒWilma
PIN:ƒƒƒƒƒ1001
Balance:ƒ4025.00
>>>ƒprint(bank)

continued

8.3 Data-Modeling Examples [317]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Name:ƒƒƒƒFred
PIN:ƒƒƒƒƒ1002
Balance:ƒ1000.00
Name:ƒƒƒƒWilma
PIN:ƒƒƒƒƒ1001
Balance:ƒ4025.00
>>>ƒ

[TABLE 8.7] The interface for the Bank class

To keep the design simple, the bank maintains the accounts in no particular
order. Thus, you can choose a dictionary keyed by owners’ PINs to represent the
collection of accounts. Access and removal then depend on an owner’s PIN. Here
is the code for the Bank class:

classƒBank(object):
ƒƒƒƒ
ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._accountsƒ=ƒ{}

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnƒtheƒstringƒrepƒofƒtheƒentireƒbank.”””
ƒƒƒƒƒƒƒƒreturnƒ'\n'.join(map(str,ƒself._accounts.values()))

ƒƒƒƒdefƒadd(self,ƒaccount):ƒ
ƒƒƒƒƒƒƒƒ“””InsertsƒanƒaccountƒusingƒitsƒPINƒasƒaƒkey.”””

continued

Bank METHOD WHAT IT DOES

b = Bank() Returns a bank.

b.add(account) Adds the given account to the bank.

b.remove(pin) Removes the account with the given pin from the bank
and returns the account. If the pin is not in the bank,
returns None.

b.get(pin) Returns the account associated with the pin if the PIN
is in the bank. Otherwise, returns None.

b.computeInterest() Computes the interest on each account, deposits it in
that account, and returns the total interest.

__str__(b) Same as str(b). Returns a string representation of
the bank (all the accounts).

CHAPTER 8 Design with Classes[318]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ƒƒƒƒƒƒƒƒself._accounts[account.getPin()]ƒ=ƒaccount

ƒƒƒƒdefƒremove(self,ƒpin):
ƒƒƒƒƒƒƒƒreturnƒself._accounts.pop(pin,ƒNone)

ƒƒƒƒdefƒget(self,ƒpin):
ƒƒƒƒƒƒƒƒreturnƒself._accounts.get(pin,ƒNone)

ƒƒƒƒdefƒcomputeInterest(self):
ƒƒƒƒƒƒƒƒ“””Computesƒinterestƒforƒeachƒaccountƒandƒ
ƒƒƒƒƒƒƒƒreturnsƒtheƒtotal.”””
ƒƒƒƒƒƒƒƒtotalƒ=ƒ0.0
ƒƒƒƒƒƒƒƒforƒaccountƒinƒself._accounts.values():
ƒƒƒƒƒƒƒƒƒƒƒƒtotalƒ+=ƒaccount.computeInterest()
ƒƒƒƒƒƒƒƒreturnƒtotal

Note the use of the value None in the methods remove and get. In this context,
None indicates to the user that the given PIN is not in the bank.

8.3.7 Using pickle for Permanent Storage of Objects

Chapter 4 discussed saving data in permanent storage with text files. You can con-
vert any object to text for storage, but the mapping of complex objects to text and
back again can be tedious and cause maintenance headaches. Fortunately, Python
includes a module that allows the programmer to save and load objects using a
process called pickling. The term comes from the process of converting cucum-
bers to pickles for preservation in jars. However, in the case of computational
objects, you can get the cucumbers back again. You can pickle an object before it is
saved to a file, and then unpickle it as it is loaded from a file into a program.
Python takes care of all of the conversion details automatically.

You start by importing the pickle module. Files are opened for input and
output and closed in the usual manner, except that the flags “rb” and “wb” are
used instead of “r” and “w”, respectively. To save an object, you use the function
pickle.dump. Its first argument is the object to be “dumped,” or saved to a file,
and its second argument is the file object.

You can use the pickle module to save the accounts in a bank to a file. You
start by defining a Bank method named save. The method includes an optional
argument for the filename. You assume that the Bank object also has an instance
variable for the filename. For a new, empty bank, this variable’s value is initially
None. Whenever the bank is saved to a file, this variable becomes the current
filename. When the method’s filename argument is not provided, the method
uses the bank’s current filename if there is one. This is similar to using the
Save option in a File menu. When the filename argument is provided, it is

8.3 Data-Modeling Examples [319]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

used to save the bank to a different file. This is similar to the Save As option in a
File menu. Here is the code:

importƒpickle

defƒsave(self,ƒfileNameƒ=ƒNone):
ƒƒƒƒ“””Savesƒpickledƒaccountsƒtoƒaƒfile.ƒƒTheƒparameter
ƒƒƒƒallowsƒtheƒuserƒtoƒchangeƒfilenames.”””
ƒƒƒƒifƒfileNameƒ!=ƒNone:
ƒƒƒƒƒƒƒƒself._fileNameƒ=ƒfileName
ƒƒƒƒelifƒself._fileNameƒ==ƒNone:
ƒƒƒƒƒƒƒƒreturn
ƒƒƒƒfileObjƒ=ƒopen(self._fileName,ƒ'wb')
ƒƒƒƒforƒaccountƒinƒself._accounts.values():
ƒƒƒƒƒƒƒƒpickle.dump(account,ƒfileObj)
ƒƒƒƒfileObj.close()

8.3.8 Input of Objects and the try-except Statement

You can load pickled objects into a program from a file using the function
pickle.load. If the end of the file has been reached, this function raises an
exception. This complicates the input process, because we have no apparent way
to detect the end of the file before the exception is raised. However, Python’s
try-except statement comes to our rescue. This statement allows an exception
to be caught and the program to recover. The syntax of a simple try-except
statement is the following:

try:
ƒƒƒƒ<statements>
exceptƒ<exceptionƒtype>:
ƒƒƒƒ<statements>

When this statement is run, the statements within the try clause are executed. If
one of these statements raises an exception, control is immediately transferred to
the except clause. If the type of exception raised matches the type in this clause,
its statements are executed. Otherwise, control is transferred to the caller of the
try-except statement and further up the chain of calls, until the exception is
successfully handled or the program halts with an error message. If the state-
ments in the try clause raise no exceptions, the except clause is skipped, and
control proceeds to the end of the try-except statement.

CHAPTER 8 Design with Classes[320]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

We can now construct an input file loop that continues to load objects until
the end of the file is encountered. When this happens, an EOFError is raised.
The except clause then closes the file and breaks out of the loop. We also add a
new instance variable to track the bank’s filename for saving the bank to a file.
Here is the code for a Bank method __init__ that can take some initial accounts
from an input file. This method now either creates a new, empty bank if the file-
name is not present, or loads accounts from a file into a Bank object.

defƒ__init__(self,ƒfileNameƒ=ƒNone):
ƒƒƒƒ“””Createsƒaƒnewƒdictionaryƒtoƒholdƒtheƒaccounts.
ƒƒƒƒIfƒaƒfilenameƒisƒprovided,ƒloadsƒtheƒaccountsƒfrom
ƒƒƒƒaƒfileƒofƒpickledƒaccounts.”””
ƒƒƒƒself._accountsƒ=ƒ{}
ƒƒƒƒself._fileNameƒ=ƒfileName
ƒƒƒƒifƒfileNameƒ!=ƒNone:
ƒƒƒƒƒƒƒƒfileObjƒ=ƒopen(fileName,ƒ'rb')
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒtry:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒaccountƒ=ƒpickle.load(fileObj)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself.add(account)
ƒƒƒƒƒƒƒƒƒƒƒƒexceptƒEOFError:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfileObj.close()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak

8.3.9 Playing Cards

A standard deck of cards has 52 cards. There are four suits: spades, hearts, dia-
monds, and clubs. Each suit contains 13 cards. Each card also has a rank, which is
a number used to sort the cards and determine the count in a hand. The literal
numbers are 2 through 10. An ace counts as the number 1 or some other number,
depending on the game being played. The face cards, jack, queen, and king, often
count as 11, 12, and 13, respectively.

A Card class and a Deck class would be useful resources for game-playing
programs. A Card object has two instance attributes, a rank and a suit. The Card
class has two class attributes, the set of all suits and the set of all ranks. You can
represent these two sets of attributes as instance variables and class variables in
the Card class.

Because the attributes are only accessed and never modified, we do not include
any methods other than a __str__ method for the string representation. The
__init__ method expects an integer rank and a string suit as arguments and

8.3 Data-Modeling Examples [321]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

returns a new card with that rank and suit. The next session shows the use of the
Card class:

>>>ƒthreeOfSpadesƒ=ƒCard(3,ƒ“Spades”)
>>>ƒjackOfSpadesƒ=ƒCard(11,ƒ“Spades”)
>>>ƒprint(jackOfSpades)
JackƒofƒSpades
>>>ƒthreeOfSpades.rankƒ<ƒjackOfSpades.rank
True
>>>ƒprint(jackOfSpades.rank,ƒjackOfSpades.suit)
11ƒSpades

Note that you access the rank and suit of a Card object by using a dot followed
by the instance variable names. A card is little more than a container of two data
values. Here is the code for the Card class:

classƒCard(object):
ƒƒƒƒ“””ƒAƒcardƒobjectƒwithƒaƒsuitƒandƒrank.”””

ƒƒƒƒRANKSƒ=ƒ(1,ƒ2,ƒ3,ƒ4,ƒ5,ƒ6,ƒ7,ƒ8,ƒ9,ƒ10,ƒ11,ƒ12,ƒ13)

ƒƒƒƒSUITSƒ=ƒ('Spades',ƒ'Diamonds',ƒ'Hearts',ƒ'Clubs')

ƒƒƒƒdefƒ__init__(self,ƒrank,ƒsuit):
ƒƒƒƒƒƒƒƒ“””Createsƒaƒcardƒwithƒtheƒgivenƒrankƒandƒsuit.”””
ƒƒƒƒƒƒƒƒself.rankƒ=ƒrank
ƒƒƒƒƒƒƒƒself.suitƒ=ƒsuit

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒaƒcard.”””
ƒƒƒƒƒƒƒƒifƒself.rankƒ==ƒ1:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒ'Ace'
ƒƒƒƒƒƒƒƒelifƒself.rankƒ==ƒ11:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒ'Jack'
ƒƒƒƒƒƒƒƒelifƒself.rankƒ==ƒ12:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒ'Queen'
ƒƒƒƒƒƒƒƒelifƒself.rankƒ==ƒ13:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒ'King'
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒrankƒ=ƒself.rank
ƒƒƒƒƒƒƒƒreturnƒstr(rank)ƒ+ƒ'ƒofƒ'ƒ+ƒself.suit

CHAPTER 8 Design with Classes[322]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Unlike an individual card, a deck has significant behavior that can be speci-
fied in an interface. One can shuffle the deck, deal a card, and determine the
number of cards left in it. Table 8.8 lists the methods of a Deck class and what
they do. Here is a sample session that tries out a deck:

>>>ƒdeckƒ=ƒDeck()
>>>ƒprint(deck)
---ƒtheƒprintƒrepsƒofƒ52ƒcards,ƒinƒorderƒofƒsuitƒandƒrank
>>>ƒdeck.shuffle()
>>>ƒlen(deck)
52
>>>ƒwhileƒlen(deck)ƒ>ƒ0:
ƒƒƒƒƒƒƒƒcardƒ=ƒdeck.deal()
ƒƒƒƒƒƒƒƒprint(card)

---ƒtheƒprintƒrepsƒofƒ52ƒrandomlyƒorderedƒcards
>>>ƒlen(deck)
0

[TABLE 8.8] The interface for the Deck class

During instantiation, all 52 unique cards are created and inserted into a
deck’s internal list of cards. The Deck constructor makes use of the class variables
RANKS and SUITS in the Card class to order the new cards appropriately. The
shuffle method simply passes the list of cards to random.shuffle. The deal

Deck METHOD WHAT IT DOES

d = Deck() Returns a deck.

d.__len__() Same as len(d). Returns the number of cards
currently in the deck.

d.shuffle() Shuffles the cards in the deck.

d.deal() If the deck is not empty, removes and returns the
topmost card. Otherwise, returns None.

d.__str__() Same as str(d). Returns a string representation of the
deck (all the cards in it).

8.3 Data-Modeling Examples [323]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

method removes and returns the first card in the list, if there is one, or returns
the value None otherwise. The len function, like the str function, calls a
method (in this case, __len__) that returns the length of the list of cards. Here is
the code for Deck:

importƒrandom

#ƒTheƒdefinitionƒofƒtheƒCardƒclassƒgoesƒhere

classƒDeck(object):
ƒƒƒƒ“””ƒAƒdeckƒcontainingƒ52ƒcards.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Createsƒaƒfullƒdeckƒofƒcards.”””
ƒƒƒƒƒƒƒƒself._cardsƒ=ƒ[]
ƒƒƒƒƒƒƒƒforƒsuitƒinƒCard.SUITS:
ƒƒƒƒƒƒƒƒƒƒƒƒforƒrankƒinƒCard.RANKS:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcƒ=ƒCard(rank,ƒsuit)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._cards.append(c)

ƒƒƒƒdefƒshuffle(self):
ƒƒƒƒƒƒƒƒ“””Shufflesƒtheƒcards.”””
ƒƒƒƒƒƒƒƒrandom.shuffle(self._cards)

ƒƒƒƒdefƒdeal(self):
ƒƒƒƒƒƒƒƒ“””RemovesƒandƒreturnsƒtheƒtopƒcardƒorƒNoneƒ
ƒƒƒƒƒƒƒƒifƒtheƒdeckƒisƒempty.”””
ƒƒƒƒƒƒƒƒifƒlen(self)ƒ==ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒreturnƒNone
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒreturnƒself._cards.pop(0)

ƒƒƒƒdefƒ__len__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumberƒofƒcardsƒleftƒinƒtheƒdeck.”””
ƒƒƒƒƒƒƒƒreturnƒlen(self._cards)

ƒƒƒƒdefƒ__str__(self):ƒ
ƒƒƒƒƒƒƒƒƒ“””Returnsƒtheƒstringƒrepresentationƒofƒaƒdeck.”””
ƒƒƒƒƒƒƒƒƒresultƒ=ƒ''
ƒƒƒƒƒƒƒƒƒforƒcƒinƒself._cards:
ƒƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒresultƒ+ƒstr(c)ƒ+ƒ'\n'
ƒƒƒƒƒƒƒƒƒreturnƒresult

CHAPTER 8 Design with Classes[324]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.3 Exercises
1 Although the use of a PIN to identify a person’s bank account is simple,

it’s not very realistic. Real banks typically assign a unique 12-digit num-
ber to each account and use this as well as the customer’s PIN during a
login at an ATM. Suggest how to rework the banking system discussed
in this section to use this information.

2 What is a class variable? When should the programmer define a class
variable rather than an instance variable?

3 Describe how the arithmetic operators can be overloaded to work with
a new class of numbers.

4 Define a method for the Bank class that returns the total assets in the
bank (the sum of all account balances).

5 Describe the benefits of pickling objects for file storage.

6 Why would you use a try-except statement in a program?

7 Two playing cards can be compared by rank. For example, an ace is less
than a 2. When c1 and c2 are cards, c1.rank < c2.rank expresses this
relationship. Explain how a method could be added to the Card class to
simplify this expression to c1 < c2.

8.4 Case Study: An ATM
In this case study, we develop a simple ATM program that uses the Bank and
SavingsAccount classes discussed in the previous section.

8.4.1 Request

Write a program that simulates a simple ATM.

8.4.2 Analysis

Our ATM user logs in with a name and a personal identification number, or PIN.
If either string is unrecognized, Python prints an error message. Otherwise, the

8.4 Case Study: An ATM [325]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8 Design with Classes[326]

user can repeatedly select options to get the balance, make a deposit, and make a
withdrawal. A final option allows the user to quit. The ATM program runs until a
user enters the password “CloseItDown,” so it can accept more users. Figure 8.1
shows the sample terminal-based interface.

[FIGURE 8.1] The user interface for the ATM program

The data model classes for the program are the Bank and SavingsAccount
classes developed earlier in this chapter. To support user interaction, we also
develop a new class called ATM. The class diagram in Figure 8.2 shows the
relationships among these classes.

ken% python atm.py
Enter your name: Name1
Enter your PIN: 1111
Error, unrecognized PIN
Enter your name: Name1
Enter your PIN: 1000
1 View your balance
2 Make a deposit
3 Make a withdrawal
4 Quit

Enter a number: 1
Your balance is $ 100.0
1 View your balance
2 Make a deposit
3 Make a withdrawal
4 Quit

Enter a number: 2
Enter the amount to deposit: 50
1 View your balance
2 Make a deposit
3 Make a withdrawal
4 Quit

Enter a number: 4
Have a nice day!
Enter your name: CloseItDown
>>>

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 8.2] A UML diagram for the ATM program showing the program’s classes

In a class diagram, the name of each class appears in a box. The lines or
edges connecting the boxes show the relationships. Note that these edges are
labeled or contain arrows. This information describes the number of accounts in
a bank (zero or more) and the dependency of one class on another (the direction
of an arrow). Class diagrams of this type are part of a graphical notation called
the Unified Modeling Language, or UML. UML is used to describe and docu-
ment the analysis and design of complex software systems.

In general, it is a good idea to divide the code for most interactive applica-
tions into at least two sets of classes. One set of classes, which we call the view,
handles the program’s interactions with human users, including the input and
output operations. The other set of classes, called the model, represents and
manages the data used by the application. In the current case study, the Bank and
SavingsAccount classes belong to the model, whereas the ATM class belongs to
the view. One of the benefits of this separation of responsibilities is that you can
write different views for the same data model, such as a terminal-based view and
a graphical-based view, without changing a line of code in the data model.
Alternatively, you can write different representations of the data model without
altering a line of code in the views. In most of the case studies that follow, we
apply this framework, called the model/view pattern, to structure the code.

8.4.3 Design

The ATM class maintains two instance variables. Their values are the following:
� A Bank object
� The SavingsAccount of the currently logged-in user

Bank

SavingsAccount

*

ATM

8.4 Case Study: An ATM [327]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

At program start-up, a Bank object is loaded from a file. An ATM object is
then created for this bank. The ATM’s run method is then called. This method
enters a loop that waits for a user to enter a name and a PIN. If the name equals
a secret code, then the loop terminates. If the name and PIN match those of an
account, the ATM’s account variable is set to the user’s account, and the ATM’s
_processAccount method is called. This method displays a menu of the four
options. The selection of an option triggers a lower-level method to process that
option. Table 8.9 lists the methods in the ATM class.

[TABLE 8.9] The interface for the ATM class

Note that the names of all of the methods except run begin with the _ symbol.
The run method is the only method called by the user of the ATM class. The other
methods are auxiliary methods used to accomplish tasks within the ATM class.

The ATM constructor receives a Bank object as an argument and saves a refer-
ence to it in an instance variable. It also sets the current account to None and fills
a jump table, which we discussed in Chapter 6, with the lower-level methods that
carry out the commands.

The run method logs in a user, sets the account variable, and calls
_processAccount.

The _processAccount method displays a menu, inputs a user’s command
number, and attempts to locate a method for that number in the jump table. If a
method is not found, an error message is displayed; otherwise, the method is run.
If the method logs the user out, the account will equal None, so the command
loop can break.

ATM METHOD WHAT IT DOES

ATM(bank) Returns a new ATM object based on bank.

run() Starts a loop that waits for users to log in. Entering a
secret code for the name terminates this process.

_processAccount() Displays a menu of options for a logged-in user and
calls the appropriate methods to handle the options.

_getBalance() Displays the user’s balance.

_deposit() Allows the user to make a deposit.

_withdraw() Allows the user to make a withdrawal and displays any
error messages.

_quit() Saves the bank to its file, resets the current account to
None, and returns to the login loop.

CHAPTER 8 Design with Classes[328]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.4 Case Study: An ATM [329]

8.4.4 Implementation (Coding)

Before you can run this program, you need to create a bank file. We include a
simple function that loads a Bank object with a number of dummy accounts and
saves it to a file.

The code in atm.py defines the ATM class, instantiates a Bank and an ATM,
and executes the ATM’s run method. Here is the text of that file:

“””
File:ƒatm.py

ThisƒmoduleƒdefinesƒtheƒATMƒclassƒandƒitsƒapplication.

Toƒtest,ƒlaunchƒfromƒIDLEƒandƒrun

>>>ƒcreateBank(5)
>>>ƒmain()

Canƒbeƒmodifiedƒtoƒrunƒasƒaƒscriptƒafterƒaƒbankƒhasƒbeenƒsaved.
“””

fromƒbankƒimportƒBank,ƒSavingsAccount

classƒATM(object):
ƒƒƒƒ“””Thisƒclassƒhandlesƒterminal-basedƒATMƒtransactions.”””
ƒƒƒƒƒƒƒƒ
ƒƒƒƒSECRET_CODEƒ=ƒ“CloseItDown”

ƒƒƒƒdefƒ__init__(self,ƒbank):
ƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒself._bankƒ=ƒbank
ƒƒƒƒƒƒƒƒself._methodsƒ=ƒ{}ƒƒƒƒƒƒƒƒƒƒ#ƒJumpƒtableƒforƒcommands
ƒƒƒƒƒƒƒƒself._methods[“1”]ƒ=ƒself._getBalance
ƒƒƒƒƒƒƒƒself._methods[“2”]ƒ=ƒself._deposit
ƒƒƒƒƒƒƒƒself._methods[“3”]ƒ=ƒself._withdraw
ƒƒƒƒƒƒƒƒself._methods[“4”]ƒ=ƒself._quit

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒ“””Logsƒinƒusersƒandƒprocessesƒtheirƒaccounts.”””
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒnameƒ=ƒinput(“Enterƒyourƒname:ƒ“)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒnameƒ==ƒATM.SECRET_CODE:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8 Design with Classes[330]

ƒƒƒƒƒƒƒƒƒƒƒƒpinƒ=ƒinput(“EnterƒyourƒPIN:ƒ“)
ƒƒƒƒƒƒƒƒƒƒƒƒself._accountƒ=ƒself._bank.get(pin)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒself._accountƒ==ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint(“Error,ƒunrecognizedƒPIN”)
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒself._account.getName()ƒ!=ƒname:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint(“Error,ƒunrecognizedƒname”)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._processAccount()

ƒƒƒƒdefƒ_processAccount(self):
ƒƒƒƒƒƒƒƒ“””Aƒmenu-drivenƒcommandƒprocessorƒforƒaƒuser.”””
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“1ƒƒViewƒyourƒbalance”)
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“2ƒƒMakeƒaƒdeposit”)
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“3ƒƒMakeƒaƒwithdrawal”)
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“4ƒƒQuit\n”)
ƒƒƒƒƒƒƒƒƒƒƒƒnumberƒ=ƒinput(“Enterƒaƒnumber:ƒ“)
ƒƒƒƒƒƒƒƒƒƒƒƒtheMethodƒ=ƒself._methods.get(number,ƒNone)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒtheMethodƒ==ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint(“Unrecognizedƒnumber”)
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtheMethod()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒCallƒtheƒmethod
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒself._accountƒ==ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak

ƒƒƒƒdefƒ_getBalance(self):
ƒƒƒƒƒƒƒƒprint(“Yourƒbalanceƒisƒ$”,ƒself._account.getBalance())

ƒƒƒƒdefƒ_deposit(self):
ƒƒƒƒƒƒƒƒamountƒ=ƒfloat(input(“Enterƒtheƒamountƒtoƒdeposit:ƒ“))
ƒƒƒƒƒƒƒƒself._account.deposit(amount)

ƒƒƒƒdefƒ_withdraw(self):
ƒƒƒƒƒƒƒƒamountƒ=ƒfloat(input(“Enterƒtheƒamountƒtoƒwithdraw:ƒ“))
ƒƒƒƒƒƒƒƒmessageƒ=ƒself._account.withdraw(amount)
ƒƒƒƒƒƒƒƒifƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒprint(message)

ƒƒƒƒdefƒ_quit(self):
ƒƒƒƒƒƒƒƒself._bank.save()
ƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒprint(“Haveƒaƒniceƒday!”)

#ƒTop-levelƒfunctions
defƒmain():
ƒƒƒƒ“””InstantiateƒaƒBankƒandƒanƒATMƒandƒrunƒit.”””
ƒƒƒƒbankƒ=ƒBank(“bank.dat”)

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8.5 Structuring Classes with Inheritance and Polymorphism [331]

ƒƒƒƒatmƒ=ƒATM(bank)
ƒƒƒƒatm.run()
ƒƒƒƒ
defƒcreateBank(numberƒ=ƒ0):
ƒƒƒƒ“””Savesƒaƒbankƒwithƒtheƒspecifiedƒnumberƒofƒaccounts.
ƒƒƒƒUsedƒduringƒtesting.”””
ƒƒƒƒbankƒ=ƒBank()
ƒƒƒƒforƒiƒinƒrange(number):
ƒƒƒƒƒƒƒƒbank.add(SavingsAccount('Name'ƒ+ƒstr(iƒ+ƒ1),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(1000ƒ+ƒi),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ100.00))
ƒƒƒƒbank.save(“bank.datƒ“)

8.5 Structuring Classes with Inheritance and
Polymorphism
Object-based programming involves the use of objects, classes, and methods to
solve problems. Most object-oriented languages require the programmer to mas-
ter the following techniques:

1 Data encapsulation. Restricting the manipulation of an object’s state by
external users to a set of method calls.

2 Inheritance. Allowing a class to automatically reuse and extend the code
of similar but more general classes.

3 Polymorphism. Allowing several different classes to use the same gen-
eral method names.

Although Python is considered an object-oriented language, its syntax does
not enforce data encapsulation. However, Python programmers can adopt conven-
tions, such as those we have used, to achieve data encapsulation in practice. For
example, the use of an underscore symbol in an instance variable can dissuade an
external user from writing code to access the variable in an inappropriate manner.

Unlike data encapsulation, inheritance and polymorphism are built into
Python’s syntax. In this section we examine how they can be exploited to struc-
ture code.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8 Design with Classes[332]

8.5.1 Inheritance Hierarchies and Modeling

Objects in the natural world and objects in the world of artifacts can be classified
using inheritance hierarchies. A simplified hierarchy of natural objects is
depicted in Figure 8.3.

[FIGURE 8.3] A simplified hierarchy of objects in the natural world

At the top of a hierarchy is the most general class of objects. This class defines
features that are common to every object in the hierarchy. For example, every
physical object has a mass. Classes just below this one have these features as well as
additional ones. Thus, a living thing has a mass and can also grow and die. The
path from a given class back up to the topmost one goes through all of that given
class’s ancestors. Each class below the topmost one inherits attributes and behaviors
from its ancestors and extends these with additional attributes and behavior.

An object-oriented software system models this pattern of inheritance and exten-
sion in real-world systems by defining classes that extend other classes. In Python, all
classes automatically extend the built-in object class, which is the most general class
possible. However, it is possible to extend any existing class using the syntax

classƒ<newƒclassƒname>(<existingƒclassƒname>):

Thus, for example, PhysicalObject would extend object, LivingThing would
extend PhysicalObject, and so on.

Stone Asteroid

Living thing

InsectMammal

Physical object

Cat Ant

Inanimate object

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The real advantage of inheritance in a software system is that each new sub-
class acquires all of the instance variables and methods of its ancestor classes for
free. Like function definitions and class definitions, inheritance hierarchies pro-
vide an abstraction mechanism that allows the programmer to avoid reinventing
the wheel or writing redundant code. To see how inheritance works in Python,
we now explore two examples.

8.5.2 Example: A Restricted Savings Account

So far, our examples have focused on ordinary savings accounts. Banks also pro-
vide customers with restricted savings accounts. These are like ordinary savings
accounts in most ways, but with some special features, such as allowing only a
certain number of deposits or withdrawals a month. Let’s assume that a savings
account has a name, a PIN, and a balance. You can make deposits and with-
drawals and access the attributes. Let’s also assume that this restricted savings
account permits only three withdrawals per month. The next session shows
an interaction with a RestrictedSavingsAccount that permits up to three
withdrawals:

>>>ƒaccountƒ=ƒRestrictedSavingsAccount(“Ken”,ƒ“1001”,ƒ500.00)
>>>ƒprint(account)
Name:ƒƒƒƒKen
PIN:ƒƒƒƒƒ1001
Balance:ƒ500.0
>>>ƒaccount.getBalance()
500.0
>>>ƒforƒcountƒinƒrange(3):
ƒƒƒƒƒƒƒaccount.withdraw(100)
ƒƒƒ
>>>ƒaccount.withdraw(50)
'Noƒmoreƒwithdrawalsƒthisƒmonth'
>>>ƒaccount.resetCounter()
>>>ƒaccount.withdraw(50)

The fourth withdrawal has no effect on the account, and it returns an error mes-
sage. A new method named resetCounter is called to enable withdrawals for the
next month.

If RestrictedSavingsAccount is defined as a subclass of SavingsAccount,
every method but withdraw can simply be inherited and used without changes.
The withdraw method is redefined in RestrictedSavingsAccount to return an
error message if the number of withdrawals has exceeded the maximum. The

8.5 Structuring Classes with Inheritance and Polymorphism [333]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

maximum will be maintained in a new class variable, and the monthly count of
withdrawals will be tracked in a new instance variable. Finally, a new method,
resetCounter, is included to reset the number of withdrawals to 0 at the end
of each month. Here is the code for the RestrictedSavingsAccount class,
followed by a brief explanation:

“””
File:ƒsavings.py

ThisƒmoduleƒdefinesƒtheƒRestrictedSavingsAccountƒclass.
“””
fromƒbankƒimportƒSavingsAccount

classƒRestrictedSavingsAccount(SavingsAccount):
ƒƒƒƒ“””Thisƒclassƒrepresentsƒaƒrestrictedƒsavingsƒaccount.”””

ƒƒƒƒMAX_WITHDRAWALSƒ=ƒ3
ƒƒƒƒƒƒƒƒ
ƒƒƒƒdefƒ__init__(self,ƒname,ƒpin,ƒbalanceƒ=ƒ0.0):
ƒƒƒƒƒƒƒƒ“””SameƒattributesƒasƒSavingsAccount,ƒbutƒwith
ƒƒƒƒƒƒƒƒaƒcounterƒforƒwithdrawals.”””
ƒƒƒƒƒƒƒƒSavingsAccount.__init__(self,ƒname,ƒpin,ƒbalance)
ƒƒƒƒƒƒƒƒself._counterƒ=ƒ0

ƒƒƒƒdefƒwithdraw(self,ƒamount):
ƒƒƒƒƒƒƒƒ“””RestrictsƒnumberƒofƒwithdrawalsƒtoƒMAX_WITHDRAWALS.”””
ƒƒƒƒƒƒƒƒifƒself._counterƒ==ƒRestrictedSavingsAccount.MAX_WITHDRAWALS:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ“Noƒmoreƒwithdrawalsƒthisƒmonth”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒmessageƒ=ƒSavingsAccount.withdraw(self,ƒamount)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒmessageƒ==ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._counterƒ+=ƒ1
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒmessage

ƒƒƒƒdefƒresetCounter(self):
ƒƒƒƒƒƒƒƒself._counterƒ=ƒ0

The RestrictedSavingsAccount class includes a new class variable not
found in SavingsAccount. This variable, called MAX_WITHDRAWALS, is used to
restrict the number of withdrawals that are permitted per month.

The RestrictedSavingsAccount constructor first calls the constructor in
the SavingsAccount class to initialize the instance variables for the name, PIN,
and balance defined there. The syntax uses the class name before the dot, and
explicitly includes self as the first argument. The general form of the syntax for

CHAPTER 8 Design with Classes[334]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

calling a method in the parent class from within a method with the same name in
a subclass follows:

<parentƒclassƒname>.<methodƒname>(self,ƒ<otherƒarguments>)

Continuing in RestrictedSavingsAccount’s constructor, the new instance vari-
able _counter is then set to 0. The rule of thumb to remember when writing the
constructor for a subclass is that each class is responsible for initializing its own
instance variables. Thus, the constructor of the parent class should always be called.

The withdraw method is redefined in RestrictedSavingsAccount to
override the definition of the same method in SavingsAccount. You allow a
withdrawal only when the counter’s value is less than the maximum, and you
increment the counter only after a withdrawal is successful. Note that this version
of the method calls the same method in the parent or superclass to perform the
actual withdrawal. The syntax for this is the same as is used in the constructor.

Finally, the new method resetCounter is included to allow the user to con-
tinue withdrawals in the next month.

8.5.3 Example: The Dealer and a Player in the Game of
Blackjack

The card game of blackjack is played with at least two players, one of whom is
also a dealer. The object of the game is to receive cards from the deck and play
to a count of 21 without going over 21. A card’s point equals its rank, but all
face cards are 10 points, and an ace can count as either 1 or 11 points as
needed. At the beginning of the game, the dealer and the player each receive
two cards from the deck. The player can see both of her cards and just one of
the dealer’s cards initially. The player then “hits” or takes one card at a time
until her total exceeds 21 (a “bust” loss), or she “passes” (stops taking cards).
When the player passes, the dealer reveals his other card and must keep taking
cards until his total is greater than or equal to 17. If the dealer’s final total is
greater than 21, he also loses. Otherwise, the player with the higher point total
wins, or else there is a tie.

A computer program that plays this game can use a Dealer object and a
Player object. The dealer’s moves are completely automatic, whereas the player’s
moves (decisions to pass or hit) are partly controlled by a human user. A third

8.5 Structuring Classes with Inheritance and Polymorphism [335]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

object belonging to the Blackjack class sets up the game and manages the inter-
actions with the user. The Deck and Card classes developed earlier are also
included. A class diagram of the system is shown in Figure 8.4.

[FIGURE 8.4] The classes in the blackjack game application

Here is a sample run of the program:

>>>ƒfromƒblackjackƒimportƒBlackjack
>>>ƒgameƒ=ƒBlackjack()
>>>ƒgame.play()
Player:
2ƒofƒSpades,ƒ5ƒofƒSpades
ƒƒ7ƒpoints
Dealer:
5ƒofƒHearts
Doƒyouƒwantƒaƒhit?ƒ[y/n]:ƒy
Player:
2ƒofƒSpades,ƒ5ƒofƒSpades,ƒKingƒofƒHearts
ƒƒ17ƒpoints
Doƒyouƒwantƒaƒhit?ƒ[y/n]:ƒn
Dealer:
5ƒofƒHearts,ƒQueenƒofƒHearts,ƒ7ƒofƒDiamonds
ƒƒ22ƒpoints
Dealerƒbustsƒandƒyouƒwin

Deck Blackjack

Player

Dealer

Card

1

1

1

0..52

CHAPTER 8 Design with Classes[336]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When a Player object is created, it receives two cards. A Player object can be
hit with another card, asked for the points in its hand, and asked for its string repre-
sentation. Here is the code for the Player class, followed by a brief explanation:

fromƒcardsƒimportƒDeck,ƒCard

classƒPlayer(object):
ƒƒƒƒ“””Thisƒclassƒrepresentsƒaƒplayerƒin
ƒƒƒƒaƒblackjackƒgame.”””

ƒƒƒƒdefƒ__init__(self,ƒcards):
ƒƒƒƒƒƒƒƒself._cardsƒ=ƒcards

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒstringƒrepƒofƒcardsƒandƒpoints.”””
ƒƒƒƒƒƒƒƒresultƒ=ƒ“,ƒ“.join(map(str,ƒself._cards))
ƒƒƒƒƒƒƒƒresultƒ+=ƒ“\nƒƒ“ƒ+ƒstr(self.getPoints())ƒ+ƒ“ƒpoints”
ƒƒƒƒƒƒƒƒreturnƒresult

ƒƒƒƒdefƒhit(self,ƒcard):
ƒƒƒƒƒƒƒƒself._cards.append(card)

ƒƒƒƒdefƒgetPoints(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒnumberƒofƒpointsƒinƒtheƒhand.”””
ƒƒƒƒƒƒƒƒcountƒ=ƒ0
ƒƒƒƒƒƒƒƒforƒcardƒinƒself._cards:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒcard.rankƒ>ƒ9:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒ10
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcard.rankƒ==ƒ1:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒ11
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountƒ+=ƒcard.rank
ƒƒƒƒƒƒƒƒ#ƒDeductƒ10ƒifƒAceƒisƒavailableƒandƒneededƒasƒ1
ƒƒƒƒƒƒƒƒforƒcardƒinƒself._cards:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒcountƒ<=ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒcard.rankƒ==ƒ1:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcountƒ-=ƒ10
ƒƒƒƒƒƒƒƒreturnƒcount

ƒƒƒƒdefƒhasBlackjack(self):
ƒƒƒƒƒƒƒƒ“””Dealtƒ21ƒorƒnot.”””
ƒƒƒƒƒƒƒƒreturnƒlen(self._cards)ƒ==ƒ2ƒandƒself.getPoints()ƒ==ƒ21ƒ

8.5 Structuring Classes with Inheritance and Polymorphism [337]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The problem of computing the points in a player’s hand is complicated by
the fact that an ace can count as either 1 or 11. The getPoints method solves
this problem by first totaling the points using an ace as 11. If this initial count is
greater than 21, then there is a need to count an ace, if there is one, as a 1. The
second loop accomplishes this by counting such aces as long as they are available
and needed. The other methods require no comment.

A Dealer object also maintains a hand of cards and recognizes the same
methods as a Player object. However, the dealer’s behavior is a bit more special-
ized. For example, the dealer at first shows just one card, and the dealer repeat-
edly hits until 17 points are reached or exceeded. Thus, as Figure 8.4 shows,
Dealer is best defined as a subclass of Player. Here is the code for the Dealer
class, followed by a brief explanation:

classƒDealer(Player):
ƒƒƒƒ“””LikeƒaƒPlayer,ƒbutƒwithƒsomeƒrestrictions.”””

ƒƒƒƒdefƒ__init__(self,ƒcards):
ƒƒƒƒƒƒƒƒ“””Initialƒstate:ƒshowƒoneƒcardƒonly.”””
ƒƒƒƒƒƒƒƒPlayer.__init__(self,ƒcards)
ƒƒƒƒƒƒƒƒself._showOneCardƒ=ƒTrue

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒ“””Returnƒjustƒoneƒcardƒifƒnotƒhitƒyet.”””
ƒƒƒƒƒƒƒƒifƒself._showOneCard:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒstr(self._cards[0])
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒPlayer.__str__(self)

ƒƒƒƒdefƒhit(self,ƒdeck):
ƒƒƒƒƒƒƒƒ“””Addƒcardsƒwhileƒpointsƒ<ƒ17,
ƒƒƒƒƒƒƒƒthenƒallowƒallƒtoƒbeƒshown.”””
ƒƒƒƒƒƒƒƒself._showOneCardƒ=ƒFalse
ƒƒƒƒƒƒƒƒwhileƒself.getPoints()ƒ<ƒ17:
ƒƒƒƒƒƒƒƒƒƒƒƒself._cards.append(deck.deal())

Dealer maintains an extra instance variable, _showOneCard, which restricts
the number of cards in the string representation to one card at start-up. As soon
as the dealer hits, this variable is set to False, so all of the cards will be included
in the string from then on. The hit method actually receives a deck rather than a
single card as an argument, so cards may repeatedly be dealt and added to the
dealer’s list at the close of the game.

CHAPTER 8 Design with Classes[338]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The Blackjack class coordinates the interactions among the Deck object,
the Player object, the Dealer object, and the human user. Here is the code:

classƒBlackjack(object):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._deckƒ=ƒDeck()
ƒƒƒƒƒƒƒƒself._deck.shuffle()

ƒƒƒƒƒƒƒƒ#ƒPassƒtheƒplayerƒandƒtheƒdealerƒtwoƒcardsƒeach
ƒƒƒƒƒƒƒƒself._playerƒ=ƒPlayer([self._deck.deal(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._deck.deal()])
ƒƒƒƒƒƒƒƒself._dealerƒ=ƒDealer([self._deck.deal(),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._deck.deal()])

ƒƒƒƒdefƒplay(self):
ƒƒƒƒƒƒƒƒprint(“Player:\n”,ƒself._player)
ƒƒƒƒƒƒƒƒprint(“Dealer:\n”,ƒself._dealer)

ƒƒƒƒƒƒƒƒ#ƒPlayerƒhitsƒuntilƒuserƒsaysƒNO
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒchoiceƒ=ƒinput(“Doƒyouƒwantƒaƒhit?ƒ[y/n]:ƒ“)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒchoiceƒinƒ(“Y”,ƒ“y”):
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._player.hit(self._deck.deal())
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒpointsƒ=ƒself._player.getPoints()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint(“Player:\n”,ƒself._player)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒpointsƒ>=ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒplayerPointsƒ=ƒself._player.getPoints()
ƒƒƒƒƒƒƒƒifƒplayerPointsƒ>ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“Youƒbustƒandƒlose”)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDealer'sƒturnƒtoƒhit
ƒƒƒƒƒƒƒƒƒƒƒƒself._dealer.hit(self._deck)
ƒƒƒƒƒƒƒƒƒƒƒƒprint(“Dealer:\n”,ƒself._dealer)
ƒƒƒƒƒƒƒƒƒƒƒƒdealerPointsƒ=ƒself._dealer.getPoints()
ƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDetermineƒtheƒoutcome
ƒƒƒƒƒƒƒƒƒƒƒƒifƒdealerPointsƒ>ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint(“Dealerƒbustsƒandƒyouƒwin”)
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒdealerPointsƒ>ƒplayerPoints:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint(“Dealerƒwins”)
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒdealerPointsƒ<ƒplayerPointsƒandƒplayerPointsƒ<=ƒ21:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint(“Youƒwin”)
ƒƒƒƒƒƒƒƒƒƒƒƒelifƒdealerPointsƒ==ƒplayerPoints:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒifƒself._player.hasBlackjack()ƒand\ƒ

continued

8.5 Structuring Classes with Inheritance and Polymorphism [339]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒnotƒself._dealer.hasBlackjack():
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint("Youƒwin")
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒelifƒnotƒself._player.hasBlackjack()ƒand\ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._dealer.hasBlackjack():
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint("Dealerƒwins")
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint("Thereƒisƒaƒtie")

8.5.4 Polymorphic Methods

As we have seen in our two examples, a subclass inherits data and methods from
its parent class. We would not bother subclassing unless the two classes shared a
substantial amount of abstract behavior. By this term, we mean that the classes
have similar sets of methods or operations. A subclass usually adds something
extra, such as a new method or a data attribute, to the ensemble provided by its
superclass. A new data attribute is included in both of our examples, and a new
method is included in the first one.

In some cases, the two classes have the same interface, or set of methods
available to external users. In these cases, one or more methods in a subclass
override the definitions of the same methods in the superclass to provide special-
ized versions of the abstract behavior. Like any object-oriented language, Python
supports this capability with polymorphic methods. The term “polymorphic”
means many bodies, and applies to two methods that have the same header, but
have different definitions in different classes. Two examples are the withdraw
method in the bank account hierarchy and the hit method in the blackjack
player hierarchy. The __str__ method is a good example of a polymorphic
method that appears throughout Python’s system of classes.

Like other abstraction mechanisms, polymorphic methods make code easier
to understand and use, because the programmer does not have to remember so
many different names.

8.5.5 Abstract Classes

An abstract class includes data and methods common to its subclasses, but is
never instantiated. For example, checking accounts and savings accounts have
similar attributes and behavior. The data and methods that they have in common
can be placed in an abstract class named Account. The SavingsAccount and
CheckingAccount classes can then extend the Account class and access these
common resources by inheritance (see the UML diagram in Figure 8.5). Any

CHAPTER 8 Design with Classes[340]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

special behavior or attributes can then be added to these two subclasses.
SavingsAccount and CheckingAccount are also known as concrete classes.
Unlike concrete classes, an abstract class such as Account is never instantiated.

[FIGURE 8.5] An abstract class and three concrete classes

8.5.6 The Costs and Benefits of Object-Oriented
Programming

Whenever you learn a new style of programming, you sooner or later become
acquainted with its costs and benefits. To hasten this process, we conclude this
section by comparing several programming styles, all of which have been used in
this book.

The approach with which this book began is called imperative programming.
Code in this style consists of input and output statements, assignment statements,
and control statements for selection and iteration. The name derives from the idea
that a program consists of a set of commands to the computer, which responds by
performing such actions as manipulating data values in memory. This style is appro-
priate for writing very short code sequences that accomplish simple tasks, such as
solving the problems that were introduced in Chapters 1 through 5 of this book.

However, as problems become more complex, the imperative programming
style does not scale well. In particular, the number of interactions among statements
that manipulate the same data variables quickly grows beyond the point of compre-
hension of a human programmer who is trying to verify or maintain the code.

Account

CheckingAccountSavingsAccount

RestrictedSavingsAccount

8.5 Structuring Classes with Inheritance and Polymorphism [341]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As we saw in Chapter 6, you can mitigate some of this complexity by embed-
ding sequences of imperative code in function definitions or subprograms. It then
becomes possible to decompose complex problems into simpler subproblems that
can be solved by these subprograms. In other words, the use of subprograms
reduces the number of program components that one must keep track of.
Moreover, when each subprogram has its own temporary variables and receives
data from the surrounding program by means of explicit parameters, the number
of possible dependencies and interactions among program components also
decreases. The use of cooperating subprograms to solve problems is called
procedural programming.

Although procedural programming takes a step in the direction of controlling
program complexity, it simply masks and ultimately recapitulates the problems of
imperative programming at a higher level of abstraction. When many subpro-
grams share and modify a common data pool, as they did in some of our early
examples, it becomes difficult once again for the programmer to keep track of all
of the interactions among the subprograms during verification and maintenance.

One cause of this problem is the use of the assignment statement to modify
data. Some computer scientists have developed a style of programming that
dispenses with assignment altogether. This radically different approach, called
functional programming, views a program as a set of cooperating functions. A
function in this sense is a highly restricted subprogram. Its sole purpose is to
transform the data in its arguments into other data, its returned value. Because
assignment does not exist, functions perform computations by either evaluating
expressions or calling other functions. Selection is handled by a conditional
expression, which is like an if-else statement that returns a value, and iteration
is implemented by recursion. By restricting how functions can use data, this very
simple model of computation dramatically reduces the conceptual complexity of
programs. However, some argue that this style of programming does not conve-
niently model situations where data objects must change their state.

Object-oriented programming attempts to control the complexity of a pro-
gram while still modeling data that change their state. This style divides up the
data into relatively small units called objects. Each object is then responsible for
managing its own data. If an object needs help with its own tasks, it can call upon
another object or rely on methods defined in its superclass. The main goal is to
divide responsibilities among small, relatively independent or loosely coupled
components. Cooperating objects, when they are well designed, decrease the
likelihood that a system will break when changes are made within a component.

Although object-oriented programming has become quite popular, it can be
overused and abused. Many small and medium-sized problems can still be solved
effectively, simply, and, most important, quickly using any of the other three
styles of programming mentioned here, either individually or in combination.

CHAPTER 8 Design with Classes[342]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The solutions of problems, such as numerical computations, often seem contrived
when they are cast in terms of objects and classes. For other problems, the use of
objects is easy to grasp, but their implementation in the form of classes reflects a
complex model of computation with daunting syntax and semantics. Finally,
hidden and unpleasant interactions can lurk in poorly designed inheritance hier-
archies that resemble those afflicting the most brittle procedural programs.

To conclude, whatever programming style or combination of styles you
choose to solve a problem, good design and common sense are essential.

8.5 Exercises
1 What are the benefits of having class B extend or inherit from class A?

2 Describe what the __init__ method should do in a class that extends
another class.

3 Class B extends class A. Class A defines an __str__ method that returns
the string representation of its instance variables. Class B defines a single
instance variable named _age, which is an integer. Write the code to
define the __str__ method for class B. This method should return the
combined string information from both classes. Label the data for _age
with the string “Age: “.

Summary
� A simple class definition consists of a header and a set of method defi-

nitions. Several related classes can be defined in the same module.
Each element, a module, a class, and a method, can have a separate
docstring associated with it.

� In addition to methods, a class can also include instance variables.
These represent the data attributes of the class. Each instance or
object of a class has its own chunk of memory storage for the values of
its instance variables.

� The constructor or __init__ method is called when a class is instan-
tiated. This method initializes the instance variables. The method can
expect required and/or optional arguments to allow the users of the
class to provide initial values for the instance variables.

Summary [343]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� A method contains a header and a body. The first parameter of a
method is always the reserved word self. This parameter is bound to
the object with which the method is called, so that the code within the
method can reference that particular object.

� An instance variable is introduced and referenced like any other vari-
able, but is always prefixed with self. The scope of an instance
variable is the body of the enclosing class definition, whereas its life-
time is the lifetime of the object associated with it.

� Some standard operators can be overloaded for use with new classes
of objects. One overloads an operator by defining a method that has
the corresponding name.

� When a program can no longer reference an object, it is considered
dead, and its storage is recycled by the garbage collector.

� A class variable is a name for a value that all instances of a class share in
common. It is created and initialized when a class is defined and must
be accessed by using the class name, a dot, and the variable name.

� Pickling is the process of converting an object to a form that can be
saved to permanent file storage. Unpickling is the inverse process.

� The try-except statement is used to catch and handle exceptions
that might be raised in a set of statements.

� The three most important features of object-oriented programming
are encapsulation, inheritance, and polymorphism. All three features
simplify programs and make them more maintainable.

� Encapsulation restricts access to an object’s data to users of the meth-
ods of its class. This helps to prevent indiscriminant changes to an
object’s data.

� Inheritance allows one class to pick up the attributes and behavior of
another class for free. The subclass may also extend its parent class by
adding data and/or methods or modifying the same methods.
Inheritance is a major means of reusing code.

� Polymorphism allows methods in several different classes to have the
same headers. This reduces the need to learn new names for standard
operations.

� A data model is a set of classes that are responsible for managing the
data of a program. A view is a set of classes that are responsible for
presenting information to a human user and handling user inputs.
The model/view pattern structures software systems using these two
sets of components.

CHAPTER 8 Design with Classes[344]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

REVIEW QUESTIONS [345]

REVIEW QUESTIONS
1 An instance variable refers to a data value that

a is owned by a particular instance of a class and no other
b is shared in common and can be accessed by all instances of a

given class

2 The name used to refer to the current instance of a class within the class
definition is

a this

b other

c self

3 The purpose of the __init__ method in a class definition is to

a build and return a string representation of the instance variables
b set the instance variables to initial values

4 A method definition

a can have zero or more parameter names
b always must have at least one parameter name, called self

5 The scope of an instance variable is

a the statements in the body of the method where it is introduced
b the entire class in which it is introduced
c the entire module where it is introduced

6 An object’s lifetime ends

a several hours after it is created
b when it can no longer be referenced anywhere in a program
c when its data storage is recycled by the garbage collector

7 A class variable is used for data that

a all instances of a class have in common
b each instance owns separately

8 Class B is a subclass of class A. The __init__ methods in both classes
expect no arguments. The call of class A’s __init__ method in class B is

a A.__init__()

b A.__init__(self)

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 8 Design with Classes[346]

9 The easiest way to save objects to permanent storage is to

a convert them to strings and save this text to a text file
b pickle them using the pickle function save

10 A polymorphic method

a has a single header but different bodies in different classes
b creates harmony in a software system

PROJECTS
1 Add methods to the Student class that compare two Student objects.

One method should test for equality. The other methods should support
the other possible comparisons. In each case, the method returns the
result of the comparison of the two students’ names.

2 This project assumes that you have completed Project 1. Place several
Student objects into a list and shuffle it. Then run the sort method
with this list and display all of the students’ information.

3 The str method of the Bank class returns a string containing the
accounts in random order. Design and implement a change that causes
the accounts to be placed in the string by order of name. (Hint: You will
also have to define some methods in the SavingsAccount class.)

4 The ATM program allows a user an indefinite number of attempts to log
in. Fix the program so that it displays a message that the police will be
called after a user has had three successive failures. The program should
also shut down the bank when this happens.

5 Develop a terminal-based program that allows a bank manager to manip-
ulate the accounts in a bank. This menu-driven program should include
all of the relevant options, such as adding a new account, removing an
account, and editing an account.

6 A simple software system for a library models a library as a collection of
books and patrons. A patron can have at most three books out on loan
at any given time. Each book has a title, an author, a patron to whom it
has been checked out, and a list of patrons waiting for that book to
be returned. When a patron wants to borrow a book, that patron is

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PROJECTS [347]

automatically added to the book’s wait list if the book is already checked
out. When a patron returns a book, it is automatically loaned to the first
patron on its wait list who can check out a book. Each patron has a name
and the number of books that patron has currently checked out. Develop
the classes Book and Patron to model these objects. Think first of the
interface or set of methods to be used with each class, and then choose
appropriate data structures for the state of the objects. Also write a short
script to test these classes.

7 Develop a Library class that can manage the books and patrons from
Project 6. This class should include methods for adding, removing, and
finding books and patrons.

8 Develop a Manager class that provides a menu-driven command proces-
sor for managing a library of the type developed in Project 7.

9 The Doctor program described in Chapter 5 combines the data model
of a doctor and the operations for handling user interaction. Restructure
this program according to the model/view pattern so that these areas of
responsibility are assigned to separate sets of classes. The program
should include a Doctor class with an interface that allows one to obtain
a greeting, a signoff message, and a reply to a patient’s string. The rest of
the program handles the user’s interactions with the Doctor object.

10 Geometric shapes can be modeled as classes. Develop classes for line
segments, circles, and rectangles. Each shape object should contain a
Turtle object and a color that allow the shape to be drawn in a Turtle
graphics window (see Chapter 7 for details). Factor the code for these
features (instance variables and methods) into an abstract Shape class.
The Circle, Rectangle, and Line classes are all subclasses of Shape.
These subclasses include the other information about the specific types
of shapes, such as a radius or a corner point and a draw method. Write a
script that uses several instances of the different shape classes to draw a
house and a stick figure.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[CHAPTER]
Graphical User Interfaces9
After completing this chapter, you will be able to:

� Structure a GUI-based program using the model/view/
controller pattern

� Instantiate and lay out different types of window objects, such as
labels, entry fields, and command buttons, in a window’s frame

� Define methods that handle events associated with window
objects

� Organize sets of window objects in nested frames
Most people do not judge a book by its cover. They are interested

in its contents, not its appearance. However, users judge a software
product by its user interface because they have no other way to access
its functionality. With the exception of Chapter 7, in which we
explored graphics and image processing, this book has focused on
programs that present a terminal-based user interface. Although this
type of user interface is perfectly adequate for some applications,
most modern computer software employs a graphical user interface
or GUI. A GUI displays text as well as small images (called icons)
that represent objects such as directories, files of different types,
command buttons, and drop-down menus. In addition to entering
text at the keyboard, the user of a GUI can select an icon with a
pointing device, such as a mouse, and move that icon around on the
display. Commands can be activated by pressing the enter key or con-
trol keys, by pressing a command button, or by selecting a drop-
down menu item with the mouse. Put more simply, a GUI displays
all information, including text, graphically to its users, and allows
them to manipulate this information directly with a pointing device.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In this chapter, you learn how to develop GUIs. The transition to GUIs
involves making two adjustments to your thinking. First, the structure of a GUI
program differs significantly from that of a terminal-based program. Second, a
GUI program is event driven, meaning that it is inactive until the user clicks a
button or selects a menu option. In contrast, a terminal-based program main-
tains constant control over the interactions with the user. Put differently, a
terminal-based program prompts the user to enter successive inputs, whereas
a GUI program allows the user to enter inputs in any order and waits for the
user to press a command button or select a menu option. This distinction will
become clearer as you read this chapter.

9.1 The Behavior of Terminal-Based Programs
and GUI-Based Programs
We begin by examining the look and behavior of two different versions of the
same program from a user’s point of view. This program, first introduced as
Programming Project 4 in Chapter 3, computes and displays the total distance
traveled by a ball, given three inputs—the initial height from which it is dropped,
its bounciness index, and the number of bounces. The total distance traveled for
a single bounce is the sum of the distance down and the distance back up. The
user may enter the inputs any number of times before quitting the program. The
first version of the bouncy program includes a terminal-based user interface,
whereas the second version uses a graphical user interface. Although both pro-
grams perform exactly the same function, their behavior, or look and feel, from a
user’s perspective are quite different.

9.1.1 The Terminal-Based Version

The terminal-based version of the bouncy program displays a greeting and then
a menu of command options. The user is prompted for a command number and
then enters a number from the keyboard. The program responds by either termi-
nating execution, prompting for the information for a bouncing ball, or printing
a message indicating an unrecognized command. After the program processes a
command, it displays the menu again, and the same process starts over. A sample
session with this program is shown in Figure 9.1.

CHAPTER 9 Graphical User Interfaces[350]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.1 The Behavior of Terminal-Based Programs and GUI-Based Programs [351]

[FIGURE 9.1] A session with the terminal-based bouncy program

This terminal-based user interface has several obvious effects on its users:
� The user is constrained to reply to a definite sequence of prompts for

inputs. Once an input is entered, there is no way to back up and change it.
� To obtain results for a different set of input data, the user must wait for the

command menu to be displayed again. At that point, the same command
and all of the other inputs must be re-entered.

� The user can enter an unrecognized command.

Each of these effects poses a problem for users that can be solved by convert-
ing the interface to a GUI.

9.1.2 The GUI-Based Version

The GUI-based version of the bouncy program displays a window that contains
various components, also called window objects or widgets. Some of these com-
ponents look like text, while others provide visual cues as to their use. Figure 9.2
shows snapshots of a sample session with this version of the program. The snap-
shot on the left shows the interface at program start-up, whereas the snapshot on

Welcome to the bouncy program!

1 Compute the total distance
2 Quit the program

Enter a number: 1

Enter the initial height: 10
Enter the bounciness index: .6
Enter the number of bounces: 2

The total distance is 25.6

1 Compute a distance
2 Quit the program

Enter a number: 2

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the right shows the interface after the user has entered inputs and selected the
Compute button. This program was run on a Macintosh; on a Windows- or
Linux-based PC, the windows look slightly different.

[FIGURE 9.2] A GUI-based bouncy program

The Bouncy window in Figure 9.2 contains the following components:
� A title bar at the top of the window. This bar contains the title of the

program, “Bouncy.” It also contains three colored circles. Each circle is a
command button. The user can use the mouse to click the left circle
to quit the program, the middle circle to minimize the window, or the
right circle to zoom the window. The user can also drag the window
around the screen by holding the left mouse button on the title bar and
dragging the mouse.

� A set of labels along the left side of the window. These are text elements that
describe the inputs and outputs. For example, “Initial height” is one label.

� A set of entry fields along the right side of the window. These are boxes
within which the program can output text or receive it as input from the
user. The first three entry fields will be used for inputs, while the last field
will be used for the output. At program start-up, the fields contain default
values, as shown in the window on the left side of Figure 9.2.

� A single command button labeled Compute. When the user uses the
mouse to press this button, the program responds by using the data in the
three input fields to compute the total distance. This result is then dis-
played in the output field. Sample input data and the corresponding output
are shown in the window on the right side of Figure 9.2.

� The user can also alter the size of the window by holding the mouse on its
lower-right corner and dragging in any direction.

Although this review of features might seem tedious to anyone who regularly
uses GUI-based programs, a careful inventory is necessary for the programmer

CHAPTER 9 Graphical User Interfaces[352]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

who builds them. Also, a close study of these features reveals the following effects
on users:

� The user is not constrained to enter inputs in a particular order. Before she
presses the Compute button, she can edit any of the data in the three
input fields.

� Running different data sets does not require re-entering all of the data.
The user can edit just one or two values and press the Compute button.

� The user cannot enter an unrecognized command. Each command option
is presented as a virtual button to be pressed.

When we compare the effects of the two interfaces on users, the GUI seems
to be a definite improvement on the terminal-based user interface. The improve-
ment is even more noticeable as the number of command options increases and
the information to be presented grows in quantity and complexity.

9.1.3 Event-Driven Programming

Rather than guide the user through a series of prompts, a GUI-based program
opens a window and waits for the user to manipulate window objects with the
mouse. These user-generated events, such as mouse clicks, trigger operations in
the program to respond by pulling in inputs, processing them, and displaying
results. This type of software system is event-driven, and the type of program-
ming used to create it is called event-driven programming.

Like any complex program, an event-driven program is developed in several
steps. In the analysis step, the types of window objects and their arrangement in
the window are determined. Because GUI-based programs are almost always
object-oriented, this becomes a matter of choosing among GUI component
classes available in the programming language or inventing new ones if needed.
Graphic designers and cognitive psychologists might be called in to assist in this
phase, if the analysts do not already possess this type of expertise.

GUI-based programs also adhere to the model/view pattern that we intro-
duced in Chapter 8. This pattern separates the resources and responsibilities for
managing the data model from those concerned with displaying it and interacting
with the users. To a certain extent, the number, types, and arrangement of the
window objects depend on the nature of the information to be displayed and also
depend on the set of commands that will be available to the user for manipulating
that information. Thus, the developers of the GUI also have to converse with the
developers of the program’s data model.

9.1 The Behavior of Terminal-Based Programs and GUI-Based Programs [353]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the design of a GUI-based program, a third set of resources called the
controller often handles the interactions between a program’s data model and its
view. The relationships between these three sets of resources, also called the
model/view/controller pattern or MVC, are depicted in Figure 9.3.

[FIGURE 9.3] The model/view/controller pattern

Let us return to the example of the bouncy program to see how the MVC pat-
tern works. The GUI in this program consists of the window and its components,
including the labeled entry fields and the Compute button. The data model, which
admittedly is not very complex, consists of a function that receives three numeric
arguments and returns the total distance. When the user presses the Compute but-
ton, a hidden controller object automatically detects this event and triggers or calls a
controller method. This method in turn fetches the input values from the input
fields and passes them to the data model for processing. When the data model
returns its result, the controller method sends it to the output field to be displayed.
Ideally, the view knows nothing about the data model, and the data model knows
nothing about the view. The controller conducts the conversations between them.

Once the interactions among these resources have been determined, their
coding can begin. This phase consists of several steps:

1 Define a new class to represent the main application window.

2 Instantiate the classes of window objects needed for this application, such
as labels, fields, and command buttons.

3 Position these components in the window.

4 Instantiate the data model and provide for the display of any default data
in the window objects.

Program outputs

User inputs, events

View Controller

Model

CHAPTER 9 Graphical User Interfaces[354]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5 Register controller methods with each window object in which an event
relevant to the application might occur.

6 Define these controller methods.

7 Define a main function that instantiates the window class and runs the
appropriate method to launch the GUI.

In coding the program, you could initially skip steps 4–6, which concern the
controller and the data model, to develop and refine the view. This would allow
you to preview the window and its layout, even though the command buttons and
other GUI elements lack functionality.

In the sections that follow, we explore these elements of GUI-based,
event-driven programming with examples in Python.

9.1 Exercises
1 Describe two fundamental differences between terminal-based user

interfaces and GUIs.

2 Describe the responsibilities of the model, view, and controller in the
MVC pattern.

3 Give an example of one application for which a terminal-based user
interface is adequate and one example that lends itself best to a GUI.

9.2 Coding Simple GUI-Based Programs
In this section, we show some examples of simple GUI-based programs in
Python. There are many libraries and toolkits of GUI components available to
the Python programmer, but in this chapter we use just two: tkinter and
tkinter.messagebox. Both are standard modules that come with any Python
installation. tkinter includes classes for windows and numerous types of win-
dow objects. tkinter.messagebox includes functions for several standard pop-
up dialog boxes. We start with some short demo programs that illustrate each
type of GUI component, and, in later sections, we develop some examples with
more significant functionality.

9.2 Coding Simple GUI-Based Programs [355]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.2.1 Windows and Labels

Our first demo program defines a class for a main window that displays a greeting.
In all of our GUI-based programs, this class extends tkinter’s Frame class. The
Frame class provides the basic functionality for any window, such as the command
buttons in the title bar. Here is the code, followed by Figure 9.4, which shows a
screenshot of the window:

fromƒtkinterƒimportƒ*

classƒLabelDemo(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“LabelƒDemo”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._labelƒ=ƒLabel(self,ƒtextƒ=ƒ“Helloƒworld!”)
ƒƒƒƒƒƒƒƒself._label.grid()

defƒmain():
ƒƒƒƒ“””Instantiateƒandƒpopƒupƒtheƒwindow.”””
ƒƒƒƒLabelDemo().mainloop()

main()

[FIGURE 9.4] Displaying a text label in a window

The LabelDemo class’s __init__ method includes five statements that per-
form the following tasks:

1 Run Frame’s __init__ method to automatically initialize any variables
defined in the Frame class.

2 Reset the window’s title. In this line of code, self.master is an instance
variable defined in the Frame class. This variable refers to the root window.

CHAPTER 9 Graphical User Interfaces[356]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This window in turn has an instance variable named title, which by
default is an empty string.

3 Use the grid method to set the window’s layout manager to a grid layout.
A grid layout allows the programmer to place components in the cells of
an invisible grid in the window. The nature and purpose of this grid will
become clear in upcoming examples that contain multiple window objects.

4 Create the only window component, a Label object. When a component
is created, its constructor expects the parent component as an argu-
ment. In this case, the parent of the label is the LabelDemo instance, or
self. The other arguments can be keyword arguments that specify the
component’s attributes. In this example, the label receives a text attrib-
ute, whose value is a string of text to be displayed when the label is
displayed in the window.

5 Use the grid method again to position the label in the window’s grid. In
this case, the label will appear centered in the window.

The GUI is launched in the main method. This method instantiates
LabelDemo and calls its mainloop method. This method pops up the window
and waits for user events. At this point, the main method in our own code quits,
because the GUI is running a hidden, event-driven loop in a separate process.
This part of the program does not vary much from application to application, so
we omit it from the next few examples.

If you are running the program as a script from a terminal prompt, pressing
the window’s close button will quit the program normally. If you are launching the
program from an IDLE window, you should close the shell window as well as
the program’s window to terminate the process that is running the GUI.

9.2.2 Displaying Images

Our next example modifies the first one slightly, so that the program displays an
image and a caption. We use labels for both components. To create a label with an
image, two steps are required. First, the __init__ method creates an instance of
the class PhotoImage from a GIF file on disk (remember that the image file must
be in the current working directory). Then the new label’s image attribute is set to
the PhotoImage object. The label for the caption is set up with a text attribute,
as described earlier. The image label is placed in the grid before the text label.
The resulting labels are centered in a column in the window. Here is the code for

9.2 Coding Simple GUI-Based Programs [357]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a program that displays a captioned image of Smokey the cat, followed by a
screenshot of the window in Figure 9.5:

fromƒtkinterƒimportƒ*

classƒImageDemo(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“ImageƒDemo”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._imageƒ=ƒPhotoImage(fileƒ=ƒ“smokey.gif”)
ƒƒƒƒƒƒƒƒself._imageLabelƒ=ƒLabel(self,ƒimageƒ=ƒself._image)
ƒƒƒƒƒƒƒƒself._imageLabel.grid()
ƒƒƒƒƒƒƒƒself._textLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Smokeyƒtheƒcat”)
ƒƒƒƒƒƒƒƒself._textLabel.grid()

[FIGURE 9.5] Displaying a captioned image

9.2.3 Command Buttons and Responding to Events

Command buttons are created and placed in a window in the same manner as
labels. Also like labels, a button can display either text or an image. When the
Button object receives a text attribute, it displays the associated string. When
the button receives an image attribute, it provides a clickable image.

To activate a button and enable it to respond to mouse clicks, you must set its
command attribute to an event-handling method. This is done in the main win-
dow’s __init__ method when the button is created. The value of the command
attribute is just the variable that refers to the event-handling method. The
method itself is then defined later in the main window class.

CHAPTER 9 Graphical User Interfaces[358]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here is the code for an example program that allows the user to press a but-
ton to change a label’s text. The text alternates between “Hello” and “Goodbye”.
Figure 9.6 shows the two states of the window.

fromƒtkinterƒimportƒ*

classƒButtonDemo(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“ButtonƒDemo”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._labelƒ=ƒLabel(self,ƒtextƒ=ƒ“Hello”)
ƒƒƒƒƒƒƒƒself._label.grid()
ƒƒƒƒƒƒƒƒself._buttonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Clickƒme”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._switch)
ƒƒƒƒƒƒƒƒself._button.grid()

ƒƒƒƒdefƒ_switch(self):
ƒƒƒƒƒƒƒƒ“””Eventƒhandlerƒforƒtheƒbutton.”””
ƒƒƒƒƒƒƒƒifƒself._label[“text”]ƒ==ƒ“Hello”:
ƒƒƒƒƒƒƒƒƒƒƒƒself._label[“text”]ƒ=ƒ“Goodbye”
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._label[“text”]ƒ=ƒ“Hello”

[FIGURE 9.6] When the user presses the Click me button, the message changes from “Hello” to
“Goodbye”

Note that the _switch method examines the text attribute of the label and
sets it to the appropriate value. The attributes of each window component are
actually stored in a dictionary, so the notation for examining them and modifying
them includes the subscript operator with the name of the attribute as the key.

In programs that use several buttons, each button has its own event-handling
method. The standard procedure in the __init__ method is to create the but-
tons, set their command attribute, and lay them out in the grid. Later in the win-
dow class, the event-handling methods for all of the buttons are then defined.

9.2 Coding Simple GUI-Based Programs [359]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

These methods together make up the controller part of the MVC pattern dis-
cussed in Section 9.1.

9.2.4 Viewing the Images of Playing Cards

Modern game-playing programs provide graphical displays of the characters and
the setting of a game. Games that use playing cards display images of the cards.
We now present a program that allows the user to view the cards in a deck. The
GUI is shown in Figure 9.7. At start-up, the window displays the back of a card,
along with three command buttons. The user can select a command to deal a
card, shuffle the deck, or obtain a new deck. As each new card is dealt, an image
of its face and the text of its rank and suit are displayed. The user can continue to
deal cards until the deck becomes empty.

[FIGURE 9.7] A GUI for viewing playing cards

Images of playing cards are available as open source on many Web sites. On
such sites, the filenames for the images typically indicate the rank and suit of
the card. In this example, the filename for the image of the queen of spades is
12s.gif. If the entire set of files is located in a folder named DECK, the path to
this filename is actually DECK/12s.gif.

The GUI for this program will have to obtain the filename of the image for
each card displayed, as well as the filename of the image for the backside of each
card. A couple of changes to the Card class defined in Section 8.3.9 will provide
this information. We add an instance variable for the filename of the card’s image
on disk. At instantiation, the __init__ method uses the rank and suit informa-
tion to build a filename and sets a new instance variable to this string. Thus, each
card’s image filename can be accessed by using its fileName attribute. There is
also a single image that represents the backside of all of the cards in a file named

CHAPTER 9 Graphical User Interfaces[360]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b.gif. A new class variable, BACK_NAME, is defined to be this filename. Here is
the code for these revisions to the Card class:

BACK_NAMEƒ=ƒ'DECK/b.gif'

defƒ__init__(self,ƒrank,ƒsuit):
ƒƒƒƒ“””Createsƒaƒcardƒwithƒtheƒgivenƒrank,ƒsuit,ƒand
ƒƒƒƒimageƒfilename.”””
ƒƒƒƒself.rankƒ=ƒrank
ƒƒƒƒself.suitƒ=ƒsuit
ƒƒƒƒself.fileNameƒ=ƒ'DECK/'ƒ+ƒstr(rank)ƒ+ƒsuit[0].lower()ƒ+ƒ'.gif'

The main window class is called CardDemo. It maintains instance variables
for the deck of cards, the image of each card’s backside, and the image of the cur-
rent card. The back image is loaded at start-up and does not change. The card
image is initially None before the user deals a card. Label components are then
set up for the image and the text of a card. The image label initially holds the
backside image, whereas the text label holds the empty string. Three command
buttons are created and added to the window.

The window components are now laid out in explicit rows and columns in
the window’s grid. There are two columns and four rows. The left column con-
tains the card image and its caption, whereas the right column contains the three
command buttons. The rows and columns of the grid are numbered from 0.
Thus, the card image in the upper-left corner is located at position (0, 0), and the
topmost command button occupies position (0, 1). The grid method specifies
these positions by receiving values for the row and column attributes. Take care
to position each component properly. Drawing a sketch of the grid with example
coordinates can help with the design of a layout.

Although the card image lies in the first row of the grid, it must occupy three
rows to align with the three buttons in the column to its right. You can stretch a
window component across several rows by specifying the value of the rowspan
attribute. Thus, the card image receives a rowspan of 3.

There are three event-handling methods:

1 The method _shuffle simply shuffles the deck.

2 The method _deal requests the next card from the deck. If this card is
not None, its image is loaded and displayed, and its string representation
is also obtained and displayed.

3 The method _new restores all of the data and the GUI to their initial states.

If the card just dealt equals None, the deck is empty, so method _new is called
to return the user to the initial state of the demo.

9.2 Coding Simple GUI-Based Programs [361]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here is the code:

fromƒtkinterƒimportƒ*
fromƒcardsƒimportƒCard,ƒDeck

classƒCardDemo(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“CardƒDemo”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._deckƒ=ƒDeck()
ƒƒƒƒƒƒƒƒself._backImageƒ=ƒPhotoImage(fileƒ=ƒCard.BACK_NAME)
ƒƒƒƒƒƒƒƒself._cardImageƒ=ƒNone
ƒƒƒƒƒƒƒƒself._imageLabelƒ=ƒLabel(self,ƒimageƒ=ƒself._backImage)
ƒƒƒƒƒƒƒƒself._imageLabel.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,ƒrowspanƒ=ƒ3)
ƒƒƒƒƒƒƒƒself._textLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“”)
ƒƒƒƒƒƒƒƒself._textLabel.grid(rowƒ=ƒ3,ƒcolumnƒ=ƒ0)

ƒƒƒƒƒƒƒƒself._dealButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Deal”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._deal)
ƒƒƒƒƒƒƒƒself._dealButton.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._shuffleButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Shuffle”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._shuffle)
ƒƒƒƒƒƒƒƒself._shuffleButton.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._newButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“NewƒDeck”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._new)
ƒƒƒƒƒƒƒƒself._newButton.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ1)

ƒƒƒƒdefƒ_deal(self):
ƒƒƒƒƒƒƒƒ“””Ifƒtheƒdeckƒisƒnotƒempty,ƒdealsƒandƒdisplaysƒthe
ƒƒƒƒƒƒƒƒnextƒcard.ƒƒOtherwise,ƒreturnsƒtheƒprogramƒtoƒits
ƒƒƒƒƒƒƒƒinitialƒstate.”””
ƒƒƒƒƒƒƒƒcardƒ=ƒself._deck.deal()
ƒƒƒƒƒƒƒƒifƒcardƒ!=ƒNone:
ƒƒƒƒƒƒƒƒƒƒƒƒself._cardImageƒ=ƒPhotoImage(fileƒ=ƒcard.fileName)
ƒƒƒƒƒƒƒƒƒƒƒƒself._imageLabel[“image”]ƒ=ƒself._cardImage
ƒƒƒƒƒƒƒƒƒƒƒƒself._textLabel[“text”]ƒ=ƒstr(card)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._new()

ƒƒƒƒdefƒ_shuffle(self):
ƒƒƒƒƒƒƒƒself._deck.shuffle()

continued
ƒƒƒƒƒƒƒƒ

CHAPTER 9 Graphical User Interfaces[362]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ƒƒƒƒdefƒ_new(self):
ƒƒƒƒƒƒƒƒ“””Returnsƒtheƒprogramƒtoƒitsƒinitialƒstate.”””
ƒƒƒƒƒƒƒƒself._deckƒ=ƒDeck()
ƒƒƒƒƒƒƒƒself._cardImageƒ=ƒNone
ƒƒƒƒƒƒƒƒself._imageLabel[“image”]ƒ=ƒself._backImage
ƒƒƒƒƒƒƒƒself._textLabel[“text”]ƒ=ƒ“”

defƒmain():
ƒƒƒƒCardDemo().mainloop()

main()

9.2.5 Entry Fields for the Input and Output of Text

Anyone who shops on the Web has used a form filler to enter a name, password,
and credit card number. A form filler consists of labeled entry fields, which allow
the user to enter and edit a single line of text. A field can also contain text output
by a program. tkinter’s Entry class is used to display an entry field. To facilitate
the input and output of floating-point numbers, an Entry object is associated with
a container object of the DoubleVar class. This object contains the data value
that is displayed in the Entry object. The DoubleVar object’s set method is used
to output a floating-point number to the associated Entry object. Its get method
is used to input a floating-point number from the associated Entry object.

An Entry object is set up in two steps. First, its DoubleVar object is created.
Its default content is 0.0, but its set method may be run to give it a different ini-
tial value. Then the Entry is created with the DoubleVar object as the value of
its textvariable attribute. The contents of the DoubleVar object can then be
accessed or modified by any event-handler methods. The three types of data con-
tainer objects that can be used with Entry fields are listed in Table 9.1. The
methods get and set are used with all three types of containers.

[TABLE 9.1] Data container classes for different data types

TYPE OF DATA TYPE OF DATA CONTAINER

float DoubleVar

int IntVar

str (string) StringVar

9.2 Coding Simple GUI-Based Programs [363]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Our next demo program recasts the circlearea program of Programming
Project 6 of Chapter 1 as a GUI program. Here is the code, followed by a screen-
shot of the GUI in Figure 9.8:

fromƒtkinterƒimportƒ*
importƒmath

classƒCircleArea(Frame):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“CircleƒArea”)
ƒƒƒƒƒƒƒƒself.grid()

ƒƒƒƒƒƒƒƒ#ƒLabelƒandƒfieldƒforƒtheƒradius
ƒƒƒƒƒƒƒƒself._radiusLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Radius”)
ƒƒƒƒƒƒƒƒself._radiusLabel.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._radiusVarƒ=ƒDoubleVar()
ƒƒƒƒƒƒƒƒself._radiusEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._radiusVar)
ƒƒƒƒƒƒƒƒself._radiusEntry.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1)

ƒƒƒƒƒƒƒƒ#ƒLabelƒandƒfieldƒforƒtheƒarea
ƒƒƒƒƒƒƒƒself._areaLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Area”)
ƒƒƒƒƒƒƒƒself._areaLabel.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._areaVarƒ=ƒDoubleVar()
ƒƒƒƒƒƒƒƒself._areaEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._areaVar)
ƒƒƒƒƒƒƒƒself._areaEntry.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)

ƒƒƒƒƒƒƒƒ#ƒTheƒcommandƒbutton
ƒƒƒƒƒƒƒƒself._buttonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Compute”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._area)
ƒƒƒƒƒƒƒƒself._button.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ0,ƒcolumnspanƒ=ƒ2)

ƒƒƒƒdefƒ_area(self):
ƒƒƒƒƒƒƒƒ“””Eventƒhandlerƒforƒtheƒbutton.”””
ƒƒƒƒƒƒƒƒradiusƒ=ƒself._radiusVar.get()
ƒƒƒƒƒƒƒƒareaƒ=ƒradiusƒ**ƒ2ƒ*ƒmath.pi
ƒƒƒƒƒƒƒƒself._areaVar.set(area)

defƒmain():
ƒƒƒƒCircleArea().mainloop()
main()

CHAPTER 9 Graphical User Interfaces[364]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 9.8] The circlearea program recast as a GUI program

9.2.6 Using Pop-Up Dialog Boxes

GUI-based programs rely extensively on pop-up dialog boxes that display messages,
query the user for a Yes/No answer, and so forth. The tkinter.messagebox mod-
ule includes several functions that perform these tasks. Some of these functions are
listed in Table 9.2.

[TABLE 9.2] Some tkinter.messagebox functions

The keyword arguments for each function can receive values for the dialog
box’s title, message, and parent component, usually the main window from which
the pop-up is launched.

tkinter.messagebox FUNCTION WHAT IT DOES

askokcancel(title = None, Asks an OK/Cancel question, returns True if
ƒƒƒƒƒƒƒƒƒƒƒƒmessage = None, OK is selected, False otherwise.
ƒƒƒƒƒƒƒƒƒƒƒƒparent = None)

askyesno(title = None, Asks a Yes/No question, returns True if Yes
ƒƒƒƒƒƒƒƒƒmessage = None, is selected, False otherwise.
ƒƒƒƒƒƒƒƒƒparent = None)

showerror(title = None, Shows an error message.
ƒƒƒƒƒƒƒƒƒƒmessage = None,
ƒƒƒƒƒƒƒƒƒƒparent = None)

showinfo(title = None, Shows information.
ƒƒƒƒƒƒƒƒƒmessage = None,
ƒƒƒƒƒƒƒƒƒparent = None)

showwarning(title = None, Shows a warning message.
ƒƒƒƒƒƒƒƒƒƒƒƒmessage = None,
ƒƒƒƒƒƒƒƒƒƒƒƒparent = None)

9.2 Coding Simple GUI-Based Programs [365]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Let’s add error handling to the _area method in the GUI program for com-
puting the area of a circle. To do this, we can set up the method to use a try-
except statement that catches a ValueError. This type of exception is raised
when Python attempts to convert a string with a bad format to a number. If a
ValueError is raised, the _area method pops up an error dialog box to display a
message. Here is the code, followed by a screenshot that shows the pop-up in
Figure 9.9:

defƒ_area(self):
ƒƒƒƒ“””Eventƒhandlerƒforƒtheƒbutton.”””
ƒƒƒƒtry:
ƒƒƒƒƒƒƒƒradiusƒ=ƒself._radiusVar.get()
ƒƒƒƒƒƒƒƒareaƒ=ƒradiusƒ**ƒ2ƒ*ƒmath.pi
ƒƒƒƒƒƒƒƒself._areaVar.set(area)
ƒƒƒƒexceptƒValueError:
ƒƒƒƒƒƒƒƒtkinter.messagebox.showerror(messageƒ=ƒ“Error:ƒBadƒformat”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒparentƒ=ƒself)

[FIGURE 9.9] A pop-up dialog box with an error message

9.2 Exercises
1 Explain what usually happens in the __init__ method of a main

window class.

2 How is the controller set up in a GUI program?

3 Describe the procedure for setting up the display of an image in a window.

4 Explain how to position a GUI component in a window’s grid layout.

5 What roles do the IntVar, DoubleVar, and StringVar classes serve in
a GUI program?

CHAPTER 9 Graphical User Interfaces[366]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.3 Case Study: A GUI-Based ATM
We now pause our survey of GUI components to develop a GUI for a significant
application. Case Study 8.4 presented an ATM with a terminal-based user inter-
face. Because we were careful to separate the model from the view in that pro-
gram, it should now be straightforward to replace that interface with a GUI.

9.3.1 Request

Replace the terminal-based interface of the ATM program with a GUI.

9.3.2 Analysis

The program retains the same functions, but presents the user with a different
look and feel. Figure 9.10 shows a sequence of user interactions with the main
window.

[FIGURE 9.10] User interactions with the GUI-based ATM

Interaction 1: Before login Interaction 2: After login

Interaction 3: After balance Interaction 4: After withdrawal

9.3 Case Study: A GUI-Based ATM [367]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As you can see, the GUI includes three labeled entry fields for the user’s
name, the user’s PIN, and for the amount of money the user wants to withdraw
or deposit. A fourth field outputs messages from the program. The Name and
PIN fields are used for inputs during the login process. When the user success-
fully logs in, the name of the Login button changes to Logout. The other com-
mand buttons perform the named tasks. The field for the amount of money
contains the amount to be deposited or withdrawn from the account. The Status
field displays a greeting, the balance when it is requested, a message signaling the
success or failure of a deposit or a withdrawal, and a sign-off message.

There are no new classes, although the ATM class now extends the Frame
class. The model, consisting of the Bank and SavingsAccount classes, does
not change.

9.3.3 Design

Instead of implementing a text-based, menu-driven command processor, the
ATM class now implements a GUI-based, event-driven command processor.

The __init__ method receives a Bank object from the main function and
maintains a reference to the current user’s account, as before. Its new work lies in
creating and laying out the GUI components. There is quite a bit of work here,
but the operations are similar to those discussed in earlier examples. The only
difference is that three of the four buttons are disabled at program start-up. This
is accomplished by setting the button’s state attribute to the tkinter constant
DISABLED. Otherwise, the __init__ method requires no further comment.

The helper methods for handling a user’s commands now become event-
handling methods associated with the command buttons. The two methods that
differ from those seen in earlier examples are _login and _logout.

The _login method takes the user’s input for the PIN and attempts to find
an account for it in the bank. If the account exists, its name is compared to the
user’s input for the name. If they match, then the following occurs:

� A welcome message is displayed in the status field.
� The login button’s text attribute is set to “Logout”.
� The login button’s command attribute is set to the _logout method, so the

user can log out.
� The other command buttons are enabled, using the tkinter

constant NORMAL.

CHAPTER 9 Graphical User Interfaces[368]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.3 Case Study: A GUI-Based ATM [369]

The _logout method essentially resets the GUI to its initial state. Here are
the details:

� The _account variable is reset to None.
� The input fields are cleared.
� The login button’s text attribute is set to “Login”.
� The login button’s command attribute is set to the _login method, so

another user can log in.
� The other three command buttons are disabled.
� A sign-off message is displayed in the status field.

9.3.4 Implementation (Coding)

Most of the code is in the __init__ method, where the GUI and its components
are set up. The event-handling methods are similar to the methods that handle
the basic tasks in the earlier version of the program.

“””
File:ƒatm.py

ThisƒmoduleƒdefinesƒaƒGUI-basedƒATMƒclassƒandƒitsƒapplication.
“””

fromƒbankƒimportƒBank,ƒSavingsAccount
fromƒtkinterƒimportƒ*

classƒATM(Frame):
ƒƒƒƒ“””ThisƒclassƒrepresentsƒGUI-basedƒATMƒtransactions.”””
ƒƒƒƒƒƒƒƒ
ƒƒƒƒdefƒ__init__(self,ƒbank):
ƒƒƒƒƒƒƒƒ“””Initializeƒtheƒframe,ƒwidgets,ƒandƒtheƒdataƒmodel.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“ATM”)ƒ
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒself._bankƒ=ƒbank
ƒƒƒƒƒƒƒƒself._accountƒ=ƒNone

ƒƒƒƒƒƒƒƒ#ƒCreateƒandƒaddƒtheƒwidgetsƒtoƒtheƒframe.
ƒƒƒƒƒƒƒƒ#ƒDataƒcontainersƒforƒentryƒfields
ƒƒƒƒƒƒƒƒself._nameVarƒ=ƒStringVar()
ƒƒƒƒƒƒƒƒself._pinVarƒ=ƒStringVar()
ƒƒƒƒƒƒƒƒself._amountVarƒ=ƒDoubleVar()
ƒƒƒƒƒƒƒƒself._statusVarƒ=ƒStringVar()

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ƒƒƒƒƒƒƒƒ#ƒLabelsƒforƒentryƒfields
ƒƒƒƒƒƒƒƒself._nameLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Name”)
ƒƒƒƒƒƒƒƒself._nameLabel.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._pinLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“PIN”)
ƒƒƒƒƒƒƒƒself._pinLabel.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._amountLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Amount”)
ƒƒƒƒƒƒƒƒself._amountLabel.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._statusLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Status”)
ƒƒƒƒƒƒƒƒself._statusLabel.grid(rowƒ=ƒ3,ƒcolumnƒ=ƒ0)

ƒƒƒƒƒƒƒƒ#ƒEntryƒfields
ƒƒƒƒƒƒƒƒself._nameEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._nameVar,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒjustifyƒ=ƒCENTER)
ƒƒƒƒƒƒƒƒself._nameEntry.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._pinEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._pinVar,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒjustifyƒ=ƒCENTER)
ƒƒƒƒƒƒƒƒself._pinEntry.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._amountEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._amountVar,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒjustifyƒ=ƒCENTER)
ƒƒƒƒƒƒƒƒself._amountEntry.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._statusEntryƒ=ƒEntry(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._statusVar,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒjustifyƒ=ƒCENTER)
ƒƒƒƒƒƒƒƒself._statusEntry.grid(rowƒ=ƒ3,ƒcolumnƒ=ƒ1)

ƒƒƒƒƒƒƒƒ#ƒCommandƒbuttons
ƒƒƒƒƒƒƒƒself._balanceButtonƒ=ƒButton(self,ƒtextƒ=ƒ“Balance”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._getBalance)
ƒƒƒƒƒƒƒƒself._balanceButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._balanceButton.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ2)
ƒƒƒƒƒƒƒƒself._depositButtonƒ=ƒButton(self,ƒtextƒ=ƒ“Deposit”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._deposit)
ƒƒƒƒƒƒƒƒself._depositButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._depositButton.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ2)
ƒƒƒƒƒƒƒƒself._withdrawButtonƒ=ƒButton(self,ƒtextƒ=ƒ“Withdraw”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._withdraw)
ƒƒƒƒƒƒƒƒself._withdrawButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._withdrawButton.grid(rowƒ=ƒ2,ƒcolumnƒ=ƒ2)
ƒƒƒƒƒƒƒƒself._loginButtonƒ=ƒButton(self,ƒtextƒ=ƒ“Login”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._login)
ƒƒƒƒƒƒƒƒself._loginButton.grid(rowƒ=ƒ3,ƒcolumnƒ=ƒ2)

ƒƒƒƒ#ƒEvent-handlingƒmethods

continued

CHAPTER 9 Graphical User Interfaces[370]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.3 Case Study: A GUI-Based ATM [371]

ƒƒƒƒdefƒ_getBalance(self):
ƒƒƒƒƒƒƒƒself._statusVar.set(“Yourƒbalanceƒisƒ$%0.2f”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(self._account.getBalance()))

ƒƒƒƒdefƒ_deposit(self):
ƒƒƒƒƒƒƒƒamountƒ=ƒself._amountVar.get()
ƒƒƒƒƒƒƒƒself._account.deposit(amount)
ƒƒƒƒƒƒƒƒself._statusVar.set(“Depositƒmade”)

ƒƒƒƒdefƒ_withdraw(self):
ƒƒƒƒƒƒƒƒamountƒ=ƒself._amountVar.get()
ƒƒƒƒƒƒƒƒmessageƒ=ƒself._account.withdraw(amount)
ƒƒƒƒƒƒƒƒifƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(message)
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(“Withdrawalƒmade”)

ƒƒƒƒdefƒ_login(self):
ƒƒƒƒƒƒƒƒpinƒ=ƒself._pinVar.get()
ƒƒƒƒƒƒƒƒnameƒ=ƒself._nameVar.get()
ƒƒƒƒƒƒƒƒself._accountƒ=ƒself._bank.get(pin)
ƒƒƒƒƒƒƒƒifƒself._account:
ƒƒƒƒƒƒƒƒƒƒƒƒifƒnameƒ==ƒself._account.getName():
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(“Welcomeƒtoƒtheƒbank!”)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._loginButton[“text”]ƒ=ƒ“Logout”
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._loginButton[“command”]ƒ=ƒself._logout
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._balanceButton[“state”]ƒ=ƒNORMAL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._depositButton[“state”]ƒ=ƒNORMAL
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._withdrawButton[“state”]ƒ=ƒNORMAL
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(“Unrecognizedƒname”)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒself._statusVar.set(“Unrecognizedƒpin”)

ƒƒƒƒdefƒ_logout(self):
ƒƒƒƒƒƒƒƒself._accountƒ=ƒNone
ƒƒƒƒƒƒƒƒself._nameVar.set(“”)
ƒƒƒƒƒƒƒƒself._pinVar.set(“”)
ƒƒƒƒƒƒƒƒself._amountVar.set(0.0)
ƒƒƒƒƒƒƒƒself._loginButton[“text”]ƒ=ƒ“Login”
ƒƒƒƒƒƒƒƒself._loginButton[“command”]ƒ=ƒself._login
ƒƒƒƒƒƒƒƒself._balanceButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._depositButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._withdrawButton[“state”]ƒ=ƒDISABLED
ƒƒƒƒƒƒƒƒself._statusVar.set(“Haveƒaƒniceƒday!”)

continued

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

#ƒTop-levelƒfunctions
defƒmain():
ƒƒƒƒ“””InstantiateƒaƒbankƒandƒuseƒitƒinƒanƒATM.”””
ƒƒƒƒbankƒ=ƒBank(“bank.dat”)
ƒƒƒƒprint(“Theƒbankƒhasƒbeenƒloaded”)
ƒƒƒƒ
ƒƒƒƒatmƒ=ƒATM(bank)
ƒƒƒƒprint(“RunningƒtheƒGUI”)
ƒƒƒƒatm.mainloop()
ƒƒƒƒ
ƒƒƒƒbank.save()ƒƒ
ƒƒƒƒprint(“Theƒbankƒhasƒbeenƒupdated”)

defƒcreateBank(numberƒ=ƒ0):
ƒƒƒƒ“””Savesƒaƒbankƒwithƒtheƒspecifiedƒnumberƒofƒaccounts.
ƒƒƒƒUsedƒduringƒtesting.”””
ƒƒƒƒbankƒ=ƒBank()
ƒƒƒƒforƒiƒinƒrange(number):
ƒƒƒƒƒƒƒƒbank.add(SavingsAccount('Name'ƒ+ƒstr(i),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstr(1000ƒ+ƒi),
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ100.00))
ƒƒƒƒbank.save(“bank.dat”)

9.4 Other Useful GUI Resources
Many simple GUI-based applications rely on the resources that we have presented
thus far in this chapter. However, as applications become more complex and, in
fact, begin to look like the ones we use on a daily basis, other resources must come
into play. The layout of GUI components can be specified in more detail, and
groups of components can be nested in multiple panes in a window. Paragraphs of
text can be displayed in scrolling text boxes. Lists of information can be presented
for selection in scrolling list boxes and drop-down menus. The color, size, and style
of text and of some GUI components can be adjusted. Finally, GUI-based pro-
grams can be configured to respond to various keyboard events and mouse events.

In this section, we provide a brief overview of some of these advanced
resources and manipulations, so that you may use them to solve problems in the
programming projects.

CHAPTER 9 Graphical User Interfaces[372]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.4.1 Colors

The tkinter module supports the RGB color system introduced in Chapter 7.
In this system, a color consists of three integer components that specify the
intensities of red, green, and blue mixed into that color. Each integer ranges from
0 through 255, where 0 means the absence of a color component and 255 means
the total saturation of that component. When using tkinter, the programmer
must express these values using hexadecimal notation. In Python, a hex literal
begins with the # symbol. The general form of an RGB value is #rrggbb. For
example, the values #000000, #ffffff, and #ff0000 represent the colors black,
white, and red, respectively.

tkinter also recognizes some commonly used colors as string values. These
include “white”, “black”, “red”, “green”, “blue”, “cyan”, “yellow”, and
“magenta”.

For most GUI components, the programmer can set two color attributes: a
foreground color and a background color. The foreground color of a label or an
entry field is its text color, whereas the background color is the color of the rec-
tangular area within which the text is displayed. The symbol fg names the fore-
ground attribute, and the symbol bg names the background attribute. The next
code segment sets up a label whose text is red and whose background is light gray:

self._exampleLabelƒ=ƒLabel(self,ƒtextƒ=ƒ“Example”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒfgƒ=ƒ“red”,ƒbgƒ=ƒ“#cccccc”)

You can also reset a frame’s background color. This is done when the
__init__ method of the Frame class is called. For example, the following line of
code sets the main window’s background color to blue:

Frame.__init__(self,ƒbgƒ=ƒ“blue”)

Because the background attribute of a label is unrelated to the background attrib-
ute of its parent frame, it is a good idea to set both attributes to the same color.

9.4.2 Text Attributes

The text displayed in a label, entry field, or button can also have a type font.
This includes a family, such as Helvetica, a size, such as 24, and a weight, such as
bold. Table 9.3 lists the type font attributes and their values.

9.4 Other Useful GUI Resources [373]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 9.3] Font attributes

The next code segment sets the type font of the label displayed in the first
GUI demo program of Section 9.2. The programmer first imports the
tkinter.font module and instantiates the Font class in the tkinter.font
module. The keyword arguments for the desired attributes are passed to the Font
constructor. The resulting Font object is then used to specify the font attribute
of the label. Figure 9.11 shows the original window and the new version.

fontƒ=ƒtkinter.font.Font(familyƒ=ƒ“Verdana”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒsizeƒ=ƒ20,ƒslantƒ=ƒ“italic”)
self._labelƒ=ƒLabel(self,ƒfontƒ=ƒfont,ƒtextƒ=ƒ“Helloƒworld!”)

[FIGURE 9.11] Setting a type font

9.4.3 Sizing and Justifying an Entry

It’s common to restrict the data in a given entry field to a fixed length, such as a
single letter (in the case of a middle initial field) or a nine-digit number (in the
case of a Social Security number). For these cases, you can set the width of an

Original version New version

tkinter.font ATTRIBUTE VALUES

family A string, as included in the tuple returned by
tkinter.font.families().

size An integer specifying the point size.

weight “bold” or “normal”.

slant “italic” or “roman”.

underline 1 or 0.

CHAPTER 9 Graphical User Interfaces[374]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

entry field to the appropriate number of columns at instantiation using the width
attribute. When the width of a field can exceed the length of its content string,
you can align this string using the justify attribute. The next code segment
reduces the width of the radius field to seven columns and centers the text in
both fields of the circlearea program. The result is shown in Figure 9.12.

self._radiusEntryƒ=ƒEntry(self,ƒjustifyƒ=ƒ“center”,ƒwidthƒ=ƒ7,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._radiusVar)
self._areaEntryƒ=ƒEntry(self,ƒjustifyƒ=ƒ“center”,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextvariableƒ=ƒself._areaVar)

[FIGURE 9.12] Setting the size and justification of entry fields

9.4.4 Sizing the Main Window

In the GUIs that we have seen thus far, by default the main window shrink-wraps
around the components at program start-up. The user can then resize the win-
dow by dragging its lower-right corner in any direction. It is also possible for the
program to specify the window’s initial size and to disable its resizing.

In earlier examples, we set the window’s title by using the following expression:

self.master.title(<aƒstring>)

In this code, self refers to the current frame, and master refers to the root
window that contains this frame. Thus, the method title is run with the
frame’s root window to insert the title into the title bar. You can run two other
methods, geometry and resizable, with the root window to affect its sizing.

The method geometry expects a string as an argument and uses it to set the
size of the main window. This string must be of the form “widthxheight”,

Original version New version

9.4 Other Useful GUI Resources [375]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

where width and height are integers. Thus, the following expression sets the
window’s width and height to 200 pixels and 100 pixels, respectively:

self.master.geometry(“200x100”)

The window can then be resized at any point under program control or user
control.

The method resizable expects two integers as arguments. These values
enable or disable the window’s resizing in the horizontal and vertical directions. A
value of 0 disables, whereas a value of 1 enables. Thus, the following expression
creates a fixed size window in both directions at start-up:

self.master.resizable(0,ƒ0)

Neither the program nor the user can resize this window unless this method is
run again to enable resizing.

Generally, it is easiest for both the programmer and the user to manage a
window that is not resizable. Your goal, as a programmer, is to lay out widgets in
a manner that is pleasing to the eye and easy to manipulate, so that the user has
no reason to resize the window. However, some flexibility might occasionally be
warranted. When the window’s dimensions must exceed their shrink-wrap
defaults, the programmer must master the intricacies of the grid layout. To
these we now turn.

9.4.5 Grid Attributes

By default, a newly opened window shrink-wraps around its components and is
resizable. When the programmer or the user resizes the window, the components
stay shrink-wrapped in their grid, which in turn remains centered within the win-
dow. The widgets are also centered within their grid cells.

Occasionally, a widget must be aligned to the left or to the right in its grid
cell, the grid must expand with the surrounding window, and/or the components
themselves must expand within their grid cells. You can achieve any of these
effects by setting the appropriate grid attributes. These attributes are listed in
Table 9.4.

CHAPTER 9 Graphical User Interfaces[376]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 9.4] Grid attributes

First, we examine how to align widgets within their grid cells. For example,
the labels in the circlearea program would look better if they were left-
aligned. To do this, you specify the sticky attributes of both cells as W (west),
as follows:

self._radiusLabel.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,ƒstickyƒ=ƒW)
self._areaLabel.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0,ƒstickyƒ=ƒW)

The result is shown in Figure 9.13.

Grid ATTRIBUTE MEANING

column The column in which the widget is placed, counting from 0.
The default is 0.

columnspan The number of columns across which the widget is stretched.

ipadx The number of pixels of horizontal padding added within
the boundaries of the widget.

ipady The number of pixels of vertical padding added within the
boundaries of the widget.

padx The number of pixels of horizontal padding added between
the boundaries of the widget and its cell boundaries.

pady The number of pixels of vertical padding added between
the boundaries of the widget and its cell boundaries.

row The row in which the widget is placed, counting from 0.
The default is the next higher-numbered unoccupied row.

rowspan The number of rows across which the widget is stretched.

sticky Specifies how to distribute extra space in the widget’s cell.
Possible values are W, E, N, S, NE, NW, SE, and SW, or combi-
nations thereof, using +. For example, NE aligns the widget
in its cell’s upper-right corner, whereas W+E allows horizontal
expansion.

9.4 Other Useful GUI Resources [377]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 9.13] The circlearea GUI with left-alignment of labels

Next we consider how to get the grid cells, but not the components within
them, to expand with the window. This should have the effect of spreading the
widgets apart or drawing them closer together as the window is resized. However,
the default behavior of the widgets when the user expands the window is to stay
huddled together, in an invisible shrink-wrap, in the center of the window. To
override this behavior, you can specify an expansion weight on a given row or
column of cells. For example, if the weight on row 0 is 1 and the weight on row 1
is 2, then the first row will take one-third of the extra space, and the second row
will take two-thirds of the extra space created when the user resizes the window
vertically (the total weight of 3 is divided between the two rows as 1⁄ 3 and 2⁄ 3).
Likewise, the weights on the columns determine the relative space allotted to
them when the window is resized horizontally. To expand all of the rows and
columns evenly, you give them each a weight of 1. Figure 9.14 shows the
circlearea program without and with the expansion of the grid enabled.

[FIGURE 9.14] The circlearea GUI with row and column expansion

The methods rowconfigure and columnconfigure set the expansion
weights on rows and columns, respectively. Each method expects two arguments.
These are the number of the row or column and the weight.

Original version New version

Original version New version

CHAPTER 9 Graphical User Interfaces[378]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Before setting the expansion weights of the rows and columns in the current
frame, you must set these weights for the row and column of the current frame in
the root window. After doing that, you grid the frame with the sticky attribute
set to expand in four directions. Here is the code for expanding the frame within
the root window:

self.master.rowconfigure(0,ƒweightƒ=ƒ1)
self.master.columnconfigure(0,ƒweightƒ=ƒ1)
self.grid(stickyƒ=ƒW+E+N+S)

Finally, after the widgets have been positioned in their grid cells, you set the
expansion weights of the current frame’s three rows and two columns as follows:

forƒrowƒinƒrange(3):
ƒƒƒƒself.rowconfigure(row,ƒweightƒ=ƒ1)
forƒcolumnƒinƒrange(2):
ƒƒƒƒself.columnconfigure(column,ƒweightƒ=ƒ1)

If the widgets are centered within their cells, their positions will now depend on
the window’s current dimensions.

Finally, let’s consider how to get widgets to expand within their cells. You
assume that their rows and columns have been set to expand as well. Then you
set the sticky attributes of the widgets’ grid cells to the appropriate values. The
value W+E expands horizontally, N+S expands vertically, and W+E+N+S expands in
all four directions to fill the cell. Figure 9.15 shows the circlearea GUI before
and after this type of expansion in all four directions is enabled.

[FIGURE 9.15] The circlearea GUI with widget expansion

Original version New version

9.4 Other Useful GUI Resources [379]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.4.6 Using Nested Frames to Organize Components

Suppose that a GUI requires a row of four command buttons beneath two
columns of labels and entry fields, as shown in Figure 9.16.

[FIGURE 9.16] A complex grid layout

This grid appears to have two columns in two rows and four columns in a
third row. It is difficult, but not impossible, to create this complex layout with a
single grid. However, it would still take a great deal of extra work with the grid
attributes to get the layout to look like the one in Figure 9.16.

A more natural design decomposes the window into two nested frames, each
containing its own grid. The top frame contains a 2 by 2 grid of labels and entry
fields, whereas the bottom frame contains a 1 by 4 grid of buttons. To code this
design, a nested frame, sometimes called a pane, is instantiated with its parent
frame as an argument. The new frame is then added to its parent’s grid and
becomes the parent of the widgets in its own grid. Here is the code for laying out
the GUI shown in Figure 9.16:

classƒComplexLayout(Frame):

ƒƒƒƒdefƒ__init__(self):

ƒƒƒƒƒƒƒƒ#ƒCreateƒtheƒmainƒframe
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“ComplexƒLayout”)
ƒƒƒƒƒƒƒƒself.grid()
ƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒ#ƒCreateƒtheƒnestedƒframeƒforƒtheƒdataƒpane
ƒƒƒƒƒƒƒƒself._dataPaneƒ=ƒFrame(self)
ƒƒƒƒƒƒƒƒself._dataPane.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0)

continued

CHAPTER 9 Graphical User Interfaces[380]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.4 Other Useful GUI Resources [381]

ƒƒƒƒƒƒƒƒ#ƒCreateƒandƒaddƒwidgetsƒtoƒtheƒdataƒpane
ƒƒƒƒƒƒƒƒself._label1ƒ=ƒLabel(self._dataPane,ƒtextƒ=ƒ“Labelƒ1”)
ƒƒƒƒƒƒƒƒself._label1.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._entry1ƒ=ƒEntry(self._dataPane)
ƒƒƒƒƒƒƒƒself._entry1.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself._label2ƒ=ƒLabel(self._dataPane,ƒtextƒ=ƒ“Labelƒ2”)
ƒƒƒƒƒƒƒƒself._label2.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._entry2ƒ=ƒEntry(self._dataPane)
ƒƒƒƒƒƒƒƒself._entry2.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)

ƒƒƒƒƒƒƒƒ#ƒCreateƒtheƒnestedƒframeƒforƒtheƒbuttonƒpane
ƒƒƒƒƒƒƒƒself._buttonPaneƒ=ƒFrame(self)
ƒƒƒƒƒƒƒƒself._buttonPane.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)

ƒƒƒƒƒƒƒƒ#ƒCreateƒandƒaddƒbuttonsƒtoƒtheƒbuttonƒpane
ƒƒƒƒƒƒƒƒself._button1ƒ=ƒButton(self._buttonPane,ƒtextƒ=ƒ“B1”,)
ƒƒƒƒƒƒƒƒself._button2ƒ=ƒButton(self._buttonPane,ƒtextƒ=ƒ“B2”,)
ƒƒƒƒƒƒƒƒself._button3ƒ=ƒButton(self._buttonPane,ƒtextƒ=ƒ“B3”,)
ƒƒƒƒƒƒƒƒself._button4ƒ=ƒButton(self._buttonPane,ƒtextƒ=ƒ“B4”,)
ƒƒƒƒƒƒƒƒself._button1.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,)
ƒƒƒƒƒƒƒƒself._button2.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1,)
ƒƒƒƒƒƒƒƒself._button3.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ2,)
ƒƒƒƒƒƒƒƒself._button4.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ3,)

9.4.7 Multi-Line Text Widgets

Entry fields support the input and output of a single line of text. Python includes
a Text widget for the display of multiple lines of text. This component has a
powerful range of features and operations, but in this subsection we restrict our
discussion to simple output of text.

During instantiation, the programmer can specify the width in columns and
the height in rows of the text that is initially visible in the Text widget. The wid-
get’s wrap attribute by default is CHAR, which wraps text to the next line when a
character is about to go off the right boundary of the widget. The wrap attribute
can be set to WORD for a more pleasing effect or to NONE for no wrapping.

There are various ways to allow a user to view text that extends beyond the
visible area of a Text widget. The easiest way for the programmer is to allow the
Text widget to expand with its grid cell, as shown earlier. However, this forces
the user to expand the window to view the hidden text, and there is a limit to this
expansion. Alternatively, scroll bars can be added to a Text widget to allow the
user to scroll through the text. In this section, we examine the first alternative.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As with an Entry widget, a user’s editing within a Text widget can be dis-
abled by setting its state attribute to DISABLED. However, this attribute must be
reset to NORMAL to send output to the Text widget.

Text within a Text widget is accessed by index positions. These positions are
specified not as integers, but as strings. The general format of an index is

“rowNumber.characterNumber”

where rowNumber is counted from 1, and characterNumber is counted from 0.
Thus, the index of the first character, if there is one, is “1.0”. The tkinter con-
stant END represents the position following the last character in a Text widget.

The method insert is used to send a string to a Text widget. The method
expects an index as its first argument and a string as its second argument. The
method insert inserts the string at the position specified by the index. Thus, if
we assume that output refers to a Text widget, the expression

output.insert(“1.0”,ƒƒ“Pythonƒrules!”)

places the string before any existing text, whereas the expression

output.insert(END,ƒ“Pythonƒrules!”)

places the string after any existing text. You can use expressions such as the last
one when you want to append outputs to a Text widget.

You can use the method delete to clear a Text widget. This method is also
index-based; as arguments it expects the beginning index and the index of the
character after the string to be deleted from the widget. Thus, the following
expression clears the widget output of all of its text:

output.delete(“1.0”,ƒƒEND)

When you want to reset the contents of a Text widget to a new string, rather
than append this string to them, you can first delete the existing contents and
then insert the new string. Our next demo program displays a 20 by 5 Text
widget and two buttons that allow the user to test these options. The user can

CHAPTER 9 Graphical User Interfaces[382]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

also edit the text within the Text widget. The GUI is shown in Figure 9.17.
Here is the code:

fromƒtkinterƒimportƒ*
classƒTextDemo(Frame):
ƒƒƒƒ“””Demonstratesƒaƒmulti-lineƒtextƒarea.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒ“””Setsƒupƒtheƒwindowƒandƒwidgets.”””
ƒƒƒƒƒƒƒƒFrame.__init__(self)
ƒƒƒƒƒƒƒƒself.master.title(“TextƒDemo”)
ƒƒƒƒƒƒƒƒself.master.rowconfigure(0,ƒweightƒ=ƒ1)
ƒƒƒƒƒƒƒƒself.master.columnconfigure(0,ƒweightƒ=ƒ1)
ƒƒƒƒƒƒƒƒself.grid(stickyƒ=ƒW+E+N+S)
ƒƒƒƒƒƒƒƒself._textƒ=ƒ“Thisƒisƒaƒlongƒstringƒtoƒwrap.”
ƒƒƒƒƒƒƒƒself._outputAreaƒ=ƒText(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒwidthƒ=ƒ20,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒheightƒ=ƒ5,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒwrapƒ=ƒWORD)
ƒƒƒƒƒƒƒƒself._outputArea.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcolumnspanƒ=ƒ2,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒstickyƒ=ƒW+E+N+S)
ƒƒƒƒƒƒƒƒself._showButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Show”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._show)
ƒƒƒƒƒƒƒƒself._showButton.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ0)
ƒƒƒƒƒƒƒƒself._clearButtonƒ=ƒButton(self,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒtextƒ=ƒ“Clear”,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒcommandƒ=ƒself._clear)
ƒƒƒƒƒƒƒƒself._clearButton.grid(rowƒ=ƒ1,ƒcolumnƒ=ƒ1)
ƒƒƒƒƒƒƒƒself.rowconfigure(0,ƒweightƒ=ƒ1)
ƒƒƒƒƒƒƒƒself.columnconfigure(0,ƒweightƒ=ƒ1)

ƒƒƒƒdefƒ_show(self):
ƒƒƒƒƒƒƒƒself._outputArea.insert(“1.0”,ƒself._text)

ƒƒƒƒdefƒ_clear(self):
ƒƒƒƒƒƒƒƒself._outputArea.delete(“1.0”,ƒEND)

[FIGURE 9.17] A Text widget

9.4 Other Useful GUI Resources [383]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9.4.8 Scrolling List Boxes

Lists of strings can be displayed in list boxes. The tkinter.Listbox class
includes a wide array of methods for managing items in a list box. Some of these
are listed in Table 9.5.

[TABLE 9.5] Some Listbox methods

Access to the items in a list box is index-based. The index of any item in a list
box may be specified with a zero-based integer. The constants ACTIVE and END
also specify index positions in a list box. The currently selected item is located at
the ACTIVE index, whereas the end of the list is at the END index. The default
selectmode attribute of a list box is MULTIPLE, meaning that many items can be
selected at once. This attribute can be reset to SINGLE. As with Text widgets,
you can specify the width and height of a list box in columns and rows.

Long lists of items typically extend beyond the visible height of a list box.
You can accommodate the user’s need to see them by allowing the list box to
expand vertically, but a much more convenient method is to associate a scroll bar
with the list box. The user moves the list of items under the visible area of the list
box by dragging this bar up and down with the mouse. The tkinter.Scrollbar
class supports this mechanism.

Listbox METHOD WHAT IT DOES

box.activate(index) Selects the string at index, counting from 0.

box.curselection() Returns a tuple containing the currently selected
index, if there is one, or the empty tuple.

box.delete(index) Removes the string at index.

box.get(index) Returns the string at index.

box.insert(index, string) Inserts the string at index, shifting the
remaining lines down by one position.

box.see(index) Adjusts the position of the list box so the string
at index is visible.

box.size() Returns the number of strings in the list box.

box.xview() Used with a horizontal scroll bar to effect
scrolling.

box.yview() Used with a vertical scroll bar to effect scrolling.

CHAPTER 9 Graphical User Interfaces[384]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Let us develop a program that illustrates a scrolling list box. The GUI for
this program, shown in Figure 9.18, displays several strings in a scrolling list box
at start-up. The entry field on the right is for the input of new strings. The user
can add these to the end of the list by selecting the Add button. The user can
remove the currently selected string by selecting the Remove button. The user
selects a string by clicking it with the mouse.

[FIGURE 9.18] A scrolling list box

We now highlight important steps in the code for this program. You begin by
creating a nested frame named _listPane to hold the list box and its scroll bar.
This frame is set to expand vertically within its grid cell:

self._listPaneƒ=ƒFrame(self)
self._listPane.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,ƒstickyƒ=ƒN+S)

You then create the scroll bar and grid it within its parent widget, the list
pane. A scroll bar can have either a vertical or a horizontal orientation. Its orient
attribute is here set to VERTICAL:

self._yScrollƒ=ƒScrollbar(self._listPane,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒorientƒ=ƒVERTICAL)
self._yScroll.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ1,ƒstickyƒ=ƒN+S)

The list box is then instantiated and placed in the list pane as well. Its
yscrollcommand attribute is set to the scroll bar’s set method. The scroll bar’s

9.4 Other Useful GUI Resources [385]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

command attribute is set to the list box’s yview method. These two methods col-
laborate to scroll the items in the list box when the user drags the scroll bar:

self._theListƒ=ƒListbox(self._listPane,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒwidthƒ=ƒ6,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒheightƒ=ƒ10,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒselectmodeƒ=ƒSINGLE,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒyscrollcommandƒ=ƒself._yScroll.set)
self._theList.grid(rowƒ=ƒ0,ƒcolumnƒ=ƒ0,ƒstickyƒ=ƒN+S)
self._yScroll[“command”]ƒ=ƒself._theList.yview

Several items are added to the list box, and the first one is made active:

self._theList.insert(END,ƒ“Apple”)
self._theList.insert(END,ƒ“Banana”)
self._theList.insert(END,ƒ“Cherry”)
self._theList.insert(END,ƒ“Orange”)
self._theList.activate(0)

Finally, both the main frame’s first row and the nested frame’s row are configured
to expand vertically:

self.rowconfigure(0,ƒweightƒ=ƒ1)
self._listPane.rowconfigure(0,ƒweightƒ=ƒ1)

The method to add items to the list box places them at the end of the items
currently there:

defƒ_add(self):
ƒƒƒƒ“””Ifƒanƒinputƒisƒpresent,ƒinsertƒitƒatƒthe
ƒƒƒƒendƒofƒtheƒitemsƒinƒtheƒlistƒboxƒandƒscrollƒtoƒit.”””
ƒƒƒƒitemƒ=ƒself._inputVar.get()
ƒƒƒƒifƒitemƒ!=ƒ“”:
ƒƒƒƒƒƒƒƒself._theList.insert(END,ƒitem)
ƒƒƒƒƒƒƒƒself._theList.see(END)

CHAPTER 9 Graphical User Interfaces[386]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The method to remove items from the list box relies on the index of the
selected item:

defƒ_remove(self):
ƒƒƒƒ“””Ifƒthereƒareƒitemsƒinƒtheƒlist,ƒremove
ƒƒƒƒtheƒselectedƒitem.”””
ƒƒƒƒifƒself._theList.size()ƒ>ƒ0:
ƒƒƒƒƒƒƒƒself._theList.delete(ACTIVE)

9.4.9 Mouse Events

To a large extent, a user interacts with a GUI-based program by manipulating
widgets with the mouse. A hidden, event-driven loop automatically detects differ-
ent types of mouse events, such as button presses, button releases, and mouse
dragging, and triggers any corresponding event-handling methods that have been
defined in the program. We have exploited this mechanism to respond to clicks
on command buttons in many of our examples. However, the programmer can
associate methods with any mouse events that occur in any widget. Table 9.6 lists
the different types of mouse events that can occur.

[TABLE 9.6] Mouse events

You can associate a mouse event and an event-handling method with a widget
by calling the bind method. This method expects a string containing one of the

TYPE OF MOUSE EVENT DESCRIPTION

<ButtonPress-n> Mouse button n has been pressed while the mouse
cursor is over the widget; n can be 1 (left button),
2 (middle button), or 3 (right button).

<ButtonRelease-n> Mouse button n has been released while the mouse
cursor is over the widget; n can be 1 (left button),
2 (middle button), or 3 (right button).

<Bn-Motion> The mouse is moved with button n held down.

<Prefix-Button-n> The mouse has been clicked over the widget; Prefix
can be Double or Triple.

<Enter> The mouse cursor has entered the widget.

<Leave> The mouse cursor has left the widget.

9.4 Other Useful GUI Resources [387]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mouse events listed in Table 9.6 as its first argument, and the method to be trig-
gered as its second argument.

For example, suppose the list box demo discussed earlier should respond by
displaying a list item in the entry field when it is selected in the list box. The
selection is finished when the mouse is released after pressing an item. Let’s
assume that a method named _get should be triggered when this happens. Then
the code for binding this method to that event for the list box is the following:

self._theList.bind(“<ButtonRelease-1>”,ƒself._get)

Now all you have to do is define the _get method. This method has a single
parameter named event. This parameter will automatically be bound to the
event object that triggered the method. The method _get does nothing if the list
box is empty. Otherwise, it fetches the index of the currently selected item and
uses it to fetch the current item itself. This string is then sent to the container
variable for the entry field. Here is the code for the _get method:

defƒ_get(self,ƒevent):
ƒƒƒƒ“””Ifƒtheƒlistƒisƒnotƒempty,ƒcopyƒtheƒselected
ƒƒƒƒstringƒtoƒtheƒentryƒfield.”””
ƒƒƒƒifƒself._theList.size()ƒ>ƒ0:
ƒƒƒƒƒƒƒƒindexƒ=ƒself._theList.curselection()[0]
ƒƒƒƒƒƒƒƒself._inputVar.set(self._theList.get(index))

9.4.10 Keyboard Events

GUI-based programs can also respond to various keyboard events. Table 9.7 lists
some commonly occurring ones.

[TABLE 9.7] Some key events

TYPE OF KEYBOARD EVENT DESCRIPTION

<KeyPress> Any key has been pressed.

<KeyRelease> Any key has been released.

<KeyPress-key> key has been pressed.

<KeyRelease-key> key has been released.

CHAPTER 9 Graphical User Interfaces[388]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As with mouse events, you can associate any key events with widgets in such
a manner that the events trigger methods. Perhaps the most common event is
pressing the return key when the mouse cursor has become the insertion point in
an entry field. This event might signal the end of an input and a request for
processing.

Key events and their handlers are associated with a widget by using the bind
method discussed earlier. Let’s revisit the circle area program to allow the user to
compute the area by pressing the return key while the insertion point is in the
radius field.

You bind the key press event to a handler for the _radiusEntry widget as
follows:

self._radiusEntry.bind(“<KeyPress-Return>”,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒlambdaƒevent:ƒself._area())

You cannot use the _area method directly as the event handler, because _area
does not have a parameter for the event. Instead, you package a call of _area
within a lambda function that accepts the event and ignores it.

9.4 Exercises
1 Write a code segment that centers the labels RED, WHITE, and BLUE

vertically in a GUI window. The text of each label should have the color
that it names, and the window’s background color should be green. The
background color of each label should also be black.

2 Write a code segment that centers the labels COURIER, HELVETICA,
and TIMES horizontally in a GUI window. The text of each label should
have the type font family that it names. Substitute a different font if
necessary.

3 Write a code segment that uses a loop to create and place nine buttons
into a 3 by 3 grid. Each button should be labeled with a number, starting
with 1 and increasing across each row.

4 Describe how a vertical scroll bar is associated with a list box.

9.4 Other Useful GUI Resources [389]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary
� GUI-based programs display information using graphical components

in a window. They allow a user to manipulate information by manipu-
lating GUI components with a mouse.

� A GUI-based program responds to user events by running methods to
perform various tasks.

� The model/view/controller pattern assigns the roles and responsibili-
ties in a GUI-based program to three different sets of classes. The
view is responsible for displaying data and receiving user inputs. The
model is responsible for managing the program’s data. The controller
is responsible for handling the communications between the model
and the view.

� The tkinter module includes classes, functions, and constants used
in GUI programming.

� A GUI-based program is structured as a main window class. This class
extends the Frame class. The __init__ method in the main window
class creates and lays out the window objects. The main window class
also includes the definitions of any event-handling methods.

� Examples of window components are labels (either text or images),
command buttons, entry fields, multi-line text areas, and list boxes.

� Pop-up dialog boxes are used to display messages and ask Yes/No ques-
tions. Functions for these are included in the tkinter.messagebox
module.

� Window objects can be arranged in a window under the influence of a
grid layout. The grid’s attributes can be set to allow components to
expand or align in any direction.

� Complex layouts can be decomposed into several panes of components.
� Each component has attributes for the foreground color and back-

ground color. Colors are represented using the RGB system in hexa-
decimal format.

� Text has a type font attribute that allows the programmer to specify
the family, size, and other attributes of a font.

� The command attribute of a button can be set to a method that han-
dles a button click.

� Mouse and keyboard events can be associated with handler methods
for window objects by using the bind method.

CHAPTER 9 Graphical User Interfaces[390]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

REVIEW QUESTIONS [391]

REVIEW QUESTIONS
1 In contrast to a terminal-based program, a GUI-based program

a completely controls the order in which the user enters inputs
b can allow the user to enter inputs in any order

2 The main window class in a GUI-based program is a subclass of

a Text

b Frame

c Window

3 The attribute used to attach an event-handling method to a button is
named

a pressevent

b onclick

c command

4 The model classes are responsible for

a managing a program’s data
b displaying a program’s data

5 The controller methods

a are triggered when events occur in the view
b manage a program’s data
c display a program’s data

6 The window component that allows a user to move the text visible
beneath a Text widget is a

a list box
b label
c scroll bar

7 The sticky attribute

a controls the alignment of a window component in its grid cell
b makes it difficult for a window component to be moved

8 The field used to set frame attributes is called

a master

b mister

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 9 Graphical User Interfaces[392]

9 Generally speaking, it is better to

a define a main window of a fixed size
b allow the user to alter the size of a main window

10 The rows and columns in a grid layout are numbered starting from

a (0, 0)
b (1, 1)

PROJECTS
1 Write a GUI-based program that implements the bouncy program

example discussed in Section 9.1.

2 Write a GUI-based program that allows the user to convert temperature val-
ues between degrees Fahrenheit and degrees Celsius. The interface should
have labeled entry fields for these two values. These components should be
arranged in a grid where the labels occupy the first row and the correspon-
ding fields occupy the second row. At start-up, the Fahrenheit field should
contain 32.0, and the Celsius field should contain 0.0. The third row in the
window contains two command buttons, labeled >>>> and <<<<. When
the user presses the first button, the program should use the data in the
Fahrenheit field to compute the Celsius value, which should then be output
to the Celsius field. The second button should perform the inverse function.

3 A terminal-based program that uses Newton’s method to compute square
roots is described in Chapter 3. Recast this program as a GUI-based pro-
gram. The user should be able to view successive approximations by
clicking a command button.

The interface should have two labeled entry fields, one for the input num-
ber and the other for the output of the square root. The interface should
include two command buttons. A button labeled Estimate should compute
and display the next guess based on the previous one. A button labeled
Reset should set the input and output fields to 0.0. At start-up and after
each reset, the program’s initial guess should be 0.0. If the program’s initial
guess is 0.0 and the user’s input is greater than 0.0, the program’s first guess
should be set to the input divided by 2.0. Otherwise, the program’s new
guess should be set using Newton’s approximation formula.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4 Write a GUI-based program that plays the game of Blackjack as
described in Chapter 8. The window should display images of the
player’s cards and dealer’s cards as they are drawn. The window should
include the command buttons Hit, Pass, and New Game, and a status
field to display the game’s outcome.

5 Write a GUI-based program that allows a bank manager to view and
manipulate the accounts in a bank. The window should display the infor-
mation for the currently selected account in editable entry fields.
Command buttons should allow the user to navigate to the next account
and the previous account, assuming that the accounts are ordered by a
PIN. Add a method getPins() to the Bank class. This method should
build and return a sorted list of the PINs in the bank. The GUI should
use this method to help locate the first account, next account, and previ-
ous account. Command buttons should also allow the user to remove an
account, save an account’s edited information, and add a new account.
When a new account is added, the entry fields should be reset to default
values, and the Update Account button should create the account.

6 The TidBit Computer Store (Chapter 3, Project 10) has a credit plan for
computer purchases. Inputs are the annual interest rate and the purchase
price. Monthly payments are 5 percent of the listed purchase price,
minus the down payment, which must be 10 percent of the purchase
price. Write a GUI-based program that displays labeled fields for the
inputs and a text area for the output. The program should display a
table, with appropriate headers, of a payment schedule for the lifetime of
the loan. Each row of the table should contain the following items:

� The month number (beginning with 1)
� The current total balance owed
� The interest owed for that month
� The amount of principal owed for that month
� The payment for that month
� The balance remaining after payment
The amount of interest for a month is equal to balance * rate / 12. The
amount of principal for a month is equal to the monthly payment minus
the interest owed.
Your program should include separate classes for the model and the view.
The model should include a method that expects the two inputs as argu-
ments and returns a formatted string for output by the view.

PROJECTS [393]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 9 Graphical User Interfaces[394]

7 Write a GUI-based program that simulates a simple pocket calculator.
The GUI displays a single entry field for output. The GUI should also
display a keypad of buttons for the 10 digits and 6 command buttons
labeled +, -, *, /, C, and =. The command C should clear the output
field. The command = calculates an answer and displays it in the field.
The program should build a string from the user’s button clicks and echo
it in the field. The program should detect any errors during this process
and display the word “ERR” in the field.

8 Write a GUI-based program that allows the user to open, edit, and save
text files. The GUI should include a labeled entry field for the filename
and a multi-line text widget for the text of the file. The user should be
able to scroll through the text by manipulating a vertical scrollbar.
Include command buttons labeled Open, Save, and New that allow the
user to open, save, and create new files. The New command should then
clear the text widget and the entry widget.

9 Write a GUI-based program that implements an image browser for your
computer’s hard disk. At start-up, the program should load a scrolling list
box with three types of items:

� The filenames of the images in the current working directory
� The names of any subdirectories within the current working directory
� The string ".."
The pathname of the current working directory is also displayed in an
entry field. When the user selects an item in the list box and presses the
Go button, one of three things can happen:

� If the item is an image filename, the image is loaded and displayed.
� If the item is a subdirectory, the program attaches to that directory

and refreshes the list box with its contents.
� If the item is the string "..", the program attaches to the parent

directory if there is one and refreshes the list box with its contents.
In the last two cases, the contents of the entry field are also updated.

10 Write a GUI-based program that allows the user to play a game of tic-
tac-toe with the computer. The main window should display a 3 by 3
grid of empty buttons. When the user presses an empty button, an X
should appear. The computer should then respond by checking for a
winner, and then placing an O on an empty button if there is no winner.
The computer should then check for a winner again. A Reset button
should reset the game and the window to their initial state. Allow the
computer to place its mark on a randomly chosen button.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[CHAPTER]
MULTITHREADING, NETWORKS, AND

Client/Server Programming10
After completing this chapter, you will be able to:

� Describe what threads do and how they are manipulated in an
application

� Code an algorithm to run as a thread
� Use conditions to solve a simple synchronization problem

with threads
� Use IP addresses, ports, and sockets to create a simple

client/server application on a network
� Decompose a server application with threads to handle client

requests efficiently
� Restructure existing applications for deployment as

client/server applications on a network
Thus far in this book, we have explored ways of solving prob-

lems by using multiple cooperating algorithms and data structures.
Another commonly used strategy for problem solving involves the
use of multiple threads. Threads describe processes that can run
concurrently to solve a problem. They can also be organized in a
system of clients and servers. For example, a Web browser runs
in a client thread and allows a user to view Web pages that are sent
by a Web server, which runs in a server thread. Client and server
threads can run concurrently on a single computer or can be distrib-
uted across several computers that are linked in a network. The
technique of using multiple threads in a program is known as multi-
threading. This chapter offers an introduction to multithreading,
networks, and client/server programming. We provide just enough
material to get you started with these topics; more complete surveys
are available in advanced computer science courses.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Threads and Processes
You are well aware that an algorithm describes a computational process that runs
to completion. You are also aware that a process consumes resources, such as
CPU cycles and memory. Until now, we have associated an algorithm or a pro-
gram with a single process, and we have assumed that this process runs on a sin-
gle computer. However, your program’s process is not the only one that runs on
your computer, and a single program could describe several processes that could
run concurrently on your computer or on several networked computers. The fol-
lowing historical summary shows how this is the case.

Time-sharing systems: In the late 1950s and early 1960s, computer scien-
tists developed the first time-sharing operating systems. These systems allowed
several programs to run concurrently on a single computer. Instead of giving
their programs to a human scheduler to run one after the other on a single
machine, users logged in to the computer via remote terminals. They then ran
their programs and had the illusion, if the system performed well, of having sole
possession of the machine’s resources (CPU, disk drives, printer, etc.). Behind the
scenes, the operating system created processes for these programs, gave each
process a turn at the CPU and other resources, and performed all the work of
scheduling, saving state during context switches, and so forth. Time-sharing sys-
tems are still in widespread use in the form of Web servers, e-mail servers, print
servers, and other kinds of servers on networked systems.

Multiprocessing systems: Most time-sharing systems allow a single user to
run one program and then return to the operating system to run another program
before the first program is finished. The concept of a single user running several
programs at once was extended to desktop microcomputers in the late 1980s, when
these machines became more powerful. For example, the Macintosh MultiFinder
allowed a user to run a word processor, a spreadsheet, and the Finder (the file
browser) concurrently and to switch from one application to another by selecting
an application’s window. Users of stand-alone PCs now take this capability for
granted. A related development was the ability of a program to start another pro-
gram by “forking,” or creating a new process. For example, a word processor might
create another process to print a document in the background, while the user is
staring at the window thinking about the next words to type.

Networked or distributed systems: The late 1980s and early 1990s saw the
rise of networked systems. At that time, the processes associated with a single
program or with several programs began to be distributed across several CPUs
linked by high-speed communication lines. Thus, for example, the Web browser
that appears to be running on my machine is actually making requests as a client
to a Web server application that runs on a multiuser machine at the local Internet

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[396]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

service provider. The problems of scheduling and running processes are more
complex on a networked system, but the basic ideas are the same.

Parallel systems: As CPUs became less expensive and smaller, it became fea-
sible to run a single program on several CPUs at once. Parallel computing is
the discipline of building the hardware architectures, operating systems, and spe-
cialized algorithms for running a program on a cluster of processors. The multi-
core technology now found in most new PCs can be used to run a single program
or multiple programs on several processors simultaneously.

10.1.1 Threads

Whether networked or stand-alone machines, most modern computers use
threads to represent processes. For example, a Web browser uses one thread to
load an image from the Internet while using another thread to format and display
text. The Python Virtual Machine runs several threads that you have already used
without realizing it. For example, the IDLE editor runs as a separate thread, as
does your main Python application program.

In Python, a thread is an object like any other in that it can hold data, be run
with methods, be stored in data structures, and be passed as parameters to meth-
ods. However, a thread can also be executed as a process. Before it can execute, a
thread’s class must implement a run method.

During its lifetime, a thread can be in various states. Figure 10.1 shows some
of the states in the lifetime of a Python thread. In this diagram, the box labeled
“The ready queue” is a data structure, whereas the box labeled “The CPU” is a
hardware resource. The thread states are the labeled ovals.

10.1 Threads and Processes [397]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 10.1] States in the life of a thread

After it is created, a thread remains inactive until someone runs its start
method. Running this method also makes the thread “ready” and places a refer-
ence to it in the ready queue. A queue is a data structure that enforces first-
come, first-served access to a single resource. The resource in this case is the
CPU, which can execute the instructions of just one thread at a time. A newly
started thread’s run method is also activated. However, before its first instruction
can be executed, the thread must wait its turn in the ready queue for access to the
CPU. After the thread gets access to the CPU and executes some instructions in
its run method, the thread can lose access to the CPU in several ways:

� Time-out—Most computers running Python programs automatically time-
out a running thread every few milliseconds. The process of automatically
timing-out, also known as time slicing, has the effect of pausing the running
thread’s execution and sending it to the rear of the ready queue. The thread
at the front of the ready queue is then given access to the CPU.

� Sleep—A thread can be put to sleep for a given number of milliseconds.
When the thread wakes up, it goes to the rear of the ready queue.

start

I/O complete

I/O interupt

complete
run

wait

notify

wake up
sleep

yield or timed out

The ready queue

The CPU

born blocked

ready

sleeping

waiting

running

dead

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[398]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

� Block—A thread can wait for some event, such as user input, to occur.
When a blocked thread is notified that an event has occurred, it goes to
the rear of the ready queue.

� Wait—A thread can voluntarily relinquish the CPU to wait for some con-
dition to become true. A waiting thread can be notified when the condition
becomes true and move again to the rear of the ready queue.

When a thread gives up the CPU, the computer saves its state, so that when
the thread returns to the CPU, its run method can pick up where it left off. The
process of saving or restoring a thread’s state is called a context switch.

When a thread’s run method has executed its last instruction, the thread dies
as a process but continues to exist as an object. A thread object can also die if it
raises an exception that is not handled.

Python’s threading module includes resources for creating threads and
managing multithreaded applications. The most common way to create a thread
is to define a class that extends the class threading.Thread. The new class
should include a run method that executes the algorithm in the new thread. The
start method places a thread at the rear of the ready queue. The next code seg-
ment defines a simple thread class that prints its name. The session that follows
instantiates this class and starts up the thread.

fromƒthreadingƒimportƒThread

classƒMyThread(Thread):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒThread.__init__(self,ƒnameƒ=ƒ“MyƒThread”)

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒprint(“Hello,ƒmyƒnameƒisƒ%s”ƒ%ƒself.getName())

>>>ƒprocessƒ=ƒMyThread()
>>>ƒprocess.start()
Hello,ƒmyƒnameƒisƒMyƒThread
>>>ƒ

Note that the thread’s run method is invoked automatically by start. The
Thread class maintains an instance variable for the thread’s name and includes
the associated methods getName and setName. Table 10.1 lists some important
Thread methods.

10.1 Threads and Processes [399]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 10.1] Some Thread Methods

Other important resources used with threads include the function
time.sleep and the class threading.Condition. We now consider some
example programs that illustrate the behavior of these resources.

10.1.2 Sleeping Threads

In our first example, we develop a program that allows the user to start several
threads. Each thread does not do much when started; it simply prints a message,
goes to sleep for a random number of seconds, and then prints a message and ter-
minates on waking up. The program allows the user to specify the number of
threads to run and the maximum sleep time. When a thread is started, it prints a
message identifying itself and its sleep time and then goes to sleep. When a thread
wakes up, it prints another message identifying itself. A session with this program is
shown in Figure 10.2. Note that the Python program is launched from a terminal
prompt rather than from an IDLE window. Because IDLE itself runs in a thread, it
is not generally a good idea to test a multithreaded application in that environment.

Thread METHOD WHAT IT DOES

__init__(name = None) Initializes the thread’s name.

getName() Returns the thread’s name.

setName(newName) Sets the thread’s name to newName.

run() Executes when the thread acquires the CPU.

start() Makes the new thread ready. Raises an
exception if run more than once.

isAlive() Returns True if the thread is alive or False
otherwise.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[400]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 10.2] A run of the sleeping threads program

The following points can be concluded from the example in Figure 10.2:
� When a thread goes to sleep, the next thread has an opportunity to acquire

the CPU and display its information in the view.
� The threads do not necessarily wake up in the order in which they were started.

The size of the sleep interval determines this order. In Figure 10.2, thread 3 has
the shortest sleep time, so it wakes up first. Thread 1 wakes up before thread 2
because their sleep intervals are the same, and 1 is started before 2.

The program consists of the class SleepyThread, a subclass of Thread,
and a main function. When called within a thread’s run method, the function
time.sleep puts that thread to sleep for the specified number of seconds.
Here is the code:

“””
File:ƒsleepythreads.py

Illustratesƒconcurrencyƒwithƒmultipleƒthreads.
“””

importƒrandom,ƒtime
fromƒthreadingƒimportƒThread

classƒSleepyThread(Thread):
ƒƒƒƒ“””Representsƒaƒsleepyƒthread.”””

ƒƒƒƒdefƒ__init__(self,ƒnumber,ƒsleepMax):
ƒƒƒƒƒƒƒƒ“””Createƒaƒthreadƒwithƒtheƒgivenƒnameƒ
ƒƒƒƒƒƒƒƒandƒaƒrandomƒsleepƒintervalƒlessƒthanƒtheƒmaximum.ƒ“””
ƒƒƒƒƒƒƒƒThread.__init__(self,ƒnameƒ=ƒ“Threadƒ“ƒ+ƒstr(number))
ƒƒƒƒƒƒƒƒself._sleepIntervalƒ=ƒrandom.randint(1,ƒsleepMax)

continued
ƒƒƒƒdefƒrun(self):

% python sleepythreads.py
Enter the number of threads: 3
Enter the maximum sleep time: 6
Thread 1, sleep interval: 3 seconds
Thread 2, sleep interval: 3 seconds
Thread 3, sleep interval: 1 second
Thread 3 waking up
Thread 1 waking up
Thread 2 waking up

10.1 Threads and Processes [401]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ƒƒƒƒƒƒƒƒ“””Printƒtheƒthread'sƒnameƒandƒsleepƒintervalƒandƒsleep
ƒƒƒƒƒƒƒƒforƒthatƒinterval.ƒPrintƒtheƒnameƒagainƒatƒwake-up.ƒ“””
ƒƒƒƒƒƒƒƒprint(“%s,ƒsleepƒinterval:ƒ%dƒseconds”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(self.getName(),ƒself._sleepInterval))
ƒƒƒƒƒƒƒƒtime.sleep(self._sleepInterval)
ƒƒƒƒƒƒƒƒprint(“%sƒwakingƒup”ƒ%ƒself.getName())

defƒmain():
ƒƒƒƒ“””Createƒtheƒuser'sƒnumberƒofƒthreadsƒwithƒsleep
ƒƒƒƒintervalsƒlessƒthanƒtheƒuser'sƒmaximum.ƒThenƒstart
ƒƒƒƒtheƒthreads”””
ƒƒƒƒnumThreadsƒ=ƒint(input(“Enterƒtheƒnumberƒofƒthreads:ƒ“))
ƒƒƒƒsleepMaxƒ=ƒint(input(“Enterƒtheƒmaximumƒsleepƒtime:ƒ“))
ƒƒƒƒthreadListƒ=ƒ[]
ƒƒƒƒforƒcountƒinƒrange(numThreads):
ƒƒƒƒƒƒƒƒthreadList.append(SleepyThread(countƒ+ƒ1,ƒsleepMax))
ƒƒƒƒforƒthreadƒinƒthreadList:ƒthread.start()

main()ƒƒƒƒ

10.1.3 Producer, Consumer, and Synchronization

In the previous example, the threads ran independently and did not interact.
However, in many applications, threads interact by sharing data. Threads that
interact by sharing data are said to have a producer/consumer relationship.
Think of an assembly line in a factory. Worker A, at the beginning of the line,
produces an item that is then ready for access by the next person on the line,
Worker B. In this case, Worker A is the producer, and Worker B is the consumer.
Worker B then becomes the producer, processing the item in some way until it is
ready for Worker C, and so on.

Three requirements must be met for the assembly line to function properly:

1 A producer must produce each item before a consumer consumes it.

2 Each item must be consumed before the producer produces the next item.

3 A consumer must consume each item just once.

Let us now consider a computer simulation of the producer/consumer rela-
tionship. In its simplest form, the relationship has only two threads: a producer and
a consumer. They share a single data cell that contains an integer. The producer
sleeps for a random interval, writes an integer to the shared cell, and generates the
next integer to be written, until the integer reaches an upper bound. The consumer
sleeps for a random interval and reads the integer from the shared cell, until the

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[402]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

integer reaches the upper bound. Figure 10.3 shows two runs of this program.
The user enters the number of accesses (data items produced and consumed).
The output announces that the producer and consumer threads have started up
and shows when each thread accesses the shared data.

[FIGURE 10.3] Two runs of the producer/consumer program

Some bad things happen in the second run of the program (lines in boldface
type on the right of Figure 10.3):

1 The consumer accesses the shared cell before the producer has written
its first datum.

2 The producer then writes two consecutive data (1 and 2) before the con-
sumer has accessed the cell again.

3 The consumer accesses data 2 twice.

4 The producer then writes data 4 after the consumer is finished.

The producer produces all of its data as expected, but the consumer can
access data that are not there, can miss data, and can access the same data more
than once. These are known as synchronization problems. Before we explain
why they occur, we present the essential parts of the program itself, which con-
sists of the four resources in Table 10.2.

Enter the number of accesses: 4
Starting the threads
Producer starting up
Consumer starting up
Producer setting data to 1
Consumer accessing data 1
Producer setting data to 2
Consumer accessing data 2
Producer setting data to 3
Consumer accessing data 3
Producer setting data to 4
Producer is done producing
Consumer accessing data 4
Consumer is done consuming

Enter the number of accesses: 4
Starting the threads
Producer starting up
Consumer starting up
Consumer accessing data -1
Producer setting data to 1
Producer setting data to 2
Consumer accessing data 2
Consumer accessing data 2
Producer setting data to 3
Consumer accessing data 3
Consumer is done consuming
Producer setting data to 4
Producer is done producing

10.1 Threads and Processes [403]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[TABLE 10.2] The classes and main function in the producer/consumer program

The code for the main function is similar to the one in the previous example:

defƒmain():
ƒƒƒƒ“””Getƒtheƒnumberƒofƒaccessesƒfromƒtheƒuser,ƒ
ƒƒƒƒcreateƒaƒsharedƒcell,ƒandƒcreateƒandƒstartƒupƒ
ƒƒƒƒaƒproducerƒandƒaƒconsumer.”””
ƒƒƒƒaccessCountƒ=ƒint(input(“Enterƒtheƒnumberƒofƒaccesses:ƒ“))
ƒƒƒƒsleepMaxƒ=ƒ4
ƒƒƒƒcellƒ=ƒSharedCell()
ƒƒƒƒproducerƒ=ƒProducer(cell,ƒaccessCount,ƒsleepMax)
ƒƒƒƒconsumerƒ=ƒConsumer(cell,ƒaccessCount,ƒsleepMax)
ƒƒƒƒprint(“Startingƒtheƒthreads”)
ƒƒƒƒproducer.start()
ƒƒƒƒconsumer.start()

Here is the code for the classes SharedCell, Producer, and Consumer:

importƒtime,ƒrandom
fromƒthreadingƒimportƒThread,ƒcurrentThread

classƒSharedCell(object):
ƒƒƒƒ“””Sharedƒdataƒforƒtheƒproducer/consumerƒproblem.”””

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._dataƒ=ƒ-1

continued

CLASS OR FUNCTION ROLE AND RESPONSIBILITY

main Manages the user interface. Creates the shared
cell and producer and consumer threads and
starts the threads.

SharedCell Represents the shared data, which is an integer
(initially -1).

Producer Represents the producer process. Repeatedly
writes an integer to the cell and increments the
integer, until it reaches an upper bound.

Consumer Represents the consumer process. Repeatedly
reads an integer from the cell, until it reaches
an upper bound.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[404]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ƒƒƒƒdefƒsetData(self,ƒdata):
ƒƒƒƒƒƒƒƒ“””Producer'sƒmethodƒtoƒwriteƒtoƒsharedƒdata.”””
ƒƒƒƒƒƒƒƒprint(“%sƒsettingƒdataƒtoƒ%d”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(currentThread().getName(),ƒdata))
ƒƒƒƒƒƒƒƒself._dataƒ=ƒdata

ƒƒƒƒdefƒgetData(self):
ƒƒƒƒƒƒƒƒ“””Consumer'sƒmethodƒtoƒreadƒfromƒsharedƒdata.”””
ƒƒƒƒƒƒƒƒprint(“%sƒaccessingƒdataƒ%d”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(currentThread().getName(),ƒself._data))
ƒƒƒƒƒƒƒƒreturnƒself._data

classƒProducer(Thread):
ƒƒƒƒ“””Representsƒaƒproducer.”””

ƒƒƒƒdefƒ__init__(self,ƒcell,ƒaccessCount,ƒsleepMax):
ƒƒƒƒƒƒƒƒ“””Createƒaƒproducerƒwithƒtheƒgivenƒsharedƒcell,
ƒƒƒƒƒƒƒƒnumberƒofƒaccesses,ƒandƒmaximumƒsleepƒinterval.”””
ƒƒƒƒƒƒƒƒThread.__init__(self,ƒnameƒ=ƒ“Producer”)
ƒƒƒƒƒƒƒƒself._accessCountƒ=ƒaccessCount
ƒƒƒƒƒƒƒƒself._cellƒ=ƒcell
ƒƒƒƒƒƒƒƒself._sleepMaxƒ=ƒsleepMax

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒ“””Announceƒstart-up,ƒsleep,ƒandƒwriteƒtoƒsharedƒcell
ƒƒƒƒƒƒƒƒtheƒgivenƒnumberƒofƒtimes,ƒandƒannounceƒcompletion.”””
ƒƒƒƒƒƒƒƒprint(“%sƒstartingƒup”ƒ%ƒself.getName())
ƒƒƒƒƒƒƒƒforƒcountƒinƒrange(self._accessCount):
ƒƒƒƒƒƒƒƒƒƒƒƒtime.sleep(random.randint(1,ƒself._sleepMax))
ƒƒƒƒƒƒƒƒƒƒƒƒself._cell.setData(countƒ+ƒ1)
ƒƒƒƒƒƒƒƒprint(“%sƒisƒdoneƒproducing”ƒ%ƒself.getName())

classƒConsumer(Thread):
ƒƒƒƒ“””Representsƒaƒconsumer.”””

ƒƒƒƒdefƒ__init__(self,ƒcell,ƒaccessCount,ƒsleepMax):
ƒƒƒƒƒƒƒƒ“””Createƒaƒproducerƒwithƒtheƒgivenƒsharedƒcell,
ƒƒƒƒƒƒƒƒnumberƒofƒaccesses,ƒandƒmaximumƒsleepƒinterval.”””
ƒƒƒƒƒƒƒƒThread.__init__(self,ƒnameƒ=ƒ“Consumer”)
ƒƒƒƒƒƒƒƒself._accessCountƒ=ƒaccessCount
ƒƒƒƒƒƒƒƒself._cellƒ=ƒcell
ƒƒƒƒƒƒƒƒself._sleepMaxƒ=ƒsleepMax

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒ“””Announceƒstart-up,ƒsleep,ƒandƒreadƒfromƒsharedƒcell
ƒƒƒƒƒƒƒƒtheƒgivenƒnumberƒofƒtimes,ƒandƒannounceƒcompletion.”””
ƒƒƒƒƒƒƒƒprint(“%sƒstartingƒup”ƒ%ƒself.getName())
ƒƒƒƒƒƒƒƒforƒcountƒinƒrange(self._accessCount):
ƒƒƒƒƒƒƒƒƒƒƒƒtime.sleep(random.randint(1,ƒself._sleepMax))
ƒƒƒƒƒƒƒƒƒƒƒƒvalueƒ=ƒself._cell.getData()
ƒƒƒƒƒƒƒƒprint(“%sƒisƒdoneƒconsuming”ƒ%ƒself.getName())

10.1 Threads and Processes [405]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The cause of the synchronization problems is not hard to spot in this code.
On each pass through their main loops, the threads sleep for a random interval of
time. Thus, if the consumer thread has a shorter interval than the producer
thread on a given cycle, the consumer wakes up sooner and accesses the shared
cell before the producer has a chance to write the next datum. Conversely, if the
producer thread wakes up sooner, it accesses the shared data and writes the next
datum before the consumer has a chance to read the previous datum.

To solve this problem, we need to synchronize the actions of the producer
and consumer threads. In addition to holding data, the shared cell must be in one
of two states: writeable or not writeable. The cell is writeable if it has not yet
been written to (at start-up) or if it has just been read from. The cell is not write-
able if it has just been written to. These two conditions can now control the
callers of the setData and getData methods in the SharedCell class as follows:

1 While the cell is writeable, the caller of getData (the consumer) must
wait or suspend activity, until the producer writes a datum. When this
happens, the cell becomes not writeable, the caller of getData is notified
to resume activity, and the data are returned (to the consumer).

2 While the cell is not writeable, the caller of setData (the producer)
must wait or suspend activity, until the consumer reads a datum. When
this happens, the cell becomes writeable, the caller of setData is noti-
fied to resume activity, and the data are modified (by the producer).

To implement these restrictions, the SharedCell class now includes two
additional instance variables:

1 A Boolean flag named _writeable. If this flag is True, only writing to
the cell is allowed; if it is False, only reading from the cell is allowed.

2 An instance of the threading.Condition class. This object allows each
thread to block until the Boolean flag is in the appropriate state to write
to or read from the cell.

A Condition object is used to maintain a lock on a resource. When a thread
acquires this lock, no other thread can access the resource, even if the acquiring
thread is timed-out. After a thread successfully acquires the resource, it can do its
work or relinquish the lock in one of two ways:

1 By calling the condition’s wait method. This method causes the thread
to block until it is notified that it can continue its work.

2 By calling the condition’s release method. This method unlocks the
resource and allows it to be acquired by other threads.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[406]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

When other threads attempt to acquire a locked resource, they block until
the thread is released or a thread holding the lock calls the condition’s notify
method. To summarize, the pattern for a thread accessing a resource with a lock
is the following:

Run acquire on the condition.
While it’s not OK to do the work

Run wait on the condition.
Do the work with the resource.
Run notify on the condition.
Run release on the condition.

Table 10.3 lists the methods of the Condition class.

[TABLE 10.3] The methods of the Condition class

Condition METHOD WHAT IT DOES

acquire() Attempts to acquire the lock. Blocks if the lock is
already taken.

release() Relinquishes the lock, leaving it to be acquired
by others.

wait() Releases the lock, blocks the current thread until
another thread calls notify or notifyAll on the
same condition, and then reacquires the lock. If
multiple threads are waiting, the notify method
wakes up only one of the threads, while notifyAll
always wakes up all of the threads.

notify() Lets the next thread waiting on the lock know that
it’s available.

notifyAll() Lets all threads waiting on the lock know that it’s
available.

10.1 Threads and Processes [407]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here is the code that shows the changes to the class SharedCell:

importƒtime,ƒrandom
fromƒthreadingƒimportƒThread,ƒcurrentThread,ƒCondition

classƒSharedCell(object):
ƒƒƒƒ“””Sharedƒdataƒforƒtheƒproducer/consumerƒproblem.”””
ƒƒƒƒ
ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself._dataƒ=ƒ-1
ƒƒƒƒƒƒƒƒself._writeableƒ=ƒTrue
ƒƒƒƒƒƒƒƒself._conditionƒ=ƒCondition()

ƒƒƒƒdefƒsetData(self,ƒdata):
ƒƒƒƒƒƒƒƒ“””Producer'sƒmethodƒtoƒwriteƒtoƒsharedƒdata.”””
ƒƒƒƒƒƒƒƒself._condition.acquire()
ƒƒƒƒƒƒƒƒwhileƒnotƒself._writeable:
ƒƒƒƒƒƒƒƒƒƒƒƒself._condition.wait()
ƒƒƒƒƒƒƒƒprint(“%sƒsettingƒdataƒtoƒ%d”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(currentThread().getName(),ƒdata))
ƒƒƒƒƒƒƒƒself._dataƒ=ƒdata
ƒƒƒƒƒƒƒƒself._writeableƒ=ƒFalse
ƒƒƒƒƒƒƒƒself._condition.notify()
ƒƒƒƒƒƒƒƒself._condition.release()

ƒƒƒƒdefƒgetData(self):
ƒƒƒƒƒƒƒƒ“””Consumer'sƒmethodƒtoƒreadƒfromƒsharedƒdata.”””
ƒƒƒƒƒƒƒƒself._condition.acquire()
ƒƒƒƒƒƒƒƒwhileƒself._writeable:
ƒƒƒƒƒƒƒƒƒƒƒƒself._condition.wait()
ƒƒƒƒƒƒƒƒprint(“%sƒaccessingƒdataƒ%d”ƒ%ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(currentThread().getName(),ƒself._data))
ƒƒƒƒƒƒƒƒself._writeableƒ=ƒTrue
ƒƒƒƒƒƒƒƒself._condition.notify()
ƒƒƒƒƒƒƒƒself._condition.release()
ƒƒƒƒƒƒƒƒreturnƒself._data

We have only scratched the surface of the kinds of problems that can arise
when programs run several threads. For example, the producer/consumer prob-
lem can involve multiple producers and/or consumers.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[408]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.1 Exercises
1 What does a thread’s run method do?

2 What is time slicing?

3 What is a synchronization problem?

4 What is the difference between a sleeping thread and a waiting thread?

5 Discuss how one might solve a producer/consumer problem with one
producer and many consumers. You may assume that all of the con-
sumers must consume each of the data values produced.

6 Assume that a producer and a consumer have access to a shared list of
data. The producer’s role is to replace the data value at each position,
whereas the consumer simply accesses the replaced value, that is, the
producer must replace before any consumer accesses. Describe how you
would synchronize the producer and consumer so that they each can
process the entire list.

10.2 Networks, Clients, and Servers
Clients and servers are applications or processes that can run locally on a single
computer or remotely across a network of computers. As explained in the follow-
ing sections, the resources required for this type of application are IP addresses,
sockets, and threads.

10.2.1 IP Addresses

Every computer on a network has a unique identifier called an IP address (IP
stands for Internet Protocol). This address can be specified either as an IP number
or as an IP name. An IP number typically has the form ddd.ddd.ddd.ddd, where
each d is a digit. The number of digits to the right or the left of a decimal point
may vary but does not exceed three. For example, the IP number of the author’s
office computer might be 137.112.194.77. Because IP numbers can be difficult to
remember, people customarily use an IP name to specify an IP address. For exam-
ple, the IP name of the author’s computer might be lambertk.

10.2 Networks, Clients, and Servers [409]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Python’s socket module includes two functions that can look up these items
of information. These functions are listed in Table 10.4, followed by a short ses-
sion showing their use.

[TABLE 10.4] socket functions for IP addresses

>>>ƒfromƒsocketƒimportƒ*
>>>ƒgethostname()
'kenneth-lamberts-powerbook-g4-15.local'
>>>ƒgethostbyname(gethostname())
'192.168.1.109'
>>>ƒgethostbyname('Ken')

Tracebackƒ(mostƒrecentƒcallƒlast):
ƒƒFileƒ“<pyshell#7>”,ƒlineƒ1,ƒinƒ<module>
ƒƒƒƒgethostbyname('Ken')
gaierror:ƒ(7,ƒ'Noƒaddressƒassociatedƒwithƒnodename')
>>>ƒ

Note that these functions raise exceptions if they cannot locate the
information. To handle this problem, one can embed these function calls in a
try-except statement. First introduced in Chapter 8, this statement has the
following general form:

try:
ƒƒƒƒ<statements>
exceptƒExceptionƒasƒexception:
ƒƒƒƒ<statements>

socket FUNCTION WHAT IT DOES

gethostname() Returns the IP name of the host computer
running the Python interpreter. Raises an
exception if the computer does not have an
IP address.

gethostbyname(ipName) Returns the IP number of the computer whose
IP name is ipName. Raises an exception if
ipName cannot be found.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[410]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The next code segment recovers from an unknown IP address error by printing
the exception’s error message:

try:
ƒƒƒƒprint(gethostbyname('Ken'))
exceptƒExceptionƒasƒexception:
ƒƒƒƒprint(exception)

When developing a network application, the programmer can first try it out
on a local host—that is, on a standalone computer that may or may not be con-
nected to the Internet. The computer’s IP name in this case is 'localhost'.
The IP number of a computer that acts as a local host is distinct from its IP num-
ber as an Internet host, as shown in the next session:

>>>ƒgethostbyname(gethostname())
'192.168.1.109'
>>>ƒgethostbyname('localhost')
'127.0.0.1'
>>>ƒ

When the programmer is satisfied that the application is working correctly on a
local host, the application can then be deployed on the Internet host simply by
changing the IP address. In the discussion that follows, we use a local host to
develop network applications.

10.2.2 Ports, Servers, and Clients

Clients connect to servers via objects known as ports. A port serves as a channel
through which several clients can exchange data with the same server or with dif-
ferent servers. Ports are usually specified by numbers. Some ports are dedicated
to special servers or tasks. For example, almost every computer reserves port
number 13 for the day/time server, which allows clients to obtain the date and
time. Port number 80 is reserved for a Web server, and so forth. Most computers
also have hundreds or even thousands of free ports available for use by any net-
work applications.

10.2 Networks, Clients, and Servers [411]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.2.3 Sockets and a Day/Time Client Script

You can write a Python script that is a client to a server. To do this, you need to
use a socket. A socket is an object that serves as a communication link between a
single server process and a single client process. You can create and open several
sockets on the same port of a host computer. Figure 10.4 shows the relationships
between a host computer, ports, servers, clients, and sockets.

[FIGURE 10.4] Setup of day/time host and clients

A Python day/time client script uses the socket module introduced earlier.
This script does the following:

� Creates a socket object.
� Opens the socket on a free port of the local host. We use a large number,

5000, for this port.
� Reads and decodes the day/time from the socket.
� Displays the day/time.

Here is a Python script that performs these tasks:

“””
Clientƒforƒobtainingƒtheƒdayƒandƒtime.
“””

fromƒsocketƒimportƒ*
fromƒcodecsƒimportƒdecode

HOSTƒ=ƒ'localhost'

continued

Server

Port

Host

Client 1 Client 2

Socket Socket

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[412]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PORTƒ=ƒ5000
BUFSIZEƒ=ƒ1024
ADDRESSƒ=ƒ(HOST,ƒPORT)

serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒCreateƒaƒsocket
server.connect(ADDRESS)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒConnectƒitƒtoƒaƒhost
dayAndTimeƒ=ƒdecode(server.recv(BUFSIZE),ƒ'ascii')ƒƒƒ#ƒReadƒandƒdecodeƒaƒstring
print(dayAndTime)
server.close()ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒCloseƒtheƒconnection

Although we cannot run this script until we write and launch the server program,
Figure 10.5 shows the client’s anticipated output.

[FIGURE 10.5] The interface of the day/time client script

As you can see, a Python socket is fairly easy to set up and use. A socket
resembles a file object, in that the programmer opens it, receives data from it,
and closes it when finished. We now explain these steps in our client script in
more detail.

The script creates a socket by running the function socket in the socket
module. This function returns a new socket object, when given a socket family
and a socket type as arguments. We use the family AF_INET and the type
SOCK_STREAM, both socket module constants, in all of our examples.

To connect the socket to a host computer, one runs the socket’s connect
method. This method expects as an argument a tuple containing the host’s IP address
and a port number. In this case, these items are 'localhost' and 5000, respectively.
These two items should be the same as the ones used in the server script.

To obtain information sent by the server, the client script runs the socket’s
recv method. This method expects as an argument the maximum size in bytes of
the data to be read from the socket. The recv method returns a bytes object.
This object is converted to a string by calling the codecs function decode, with
the encoding 'ascii' as the second argument.

10.2 Networks, Clients, and Servers [413]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After the client script has printed the string read from the socket, the script
closes the connection to the server by running the socket’s close method.

10.2.4 A Day/Time Server Script

You can also write a day/time server script in Python to handle requests from
many clients. Figure 10.6 shows the interaction between a day/time server and
two clients in a series of screenshots. In the first shot, the day/time server script
is launched in a terminal window, and it’s waiting for a connection. In the second
shot, two successive clients are launched in a separate terminal window (you can
open several terminal windows at once). They have connected to the server and
have received the day/time. The third shot shows the updates to the server’s win-
dow after it has served these two clients. Note that the two clients terminate exe-
cution after they print their results, whereas the server appears to continue
waiting for another client.

[FIGURE 10.6] A day/time server and two clients

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[414]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Python day/time server script also uses the resources of the socket mod-
ule. The basic sequence of operations for a simple day/time server script is the
following:

Create a socket and open it on port 5000 of the local host
While true:

Wait for a connection from a client
When the connection is made, send the date to the client

Our script also displays information about the host, the port, and the client.
Here is the code, followed by a brief explanation:

“””
Serverƒforƒprovidingƒtheƒdayƒandƒtime.
“””

fromƒsocketƒimportƒ*
fromƒtimeƒimportƒctime

HOSTƒ=ƒ'localhost'ƒ
PORTƒ=ƒ5000
ADDRESSƒ=ƒ(HOST,ƒPORT)

serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)

whileƒTrue:
ƒƒƒƒprint('Waitingƒforƒconnectionƒ.ƒ.ƒ.')
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprint('...ƒconnectedƒfrom:',ƒaddress)
ƒƒƒƒclient.send(bytes(ctime()ƒ+ƒ'\nHaveƒaƒniceƒday!',ƒ'ascii'))
ƒƒƒƒclient.close()

The server script uses the same information to create a socket object as the
client script presented earlier. In particular, the IP address and port number must
be exactly the same as they are in the client’s code.

However, connecting the socket to the host and to the port so as to become a
server socket is done differently. First, the socket is bound to this address by run-
ning its bind method. Second, the socket then is made to listen for up to five
requests from clients by running its listen method.

10.2 Networks, Clients, and Servers [415]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After the script enters its main loop, it prints a message indicating that it is
waiting for a connection. The socket’s accept method then pauses execution of
the script, in a manner similar to Python’s input function, to wait for a request
from a client.

When a client connects to this server, accept returns a tuple containing the
client’s socket and its address information. Our script binds the variables client
and address to these values and uses them in the next steps.

The script prints the client’s address, and then sends the current day/time to
the client by running the send method with the client’s socket. The send
method expects a bytes object as an argument. A bytes object is created from a
string by calling the built-in bytes function, with the string and an encoding, in
this case, 'ascii', as arguments. The Python function time.ctime returns a
string representing the day/time.

Finally, the script closes the connection to the client by running the client
socket’s close method. The script then returns in its infinite loop to accept
another client connection.

10.2.5 A Two-Way Chat Script

The communication between the day/time server and its client is one-way. The
client simply receives a message from the server and then quits. In a two-way
chat, the client connects to the server, and the two programs engage in a continu-
ous communication until one of them, usually the client, chooses to quit.

Once again, there are two distinct Python scripts, one for the server and one
for the client. The setup of a two-way chat server is similar to that of the
day/time server discussed earlier. The server script creates a socket with a given
IP address and port and then enters an infinite loop to accept and handle clients.
When a client connects to the server, the server sends the client a greeting.

Instead of closing the client’s socket and listening for another client connec-
tion, the server then enters a second, nested loop. This loop engages the server in
a continuous conversation with the client. The server receives a message from the
client. If the message is an empty string, the server displays a message that the
client has disconnected, closes the client’s socket, and breaks out of the nested
loop. Otherwise, the server prints the client’s message and prompts the user for a
reply to send to the client.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[416]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here is the code for the two loops in the server script:

whileƒTrue:
ƒƒƒƒprint('Waitingƒforƒconnectionƒ.ƒ.ƒ.')
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprint('...ƒconnectedƒfrom:',ƒaddress)
ƒƒƒƒclient.send(bytes('Welcomeƒtoƒmyƒchatƒroom!',ƒ'ascii'))ƒƒ#ƒSendƒgreeting

ƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒmessageƒ=ƒdecode(client.recv(BUFSIZE),ƒ'ascii')ƒƒƒƒƒƒ#ƒReplyƒfromƒclient
ƒƒƒƒƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒprint('Clientƒdisconnected')
ƒƒƒƒƒƒƒƒƒƒƒƒclient.close()
ƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒprint(message)
ƒƒƒƒƒƒƒƒƒƒƒƒclient.send(bytes(input('>ƒ'),ƒ'ascii')ƒƒƒƒƒƒƒƒƒƒ#ƒReplyƒtoƒclient

The client script for the two-way chat sets up a socket in a similar manner to
the day/time client. After the client has connected to the server, it receives and
displays the server’s initial greeting message.

Instead of closing the server’s socket, the client then enters a loop to engage in
a continuous conversation with the server. This loop mirrors the loop that is run-
ning in the server script. The client’s loop prompts the user for a message to send
to the server. If this string is empty, the loop breaks. Otherwise, the client sends
the message to the server’s socket and receives the server’s reply. If this reply is the
empty string, the loop also breaks. Otherwise, the server’s reply is displayed. The
server’s socket is closed after the loop has terminated. Here is the code for the part
of the client script following the client’s connection to the server:

print(decode(server.recv(BUFSIZE),ƒ'ascii'))ƒƒƒƒƒƒ#ƒTheƒserver'sƒgreeting
whileƒTrue:
ƒƒƒƒmessageƒ=ƒinput('>ƒ')ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒGetƒmyƒreplyƒorƒquit
ƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒserver.send(bytes(message,ƒ'ascii'))ƒƒƒƒƒƒƒƒƒƒ#ƒSendƒmyƒreplyƒtoƒtheƒserver
ƒƒƒƒreplyƒ=ƒdecode(server.recv(BUFSIZE),ƒ'ascii')ƒ#ƒGetƒtheƒserver'sƒreply
ƒƒƒƒifƒnotƒreply:
ƒƒƒƒƒƒƒƒprint('Serverƒdisconnected')
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒprint(reply)ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ#ƒDisplayƒtheƒserver'sƒreply
server.close()

10.2 Networks, Clients, and Servers [417]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As you can see, it is important to synchronize the sending and the receiving
of messages between the client and the server. If you get this right, the conversa-
tion can proceed, usually without a hitch.

10.2.6 Handling Multiple Clients Concurrently

The client/server programs that we have discussed thus far are rather simple and
limited. First, the server handles a client’s request and then returns to wait for
another client. In the case of the day/time server, the processing of each request
happens so quickly that clients will never notice a delay. However, when a server
provides extensive processing, other clients will have to wait until the currently
connected client is finished.

To solve the problem of giving many clients timely access to the server, we
relieve the server of the task of handling the client’s request and assign it instead
to a separate client-handler thread. Thus, the server simply listens for client con-
nections and dispatches these to new client-handler objects. The structure of this
system is shown in Figure 10.7.

[FIGURE 10.7] A day/time server with a client handler

For our first example, let’s modify the day/time server script by adding a
client handler. This handler is an instance of a new class, ClientHandler,
defined in the server’s script. This class extends the Thread class. Its constructor
receives the client’s socket from the server and assigns it to an instance variable.

spawns

Server

Client
Handler

Client

Server application

Client application

send/recv

waits for connection
request

socket
connection

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[418]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The run method includes the code to send the date to the client and close its
socket. Here is the code for the complete, revised day/time server script:

“””
Serverƒforƒprovidingƒtheƒdayƒandƒtime.ƒƒUsesƒclient
handlersƒtoƒhandleƒclients'ƒrequests.
“””

fromƒsocketƒimportƒ*
fromƒtimeƒimportƒctime
fromƒthreadingƒimportƒThread

classƒClientHandler(Thread):
ƒƒƒƒ“””Handlesƒaƒclientƒrequest.”””
ƒƒƒƒdefƒ__init__(self,ƒclient):
ƒƒƒƒƒƒƒƒThread.__init__(self)
ƒƒƒƒƒƒƒƒself._clientƒ=ƒclient
ƒƒƒ
ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒself._client.send(bytes(ctime()ƒ+ƒ'\nHaveƒaƒniceƒday!',ƒ'ascii'))
ƒƒƒƒƒƒƒƒself._client.close()

HOSTƒ=ƒ'localhost'
PORTƒ=ƒ5000
ADDRESSƒ=ƒ(HOST,ƒPORT)

serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)

#ƒTheƒserverƒnowƒjustƒwaitsƒforƒconnectionsƒfromƒclients
#ƒandƒhandsƒsocketsƒoffƒtoƒclientƒhandlers
whileƒTrue:
ƒƒƒƒprint('Waitingƒforƒconnectionƒ.ƒ.ƒ.')
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprint('...ƒconnectedƒfrom:',ƒaddress)
ƒƒƒƒhandlerƒ=ƒClientHandler(client)
ƒƒƒƒhandler.start()

The code for the client’s script does not change at all.

10.2 Networks, Clients, and Servers [419]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.2.7 Setting Up Conversations for Others

Now that we have modified the day/time server to handle multiple clients, can
we also modify the two-way chat program to support chats among multiple
clients? Let us consider first the problem of supporting multiple two-way chats.
We don’t want to involve the server in the chat, much less the human user who is
running the server. Can we first set up a chat between a human user and an auto-
mated agent? The doctor program developed in Case Study 5.5 in Chapter 5 is a
good example of an automated agent that chats with its client, who is a human user.
Building on this interaction, a doctor server program listens for requests from
clients for doctors. Upon receiving a request, the server dispatches the client’s
socket and a new Doctor object (see Programming Project 9 in Chapter 8) to a
handler thread. This thread then manages the conversation between this doctor
and the client. The server returns to field more requests from clients for sessions
with doctors. Figure 10.8 shows the structure of this program.

[FIGURE 10.8] The structure of a client/server program for patients and doctors

In the code that follows, we assume that a Doctor class is defined in the
module doctor.py. This class includes two methods. The method greeting
returns a string representing the doctor’s welcome. The method reply expects
the patient’s string as an argument and returns the doctor’s response string. The
patient or client signals the end of a session by simply pressing the return key,
which causes the client script’s loop to terminate and close its connection to the
server. Thus, the client script for this program is exactly the same as the client
script for the two-way chat program. The server script combines elements of the

spawns

Server

Client
Handler

Doctor

Client

Server application

Client application

waits for connection
request

greeting reply,
etc.

send/recv

socket
connection

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[420]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

two-way chat server and the day/time server for multiple clients. The client han-
dler resembles the one in the day/time server, but includes the following changes:

� The client handler’s __init__ method receives a Doctor object from the
server and assigns it to an extra instance variable.

� The client handler’s run method includes a conversation management loop
similar to the one in the chat server. However, when the client handler
receives a message from the client socket, this message is sent to the
Doctor object rather than displayed in the server’s terminal window. Then,
instead of taking input from the server’s keyboard and sending it to the
client, the server obtains this reply from the Doctor object.

Here is the code for the server, as defined in doctorserver.py:

“””
File:ƒdoctorserver.py

Serverƒforƒaƒtherapyƒsession.ƒHandlesƒmultipleƒclients
concurrently.
“””

fromƒsocketƒimportƒ*
fromƒcodecsƒimportƒdecode
fromƒthreadingƒimportƒThread
fromƒdoctorƒimportƒDoctor

classƒClientHandler(Thread):
ƒƒƒƒ“””Handlesƒaƒsessionƒbetweenƒaƒdoctorƒandƒaƒpatient.”””
ƒƒƒƒdefƒ__init__(self,ƒclient,ƒdr):
ƒƒƒƒƒƒƒƒThread.__init__(self)
ƒƒƒƒƒƒƒƒself._clientƒ=ƒclient
ƒƒƒƒƒƒƒƒself._drƒ=ƒdr

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒself._client.send(bytes(self._dr.greeting(),ƒ'ascii'))
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒmessageƒ=ƒdecode(self._client.recv(BUFSIZE),ƒ'ascii')
ƒƒƒƒƒƒƒƒƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint('Clientƒdisconnected')
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._client.close()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._client.send(bytes(self._dr.reply(message),ƒascii'))

continued

10.2 Networks, Clients, and Servers [421]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HOSTƒ=ƒ'localhost'
PORTƒ=ƒ5000
ADDRESSƒ=ƒ(HOST,ƒPORT)
BUFSIZEƒ=ƒ1024

serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)

whileƒTrue:
ƒƒƒƒprint('Waitingƒforƒconnectionƒ.ƒ.ƒ.')
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprint('...ƒconnectedƒfrom:',ƒaddress)
ƒƒƒƒdrƒ=ƒDoctor()
ƒƒƒƒhandlerƒ=ƒClientHandler(client,ƒdr)
ƒƒƒƒhandler.start()

10.2 Exercises
1 Explain the role that ports and IP addresses play in a client/server

program.

2 What is a local host, and how is it used to develop networked
applications?

3 Why is it a good idea for a server to create threads to handle clients’
requests?

4 Describe how a menu-driven command processor of the type developed
for an ATM application in Chapter 8 could be run on a network.

5 The servers discussed in this section all contain infinite loops. Thus, the
applications running them cannot do anything else while the server is
waiting for a client’s request, and they cannot even gracefully be shut
down. Suggest a way to restructure these applications so that the applica-
tions can do other things, including performing a graceful shutdown.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[422]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.3 Case Study: A Multi-Client Chat Room
Chat servers can also support chats among multiple clients. In this case study, we
develop a client/server application that supports a chat room for two or more
participants.

10.3.1 Request

Write a program that supports an online chat room.

10.3.2 Analysis

The server is started like the other servers discussed in this chapter. When a
client connects, it prompts its human user for a user name and sends this string
to the server. The client then receives a welcome from the server and a message
containing a record of the conversation thus far. This record includes zero or
more chunks of text, each of which has the following format:

<day/time>ƒ<userƒname>
<message>

The client can then join the conversation by sending a message to the server. The
server receives this message, adds it to the common record, and sends that record
back to the client. Thus, a client receives an updated record whenever it sends a
message to the server. Furthermore, this record contains the messages of any
number of clients that have joined in the conversation since the server started.
A session for a client is shown in Figure 10.9.

10.3 Case Study: A Multi-Client Chat Room [423]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[FIGURE 10.9] A client’s session with the multi-client chat room program

The classes for this program are named ClientHandler and ChatRecord.
They have roles similar to those of the ClientHandler and the Doctor classes
in an earlier example, but there is just a single shared instance of ChatRecord for
all clients.

10.3.3 Design

This chat room program’s structure and behavior are similar to those of the
online therapy server described earlier in this chapter. However, instead of
communicating with a single autonomous software agent (a doctor), a client
communicates with the other clients. They do so by sharing a common record or
transcript of their conversation. At program startup, the server creates an instance
of the ChatRecord class and assigns this object to a module variable. The server
then passes this single record to the client handler for each new client that con-
nects to the server.

The client handler maintains instance variables for the ChatRecord and its
client’s user name. When the handler receives a message from its client, this mes-
sage is stamped with the user name and current day/time. The resulting chunk of
text is then added to the common record. The text of the entire record is then
sent back to the client.

The design of the program lends it nicely to the addition of other features,
such as saving the chat record in a text file. Other improvements include splitting

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[424]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10.3 Case Study: A Multi-Client Chat Room [425]

the client’s inputs and the server’s outputs into separate text areas with a GUI, as
described in Chapter 9.

10.3.4 Implementation (Coding)

We present first the code for the client script. This script differs a bit from our
earlier examples, because it must prompt the human user for a user name and
send it to the server before entering its conversation loop. Otherwise, there are
no important changes.

“””
Clientƒforƒaƒmulti-clientƒchatƒroom.
“””

fromƒsocketƒimportƒ*
fromƒcodecsƒimportƒdecode

HOSTƒ=ƒ'localhost'
PORTƒ=ƒ5000
BUFSIZEƒ=ƒ1024
ADDRESSƒ=ƒ(HOST,ƒPORT)
CODEƒ=ƒ'ascii'
serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.connect(ADDRESS)
print(decode(server.recv(BUFSIZE),ƒCODE))
nameƒ=ƒinput('Enterƒyourƒname:ƒ')
server.send(bytes(name,ƒCODE))

whileƒTrue:
ƒƒƒƒrecordƒ=ƒdecode(server.recv(BUFSIZE),ƒCODE)
ƒƒƒƒifƒnotƒrecord:
ƒƒƒƒƒƒƒƒprint('Serverƒdisconnected')
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒprint(record)
ƒƒƒƒmessageƒ=ƒinput('>ƒ')
ƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒprint('Serverƒdisconnected')
ƒƒƒƒƒƒƒƒbreak
ƒƒƒƒserver.send(bytes(message,ƒCODE))
server.close()

The server script includes a definition of the ClientHandler class, which
manages the conversation for a particular client.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[426]

“””
Serverƒforƒaƒmulti-clientƒchatƒroom.
“””

fromƒsocketƒimportƒ*
fromƒcodecsƒimportƒdecode
fromƒchatrecordƒimportƒChatRecord
fromƒthreadingƒimportƒThread
fromƒtimeƒimportƒctime

classƒClientHandler(Thread):
ƒƒƒƒ
ƒƒƒƒdefƒ__init__(self,ƒclient,ƒrecord):
ƒƒƒƒƒƒƒƒThread.__init__(self)
ƒƒƒƒƒƒƒƒself._clientƒ=ƒclient
ƒƒƒƒƒƒƒƒself._recordƒ=ƒrecord

ƒƒƒƒdefƒrun(self):
ƒƒƒƒƒƒƒƒself._client.send(bytes('Welcomeƒtoƒtheƒchatƒroom!',ƒCODE))
ƒƒƒƒƒƒƒƒself._nameƒ=ƒdecode(self._client.recv(BUFSIZE),ƒCODE)
ƒƒƒƒƒƒƒƒself._client.send(bytes(str(self._record),ƒCODE))
ƒƒƒƒƒƒƒƒwhileƒTrue:
ƒƒƒƒƒƒƒƒƒƒƒƒmessageƒ=ƒdecode(self._client.recv(BUFSIZE),ƒCODE)
ƒƒƒƒƒƒƒƒƒƒƒƒifƒnotƒmessage:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒprint('Clientƒdisconnected')
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._client.close()
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒbreak
ƒƒƒƒƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒmessageƒ=ƒself._nameƒ+ƒ'ƒ'ƒ+ƒ\
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒctime()ƒ+ƒ'\n'ƒ+ƒmessage
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._record.add(message)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒself._client.send(bytes(str(self._record),ƒCODE))

HOSTƒ=ƒ'localhost'
PORTƒ=ƒ5000
ADDRESSƒ=ƒ(HOST,ƒPORT)
BUFSIZEƒ=ƒ1024
CODEƒ=ƒ'ascii'
recordƒ=ƒChatRecord()
serverƒ=ƒsocket(AF_INET,ƒSOCK_STREAM)
server.bind(ADDRESS)
server.listen(5)

whileƒTrue:
ƒƒƒƒprint('Waitingƒforƒconnectionƒ...')
ƒƒƒƒclient,ƒaddressƒ=ƒserver.accept()
ƒƒƒƒprint('...ƒconnectedƒfrom:',ƒaddress)
ƒƒƒƒhandlerƒ=ƒClientHandler(client,ƒrecord)
ƒƒƒƒhandler.start()

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary [427]

The ChatRecord class is defined in the file chatrecord.py. The class is
rather simple, but can be refined to manage other potential extensions to the pro-
gram, such as searches for a given user’s messages. Here is the code:

classƒChatRecord(object):

ƒƒƒƒdefƒ__init__(self):
ƒƒƒƒƒƒƒƒself.dataƒ=ƒ[]

ƒƒƒƒdefƒadd(self,ƒs):
ƒƒƒƒƒƒƒƒself.data.append(s)

ƒƒƒƒdefƒ__str__(self):
ƒƒƒƒƒƒƒƒifƒlen(self.data)ƒ==ƒ0:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ'Noƒmessagesƒyet!'
ƒƒƒƒƒƒƒƒelse:
ƒƒƒƒƒƒƒƒƒƒƒƒreturnƒ'\n'.join(self.data)

You might have noticed that the chat record is actually shared among several
client-handler threads. This presents a potential synchronization problem of the
type discussed earlier in this chapter. If one handler is timed-out in the middle of
a mutation to the record, some data might be lost or corrupted for this or other
clients. The solution of this problem is left as an exercise for you.

Summary
� Threads allow the work of a single program to be distributed among

several computational processes. These processes may be run concur-
rently on the same computer or may collaborate by running on sepa-
rate computers.

� A thread can have several states during its lifetime, such as born,
ready, executing (in the CPU), sleeping, and waiting. The queue
schedules the threads in first-come, first-served order.

� After a thread is started, it goes to the end of the ready queue to be
scheduled for a turn in the CPU.

� A thread may give up the CPU when it is timed-out, goes to sleep,
waits on a condition, or finishes its run method.

� When a thread wakes up, is timed-out, or is notified that it can stop
waiting, it returns to the rear of the ready queue.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[428]

� Thread synchronization problems can occur when two or more
threads share data. These threads can be synchronized by waiting on
conditions that control access to the data.

� Each computer on a network has a unique IP address that allows
other computers to locate it. An IP address contains an IP number,
but can also be labeled with an IP name.

� Servers and clients can communicate on a network by means of sock-
ets. A socket is created with a port number and an IP address of the
server on the client’s computer and on the server’s computer.

� Clients and servers communicate by sending and receiving bytes
through their socket connections. A string is converted to bytes before
being sent, and the bytes are converted to a string after receipt.

� A server can handle several clients concurrently by assigning each
client request to a separate handler thread.

REVIEW QUESTIONS
1 Multiple threads can run on the same desktop computer by means of

a timesharing
b multiprocessing
c distributed computing

2 A Thread object moves to the ready queue when

a its wait method is called
b its sleep method is called
c its start method is called

3 The method that executes a thread’s code is called

a the start method
b the run method
c the execute method

4 A lock on a resource is provided by an instance of the

a Thread class
b Condition class
c Lock class

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

REVIEW QUESTIONS [429]

5 If multiple threads share data, they can have

a total cooperation
b synchronization problems

6 The object that uniquely identifies a host computer on a network is a(n)

a port
b socket
c IP address

7 The object that allows several clients to access a server on a host
computer is a(n)

a port
b socket
c IP address

8 The object that effects a connection between an individual client and a
server is a(n)

a port
b socket
c IP address

9 The data that are transmitted between client and server are

a of any type
b strings

10 The best way for a server to handle requests from multiple clients is to

a directly handle each client’s request
b create a separate client-handler thread for each client

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CHAPTER 10 Multithreading, Networks, and Client/Server Programming[430]

PROJECTS
1 Redo the producer/consumer program so that it allows multiple con-

sumers. Each consumer must be able to consume the same data before
the producer produces more data.

2 Assume that there are five sections of Computer Science 101, each with
20 spots for students. The computer application that assigns students to
course sections includes requests from multiple threads for spots in the
course. Write a program that allows 100 concurrently running student
threads to request and obtain spots, in such a manner that the enroll-
ment of no course exceeds the limit.

3 Restructure one of the network applications discussed in this chapter so
that it can be shut down gracefully.

4 The game of craps, which was developed as a program in Chapter 8, can
involve two players. Restructure that program as a network application,
so that a client can play against the server. The client gets to roll first,
and then it and the server alternate. The first player to get a winning roll
wins, whereas the first player to get a losing roll loses. The two players
each have their own set of dice. (Hint: The client handler on the server
side maintains the two Player objects for the game, and each Player
object should perform one roll at a time. The client signals a new roll by
pressing the enter key, whereas the server rolls automatically.)

5 Modify the multi-client chat room application discussed in this chapter
so that it maintains the chat record in a text file. The record should load
the text from the file at instantiation and save each message as it is
received.

6 In the multi-client chat room application, a client must send a message
to the server to receive a record of the chat. Suggest and implement a
way for the client to receive the chat record even if it has nothing signifi-
cant to say.

7 Modify the network application for therapy discussed in this chapter so
that it handles multiple clients. Each client has its own doctor object.
The program saves the doctor object for a client when it disconnects.
Each doctor object should be associated with a patient user name. When
a new patient logs in, a new doctor is created. But when an existing
patient logs in, its doctor object is read from a file having that patient’s
user name. Each doctor object should have its own history list of a
patient’s inputs for generating replies that refer to earlier conversations.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8 Design, implement, and test a network application that maintains an
online phonebook. The data model for the phonebook is saved in a file
on the server’s computer. Clients should be able to look up a person’s
phone number or add a name and number to the phonebook. The server
should handle multiple clients without delays.

9 Convert the ATM application presented in Chapter 8 to a networked
application. The client manages the user interface, whereas the server
handles transactions with the bank.

10 Modify the programs of Project 8.5 and Project 10.9 so that the ATM
server is one component of a larger application that manages the bank.
The bank manager should allow the user to view, modify, add, and
remove accounts as well as launch or shut down the ATM server.

PROJECTS [431]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table A.1 provides information on an excellent Web site where
programmers can find complete documentation for the Python API
(Application Programming Interface) and download Python and
other resources.

[TABLE A.1] Online Python Documentation

DESCRIPTION URL EXPLANATION

Python’s top-level http://www.python.org/ This page contains
Web page news about events in

the Python world and
links to documentation,
Python-related prod-
ucts, program examples,
and free downloads of
resources.

Downloads http://www.python.org/ This page allows you
download/ to select the version of

Python that matches
your computer and to
begin the download
process.

Documentation http://www.python.org/doc/ This page allows you to
and training browse the documen-

tation for the Python
API, tutorials, and
other training aids.
You can also download
many of these items to
your computer for
offline reference.

[APPENDIX] Python ResourcesA

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following sections discuss some situations that involve downloading files
or information from the Web.

A.1 Installing Python on Your Computer
As of this writing, Python does not come preinstalled on Windows systems.
Therefore, you must download the Windows installer from http://www.python.org/
download/. The installer might then run automatically, or you might have to double-
click an icon for the installer to launch it. The installer automatically puts Python
into a folder and inserts various command options on the All Programs menu.
Note that administrators installing Python for all users on Windows Vista need
to be logged in as Administrator.

Macintosh users running Mac OS X might need to update the version of
Python that comes preinstalled on their systems. A Mac OS X installer can be
downloaded for this purpose and behaves in a manner similar to that of the
Windows installer.

Unix and Linux users also might need to upgrade the version of Python that
comes preinstalled on their systems. In these cases, they have to download a com-
pressed Python source code “tarball” from the same site and install it.

Most users will also want to place aliases of the important Python commands,
such as the one that launches IDLE, on their desktops.

A.2 Using the Terminal Command Prompt,
IDLE, and Other IDEs
To launch an interactive session with Python’s shell from a terminal command
prompt, open a terminal window, and enter python or python3 at the prompt.
To end the session on Unix machines (including Mac OS X), press the
Control+D key combination at the session prompt. To end a session on
Windows, press Control+Z, and then press Enter.

Before you run a Python script from a terminal command prompt, the script
file must be in the current working directory, or the system path must be set to
the file’s directory. You should consult your system’s documentation on how to set
a path. To run a script, enter python or python3, followed by a space, followed
by the name of the script’s file (including the .py extension), followed by any
command-line arguments that the script expects.

APPENDIX A Python Resources[434]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

On Windows, you can also launch a Python script by double-clicking the
script’s file icon. On Macintosh, Unix, and Linux systems, you must first config-
ure the system to launch Python when files of this type are launched. The
File/Get Info option on a Macintosh, for example, allows you to do this. You can
also configure your system to launch Python using the simpler python command
rather than python3.

You can also launch an interactive session with a Python shell by launching
IDLE (as of this writing, the specific command to run is idle3.1). There are
many advantages to using an IDLE shell rather than a terminal-based shell, such
as color-coded program elements, menu options for editing code and consulting
documentation, and the ability to repeat commands.

IDLE also helps you manage program development with multiple editor
windows. You can run code from these windows and easily move code among
them. Although this book does not discuss it, a debugging tool is also available
within IDLE.

The are several other free and commercial IDEs with capabilities that extend
those of IDLE. jEdit (http://www.jedit.org/) is a free, lightweight IDE that has
widespread use in academic environments because it also supports Java and C++
program development.

A.2 Using the Terminal Command Prompt, IDLE, and Other IDEs [435]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[APPENDIX]
INSTALLING THE

images LibraryB
The images library is a nonstandard, open-source Python module
developed to support easy image processing.

The images library supports the processing of GIF images only.
The source code for the library, in the file images.py, is available
on the author’s Web site at http://home.wlu.edu/~lambertk/python/, or
from your instructor.

In general, there are two ways to install a Python library:

1 Place the source file for the library in the current working
directory. Then, when you launch a Python script from this
directory or load it from an IDLE window into a shell,
Python can locate the library resources that are imported by
that script. The disadvantage of this installation option is
that the library must be moved whenever you change work-
ing directories.

2 Place the source file in the directory that Python has estab-
lished for third-party libraries. The path to this directory will
vary, depending on your system. For Windows users, this path
will be something like c:\python31\Lib\site-packages.
For Unix or Macintosh users, it might be something like
/usr/local/bin/lib/python3.1/site-packages. Once a
library is placed in this directory, a Python script can access
its resources from any directory on your system.

The images.py file can be installed using one of the preceding
methods, and your client code will be ready to use this module.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[APPENDIX]
THE API FOR

Image ProcessingC
Both the graphics and the image-processing library are based on Python’s
standard tkinter library. The API (Application Programming Interface)
for the image-processing library follows.

The images module includes a single class named Image. Each
Image object represents an image. The programmer can supply the
filename of an image on disk when Image is instantiated. The result-
ing Image object contains pixels loaded from an image file on disk.
If a filename is not specified, a height and width must be specified.
The resulting Image object contains the specified number of pixels
with a single default color.

When the programmer imports the Image class and instantiates
it, no window opens. At that point, the programmer can run various
methods with this Image object to access or modify its pixels, as well
as save the image to a file. At any point in your code, you may run
the draw method with an Image object. At this point, a window will
open and display the image. The program then waits for you to
close the window before allowing you, either in the shell or in a
script, to continue running more code.

The positions of pixels in an image are the same as screen coor-
dinates for display in a window. That is, the origin (0, 0) is in the
upper-left corner of the image, and its (width, height) is in the
lower-right corner.

Images can be manipulated either interactively within a Python
shell or from a Python script. We recommend that the shell or script
be launched from a system terminal, rather than from IDLE.

Image objects cannot be viewed in multiple windows at the
same time from the same script. If you want to view two or more
Image objects simultaneously, you can create separate scripts for
them and launch these Image objects in separate terminal windows.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As mentioned earlier, the images module supports the use of GIF files only.
Here is a list of the Image methods:

� Image(filename) Loads an image from the file named filename and
returns an Image object that represents this image. The file must exist in
the current working directory.

� Image(width, height) Returns an Image object of the specified width
and height with a single default color.

� getWidth() Returns the width of the image in pixels.
� getHeight() Returns the height of the image in pixels.
� getPixel(x, y) Returns the pixel at the specified coordinates. A pixel is

of the form (r, g, b), where the letters are integers representing the red,
green, and blue values of a color in the RGB system.

� setPixel(x, y, (r, g, b)) Resets the pixel at position (x, y) to the
color value represented by (r, g, b). The coordinates must be in the
range of the image’s coordinates, and the RGB values must range from 0
through 255.

� draw() Opens a window and displays the image. The user must close the
window to continue the program.

� save() Saves the image to its current file, if it has one. Otherwise, it
does nothing.

� save(filename) Saves the image to the given file and makes it the
current file. This is similar to the Save As option in most File menus.

APPENDIX C The API for Image Processing[440]

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

[APPENDIX]
TRANSITION FROM PYTHON TO

Java and C++D
Although Python is an excellent teaching language and is gaining
acceptance in industry, Java and the C/C++ family of languages
remain the most widespread languages used in higher education and
real-world settings. Thus, computer science students must become
proficient in these languages, both to continue in their course work
and to prepare for careers in the field.

Fortunately, the transition from Python to Java or C++ is not
difficult. Although the syntactic structures of Python and these other
languages are somewhat different, the languages support the same
programming styles. For an overview of all the essential differences
between Python, Java, and C++, see the author’s Web site at
http://home.wlu.edu/~lambertk/python/.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A
abacus An early computing device that allowed

users to perform simple calculations by
moving beads along wires.

abstract Simplified or partial, hiding detail.
abstract class A class that defines attributes

and methods for subclasses, but is never
instantiated.

abstraction A simplified view of a task or data
structure that ignores complex detail.

accessor A method used to examine an
attribute of an object without changing it.

activation record An area of computer
memory that keeps track of a function or
method call’s parameters, local values, return
value, and the caller’s return address. See also
run-time stack.

algorithm A finite sequence of instructions
that, when applied to a problem, will solve it.

alias A situation in which two or more names in
a program can refer to the same memory
location. An alias can cause subtle side effects.

analysis The phase of the software life cycle in
which the programmer describes what the
program will do.

Analytical Engine A general-purpose
computer designed in the nineteenth century
by Charles Babbage, but never completed.

anonymous function A function without a
name, constructed in Python using lambda.

application software Programs that allow
human users to accomplish specialized tasks,
such as word processing or database
management. Also called applications.

argument A value or expression passed in a
method call.

arithmetic expression A sequence of operands
and operators that computes a value.

arithmetic overflow A situation that arises
when the computer’s memory cannot

represent the number resulting from an
arithmetic operation.

artificial intelligence A field of computer
science whose goal is to build machines that
can perform tasks that require human
intelligence.

ASCII character set The American Standard
Code for Information Interchange ordering
for a character set.

assembler A program that translates an
assembly language program to machine code.

assembly language A computer language that
allows the programmer to express operations
and memory addresses with mnemonic
symbols.

assignment operator The symbol =, which is
used to give a value to a variable.

assignment statement A method of giving
values to variables.

association A pair of items consisting of a key
and a value.

attribute A property that a computational
object models, such as the balance in a bank
account.

augmented assignment An assignment
operation that performs a designated
operation, such as addition, before storing
the result in a variable.

B
base case The condition in a recursive

algorithm that is tested to halt the recursive
process.

batch processing The scheduling of multiple
programs so that they run in sequence on the
same computer.

behavior The set of actions that a class of
objects supports.

GLOSSARY [443]

GLOSSARY

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY[444]

binary digit A digit, either 0 or 1, in the binary
number system. Program instructions are stored
in memory using a sequence of binary digits. See
also bit.

bit A binary digit.
bitmap A data structure used to represent the

values and positions of points on a computer
screen or image.

bit-mapped display screen A type of display
screen that supports the display of graphics
and images.

block An area of program text, offset by
indentation, that contains statements and data
declarations.

block cipher An encryption method that replaces
characters with other characters located in a
two-dimensional grid of characters.

Boolean expression An expression whose value is
either true or false. See also compound Boolean
expression and simple Boolean expression.

bottom-up implementation A method of coding
a program that starts with lower-level modules
and a test driver module.

button object A window object that allows the
user to select an action by clicking a mouse.

byte A sequence of bits used to encode a character
in memory.

byte code The kind of object code generated by a
Python compiler and interpreted by a Python
virtual machine. Byte code is platform
independent.

C
Caesar cipher An encryption method that

replaces characters with other characters a given
distance away in the character set.

call Any reference to a function or method by an
executable statement. Also referred to as invoke.

call stack The trace of function or method calls
that appears when Python raises an exception
during program execution.

card reader A device that inputs information
from punched cards into the memory of a
computer.

c-curve A fractal shape that resembles the letter C.
central processing unit (CPU) A major

hardware component that consists of the
arithmetic/logic unit and the control unit. Also
sometimes called a processor.

character set The list of characters available for
data and program statements.

class A description of the attributes and behavior
of a set of computational objects.

class diagram A graphical notation that describes
the relationships among the classes in a
software system.

class variable A variable that is visible to all
instances of a class and is accessed by specifying
the class name.

client A computational object that receives a
service from another computational object.

client/server relationship A means of describing
the organization of computing resources in
which one resource provides a service to
another resource.

coding The process of writing executable
statements that are part of a program to solve a
problem. See also implementation.

comments Nonexecutable statements used to
make a program more readable.

compiler A computer program that automatically
converts instructions in a high-level language to
machine language.

compound Boolean expression Refers to the
complete expression when logical connectives
and negation are used to generate Boolean
values. See also Boolean expression and simple
Boolean expression.

computing agent The entity that executes
instructions in an algorithm.

concatenation An operation in which the
contents of one data structure are placed after
the contents of another data structure.

concrete class A class that can be instantiated. See
also abstract class.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY [445]

concurrent processing The simultaneous
performance of two or more tasks.

conditional statement See selection statement.
conjunction The connection of two Boolean

expressions using the logical operator and,
returning false if at least one of the expressions
is false or true if they are both true.

constructor A method that is run when an object
is instantiated, usually to initialize that object’s
instance variables. This method is named
__init__ in Python.

contained class A class that is used to define a
data object within another class.

continuation condition A Boolean expression
that is checked to determine whether or not to
continue iterating within a loop. If this
expression is true, iteration continues.

control statement A statement that allows the
computer to repeat or select an action.

coordinate system A grid that allows a
programmer to specify positions of points in a
plane or of pixels on a computer screen.

correct program A program that produces an
expected output for any legitimate input.

count-controlled loop A loop that stops when a
counter variable reaches a specified limit.

CPU (central processing unit) A major
hardware component that consists of the
arithmetic/logic unit and the control unit. Also
sometimes called a processor.

D
data The symbols that are used to represent

information in a form suitable for storage,
processing, and communication.

data decryption The process of translating
encrypted data to a form that can be used.

data encryption The process of transforming
data so that others cannot use it.

data structure A compound unit consisting of
several data values.

data type(s) A set of values and operations on
those values.

data validation The process of examining data
prior to its use in a program.

debugging The process of eliminating errors, or
“bugs,” from a program.

default behavior Behavior that is expected and
provided under normal circumstances.

default parameter Also called a default
argument. A special type of parameter that is
automatically given a value if the caller does not
supply one.

definite iteration The process of repeating a
given action a preset number of times.

design The phase of the software life cycle in
which the programmer describes how the
program will accomplish its tasks.

design error An error such that a program runs,
but unexpected results are produced. Also
referred to as a logic error. See also syntax error.

dictionary A data structure that allows the
programmer to access items by specifying
key values.

docstring A sequence of characters enclosed in
triple quotation marks (“””) that Python uses to
document program components such as
modules, classes, methods, and functions.

driver A method used to test other methods.

E
element A value that is stored in an array or a

collection.
empty string A string that contains no characters.
encapsulation The process of hiding and

restricting access to the implementation details
of a data structure.

encryption The process of transforming data so
that others cannot use it.

end-of-line comment Part of a single line of text
in a program that is not executed, but serves as
documentation for readers.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY[446]

error See design error and syntax error.
escape sequence A sequence of two characters in

a string, the first of which is /. The sequence
stands for another character, such as the tab or
newline.

event An occurrence, such as a button click or a
mouse motion, that can be detected and
processed by a program.

event-driven loop A process, usually hidden in
the operating system, that waits for an event,
notifies a program that an event has occurred,
and returns to wait for more events.

exception An abnormal state or error that occurs
during run time and is signaled by the
operating system.

execute To carry out the instructions of a
program.

expression A description of a computation that
produces a value.

extended if statement Nested selection in
which additional if-else statements are used
in the else option. See also nested if
statement.

external (or secondary) memory Memory that
can store large quantities of data permanently.

F
Fibonacci numbers A series of numbers

generated by taking the sum of the previous two
numbers in the series. The series begins with
the numbers 1 and 2.

field width The number of columns used for the
output of text.

file A data structure that resides on a secondary
storage medium.

file system Software that organizes data on
secondary storage media.

filtering The successive application of a Boolean
function to a sequence of arguments that
returns a sequence of the arguments that make
this function return True.

first-class data objects Data objects that can be
passed as arguments to functions and returned
as their values.

float A Python data type used to represent
numbers with a decimal point, for example, a
real number or a floating-point number.

floating-point number A data type that
represents real numbers in a computer program.

for loop A structured loop consisting of an
initializer expression, a termination expression,
an update expression, and a statement.

format string A special syntax within a string that
allows the programmer to specify the number of
columns within which data are placed in a string.

fractal geometry A theory of shapes that are
reflected in various phenomena, such as
coastlines, water flow, and price fluctuations.

fractal object A type of mathematical object that
maintains self-sameness when viewed at greater
levels of detail.

front The end of a queue from which elements
are removed.

function A chunk of code that can be treated as a
unit and called to perform a task.

function heading The portion of a function
implementation containing the function’s name,
parameter names, and return type.

G
garbage collection The automatic process of

reclaiming memory when the data of a program
no longer need it.

general method A method that solves a class of
problems, not just one individual problem.

grammar The set of rules for constructing
sentences in a language.

graphical user interface (GUI) See GUI
(graphical user interface)

grid A data structure in which the items are
accessed by specifying at least two index
positions, one that refers to the item’s row and
another that refers to the item’s column.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY [447]

grid layout A Python layout class that allows the
user to place window objects in a two-
dimensional grid in the window.

GUI (graphical user interface) A means of
communication between human beings and
computers that uses a pointing device for input
and a bitmapped screen for output. The bitmap
displays images of windows and window objects
such as buttons, text fields, and drop-down
menus. The user interacts with the interface by
using the mouse to directly manipulate the
window objects. See also window object.

H
hacking The use of clever techniques to write a

program, often for the purpose of gaining access
to protected resources on networks.

hardware The computing machine and its
support devices.

helper A method or function used within the
implementation of a module or class but not
used by clients of that module or class.

higher-order function A function that expects
another function as an argument and/or returns
another function as a value.

high-level programming language Any
programming language that uses words and
symbols to make it relatively easy to read and
write a program. See also assembly language
and machine language.

HTML (hypertext markup language) A
programming language that allows the user to
create pages for the World Wide Web.

hypermedia A data structure that allows the user
to access different kinds of information (text,
images, sound, video, applications) by
traversing links.

hypertext A data structure that allows the user to
access different chunks of text by traversing links.

hypertext markup language (HTML) See
HTML (hypertext markup language)

I
identifiers Words that must be created according

to a well-defined set of rules but can have any
meaning subject to these rules.

identity The property of an object that it is the
same thing at different points in time, even
though the values of its attributes might change.

IDE (integrated development environment) A
set of software tools that allows you to edit,
compile, run, and debug programs within one
user interface.

if-else statement A selection statement that
allows a program to perform alternative actions
based on a condition.

immutable object An object whose internal data
or state cannot be changed.

implementation The phase of the software life
cycle in which the program is coded in a
programming language.

increment The process of increasing a number
by 1.

indefinite iteration The process of repeating a
given action until a condition stops the
repetition.

index The relative position of a component of a
linear data structure or collection.

indirect recursion A recursive process that
results when one function calls another, which
results at some point in a second call to the first
function.

infinite loop A loop in which the controlling
condition is not changed in such a manner to
allow the loop to terminate.

infinite recursion In a running program, the
state that occurs when a recursive method
cannot reach a stopping state.

information hiding A condition in which the
user of a module does not know the details of
how it is implemented, and the implementer of
a module does not know the details of how it
is used.

information processing The transformation of
one piece of information into another piece of
information.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY[448]

inheritance The process by which a subclass can
reuse attributes and behavior defined in a
superclass. See also subclass and superclass.

input Data obtained by a program during its
execution.

input device A device that provides information
to the computer. Typical input devices are a
mouse, keyboard, disk drive, microphone, and
network port. See also I/O device and output
device.

instance A computational object bearing the
attributes and behavior specified by a class.

instance variable Storage for data in an instance
of a class.

instantiation The process of creating a new
object or instance of a class.

integer A positive or negative whole number, or
the number 0. The magnitude of an integer is
limited by a computer’s memory.

integer arithmetic operations Operations
allowed on data of type int. These include the
operations of addition, subtraction,
multiplication, division, and modulus to produce
integer answers.

integrated circuit The arrangement of
computer hardware components in a single,
miniaturized unit.

integrated development environment (IDE) See
IDE (integrated development environment)

interface A formal statement of how
communication occurs between the user of a
module (class or method) and its implementer.

interpreter A program that translates and
executes another program.

invoke See call.
I/O device Any device that allows information to

be transmitted to or from a computer. See also
input device and output device.

IP address The unique location of an individual
computer on the Internet.

IP name A representation of an IP address that
uses letters and periods.

IP number A representation of an IP address that
uses digits and periods.

iteration See loop.

J
jump table A dictionary that associates command

names with functions that are invoked when
those functions are looked up in the table.

justification The process of aligning text to the
left, the center, or the right within a given
number of columns.

K
key An item that is associated with a value and

which is used to locate that value in a collection.
keypunch machine An early input device that

allowed the user to enter programs and data
onto punched cards.

keywords See reserved words.

L
label object A window object that displays text,

usually to describe the roles of other window
objects.

lambda The mechanism by which an anonymous
function is created.

left associative The property of an operator such
that repeated applications of it are evaluated
from left to right (first to last).

library A collection of methods and data
organized to perform a set of related tasks. See
also class.

lifetime The time during which a data object or
method call exists.

linear An increase of work or memory in direct
proportion to the size of a problem.

literal An element of a language that evaluates to
itself, such as 34 or “hi there.”

loader A system software tool that places program
instructions and data into the appropriate
memory locations before program start-up.

logical operator Any of the logical connective
operators && (and), || (or), or ! (negation).

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY [449]

logical structure The organization of the
components in a data structure, independent of
their organization in computer memory.

loop A type of statement that repeatedly executes
a set of statements.

loop body The action(s) performed on each
iteration through a loop.

loop header Information at the beginning of a
loop that includes the conditions for continuing
the iteration process.

M
machine language The language used directly by

the computer in all its calculations and
processing. Also called machine code.

magnetic storage media Any media that allow
data to be stored as patterns in a magnetic field.

main (primary or internal) memory The high-
speed internal memory of a computer, also
referred to as random access memory (RAM).
See also memory and secondary memory.

main module The software component that
contains the point of entry or start-up code of a
program.

mainframe Large computers typically used by
major companies and universities. See also
microcomputer and minicomputer.

mapping The successive application of a function
to a sequence of arguments that returns a
sequence of results.

megabyte Shorthand for approximately
1 million bytes.

memory The ordered sequence of storage cells
that can be accessed by address. Instructions and
variables of an executing program are
temporarily held here. See also main memory
and secondary memory.

memory location A storage cell that can be
accessed by address. See also memory.

method A chunk of code that can be treated as a
unit and invoked by name. A method is called
with an object or class.

method heading The portion of a method
implementation containing the method’s name,
parameter declarations, and return type.

microcomputer A computer capable of fitting on
a laptop or desktop, generally used by one
person at a time. See also mainframe and
minicomputer.

minicomputer A small version of a mainframe
computer. It is usually used by several people at
once. See also mainframe and microcomputer.

mixed-mode arithmetic Expressions containing
data of different types; the values of these
expressions will be of either type, depending on
the rules for evaluating them.

model/view/controller pattern (MVC) A design
plan in which the roles and responsibilities of
the system are cleanly divided among data
management (model), user interface display
(view), and user event-handling (controller) tasks.

module An independent program component that
can contain variables, functions, and classes.

Moore’s Law A hypothesis that states that the
processing speed and storage capacity of
computers will increase by a factor of two every
18 months.

mutator A method used to change the value of an
attribute of an object.

N
namespace The set of all of a program’s variables

and their values.
natural ordering The placement of data items

relative to each other by some internal criteria,
such as numeric value or alphabetical value.

negation The use of the logical operator not with
a Boolean expression, returning True if the
expression is false, and False if the expression
is true.

nested if statement A selection statement used
within another selection statement. See also
extended if statement.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY[450]

nested loop A loop as one of the statements in
the body of another loop.

network A collection of resources that are linked
together for communication.

newline character A special character ('\n')
used to indicate the end of a line of characters
in a string or a file stream.

None value A special value that indicates that no
object can be accessed.

O
object A collection of data and operations, in

which the data can be accessed and modified
only by means of the operations.

object code The code produced by a compiler.
object identity The property of an object that it is

the same thing at different points in time, even
though the values of its attributes might change.

object-based programming The construction of
software systems that use objects.

object-oriented programming The construction
of software systems that define classes and rely
on inheritance and polymorphism.

off-by-one error Usually seen with loops, this
error shows up as a result that is one less or one
greater than the expected value.

operating system A large program that allows
the user to communicate with the hardware and
performs various management tasks.

optical storage media Devices such as CDs and
DVDs that store data permanently and from
which the data are accessed by using laser
technology.

optional arguments Arguments to a function or
method that may be omitted.

origin The point (0,0) in a coordinate system.
output Information that is produced by a

program.
output device A device that allows you to see the

results of a program. Typically, it is a monitor,
printer, speaker, or network port. See also input
device and I/O device.

overloading The process of using the same
operator symbol or identifier to refer to many
different functions. See also polymorphism.

overriding The process of re-implementing a
method already implemented in a superclass.

P
parameter See argument.
parent The immediate superclass of a class.
path A sequence of edges that allows one vertex to

be reached from another.
pixel A picture element or dot of color used to

display images on a computer screen.
polymorphism The property of one operator

symbol or method identifier having many
meanings. See also overloading.

pop The operation that removes an element from
a Python list or dictionary.

port A channel through which several clients can
exchange data with the same server or with
different servers.

positional notation The type of representation
used in based number systems, in which the
position of each digit denotes a power in the
system’s base.

precedence rules Rules that govern the order in
which operators are applied in expressions.

predicate A function that returns a Boolean value.
prefix form The form of an expression in which

the operator precedes its operands.
primary memory See main memory and

memory.
problem decomposition The process of breaking

a problem into subproblems.
problem instance An individual problem that

belongs to a class of problems.
procedural programming A style of

programming that decomposes a program into a
set of methods or procedures.

program A set of instructions that tells the
machine (the hardware) what to do.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY [451]

program library Program code developed for use
in other programs.

programming language Formal language that
computer scientists use to give instructions to
the computer.

prototype A trimmed-down version of a class or
software system that still functions and allows
the programmer to study its essential features.

pseudocode A stylized half-English, half-code
language written in English but suggesting
program code.

PVM (Python virtual machine) A program that
interprets Python byte codes and executes them.

R
random access A data-access method that runs in

constant time.
ready queue A data structure used to schedule

processes or threads for CPU access.
rear The end of a queue to which elements are

added.
recursion The process of a subprogram calling

itself. A clearly defined stopping state must
exist. Any recursive subprogram can be
rewritten using iteration.

recursive call The call of a function that already
has a call waiting in the current chain of
function calls.

recursive definition A set of statements in which
at least one statement is defined in terms of itself.

recursive design The process of decomposing a
problem into subproblems of exactly the same
form that can be solved by the same algorithm.

recursive function A function that calls itself.
recursive step A step in the recursive process that

solves a similar problem of smaller size and
eventually leads to a termination of the process.

recursive subprogram See recursion.
reducing The application of a function to a

sequence of its arguments to produce a
single value.

relational operator An operator used for
comparison of data items of the same type.

repetition See loops.
required arguments Arguments that must be

supplied by the programmer when a function or
method is called.

reserved words Words that have predefined
meanings that cannot be changed.

responsibility-driven design The assignment of
roles and responsibilities to different actors in a
program.

returning a value The process whereby a
function or method makes the value that it
computes available to the rest of the program.

root directory The top-level directory in a file
system.

run-time stack An area of computer memory
reserved for local variables and parameters of
method calls.

run-time system Software that supports the
execution of a program.

S
scientific notation The representation of a

floating-point number that uses a decimal point
and an exponent to express its value.

scope The area of program text in which the
value of a variable is visible.

screen coordinate system A coordinate system
used by most programming languages in which
the origin is in the upper-left corner of the
screen, window, or panel, and the y values
increase toward the bottom of the drawing area.

script A Python program that can be launched
from a computer’s operating system.

secondary (external) memory An auxiliary
device for memory, usually a disk or magnetic
tape. See also main memory and memory.

selection The process by which a method or a
variable of an instance or a class is accessed.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY[452]

selection statement A control statement that
selects some particular logical path based on the
value of an expression. Also referred to as a
conditional statement.

semantic error A type of error that occurs when
the computer cannot carry out the instruction
specified.

semantics The rules for interpreting the meaning
of a program in a language.

semiconductor storage media Devices, such as
flash sticks, that use solid state circuitry to store
data permanently.

sentinel value (or sentinel) A special value that
indicates the end of a set of data or of a process.

sequence A type of collection in which each item
but the first has a unique predecessor and each
item but the last has a unique successor.

server A computational object that provides a
service to another computational object.

shell A program that allows users to enter and run
Python program expressions and statements
interactively.

short-circuit evaluation The process by which a
compound Boolean expression halts evaluation
and returns the value of the first subexpression
that evaluates to true, in the case of or, or false,
in the case of and.

side effect A change in a variable that is the result
of some action taken in a program, usually from
within a method.

simple Boolean expression An expression in
which two numbers or variable values are
compared using a single relational operator. See
also Boolean expression and compound
Boolean expression.

slicing An operation that returns a subsection of a
linear collection, for example, a sublist or a
substring.

socket An object that serves as a communication
link between a single server process and a single
client process.

software Programs that make the machine (the
hardware) do something, such as word
processing, database management, or games.

software development life cycle (SDLC) The
process of development, maintenance, and
demise of a software system. Phases include
analysis, design, coding, testing/verification,
maintenance, and obsolescence.

software reuse The process of building and
maintaining software systems out of existing
software components.

solid-state device An electronic device,
typically based on a transistor, and which has no
moving parts.

source code The program text as viewed by the
human being who creates or reads it, prior to
compilation.

source program A program written by a
programmer.

stack frame See activation record.
stack overflow error A situation that occurs

when the computer runs out of memory to
allocate for its call stack. This situation usually
arises during an infinite recursion.

state The set of all the values of the variables of a
program at any point during its execution.

statement An individual instruction in a program.
step value The amount by which a counter is

incremented or decremented in a count-
controlled loop.

stepwise refinement The process of repeatedly
subdividing tasks into subtasks until each subtask
is easily accomplished. See also structured
programming and top-down design.

string (string literal) One or more characters,
enclosed in double quotation marks, used as a
constant in a program.

strongly typed programming language A
language in which the types of operands are
checked prior to applying an operator to them,
and which disallows such applications, either at
run time or at compile time, when operands are
not of the appropriate type.

structural equivalence A criterion of equality
between two distinct objects in which one or
more of their attributes are equal.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY [453]

structure chart A graphical method of indicating
the relationship between modules when
designing the solution to a problem.

structured programming Programming that
parallels a solution to a problem achieved by
top-down implementation. See also stepwise
refinement and top-down design.

subclass A class that inherits attributes and
behaviors from another class.

subscript See index.
substring A string that represents a segment of

another string.
superclass The class from which a subclass

inherits attributes and behavior. See also
inheritance and subclass.

symbolic constant A name that receives a value
at program start-up and whose value cannot be
changed.

synchronization problem A type of problem
arising from the execution of threads or
processes that share memory.

syntax The rules for constructing well-formed
programs in a language. Also, the rules for
forming sentences in a language.

syntax error An error in spelling, punctuation, or
placement of certain key symbols in a program.
See also design error.

system software The programs that allow users
to write and execute other programs, including
operating systems such as Windows and
Mac OSX.

T
temporary variable A variable that is introduced

in the body of a function or method for the use
of that subroutine only.

terminal I/O interface A user interface that
allows the user to enter input from a keyboard
and view output as text in a window. Also called
a terminal-based interface.

termination condition A Boolean expression that
is checked to determine whether or not to stop
iterating within a loop. If this expression is true,
iteration stops.

test suite A set of test cases that exercise the
capabilities of a software component.

text editor A program that allows the user to enter
text, such as a program, and save it in a file.

text files Files that contain characters and are
readable and writable by text editors.

text object A window object that provides a
scrollable region within which the user can view
or enter several lines of text.

thread A type of process that can run
concurrently with other processes.

time sharing The scheduling of multiple
programs so that they run concurrently on the
same computer.

time-sharing operating system A computer
system that can run multiple programs in such a
manner that its users have the illusion that they
are running simultaneously.

time slicing A means of scheduling threads or
processes wherein each process receives a
definite amount of CPU time before returning
to the ready queue.

top-down design A method for coding by which
the programmer starts with a top-level task and
implements subtasks. Each subtask is then
subdivided into smaller subtasks. This process is
repeated until each remaining subtask is easily
coded. See also stepwise refinement and
structured programming.

transistor A device with no moving parts that can
hold an electromagnetic signal and that is used
to build computer circuitry for memory and a
processor.

translator A program that converts a program
written in one language to an equivalent
program in another language.

truth table A means of listing all of the possible
values of a Boolean expression.

tuple A linear, immutable collection.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY[454]

turtle graphics A set of resources that manipulate
a pen in a graphics window.

type conversion function A function that takes
one type of data as an argument and returns the
same data represented in another type.

U
Unified Modeling Language (UML) A

graphical notation for describing a software
system in various phases of development.

Unicode A character set that uses 16 bits to
represent over 65,000 possible characters. These
include the ASCII character set as well as
symbols and ideograms in many international
languages. See also ASCII character set.

user interface The part of a software system that
handles interaction with users.

V
value An item that is associated with a key and is

located by a key in a collection.
variable A memory location, referenced by an

identifier, whose value can be changed during
execution of a program.

variable reference The process whereby the
computer looks up and returns the value of a
variable.

vector A one-dimensional array that supports
resizing, insertions, and removals.

virtual machine A software tool that behaves like
a high-level computer.

virtual reality A technology that allows a user to
interact with a computer-generated
environment, usually simulating movement in
three dimensions.

W
waterfall model A series of steps in which a

software system trickles down from analysis to
design to implementation. See also software
development life cycle.

Web client Software on a user’s computer that
makes requests for resources from the Web.

Web server Software on a computer that
responds to requests for resources and makes
them available on the Web.

while loop A pretest loop that examines a
Boolean expression before causing a statement
to be executed.

window A rectangular area of a computer screen
that can contain window objects. Windows
typically can be resized, minimized, maximized,
zoomed, or closed.

window object (widget) A computational object
that displays an image, such as a button or a text
field, in a window and supports interaction with
the user.

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Note: Boldface type indicates key terms.

Special Characters
\ (backslash), 49, 50, 60

< (left angle bracket), 25, 92, 99, 163, 312, 313
> (right angle bracket), 24, 25, 92, 99, 163,

312, 313
! (exclamation mark), 92, 99, 163, 312, 313
“ (double quotation mark), 50
% (percent sign), 58, 85, 99, 311
‘ (single quotation mark), 50
* (asterisk), 58, 99, 311
+ (plus sign), 50, 58, 162, 163, 311
- (minus sign), 58, 99, 311
/ (forward slash), 58, 99, 311
= (equal sign), 92, 97, 99, 162, 163, 171,

312, 313
[] (square brackets), 123–124, 160, 161, 164
_ (underscore), 51
... (ellipsis), 26

A
abacus, 12
ABC (Atanasoff-Berry Computer), 15, 16
abstract behavior, 340
abstract classes, 340–341
abstraction, 18, 52, 202
accept method, 416
acceptCommand function, 222
accessor(s), 300
accessor methods, 259
Account class, 340–341
acquire method, 407
ACTIVE constant, 384
__add__ method, 311
add(account) method, 318
addition operator (+), 58, 99
aDict operation, 187
Advanced Research Projects Agency Network

(ARPANET), 21

Aiken, Howard, 15
algorithms, 2–4

information processing related, 5
aliasing, 169–170
Al-Khawarizmi, Muhammad ibn Musa, 11
Allen, Paul, 21
Altair, 20
Alto, 20
analog information, 267
analysis phase, 40, 41. See also software

development
and logical operator, 97–98, 99
anonymous functions, 237
API (application programming interface), image-

processing library, 439–440
append method, 165, 166, 167

finding median of a set of numbers,
172–173

Apple Computer, 20
HyperCard, 22

application programming interface (API), image-
processing library, 439–440

applications software (applications), 9
approximating square roots case study, 110–113
_area method, 366
arguments

default (keyword), namespace, 230–232
functions, 176

arithmetic
mixed-mode, 60–61
rational numbers, 311

arithmetic expressions, 58–60
arithmetic negation operator (-), 58, 99
arithmetic operators, 58, 99

overloading, 312
ARPANET (Advanced Research Projects

Agency Network), 21
artificial intelligence, 17
ASCII set, 55–57
aspect ratio, 283
assemblers, 17
assembly languages, 16–17

INDEX [455]

INDEX

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[456]

assignment operator (=), 97, 98, 99, 171
assignment statements, 51
association, 183
association lists, 183
asterisk (*)

exponentiation operator (**), 58, 99
__mul__ method, 311
multiplication operator (*), 58, 99

Atanasoff, John, 15
Atanasoff-Berry Computer (ABC), 15, 16
ATM case studies, 325–331

GUI-based, 367–372
ATM class, 368–372
augmented assignment operations, 79–80

B
Babbage, Charles, 14
backslash character (\), 50, 60
backspace character (\b), 50
Backus, John, 17
Bank class, 317–319, 325, 326, 327–331, 368
base cases, 211
base ten number system, 129. See also decimal

number system
base two number system, 129. See also binary

number system
batch processing, 19
begin_fill method, 250
benefits, object-oriented programming, 341–343
Berners-Lee, Tim, 22, 23
Berry, Clifford, 15
binary digits, 7
binary number system, 129, 130

converting binary to decimal, 131–132,
133–134

converting decimal to binary, 132–133
bind method, 289, 387–388, 415
bit(s), 7
bit strings, 131
bit-mapped display screens, 20
black and white, converting images to, 276–278
blackAndWhite function, 276–277

Blackjack class, 335–340
blackjack game, dealer and play in, 276–278
Block, threads, 399
block ciphers, 129
blur function, 280–281
blurring images, 280–281
<Bn-Motion> event, 387
Boole, George, 14–15
Boolean data type, 91
Boolean expressions, compound, 97–99
Boolean functions, 177
bottom-up testing, 152
bouncy program, 350

GUI-based, 351–353
terminal-based, 350–351

box.activate(index) method, 384
box.curselection method, 384
box.delete(index) method, 384
box.get(index) method, 384
box.see(index) method, 384
box.size method, 384
box.xview method, 384
box.yview method, 384
break statements, 105–106
Bush, Vannevar, 19–20
Button object, 358
<ButtonPress-n> event, 387
<ButtonRelease-n> event, 387
byte code, 30
bytes function, 416
bytes object, 416

C
C++, transition from Python to, 441
Caesar ciphers, 128–129
call stacks, 216
Canvas class, 251
Card class, 321–322, 361
card readers, 17
CardDemo class, 361–363
case studies of software development. See software

development

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [457]

cathode ray tubes (CRTs), 19
c-curve, 262–266
cCurve function, 266
center method, 138
central processing unit (CPU), 6

functions, 7–8
cfg files, setting up, 260
changePerson function, 193
character sets, 55–57
chat rooms, multi-client, case study, 423–427
chat script, two-way, 416–418
ChatRecord class, 424
chdir function, 147
CheckingAccount class, 340–341
chips, microcomputer, 20
cipher(s), block, 129
cipher text, 128
circlearea program, 364–365, 375, 377, 378
class(es), 283–302. See also classes listed by name

abstract, 340–341
accessors, 300
data-modeling examples. See data modeling
defining, rules of thumb for, 302
docstrings, 298
__init__ method, 299
instance variables, 299–300
lifetime of objects, 301
method definitions, 298
mutators, 300
overview, 294
parent, 296
__str__ method, 300
structuring with inheritance and polymor-

phism, 331–344
subclasses, 296

class diagrams, 326–327
class hierarchies, 296
class variables, 315–317
classes listed by name

Account class, 340–341
ATM class, 368–372
Bank class, 317–319, 325, 326, 327–331, 368
Blackjack class, 335–340
Canvas class, 251
Card class, 321–322, 361

CardDemo class, 361–363
ChatRecord class, 424
CheckingAccount class, 340–341
ClientHandler class, 418–419, 424,

425–427
Condition class, 406–407
Consumer class, 404, 405
Deck class, 321, 323–324
Die class, 304, 305, 306–309
Doctor class, 420
DoubleVar class, 363
Frame class, 356, 368, 373
Image class, 439–440
IntVar class, 363
object class, 296
PhotoImage class, 357
Player class, 304, 305, 306–309
Producer class, 404, 405
Rational class, 309–311
SavingsAccount class, 315–317, 325, 326,

327–328, 340–341, 368
Screen class, 251
SharedCell class, 404–405, 406, 408
SleepyThread class, 401–402
StringVar class, 363
Student class. See Student class
Thread class, 399, 418

clear operation, 185, 188
client(s), 411

multiple. See multiple clients
ClientHandler class, 418–419, 424, 425–427
client/server programming, 395–428

clients, 411
day/time client script, 412–414
day/time server script, 414–416
history, 396–397
IP addresses, 409–411
multi-client chat room case study, 423–427
multiple concurrent clients, 418–419
ports, 411
producer/consumer relationship, 402–408
servers, 411
setting up conversations for others, 420–422
sockets, 412–414
synchronization, 403–408

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[458]

threads, 397–402
two-way chat script, 416–418

clone method, 271, 279
close method, 142, 146, 416
COBOL (Common Business Oriented

Language), 17
coding. See implementation phase
color(s)

GUI-based programs, 373
random, drawing with, 257–259
RGB system, 256–257

Color attribute, Turtle graphics, 249
color palettes, 269
Colossus, 15–16
columnconfigure method, 378
command buttons, 352, 358–360
command prompts, running scripts, 68–69
Common Business Oriented Language

(COBOL), 17
comparison methods, 312–313
compilers, 17
complexity, hiding of, by functions, 203–204
components, organizing with nested frames,

380–381
compound Boolean expressions, 97–99
compression, lossless and lossy, 269
Compute button, 352, 353, 354
computeInterest method, 315, 318
computer(s)

electronic, first, 15–16
mainframe, 16
mechanical, 11–15
personal, 19–21

computer systems. See also hardware; software
history, 10–23
structure, 6–10

computing agents, 3
concatenation, strings, 50
concatenation operator (+), 50, 162, 163

object identity and structural equivalence, 171
concurrent processing, 19
condition(s), 91
Condition class, 406–407
conditional iteration, 102–109. See also while

loops

connect method, 413
constants, symbolic, 51
constructors, 252
Consumer class, 404, 405
container object, 363
context switches, 399
continuation condition, 102
continuous ranges of values, 267
Control Program for Microcomputers (CP/M), 21
control statements, 75–115

conditional iteration. See while loops
definite iteration. See for loops
formatting text for output, 83–86
selection, 91–100

controller, 354
convert function, 189
coordinate systems, 248

screen, 270
copying images, 279
correct programs, 46
costs

maintenance, 42
object-oriented programming, 341–343
recursion, 216–218
repairing mistakes, 41–42

count method, 138
count variable, 105
countBytes function, 223
count-controlled loops

conditional iteration, 104–105
definite iteration, 77–79

countFiles function, 223
CP/M (Control Program for Microcomputers), 21
CPU. See central processing unit (CPU)
craps game case study, 303–309
CRTs (cathode ray tubes), 19
customer request phase, 40, 41. See also software
development

D
data, 4
data encapsulation, 331

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [459]

data encryption, 126–129
data modeling, rational numbers, 309–312
data sequences, traversing contents, 80–81
data structure, 122
data types, 47–48

numeric, 54–55
day/time client script, 412–414
day/time server script, 414–416
_deal method, 361
Dealer object, 335–340
decimal notation, 55
decimal number system, 129, 130

converting binary to decimal, 131–132,
133–134

converting decimal to binary, 132–133
Deck class, 321, 323–324
decode function, 413
decrypt script, 129
decryption, 128
default arguments, namespace, 230–232
defining

classes, rules of thumb, 302
functions. See function definitions
methods, 298
recursive functions, 211–212
variables, 51

defining the variable, 51
definite iteration, 76–83. See also for loops

augmented assignment operations, 79–80
count-controlled loops, 77–79
counting down, 82–83
executing statements a given number of

times, 76–77
off-by-one error, 80
specifying steps in range, 81–82
traversing contents of data sequences, 80–81

deposit method, 315
_deposit method, 328
design errors, 46
design phase, 40, 41. See also software development
detectEdges function, 281–282
dictionaries, 159, 183–190

accessing values, 185
adding keys, 184
finding mode of a list of values, 189–190

hexadecimal system, 188–189
literals, 183–184
operations, 187–188
removing keys, 186
replacing values, 185
traversing, 186–188

Die class, 304, 305, 306–309
digitizing images, 267, 268
discrete values, 267
display screens, bit-mapped, 20
displaying images, 357–358
distributed systems, 396–397
__div__ method, 311
division of labor, support by functions, 205
division operator (/), 58, 99
docstrings, 52

classes, 298
Doctor class, 420
doctor program, 191–195

design, 209–210
dots per inch (DPI), 282
double quotation mark character (\”), 50
DoubleVar class, 363
Down attribute, Turtle graphics, 249
down method, 250
draw method, 271, 272
drawing with random colors, 257–259
drawLine function, 265, 266
drawPolygon function, 254
drawSquare function, 251
Dynabook, 20

E
Eckert, J. Presper, 15
edge detection, 281–282
Electronic Numerical Integrator and Calculator

(ENIAC), 15, 16
elements, lists, 160
ellipsis (...), 26
empty strings, 49
encryption, 128
END constant, 384

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[460]

end_fill method, 250
end-of-line comments, 53
endswith method, 138
Engelbart, Douglas, 19, 20
ENIAC (Electronic Numerical Integrator and

Calculator), 15, 16
Enigma code, 16
<Enter> event, 387
entries

justifying, 375
sizing, 374–375

entry fields, 352
text input and output, 363–365

Entry object, 363
__eq__ method, 313, 314
equal sign (=)

assignment operator (=), 97, 98, 99, 171
equals (equality) operator (==), 92, 162, 163,

312, 313
greater than or equal operator (>=), 92, 99,

163, 312, 313
less than or equal operator (<=), 92, 163,

312, 313
not equals operator (!=), 92, 99, 163, 312, 313

equals (equality) operator (==), 92, 162, 163,
312, 313

error(s)
costs of repairing mistakes, 41–42
design, 46
logic, 46, 80
off-by-one, 80
semantic, 59

error messages, syntax errors, 31–32
escape sequences, 50
Ethernet, 21
Euclid, 12
event(s), 353

responding to, 358–360
event-driven programming, 353–355
event-driven software systems, 353
exclamation mark (!), not equals operator (!=), 92,

99, 163, 312, 313
executing actions, 3
exists function, 147
expansion weight, 378

exponentiation operator (**), 58, 99
expressions, 58–62

arithmetic, 58–60
mixed-mode arithmetic, 60–61
spacing within, 60
type conversions, 61–62

extend method, 165, 166, 167
extensions, 124
external memory, 8

F
False Boolean value, 91, 92
False value, 98–99

object identity and structural equivalence, 171
field width, 84
file formats

images, 268–269
text files, 141

file object, 142
file systems, 9

information gathering from, case study,
219–227

filename extensions, 124
filesys.py program, 220–227
fillcolor method, 250
filter function, 236
filtering, 236
find method, 138, 167
findFiles function, 223–224
first-class data objects, functions as, 233–234
Flesch, Rudolf, 148
Flesch Index, 148
Flesch-Kincaid Grade level Formula, 149
float data type, 48, 55
float function, 27, 28, 61, 62
floating-point numbers, 55
Font object, 374
for loops, 144, 162, 163, 164

count control, 77–79
dictionaries, 186, 187
executing a given number of times, 76
finding median of a set of numbers, 172
range function, 80–83

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [461]

for method, 145
form fillers, 363
format operator (%), 85
format strings, 85
FORTRAN (Formula Translation Language), 17
forward method, 250
forward slash (/)

__div__ method, 311
quotient operator (//), 58

fractal objects, 262
recursive patterns in fractals case study,

262–266
frame(s), nested, 380–381
Frame class, 356, 368, 373
function(s), 64, 201–242. See also functions listed

by name
abstraction mechanism, 202–205
anonymous, 237
calling, 64–65
elimination of redundancy, 202–203
hiding of complexity, 203–204
higher-order. See higher-order functions
modules, 63
namespace. See namespace
recursive. See recursive functions
support for division of labor, 205
support of general methods with systematic

variations, 204
top-down design. See top-down design

function definitions, 175–178
arguments, 176
Boolean functions, 177
main functions, 178
parameters, 176
return statement, 177
syntax, 175–176

functional programming, 342
functions listed by name

acceptCommand function, 222
blackAndWhite function, 276–277
blur function, 280–281
bytes function, 416
cCurve function, 266
changePerson function, 193

chdir function, 147
convert function, 189
countBytes function, 223
countFiles function, 223
decode function, 413
detectEdges function, 281–282
drawLine function, 265, 266
drawPolygon function, 254
drawSquare function, 251
exists function, 147
filter function, 236
findFiles function, 223–224
float function, 27, 28, 61, 62
getcwd function, 147
gethostbyname function, 410
gethostname function, 410
getsize function, 147
grayscale function, 278
help function, 66, 67
input function, 26–27, 28
int function, 27, 28, 61–62, 144
isdir function, 147
isfile function, 147
lambda function, 237–238
len function, 122, 161, 163
list function, 161, 163, 187, 188
main function. See main function
map function, 234–236
max function, 94, 189
min function, 94
mkdir function, 147
nounPhrase function, 183
odd function, 177
open function, 142
playManyGames function, 306
playOneGame function, 306
print function. See print function
randint function, 107–108
randomWalk function, 255–256
range function, 80–83, 161
reduce function, 237
rename function, 147
reply function, 192–193, 209–210
repToInt function, 231

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[462]

rmdir function, 147
round function, 62
runCommand function, 222, 238–239
sentence function, 183
shrink function, 283–284
socket function, 413
square function, 175
str function, 61
sum function, 212–213

G
garbage collection, 301
Gates, Bill, 21
__ge__ method, 313
general methods, support by functions, 204
generating sentences case study, 179–183
geometry method, 375–376
get method, 185, 363
_get method, 388
get(pin) method, 318
get operation, 187
getAverage method, 296
getBalance method, 315
_getBalance method, 328
getcwd function, 147
getData method, 406
getHeight method, 271
getHighScore method, 296
gethostbyname function, 410
gethostname function, 410
getName method, 296, 315, 399, 400
getPin method, 315
getPixel method, 271, 272
getPoints method, 338
getScore method, 296, 298
getsize function, 147
getValue method, 305
getWidth method, 271
GIF (Graphics Interchange Format), 268
goto method, 250
grammar rules, 179

graphical user interfaces (GUIs), 9, 349–390
colors, 373
event-driven programming, 353–355
grid attributes, 376–379
GUI-based programs. See GUI-based

programs
keyboard events, 388–389
mouse events, 387–388
multi-line text widgets, 381–383
organizing components using nested frames,

380–381
scrolling list boxes, 384–387
sizing and justifying an entry, 374–375
sizing the main window, 375–376
terminal-based programs, 350–351
text attributes, 373–374

graphics, 238
Turtle. See Turtle graphics
vector, 254

Graphics Interchange Format (GIF), 268
grayscale, 278

converting images to, 278–279
grayscale function, 278
greater than operator (>), 92, 99, 163, 312, 313
greater than or equal operator (>=), 92, 99, 163,

312, 313
greeting method, 420
grid(s), loop pattern for traversing, 274–275
grid attributes, 376–379
grid method, 357, 361
__gt__ method, 313
GUI(s). See graphical user interfaces (GUIs)
GUI-based ATM case study, 367–372
GUI-based programs, 351–353, 355–366

case study of, 367–372
command buttons, 358–360
displaying images, 357–358
entry fields for text input and output,

363–365
labels, 357
pop-up dialog boxes, 365–366
viewing images, 360–363
windows, 356–357

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [463]

H
hardware, 6
has_key method, 185, 188
Heading attribute, Turtle graphics, 249
heading method, 250
help function, 66, 67
hexadecimal number system, 129, 130, 135,

188–189
hideturtle method, 250
higher-order functions, 233–239

creating anonymous functions with lambda,
237–238

filtering, 236
functions as first-class data objects, 233–234
jump tables, 238–239
mapping, 234–236
reducing, 237

high-level programming languages, 9, 10
hit method, 338
Hollereith, Herman, 14
home method, 250
Homebrew Computer Club, 20
Hopper, Grace Murray, 17
horizontal tab character (\t), 50
HTML (Hypertext Markup Language), 23
HTTP (Hypertext Transfer Protocol), 23
HyperCard, 22
hypermedia, 22
Hypertext Markup Language (HTML), 23
Hypertext Transfer Protocol (HTTP), 23

I
IBM (International Business Machines)

founding, 14
Microsoft’s early partnership with, 21

IBM PC, 21
IDLE

defining functions, 176
description, 23–24
IDEs extending capabilities, 435
launching, 23, 435

line breaks, 60
running, 260–261
running scripts from within, 28, 29
threads, 397
uses, 435

if statements, 94–95
multi-way, 95–96

if-else statements, 92–94
image(s)

displaying, 357–358
processing. See image processing; image-

processing library
viewing, 360–363

Image class, 439–440
image processing, 267–284

analog and digital information, 267–268
blurring images, 280–281
converting images to black and white,

276–278
converting images to grayscale, 278–279
copying images, 279
digitizing images, 268
edge detection, 281–282
file formats, 268–269
image properties, 270
image-manipulation operations, 269–270
images module, 270–274
loop pattern for traversing a grid, 274–275
reducing image size, 282–284
sampling images, 267, 268
tuples, 275–276

image-processing library
API, 439–440

images library, installing, 437
images module, 270–274, 439–440
immutable data structure, 122
imperative programming, 341
implementation phase, 40, 41. See also software

development
import statement, 182
importing resources, modules, 66
in operator, 162, 167

testing for substrings, 125
income tax calculator case study, 43–47
incremental software development, 40

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[464]

indefinite iteration, 76
index(es), 123

lists, 160
index method, 167
indirect recursion, 215
infinite loops, 102
infinite precision, 55
infinite recursion, 215–216
information gathering from a file system case study,

219–227
information processing, 2, 4–5

concurrent, 19
inheritance, 331
inheritance hierarchies, 332–333
__init__ method, 299, 321, 357, 358, 359, 360,

368, 369–370, 373, 421
initializing the variable, 51
input(s), 5

shell, 25
text, entry fields, 363–365

input function, 26–27, 28
input/output devices, 6
insert method, 165, 166, 167
installing

images library, 437
Python, 434

instance(s), 252
instance variables, 299–300
instantiation, 252–254
int data type, 48, 54
int function, 27, 28, 61–62, 144
integers, 54
integrated circuits, 18
integration phase, 40, 41
Intel 8080 processor, 20
interfaces. See also graphical user interfaces

(GUIs); user interfaces
classes, 251
image-processing library API, 439–440

internal memory, 7
International Business Machines. See IBM

(International Business Machines)
Internet, birth, 21
Internet host, 411

interpreters, 9, 17
operation, 29–30

IntVar class, 363
invertible matrices, 129
investment report case study, 87–90
IP addresses, 409–411
IP names, 409
IP numbers, 409
is operator, 171
isAlive method, 400
isalpha method, 138
isdigit method, 138
isdir function, 147
isdown method, 250
isfile function, 147
items, lists, 160
items method, 186
iterations, 76. See also for loops; while loops

conditional, 102–109. See also while loops
definite. See definite iteration; for loops
indefinite, 76

iterative software development, 40

J
Jacquard, Joseph, loom built by, 13, 14
Java, transition from Python to, 441
Jobs, Steve, 20
join method, 138
Joint Photographic Experts Group (JPEG) file

format, 268
JPEG (Joint Photographic Experts Group) file

format, 268
jump tables, 238–239
justifying entries, 375

K
Kay, Alan, 20
Kaypro, 21
key(s), 183

adding to dictionaries, 184
removing from dictionaries, 186

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [465]

keyboard events, 388–389
<KeyPress> event, 388
<KeyPress-key> event, 388
keypunch machines, 16
<KeyRelease> event, 388
<KeyRelease-key> event, 388
keyword arguments, namespace, 230–232

L
label(s), 352

GUI-based programs, 357
Label components, 361
LabelDemo, 357
lambda function, 237–238
__le__ method, 313
<Leave> event, 387
left angle bracket (<)

less than operator (<), 92, 163, 312, 313
less than or equal operator (<=), 92, 163,

312, 313
syntax, 25

left associative operations, 59
left method, 250
Leibnitz, Gottfried, 14
len function, 122, 161, 163, 187
len method, 324
length variable, 31
less than operator (<), 92, 163, 312, 313
less than or equal operator (<=), 92, 163, 312, 313
lifetime

namespace, 229–230
objects, 301

line breaks, IDLE, 60
linear loop structure, 274
LISP (List Processing), 17
list(s), 81, 159, 160–173

aliasing, 169–170
association, 183
basic operators, 160–163
examples, 160
finding median of a set of numbers, 172–173

finding the mode of a list of values, 189–190
indexes, 160
lists of lists, 160
literals, 161
mutability, 169–170
searching, 167
side effects, 169–170
sorting, 167

list boxes, scrolling, 384–387
list function, 161, 163, 187, 188
list methods, 165–167
List Processing (LISP), 17
listen method, 415
literals, 48

dictionaries, 183–184
lists, 161
string, 48–49

loaders, 8
local host, 411
locks, 406
logic errors, 46
logic errors, 80
logical conjunction operator (and), 97–98, 99
logical disjunction operator (or), 97, 98, 99
logical negation, 98
logical negation operator (not), 98, 99
logical operators, 97–99
lookup tables, 188
loop(s)

count-controlled, 77–79
counting down, 82–83
definite iteration. See definite iteration; for

loops
indefinite iteration, 76
infinite, 102
passes (iterations), 76

loop body, 76
loop control variables, 103
loop headers, 76
lossless compression, 269
lossy scheme, 269
lower method, 138
__lt__ method, 313
luminance, 278

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[466]

M
machine code, 8
Macintosh, first, 20
Macintosh MultiFinder, 396
magnetic storage media, 8
main function, 178, 181, 192, 222, 266, 278, 404

doctor program, 209
sentence-generator program, 207–208
text-analysis program, 206–207

main method, 357
main module, 66–67
mainframe computers, 16
mainloop method, 357
maintenance costs, 42
maintenance phase, 40, 41
map function, 234–236
mapping, 234–236
Mark I, 15
math module, 65–66
matrices, invertible, 129
Mauchly, John, 15
max function, 94, 189
McCarthy, John, 17, 19
median, 172

finding, 172–173
memory, 6

external (secondary), 8
random access (internal; primary), 7

Metcalfe, Bob, 21
method(s). See also methods listed by name

definitions, 298
general, support by functions, 204
polymorphic, 340
strings, 136–140
Turtle graphics, 249–251

methods listed by name
accept method, 416
acquire method, 407
__add__ method, 311
add(account) method, 318
append method, 165, 166, 167, 172–173
_area method, 366

begin_fill method, 250
bind method, 289, 387–388, 415
box.activate(index) method, 384
box.curselection method, 384
box.delete(index) method, 384
box.get(index) method, 384
box.see(index) method, 384
box.size method, 384
box.xview method, 384
box.yview method, 384
center method, 138
clone method, 271, 279
close method, 142, 146, 416
columnconfigure method, 378
computeInterest method, 315, 318
connect method, 413
count method, 138
_deal method, 361
_deposit method, 328
deposit method, 315
__div__ method, 311
down method, 250
draw method, 271, 272
end_fill method, 250
endswith method, 138
__eq__ method, 313, 314
extend method, 165, 166, 167
fillcolor method, 250
find method, 138, 167
forward method, 250
__ge__ method, 313
geometry method, 375–376
_get method, 388
get method, 185, 363
get(pin) method, 318
getAverage method, 296
_getBalance method, 328
getBalance method, 315
getData method, 406
getHeight method, 271
getHighScore method, 296
getName method, 296, 315, 399, 400
getPin method, 315

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [467]

getPixel method, 271, 272
getPoints method, 338
getScore method, 296, 298
getValue method, 305
getWidth method, 271
goto method, 250
greeting method, 420
grid method, 357, 361
__gt__ method, 313
has_key method, 185, 188
heading method, 250
hideturtle method, 250
hit method, 338
home method, 250
index method, 167
__init__ method, 299, 321, 357, 358, 359,

360, 368, 369–370, 373, 421
insert method, 165, 166, 167
isAlive method, 400
isalpha method, 138
isdigit method, 138
isdown method, 250
items method, 186
join method, 138
__le__ method, 313
left method, 250
__len__ method, 324
listen method, 415
lower method, 138
__lt__ method, 313
main method, 357
mainloop method, 357
for method, 145
__mod__ method, 311
__mul__ method, 311
__neq__ method, 313
_new method, 361
notify method, 407
notifyAll method, 407
open method, 146
pencolor method, 250, 256, 257–258
play method, 306
pop method, 165, 166–167, 186
position method, 250

_processAccount method, 328
_quit method, 328
read method, 143, 146
readline method, 144, 146
recv method, 413
release method, 406, 407
remove(pin) method, 318
replace method, 138
reply method, 420
resizable method, 376
right method, 250
rowconfigure method, 378
run method, 328, 397, 398, 399, 400, 419
save method, 271, 274, 319
send method, 416
set method, 363
setData method, 406
setheading method, 250
setName method, 399, 400
setPixel method, 271, 273
setScore method, 296
showturtle method, 250
_shuffle method, 361
sort method, 167
split method, 137, 138, 139–140,

145–146, 164
start method, 398, 399, 400
startswith method, 138
__str__ method, 300, 305, 315, 318,

321–322, 340
strip method, 138
__sub__ method, 311
_switch method, 359
up method, 250
upper method, 138
wait method, 406, 407
width method, 250
_withdraw method, 328
withdraw method, 315, 340
write method, 142, 146
yview method, 386

microcomputer chips, 20
Microsoft Disk Operating System (MS-DOS), 21
min function, 94

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[468]

minicomputers, 18–19
minus sign (-)

negation operator, 58, 99
sub method, 311

mixed-mode arithmetic, 60–61
mkdir function, 147
__mod__ method, 311
mode, finding the mode of a list of values, 189–190
mode string, 142
model, 327
model/view pattern, 327
model/view/controller (MVC) pattern, 354
module(s), 63

importing resources, 66
importing script as, 67
main module, 66–67

module variables, namespace, 228
modulus (%), 58, 99
Moore’s Law, 18, 19
mouse events, 387–388
MS-DOS (Microsoft Disk Operating System), 21
__mul__ method, 311
multi-client chat room case study, 423–427
multi-line text widgets, 381–383
multiple clients

chats among, 420–422
handling concurrently, 418–419
multi-client chat room case study, 423–427

multiplication operator (*), 58, 99
multiprocessing systems, 396
multi-way selection statements, 95–96
mutability, 163
mutator(s), 167–168, 300
mutator methods, 259
MVC (model/view/controller) pattern, 354

N
names, variables, 51
namespace, 227–232

default arguments, 230–232
lifetime, 229–230

method names, 228
module variables, 228
parameters, 228
scope, 228–229
temporary variables, 228

natural ordering, 167
negation operator (-), 58, 99
__neq__ method, 313
nested frames, 380–381
nested loop structure, 274–275
network(s), 6
networked systems, 396–397
Neumann, John von, 16
_new method, 361
newline character (\n), 49, 50
Newton, Isaac, 14, 110
NLS (oNLine System) Augment, 20
nondirective psychotherapy case study, 191–195
None value, 167, 168
not equals operator (!=), 92, 99, 163, 312, 313
not logical operator, 98, 99
notify method, 407
notifyAll method, 407
nounPhrase function, 183
number(s)

random, 107–108
rational, 309–312
writing to files, 142–143

number systems, 129–135
binary (base two), 129, 130
converting binary to decimal, 131–132,

133–134
converting decimal to binary, 132–133
decimal (base ten), 129, 130
hexadecimal, 129, 130, 135, 188–189
octal, 129, 130, 134–135
positional system for representing numbers,

130–131
numeric data types, 48, 54–55

floating-point numbers, 55
integers, 54

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [469]

O
object(s), 294

inheritance hierarchies, 332–333
input, 320
lifetime, 301
pickle for permanent storage, 319–320

object class, 296
object identity, 171
object-oriented languages, 294
object-oriented programming, 294

costs and benefits, 341–343
octal number system, 129, 130, 134–135
odd function, 177
off-by-one errors, 80
one-way selection statements, 94–95
oNLine System (NLS) Augment, 20
open function, 142
open method, 146
operating system.path module, 222
operating systems, 8–9

MS-DOS, 21
time-sharing, 19, 396

operator overloading, 312
optical storage media, 8, 21–22
or logical operator, 97, 98, 99
order of precedence, 92
os module, 222
Osborne, 21
output(s), 5

formatting text, 83–86
shell, 25
text, entry fields, 363–365

overloading arithmetic operators, 312

P
panes, 380
Papert, Seymour, 248
parallel computing, 397
parallel systems, 397

parameters
functions, 176
namespace, 228

parent(s), 220
parent classes, 296
parent components, 357
Pascal, Blaise, calculator built by, 12, 13–14
passes, 76. See also conditional iteration; definite

iteration; for loops; indefinite iteration;
iterations; while loops

paths, 220
pencolor method, 250, 256, 257–258
percent sign (%)

format operator (%), 85
__mod__ method, 311
remainder operator (modulus), 58, 99

personal computers, 19–21
PhotoImage class, 357
pickle module, 319–320
pickling, 319–320
pixels, 256
pixilation, 280
play method, 306
Player class, 304, 305, 306–309
Player object, 335–340
playing cards, 321–324
playing the game of craps case study, 303–309
playManyGames function, 306
playOneGame function, 306
plus sign (+)

__add__ method, 311
addition operator, 58, 99
concatenation operator, 50, 162, 163, 171

polymorphic methods, 340
polymorphism, 331
pop operation, 187
pop method, 165, 166–167, 186
ports, 6, 411
position method, 250
positional notation, 130–131
positional values, 130
precedence rules, 58–59

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[470]

<Prefix-Button-n> event, 387
primary memory, 7
print function, 25–26, 28, 162, 163

formatting text, 84
string literals, 49

problem decomposition, 206
problem instances, 204
procedural programming, 342
_processAccount method, 328
processors, 7. See also central processing unit

(CPU)
Producer class, 404, 405
producer/consumer relationship, 402–408
program(s), 6

correct, 46
format, 67
GUI-based. See GUI-based programs
structure, 67–68
terminal-based, 350–351

program comments, 52–53
docstrings, 52
end-of-line, 53

program libraries, 29
programming

event-driven, 353–355
functional, 342
imperative, 341
object-oriented. See object-oriented

programming
procedural, 342

programming languages, 6
assembly languages, 16–17
first, 16–18
high-level, 9, 10
strongly typed, 62

prototypes, 40, 88
pseudocode, 44
psychotherapy, nondirective, case study, 191–195
Python

installing, 434
invention, 23
overview, 23
transition to Java and C++, 441

Python Shell window, 24

Python Virtual Machine (PVM), 30
threads, 397

Python Web page, 433

Q
_quit method, 328
quotient operator (//), 58

R
_radiusEntry widget, 289
RAM (random access memory), 7
randint function, 107–108
random access memory (RAM), 7
random module, 107
random numbers, 107–108
randomWalk function, 255–256
range function, 161

for loop, 80–83
specifying steps in range, 81–82

Rational class, 309–311
rational numbers, 309–312

arithmetic, 311
operator overloading, 312

raw image files, 268
read method, 143, 146
readability, text analysis case study, 148–153
reading

numbers from a file, 145–146
text from a file, 143–144

readline method, 144, 146
ready queue, 398
recursion

indirect, 215
infinite, 215–216

recursive calls, 212
recursive definition, 214
recursive design, 211
recursive functions, 211–218

constructing using recursive definitions, 214
costs and benefits of recursion, 216–218

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [471]

defining, 211–212
infinite recursion, 215–216
tracing, 213

recursive patterns in fractals case study, 262–266
recursive steps, 211
recv method, 413
reduce function, 237
reducing, 237
reducing image size, 282–284
redundancy, elimination by functions, 202–203
release method, 406, 407
remainder operator (%), 58, 99
remove(pin) method, 318
rename function, 147
repetition statements. See conditional iteration;

definite iteration; for loops; indefinite
iteration; loop(s); while loops

replace method, 138
replacements dictionary, 192, 193
reply function, 192–193

doctor program, 209–210
reply method, 420
repToInt function, 231
resizable method, 376
resolution, 282–284
responsibility-driven design, 209
RestrictedSavingsAccount subclass,

333–335
return statement, 175, 177, 183
RGB system, 256–257
right angle bracket (>)

greater than operator (>), 92, 99, 163,
312, 313

greater than or equal operator (>=), 92, 99,
163, 312, 313

shell prompt (>>>), 24
syntax, 25

right associative operations, 59
right method, 250
rmdir function, 147
root directory, 220
root window, 375
Rossum, Guido van, 23
round function, 62
rowconfigure method, 378

row-major traversal, 275
run method, 328, 397, 398, 399, 400, 419
runCommand function, 222, 238–239
running scripts, 23–24

terminal command prompts, 68–69
run-time system, 9, 10
Russell, Stephen “Slug,” 17

S
sampling, 267, 268
save method, 271, 274, 319
saving, pickle for permanent storage of objects,

319–320
SavingsAccount class, 315–317, 325, 326,

327–328, 340–341, 368
scientific notation, 55
scope, namespace, 228–229
Screen class, 251
screen coordinate systems, 270
Screen object, 259–260
scripts, 28

importing as a module, 67
running, 23–24, 434–435
running from terminal command prompts,

68–69
scroll bars, 384
scrolling list boxes, 384–387
searching lists, 167
secondary memory, 8
selection statements, 91–100. See also if

statements; if-else statements
Boolean data type, 91
Boolean expressions. See Boolean expressions
logical operators, 98
multi-way, 95–96
one-way, 94–95
short-circuit evaluation, 99–100
testing, 100
two-way, 92–94

self parameter, 298
self._name instance variable, 299–300
self._scores instance variable, 299

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[472]

semantic errors, 59
semantics, 59
semiconductor storage media, 8
send method, 416
sentence function, 183
sentence generation case study, 179–183
sentence structure, recursion, 214–215
sentence-generator program, design, 207–209
sentinels, 102
servers, 411
set method, 363
setData method, 406
setheading method, 250
setName method, 399, 400
setPixel method, 271, 273
setScore method, 296
Shannon, Claude, 15
SharedCell class, 404–405, 406, 408
shell, 23

inputs, 25
outputs, 25
running code in, 23–25

shell prompt (>>>), 24
short-circuit evaluation, 99–100
_showOneCard instance variable, 338
showturtle method, 250
shrink function, 283–284
_shuffle method, 361
side effects, lists, 169–170
single quotation mark character (\’), 50
sizing

entries, 374–375
main window, 375–376
reducing image size, 282–284

Sleep, threads, 398
sleeping threads, 400–402
SleepyThread class, 401–402
slicing

substrings, 124–125, 165
time slicing, 398

Smalltalk, 20
sniffing software, 126
socket(s), 412–414
socket function, 413

socket module, 410, 412–414, 415
software, 6

applications, 9
operating systems, 8–9, 19, 396
system, 8

software development, 40–43
approximating square roots case study,

110–113
ATM case study, 325–331
costs, 41–42
generating sentences case study, 179–183
GUI-based ATM case study, 367–372
income tax calculator case study, 43–47
incremental and iterative nature of, 40
information gathering from a file system case

study, 219–227
investment report case study, 87–90
multi-client chat room case study, 423–427
nondirective psychotherapy case study,

191–195
playing the game of craps case study,

303–309
prototypes, 40
recursive patterns in fractals case study,

262–266
text analysis case study, 148–153
waterfall model, 40, 41

solid-state devices, 18
sort method, 167
sorting lists, 167
source code, 30
spacing expressions, 60
split method, 137, 138, 139–140, 145–146, 164
square brackets ([])

lists, 160
subscript operator, 123–124, 161, 164

square function, 175
square root approximation case study, 110–113
stack frames, 216
start method, 398, 399, 400
startswith method, 138
states, 163
step values, 82
stepwise refinement, 206

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [473]

storage media
magnetic, 8
optical, 8, 21–22
semiconductor, 8

str function, 61
__str__ method, 300, 305, 315, 318, 321–322, 340
string(s)

concatenation, 50
construction from numbers and other

strings, 62
empty, 49
format, 85
structure, 122
substrings. See substrings

string literals, 48–49
string methods, 136–140

list, 138
StringVar class, 363
strip method, 138
strongly typed programming languages, 62
structural equivalence, 171
structure charts, 206–207
Student class, 295–297

accessor methods, 300
init method, 299
lifetime of objects, 301
mutator method, 300

__sub__ method, 311
subclass(es), 296
subclass names

RestrictedSavingsAccount subclass,
333–335

subscript operator ([]), 123–124, 161, 164
substrings, 122

slicing, 124–125, 165
testing for, with in operator, 125

subtraction operator (-), 58, 99
sum function, 212–213
summations, 79
_switch method, 359
symbolic constants, 51
synchronization problems, 403–408
syntax, 25–26

angle brackets (<>), 25
function definitions, 175–176

syntax errors, 9
detecting and correcting, 31–32

system software, 8

T
tables, 183
tabular format, 83–86
targets, 164
temporary variables, namespace, 228
terminal command prompts

launching interactive sessions, 434
running scripts, 68–69

terminal-based interfaces, 9
terminal-based programs, 350–351
termination condition, 106
test suites, 46–47
testing

selection statements, 100
for substrings with in operator, 125

text
cipher, 128
entry fields for input and output, 363–365
formatting for output, 83–86
reading from a file, 143–144
writing to files, 142

text analysis case study, 148–153
text attributes, 373–374
text editors, 9, 10
text files, 141–147

accessing and manipulating multiple files and
directories on a disk, 146–147

format, 141
reading numbers from a file, 145–146
reading text from a file, 143–144
writing numbers to a file, 142–143
writing text to a file, 142

Text widgets
multi-line, 381–383

text-analysis programs
design, 206–207
doctor program, 209–210
problem decomposition, 206
sentence-generator program, 207–209

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX[474]

thread(s), 397–400
sleeping, 400–402

Thread class, 399, 418
threading module, 399
time slicing, 398
Time-out, threads, 398
time-sharing operating systems, 19, 396
title bar, 352
tkinter component, 355, 363, 373–374
tkinter library, 439
tkinter.messagebox component, 355
top-down design, 206–210

stepwise refinement, 206
text-analysis program, 206–207

tracing recursive functions, 213
transistors, 18
translators, 9, 10
traversing

dictionaries, 186–188
grids, loop pattern for, 274–275

true color system, 257
True value, 91, 92, 98–99

object identity and structural equivalence, 171
truth tables, 98–99
try-except statement, 320–321, 410–411
tuples, 173, 275–276
Turing, Alan, 15, 16
Turtle graphics, 248–261

colors, 256–257
coordinate system, 248
drawing tow-dimensional shapes, 254–255
drawing with random colors, 257–259
manipulating screen, 259–260
object attributes, 259
object instantiation, 252–254
operations, 249–251
overview, 248–249
random walk, 255–256
running IDLE, 260–261
setting up a cfg file, 260

turtle module, 252
two-way chat script, 416–418
two-way selection statements, 92–94
type conversion functions, 27, 61–62
type fonts, 373–374

U
UML (Unified Modeling Language) diagrams, 327
underscore (_), 51
Unicode set, 55
Unified Modeling Language (UML) diagrams, 327
up method, 250
upper method, 138
user interfaces, 9

GUIs. See graphical user interfaces (GUIs)
terminal-based, 9

V
values

accessing in dictionaries, 185
continuous range of, 267
discrete, 267
replacing in dictionaries, 184–185

variable(s), 27, 51–52
defining (initializing), 51
instance, 299–300
names, 51
purposes, 52

variable identifiers (variables), 27
variable references, 51–52
vector graphics, 254
viewing images, 360–363
virtual machines, 9
virtual reality, 22
vocabulary, 179

W
Wait, threads, 399
wait method, 406, 407
WANs (wide area networks), 21
waterfall model, 40, 41
Web browsers, 23
Web clients, 23
Web servers, 23
Weizenbaum, Joseph, 191

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX [475]

while loops, 102–109, 112, 164
break statements, 105–106
count control, 104–105
errors, 108
logic, 108
operation, 102–104
random numbers, 107–108
semantics, 102–103
structure, 102
testing, 108
True Boolean value, 105–106

while True loops, 105–106, 108, 112
wide area networks (WANs), 21
widgets, 351

text, multi-line, 381–383
Width attribute

Turtle graphics, 249
width method, 250
window(s)

GUI-based programs, 356–357
IDLE. See IDLE

window objects, 351
withdraw method, 315, 340
_withdraw method, 328
World Wide Web, 22–23
write method, 142, 146
writing

numbers to a file, 142–143
text to a file, 142

X
Xerox, 20

Y
yview method, 386

 Copyright 2011 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover
	Table of Contents
	Preface
	Why Python?
	Organization of the Book
	Special Features
	Supplemental Resources
	We Appreciate Your Feedback
	Acknowledgments
	Dedication

	CHAPTER 1: Introduction
	1.1: Two Fundamental Ideas of Computer Science: Algorithms and Information Processing
	1.2: The Structure of a Modern Computer System
	1.3: A Not-So-Brief History of Computing Systems
	1.4: Getting Started with Python Programming
	1.5: Detecting and Correcting Syntax Errors
	Suggestions for Further Reading��������������������������������������
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	CHAPTER 2: Software Development, Data Types, and Expressions
	2.1: The Software Development Process
	2.2: Case Study: Income Tax Calculator
	2.3: Strings, Assignment, and Comments
	2.4: Numeric Data Types and Character Sets
	2.5: Expressions
	2.6: Using Functions and Modules
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	CHAPTER 3: Control Statements
	3.1: Definite Iteration: The for Loop
	3.2: Formatting Text for Output
	3.3: Case Study: An Investment Report
	3.4: Selection: if and if-else Statements
	3.5: Conditional Iteration: The while Loop
	3.6: Case Study: Approximating Square Roots
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	CHAPTER 4: Strings and Text Files
	4.1: Accessing Characters and Substrings in Strings
	4.2: Data Encryption
	4.3: Strings and Number Systems
	4.4: String Methods
	4.5: Text Files
	4.6: Case Study: Text Analysis
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	CHAPTER 5: Lists and Dictionaries
	5.1: Lists
	5.2: Defining Simple Functions
	5.3: Case Study: Generating Sentences
	5.4: Dictionaries
	5.5: Case Study: Nondirective Psychotherapy
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	CHAPTER 6: Design with Functions
	6.1: Functions as Abstraction Mechanisms
	6.2: Problem Solving with Top-Down Design
	6.3: Design with Recursive Functions
	6.4: Case Study: Gathering Information from a File System
	6.5: Managing a Program’s Namespace
	6.6: Higher-Order Functions (Advanced Topic)
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	CHAPTER 7: Simple Graphics and Image Processing
	7.1: Simple Graphics
	7.2: Case Study: Recursive Patterns in Fractals
	7.3: Image Processing
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	CHAPTER 8: Design with Classes
	8.1: Getting Inside Objects and Classes
	8.2: Case Study: Playing the Game of Craps
	8.3: Data-Modeling Examples
	8.4: Case Study: An ATM
	8.5: Structuring Classes with Inheritance and Polymorphism
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	CHAPTER 9: Graphical User Interfaces
	9.1: The Behavior of Terminal-Based Programs and GUI-Based Programs
	9.2: Coding Simple GUI-Based Programs
	9.3: Case Study: A GUI-Based ATM
	9.4: Other Useful GUI Resources
	Summary��������������
	Review Questions�����������������������
	Projects���������������

	CHAPTER 10: MultiThreading, Networks, and Client/Server Programming
	10.1: Threads and Processes
	10.2: Networks, Clients, and Servers
	10.3: Case Study: A Multi-Client Chat Room
	Summary
	Review Questions
	Projects

	Appendix A: Python Resources
	A.1: Installing Python on Your Computer
	A.2: Using the Terminal Command Prompt,IDLE, and Other IDEs

	Appendix B: Installing the Images Library
	Appendix C: The API for Image Processing
	Appendix D: Transition from Python to Java and C++
	Glossary
	Index

