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PREFACE\n

This book is designed for use as an introductionto thestudy of electric

\nnetworks from the so-called pole and zero approach.The subject
\nmatter may be divided into four parts. (1) Chapters 1 through3 are

\nconcerned with definitions and with the formulation of equilibrium
\nequations. The first chapter contains a discussion of approximation as
\nit relates to networks, the relationship between the network abstrac\302\254

\ntion and the physical system. Here the reader is giventheopportunity
\nto plant his feet firmly on the ground before he becomesinvolved in

\nthe myriad details of analysis. The elementsare introduced,theirlaws

\nformulated, their combination into networks discussed. Writing of
\nequilibrium equations for networks is treated in Chapter 3.\n

(2) Chapters 4 through 8 have to do with the solutionofequilibrium
\nequations, integrodifferential equations in general, by both classical
\nand the Laplace transform method. Chapter 8 amplifies the relation\302\254

\nship between the time domain and the frequency domain.\n

These first eight chapters encompass topics classified under the
\nheading of transient analysis of electric circuits. In the remaining
\nchapters, this background is exploited in unifying concepts of transient
\nresponse and sinusoidal steady-state response by the use of the poles
\nand zeros of network functions.\n

(3) In Chapters 9 through 11,the readeris introduced to complex

\nfrequency, impedance functions, transfer functions, and polesandzeros.\n

(4) The remaining chapters are devoted to applications of the pole
\nand zero approach to network analysis. Chapters 12 and 13 relate to
\nreactive networks and include Foster\342\200\231s reactance theorem and filters

\nstudied from the image parameter point of view. Chapter 14 is an

\nintroduction to stagger-tuned amplifier-networks. In the last two

\nchapters, the representation of systems by block diagrams and the
\nstability of feedback systems are studied. References are given at the
\nend of each chapter for those interested in a more advancedor more
\ndetailed study.\n

The literature relating to most of the contents of the bookdates
\nback to the 1920\342\200\231s. It has not been until recent years, however, that
\nthe pole and zero approach has been widely taught in graduateschools
\nand extensively used by electrical engineers in industry in suchareas
\nas circuit design, electronic circuits, and automatic control. This pole
\nand zero approach is now finding its way into the undergraduate
\ncurriculum in many different areas of study and in many ways.\n

iii\n



iv\n PREFACE\n

The material of Network Analysis has been developed by using it in
\nthe form of classroom notes for a course for junior and seniorstudents

\nat the University of Utah, which has been offered since 1949.The

\nobjective of this course has been to provide background material for
\nthe study of such subjects as communications engineering, pulse
\ntechniques, power system analysis, and servomechanisms.\n

I \tam deeply indebted to my students at the University of Utah\342\200\224and

\nat Stanford University for some chapters\342\200\224whose questions and class\302\254

\nroom discussions have left many imprints on the book. Indebtedness
\nis also acknowledged to Dr. Glen Wade of Stanford University and
\nDr. Don A. Baker and Doran Baker of the University of.Utah for

\nreading parts of the manuscript and offering helpful suggestions, and
\nto Dean W. L. Everitt, editor of this series.\n

It was my good fortune to study network synthesisunderProfessor
\nDavid F. Tuttle, Jr., at Stanford University. In preparing this book,I
\nhave been influenced by his method of approach and his teachingtech\302\254

\nniques. I also acknowledge the friendly cooperation of the electrical
\nengineering staff at the University of Utah, particularly Professors
\nL. Dale Harris and Philip Weinberg.\n

M. E. Van Valkenburg\n

Urbana, Illinois\n
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CHAPTER 1\n

DEVELOPMENT OF THE CIRCUIT CONCEPT\n

1-1. Introduction\n

One of the methods of science is the continualbringingtogether
\nof a wide variety of facts to fit into a simple, understandabletheory
\nthat will account for as many observations as possible. The name
\nconceptual scheme has been used by the American chemist and univer\302\254

\nsity president James Conant for the theory or picture that results.*
\nPerhaps the most familiar conceptual scheme to students of science
\nand engineering is that of the atomic theory from which we take our

\npicture of the electron and of electric charge.Otherimportantcon\302\254

\nceptual schemes are conservation of energy and conservation of charge.\n

Although electricity and magnetism were recognized early in the
\nhistory of man\342\200\224the charging of amber by friction, the use of the
\nlodestone in navigation\342\200\224it was not until the nineteenth century that
\nsignificant progress was made in developing a conceptual scheme. The
\ndiscovery by Galvani and Volta about 1800 that electricity could be
\nproduced by chemical means greatly simplified experimentation.
\nImportant discoveries were madein a relatively short interval of time

\nafter Volta. In 1820, Oersted identified the magnetic field with cur\302\254

\nrent, and Ampere measured the force caused by the current. In 1831
\nFaraday, and independently Henry, discovered electric induction.
\nThese and other experiments were brought together to form a success\302\254

\nful conceptual scheme by the English physicist James Clerk Maxwell
\nin 1873. In Maxwell\342\200\231s equations, as the scheme has come to be known,
\nall electric and magnetic phenomena are explained in terms of fields
\nresulting from charge and current. The success of Maxwell\342\200\231s concep\302\254

\ntual scheme is evidenced by the persistent agreement of results deduced
\nfrom Maxwell\342\200\231s equations with observation for a period of over 100
\nyears.\n

In view of Maxwell\342\200\231s success, why do we now embark upon a study
\nof another conceptual scheme for the same phenomena, the electric cir\302\254

\ncuit? Equally important as a question, how are the two concepts
\nrelated? The answer to the first of our questions is the practicalutility
\nof the circuit concept. As a practical matter, we are not ofteninterested\n

* James B. Conant, Science and Common Sense (Yale University Press, New
\nHaven, 1951).\n

1\n



2\n DEVELOPMENT OF THE CIRCUIT CONCEPT\n Chap. 1\n

in fields so much as we are in voltagesandcurrents.The circuit concept

\nfavors analysis in terms of voltage and current from which other

\nquantities such as charge, fields, energy, power, etc. can be computed

\nif desired. The answer to our second question will require a longer
\nanswer and justification. Briefly, circuit concepts arise from the same
\nbasic experimental facts as do Maxwell\342\200\231s equations. However, the

\ncircuit involves approximations that are not included in the more gen\302\254

\neral concept of field theory. It is important that we understand the
\nnature of these approximations\342\200\224the limitations of circuit theory\342\200\224

\nbefore we develop our subject.\n
It will be helpful to definethe function of the circuit in terms of

\ntwo basic building blocks: charge and energy. We regard charge and
\nenergy as the least common denominators in describing electrical phe\302\254

\nnomena, the primitive quantities in terms of which we can buildour
\nconceptual scheme of the electric circuit. A physical circuit is a

sys\302\254

\ntem of interconnected apparatus. Here we use the word apparatus to
\ninclude sources of energy, connecting wires, components, loads, etc. A

\ncircuit functions to transfer and transform energy. Energy transfer is
\naccomplished by charge transfer. In the circuit, energy is transferred
\nfrom a point of supply (the source) to a point of transformationor con\302\254

\nversion called the load (or sink). In the process, the energymay be

\nstored.\n

1-2. Electric charge\n

Thales of Greece is credited with the discovery about 600b.c.that
\namber when briskly rubbed with a piece of silk or fur becomes\342\200\234elec\302\254

\ntrified\342\200\235 and is capable of attracting small pieces of thread. Thissame
\ntechnique

for producing electricity was used centuries later by Cou\302\254

\nlomb in France (and independently by Cavendish in England) in
\nestablishing the inverse square law of attraction of charged bodies.\n

Our present-day understanding of the nature of charge is basedon
\nthe conceptual scheme of the atomic theory. We picture the atomas
\ncomposed of a positively charged nucleus surrounded by negatively
\ncharged electrons. In the neutral atom, the total charge of the nucleus
\nis equal to the total charge of the electrons. When electronsare
\nremoved from a substance, that substance becomes positively charged.
\nA substance with an excess of electrons is negatively charged.\n

The basic unit of charge is the charge of the electron.Because this

\ncharge is so small, the practical unit of the coulombis used.The elec\302\254

\ntron has a charge of 1.601 X 10~19coulomb.\n

1-3. Electriccurrent\n

The phenomenon of transferring charge from one point in a circuit
\nto another is described by the term electric current. An electric current\n
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may be defined as the time rate of net motionof electric charge across

\na cross-sectional boundary. A random motion of electrons in a metal
\ndoes not constitute a current unless there is a net transferof charge with

\ntime.\n

In equation form, the current* is\n

(1-1)\n

/\n

6.24 x 1018electrons/sec
\nAmpere of current\n

Charge
-\n

Cross sectional area

\nPig. 1-1,\n

If the charge q is given in coulombsand the timet is measured in sec\302\254

\nonds, the current is measured in amperes (after the Frenchphysicist
\nAndr6 Ampere). Since the electron has a charge of 1.601X 10-19cou\302\254

\nlomb, it follows that a current of 1amperecorrespondsto the motion of

\n1/(1.601 X 10-19) = 6.25 X 1018electronspast any cross section of a

\nconducting path in 1 sec.\n

In terms of the atomic theory conceptual scheme,all substancesare
\npictured as made up of atoms. In a solid, someelectronsarerelatively

\nfree of the nucleus; the attractive
\nforces on these electrons are exceed\302\254

\ningly small. Such electrons are dis\302\254

\ntinguished by the name free elec\302\254

\ntrons. An electric current is the time
\nrate of flow of these free electrons,
\npassingfrom one atom to the next

\nas pictured in Fig. 1-1.\n

In some materials, there are many free electrons, so that large cur\302\254

\nrents are easily attained. Such materials are known as conductors.
\nMost metals and some liquids are good conductors. Materials with
\nrelatively few free electrons are known as insulators. Common insulat\302\254

\ning materials include glass, mica, plastics, etc. There is no sharp
\ndividing line between conductors and insulators. Conduction is pos\302\254

\nsible in other materials than solids. In vacuum tubes, for example,
\nelectrons pass through a partial vacuum from one metallic plate to
\nanother.\n

There is a common misconception that since some electric waves

\npropagate at approximately the speed of light the electronsin a con\302\254

\nductor travel with this same velocity. The actual mean velocityof
\nfree electron drift is but a few millimeters per second! (SeeProb.1-2
\nfor a numerical example.)\n

Motion of charge in a con\302\254

\nductor.\n

1-4. Sources of energy/ electric potential\n

Another conceptual scheme upon which our thinking is basedis the
\nconservation of energy. By our training in the methods of science,we

\n*
The symbol i for current is taken from the French word intensity.\n
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immediately become suspicious of any scheme that creates energy.
\nThe law of conservation of energy states that energy cannot becreated,
\nnor destroyed, but that it can be converted in form. Electricenergyis
\nenergy converted from some other form. There are relatively few ways

\nthat this can be accomplished. In order of economicimportance,some

\nof these methods are the following:\n

(1) Magnetic induction. The familiarrotatinggenerator invented by

\nFaraday in 1831 produces electric energy from mechanical
\nenergy of rotation. Often the mechanical energy is converted
\nfrom thermal energy by a turbine, and in turn, the thermal
\nenergy is converted from chemical energy by burning coal.\n

(2) Voltaic methods. Electric batteries produce electric energy by
\nconverting chemical energy.\n

(3) Electrostatic methods. The friction machines used by Coulomb
\nand other early experimenters produce electric energy by con\302\254

\nverting mechanical energy. This method is little used at pres\302\254

\nent, an exception being the Van de Graaff generator used to pro\302\254

\nduce x rays and used in research in nuclear physics.\n

(4) Other methods. Thermal electricity is produced by heat at a
\njunction of dissimilar metals such as bismuth and copper. Light
\nenergy can be converted into electric energy by photoelectric
\ndevices.\n

The function of each of these different sources of electricenergyis
\nthe same in terms of energy and charge. In one form of battery, for

\nexample, two metallic electrodes\342\200\224one of zinc and one of
copper\342\200\224are

\nimmersed in dilute sulfuric acid. The formation of zinc and copper\n

ions causes negative charge to accu\302\254

\nmulate at the electrodes. Energy is

\nsuppliedto the charge by the differ\302\254

\nence in the energy of ionization of zinc
\nand copper in the chemical reaction.

\nOnce the battery circuit is closed by
\nan external connection, as shown in

\nFig. 1-2, the chemical energy is ex\302\254

\npended as work for each unit of charge
\nin transporting the charge around the

\nexternalcircuit. The quantity \342\200\234

energy

\nper unit charge\" or identically, \342\200\234work

\nper unit charge,\" is given the name potential (or the morecommonly

\nused term voltage). In the form of an equation,\n

External circuit

\nCharge flow \\\n

-Terminal +Terminal\n Si\n
\302\261j\302\261\n

Device for supplying energy
\nto charged bodies by

\nconversion of chemical energy\n

Fig. 1-2. Representation of a
\nbattery showing electron flow.\n

V\n

W\n

Q\n

(1-2)\n
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If to is the work (or energy) in joules and q is the charge in coulombs,

\nthe potential v is in volts (after Alessandro Volta). The potentialof an

\nenergy source is sometimes described by the term electromotive force,

\nabbreviated emf, in the electrical literature. We willavoiddesignating
\npotential as a force because it is misleading and insteadusethe terms

\nvoltage or \342\200\230potential.\n

If a differential amount of charge dq is given a differentialincrease
\nin energy dw, the potential of the charge is increasedby the amount\n

(1-3)\n

If this potential is multiplied by the current, dq/dt as\n

dw dq _ dw _

\ndq Xdt
~

~dt
~

P\n (1-4)\n

the result is seen to be a time rate of change of energy, which is power
\np. Thus power is the product of potential and current,\n

p
= vi (1-5)\n

and energy is given by the integralequation\n

w =
j p dt = j vidt\n (1-6)\n

1-5. The relationship of field and circuit concepts\n

In developing the circuit conceptual scheme, we will followthe same
\nthree steps for each of three parameters. These steps are the following:\n

(1) The physical phenomenon. We will discuss in a quantitative
\nmanner an electrical phenomenon which is observed by experi\302\254

\nment. We will do this in terms of charge and energy.\n

(2) Field interpretation. We will next discuss the interpretation of
\nthe phenomenon in terms of a field quantity.\n

(3) Circuit interpretation. Finally, we will introduce a circuit param\302\254

\neter to relate voltage and current in placeofthe field relationship.\n

1 -6. The capacitance parameter\n

(1) \tPhysical phenomenon. The presence of charge on two spatially\n

separated substances\342\200\224for example, + + + + + + + +\n

those shown in Fig. 1-3\342\200\224causes
\t\n

an \342\200\234action at a distance\342\200\235 in the \t\n
form of a force betweenthe two sub- ^ i\n

stances. This phenomenon we re- Fig. 1-3. Chargedbodies,\n

gard as a property of nature, a basic\n

experimental fact. Coulomb found that this force was of such nature\n
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that \342\200\234likecharges repel\342\200\235 and \342\200\234unlike charges attract\342\200\235 and that the

\nforce varied according to the equation\n

F = 9*?2

\n4irer2\n
(1-7)\n

In this equation, F is the force in newtonsdirectedfrom point charge

\nto point charge, r is the separation of the point chargesin meters,

\ne is the permittivity, having the free-space value of 8.854 X 10-12farad
\nper meter in the mks system, and 91 and <72 are the charges measured

\nin coulombs. It should be understood that this equation applies
\nstrictly to point charges only. However, the equation may be applied
\nto any geometry of known charge distribution by vectorially addingall
\nforces.\n

(2) \tField interpretation. This phenomenon can be described in terms
\nof a force on a unit charge placed between the two chargedbodies.
\nThis force per unit charge, a vector quantity since force is a vector
\nquantity, is called an electric field of value\n

F\n
E = -

\nQ\n

(1-8)\n

+ + + + + + + + + +\n

As a conceptual aid, this field may be represented by linesdrawn in

\nthe direction of the force that would be exerted on the unit positive\n

exploring charge at each point. Such
\nlines are illustrated in Fig. 1-4. These
\nlines are conceptual aids: they should

\nnot be thought of as actually being pres\302\254

\nent. Using Eqs. 1-7-and 1-8, the electric
\nfield may be evaluated for a particular
\nproblem.\n

(3) \tCircuit interpretation. The work necessary to move a charge
\nfrom one plate to the other of Fig. 1-4 may be foundfromthe equation\n

Fig. 1-4. Electric field lines or
\n\342\200\234linesof force.\342\200\235\n

W\n =
J F cos 6 dr\n (1-9)\n

where dr is an increment of distance between the plates and 6 is the

\nangle between the force and the direction of movementdr. An expres\302\254

\nsion for the force has been given by Coulomb\342\200\231s law, Eq. 1-7, which

\nmay be substituted into the equation above to give\n

w =

j w2
cos 0dr (1\"10)\n

We are more interested in the quantity work per unit charge,which is

\nthe voltage between the plates. When <71
= \342\200\224

<71
=

<7 (equal but oppo-\n
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site charges on the plates), the expression for potential becomes\n

w ( f cos 6 , \\ 11\\\n
V =

l
=

\\-J wdr)\302\253
<x-u>\n

The integral of this equation can be evaluated forsimplegeometry,or
\nin any case can be measured by measuring q and v. For any fixed

\ngeometry, the integral is a constantwhich is given the name elastance,
\nsymbolized by the letter S. With this

definition,\n

v = Sq (1-12)\n

The reciprocal of S is the capacitance,which is represented by the

\nletter C. Equation 1-12 may be written\n

q
= Cv\n (1-13)\n

in terms of capacitance. In these equations, if q is measuredin cou\302\254

\nlombs and v in volts, then the unit ofCisthefarad (in honor of Michael

\nFaraday), and the unit for S bearsthe colorful name daraf (farad

\nspelled backwards). The quantity C (or the quantityS) which char\302\254

\nacterizes the system under study and permits the simplerelationship
\nbetween v and q to be written is known as a circuitparameter,the
\ncapacitance of a system.*\n

To reach our objective, a relationship betweenvoltageandcurrent
\nin a capacitive system, there remains the task of studying the relation\302\254

\nship of charge and current given by the equation\n

dq
\n1 ~

dt\n
(1-14)\n

If there is an initial charge on a system, q0 and the charge increases

\nlinearly with time, the charge at any time may be written\n

q
= q0 + kt\n (1-15)\n

The current is found by differentiating the charge with respect to

\ntime, giving the value\n

* -
af

-k <M6>\n

Thus we see that the current in the systemis independentof initial

\ncharge on that system. In going the other direction,computingcharge,\n

* It should be noted that the circuitparameterdescribed by this equation holds

\nonly for the case of two charged bodies with equal and opposite charges. The

\ncapacitanceconcept can be extended, however, to the case of several conductors
\nwith any charge distribution. For example, see Fowler, Introduction to Electric

\nTheory (Addison-Wesley Publishing Co., Cambridge, 1953),pp. 73 ff.\n
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given the current, we rearrange Eq. 1-14 as\n

dq
\342\200\224idt\n (1-17)\n

which can be integrated as\n

to give\n (1-18)\n

The total charge on the systemofplatesis seen to be equal to the sum
\nof the initial charge and the charge deposited by the current.\n

Returning once more to the relationship, q \342\200\224
Cv, current and volt\302\254

\nage are related by the equation\n

dq\n

dt\n
(1-19)\n

If the capacitance C does not vary with time (orwith charge), then\n

(1-20)\n

If, however, C is not constant but variesasa function of time, the cur\302\254

\nrent must be found from the general relationship\n

\342\200\242d / v-y \\ {ft) . dC\n
l =

dt ^ = C^ + V\n

dt\n dt\n
(1-21)\n

Similarly, starting with the equation v =
Sq, we find that\n

t; = S\n

/\n

i dt\n i dt\n (1-22)\n

Equations 1-19 and 1-22 relate the voltage and current in the capacitive

\nsystem through the circuit parameter C.\n

Example 1\n

The sketch of Fig. 1-5 (a) shows two plates, one of which is driven

\nby a constant-speed motor so that the capacitance between the two

\nplates varies according to the equation\n

C(t) = Co(l \342\200\224cos (at) (1-23)\n

If the battery potential remains constant at V volts, the current as a\n
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function of time may be found from Eq. 1-21as\n

i =
^ (Cv) =

V^-
=

o)C0V sin cot (1-24)\n

This time variation of current is shownin Fig.l-5(c).\n

Fig. 1-6. Variable capacitance system.\n

From the equation q = Cv, it is seen that the product Cv cannot

\nchange instantaneously, since an instantaneous change in q would
\nmean an infinite current, which is ruled out as a possibilityina phys\302\254

\nical system. In terms of the time
\ninterval At = U \342\200\224

ti, in which q or

\nCv changes a finite amount shown
\nin Fig. 1-6, At cannot be zero.\n

Instantaneous change of Cv shown

\nas curve 1 is thus ruled out. Typical
\nchanges of Cv or q which are per\302\254

\nmitted are shown as curves 2 and 3. Fig\342\200\2301_6, Change of Cv wlth time-

\nFrom another approach, the charge is given as\n

q(t)
\342\200\224

q0 +\n
/:*\n

dt\n (1-25)\n

by Eq. 1-18. The integral portion of this equationcannothave a finite

\nvalue in zero time with finite i; that is,\n

lim
\n<-\342\226\272o\n

i dt =
0,\n i 9^ oo\n

(1-26)\n

The integration process is illustrated in Fig. 1-7as the summationof

\ninfinitesimal areas, i in height and dt in width. Theintervalfrom t = 0

\nto ti must be greater than zero for any area to be summed.\n
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These mathematical equations aid in visualizing the requirement
\nthat the charge in a capacitive system cannot increase or decrease
\nin zero time. However, either capacitance or voltage can change in\302\254

\nstantaneously so long as the pro\302\254

\nduct of the two quantities remains

\nconstant, as\n

C\\V\\
= C 2t>2\n (1-27)\n

Fig. 1-7. Integration of current.\n

where the subscripts 1 and 2 refer
\nto conditions existing at times a

\nvanishingly small interval apart (suchas before and after a switch is

\nclosed).\n

In most cases to be considered, the capacitance of a network does

\nnot change with time. Under this condition, the above discussion
\nsimplifies to the important conclusion that the voltage of a capacitive
\nsystem cannot change instantaneously.\n

1-7. The inductance parameter\n

(1) Physical phenomenon. Oersted made the important discovery
\nin 1820 that the force between two charged substances depended on
\nthe time rate of flow of charge (the current). In Oersted\342\200\231s experiment,

\nthe needle of a compass was deflected by the presenceof a current-

\ncarrying conductor, indicating that the effect was related to
mag\302\254

\nnetism. In the same year, Ampere measured the force causedby the

\ncurrent i and expressed the relationship in equation form. This mag\302\254

\nnetic effect'is an \342\200\234action at a distance\342\200\235 just as in the case of the force
\nbetween charged bodies. This \342\200\234action at a distance\342\200\235 is a basic observa\302\254

\ntional fact;!it is not deduced from other knowledge.\n
(2) Field interpretation.The phenomenon described above can be

\ninterpreted in terms of the force per unit magnetic pole at all points\n

(a)\n

Fig. 1-8. The magnetic field.\n

in space. Oersted discovered that this force was directed at right-

\nangles to the current-carrying conductor. In terms of the geometry
\nof Fig. l-8(a), Ampere described a magnetic field density B, the force\n
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per unit magnetic pole, of value\n

_ ni cos a dl

\n4n-r2\n
(1-28)\n

where n is the magnetic permeability, which is a functionofthemedium

\nin which the magnetic field exists, i is the currentinamperes,and other

\nquantities are defined on the figure. Figure 1-9(a) showsthecrosssec-\n

Pig. 1-9. Magnetic field and flux conventions.\n

tion of a current-carrying conductor. By Eq. 1-28,the magneticfield

\ndensity will be constant at a constant distance from the conductor.
\nContinuous lines with arrows may be drawn to indicate the direction
\nof B\342\200\224as a conceptual aid. These are magnetic field density linesor
\n\342\200\234linesof force.\342\200\235 For more complicated geometries than that shown in
\nFig. l-9(a), the position of the lines can be foundby integratingEq.
\n1-28 or by experimentally moving a \342\200\234point\342\200\235magnetic pole (if one

\nexisted) from place to placein space.A magnetic compass would give
\nan approximate measure of directions.\n

It is sometimes convenient to replacethe linesof magnetic field

\ndensity by lines of magnetic flux definedby the integralequation\n

$ =

j'B
cos 0 dS (1-29)\n

where 0 is the anglebetween the surface of integration and the field
\ndensity B. If the currents in each of N conductors, representedin
\nFig. 1-9(b), are in such a direction that the fluxesadd, then N<f> flux

\nlinkages* are said to exist. If, however, <f>i lines of flux link Ni con\302\254

\nductors, <f>2 lines link N2 conductors and so forth, the total numberof
\nflux linkages is found by algebraic summation as\n

n\n

*
= V N^i (1-30)\n

j=l\n

* For a discussion of some of the problems encountered in the use (and misuse)
\nof the concept of flux linkages, see Joseph Slepian,\342\200\234Linesof force in electric and

\nmagnetic fields,\342\200\235Am. J. Phys., 19, 87 (1951), and Keith McDonald,\342\200\234Topology

\nof steady current magnetic fields,\342\200\235Am. J. Phys.f 22, 586 (1954).\n
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Assuming that all lines link all conductors, Eq. 1-29may be modified
\nto give flux linkages, as\n

*
= N

J'
B cos 6 dS (1-31)\n

To Faraday goes credit for the next basic experimentaldiscovery.
\nFaraday experimented with two conducting circuits in spatial prox\302\254

\nimity. He found that a changing magnetic field producedby onecircuit

\ninduced a voltage in the other circuit. The changing magnetic field
\ncould be caused by (1) a conductor moving in space or (2)a current

\nchanging with time.\n

Faraday did not envision this method of inducingvoltagein terms

\nof \342\200\234action at a distance\342\200\235 but in terms of changes in flux linkages. A

\nconductor moving in a magnetic field (as in the case of a generator)

\nis thought of as \342\200\234cutting flux and hence reducing the flux linkages\342\200\235;

\nthe voltage induced in a stationary conductor (as in a transformer)is
\nthought of as caused by \342\200\234changing flux linkages\342\200\235 with time. Such

\npictures are valuable as conceptual aids so longas we do not attach

\nphysical significance to flux linkages whichare,afterall,only a means

\nfor accounting for action at a distance. Faraday\342\200\231s law is\n

v =
kfi O'32*\n

where k is a proportionalityconstant. In the inks system the units are

\nselectedto make k have unit value:when is in weber-turns, t is in

\nseconds,and k = 1, thenv is in volts.\n

(3) \tCircuit interpretation. To derive the circuit relationshipbetween
\nvoltage and current in the system described in (2), we begin with

\nFaraday\342\200\231s law,\n

(1-33)\n

or the equivalent integral form\n

^
=

/ v dt (1-34)\n

Note, incidentally, the similarityof this expression and the one for charge
\nin terms of current,\n

q = jidt (1-35)\n

We see that ^ is to voltage as charge is to current, by comparing the
\ntwo equations. Now flux linkages are related to the magneticfieldby

\nEq. 1-31, and in turn, the magnetic field density is relatedto the cur\302\254

\nrent by Ampere\342\200\231s law, Eq. 1-28. Making these substitutions, with the\n
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assumption that i can be removed from the integral,41we have\n

*\342\200\234[*/(/

\"

TJ M) AS]
f d-8\302\256)\n

The integral term, which may be evaluated mathematically forsimple
\ngeometries or may be found by measuring if/ and i, is defined as the
\ninductance parameter (or the coefficient of inductance). If if/ end i refer

\nto the same physical system, the parameter is defined as self-induct\302\254

\nance, symbolized by the letter L as\n

if/
\342\200\224Li (1-37)\n

However, if a current ii produces flux linkages if/2 in another circuit,
\nthe parameter is one of mutual inductance, and the letter symbolis
\nchanged to M as\n

*2
= Mtiii (1-38)\n

(Again, note the similarity of theseequationsand the relationship

\nq
= Cv.) Substituting Eq. 1-37 into Faraday\342\200\231s law gives an equation

\nrelating voltage and current in a magneticcircuit,\n

\302\273=
J-

(Li) (1-39)\n

(where M replaces L in appropriatecases).If the inductance does not

\nvary with time, Eq. 1-39 becomes\n

<w\302\260)\n

* If the magnetically coupled system is nonlinear,containing some saturating

\nmedium, we may say that the flux linkages in circuit A; is a function of the currents
\nin all other linked circuits,\n

= \342\200\242\342\200\242.fin)\n

By Eq. 1-32, the voltage in circuit k is givenby Faraday\342\200\231s law as\n

_ (ifa = dii , djne di2 , , d\\pk dik , , fyk din\n
Vk ~

dt
~

dii dt i\"
dii dt

^ ^
dik dt

i\" ' '' \342\200\234l\"
din dt\n

Each partial derivative term is evaluated with all other currentsheld constant.
\nThese terms may be defined as coefficients of inductance so that the voltage
\nbecomes\n

** = Mkl
Tt

+ Mki 1ft + \342\200\242\342\200\242\342\200\242+ Lkk
W

+ \342\200\242\342\200\242\342\200\242+ Mkn
It\n

where M is used for mutual inductance and L for self-inductance.When a system

\nis linear, this equation reduces to one which will later be written as Eq. 1-51.\n
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Equation 1-39 can be integrated to give\n

i =
^ j

v dt (1-41)\n

The quantity (1 /L) is sometimes symbolized by the uppercaseGreek

\nletter gamma. The henry (after the American scientist Joseph Henry)
\nis the mks unit for inductance.\n

In the case of the capacitivesystem, we found that charge and the

\nproduct Cv could not change instantaneously.We might be led to

\nsuspect that there is a similarrelationshipfor an inductive system in

\nview of the analogies that have been pointed out. Indeed thereis such

\na relationship, which may be found with the help ofEq. 1-34,in definite

\nintegral form.\n

* = to +
JQ

v dt (1-42)\n

From arguments given in the last section about capacitance,the inte\302\254

\ngral in this equation has zero value for t = 0. Thus,ina system altered

\ninstantaneously\342\200\224say by the closing of a switch\342\200\224the flux linkages

\nmust be the same before and after the systemis altered,but only for

\na very small interval of time. In terms of Eq. 1-42,\n

if/
= to = a constant (1-43)\n

which is to say that the flux linkages cannot be changed instanta\302\254

\nneously in a given system. This conclusion is described as the prin\302\254

\nciple of constant flux linkages. If we let the subscript 1referto the time

\njust before the system is altered and 2 referto the same system after

\nit is altered, our statements can be summarized by the equations\n

\\f/i
=

\\f/2 or L\\i\\ = LiU (1-44)\n

The principle of constant flux linkages is similar to the principle of
\nconservationof momentumin mechanics.The analogy is helpful since

\nit is sometimes easier to visualize changes in a mechanical system than
\nin an electric circuit. Newton\342\200\231s force law is\n

F = 4: Mv (1-45)\n
at\n

where F is force, M is mass, and v is velocity. The product Mv is

\nknown as momentum; the momentum of a system cannot changeinstan\302\254

\ntaneously. In a system such as a rocket wheremassislostasa function

\nof time, velocity must change in such a way that momentumremains
\nconstant. We see that there are a number of analogousconservation
\nlaws:\n
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(1) The conservation of charge:\n

qi = 92 and CiVi
= C%v2\n

(2) The conservation of flux linkages:\n
\342\200\224

\\j/2 and Liii =
L2i2\n

(3) The conservation of momentum:\n

Pi = pa and M\\Vi
= M2v2\n

When inductance remains constant, an important specializationof
\nthe principle of constant flux linkages results. In a fixed inductive sys\302\254

\ntem, the current cannot change instantaneously.\n

Example 2\n

In a certain inductive system, the current waveformshown in Fig.
\n1-10 exists. We are required to find the voltage that producesthis\n

1\n 1\t\n
1\n 2\n 3\n 4 t\n

Fig. 1-10. Current waveform.\n Fig. 1-11. Voltage waveform.\n

current waveform and the associated charge, both as functionsoftime.
\nWe will assume that L remains constant. The relationship v = L(di/dt)

\nindicates the voltage can be found by differentiationofthecurrentand

\nmultiplication by a constant. The result is shown in Fig. 1-11.Charge
\nmay be found by integration of the current to
\ngive the result shown in Fig. 1-12.\n

It is important that we be able to apply the a 1

\nconcept of inductance to several systems which

\nare magnetically coupled. A set of three coupled\n

Fig. 1-12. Charge waveform.\n

Fig. 1-13. Set of\n

magnetically coupled

\ncoils.\n

coils is shown in Fig. 1-13. To simplify the systemfor the moment,

\nlet i2 and U be zero and consider the effectofthe current ii. The cur\302\254

\nrent ii produces 1 flux linkages, found from Eq. 1-37to be\n

= Liii (t*2 = is =
0)\n (1-46)\n
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where L\\ is the self-inductance parameter (usually called just the
\ninductance). In each other circuit, i\\ will produce some number of

\nflux linkages by the proportionality of the mutual inductance param\302\254

\neter. For the particular system under study,\n

fa = Afsit'i and fa = Mziii (it =
iz

= 0) (1-47)\n

The order of subscripts for M requiressome further attention. From

\nthe two equations, it should be clear that the first subscriptrefersto
\nthe flux linkages and the second to the current. This particular con\302\254

\nvention is chosen to give a desired symmetry to the generalequations,
\nour next topic of study. A crutch for remembering this particularcon\302\254

\nvention is that the subscripts are in the order \342\200\234effect, cause,\342\200\235 if we

\nassume for our conceptual scheme that current produces flux.\n

In the general case, there will be sources or loadsconnectedto each

\nof the coils shown in Fig. 1-13 and no current will be zero. We will

\nassume for the time being that the currentdirections and winding

\nsenses of the coils are such that all flux linkages are additive, postponing
\nthe more general case for Chapter 2. The total flux linkages in coil 1

\nwill be made up of flux linkages produced by the current in coil1
plus

\nflux linkages produced by currents it and t3. In equation form,\n

= Liii + M\\%it + Muiz (1-48)\n

and similarly for the other two coils,\n

fa
\342\200\224Mtiii + h%it + Mtziz (1-49)\n

^3
= Mziii + Mztit -|- Lziz (1-50)\n

The symmetry discussed in the preceding paragraph is now apparent.
\nThe mutual inductance coefficients have subscripts designating row
\nand column in the above array of equations.\n

We are interested in flux linkages only as a stepping stone to volt\302\254

\nage. The voltage induced in each coil is given by Faraday\342\200\231s law as the

\ntime rate of change of flux linkages. If the inductance parametersare
\nconstant, these voltages are readily found by differentiation to be\n

r dx\\ , g- dx2 \342\226\240Ti\302\243\342\226\240dx3\n
Vl =

Lllu+Mlt-di +Ml,H\n (1-51)\n

1/ di\\ . j di2 * Ttjr dx3\n
= Uu

Si + Lt H + Mn
Ti\n

(1-52)\n

1/ dx 1 . dx2 . r dx3

\nv,
=

Mn-s
+ Ma-M+L,-s\n (1-53)\n

In Chapters 2 and 3, we will consider the conditionsunderwhich some

\nterms in these equations will be negative.\n
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1-8. The resistance parameter\n

(1) Physical phenomenon. The passageofelectronsthrougha mate\302\254

\nrial is not accomplished without collisions of the electrons with other

\natomic particles. Moreover, these collisions are not elastic,andenergy

\nis lost in each collision. This loss in energy per unit chargeis inter\302\254

\npreted as a drop in potential across the material. Theamountof energy

\nlost by the electrons is related to the physicalpropertiesof a particular

\nsubstance.\n

(2) Field interpretation. The German physicist GeorgSimonOhm

\nfound experimentally that there is a relationship between the current
\nin a substance and the potential drop. In terms of the fieldconcept,
\nthe change in energy per unit of charge causes a changein the force

\nper unit charge\342\200\224or electric field. This effect may be interpreted in
\nterms of a field in the direction of current through the conductingsub\302\254

\nstance. Ohm\342\200\231sexperiment may be stated in terms of this fieldandthe
\ncurrent per unit cross-sectional area as\n

J = <tE (1-54)\n

where, in mks units, J is the current density in amperes per square
\nmeter, E is the field along the conducting substance in voltspermeter,

\nand <r is the conductivity of the substance, which is a constantforeach
\nparticular material.*\n

(3) Circuit interpretation. If the substance which carries the current
\nhas an idealized geometry, as that shown in Fig. l-14(b),it is possible\n

Fig. 1-14. Conductors illustrating Ohm\342\200\231slaw.\n

i\n

to reduce the field form of Ohm\342\200\231s law to relate current and voltage.'
\nIf the cross section of the conductor is uniform,the currentandcurrent
\ndensity are related by the equation\n

i = J J cos d dS = JS (1-55)\n

where S is the cross-sectionalarea. For the same simple geometry,

\nthe electric field is uniform and directed along the length of the wire;\n

*
Strictly speaking, Eq. 1-54 is a specialcasevalid only for isotropic substances.

\nSimilarly <r is independent of the magnitude of E only for linear substances.\n
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that is,\n

v = El\n

as a special case of the more general relationship\n

(1-56)\n

v =
j E cos 6 dl\n (1-57)\n

Substituting Eqs. 1-55 and 1-56 into the field form of Ohm\342\200\231s law,

\nEq. 1-54, gives\n

v =\n
(1-58)\n

The quantity (1/<tS), which is a constant for constant geometryof the

\nconductor, is given the name the resistance parameter\342\200\224or simply the

\nresistance, and is symbolized by the letter R. For geometries other

\nthan the simple one of Fig. 1-14(b), computation of the coefficient

\nrelating current and voltage for a substance will be more difficult.
\nHowever, measurement of current and voltage can establish the value
\nof the resistance parameter and by-pass the computation problem.
\nOhm\342\200\231slaw may be written\n

v = Ri (1-59)\n
or, in terms of charge,\n

\342\200\242- * i f1-60*\n

The equation v = Ri is sometimes written in the form\n

i = Gv (1-61)\n

where G = l/R is known as the conductance. In the mks system, the

\nunit for resistance is the ohm and for conductance is the mho.\n

As well known as Ohm\342\200\231s law is (school children are taught the law
\nand remember it by association with \342\200\234Vermont = Rhode

Island\342\200\235),

\nOhm was ridiculed by his fellow scientists when he first announced
\nhis law in 1826, and it was some 30 years beforehis ideaswere finally

\naccepted. We must remember, of course, that the concepts of current
\nand voltage were not well understood in his day, the first distinction
\nbetween the two quantities having been made by Ampere in 1820.
\nReading newspaper statements such as \342\200\234

10,000 volts passed through
\nhis body\342\200\235 can convince one that the distinction is not wellunderstood
\nby laity today.\n

1 -9. Approximation of a systemas a circuit\n

We have discussed the manner in which three electrical phenomena
\nobserved experimentally can be described in terms of circuit param-\n
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eters. A problem that we must eventually face in makinguse of the

\ncircuit concept is that of representing a physicalsystemin terms of

\nthese parameters. For example, can we draw a circuitthat will rep\302\254

\nresent an electric motor, a piezoelectric crystal, a coil of wire, a trans\302\254

\nmission line, or an antenna, to name but a few systems?\n

Suppose we examine some arbitrary physical system, looking for
\nportions of the system to be replaced by equivalent parameters. Pos\302\254

\nsibly the resistive effects would be most easily recognized. A part of

\nthe system made of material of high resistivity, with small cross-

\nsectional area and appreciable length, would be recognizedas equiv\302\254

\nalent to large resistance and could

\neasily be distinguished from another

\npart of the system of small resist\302\254

\nance. We have found that there is a
\ncapacitive effect between any two

\nparts of a system. If the two parts
\nconstitutea system capableof con\302\254

\ncentration of charge, producing a

\nhigh electric field\342\200\224say, large area

\nfor charge storage and small dis\302\254

\ntance from part to part\342\200\224the capaci\302\254

\ntance of that portion of the system
\nis large. Finally, an inductive effect is associated with every current-
\ncarrying conductor, and an effect of mutual inductance between every

\npair of conductors at least one of which is carrying current. If thecon\302\254

\nductors are located in space in such a way that the magnetic fields

\nreinforce each other, then the inductance,selfor mutual,of that por\302\254

\ntion of the system is large.\n
So much for large effects.What about smaller or secondary effects

\nthat can be recognized in much the same manner? Just how many

\neffects must be taken into account in representing a systemby equiv\302\254

\nalent parameters?\n

We can answer our questions only by asking another:just how good

\ndo we expect the results to be? The accuracy of our results will be

\ndetermined by how many separate electrical effects we can take into
\naccount by a parameter. We must stop somewhere. We must, at some
\npoint, make an approximation.\n

Approximation requires engineering judgment. An approximation

\nwhich is valid in one case will not be in another.In many practical

\ncases, the resistance and inductance of connecting wires are so small
\nthat they may be neglected. Likewise, in most cases of commercial
\ncapacitors, the inductive and resistive parameters may be ignored. Much
\nless frequently the resistance and capacitance of coils can be neglected.\n

Fig. 1-15. One form of equivalent
\ncircuit for (a) an end-excited antenna,
\nand (b) a piezoelectric crystal.\n
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In the discussions to follow in other chapters, we will assume that

\nwhen a schematic of a system is given, all significantparameters have

\nbeen taken into account. Engineering judgment has been exercisedby

\nthe individual who made up the problem. But when the student finally

\napplies the techniques of analysis to a problem that he makesup,
\nthese questions associated with approximation must be answered. It
\nis difficult to write answers to such questions in textbooks; experience
\nis usually the best teacher.\n

Approximation is not unique to circuitanalysisby any means. In

\nsolving problems by computing the electric and magneticfieldsfor all

\npositions in space, there will assuredly be approximations, either in
\nrepresenting the physical system by mathematical equations or in
\nsolving the equations. Approximation and analysis are bound together.
\nTo ignore the problem of approximation is to lack understandingofthe
\nresults of analysis.\n

In many cases, we do not start with an unknown system to be rep\302\254

\nresented by a circuit, but instead with commercial components in
\ncombination forming a circuit. A component labeled inductor, however,
\nwill not behave as a pure inductance. It will, under some circum\302\254

\nstances, exhibit capacitive and resistive effects. Such unwanted effects
\nare commonly distinguished by the name parasitic. The decision of
\nwhich effects must be taken into account involves the same engineering
\njudgment as discussed earlier. The parasitic effects can be ignored
\nonly as long as the approximation is useful.\n

In all cases we have assumed that the magneticand electricfields are

\nisolated and that there is no interaction between the two fields.If
\nthere is such an interaction, part of the energy is lost by radiation.

\nThis will be discussed in the next section.\n

1 -10. Other approximations in circuit representation\n

In arriving at equationsfor the circuitparameters, Eqs. 1-11, 1-36,

\nand 1-58, it was necessary to make simplifying approximations: (1)
\nthat the charge did not vary with dimensions, and (2) that the current

\nvaried with neither the length of the conductor nor the cross-sectional
\narea. If these assumptions do not hold, the values for the parameters
\nare different and difficult to compute.\n

To illustrate how current and chargemightvary with space, sup\302\254

\npose that the current is made to flow for but a brief interval of time,

\nand that this pulsed flow is repeated at a periodic rate, a very large

\nnumber of times each second. Under such conditions, the currentand

\nthe charge will not be uniform throughout the system. We can imagine

\nsome portions of the system with charge and otherportionswithout

\ncharge. This being the case, the general expressions must be usedin\n
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evaluating the capacitance, inductance, and resistance parameters.
\nThese new parameter values, computed or measured, will be different
\nfrom those found with uniform current and charge in the system.
\nMust the parameters of a system be computed for every different

\ncurrent?\n

The answer to this question is, again, a practicaloneof engineering

\njudgment. Certainly, there will be conditions requiring someeffective
\nvalue of the parameters\342\200\224computed for a particular time waveform\342\200\224

\nto be used. But in many cases, the approximation that parameter
\nvalues are equal to those found for nonvarying or static conditions
\ngives usable results This approximation is strictly valid only in the
\ncases in which the variation of current and charge isslow,theso-called

\nquasi-stationary state. We will assume that we are operating in this
\nstate in chapters to follow. We thus assume constant parametersfor
\nchanging variations of current and charge.\n

We further assume that the parametersareconstant with the varia\302\254

\ntion of the magnitude of charge and current. This is a goodapproxima\302\254

\ntion for most elements in their nominal operating range. A system

\ncomposed of such elements is said to be linear.We will assume that all

\nsystems to be considered (unless otherwisespecified)are linear.We

\nthereby exclude nonlinear elements and systems. Some systems con\302\254

\ntaining dielectrics change capacitance with the quantity of charge in
\nthe system. When iron is used in a magneticsystem,the flux produced

\nis not linearly related to current because of saturation. Such resistive
\nmaterials as the carbon filament in a lamp bulb changeresistanceas
\na function of magnitude of current. It should be noted, however, that
\nsome nonlinear systems can be considered linear under certain condi\302\254

\ntions. Vacuum tubes are nonlinear, but for certain analyses may be

\nconsidered linear over a restricted range of operation.\n
Besidesthe assumptionof linearity we will include the requirement

\nthat all elements in a system be bilateral. In a bilateralsystem,the
\nsame relationship between current and voltage exists for current flow\302\254

\ning in either direction. In contrast, a unilateral system has different
\nlaws relating current and voltage for the two possible directionsof
\ncurrent. Examples of unilateral elements are vacuum diodes, ger\302\254

\nmanium diodes, crystal detectors, selenium rectifiers, etc.\n

Many electric systems are physically distributed in space. A trans\302\254

\nmission line, for example, may extend for hundreds of miles. When a

\nsource of energy is connected to the transmission line,energyis trans\302\254

\nported at nearly the velocity of light. Because of this finitevelocity,
\nall electrical effects do not take place at the same instant oftime.This

\nbeing the case, the restrictions discussed earlier apply in the computa\302\254

\ntion of the circuit parameters. When a system is so concentratedin\n
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space that the assumption of simultaneous actions through that sys\302\254

\ntem is a good approximation, the system is said to be lumped.We will

\nconsider only lumped systems.\n
Our circuit approach to the approximationof a system has obscured

\nan effect usually described in terms of the interaction of electric and
\nmagnetic fields. As an approximation, we have assumed that the mag\302\254

\nnetic field is associated only with an inductive system and that the
\nelectric field is associated only with a capacitive system. Fields can\302\254

\nnot actually be so lumped. The consequence of interaction of the fields
\nis the radiation of electromagnetic energy. Open a switch in an induc\302\254

\ntive system, and the effects will be observed as a noisein nearby radio

\nreceivers. Similarly, the ignition spark of an automobile may affect
\nnearby television receivers. Under many conditions, however, the
\namount of energy lost by radiation is small, and as an approximation
\ncan be ignored. We will make this approximation.\n

The systems we shall study will thus be lumped, linear, and bilateral
\nand will have negligible radiation.\n

Resistive, capacitive, and inductive elements are identifiedas pas\302\254

\nsive elements. Sources of electric energy are identified as activeelements.
\nThe physical elements themselves are distinguished by different names
\nas resistors, inductors, and capacitors.\n

1-11. Energy and power\n

Energy and power are given in terms of voltage and currentby

\nEqs. 1-5 and 1-6, which are\n

p
\342\200\224vi and w \342\200\224

j vi dt\n

In an inductive system, energy has the value (see Prob. 1-8)\n

WL
= t Li* = i ^ joules (1-62)\n

and is spoken of as \342\200\234stored in the magnetic field.\342\200\235 In a capacitive

\nsystem, the energy is given by the relationship(see Prob. 1-9)\n

Wc =
\302\261Cv*

= joules (1-63)\n

which is spoken of as \342\200\234stored in the electric field.\342\200\235 Current in a resistor

\ncauses energy to be transformed into heat or light. The amount of

\nenergy is\n

WK
= R f t* dt joules (1-64)\n

The equivalence of this energy to mechanical energy was first demon\302\254

\nstrated by Joule. The inductor and capacitor are energystorageelements,
\nwhile the resistor is an energy sink.\n
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Energy is a scalar quantity, always positive. The sumoftheenergy

\nin a given system can be found by algebraic summation. The power
\nin a system is given in terms of energy by the relationship\n

P =
W

= Pr' +
Jt(Wl\342\200\230'

+ Wc>) (1_65)\n

where Pr' is the total powerofall resistive elements given as\n

n\n

Pr' =
d^jf

=
^

R,V (1-66)\n

3 = 1\n

and Wl is the total energy stored in all inductiveelements,\n

W.\n

m\n

! \342\200\224h
^

L/ij*\n

3 = 1\n

(1-67)\n

and Wc is the total energy stored in all capacitiveelements,\n

Wo'
= *

^
W (1-68)\n

3 = 1\n

where n, m, and p are the total number ofelementsofeachof the three

\nkinds.\n

FURTHER READING\n

The student interested in further reading on the subjectsof this

\nchapter should consult Elementary Electric-Circuit Theory (McGraw-
\nHill Book Co., New York, 1945) by Richard H. Frazier,pp. 17-41.
\nMore advanced treatments of these concepts are given in Electric
\nCircuits (John Wiley & Sons, Inc., New York, 1940) by the MIT
\nElectrical Engineering Staff, pp. 1-8, and in Linear TransientAnalysis
\n(John Wiley & Sons, Inc., New York, 1954) by Ernst Weber,pp. 1-14.
\nA discussion of physical systems in general is to be foundin Chaps.1
\nand 2 of Response of Physical Systems (John Wiley & Sons, Inc., New

\nYork, 1950) by John D. Trimmer. Students interested in further
\nstudy of electric and magnetic fields as basic concepts should read
\nThe Fundamentals of Electro-Magnetism (The Macmillan Company,
\nNew York, 1939) by Geoffrey Cullwick, starting on p. 1. Maxwell\342\200\231s

\noriginal writings are found in many libraries under the title, A Treatise

\non Electricity and Magnetism (Oxford Press, New York, 1892).\n

PROBLEMS\n

1-1. A solid copper sphere 10 cm in diameteris deprived of 101S elec\302\254

\ntrons by a charging scheme, (a) What is the chargeof the spherein\n
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the inductor? Answer: 0.23 watt, (h) At what rate is energybeing
\ndissipated as heat? (i) At what rate is the battery supplyingenergy?\n

1-16. In the circuit shown below, the capacitor is chargedtoa volt\302\254

\nage of 1 volt, and at t = 0 the switchK isclosed.The current in the cir\302\254

\ncuit is known to be of the form i(t) = e-\342\200\230amp, (t > 0). At a certain
\ntime the current has a value of 0.37 amp. (a) At what rate isthe voltage\n

,
\t\n

K\n

+LV-1V\n

cr c-it\n

Prob. 1-16.\n

across the capacitor changing? (b) What is the value of the charge on

\nthe capacitor? (c) What is the time rate of change of the product Cvl

\n(d) What is the voltage across the capacitor? Answer:0.37volt, (e)

\nHow much energy is stored in the electric field of the capacitor?(f)

\nWhat is the voltage across the resistor? (g) At what rate is energy

\nbeing taken from the electric field of the capacitor? Answer:0.137watt,
\n(h)

At what rate is energy being dissipated as heat?\n
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1-8. From the defining equation for energy, W =
/ vi dt show that,

\nfor the inductance, WL = \\Li% and WL
= ^2/L.\n

1-9. From the equation for energy in Prob.1-8,show that for the

\ncapacitance, Wc = ?Cv2and Wc
= ?Sq2.\n

1-10. Assume that the inductance parameteris defined as the con\302\254

\nstant relating stored energy and the current squared by the equation
\nWL

= ?Li2. Making use of the relationship p =
vi, show that for

\nconstant inductance the voltage across the inductoris vL
= L(di/dt).\n

1-11. Carry out a similar derivationto the one suggested in Prob.

\n1-10 starting with energy for a capacitive system, Wc
= ?Sq2 to show

\nthat for constant S,\n

vc
= Sq = S J i dt\n

1-12. Show that the following quantities all have the dimensionof

\ntime: (a) RC; (b) L/R] (c) y/LC.\n
1-13. Show that (a) R2Chas the dimension of inductance, (b)

\ny/L/C has the dimension of resistance, (c)L/R2hasthe dimension of

\ncapacitance.\n
1-14. The current in a 1-henryinductorfollows the variation shown

\nin the accompanying figure. The current increases from t = 0 at the
\nrate of 1 amp/sec (for several seconds, at least). Find: (a) the flux

\nlinkages in the system after 1 sec, (b) the time rate of change of flux\n

linkages in the system after 2 sec, (c) the quantity of chargehaving

\npassed through the inductor after 1 sec. Answer: (a) 1 weber-turn,
\n(b) 1 weber-turn/sec, (c) 0.5 coulomb.\n

1-16. In the circuit shownabove,theswitch K is closed at t = 0 (the
\nreference time). The current flowing in the circuit is givenby the equa\302\254

\ntion i(t)
= (1

\342\200\224
e~l) amp, t > 0. At a certain time thecurrenthas a

\nvalue of 0.63 amp. (a) At what rate is thecurrentchanging? (b) What

\nis the value of the total flux linkages? (c) What is the rate of change of
\nflux linkages? (d) What is the voltage across the inductor? Answer:
\n0.37 volt, (e) How much energy is stored in the magneticfield of the

\ninductor? Answer: 0.20 joule, (f) What is the voltageacrossthe resis\302\254

\ntor? (g) At what rate is energy being stored in the magneticfield of\n
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The photoelectric cell and the pentode vacuum tube amplifier are
\nexamples of practical generators that can be approximated as ideal
\ncurrent sources with series or parallel passive elements. The current
\nsource is also represented by the symbol of a circle but with an asso\302\254

\nciated arrow rather than polarity markings indicating the positive
\ndirection of current flow as shown in Fig. 2-1 (c).\n

For both sources, the associated symbol of a lowercase letterv or i

\ninfers a time-varying source, while the upper caseletter V or / is used

\nto denote a time-invariant source. The approximate time variation of
\noutput is sometimes sketched within the circle. For example, the sym\302\254

\nbol ~ placed in the circle indicates a source of sinusoidalvoltage or

\ncurrent.\n

2-2. Current and voltage conventions\n

A voltage source causescurrentto flow within the source in the direc\302\254

\ntion from the negative to the positive terminal\342\200\224or out of the positive
\nterminal and into the negative terminal. Thisparticularconvention

\nfollows a decision made by Benjamin Franklin in 1752. Franklin\342\200\231s

\nchoice was made before electricity was identified with the electron,
\nbefore the electron or the nature of charge were known. Actually,
\nelectrons flow from the negative terminal to the positive terminal,
\nwhich is in the opposite direction to that established by Franklin.
\nTo distinguish the two conventions, the flow of electrons is termed
\nelectron current and current assumed positive in the direction of Frank\302\254

\nlin\342\200\231sconvention is called conventional current (or simply current, since
\nthis is the current we will use).\n

If the negativeterminalis used as a reference in measuring the poten\302\254

\ntial of the positive terminal of a potential source, that voltageis con\302\254

\nsidered positive and is spoken of as a voltage rise. Conversely,if the

\npositive terminal is considered to be the reference in measuringthe

\npotential of the negative terminal of the voltage source, the voltage
\nis considered negative and is spoken of as a voltagedrop.\n

Voltage rise\n

0 a\n

la)\n

Voltage drop\n

lb)\n

Fig. 2-2. Sign convention for voltage
\nsources.\n

b e\n

a d\n

Fig. 2-3. Direction of current and

\nvoltage polarities.\n

In terms of the simple circuit of Fig. 2-3,the voltagesource causes

\ncurrent to flow from a to 6 and around the circuita-b-c-d-a.Current

\nflowing in the passive resistive element is identified with energylossand\n



CHAPTER 2\n

CONVENTIONS FOR DESCRIBING NETWORKS\n

2-1. Active element conventions\n

Active circuit elements are classified by their voltage-current char\302\254

\nacteristics. Most practical generators maintain approximately con\302\254

\nstant terminal voltage with increasing load current. Still other types
\nof sources of electric energy maintain approximately constant output
\nof current with increasing terminal voltage. Rather than take actual
\nvoltage-current relationships into account, practical energy sources are

\napproximatedas either idealvoltage sources or ideal current sources.
\nTheseideal sources are defined;as having the following properties:\n

The Ideal Voltage Source. The ideal voltagesourcegenerates volt\302\254

\nage with a given time variation. Neither voltage magnitude nor time
\nvariation changes with magnitude of output current. Thus the ter\302\254

\nminal voltage is assumed to be maintained under all conditionsfrom
\nopen circuit to short circuit. If in some manner the terminalvoltage
\nis made equal to zero, the source behaves as a shortcircuit.Theideal
\nvoltage source has no resistive, inductive, or capacitive effects. Most
\nactual generators may be approxi\302\254

\nmated as an ideal voltage source in
\nseries with a resistor, and in some

\ncases, an inductor. The ideal volt\302\254

\nage source is represented by the

\nsymbol of a circle as shown in Fig.\n

2-1 (a). One exception to this prac\302\254

\ntice is the symbol for a battery
\nshown in Fig. 2-1 (b). The polarity
\nmarks + and \342\200\224denote positive and negative terminals of the source.\n

The Ideal Current Source. The ideal current source generates cur\302\254

\nrent with a given time variation. Neither current magnitude nor time
\nvariation changes with load. This output current is maintained for
\nany load including zero resistance and infinite resistance.* If the out\302\254

\nput current of the ideal source is adjusted to be zero,the source is

\nequivalent to an open circuit. As in the caseof thevoltagesource,the

\nideal current source has no resistive, inductive, or capacitive effects.\n

* Of course, this property of the idealsourceto pump amperes into an open
\ncircuit is a poor approximation for actual sources.\n

27\n

(a) (6) (O\n

Fig. 2-1. Symbols for active circuit
\nelements.\n
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The junction formed by two or more elements being connected
\ntogether is given the name node. Elements in series such that iden\302\254

\ntically the same current flows in them form a branch. A branch may

\ninclude active elements. A network or circuit is formedby intercon\302\254

\nnection of a number of branches or by coupling a numberof separate

\nparts together. We will use the words network and circuitinterchange\302\254

\nably, except that the network is usually more complex, involving more
\nelements than the circuit. A loop or mesh is a closedcontourdrawn on

\nthe schematic, around one or more window panes of the graphof Fig.\n

2-4, for example. Any two nodes in a network may be considereda
\nnode pair. Parts of the network not directly connected by wiresbut
\nmagnetically coupled are called separate parts of the network.\n

Our objectivein circuitanalysisisto find the currents in the different

\nbranches and the voltages at the different nodes. Two quantities of

\nimportance in this analysis are the numberof independent loops and\n

one node\n

one node
\n(four branches)\n

(a) (6) (c)\n

Fig. 2-6. Identification of nodes.\n

the number of independent node pairs. The meaning inferred by the

\nword independent will be discussed in the next chapter in moredetail.
\nBriefly, there are as many unknown currents in a system as thereare

\nindependent loops, and as many unknown voltages as there are inde\302\254

\npendent node pairs.\n

Let E be the number of elements in the network (counting both

\nactive and passive elements, but not mutual inductance). The num\302\254

\nber of branches in the network is designated B. Quantities relatingto
\nnodes will be identified by Nt for the number of nodes, J for the num\302\254

\nber of different node pairs, and N for the number of independentnode

\npairs. Also, L is the number of independent loops, and finally,S isthe

\nnumber of separate parts of the network.\n
The number of different node pairsis given by the topological

\nequation\n

J = iN,(N, - 1) (2-1)\n

We are usually not interested in all combinations of nodes,but is\n
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so there is a drop in potential from c to d. Voltageisa scalar quantity

\ndefined as the quotient of the two scalarquantitieswork and charge.

\nVoltage drops and voltage rises are distinguishedby a sign,positive

\nfor voltage rise and negative for voltage drop. For this polaritysignto
\nhave meaning, the voltage reference must be given or inferred. A

\ncertain point in a circuit may have a potential of +50 voltswith

\nrespect to point a and \342\200\22430volts with respect to point b. Should the
\npotential of a point be given without reference, it is assumedto be
\nwith respect to a point of zero potential whichwill be called the ground
\nor the datum node.\n

2-3. Network topology (or geometry)\n

The two-dimensional graph shown in Fig. 2-4 is madeup of circles

\nwith interconnecting lines. Suppose that we wish to make a study of
\nsuch graphs, say the relationship of the number of circles and lines,
\nwith the following rules imposed:\n

(1) \tall lines must terminate on cir\302\254

\ncles, (2) at least two lines must

\njoin every circle, and (3) the graph
\nwill be in two dimensions; lines will
\nnot cross lines. By definition, all

\nclosed contours having no lines
\nwithin will be called window panes.\n
Now in any givengraph,thenumberof lines, circles, and window panes
\nare not independent of each other. For example, if the numberof cir\302\254

\ncles remains constant and the number of lines is increased by one,

\nthere will be one more window pane. Similarly,if the numberof win\302\254

\ndow panes is maintained constant and one more circle is added,the
\nnumber of lines must increase by one, a line having beendividedin
\ntwo by the added circle. There must exist some generallaw relating

\nthe three quantities we have studied.\n
Our discussionhas beena homely example of an elegant branch of

\nmathematics known as topology.The generallaw just mentioned is

\nknown from studies in topology. How can we exploit these topological
\nlaws or facts in circuit analysis?\n

By. approximating a physical system by idealcircuitelements, as

\ndiscussed in the first chapter, we have eliminatedconsiderationof

\nthree-dimensional systems in favor of a system of interconnected ele\302\254

\nments usually described as a wiring diagram or a schematic.The sche\302\254

\nmatic is equivalent to the topological graph of Fig. 2-4 with elements

\nreplacing lines. Thus the laws of topology are directlyapplicableto
\nnetwork schematics. Before giving these laws, we will define terms
\nused in network topology.\n
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discussed in the next chapter). It is, however, not necessarythat the

\nloops be chosen in this manner, but there is the risk that the loops will

\nnot be independent.* In simple networks, the number of independent
\nloops is equal to the number of \342\200\234window panes\342\200\231' of our earlier discus\302\254

\nsion and so can be determined at a glance.\n

Example 1\n

In the network shown in Fig. 2-7, there are five nodes,sevenele\302\254

\nments, and one part. Hence the number of independent loops is
three,\n

Fig. 2-7. Network of Example 1.\n

since\n

L = E-Nt + S = 7-5 + l= 3

\nand the number of independent node pairs is four, since

\nN = Nt
- S = 5 \342\200\2241 = 4\n

The loops may be assigned as shown on the figure,followingpaths
\na-d-f-g-a, d-c-e-f-d, and a-b-c-d-a. If node g is selected as the datum
\nnode, a suitable choice of the independent node pairs is a-g}b-g, c-g,

\nand d-g.\n

Example 2\n

Examination of Fig. 2-8 shows that E = 6 (M doesnot
count, of

\ncourse), Nt = 6, and S = 2. It followsthat\n

L = E \342\200\224
Nt + 5 = 6 \342\200\2246 + 2 = 2 independent loops

\nN = Nt
\342\200\2245 = 6 \342\200\2242 = 4 independent node pairs\n

* The test to determine independence requires that the system determinant, to
\nbe discussed in Chap. 3, be nonzero. It is usually better to follow the von Helm\302\254

\nholtz rule than to experiment.\n
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the number of independent node pairs, which is equal to the number

\nof unknown voltages, given as\n

N = Nt \342\200\224S (2-2)\n

or N = Nt \342\200\2241 for a network with only one part.\n

The number of independent loops is given in terms of the number

\nof elements and number of independent node pairs as\n

L = E - N (2-3)\n

If we count only nodes at the ends of branchesandlet that number of

\nbranches be B', then the number of independentloopsand branches

\nare related as\n

L = E -
W (2-4)\n

Finally, if Eq. 2-2 is substituted into Eq. 2-3,thereresults\n

L = E - Nt + S (2-5)\n

From these equations, we may determine for a givennetworkwhich

\nquantity, L or N, is smaller, enabling us to decidewhich of the two

\npossible approaches to analysis should be taken.\n

Once the number of independent node pairs is known, there remains
\nthe problem of selecting which N node pairs in the network will be

\nused in analysis. Analysis is simplified if one node is usedas one mem\302\254

\nber of each of the N node pairs. It is conventionalto select the node

\nof zero potential as this common node and to designate it the datum

\nor reference node. Usually, the negative terminal of one of the active
\nsources is so selected.\n

There is a similar problem of choice in the caseof assigning the

\nindependent loops once the number of such loopsis known from Eq.\n

Fig. 2-6. Different independent loops in the samesystem.\n

2-5. The rule of von Helmholtz may be used to advantagein designat\302\254

\ning the paths of the loops. The rule requires that the loopsbe succes\302\254

\nsively chosen such that each new loop includes at leastonenew branch

\nnot previously included in the path of a loop. If the loops of number

\nrequired by Eq. 2-5 are so chosen, this processis sufficient to insure

\nthe independence of the loops (and of the voltage equations, as will be\n
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of the winding is shown marked with a dot. Let us assume that the

\ncurrent flows into this dot. We will outline, step-by-step,our concep\302\254

\ntual scheme of what happens as a consequence of this current.\n

(1) Current in winding 1-1 causes a magnetic field (\342\200\234action at a

\ndistance\342\200\235) to exist, which is concentrated along the axis of the coil.
\nThe magnitude of the field can be computed from Ampere\342\200\231s law\n

dB\n
nil dl cos a

\n4x r2\n
(2-6)\n

(These symbols are defined in Chapter 1 in Eq. 1-28.)\n

(2) There is a magnetic flux <t> associated with the magnetic field

\nhaving a value\n

4> =
J

B cos 6 dA (2-7)\n

and having a direction determined experimentally and given by the
\nright-hand rule: if the thumb of the right-hand indicates the direction
\nof current, the fingers wrap around the current-carrying conductor in
\nthe direction of flux. This flux is assumed confined to the magnetic
\ncore, which has the property of being a preferred path for the flux.

\nApplying the right-hand rule, the flux is seen to have the direction

\nindicated by the arrow (clockwise).\n

(3) Since winding 2-2 is on the same magnetic core as winding 1-1,
\nthe flux produced in winding 1-1 links winding 2-2. This linking flux

\ncan be described as </>2i, where the subscripts have the order \342\200\234effect,

\ncause.\342\200\235 The number of flux linkages in winding 1-1 is\n

$i
= Ai$2i (2-8)\n

In terms of Faraday\342\200\231s law \\pi can be computed from the voltage at
\nterminal 1-1 as\n

=
/ Vi dt (2-9)\n

Combining Eqs. 2-8 and 2-9 gives the value of flux in terms of the volt\302\254\n

age t>i.\n

(2-10)\n

(4) \tBecause fai is changing with time, a voltage is inducedin wind\302\254

\ning 2-2 according to Faraday\342\200\231s law. The flux linkages in winding 2-2
\nare\n

^ 2 = Ni<j>21\n (2-11)\n

and 02 has the magnitude\n

(2-12)\n
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rig. 2-8. Network of Example 2.\n

2-4. The dot convention for coupled circuits\n

When the magnetic field produced by a changingcurrent flowing in

\none coil induces a voltage in other coils,thecoilsare said to be coupled,

\nand the windings constitute a transformer. If the details oftransformer
\nconstruction are known, then for a current changing in one coil,it is
\npossible to compute the magnitude and direction of the voltages
\ninduced in all other windings. The necessity for cumbersome blue\302\254

\nprints showing construction is eliminated by two characterizing fac\302\254

\ntors. The value of the coefficient of mutual inductance, M (discussed
\nin Chapter 1) is equivalent to details of construction in computing
\nmagnitude of induced voltage. Most manufacturers mark one end of
\neach transformer winding with a dot (or some such symbol).Thedot
\nis equivalent to details of construction as far as voltage direction is con\302\254

\ncerned. In this section, we will discuss the meaning of dot markings,
\nhow they are experimentally established, and their significance in cir\302\254

\ncuit analysis.\n

Two windings are shown on a magnetic core in Fig.2-9.In this

\nfigure, the winding sense is indicated for two windings,winding 1-1\n

Fig. 2-9. A two-winding magnetic circuit usedto establishmeaning\n

of the dot convention.\n

(which might be called the primary winding) and winding 2-2 (the
\nsecondary winding). A time-varying source of voltage, vg(t) is connected

\nto winding 1-1 in series with resistor Ri. At a given instant, the voltage
\nsourcehas the polarity shown,and the current ii(t) is flowing in the
\ndirectionshown by the arrow and is increasing with time. The + end\n
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minal of a battery, connecting the negative terminal to the remaining
\nend of the winding. The end of winding 2-2 that momentarilygoes
\npositive, as measured with a voltmeter, is the terminal to be dottedin
\nwinding 2-2.\n

Of what value are the dots, which we can now establish,in circuit

\nanalysis? Figure 2-11 shows the transformer of Fig. 2-9, including\n

dots, with the generator and resistor load interchanged. The positive
\nterminal of the voltage source is connected to the dotted end of winding

\n2-2. A step-by-step analysis of this transformer will show that an

\nincreasing current flowing into the dotted terminal of winding 2-2
\ncauses the upper end of winding 1-1 to be positive and so to be the

\ndotted terminal. We would expect, after all, that dotsestablishedfrom

\n1-1 to 2-2 should agree with those established from 2-2to 1-1.\n

Now suppose that the voltage source of Fig. 2-11has reverse
polarity

\nto that shown and that an increasing current flows out of the dot.

\nAnother step-by-step analysis or simply intuitive reasoning will show
\nthat the dotted terminal of winding 1-1 becomes negative under such
\nconditions.\n

We conclude that, for a transformer with polarity markings (dots),
\ncurrent flowing into the dot on one winding induces a voltage in the
\nsecond winding which is positive at the dotted terminal; conversely,
\ncurrent flowing out of a dotted terminal induces a voltage in the sec\302\254

\nond winding which is positive at the undotted terminal. This important
\nrule will be applied in Chapter 3 in formulating circuit equations.\n

Thus far ourdiscussionhas been limited to a transformer with two
\nwindings. In a system with several windings, the same type of anal\302\254

\nysis can be carried on for each pair of windingsprovidingsomevaria\302\254

\ntion in the form of the dots is employed (suchas \342\200\242\342\226\240\342\226\262\342\231\246)to identify

\nthe relationship between each pair of windings. In Chapter 3-,after
\nthe concept of assumed positive direction of current is introduced, it
\nwill be shown that the information given by the pair of dots canbe

\ngiven in the sign of the coefficient of mutual inductance.Fora system

\nwith many windings, this scheme avoids the confusion of a largenum-\n
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In the discussion of Chapter 1, the coefficientof mutualinductance

\nwas introduced to relate flux linkages with current as ^ =\302\273Mi. For

\nthe system under study\n

*2 = M (2-13)\n

and Eq. 2-12may be written in equivalent (but more useful) form as\n

V2 =
Mn^ (2-14)\n

if M21 does not vary with time. Equation 2-14 tells us that a voltage
\nis induced in winding 2-2 having a magnitude of Mu volts per unit
\ntime rate of change of current i\\. There remains the problemof the

\ndirection of this voltage.\n
(5) \tThe direction of voltage in winding 2-2 can be found with the

\naid of a law given by the German physicistLenzin 1834.In terms of

\nthe transformer, Lem\342\200\231s law states that the voltage induced in a coil
\nby a change of flux establishes a current in the coilin a direction to

\noppose the change in flux that produced the voltage.Theflux fax is

\ndirected upward in Fig. 2-9 and is increasing.To producea flux <t>\\2

\nto oppose this increase in </>2i requires (by the right-hand rule) that the
\ncurrent flow in the direction shown by the arrow (right to left). Lenz\342\200\231s

\nlaw is really an application of conservation of energy, sinceif t'2 pro\302\254

\nduced a flux to aid <\302\24321,another increasing current would be induced in\n

1- \t1 and so on in a vicious cycle to produceinfinitecurrent.\n

Now that the direction of current in winding2-2isestablished,the

\ntop end of the winding is seen to be positiveandsois marked with a

\ndot. With a time-varying voltage, the dotted terminalsare positive

\nat the same time (and, of course, neg\302\254

\native at the same time). This action
\nis illustrated in Fig. 2-10. As shown,
\nvg(t) increases from zero to a constant
\nvalue at time t\\. The current ix and so
\nflux <f>n increase with time as shown
\nin (b). Note, incidentally, that Eq.\n

2- \t10 does not apply directly, since it
\ngives <t>21 in terms of vx rather than vg.\n

The induced voltage v2 is proportional
\nto the time rate of change of ix and
\nso has the time variation shown in

\n(c). This example suggests a simple
\nexperimental method for establishingthe dottedends of transformer

\nwindings. On the winding selected as 1-1,arbitrarilymark oneendof

\nthe winding with a dot and to this terminal connectthe positiveter-\n

Fig. 2-10. Waveforms in the mag\302\254

\nnetic circuit of Fig. 2-9.\n
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2-2. Repeat Prob. 2-1 for the network shown in the accompanying
\nfigure.\n

2-3. In the accompanying figure, a number of elementsarearranged
\non the edges of a cube. For this network, determineL, the number of

\nindependent loops, and N, the number of independent node pairs.\n

2-4. In the network of the figure, the paths forthreeloopshave been

\nselected as shown. Are these three loops independent? Why? (What

\nare the currents in Li and L2 in terms of ii?)\n

Prob. 2-5.\n

2-6. The magnetic system shown in the figurehas three windings

\nmarked 1-1', 2-2', and 3-3'. Using three differentformsof dots, estab\302\254

\nlish polarity markings for these windings.\n
2-6. Place three windings on the core shown for Prob. 2-5 with

\nwinding senses selected such that the following terminals (placed in

\nthe order shown in the figure for Prob. 2-5) have the samemark:(a) 1

\nand 2, 2 and 3, 3 and 1, (b) 1'and2',2' and 3', 3' and 1'.\n

2-7. The figure shows four windings on a magnetic flux-conducting\n

Prob. 2-7.\n
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ber of similar dots. Both schemes have advantages for particular
\nproblems, and both are used in electrical engineering literature.\n

ExampleS ,\n

JL/.'ll' P\n

In the system shown in Fig. 2-12, the windingsenseofeachcoilof

\nthe transformer is indicated. The polarity markings for each set of\n

Fig. 2-12. Magnetic circuit for Example 3.\n

coils are shown on the figure. In each case, one of the dotsfor each

\nwinding-pair was arbitrarily selected and the position of the other
\ndot was then determined.\n

FURTHER READING\n

The subject of network topology(or network geometry) is treated

\nin detail in Guillemin\342\200\231s Introductory Circuit Theory (John Wiley &

\nSons, Inc., New York, 1953) in Chap. 1. Other suggestedreferences
\ninclude Matrix Analysis of Electric Networks by LeCorbeiller (John
\nWiley & Sons, Inc., New York, 1950) and the article \342\200\234Onthe founda\302\254

\ntions of electrical network theory\342\200\235 by Ingram and Cramlet which

\nappears in J. Math. Phys.,23,134-155(1944). See also the article

\n\342\200\234IREstandards for network topology,\342\200\235 Proc. IRE, 39, 27 (1951).
\nOn the subject of the dot convention for mutual inductance,seePrin\302\254

\nciples of Electric and Magnetic Circuits by Boast (Harper & Brothers,

\nNew York, 1950), especially Chaps. 15 and 16.\n

PROBLEMS\n

2-1. For each of the circuits shown in the figure:(a)determinethe

\nvalue of the quantities E, S, Nt, N, L, andJ; (b)selectthe N independ\302\254\n

ent node pairs, using one datum node; and (c) following the rule of

\nvon Helmholtz, draw L independent loops.\n



CHAPTER 3\n

NETWORK EQUATIONS\n

3-1. Kirchlioff\342\200\231s equations\n

Most network equations are formulated from two simple laws first
\ngiven by Kirchhoff in 1845.* The first law relates to the sum of the

\ninstantaneous voltages of the elements in a loop. It statesthat in any

\nloop the sum of the voltage drops must equal the sum of the voltage rises.\n

This law follows from the scalarnature of voltage. To illustrate the

\nconceptinvolved, consider another scalarquantity,elevation. Suppose

\nthat we make a trip in an airplane, visiting a numberof cities but

\neventually returning to our place of origin. At each stop, we will

\ndetermine the elevation and record the elevation increase or decrease.
\nWhen the trip is completed, we can be sure if we are sufficiently accu\302\254

\nrate that the sum of the elevation increases will just equalthe sum of

\nthe elevation decreases. Otherwise, we would not be back at our start\302\254

\ning elevation.\n

Next, suppose that we make a tour around someloopina network

\nat some fixed instant of time. At each node, we willmeasurethe volt\302\254

\nage with respect to the previous node and recordvoltageincreasesand

\nvoltage decreases. Once the loop is completely traversed, the sum of
\nthe voltage decreases (or drops) must equal the sum of the voltage
\nincreases (or rises). The fact that there are other loopsin the same net\302\254

\nwork has no effect on the sum of the drops and rises,justas the exist\302\254

\nence of alternate airline routes does not affect the altitude change
\nsummations.\n

KirchhofPs second law relates to the sum of instantaneous currents
\nat a node. It states that the sum of currentsflowingintothe node equals

\nthe sum of currents flowing out. In an analogoushydraulicsystem,the

\nsum of water flowing out of a junction of pipes must equalthe water

\nflowing in, assuming no storage capacity at the junction. If we assume

\nno charge storage capacity at the nodes of a network,then,justasin

\nthe hydraulic system, the currents into that node must equal thoseout.\n

*
Historically, the work of Kirchhoff closely followed the pioneerworks of

\nFaraday in describing electric induction, of Oersted in relatingmagnetism and

\nelectricity in 1820, of Ampere in relating force and current in 1820-25 and of
\nOhm in relating voltage and current in 1826. At the time Kirchhoff published
\nthe work containing these laws, he was 23 years of age. He.made contributions in

\nseveral sciences\342\200\224there are other Kirchhoff laws in other fields.\n

40\n



Chap. 2 CONVENTIONS FOR DESCRIBINGNETWORKS 39\n

oore. Using different shaped dots, establish polarity markings for the
\nWindings.\n

2-8. The accompanying schematic shows the equivalent circuit of a
\nsystem with polarity marks on the three coupled coils. Draw a trans\302\254

\nformer with a core similar to that shown forProb.2-7andplacewindings

\non the legs of the core in such a way as to be equivalent to the sche -

\nmatic. Show connections between the elements in the same drawing.\n

2-9. The accompanying schematics each show two inductors with
\ncoupling but with different dot markings. For each of the twosystems,
\ndetermine the equivalent inductance of the system at terminals 1-1'
\nby combining inductances.\n

lo\342\200\224i/qnnp\342\200\2242jqnnr\\--| lo-^qnnr\342\200\224wi\n

l'o-\n

LlK-My
Lz\n

(c)\n

l'o-\n

IlVM7
Lz\n

(6)\n

Prob. 2-9.\n

2-10. A transformer has 100 turns on the primary (terminals1-1')
\nand 200 turns on the secondary (terminals 2-2'). A current in the pri\302\254

\nmary causes a magnetic flux which links all turns ofboththe
primary

\nand the secondary. The flux decreases according to the law <f>
= e~\342\200\230

\nweber, when t ^ 0. Find: (a) the flux linkages of the primary and

\nsecondary, (b) the voltage inducedin the secondary.\n



42 NETWORK EQUATIONS Chap. 3\n

With the loop currents as shown in Fig. 3-3, the Kirchhoff voltage

\nlaws are\n

RJi +
- It) = V (3-8)\n

-R3(h
- 11) + Rdi = 0 (3-9)\n

The two sets of Kirchhoff equations, Eqs. 3-6 and 3-7andEqs.3-8 and\n

3-9, are identical if h = Ia and /2 = h. These currents are identical,

\nof course, since they are the currents flowing in Ri and R2, respectively.

\nBy Eq. 3-5, we find that Ie is expressedin terms of h and 12 as\n

Ic - h - h (3-10)\n

In analysis, we are ultimately interested in determining currents in the
\nelements\342\200\224the branch currents. Our example has shown that there are
\ntwo routes to determine the branch currents: (1) write equations
\ndirectly in terms of the branch currents, or (2) write equationsin
\nterms of loop currents from which the branch currents can be foundby

\naddition or subtraction. Since the number of branches is equal or
\ngreater than the number of loops, the advantage of simplicityisusually
\nin the second choice.\n

3-3. Positive directions for currents\n

Suppose that we were assigned the problem of counting cars travel\302\254

\ning each direction on a busy street in a large city. Ourfirst step would

\nbe to distinguish cars traveling in the two directions. We would accom\302\254

\nplish this by deciding on a positive direction of flow.Withthisdecision

\nmade, each car could be considered as moving in the positivedirection
\nor opposite to the direction considered positive (although handier
\nterms such as north and south would likely be used).\n

Similarly, before writing network equations based on Kirchhoff\342\200\231s

\nvoltage law, a positive direction of the loop (or branch) currentsmust
\nbe assigned for each loop (or for each branch) and identifiedwith an

\narrow. Such a decision establishes a positive or referencedirection.
\nCurrents in the direction opposite to that considered positive are
\nmarked with a negative sign. The direction to be assumed positiveis
\narbitrary, of course, but for uniformity, loop currents will usually be
\nassigned a clockwise positive direction.\n

Once the positive direction for the loopcurrent is assigned, the loop

\nmay be traversed in either direction in applying the Kirchhoff voltage
\nlaw. If the loop is traversed in a direction opposite to that

assigned

\nfor positive loop current, the Kirchhoff equation is not changed,since
\nthis is equivalent to multiplying all terms by \342\200\2241.\n
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Consider the series circuit shown in Fig. 3-1. We see that there are

\nvoltage drops across the three passiveelementsanda voltagerisedue

\nto the battery. Kirchhoff\342\200\231s voltage law states that the voltage drops
\nmust equal the voltage rises, or\n

Vi + V, + 7, =
Vg (3-1)\n

A part of a network is shown in Fig.3-2with the direction of current\n

Fig. 3-1. The sum of voltage drops Fig. 3-2. Currents into the node\n

equals the battery voltage by Kirch- equal thoseout of the node by Kirch\302\254

\nhoff\342\200\231svoltage law. hoff\342\200\231scurrent law.\n

shown for each branch attached to a particularnode.At that node,

\nthe currents flowing into the node must equal those flowing out, or\n

h + U= 13 I i (3-2)\n

3-2. Branch currents and loop currents\n

Kirchhoff\342\200\231s voltage law may be applied by using either branch cur\302\254

\nrents or loop currents. To show the equivalence of branch and loop
\ncurrents, consider the network shown in Fig. 3-3. With currents as\n

assigned, the Kirchhoff voltage

\nequations are\n

R\\Ia + Rzlc = V\n

(for loop 1) (3-3)\n

\342\200\224
R^Ic -H RJb = 0\n

(for loop 2) (3-4)\n

At node B, the Kirchhoff current
\nequation is\n

Ia = lb + Ic or\n

A Ri b R*\n

Fig. 3-3. Two-loop network.\n

Ic = la - h (3-5)\n

This equation may be used to eliminate Ic from the Kirchhoffvoltage
\nequations of Eqs. 3-3 and 3-4 as\n

RJa + Rz(Ia - Ib) = V\n

\342\200\224
f?3(/<.

\342\200\224
Ib) + Rzlb = 0\n

(3-6)\n

(3-7)\n
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Example 8\n

A three-loop network is shown in Fig. 3-6 with loop currentst\342\200\231i,12,

\nand u assigned positive directions as shown. Traversing the three\n

loops in turn gives the three Kirchhoff voltage equations\n

Riii \342\226\240+\342\226\240

^\n

Ci\n
3 \342\200\224

ii) dt +
^\n

/\n

/\n

(t'i
\342\200\224

U) dt =
v(t)\n

ii dt -4*
q- J

(tj \342\200\224
t*) dt \342\200\2240\n

(3-15)\n

(3-16)\n

_1\n

C;\n j
(^3 \342\200\234

^2) dt + R2H = 0\n
(3-17)\n

3-5. Loop analysis of circuits with coupled coils\n

The rule developed in Art. 2-4 regarding polarity of inducedvoltage
\nand current direction with respect to dots can be used to advantage
\nin analysis of circuits with coupled coils. To apply the rule, (1) the

\npolarity markings (dots) for each pair of coupled coils\342\200\224or equivalent

\ninformation\342\200\224must be given, and (2) the positive direction of current
\nflow must be assumed for each loop. A part of a circuitfulfillingthese
\ntwo requirements is shown in Fig. 3-7(a). By the rule, current ii\n

o3\n

04\n

Fig. 3-7. Coupled coils illustrating the relationshipof assumed direc\302\254

\ntion of current, polarity markings, and polarity of inducedvoltage.\n

enters the dotted terminal of winding 1-2 and so willinducea voltage

\nin winding 3-4 positive at the dotted terminal, terminal 3. The cur\302\254

\nrent i\\ thus induces a voltage drop from 3 to 4, ora voltage rise from

\n4 to 3. Similarly, tj induces a voltage in winding1-2with terminal\n
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3-4. Formulatins equations on the loop basis\n

A number of examples will illustrate the formulation of equations
\nof equilibrium using Kirchhoff\342\200\231s voltage law.\n

Example 1\n

Figure 3-4 shows a series RLC circuit. It is quiteclearby inspection

\nthat there is but one loop, while there are3 independentnode pairs.

\nThe voltage drops across the passive elements must equalthe voltage
\nrise due to the active element. Expressions for the voltagesacrossthe\n

L\n

passive elements were derived in Chapter 1. In terms of theseexpres\302\254

\nsions, Kirchhoff\342\200\231s voltage law requires that\n

Ri + L
jt + ^ j

idt =
v(t) (3-11)\n

at all times. This is an integrodifferentialequation,which may be

\nchanged to a differential equation by differentiation to give\n

T
dH

_|_ P
di

_L
1

,\342\200\242
dt}^>\n

Ldi^
+

Rdt
+ ct

=
~dT\n

(3-12)\n

where the derivatives have been arranged in descending order.\n

Example 2\n

The network of Fig. 3-5 has two independent loops,sinceL = E
\n\342\200\224

Nt + S = 5 \342\200\2244 + 1=2, and the two loop currents, ii and ii,
\nhave been assigned positive directions as shown. The equilibrium
\nequations of the voltages, based on Kirchhoff\342\200\231s law, are\n

Riii +\n
C /

1\nit) dt =
v(t)\n

1\n

C\n f\n
(i2

\342\200\224
fc'i) dt + L

-rjj + R2I2= 0\n

(3-13)\n

(3-14)\n



Example 4\n

The winding sense of three coils on a flux-conductingmaterialis
\nshown in Fig. 3-9. We are required to write the Kirchhoffvoltage
\nequations, taking into account mutual inductance. With the aid of
\ndots, the system of Fig. 3-9 can be replaced by the equivalentcircuit\n

Kg. 3 -10. Magnetic system of Fig. 3-9 showing polarity markings

\nand assumed positive direction of current.\n

of Fig. 3-10. If we use a double subscript notationfor mutualinduct\302\254

\nance to indicate the two coils being considered, the Kirchhoffvoltage
\nequations are\n

D \342\200\236\342\200\242xt
\342\200\224

H) i tut d(iz \342\200\224
is) n, dis\n

K\\i\\ + L\\
^

~r M12 ^
\342\200\224M is\n

d\" Rziii \342\200\224
ii)

\342\200\224
t>(\302\243) (3-21)\n

n /\342\200\242 \342\200\242\\ i t d(ii %\\) j, d(i2 tj) | w diz\n

R*(t2
\342\200\224

Ii) + Li
^ M12

^\342\200\224-
+ M

it-jj\n

+ Lt + Mu (ii \342\200\224
iz) + Mzz

^^3
= 0 (3-22)\n

L,
*

(*, -
\302\253

- If-
\302\247

- -
\302\253 + U

%\n

+ U,z g (\302\273,
- ii) -

M\342\200\236
jt

(i, - i,) + i
J i, dt = 0 (3-23)

\nIn this particular problem, the equations would have had simpler form\n
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1\342\200\224the dotted terminal\342\200\224positive, and so with a voltage drop from ter\302\254

\nminal 1 to 2.\n

In Fig. 3-7 (b), the current it has a positivedirectionreversed from

\nthat shown in Fig. 3-7(a). This cur\302\254

\nrent is positive when it leaves the
\ndotted terminal and hence induces

\na voltage in winding 1-2 with ter\302\254

\nminal 2 positive, and so with a volt\302\254

\nage rise from terminal 1 to 2.\n

Figure 3-8 shows the coupled coils
\nof Fig. 3-7(b) incorporated into a

\ntwo-loop coupled circuit. Applying
\nthe rules just discussed, the Kirch-

\nhoff voltage law applied to the first loop givesthe equilibriumequation\n

Riii + ^
- M ^

=
v(t) (3-18)\n

The current ti produces a voltage drop across L\\, but the current it,
\nwhen positive, with the polarity markings as shown induces a voltage
\nrise across the same terminals. In the second loop, the equilibrium
\nequation is\n

+ ** -\302\260 <3-19>\n

In these equations the sign before a term of the form M (dit/dt) indi\302\254

\ncates a voltage rise if negative and a voltage dropif positive.As long

\nas polarity dots are given along with the direction of positivecurrent,
\nthere is no ambiguity, and the rule of Art. 2-4 can be appliedsucces\302\254

\nsively to all coupled coils. If the number of coilsis large,the use of

\ndots of various shapes may become cumbersome.In this case, it is

\nmore convenient to assign a plus or minussignto M, to let M carry
\nthe sign in the equation formulation rather than letting the signbe
\nspecified by the nature of the induced voltage\342\200\224drop or rise. These two

\nsystems are equivalent, and both will be used in the discussion to

\nfollow, just as both are used in the literature.\n
Consider the circuitof Fig. 3-8, described by Eqs. 3-18 and 3-19.

\nWe observe in these equations that the voltages induced by means of
\nthe coupled coils are voltage rises of opposite polarity to the voltage
\ndrops of either loop. With the current directions given, the dots can
\nbe erased, provided a negative sign is identified with mutual inductance
\nas \342\200\224M. By this system, Eq. 3-18 is written\n

Tig. 8-8. A two-loop coupled
\ncircuit illustrating the sign conven\302\254

\ntion for M.\n

(3-20)\n
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Let us now turn our attention to node c. There the current in Rt is

\nmarked as J4. Kirchhoff\342\200\231s current law requires that\n

Iz = h or It - Iz = 0 (3-29)\n

Now since Iz = ^- (Vb -
Ve) and Ii = ^-Vc (3-30)\n

MX 3 MX 4\n

we have the second equilibrium equation,\n

n v,\n

Rz Rz\n

Vc\n

R\n
(3-31)\n

Equations 3-28 and 3-31 must be solved simultaneously to give the
\nunknown values of F6 and Vc.\n

Have we any flexibility in choosing positive directions of current
\nfor the different nodes? On the network under consideration, a new

\ncurrent Iz is marked with an arrow such that Iz = \342\200\224
Iz. In terms of

\nthis new current, Kirchhoff\342\200\231s current law is Iz + I* = 0. But since
\nIz

= \342\200\224
Iz, this equation is identical with Eq. 3-29, and so with Eq.

\n3-31. In other words, the positive direction of the branchcurrents may

\nbe assumed at each node independent of previous designations. We

\nthus have two options: (1) Assume positive directions for branch cur\302\254

\nrents once and for all. (2) Assume new positive directionsat each
node,

\nfor example that currents flow out of the node for all passiveelements

\nand in the marked direction for active current sources.\n

As a result of this discussion, we see that the stepsto be followed in

\nnode analysis are the following:\n

(1) Select a datum nodeand identify all unknown node voltages.\n

(2) Assume a positive direction for allbranchcurrents.\n

(3) Apply Kirchhoff\342\200\231s current law to each node of unknown voltage,
\nwriting each branch current in terms of a node-to-node voltage
\nand appropriate circuit parameters.\n

It is sometimes convenient to change a voltagesource into a math\302\254

\nematically equivalent current source for analysis. In Fig. 3-12(a),let
\nv(t) be the potential of the voltage source and vi(t) be the potentialof

\nthe node located between the resistor Ri and the rest of the network.

\nThe current i(t) flows through the resistor Ri. Kirchhoff\342\200\231s voltage law

\nfor the circuit of Fig. 3-12(a) is\n

v(t)
= Rii{t) + t>i(\302\243)

\nSolving this equation for i(t) gives\n

i(t)\n
v(t) _ Vi(t)\n

Ri R\\\n

(3-32)\n

(3-33)\n
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if the generator v(t) and Ri had been part of each of the three loops.
\n(See Prob. 3-14.)\n

3-6. Formulating equations on the node basis\n

The node basis for formulating the equilibrium equations for cir\302\254

\ncuits makes use of the Kirchhoff law that the sumofcurrentsleaving

\na node is equal to the sum of currents enteringthat node.Toillustrate

\nthe procedures used in node analysis, consider the simple resistive
\nnetwork shown in Fig. 3-11. For
\nthis network there are four nodes,
\nmarked o, 6, c, and d. Following
\nconvention,the negativeterminalof

\nthe active element, node d, is se\302\254

\nlected as the datum node. There are
\nthen three node-pair voltages, the

\npotentials of nodes a, b, and c with

\nrespect to node d. However, the

\npotential from node a to node d is
\nknown to be equal to the battery voltage. There are thus but two

\nunknown voltages in the network: the voltages of node b and node c

\nwith respect to the datum node.\n

Having identified the unknown voltages,ournexttaskis to write

\nnetwork equations in terms of these unknown node voltages. This is
\naccomplished in terms of branch currents (never loop currents). Each
\nbranch current must be assigned a direction considered positive and
\nso marked with an arrow, just as in the case of loopanalysis.At node

\nb in the network of Fig. 3-11, the branch currentsare markedas h,
\n12, and 13, all directed out of the node. By Kirchhoff\342\200\231s current law,

\nwe know that\n

Fig. 3-11. Network illustrating pro\302\254

\ncedures in node analysis.\n

I\\ + 12 + ^3 = 0\n (3-24)\n

What are these branch currents in terms of the node voltages?By

\nOhm\342\200\231slaw, they are\n

h =
^ (Vb -

V)\n

u = ~ -
o)\n

J\\>2\n

/. =
^

(n -
vc)\n

Substituting these three equations into Eq. 3-24 gives\n

(3-25)\n

(3-26)\n

(3-27)\n

Vb V , Vb . Vb Vc\n
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of the generator is v(t) in Fig. 3-13(a), we may write\n

^
|\302\273'i

-
KOI +\n

/' /
r\342\200\230\n<U + ('(U'' - 0

\nat\n

Clup. 3\n

(3-35)\n

or\n
If

+
lj\n

(it + (\n
, f/i\342\200\231i r(f)\n

(it\n R\n

which is identical with Kq. 3-31.\n

3\n

-14. Kquivalent circuit of thiw-

\nloop network of Hi*. M.\n

1 and 2 are designated rt and tv
\nl/Rt

\342\200\224
Gt,\n

Analysis may be earritsl out with

\neither the voltage source or the
\nequivalent current source.\n

Eramplr fi\n

The net work shown in Fig. 3-14
\nis the current source equivalent to

\nthe three-loop network shown in

\nFig. 3-0. Node 3 is the datum node,
\nand t he unknown volt ages at nodes

\nAt mule 1, setting \\/Ri = G\\ and\n

(3-30)\n

and at node 2,\n

Oi
^

O\342\200\231j
\342\200\224

\302\273\342\200\231i)+ (\\ 4- G&t \" 0 (3-37)\n

In this example, formulation on the node basis has resultedin fewer

\ndifferential equations than on the loop basis in Kxainplc 3. Ordinarily
\nit requires less work in solving two simultaneous differential equations
\nthan in solving three. The choice of method of formulation, loopor
\nnode, also depends on the objective of analysis. In this example,if
\nthe voltage at node 2 is desired, the node method has the advantage

\nover the loop method. But if it is the current flowingin capacitor(\\
\nthat is to tie found, we must weigh the relative advantagesof the two

\nmethods. The loop currents can be assignedso that only one loop cur\302\254

\nrent flows in Ct, but three simultaneous equations must lie solved.
\nUsing the node method, we might And the voltage at node2 first and

\nthen determine the current in the capacitor from the equation\n

ic,\342\200\234C*W
(3-38)\n

The second method appears to involve lesscomputationin this
partic\302\254\n

ular example.\n
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In this current equation, we will identify each separateterm.The

\nequation tells us that the current i(t) flowing into the network is equal

\nto a current v(t)/Ri minus a current Vi(t)/Ri. This equation may be

\ninteipreted in terms of the new network of Fig. 3-12(b)by means of\n

Fig. 3-12. Interchange of sources.\n

Kirchhoff\342\200\231s current law. The current v(t)/R i is from an equivalent
\ncurrent source. The current Vi(t)/Ri is the current flowing through
\nthe resistor R\\ connected in shunt with the current source. The differ\302\254

\nence of these two currents is the current flowing into the network.
\nSince the two networks of Fig. 3-12 are describedby the sameequa-
\ntions, Eqs. 3-32 and 3-33, they are equivalent.\n

Example5\n

Consider the network shown in Fig. 3-13(a). The voltagesourcemay

\nbe converted into an equivalent current source by the procedure just
\ndescribed, giving the network of Fig. 3-13 (b). Node 2 isdesignatedthe\n

Fig. 3-13. Network for node analysis.\n

datum node and all branch currents are assignedto flow out of node 1.
\nThe expressions for the currents in each of the elements in terms of
\nthe voltage were given in Chapter 1. By Kirchhoff\342\200\231s current law, the

\ncurrent equation is\n

iVi
+

z /
Vidt +

C%1
=

It (3_34)\n

Of course, it is not necessary to make the conversionto the current

\nsource before analyzing the network. Since the voltage of the + terminal\n
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of the generator is v(t) in Fig. 3-13(a), we may write\n

i
[t>i

- KOI +\n

l!\n

r, dt + C = 0\n

Omp.3\n

(3-35)\n

or\n

S V'+L/\"'\n
d t + (\n

, dr i r(t)\n

dt\n H\n

which is identical with Eq. 3-34. Analysis may lx* carried out with

\nj 2
either the voltage source or the\n

equivalent current source.\n

>*,4=^ ft;I> Bxamplr 0\n

The net work shown in Fig. 3-14\n

is the current source equivalent to\n

. , , the three-loop net work shown in\n

Fig. 3-14. Equivalent circuit of throe- _. , , ,\n

loop network of Fi\302\253.:M1. Fl*- 3'fl- Nodc 3 ,hc <latllm node.\n

and the unknown voltages at nodes\n

1 and 2 are designated iq and vt. At node 1, setting \\/R\\
= G\\ and\n

\\/Rt
=

Git\n

(?,!>, + <?\342\226\240
^

+ <\342\200\235>
I(\"'

-
\342\200\231,)

=

s,\n
(3-36)\n

and at node 2,\n

Ct
^

(wj \342\200\224
V\\) + + G&t = 0\n (3-37)\n

In this example, formulation on the node basis has resultedin fewer

\ndifferential equations than on the loop basis in Example 3. Ordinarily

\nit requires less work in solving two simultaneous differential equations
\nthan in solving three. The choice of method of formulation, loopor

\nnode, also depends on the objective of analysis. In this example,if
\nthe voltage at node 2 is desired, the node method has the advantage

\nover the loop method. But if it is the current flowingin capacitorCj

\nthat is to be found, we must weigh the relative advantagesof the two

\nmethods. The loop currents can be assigned so that only one loop cur\302\254

\nrent flows in Ct, but three simultaneous equations must be solved.
\nUsing the node method, we might And the voltage at node2 first and

\nthen determine the current in the capacitor from the
equation\n

ic,
= C, ^ (3-38)\n

The second method appears to involve less computation in this partic\302\254\n

ular example.\n



Art. 3-7\n NETWORK EQUATIONS\n 51\n

Example 7\n

The network shown in Fig. 3-15 differs from the networksofother
\nexamples in that there is no series resistance with the voltagesource.
\nAlthough this network has four independent loops, there is but one
\nunknown node voltage, that at node
\n2. From Kirchhoff\342\200\231s current law, we

\nwrite\n

\302\253\342\200\242
\302\243

(---) +\n

if
(Vt~\n Vi) dt\n

+ Gv 2\n

dv 2\n

+ Ci
W

= 0 (3'39)\n

I\n

C3\n

1\n

K\n

. /OTTorv\342\200\224,\n
^AA/Vi\n

R\n

^C2\n

L\n

^Ci
-\n

L- 3\n

where, as before, O = l/B. Note Fie 3.18. Network o( Example 7
\nthat Ci does not appear in the equa\302\254

\ntion. This is because the voltage at node 1 isindependentof the capaci\302\254

\ntor Ci or any other shunt element. Capacitor Ci is an extraneousele\302\254

\nment. The voltage source must maintain terminal voltage for any load

\n(or it is not an ideal element), and so Ci may be removed without

\naffecting the network equations.\n

3-7. Duality\n

Several analogous situations will have been noted in the preceding
\ndiscussions of this chapter. The statements of the two Kirchhofflaws
\nwere almost word for word with voltage substituted for current, inde\302\254

\npendent loop for independent node pair, etc. Likewise, the integro-
\ndifferential equations that resulted from the application of the Kirch\302\254

\nhoff laws have been similar in appearance. This repeated similarity
\nis only part of a larger pattern of identical behavior patterns in the
\nroles played by voltage and current in network analysis. This similar\302\254

\nity, with all the implications, is termed the principle of duality.\n

(a) (6)\n

Fig. 3-16. Dual networks.\n

Consider the two networks completelydifferentin physicalappear\302\254

\nance shown in Fig. 3-16. Inspection shows that the firstmightbeana\302\254

\nlyzed to advantage on the loop basis and the other onthe node basis.\n
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The resulting equations are\n

L~ + Ri + i
J

idt-v(f) (3-40)\n

CW
+ 6v + L J

V M = (3-41)\n

These two equations specify identical mathematical operations,the
\nonly difference being in letter symbols. The solution of one equation
\nis also the solution of the other. The two networksare duals.The roles

\nof current and voltage in the two networks have been interchanged.
\nAs a word of caution, one network is not the equivalentof the other

\nin the sense that one can replace the other.\n

An inspection of the terms of Eqs. 3-40 and 3-41 showsthat the

\nfollowing are analogous quantities.\n

Ri and Gv\n

and\n

1\n

C\n

and\n
1\n

L\n /\n

v dt\n

Evidently the following pairs are dual quantities.\n

R\n and\n G\n

L\n and\n C\n

loop current, i\n and\n v, node-pair voltage\n

g\302\260rj\n
and\n

| ^ or\n

jidt)\n
1 J v dt\n

loop\n and\n node pair\n

short circuit\n and\n open circuit\n

A simple graphical construction* may be followedin findingthe dual

\nof a network.\n

(1) \tInside each loop place a node,givingit a number for conven\302\254

\nience. Place an extra node, the datum node, external to the

\nnetwork. Arrange the same numbered nodes on a separate space
\non the paper for construction of the dual.\n

*
Gardner and Barnes, Transients in Linear Systems(John Wiley it Sons, Inc.,

\nNew York, 1942), pp. 46ff.\n
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(2) Draw lines from node to node through the elementsin the orig\302\254

\ninal network, traversing only one element at a time. For each
\nelement traversed in the original network, connect the dual ele\302\254

\nment\342\200\224from the chart above\342\200\224on the dual network being
\nconstructed.\n

(3) Continue this processuntil thenumberof possible paths through

\nsingle elements is exhausted. (Should you slip and go through
\na connecting wire which is assumed to be a short circuit,the
\ndual element is an open circuit.)\n

(4) The network constructedin this manner is the dual network.

\nThis construction may be checked by writing the differential
\nequations for the two systems, one on the loop basis and the
\nother on the node basis.\n

This graphical construction is illustratedin Fig.3-17.Networks that

\nare not planar (that is, cannot be shown schematicallyin oneplane

\nwith no wires crossing) do not have duals.\n

zC\n

(b)\n

Fig. 3-17. Graphical procedures for finding dual of network: (a) origi\302\254

\nnal; (b) dual.\n

3-8. General network equations\n

Thus far we have progressed from analysis of very simple networks
\nto successively more complex network configurations. To systematize
\nour approach to the analysis of networks, consider an L-loopnetwork,
\nwhere L is any number. A representation of such a networkis shown

\nin Fig. 3-18. In this diagram, the circuit elements in eachbranchhave

\nbeen replaced by a straight line for simplicity. The effectsofmutual
\ninductance are not indicated but are assumed to be present.\n

Consider loop 1. This loop may contain resistance, inductance, and
\ncapacitance in any one or all of the branches that makeup the loop

\nLet\n

Rube the total resistance in loop 1.\n

Ln be the total inductance in loop 1.\n

Su be the total elastance of loop 1.\n
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We use elastance instead of capacitance here because elastance terms
\nadd directly for a series circuit, while capacitance terms combine as\n

J_ = i + i + i+ +i\n
e\342\200\236 c,

^
c,

+ c,+
+

c.\n

There will be voltage drops in loop 1 producedby currentflow in loop 2,

\nin loop 3, loop 4\342\200\224in fact, all loops in the general case. Rather than
\nspecialize on loop 1, consider the effect of currents in the jth loopon\n

(*\342\226\240)\n (s!\n G)\n (Ri\n

(h)\n (a)\n (a)\n (A)\n

Csi\n (s)\n (h)\n (a)\n

Fig.3-18. L-loop network.\n

voltage in loop k, where j and k are any integers from 1 to L. For
\nthese two loops, let Ry = the total resistance commonto loopsk and

\nj; Lkj
\342\200\224the total inductance (including mutual) common to loops k

\nand j; Skj
= the total elastance common to loopsk andj. The voltage

\ndrop in loop k produced by current ij is\n

Rk/ij + Lkj + Skj
J

ij dt
(3-42)\n

At this point, we will adopt a special notation forequationsof this form

\nby letting the following equation be the equivalent of Eq. 3-42.\n

(^Rkj

+ Lkj ^
+ Skj J dt^ ij =

dkjij (3-43)\n

This symbolism implies that the variable ij is operated upon by mul\302\254

\ntiplication by Rkj, multiplication by Lkj and differentiation, and finally,

\nmultiplication by Skj and integration. All three operations are sum\302\254

\nmarized in the symbol ajy.\n

The total voltage drop in loop k will be found by successivelycon\302\254

\nsidering loop k and the currents flowing in every other loop. Math\302\254

\nematically this is done by letting j have all values from 1 to L. This

\ntotal voltage drop must be equal to the total voltage risefrom active

\nsources within loop k, which we write as vk. Then by Kirchhoff\342\200\231s volt-\n
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age law, we have\n

(3-44)\n

There remains only to repeat this processfor all loops, by letting k

\nhave all values from 1 to L. Thus the most generalformforKirchhoff\342\200\231s

\nvoltage law for an L-loop network is\n

k = 1, 2, ..., L\n (3-45)\n

The expansion of this concise equation is the followingset of equations.\n

ffluti + diiii *b ciiiiz + ... + flihiv
= V\\

\n\342\200\234b022^2 \342\200\234b023^3 + \342\200\242\342\200\242\342\200\242+ oul^l =
t>2\n

(3-46)\n

Oilii ~b Oi2*2 + Oi3*3 + ... -b \302\256ii*i
=

Vl\n

It is helpful to arrange these equations given abovein the form of a

\nchart (or schedule) in which the a-coefficientsare emphasized.Sucha
\nchart is shown below.\n

Eq.\n

1\n

2\n

L\n

Voltage\n

Hi\n

v2\n

vL\n

Coefficient of\n

%\\ %2 Z$ Z5 \342\200\242\342\200\242\342\200\242 Z jj\n

an\n an\n ^13\n an\n fliB\n 011,\n

Cl 21\n a 22\n 0 23\n 024\n 026\n . . .\n 02Z\n

. . .\n . . .\n . . .\n . . .\n . . .\n . . .\n . . .\n

CIli\n 0,L2\n 0 L3\n 0 L4\n 0 L5\n dLL\n

If the loop currents are all assumed positive in the samepathdirec\302\254

\ntion, clockwise for example, then all an terms are positiveand all
\na,jk(j k) terms are negative. In actual problems, of course, many

\nof the a-coefficients are zero.\n

Example 8\n

A two-loop network is shown in Fig. 3-19. In this network there are

\ntwo sources of voltage and no mutual inductance. The Kirchhoffvolt\302\254

\nage law is\n

2\n

j 8831\n

Q'kj'ij
\342\200\224

Via\n k = 1, 2\n
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Ri R3 L3
c3\n

Fig. 3-19. Two-loop network.\n

or in expanded form,\n

ffllt'l \"t* duti =
V\\f dull -f- <222^2 =\n

The a-coefficients are found by inspection of the networkas follows,\n

an = (i2i -f- R2) + (Li -f- L2) + (<Si + S2)
j

dt\n

da = (Ri + Ri) + {Li + Li)^ + {Si + Si)
j

dt\n

a 12 = dn = \342\200\224
Ri

\342\200\224
Li

^
\342\200\224

Si
j

dt\n

Similarly, the voltage terms are recognized to be\n

t>i
=

v,\n<*>\n Vi = -vb\n

node A\n

The general equations for node analysis will be similar to those
\nfound for loop analysis, as might be expected from the principle of

\nduality. Consider a network with Nt nodes and only one part such\n

that there are N = Nt \342\200\2241 independ\302\254

\nent node pairs. Now each of the N

\nequations is written from Kirchhoff\342\200\231s

\ncurrent law in terms of current
\ndirected into and out of the node.

\nCurrents into the node, in turn, are
\nwritten in terms of node-to-node po\302\254

\ntentials and the parameters of the ele\302\254

\nments connected between the nodes

\nbeing considered. For elements con\302\254

\nnected as shown in Fig. 3-20, the ele\302\254

\nments may be replaced by an equiva\302\254

\nlent system made up as follows: (1) all

\nparallel capacitances replaced by an equivalent capacitance of value

\nCu,
= Ci -f Ci + ...; (2)an equivalent

resistance found by adding\n

Fig. 3-20. Elements appearing
\nbetween two nodes, j and k. The
\nC\342\200\231a,G's, and L\342\200\231smay be combined

\nto give an equivalent system.\n
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conductances as (?*, - l/Rkj = Gi + Gt + ...; and (3) an equivalent
\ninductance of value Ly, where 1/Lkj \342\200\224

l/Li + 1/1/2 + .... Applying

\nthis network simplification to the circuits from node k to allothernodes
\nfromy

= 1 toy = N, we have the equation\n

The expansion of Eq. 3-48 has the same form as theexpansionfor the

\nloop case, Eq. 3-46, with o\342\200\231sreplaced by 6\342\200\231s,i\342\200\231sby v\342\200\231s,and v\342\200\231sby i\342\200\231a.\n

In applying this equation to networks, it is not necessaryto simplify

\nthe network by combining elements. At node j, the capacitanceCjjis
\nthe sum of the capacitance connected to node j. The valueof Ckj is the

\nsum of the capacitances connected between node j and nodek. Similar
\ninstructions hold for inverse inductance 1/L and for conductance
\nG = 1/R. Coefficients can thus be found by inspection by simply
\nnoting which elements are \342\200\234hanging on\342\200\235or \342\200\234hanging between\342\200\235 the

\nvarious nodes.\n

If the same convention for positivecurrentis maintained in formu\302\254

\nlating all node equations for a network, the sign of bkj will be positive
\nwhen k = j, and negative when k j* j.\n

Example 9\n

A network with two independent node pairs is shown in Fig.3-21.
\nFor this network, Kirchhoff\342\200\231s current law is\n

N\n

lb-1, 2, ...,N (3-47)\n

>-x\n

which may be written concisely as\n

N\n

(3-48)\n

i-i\n

by letting bkj summarize the operations\n

-=\302\261=-Datum node

\nFig. 3-21. Two-node network.\n
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or\n

hM
=

ik,\n k = 1, 2\n

bnVi + &i2^2 =
i\\j\n &21^l b22V2 =

*2\n

Values for the 6-coefficients and the i\342\200\231smay be summarized in chart

\nform as follows.\n

Coefficient of\n

Eq. Current Vi v2\n

1\n ia\n Gl +
Cl7t

+
(k+t) jdt\n

2\n ib\n
1

**

\n^

w\n

1\n

\342\200\242ere\n
H\n

l\n
+6r2 + (Ci + C2 dt\n

3-9. The solution of equations by determinants\n

Determinants are the mathematical tools we will use for systematic
\nsolution of simultaneous equations of the type derived in the last sec\302\254

\ntion. The array of quantities with straight line brackets oneitherside,\n

d 12\n Ol3\n \302\256i\302\273\n

\302\25621\n &22\n a23\n tt2\302\273\n

dnl\n On 2\n dni \342\200\242\342\200\242\342\200\242\ndfin\n (3-50)\n

is known as a determinant of ordern. Quantitiesin horizontal lines form

\nrows, and quantities in vertical lines form columns. Sucha deter\302\254

\nminant is square, having n rows and n columns. Each of the n2 quan\302\254

\ntities in the determinant is known as an element. Element positionin
\nthe determinant is identified by a double subscript, the first subscript
\nindicating row and the second indicating column (numbered from the
\nupper left-hand corner). Elements along the sloping line extending
\nfrom au to a\342\200\236\342\200\236form the principal diagonal of the determinant.\n

A determinant has a value which is a function of the valuesof its

\nelements. In finding this value, we must make use of rulesfor expan\302\254

\nsion of the determinant in terms of the elements. Second-and third-
\norder determinants have expansions that are familiar from studies in

\nelementary algebra. Expansions for determinants of order higher than
\nthe third are conveniently made in terms of minors.\n

The minor of any element of a determinant qp is the determinant\n
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which remains when the column and row containing a#, are deleted.
\nIn terms of the third-order determinant,\n

A =\n

the minor for an, for example, is\n

An =\n

Oil\n 012\n O13\n

021\n 022\n 023\n

081\n 032\n 033\n

is\n

022\n 023\n

032\n 033\n

(3-51)\n

(3-52)\n

A minor of the element a,* multipliedby (\342\200\2241),+* is given the name

\ncofactor. The cofactor sign is thus foundby raising (
\342\200\224

1) to the power
\nfound by adding the row and the column,j + k as\n

(cofactor)
= (

\342\200\224
l),+fc(minor) (3-53)\n

Since, according to this rule, the cofactorsignsalternatealongany row

\nor column, the proper cofactor sign can be determined by \342\200\234counting\342\200\235

\n(plus, minus, plus, etc.) from a positive an position to any element,

\nproceeding along any horizontal or vertical path.\n

Expansion of a determinant in terms of minors (or cofactors)con\302\254

\nsists of successive reduction of determinant order. A determinant of

\norder to is equal to the sum of the product of the elementsof any row

\nor column multiplied by their corresponding (to
\342\200\224

1) order cofactors.

\nApplying this rule to the expansion of the determinantof Eq. 3-51

\nalong the first column gives\n

A \342\200\224
flxiAn

\342\200\224
TO21A21 + O31A31\n (3-64)\n

\342\200\224
an\n

022\n

O32\n

023\n

O33\n

\342\200\224a 21\n

a 12\n

032\n

Ol3\n

O33\n

+ \302\25631\n

a 12

\n022\n

Ois\n

O23\n

There are 2to equivalent expansions of the determinant about the to

\nrows or to columns. The minor determinants can, in turn, beexpanded
\nby the same rule and the process continued until the valueofA is given

\nas the sum of to! product factors.\n
The facts about determinantsthat we have just reviewed are essen\302\254

\ntial in solving simultaneous equations of the form\n

On*\342\200\231i\"I\" Oi2*2 + 013*3 + ... + au.iL\342\200\224
Vi\n

Oli*i -|- o 1,2*2 \342\200\234I-Oisi\342\200\231sH- ... -f\" a Lift l \342\200\224
Vl\n

that have resulted from application of Kirchhoff\342\200\231s voltage law (and

\nsimilar equations from the Kirchhoff current law). The solution to\n
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such simultaneous equations is given by Cramer\342\200\231s rule as\n

i \342\200\224^1\n
\342\200\234

T\n
12 =\n

D,\n
\342\226\240lL \342\200\224\n

Dm\n
(3-55)\n

where A is the system determinant given as\n

flu\n a 12\n . . . au,\n

A =\n
0> 21\n \302\25622\n . . . a-tL\n

aLi\n Oz,2\n ... Oll\n (3-56)\n

which must be different from zero for the solutions ix, iit ..., i\302\273to be

\nunique, and Dj is the determinant formed by replacingthe jth column

\nof a-coefficients by the column vit Vz, ..., vn.\n

With Cramer\342\200\231s rule and the method of expansion by minors, simulta\302\254

\nneous equations of the form of Eq. 3-46 can be solved.For a third-

\norder equation, the solution for t\342\200\230iis\n

or\n

Similarly,\n

ii =\n
Di ViAn

\342\200\224
V2A21 4\" V3A31\n

(3-57)\n
A A\n

ii =\n An A2i , Asi\n

T
1 \342\200\234

\"a
+

T
\342\200\235*\n (3-58)\n

ii =\n
A21 , A22 A23\n

\342\200\234

A_\342\200\2351
+

\"A V*~TV*\n
(3-59)\n

and so on. The form of theseequationsis greatly simplified if all v\342\200\231s

\nexcept one are zero, corresponding to only one driving voltage source.\n

Example 10\n

For a certain three-loop network, the followingequationsare given.\n

5ii
-

2i%
- 3t> = 10

\n-2it 4- 4\302\273,
- 1it = 0\n

\342\200\2243ti
\342\200\224

It* -|- = 0\n

From Cramer\342\200\231s rule we write the solution for t'i as\n

10\n

4 -1

\n-1 6\n

-0\n
-2 -3

\n-1 6\n
4-0\n

-2 -3

\n4 -1\n

5 -2 -3
\n-2 4 -1
\n-3 -1 6\n

230\n

43\n
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-(+10)\n

-2\n

-3\n

A\n

-1\n

6\n 150

\n43
\342\200\231\n

+ (10)\n
-2\n

-3\n

A\n

4\n

-1\n 140\n

43\n

3-10. Resistive network analysis\n

For networks restricted to contain only resistive elements, the
\na-coefficients in Eq. 3-46 become resistance terms as\n

ay \342\200\224>
Rkj\n

and the 6-coefficients become conductance terms as\n

bkj
\342\200\224\342\226\272

Gkj\n

Under this restriction, we can postpone our questions relatingto the
\nmanipulation of a-coefficients and 6-coefficients which include the

\noperations of integration and differentiation.The general form of

\nKirchhoff\342\200\231s voltage law equations for the resistive case is\n

L\n

^
Rujij =

vk, k = 1, 2, ..., L (3-60)\n

j-i\n

where R,-,- is the total resistance in loop j, and Rkj is the total resistance

\nin common to loop j and loop k. If the loopsarealldrawn in the same\n

I\342\200\224VW\n

1 volt\n

VW\n

VW\n

\342\226\240AAA/\342\200\224i\n

()l volts*''\n

-AAA/\342\200\224\n

0 |* 0\n
-AAA/\342\200\224\n

0\n

Fig. 3-22. Resistive network analyzed in example: values of resistance\n
in ohms.\n

direction (say clockwise), then Rjj is positive and Rkj is negative. As

\nan example, consider the network of Fig. 3-22. For this example,the
\nKirchhoff voltage equations are summarized in the following chart,\n
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where the first row is the equivalent of the equation\n

0 \342\200\224
4i\\

\342\200\224
ij + Otj \342\200\224

~l\342\200\234Ots H- 0*\302\253-I- 0t7 \342\226\240+\342\226\240Oit 4\" 0i>\n

Eq. Voltage Coefficient of\n

**\n tz\n *4\n *5\n *\302\253\n *7\n is\n *9\n

1\n 0\n =\n 4\n -1\n 0\n -1\n 0\n 0\n 0\n 0\n 0\n

2\n 1\n =\n -1\n 5\n -1\n 0\n -1\n 0\n 0\n 0\n 0\n

3\n 0\n =\n 0\n -1\n 4\n 0\n 0\n -1\n 0\n 0\n 0\n

4\n -1\n =\n -1\n 0\n 0\n 5\n -1\n 0\n -1\n 0\n 0\n

5\n 0\n =\n 0\n -1\n 0\n -1\n 4\n -1\n 0\n -1\n 0\n

6\n 0\n =\n 0\n 0\n -1\n 0\n -1\n 5\n 0\n 0\n -1\n

7\n 1\n =\n 0\n 0\n 0\n -1\n 0\n 0\n 4\n -1\n 0\n

8\n 0\n =\n 0\n 0\n 0\n 0\n -1\n 0\n -1\n 5\n -1\n

9\n 0\n =\n 0\n 0\n 0\n 0\n 0\n -1\n 0\n -1\n 4\n

Several observations of importance can be made from this chart.\n

(1) \tThe elements of the chart are the elements of the system deter\302\254

\nminant. (2) The elements of the princi\302\254

\npal diagonal are positive; all others are

\nnegativeor zero. (3)Thereisasymme\302\254

\ntry about the principal diagonal. This

\nsymmetry and the sign rule always

\napply when loops are drawn in a com\302\254

\nmon direction. This characteristic is

\nof value in checking equations.\n
The second example will illustrate

\nformation of node equations for resis\302\254

\ntive networks. A network to be ana\302\254

\nlyzed on the node basis is shown in
\nFig. 3-23. The chart equivalent of the six node-pair voltageequations
\nis shown below.\n

rig. 3-23. Resistive network
\nanalyzed on node basis in example:
\n\342\226\274aloesof resistance in ohms.\n

Eq. for Coefficient of\n

node: Current vm p\302\273 ve v, 9/\n

a\n 0\n 5/2\n -1\n 0\n 0\n 0\n -1/2\n

6\n 0\n -1\n 2\n -1\n 0\n 0\n 0\n

c\n 0\n 0\n -1\n 5/2\n -1\n 0\n -1/2\n

d\n 0\n 0\n 0\n -1\n 2\n -1\n 0\n

e\n 1\n 0\n 0\n 0\n -1\n 5/2\n -1/2\n

f\n 0\n -1/2\n 0\n -1/2\n 0\n -1/2\n 3/2\n
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FURTHER READING\n

For discussions of the formulation of equilibriumequationsfor net\302\254

\nworks, see Johnson\342\200\231s Mathematical and Physical Principles of Engi\302\254

\nneering Analysis (McGraw-Hill Book Co., Inc., New York, 1944),
\npp. 45-67, or Electric Circuits by the Electrical EngineeringStaff at
\nMIT (John Wiley & Sons, Inc., New York, 1940),pp. 112-138.More

\nadvanced treatments are contained in Gardner and Barnes, Transients
\nin Linear Systems (John Wiley & Sons, Inc., New York, 1942),pp.
\n25-49, and in Weber\342\200\231s Linear Transient Analysis (John Wiley & Sons,
\nInc., New York, 1954), Chap. 2. The principle of duality is discussed
\nin many texts, for example those by Johnson and by Gardnerand
\nBarnes cited above.\n

On the subject of writing circuit equations for magneticallycoupled
\ncircuits, see Kerchner and Corcoran, Alternating-Current Circuits

\n(John Wiley & Sons, Inc., New York, 1951), pp. 222-230,orLePage
\nand Seely, General Network Analysis (McGraw-Hill Book Co., Inc.,
\nNew York, 1952), pp. 102-110. Further discussion of determinants
\nmay be found in many texts in mathematics, for example in Pipes\342\200\231

\nApplied Mathematics for Engineers and Physicists (McGraw-Hill Book
\nCo., Inc., New York, 1946), pp. 69-76, in Wylie\342\200\231s Advanced Engineer\302\254

\ning Mathematics (McGraw-Hill Book Co., Inc., New York, 1951),
\npp. 573-579, and in Guilleman\342\200\231s The Mathematics of Circuit Analysis

\n(John Wiley & Sons, Inc., New York, 1949), Chap. 1.\n



64\n NETWORK EQUATIONS\n Chap.3\n

PROBLEMS\n

3-1. For the four networks shown in the figures, formulate the

\nKirchhoff voltage equations. For parts a, b, and c, use the loops indi\302\254

\ncated; for part d, select four appropriate loops.\n

*2\n

3-2. In the network shown, we are to write equationsthat will
per\302\254

\nmit the currents in the inductors to be found. How
many simultaneous

\ndifferential equations are required to describe the system? Write the

\nequilibrium equations on the loop basis. Discuss.\n

L\\ L2 \302\24313\n \302\2731\n

pOp\n

v2\n

pOp\n

t\302\2733\n

pOp\n

ic!
-\n

^C2
\342\200\234\n

-c3 -\n

Prob. 3-3.\n

3-3. In the network shown, the problem is to find the current

\nthrough the capacitors. How many simultaneous differentialequations
\nare required to describe the system? Write the equilibrium equations
\non the loop basis. Compare conclusions with those found for Prob.3-2.\n
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3-4. Formulate a set of node equa\302\254

\ntions to describe the network shown
\nin the figure.\n

3-5. The network shown in the
\nfigure is known as a ladder network

\n(becauseof its physicalappearance).
\nFormulate a set of differential equa\302\254

\ntions on the loop basis. Suppose that
\nthe ladder is extended indefinitely

\nby alternately adding inductors and

\ncapacitors. Compare the number of
\nloops and nodes for each addition to\n

h\n

3-6. When the values of the parameters are properlyselected,the
\nnetwork shown above is called a Butterworth low-pass filter. For\302\254

\nmulate a set of differential equations on the basis (loopornode)that

\nresults in the smaller number of simultaneous differential equations.\n

3-7. The network shown in the figure is of a type designedby the

\nDarlington insertion-loss method. Repeat Prob. 3-6 for this network.\n

3-8. The network shown in the figure represents the interstagenet\302\254

\nwork of some vacuum tube amplifiers. Repeat Prob. 3-6 for this
\nnetwork.\n

Prob. 3-8.\n



66\n NETWORK EQUATIONS\n Chap. 3\n

3-9. The network shown in the figure represents the equivalentnet\302\254

\nwork of a two-stage vacuum tube amplifier. Repeat Prob. 3-6 for this
\nnetwork.\n

3-10. The network of this problem represents a bridged-Tfilternet\302\254

\nwork (the inductor forms the bridge across the T). Repeat Prob.3-6

\nfor this network.\n

3-11. For the double-Tnetwork shownin the figure, repeat Prob. 3-6.

\n3-12. The network shown in the figureis a symmetrical lattice filter.

\nRepeat Prob. 3-6 for this network.\n

La\n

3-13. Consider two magnetically coupled coils with current in each

\ncoil. Show that if the currents are in such a direction that the two

\nfluxes aid, the sign of M is positive, while if the fluxes oppose, the sign
\nof M is negative.\n
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3-14. The circuit shown below is identical to that usedin Example

\n4, Fig. 3-10, but the loops are chosen differently than in theexample.
\nFor this network formulate the differential equations on the loopbasis.
\nCompare the number of terms in the equations that result with those

\nfound in Example 4.\n

R i\n

3-16. A network with mutual inductance is shown below,with the

\ncoil winding sense indicated by dots. Write the Kirchhoffvoltage
\nequations for this network. Note that Mu = 0.\n

3-16. Write the loop basis network equations for the systemshown

\nin the accompanying figure.\n

Prob. 3-16.\n
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3-17. For the network shown, (a) find the dual and (b) give element

\nvalues on the schematic to make the network equationsfor the duals

\nhave identical coefficients.\n

Prob. 3-17.\n

3-18. Find the dual of the networkof Prob.3-5.\n

3-19. Find the dual of the network of Prob. 3-8.\n

3-20. Find the dual of the network of Prob. 3-9.\n

3-21. Find the dual of the network of Prob. 3-10.\n
3-22. Thenetwork of Prob. 3-12 appears to be nonplanar (in which

\nease it does not have a dual). For this particular network,however,

\nthe crossover point can be removed so that the network is planar,\n

(a) \tDraw the equivalent planar network, (b) Find the dual of the

\nplanar network.\n

3-23. Solve the following system of equationsforilf i2, and i3, using

\ndeterminants.\n

3ti - 2i2 + Oi,= 5
\n-2ix + 9u- 4i, = 0

\nOil
\342\200\224

4i2 + 9i, = 10\n

Answers. ix = 405/159, i2 = 210/159, i, = 270/159.\n
3-24.Solve the following system of equations for the three un\302\254

\nknowns, ii, it, and i, by determinants.\n

8ii - 3i2- 5is= 5\n

\342\200\2243ii + 7it \342\200\224
Oij

= \342\200\22410

\n\342\200\2245ix+ 0i2 + Hi, = -10\n

Answers. t\\
= -295/342, i2 = -615/342, i, = -445/342.\n

3-26. Evaluatethe following determinants by minors.\n

2\n -1\n 0\n 0\n (b)\n 1\n -2\n 0\n 3\n 4\n

-1\n 3\n -2\n 0\n -1\n 4\n -1\n 1\n 0\n

0\n -2\n 3\n -1\n 2\n 0\n 1\n 1\n 3\n

0\n O\n -1\n 2\n 4\n -2\n 4\n 2\n -1\n

3\n 1\n 3\n -2\n 1\n

Answers, (a) +9, (b) +133.\n
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3-26. Consider the equations\n

3x \342\200\224
y

\342\200\2243z \302\253\342\226\2401

\nx
\342\200\224

3y + 2 = 1

\n4x + Oy
\342\200\224

5\302\253= 1\n

(a) Is (4, 2, 3) a solution? Is ( \342\200\224
1, \342\200\2241,\342\200\2241)a solution? (b) Can these

\nequations be solved by determinants? Why? (c) What can you con\302\254

\nclude regarding the geometry represented by these equations?\n
3-27. By inspectingthe networks in the accompanying figure

\n(without writing the circuit equations), write the loop basis system
\ndeterminant. Element values are in ohms and volts.\n

Answer.\n 6 -3\n Answer.\n 7 -4 -3\n
-3 6\n

}\n
-4 11 -3\n

-3 -3 8\n

3-28. Repeat Prob. 3-27 for the networks shown in the figure.\n

Answers.\n
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3-29. By inspecting the network shown (without writing the circuit
\nequations), write the node basis system determinant.\n

node 1 node 2\n

Prob. 3-29.\n

Answer.\n 9\n -1\n

20\n 5\n

-1\n 17\n

5\n 10\n

3-30. In the network graph shown in the figure,each branch con\302\254

\ntains a 1-ohm resistor. Four branches, as shown, contain a 1-volt
\nvoltage source. Analyze this network on the loop basis to obtaina set
\nof equations. Simplify by combining like terms in any one equation.
\nThe number inside each square is the loop number.\n

2h 2h\n

3-31. In the network graph shown in the figure,eachinteriorbranch

\ncontains an inductor of 1 henry and each exterior branch an inductor
\nof 2 henrys. A 1-volt source is located in one branch as shown. The

\nnumber inside each square is the loop number. Analyze the network

\non the loop basis to obtain a set of equations. Simplifyby combining

\nlike terms in any one equation.\n
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3-32. In the network graph shown, R \342\200\224Ri
\342\200\224

1 ohm, and one

\nbranch contains a current source of 1amp. Analyze the network on the

\nnode basis to obtain a set of equations. Simplify by combininglike
\nterms in any one equation.\n

R R\n

Prob. 3-32.\n

3-33. Repeat Prob. 3-32 with external branch resistorsof R = 2

\nohms and interior branch resistors of Ri = 1 ohm.\n



CHAPTER 4\n

FIRST-ORDER DIFFERENTIAL EQUATIONS\n

4-1. Definitions for differential equations\n

In this chapter, we will study a number of techniquesfor the solu\302\254

\ntion of the simplest differential equations, those of first ordersuchas\n

a\302\260
^

+ axi = 0 (4-1)\n

This equation is of first order because the highest-orderedderivative
\nis the first. Thus differential equations are classified by the highest-
\nordered derivative they contain. An nth order differential equation
\nmay be written\n

dni dn~H\n

3F
+

dF7'\n

di\n

+ . . \342\200\242+ Un-l
^

+ dni \342\200\224
V(t)\n (4-2)\n

for equations of the first degree. The degreeofan equation is the power

\nto which the highest-ordered derivative appears after all possible
\nalgebraic reduction.\n

In Eq. 4-2, i is the dependentvariable and t is the independent var\302\254

\niable. When v(t) represents an energy source, it is knownas theforcing

\nfunction. The dependent variable i, which is to be found,is calledthe

\nresponse or solution. The differential equation is linear if the dependent
\nvariable and all its derivatives are of first degree. All other equations
\nare nonlinear. A differential equation is said to be ordinary if it con\302\254

\ntains only total (and not partial) derivatives. For the type of circuits
\nassumed in Chapter 1, the differential equations that describe net\302\254

\nworks will all be ordinary, linear differential equations with constant
\ncoefficients. It should be remembered that the techniques we will

\ndiscuss will not, in general, apply to nonlinear differential equations.\n

Equation 4-2 is said to be homogeneous when v(t)
= 0; if v(t) is not

\nzero the equation is nonhomogeneous.\n

4-2. General and particularsolutions\n

In electrical problems, the network is assumed to be initiallyin a
\nknown state with all voltages and currents fixed. At an instant of
\ntime designated t * 0, the system is altered in a manner that can be

\nrepresented by the opening or closingof one or more switches. The

\nobjective of analysis is to obtain mathematicalequationsfor current,\n

72\n
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voltage, charge, etc. in terms of time measured from the instant
equi\302\254

\nlibrium was altered by the switching.\n
In the network shown in Fig.4-1,the switch K is changed from

posi\302\254

\ntion 1 to position 2 at the reference time t * 0.* After the
switching

\nhas taken place, the Kirchhoff volt\302\254

\nage equation is\n

La
+ JK\n 0\n (4-3)\n

This is a first-order linear differen\302\254

\ntial equation with constant coeffi\302\254

\ncients. It can be solved if the vari\302\254

\nables can be separated. This may be accomplished by rearranging Eq.\n

4-3 in the form\n

t L\n
(4-4)\n

With the variables separated, the equation can be integrated to give\n

In i - -
\302\243

t + K (4-5)\n

where In designates that the logarithmisto the base e = 2.718 To\n

simplify the form of this equation, the constant K is redefinedin terms

\nof the logarithm of another constant as\n

K = In k (4-6)\n

Equation 4-5 may then be written\n

In i = In e~Rt'L + \\nk (4-7)\n

since, by the definition of a logarithm, In e* = x, or logio10* = x.

\nAlso, from logarithms we know that\n

In y + In z \342\200\224In yz (4-8)\n

so that Eq. 4-7 may be written\n

In i = In (ke~M/L) (4-9)\n

With the equation in this form, the antilogarithm may be taken to
\ngive,\n

i = ke~Rt/L (4-10)\n

*It is assumed that the switch is a \342\200\234make-before-break\342\200\235 type and that the
\ntransition from position 1 to position 2 does not causean interruption of the cur\302\254

\nrent i.\n
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Redefining the constant K as the logarithm of another constanthas
\nsimplified the form of the solution. Equation 4-10 is the network

\nresponse or solution. This solution is free of derivatives and expresses
\nthe relationship between the dependent and independent variables.
\nThat it is the solution can be verified by substituting Eq. 4-10into

\nEq. 4-3.\n

In the form of Eq. 4-10, the solutionis known as the general solution.

\nIf the constant of integration is evaluated, the solution is a 'particular
\nsolution. The general solution applies to any number of situations. A

\nparticular solution fits the specifications of a particular problem.\n
To evaluatethe constant k, we must know something new about the

\nproblem,such as any pair of values of i and t. In this particular prob\302\254

\nlem, we know that the current after switching has taken placemustbe

\njust the same as before switching because of the inductorin the cir\302\254

\ncuit.* Thus at t = 0, we know that the currenthas the value\n

i(0)
= | (4-11)\n

This value is known as the initial condition of the circuit.
Substituting

\nthis required condition into Eq. 4-10 gives\n

Z = jceo = k (4-12)\n
XI\n

The particular solution of this example becomes\n

i = Z
e~Rt/L (4-13)\n

MX\n

4-3. The integrating factor\n

Consider a nonhomogeneous equation written\n

I + \302\253-\302\253\n

where P is a constant and Q may be a function of the independent

\nvariable \302\243or a constant. The equation is not altered if every term is
\nmultiplied by the same factor. Suppose that we multiply Eq. 4-14by

\nthe quantity ept, which will be known as an integratingfactor,f There

\nresults\n

di\n
ept

jt
+ Piept = Qept (4-15)\n

* This is an application of the principle of constant flux linkages discussed in

\nArt. 1-7.\n

f If P is a function of time, the properintegratingfactor is efPdt. See Prob. 4-5.\n
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That this multiplication by a factor \342\200\234pulled out of the hat\342\200\235has made

\npossible the solution of Eq. 4-14 can be recognizedby recalling the

\nequation for the derivative of a product:\n

d(xy) = xdy + y dx\n (4-16)\n

By letting x\n = i and y = ept, we have\n

(4-17)\n

which is the\n left-hand side of Eq. 4-15; thus we have\n

(4-18)\n

This equation may be integrated to give\n

iept =
/ Qept dt + K\n (4-19)\n

or\n i = e~pt / Qeptdt + Ke~pt\n (4-20)\n

The first term in Eq. 4-20 is known as the particularintegral;the

\nsecond is known as the complementary function. Note that the partic\302\254

\nular integral does not contain the arbitrary constant, and the
comple\302\254

\nmentary function does not depend on the forcing function Q.\n

For any network problem, P will be a positive constantdetermined
\nby the network parameters, and Q will be either the forcingfunction
\nor a derivative of the forcing function. In the limit, the complemen\302\254

\ntary function must approach zero, because P is a positive constant;
\nthat is\n

lim Ke~pt = 0 (4-21)\n
t\342\200\224\342\226\272oo\n

Thus the value of i as time approaches infinity is\n

i( oo)
= lim i(t) = lim e~PtJ Qept dt (4-22)\n

t > 00 t \342\226\27200\n

When the particular integral does not approach zero in the limit,its
\nvalue at t = \302\253is spoken of as the steady-state value. For this case, the
\nparticular integral must contain no exponential factor or otherwise it
\nwould reduce to zero. In electrical engineering, the steady-state values
\nmost frequently encountered have the forms\n

i = A sin {wt + <j>) and i = a constant (4-23)\n

Let the generalsolutionofEq. 4-20 be written as the sum of the two
\nparts of the solution, letting iP be the particular integral and ic be the

\ncomplementary function; thus\n

\342\200\242\342\200\242t \342\200\242\n

% == Zp I\342\204\242%c\n (4-24)\n
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If iP has either of the forms of Eq. 4-23,it may be written as a steady-
\nstate value, designated i\342\200\236.A convention has been established for call\302\254

\ning the remaining term ic the transient portion of the solution.By

\nthis convention, the response is made up of two separate parts:\n

i =
i\302\273+ it (4-25)\n

The steady-state value is regarded as havingbeenestablishedat t =
0,

\nand the transient must adjust itself, mathematically, to account for
\nthe response at t = 0 and all other times. This isan arbitrary division

\nof the solution which nevertheless has utility as a conceptualaid. The

\ndivision of solution is made purely by convention; the individualelec\302\254

\ntron in a current has no way of knowing whether it is in the transient

\nor the steady-state division of the current.\n

Example 1\n

To illustrate the transient and steady-state portions of the solution
\nto a problem, consider the network of Fig. 4-1 with the switchmoved

\nfrom position 2 to position 1 at t = 0. The Kirchhoffvoltageequation

\nis, after division by L,\n

di R . V

\ndt+ L% L\n

Comparing this equation to Eq. 4-14, we see that\n

t>
R a n V

\nP =
j-

and Q \342\200\224\n

The solution to this equation is given as Eq. 4-20which becomes for

\nthis problem,\n

i = e\n
r-Rt/L\n

(\n

eRt/L fa + Ke~Rt/L\n

Evaluating the integral, we obtain\n

i =
^ + Ke~Rt/L\n

as the general solution. If the current in the networkbeingconsidered

\nis zero before the switching action, it must be zero afterward because
\nof the inductor. The requirement that i(0) = 0 leads to the particular

\nsolution\n

\342\200\242=

^
(1

-
e~Ri/L) (4-26)\n

The steady-state and transient divisions of this current are shown in\n
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Fig. 4-2 along with their sum or the

\nportion (V/R) is established at

\nt =
0, and the transient term is

\nadjusted such that there is zero cur\302\254

\nrent at t = 0.\n

4*4. Time constants\n

The particular solution of Eq. 4-3
\ngiven by Eq. 4-13 may be written in
\na nondimensional form as\n

Y
= e~t/T (4-27)

\n1 0\n

actual current. The steady-state\n

Fig. 4-2. Transient and steady-
\nstate parts of the solution of

\nExample 1.\n

where 7o is the initial value of current at t = 0 and T =
(L/R) is the

\ntime constant of the system. The form of Eq. 4-27 is the solutionof all

\nhomogeneous first-order differential equations, where 7o and T have
\ndifferent values for different problems. The physical significance
\nattached to the time constant is of great importance in electrical
\nengineering.

When t \342\200\224
T, by Eq. 4-27,\n

t\\T)\n

70\n

= e-1 = 0.37\n (4-28)\n

or i(T) = 0.3770 (4-29)\n
In other words,the currentdecreases to 37% of its initial value in one
\ntime constant. By a similar computation, it can be shown that the
\ncurrent decreases to approximately 2% of its initial value in four time
\nconstants. A plot of if 70 against t/T is shown in Fig.4-3.\n

Fig. 4-3. Normalized exponential curve for <r\342\200\230/r\n
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The solution of the first-order nonhomogeneous differential equation
\nwith a constant forcing function is of the form of Eq. 4-26,which may

\nbe written in nondimensional form as\n

\342\200\242\n

i- = 1 _ e-t/r (4.30)\nl o\n

This function is plotted in Fig. 4-4. When t =
T,\n

i(T)
= (1

- 0.37)/o - 0.63/o (4-31)\n

or the current has reached 63% of its steady-state value in one time

\nconstant. Similarly, the current will increase to approximately 98%
\nof its final value in four time constants.\n

Fig. 4-4. Normalized exponential curve for (1 \342\200\224e t/T).\n

The time constant is useful in comparing the behaviorof one system

\nwith that of another. It is not possible to compare timesat which the

\ntransient disappears (or reaches its steady state) since, mathematically
\nat least, this requires infinite time. However, the time interval for an

\nexponential function to decrease to 37 % of its initial value(orincrease

\nto 63% of its final value) is conveniently measured and usedasa
\nstandard for comparison. As an example, consider a series RC circuit
\nwhich has a general solution,\n

i =
hfi~i/RC\n

The time constant for the circuit is T = RC. Supposethat R has the

\nvalue of 100 ohms and C is 1000jujuf; then T = 100 X 1000 X 10\342\200\234\342\200\234

\n- 0.1 Msec. However, if R = 1000 megohms and C \302\2731 /if, then

\nT1000 sec, or 17 min. For onecombinationof R and C, the current\n
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would decrease to 37 % of the initial value in the smalltime of 0.1 ^sec;

\nfor the other, the current would require about 17 min to decreaseto
\n37 % of the initial value.\n

In experimentally recording a transient, the accuracy of measure\302\254

\nment is often of the order of 1 or 2%. For this reason, a transient is

\nsometimes assumed to have disappearedwhen it reaches 2% of the

\nfinal value (as accurately as can

\nbe determined). Since the time to

\nreach 2% of the final value (or 98%
\nin the case of an increasing expo\302\254

\nnential) is four time constants, it is
\noften assumed that a transient dis\302\254

\nappears in four time constants.\n

This basis is sometimes usedto meas\302\254

\nure the time constant of a system.\n

4-5. Theprincipleof superposition\n

A series RL circuit with n series

\nvoltage sources is shown in Fig. 4-5.\n

To simplify the form of the differ\302\254

\nential equation, L is taken to be 1 henry. By the Kirchhoffvoltage
\nlaw, we have\n

di\n

^
+ Ri =

V\\{t) + t>2(t) + ... + vn(t) (4-32)\n

In terms of the general solution of a first-order nonhomogeneous
\ndifferential equation, given by Eq. 4-20, P = R, a constant, Q

= vi

\n+ t>2 + ... + vn and the solution is\n

i = e~Rt / (t>i + t>2 + \342\200\242\342\200\242\342\200\242+ vn)eRt dt + Ke~Rt (4-33)\n

As we have observed before, the particular integral depends on the
\nnature of the forcing function voltages and, for this reason, is giventhe
\nname forced response. On the other hand, the complementary function
\ndoes not depend on the forcing function (except that K is fixedby the

\nmagnitude of the forcing function at t \342\200\2240 and circuit conditions exist\302\254

\ning at that time). The complementary function is given the name
\nfree response. The total response can be thought of as madeup of two

\nparts\342\200\224forced and free. We now have three sets of terms definingthe
\ntwo parts of the solution of the differential equation.\n

particular integral and complementary function

\nsteady-state solution and transient solution
\nforced response and free response\n

Fig. 4-5. RL seriescircuitwith n

\nvoltage sources illustrating the super\302\254

\nposition theorem.\n
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All three sets are used in electrical engineering literature, and will be

\nused thioughout the text although our preference will be for the last
\nset.\n

Next, assume that all voltage sources except Vi(t), are removedand
\nreplaced by short circuits. The response under this condition is\n

ix
= e~Rt J vtf*1 dt + kxe~Ht (4-34)\n

If this experiment is repeated for each generator of the circuitof

\nFig. 4-5, the response will be similar to that givenin Eq.4-34.Suppose

\nthat the currents found in this manner are added together. Thissum

\nmay be written\n

ix + ia + \342\200\242\342\200\242\342\200\242+ in = e~Rt [J VieRt dt + / v<&Rl dt\n

+ ...+/ vneRt dt] + (kx + k2 + ... + kn)e~Rt (4-35)\n

Since each k is so far an arbitrary constant, we may set\n

K \302\253
kx + k2 + ... + kn (4-36)\n

Because R is a constant, the integral terms in Eq.4-35may be combined

\nto give\n

ix + ia + \342\200\242..+ in = e~Rt f (vx + t>2 + ... + vn)eRt dt + Ke~Rt\n

This equation is identical with Eq. 4-33 which was found for the

\ncombined forcing functions. In summary, the total responseofa linear

\nnetwork is identical to that found by considering each voltage source
\nalone with all other sources removed and replaced by short circuits
\nand then summing the individual responses. This is the applicationof
\na general rule known as the principle of superposition. This principle
\nholds for voltage sources arbitrarily located in more complex networks
\nand is of great importance in linear network theory. The fact that it
\ndoes not hold for nonlinear systems is the root of the greatdifficulty in

\nanalyzing such systems.\n

FURTHER READING\n

First-order differential equations are discussedby Fich in Transient

\nAnalysis in Electrical Engineering (Prentice-Hall, Inc., New York,

\n1951) under the heading of \342\200\234Classical Solution of Single-Energy

\nTransients,\342\200\235 pp. 36-66. See also Kurtz and Corcoran\342\200\231s Introduction

\nto Electric Transients (John Wiley & Sons, Inc., New York, 1945),
\npp. 15-30.\n
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PROBLEMS\n

4-1. In the circuit shown in the figure, the switchis changed from

\nposition 1 to position 2 at t = 0, a steady-statecurrent having pre\302\254

\nviously been established in the RL circuit. Find the particular solution
\nfor the current in the circuit. Answer, i =

(V/J?1)e~(Rl+B*)</z'\n

4-2. Replace the inductor in Fig. 4-1 with a capacitor,(a) Write

\nthe integral equation for the current in the system after the switch
\nis in position 2, assuming that the capacitor was charged to a voltage

\nequal to that of the source while the switchwas in position1. (b) Write

\nthe differential equation for the charge under the sameconditionsas\n

(a), (c) Solve for the charge as a function of time and evaluate the

\narbitrary constant. Answer to (c). q = CVert/RC\n

4-3. In the circuit shown, the capacitor Ci is chargedto a voltage

\n7o and at t = 0 the switch is closed. Solvefor the charge as a func\302\254

\ntion of time.\n

K\n

v0ipcx\n

\342\226\240AAAr\n

R\n

:C2\n

Prob. 4-8.\n

4-4. In the circuit of Prob. 4-2,supposethat the switch is changed

\nfrom position 2 to position 1 at t \342\200\2240 and that while in position 2 there
\nwas no charge on the capacitor. Find the charge as a functionof time.

\n4-5. We wish to multiply the differential equation\n

jt
+ P(t)i =

<2(fl\n

by an \342\200\234integrating factor\342\200\235 R such that the left-hand side of the equa\302\254

\ntion equals the derivative d(Ri)/dt. (a) Show that the required inte\302\254

\ngrating factor is R = eSFdt. (b) Using this integrating factor, find the
\nsolution to the differential equation that corresponds to Eq. 4-20.\n
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4-6. In the circuit shown in the accompanying figure, the switch

\nK is closed at t = 0, a steady-state having previously beenattained.
\nSolve for the current in the circuit as a function of time.\n

4-7. In the circuit shown, the voltage source followsthe law v(t)

\n=
Ve~at, where a is a constant. The switch is closedat t = 0. (a)

\nSolve for the current assuming that a R/L. (b) Solve for the cur\302\254

\nrent when a = R/L. Suggestion: Make use of 1\342\200\231Hospital\342\200\231srule for

\nindeterminant forms.\n

L\n

Prob. 4-7.\n

4-8. In the circuit shown, the switch is closedat t = 0 connecting

\na voltage source v(t) = V sin u>t to a series RL circuit. For this sys\302\254

\ntem, solve for the response i(t).\n

Prob. 4-8.\n

4-9. Show that the tangent to the curve i = 7oe_t/r at t = 0

\nintersects the time axis at t \342\200\224T. This will show that if the current
\ndecreasedat the initialrate,it would be reduced to zero value in one
\ntime constant. Similarly, show that the tangent to the curve i =
\n70(1

\342\200\224
e~t/T) at t = 0 intersects that line i =

70 at time t = T.\n
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4-10. In the network shown, the switch K is closedat t = 0. The

\ncurrent waveform is observed with a cathode ray oscillograph.The
\ninitial value of the current is measured to be 10 ma. The transient
\ndisappears in 0.1 sec. Find (a) the value of R, (b) the value

\nof C, and (c) the equation of i(t). Answers, (a) R = 104ohms,(b)

\nC = 2.5 Mf, (c) i = 10-2e~40*.\n

4-11. The circuit shown in the accompanying figure consists of a

\nresistor and a relay with inductanceL. The relay is adjusted so that

\nit is actuated when the current through the coil is 0.008amp. The
\nswitch K is closed at t = 0, and it is observedthat the relay is actuated

\nwhen t = 0.1 sec. Find: (a) the inductance L of the coil, (b) the equa\302\254

\ntion of i(t) with all coefficients evaluated. Answers, (a) L = 620
\nhenrys, (b) i = 0.01(1 \342\200\224

e-1**) amp.\n

4-12. A switch is closed at t = 0, connectinga battery of voltage

\nV with a series RC circuit, (a) Determine the ratio ofenergydelivered

\nto the capacitor to the total energy supplied by the sourceasa function

\nof time, (b) Show that this ratio approaches 0.50 as t \342\200\224>\302\260\302\260.\n



CHAPTER 5\n

INITIAL CONDITIONS IN NETWORKS\n

5-1. Initial conditions in individual elements\n

In the last chapter, we found that the generalsolutionof a first-

\norder differential equation contained an unknown designatedan arbi\302\254

\ntrary constant. For differential equations of higher order, the pattern
\nwill develop that the number of arbitrary constants equals the equation
\norder. If the unknown arbitrary constants are to be evaluated for
\nparticular solutions, other things must be known about the network

\ndescribed by the differential equation. We must form a set of simulta\302\254

\nneous equations, one of which is the general solution, with additional
\nequations to total the number of unknowns. The additional equations
\nare conveniently given as values of voltage, current, charge, etc., or
\nderivatives of these quantities at the instant network equilibrium is
\naltered by switching action, t = 0. Conditions existing at this instant
\nare known as initial conditions.\n

Before the switching action that alters networkequilibrium,the

\nelements of the network might have voltages across their terminalsor
\ncurrents through them as a consequence of past history of the driving

\nforces in the network. To evaluate initial voltages or currents, we

\nmust determine how each voltage and current changes when the net\302\254

\nwork is altered.\n

In many problems, conditions assumed to exist before switching

\naction takes place were, in turn, established by switching actionat
\nsome remote time in the past. Such voltages and currents in thenet\302\254

\nwork are said to be in the steady state.\n

We assume that switches act in zero time. To differentiatebetween

\nthe time immediately before and immediately after the closing of a
\nswitch, we will use \342\200\224and + signs. Thus conditions existing just
\nbefore the switch is operated will be designated as t(0\342\200\224), v(0\342\200\224) etc.,

\nconditions after as i\342\200\230(0+), v(0+), etc.\n

Before analyzing initial conditions in networks, we will study the
\naction of each different element at the instant equilibrium is altered.\n

The Resistor. In the ideal resistor, current and voltage are related
\nby Ohm\342\200\231s law, v = Ri. If a step input of voltage,shown in Fig. 5-1,

\nis applied to a resistor network, the current will have the samewave\302\254

\nform, altered by the scale factor (1 /R). The current througha resistor\n

84\n
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may change instantaneously if the voltage changes instantaneously.
\nSimilarly, voltage may change instantaneously if current changes
\ninstantaneously.\n

The Inductor. It was concluded in Art. 1-7, that the currentcannot

\nchange instantaneously in a system of constant inductance. Thus
\nclosing a switch to connect an inductor to a source of energywill not

\ncause current to flow at the initial instant, and the inductorwill act

\nas if it were an open circuit independent of the voltageat the terminals.

\nIf a current of value Io flows in the inductor at the instantswitching

\ntakes place, that current will continue to flow. For the initial instant,
\nthe inductor can be thought of as a current source of Io amp.\n

Vv\nb\342\200\231b\n

V\n

O' 6'\n

(V7R)\n

Tig. 6-1. Current and voltage relationships in a purely resistive\n

element.\n

The Capacitor. In Art. 1-6, proof was offered that the voltage can\302\254

\nnot change instantaneously in a system of fixed capacitance. If an
\nuncharged capacitor is connected to an energy source, a current will
\nflow instantaneously, since the capacitor will be equivalent to a short
\ncircuit. This follows because voltage and charge are proportional in a
\ncapacitive system, v = q/C, so that zero charge corresponds to zero
\nvoltage (or a short circuit). With an initial charge in the system,the

\ncapacitor is equivalent to a voltage source of value Vo
=

qo/C, where

\nqo is the initial charge.\n
These conclusions are summarized in Fig. 5-2. A similar chart of

\nfinal conditions for the special case of constant voltage sources is
\nshown in Fig. 5-3. These equivalent circuits are derived from the
\nrelationships\n

y d% J . yy\n

Vl
\342\200\224L \342\200\224r~and ic = C -r:

\ndt at\n

the derivatives having zero value in each case for invariant voltage
\nsources. The equivalent circuits for final conditions for L and C are
\nopposite to those for the initial conditions for these elements.\n

It is not always possible to interrupt a current instantaneouslyin
\na network by opening a switch. If an attempt is madeto open a switch\n



86\n INITIAL CONDITIONS IN NETWORKS\n Chap. 5\n

to disconnect an inductor from a voltage source, an arc will be estab\302\254

\nlished across the switch to permit the current to flow until the energy

\nof the magnetic field is spent.\n

Element Equivalent circuit\n

land initial condition) at t - 0+\n

R R\n

O
lQ\302\261

0\n

Vo-g-
V\302\260\n

Element\n

Equivalent

\ncircuit at t-co
\n[for voltage sources

\nof constant potential)\n

R\n

sc\n
-o\n

o-\n o o\n
oc\n

Tig. 5-2. Initial condition equivalent
\ncircuits for the elements.\n

Fig. 6-3. Final condition equivalent
\ncircuits for the elements for voltage
\nsources of constant potential.\n

5-2. Geometrical interpretation of derivatives\n

Consider the differential equation that describesan RL circuit con\302\254

\nnected to a constant voltage source:\n

Ljt+Ri=V (5-1)\n

This equation may be arranged in the form\n

a
-

i(F -iR) (5-2)\n

to show the relationship that must exist between current and thetime

\nderivative of current. If the switch connecting the voltage sourceto
\nthe circuit is closed at t = 0, the current in the systemat t = 0 must

\nbe zero. From Eq. 5-2, the initial value of the derivative is\n

It(0+)

=
~L <M>\n

Now the quantity di/dt is the slope of the requiredplotof current as a

\nfunction of time. Equation 5-3 tells us that thisslopeis positive
and

\nhas a magnitude V/L. For some small interval of time,thisslope must

\napproximate the actual curve found by solving Eq. 5-1. Assumethat\n
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the current increases linearly at the rate V/L to a new value i\\ at time

\nt\\. A second approximation to the curve of current as a functionof

\ntime may be made at this point by
\nusing Eq. 5-2 as\n

%
\302\253.)

-
J (V - hR) (5-4)\n

Continuation of this process, illus\302\254

\ntrated in Fig. 5-4, provides a graph\302\254

\nical interpretation of the solution

\nof a differential equation. The

\nsmallerthe time intervals arechosen,
\nthe more closely will the approximate curve approach the actual curve.\n

Just as the first derivative represents slope so the secondderivative
\nrepresents curvature or the rate of change of the slopewith time. Fig-\n

Fig. 5-4. Approximation of an actual
\ncurve by tangents to the curve.\n

Fig. 6-6. Curves corresponding to typical initial conditions:(a)

\nz(0+)
= 0, di/dt( 0+) = 0, dH/dP(0+) = K; (b) *(0+) = 0,

\ndi/dt(0+) = + K, dH/dt*(0+)= 0; (c) t'(0+) = K, di/dt(0+)\n
= 0, dH/dt*(0+) = 0; (d) z(0+) =

0, di/dt( 0+) =
+Kh\n

dH/dt*(0+) = -K2.\n

ure 5-5 shows several combinations of initialconditions,with the corre\302\254

\nsponding initial slope and curvature.\n

5-3. A procedure for evaluating initialconditions\n

There is no unique procedure that must be followedin solvingfor

\ninitial conditions. However, it is usually wise practice to solve first
\nfor the initial values of the variables\342\200\224currents or voltages\342\200\224and then

\nsolve for derivatives. The first step is essentiallyroutineand based

\non the equivalent circuits for t = 0+ given in Fig.5-2. In the second,

\nthe details and order of manipulation will be differentforeachdifferent\n
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network. A successful approach will not be obvious at all, a fact that

\nadds interest and offers a challenge in the solution of initial value

\nproblems.\n

Initial values of current or voltage may be founddirectlyfrom a

\nstudy of the network schematic. For each element in the network, we

\nmust determine just what will happen when the switchingactiontakes
\nplace. From this analysis, a new schematic of an equivalent network

\nfor t = 0+ may be constructed according to these rules:\n

(1) Replace all inductors by open circuits or by currentgenerators
\nhaving the value of current flowing at t =

0+.\n

(2) Replace all capacitors by short circuits or by a voltagesource of

\nvalue Vo = qo/C if there is an initial charge.\n

(3) Resistors are left in the network without change.\n

Consider the two-loop network shown in Fig. 5-6(a). Supposethat
\nthe switch is closed at t = 0, no voltage having beenappliedto the\n

Tig. 6-6. Network illustrating solution for initial conditions:(a) two-

\nloop network; (b) equivalent network at t =
0+.\n

passive network prior to that time. Since there is no initialvoltage

\non the capacitor, it may be replaced by a short circuit;similarly, the

\ninductor may be replaced by an open circuit, there beingno initial

\nvalue of current. The resulting equivalent network is shown as (b) in

\nthe figure. In this particular case, there is no need to writeequations
\nfor the resistor network. By inspection the initial values ofthecurrents
\nare ti(O-f-)

= V/Ri and t*2(0+) = 0 because the secondloopisopen.\n

The first step in solving initial values of derivatives is to write the

\nintegrodifferential equations from Kirchhoff\342\200\231s laws, employing either

\nthe loop or node basis as will give the required quantities moredirectly.
\nIn terms of the network of Fig. 5-6(a), the Kirchhoffvoltageequations
\nare\n

i

j
i,di + R,(i, -

U)
= V (5-5)\n

R,(\302\273.
-

\302\253,)+ Bit! + L ^
= 0\n (5-6)\n
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Since these equations hold in general, they hold at t = 0-K Now the

\nvalues of ti and it are known at t = 0+. Also the term (1/C) J ix dt
\nhas a known value at t = 0+, since this term is the voltage across the

\ncapacitor, which is known to be zerosincethe capacitor acts as a short

\ncircuit. (On the node basis, (1/L) \302\247
v dt similarly represents current

\nthrough the inductor.)\n

We observe that Eq. 5-6 contains a derivativetermin additionto
\nterms involving only ix and ta, which are known at t = 0+. Algebra\302\254

\nically solving for (dit/dt) gives\n

Yt=Z [***\302\273

\342\200\234
(fil + (general) (5-7)\n

W (0+) \"
Z [Sl Ti

~ (Bl+ K!)0]
=

Z
(t = 0+) (8_8)\n

The precaution of marking equations as (general) or (t = 0+) is
\nsuggested as a safeguard against differentiating equations that hold
\nonly for t = 0+.\n

Neither Eq. 5-5 nor Eq. 5-6containa
(dix/dt) term. However, if

\nEq. 5-5, which holds in general, is differentiated and manipulated
\nalgebraically, there results\n

i_i\n

C\n

dii\n

dt\n
% + R^-Ri^ = 0\n

dt\n
(general)\n

d%\\ di% %j\n

dt dt RXC\n
(general)\n

(5-9)\n

(5-10)\n

Both dit/dt and ix are known for t = 0+, so that (dii/dt) may be
\nevaluated as\n

((
= 0+)\n (5-11)\n

Suppose that it is required to evaluate(dHt/dt2) at t = 0+. From
\na practical point of view, second- and higher-order derivatives are less
\nfrequently required than the first derivative in the solution of differ\302\254

\nential equations. However, the procedure of continued differentiation
\nand algebraic manipulation can be applied in solving for all derivatives.
\nDifferentiation of Eq. 5-7, gives\n

W
=

Z [Rl Tt
~ {R' + (general) <5-12>\n

1&^
=

-v{r/lc
+

t)\n (t =
0+)\n (5-13)\n
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In each case, the initial conditions have been given in termsof con\302\254

\nstants (network and driving force parameters); solutions to problems
\nshould not be given in terms of integral or derivative expressions.\n

Example 1\n

In the circuit shown in Fig. 5-7,
\nhenry, and C = 10 pf. Let it be\n

Pig. 5-7. Network of Example 1.\n

equivalent element values for t \342\226\240

\ncircuit,\n

\302\273(0+)
= 0\n

V = 10 volts, R = 10 ohms, L = 1
\nrequired to find t(0+), di/dt(0+),
\nand dH/dt2(0+). From the Kirch-

\nhoff voltage law,\n

v =
Lft

+ m +
vIidl\n

(general) (5-14)\n

Analyzing the circuit in terms of

\n= 0 shows that because of the open\n

(t
= 0+)\n

The last term in Eq. 5-14, (1/C) J i dt, represents the voltage across

\nthe capacitor, which is zero at t = 0. The general expressionin Eq.\n

5-14 becomes the following for t = 0+.\n

from which\n

V =
Ljt (0+) + R 0 + 0 (t =

0+)\n

f(0+)

=
i

=
10^ <\342\200\230

= 0+>\n

To find the second derivative, Eq. 5-14mustbe differentiated as\n

LU
+ RIt + b

= \302\260 (general) (5-15)\n

In Eq. 5-15, values for the second and third terms are known at

\nt = 0+; thus\n

3?\342\200\231(\302\260+)\342\200\234-ll<0+)

= -100\n
amp\n

sec2\n

Example 2\n

In the network shown in Figure 5-8, a steady state is reached with

\nthe switch K open, and at t \342\200\2240 the switch is closed. Let it be required
\nto find the initial value of all three loop currents. We must first find

\nthe various currents and voltages in the network at t =
0\342\200\224,

before\n
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the switch is closed. The current flowing through Rz, Rh and L will be\n

4,(0-)
= 4(0-) =\n

Ri -|\342\200\234Rz\n

(t
= 0-)\n

The total voltage across the capaci\302\254

\ntors will be the same as the drop
\nacross Ri; that is,\n

FCl + VCt =\n
Ri\n

R\\ + Rz\n
(5-16)\n

Fig. 6-8. Network of Example 2.\n

Since the charge on the capacitors must be equal when connected in

\nseries we have q\\ = q2 or (7x7c, =
CzVCt. Hence the voltage across

\nthe capacitors will divide as\n

rc, _ Cz _ Si\n

(general)\n

and\n

VCt Cl Sz\n

y
\342\200\224 I\" y- y \342\200\224\t\n

C|
Ri + R2 Ui + Sz] \342\200\231 '

#i +\n

(5-17)\n

Rz\n

Sz\n

S i + Sz\n

(5-18)\n

To find 4 at t = 0+, apply Kirchhoff\342\200\231s voltage law around the outside

\nloop (not drawn on the diagram). Traversing this loop, we write\n

so that\n

hRz = V \342\200\224
7c,

\342\200\224
7c,

=\n

V\n

4(0+)
=\n

Rz\n

R i + Rz\n

Now, 4(0+)
- 4(0+) = 4(0+) =\n

R i + Rz

\n(t
=

0+)

\nV\n

R i + Rz\n

V (5-19)\n

(5-20)\n

0-0+) (5-21)\n

since the current 4 cannot change instantaneously. Comparing the

\nlast two equations shows that\n

4(0+)
= 0\n (5-22)\n

Next, consider the current flowing in the resistor Rx. Sincethe voltage
\nacross the capacitor cannot change instantaneously,\n

or\n

4(0+)
\342\200\224

4(0+)
= (t = 0+)\n

4(0+) = 4(0+) - 0 =
0+)\n

(5-23)\n

(5-24)\n
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so that\n
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^2(0+)\n

Finally, i2(0+) =\n

V Si V\n

Ri \342\200\234hR2 Si -f- S2 R\\ -f- R2\n

V S2

\nRi \342\200\234I-R 2 Si \342\200\234I-S2\n

01
= 0+) (5-25)\n

(t
= 0+) (5-26)\n

FURTHER READING\n

A good discussion of the method of evaluatinginitialconditions is

\nto be found in Weber\342\200\231s Linear Transient Analysis (John Wiley &

\nSons, Inc., New York, 1954),pp. 42-45,andin Gardner and Barnes,

\nTransients in Linear Systems (John Wiley & Sons, Inc., New York,

\n1942),pp. 26-34.\n

PROBLEMS\n

5-1. In the circuit shown, the switch K is closed at t = 0. Findthe
\nvalues of i, di/dt, and dH/dt2 at t = 0+, when V = 100 volts, R =

\n1000 ohms, and C = 1 yi. Answers. 0.1, \342\200\224100, 100,000.\n

5-2. In the circuit of the figure, the switch K is closed at t = 0.

\nFind the values of i, di/dt, dH/dt2 at t = 0+, when R = 10 ohms,
\nL = 1 henry, and V = 100 volts. Answers.0, 100,\342\200\2241000.\n

5-3. In the circuit shown, the switch K is changedfrom position a

\nto position b at t = 0, having already established a steadystate in

\nposition a. Find i, di/dt, dH/dt2, and dH/dt3 at t = 0+, when L = 1

\nhenry, C = 10/xf, and V = 100 volts. Answers.0, \342\200\224100, 0, 107.\n

5-4. In the circuit of the accompanying figure, the switch K is

\nchanged from position o to position b at t = 0. Solve for i, di/dt, and

\ndH/dt2 at t \342\200\224

0+, when R = 1000 ohms, L \342\200\224\\ henry, C \342\200\2241 yi, and

\nV \342\200\224100 volts. Answers. 0.1, \342\200\224100, 0.\n
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'6-5. In the circuit shown, the switch K is openedat t = 0. At

\nt \302\273
0+, solve for v, dv/dt, and dh)/dt2, when I = 10amp,R = 1000

\nohms, and C = 1 nf. Answers. 0, 107,\342\200\2241010.\n

Prob. 6-5. Prob. 5-6.\n

6-6. In the circuit of the figure, the switch K is opened at t = 0.

\nSolve for v, dv/dt, and dh/dt2 at t = 0+, when 7 = 1 amp, R = 100

\nohms, and L \342\200\2241 henry. Answers. 100, \342\200\224104, 10\302\256.\n

6-7. In the circuit shown, the switch K is closedat t = 0. Solve for:\n

(a) \tVi and t>2 at t \342\200\2240+. (b) vx and v2 at t = \302\253. (c) dvi/dt and

\ndo2/dt at t = 0+. (d) dh)2/dt2 at t = 0+. Answers,(a) 0, 0. (b)

\n0, RiV/iRj. + R/). (c) dvjdt = V/CRU dv2/dt = 0. (d) dh2/dt2
=

\nR2Vj R\\LC.\n

\\j\n

5-8. In the network shown in the accompanying figure, the switch
\nK is changed from a to b at t = 0 (a steady state having been estab\302\254

\nlished at position a). Show that at t =
0+,\n

V\n

i\\ 1%
\342\200\224

\"p
v n T

p\342\200\235'
^ \302\256\n

tl\\ -J- It2 ~t~ rtz\n

Prob. 5-8.\n
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6-9. In the given network, the capacitor C\\ is charged to voltage Fo

\nand the switch K is closed at t = 0. When R x
= 2 megohms, Fo = 1000

\nvolts, R2
= 1 megohm, C\\ = 10 *tf, and C2 = 20/ttf, solve for dS^/dt* at

\nt = 0+. Answer. 1.41 X 10-6 amp/sec2.\n

6-10. In the circuitshown in the figure, the switch K is closedat
\nt = 0 connecting an alternating voltage, F0 sin cot, to the parallel

\nRL-RC circuit. Find (a) dii/dt and (b) di2/dtat t = 0+.\n

6-11. In the network shown, a steady state is reached with the

\nswitch K open with F = 100 volts, R\\
= 10 ohms, R2 = 20

ohms,\n

R 3 = 20 ohms, L = 1 henry, and

\n(7 = 1 /if. At time t = 0, the switch

\nis closed, (a) Write the integrodiffer-
\nential equations for the network after

\nthe switch is closed, (b) What is the
\nvoltage Fo across C before the switch
\nis closed? What is its polarity?
\nAnswer. 66.7 volts, (c)Solvefor the

\ninitial value of i\\ and i2 (t = 0+).
\nAnswer. 3.33 amp, 1.67 amp. (d)

\nSolve for the values of dii/dt and

\ndi2/dt at t \342\200\2240-f. Answer. 33.3, \342\200\22483,300. (e) What is the value of

\ndii/dt at t = oo ?\n

6-12. The network shown in the figure has two independentnode

\npairs. If the switch K is opened at t \342\200\224
0, find the following quantities

\nat t \342\200\2240+: (a) t>i, (b) v2f (c) dvx/dt, (d) dv2/dt.\n

Prob. 6-12.\n
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6-13. In the network shown, the switchK is closed at t\n

dvi/dt at t = 0+.\n
Vl\n

95\n

0. Find\n

0\342\200\224W\\r\n 1\342\200\224'CHKT\342\200\2241\n
K\n

< L1\n

<r2\n

)\n
~cx\n

*>2 1\n

Prob. 5-13.\n

6-14. In the network shown in the accompanyingfigure, an
equilib\302\254

\nrium is reached, and at t = 0, switch K is opened.Find the initial\n

V -=-\n

Prob. 5-14.\n

voltage across the switch and the initialtime derivative of the voltage

\nacrossthe switch.\n

^3\n

6-16. In the network shown in the figure, the switchK is closed at

\nthe instant t = 0, connecting an unenergized system to a voltage
\nsource. Let Mu = 0. Determine the values of\n

^\342\200\230(0+)
and f (0+)\n

dt\n

Answer.\n

dii /rti'v _ F(L2 -f- Lz -f- 2M23)\t\n
dt (L\\ + Lz + 2M13) (L2 + Lz -f-2Mzz) \342\200\224

(Lz -(- M13 + M23)2\n

dU /a 1 \\ __ V(Lz + M\\z + M%3)\n

dt
K 'ri

(Lx + Lz + 2Ml3)(L2 + Lz + 2M2Z)- (Lz + Mxz + Mzz)*\n
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6-16. The given network consists of two coupled coilsand a capac\302\254

\nitor. At t = 0, the switch K is closedconnectinga generator of voltage,

\nv(t)
= V sin (t/\\/MC). Determine the values of\n

t>.(0+),
^(0+),

and
^(0+)\n

Answer. vo(0+) = 0, dva/dt(0+) = (V/L)\\/M/C, d2va/dt2(0+)

\n= 0.\n

6-17. In the network of the figure, the switch K is opened at t = 0

\nafter the network has attained a steady state with the switchclosed.\n

(a) Find an expression for the voltage across the switchat t = 0+.\n

(b) If the parameters are adjusted such that t\342\200\230(0+)
= 1 and di/dt (0+)

\n= \342\200\224
1, what is the value of the derivative of the voltageacross the

\nswitch, dvK/dt (0+)? Answers, (a) VR1/R2, (b) l/C \342\200\224
Ri.\n

6-18. In the network shown in the figure, the switchK is closed at

\nt \342\200\2240 connecting the battery with an unenergized system, (a) Find
\nthe voltage at point a, Va at t = 0+. (b) Find the voltage across

\ncapacitor C\\ at t =
\302\273, Fc,(\302\260\302\260).\n

Prob. 5-38.\n

6-19. For the network of the figure,showthat\n

\342\200\2241
(0-f) = -\n

dt2 Rx\n

dv{t) \"I

\ndt \\\n

d2v(t)\\
\n\"l\"

dt2 )\n



CHAPTER 6\n

DIFFERENTIAL EQUATIONS, CONTINUED\n

Differential equations studied in Chapter 4 were limited to linear

\nequations of the first order with constantcoefficients.In this
chapter,

\nwe will continue our study of differential equations with the same
\nrestrictions as to linearity and constant coefficients but of higherorder.
\nThe mathematical procedures given in these two chapters are included
\nunder the heading of the classical method of solution. As we will see,
\nthe classical method affords a better insight into the interpretation of
\ndifferential equations and the requirements of a solution. Aside from
\nconceptual advantages, the operational method using the Laplace
\ntransformationis better suitedto our use. For this reason, our treat\302\254

\nment will be brief. Topics ordinarily covered using the classical
\nmethod but more easily developed with the aid of the Laplacetrans\302\254

\nformation will be reserved for the next chapter.\n

6-1. Solutionofa second-orderhomogeneous differential equation\n

A second-order differential equation with constant coefficients may
\nbe written in the general form\n

\342\200\234\302\2603*
+

a'7t
+ a'i = 0 (6'1)\n

The solution of this differential equation must be of suchform that the

\nsolution itself, its first derivative, and its secondderivative,each mul\302\254

\ntiplied by a constant coefficient, add to zero. To satisfy this require\302\254

\nment, the three terms must be of the same form,differing only in their

\ncoefficients. Is there such a function? By whatevermethodwe search,

\nperhaps trying possible functions, the search always leads to the
\nexponential*\n

i(t)
= he1\"* (6-2)\n

where- k and m are constants. Substitutingthe exponential solution

\ninto Eq. 6-1 gives\n

aom2kemt + aimkemt + atkemt
= 0 (6-3)\n

* Taken two at a time, the sineand the cosineor the hyperbolic sine and the

\nhyperbolic cosine satisfy the requirement; however, the exponentialsolutionwill

\nbe shown to simplify to these forms.\n

97\n
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or, since kemt can never be zero for finite t,\n

a0m2 + aim + a2 = 0 (6-4)\n

as the requirement for kemt to be the solution. This equation is known
\nas the characteristic (or auxiliary) equation. It is satisfied by the two

\nroots given by the quadratic formula\n

mh m2 = \342\200\224
^ \302\261

~ y/ai1 \342\200\224
4a0a2 (6-5)\n

Zd o Zd o\n

We now have discovered that there are two forms of the exponential

\nsolution kemt; they are\n

ii = kiemit and i2 = k2ema (6-6)\n

Now, if ii and i2 are each solutions of the differentialequationof Eq.

\n6-1, the sum of these solutions,\n

iz =
i\\ + ii (6-7)\n

is also a solution. This may be shownby direct substitution of Eq. 6-7
\ninto Eq. 6-1, giving\n

d2 . . d\n

o\302\260
^

(ii + ii) + ai ^ (t\342\200\231i+ ii) + a2{i\\ + ii) = 0 (6-8)\n

/ d2ii . dii . \\ / dH2 di2 . . \\ _ . .\n

V\342\200\234\302\260w
+ ai n +

atH)+ \\a\302\260w
+01

ii+ a,Iv
= 0 {M)\n

or 0 + 0 = 0. The general solution of the differential equation is thus\n

i(t)
= kiemit + k2emit (6-10)\n

The magnitude of the coefficients in Eq. 6-1 determines the form

\nof the roots of the characteristic equation. In Eq. 6-5, the radical
\n\302\261y/ai2

\342\200\224
4a<ja2 may be real, zero, or imaginary depending on the

\nvalue of ai2 compared with 4aoa2. The forms of the solutionsforthese
\nthree cases will be given by three simple examples.\n

Kg. 6-1. Circuit for Examples

\n1 and 3.\n

Example 1\n

The differential equation for the cur\302\254

\nrent in the circuit of Fig. 6-1 is givenby

\nKirchhoff\342\200\231s law as\n

Ljt
+ R* +

fifidt
= v (6-11)\n

Differentiating and using numerical values for R, L, and C shown in

\nFig. 6-1 gives\n

dH . 0 di ,\n

(6-12)\n
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The characteristic equation can be found by substituting the trial
\nsolution i = emt or by the equivalent of substituting m2 for (dH/dt2),

\nand m for (di/dt); thus\n

m2 + 3m + 2 = 0 (6-13)\n

This equation has the roots mx = \342\200\2241 and m2 =
\342\200\2242,

so that the gen\302\254

\neral solution is\n

i(t)
= fcie-* + ktf-* (6-14)\n

The arbitrary constants fcx and k2 can be evaluated for a specific prob\302\254

\nlem by a knowledge of the initial conditions. If the switchK is closed
\nat t = 0, then t(0+) = 0, because current cannot changeinstanta\302\254

\nneously in the inductor. In Eq. 6-11, the second and third voltage

\nterms are zero at the instant of switching, 7fo'(0+) being zerobecause
\ni(0+)

= 0 and (l/C) f i dt being zerobecauseit is the initial voltage

\nacross the capacitor. Hence\n

Jt
=

]r
= 1 amp/sec\n

The two initial conditions, substituted into the general solution, Eq.
\n6-14, gives the equations,\n

&i + &2
= 0, \342\200\224ki

\342\200\224
2*2

= 1 (6-15)\n

The solution of these equations is ki = +1 and k2 = \342\200\224
1; hence the

\nparticular solution to Eq. 6-12 is\n

i(t)
= e~* \342\200\224e~n (6-16)\n

A plot of the separate parts and their combinationis shown in Fig. 6-2.

\nAs discussed in Chapter 4, the total current may be thought of as made\n

Pig. 6-2. Current as a functionof timefor the circuitof Example 1.\n
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up of two components which exist from t = 0 and combinein such a

\nway as to satisfy the initial conditions.\n

Example 2\n

The equilibrium equation for the network shown in Fig. 6-3 for\302\254

\nmulated on the node basis is\n

CJt
+ Gv +

lJ
vdt = 1 (6-17)\n

or, by differentiation,\n

cS+4<+z=\302\260 <S-i8>\n

Substituting numerical values into this equation as given in Fig.6-3\n

va\n

Tig. 6-3. Circuit for Example 2.\n

gives\n

2&
+

8i
+ *-\302\260 ^\n

The corresponding characteristic equation is\n

2m2 + 8m + 8 = 0 (6-20)\n

which has as roots mi = \342\200\2242 and m2 =
\342\200\2242,or repeated roots. Sub\302\254

\nstituting into the general form of the solution, Eq. 6-10,gives\n

v(t)
= kxe~2t + /c2e-21= Ke~2t

(6-21)\n

where K = ki + fc2. This is not a complete form of the solution,since
\nthe general solution to a second-order differential equation must con\302\254

\ntain two arbitrary constants. The solution v = ke~2t must be modified

\nin some manner for the condition of repeated roots. If we assume the

\nnew solution to be v = ye~2t, where y is a factor to be determined, and
\nsubstituteinto Eq. 6-19,we arrive at the requirement that y satisfy
\nthe differential equation\n

S
\" 0\n

Two successive integrations of the equation lead to the solution\n

y
- ki + kit\n (6-23)\n
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Thus the solution to our problem with repeatedrootsbecomes\n

v(t)
= (6-24)\n

To obtain a particular solution for this problemwill require knowledge

\nof two initial conditions. From the network of Fig. 6-3, v(0-\\~) must

\nequal zero, since the capacitor acts as a short circuitat the initial

\ninstant. In Eq. 6-17, the second and third termsareequalto zero, the

\nfirst because t>(0+) = 0 and the second becausethereis not current

\nin the inductor at the initial instant. Then, by Eq. 6-17,dv/dt (0+)
=

\n1/C
\342\200\224

\\ volt/sec for this network. Substituting these initial condi\302\254

\ntions into Eq. 6-24 leads to the result that kx
= 0 and k%

= The

\ndesired particular solution is\n

v(t)
= $te~2t (6-25)\n

A plot of this solution is shownin Fig.6-4.\n

Fig. 6-4. Voltage as a function of time for the circuitof Example 2.

\nExample 3\n

For this example, we will use the network ofFig.6-1with the follow\302\254

\ning network parameter values: V = 1 volt, L = 1henry,R \342\200\2242 ohms,

\nand C = farad. The characteristic equation becomes\n

m2 + 2m + 2 = 0 (6-26)\n

with roots*\n

mh m2 = \342\200\2241 \302\261jl\n

The general solution, Eq. 6-10, with these values for m, becomes\n

i(t)
= =

e-\342\200\230(M\342\200\230+ k2e~*)\n

This particular form of the solution is not convenientfor interpreta\302\254

\ntion. An equivalent form may be found starting with Euler\342\200\231s equation,\n

e\302\261i'4= cos t + j sin t (6-27)\n
*

We will use the letter j for the operator\\A-1to reserve the letter i for current.

\nThe letter j in textbooks of electrical engineering is equivalentto i \342\200\224
\\/ \342\200\2241in

\ntextbooks of mathematics and physics.\n
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which reduces our solution to the form\n

i(t)
= e~*(ki cos l -f- ki sin t)\n

where kt = ki + fcj and = j(kt
\342\200\224

kt). The initial conditions are the
\nsame as in Example 1: t(0+) = 0 and di/dt (0+) = 1 amp/sec. Sub\302\254

\nstituting into the solution, we have\n

t(0+)
= 0 =

e~\302\260(ki cos 0 + ^4 sin 0) =
kt\n

With ki equal to zero,\n

^
(0+) =

fc\302\253(e\342\200\234\302\260cos 0 \342\200\224sin 0 c~\302\260)
= 1\n

whence kt = 1. The particular solution is\n

i(t)
\342\200\224e~\342\200\230sin t (6-28)\n

A plot of the two factors in thissolutionand their product is shown in

\nFig. 6-5.\n

Fig. 6-6. Current as a function of time for the circuitof Example 3:\n

(a) e~\342\200\230;(b) sin l; (c) e~( sin t.\n

6-2. The standard Form of the solution of second-orderdifferential equations\n

Consider the KirchhofT voltage equation that describes a seriesRLC

\ncircuit on the loop basis\n
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Ljt
+ Ri + \302\261

J
idt = v(t) (6-29)\n

If v(t) is either zero or a constant, differentiation reduces this equation
\nto a homogeneous equation of second order; thus\n

dH . R di . 1 .
A\n

dT*+Ldt
+

LCi
= \302\260\n (6-30)\n

The two roots of the corresponding characteristic equation may be
\nfound by the quadratic formula to be\n

= -
i \302\261/(\302\243)-\302\243

(6\"31>\n

To begin converting Eq. 6-30 to a standard form, we will define the

\nvalue of resistance that causes the radical term in the above equation
\nto vanish as the critical resistance, Rcr. This value is found by solving

\nthe equation\n

fey
-

w\n

or Rcr = 2 Vl/C (6-33)\n

We will next introduce two definitions;we define the quantity\n

f =
t\302\256-34)\n

as the dimensionless damping ratio, (f is the lower-case Greek letter
\nzeta.) The damping ratio is the ratio of the actual resistanceto the

\ncritical value of resistance. The other definition is\n

=
(6-35>\n

The quantity con is the undamped natural angular frequency.The
\nreason for giving o>\342\200\236such a name will be discussed under the heading
\nof Case 3 in this section. For the time being, we note that the dimen\302\254

\nsions of o)\342\200\236are (time)-1 so that it does not seem unreasonableto define
\nit as a frequency.\n

Now the product has the value\n

and\n

2fa>\342\200\236\n 2 \342\200\224\n

2 \\L y/LC\n

to*\n

1\n

LC\n

R\n

L\n
(6-36)\n

(6-37)\n



104 DIFFERENTIAL EQUATIONS, CONTINUED Chap. 6\n

Substituting these relationships into Eq. 6-30 gives\n

%
+ 2f\342\200\234\"| + \342\200\242\342\226\240\342\200\231*

= \302\260 C5-3*)\n

This form of the second-order differential equation is calledthe stand\302\254

\nard form. The corresponding characteristic equation is\n

m2 -|- 2\302\243u}nm -f- wb! = 0 (6-39)\n

and the roots of the characteristicequationare\n

mi, m2 =
-\302\243co\342\200\236\302\261w\342\200\236\\/f2

\342\200\2241 (6-40)\n

The general solution may now be written\n

i = + K2e[ \342\200\234f\"\"-\342\200\234-Vcr
(6-41)\n

Before simplifying this solution, let us examine the behaviorof the
\nroots of the characteristic equation as the dimensionless damping ratio
\n\302\243varies from zero (corresponding to R = 0) to infinity(corresponding
\nto R = oo). There are evidently three different forms for the roots:\n

Case 1: f > 1, the roots are real.\n

Case 2: \302\243
=

1, the roots are real and repeated.\n
Case3: \302\243< 1, the roots are complex and conjugates.\n

If we follow the form of the roots for a variation of \302\243from 0 to \302\260ot
we

\nwill recognize a locus of roots in the complex plane. To start with,

\nfor \302\243
=

0,\n

mi, m2 =
\302\261j\302\253\342\200\236 (6-42)\n

that is, the roots are purely imaginary. For \302\243< 1, the roots are com\302\254

\nplex conjugates as\n

mi, m2 = \342\200\224
\302\243o>\302\273\302\261j(>>n \\/l

\342\200\224
f2 (6-43)\n

Since the roots are complex numbers for \302\243< 1, let us define the real
\nand imaginary parts of m as\n

m = <r \342\226\240+\342\200\242jo) (6-44)\n

(<r is the lower-case Greek letter sigma). The roots ofthe equation may

\nbe plotted in the complex m plane as shown in Fig.6-6. The real part is\n

<r = \342\200\224
\302\243w\302\273 (6-45)\n

and the imaginary part is\n

a)\n \302\261\302\253\302\273Vl
~

\302\2432\n (6-46)\n
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In other words, the two roots have the same real part, and the imag\302\254

\ninary parts differ only by their sign. Since\n

<T2 + W2 = r2Wn2 _|_ Wn2(! _ f2) \302\253
Wn2 (6-47)\n

it follows that the locus of the roots in the complex m plane is a circle

\nof radius wn and that this locus is formed by f varying from 0 to 1.

\nThis locus is shown in Fig. 6-7. It is interesting to noteanother prop\302\254

\nerty of the geometry of the m plane for these second-orderroots.The\n

Fig. 6-7. Locus of roots with f.\n

angle to either root measured from the \342\200\224<r axis is given in terms of the
\ninverse tangent as\n

= tan-1 (<M8)\n

or the inverse tangent of the imaginarypart over the real part. Since

\nthe term co\342\200\236is common to both the numerator and the denominator,
\nthe angle is\n

= tan-
V'1~ f*

(6-49)\n

A triangle having the sides f and y/1 \342\200\224
f2 is shown in Fig. 6-8. Evi\302\254

\ndently, the hypotenuse has unit value, and\n

dmi
= cos\"1 f\n (6-50)\n

Thus radial lines from the origin of the m plane
\nare lines of constant f as con is varied. When the
\ndamping ratio has the value f = 1, the imag\302\254

\ninary part of the roots vanishes, and the roots
\nhave the same value,\n

(mi, m2) =
-\302\253\302\273\n

'A-f2\n

Fig. 6-8. Right triangle
\nrelationships.\n

(6-51)\n

These two superimposed values are shown in Fig. 6-7. For f > 1, the\n
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two roots become\n

mh m2 = ( \342\200\224f\302\261Vi\"2
- 1) \"n (6-52)\n

Both of these roots are real. As f becomeslarge such that 1 is small

\ncompared with f2, the rootsapproach\342\200\224
2fton and 0. The locus of roots

\nshown in Fig. 6-7 illustrates this separation of the real roots as f

\nincreases.\n

This discussion has illustrated the three possibilities for the values
\nof f. The damping ratio f is determined by circuit parameters.With

\nthe RLC circuit that served as an example in deriving the relation\302\254

\nships, a simple adjustment of the resistance R will vary the rootsin
\nthe complex m plane for the three cases. This general solution,Eq.\n

6-41, reduces to different forms for each of the three cases.We will

\nnext investigate this algebraic reduction for each of the three cases.\n

Case 1, f > 1. For this case, the solutionin exponential form is as

\ngiven in Eq. 6-41. If e~i<ant is factored from this equation, there results\n

i = e-^C(6-53)\n

where K\\ and K-i are arbitrary constants of integration. This equation
\nis sometimes more convenient to evaluate in terms of hyperbolicfunc\302\254

\ntions. The hyperbolic cosine of x is defined as\n

cosh x = \\{ex + e~x) (6-54)\n

and the hyperbolic sine of x is defined as\n

sinh x =
\302\243(e*

\342\200\224
e~*) (6-55)\n

An equivalent relationship can be obtained by successivelyaddingor

\nsubtracting these two equations; that is,\n

6* = sinh x + cosh x (6-56)\n

and e-* = cosh x \342\200\224sinh x (6-57)\n

These two identities may be used to convertEq.6-53 to terms involv\302\254

\ning hyperbolic functions; thus\n

i =
e-r\"\"\342\200\230{IiLi[cosh (o)n \\/f2

~ 1 t) + sinh (co\342\200\236\\/f2
\342\200\2241 0]\n

+ Kt[cosh (\302\253.V?2
~

11) - sinh (\302\253nVf2
\342\200\2341 Oil (6-58)\n

or i = e~iant[Kz cosh (co\342\200\236y/t2
\342\200\224

1 t) + Ka sinh (w\302\253y/t*
\342\200\224

12)]\n

(6-59)\n

where Kz = Ki + K.2 (6-60)\n

and Ka = - K2 (6-61)\n

This equation is the equivalent of Eq. 6-53. Each has two arbitrary\n
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constants, which are usually evaluatedto find a particular solution in

\nterms of the initial conditions.\n

Case 2, f = 1. For this case, we have shown that the two roots
\nbecome identical. With repeated roots, the solution of the equation
\nis given by Eq. 6-24, giving\n

i - (Kt + K2t)e^'1 (6-62)\n

The limit of the quantity te~Unt may be investigated by 1* Hospital\342\200\231s

\nrule. If this quantity is written as\n

t\n

\302\243+\302\253\342\200\242*\n
(6-63)\n

differentiation of numerator and denominator with respect to t shows
\nthat\n

lim te~Unt = 0 (6-64)\n
<-> 00\n

Case 8, \302\243< 1. For Case 3, the roots become complex,and Eq.6-41
\nmay be written\n

i = (6-65)\n

This equation may be written in terms of sine and cosine quantities\n

by making use of Euler\342\200\231s equation, Eq. 6-27.\n

= cos x \302\261j sin x (6-66)\n

Using Euler\342\200\231s equation, the solution for Case 3 reduces to\n

i = e-fcos (\302\253nVl
~ r21) + K< sin (\302\253\342\200\236VT^T* i)] (6-67)\n

where Kh = + K2 and K<= j(K1-
K2) (6-68)\n

which are, again, arbitrary constants of integration. This equation
\nmay be written in different form by defining\n

K6 = K sin 0 (6-69)\n

Kt = K cos0 (6-70)\n

Using the trigonometric identity\n

sin (x + y)
= sin x cos y + sin y cos x (6-71)\n

Eq. 6-67 becomes\n

i = Ke~sin (wn \\/l
~ f21 + <t>) (6-72)\n

These algebraic manipulations have resulted in an equation of one
\nsinusoid equivalent to Eq. 6-67, which contains two sinusoids of the
\nsame frequency. In the revised form, the two arbitrary constants are\n
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K and 0, which may be related to Kt and Ka by means of Eqs. 6-69
\nand 6-70. Summing the squares of K6 and gives the relationship\n

K = VK62 + 1C\302\2532 (6-73)\n

Dividing Eq. 6-69 by Eq. 6-70 gives an equation for <f> in terms of K6
\nand K< :\n

0
= tan-1 ~

(6-74)\n
As\n

Several terms that have appeared in these solutions are givennames.
\nThe expression e~*Unt is given the name damping factor. The product
\n$\342\226\240&>\342\200\236is called the decrement factor or attenuation factor. The three cases
\nare given the names,\n

Case 1. the overdamped case\n

Case 2. the critically damped case\n

Case 3. the underdamped (or oscillatory) case\n

In the underdamped case, expressions of the following form appear:\n

sin (\302\253\342\200\236y/\\
\342\200\224

f21)\n

where w\342\200\236-\\A
\342\200\224

f2 is an angular frequency. When f = 0, correspond\302\254

\ning to R \342\200\224
Of or no damping, the radical term in the angular frequency

\nreduces to unity. On this basis, the following definitionsare made:\n

o)n \\/l
\342\200\224

f2
= actual angular frequency\n

(on
= the undamped natural angular frequency\n

To illustrate these definitions,letus return to the series RLC circuit\n

which is described by the original
\ndifferentialequation of this section.
\nLet the capacitor of Fig. 6-9 be

\nchargedto a voltage V0, and at time

\nt = 0 let the switch K be closed.
\nThe value of the resistance R with

\nrespectto the criticalresistanceRer

\nwill determine whether the system
\nis overdamped, critically damped, or underdamped. Consider these
\nthree possibilities in turn.\n

With R > Rer, the system is overdamped.The general solution can

\nbe reduced to particular solution for a given set of initialconditions.
\nFor the circuit shown in Fig. 6-9, t\342\200\230(0+)

= 0 because of the inductance.
\nThe term (1/C) j idt = \342\200\224

Vo at t = 0 (the initial voltage on the\n

Fig. 6-9. RLC circuit.\n
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capacitor) such that\n

|'(\302\260+)

=
+T\n

The requirement that i(t) = 0 at t = 0, means that K% in Eq. 6-59 has
\nzero value; that is,\n

i = Kte-!\"'* sinh o>\302\253Vf2
- 1 t (6-75)\n

Constant can be evaluatedfrom the second initial condition as\n

jt

= cosh KVC2
- 11) \342\200\242

o>. VF^l\n

+ sinh (w, Vf! - 1
(6-76)\n

The hyperbolic cosine term approaches unity as t \342\200\224>0, and the hyper\302\254

\nbolic sine term approaches zero as t \342\200\224\302\2730. Hence\n

and\n

| (0+) = Vf -
1 -

1\302\260\n
(6-77)\n

r Vo
\nA 4 =

,\n

uJL Vf2
-

1\n

(6-78)\n

The particular solution for the overdamped case thus becomes\n

i = sinh (o>\342\200\236Vf2
\342\200\224

1 0 (6-79)\n
co\342\200\236LV r ~

1\n

The general shape of the current against time curve for thisequationis
\nshown in Fig. 6-10(a).\n

Fig. 6-10. Network response correspondingto the three cases:\n

(a) overdamped; (b) critically damped; and (c) underdamped or
\noscillatory.\n

For the critically damped case, R = Rcrand the solutionin general is\n

* = (Ki + Kit)e-ant (6-80)\n

subject to the sameinitialconditions as the overdamped case. The\n
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initial current condition implies that K\\ = 0, since otherwisethis
\nequation does not reduce to zero at t = 0. To apply the derivative

\ncondition, Eq. 6-80 is differentiated as\n

ft

= Kt[Ur\"'*{- o>\342\200\236)+ e\342\200\224\342\200\2301] (6-81)\n

Hence\n

S(0+)
\342\200\234 \"

T\n

and the particular solution for the critically damped caseis\n

i\n (6-83)\n

This curve is shown in Fig. 6-10(b) and has muchthe same appearance

\nas that of Fig. 6-10(a).\n
For the underdamped, or oscillatorycase,R < Rcr, and the solution

\nis given by Eq. 6-67. The initial condition for the currentrequiresthat

\nK& be zero, so that the solution can be written\n

i = K6e~iUnt sin (o>\342\200\236-y/l
\342\200\224

\302\243H) (6-84)\n

The constant K6 is evaluated by using the initial conditionof the deriv\302\254

\native of the current; thus\n

jt

= K6e-^Wn cos (a>n vT^f\"21)\n

\342\200\224
fan sin (coft \\/l \342\200\224

T2 <)] (6-85)

\nsuch that (0+) =
K%wn \\/l

\342\200\224
T2

= (6-86)\n

The particular solution for the oscillatorycaseis\n

i =
V*

e-f\"-4 sin (\302\253*VI
- f21) (6-87)\n

ujj vi
-

r2\n

The variation of current with time for the oscillatorycaseis shown in

\nFig. 6-10(c). Since the current is the product of the dampingfactor

\nand the oscillatory term, the damping factor represents an envelope or

\nboundary curve for the oscillations. The attenuation factor determines
\nhow rapidly the oscillations are damped. As R approaches zero,the
\noscillations become undamped, and sustained oscillations result.\n

The physical meaning of this mathematicalresult might be inter\302\254

\npreted in terms of an interchange of energy between the electricenergy

\nstorage element (C) and the magnetic energy storage element (L).
\nAfter the switch is closed, the energy which is stored in the electric\n
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field is transferred to the inductoras magnetic energy. When the cur\302\254

\nrent begins to decrease, energy is being returned to the electricfield
\nfrom the magnetic field. This interchange continues as long as any
\nenergy remains. If the resistance has zero value, the oscillatory cur\302\254

\nrent will be sustained indefinitely. However, if there is resistancepres\302\254

\nent (and there always is in any practical circuit) the current flow

\nthrough the resistor will cause energy to be dissipated, and the total
\nenergy will decrease with each cycle. Eventually all the energy willbe
\ndissipated and the current will be reduced to zero. If a schemecanbe

\ndevised to supply the energy that is lost in eachcycle,the oscillations

\ncan be sustained. This is accomplished in the vacuum-tubeoscillator
\nto produce audio frequency or radio frequency power.\n

6-3. Higher-orderhomogeneousdifferentialequations\n

The method of solution discussed for first- and second-orderdiffer\302\254

\nential equations may be followed in the solution of higher-orderequa\302\254

\ntions. For an nth order differential equation, the characteristic equa\302\254

\ntion will be\n

amn + aimn_1 + ... + an-im + on = 0 (6-88)\n

A fundamental theorem of algebra states that an equation of order n

\nhas n roots. These roots can be found by factoring Eq. (6-88).\n

a0(m
\342\200\224

raj) (m
\342\200\224

mi). .. (m \342\200\224
wi\342\200\236)

= 0 (6-89)\n

Each root gives rise to a factor of the form kiemit in the solution. The
\nsum of all such factors constitutes the solution of the differentialequa\302\254

\ntion. Thus, solution of higher-order homogeneous differential equa\302\254

\ntions is primarily a matter of finding the roots of the characteristic
\nequation.\n

Fortunately, there is some simplification in finding these roots
\nbecause the coefficients of Eq. 6-88 are 'positive and real coefficients.
\nThis follows because these coefficients are made up of the system
\nparameters, R, L, and C. And since R, L, and C mustbe positive and

\nreal (the only way they appear in nature), so must the a-coefficients.\n

There are three possible forms for the roots: (1) realroots,(2) imag\302\254

\ninary roots, and (3) complex roots. For the first-order characteristic
\nequation\n

am + ax = 0 (6-90)\n

the root is m = \342\200\224
di/a0, which is negative and real because do and a}

\nare always positive and real. P or a second-order characteristic equation\n

am2 + axm + ai = 0\n (6-91)\n
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Wli, m2\n

\342\200\224
Pi\n

2ao\n
\302\261\n

2^
\\/pi2

~
4aoa2\n (6-92)\n

With the positive real restrictions on the a-coefficients,these roots
\nmay have any of the three possible forms\342\200\224real, imaginary, or complex.

\nBut if the roots are complex, they occur in conjugate pairs,sincethis

\nis the only way complex roots can combine to give positiverealcoeffi\302\254

\ncients. Thus, for characteristic equation roots to be complex, they

\nmust occur in conjugate pairs.\n
Consider next a third-order characteristic equation.In this case,

\nbecause of the rule just given for complex roots, at leastoneroot must

\nbe real. The other two may be both real or a conjugatepairof complex

\nroots.* For a fourth-order characteristic equation, there are morepos\302\254

\nsibilities: four real roots, two real roots and a conjugate complexpair,
\nor two sets of conjugate complex roots. The general pattern is thus
\nestablished and the following rules may be given:\n

(1) If the rootsare complex, they occur in conjugate pairs.\n

(2) If the characteristicequationis of odd order, at least one root is
\nreal. The remaining roots may be real or occur in conjugate
\ncomplex pairs.\n

(3) If the characteristic equation is of even order, the rootsmay be

\nreal or occur in conjugate complex pairs.\n

Summarizing this discussion, an equation of any order canbefactored

\ninto its roots, and the roots determine the solution of thehomogeneous
\ndifferential equation as the sum of first-order (or second-order) solu\302\254

\ntions which have already been considered.\n

An example will illustrate the methodof solution of higher order

\nhomogeneous differential equations. The differential equation\n

dH . \342\200\236dH , \342\200\236_ dH . dH . ^. di . \342\200\236. \342\200\236\n

S?
+

6^
+ 17d? + 28S? + 24S + 8, = 0 (6-93)\n

has a characteristic equation which may be factoredas\n

(m + l)(m + 1)(m + 2)(m2+ 2m + 4) =0 (6-94)\n

In this equation, there are two repeatedrealroots,one nonrepeated

\nreal root, and one conjugate complex pair with <an
= 2 and f = 0.5.

\nUsing the equations already derived for first-order and second-order
\nsystems, we see that the solution is\n

* - (Ki + KiQe-* + Kie-v + e-*(KisinV31+ Kt cos V31)\n

(6-95)\n
* In this discussion,imaginaryroots are considered as a special case of complex

\nroots.\n
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6-4. Solution of nonhomogeneousdifferentialequations\n

In the nonhomogeneous differential equation, the right-hand side of
\nthe equation is not zero, but equal to the forcing functionor some

\nderivative of the forcing function, v(t). In studying such equations, we

\nfirst observe that the solution to the corresponding homogeneous dif\302\254

\nferential equation is a part of the solution of the nonhomogeneous
\nequation. To illustrate by a simple example, consider the equation\n

a\302\243
+6

a
+6f = (e-96)\n

This equation has as rootsof its characteristic equation, mx = \342\200\224
2 and

\nm2
= \342\200\2243.Thus the complete solution for the case v(t)

= 0 is\n

ic = kxe~u + k2e~3t (6-97)\n

Suppose that some function iP}
which we will presently find, satisfies

\nthe nonhomogeneous equation, Eq. 6-96. Then iP plus ic given above
\nis also a solution, since substituting either kxe~u or k2e~3tinto Eq. 6-96
\nwould add nothing to the right-hand side of the equation. In other
\nwords, part of the solution of a nonhomogeneous differential equation
\nis the solution to the homogeneous differential equation. That part,
\nby analogy to the discussion in Art. 4-3, is termed the complementary
\njunction. The remaining part of the solution\342\200\224needed to make the

\noperations of the differential equation add to v(t)\342\200\224is the particular

\nintegral. Thus we write the total solutionas the sum of two parts of the

\nsolution\n

% = ip -f- ic (6-98)\n

Since we can find ic for any equation,as discussed in the last section,
\nthere remains to be found only the particular integral iP.\n

6-5. The particular integral by the method of undeterminedcoefficients\n

In the analysis of electric circuits, the term v(t) in the differential

\nequation is the driving force or a derivativeof the driving force. As

\na practical matter, driving forces are represented by only a few math\302\254

\nematical forms like V (a constant), sin at, kt, e~at, or products of these

\nterms (or linear combinations to give square waves, pulses, etc.). We
\ndo not ordinarily encounter physical generators of such functions as
\nthe tangent. Several mathematical methods are available for deter\302\254

\nmining the particular integral. If only driving forces of the practical
\nforms mentioned are considered, the method of undetermined coefficients
\nis particularly suited to our use.\n

Ordinarily, the method of undetermined coefficients is applied by
\nselecting trial functions of all possible forms that might satisfy the\n
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differential equation. Each trial function is assigned an undetermined
\ncoefficient. The sum of the trial functions is substituted into the differ\302\254

\nential equation, and a set of linear algebraic equations is formedby

\nequating coefficients of like functions in the equation resulting from
\nthis substitution. The undetermined coefficients are thus determined
\nby solution of this set of equations. If any trial functionis not a solu\302\254

\ntion, its coefficient will be zero.\n

It is not necessary to study rulesfor selecting trial functions for the

\nforms of driving force function v(t) we are considering. The required
\nform of the trial functions is given in Table 6-1. In usingthistable, the

\nfollowing procedure is suggested:\n

(1) Determine the complementaryfunctionic. Compare each part

\nof the complementary function with the form of v(t). The rules
\ngiven in Table 6-1 are modified if these two functionshaveterms
\nof the same mathematical form.\n

TABLE 6-1\n

Factor in

\nv(t)*\n

Necessary choice for the

\nparticular integralf\n

1. V (a constant)\n A\n

2. aitn\n B0tn + B\\tn~l + . . . -f- + Bn\n

3. a2ert\n Cert\n

4. CL3 cos cd\n

D cos <d + E sin cot\n

5. a4 sin ut\n

6. astnert cos cat\n (F\302\261tn 4\342\200\235... 4~ Fn\342\200\224it4~ Fn)ert cos cot\n

4~ (G\\tn 4\342\200\234... 4\342\200\234Gri)crt sin cot\n7. a6tneTt sin\n

* When v(t) consists of a sum of severalterms, the appropriateparticular inte\302\254

\ngral is the sum of the particular integralscorrespondingtotheseterms individually.\n

t Whenever a term in any of the trial integrals listed in this columnis alreadya
\npart of the complementary function of the given equation, it isnecessary to modify

\nthe indicated choice by multiplying it by t before using it. If such a term appears
\nr times in the complementary function, the indicated choiceshouldbe multiplied

\nby tr-\n

(By permission from Advanced Engineering Mathematics by Wylie. Copyright,

\n1951. McGraw-Hill Book Co., Inc.)\n

(2) Write the trial form of the particular integral, usingTable6-1.
\nEach different trial solution should be assigned a different letter
\ncoefficient,

and all similar functions should be combined.\n
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(3) Substitute the trial solution into the differential equation. By

\nequating coefficients of all like terms, form a set of algebraic

\nequations in the undetermined coefficients.\n

(4) Solve for the undeterminedcoefficients and so find the particular
\nintegral. These coefficientsmust be in terms of circuit and driv\302\254

\ning force parameters. There are no arbitrary constants in the
\nparticular integral.\n

Having determined the particular integral, the total solution maybe
\nfound by adding the complementary function to the particular integral.
\nIf a particular solution is required, the arbitrary constants of ic can be
\nevaluated from a knowledge of the initial conditions. As a precaution,
\nthe initial conditions must always be applied to the total solution\342\200\224

\nnever to the complementary function alone unless iP = 0 [whenv(t)

\n=
0].\n

Example 4\n

Consider a series RL circuit with the driving forcevoltageofthe form

\nv(t)
= Ve~at, where V and a are constants. By Kirchhoff\342\200\231s voltage

\nlaw, the differential equation is, after division by L,\n

di , R . V

\ndi+Li=Le\n
\342\200\224at\n

(6-99)\n

The characteristic equation is m + (R/L) = 0, so that the comple\302\254

\nmentary function is\n

ic = ke~Rt/L (6-100)\n

From Table 6-1, the trial solutionshouldbe\n

iP
= Ae~*\342\200\230 (6-101)\n

if a ^ R/L, where A is the undetermined coefficient.Substituting
\nthis trial solution into the differential equation gives\n

-aAe~at +
^

Ae~at =
^

e\342\200\224\342\200\230 (6-102)\n

or A = D
V

f, a 5* y- (6-103)\nR \342\200\224aL L\n

The solution is the sum of iP and ic, or\n

i = ~B \342\200\224\342\200\224f
e~at + Ke~Rt/L, a (6-104)\nK \342\200\224ocJj L/\n

The arbitrary constant can be evaluated from knowledge of the initial\n
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conditions. If a = R/L, the form of the trialsolutionshould be\n

iP = Ate\342\200\2241
(6-105)\n

Substituting this solution into the differential equation gives\n

V\n

A(\342\200\224ate+ e~at) + <xAte~at = T e~at
(6-106)\n

Ij\n

or A = ~ (6-107)\n

The solution for this caseis thus\n

i = ~ te~at + Ke-\302\253t/L,
a =

j- (6-108)\n

Example 5\n

As a second example, consider a series RC circuit with a sinusoidal
\ndriving force voltage v(t)

= V sin cot. The Kirchhoff voltage equation
\nis\n

Ri +
^\n

V sin <ot\n (6-109)\n

or, differentiating and dividing by R,\n

di , 1 . coV\n

dt
+

ml
=

~R
cos\342\200\234<\n (6-110)\n

From Table 6-1, the assumed iP should be the sum of a sine and a

\ncosine term, as\n

iP
= A cos cot -J- B sin cot (6-111)\n

If this assumed solution is substituted into the differentialequation
\nand coefficients of like functions are equated, the following system of
\nlinear equations results.\n

A + \342\200\236B= A -
\302\273A = 0 (6-112)\n

Solving for A and B yields\n

a _ wCT
\nA

1 + a,2ft2C2\342\200\231\n

u'RC'V

\n1 + a>2tf2C2\n
(6-113)\n

Substituting these values into the assumed solution, there
results,

\nafter some simplification,\n

%p \342\200\224\n

i/tPC* + fi,
cos 0,1+ sin\n (6-114)\n
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This equation can be reduced to a singlesinusoidby defining 1/ooC *\302\273

\nK cos 0 and R = K sin 0, and makinguse of the trigonometric iden\302\254

\ntity for the cosine of the difference of two angles. Finally,\n

tp
=\n

where\n

Vfl2 +1 A>2C2\n

0
= tan-1 o)RC\n

cos {(tit
\342\200\224

0)\n

To this value of iP must be added ic = Ke~,/RC for the

\nsolution.\n

(6-115)\n

(6-116)\n

complete\n

Example 6\n

Knowledge of the response of systems with sinusoidal driving force
\nvoltages is important in studies of power generation and distribution
\nsystems. Consider the circuit equiv\302\254

\nalent of such a system shown in

\nFig. 6-11. The Kirchhoff voltage

\nequation for this system is\n

di\n

L^ + Ri = V sin (<tit + 6)
\nat\n

(6-117)\n

The method for finding the particular integral is like that illustrated
\nin the last example. The result is\n

V\n

ip =\n

V#2 + \302\2532L2\n (\n

sin (o)t + 6 \342\200\224
tan-1\n i^\\\n

R)\n
(6-118)\n

To this result must be added the complementaryfunction,
which from

\nExample 4 is\n

ic = Ke~Rt/L (6-119)\n

The total solution thus becomes

\nV\n

Vfl2 + \342\200\234>2\302\2432\n

fin

^\n

sin ((at + 6 \342\200\224tan'\n + Ke~Rt/L (6-120)\n

Now if the switch is closedat t =
0, the initial current has zero value

\nbecause of the inductor, requiring that\n

V-USin (\302\256

\342\200\234

tan\"Tf)

+ Ke\302\260 = 0 (6-121)\n

or K = ~
vWT^E'-sin (*

\342\200\234tan\"

Tt)

(6_122)\n

If the angle 0, which represents the angleof the sinusoid at the time the\n
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switch is closed, has the value\n

6 = tan-1 (6-123)\n
K\n

the constant K will have zero value, and the transient termic will

\nvanish. In other words, if the switch is closedat the proper instant,

\nthere will be no transient. The same conclusioncanbe reached for the

\nRC series network but not for an RLC network.\n

6-6. Capacitor charge in an RLC series circuit\n

The circuit shown in Fig. 6-12 is energized by closingthe switch K

\nat t = 0. It is desired to find chargeon the capacitor as a function of

\nv time, q(t). By Kirchhoff\342\200\231s voltage law,\n

r\342\200\235j\302\243
#\342\200\224the differential equation for the charge

\n+1 1 is, after division by L,\n

9c(t)\n

+\n

1\n

C-ZrZ\n

^
+ + =

I (6_124)\n

Fig. 6-12. RLC series circuit.\n
This is a nonhomogeneous differential

\nequation, and the solutionwillbecomposedof two parts. The particu\302\254

\nlar integral or steady-state solution will be\n

q3\342\200\236
= A (a constant) (6-125)\n

Substituting this solution into the differentialequation gives\n

0 + \302\260+
-^A =j/\n

or A = CV\n (6-126)\n

For the three cases previously studied, corresponding, to overdamped,
\ncritically damped or underdamped, the solutions are:\n

Case 1, f > 1.\n

q
= qt + q*8

= CV + e-^^Ki cosh (co\342\200\236Vf2
\342\200\224

11) \t\n
+ l\302\273L2(sinh <on \\/f2

\342\200\2241 \302\243)] (6-127)\n

Case 2, f = 1.\n

q
= CV \342\200\234H(Ki K%t)e~<*nt (6-128)\n

Case 3, f < 1.\n

q
= CV + e-t^Ki cos (<on \\/l

\342\200\224
f21) + K2 sin (\302\253nV1

\342\200\224
f2 <)]\n

(6-129)\n

Each solution has two arbitrary constants, Ki and Ki. Theseconstants
\nwill not be the same for the three cases, but theycanbe evaluated from\n
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the initial conditions. As initial conditions, we will assume that at

\nt \342\200\224
0, qc

= 0 (no initial charge on the capacitor)and ic \342\200\224
0, so

\ndqc/dt
= 0 (no initial current because of the inductor).We will carry

\nout the evaluation of the constants in somedetailforCase3. The two

\nother cases follow a similar (and easier) pattern. Usingtheinitialvalue

\nof q condition gives\n

0 = CV + e*(Kx + K20)\n

or Kx = -CV (6-130)\n

The derivative of q with respectto time is\n

dq _\n

dt \t\n
\342\200\224

(jin \\/l
\342\200\224

r2 sin (w\302\253a/1
\342\200\224

f21)
\342\200\224 cos (ion -\\/l

\342\200\224
f2 <)]\n

+ X2e~\"\"\342\200\230[a)\342\200\236\\/l
\342\200\224

T2 cos (w\302\273a/I
\342\200\224

f2 0
\342\200\224 sin (<on \\/l

\342\200\224
f2 0]\n

(6-131)\n

At < = 0, = 0, so\n

0 = K\\{
\342\200\224

fan) + K2(a)n \\/l \342\200\224
r2) (6-132)\n

Hence K, = K,
^=%=

= - CF
^=L=g

(6-133)\n

The particular solution is\n

g(<)
= CV

Jl

-
^

*\342\200\234nt=[Vl
\342\200\234

r2 cos (o>\342\200\236Vi
- f2 0\n

+ f sin (u.VW\342\200\231O]\n (6-134)\n

This equation may also be written in the form\n

q(t)
= cv

^i

- sin (c0n vr^T* * + o
j

(6-135)\n

where 8 = tan-1 \\/l \342\200\224
f2/f.\n

For Case 2, the particular solution will be found to be\n

q(t)
= C7[l

- (1 + Me-\"\"4] (6-1.36/\n

and for Case 1, the particular solution is\n

q(t)\n
= CV

Jl

\342\200\224e

j^cosh

(\302\253\342\200\236\\/f2
\342\200\224

11)\n

+\n

Vt2 -1\n
sinh (o)n \\/{2 \342\200\2241 0\n (6-137)\n
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These three equations give q(t) for the three conditionsof damping.
\nSince the damping ratio is determined as the ratio of actualresistance
\nto critical resistance, the three conditions could be obtained merely

\nby an adjustment of the resistor R. Figure 6-13 shows the behavior\n

Kg. 6-13. System response for three values of f illustratingthe

\nunderdamped (f = 0.2), critically damped (f = 1.0),and overdamped

\n(f
= 1.4) cases.\n

of the charge in the circuit as the damping ratio changes. These solu\302\254

\ntions are valid for any second-order system with these particular
\ninitial conditions, not only in electric networks but also in mechanical
\nand electromechanical systems (for example, in servomechanisms).\n

FURTHER READING\n

Solutionofdifferentialequations of the type discussed in this chapter
\nis concisely treated by Wylie in Advanced Engineering Mathematics
\n(McGraw-Hill Book Co., Inc., New York, 1951), pp. 1\342\200\22445.See also

\nChap. 4, titled \342\200\234Classical Analysis of Double-Energy Transients\342\200\235

\nin Fich, Transient Analysis in Electrical Engineering (Prentice-Hall,
\nInc., New York, 1951). Other texts recommended for supplementary
\nreading include: Skilling, Transient Electric Currents (McGraw-Hill\n
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Book Co., Inc., New York, 1952),Chaps.3 and4; Johnson, Mathe\302\254

\nmatical and Physical Principles of Engineering Analysis (McGraw-Hill
\nBook Co., Inc., New York, 1944), Chap. 6; Salvadori and Schwarz,
\nDifferential Equations in Engineering Problems (Prentice-Hall, Inc.,
\nNew York, 1954), Chaps. 3 and 4.\n

PROBLEMS\n

6-1. Show that i = ke~2tand i = ke~l are solutions of the differential

\nequation\n

dS

\ndt2\n
+

3ft
+ 2i = 0\n

6-2. Show that i \342\200\224ke~\342\200\230and i = kte~* are solutions of the differ\302\254

\nential equation\n

dH

\ndt2\n +2s+i=0\n

6-3. Find the general solution each of the following equations:\n

<*>
3?

+
3\302\256

+ 2' = \302\260\n

(b)S
+

5S
+ 6s'\342\200\234\302\260

\n^\302\247
+

7m
+ 12i = 0\n

<d>3?
+

5;l
+ 4\342\200\231= 0\n

<\342\200\242>
W

+
7t

+ 6x = 0\n

w B
+ i + 2* = \302\260\n

<h)3F
+

4t\342\200\231
+ 4f = 0\n

6-4. Find the particular solution of the differential equation of
\nProb. 6-3(a) and Prob. 6-3(b) subject to the initial conditions:\n

i(\302\260+)
=

1, j(
(0+) = 0\n

Answers, i = 2e~* \342\200\224
e~2t, i = 3e-2< \342\200\224

2e~3t.\n

6-6. Repeat Prob. 6-4 for the differential equations of Prob. 6-3,
\nparts (c) through (h) subject to the initial conditions\n

variable (0+) = 2,^ [variable (0+)]
= 1\n

6-6. Write the general solution of the differential equationswith the
\nfollowing characteristic equations:\n

(a) (m + l)(m + 2)(m2+ m -f 1) = 0\n

(b) (m + l)2(m + 5) = 0\n

(c) (m + a){m -j- b)(m \342\200\224
c) (m

\342\200\224
d)

= 0\n
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6-7. Plot the roots of the characteristic equation in the ra-plane
\n(m

= <r + ju) for L = 1 henry, C = 1 jff, and (a) R = 500 ohms,\n

(b) \tR = 1000 ohms, (c) R = 2000 ohms, (d) = 3000ohms, (e) R =

\n4000 ohms.\n

6-8. For the system described in Prob. 6-7 and for (a) R = 500

\nohms, (b) R = 2000 ohms, and (c) R = 4000 ohms,find the general

\nsolution to the differential equation. Evaluate all coefficientsbut not

\nthe arbitrary constants.\n

6-9. In a certain network, it isfoundthat the current is given by the

\nexpression\n

i = Kie~ait \342\200\224
K2e~att, t > 0, \302\253i> a.2

\nShow that i(t) reaches a maximum value at time\n

t =\n
1

ln\n

ai
\342\200\224

<*2 CX2K2\n

6-10. The graph shown is a record of the current as a function of

\ntime resulting when a switch is closed at t = 0, connectinga battery

\nto a network. Only slightly more than a cycle is shownin the record,

\nbut the current eventually reaches zero value, (a) Determine the
\nvalues of f and <o\342\200\236for the current waveform, (b) Write the equation
\nof current as a function of time with all coefficientsevaluated.\n

Prob. 6-10.\n

6-11. In the network shown in the accompanyingfigure,the switch

\nK is opened at t \342\200\224
0 with equilibrium conditions existing before the

\nthe switch is opened. Find the current through the inductor asa func\302\254

\ntion of time. Answer. u(<) = 10 cos 316L\n

Prob. 6-11.\n



Chap. 6 DIFFERENTIAL EQUATIONS, CONTINUED 123\n

6-12. Show that Eq. 6-67 can be written in the form\n

i \342\200\224Ke~t<iKt cos (o>\302\273\\/l
\342\200\224

f21 + 0)\n

Give the values for K and <t> in terms of K6 and K6 of Eq. 6-67.\n

6-13. Solve the following nonhomogeneous differential equations.\n

M$ + ai+*-1\n

o\302\273>\302\243
+

\302\273s
+ *-\302\253\n

Answer, i =
\302\247\302\243

\342\200\224 + kxe~l + kgr2*.\n

(c) S +3 s + 2< = 10 sin 10i\n

(d) ^
+ 5l + 69 = fe_\342\200\230\n

Answer, q
= ^ 7 e-< + kie-2*+ ktfru\n

2 4\n

(e) ^
+ 5 !| + (to = e-\342\200\234+ 5e-\342\200\234\n

Answer. v = (fCi + t)e~2t + (K2 \342\200\224
bt)e~u.\n

6-14. A special generator has a voltage variation givenby the equa\302\254

\ntion v(t)
= t volts, where t is the time in seconds.This generator is

\nconnected to an RL series circuit, where R = 2 ohmsand L = 1

\nhenry, at time t = 0 by the closingof a switch. Find the equation for
\nthe current as a function of time i(t). Answer. i(t) = \342\200\224

x + tC_2\342\200\230-\n

6-15. A bolt of lightning having a waveform whichis approximated
\nas v(t)

= te~* strikes a transmission line having resistanceR = 0.1ohm

\nand inductance L = 0.1 henry (the line-to-line capacitanceis assumed
\nnegligible). An equivalent network is shown in the accompanying
\ndiagram. What is the form of the current as a functionof time? (This

\ncurrent will be in amperes per unit volt of the lightning; likewise the

\ntime base is normalized.) Answer. i(t) = 5t2e~\342\200\230.\n

Prob. 6-15. Prob. 6-16.\n

6-16. In the circuit shown in the figure,solve for i(t) if K is closed
\nat t = 0. Answer, i = 10~4e~\342\200\230 (cos t \342\200\224sin t)

\342\200\224
10-4e~104*.\n
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6-17. In the network shown, the switch K is closedat * =
0, with a

\nsteady state having been established previousto this time. For the\n

parameter values shown in the dia\302\254

\ngram, find the current as a function
\nof time i(t). Answer, i = (20.3
\ncos 377*

- 0.8 cos 1414* + 1485
\nsin 1414*) X 10-3 amp.\n

6-18. On page 118,the statement
\nis made that the transient term

\nin the solution cannot vanish in the
\nRLC series circuit with a sinusoidal

\ndriving force merely by closing a switch at an appropriate time. Prove
\nthat this statement is correct.\n

6-19. Starting with Eq. 6-127,verify that Eq. 6-137is the partic\302\254

\nular solution with the initial conditions given for Case 3.\n

6-20. A switch is closed at * = 0 connecting a battery of voltage V

\nwith a series RL circuit, (a) Show that the energy in the resistor as a

\nfunction of time is\n

rt-HPO\n

Prob. 6-17.\n

wR\n

=?(\342\226\240+\n

2L

\nR\n

,-Rt/L\n L_

\n2 R\n

e\342\200\2242Rt/L\n

3L\\\n

2 RJ\n

(b) \tFind an expression for the energy in the magneticfield as a

\nfunction of time, (c) Sketch wR and wL as a function of time. Showthe
\nsteady-state asymptotes, that is, the values that wR and Wl approach

\nas * \342\200\224*\342\226\240oo. (d) Find the total energy supplied by the voltagesourcein
\nthe steady state.\n

6-21. In the series RLC circuit shownin the accompanying diagram,

\nthe frequency of the driving force voltage is\n

(1) w = con (the undamped natural angular frequency)\n

(2) o) = oon \\/\\ \342\200\224
f2 (the natural angular frequency)\n

These frequencies are applied in two separate experiments. In each

\nexperiment we measure (a) the peak
\nvalue of the transient current when

\nthe switch is closed at < =
0, and (b)

\nthe maximum value of the steady-
\nstate current, (a) In which case (that
\nis,

which frequency) is the maximum

\nvalue of the transient greater? (b) In
\nwhich case (that is, which frequency)
\nis the maximum value of the steady-state current greater?\n



CHAPTER 7\n

THE LAPLACE TRANSFORMATION\n

7-1. Introduction\n

The forerunner of the Laplacetransformationmethod of solving dif\302\254

\nferential equations, the operational calculus, was invented by the bril\302\254

\nliant English engineer Oliver Heaviside (1850-1925). Heaviside was
\na practical man and his interest was in the practical solutionofelectric
\ncircuit problems rather than careful justification of his methods. He
\nwas gifted with an insight into physical problems that enabled him to
\npick the correct solution from a number of alternatives. This heuristic
\npoint of view drew bitter and perpetual criticism from the leading
\nmathematicians of his time. In the years that followed publication of
\nHeaviside\342\200\231s work, the rigor was supplied by such men as Bromwich,
\nGiorgi, Carson, and others. The basis for substantiating the work of
\nHeaviside was found in the writings of Laplace in 1780. As the years
\nhave passed, the structural members of the framework of Heaviside\342\200\231s

\noperational calculus have been replaced, piece by piece, by new mem\302\254

\nbers derived by the Laplace transformation. This transformation has
\nprovided rigorous substantiation of the operational methods; no impor\302\254

\ntant errors have been discovered in Heaviside\342\200\231s results.\n

The Laplace transformation method for solving differential equa\302\254

\ntions offers a number of advantages over the classical methods that
\nwere discussed in Chapters 4 and 6. For example:\n

(1) The solutionof differential equations is routine and progresses
\nsystematically.\n

(2) The method givesthe totalsolution\342\200\224the particular integral and

\nthe complementary function\342\200\224in one operation.\n

(3) Initial conditions are automatically specifiedin the transformed

\nequations. Further, the initial conditions are incorporated into
\nthe problem as one of the first steps rather than as the laststep.\n

What is a transformation? The logarithm is an example of a trans\302\254

\nformation that we have used in the past. Logarithms greatlysimplify
\nsuch operations as multiplication, division, extracting roots, and rais\302\254

\ning quantities to powers. Suppose that we have two numbers,given
\nto seven-place accuracy, and we arc required to find the product,
\nmaintaining the accuracy of the given numbers. Rather than just mul-\n

125\n
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tiplying the two numbers together, we transform these numbers by

\ntaking their logarithm. These logarithms are added (or subtracted in
\nthe case of division). The resulting sum itself has little meaning. How\302\254

\never, if we perform an inverse transformation, if we find the antilog\302\254

\narithm, then we have the desired numerical result. The directdivision
\nlooks more straightforward, but our experience has been that the use
\nof the logarithm often saves time. If the simple problemof multiply\302\254

\ning two numbers is not convincing, consider evaluating (1437)\302\260-1328

\nwithout logarithms!\n

Numbers\n
Logarithm\n Logarithms\n

of numbers\n

1\n

Direct\n

multiplication
\nor division\n

1\n

Addition

\nof numbers\n

1\n

Product

\nor quotient\n
Antilogarithm\n

Sum of
\nlogarithms\n

(a)\n

I\n

Classical\n

solution\n

Solution\n

Time domain \342\200\242\n

(6)\n

Integra-\n

differential\n Laplace\n Transform\n
equation\n transformation\n

Initial\n

Conditions\n

I\n

Algebraic\n

manipulation\n

\\\n

Inverse\n Laplace\n Revised\n

transfo\n rmation\n
Transform\n

\342\226\240
Frequency domain\n

Fig. 7-1. Comparison of logarithms and the Laplace transformation.\n

A flow sheet of the operation of using logarithms to find a product

\nof a quotient is shown in Fig. 7-1. The individual stepsare: (1)find

\nthe logarithm of the separate numbers, (2) add or subtract the num\302\254

\nbers to obtain the sum of logarithms, and (3) take the antilogarithm

\nto obtain the product or quotient. This is roundabout comparedwith

\ndirect multiplication or division, yet we use logarithms to advantage,
\nparticularly when a good table of logarithms is available.\n

The flow sheet idea may be used to illustrate what we willdoinusing

\nthe Laplace transformation to solve a differential equation. The flow

\nsheet for the Laplace transformation is also shown in Fig. 7-1with a\n
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block corresponding to every block of the logarithm flow sheet con\302\254

\nsidered above. The steps will be as follows. (1) Start with an integro-

\ndifferential equation and find the corresponding Laplace transform.
\nThis is a mathematical process, but there are tables of transformsjust
\nas there are tables of logarithms (and one is includedin thischapter).
\n(2) The transform is manipulated algebraically after the initial con\302\254

\nditions are inserted. The result is a revised transform. As step (3), we

\nperform an inverse Laplace transformation to give us the solution. In
\nthis step, we also can use a table of transforms, just as we use the table

\nof logarithms in the corresponding step for logarithms. The flowsheet
\nreminds us that there is another way: the classical solution. It looks
\nmore direct (and sometimes it is for simple problems). For complicated
\nproblems, an advantage will be found for the Laplace transformation,
\njust as an advantage was found for the use of logarithms.\n

7-2. The Laplace transformation\n

To construct a Laplace transform for a given function of time f(t),
\nwe first multiply f(t) by e~ft, where s is a complexnumber,s = a + j<a.
\nThis product is integrated with respect to time from zero to infinity.
\nThe result is the Laplace transform of /(<), which is designatedF(s).
\nDenoting the Laplace transformation by the script letter <\302\243(in order

\nto reserve L for inductance), the Laplace transformation is given by
\nthe mathematical expression\n

The letter \302\243can be replaced by the words \342\200\234theLaplace transform of\342\200\235

\nin the above expression.\n

Although this equation is a rather formidableappearingintegral,
\nthe actual evaluation of F(s) for a given f(t) is usuallynot difficult.

\nFurthermore, once the transform of a function is found, it neednot be

\nfound again for a new problem but can be tabulated. The timefunc\302\254

\ntion f(t) and the transform F(s) of this function are calledtransform
\npairs.

A table of transform pairs is given on page 146.\n

The operation which changes a function of s back to a function of

\ntime is called the inverse Laplace transformation. This operation is
\nsymbolized as <\302\243-1. Then by definition,\n

(7-1)\n

jb-'WWD =\302\243-[?(\302\253)]=/(()\n (7-2)\n

The inverse Laplace transformation is given by the complexinversion
\nintegral,\n

(7-3)\n
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where c is a constant. This integral is seldom used becauseof the

\nuniqueness property of the Laplace transformation that there isa one-
\nto-one correspondence between the direct and inverse transforms. In
\nother words, a table can be used to find the/(\302\243) corresponding to a given

\nF(s) as well as an F(s) for a given f(t).\n

Not all functions can be integrated to find the Laplacetransforms.
\nThe usual requirements for an f(t) are that it be (1)piecewisecontin\302\254

\nuous and (2) of exponential order. These requirements are discussed
\nin detail in references cited at the end of this chapter. Suffice to say

\nthat all functions of engineering interest have the propertiesrequired
\nfor the existence of the transform.\n

As an example of the evaluationof Eq. 7-1, let f(t) = 1; then\n

\302\243[1]
=\n e~at dt =\n e\n

8\n

\342\200\2248t\n
(7-4)\n

Because of the lower limit of the integral, the value of f(t) for t < 0

\ndoes not enter into the final solution. Thus the Laplace transformfor

\nf(t)
\342\200\2241 is the same as that of a special function havingzerovalue for

\nt < 0 and unit value for t > 0. Such a functionwas called a unit step\n

function by Heaviside. We will

\nu(tj
use the symbol u(t) for a function\n

1 described mathematically as\n

m f\302\260
< <0\n

\342\200\2351\302\260+* u(t) =
! t>Q (7-5)\n

Fig. 7-2. Unit step function. . .\n

and shown as a function of time\n

in Fig. 7-2. Such a function is the mathematicalequivalentof physically\n

closing a switch at t = 0. If a battery of voltageV is connected to a\n

network at t = 0 by closing a switch,that voltagecanbe described as\n

Vu(t); that is, V times unity for t > 0 and V times zero for t < 0. The\n

Laplace transform for Vu(t) is\n

\302\243lVu(t)]
=

^\no\n
(7-6)\n

As a second example of the calculation of a transform,letf(t)
= eat)

\nwhere a is a constant. Substituting into Eq. 7-1,we have\n

dt\n

L\n

g-(.-o)t dt\n *>a (7-7)\n

Thus e\302\260\342\200\230and l/(s
\342\200\224

a) constitute a transform
pair.\n

For one further example, let f(t) \342\200\224sin <at. Substituting into the

\ndefining equation, we have\n
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4 -
f\342\200\231 +;/\342\200\224\342\226\240]*\n

o>\n

\302\2532+ tt2\n

These two computations can form the beginning of a table of transform

\npairs as shown below.\n

Table of Transform Pairs\n

m\n F(s)\n

uit)\n 1/s\n

1\n

e\302\260*\n

s \342\200\224
a\n

sin ut\n
CO\n

s2 + <a2\n

More pairs can be added as they are computed. Exhaustivetablesare

\nto be found in reference books cited at the end of the chapter.\n

7-3. Basic theorems for the Laplace transformation\n

(1) Transforms of Linear Combinations. If fi{t) and f2(t) are two

\nfunctions of time and a and b are constants, then\n

\302\243[a/i(<) + bf2(t)] = aF1(s) + bF2(s) (7-9)\n

This theorem is established with Eq. 7-1. It followsfrom the fact

\nthat the integral of a sum of terms is equalto the sum of the integrals
\nof the terms; that is,\n

\302\243[afi(f) + bf2{t)]
= [afi(t) + bf2(t)]e-\342\200\230 dt\n

= a
J

fi{t)e~tl dt + b
j fi{t)e~H dt\n

= aF^s) + bF2(s) (7-10)\n

We will make use of this theorem in taking the Laplace transformation
\nof the sum of derivative terms appearing in a differentialequation.\n

(2) Transforms of Derivatives. From the defining equation for the
\nLaplace transformation, we write\n

4itf(t>}=r s-tf(i)e~',dt (7-n)\n

This equation may be integratedby parts by letting\n

129\n

(7-8)\n

u = e~tl and dv = df(t)\n
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in the equation\n

fb l6 fb\n

J
udv = uv I

\342\200\224

J

v du\n

Then du = -se\342\200\224'dt and v =
f(t)\n

so that the transform of a derivative becomes\n

\302\243

[|/(0]

=
e-\342\200\230f(t)]\" + \302\253[\"/(()\302\253- dt = sF(s)

- /(0+) (7-\n

provided lim = 0, which follows from 1\342\200\231Hospital\342\200\231srule, pro-\n
t\342\200\224\342\226\272\302\2530\n

vided that f(t) and all its derivatives are not infiniteat t = <\302\273.\n

To find the transform of the second derivative, we follow a similar

\nprocedure but make use of the result ofEq.7-13.Since\n

13)\n

then\n

=
\302\253(<#(\302\273)

- /(0+)]
-

ft (0+)\n

=
a!F(s)

-
\302\253/(0+)

-
^ (0+)\n

(7-14)\n

(7-15)\n

In this expression, the quantity df/dt (0+) is the derivativeof /(f)

\nevaluated at t = 0+ (the time immediately after switchingactionis
\ninitiated). The general expression for an nth order derivative is\n

\302\243

^
=

*-F(\302\273)
-

s\342\200\224/(0+)
- *-* % (0+) - ... -

1^/(0+)\n

(7-16)\n

(S) \tTransforms of Integrals. The transform for an integral expres\302\254

\nsion, is found by starting with the equation\n

/.\n

me-1 dt = F(s)\n

and integrating by parts to give\n

F(s)
= e\342\200\2241

j
f(t) + 8

JQ [J fit) e\342\200\224*\n

(7-17)\n

dt (7-18)\n

The quantity\n

j
m

^](\n
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becomes zero at the upper limit, and at the lower limit has the value

\nof the integral evaluated at t = 0, usually written by the notation\n

/\n

m dt\n

t-o+\n

- /<~1)(0+)\n (7-19)\n

where /(-1) indicates integration. The last term of Eq. 7-18 is recog\302\254

\nnized as s times the Laplace transform of / f(t) dt. RearrangingEq.\n

7-18, there results\n

*[jmdt]
=

rn+f^f\302\261i\n (7-20)\n

Similarly, it is found that\n

[//*H

-\n
m , /(\n

-9 I\n
-\342\200\230>(0+) /<-\302\273( 0+)\n

.9 r _\n (7-21)\n

In the analysis of networks on the loop basis,f(t) is often a current i(t)

\nand the integral of the current is the charge q(t). Equation20then has

\nthe form\n

\302\243[fmdt]
= rn + rn\302\261i\n

(7-22)\n

where q(0+) is the charge (say on the plates of a capacitor) at the time

\nt \342\200\224
0-!-.\n

If f{t) is a voltage, then\n

\342\226\240[/<\302\253]\342\200\242\302\273*\302\253\n

(7-23)\n

since the integral of voltage is flux linkage if/.\n

7-4. Examples of the solution of problems with the Laplace transformation\n

With the short table of transforms that has been given on page 129

\nand the three basic theorems that have been derived in the previous
\nsection, we are now equipped to solve a network problem (elementary
\nas yet, to be sure) using the Laplace
\ntransformation.\n

Example 1\n

For this example, we will write
\nthe Kirchhoff voltage law for a series
\nRC network shown in Fig. 7-3. It
\nwill be assumed that the switch K

\nis closed at t = 0. This information will be includedin the formation

\nof the network equations by writing the voltage expression as Vu(t).\n

K R\n

Tig. 7-3. RC series circuit.\n
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dt + Ri =
Vu(t)\n

Chap. 7\n

(7-24)\n

This is the integral equation we wish to solve. UsingEq. 7-20 for the

\nfirst term, we take the transforms of the linearcombinationof terms as\n

i[\n

M +
\302\253(\302\260\302\261>1

+ \302\253/(,)
\342\200\236v-.i\n

8 8 J 8\n
(7-25)\n

In terms of the flow chart of Fig. 7-1,we have taken the Laplace trans\302\254

\nformation of the integral equation and there has resulted a transform
\nexpression. The required initial conditions are automatically specified
\nand may be inserted as the second step (rather than as the final step

\nas in differential equations solved by classical methods). Now g(0+)

\nis the charge on the capacitor at t = 0+. If the capacitoris initially

\nuncharged, ?(0+) = 0 and the last equation reducesto the form\n

m\n
Or*+ R)

=\n
V\n

8\n
(7-26)\n

The next step, again according to the flowchart, isalgebraicmanipula\302\254

\ntion. The objective of this manipulation is to solve for /($). This is

\naccomplished by multiplying by s and dividing by R to give\n

m =\n
V/R\n

s + 1IRC\n
(7-27)\n

which is a \342\200\234revised transform\342\200\235 expression. The next step on our flow

\nchart is to perform the inverse Laplace transformation and obtainthe
\nsolution. That is,\n

\302\243-(/(\302\273)]
- \302\243-

(fZfTfUc)

= P-28)\n

Using the second transform pair of ourshorttable,the solution is\n

Of)
= \342\202\254*\302\273\n (7-29)\n

This is the complete solution (the steady state in this casebeing of

\nzero value). The arbitrary constant emerges evaluated (and has the
\nmagnitude V/R).\n

Example IB\n

As our second example, consider the RL series circuit shownin Fig.\n

7-4. As in Example 1, the switch is closedat t = 0. The differential\n
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equation for the circuit is, by KirchhofTs law,\n

Ljt
+ Ri= Vu(t) (7-30)\n

The corresponding transform equation is\n

L[\302\253/(\302\253)
- *(0+>] + RI(8) = -

(7-31)\n

The initial condition specified by the last equation is \302\253(0+), the cur\302\254

\nrent after the switch is closed. Because of the inductance, t\342\200\230(0+)
= 0.

\nOur equation may now be manipulated to solve for /(\302\253); thus\n

m =
r\n

1\n

L \302\253(s+ R/L)\n
(7-32)\n

This transform, however, is not in ourshorttable.We need something

\nnew (or a larger table). Notice that this term is madeup of the prod\302\254

\nuct of the term (1/s) and the term

\n[1/(8 + R/L)]. We know the in\302\254

\nverse Laplace transformation of

\neach of these individual terms.\n

This suggests that the inverse oper\302\254

\nation could be performed if there

\nwere some way to break the trans- rifir* 7\"4* RL senes clrcult-\n

form terms into several parts. As an attempt to performthisoperation,
\nlet us try the following expansion:\n

V/L K0 , Ki\n

s(s -j- R/L)\n
= Ko,\n

s s R/L\n

(7-33)\n

In this equation K0 and K i are unknown coefficients.As the first
\nstep, let us simplify the equation by putting all terms overa common

\ndenominator. Then\n

r
= Ko

(*+ r)
+ KiS\n

By equating coefficients of like functions, we obtain a set of linear
\nalgebraic equations:\n

K
R _ V

\nKo
L L\342\200\231\n

Ko + Ki = 0\n

From these two equations, we find the required values for Ko and K\\\\\n

Ko =
^

and Kx = \342\200\224

^\n
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This algebraic manipulation has permittedEq. 7-32 to be written\n

/(\342\200\242)\n

V 1
= V\\l\n

L s(s + R/L) R [s\n

1\n

s -(- R/L\n
(7-34)\n

We have transform pairs corresponding to each of these expressions.

\nThe current as a function of time isfoundby taking the inverse Laplace
\ntransformation of the individual expressions;thus\n

-
\302\243\n

-i\n
1\n

s -|- R/L\n )\n

(7-35)\n

or\n i(t) =
^ (1 -

erRt/L)\n (7-36)\n

This is the final (time-domain) solution. The method we used to

\nexpand a transform into the sum of several separatepartsis known

\nunder the heading of 'partial fraction expansion. It is this subjectthat

\nwe study next.\n

7-5. Partial fraction expansion\n

The examples of the last section have suggested the general pro\302\254

\ncedure in applying the Laplace transformation to the solution of
\nintegrodifferential equations. A differential equation of the general
\nform\n

dni , dn~H . . di . ...\n

o0
^

+ ai ^n-1 + ... + on_i
^

+ ani = v(t) (7-37)\n

becomes, as a result of the Laplace transformation, an algebraicequa\302\254

\ntion which may be solved for the unknown as\n

m =\n
\302\243[t)(Q] + initial condition terms

\na<>sn + ais\342\200\235-1 + .. . + an~iS + a\342\200\236\n
(7-38)\n

The general form of this equation is a quotient of polynomials in s.

\nLet the numerator and denominator polynomials be designated P(s)
\nand Q(s), respectively, as\n

/\302\253
= (7-39)\n

If the transform term P(s)/Q(s) can now be foundina table of trans\302\254

\nform pairs, the solution i(t) can be written directly. In general,how\302\254

\never, the transform expression for I(s) must be broken into simpler
\nterms before any practical transform table can be used. To simplify
\nthe expression by partial fraction expansion, we find the roots of the
\ndenominator polynomial\n

QCs) = aos\" + ax\302\256\"-1 + ... + On
= a0(s + \302\2530... (\302\253+ s\342\200\236)(7-40)\n
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Because the coefficients do, di, ..., d\342\200\236are positive and real (being
\nfunctions of network parameters R, L, and C), the roots of Q(s) are

\nrestricted to be: (1) simpleand real,(2) conjugate complex pairs, or\n

(3) \trepeated (or nonsimple) as discussed in Art. 6-3.\n

The rules for expanding I(s) by partial fractions are givenin terms

\nof the three possibilities just mentioned:\n

(1) \tIf all the roots are simple (that is, not repeated), then thepartial
\nfraction expansion is\n

P(a) _Kj_
j

Kn\n

(s + Si) (\302\253+ 82) . . . (s + Sn) 8 + *1 8 + Sj 8 + 8n\n

(7-41)\n

(2) \tIf a root is repeated r times, the partial fractionexpansioncorre\302\254

\nsponding to this one (repeated) root is\n

P(s) _ Kxx Kxi Klr\n

(8 -f- Si)r 8 Si (* + Si)2 (8 + Si)r\n

(7-42)\n

and there will be similar terms for every other repeatedroot.\n

(3) \tAn important special rule may be given for tworootswhich form

\na complex conjugate pair. For this case, the partial fraction expansion
\nis\n

P(s)
^\n

Qi(\302\253)(\302\253+ \302\253+ j<a)(s + a \342\200\224
ju>)\n

Kx\n

(s + a + jui)\n

+\n

K !*\n

(s + a \342\200\224
jta)\n

+ ... (7-43)\n

where Kx* is the complex conjugate of Kx. In other words,when the

\nroots are conjugates, so are the partial fraction expansioncoefficients.
\nAn expansion of the type shown above is necessary for each pair of

\ncomplex conjugate roots.\n

Although the above three rules are sufficientto expandany quotient

\nof polynomials, it is sometimes more convenient to expand second-
\norder denominator terms as\n

PW \t\n
Qi(s)(s2 + as + b)(s2+ cs+ d)\n

As + B\n

As B\n

+\n

Cs + D\n

s2 + as + b

\n+

Cs + D\n

+\n

(s + ai)2 + &>i2 (s + as)2 + \302\25322\n

2
+ cs + d\n

+ ... (7-44)\n

In an expansion of a quotientof polynomials by partial fractions,
\nit may be necessary to use a combination of the threerulesgiven above.

\nSeveral examples will illustrate the expansion and the determination
\nof the K\342\200\231b.\n
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Example S\n

Consider the quotient of polynomials,\n

I(s) =\n
2s + 3

\ns2 -I- 3s \342\200\234I-2\n

The first step is to factor the denominator polynomialandthenexpand

\nby the appropriate rule. For this example, the expansionis\n

2s + 3 = K2 K2\n

(s + l)(s + 2) s + 1 s + 2\n

since the roots are real and not repeated. Placingeachfactorover the

\ncommon denominator of the equation gives\n

2s -f- 3 = (s + 2)K! \342\200\224(s -1- l)iCj

\nor 2s + 3 = (Ki + K2)s + (2Ki + K2)\n

Equating coefficients of like functions, we obtain the followingset of

\nlinear equations: 2 = Kx + K2}3 = 2Ki + K2. From these two equa\302\254

\ntions, we find that Kx = 1 and K2 = 1. The result of the partial frac\302\254

\ntion expansion is thus\n

2s + 3 = 1 1\n

s2 -|\342\200\2343s + 2 < -f 1 s + 2\n

The expansion may be checked by combining the two terms of the

\npartial fraction expansion.\n

Example 4\n

For this example, consider a quotient of polynomials with repeated
\ndenominator roots:\n

s + 2 _ Kn . K\\2\n

(s + l)2
-

s + 1 (s + l)2\n

This form is required by rule (2). Multiplying the equationby (s + l)2

\ngives\n

s + 2 = (s + + K\\2\n

The resulting set of linear algebraic equations is Kn \342\200\224
1, Kn + Kn

\n=
2, or Ki2 = 1. The resulting partial fractionexpansionis\n

8 + 2 1 1

\n(s + l)2

\"
s + 1 \"*\342\226\240

(s + 1)S\n

Again, this expansion can be checked, in this case by multiplyingthe

\nfirst term in the expansion by (s + l)/(s + 1).\n
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Example 6\n

This example will illustrate the expansion of a quotient of
polyno\302\254

\nmials where the denominator roots are a complex conjugate pair. Con\302\254

\nsider the quotient\n

1 _ Kx Kx*\n

+ 2s + 5 (a + 1 + j2) ^
(a + 1 -

j2)\n

If each term is multiplied by a factor to put all termsover a common

\ndenominator, the following equation results:\n

1 = Kx(e+ 1 -
j2) + Kx*(8 + 1

-\\-j2)\n

Equating the coefficients of like terms,\n

(1 - j2)Kx+ (1 + j2)Kx*
= 1 and Kx + Kx* = 0\n

These two equations may be solved simultaneously for Kx and Kx*.
\nThis gives\n

= and
k'*-th\n

= -n\n

In this development,we did not make use of the conjugate relationship
\nbetween Kx and Ki*. If Ki is found by any method,it isnot necessary

\nto solve for K\\*. If the values for Kx and Kx*aresubstitutedintothe

\nfirst equation of this example, there results\n

1\n 3x\n
+\n

-Jr\n

s2 + 2s + 5 (s + 1+ j2) ' (s+ 1
-

fit)\n

To use some transform tables, such terms should be revisedby com\302\254

\npleting the square. In this example,\n

so that\n

(s2 + 2s + 5) = (s2 + 2s + 1)+ 4 = (s + l)2 + 22\n

1 _ 1

\n82 + 2s + 5 (s + l)2 + 22\n

In the general form [(s + o)2 + 62],a is the real part of the root, and
\nb is the imaginary part.\n

The three rules just given for partialfractionexpansion are restricted

\nto the cases in which the order of the numerator polynomialislessthan

\nthe denominator polynomial. If this condition is not fulfilled, it is
\nnecessary to first divide the denominator into the numerator to obtain
\nan expansion of the form\n

(7-45)\n
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where n is the order of the numerator, d isthe order of the denominator,

\nand Pi(s)/Q(s) is a new quotient of polynomials with the orderof the

\nnumerator less than that of the denominator such that theusualrules

\napply.\n

As an example, let\n

P(s) =
s2 + 2s + 2

\nQ(s) s + 1\n

By direct division,\n

s + 1) s2 + 2s + 2 (s + 1\n

S2 + 3\n

s \342\200\224|\342\200\2242

\ns + 1

\n1\n

or\n
s2 + 2s + 2

\n3 + 1\n

= 1 + s +\n

1\n

s + 1\n

so that in Eq. 7-45, Bo = 1, Bi = 1,andPi(s)/Q(s)= l/(s + 1).\n

7-6. Heaviside's expansion theorem\n

Let us return to the problemof Example 3 which was written\n

2s -j- 3 K\\ . Ki\n

(s + l)(s + 2) (s +1) (s + 2)\n

As the first step, multiply the equation by (s + 1) as\n

(2s + 3)(s + 1) _ K s + 1 . s + 1

\n(s+l)(s + 2)
\342\200\234

Als+1 \"^2s + 2\n

or, canceling common factors,\n

2s + 3
\ns + 2\n

s_\302\2611

\ns + 2\n

(7-46)\n

(7-47)\n

(7-48)\n

In this equation, the coefficient K x is not multiplied by any function
\nof s. Now s is merely an algebraic factor that can have any value. If

\ns = \342\200\224
1, the coefficient of K2 reduces to zero and we can solve for Ki as\n

K,\n

2s + 3

\ns + 2 ,\n ^ri
= 1 P-49)\n

which is the same result as found previously. To evaluateK2 and to

\nfollow the same pattern, multiply Eq. 7-46by (s+ 2) to obtain\n

2s+ 3\n

\302\253+ 1\n

= K!\n
s + 2\n

3+1\n
+ Ki\n (7-50)\n

To evaluate Ki} we set s = \342\200\2242in order to reduce the coefficient of Ki\n
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to zero. Then\n

K,\n

2s + 3\n

\342\200\242+ 1\n \342\200\242--2\n

4 + 3\n

2 + 1\n
(7-51)\n

This method, which the example has shown will eliminate muchofthe
\nalgebraic manipulation of evaluating the coefficients, is known as
\nHeaviside's 'partial expansion method. The method will work as in this
\nexample when Q(s) has no repeated roots. In general, if\n

P(s) K, K2 ,Kt , Kn\n

Q(s) S + Si S + 82 S + S3 S + Sn\n
(7-52)\n

then any of the coefficients K1, Kif K%, ..., Kn can be evaluated by
\nmultiplying by the denominator of that coefficient and setting s to
\nthe value of the root of the denominator. In other words,to find the

\ncoefficient Kj,\n

*' =
[(s

+(7-53)\n

In the form given in this equation, Heaviside\342\200\231s expansion theorem

\napplied only to functions with nonrepeated denominator roots. To
\nstart our discussion of the case of repeated roots, considerthe example,\n

P(s) s + 2 _ Kn Kn\n

Q(s) (s + l)2
\"

s + 1 ^ (s + l)2

K\342\200\230~\302\260V\n

Multiplying by (s + l)2 gives\n

s + 2 = (s + l)tf \342\200\236+ Kn (7-55)\n

and when s = \342\200\224
1, Kn is readily evaluated as Kn = 1. If we attempt

\nto follow the same pattern to evaluate Kn, trouble develops. That is,\n

7T1

- + sTl <7-56>\n

If, in this equation, s = \342\200\224
1, one term becomes infinite and Kn cannot

\nbe evaluated. However, the problem can be resolved if we return to
\nEq. 7-55 and differentiate with respect to s. (This is a reasonablething
\nto do: we have used differentiation before to remove trouble with
\nindeterminant forms.) Differentiating with respect to s,\n

1 + 0 = Kn + 0 or Kn = 1\n

The constants are now evaluated and the partial fraction expansionis\n

s+2 1,1\n

(s + l)2 s + 1 ^ (s+ l)2\n

(7-57)\n
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To consider a generalcase of r-repeated roots, let\n

Kn , Kj2 , Kin\n

Chap. 7\n

P(S) = R(8)
=\n

Q(\302\253) (s + 8y)r 8 + 8i\n (8 + 8y)2\n

+ ...\n
(\302\253+ \302\253;)\342\200\231

\n+ ... +\n

4\342\200\234\342\200\242\342\200\242

\nKir\n

(7-58)\n
(a + 8i)r\n

where n is any term in the partial fraction expansionandR(s) is defined

\nas\n

B(,) -
W)(*+s,)r\n

(7-59)\n

Multiplying Eq. 7-58 by (s + a,)r gives\n

R(&)
\342\200\224

Kn(s + 3y)r_1 + Kiiia + sy)r~2 + ... + Kir (7-60)\n

From this equation, we can visualize the method to beusedto evaluate

\neach coefficient. If we let s = \342\200\224
sy, all terms in the equation disappear

\nexceptK^, which can be evaluated.Next, differentiate the equation

\nonce with respect to s. The term iCy, will vanish, but fCy,r_i will remain
\nwithout a multiplying function of 8. Again,ICy,r_i can be evaluated

\nby letting 8 = \342\200\224
s,. To find the general term /\302\243,\302\273,differentiate Eq.\n

7-60 (r
\342\200\224

n) times and let 8 \342\200\224\342\200\224
\302\253y;then\n

Kin
=\n

1 dr-^Ria)\n

d,8r\n I* - -\342\200\242*\n

or\n

(r
\342\200\224

n)l\n
(7-61)\n

(7-62)\n

The actual use of this idea is easierthan might appear from the com\302\254

\nplexity of this general equation. For example, consider\n

2\302\253*+ 38 + 2\n K\n ii\n

+\n

K\n 12\n

+\n

K\n 13\n

(\302\253+ 1)\302\273 (8+1)
'

(8+ l)2
'

(8 + 1)\302\273\n

Multiplying the equation by (s + 1)*, we have\n

2 8* + 38 + 2 = Kn(a + 1)*+ Kn(8 + 1) + Ku

\nFrom this equation,\n

(7-63)\n

Kl% = 2s2 + 38 + 2\n = 2 - 3 + 2 = 1\n

\342\200\242--i\n

Next, we differentiate with respect to 8 to obtain\n

48 + 3 = 2Kn(8 + 1) + Ku\n

so that\n K\\a = 48 + 3\n -1\n

\342\200\242--i\n
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Again, we differentiate the last equation to give\n

4 = 2Kn or Kn = 2

\nThe partial fraction expansion is\n

2\302\2532+ 3s + 2 2 , -1 . 1\n

+\n

(*+i)* \302\253+ i
'

(* + i)>+ (* + i)*\n

(7-64)\n

If Q(s) contains both simple and repeated roots, a combinationof

\nboth rules may be used. As an example, let\n

POO\n s + 2\n

Q(s) (s + l)2(s + 3)

\nThe form of the partial fraction expansion is\n

s \342\200\234H2\n K\n n\n

(s + l)2(s + 3) \302\253+ 1\n
+\n

K\n 12\n

+\n
Ki\n

+ l)2
' s + 3\n

(7-65)\n

(7-66)\n

In this expansion, K2 may be evaluated by Eq. 7-53andKn andKn
\nmay be found from Eq. 7-62; then\n

K2 =\n
s -p 2\n

\302\245TT)i\n -3\n

1\n

4\n

Multiplying Eq. 7-66 by (s + l)2, we have\n

Constant Kn is evaluated directly by letting s = \342\200\224
1; thus\n

(7-67)\n

Kn =\n
s -{- 2

\ns \342\200\234j-3\n \342\200\242-I\n

1\n

2\n

and Kn will be found by differentiating Eq. 7-67beforelettings = \342\200\2241:\n

(s + 3)
\342\200\242

1 - (s + 2) \342\200\2421

\n(\302\253+ 3)2\n
K\" + K'l\n

(s + l)2
\ns -f- 3\n

The coefficient of K2 vanishes when s = \342\200\2241 because an (s + 1) term
\nremains common to all terms in the numerator. In the example\n

d_ [ (s + 1)21 (s + 3)2(8+ 1)-
(s + l)2

\342\200\242
1\n

ds |_ s -f- 3 J (s -J- 3)2\n

and this term vanishes when s = \342\200\224
1, because each term in the differ\302\254

\nentiation contains (s + 1). This is alwaysthe case,since the order of

\nthe multiplying factor (s + Sj)T is higher than the numberof times

\ndifferentiation is required.\n
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By using these methods, all the coefficients of the partialfraction
\nexpansion can be found and the transform equation can be written\n

F(s)\n

for simple roots (nonrepeated) and as\n

F(s)
=\n

Kjk\n

(s + Sj)k\n

(7-68)\n

(7-69)\n

for a single root, \342\200\224
Sj, repeated r times. The corresponding f(t) may

\nnow be found, for the general case, by taking the inverse Laplace
\ntransformation of F(s) as\n

\342\226\240?-1\n

+ S.) M\n
+ \342\200\242'

Q(s)\n
(7-70)\n

as the time-domain solution for simple roots. Likewise,for repeated
\nroots,\n

f(t)
= e-'1

^\n
n = 1\n

1 dr~nR(\342\200\224Sj) tn~l

\n(r
\342\200\224

n)! dsr~n (n
\342\200\224

1)!\n
(7-71)\n

where Sj, in this equation, is the root that is repeatedr times.By using

\nboth equations for the case of both simpleand repeatedroots, a general

\nsolution is obtained in the form originallygivenas Heaviside\342\200\231s expan\302\254

\nsion theorem.\n

The method of the Heaviside partial fraction expansionmay be used

\nto give a simplified procedure for finding the inverse transformof the

\nterms for a conjugate complex pair of roots. Supposethat these roots

\nhave a real part a and an imaginary part, co.The first coefficient is

\nevaluated by the procedure,\n

P(s)\n

Q(s)\n

(s
\342\200\224a -f- jta)\n

= Serf\n
8\342\200\224a \342\200\224jta\n

and the second as\n

(7-72)\n

K'' =
W){\302\260-a-ju)\n

= Re+*9\n

The inverse transformation of these two terms gives\n

(7-73)\n

h(f)
= Rei9e{a+Mi + Re~i6e(a~iu)t\n (7-74)\n
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This equation may be rearranged to the form\n

i
p\342\200\224/(\302\253f+0)\"]\n

-

IT J\n

= 2Reat cos (<at + 0) (7-75)\n

The factors R and 0 in this equation are easilyfoundin Eq. 6-72 as

\nthe magnitude and phase angle of the coefficient K\\.\n

7-7. Examples of total solutions by the Laplace transformation\n

Example 6\n

As an example of the total solution, now that the methodsof partial

\nfraction expansion have been reviewed, consider the differential
\nequation\n

3P
+ 4

<5
+ \302\256*\342\200\234^ (7\"76)\n

The Laplace transformation of this differential equation is\n

\302\253\342\200\231/(\302\253)
-

\302\273(0+)
-

Jt
(0+)l + 4[s/(s) - i(0+)] + 5I(s)=

-s\n

Notice that the required initial conditions are automatically specified
\nin this equation. We must know, from the physical system, \302\253(0+) and

\ndi/dt (0+). Suppose the following values are found:\n

*\342\200\242(0+)
= 1 and

Jt (0+) - 2\n

Inserting these initial conditions simplifies the transform equation to\n

or\n

/(s)(s2 + 4s + 5)=- + s + 6\n

/(.).s*+6s+5\n
s(s! + 4s + 5)\n

This equation may be expanded by partial fractions as\n

s2 + 6s + 5 _ K2 K2*\n

W
s(s + 2 +jl)(s + 2 - jl) s \"*\342\226\240

s + 2 +jl
^ s + 2 -

jl\n

To evaluate Ki, multiply the equation by s and let s = 0. Then\n

p- _ s2 + 6s + 5
\n1

~

s2 + 4s + 5\n

= 1
\n\342\200\242\302\253*o\n

To evaluate K2l multiply the equation by (s + 2 + jl) and let\n
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s = \342\200\2242
\342\200\224

jl as\n

Chap. 7\n

Kt =\n
s2 + 6s + 5

\n+ 2\342\200\224jl)\n

\342\200\2244
\342\200\224

j2 2\n

-2-,i (-2-jl)(-j2) -j2\n
= j =\n

The complete partial fraction expansion becomes\n

m - i
+\n +\n

+ 2 + jl
' s + 2 -

jl\n

To obtain i(t) from this transform equation, we take the inverse

\nLaplace transformation of the first term and use Eq. 7-75with R = 1

\nand 6 \342\200\22490\302\260for the second and third terms to give the solution\n

i(t)
= 1 + 2e_2<sin t (7-77)\n

Example 7\n

For this example, consider a series RLC circuit with the capacitor\n

initially charged to voltage
\nVo as indicated in Fig. 7-5.
\nThe differential equation for

\nthe current i(t) is\n

Fig. 7-5. RLC series circuit,

\nand the corresponding transform equation is\n

Lf
+ JK +

<?/ld\342\200\230

= \302\260\n

(7-78)\n

L[sl(s)
- i(0+)] + RI(s) + [I(s) + g(0+)]- 0\n

The parameters have been specified as C = | farad, R = 2 ohms, and

\nL = 1 henry. The initial current t(0+) = 0 becauseof the inductor,

\nand if C is initially charged to voltage V0 (with the given polarity),\n

ff(0+) _ Vo\n

Cs

~
s\n

or\342\200\224l/sifVo=l volt. The transform equation for /(s) then becomes\n

=

s2 + 2s + 2\n

or, completing the square,\n

/(s) =
(\302\253+ i)2 + i

\nUsingtransform pair 15 of page 146,\n

i(t)
-

\302\243-\302\273/(\302\253)
\302\273er* sin t\n (7-79)\n
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Example 8\n

In the network shown in Fig. 7-6, the switch is closedat t = 0.

\nWith the network parameter values

\nshown, the Kirchhoff voltage equa\302\254

\ntions are\n

di,\n

^
+ 20\302\273i

- KH'a = 100u(<),\n

^ + 20*2- 10ti= 0\n

If the network is unenergized before the switch is closed,bothii and

\n*2 are initially zero, and the transform equations may be written\n

(s + 20)/1(s)
- 10/2(s) = \342\200\224\302\273 -10/i(s) + (s + 20) J,(s) = 0\n

s\n

rAAAr-nnnp-
\n.4 100 lh I lh\n

rtg. 7-6. Network of Example 8.\n

Suppose that we are required to find the current *2 as a function of

\ntime. The transform current /2(s) may be found from the last two

\nalgebraic equations by determinants as\n

I2(s)\n

s -\\- 20 100/s\n
-10 0

\ns + 20 -10\n

-10 s + 20\n

1000\n

s(s2 + 40s + 300)\n

The partial fraction expansion of this equation is\n

1000 3.33 5 1.67\n

s(8 + 10)(s + 30) s s + 10
+

s + 30\n

The inverse Laplace transformation gives iz(t) as\n

*2
= 3.33 -

5e-10\342\200\230+ 1.67e-30t\n

7-8. The initial and final value theorems\n

The initial value theorem and final value theorem find frequentuse
\nin network analysis. To derive the initial value theorem, we allow s

\nto approach infinity in the equation for the transform ofa derivativeas\n

lim
/ f'(t)er\302\253 dt = lim [sF(s) - /(OH-)] (7-80)\n

In writing this equation, we assume that f(t) and its first derivative

\nare transformable and that the limit of sF(s) as s approachesinfinity
\nexists. Since the integral has zero value for s\342\200\224>\302\253,

and /(0+) is\n
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Table op Transforms\n

m\n

1. u(t) or 1\n

m\n

2. t\n

n\342\200\2241\n

3 \t\n

(\302\273
-

1)!\n

4. e\302\260\342\200\230\n

n = integer\n

5. teat\n

7.\n

8.\n

- fn\342\200\224lpat\n

(n-l)r
e\n

a \342\200\224bK
'\n

e-at\n

(b
\342\200\224

a) (c
\342\200\224

a)\n

o\342\200\224bt\n

+\n

(a
- b) (c -

b)\n

+\n

o\342\200\224ct\n

(a
\342\200\224

c)(b
\342\200\224

c)\n

9. 1 -
e+ot\n

10. \342\200\224sin cat
\n(a\n

11. COS (at\n

12. 1 \342\200\224
COS (at\n

13. sin (cat + &)\n

14. cos ((at + 0)\n

15. e~at sin cat\n

16. e~at cos (at\n

17. sinh at\n

18. cosh at\n

1\n

s2\n

1\n

sn\n

1\n

s
\342\200\224a

\n1\n

(s
\342\200\224

a)2

\n1\n

(s
\342\200\224

a)n

\n1\n

(s
\342\200\224

a) (s
\342\200\224

b)\n

1
\t\n

(s + a)(s + b)(s + c)\n

\342\200\224a\n

s(s
\342\200\224\n

1\n

s2 + (a2

\ns\n

S2 + (a2\n

s(s2 + (a2)

\ns sin 0 + (a cos 0\n

S2 + (a2\n

s cos 0 \342\200\224
co sin 0

\ns2 + m2\n

CO\n

(s + a)2 + co2\n

S + a\n

(s + a)2 + co2\n

a\n

S2
\342\200\224a2

\nS\n
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independent of
a,\n

lim [aF(s)
- /(0+)] = 0

(7-81)\n
8\342\200\224\342\226\272oo\n

But/(0+)
= lim f{t), from which we conclude that\n

tr->0-f*\n

lim sF(s)
= lim f(t) (7-82)\n

*\342\200\224\302\273\302\273 <\342\200\224\302\273o+\n

subject to the restrictions mentioned previously. Equation 7-82 shows
\nthat the value of f(t) at t \342\200\2240+ is equal to the limit of the product
\nsF(s) as s approaches infinity.\n

In deriving the final valuetheoremwe start from the same equation
\nas the initial value theorem, but let s approach zero. Assumingthat

\nf{t) and its first derivative are transformable, we write .\n

lim f fit)e~9t dt = lim [sF(s) - /(0+)] (7-83)\n
8\342\200\224>0JO 8\342\200\224>0\n

Since s and t are independent (and e~9t\342\200\224>1, as s \342\200\224>
0) the integral

\nbecomes\n

/.\n

/'(<) dt = lim /(f) - /(0+)\n0 t-+ 00\n

This expression may be equated to Eq. 7-83 to give

\nlim [sF(s)J
- = lim [/(()] -\n

t\342\200\224\342\226\27200\n

(7-84)\n

(7-85)\n

from which we conclude that\n

lim [sF(s)] = lim [/(<)]\n
8\342\200\224\342\226\272O t\342\200\224+oo\n

(7-86)\n

which is known as the final value theorem. This resultholdsprovided

\nall roots of the denominator of sF(s) have negative real parts. Because
\nof this restriction, the final value theorem does not apply in the case
\nof sinusoidal excitation, because the denominator roots of the trans\302\254

\nform of the sinusoid are purely imaginary.\n

FURTHER READING\n

An interesting historical summary titled \342\200\234The Work of Oliver

\nHeaviside\342\200\231\342\200\231by Behrend is contained as an appendix in
Berg\342\200\231s Heavi\302\254

\nside\342\200\231sOperational Calculus (McGraw-Hill Book Co., Inc., New York,
\n1929), pp. 173-208. Heaviside\342\200\231s original writings have recently been

\nreprinted as Electromagnetic Theory (DoverPublications,New York,

\n1960) and contain an extensive presentation of his method. For a\n
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more complete treatment of the Laplace transformation than is offered
\nhere, the student is referred to the following: Wylie, Advanced Engi\302\254

\nneering Mathematics (McGraw-Hill Book Co., Inc., New York, 1951),
\nChap. 6; Gardner and Barnes, Transients in Linear Systems (John
\nWiley & Sons, Inc., New York, 1942), beginning on p. 93; Churchill,
\nModem Operational Mathematics in Engineering (McGraw-Hill Book

\nCo., Inc., New York, 1951) and Thomson, Laplace Transformation
\n(Prentice-Hall,Inc., New York, 1950). Extensive transform tables

\nmay be found in Gardner and Barnes, Transients in Linear Systems
\n(John Wiley & Sons, Inc., New York, 1942), pp. 334-356andin Nixon,

\nPrinciples of Automatic Controls (Prentice-Hall, Inc., New York, 1953),
\npp. 371-399.\n

PROBLEMS\n

7-1. Verify the following transform pair by substituting the value

\nof f(t) into Eq. 7-1 and integrating.\n

\302\243[cos orf]
=

^^5\n

In each of the problemsthat follow,repeatthe procedure of Prob. 7-1

\nfor the various transform pairs of the following table.\n

m\n F{*)\n

7-2.\n t*\n

2\n

s*\n

7-3.\n sinh at\n
a\n

s2
-

a2\n

7-4.\n cosh at\n
8\n

s2 -
a2\n

7-5.\n e~at sin tat\n

ta\n

(s + a)2 + to2\n

7-6.\n er** cos &it\n

s a\n

(s + a)2 + ta2\n

7-7.\n sin (tat + 0)\n

s sin 6 + <o cos 0

\ns2 + \302\2532\n

7-8.\n cos (tat -f 0)\n

s cos 0 \342\200\224ta sin 0

\ns2 + \302\2532\n

7-9.\n Letting u = f(t) and dv\n = 6~*\342\200\230dt, integrate Eq. 7-1 by parts\n

to prove Eq. 7-13.\n

7-10. Rework Example 1, assuming that the capacitoris originally

\ncharged to the voltage V/2 with the upper plate positiveat t \342\200\2240.

\nAnswer. (Vf2R)e-t/BC.\n
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7-11. In the network shown in the figure, C is charged to Vo, and
\nthe switch K is closed at t \342\200\224

0. Solve for the current i(t) using the
\nLaplace transformation. Answer. (V/R)e~t/RC.\n

7-12. In the network shown in the figure,the switch K is moved

\nfrom position a to position b at t \342\200\224
0, a steady state having pre\302\254

\nviously been established at position a. Solve for the current i(t), using
\nthe Laplace transformation. Answer. (V/Ri)e~<'Rl+Rt)t/L.\n

7-13. In the network shown, C is initiallycharged to V0. The

\nswitch K is closed at t \342\200\2240. Solve for the current i(t), using the Laplace
\ntransformation. Answer. (V/y/L/C) sin (t/y/LC).\n

Prob. 7-13.\n Prob. 7-14.\n

L\n

7-14. In the network shown, the switch K is movedfromposition
\na to position b at t = 0 (a steady state existingin positiona before

\nt \342\200\224
0). Solve for the current i(t), using the Laplace transformation.

\nAnswer. (V/R) cos (t/y/LC).\n

7-16. Check the following partial fraction expansionsby expanding

\nthe given quotient of polynomials in partial fractions. Two of the set
\nare in error.\n

/_% 2s _ 1 , 1\n

^ s2 - 1 s+l+s-l
\nrw\\

7s + 2 = 1 2
p

\342\200\2243\n

w
s3 + 3s2 + 2s s F+\"2+

7+3\n

Cc')
^\342\200\224 \342\200\224-

2 , 3\n

^ s2 + 5s + 6 s + 3^s + 2\n

(d)4-^r

=
r^r + s + i\n
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(e)\n

(f)\n

(g)\n

GO\n

2(s + 1) _ 1 + j 1 1 -jl\n
s2 + 1 s + j'l s \342\200\224

jl\n

s2 + 4s + 1
__

1 1 2\n

s(s + l)2 s + 1 +
(s + l)2+ s

\n3s8
- s2 - 3s + 2 1 2 2 1\n

s2(s
- l)2 s + s2 + s - 1+

(s
-

l)2\n

88
- 5s2 + 9s + 9 = 1 , 1_ , \342\200\224j , +j\n

s2(s2 + 9) s s2 s + jZ s \342\200\224
j\342\200\2303\n

7-16. Expand the following functions by partial fractions and find

\nthe corresponding inverse Laplace transformation, f{t) =
\302\243rlF(s).\n

(a) F(s)\n

(b) F(s)\n

(c) F(s)

\n+ sin 2<)].\n

(d) F(s)\n

(e) F(s)\n

(f) F(s)\n

(g) W\n

3s\n

(s2 + l)(s2 + 4)
\ns+ 1\n

Answer. f(t) \342\200\224cos t \342\200\224
cos 2t.\n

s2 + 2s\n

2 - 2s + 5)\n

Answer. f(t)
= i(l + e~2t).\n

Answer. f(t)
=

\302\243[1+ ?et(
\342\200\224

2 cos 21\n

1\n

(s + 1) (s + 2)2
\n1\n

Answer. f{t)
= e~l \342\200\224

e-2\342\200\230(l+ t).\n

s8(s2
- 1)

\ns2 + 2s + 1\n

(s + 2) (s2 + 4)\n

Answer. f(t)
= \342\200\2241 \342\200\224

t2/2 + cosh f.\n

Answer. f(t) = \\e~2t + \302\243cos 2t + |sin2L\n

(s2 + l)s\n

Answer. f(t)
= ^t cos t + * sin L\n

Solve the following differential equations by the Laplace transfor\302\254

\nmation subject to the given initial conditions (where specified).
\nd2i\n

7-17. y
- t = 25 + e2*. Answer, i = + K2e~t - 25 + is24.\n

at*\n

d?v\n
7-18. + 4v = sin t \342\200\224cos 21. Answer, v = Ki sin 2t + K2\n

at1\n

cos 21 \342\200\224
\\t sin 2t + -J sin t.\n

7-19.
ST

+ %
~ <!+ \302\273.7(0+)

= + (0+) = -2. Answer.\n

q
=

H\342\200\230+ 2er> + 2.\n

7-20. Solve Prob. 6-13 (d), using the Laplace transformation.Note
\nthat in the Laplace transformation method, special conditions of sim\302\254

\nilarity in the form of the driving force v(<) and the roots of the charac\302\254

\nteristic equation give no concern\342\200\224the solution of such a problem is as
\nroutine as any other problem.\n
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7-21. In the series RLC circuit shownbelow,the applied voltage

\nis v(t)
= sin t. For the parameter values specified,findi(t)if the switch

\nK is closed at t = 0. Answer. i{t) \342\200\224
\302\243(cos t + 2 sin t \342\200\224

e~* cos t \342\200\224

\n36\"* sin t).\n

7-22. At t = 0, a switch is closed, connectinga voltage source

\nv
\342\200\224

V sin cat to a series RL circuit. By the methodof the Laplace

\ntransformation, show that the current is given by the equation\n

i =
\\

sin (\302\253<
\342\200\224

4) + e~Rt/L\n

where Z = \\/R2 + (a>L)2 and <f>
= tan-1 ^\n

K\n

7-23. Dr. L. A. Woodbury of the University of UtahSchoolof Med\302\254

\nicine has made use of an electrical analog in studies ofconvulsions.In
\nthe network shown in the figure, the following quantities are duals:\n

Prob. 7-23.\n

Ci represents the volume of drug-containing fluid, R\\ is the \342\200\234resist\302\254

\nance\342\200\235to the passage of the drug from the pool to thebloodstream, C2

\nrepresents the volume of the blood stream, and R2 is equivalent to the

\nbody\342\200\231sexcretion mechanism (kidney, etc.). The concentration of the
\ndrug dose is represented as V0 and the voltage va(t) at node a is the dual
\nof the amount of drug in the blood stream. The analognetworkhas
\nthe advantage that the elements may be readily changed and the
\neffects studied (to say nothing of the saving of cats). Find the trans\302\254

\nform equation for Va(s) with the coefficient of the highest-orderterm
\nnormalized to unity.\n

7-24. This problem is a continuation of Prob. 7-23 concerning
\nDr. Woodbury\342\200\231s analog. The following constants for the network are\n
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selected: Ci = 1 C2 = 8 ni, Rx
= 9 megohms, and R2 = 5

meg\302\254

\nohms. If Vo \342\200\224100 volts and the switch is closed at / = 0, solvefor

\nvA(t), the equivalent of the concentration of drug in the bloodstream,
\nas a function of time. Answer. va(t) = 13e_002l5\342\200\230\342\200\22413e-0 1286\342\200\230.\n

7-25. Find the time C when the concentration of drugin the blood

\nstream for Prob. 7-24, is a maximum. (This information is desiredso

\nthat a second dose may be given at that time to buildup the concen\302\254

\ntration to the point where a convulsion is induced.) Answer. 16.7 sec.\n

7-26. If a second dose (the voltageequivalenthaving a magnitude

\nof 100 volts) is injected at t =
tm as found in Prob. 7-25, what will be

\nvA as a function of time, and what will be the maximumvA obtained?

\n(Note: In giving the second dose we will assume that the totalvoltage\n

is then 100 volts plus the voltage
\non the plates at the time the addi\302\254

\ntion is made.) Answer. 14 volts in
\n25 sec.\n

7-27. In the network shown, the
\nswitch K is closed at t = 0 with
\nthe network previously unenergized.

\nFor the element values shown on

\nthe diagram: (a) find ii(t), (b) find

\nit(t). Answer (a). ix = 3.33 + 1.21e~#,36\342\200\230
\342\200\2244.54e_28 #\342\200\230.\n

7-28. With switch K in position a, the network shownin the figure

\nattains equilibrium. At time t = 0, the switch is movedto position b.

\nFind the voltage across R2 a$ a function of time.\n

Prob. 7-28.\n

7-29. Find ii(t) resulting from closing the switch at t \342\200\2240 with the

\ncircuit previously unenergized. The circuit constants are: Li = 1

\nhenry, L* = 4 henrys, M \342\200\2242 henrys, = R* = 1 ohm, V = 1 volt.\n

Prob. 7-29.\n



CHAPTER 8\n

TOPICS IN THE TIME DOMAIN

\nAND THE FREQUENCY DOMAIN\n

Thetime-domainresponse of networks to various driving forces has

\nbeen considered in previous chapters. In this chapter, time-domain
\nstudies will be extended by specializing the driving forces (current
\nsources and voltage sources) to the following cases: (1) single pulses
\nand related waveforms, (2) time-varying functions which recur a finite
\nnumber of times, and (3) recurring waveforms which cannot be
\ndescribed by a single equation. Examples of such waveforms are shown
\nin Fig. 8-1. The transient response of networks subjected to these\n

V\n

t\n

(a)\n

Fig. 8-1. Driving force waveforms: (a) pulse; (b)sectionofsinewave;\n

(c) square wave.\n

driving forces will be studied, using the Laplacetransformation.The

\ntime-domain studies will be followed by related frequency-domain
\nstudies, using Fourier series and the Fourier integral.\n

8-1. The unit step function\n

The unit step function is defined as\n

-

| 0,\n

t > 0

\nt < 0\n
(8-1)\n

for a function which changes abruptly from zero to unit valueat the

\ntime t = 0. This expression may be generalizedby the definition\n

-
\342\200\234>

-

u {<: (8-2)\n

for a step function which changes abruptly at the. time t = +a. In
\ngeneral, the step function has unit value when the quantity (t \342\200\224

a)\n

153\n
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has a positive value, and has zero value when (t \342\200\224
a) is negative.

\nThis definition will apply for any form of the variable. Hencethe
\nfunction u(t + a) is one that changes fromzerotounitvalue at t = \342\200\224a.

\nSimilarly, the function u(a \342\200\224
t) is one that changes from unit to zero

\nvalue (with increasing time) at the time t = a.* These two functions\n

1\n
ult-a)\n

1\n

a t\n

1\n

uU)\n

t\n

1\n uW+a) ^\n u{a-t)\n

|\n

a\n
t\n

a t\n

Fig. 8-2. Unit step functions:\n

. fl, t > -a;
\nu(l + a) t < _a\n

V\n
u(t-o)\n

r \342\200\224\342\200\234\342\200\234\342\200\224\342\200\224\342\200\224\342\200\224\342\200\224\n

l\n

l\n

1 *\n

V\n

a\n

u(h-<)\n

t\n

-ult*-b)\n

f_.J\n L\n
} t\n

uit-a)\n

: i\n

i
\342\200\224

u{a-f)\n
-1\n

V\n ulb-t)\n

1\n

1\n
1\n

a b t\n

_ II, t <a
\n\342\200\234(ô

\\0, t > o\n

V\n

ult\n -a)
-

u[t-\n \342\226\240b)\n

a b t\n

V\n
u(6-t)

-
u(c-\n \342\200\242t)\n

c\nl t\n) t\n

V\n
u[b-t)>u[t-\n a)\n

a l\n> t\n

Fig. 8-8. Construction of pulse from unit step functions.\n

are represented in Fig. 8-2. The use of unit step functionswith defini\302\254

\ntions as illustrated in these examples will make it possibleto represent
\nfunctions with the time axis shifted. Further, the unit step functions
\ncan be used as building blocks to represent other time-varying func\302\254

\ntions such as a pulse. The construction of a pulse from two unit step

\nfunctions is illustrated in Fig. 8-3. A unit step function u{t \342\200\224
a) and

\nm
Note that u(a \342\200\224

t) * \342\200\224u(l
\342\200\224

a).\n
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a unit step function u(t \342\200\224
b) are shown in the figure. By taking the

\ndifference between these two step functions,\n

v(t) = u(t \342\200\224
a)

\342\200\224
u(t

\342\200\224
b) (8-3)\n

a pulse is formed of unit amplitude from t = a to t = b. The same

\nunit pulse may be formed in terms of the unit step functionbuilding
\nblocks as\n

v(t)
= u(b \342\200\224

t)
\342\200\224

u(a
\342\200\224

t) (8-4)\n

or v(t)
\342\200\224

u(b
\342\200\224

t)
\342\200\242

u(t
\342\200\224

a) (8-5)\n

These operations are illustrated in Fig. 8-3.\n

As another example of the use of unit step functionsin constructing

\ntime-varying waveforms, consider the mathematical representation of
\na square wave. A pulse of width a starting at t = 0 is given by the

\nequation\n

u(t)
\342\200\224

u(t
\342\200\224

a) (8-6)\n

as illustrated in Fig. 8-4(a). Instead of subtractingu(t \342\200\224
a) from u(t),

\nsuppose that 2u(t \342\200\224
a) is subtracted. The resulting waveform will\n

V\n V\n V\n

+1\n + 1\n
4-1\n

2a\n a\n 2 a\n 3 a\n 4 a\n 5 a\n

a t\n a\n t\n t\n

-1\n -1\n

Ia) (6) (c)\n

Fig. 8-4. Evolution of a square wave.\n

then change from the value of 4-1 to \342\200\2241 at t = a. By next adding the
\nunit step function u(t

\342\200\224
2a) to the function, the waveform assumes

\nzero value for all time greater than t = 2a. This constructionis illus\302\254

\ntrated in Fig. 8-4(b) for the function\n

v(t) = u(t) \342\200\2242 u(t
\342\200\224

a) + u(t \342\200\224
2a) (8-7)\n

By following in this pattern, any square wave (square only if a = 1,
\nof course, but known as a square wave for any value ofa) form of time

\nvariation can be synthesized. It is clear that a square waveform which

\ncontinues infinitely long in duration is given by the infinite series\n

v{t)
= u(t)

\342\200\224
2u(t

\342\200\224
a) + 2u(t \342\200\224

2a)
\342\200\224

2u(t
\342\200\224

3a) + ... (8-8)\n

This waveform is shown in Fig. 8-4(c). This infiniteseriesrepresenta\302\254

\ntion will be found to be more convenient than it appears when it is

\nshown that the Laplace transformation reduces to a closedform. As\n
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a third example of the representation of time-varying waveforms,con\302\254

\nsider the problem of representing the waveform shown in Fig.8-5.The

\nwaveform is sinusoidal from t = 1 to t = 3 and fromt = 5 to t = 7.\n

It has zero value for all other times from t = \342\200\224\302\253to < =
+\302\273. A

\nsine wave with a period of T is given as\n

sin
y

t (8-9)\n

In this particular example, T = 2 and the timeaxisis shifted by 1 unit

\nof time for the first wave and by 5 units of time for the second. We

\nwill follow a step-by-step procedure in constructing a function to
\nrepresent this waveform.\n

(1) The function sin x(< \342\200\224
1) has the waveform shown in the inter\302\254

\nval t
\342\200\224

1 to t \342\200\224
3, but the waveform also exists for all othertime.\n

(2) Multiplying sin r(t
\342\200\224

1) by u(t
\342\200\224

1) eliminates all waveform

\nat times before t \342\200\224
1. Subtracting from this product a similar

\nproduct shifted to the time t \342\200\2243 cancels all times after t = 3.
\nThis product is u(t

\342\200\224
3) sin v(t

\342\200\224
3). Hence the first cycle of

\nsine wave is completely represented by\n

u(t
\342\200\224

1) sin ir(t
\342\200\224

1)
\342\200\224

u(t
\342\200\224

3) sin r(t \342\200\224
3) (8-10)\n

(3) By the same reasoning, the second cycle of sine wave is rep\302\254\n

resented as\n

u(t
\342\200\224

5) sin r(t
\342\200\224

5)
\342\200\224

u(t
\342\200\224

7) sin ir(t
\342\200\224

7) (8-11)\n

(4) The total waveform is the sum of the two expressions. This\n

follows because each function is defined only for its interval

\n(1 to 3 and 5 to 7, respectively) and is zerofor all other time.

\nHence the waveform of Fig. 8-5 may be representedby
the

\nequation\n

t>(<)
- tift \342\200\224

1) sin x(<
\342\200\224

1)
\342\200\224

u(t
\342\200\224

3) sin r(t
\342\200\224

3)\n

+ u\302\253
-

5) sin r(t - 5) -
u(t

- 7) sin x(< -
7) (8-12)\n
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By following similar patterns, any time function can be represented
\nby a time series and unit step functions.

^
0\n

\\\n

8-2. Other unit functions: the impulse, ramp, and doublet\n

The waveforms which have been described mathematically in the
\nlast section will be used in this chapter to describe drivingforces
\napplied

to networks consisting of one or more electric elements. The
\nvoltage-current relationships for the individual elements are\n

<2\n*\n
II\n Jo\n vL\n

, di
\n=

Ldt\342\200\231\n

and\n
1\n

Vc
=

C\n

or\n II\n
\342\200\242S\n ic\n

II\n Q\n

su

&\n

and\n II\n

/\n

/\n

i dt

\nv dt\n

Whether the driving force is a voltage source or a currentsource, volt\302\254

\nages and currents in the network are described by integralsand deriv\302\254

\natives of waveforms. Consider a step function voltage driving force.
\nIf this waveform were applied to an inductor, the current resulting
\nfrom this voltage would be the integral of the voltage. If a voltage

\nstep function were applied to a single capacitor, the current wouldbe
\nthe derivative of this voltage. Evidently we shall be concernedwith
\nboth integrals and the derivatives of driving-force functions. For the
\nunit step function, such waveforms are illustrated by Fig. 8-6. The\n

Fig. 8-6. Derivative and integral functions.\n

integral of the step function varies linearly with time, and is known as

\na ramp function (or a linear ramp). The derivative of the stepfunction

\nhas a nonzero value only at the beginning of the step function:there

\nthe value is infinite, for all other values of time the valueis zero. This

\nrather unusual function with only one nonzero value (andthat infinite)

\nis known as an impulse function.\n
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If the step function has unit magnitude, the slopeofthe correspond\302\254

\ning ramp function is unity since the ramp function is the integralof the

\nstep function. A ramp function with unity slope is known as a unit

\nramp. In general, the slope of the rampfunctionis equal to the mag\302\254

\nnitude of the step from which it is derived.\n

The unit impulse is not defined so easily as the unitramp.Consider

\nthe modified ramp function shown in Fig. 8-7. This function is linear\n

Fig. 8-7. Derivation of unit impulse.\n

from t \342\200\224blot = c and then has a constant value ofunityfor all time.

\nThe time interval (c \342\200\224
b) is defined as a. The derivative of this mod\302\254

\nified ramp function is a pulse of width a as shownin the figure. (Con\302\254

\nversely, the integral of the pulse function is the linearramp.)If the

\nramp function is designated as the variable i, the pulsehasa magnitude

\ndi/dt, the slope of the ramp. The slope of the rampis the distance 1

\ndivided by the distance a; that is,\n

cU
=

1

\ndt a\n
(8-13)\n

Now the area of the pulse is o X l/o
= 1, for any value of a. As a

\napproaches zero, the modified ramp function approaches a unit step
\nfunction. At the same time, the pulse approaches infinite heightand

\nzero width with the area remaining constant at unity. In the limit,this

\nfunction is known as a unit impulse, and is designated 6(t \342\200\224
b).* This

\nsymbolism indicates a function which is zero when t j*b and infinite

\nwhen t = b. Also, since the total area under the curveisunity,\n

S(t -b)dt = l (8-14)\n

(The integral has the same value for any limits whichboundthetime

\nt =
b.)\n

From this discussion, we see that the derivative of a unitstep
func\302\254

\ntion is a unit impulse. The same process of reasoning mightbe used\n

* In mathematical physics, this function is called a Diracdeltafunction.\n
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to find the derivative of the unit impulse. Considerthe waveform

\nshown in Fig. 8-8\342\200\224a trapezoid made up of a pulse with two ramp
\nfunctions. In order to visualize the mathematical limit, first let a \342\200\224>0,

\nthen let d \342\200\224>0. As a approaches zero, i assumes the form of a pulse\n

A y\n

\342\200\242\n
l\n f\302\253o\n

Unit impulse\n

4\n
i\n
i\n
i\n

i\n

i\n

i a\n

i\n

i\n
i\n

i\n

-*\342\200\224<*\342\200\224-\n

.1.\n

Had\n

a U\n
1\n

1 di

\n! dt\n

ki\n

t\n

Unit doublet\n

t\n
Had\n

T\n

6\n t\n

1-00\n

Fig. 8-8. Derivation of unit doublet in the limit, a\342\200\224*0, d \342\200\224*\342\226\2400.\n

and di/dt becomes two impulses, separated by the distance d, one
\npositive going, the other negative going. As d approaches zero,
\ni approaches a unit impulse; di/dt remains in the form of two infinite

\ngoing impulses, but the two impulses superimpose at t = b. This
\nresulting function is called a unit doublet. It is the derivativeof a unit

\nimpulse.\n

This process might be continued to give a unit triplet.These func\302\254

\ntions, with discontinuous behavior with time, are known as singular
\njunctions.

Of this family, the unit step function is an oldfriend.The

\nramp function, while not too familiar, seems friendly enough. But the
\nunit impulse and unit doublet are rather terrifying! To break the ice,
\nlet us see what happens when the impulse is applied to ordinaryele\302\254

\nments\342\200\224inductance and capacitance.\n

The basic equation relating current and voltage in an inductance is\n

i=Uvdt
(8-i5)

(C\n
For this problem,

|\n

v(t)
= S(t

\342\200\224
a) (8-16) Fig. 8-9.\n

indicating a unit impulse at time t = a. Substituting into Eq.8-15to
\nfind the current, we obtain\n

8(t \342\200\224
a) dt =\n

^ for b > a\n

Li\n

0 for b < a\n

(8-17)\n
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That is, application of a unit impulse at t = a causesa stepfunction

\nof current to start flowing at t = a. The current is\n

i{t)
= u(t

\342\200\224
a) (8-18)\n

This is a rather unusual behavior for the conservativeinductance, but

\nafter all, it was hit by a rather unusual drivingforce.Another way of

\nstating this unusual property of the unit impulse is that a voltage

\nimpulse of L units will cause a current of 1 amp to be established in an\n

inductance immediately. A similar

\nrelationship may be found for a
\ncapacitor. Let a current source of

\nvalue\n

i(t)
= 8(t

- a) (8-19)\n

be applied to a capacitance as shown
\nin Fig. 8-10. The voltage across

\nthe capacitance is given by the basic relationship\n

v(t)
=

^ j
i(t) dt (8-20)\n

This integral is evaluated as before and the result is\n

v{t)
=

^ u(t \342\200\224
a) (8-21)\n

In other words, a unit impulse of current appliedto a capacitance

\ncauses 1 /C volts to appear instantaneously on the capacitance
\nbecause a unit impulse of current delivers a unit charge.\n

To illustrate the application of the concept of a unit impulsein
\nterms of a familiar problem, consider the second-order differential
\nequation\n

LW\342\200\230
+

RIt
+ gi

=
\302\273W W\n

Vtf)\n

If the driving-force voltage is taken as a unit stepfunctionv(t)
=

u(t),

\nthe solution of the equation is the familiar solution for an RLC circuit

\nstudied in Chapter 6. Now suppose that the equation is differentiated

\nonce as\n

This equation is exactly the same in form as Eq. 8-22 where the var\302\254

\niables di/dt and dv/dt have replaced i and v. Now if v(t) is a unit step

\nfunction, the derivative of v(t) with respect to time is a unit impulse\n
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function, 8(t). With the solution for i(t) of Eq. 8-22 known with a

\nunit step function driving force, the solution for Eq. 8-23with a unit
\nimpulse driving force can be found by simply differentiating i(t) found
\nfor Eq. 8-22. In other words, the unit impulse responseof a network

\ncan be found by solving for the unit step function responseof the net\302\254

\nwork and differentiating it.\n

The same process will work in reverse. The step functionresponse
\nmay be found by integrating the impulse response. Likewise, the ramp
\nfunction response may be found by integrating the step function
\nresponse. Since all the singular functions are related by differentiation
\nand integration, once the solution for one singular function is known,
\nthe solution for other singular functions is readily found by simple
\ndifferentiation or integration. This is an important property of sin\302\254

\ngular functions.\n

8-3. The Laplace transform for shifted and singularfunctions\n

The two previous sections of this chapter have been devoted to
\nmathematical representation of shifted and singular functions. In this
\nsection,

we will consider the derivation of the transforms of these
\nfunctions.\n

The unit step function beginning at t = a (wherea is a constant),

\nshown in Fig. 8-2(6), has been represented by the notationu(t \342\200\224
a).

\nThe Laplace transform of this function may be computedfrom the
\ndefining equation,\n

F(s)
=

j
f{t)e~\342\200\230l dt

\nFor the case, f(t) = u(t \342\200\224
a),\n

\302\243u(t
\342\200\224

a)\n le~at dt\n

\302\243u(t
\342\200\224

a)\n (8-24)\n

This equation is made up of the product of two factors: the factor

\n1/s is the transform of the unit step function beginningat the time

\nt = 0; the term is a function whicheffectively\342\200\234shifts\342\200\235the trans\302\254

\nform from one beginning at t = 0 to one beginningat t = a.\n

The example given for a unit step function may be generalizedfor
\nany time function f(t) which is delayed in its beginningto someother

\ntime, t = a. Such a time shifted function is representedas\n

f(t
\342\200\224

a)u(t
\342\200\224

a)\n (8-25)\n

To find the transform of this equation, we write the defining equation\n
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in terms of a new variable, t\342\200\231;that is,\n

m =\n
(8-26)\n

Let the variable t' be defined as t' = t \342\200\224a such that the defining

\nequation becomes\n

or\n

m =\n
fit

\342\200\224
a)e~(t~a)t dt\n

f{t
\342\200\224

a)e-*t(ea<') dt\n

(8-27)\n

(8-28)\n

The constant factor e\302\260*may be removed from within the integral and
\nthe lower limit of the integral changed to 0 if fit \342\200\224

a) is multiplied by

\nuit
\342\200\224

a); thus\n

Fis) = e\302\260*

J
fit

\342\200\224
a)uit

\342\200\224
a)e~H dt (8-29)\n

The integral expression is recognized as the transformof the time func\302\254

\ntion/^
\342\200\224

a)uit
\342\200\224

a), so that\n

\302\243fit
\342\200\224

a)uit
\342\200\224

a)
=

e~\302\260*\302\243fit) (8-30)\n

or, conversely,\n

\302\243-le~\302\260s\302\243fit)
= fit

- a)uit - a) (8-31)\n

These last two equations tell us that the transform of any function

\ndelayed to begin at the time t = a is equalto e-04 times the transform

\nof the function beginning at the time t = 0.\n

A number of examples will illustrate the use of the last two equa\302\254

\ntions. In the network shown in Fig. 8-11, a pulse of unit amplitude\n

v\n

1\n

0 a\n

(o)\n

*R-1 ohm\n

[L-l henry\n

Fig. 8-11. Pulsed RL circuit.\n

and width a is applied to a series RL circuit. Let it be required to find

\nthe current flowing in the network. The pulse is givenby thedifference

\nof two unit step functions as\n

v(t)
= uit)

\342\200\224
uit

\342\200\224
a)\n (8-32)\n
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From Eq. 8-30 the transform of this voltage is\n

F(s)
= - (1 -

e\342\200\224) (8-33)\n
8\n

Substituting this value of V into the transform equation,\n

L[al(8)
- t(0+)] + RI(a) = - (1 -

e\342\200\224) (8-34)\n

Substituting the parameter values and the initial condition, t(0+) = 0
\ngives\n

(1
\342\200\224

e~at)\n
m -

*+1)\n

This expressionmay be writtenasa sum of terms,\n

1 e~\n

m =\n

\302\273(\302\253+ 1)\n + 1)\n

(8-35)\n

(8-36)\n

The first term of this equation is easily expandedby partial fractions

\nto give\n

-rrn
(M7)\n

In terms of this expansion,Eq.8-36 may be written\n

r, x 1 1\n

m-J\"7+J\n
+\n

8 + 1\n
(8-38)\n

The inverse Laplace transformation may be carried out term by term
\nin this equation to give\n

\302\2431I(s)
= i(t) \342\200\2241 \342\200\224

e~\342\200\230
\342\200\224

u(t
\342\200\224

a) + \342\200\224
a) (8-39)\n

The third and fourth terms of this expressiondiffer from the first and

\nsecond only in that they are shiftedin time and are opposite in sign.
\nThe waveform represented by this equation is plotted as Fig. 8-12.\n

n*.8 -12. Response of RL circuit.\n
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The result we have obtained is the same as wouldbe found by using

\ntwo voltage sources and the principle of superposition. The resulting
\ncurrent waveform, shown in Fig. 8-12, is the summation of the two

\nresponses of the circuit caused by the superimposed voltage sources
\nthat make up the pulse.\n

As a second example, consider the problemof representing the

\nperiodic square wave shown in Fig. 8-13 by a transform. The square\n

a\n 2a\n 3 a\n 4 a\n 5 a\n t\n

Fig. 8-13. Periodic square wave.\n

wave has been represented by an infinite sum of step functionsof the

\nform\n

v(t)
= u(t) \342\200\224

2u(t
\342\200\224

a) + 2u(t
\342\200\224

2a)
\342\200\224

2u(t
\342\200\224

3a) + ... (8-40)\n

The Laplace transformation may be applied to this expressionterm
by

\nterm to give\n

1\n
o\342\200\2242a*\n p\342\200\2243a\302\253\n

V(s)
= - \342\200\2242 h 2 2 +\n

s s s s\n
(8-41)\n

By factoring out common terms, the equation becomes\n

V(s)
= - [1 -

2e~\302\260*(l
- tr- + -

e-*\342\200\234\342\200\242+ ...)] (8-42)\n

The infinite series appearing in this equation may be identifiedby the

\nfollowing expansion from the binomial theorem,\n

1 + e\n

such that V (s) becomes\n

= 1 \342\200\224
e~\302\260*+ e-2\302\260*

\342\200\224
e_8\302\260* +\n

or, finally,\n

V(s)
\342\200\224- tanh ^\nw

* 2\n

(8-43)\n

^ =
K1

-
T&)

\342\200\234

Kr+^-)
(8^>\n

(8-45)\n
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The procedure outlined in the example may
be applied to any

\nperiodic function. The transform of any suchfunctionof period T is\n

F(s)
=

/ Me-* dt = / f(t)e-\342\200\234 dt + / Me-* dt + ... (8-46)\n

Jo Jo Jt\n

By successively shifting each transform term by e~n*T where n is the

\nnumber of shifts necessary to make the limits of the integralexpression
\n0 to T, we have\n

rr\n

F(s)
= (1 + e-T + e-*'T+ . \342\200\242.)I e-*f(t) dt

\nUsing the binomial theorem to identify the series,\n

F(s)
=

r-'e-r* Jo
dt\n

(8-47)\n

(8-48)\n

This equation may be used to compute the transformof any periodic

\nwaveform, and requires only one integration.\n
We now turn our attention to the transform of the unit impulse

\n8(t
\342\200\224

b). The properties of this function were discussed on page158.
\nIn terms of the sketch shown as Fig. 8-14, the unit impulsemay be

\ndefined as the limit\n

8(t
\342\200\224

b)
= lim - [u(t \342\200\224

b)
\342\200\224

u(t
\342\200\224b

\342\200\224
a)]\n

a\342\200\224>0&\n

The Laplace transform of this limit equation is\n

(8-49)\n

\302\2438(t
-

b) = lim\n

a\342\200\224>0\n as\n

(8-50)\n

This limit may be found by the
\napplication of l\342\200\231Hospital\342\200\231srule. The

\nresult is\n

\302\243S(t
- b) = e~b\342\200\242 (8-51)\n

l/o\n
r-\n

I\n

\342\226\240i\302\260h\n

t\n

-l/o\n

Fig. 8-14. The unit impulse.\n

where b is the time of appearance of the unit impulse.When6 = 0
\n(that is, the impulse occurs at / = 0), we have\n

\302\2438(t)
= 1\n

(8-52)\n

This result has significance in terms of a transfer function.The
\nvoltage ratio transfer function of a network is\n

Fout(s)\n

Fin(s)\n

=
G(s)\n (8-53)\n
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If Vin(t)
= S(t), a unit impulse, then Fin(s) = 1, and\n

Fout(s)
= G(s) (8-54)\n

that is, the output voltage froma unit impulse input voltage is deter\302\254

\nmined solely by the transfer function of the network. Sucha response
\ntruly characterizes the network. We will exploit this fact in ourstudy

\nof the convolution integral in the next section.\n
Consider next the unit doublet and the transform of this function.

\nThe procedure parallels that given for the unit impulse. The unit
\ndoublet is defined by the limit\n

lim \\ [w(\302\243)
\342\200\224

2u(t
\342\200\224

a) + u(t \342\200\224
2a)]\n

a\342\200\224>0\302\256\n

The Laplace transform, term by term, of this limit is\n

lim
<! Z JT\342\200\234

+\n

a\342\200\224>0 sa2\n

(8-55)\n

(8-56)\n

Again, l\342\200\231Hospital\342\200\231srule may be used. The second differentiation of
\nnumeratorand denominator yields\n

lim ( \342\200\224se\342\200\234\302\260*+ 2se_2\302\260*)
= s (8-57)\n

a\342\200\224\342\226\2720\n

Thus the unit doublet has the transform s. This result mighthave

\nbeen anticipated from the fact that the doublet is the derivativeof the

\nunit impulse. If initial conditions are ignored, differentiation corre\302\254

\nsponds to multiplication by s, while integration corresponds to division
\nby s. The relationship among the family of singular functions (not

\nshifted from t = 0) is tabulated as follows:\n

Function Laplace transform\n

Unit ramp 1/s2\n

Unit step 1/s\n

Unit impulse 1\n

Unit doublet s\n

Unit triplet s2\n

The table might be further extended either direction (up or down).

\nAs was suggested earlier, if the response to any of the singularfunctions

\nis known, the response for any other singular function may befoundby

\ndifferentiation or integration. Further, from one known response (fre\302\254

\nquently the impulse response), the response for any other drivingforce

\nmay be found by the use of the convolution integral to be discussed in

\nthe next section.\n
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8-4. The convolution integral\n

An integral expression that appears frequently in network theory
\nhas the form\n

g(l) - Sr'FfrW) =
f/.\302\253

- XV,(X) d\\ (8-58)

\nwhere \302\243-1Fi(s)
= fx(t) and \302\253\302\243_1F2(s)

=
/2($)\n

where X is a variable of integration. This expression is known as the
\nconvolution integral* in which fi(t) and /2(f) are convolvedto giveg(t)by

\nthe process of convolution. In this section, we will study the applica\302\254

\ntions of the convolution integral: the use of this equation to find new

\ntransform pairs and the use of this equation to find the response of

\nnetworks for complicated inputs.\n
As an example, supposethat the /(<)\342\200\231scorresponding to F(s) = 1/s

\nand to F(s)
= l/(s + 1) are known, and that the inverse transform

\nfor F(s)
= l/s(s + 1) is to be found.If we designate Fi(s) as Fi(s) =

\n1/s, then fi(t)
= 1 or u(t), and similarly, if F2(s) = l/(s + 1), then

\nfi(t)
= e~l. From Eq. 8-58, fi(t) and /2(<) may be convolvedto give

\ng(t) as follows:\n

g(t) =\n
1\n

s(s + 1)\n

X)e-X dk\n

The evaluation of this integral ex\302\254

\npression requires interpretation of

\nthe terms in the integral which are
\nshown in Fig. 8-15. The exponen\302\254

\ntial e-x is shown for both positive
\nand negative X. The unit step func\302\254

\ntion u(t
\342\200\224

X) has unit value for X < t\n

Fig. 8-16. Functions involved in the
\nevaluation of the convolution integral.\n

and zero value for X > t, as was discussed in Art. 8-1. Sincethe unit
\nstep function n{t

\342\200\224
X) has unit value over the limits of integration, it

\nmay be removed from the integral expression to give\n

g(t)
=

Jq
e-x dk = -e~x

j*
= 1 \342\200\224

e~* (8-59)\n

The same result was given by partial fractions in the lastchapter. It\n

* Proof of this equation can be found in Salvadori and Schwarz, Differential
\nEquations in Engineering Problems (Prentice-Hall, Inc., New York, 1964),p. 214;
\nalso in Wylie, Advanced Engineering Mathematics (McGraw-Hill Book Co., Inc.,
\nNew York, 1951), p. 188.\n
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should be pointed out that the choice of functions to be designated

\nfi(t) and f2(t) is arbitrary and does not affect the result.\n

Consider next a two-terminal-pair network, shown in Fig. 8-16,with\n

a voltage ratio transfer function G(s).*
\nAssume that the output voltage trans\302\254

\nform is given in terms of the input
\nvoltage transform by the equation\n

Fig. 8-16. Two-terminal-pair
\nnetwork.\n V2(s)

= G(s)7,(s) (8-60)\n

where Vi(s) is the input voltage transform and F2(s)isthe output volt\302\254

\nage transform. In terms of the convolution integral, let\n

Fi(s)
= 7i(s) and fx(t) =

vx(t) (8-61)\n

and F2(s)
= G(s) and f2(t) = h(t) (8-62)\n

Function F2(s) is identified as the transfer function G(s); f2(t) =
k(t)

\nis the related time-domain response. From the discussion of the last
\nsection, it will be recognized that h(t) is the unit impulseresponseof

\nthe network with a transfer function G(s). For a unit impulseinput,
\nthe output is determined by the inverse Laplace transform of the
\ntransfer function. This function is h(t). From the convolution integral,\n

git)
= \302\243,-'[Fi(s)F2(s)] =

\302\243-'{Vi(s)G(s)]\n

By Eq. 8-60,\n

g(t) =
JB\342\200\2351?^\302\256)

=
v2(t)\n

(8-63)\n

(8-64)\n

Thus g(t) is identified as the outputvoltage in the time domain. The

\nconvolution integral has the form\n

v2(t)
- vi(t -

\\)h(\\) d\\ (8-65)\n

This equation indicates that if h(t), the unit impulse response,is
\nknown, only the input voltage Vi(t) need be specified in orderto deter\302\254

\nmine the output voltage 1 In other words, any input convolvedwith

\nthe unit impulse response gives the output.\n
In order to geta better picture of the meaning of the convolution

\nintegral of Eq. 8-65, let us examine each term in the expression.First,
\nconsider the term, Vi(t

\342\200\224
X). An arbitrary Vi(t) is shown in Fig. 8-17.

\nIn terms of this plot, what is X? When t * 0, then vx(t
\342\200\224

X)
=

t>i(\342\200\224X)

\nand when t = X, then vx(t \342\200\224
X)

*= t>i(0). Evidently X is a quantity

\nmeasured backward from any t\\ that is, it is a time interval measured\n

* Transfer functions will be studied in Chap. 10.Forthepresent,assume that

\nQ(s) is an algebraic function relating Vi(s) and Ft(\302\253).\n
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negatively from some specified reference time t. This is illustratedin
\nthe figure. The quantity X can vary from 0 to t, the limits of the
\nintegration. As +X varies from 0 to t, then Vi(t

\342\200\224
X) ranges through

\nall past values of the input (the input is assumed to start at t \342\200\224
0).

\nWhat about h(t) and h(\\) ? The quantity h(t) is the transient response

\nto the unit impulse. Its exact form depends on the transferfunction,
\nwhich we have not yet specified. It might have an appearancesimilar
\nto the waveform shown in Fig. 8-18. A plot of h(\\) could be super-\n

Fig. 8-17. Arbitrary input voltage.\n Fig. 8-18. Impulse response.\n

imposed on Fig. 8-17 with X increasing from t = t to t = 0 (that is,
\nbackward from Fig. 8-18). The product of h(\\) and Vi(t

\342\200\224
X) must

\nnext be integrated from 0 to t to givethe outputresponse. This process

\ncan be thought of as weighting all past values of the inputby the unit

\nimpulse response. Since h(k) is usually smallfor largeX, the output at

\nany time\342\200\224found by integration\342\200\224is mainly influenced by recent values
\nof input. \342\200\234Very old\342\200\235values of input have very*little effect on the
\npresent output. Strictly speaking, the present output is determined by
\nall past history of the input, weighted by the unit input response.For

\ncomplicated forms of i>i (t), it may be necessary to use numericalor
\ngraphical integration to find v2(t) from the
\nconvolution integral. Further, the integra\302\254

\ntion must be repeated for each value of t
\nof interest.\n

As a very simple application of this

\nconcept, suppose that the response from the

\ndriving force Vi = e~2t is required for the
\ntwo-terminal-pairnetwork shownin Fig.8-19. For this network, the

\ntransfer function for the voltage ratio is*\n

-V\\Ar\n

1 ohm\n

1 farad\n

Fig. 8-19. RC network.\n

GOO
-\n

1\n

(8-66)\n
5+1\n

From a table of transforms, the corresponding h(t) is foundto be\n

h(t)
= er* (8-67)\n

*
The computation of this transfer functions is given in Chap. 10.\n
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Then, from the convolution integral,\n

0%{t)\n
=

\302\243

g-S\302\253-Me-X d\\\n (8-68)\n

= e~u
j

e2Xe-x d\\ = e~2tex\n

t\n

0\n

(8-69)\n

Finally,\n Vt(t)\n
=

e-*\342\200\230(e\342\200\230
-

1) = e-\342\200\230
-

e~2t\n (8-70)\n

For this particular example, expansion by partial fractions is more
\ndirect. For more complicated forms of input, the convolution integral
\ncan be used to advantage.\n

Thus far the application of the convolutionintegralhas been in

\nterms of the unit impulse response of a system. If the unit impulse

\nresponse is known, the unit step function response can be found by

\nintegration as discussed in the last section. In some cases,however,

\nthe step function response is more conveniently recorded. The con\302\254

\nvolution integral can be put in another form for this case. Equation\n

8-65, which is\n

vt(t)
=

f*
\302\273i(t

- X)h(X) d\\ (8-71)\n

can be integrated by parts by letting u =
vx(t

\342\200\224
X) and do *= h(\\) dk.

\nThe resulting equation is\n

t>*(0
=

fc(<)\302\273i(0) +
J'

k(\\)vi(t -
X) dk (8-72)\n

where k(t) is the unit step function responseof the system. We note

\nthat integration of h(k) to give k(k) is compensatedwithin the integral

\nby differentiation of vx with respect to time.\n

This last equation illustrates a useful property of convolution.If
\nthe unit step function response of a system is determined,the response
\nof the system to any input vx is fixed and can be determined by con\302\254

\nvolution. The statements made for the unit impulse and unitstepcan

\nbe extended to any of the family of singular functions.\n

8-5. Fourier series\n

This section marks the turning point in our study. Behind are

\nstudies in the time domain, the responseofa network to a given time-

\nvarying driving force. The studies yet to come concern the responseof

\na network to a sinusoidal driving force of variable frequencyin addi\302\254

\ntion to time-domain topics.\n
The modem electrical engineer must be bilingualwhen speaking of

\nnetwork response. He must speak the language of the timedomain\n
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and must also be trained in the language of the frequencydomain.He

\nmay think in either language, but he must be able to translatefrom

\none to the other at a moment\342\200\231s notice. The translation process may be

\npurely mechanical, \342\200\234large bandwidth\342\200\235 equals \342\200\234desirable step function

\nresponse.\342\200\235 Or it may be based on an understanding of the concepts
\nof the two domains in terms of a common root or origin.\n

To begin with, we have now extended our time-domain studiesto
\ninclude the response of a network to (1) a nonrecurringpulseand (2)

\nrecurring and periodic waveforms such as the square wave. We will

\nnext study these two classes of driving force functions in terms of

\nsinusoids.\n

What do we mean by a periodic function (or waveform)?The
\nfamiliar sine wave is periodic. If represented as sin (at, and if di is some

\nvalue of (at after cat = 0, then for a sine wave,\n

sin 61 = sin (2nx + 0i), n = any integer\n

since the function has identical form from (at = 0 to cat = 2ir, from
\ncat = 2ir to (at = 4ir, etc. Similarly, any functionis periodicin (at if

\nf(di)
= /(0i + 2nx) and the period is 2r.\n

Such periodic functions were studied by the French mathematician
\nFourier (1768-1830) who was the first to show that periodicfunctions
\ncould be expanded in series form in terms of harmonically related
\nsinusoids as\n

f((at)
\342\200\224

do + ax cos (at + a2 cos 2(at + ... + an cos ruat\n

-f* ... -|- b\\ sin (at bn sin tuat -|- ... (8-73)\n

This series is known as the Fourier series, and the processof represent\302\254

\ning a periodic function by such a series isFourieranalysis.The problem

\nof analysis is determination of the values of the coefficientsof the
\nFourier series, a0, ah a2, ..., bh b2,..., for a given time function/(\302\253<).\n

Suppose we select the coefficients of the Fourier series such that\n

= 1, and &2 = \342\200\224
1, and all other coefficients are equal to zero. The

\nplot of the combination of the two functions with t is shownin Fig.\n

8-20, and the resulting f((at) has small amplitude from 0 to ir and large

\namplitude from 7r to 2ir. This distorted waveform resulted from the
\ncombination of merely two harmonically related terms. It seems quite
\npossible

that any periodic function could be synthesized with the infi\302\254

\nnite number of terms that are available in the series.\n

Equations for the coefficients of the Fourier series for use in anal\302\254

\nysis are found by the mathematical procedure of (1) multiplication of
\nthe series by a suitable factor, (2) integration of the resulting equations\n
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H*. 8-20. Waveform resulting from the addition of (cos <at) and\n

(
\342\200\224sin 2col).\n

term by term over the period, and (3) simplificationby the use of the

\nfollowing definite integrals.\n

/.

\ns>\n

f>\n

r-\n

L

\n/.\n

cos ruat d<at = 0

\nsin ruat deal = 0

\nsin mat cos nat dat = 0 m 9* n\n

cos mat cos ruat dat = 0 m n\n

cos2 ruat d<at = x\n

n 7* 0\n (8-74)\n

\302\273^0\n (8-75)\n

m 7* n\n (8-76)\n

n t6 0\n (8-77)\n

m n\n (8-78)\n

m t* n\n (8-79)\n

n t* 0\n (8-80)\n

n 0\n (8-81)\nsin2 ruat d<at \342\200\224x\n

These equations also hold for any other period, 0i to 0i+ 2t, and the

\nlimits of the integrals can be replaced by these moregeneralterms.\n
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In evaluating \302\253o,no multiplying term specified as step 1 is required.
\nIntegration of each term of the Fourier series gives\n

r2x r2*\342\200\242 /*2ir r 2r\n

/ f(ut) dut = do dut + fli / cos ut doit+ a,2 I cos 2(at do\302\273t\n

Jo Jo Jo Jo\n

[2t
r 2r\n

an I cos nut + ... + 6 x / si\n

Jo Jo\n
+ ... +\n sin ut dut\n

sin nut dut + ... (8-82)\n

assuming that such term-by-term integration is permitted. In Eq.\n

8-82, all terms on the right except the first have zerovalueby Eqs. 8-74

\nand 8-75. Hence the total equation reduces to\n

or\n

ut) dut = Oo(2t)\n

ut) dut\n

(8-83)\n

(8-84)\n

To find a\342\200\236for n other than zero, each term in the Fourierseriesis
\nmultiplied by cos nut and integrated from 0 to 2ir. In the resulting

\nexpression, all integrals will vanish except the one of the form of

\nEq. 8-80, which is the integral with a coefficient a\342\200\236.The equation thus

\nsimplifies to give\n

On\n cos nut dut\n (8-85)\n

Similarly, the 6n coefficient is evaluated by multiplying by sinnutand
\nintegrating over the period 0 to 2x, giving\n

bn\n

1\n

T\n

sin nut dut\n (8-86)\n

These three equations determine all coefficients of the Fourier series.
\nThese integrals hold when f(ut) represents a finite periodic function
\nwith at most a finite number of maxima and minimaand a finite num\302\254

\nber of discontinuities in every finite interval. These are the Dirichlet
\nconditions, which must be satisfied for the Fourier series representation
\nof f(ut) to be valid. The practical consequence in terms ofengineering
\napplication is that the Fourier series can be written for engineering
\nfunctions without concern.\n

The amount of labor involved in the evaluationof the coefficients

\ncan be reduced when there is symmetry with respect to the axisin the\n
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plot of/(\302\253<). Figure 8-21 (a) shows a plot of sine and cosinefunctions

\nfor positive and negative values of at. The cosine function is seento

\nhave symmetry about the / axis, the same value for +ad and
\342\200\224

ut.

\nSuch a function is said to be an even function. In the case of the sine
\nfunction, the value of the function for \342\200\224at is the negative of that for\n

Square wave\n f\n

-w t\n +ut\n

)\n

Kg. 8-21. (a) Even functions\342\200\224cosine and square wave: (b) odd
\nfunctions\342\200\224sine and triangular waves.\n

and vice versa. Such a function is an oddfunction.Any general

\nfunction may be described as odd or even when it meetsthe
following

\nconditions.\n

Even function: f(<at) = /( \342\200\224
(at)\n

Odd function: /(&><) =
\342\200\224/(\342\200\224\302\253<)\n

An even and an odd function are shown in Fig.8-21(b),a square wave

\nand triangular wave, respectively. The square wave is an even func\302\254

\ntion (although it might be made odd by shifting the cit axis). Being

\nan even function, every term in its Fourier series representationmust

\nalso be even; a single odd term would destroy the even symmetry.

\nThe same argument can be applied to the triangular wave in that its

\nFourier series must contain only odd terms. Theseconclusions of this

\ndiscussion can be verified mathematically.*\n
The equation for the ao coefficient of the Fourier series is\n

1 r2'\n
Oo = / /(\302\253<) doit\n

4K Jo\n

This integral represents the area under the /(\302\253<) curve from 0 to 2x.\n

* For example, see Wylie, op. cit., p. 122,or Salvadoriand Schwarz, op. cit.,

\np. 359.\n
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If, as in the case of the square wave and the triangularwave of Fig.\n

8-21(b), there is as much positive area as negativearea, the value of

\nao is zero. These three conclusions are summarized in the following
\ntable.\n

Condition\n

Simplification of

\nFourier series\n

/(\302\253<)
=

f(-wt)\n bn = 0, all n\n

f(<at)
= -f(-<at)\n an = 0, all n includinga0\n

Equal positive and negative\n ao = 0\n

areas under the waveform over\n

one cycle.\n

Example 1\n

Figure 8-22 shows a square wave function which we wishto represent
\nby a Fourier series. From the figure it is seen that the symmetryis\n

such that v(<at) =
v(\342\200\224<at), and so 6n = 0. Since the total area under

\nany cycle adds to zero, the coefficient ao is zero. The coefficientsan

\nare determined by evaluating the integral\n

1 P\342\200\231\n

a\342\200\236
= -

/ v(<at) cos mat dtat

\n* Jo\n

The voltage v(<at) has the following set of values overonecycle:\n

Interval\n v{<at)\n

0 to 7t/2\n V\n

7t/2 to 37t/2\n -V\n

37t/2 to 2tt\n V\n

These values may be substituted into the integral equation to give\n
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a\302\273as\n

On =\n

^ ^F y
cos nut dut \342\200\224V

J

\nV
(

\342\200\242\n
=

^Vsl\n
sin nut\n

)\n

Sir/2 /*2ir\n

cos nul + F / cos nw<

\n/2 J&w/2\n

I3t/2
|2ir\n

\342\200\224sin nul + sin\n

0 |\302\273/2 |3r/2\n

)\n

The term in parenthesis has the value of \302\2614 for odd values of n, and
\nzero for even values; hence\n

+4F\n
TO?r\n

a. = l \342\200\2244F

\ntot

\n0,\n

Thus the Fourier series is\n

to = 1, 5, 9, ...\n

to = 3, 7, 11, ...

\nn = even integers\n

t>(w<) = \342\200\224
(cos ut \342\200\224

\\ cos Sut + i cos 5a>/
\342\200\224

y cos 7a>< + ...)\n
IT\n

By a Fourier expansion, we have shown that a sumof voltage terms

\neach varying sinusoidally is equivalent to a squarewave, as illustrated

\nin Fig. 8-23. By the principle of superposition, the responseof each\n

(U)\n

Fig. 8 -28. Two equivalent systems: the Fourierseriesexpansion of a

\ntime-varying driving-force function.\n

generator can be determined with all other generators short-circuited,
\nand the total response will be the sum of the individualresponsesso

\nfound (as discussed in Chapter 4). This may appear to be complicat\302\254

\ning the problem rather than simplifying it, many solutionsinsteadof

\njust one being required. We have yet to show that it is easy to com\302\254

\npute the response as a function of frequency by complexalgebraand\n
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that in many cases we are not so interested in the actualresponse as

\nwe are in the frequency response required for a given waveform. In

\nsolving a problem, we have a choice between the solutionof the tran\302\254

\nsient problem (the time domain) and the solution of responsein terms
\nof a sinusoidal generator of variable frequency (frequency domain).\n

Example2\n

A triangular (or saw-tooth) waveform is shown in Fig. 8-24. This
\nvoltage function is an odd function with an equal to zero for all n\n

Fig. 8-24. Triangular (or sawtooth) function.\n

including n = 0. To find the ^coefficients, we represent the waveform

\nby the following equations, each derived in terms of the equationfor a

\nstraight line, y = mx + 6, where m is the slope,6 is the y intercept
\nand for this problem, y = v and x = t.\n

Interval\n v((at)\n

2V ,\n
0 to =\n

2\n ir\n

7r Sir\n

2toT\n

\342\200\2242V\nZ

(cat) + 2V\n

TT\n

3w 0

\n-g-

to 2t\n
2V\n
\342\200\224

((at)
-

4V\n

TT\n

Carrying out the integration, as in Example 1, gives

\nv(o)t)
= f sin o\302\273t

\342\200\224

^
sin Scot + ^

sin 5(at\n

)\n

Example 3\n

In some practical problems, the waveforms are not known in the form

\nof mathematical equations but rather as recorded graphs. In such
\ncases, the coefficients may be evaluated by approximate graphical
\nintegration.

As shown in Fig. 8-25, the waveform is divided into m

\nrectangles of width Awt and height f(<at). In terms of a summation\n
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Fig. 8-25. A recorded waveform. The Fourier seriesequivalentof this

\nwaveform may be found by graphical integration.\n

rather than integration, the approximate equations for the Fourier
\ncoefficients become\n

where\n

do\n Aoit\n

i-i\n

m\n

= i

^ ^ 2x^
cosn

2x^
Acot\n

y-i\n

m\n

= i

^ 2x^
sin n

2x^
Acot\n

l\n

Acot \342\200\224\n
2x\n

m\n

(8-87)\n

(8-88)\n

(8-89)\n

(8-90)\n

The summations required are most conveniently carried out in tabular
\nform, for example, as follows.\n

Table for Calculation of o\302\273\n

\302\273= 3 Aut = 15\302\260 m = 24\n

3\n
3-

(360\302\260)
= e

\nm\n
cos \302\273

(jt 360\302\260)\n /(m360\342\200\234)\n
f(6) cos nO\n

1\n 15\302\260\n cos 45\302\260= 0.707\n 1.52\n 1.07\n

2\n 30\302\260\n cos 90\302\260= 0\n 1.77\n 0\n

\342\200\242\n \342\200\242\n \342\200\242\n \342\200\242\n \342\200\242\n

\342\200\242\n \342\200\242\n \342\200\242\n \342\200\242\n \342\200\242\n

m\n

\342\200\242\n 0\n \342\200\242\n \342\200\242\n

2\n
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The coefficient has the value\n

o8
= 2 - (8-91)\n

8-6. Complexexponentialform of the Fourier series\n

The Fourier series studied in the last sectioncan be expressed in

\nequivalent form in terms of exponential quantities. Supposethat the

\nterms in the series are grouped together by harmonic number as\n

f(o)t)
= o0 +

^
(u\342\200\236cos mat + 6\342\200\236sin mat) (8-92)\n

\302\273=i\n

Now the cosine and sine may be expressed in exponentialform,as we

\nlearned in Art. 6-2. Starting with Euler\342\200\231s equation,\n

e\302\261iut = cos (at \302\261j sin <at (8-93)\n

the cosine is found in terms of exponentials by adding positive and

\nnegative exponential forms as\n

cos cat = v(eiat + e~iat) (8-94)\n

Similarly, the sine is found by subtracting these quantities as\n

sin (at = (eiat
-

e~iat)\n (8-95)\n

Substituting these equations into Eq. 8-92, there results\n

oo\n

\\ ' / pi nut I p\342\200\224jnut nut p\342\200\224jnut\\\n

=
\302\253o

+2, (\342\200\234\342\200\242̂

+ *>\302\273
j f )

(8_96)\n

n = 1\n

In order to simplify this equation, like exponential terms are grouped.
\nNoting that l/j =

\342\200\224j,our equation becomes\n

oo\n

/M
- a, +

\302\243 [(~^)
\302\253*- + (8-97)\n

n = 1\n

To simplify this expression, we next introduce a new coefficientto
\nreplace the a and b coefficients. By definition,\n

\342\200\236 \302\256n jbn ^ dn \"I\342\200\235jbn \342\200\236\t\n
sn

\342\200\224
0 y c\342\200\224n

\342\200\224
pr ) and Co \342\200\224\n

CLq\n (8-98)\n

The new form for Eq. 8-97 is\n

/M)
= co +

^
(cne^nt + c_\342\200\236e-\302\273'\"n<)\n

n = 1\n

(8-99)\n



180\n TIME DOMAIN AND FREQUENCY DOMAIN\n Chap.8\n

We are now in a position to understand better all the maneuvering

\nwe have just been through. Letting n range through valuesfrom 1to
\noo in this equation is equivalent to letting n range from \342\200\224oo to + oo

\n(including zero) in a compact equation,\n

/(\302\253fl
=\n

(8-100)\n

Here we have the exponential form of the Fourierseries.The coeffi\302\254

\ncients c\342\200\236can easily be evaluated in terms of an and bn, which we already

\nknew. Then\n

Cn \342\200\234

2tt\n

1 f2r 7 f2r\n
r- / f(<at) cos ruat dcat

\342\200\224
/ f(cat) sin mat dcat\n

hr Jo 2tt J )\n

l H*\n
\342\200\224

7T / f (cat) (cos neat \342\200\224
j sin neat) d<at\n

2m Jo\n

1 f2*\n
=

2r Jo
do)t\n (8-101)\n

This equation for cn holds whether n is positive as we have assumed,

\nnegative, or zero, as can be shown by exactlythe same procedure.

\nHas this form any advantage over the otherformof the Fourier series?

\nIn computing coefficients, the sine and cosine form usually may be\n

Fig. 8-26. Sweep voltage of the
\nform used in a cathode ray oscillo\302\254

\ngraph.\n

over one cycle by the equation
\ncn-coefficients,defined by Eq. 8-\n

used to advantage. But in discussing
\nthe concepts of frequency spectra and

\nintroducing the Fourier integral,
\nwhich we will study next, we need
\nthis exponential form.\n

Example 4\n

The sweep voltage waveform shown
\nin Fig. 8-26 may be represented

\nif a straight line, v = (V/2ic)<at. The

\n01, are\n

hj\n

f2r
y\n
\342\200\224<ate~ino>t dcat

\no 2t\n

_ jv\n

2 TIT\n

n 9* 0\n

V\n

O *\n o\nII\n\302\243\n
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Hence the exponential form of the Fourier series for this waveform is\n

v(at)
= ... \342\200\224

jf-
e~iZot \342\200\224~ e~i2at \342\200\224~ e~iwt +

^\n
6ir 4r 2ir 2\n

+ ^ e*\342\200\230+ ^ e,2\342\200\234*+ ... (8-102)\n

If we wish to reducethis result to the alternate form of Fourier series,
\nthe a and b coefficients may be found from the equations whichfollow
\nfrom the definitions of Eq. 8-98.\n

\302\256n Cn d\342\200\235C\342\200\224n, bn
\342\200\224

j(pn C\342\200\224n),
\342\200\224

Co\n

From these equations, o\342\200\236
=

0, ao = F/2, and bn =
\342\200\224V/mr, and the

\nFourier series becomes\n

v(o)t)\n

-ds-K-\n

- ( sin ut +
^

sin 2o>t +
^

sin 3<at +\n

\342\226\240\342\226\240\342\226\240)]\n

(8-103)\n

8-7. The frequency spectra of periodic waveforms\n

The second form of the Fourier series of our exampleof the last

\nsection is the most easily interpreted. We can visualize a large num\302\254

\nber of sinusoidal generators of voltage as specified by the appropriate
\nFourier coefficient, all connected in series to produce a sweep voltage.
\nWe have some difficulty picturing generators of exponential voltage
\nterms of the form appearing in Eq. 8-102, but the coefficientscontain
\nthe same information as those in Eq. 8-103. This information is con\302\254

\nveniently displayed in a plot of the magnitude of cn,and sometimesof

\nthe phase,* as a function of frequency. Such a plot showsthefrequency

\nspectrum corresponding to a particular waveform.\n

The plot of the magnitudeandphaseof cn as a function of frequency

\nrequires special interpretation. Actually, c\342\200\236has values only for discrete

\nvalues of frequency, the harmonics of a>, the fundamental frequency.
\nSuch a plot is actually for different values of n, or if we identify <o0 as

\nthe fundamental frequency (merely to in the equations derived thus
\nfar), the plot is for discrete values of the ratio

\302\253/wo, which is equiv\302\254

\nalent to n. Such a plot is shown in Fig. 8-27for both positiveand
\nnegative values of n or co/W\n

We do not attach any particular significance to negative frequencies
\nas plotted in the frequency spectrum. We do note that these frequen\302\254

\ncies are related to exponential factors of the form einat; such a term and

\na term of the form e~inat may be added to be equivalentto a sine or

\ncosine function. Thus a positive frequency and a negativefrequency\n

*
The phase angle of c\342\200\236is abbreviated as Ang c\302\273.\n
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combine to form the frequency associated with actual sinusoidal
\ngenerators.\n

Figure 8-28 shows two other spectra, for the examplesof Art.8-5

\nfor the square wave and the triangular wave. Comparingthesespectra\n

I I\n

V\n

2w\n

i\ni\n
V\n

2r\n

1 1\n

-6 -5\n
1\n

CM\n
1\n

CO\n
1\n

0 1\n CO\nCM\n 5 6\n

Tig. 8-27. The line spectrum corresponding to the sweepvoltage

\nof Fig. 8-26. Separate plots are made for magnitude and phaseangle

\n(Ang) of c\302\253.\n

(a) (6)\n

Fig. 8-28. The line spectrum for (a) a squarewave, and (b) a tri\302\254

\nangular wave.\n

to that shown in Fig. 8-27, we see that the amplitude distribution in

\nterms of the harmonics of the Fourier seriesmust be quite different

\nfor the different waveforms. The triangular wave contains little in
\naddition to the fundamental, while the sweep voltage waveform con\302\254

\ntains many harmonic terms of larger magnitude than for the triangular
\nwaveform.\n
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Because there are components of frequency for discrete values of
\nfrequency only, such plots of the magnitude of cBare known as line\n

8-8. The Fourier integral and continuous-frequency spectra\n

Figure 8-29 shows the waveform of a periodic pulse of magnitudeV

\nand duration a. The period, marked on the figure as T, extendsfrom

\nwot
= \342\200\224

7r to 03at = +*-, where, following the practice establishedin\n

V\n

volts\n

V\n V\n

-1\n r\n 7I\nr\n

a\n

2\n

*-r \t\n

a\n

2\n
+Q)t\n

Fig. 8-29. A recurrent pulse of duration a and periodT.\n

the last section, too is used as the frequency of the fundamentalof the

\nFourier series rather than to. The Fourier coefficientsfor the expo\302\254

\nnential form of the series may be computed for this problemfrom Eq.\n

8-101 written\n

1 f+x\n

cn
=

^
I /(coo<)e_,n\"0<do)ot (8-104)\n

Since the voltage waveform has zero value except between the limits
\n(o/2) and (\342\200\224a/2), the integral becomes\n

(8-105)\n

(8-106)\n

Now since T = 2x/co0,the equationfinally may be written\n

Ve-\342\200\231nmt do>ot\n

cn \342\200\224\n
-v 1\n

2t jn\n

-i r\n
Cn

2ir J_\302\243\n

]+o/2

y- ^gjnaM/2 g\342\200\224jnwoa/2^\n

-a/2 nir \\ 2j )\n

_ y
cooa

^sin

(no)oa/2)\\\n
2tt \\ no}0a/2 /\n

a sin (ntooa/2)

\nT no) od/2\n
(8-107)\n

For any particular problem, the ratio a/T willbefixed,andc\342\200\236will vary

\nas the mathematical function (sin x)/x.\n
This analysis brings up a numberof questions of interest: (1) how

\ndoes cn change as the width of the pulse or the ratio a/T changes,and\n

(2) \twhat happens if the period becomes infinite, leaving us with one
\nnonrecurring pulse?\n
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To help answer the first question, two plots are madein Fig.8-30,

\none for (T/a) = 2 and one for (T/a) = 5. The two plots differ in two

\nrespects: (1) there are more linesin the second plot and (2) the ampli\302\254

\ntude is smaller by a factor of \302\243in the second plot. From another point
\nof view, there are more lines because w0 is smaller for the second pulse.
\nMore frequency components are required to makeup the shorter pulse,

\nbut the amplitude of the frequency components is smaller.\n

1\n

u\n

1\n

V\n

\342\200\224cot\n +<i)t \342\200\234(t)t\n +wt\n

la)
\302\243-2 16) \302\243-5\n

(a) \302\243-2\n (6) \302\243-5\n

Tig.S -80. Two recurrent pulses with differentvaluesof (T/a) and

\nthe corresponding line spectra holding a constant. The envelopeof

\nthe line spectra is of the general form (sin x/x). Because |cn| is plotted,
\nthe envelope is always positive whereas (sin x/x) is negativefrom a- to

\n2w, etc.\n

We begin to see a trend that should help answeroursecond question

\nas to what happens in the case of an aperiodic pulse. As the period

\napproaches infinity, more frequency components of smaller amplitude
\nwill be added. To accomplish this limit in terms of the expressionsfor

\nthe Fourier series,* we begin with Eq. 8-100, which is\n

/(\302\253oO
=\n

n\n

c\342\200\236e,w\n

and substitute the equation for c\302\273,giving\n

(8-108)\n

f(<aot)
=\n

/(wo0e-,w dco01 e\342\200\231\342\204\242*1\n

]\n

(8-109)\n

* The following discussion is intended to providea heuristic proof or motivation

\nfor the Fourier integr\302\253d theorem. It is not a rigorous derivation.\n
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We next let coo = Aw as T\342\200\224\342\226\272\302\273 and introduce a new variable by
\nletting

nAu = w. If we write Eq. 8-109 in terms of fit) rather than

\n/(woO>
the limits of integration change to give the followingexpression.\n

w-
i a\n

n = \342\200\224\302\253\n

(8-110)\n

In the limit, as Aw \342\200\224>0, the summation becomes a process of integra\302\254

\ntion, and\n

m = r (8-ui)\n

This equation is one form of what is known as a Fourierintegral.It
\nmay be written in a slightly different form by calling the bracketterm
\nin the equation g(a), as\n

g(u)
=

^ j ^
f{t)e~iat dt\n (8-112)\n

so that\n fit)
= / gio>)elul da\n (8-113)\n

and these two equations constitute a Fourier transform pair. These
\nequations can be used to represent f(t) provided f(t) satisfiesthe Diri-
\nchlet conditions, mentioned in Art. 8-5, and if the integral\n

(8-114)\n

is finite.\n

Now |cn| determined the frequency spectrum in the caseof the Fou-

\nrier series. The term corresponding to c\342\200\236in the Fourier integral expres\302\254

\nsion is g(a) da. The amplitude of g{<x>) da is vanishingly small, of

\ncourse, since da is an infinitesimal quantity. However, the function
\ng(a) is finite and is plotted in magnitude and phase as the frequency

\nspectrum corresponding to an aperiodic fit). No longer is this spectrum
\ngiven for only discrete values of frequency. The function g(a) is a
\ncontinuous function for all a. Because of this difference in spectra,
\n|gf(<o)|

is sometimes called a continuous spectrum, while |cn| is a line
\nspectrum.

In terms of the synthesis of a pulse by additionof frequency

\ncomponents, the continuous spectrum requires all frequencies com\302\254

\nbined as required by Eq. 8-113.\n

For the single pulse shownin Fig.8-29, the other two having moved
\nto infinity in opposite directions, the frequency spectrum may be\n



186 TIME DOMAIN AND FREQUENCY DOMAIN\n

found from Eq. 8-112as\n

Chap. 8\n

Q(u)\n If *<!!$}\n2ir J \342\200\224a/2 2x (coa/2)\n
(8-115)\n

This equation is similar in form to Eq.8-107given for recurring pulses,

\nbut is a continuous rather than a line spectrum. The plots ofthemath\302\254

\nematical expression |(sin x)/x\\ shown in Fig. 8-30 constitute the enve\302\254

\nlope of the spectrum |gr(co)| for the single pulse.\n

The Fourier transform pair of equations, Eqs. 8-112 and 8-113,
\nserves to illustrate the relationship of the time-domain function f(t)
\nand the frequency-domain quantity, the frequency spectrum, g(ui).
\nFor a given f(t), we can find the corresponding g(<a).And for a given

\ng((\302\273), we can similarly find the corresponding f(t). The Fourier trans\302\254

\nform equations provide us with a two-way street with which we can

\ngo from time domain to frequency domain or vice versa. The same

\ntwo-way street exists for the Fourier series and the associatedconcept
\nof the line spectrum and the time domain.\n

We know that the waveform of a single pulse can be synthesized
\nfrom frequency components specified by Eq. 8-115. Suppose that we

\napply a single pulse to the input of a system whichdoesnot transmit

\nthe higher-frequency components. The output of this system will no

\nlonger be a square pulse but will be someothertime-domain function

\nthat could be computed from Eq. 8-113 using the g(<*>) of the output of

\nthe frequency-selective system. As we change frequency response, we\n

Fig. 8-81. Input and output waveforms for a two-terminal-pair
\nfrequency-selective network.\n

also change time response. An input and the correspondingoutputfor

\na frequency sensitive system are illustrated in Fig. 8-31.\n

8-9. Fourier transforms and their relationship to Laplace transforms\n

The Fourier transforms, defined by Eqs. 8-112 and 8-113,havebeen
\nused in the last section to illustrate the relationship of frequency
\ndomain and time domain concepts. We have not yet discussedthe
\ntransform property of these equations which can be used in

solving\n
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circuit equations in much the samemanner as the Laplace transforma\302\254

\ntion has been used. For reference, Eqs. 8-112 and 8-113are repeated
\nhere.\n

gM
=

gj J'j(t)e-*\342\200\234dt
(8-116)\n

/(() =
J_ gMe<- dw (8-117)\n

The transform character of these equations is emphasized by the use
\nof the following notation.\n

%f(t) =
9(<\302\273) (8-118)\n

fc-Wco) =m (8-H9)\n

Equations 8-116 and 8-118 define the directFourier transformation,

\nwhile Eqs. 8-117 and 8-119 define the inverseFouriertransformation.
\nThese four equations are similar in appearance to the corresponding
\nequations

for the Laplace transformation, given in Chapter 7 as Eqs.
\n7-1 and 7-3, which are\n

m\n
= f{t)e~atdt\n (8-120)\n

m\n
1 r* +y \302\260\302\260\n

=
jr\342\200\224./ F(s)elt ds
\n2x7 >-y\302\273\n

(8-121)\n

and\n \302\243f(t)\n
= F(s)\n (8-122)\n

\302\243-'F(s)\n
=

m\n (8-123)\n

Comparison of these two sets of equationsrevealsseveral differ\302\254

\nences: (1) The jo) in the Fourier transform occupies the sameposition
\nas s in the Laplace transform. (2) The letters F and g signifyfunctions
\nwith similar roles. (3) The limits of integration in Eqs. 8-116and8-120
\nare different,

\342\200\224oo in the Fourier transform corresponding to 0 in the
\nLaplace

transform. (4) The multiplying constants (l/2x) and (1/2vj)
\noccupy different positions although this is a matter of convention since
\nl/2x may be associated with either f(t) or g(u>) in Eq. 8-111. Since we
\nare stressing the similarities of the two systems of transforms, the fac\302\254

\ntor 1/27T will be shifted from Eq. 8-116 for g(u>) to Eq. 8-117 for/(\302\243) for

\nthe remainder of this discussion.\n

To illustrate the consequencesof thesedifferences, we will study an

\nexample of the computation of a Fouriertransform.In most circuits

\nstudied in past chapters, interest has centered on what happensin a\n
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circuit after an instant of time corresponding to the openingor closing

\nof a switch. This instant of time is conveniently taken as the reference

\ntime, t \342\200\2240. A function that has been used to denote the closingof a

\nswitch to connect a driving force to a circuit is theunit step function

\nu(t). To determine the Fourier transform of u(t), we make use of Eq.\n

8-116. In this case, the lower limit of the integralmay be changed to

\nzero, since u(t) has zero value for all negativet. In thisusual circuit

\nsituation in which f(t) has zero value before t = 0, Eq.8-116may be

\nwritten with the lower limit of zero, and is then known as the unilateral

\nFourier transformation. Carrying out the operations we have just

\ndescribed, we have, with l/2ir removed from Eq. 8-116\n

/oo

r *\n

f(t)e~iat dt = I e~>'

\n-1\n

g(a>)
= -r-^ e~>wt

\n3<*\n 3<\302\273\n

iat dt\n

(cos cot \342\200\224
j sin (at)\n

(8-124)\n

(8-125)\n

This equation has no meaning, since neither the sinenor the cosine is

\ndefined for infinite cot. This difficulty can be avoidedby introducing a

\nconvergence factor defined in the equation\n

Mt)
= e-'W)\n (8-126)\n

where fi(t) is a modifiedfunction and <r is real and positive. This

\nprocedure provides the convergence necessary to avoidthe difficulty

\nin evaluating Eq. 8-125, and permits computation of the Fouriertrans\302\254

\nform as the limit as <r \342\200\224\342\226\2720. Substituting fi(t) = e~atu{t) into Eq. 8-116
\nwithout the factor l/2ir gives\n

and\n

g{u>)
= lim [ fi{t)e~iot dt = lim /

\ng(co)
= lim

/\n
a\342\200\224>0JO\n

e-(<r+;\302\253)< fa
_ lim\n

e-*te-iot ^ (8-127)\n

1 1\n

<r\342\200\224>0<r + ja jco\n

(8-128)\n

From this equation, we have the Fourier transform of u(t) with <r = 0

\nas\n

5\302\253(<)
=

^\n
(8-129)\n

Thus the convergence difficulty has been avoidedeffectively by intro\302\254

\nducing a real part to be added to j<a. Sinces of the Laplace transforma\302\254

\ntion is defined as a complex number, s = <r + ja, we see that the\n
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Laplace transformation automatically has the advantageof stronger

\nconvergence by incorporating a \342\200\234built-in\342\200\235convergence factor. How\302\254

\never, the Laplace transform of f(t) is identical with the Fouriertrans\302\254

\nform of f(t) multiplied by the convergence factor e~**;that is,\n

\302\243f(t)
= (8-130)\n

Recognition of this relationship of transforms unifies two important
\ntopics in the study of electric circuits.\n

The preceding discussionmightbe regarded as a heuristic derivation

\nof the Laplace transformation from the Fourier transformation. Since
\nthe Fourier transform conveys more physical meaning than the Laplace
\ntransform, arising as it does out of the Fourier integral and Fourier
\nseries, this tie-in is conceptually important. Aside from this advantage,
\nthe Laplace transformation is a more powerful mathematical tool than
\nthe Fourier transformation and is more extensively used.\n

Tables of Fourier transforms are available, an example being the
\nextensive compilation of Campbell and Foster.*\n

FURTHER READING\n

For further readingon the subject of the response of a system to
\nsuch excitations as the step function, impulse, ramp function, square
\nwave, etc., see Thomson, Laplace Transformation (Prentice-Hall, Inc.,
\nNew York, 1950), pp. 23-26. The convolution integral is alsodiscussed
\nby Thomson, pp. 37-38, and in such references as GardnerandBarnes,
\nTransients in Linear Systems (John Wiley & Sons, Inc., New York,
\n1942), pp. 228-241; Salvadori and Schwarz, Differential Equations in
\nEngineering Problems (Prentice-Hall, Inc., New York, 1954), pp.
\n214r-219;and Wylie, Advanced Engineering Mathematics (McGraw-

\nHill Book Co., Inc., New York, 1951), pp. 188-197. For further
\nreading on Fourier series, see Kerchner and Corcoran, Alternating-
\nCurrent Circuits (John Wiley & Sons, Inc., New York, 1951),Chap.6.
\nA very complete discussion of the Fourier series and integral is given
\nby Guillemin, The Mathematics of Circuit Analysis (John Wiley &

\nSons, Inc., New York, 1949), Chap. 7. Chapter 5 of Wylie(op.cit.)
\nis very concise on these subjects and is especially recommended. Two
\nadditional references containing valuable information on the Fourier
\nintegral and frequency spectra are Fich, Transient Analysis in Elec\302\254

\ntrical Engineering (Prentice-Hall, Inc., New York, 1951), pp. 199-214;
\nand LePage and Seely, General Network Analysis (McGraw-Hill Book
\nCo., Inc., New York, 1952), pp. 444-463.\n

* Campbelland Foster, Fourier Integrals for Practical Applications (D. Van
\nNostrand Company, Inc., New York, 1950).\n
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PROBLEMS\n

8-1. Write an equation for the nonrecurring waveform shown in
\nthe figure in terms of unit step functions.\n

1\t\n

1\n 1\n

1\n

1 2 J\n 4 5 6 i\nf *\ni 9 t\n

Prob. 8-1.\n

8-2. Write an equation for the nonrecurring waveform shownin
\nterms of unit step functions.\n

10\n

8 9\n

12 3 4\n (Jl\n Ol\n

-10\n

t\n

Prob. 8-2.\n

8-3. In the nonrecurring waveform shown, the function suddenly
\nincreases to a value b at the time t = 0 and then decreases expo\302\254

\nnentially to a value a at t = c before decreasingsuddenlyto zero.

\nThe waveform then goes through the same cycle with negativemag\302\254

\nnitudes. Write an expression for this waveform, using unit step
\nfunctions. Partial answer, v = be~[ln<-a/b)]t/cu(t)

\342\200\224
.\n

8-4. A voltage pulse of 10 volts magnitude and of 5 Msec duration

\nis applied
to an RL series circuit where R \342\200\2242 ohms and L = 10

\nMhenry.
Plot the waveform of the current as a function of time.\n
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8-6. A voltage pulse of 10 volts magnitude and of 5 /usee duration

\nis applied to an RC series circuit
\nwhere R = 100 ohms and C = 0.05
\nnf. Find the equation for the cur\302\254

\nrent and plot the current waveform

\nas a function of time.\n

8-6. A voltage waveform known
\nas a \342\200\234staircase\342\200\235 is used to shift

\nthe frequency of a radio transmit\302\254

\nter. One cycle of staircase is shown\n

in the figure, (a) Write the equation for this voltagewaveform v(t),

\nassuming it is not repeated, (b) Suppose that this voltageis applied

\nto a series RL circuit with R = 1 ohm and L = 1 henry. Sketch the\n

Prob. 8-5.\n

volts\n

6 f, sec\n

Prob. 8-6.\n

current waveform approximately to scale on the same coordinatesas
\nthe \342\200\234staircase\342\200\235voltage.\n

8-7. Show that the transform of the square wave is\n

F(s)
=\n

1\n

s(l -f- e~\302\260s)\n

8-8. The waveform shown in the figure is that of a full-wave rec\302\254

\ntified voltage. The equation for the waveform is sin t from 0 to t,
\n\342\200\224sint from it to 2x, etc. Show that the transform of this function is\n
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8-9. The waveform shown is a sweep voltage used to deflectthe

\nbeam in a cathode ray oscilloscope. Show that the transform of this
\nfunction is\n

pi
/ \\ 1\n

{s)
~

as* s(l
-

\302\253r*4)\n

8-10. Find the transform of the voltage waveform shown in the
\nfigure.\n

8-11. By convolution, find the time functions corresponding to the
\nfollowing transform functions starting with the transform pair f(t) =
\ne0*, F(s)

= 1 /(s
\342\200\224

a).\n

(a)
(\302\253

- a)2
(c)

(\302\253+ o)(\302\253 + b)\n

^
(s

\342\200\224
a)(s

\342\200\224
6)

^
(s \342\200\224

a)(s
\342\200\224

b)(s
\342\200\224

c)\n

8-12. By convolution, find the inverse Laplace transformation of

\nthe following functions.\n

1 $\n

(s2 + l)2
(b)

(s + l)(s2 + 1)\n

8-13. Tests on a certain network showed that the currentoutput was

\ni(t)
= \342\200\2242e~l + 4e-8* when a unit voltage was suddenly appliedto the

\ninput terminals at t \342\200\2240. What voltage must be applied to give an

\noutput current of i(t) = 2e~l if the network remains in the same form

\nas for the previous test? Answer, v = 4e\342\200\230
\342\200\224

3.\n

8-14. The output of a half-wave rectifier is given by the equation\n

v(wt)
~\n

cos cot,\n 0 sis Cot <
^\n

o,\n

T <r t S*\n

y
^ <*t g 2x\ncos

at,\n
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Show that this periodic waveform can be represented by the Fourier
\nseries\n

v(ut)\n
a\n

t 2 2\n

1 +
2

cos + g
cos 2ut \342\200\224

jg
cos 4ut +\n

8-15. Find the Fourier series representation of the trapazoidal wave\302\254

\nform shown for Prob. 8-10. Draw the line spectrum for this waveform.\n

8-16. Draw the line spectrum for the waveform of Prob. 8-14.\n

8-17. The following table gives the ordinates of a waveformas a
\nfunction of <at. The values for r to 2?r are definedby the relationship
\n/(*\342\200\242+ ut)

=
\342\200\224f(ut); in other words, the negative loop from r to 2ir

\nis similar to the positive loop from 0 to v.\n

ut\n f(ut)\n ut\n /(\302\2530\n

0\n 0\n 105\302\260\n 85.0\n

15\302\260\n 49.7\n 120\n 77.9\n

30\302\260\n 75\n 135\n 77.8\n

45\302\260\n 77.8\n 150\n 75\n

60\302\260\n 77.9\n 165\n 49.7\n

75\302\260\n 85.0\n 180\n 0\n

90\302\260\n 90\n

(a) Determine the Fourier coefficients for the first five harmonics, (b)
\nDraw the line spectra for this waveform.\n

8-18. For the waveformshownin the figure, determine the contin\302\254

\nuous spectrum and sketch |fir(w)| and Ang g(u).\n

V\n

V\n

a\n
~

2\n

*
1\n

-V\n

Prob. 8-18.\n

8-19. The aperiodic function shown in the figureis part of a cosine

\nwave defined only from \342\200\224
v/2 to +ir/2. Determine the continuous

\nspectrumand sketch
|gr(w)| and Ang g{u).\n

8-20. An aperiodic function is definedby the equation\n

v(t)
= Ve~at sin uot, t ^ 0\n

and represents a damped oscillation. Determine the continuous spec\302\254

\ntrum for this function and sketch both |(7(w)|and Ang g{u).\n



CHAPTER 9\n

IMPEDANCE AND ADMITTANCE FUNCTIONS\n

In this chapter, the operationalmethodstudiedby the Laplace

\ntransformation will be used to introduce the conceptsof impedance and

\nadmittance.\n

9-1. The concept of complexfrequency\n

The solution of the differential equations for networks has given

\nrise to time-domain functions of the form\n

Kne-t (9-1)\n

where s\342\200\236is a complex number, a root of the characteristic equation,
\nexpressed as\n

Sn = <Tn + jun (9-2)\n

Here co\342\200\236,the imaginary part of has been interpreted as radian fre\302\254

\nquency (or angular frequency) and it appears in time-domain equations
\nin the forms\n

sin ccnt or cos unt (9-3)\n

Radian frequency has the dimensions of radians per secondandmay be

\nexpressed in terms of frequency, fn, in cycles per second,orin terms of

\nthe period T, in seconds, by the equation\n

2_\n

co\342\200\236
=

2tr/\342\200\236
=

y (9-4)\n

By Eq. 9-2 we see that <rn and co\342\200\236must be identical in dimensions. The
\ndimensionof is (time)-1,sincethe radian is a dimensionless quantity
\n(being length of arc per lengthof radius). The dimension of <rn must be

\n\342\200\234something\342\200\235 per unit time. Since an appears as an exponentialfactor,\n

I\n

such that <rn\n

I oe*nt\n (9-5)\n

1 T\n

tln 70\n
(9-6)\n

it is evident that the \342\200\234something\342\200\235 per unit time should be a nondimen-
\nsional logarithmic unit. The usual unit for the natural (or Naperian)
\nlogarithm is the neper. This unit is commonly used makingthe dimen\302\254

\nsion for <r the neper per second.\n
194\n
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The complex sum\n

\302\253\302\273
-

<r\342\200\236+ jun (9-7)\n

is defined as the complexfrequency.The imaginarypart of the complex

\nfrequency is the radian frequency (or real frequency),and the real part

\nof complex frequency is neper frequency* (rather than the misleading
\nterm \342\200\234imaginary frequency\342\200\235). The physical interpretation of complex
\nfrequency appearing in the function e,Ht will be studied by considering
\na number of special cases for the value of \302\253\302\273.\n

(1) Let \302\253\342\200\236
= <rn + jO and let <rn have positive, zero, and negative

\nvalues. The exponential function of Eq. 9-1 becomes Kne9nt, an expo\302\254

\nnential function which increases exponentially for <rn > 0 and decreases

\n(or decays) exponentially for <r\342\200\236< 0.\n

When <rn = 0, so that s\342\200\236
= 0 + jO,

\nthe term becomes\n

Kne\342\200\230*\342\200\230
- Kneot = Kn (9-8)\n

a time-invariant quantity which

\nin terms of current and voltage is
\ndescribedas \342\200\234direct current.\342\200\235 The

\ntime variation for the three possibili\302\254

\nties for real s\342\200\236are shown in Fig. 9-1.\n

(2) Let 8n
= 0 \302\261join (radian frequency only). In this case, the

\nexponential factor becomes\n

Kne\302\261iUnt
= Kn(cos o)nt \302\261j sin uj) (9-9)\n

by Euler\342\200\231s equation. The exponential e\302\261,w is usually interpreted in

\nterms of the physical model (with no actual physical significance)of
\na unit rotating phasor, f the direction of rotation beingdeterminedby

\nthe sign. A positive sign, e+jWnt implies counterclockwise (or positive)

\nrotation, while a negative sign, e~iUnt implies clockwise (or negative)

\nrotation. For positive rotation, the real part of (or the projection

\non the real axis) varies as the cosine of o)nt, while the imaginary part

\n(or projection on the imaginary axis) varies as the sine of o>nt. This

\nconcept is illustrated by Fig. 9-2. The variation of the exponential

\nfunction with time is sinusoidal and corresponds to the case of the
\nsinusoidal steady state.\n

\342\200\242Theterms radian frequency and neper frequency were used by W. H. Huggins,
\n\342\200\234Thepotential analog in network synthesis and analysis,\342\200\235 Air Force Cambridge
\nResearch Laboratories, Report No. E5066, March 1951.\n

t Many texts used the word vector in place of phasor. A phasor is characterized
\nby magnitude and phase with respect to a reference.\n

Jig. 9-1. Variation of e9i with time
\n(a

\342\200\224
neper frequency).\n
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fig. 9-2. Rotating phasor and imaginary and real axis projections\n

(sine and cosine).\n

(3) \tLet s\302\273
=

<r\342\200\236+ jun (this is the general case and the frequencyis
\ncomplex). For this case,\n

Kne'nt = Kne(9n+iUn)t =
Kne9nteiUnt (9-10)\n

This expression shows that such a term has a timevariationwhich is

\nthe product of the result for s\342\200\236
=

<r\342\200\236and for s\342\200\236
=

\302\261ju>n. One term is

\nrepresented by the rotating phasor model,the otherterm by an expo\302\254

\nnentially increasing or decreasing func\302\254

\ntion. This result can be thought of as
\na rotating phasor with a magnitude
\nwhich changes with time. Such a

\nphasor is illustrated in Fig.9-3.The

\nreal and imaginary projections of this

\nphasor are\n

Re(e**0
= e~9nt cos o>nt (9-11)

\nand Im(e*\"\342\200\230)
= e~9nt sin <ant (9-12)\n

for a phasor rotating in the positive
\ndirectionand negative a. Thesepro\302\254

\njections are shown in Fig. 9-4. Such waveforms have been classified
\nas damped sinusoids.\n

From this discussion, we see that there is nothingreallynew in the

\nconcept of complex frequency. The imaginary part of complexfre\302\254

\nquency, the radian (or real) frequency corresponds to oscillations.The

\nreal part of complex frequency, neper frequency, corresponds to expo-\n

Fig. 9-8. Rotating phasor decreas\302\254

\ning in magnitude with time.\n
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nential decay or exponential increase (depending on sign) or to no
\nvariation for zero neper frequency. We have talked about such expo\302\254

\nnential functions before in terms of the time constant. Since the role
\nof the two \342\200\234kinds\342\200\235of frequency is the same, even though the conse\302\254

\nquences are different, we unify the two concepts under one name\342\200\224

\ncomplex frequency.\n

Tig. 9-4. Time variation of e~\342\200\242*where s is complex frequency.\n

We should constantly guard against semantic difficulties in the use
\nof the work \342\200\234imaginary\342\200\235 as one part of a complex quantity. The
\nimaginary part of a quantity is not physically imaginary (that is invis\302\254

\nible or ghostlike) in the sense that it is not physicallyreal. We have

\nborrowed the words \342\200\234real\342\200\235and \342\200\234imaginary\342\200\235 from the mathematicians

\nas designations of two distinct parts of a quantity or function(which

\nwe often reinterpret in terms of magnitude and phase). The math\302\254

\nematician\342\200\231s \342\200\234imaginary\342\200\235 carries no connotation about the physical
\nuniverse about us!\n

9-2. Transform impedance and admittance\n

The ratio of the transform of a voltage to the transformof a current

\nis defined as the transform, (or generalized) impedance. The reciprocal
\nratio is defined as the transform (or generalized) admittance. We will
\nnext determine an expression for the impedance and admittance for
\neach of the network parameters.\n

Resistance. The time-domain expression for the voltageacrossa
\nresistor is given by Ohm\342\200\231s law in the forms\n

v(t) = Ri(t) or i{t) =
Gv(t) (9-13)\n

The corresponding transform equations are\n

V(s)
= RI(s) or I(s) =

GV(s)\n (9-14)\n
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Following the definitions given above for the transform impedance
\nand transform admittance, we have\n

=
Z\302\253

= R (9-15)\n

where Z(s) is the transform impedance,and\n

_
Y(s)

_ G (9-16)\n

where F(s) is the transform admittance.\n

The schematic which shows the actual resistor and the time-domain
\nvoltage and current can be replaced by a diagram to representequiva\302\254

\nlent transform quantities. Two such diagrams are shown in Fig. 9-5.\n

(a) (6)\n

Fig. 9-5. Resistor impedance and admittance.\n

The time-domain schematic is a representationof the actual physical

\nsystem. The transform diagram is composedof time-domainelement

\nrepresentations, but the letter symbol for the actual element isreplaced
\nby an impedance or admittance symbol.\n

Inductance. The time-domain relationshipbetweenvoltageand cur\302\254

\nrent in an inductor is expressed by the following equations.\n

v(t)
= L and ~

Jj j
^ (9-17)\n

The equivalent transform equation for the voltage expression is\n

F(s)
= L[sl(s) - i(0+)] (9-18)\n

Regrouping the terms, we have\n

Lsl(s)
= 7(s) + Li( 0+) (9-19)\n

In this expression, V(s) is the transform of the appliedvoltage,and

\nLi(0+) is a transform voltage resulting from the initial current in the
\ninductor. Designating the transform voltage across Z(s) as Fi(s),
\nwhere Fj(s)

=
F(s) + Li{0+), the transform impedance becomes\n

Vx(s)\n

m\n

\342\200\224
Z(s)\n

= Ls\n
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The equivalent transform diagram thus containsa transform imped\302\254

\nance and a voltage source due to. the initial current. Thisequivalence

\nto the time-domain schematic is shown in Fig. 9-6.\n

The transform equation for the current is\n

(9-20)\n

The initial-value integral w-1(0+) can be evaluated in terms of flux

\nlinkages Li as\n

tr'(o+)\n
-/\342\200\242\n

(t) dt\n

1-0+\n

= Lt*(0+)\n

The equation for 7(s) may be rewritten\n

iEW+S2\302\261l\n
L s s\n

\302\273\342\200\242(o+)\n
or\n

n
F(s) - m -\n

(9-21)\n

(9-22)\n

(9-23)\n

In this equation, t'(0-f )/s is an equivalenttransformcurrent source

\nresulting from the initial current in the inductor. Designatingthe
\ntransform current in Y(s) as Ii(s) = /($) \342\200\224 the transform\n

admittance becomes .... r..\n

m
= F(s) =

rs ^\n

The equivalenttransformdiagram

\nthus contains an admittance of

\nvalue 1/Ls and an equivalent cur\302\254

\nrent source defined in Eq. 9-23.

\nThis equivalent schematic for the

\ntime domain diagram is shown in

\nFig. 9-6. We note that,\n

Z(s)
= = U (9-25)\n

(6)\n

Fig. 9-6. (a) Impedance diagram for\n

Capacitance. The time-domain
L \342\200\242(b)\302\273dmi\342\200\234ancediagram for L.

\nrelationship between voltage and current for a capacitoris given as\n

i(t)
= C and v(t)\n

\342\226\240H\n

i(t) dt\n (9-26)\n

The equivalent transform equation for the voltage expression is\n

V(s)
= i [ ^ 1\n

cL \302\253\n * J\n

(9-27)\n
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where q(0+)/C is the initial voltage of the capacitorwhich, due to the

\ncharge polarity, is \342\200\224
Vo. This equation may be written\n

i
/(\302\253)

-
F(\302\253) +

^
(9-28)\n

Designating the transform voltage of Z(s) as Vi(s) = V(s)+ Vo/\302\253, the

\nratio of the transform voltage to the transform current is\n

= 7(s) = _L\n

7(s)
'

Cs\n
(9-29)\n

itf).\n

The capacitor with an initial charge thus has an equivalenttransform\n

diagram with an impedance 1/Cs
\nin scries with a voltage source

\nhaving a transform \342\200\224v(0+)/\302\253.
The

\nschematic of this combination is
\nshown in Fig. 9-7.\n

The transform equation for the
\ncurrent expression of Eq. 9-26 is\n

V0zfcC\n

my\n

lrc\n

or\n

/(\302\253)
=

C[\302\253F(\302\253)
- K0+)]\n

(9-30)\n

CeV(s)
- 1(a) -

CF,\n

(9-31)\n

Fig. 9-7. (a) Impedance diagram for
\nC, (b) admittance diagram for C.\n

Designating the transform current

\nin V(s) as /,(\302\253)
-

/(\302\253)
- C70, the

\nratio of transform current to transform voltage becomes\n

^
-

Y(a)
- Ca (9-32)\n

The capacitor with an initial chargehasan equivalent transform sche\302\254

\nmatic representation of an admittance of value Cs in parallel with a

\ncurrent source of value CVo. This schematic is shown in Fig.9-7(b).

\nFor the capacitor,\n

*w
-mmn

(9^>\n

9-3. Seriesand parallelcombinations\n

In this section, we will consider the impedance and admittanceof

\nseries, parallel and series-parallel combinations of different elements.
\nTo simplify schematic diagrams, we will use the symbol normally
\nreserved for the resistor together with the letters Z(a) or Y(e) to des\302\254\n
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ign&te a transform impedance or admittance. We will not consistentlyuse
\nthe broken zigzag line for a transform impedance symbol, but either
\nthis symbol or the actual element symbol depending on whichis most
\nconvenient and descriptive. Consider the series combination of ele\302\254

\nments shown in Fig. 9-8(a) and the equivalent transform impedance
\ndiagram shown in Fig. 9-8(b). In Fig. 9-8(a), the same current i(t)\n

nnro^nnr 1(\342\200\224|(
\t\n

R\\ Rt
\342\200\242\342\200\242\342\200\242

1>\\
\342\200\242\342\200\242\342\200\242

Ci Cj
\342\200\242\342\200\242\342\200\242\n

v(t)\n

(\320\260)

\nila)\n

'\302\273\342\226\240
*

V\\ArAAAr-\342\200\224WWW-\342\200\224-WWW\342\200\224*\n

Zr, Zr, ZLl Zi, Zci zc,\n

Vb)\n

\342\226\240 '\342\226\240I\n

(\320\261)\n

Fig. 9-8. Impedance of series networks.\n

flows in all elements, and so in Fig. 9-8(b), J(s) is commonto allele\302\254

\nments. By Kirchhoff\342\200\231s voltage law, the sum of the drops of voltage
\nfor all elements is equal to v(t). Hence the transform of allvoltagesof

\nthe elements sum to V(s); that is,\n

V(s)
= VRl(s) + ... + ViM + ... + VcM + \342\200\242\342\200\242\342\200\242(9-34)\n

Dividing this equation by I(s) and recognizing that the ratio of the

\nvoltage of each element divided by the current for that element is

\nimpedance, we have\n

Z(s) = Zr,(s) + \342\200\242\342\200\242.+ Zl^8) + . \342\200\242\342\200\242+ Zct(s) + ... (9-35)\n

n\n

or Z(\302\253)
= V Z\342\200\236(s) (9-36)\n

1\n

for a series combination of elements, where n is the total numberof

\nelements in series.\n

It should be recognized that in performingsucha summation, the

\nelements are not being combined. Rather, only a characteristicfea\302\254

\nture of the element (its impedance) is being summed and added to a
\ncharacteristic of another element.\n

Consider next the parallel combination of elementsshown in Fig.\n

9-9(a) and in equivalent transform form in Fig. 9-9(b).In this net-\n
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work, the voltage drop v(t) is the same acrossallelements,andso F(s)

\nis the same for all elements. From Kirchhoff\342\200\231s current law, the sum of\n

(h)\n

Fig. 9-9. Admittance of parallel networks.\n

the currents in the elements is equal to the total currentsupplied to

\nthe network; that is,\n

i(t)
= iai(0 + \342\200\242\342\200\242\342\200\242+ *\302\243,(<) + ... + icXt) + \342\200\242\342\200\242. (9-37)\n

and the corresponding transform equation is\n

I(s)
= /o,(s) + . . . + ILl(s)+ \342\200\242\342\200\242.+ /c,(s) + ... (9-38)\n

If this equation is divided by F(s) and it is recognizedthat the ratio

\nof the current transform to the voltage transform is transformadmit\302\254

\ntance, there results\n

Y(s) = Yai(s) + \342\200\242\342\200\242\342\200\242+ FLl(s) + ... + YCl(s) + \342\200\242\342\200\242\342\200\242(9-39)\n

W\n

or Y(s) =
^

Yk(s) (9-40)\n

k~\\\n

for a parallel combination of elements, where n is the total number of

\nall kinds of elements in parallel.\n
For a series-parallelnetwork,rulesfor the combination of impedance

\nand of admittance can be used successively to reduce a networkto a
\nsingle equivalent impedance or admittance. This procedure will be
\nillustrated with a number of examples.\n

Example 1\n

In the series circuit shown in Fig. 9-10, the switchK is held in posi\302\254

\ntion a until such a time that a current 70flowsin the inductor and the\n
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capacitor is charged to voltage Vo. At that instant, the switch is
\nthrown to position 6, connecting the circuit to a voltage sourcev(t).
\nThe problem is to find I(s) and so i(t). An equivalent circuit diagram

\nmarked with transform impedances is shownin Fig.9-11.The imped-\n

Fig. 9-10. RLC circuit.\n Fig. 9-11. Equivalent diagram for

\nimpedanceof Fig. 9-10.\n

ance values and the equivalent voltage source values are taken from
\nthe derivations of this section given on pages 199 and 200.In this
\nrevised form, the current I($), a transform current, may be foundby

\nOhm\342\200\231slaw. The current I(s) is given as the total transformvoltage
\nin the network divided by the total transform impedance. Then\n

iy_ V(S) _ V1(s) + LIo - Vo/s sVris) + L/o\302\253
- F0 /n ^

\nw

Z(s) R + Ls + 1/Cs
\342\200\234

Ls2 + Rs + l/C
}\n

This transform equation can be expanded by partial fractionsto find

\nthe corresponding i(t) by the inverse Laplace transformation. This
\nsolution has been found without writing the differential equation of
\nthe system, and automatically incorporates the required initial
\nconditions.\n

Example 2\n

The dual of the network of Example 1 is showninFig.9-12. In this

\nnetwork, the switch K i is opened at an instantwhen the inductor cur-\n

Fig. 9-12. Parallel RLCnetwork.\n

rent is 70 and the capacitor is charged to F0. At the sameinstant,
\ni =

0, the switch A2 is closed. It is requiredto find the transform of

\nthe node voltage F(s) so that v(t) can be determined. Fromthe equiv\302\254

\nalent admittance diagram shown in Fig. 9-13, the transform
voltage\n
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F(s) is found as\n

t/y\302\253a \342\200\224 _ ^i(s)
\342\200\224

^\302\260/s _ s-^i(s) + CT0s \342\200\224
h /\302\253̂on\n

w
Y(s) Cs + G + 1/Ls Cs2+ Gs + 1/L

^ '\n

This transform is the dual of the transform of Eq. 9-41(and could\n

Fig. 9-13. Equivalent diagram for admittance of Fig. 9-12.\n

therefore have been written by inspection). The correspondingtime-
\ndomain voltage, v(t) can be found by taking the inverseLaplacetrans\302\254

\nformation after the above transform has been expanded by partial
\nfractions.\n

Example 3\n

In this example, we will make use of the lawsfor the series combina\302\254

\ntion of impedance and the parallel combination of admittance to deter\302\254

\nmine current. In the network shown in Fig. 9-14, it will be assumed\n

that the network is initially relaxed (no current, no charge)and that

\nthe switch was closed at t = 0. It is requiredto find the current in the

\ngenerator i{t) by finding the transformof this current I(s). The imped\302\254

\nance of the branch containing the 1-ohm resistor and 2-henryinductoris\n

Z(s)
= 1 + 2s (9-43)\n

This impedance is in parallel with the impedance 2/s ofthe capacitor.

\nThe admittances may be added directly. Thus\n

- r. +\n

2s2 + s + 2

\n2(2s + 1)\n

(9-44)\n

The impedance from a to & is the reciprocal of the admittance; thus\n

Zobis')
=\n

1
=

2 (2s + 1)\n

Yab(s) 2 s2 s -+- 2\n
(9-45)\n
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The total impedance is now found by adding to \302\243\342\200\236&(\302\253)the impedance

\nof the 1-ohm resistor. Then the total impedance is\n

-z i i 2(2s +1) _ 2s2 + 5s + 4\n
1 +

2s2 + a + 2 2s2 + a + 2\n
(9-46)\n

This total impedance in series with the transform of the voltagesource\n

Fig. 9-16. Equivalent diagram for im

\npedance of Fig. 9-14.\n

\342\226\240AAAr\n

2**+\302\253+2\n

Fig. 9 -16. Equivalent diagram of
\nFig. 9-15.\n

is shown in Fig. 9-16. The current may now be found by Ohm\342\200\231s law

\nfor transform quantities; that is,\n

1(
.

'
V(s) 2(2s2 + s + 2)\n

IW
~

Z(s) [(\302\253+ l)2 + 4](2s2 + 5s + 4)\n

(9-47)\n

If the inductor has a current flowing through it at t = 0 or if the

\ncapacitor is charged at t = 0, the problemis somewhat more compli\302\254

\ncated, since several voltage sources are involved.\n

9-4. Thevenin\342\200\231s theorem and Norton\342\200\231s theorem\n

When several voltage or current sources are present in a network,
\nthe net effect of all sources, as far as the currentin one branch or the

\nvoltage at one node are concerned, may be taken intoaccountby a

\ntheorem due to ThGvenin* (and the dual of this theoremdue to

\nNorton).\n

The network
\n(less one branch)

\nactive and passive
\nsources\n

One branch

\ncontaining
\nany elements\n

Fig. 9 -17. Arbitrary network.\n

Suppose that we are interested in the current in one branchof a

\nnetwork. The single branch and the remainder of the networkas a
\nbox are shown in Fig. 9-17. We will assume that the remainderof the\n

* This theorem was first proposed by M. L. Thdvenin in the French scientific
\njournal, Comptes rendu*, in 1883. The dual of Thgvenin\342\200\231s theorem is due to E. L.
\nNorton of the Bell Telephone Laboratories.\n
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network is arbitrarily complicated and that it contains an arbitrary
\nnumber of voltage sources of arbitrary waveform as a function oftime.
\nIf a generator is now inserted in the branch under considerationandis
\nadjusted until the current in this branch is equal to zeroat all time,

\nthat voltage source may be said to be an equivalentvoltage source in

\nthe sense that it is identical to the net effectof all generators in the

\nentire network as far as this onebranchis concerned. With this equiv\302\254

\nalent generator connected in the circuit, no current flows in the branch
\nbeing considered. If no current flows, the branch could be broken
\nwithout affecting the network. The voltage across the network termi\302\254

\nnals with the branch and generator removed is the voltageof the equiv\302\254

\nalent generator except for polarity. Thus the equivalent generator
\nvoltage is the same as the voltage measured by removingthe branch

\nand considering the open circuit voltage but of opposite polarity.\n

Now if the equivalent voltage generator is placed in the loopbeing

\nconsidered with polarity reversed, all active sources within the net\302\254

\nwork could be removed by replacing them with short circuits,andthe
\ncurrent in the branch will be the same as in the originalnetwork. The

\nconcept of an equivalent voltage source for a singlebranch,which is

\nthe basis of Th6venin\342\200\231s theorem, is illustrated in Fig. 9-18. This net\302\254

\nwork is equivalent to that of Fig. 9-17 as far as the current in the one

\nbranch is concerned.\n

The network

\n(less one branch)
\nall active sources

\nshort-circuited\n

One branch
\ncontaining

\nany elements\n

Fig. 9-18. Th^venin\342\200\231s equivalent network.\n

The statements made thus far apply to the time domain.The cur\302\254

\nrents considered are time-domain currents, and the resulting voltages
\nare time-domain. To convert to the frequency domain it is necessary

\nonly to find the Laplace transforms for all time-domain quantities
\ninvolved.\n

To summarize our discussion, we can say that by Th^venin\342\200\231s

\ntheorem we have the equivalent network shown in Fig. 9-18with one

\nvoltage source, one passive branch (although it is not necessarythat

\nit be passive) and with a network containing passive elements only.

\nWe may consider this network in terms of an equivalent transform

\nvoltage and by impedances of network elements. These impedances
\nmay be combined by the rules for series and parallel combinationpre\302\254

\nviously discussed. Finally, the entire passive network may be made\n
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equivalent to a single transform impedance. Let this impedance be
\nZtq(s)

and let the Impedance of the branch being consideredbe Zfcr(s).\n

Then the current in this branch is given as\n

Vtq(s)\n

AAAr\n

Z^B)\n

m =\n

Z\302\253q(s) + Zbr(s)\n
(9-48)\n

rig. 9-19. Th&venin\342\200\231s equiv\302\254

\nalent transform network.\n

It must be recognized that this analysis
\napplies only to a given branch. The equiv\302\254

\nalent circuit, shown in Fig. 9-19, does not
\nhold for any branch other than the one
\nunder consideration. If another branch current is needed, it isnecessary
\nto start over and reapply the theorem. Th&venin\342\200\231s theorem can be

\nstated as follows:\n

As far as the current in one branchis concerned, the remainder of

\nthe network may be replaced by an equivalent network having:
\n(1) as a transform voltage source, the transform of that voltage
\nappearing at the open-circuit terminals resulting from the removal
\nof the branch, and (2) as series transform impedance, an equiv\302\254

\nalent impedance equal to that of the network from the terminals
\nof the branch with all energy sources replaced by their internal
\nimpedances\342\200\224zero impedance for voltage sources and infinite

\nimpedancefor current sources.\n

The dual of Thevenin\342\200\231s theorem is Norton\342\200\231s theorem. Once more

\nconsider the network shown in Fig. 9-17.The current in the single

\nbranch being considered may be reduced to zero by placinga current
\nsource in parallel with the branch and adjusting the current until the
\nvoltage across the branch is zero. The voltage across the branch is
\nzero because the current from the network is just balancedbyan oppo\302\254

\nsite current from the parallel current source. Since the voltage across\n

The network

\n(less one branch)
\nall active sources

\nremoved\n

\342\200\242ejlfl\n

One branch

\ncontaining
\nany elements\n

Fig. 9 -20. Norton\342\200\231s equivalent network.\n

the branch is zero, a short circuit may be placedin parallelwith the

\nbranch without affecting the network. The current in the shortcircuit
\nwill actually be zero, because there will be a current from the equiv\302\254

\nalent source which exactly cancels the current from the network. If
\nall sources within the network are replaced by their internal impedance
\nand the equivalent current source which caused the voltage across the\n
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branch to reduce to zero (but with opposite direction) is placedin

\nparallel with the branch, then this network, shown in Fig. 9-20,is
\nequivalent to the original network. This equivalent current source has
\nthe value and direction that is found by short-circuiting the branch
\nin consideration and measuring the current in the short circuit. In sum\302\254

\nmary, Norton\342\200\231s theorem can be stated as follows:\n

As far as thevoltageacrossany branch is concerned, the remainder

\nof the network may be replaced by an equivalent networkhaving:
\n(1) as a transform current source, the transform of that current
\nin a short circuit across the branch, and (2) as paralleltransform

\nadmittance, an equivalent admittance equal to that of the net\302\254

\nwork from the terminals of the branch with all energy sources
\nreplaced by their internal impedances\342\200\224zero impedance for volt\302\254

\nage sources and infinite impedance for current sources.\n

The equivalentnetworkis shown in Fig. 9-21 as a node basis network
\nwith a current source and two parallel transform admittances. The\n

unknown voltage is given as\n

/\342\200\242,(\302\253)\n
1VW\n

7(s) =\n
m\n

Y(%) YU*) + YU*)\n

(9-49)\n

Fig. 9-21. Norton\342\200\231s equivalent trans\302\254

\nform network.\n

These two theorems will allow us
\nto reduce the form of any network
\nto an equivalent simple series cir\302\254

\ncuit, and from this circuit the transform of the current canbe found.

\nThese operations will be illustrated by two examples.\n

Example 4\n

The network shown is unenergized until the instant t = 0, when the

\nswitch K is closed. It is required to find the current ii(t) flowing in\n

jr*1\n
V _=. 100 volts\n

/?! L]\n

\302\253\342\200\224VA\342\200\224\n

10 ohms 1 henry\n

10 ohms\n 10 ohms\n

Fig. 9-22. Two-loop network.\n

the resistor I2\302\273. The values given on the schematic have the units of
\nthe ohm, the henry, and the farad. An equivalent schematic showing

\nelement impedances is shown in Fig. 9-23. Th&venin\342\200\231s theorem will be\n
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applied by disconnecting the branch containing L% and R%. The net\302\254

\nwork that remains is a simple series network, and the voltageacross
\nthe 10-ohm impedance will be the open-circuit voltage for the Th6venin
\nequivalent network. This voltage is found by finding the current in\n

Fig. 9-23. Impedance schematic for Fig. 9-22.\n

the series network and multiplying this current by 10ohms,the imped\302\254

\nance of the resistor; thus\n

10(100/s) _ 1000\n
VoeKS) 10 + s + 10 s(s + 20)\n

(9-50)\n

The impedance of the network with the voltage source 100/sshort-
\ncircuited is\n

Zeq{$)\n
10(s + 10)

\ns + 20\n
(9-51)\n

The current transform, by Eq. 9-48, is\n

T/ \\ Vqc(&) 1000/s(s 20) \t\nW
Zeg(s) + ZUs) 10(s+ 10)/(s+ 20) + (s + 10)\n

which simplifies to\n

=

s($2 + 40s + 300) ^9\342\200\23453)\n

This equation may be expanded by partial fractions as\n

1000 - - g. j- K, K,\n

s(s! + 40s + 300) s ^ (s + 10)+ (s+ 30)

{ '\n

With Ki, Ki, and Kz evaluated, the current transform becomes\n

m
=\n

3.33 -5 1.67\n

s s + 10 + s + 30\n
(9-55)\n

The time-domain current i(t) is found by the inverse Laplace trans\302\254

\nformation as\n

i(t) = 3.33 -
5e-10\342\200\230-f- 1.67e-*0<\n (9-56)\n



IMPEDANCE AND ADMITTANCE FUNCTIONS\n210\n Chap. 9\n

As a check, this equation reduces to the correct valuesfor initialand

\nfinal conditions.\n

Example 5\n

In the network shown in Fig. 9-24, it is requiredto find the current

\nin the resistor R%. The equivalent impedance schematic is showninFig.
\n9-25. It is assumed that the capacitor C2is initiallyunchargedandthat
\nthe switch K is closed at t = 0. Thevenin\342\200\231s theorem is applied at ter\302\254

\nminals a-a', and the equivalent impedance and equivalent voltage at\n

AAA/ 1\342\200\224\n

*1 Ao\n
\342\200\224-fe.\n

Fig. 9-24. Two-loop network. Fig. 9-25. Th6venin\342\200\231s equivalent of\n

Fig. 9-24.\n

these terminals will be found. The equivalent impedanceis a parallel

\ncombination of the impedance of two branches; thus\n

(Ri + 1/Cis)l/Czs\n

and\n

Z\342\200\236(\302\253)
=\n

Us) =\n

Ri 1/CiS + I/C2S\n

(Vo/s)(l/C2s)\n
Ri \342\200\234b1/CiS 1/C2s\n

(9-57)\n

(9-58)\n

The current through E2 is\n

Voc(s)\n
/*(\302\253)

=\n

Zeq(s) R2\n

V0/C1\n

RiRts2 -f- (R1/C2 \342\200\234I-R2/C1 -|- R%/Ci)s -f- I/C1C2
^\n

Suppose that the following values are given for the network:Ci = 8 pf,

\nC2
\342\200\2248 pf, Ri = 9 megohms, R* = 5 megohms, and Vo

= 75 volts.

\nWith these parameter values, Eq. 9-59 reduces to\n

0.208 X 10^6\n

(s + 0.045) (s + 0.0077)\n

This equation can be expanded by partial fractions to give\n

1 1 1\n

h(s)
= 5.55\n X

10~#^\ns + 0.0077 s + 0.045.
\nThe inverse Laplace transformation gives \302\273*(<) as\n

(9-60)\n

(9-61)\n
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(9-62)\nU{t) = 5.55 X 10-#(e-\302\260-0077*
- e\"0 046')\n

which is the required current. If the current in any otherbranchis
\nrequired it is necessary to start over, applying Th^venin\342\200\231s theorem.\n

FURTHER READING\n

For further discussion of the concept of complexfrequency,the

\nstudent is referred to LePage and Seely, General Network Analysis
\n(McGraw-Hill Book Co., Inc., New York, 1952), pp. 189-193and to
\nBode, Network Analysis and Feedback Amplifier Design (D. Van
\nNostrand Co., Inc., New York, 1945), pp. 18-30. For a discussionof

\nthe direct use of transforms in solving equations for a network,read
\nGardner and Barnes, Transients in Linear Systems (John Wiley &

\nSons, Inc., New York, 1942), pp. 176-214.\n

PROBLEMS\n

For systems described by
the differential equations that follow,

\ndetermine the complex frequenciesthat will appear in the solution, and

\ndesignate whether these frequencies are naturalfrequenciesdetermined

\nby the passive parameters of the system or frequenciesdeterminedby

\nthe nature of the driving force. Call these two kinds of frequencies
\n\342\200\234free\342\200\235and

\342\200\234forced,\342\200\235respectively.\n

& * / \\ dH .di .\n

9-1\342\200\230̂

dt2
+ dt + 1 ~ Ae\n

(b) \t(p2 + 4p 4- 5)(p2 4- 2p 4* 5)y
= Be~* sin t, p =

d/dt\n

9-2- M %
+

\302\253!'
+ *\342\200\242-\302\253\302\273<\n

di\n

(b)
^

4- 5i= De~2t 4* E sin 71\n

\302\253-al
+

25?
+ 25 + ,\342\200\231= 1 + e\342\200\234I\342\200\230sin3<\n

9-4.
^

4- i\\ \342\200\224
3i2 = sin t, 2

^ + it \342\200\224
3t\342\200\230i

= 1\n

9-5. Consider the two series circuits shown in the accompanying
\nfigure.

Given that vx{t) = sin 10% v2(t) = e-looo<for t > 0, and C =\n

tfeU)\n

L\n

(a)\n ib)\n

Prob. 9-6.\n
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1 id. (a) Show that it is possible to have ii(t) =
t2(l) for all t > 0.

\n(b)
Determine the required values of R and L for (a) to hold,(c)

\nDiscuss the physical meaning of this problem in terms of the complex

\nfrequencies of the two series circuits.\n

9-6. Two black boxes with two terminalseach are externally iden\302\254

\ntical. It is known that one box contains the networkshown as (a) and

\nthe other contains the network shown as (b) with R = y/L/C. (a)

\nShow that the input impedance, Zin(s) =
V'\302\273n(s)//,-n(s)

= R for both\n

(a) (6)\n

Prob. 9-6.\n

networks, (b) Investigate the possibility of distinguishing the
purely

\nresistive network. Any external measurements may be made, initial
\nand final conditions may be examined, etc.\n

9-7. If the capacitors are initially uncharged and no currentflows in

\nthe inductors at t = 0, determine the transform of the generatorcur\302\254

\nrent J(s) for the network shown in the accompanying figure. Answer.\n

,, v 10(s2 + s + 1)\n

w
(s2 + l)(s2 + 2s + 2)\n

9-8. Repeat Prob. 9-7 for the network shown in the figure.Answer.\n

Yf
\\ s(s + 2) (5s + 6)\t\nw (s2+ 4s + 13) (10s2 + 18s + 4)\n

9-9. In the given network, the switch K is in positiona until the

\nnetwork reaches a steady state. Then at t \342\200\224
0, the switch K is moved\n



Chap. 9\n IMPEDANCE AND ADMITTANCE FUNCTIONS\n 213\n

to position b. Find the transform of
\nthe voltage across the 0.5-farad capac\302\254

\nitor, using Thevenin\342\200\231s theorem.\n

9-10. The network of Example 4,\n

Fig. 0-22, has been modified as shown
\nin the accompanying figure. If the

\nswitch K is closed at t = 0, a steady
\nstate having previously existed, find

\nthe current in Rit using Th&venin\342\200\231s

\ntheorem. Compare this result with Eq. 9-56.\n

I\n

10 Q\n 10 9\n

ioov^-y\n

i\n

10 Q\n

Prob. 9-9.\n

*3 <109\n

Prob. 9-10.\n

9-11. The network shown in the figure is a low-pass filter (to be

\nstudied in Chap. 14). The input voltage Vi(Z) is a unit step function,

\nand the input and load resistors have the value R =
y/L/C- By using

\nThevenin\342\200\231s theorem, show that the transform of the output voltage is\n

F,(S)
(LC)*'*

[\302\253(\302\253*+ 4 y/iJLC s* + 8s/LC + 8/(LC)*'1\n

9-12.In the network shown in the accompanying sketch, the ele\302\254

\nments are chosen such that L \342\200\224CRf and R\\ = R*. If Vx(t) is a volt\302\254

\nage pulse of 1-volt amplitude and T sec duration, show that Vj(f) is

\nalso a pulse, and find its amplitude and time duration.\n



CHAPTER 10\n

NETWORK FUNCTIONS\n

In this chapter, the concept of transformimpedance and transform

\nadmittance which was introduced in the last chapter will be studied

\nand extended. Further, a function relating currents or voltagesat
\ndifferent parts of the network, called a transfer function, willbe found

\nto be mathematically similar to the transform impedance function.
\nThese two functions are called network functions.\n

10-1. Terminalsand terminal pairs\n

Consider an arbitrary network made up entirely of passiveelements.
\nTo indicate the general nature of the network, let it be representedby

\nthe symbol of a rectangle (or a box). If a conductoris fastened to any

\nnode in the network and brought out of the box for access, the end of

\nthis conductor is designated as a terminal. Terminals are requiredfor

\nconnecting driving forces to the network, for connecting some other
\nnetwork (say a load), or for making measurements. The minimum

\nnumber of terminals that are useful is two. Further, the terminalsare

\nassociated in pairs, one pair for a driving force, anotherpair for the

\nload, etc. Two associated terminals are given the name terminalpair.\n

In Fig. 10-1 (a) is shown a symbolic representation ofa one-terminal-

\npair (or two-terminal) network. The terminal pair is customarily con\302\254

\nnected to a driving force and so is sometimesgiventhe name driving\n

la) (6) (c)\n

Fig. 10-1. Network representations.\n

point. Figure 10-1(b) shows a two-terminal-pairnetwork. The ter\302\254

\nminal pair designated 1 is usually connected to a driving force(or

\ninput) while the terminal pair marked 2 is usually connectedto a load

\n(as an output). The number of terminal pairs in a networkcanincrease

\nwithout limit: Fig. 10-1 (c) shows a representation of an n-terminal-
\npair network. All the discussion in this chapter, however, willbe con\302\254

\ncerned with one- and two-terminal-pair networks.\n
214\n
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10-2. Driving-point immittances\n

The transform impedance has been defined as the ratio ofthevoltage

\ntransform to the current transform; that is,\n

Z(s)
-\n V(8)\n

m\n
(10-1)\n

Similarly, the transform admittance is definedas the ratio\n

Y(s)
=\n

m\n

V(s)\n
(10-2)\n

The voltage transform and current transform that definetransform

\nimpedance and transform admittance must relate to the same pair of
\nterminals. The impedance or admittance found at a given terminal
\npair is called a driving-point impedance (or admittance).\n

Because of the similarity of impedance and admittance (and to

\navoid writing \342\200\234impedance and admittance\342\200\235), the two quantities are

\nassigned one name, immittance (a combination of impedance and
\nadmittance). An immittance is thus an impedance or an admittance.\n

The driving-point immittance of a network is found by combining
\nimpedance terms (Ls, R, and 1/Cs) or admittance terms (Cs,G,and
\n1/Ls) by adding, multiplying, or dividing. This algebraic combination
\nof terms results in an immittance function in the form ofa quotient of

\npolynomials as\n

apsn -f- flis\342\200\235-1 fln-is an \302\253\\\n

bosm + his\342\200\235*-1-|- . .. + bm-is + bm\n

which is a rational function of s (n and m are integers).\n

In this equation, n is the order of the numerator polynomial and m

\nis the order of the denominator polynomial. The polynomials may
\nbe of #any order including zero, al\302\254

\nthough we will later show that there \302\260\342\200\224

\nis a restriction in the difference in

\norder of the two polynomials. 2(sl\n

\342\226\240AAA\342\200\224annr\342\200\224,\n

R Ls\n

Cs\342\200\242\n

Example 1 o \t\n

Figure 10-2 shows an RLC series ^1^7^ nrtwork.

~J\n

one-terminal-pair network with trans\302\254

\nform impedances marked for each element. The driving-point imped\302\254

\nance Z(s) is\n

r\302\273, r , 1 LCs2 + RCs + 1\n

Z(s)
= R + Ls + Jr

=
jr

\t\n
(10-4)\n

or\n z(\302\253)
= L *.+ R*Jk\302\261}lMl\n

S\n
(10-5)\n
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The numerator polynomial for this driving-pointimpedanceis of sec\302\254

\nond order, while the denominator polynomial is of first order.\n

Example 2\n

Figure 10-3 shows a more complicated network consisting ofa series
\nRL network shunted by a capacitor. The driving-point impedance is\n

n/ \\ _ 1 _ 1 s -I- R/L ...\302\273\n

w
\342\200\234

Cs + 1/{R + Ls)
\"

C s2+ Rs/L + 1/LC
U '\n

In this driving-point impedance function, the numerator is of first

\norder and the denominator is of second order. The driving-pointadmit\302\254

\ntance function Y(s) for this network is the reciprocal of Eq. 10-6.\n

Fig. 10-3. Network of Example 2.\n

1\n 2\n

Fig. 10-4. Two-terminal-pair network.\n

10-3. Transfer functions\n

The concept of a transfer function is identifiedwith networks having

\nat least two terminal pairs. Such a network is shown in Fig. 10-4.

\nAlthough the driving-point immittances at terminal pair 1 and ter\302\254

\nminal pair 2 are of interest, we are also interested in theratioof excita\302\254

\ntion and response for the two terminal pairs. The function relatingthe
\ntransform of a quantity at one terminal pair to the transformofanother
\nquantity

at another terminal pair is given the name transferfunction.*
\nThere are several forms for transfer functions in electric networks:\n

(1) The ratio of one voltage to another voltage, or the voltage

\ntransfer ratio.\n

(2) The ratio of one current to another current,or the current trans\302\254

\nfer ratio.\n

(3) The ratio of one current to another voltageor one voltage to

\nanother current.\n

The transfer function for a voltage or current ratio is assigned the

\nsymbol G(s). If terminal pair 2 of Fig. 10-4 is designated the output
\nterminal-pair, and terminal pair 1 is designated the input, then the\n

* In computing the transfer function, all initial conditionsare assumed to be

\nsero.\n
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voltage transfer ratio of the output to the input is\n

ru~\\ VU8) ^2(5)\n
GW

VIW VdW\n

(10-7)\n

The ratio of voltage to current or current to voltageis dimensionally

\nimmittance, but since the two quantities are not measured at the same
\nterminals, such a ratio is designated a transfer immittance in ohmsor
\nmhos. The transfer imfhittance is given the same symbol as the
\ndriving-point immittance with subscripts to identify the terminals.
\nFor example,\n

Zls(s)
= and r\342\200\236(\302\253)

=

^
(10-8)\n

where the first subscript identifies the numerator quantity and the
\nsecond identifies the denominator quantity. The transfer function is
\ndetermined by the network immittances and can always be reducedto
\na quotient of polynomials,\n

G(s) =\n

Q(S)\n

ctoSn \342\200\234I-<Zis\"
1

+ ... -|- an
\n60s\" + 61s\"*-1 + ... + bm\n

(10-9)\n

The transfer function thus has the same general form as the driving-

\npoint immittance function.\n

Example 8\n

The two-terminal-pair network

\nshown in Fig. 10-5 has marked

\nFi(s) as the input voltage and F2(s)
\nas the output voltage transform. 10-6. Two-terminal-pair net-\n

This network acts as a voltage di- work,\n

vider. With no current in the output terminals, the voltageequations
\nare\n

ltl(s) + ~
/(\302\253)

=
F^s) (10-10)\n

^/(s) ->,(.)\n (10-11)\n

The ratio of these equationsis\n

G(s)
=\n

V*(s)

\nV, (s)\n

(l/Cs)/(s) _ 1\n

(.R + l/Cs)/(s) RCs + 1\n

1 /RC

\ns + 1 IRC\n

(10-12)\n

or\n
G(S)

=\n
(10-13)\n
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for this network. This transfer function has a numerator polynomial
\nof zero order and a denominator polynomial of first order.\n

Example 4\n

The two-terminal-pair network shown in Fig. 10-6 is similarto that
\nof Example 1 except that the resistor has been replacedbyan inductor.

\nIt is not necessary to write Kirchhoff\342\200\231s equations as above to find the
\ntransfer function, since this networkis essentially a voltage divider.

\nThe transfer function for the voltage ratio becomes\n

F2(s) 1/Cs 1\n

G(s)
=\n

or\n

Fi(s) Ls + 1/Cs

\nl/LC\n

LCs2 + 1\n

G(s)
=\n

s2 + l/LC\n

(10-14)\n

(10-15)\n

The numerator polynomial is ofzeroorder, and the denominator poly\302\254

\nnomial is of second order.\n

o\t\n
4\342\200\234\n

1\n

\342\200\224ORRP 1\n
Ls\n

i\342\200\224\342\200\224o

\ni\n

i\n

O 1\t\n

1\n Rl\n

h\n

> |\n

0\n

Fife)\n

o\342\200\224\n

1\n

1\n

4-\n

__ 1\n

Cs\n | V^(s)

\n1\n

1 0\n

VXW
1

\n1\n

o\342\200\224l \t\n

>R2 1

\n1
1

\n1
1-\n

v2w\n

O\n

\342\226\240Kr\n

Fig. 10-6. Two-terminal-pair network. Fig. 10-7. Network of Example5.

\nExample
5\n

The same voltage-divider network concept can be used with more

\nthan one current loop in the network by using network reduction.
\nFigure 10-7 shows such a network. The transform impedances Ri and

\n1/Cs can be combined into an equivalent impedance having the value\n

1 Ri\n
Zeq(s)

=\n

Cs \342\200\224f\342\200\2241 / Ri\n

Then the transfer function becomes\n

Vt(8)\n

or\n

G(s)
=

\nG(s) =\n

RiCs 4- 1\n

Ri\n

which may be reduced to\n

G(s) =\n

Fl(s) Ri + Zeq(s)\n

RiRiCs 4- Ri\n

RiRiCs 4- Ri -t- Ri\n

s 4~ 1/RiC \t\n
s -|- (Ri 4~ Ri)/RiRiG\n

(10-16)\n

(10-17)\n

(10-18)\n

(10-19)\n
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In this transfer function, the order of the numerator and order of the

\ndenominator are the same. This particularnetwork finds application

\nin servomechanisms where it is known as a \342\200\234lead\342\200\235network.\n

10-4. Poles and zeros\n

All network functions have the form of a quotient of polynomialsas\n

gpsn + Cl\\8n
1

+ \342\200\242\342\200\242\342\200\242+ fln-lS + On

\nboSm + biSm~l + ... + bm-i8+ bm\n
(10-20)\n

If the numerator polynomial is factored into its n roots, and the
\ndenominator polynomial is factored into its m roots, the equation can
\nbe written in the form\n

H
(s

- Si)(a -<>)...(*- Sn)\n

(s
-

s\342\200\236)(s
\342\200\224

\302\253*)...(\302\253
\342\200\224

8m)\n
(10-21)\n

where H = a0/60 is a constant knownas the scale factor, and the roots

\n8i, \302\2532,..., s0, 8b, ... are complexfrequencies.When the variable s has

\nthe values Si, s2, ..., s\342\200\236,the network function vanishes. Such complex
\nfrequenciesare called zerosof the network function. When s has the
\nvalues So, sb, ..., sm, the network function becomesinfinite.These
\ncomplex frequencies are called poles of the network function. Poles
\nand zeros are important in network theory; a comparison of the last
\ntwo equations shows that a network function is completely specified
\nby its poles, zeros, and the scale factor.\n

There is the possibilitythat roots of Eq. 10-21 may coincide. Such

\nmultiple roots, corresponding to a factor of the form (s \342\200\224
sq)r, are

\ndescribed as poles or zeros (depending on location in the numerator or

\ndenominator) of order r. For a nonrepeated root, suchthat r =
1, the

\npole or zero is said to be simple.\n
Both zero and infinitevaluesof s are possible pole or zero locations.

\nFrom Eq. 10-21 it is seen that:\n

(1) When n > m, s = \302\253is a pole of order n \342\200\224
m.\n

(2) When n < m, s = <\302\273is a zero of order m \342\200\224n.\n

(3) When n = m, s = co is neither a zeronor a pole but an ordinary

\npoint.\n

If, for any rational network function, poles and zeros at zeroand
\ninfinity are taken into account in addition to finite poles and zeros,
\nthe total number of zeros is equal to the totalnumberofpoles.Forexample,

\nthe network function\n

(s + l)(s + 2 + jl)(s + 2 -j 1)

\ns3(s '+ 3\(\302\253") + 5)\n

(10-22)\n
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has five zeros and five poles. The zeros are at Si = \342\200\224
1, s2 = \342\200\2242

\342\200\224
jl,

\nS3
= \342\200\2242+ jl, and s* = s8 = \302\273. The poles occur at the complex fre\302\254

\nquencies s\302\253
= Sb = sc = 0, Sd \342\200\224

\342\200\2243,sg
= \342\200\2245.These poles and zeros

\nare plotted on the complex s plane (s = <r + ju) in Fig. 10-8. The real\n

JO)\n

00 <\342\200\224\302\256\n

/\n

2 zeros\n

>1\n

3 poles\n

+<r\n

-5 -4 -3\n \342\200\2422-1

\no\n
- -A\n

ng. io-8. Poles and zerosin the s plane.\n

Fig. 10-9. The magnitude of a network functionplottedinthe com\302\254

\nplex frequency plane, showing two poles and one zero.\n

part is plotted along the <r axis, and the imaginary part along the ja
\naxis. The symbol O is used to designate the locationofa zero and the

\nsymbol x for the location of a pole.\n

Poles and zeros designate critical frequencies. At poles the network

\nfunction becomes infinite, while at zeros the network function becomes
\nzero. At other complex frequencies, the network function has a finite,\n
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oo \342\200\242*-o3 zeros x\n

Fig. 10-10. s plane for Fig. 10-9.\n

nonzero value. A three-dimensional representation of the magnitude
\nof the transfer function as a function of complex frequencyis shown in

\nFig. 10-9, for one quadrant of the s plane. The
portion

of the complex

\nplane represented in Fig. 10-9 is - ni\302\273n\302\253 ..\n

shown in Fig. 10-10. This particu-
* Ju\n

lar network function has four finite

\npoles, one finite zero, and a third-
\norder zero at infinity.\n

The pole represents a frequency
\nat which the network function

\n\342\200\234blows up.\342\200\235The zero represents

\na frequency at which the opposite
\nbehavior takes place: the network functionbecomesnothing at all.

\nEither \342\200\234blowing up\342\200\235or \342\200\234becoming nothing\342\200\235 sounds like rather drastic

\nbehavior for the network function.VWemight wonder if it would not

\nbe wise to completely avoid poles and zeros, to selectnetworkfunctions
\nwithout poles or zeros. Such is not the case at all. Polesand zeros are

\nthe lifeblood of a function; without poles and zerosthe function reduces

\nto a dull, drab, grubby constant\342\200\224a function which does not change
\nunder any conditions. Without poles and zeros, the three-dimensional
\nrepresentation of the network function becomes a tedious expanse of
\nmathematical desert\342\200\224absolutely flat. But add a few poles and a few

\nzeros and we have a land of spectacular peaks (elevation: \302\253) and

\nbeautiful springs (elevation: 0). This picture will becomecleareras we

\nstudy concepts of network behavior with the aid of polesand zeros
\ns

Consider the transfer function for a voltage ratio\n

tSkt

= GW (10-23)\n

which may be written\n

Vout(s)
= G(s)Vin(s) (10-24)\n

In the usual problem, vin(t) is specified, and G(s) can be computed from
\nthe network. The problem is to find the response, vout(t). When the

\nlast equation is expanded by partial fractions, the denominator ofeach
\npartial fraction term gives a pole of either G(s) or Vin(s);that is,with

\nno repeated roots in the denominator of Vout(s)\n

P V\n

^ \302\243 s
(10-25)\n

l *=1\n

where p is the number of poles of G(s), and v is the number of poles of
\nFtn(s)- Perfornung the inverse Laplace transformation of this equation\n
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gives\n

p V\n

Voul(t)
= \302\243,~'G(s)Vin(s) =

^ +
\302\243

Kke^ (10-26)\n

y-1\n *-i\n

Thus the frequencies Sj are the natural complex frequenciescorrespond\302\254

\ning to free oscillations. The frequencies sk are the driving-forcecomplex
\nfrequencies corresponding to forced oscillations. The poles therefore
\ndeterminethe waveformofthe time variation of the response, the out\302\254

\nput voltage. The zeros determine the magnitude of each part of the
\nresponse, since they determine the magnitude of K, and Kk in the par\302\254

\ntial fraction expansion, as we shall see.\n

In terms of driving-point immittances, poles and zeros have easily
\nvisualized meanings. Since Z(s) = V(s)/I(s), a pole of Z(s) implies
\nzero current for a finite voltage, which means an opencircuit.A zero

\nof Z(s), on the other hand, means no voltage for a finitecurrent, or a

\nshort circuit. Thus a one-terminal-pair network is an opencircuitfor

\npole frequencies and a short circuit for zero frequencies. This canbe
\nvisualized easily in terms of single element networks. For a capacitor,
\nthe driving-point impedance is Z{s)

\342\200\224
1 /Cs. This network function

\nhas a pole at s = 0 and a zeroat s = <\302\273.It behaves as an open circuit
\nat the pole frequency (to = 0) and as a short circuitat infinite fre\302\254

\nquency. Likewise, for an inductor, the driving-point impedance Z(s)

\n= Ls (zero at s = 0, pole at s =
\302\273) and this element behaves as a

\nshort circuit at zero frequency and as an open circuit at infinite

\nfrequency.\n

10-5. Restrictions on pole and zero locations in s-plane\n

The poles and zeros of network functions have limitationsas to their

\nlocation in the s plane. These restrictions follow from twofacts:(1)the

\nterms in the polynomials of the form\n

aoSn + OiSn
1 -f- ... on\342\200\224is~h an (10-27)\n

have coefficients (a<>, Oi, ..., on) which are positive and real. This
\nfollows because each of these coefficients is determined by somecombi\302\254

\nnation of R, L, and C, and these parameters must bepositiveand real

\n(the only way they appear in nature). (2) The networksbeingconsid\302\254

\nered are made up of passive elements only. The rules for locationof

\npoles and zeros are different for driving-point functions and for transfer

\nfunctions, and so will be considered separately.\n
Driving-Point Immittance Functions. (1) Since the coefficients of

\nboth numerator and denominator polynomials of driving-point immit\302\254

\ntance functions are positive and real, poles and zeros are eitherreal\n
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or occur in conjugate pairs. This was discussed in more detail in
\nArt. 6-3.\n

(2) All poles and zeros of driving-point immittance functions have
\nnegative real parts. Consider a denominator factor (s \342\200\224

sa), where s\342\200\236

\nis a pole having a real and imaginary part, sa =
<r\302\253.+ jo>\342\200\236-If <rB is posi\302\254

\ntive, this pole will give rise to a time-domain factor (by findingthe
\ninverse Laplace transformation) of the form\n

Kae,at
= (10-28)\n

The exponential term (e*at)increases exponentiallyas t increases.For

\nsuch a pole in Z(s), the voltage would increase without limit for any

\ncurrent input, and for such a pole in Y(s) the currentwould increase

\nwithout limit for any voltage input. Since this cannothappenphys\302\254

\nically with only passive elements in the network, the polesand zeros
\nof a driving-point immittance function have negative real parts. In
\nterms of pole and zero location in the s plane, all polesand zeros must

\nbe in the left half plane (LHP) and can never occurin the right half

\nplane (RHP). Poles and zeros can be on the boundary (the jot axis)

\nsubject to the limitations we discuss next.\n

(3) Poles and zeros on the j<a axis of the s plane (correspondingto
\nreal radian frequency) will always be simple. The reason for this
\nrestriction is the same as that listed in (2). Multiple polesgiveriseto
\ntime domain functions of the type (t cos ut), (t sin ut), etc.,and such

\nterms increase without limit as t increases. Such an increase is not
\npossible

for a network made up of passive elements only. For example,
\nconsider the following transform pair.\n

\302\243_1

(s2 w2)2

=
^

sin wt (10-29)\n

The transform expression corresponds to two poles at \342\200\224
jca and two at

\n+jo). The time domain factor of the transformpairisa linearly increas\302\254

\ning sinusoid.\n

Multiple poles and zeros are permitted at other locationsin the left

\nhalf of the s plane, since such poles give rise to terms of the form

\ntne~at, having the required zero limit since\n

lim tne~al = 0\n

t\342\200\224>oo\n

for finite n by l\342\200\231Hospital\342\200\231srule.\n

(4) The order of the numerator polynomial and denominator poly\302\254

\nnomial for a driving point immittance function can differ at most by

\nunity. If the driving-point immittance function is found without
\nalgebraic error, this restriction will always be observed. It can, how\302\254\n
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ever, be shown to be a requirement which followsfromthe restriction

\nlisted under (2) above. First, we must further discuss the meaningof

\ninfinite frequency. We usually visualize high frequency in terms of an

\nincreasing sinusoidal frequency. Starting with conventional 60-cycle
\ngenerators, we next visualizean audio

oscillator, a radio frequency

\noscillator, a microwave frequency oscillator, and then, somewherefar

\nbeyond, lies infinite frequency. This is a rather nebulous and hazy

\nconcept, but it is the best we have. In terms of the s plane,we have

\nfollowed the jo> axis from a value near the originon out to infinity. It

\nis not necessary to follow the jn> axis. Following any other path in the
\ns plane will eventually lead us to infinity, and once we get there we are

\nat the same place as if we had followed the ju axis. In other words,

\ninfinite frequency is just one frequency, and is reached by traveling

\nany direction from the origin of the s plane. Infinity is a
unique point

\n(or it would not be infinity). We can say that the s planeis really not

\na plane at all\342\200\224it is a sphere, similar to the earth. Let the north pole
\nrepresent the origin of the s plane. Standing at the north pole,the s

\nplhne looks flat, which is really not too unreasonable sinceit ispart of

\na sphere of infinite radius. But if you go far enoughin any direction

\nfrom the north pole of the s plane, you endup at the south pole, which

\nis one point infinitely far removed from the north pole of thes plane.\n

Now if infinity is only one point in the s plane,it includes the ja

\naxis (sort of an international date line in the sworld).But by item (3),

\npoles and zeros on the jo axis mustbe simple.Hence poles and zeros

\nat infinity for a driving-point immittance function must be simple.*
\nThe only way we can get a simple pole or a simplezero at infinity is to

\nhave the order of the numerator exceed that of the denominatorby

\nunity for a pole at infinity, and have the order of the denominator

\nexceed that of the numerator by unity for a zero at infinity. This

\nrule is satisfied automatically when you compute the driving-point
\nimmittance function. If it is not, you have made an algebraicmistake.\n

Transfer Functions for Output/Input. The restrictions for transfer
\nfunctions are not so rigid as those for driving-point immittances,
\nbecause the transfer function is determined as the ratio oftwo different

\nquantities at different points in one network. The restrictionswill be

\ngiven by analogy to those for driving-point immittance functionsand

\nin the same order.\n

(1) This restriction also holds for transfer functions.Poles and

\nzeros are either real or occur in conjugate pairs.\n

(2) The poles of a transfer function must have negativerealparts,

\nbut this restriction does not hold for the zeros. A network with zeros in\n

* This is intended to be only a suggestiveorheuristicproof.\n
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the left half plane only is classified as minimumphase;thosewith zeros

\nin the right half plane are nonminimum phase.\n

(3) This restriction holds for transfer function poles. Poles and
\nzeros on the fa axis will always be simple.\n

(4) For (output/input) transfer functions, the order of the numera\302\254

\ntor may exceed the order of the denominator by one. However,the
\nnumerator order may be any value less than that of the denominator.\n

10-6. Time-domain behavior from the pole and zero plot\n

In this section, we will show that the time-domain behaviorof a

\nsystem can be determined from the s plane plot of the poles and zeros

\nof its transfer function and those of the transform of the active-source
\ndriving-forces. Suppose that the transform of some variable, say a
\ncurrent J(s), is found, and the poles and zeros are determinedas\n

where\n

m =
7(a)\n

P(s) = H
(s \342\200\224

Si) (s
\342\200\224

s2).. .(s
\342\200\224

sn)

\nQ(s) (s
-

s\342\200\236)(s
\342\200\224

sm)\n

(10-30)\n

(10-31)\n

It was shown in Art. 10-4 that the polesof this function determine the

\ntime-domain behavior of i(t). It was suggestedthat the zeros deter\302\254

\nmine the magnitude of each of the terms of i(t). In this section, we

\nwill amplify these concepts by showing how i(t) can be determined

\nfrom a knowledge of the poles, the zeros, and the scalefactorH.\n

In terms of the damping ratio f and the undampednatural fre\302\254

\nquency, co\342\200\236as discussed on page 104, the poles and zeros of the last
\nequation

will have the following forms.\n

*1, Si = \342\200\224
fan\n \302\261fan Vl

\342\200\224
f*\n r < i\n (10-32)\n

Si, Si = \342\200\224
fan\n \302\261o>\302\273Vf2

-
\342\226\240\n r > i\n (10-33)\n

Si, Si =
\342\200\2240)n\n r

= i\n (10-34)\n

Si, Si =
\302\261fan\n r

= o\n (10-35)\n

It was also shown on page 105 that contoursof constant \302\253\342\200\236are circles

\nin the s plane, that contours of constant damping ratio are straight
\nlines through the origin, and that contours of constant damping {fan)
\nare straight lines parallel to the ju axis of the s plane.Further, lines

\nparallel to the a axis of the s planearelinesof constant actual frequency

\nof oscillation, \302\253\342\200\236Vl
\342\200\224

\302\243l.These facts are summarized in Fig. 10-11.\n
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The location of the poles in the s plane canbe interpreted
in terms

\nof the general time-domain response in terms of f and w\302\273.\n

i(t)
=

A',e(_r\"\"+w\"v/f7:r3)\342\200\230 + (10-36)\n

To illustrate the use of the contoursof Fig. 10-11, consider the array of\n

s-plane\n jej\n

(d I\n

Fig. 10-11. Constant contours in the \302\253plane: (a) constant radius
\n=\342\226\240

<*,; (b) constant damping ratio line 0 \342\200\224tan-1 (-\\/l \342\200\224
\302\243*/\302\243);

\n(c) constant negative damping line <r *= \342\200\224
fw\342\200\236(or any real part of

\na); (d) constant actual frequency of oscillation lines u =
\302\261\302\253\342\200\236\\/l~\342\200\224J*-

\nf and un are defined by the second-order characteristicequation
\na* + 2fw\302\253a + \302\253,*\342\204\2420.\n

poles shown in Fig. 10-12 (zeros have been omitted for clarity). The

\npair of poles s\302\253and sa* and the pair se and sc*correspondto oscillatory\n

expressions in the time domain. The
\nactual frequency of oscillation corre\302\254

\nsponding to 8a and So* is higher than that
\nof se and sc*, just as the damping (or rate
\nof decreasing amplitude) is less for s\302\253and

\ns0* than for sc and sc*. The natural fre\302\254

\nquency of the two pole pairs is approxi\302\254

\nmately the same, since they are on about
\nthe same radius from the origin. The
\ndifferencein actual frequencyof oscilla\302\254

\ntion is due to a lower damping ratio for sa and sa*.\n

The poles s\302\273and ss are quite different from the conjugate pairsjust
\nconsidered. They correspond to the overdamped case, and have an\n

Fig. 10-12. Typical poles in the
\n8 plane.\n
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exponential decay form in the time domain. The dampingis greater
\nfor sti than for sb. From another point of view, the timeconstantfor

\nthe pole Sb is greater than that for s\302\253j.Typical time-domain response

\ncorresponding to each pole is shown in Fig. 10-13for an arbitrary\n

Fig. 10-13. Response comparison for various polesin the s plane\n

(arbitrary amplitudes).\n

amplitude for each factor. The total response correspondingto these
\npoles is found by adding each of the individual factors as\n

tit)
= Kae+ Ka*e>\302\260'\342\200\230+ Kbe^ + Kce^ + K*e^ + Kde*\302\253 (10-37)\n

As usual, the terms corresponding to conjugate pairs willcombineto
\ngive damped sinusoidal expressions.\n

- There remains the problem of determiningthe multiplying constant

\n(or magnitude) for each of the terms (or modes). Thestartingpoint is

\nEq. 10-31. To find the time-domain response correspondingto this
\ntransform equation, we expand by partial fractions. Hence\n

I(s) = ~
Ka

+ \342\200\224+ ... +
Kr -4- .... + Km\n

8 Sa S Sb S Sf 5 $tn\n
(10-38)\n

Any of the A-coefficients, say Ar, can be found by the Heaviside
\nmethod as\n

v \342\200\224u (\302\253
-

*i)(* -\302\253\302\273)...(\302\253
-

s\302\273)\n
' \"

Is \342\200\224
So). . .

(S-\342\200\224-S;) . . . (s
\342\200\224

Sm)\n +\302\253r\n

(10-39)\n
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Substituting sT for s in Eq. 10-38 gives the followingvaluefor Kr.\n

jy ij (&r $l)(&r 82) . .
,j(ST Sn)\n

(Sr
\342\200\224

So)(\302\253r
-

Sb). . . (Sr -
Sm)\n

(10-40)\n

This equation is composed of factors of the general form (sr
-

sn),

\nwhere both 8, and sn are known complex numbers. The differenceof

\ntwo complex numbers is another complex number which may be
\nwritten in polar form as\n

(*r
- 8n) = (10-41)\n

where Mnris themagnitudeof the phasor (ar
\342\200\224

*\342\200\236),and <f>\342\200\236ris the phase

\nangle of the same phasor. The differenceofthe two complex quantities

\n\302\253rand 8h is illustrated in Fig. 10-14 (other polesand zerosare omitted\n

nr 10-14. Magnitude and phase of (\302\253r
\342\200\224

\302\253\302\253)(other poles and

\nzerosomitted): (a) polar diagram; (b) string diagram.\n

again for clarity). The term (sr \342\200\224
\302\253*) is interpreted as a phasor

\ndirected from #\342\200\236to sr. The magnitude Mnr is the distance from s\342\200\236to sr;

\nthe phase angle is the angle of the linefromsnto \302\253r,measured with

\nrespect to the <t>
=* 0 line. The magnitude and phase of the factor

\n(sr
\342\200\224

*\302\273)are thus easily measured, and so all terms of thisgeneraltype

\nin Eq. 10-40 are easily found. In terms of M and <t> for each factor in

\nEq. 10-40, the value of Kr is seen to become\n

V \342\200\224If
MirMuMlr. . .Mnr ..)\n

r
MarMbrMCT...Mnre\n

(10-42)\n

This equation gives Kr as a magnitudeand phase.By performing the

\noperations indicated by this equation, the constant Kr canbe eval\302\254

\nuated. Determining the quantities in Eq. 10-42 is readily accomplished
\nby a graphical procedure which may be outlined as:\n

(1) \tPlot the poles and zeros of /(\302\253)
= P(s)/Q(s) to scale on the

\ncomplex 8 plane.\n
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(2) Measure (or compute) the distance from each of the otherfinite
\npoles and zeros to a given pole \302\253f.\n

(3) Measure (or compute) the angle from each of the other finite
\npoles and zeros to a given pole sr.\n

(4) Substitute these quantities into Eq. 10-42 and so evaluate Kr.\n

An example will illustrate this proce\302\254

\ndure. Suppose /(\302\253) has poles s \342\200\224\342\200\2241

\nand \342\200\2243and a zero at the origin, and H
\nis given as 5. The current transform has
\nthe form\n

\342\200\224M-\n

-3\n -1\n

0r\n

\342\200\224|\342\200\224l)(s \342\200\224|\342\200\2243)

\342\200\235

Kg. 10-15. Pole-zero configu\302\254\n

ration.\n

This function is easily expanded by par\302\254

\ntial fractions, but can also be evaluated as outlined above. Referring
\nto Fig. 10-15, it is seen that\n

Hence\n

Similarly,\n

M oie,>#l = le,l80,

\nMz ieiHl
= 2e,\342\200\2300,\n

Ki = H\n
More*\"

\nMz ief*n\n

= 5 X ie+'180\302\260
=\n -2.5\n

Kz = H\n

Mize\342\200\231*1*\n

5 X\n

3g/18\302\260*\n

2^nos\n

= 7.5\n

(10-44)\n

(10-45)\n

(10-46)\n

(10-47)\n

Since the polesdeterminethe frequency (in this case neper frequency),
\nwe write for the general solution,\n

i(t) = Ktf-' + Kze~u (10-48)\n

and since K\\ and Kz have been evaluated froma knowledge of the pole

\nand zero locations, we have as a particular solution,\n

i(t) = \342\200\224
2.5e_< + 7.5e~3t (10-49)\n

From this discussion and with the aid of Eq. 10-40, the influence of

\na zero on the time-domain response can be visualized. Consider one
\npole, say sr, in Fig. 10-14. If all other poles and zerosin the s plane

\nremain fixed in position and the zero s\342\200\236is moved, the proximity of a

\nzero to a pole is seen by Eq. 10-42 to reducethe magnitude of the

\n^-coefficient associated with the complex frequency of the polesr.
\nAgain, from Eq. 10-42, proximity of a pole to sr is seento have the

\nopposite effect\342\200\224since pole magnitudes appear in the denominator\342\200\224

\nand proximity of another pole to sr increases the magnitude of the
\ncoefficient Kr. When the zero s\342\200\236is moved so close to sT that they\n
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coincide, the pole and zero caned and reduce the value of the partic\302\254

\nular Kr to zero.\n

The magnitude of the ^-coefficient correspondingto a particular

\npole is thus determined by the proximity of both polesand zeros.If,

\nin the design of a network, the position of the polesand zeros can be

\nselected, they should be selected according to the following pattern:\n

(1) Select pole locations to give the required time behavior.Dothis

\nin terms of complex frequencies.\n

(2) Fix the position of the zerosin the complex plane to adjust the

\nmagnitudes of the various K coefficients.\n

It should be noted that the graphical interpretation of the position
\nof poles and zeros was discussed for the case of nonrepeated (orsimple)
\npoles. In the case of multiple poles, it is suggested that expansionby

\npartial fractions be followed rather than seeking a modification of the
\nprocedures

that have been discussed to fit the new case.\n

10-7. Procedure for finding network functions for general two-terminal-pair

\nnetworks\n

For complicated two-terminal-pair networks, the computation of
\ntransfer functions and driving-point immittancesmay become quite

\ninvolved. In this section, we will discuss systematicproceduresfor

\nfinding such network functions.\n

Any network can be thought of as madeup of the combination of a

\nnumber of one-terminal-pair networks. There is no unique rule for\n

Z3\n

ng. 10-16. Grouping of elements in a network to form a system of
\nalternate impedances in series and admittances in parallel.\n

dividing the arbitrary network into elementary one-terminal-pair com\302\254

\nponents. However, such a division is made on the basis of interestin
\nthe voltage of certain nodes or the current in certain branchesinmany

\ncases. The network of Fig. 10-16, for example, is groupedintoa num\302\254\n
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ber of one-terminal-pair networks. For each of the one-terminal-pair
\nnetworks, the transform impedance Z(a) or the transform admittance
\nY(s) can be computed. This is illustrated for a numberofexamplesin
\nFig. 10-17. Such combination is accomplished by the usual rules for
\nseries and parallel combination of immittances discussed earlier.\n

Severaltwo-terminal-pairnetworksoccursooften in useful networks

\nthat they are given special names. The general network sometimes
\nreduces to a series impedance, a parallel impedance, and another series\n

l
1\n

2o\n

Zla) or Yfs)\n

i\302\260\342\200\224m\342\200\224\302\2602\n

lo\n

2o\n

Z{s) or Y(\302\253)

\nlo-^VW\342\200\224\302\2602\n

rVWi\n

io-^wv-L_|j_J\n
Z{a)or Y(s)

\nlo\342\200\224VW\342\200\224\302\2602\n

Fig. 10-17. Immittance of one-terminal-pair networks.\n

Fig. 10-18. Network configurations.\n

impedance as shown in Fig. 10-18(a).Sucha network is known as a

\nT network. Further, if the series impedances are equal, that is if
\nZi

=
Zz, the network is designated as a symmetricalT. Figure10-18

\nshows two other network configurations. The network of Fig. 10-18(b)
\nis a v network, and with Yi = F3, the networkisa symmetrical ir. The

\nnetwork of Fig. 10-18(c) is a lattice network or a symmetrical lattice

\nwhen Zc
= Zd and Za \342\200\224

Zb.\n

If the two terminals of a terminal pair of a two-terminal-pairnet\302\254

\nwork are connected to a terminal pair of another two-terminal-pair
\nnetwork, the networks are said to be connected in tandemor cascade.
\nIf T networks or ir networks are connected in cascade, the resulting\n
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network is an important network structure. It may contain any num\302\254

\nber of sections and may begin as shown in Fig. 10-19,or may begin

\nwith Zi(s) = 0. The same thing may be said about the manner in

\nwhich the network ends (at terminal pair 2). For convenience in com\302\254

\nputation, the series immittances are computed as impedances, and the
\nparallel (or shunt) immittances are computed as admittances.\n

\302\260\342\200\224VW\n

Zi(s)\n

1\n 2\n

Fig. 10-19. Ladder network.\n

The driving-point immittance of any network can be found by
\nwriting loop or node equations. If the network can be made intoa
\n\342\200\234ladder structure/' it is possible to find the driving-point immittance
\nby series and parallel combination of immittances without writing loop
\nor node equations directly. Assume that the ladder network of

Fig.\n

10-19 is made up of the six immittances shown. Combiningimmit\302\254

\ntances at the terminals opposite those for which the driving-point
\nimmittance is required, F6(s) is first inverted and combined with Z6(s).
\nNext this sum is inverted and combined with F4(s). This patternmay

\nbe continued until the network reduces to a single immittance. In
\nsummary,\n

Z*M
=

Zi(s) + i (10-50)\n

Y*(*) + \t\n
Z*(\302\273) + =\t\n

F4(\302\253) + -T-\n

+
F^i)\n

which is read fromthe bottom to the top to give the pattern of com\302\254

\nbining immittances. Such an alge\302\254

\nbraic configuration is called a con\302\254

\ntinued fraction or a Stieltjes continued

\nfraction. Forming a continuedfrac\302\254

\ntion for a ladder network provides
\na systematic procedure for finding
\nthe driving-point immittance.\n

The use of a continued fraction
\nfor network reduction applies only

\nwhen the network function of interest is a driving-point immittance.
\nWhen the transfer function is desired, a different procedure must be\n

ng.\n 10-20. Two-terminal-pair
\nwork.\n

net-\n
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followed. In Fig. 10-20, the ladder network of Fig. 10-19is redrawn

\nwith several pertinent voltages and currents designated. As in finding
\ndriving-point immittance, the following procedure requires that com\302\254

\nputations begin at the terminals opposite the driving-point terminals.
\nFor the network, we may write the following equations for Kirchhoff's
\nvoltage and current laws:\n

It \302\253
f.f4\n (10-51)\n

Vi - r4 + zji\n (10-52)\n

/.-/.+ Y4Vt\n (10-53)\n

Fj \342\226\240
F\302\273+ Ztlt\n (10-54)\n

h - U + r,F,\n (10-55)\n

F, - F, + Zj/1\n (10-56)\n

Theseequationsdescribethe network and they contain the usual trans\302\254

\nfer quantities, (?(*) \342\200\224V4(s)/Vi(a), Z4i(s) = V4(s)//i(\302\253), etc. Starting
\nwith the first equation and substituting it into the second equation
\ngives\n

V, - (1 + V\302\273Zt)V4 (10-57)\n

In turn, this equation may be substituted with Eq. 10-51intothe next

\nequation to give\n

/, = [K, + r\302\253(l + YMIV, (10-58)\n

Continuing according to this pattern,\n

Vi
= {(i + yj>) + z$ir, + y4(i + ym)\\v4 (10-59)\n

/l-\n

([F,+ r4(l + Y#>)) + r,|(l + YM+Z4Y.+ Y4( 1 + YJM\\)V4\n

(10-60)\n

This equation gives the transfer impedanceZ4i(s)as the inverse of the

\nadmittance F^s), which is\n

y\342\200\236(.)
- - r, + + z,(Y. + r.\302\253] (io-6i)\n

where 5*1 + ) eZ4 (10-62)\n

The transfer function for the voltage ratio may be foundby carrying

\nthis procedure one step further by substituting into Eq. 10-56;that is,\n

0(b)\n

Vfr)\n

V4(b)\n

6 + Z\\(Y % + r\302\2535) + %\\\\Y% + Y46 + r,(\302\253 + Z,(K* + r4*)J)\n

(10-63)\n
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The transfer function F4(s)/Fi(s) is the reciprocal of G(s) as given.

\nThe method illustrated above holds for any number of sectionsin the\n

ladder network. The general pat\302\254

\ntern has been established by this

\nexample.\n

To illustrate the method with a

\nspecificexample, consider the net\302\254

\nwork of Fig. 10-21, which is made

\nup of series inductances (1 henry)
\nand shunt capacitors (1 farad). The

\nimpedance of the series elements
\nis s, and likewise, the admittance of the shunt elements is s. Forthis

\nnetwork, the driving-point impedance and the transfer function of the
\nvoltage ratio will be found. Other currents and voltages that will aid

\nin the computation (but not appear in the solution) are shown on the

\nfigure. The driving-point impedance, written in continued-fraction
\nform, is\n

ft \342\200\234rKKK\\ \t\n

Z-8\n Z-8\n
1 henry\n 1 henry\n

Vi Y-8~\n
\"

Y-\302\253P\n- v2\n

1 farad\n 1 farad\n

o \t\n o\n

Fig. 10-21. Two-terminal-pair net\302\254

\nwork.\n

Zdp(s)
= S +\n

+\n

1\n

* +
~8\n

(10-64)\n

This equation can be reduced, starting at the bottom and working up,

\nto the form\n

ZdpW =
\342\200\224+ 2~\342\200\224

(10-65)\n

To find the voltage ratio transfer function start at the V% terminals

\nand proceed as\n

J,(s)
= YVt = aVi (10-66)\n

F\342\200\236(s)
= Vt + ItZ - (s* + l)Vt (10-67)\n

/i(\302\253)
= /* + YVa =

[\302\253+ s(s\342\200\231+ l)]Vt (10-68)\n

7i(s) =
F\342\200\236+ Zh =

(\302\253*+ 1)F, + \302\253(\302\253*+ 2s) Vt (10-69)\n

The voltage ratio transfer function thus becomes\n

Vt(s) =
1\n

F,(s) s4 + 3s* + 1\n
(10-70)\n

for this particular network. We will show in another chapterthat this

\nnetwork behaves as a low-pass filter.\n

FURTHER READING\n

For additional discussion relating to network functions, the reader

\nis referred to Gardner and Barnes, Transients in Linear Systems(John\n
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Wiley A Sons, Inc., New York, 1942), Chap. 5; to Valleyand
Wallman,

\nVacuum Tube Amplifiers (Vol. 18 of the Radiation Laboratory series,
\nMcGraw-Hill Book Co., Inc., New York, 1948), pp. 42-53; to Tuttle,
\nNetwork Synthesis, 2 vols. (John Wiley & Sons, Inc., New York, in

\npreparation); and to Guillemin, Communications Networks, Vol. I
\n(John Wiley & Sons, Inc., New York, 1932). It should be notedthat
\nthe quantity s is equivalent to p and X as used by some authors.\n

PROBLEMS\n

10-1. Find the driving-pointimpedancefor the network shown

\nin the figure. Arrange the polynomials of this function with the high\302\254

\nest ordered term normalized to unity coefficient. Answer. Z(s) =
\ns3 + 2s2 + fs + 1\n

s3 + fs\n

o Vv\\r\342\200\224i\n r000> 1\n o\342\200\224\n

10\n 2 h\n

Zt\302\273)
$f p\n

O\342\200\224 \t\n

- lfP\n - Z(s)\n

O \t\n

Ht-\n
If\n

Hf-\n

If\n

lh<\n 10\n

Prob. 10-1.\n Prob. 10-2.\n

10-2. Repeat Prob. 10-1 for the network shown in the figure.\n

Anmer. Z(S) = +, 2_f t _?
+ *

\342\200\242\n

s3 + s2 + s\n

10-3. Find the driving-point admittance for the network shown
\nin the accompanying figure. Arrange the polynomials with the
\nhighest-ordered term normalized to unity coefficient. Answer. Z{s)\n

_ , * + + f\n

V+ \302\245\302\253\302\273+ *)\342\226\240\n

Hf\n

yis)\n

if\n

\342\200\224yOOP>\342\200\224

\n2 h\n

if:\n

GHHP\342\200\224|\n

O\t\n

3 h\n

Y(s) -\n

=: if-\n

0\342\200\224\342\200\224\n

Prob. 10-3.\n Prob. 10-4.\n

3 h\n

10-4. Repeat Prob. 10-3 for the network shown above. Answer.\n

S4 + 13S2 +
5\n

fs(2s2 + 1)
'\n

10-5. Find the transfer function, the output voltage to inputvoltage
\nratio, for the networks shown in the figure. Arrange the

polynomials\n

Y(s)
=\n
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with the highest-ordered term normalized to unity coefficient. Answer\n

\302\261/n /y( \\ I/R1R2C1C2 \t\n
w

S2 + + RlCi + R2C2)s/R1R2C1C2+ l/RJl&Ci\n
0\342\200\224vw\n

O\342\200\224wv\n

Ri\n

Vl\n

la)\n

0\342\200\224VW\n \342\200\224Wv\342\200\2241\n O\n

Ri\n r2\n

u,
\342\200\234\n

0 \t\n

-Cl
-\n

^C2 V2

\n\t 0\n

Prob. 10-5.\n

v2\n

<>1\n

Ci\n

LAA/V\342\200\2241

\n*1\n

(6)\n

Prob. 10-6.\n

U2\n

10-6. Repeat Prob. 10-5 for the networks shown. Answer to (b).\n

s2 -(- (R1C1 \342\200\234I-R2C2)s/RiR2GiC2 -l- X/R\\R2CiC2 1\n

s2 + (R1C1 + RiC2 + R2C2)s/RiR2CiC2+ \\/RiR2CiC2\\\n

10-7. Show that both of the networks of the figurehavethe same\n

driving-point impedance Z(s)\n
(s + l)(s + 3) I

\ns(s + 2)(s + 4) J\n

jo\n

Prob. 10-8.\n

10-8. Show that the network of the accompanyingfigure
has the\n

c|riving-point impedance Z(s)\n
s4 + 18s2 + 24\n

7s* 4- 12s\n
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10-9. Prove that the total number of polesis equalto the total

\nnumber of zeros for any network function having the form of quotient

\nof rational polynomials.\n

10-10. The network shown below is known to have the pole-zero

\nconfiguration shown in the figure. In addition, it is known that the\n

(a)\n

Prob. 10-10.\n

impedance at zero frequency (s = 0 or directcurrent)is 1 ohm, that

\nis Z(0)
= 1. Determine the values of R, L, and C in the network.

\nAnswer. R = 1 ohm, L =
\302\243henry, C = 0.1 farad.\n

10-11. It is known that the response in the timedomainof a system

\nis the summation of terms having the following characteristics: (a)
\n\302\253\342\200\236

=
2, f = 0.5 (second order); (b) T (the time constant)

= 3 sec;\n

(c) \t(on
=

1, f = 0. Plot the poles of this systemin the s plane.\n

10-12. A transient is found to be of the form\n

i(t)
= 2e~* -

le~6t\n

Find a pole-zero configuration for 7(s) that gives this time-domain
\nresponse.\n

10-13. A transient is found to be of the form\n

i(t)
= -

2e-8\342\200\230+\n

Find a pole-zero configuration for I(s) that gives this time domain
\nresponse.\n

10-14. Given that the scale factor of a current transformI(s) has
\nthe value 10 and that the following finite poles and zerosdescribethe

\nsystem:\n

Poles Zeros\n

\342\200\2242 \302\261j 1 none\n

-5\n

Find the time-domain response correspondingto this 7(s).Answer.

\ni(t)
= e~6t + \\/l0 cos (t \342\200\224

108.4\302\260).\n



238\n NETWORK FUNCTIONS\n Chap. 10\n

10-15. Given that the scale factor of a current transformI(s) has

\nthe value 5.0 and that the following finite poles and zerosdescribethe

\nsystem.\n

Poles Zeros\n

-1
\302\261j2

-6\n

-3\n

Find the time-domain response i(t) corresponding to this J(s).\n

10-16. For each of the networks shown in the figure,find the transfer

\nimpedance Z<r(s) = V0ut(s)/Iin(s) and the voltage ratio transferfunc\302\254

\ntion G(s)
= Vout(s)/Vin(s).\n

(81\n

Prob. 10-16.\n

/il\302\253)

\no\t\n \342\226\240o\n

-c\n V^(\302\253)\n

o -\n \342\226\240\342\200\224O\n

Prob. 10-17.\n

10-17. The network shown in the figureis driven by a current source

\nJi. The output voltage is W (a) Find the transfer impedance,
\nZti(s)

= F2(s)//i(s). (b) Show the pole-zero configuration for Zsi(s).\n
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10-18. For a given network, it is known that\n

n _ (\302\253
\342\200\234

*i)(\302\253
-

Si)\n
Z21

= V 2/11
\t\n

s\n

where Si, Si = \342\200\2241 \302\261jlO. If ii(t) \342\200\224e~0 6t, find Vz(t).\n

10-19. (a) For the network shown, show that the input impedance
\nat terminal-pair 1 is Zn(s) = 1 ohm. (b) Find the transferfunction

\nG(s)
= Vi(s)/Vi(s) for this network.\n

10-20. Two conjugate complexpolesare required to meet the var\302\254

\nious specifications given belqw. For each specification, sketch the
\nregion in the s plane (using crosshatching for identification)that
\nthe poles may be located, (a) f ^ 0.707, \302\253\302\273^ 1, ^ \342\200\2244.(b)\n

0 ^ t = 0.5, actual frequency ^ 2, fan negative,(c) 1 ^ ^ 4,\n

fan ^ 0.5. (d) 0.5 ^ f < 0.866,con g 2.5.\n



CHAPTER 11\n

SINUSOIDAL STEADY-STATE ANALYSIS

\nFROM POLE-ZERO CONFIGURATIONS\n

There is somethingdistinctiveabout the sinusoidal waveform. If

\na sinusoidal driving force is applied to a network of linear passive

\nelements, every voltage and every current in that network will be

\nsinusoidal in the steady state, differing from the driving-forcesinusoid
\nonly in amplitude and phase angle. This property follows from two

\nfacts:\n

(1) The sinusoid may be repeatedly differentiated or integratedand
\nstill be a sinusoid of the same frequency.\n

(2) The sum of a number of sinusoids of one frequency with arbi\302\254

\ntrary amplitudes and phase angles is a sinusoid of the same
\nfrequency.\n

In addition to this mathematical distinction, the sinusoid is gen\302\254

\nerated rather commonly in nature: a bottle bobbing in the water, a

\npendulum, the shadow of a crank-handle on a wheel\342\200\224all these devices

\ndescribe sinusoidal motion. A sinusoidal voltage is generatedby a con\302\254

\nductor constrained to move in a circular path at right anglesto a
\nmagnetic field.\n

Analysis under the assumption of a sinusoidal driving forceand a
\nsteady state is used in such fields as electronics, network theory,and

\nservomechanisms. In these fields, however, the driving forces are sel\302\254

\ndom sinusoidal. We might rightfully question how valid such analysis
\nis. Part of the justification of this method stems from Fourieranalysis:
\nperiodic waveforms can be approximated by a finite sum of sinusoids.
\nFurther, nonperiodic (and nonrecurring) waveforms can be expressed
\nin terms of sinusoids by use of the Fourier integral. This conceptof

\nanalysis in terms of harmonic frequency components allows the
\nresponse of a network to a nonsinusoidal waveform to be predicted
\nfrom a known response as a function of frequency.\n

In this section, we will develop the relationship betweenthe general

\nsolution of a network problem and the solution for the sinusoidalsteady

\nstate. This will be accomplished in terms of the pole-zeroconfiguration
\nof network functions.\n

240\n
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11-1, Radian frequency and the sinusoid\n

The term sinusoidincludesthesinewave, cosine wave, or either the

\nsine or the cosine with a phase angle. The transforms of the sine and

\nthe cosine are\n

\302\243sin wt = \342\200\224r> \302\243cos <at =#
\342\200\2245 (11-1)\n

s2. + w2 s2 + w2\n

The poles and zeros for these transform equations, as shownin Fig.\n

11-1, appear on the j<a axis. Such frequencies have been definedas\n

s-plane\n ju s-plane\n

\302\253
(\n

j<a\n

5
9\n

(a) (6)\n

Hg. 11-1. Pole-zero configurations for sinusoids: (a) sine wave;\n

(b)P cosine wave.\n

radian frequencies. Frequencies described by positions on the
jca

axis

\nof the s plane represent pure radian frequencies such as occurin the

\nsinusoidal steady state and correspond to the time-domain factors eiot
\nand e~iut.\n

Sine and cosine functions are related to exponential factors by the
\nequations\n

pjut p\342\200\224jitit\n

sin (at =
jp (H-2)\n

cos (at \342\200\224\n
ei<*t e jut

\n2\n
(11-3)\n

The term e\342\200\231atis commonly interpreted in terms of a unit rotating
\nphasor* rotating in the positive (or counterclockwise) direction; e~\342\200\231at\n

likewise is interpreted as a unit rotating phasor rotating in thenegative
\n(clockwise) direction. The unit phasors are illustrated in Fig. 11-2,\n

*
For those who prefer, the term phasormay be readas vector,\n
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Now the sinusoid, according to Eq. 11-2, is made up of the difference

\nof two rotating unit phasors, rotating in opposite directions, divided
\nby the factor (2j). The construction of a sine wave in terms of these

\nunit exponentials is illustrated in Fig. 11-3. The combination of the\n

Fig. 11-3. The sine wave from rotating phasors.\n

phasor (e,\342\200\231\"</2)and (\342\200\224e~iat/2) gives a phasor on the ja axis. The factor
\n(1 /j)

=
\342\200\224jcorresponds to a negative rotation of 90\302\260 (\342\200\224x/2 radians).

\nThe sine of at is a real number (on the axisof reals); it has a value of

\nzero when at = 0, and a value of unity whenat \342\200\224
x/2. As at increases

\nfrom 0 to 2x, the sine function is seen to havevaluesbetween the limits

\nof 1 and \342\200\2241.\n

The cosine function may be similarly constructed in terms of
expo\302\254

\nnential factors as is illustrated in Fig. 11-4. The cosineis alsoa real\n

eiwt+g-jut\n

2\n
-cos t\n

Fig. 11-4. The cosine wave from rotating phasors.\n

number having a total variation from +1 to \342\200\2241.When at = 0, the

\ncosine has a value of unity; when at = x/2, the cosine has zero value.
\nBoth the cosine and the sine are generated by two \342\200\234frequencies\342\200\235:

\nand
\342\200\224ja. This is also shown from the pole locations of Fig. 11-1.\n

The exponential factors corresponding to the cosine or sinetermscan

\nbe used in computing impedance for the sinusoidal steady state. Con\302\254

\nsider a series RL circuit with a cosine driving force givenas\n

F cos \302\253i
= r

(^-\342\200\230

+\n (U-4)\n
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The single cosine generator generating v(t) = 7 cos at is thus seen to

\nbe equivalent to two generators, one generating (F/2)e,\342\200\231\"<, the other

\ngenerating (7/2)e-,\342\200\230\"\342\200\230.Using the principle of superposition, we may
\nconsider the driving forces separately and then combine the resulting
\ncurrents to obtain the final solution. For the first generator, the dif\302\254

\nferential equation becomes\n

+ Ri =\n
(11-5)\n

The steady-state part of the solution (the particular integral) willbe
\nof the form i\342\200\236(t)

= Aeiut. Substituting this solution into the equation
\ngives\n

jaLA + RA = 7/2 (11-6)\n

or A = V/2 - ZZ?\nA

R+jaL Z\n

where Z is the impedance for the sinusoidal steady state. Similarly,
\nwe may let Be~iat be the steady-state solution of Eq. 11-5with e~iat

\nreplacing eio>t to give\n

7/2 _ 7/2\n

R - jaL Z*\n
(11-7)\n

The total solution for the steady state becomes\n

(11-8)\n

If 7/Z is defined as 7, this equation may be writtenin the form\n

*..(<)
= v(Ieiut + I*e~iat) (11-9)\n

In this equationI is a
complex number, I* is the conjugate of this

\ncomplex number, and the exponential factors eiat and e~lulare complex
\nnumbers relating to the cosine and sine functions according to Euler\342\200\231s

\nequation,\n

e\302\261jo>t = cos + j sjn (11-10)\n

If we let 7 = a + jb, Eq. 11-9 reduces to the form\n

i$*(t)
= a cos at \342\200\224

b sin at (11-11)\n

= Re [(a + jb)(cos at + j sin&><)] (11-12)\n

where the letters Re mean \342\200\234thereal part of\342\200\235(similarly, Im means \342\200\234the

\nimaginary part of\342\200\235). But (a + jb) = I and (cosat +sin at) is\n
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defined by Euler\342\200\231s equation as etut. Hence\n

i\342\200\236(t)
= Re (Ie\342\200\231at)\n (11-13)\n

or\n i\342\200\236(t)
= Re f

^
ey\342\200\234M\n (11-14)\n

This last equation tells us that we may use the exponentialin place of

\nthe sinusoid for the steady-state solution providing we take only the

\nreal part of the solution. Since the exponential is easilydifferentiated

\nand integrated, this method of the solution is convenient. Provideditis
\nalways understood that only the real part has meaning, currentsand

\nvoltages may be written in the forms\n

i(t)
= Ie,0,t (11-15)\n

v(t) = Ve\342\200\231at (11-16)\n

To illustrate the use of the exponential equivalent of the sinusoid,
\nsuppose that we consider the differential equation for an RLC series
\ncircuit given as\n

L
jt

+ Ri + ^ J
idt = VeP* (11-17)\n

The form of the solution must be Ieiat. Performingthe required
dif\302\254

\nferentiation and integration gives\n

(j\342\200\236L
+

R+]L)l
= v (11-18)\n

The sinusoidalimpedanceis defined as\n

Z(j(a)
=

j-
= R + j (uL

\342\200\224
(11-19)\n

The current is given as\n

i(t)
=

^
e,w (11-20)\n

provided only the real part of this expression is taken; that is,\n

i(t)
= Re

(\302\245
(11-21)\n

f 1/ r / i\n

i(t)
= Re\n

For this example,\n

i(t) = Re
|^-

\nV\n

(11-22)\n
R +j(aL

-
1/coC)\n

U + (J- i/ggp [R
~ -

i)](cos\342\200\234'

+irin\342\200\234\n i)\n

(11-23)\n
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Since Z \342\200\224R
j(\302\253L

\342\200\224
1/toC), the real part of i(t) in t.hiaequation is

\ni(0
= cos ut + (wL

\342\200\224 sin <at
j

(11-24)\n

i(t) =
j^|

cos (ad -
tan\"1

aL

(11-25)\n

or, finally,\n

This same exponential factor may be used to representa sinusoidat
\na phase angle; for example, let\n

t>(\302\243)
\342\200\224V COS (bit -f- <f>)\n

In exponential form, this equation becomes\n

\342\200\224V-\342\200\224J\n

or v(t)
=

^[(Fe,\342\200\231*)e,\342\200\231\"\342\200\230+ (Ve~,'+)e~\342\200\231at]\n

The quantity (Ve\342\200\231+)is a phasor of magnitude V and phase angle 0,
\nwhich will be represented by the notation V. Then\n

v(t)
= + V*e-i\342\200\234t) (11-29)\n

This equation is of the same form as Eq. 11-9,andby the same reason\302\254

\ning as previously given is equivalent to\n

(11-26)\n

(11-27)\n

(11-28)\n

v(t) = Re (Ve**) (11-30)\n

Thisexponentialfactor
may be used in place of Eq. 11-26 to give the

\nsame result with less mathematical manipulation. Again, it is not
\nnecessary to carry the \342\200\234real part of\342\200\235notation so long as the require\302\254

\nment that only the real part of the result hasmeaningiskept in mind.\n

In this section, we have seen that thesineandthe cosine correspond

\nto exponential factors and have complex frequencies located on the j<a

\naxis of the s plane.\n

11-2. Magnitude and phaseof network functions\n

All network functions may be written as a quotient of polynomials
\nin s; in general form,\n

G(s) 1 = P(s) = apsT + ais\"-1 + \342\226\240\342\200\242\342\226\240+\302\253\342\200\236

\nZ(s) j Q(s) bosm + blSm~l\n
(11-31)\n

For the sinusoidal steady state, s = ja, and the network

\nbecomes\n

G(ja) J = P(j<*) _ ao(j<a)n + aipo?)\"-1+ ...
\nZ(ju) j bo(joi)m + -J- ...\n

function\n

(11-32)\n
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In this equation, terms will alternately be real and imaginary.Which

\nterms of the general expression are real and which imaginarydepends
\non whether n and m are even or odd. However,in every case it will be

\npossible to write the quotient of polynomialsin the form\n

where\n

G(i\302\253)\n

Z(j\302\273)\n

A(a>) -f- jB(a))

\nC(\302\253) + jD(\302\253)\n

= R( co) + jX( <*)\n

A(w)
= Re P(j<a) and B(u>) = Im P(j<a)

\nC(o))
= Re Q(jo>) and D(co) = Im Q(ju)\n

(11-33)\n

(11-34)\n

The quantities R(o>) and X(w) are found by rationalizingtheexpression

\ninvolving A(a>), B(\302\253), C(w), and D(a>). Phase and magnitude of the

\ngeneral network function are defined in terms of R and X. The defin\302\254

\ning equation for the phase is\n

*M
= ten\"

IM\n

and the defining equation for magnitudeis\n

M(\302\253)
= V[X(o>))* + [^(co)]2\n

(11-35)\n

(11-36)\n

The complexvariable, R(o)) -f jX(oj), is thus defined in polar coor\302\254

\ndinates as\n

(11-37)\n

Alternately, the magnitude and phase of the networkfunctionmay

\nbe computed directly from the quotient form of Eq. 11-33as\n

[Af(w)]2
=\n

[A(q,)P + [B(\302\253)]\302\273

\n[C( a,)]2 + [D(<o)]2\n

<!>(<*)\n tan-1\n
A ((a)\n

tan-1^\n

C(\302\253)\n

(11-38)\n

(11-39)\n

By either of the methods that have been describedthe magnitude

\nand phase of a network function may be found as a functionof fre\302\254

\nquency. The magnitude and phase characteristics of networks are

\nimportant in network theory, partly because measurements of these
\nquantities are easily made.\n

The problem before us is the computationandplottingof magnitude

\nand phase as a function of frequency. The amount of computations

\ncan frequently be reduced by first considering the asymptoticvalues

\nof these functions in terms of the original quotient of polynomialform

\ngiven as Eq. 11-32.\n

High-Frequency Asymptotes. Assume that the network function
\nbeing considered is a transfer function G(jw). For large valuesof \302\273,\n
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%\n

only the highest-ordered terms in the numerator and denominator of
\nG(ju>)

are significant; that is,\n

lim G(jo>)
= lim H\n

co\342\200\224\342\226\272oo co\342\200\224\342\226\27200\n

(j<\302\273)n + . ..

\n(jo>)n + ...\n
(11-40)\n

= lim H(joi)n~m\n (11-41)\n

Thelimitofthis function depends on which number, n or m, is larger;
\nthat is,\n

lim G(j<j})
=\n

00 g/(n-m)T/2

\n\342\200\242
0\n

n > m

\nn < m\n (11-42)\n
CO\342\200\224>00\n

H\n n = m\n

The limiting value of the magnitude is zero, infinity, or a constantH.
\nThe angles in each case are some multiple of w/2 radians.\n

Low-Frequency Asymptotes. The low-frequency behavior of the net\302\254

\nwork function is determined by the lowest-ordered terms in the quo\302\254

\ntient of polynomials. The important part of the network functionfor
\nthis case is\n

.. . ~b an-i(ju>) o>n

\n\342\200\242\342\200\242\342\200\242\342\200\235(\"bm\342\200\224l(j\"oj) \342\200\234f\342\200\234bm\n
(11-43)\n

If neither a\342\200\236nor bm is zero, the low-frequency asymptote is\n

lim G(ju>) =H^ (11-44)\n
co\342\200\224>0 Vm\n

However, if one or more terms are zero such as bm, bm-i, an, \302\253n-i, etc.,

\nthen the network function may be written\n

H
\\a0'(j<a)\302\273

+ ... + a/1
\n(i\302\253)p LW(jo,)m + ... + bm'\\\n

(11-45)\n

where p may be positive or negative. The limit of
\nbecomes small is\n

lim G{ju>)\n
co\342\200\224\342\226\2720\n

H(a\342\200\236\342\200\231/bJ)\n

(j\302\273)\302\273\n

this function as \302\253\n

The limit of this function depends on whether p is positive,zero, or

\nnegative; that is,\n

{oo

e~ipT/2, p > 0\n

0e~ivT/i, p< 0 (11-46)\n

H(a.\342\200\231/bJ), p
= 0\n

Again, the limiting value of the magnitude is zero, infinity,ora con\302\254

\nstant, while the angle is some multiple of (w/2) radians.\n

In practice, the phase and magnitude information is plotted in two

\nways: a polar coordinate plot, and separate plots of M and <f> against\n
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frequency. These two types of plots are illustrated in Fig. 11-5.
The

\npolar plot can be made in terms of either M(u) and <f>(<a)
or the

imag\302\254

\ninary part and real part of\n

U)\n

Tig. 11-6. Plotting of phase and magnitude,
\noo\n

Fig. 11-6. High frequency asymptotes of G(jw)fwherem = order of\n

denominator and n =\n order of numerator.\n

00\n

Jl\n
j Im G{ju>)\n

P-3/\n

fpm~1 P-0 Re G{ju)\n

*\"73
'~2\n \\p--3

1\n

oo\n

Tig. lla7* Low-frequency asymptotes of\n

Plots on the M(<a) and <\302\243(co) coordinates are made as continuous
\ncurves. The quantity however, is usuallythoughtof as a\n

phasor represented by an arrow as shown in Fig. 11-5.To avoid con\302\254

\nfusion, only the \342\200\234tip\342\200\235of the phasor is plotted. The locus of the \342\200\234tip\342\200\235

\nof the phasor is known as the phasor locusof thenetwork function. The\n
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asymptotic values of the network functions for lowandhighfrequency

\nare shown in Fig. 11-6 and Fig. 11-7.\n
Thus the low-frequencyand high-frequency

behavior of a network

\nfunction can be determined by inspection. There remains the tedious
\ntask of computing intermediate points. A number of examples will
\nillustrate the general procedure.\n

Example 1\n

A two-terminal-pair network made up of one resistor and one
\ncapacitor is shown in Fig. 11-8. The voltage ratio transfer function is\n

1\n_ Vt{s) _ l/Cs
\nK }

Fx(S) R + l/Cs
~

RCs + 1\n
(11-47)\n

The transfer function for the sinusoidal steady state is foundby letting

\n8 =
jo)', thus\n

1 1 /RC\n
0(j\302\273)

-\n

jaRC + 1 jo> + 1/RC\n
(11-48)\n

o \342\200\224\342\226\240
V\\Ar\342\200\224\n

0\n

R\n

Vi (s) -\n = 5- *W\n

Pig. 11 - 8. Two\n -terminal-\n

For low frequencies G(j<a) \342\200\224>1, while for

\nhigh frequencies, the asymptotic value be\302\254

\ncomes 0 X e-,T/2; that is, zero magnitude
\nand

\342\200\224
90\302\260phase angle. One other frequency

\nis especially convenient for computation: a) = 1/RC. At this frequency,

\nthe magnitude is 0.707 and the phase is \342\200\22445\302\260.This information is

\nsummarized in Table 11-1.\n

pair RC network.\n

TABLE 11-1\n

(O\n GW\n

0\n 1 at 0\302\260\n

1 /RC\n 0.707 at -45\n
oo\n 0 at -90\302\260\n

The complete phasor locus is that of a circle as showninFig.11-9.The

\nequivalent M(w) and <\302\243(o>)plots are also shown in the figure.\n

Pig. 11-9. RC network characteristics.\n



250\n SINUSOIDAL STEADY-STATEANALYSIS\n Chap. 11\n

Example 2\n

If the resistor and the capacitor of the RC networkusedfor Exam\302\254

\nple 1 are interchanged, there results the two-terminal-pair network
\nshown in Fig. 11-10. Again, the voltage ratio transfer functionis to be

\nstudied. This function has the value\n

0(8)
=\n

R\n RCs\n s\n

R + 1/Cs RCs +1 s + 1/RC\n

(11-49)\n

corresponding to a zero at s = 0 and a poleat s = \342\200\2241 /RC. Letting\n

s = jo: gives the transfer functionfor the

\nsinusoidal steady state as\nft\n

Vi(s)\n
Cs\n

V2(s)\n

0(i\302\253)
=\n

(11-50)\n

Fig. 11-10. Network of Ex\302\254

\nample 2.\n

jdi + 1 /RC\n

This function will be examinedfor low-fre\302\254

\nquency and high-frequency asymptotes.

\nAs co becomes large, the term 1/RC can be
\nneglected, a,ndG(ja>) approaches unity (alternately, ^Hospital\342\200\231s rule can

\nbe applied). For small values of co, G(ju>) approaches zero magnitude
\nand 90\302\260 phase angle. Again, one frequency causes the function to
\nreduce to an especially simple form: co = 1 /RC. For that frequency,
\nG(ju)

= 0.707 eir/i. In tabular form, these computations may be sum\302\254

\nmarized as follows:\n

TABLE 11-2\n

co G(ju>)\n

0 0 at +90\302\260\n

1 /RC 0.707 at +45\302\260\n

oo 1 at 0\302\260\n

These values serve as a guide to the computation. In orderto make the

\ncomplete plot, several other values will have to be found. Thecom\302\254

\nplete phasor locus is that of a circle, as shownin Fig.11-11.The equiv\302\254

\nalent Af(co) and <f>(co)plots for this same function are alsoshown in the

\nfigure. The two plotting systems display the same information.With

\npractice, it will be possible to visualize one form froman inspection

\nof the other.\n

Comparing the two networks of Example 1and Example2,it isseen

\nthat the first provides positive phase shift (or phase lead) for all fre\302\254

\nquencies, while the latter provides negative phase shift (or phaselag)

\nfor all frequencies. For the first, the output per unit input is high at

\nlow frequencies and low at high frequencies. The opposite behavior
\ntakes place in the second network. This result can be correlatedwith\n
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the behavior of the individual elements of the two networks.In the

\nnetwprk of Fig. 11-8, the capacitor acts as an open circuitat low fre\302\254

\nquencies and hence the same voltage appears on the output terminals\n

Fig. 11-11. RC network characteristics.\n

as appears on the input terminals.At high frequencies, however, the

\ncapacitor acts as a short circuitand the output voltage approaches

\nzero magnitude (being the drop across the capacitor). For the net\302\254

\nwork of Fig. 11-10, the capacitor acts as an opencircuitfor low fre\302\254

\nquencies, so that there is no output voltage; however, at highfrequen\302\254

\ncies the capacitor behaves as a short cir\302\254

\ncuit, causing approximately the same volt\302\254

\nage to appear on the output terminals as
\nappears on the input terminals.\n

\342\226\240AAAr\n

R\n

Z[s) and Yts)\n Ls\n

Fig. 11-12. RL network.\n
Example 3\n

As the third example, consider the driving-
\npoint immittance of a series RL network shown in Fig. 11-12.The
\nimmittance functions have the forms\n

* +
f)

(11-51)\n

y(s) =
W>

=

s + R/L
(11-52)\n

Thus the impedance function has a zero at s =
\342\200\224R/L and a pole at

\ninfinity, while the admittance function has the opposite pole-zero con\302\254

\nfiguration (poles become zeros; zeros become poles). In the sinusoidal
\nsteady state, s = j<a, and the immittance functions become\n

Z(\302\273=i(>
+

f)
=

B(l+>|)
(11-53)\n

1/R\n

jo)L/ R -j- 1\n

Z(s)
= R -J- Ls\n

-H\n

r(M =\n
(11-54)\n
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By Eq. 11-53 the real part of Z(ju) is constantand the imaginary part

\nincreases with frequency. Equation 11-54 has the same form
aji Eq.\n

11-48, which has a circular locus. The phasor locifor impedanceand\n

Fig. 11-13. Immittance characteristics for RL network.\n

G(\302\253)or Z(s)\n Locus plot\n Magnitude plot\n Phase plot\n

j Im G.\n
ReG\n

1- \342\200\242\n

0\n

1\"\n

00\n

j Im G\n

\302\2532+a*+1\n

00 I It\n

IZJ.\n

\302\253(as+1)\n

j Im O

\noo Re G\n

a\n

1\n

j Im G

\noo Re G\n

\342\200\242*(\302\253\302\253+!)\n M\n

Fig. 11-14.\n

admittance are shown in Fig. 11-13. Several otherplotsare shown in

\nFig. 11-14 for given transfer functions or immittance functions.\n

11-3. Sinusoidal network functions in terms of poles and zeros\n

As was pointed out earlier in this chapter, all voltageand current

\nwaveforms in any linear network are sinusoidal in the steadystateif\n
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the network is driven by sinusoidal waveforms. For this reason,if we

\nare
gjven V(jot) in this equation,\n

/(j\302\253)
=

Y(jot)V(jo>) (11-55)\n

we are not interested in solvingfor the waveform of I(jot). We know

\nthe waveform in advance: it is a sinusoid. The informationwe do need

\nis: (1) for a given magnitude of the voltage V(jw), what is the mag\302\254

\nnitude of I (jo>), and (2) what is the phaserelationshipof I (jot) in terms

\nof V(jot)? In other words, we are interested only in magnitudeand
\nphase relating V(jot) and I (jot). To find this information,it is not

\nnecessary to know the magnitude of V(jot). Since the networksunder
\nconsideration are linear, the magnitude of I (jot) is linearlydependent
\non the magnitude of V(jot): if V is 1 volt to giveI of 1 amp, V of 10

\nvolts will give an I of 10 amp. The quantity that relatesthe phase of

\nV(ju>) to that of I (jot) is Y (jot); likewise, Y (jot) relates the magnitude
\nof F(jcj) to that of I (jot). In the caseof the last equation, the relation\302\254

\nship between V (jot) and I (jot) is given completely(for all values of

\nfrequency) by the magnitude and phase of Y(jot),\n

Y(jot)
=

\\Y(jo,)\\e\302\273\342\204\242 (11-56)\n

If Eq. 11-55 is written in the form\n

= YW (11-57)\n

this ratio is often described as the complex ratio of current to voltage.
\nThe term complex ratio thus implies not only the magnitude of the
\nratio of one quantity to another but also the phase of the onequantity

\nwith respect to the other. Network behavior as a functionoffrequency
\n(and, of course, we are now specializing in radian frequency) is deter\302\254

\nmined entirely by complex ratios; that is, by immittance functions
\nand transfer functions.\n

The same arguments given in the previous paragraphapplyto the

\nfollowing typical equations because of their similarity to Eq. 11-55.\n

F,(j\302\253)
=

G(jot)Vx(jo>) (11-58)\n

V(jot) = Z(jot)I(jo>) ' (11-59)\n
V2 (jot)

=
Ztr(jo>)I(jot) (11-60)\n

and so on (Ztr is the transferimpedance).Thusit is seen that the dis\302\254

\ncussions for Y(jot) apply in general to any network function in the
\nsinusoidal steady state.\n
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The admittance function Y(s) has the form of a quotient of poly\302\254

\nnomials which may be factored into roots of the form\n

(8
- Sr) (11-61)\n

where sr is either a pole or a zero. In the sinusoidal steady state,
\ns =

ju, and the typical term becomes\n

(ju -
\302\253r) (11-62)\n

In the complex plane, ju and sr are phasors. We are interested in the

\ndifference of these two phasors\342\200\224which
is also a phasor. The phasor s,

\nis, in general, complex; the phasor ju is purely imaginaryand is on the

\nju axis. These two phasors and their difference are showninFig.11-15.\n

Tig. 11-16. Direction of the phasor (ju \342\200\224
\302\253,): (a) polar diagram;\n

(b) string diagram.\n

Figure 11-15 (a) shows the phasors with respect to the s plane origin.

\nFigure ll-15(b) shows the equivalent \342\200\234string\342\200\235phasor diagram. The

\nphasor difference (ju \342\200\224
Sr) is seen to be a phasor directed from sr to

\nju. As <o changes from 0 to <\302\273,the position of ju changes\342\200\224always

\nremaining on the ju axis. The combination of several of thesephasors
\ncan be used to determine sinusoidal network functions. This will be
\nillustrated by a number of examples.\n

Consider first the admittance of a series RL circuit. Such a circuit\n

is shown in Fig. 11-12. The impedance
\nof this network is\n

Z(s)\n
=

*,(\302\253+!)\n
(11-63)\n

and so the admittance has the form\n

y<*>
-

i jjTFm
(1MH)\n

Thus Y(a) has a finite pole at s = \342\200\224
R/L

\nand a aero at infinity. This pole-zero configuration is shownin Fig.\n

11-16. As u increases from zero to infinity, the phasorohangesposition\n
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Fig. 11-17. Phasor diagram changing with frequency.\n

as shown in Fig. 11-17. The frequency variation of the impedanceis
\nfound by writing\n

+
f)

= M^^*M (11-65)\n

Then the admittancemay be found from the equation\n

It can be seen that the magnitudechanges from l/R to 0 as o> changes

\nfrom zero to infinity; similarly, the phase changesfrom0\302\260to \342\200\22490\302\260as

\n\302\253varies from zero to infinity. The polar coordinate representationof
\nthis variation is shown in Fig. 11-18. The variation of admittance
\nwith frequency is exactly the same as the variation of current with

\nfrequency for a constant magnitude of voltage of l/R volts. If the
\nvoltage has a different magnitude, the current will increase or decrease
\nlinearly for all values of frequency.\n

Fig. 11-18. Variation of phasor
\nwith frequency.\n

Y[s)\n

AA/V\n

R\n Ls\n

1 JCs-Ztz\n

o\t\n
Fig.11-19.Series RLC circuit.\n

11-4. Resonance, circuit Q, and bandwidth\n

The method that has been illustrated by means of the studyof the

\nRL series circuit applies to other networks. Considera seriesRLC cir\302\254

\ncuit as shown in Fig. 11-19. The driving-point impedance for this net\302\254

\nwork is\n

Z(\302\253)
= Ls + R +

^\n
(11-67)\n
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and the admittance is the reciprocal of Z(s); that is\n

=

L (s2 + Its/L + 1/Lc)\n

Y(s)\nor\n

where\n

L \\s2 + Rs/L + X/LC,

\nL ((B
-

\302\253.)(\302\253
-

\302\253.*))\n

(11-68)\n

(11-69)\n

Sa, V\n

\302\251\342\200\230

= 1vr:rT\n

(11-70)\n

In this expression, wn is the natural undamped frequency of the system,\n

and f is the dimensionless damp\302\254

\ning ratio. If we consider only the

\nunderdamped (or oscillatory) case
\nwhere f < 1, the variation of the posi\302\254

\ntion of the poles of Y(s) for constant
\ncon and variable f is shown in Fig. 11-20,
\nwhere the locus is a circle. In addi\302\254

\ntion, Y(s) has a zero at the origin of
\nthe s plane.\n

In the sinusoidal steady state

\n(s
=

ju>), the frequency response of

\nthe system, such quantities as |/(j'<o)|, \\ Y(ju>)\\ etc., may be found by

\nallowing co to vary over a range of frequencies. Several steps in such
\na frequency variation are shown in Fig. 11-21, together with the com-\n

Fig. 11-20. Pole-zero configura\302\254

\ntion for F(s).\n

Fig. 11-21. Frequency response of an RLC network.\n

plete magnitude and phase characteristic. Over the range of
frequen\302\254

\ncies, the phase changes from
+90\302\260, through 0\302\260to \342\200\22490\302\260,while the

\nmagnitude starts from zero value, attains a maximum value,and then\n
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asymptotically approaches zero for high frequencies. The function
\nY(ja) is found from Eq. 11-69, letting a \342\200\224

jco in terms of magnitude
\nand phase factors in the form\n

The maximum value of Y(joo) evidently takes placenearthe frequency

\nat which Ma has a minimum value. The frequency to causeMa to

\nhave a minimum value is a frequency very near to the point of closest

\napproach to one of the conjugate poles. In that frequencyrange,Ma

\nchanges rapidly, and at the same time Ma* and Moarechangingvery

\nslowly. The frequency corresponding to a maximum Y (jo) is defined

\nas the frequency of resonance. Since I (jo) variesjustas Y(jo),the fre\302\254

\nquency of resonance is also the frequency of maximum I (jo).\n

The magnitude of Y(jo) may be written in the form\n

l*WI
-\n

1\t\n

\342\226\240\\/R2\342\226\240+\342\200\242(oL
\342\200\224

1/oC)2\n

(11-72)\n

and from this equation it is seen that F(jco)hasa maximum value of

\n(1 /R) when\n

(11-73)\n

that is to say that resonanceoccursat o = on (and not at the point\n

opposite the pole on the jco axis).
\nAn enlarged view of the various

\nphasors for the condition of reso\302\254

\nnance is shown in Fig. 11-22. The

\nphase angles from the poles to jon
\nare marked <f>a and The phasor

\nfrom the zero to jon is along the jco
\naxis and thus has a constant phase
\nangle of +90\302\260. The sum of <f>a and

\n4>a* is equal to 90\302\260because the tri\302\254

\nangle ABC is a right triangle (being
\ninscribedin a semicircle). Thetotal
\nphase angle, which is\n

0o
\342\200\224

<l>a
\342\200\224

<f>a*
\342\200\224

+90\302\260\n

\342\200\224
(+90\302\260)

= 0\302\260 (11-74) Fig. 11-22. Phasors drawn for reso\302\254\n

nance.\n

thus has zero value. The phase\n
angle of Y(jco)is zerodegreesat resonance. The magnitude of F(jo) at

\nresonanceis (1/R), and themagnitude of I (jco) at resonance is (V/R).\n
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The circuit Q or simply Q for an RLC seriescircuitis defined as\n

q _ oanL _ 1
\nV

\342\200\234

R

~
2 R/2L\n

(11-75)\n

Now the quantity (R/2L) is the same as by Eq. 11-70. Thus the
\ncircuit Q is defined as\n

^ _ 1 \302\253\342\200\236_
1 the length O A\n

2 2
X

the length EB\n
(11-76)\n

in terms of quantities shown in Fig. 11-22. The circuitQ can thus be

\ntaken directly from a scale plot ofthepolesandzeros of the immittance

\nfunction for an RLC circuit. The circuit Q can alternately be written

\nin the form\n

(11-77)\n

1\n

2 cos 9\n
(11-78)\n

where 0 is the angle from the \342\200\224aaxis to the line OB (or OD) of
Fig.\n

11-22. From these last three equations, several conclusions can be
\nwritten:\n

(1) The closer poles s\302\253and sa* are to the jta axis, the higher the
\nQ. (This follows since Q varies inversely with the distance EB.)\n

(2) The value of Q varies inversely with damping ratio, f. A high

\nvalue of Q infers a low value of dampingratio. A circuit with

\nlow R thus has high Q.\n

Fig. 11-23. Variation of | Y(jut) ] with\n

Q.\n

shown, the current at resonance

\ncurrent has the magnitude\n

Plots of the magnitude of Y(jw)
\nfor various values of Q are shown
\nin Fig. 11-23. The circuit Q is an

\nimportantfactor in circuits(of the

\ntype being considered) used for
\nselectors(filters).\n

Another means of specifying the

\ncircuit Q is specification in terms
\nof half-power points. As has been

\nhas the magnitude V/R. When the\n

I =\n
V\n

y/2 R\n

(11-79)\n

the power will be half of that at resonance(beingequalto I*R). At the

\nhalf-power points, the magnitude of the admittance Y(j<a) is {\\/y/2R)\\\n
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this requires that\n

Vtf2 + (\302\253L
- 1/coC)2 = V2R\n (11-80)\n

or\n
I\n II\n

H-\n (11-81)\n

This equation reduces to the form\n

, . R 1
n\n

\"^\302\261r\342\200\234_Ec\342\200\234\302\260\n
(11-82)\n

The values of\n a that satisfy this equation are\n

\302\273= \302\261
gg

\302\261V(*/2t)* + 1/LC\n (11-83)\n

or, in terms of dampingratioand undamped natural frequency,\n

\302\253= \302\253.(\302\261f \302\261VF+l) (11-84)\n

in most practical networks used as selectors,the damping ratio f is

\nvery small, so that f2 is negligible compared with unity. Underthis
\ncondition, the last equation reduces to an especially simple form,\n

w =
w\302\273\302\261 (11-85)\n

(considering only positive frequencies). The frequencies defined by\n

this approximation are the half-power frequencies. Let the highesthalf\302\254

\npower frequency be designated \302\253i,which is defined as\n

OJl
=

<o\342\200\236+ fwn (11-86)\n

and let the smaller half-power frequencybe \302\2532be given as\n

\302\2532
=

\302\243\302\253)\342\200\236
\342\200\224

(11-87)\n

The quantity (f\302\253\342\200\236)is the distance EB of Fig. 11-22, or the distance\n

Fig. 11-24. Bandwidth on the s plane.\n

from the jco axis to the pole sa (or \302\253\342\200\236*).The location of the half-power
\npoints

in the s plane is shown in Fig. 11-24.A circle of radius (fa>\342\200\236)\n
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and centered at j<an crosses the ja axis at the half-powerpoints.At

\nthese half-power frequencies, Y(jo>) has the magnitude 0.707(1/#) by

\nEq. 11-79. The range of frequencies given as (coi \342\200\224
to2) is defined as the

\nbandwidth. Bandwidth varies inversely with Q. A small bandwidth

\ncorresponds to a selective network.\n
The concepts of resonance,circuitQ,and bandwidth can thus be

\nvisualized in terms of the pole-zeroconfigurationof Y(s) for the RLC

\ncircuit. These concepts are easily visualizedanddo not depend upon

\nalgebraic manipulation of complex numbers. The specificdefinitions
\nof resonance, circuit Q, and bandwidth given in this section do not
\napply to all possible network configurations. For example, resonance
\nin the sense of a maximum impedance or admittance doesnot coincide
\nwith the frequency of unity power factor for most networks.

However,

\nall these quantities can be visualized in terms ofphasormagnitudeand

\nphase, and design can be accomplished by means of simplegraphical
\nconstructions.A number of additional examples of network analysis
\nby pole-zero configuration will further illustrate these concepts in

\nChapter 14.\n

In some applications, parallel RLC networks are used as selectors.
\nSince the parallel RLC network is the dual of the seriesRLC network,

\nthe analysis given in this section applies in terms of impedanceand

\nvoltage instead of admittance and current.\n

11-5. Asymptotic change of magnitudewith frequency in terms of poles
\nand zeros\n

Both transfer functions and driving-point immittances are madeup

\nof frequency factors of the form\n

(s
- s,,)*1 (11-88)\n

which in the sinusoidalsteady state become\n

O'to
- So)*1 (11-89)\n

For very small values of to, this factor can be approximatedas (\342\200\224So)*1,

\na phasor from the point sa to the origin of the s plane.As to becomes

\nlarger, no such an approximation is valid. But as to becomes very large

\ncompared with the phasor sa, the frequencyfactorcan be represented

\nas\n

0\342\200\230to)*1
=

(\302\253)\302\2611e\302\261fr/l

'

(11-90)\n

For large to, the magnitude of this factor changeseither linearly

\nor inversely with to. The asymptotic phase angle is either +90\302\260

\nor \342\200\22490\302\260depending on whether the factor is a zero or a pole.This\n
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behavior of magnitude and phase with frequenoy is illustrated in
\nFig. 11-25.\n

To illustrate, suppose that we are interested in a voltageratiotrans\302\254

\nfer function,\n

w\n
7*(j\302\253)\n

VrU<o)\n
(11-91)\n

Assume that the sinusoidal input voltage has a magnitudeof unity

\nand that for frequencies in excess
\nof to =

|s0| the magnitude of the\n

voltage Vi(jo>) is of the form\n

|F,(j\302\273)|
- - (11-92)\n

CO\n

Such variation of V2 would result
\nif G(s) had the form\n

1\n

0(a)
=\n

s -f- a\n
(11-93)\n

Fig. 11-25. Phasor variation with
\nfrequency.\n

provided a is very small compared
\nto unity. The magnitude of the transfer function would then be\n

|<?0\302\273)|
= i\n

Cl)\n
(11-94)\n

The logarithmic unit, the decibel, was originally defined for a ratio
\nof powers but is now often used for voltage and current ratios. The
\nvoltage amplitude ratio in decibels is defined by the equation\n

|G(\302\273 I
= 20 log,. (11-95)\n

For the example being considered,the voltage amplitude ratio in

\ndecibels (abbreviated db) has the form\n

20 logio
\342\200\224= \342\200\22420logio o) (11-96)\n
CO\n

When \302\253= 1, G(j<a) has a value of 0 db, and when <w = 2, G(jo)) has the
\nvalue\n

-20 logic 2 = -20 X 0.301 \302\253-6 db (11-97)\n

Two frequencies having a ratio of 2:1 are said to be separated by an
\noctave. In one octave, the magnitude of this example has decreased6
\ndecibels. In another octave (to w =

4), the magnitude would decrease
\nan additional 6 decibels. The magnitude is thus changing at the rate of\n

-6\n
decibels\n

octave\n (11-98)\noctave\n
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due to one pole in G(s) given in Eq. 11-93.*HadG(s) been of the form\n

G(s)
= s + a (11-99)\n

corresponding to one zero in G(s), the asymptotic change in the mag\302\254

\nnitude of the voltage ratio transfer function would have been an

\nincrease of 6 decibels per octave. This case would correspondto the
\nasymptotic form resulting from the choice of the positive sign in
\nEq. 11-90.\n

A transfer function in general will be made up of a number of fac\302\254

\ntors of the form considered; that is,\n

G(s)
= H\n

(s
\342\200\224

Si) (s
\342\200\224

S2) \342\200\242\342\200\242\342\200\242(s
\342\200\224

Sn)

\n(s
- sa)(s \342\200\224

Sb) . . . (s
~

Sm)\n

(11-100)\n

Each zero in this expression will cause an asymptotic increasein the

\nmagnitude of G(s) of +6 db per octave, while each polewill cause an

\nasymptotic decrease in magnitude of G(s) of \342\200\2246 db per octave. In the

\nfrequency limit, these increasesand decreaseswill cancel in pole-zero

\npairs (one pole cancels the effect of one zero). The net asymptotic
\nchange of magnitude with frequency will thus be the number of finite

\nzeros less the number of finite poles times 6 db per octave.\n

As an example, consider a two-terminal-pair network having a volt\302\254

\nage ratio transfer function of the form\n

G(s)
= H\n

s\n

(s
\342\200\224

sa)(s
- s6)(s \342\200\224

sc)\n
(11-101)\n

This transfer function has three finite poles and one finitezero. For

\ns =
ji>> and for large values of o>, the magnitude of G(jw) has the form\n

0(j\302\273)
= H\302\261\n

8 =JO)\n

(11-102)\n

The output of this two-terminal-pair network will fall off at a rate
\ndetermined by the excess of poles over zeros. The rate for thispartic\302\254

\nular network is \342\200\22412db per octave. The asymptotic phase of the out\302\254

\nput compared to the input will be 180\302\260 as given by Eq. 11-90.\n

The RLC selector network studied in the previous section has the

\nadmittance function\n

Y(s)\n

1 1\n

L (S
\342\200\224

Sa)(s
\342\200\224

So*)\n
(11-103)\n

corresponding to two poles and one zero. The currentpassingthrough

\nthis selective network for constant voltage will vary with frequency\n

*
Quantities in the ratio of 10:1 are saidtobeseparatedby a decade. Six decibels

\nper octave is equivalent to 20 decibels per decade.\n
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as the M(w) curve of Fig. 11-21. For large frequency,the currentwill

\ndecrease with frequency at the rate of \342\200\2246 db per octave.\n

11-6. An application: the symmetrical lattice\n

The symmetrical lattice network shown in Fig. 11-26is a two-terminal-
\npair network that finds frequent application for phase correction. The\n

Fiff. 11-26. The symmetrical lattice.\n

properties of this network are easily visualized in terms of the pole-
\nzero configuration, as we shall show in this section.\n

The latticestructurecanbeputina more familiar form by \342\200\234unwrap\302\254

\nping\342\200\235it as shown in Fig. 11-27 as
\na bridge network. Assume that the

\nnetwork is terminated in a load

\nimpedance ZJs) and that we are
\ninterested in the voltage ratio trans\302\254

\nfer function, G(s) = F2(s)/Fi(s).\n
Several currents are identified in Fig.\n

11-27. The two currents marked
\n/ and the two currents marked I'
\nare equal because of the symmetry
\nof the network configuration. The load current is marked as 12.From
\nKirchhoff\342\200\231s voltage law, we write\n

Vt
= ZaI + ZL(I - 1') + ZaI (11-104)\n

Vi = zj + zbr (n-105)\n

In theseequations,the functional notation has been omitted for sim\302\254

\nplicity\342\200\224each of the quantities shown is a function of the complexfre\302\254

\nquency s. If these equations are arranged in the forms\n

Fi = (2Za + ZL)I - ZlF (11-106)\n

Vi = ZaI -f- ZbIf (11-107)\n

the unknown currents I andI'
may be found conveniently by the use

\nof determinants; thus\n

Fig. 11-27. Bridge form of the sym\302\254

\nmetrical lattice.\n



(11-108)\n

Vi -ZL\n

Vi zb\n

(2 Za + ZL) -ZL
\nZ a Zb\n

Vi(Zb + ZL)

\nZb(2Za Zl) ZaZL\n

(2 Za + ZL) Vi\n

Vl (Za + Zl)

\nZb(2Za + ZL) + ZaZL\n

(11-109)\n

The load current /2 may be found in terms of I and /' as\n

T = 7 \342\200\224T' = Vi(Zb
\342\200\224

Za)\n
2

Zb{2Za + ZL) + ZaZL\n

(11-110)\n

The voltage across the load impedance is IiZL\\hence the voltageratio

\ntransfer function becomes\n

Vi _ IiZl _ ZL(Zb \342\200\224
Za)\n

Vl

~
~V\\

~
2ZaZb + ZL{Za+ zb)\n

(11-111)\n

The lattice network has very useful properties when the network ele\302\254

\nments are selected such that\n

Zl = R and ZaZb \342\200\224R^\n

With these restrictions, the equation becomes\n

Vi = (Zb
- Za) = fi2 -

Z02

\nVi 2R -\\- {Za \342\200\234I-Zb) R2 -}- Za2 2 RZa\n

{R
\342\200\224

Za)(R \342\200\234HZa) R \342\200\224
Za\n

{R Za){R Z^) R -f- Za\n

(11-112)\n

(11-113)\n

To apply this derivation to a specificnetwork,let the impedance Za be

\nrepresented by the parallel LC network shownin Fig.11-28. The net-\n

o\n
o\342\200\224nnnp\342\200\2241(\342\200\224o\n

^
C2\n

zb\n

Fig. 11-28. Networks for Za and Zb.\n

work to represent Zb must be the dual of that representingZa. The

\nseries LC network for Zb is also shown in Fig. 11-28.The impedance

\nfor the parallel LC network is\n

y
/ \\ 1 L\\S\n

aW
Cis + 1/Lis

\"
LiCiS2+ 1\n

(11-114)\n
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while the series LC network has impedance given by\n

z*\302\253
- * +

\302\243

-
^r1 o1-118)\n

Now the parameters Lh L2, C\\, C2, and R must be selectedto satisfy

\nEq. 11-112. One set of parameters that satisfies the requirements is
\nL\\

= Li = 1 henry, C\\ \342\200\224
C%

= 1 farad, and 5 = 1 ohm. Thereare
\nother such values; these are selected for their simplicity in illustrating
\nthe frequency behavior of the lattice network. With this choice of
\nparameters, the impedance functions become\n

z. =
s^r-[; Zi.= Z.Z, = 1 = R* (11-116)\n

The voltage ratio transfer function isgivenby Eq. 11-113. With the

\nassignedparameters, this transfer functionbecomes\n

or\n

72(s) _ 1 \342\200\224
s/(s2 + 1)\n

Vi(s) 1 + s/(*2 + 1)\n

F2(s) =
s2 - 8 + 1 (s -

Si)(s
\342\200\224

Si*)\n

Fl(s) S2 + S + 1 (s \342\200\224
Sa)(s

-
8a*)\n

(11-117)\n

(11-118)\n

The two zeros of the voltage transfer function havethe values\n

* I
1 1 .\n

Si, 8!* = +
2

\302\261J
-~2~\n

(11-119)\n

and the poles have the values\n

*
1 . -\\/3\n

Sa, s\342\200\236*
= -

2
\302\261J

~2~\n
(11-120)\n

The pole-zero configuration for the network of Fig.11-29is shown in

\nFig. 11-30. The poles and zeros are located ona unit circle about the\n

1 farad\n

Fig. 11-29. Symmetrical lattice with
\nelement values assigned.\n

/A\n
/\n

/\n

t\n

1\n

jo>\n

\"V1\n
N\n

\\\n
\\\n

l\n 1\n
\\\n

/\n
\\\n /\n

\\\n /\n

/\n 1 \t\n \342\200\242\n
b*\n

\\\n\\\n

Pig. 11-30. Pole-zero configura\302\254

\ntion.\n

origin of the s plane. They are symmetrically located with respectto
\nthe axis of reals and axis of imaginaries. The twopolesandtwo zeros so\n
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arranged in the s plane are known as a quad. If otherparametervalues

\nare selected still satisfying the requirements of Eq. 11-112, the poles
\nand zeros will still be located symmetrically with respect to theaxisof

\nimaginaries. The zeros will always be located in the right halfplane
\nand the poles in the left half plane, and both polesand zeros will occur\n

either in conjugate pairs or on the
\nreal axis.\n

We now come to the problem of

\nfinding the frequency response\342\200\224the

\nvariation of the magnitude and
\nphase angle of the transfer function
\nwith frequency. As outlined in

\nprevious sections, the frequency re\302\254

\nsponse is found by drawing phasors
\nto different points on the joy axis. A

\ntypical graph is shown in Fig. 11-31
\nfor s \342\200\224

joyi. Each phase angle is
\nfound with respect to the positive
\na axis. First let us examine the

\nfrequencybehavior of the transferfunction relating V2 and V\\. For

\ns =
joy, Eq. 11-118 becomes\n

Fig. 11-31.Frequency response com\302\254

\nputation.\n

Vi{joy) _ {joy
\342\200\224

Si)(j(o
\342\200\224

Si*)

\nVi(ja) {joy
\342\200\224

sa) {joy
\342\200\224

sa*)\n
(11-121)\n

But from the figure, we see that the magnitudeof {joy
\342\200\224

Si) is always

\nequal to the magnitude of {joy
\342\200\224

sa); likewise, the magnitude of

\n{joy
\342\200\224

Si*) is always equal to the magnitude of
{joy

\342\200\224
s\302\253*). In terms of

\nthe last equation we have discovered that\n

v*U*)\n

Vi{joy)\n

= 1\n (11-122)\n

In other words, we have arrived at the remarkableconclusionthat for

\nthis network, the magnitude of the output is alwaysequalto the mag\302\254

\nnitude of the input\342\200\224for any frequency. Our network is made up of four

\ninductors, four capacitors, and one resistor, and yet it has the same

\nfrequency invariant characteristic associated with purely resistive net\302\254

\nworks. There must be something else of interest in this networkafter

\nwe have come this far. Let us examine the phase of the transfer func\302\254

\ntion as a function of frequency.\n
In computing the phase, we regard the phase from zero terms as

\npositive
and from pole terms as negative. When <0

= 0 the phase is

\ngiven as\n



Art. 11-6\n SINUSOIDAL STEADY-STATE ANALYSIS\n 267\n

6
= + 0i* ~ 0. -

<t>a*
= 240\302\260 + 120\302\260

-
300\302\260

-
60\302\260 = 0\302\260\n

(11-123)\n

There is no phase shift at zero frequency. (It is seenfrom the network

\nof Fig. 11-29 that the input and output are identical at zerofrequency,
\nwith the inductor acting as a short circuit, the capacitoractingasan
\nopen circuit, and thus the two-terminal-pairs directly connected
\ntogether.) As the frequency increases, the phase of V/V
\nbecomes negative, approaching \342\200\224360\302\260as the frequency becomes

\ninfinite. The phase and magnitude characteristics are shown in Fig.\n

11-32. This network finds application as a phase-shifting network in\n

Tig. 11-32. Phase and magnitude characteristics of a symmetrical\n

lattice network.\n

telephone circuits. Note, incidentally, that for the first time we have

\nfound zeros located in the right half plane. As discussedin the last

\nchapter, zeros are permitted in the right half planefor (output/input)
\ntransfer functions, but poles are not. This is true only for the transfer

\nfunction; neither poles nor zeros are permitted in the righthalfplane
\nfor driving-point immittances.\n

FURTHER READING\n

For further reading on analysis in the sinusoidalsteady state in

\nterms of poles and zeros, see LePageandSeely,General Network Analy\302\254

\nsis (McGraw-Hill Book Co., Inc., New York, 1952),pp. 8-12,193-196;
\nand Guillemin, Introductory Circuit Theory (John Wiley & Sons, Inc.,
\nNew York, 1953), Chap. 6. See also D. F. Tuttle, Jr., Network Syn\302\254

\nthesist, 2 vols. (John Wiley & Sons, Inc., New York, in
preparation).\n

PROBLEMS\n

11-1. By manipulating unit phasors as in Art. 11-1,show that\n

sin2 <at + cos2 tat = 1\n

(That is, start with the phasors eiut and e~iat and manipulate these

\nphasors to prove the identity givenaboveby a graphical construction.)\n
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11-2. Find the steady-state solution of the differential equation\n

Ri(t) +
^ j

i(t) dt \342\200\224
v(t)\n

for a sinusoidal v(t), by letting v(t) have the form\n

11-8. Find the steady-state solution of the differential equation\n

L
^ j

i(t) dt =
v(t)\n

for a sinusoidal driving force v(t), by letting v(t) have the exponential

\nform Ve^K\n

11-4. For the network shown in the figure, find the steady-state

\ncomponent of i(t) when v(t) = V sin cat,by using Eq. 11-14.\n

Prob. 11-4. Prob. 11-5.\n

11-5. For the network shown in the figure, sketch G(j<a)
= V2(ja)/

\nVi (ju>) as a function of <o for (a) polar coordinates M(ca) and
0(\302\253), and

\n(b) rectangular coordinates M vs w and <f> vs co. On the plots, clearly
\nindicatethe low- and high-frequencyasymptotes.\n

11-6. Repeat Prob. 11-5 for the network shown.\n

Prob. 11-6. Prob. 11-7.\n

11-7. Repeat Prob. 11-6 for the networkshown.\n

11-8. Show that the phasor locus representation of Eq. 11-48given

\nas Fig. 11-9 is a semicircle centered at Re G(jta) = 0.5.\n

11-9. For the one-terminal-pair network shown in the figure,sketch:\n

(a) \tthe driving-point impedance Z(jta) as a function of a>, and (b) the

\ndriving-point admittance Y(ju) as a function of o>, using polar coor\302\254

\ndinates as in Fig. 11-13. The sketches should have onepointlocated\n
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accurately and the low- and high-frequency asymptotesclearly
\nindicated.\n

\342\226\240AAAr\n

R\n

Z{ju) and Yiju)\n

Wv\n
1 Q\n

and Yiju)\n

\342\226\240AAA/\342\200\224i

\n10\n

=t=lf\n

Prob. 11-9.\n Prob. 11-10.\n

11-10. Repeat Prob. 11-9 for the one-terminal-pairnetwork shown.\n

11-11. Repeat Prob. 11-9 for the one-
\nterminal-pairnetwork shown.\n

L\n

Z{ju) and Yl/w)\n

Prob. 11-11.\n

11-12. The pole-zero configuration
\nshown in the figure represents the admit\302\254

\ntance function for the series RLC circuit
\nshown in Fig. 11-19. From the pole-zero
\nconfiguration, determine: (a) the undamped
\nnatural frequency w\302\273,(b) the damping ratio

\nf, (c) the circuit Q, (d) the bandwidth (to
\nthe half-power points), (e) the actual fre\302\254

\nquency of oscillation of the transient re\302\254

\nsponse, (f) the damping factor of the
\ntransient response, (g) the frequency of

\nresonance, (h) the parameter values (in
\nterms of L if the values cannot otherwise be
\nuniquely determined), (i) Sketch the mag\302\254

\nnitude of the admittance | Y (ju) | as a func\302\254

\ntion of frequency, (j) If the frequency
\nscale is magnified by a factor of 1000, how
\ndo the values of the parameters, R, L, and
\nC change? Answers, (a) 4.04, (b) 0.124,\n
(c) \t4.04, (d) 1.0, (e) 4.0, (f) 0.5, (g) 4.04,
\n(h) R =

L, C = 0.061/L.\n

1 pole\n

1 zero\n

-2\n -l
u\n

1 pole\n
g\t\n

+J4\n

+>3\n

+J2\n

+j 1\n

-;2\n

\342\200\234>3\n

-;4\n

-;5\n

Prob. 11-19.\n
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11-13. The passive network shown in the accompanying figure is

\nknown as a double-tuned circuit. It consists of two parallelRLC net\302\254

\nworks coupled with a capacitor Cc. For a certain combination of\n

A ,c \t\n

-0.5+; 2.0 x\n
jo) -0.5+7 2 x\n

j(jJ\n

-0.5+7 1.5 x\n

(Scale factor -1)\n

(Scale factor-1)\n -0.5+7 1 x\n

3 zerosv\n 3 zeros ^\n

h
*

^\n ^
c\n

-0.5-7 1 *\n

-O.5-7 1.5 *\n

-0.5->2 x\n -0.5->2 x\n

(0)\n (61\n

Prob. 11-13.\n

parameters, the pole-zero configuration is as shown in the figure as (a)

\nand (b) for the transfer impedance, Z2i(s) = Vi(s)/Ii(s). From the

\npole-zero configuration (accurately plotted), plot the magnitude of the
\ntransfer impedance as a function of frequency to.\n

11-14. The frequency response shown in the figure is observedfor a

\ngiven network, Draw a pole-zero configuration that can
give this\n
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response. (Note: there is no unique solution to the problem, but every

\nsolution must be such as to meet the requirementsat low frequencies,

\nhigh frequencies, and resonance.)\n
11-16. A black box is markedu

RLC Series Circuit\342\200\235 but no
compo\302\254

\nnent values are indicated. You are seeking a circuit that willoscillate
\nif a battery is connected to the box by the closingofa switch. In your

\nlaboratory, you have standard test equipment such as vacuumtube

\nvoltmeters, ammeters, sine wave generators\342\200\224any frequency range.

\nHowever, you have no adequate cathode ray oscillograph.You are
\nnot certain that you could detect oscillation with the instruments you
\nhave, since the frequency of oscillation may be very high. The prob\302\254

\nlem you face is this: with measurements made in the sinusoidalsteady
\nstate, how can you determine whether the current through the black
\nbox will oscillate when the switch is closed and what will be the fre\302\254

\nquency of oscillation. Describe the experiment you would perform.\n
11-16. Showthat the bandwidth B varies inversely with the circuit

\nQ for a series RLC circuit.\n

11-17. Show that for an RLCseriesnetwork the product of |
\nand the bandwidth B equals 1/L, where L is the inductance.\n

11-18. Draw the phasor locus corresponding to the transfer function,
\nG(s)

= l/(s2 -f- a). Carefully identify the high- and low-frequency
\nasymptotes.\n

11-19. Draw the phasor locus for the function G(s) = l/s(s2+ as
\n+ 1). Carefully identify the high-frequency and low-frequency
\nasymptotes.\n

11-20. The two poles and zero shown in the s planeof the accom\302\254

\npanying sketch are for the transfer function of a two-terminal-pair
\nnetwork, G(s)

= F2(s)/Fi(s). The zero is on the
\nreal axis at a position to correspond with the
\nsame real part of the poles. The poles have

\npositions corresponding to f = 0.707(0 =
45\302\260);

\nw\342\200\236is the distance from the origin to the poleas
\nshown. In this problem, we will investigate the
\neffect of the finite zero by computations with
\nand without the zero, (a) The bandwidth of the
\nsystem is modified from the definition given in
\nthe chapter as the range of frequencies from
\n<o = 0 to the halfpower point. Compute the
\nbandwidth of the system with the pole-zero
\nconfigurationshown above; computethe band\302\254

\nwidth with the zero removed. In which case is the bandwidthgreater
\nand by what factor? A graphical construction is suggested, (b) We\n
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define the per cent overshoot in response to a step functioninputas

\nmaximum value \342\200\224final value\n

final value\n
100%\n

Compute the per cent overshootfor the two cases described in (a). In

\nwhich case is the overshoot greater? By what factor? Check point:\n

4.3 % without the zero, (c) Discuss qualita\302\254

\ntively the effect of another pole on the real
\n<r axis but with a position ten times further
\nfrom the origin than the zero with respect
\nto (1) the transient response and (2) the
\nbandwidth.\n

11-21. For the pole-zero configuration
\nshown in the figure, compute a curve of

\nbandwidth (as defined in Prob. 11-20) as
\na function of zero position from a = \342\200\2244to

\n<r = 0. Show any changes in curvature

\ncarefully.\n

11-22. Consider the pole-zero configuration of Prob. 11-21 without
\nthe \342\200\234test zero.\342\200\235 To the configuration is added a so-called \342\200\234dipole\342\200\235

\nof a zero at <r = \342\200\2240.1and a pole at <r = \342\200\2240.105. Show that this dipole\n

Poles and zeros
\nof G(*)-V2(*)/Vi(\302\253)\n

jta\n

-1+/2 x\n

Test\n

-5 -4 zero\n 9\n
\"

I

*\n

-1-/2x\n

Prob. 11-21.\n

\342\226\240AAAr

\nR\n

Yl\302\253)\n

Prob. 11-28.\n
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does not appreciably affect the bandwidth or the transient response
\nto a step input. (The use of a dipole to changecertaincharacteristics
\nof network response without changing bandwidth is described in the
\nliterature relating to servomechanisms as lag or integral compensation.)\n

11-23.For a series RL circuit, the phase of the voltage waveform
\nwith respect to the current waveform is measured and plotted in the
\nfigure. Plot (with coordinate values) the pole-zero configuration for
\nthe driving-point admittance of the RL circuit.\n

0 10 20 30 40 50 60\n

Frequency in cycles/sec.\n

Prob. 11-24.\n

11-24. The curve of the accompanyingfigure represents the current

\nmagnitude as a function of frequencywith constantinputvoltage for

\nan RLC series circuit. From this plot, determine the locationsof the

\npoles and zeros in the s plane for the network under study.\n



CHAPTER 12\n

ONE-TERMINAL-PAIR REACTIVE NETWORKS\n

12-1. Reactive networks\n

The networks to be studied in this chapter willbe restrictedin two

\nways. (1) The networks will be assumed to be made up of inductances

\nand capacitances only. Since these networks contain no resistiveele\302\254

\nments, they are said to be dissipationless. (2) Only one-terminal-pair
\nnetworks will be considered. The appropriate network function for the
\none-terminal-pairnetwork is the driving-point immittance (either

\nimpedance or admittance). The driving-point impedance and admit\302\254

\ntance are\n

Z(s)
=\n

V(s)\n

I(s)\342\200\231\n

Y(s)
=\n

m\n

V(s)\n
(12-1)\n

respectively, where F(s) is the voltage and 7(s)is the current at the

\ndriving-point terminals.\n

Driving-point immittances are found by combiningimpedance or

\nadmittance expressions for elements in the network. These expressions
\nfor inductance and capacitance are summarized in the following table.\n

Impedance Admittance

\nInductance Ls l/Ls\n

Capacitance 1/Cs Cs\n

Any arbitrarily complicated network can be broken into parts con\302\254

\nsisting of series and parallel combinations of elements. For a series
\ncombination of any number of inductances and capacitances, the total
\nimpedance is\n

Zt(s)
= Zi(s) + Zt(s) + \342\200\242..+ Zn(s) (12-2)\n

or Zt(s) = (Li + Li -j-L% -f- ...)\302\253 + \342\200\224h

^

~ (12-3)\n

=
L\342\200\236s+ (12-4)\n

In this expression Leq is the equivalent inductanceandCeq
is the equiv\302\254

\nalent capacitance of the series system. Equation 12-4 may be manip\302\254

\nulated algebraically to the form\n

Zt(s)
\342\200\224

Leq\n

S2 + 1 /LeqCeq
\n8\n

(12-5)\n

274\n

8\n
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Similarly, the total admittance of a parallel combination of any
\nnumber of inductances and capacitances is\n

Yt(s)
- Y1(s) + F,(\302\253) + ... + Yn(s) (12-6)\n

or F)(s)
= (Ci 4- C2 + C3 + ...)s + \342\200\224|- \342\200\224f-.. \342\200\224

(12-7)\n

= Ceqs + -=J- (12-8)\n
LieqS\n

where Ceq and Leq are the equivalent capacitance and inductanceofthe
\nparallel combination of elements (hence this set of equivalent values
\nis different from those symbolized identically in Eq. 12-4). The last
\nequation may be rearranged in a form similar to Eq. 12-5;thus\n

Yt(s)
= Ceq

** + 1/LegCag
(12-9)\n

s\n

for a parallel system. The only difference in the form ofthe two equa\302\254

\ntions for Yt and Zt is the multiplying constant.\n

o\342\200\224
1( 1(

o \342\200\224
\342\200\224|(-o\n

L1 L2 Cl C2 Leq
Ceq\n

la)\n

l\n

0

l\n

ill\n
: l2 i

\342\226\240
Ln Ci =\n

\342\200\224
*\342\200\224J

0\n

Leg O\n Ceq\n

. \302\243\n ?\n si\n

1\n

lb)\n

Fig. 12-1. Equivalent immittance function representations.\n

The driving-point immittance for a complexnetwork is found by

\nadding impedances and the reciprocals of admittances,oradmittances
\nand the reciprocals of impedances. Since all networks can be arbi\302\254

\ntrarily divided into a number of series and parallel networks, the
\nexpression for driving-point immittance will be a combination of terms
\nof the form of Eqs. 12-5 and 12-9, and
\ntheir reciprocals. Several examples

\nwill illustrate such combinations.\n

Example 1\n

The network shown in Fig. 12-2
\nis seen to be made up of a series
\nLC network in series with a parallel
\nLC network. The driving-point impedance is given as\n

Zae
= Zab +

y\342\200\224\n1 be\n
(12-10)\n
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or, in terms of individual element immittances,\n

Chap. 12\n

Zac
= L\\S -f- t=\342\200\224-+\n (12-11)\n

C\\S C%8 \342\200\234f\"I/L2S\n

This equation may be rearranged in the form of Eqs. 12-5and12-9as\n

s\n

Zac
= U

*2 +
l/L\302\261Cl

+\n

C2(s2 + 1/L2C2)\n
(12-12)\n

or\n
V _ r s4 + (1/LxCx + 1/L2C2+ 1/LiC2)s2+ 1/UUCrC,

\nac 1
S8 + s/L2C2\n

(12-13)\n
Example 2\n

The network shown in Fig. 12-3 is a ladder networkwith specific

\nelement values designated. The driving-point admittance for this\n

network will be found by grouping
\nthe network elements into several

\nseries and parallel combinations.
\nThe impedance from node a to node
\nb is\n

lo\342\200\224nflflT'-\n

1 henry 2\n

1 farad 7^.\n

l'o-\n
2*\n

-o-\n

. 2 henry\n

1 farad \342\200\242\n

Tig. 1S-S. LC ladder network.\n
Za6(s)

= 2s + - = ^ ^
(12-14)\n

s s\n

The reciprocal of this impedance Y& can be combinedwith the admit\302\254

\ntance of the 1-farad capacitor; thus\n

=

K-+h.=
*+

2<\302\273* +1).\n

or\n F22'(s)
=\n

2s8 + 3s

\n2(sl + 1)\n

(12-15)\n

(12-16)\n

The driving-point impedance at terminals 1-1' is found by combining

\nthe impedance of the 1-henry inductance with the reciprocalof Ytr)

\nthus\n

7 f\302\273\\ 7 . J_ _ , \342\226\2402(^ + 1)\n

Zn'(s)
- Zla +

ytr
+ 2s8+ 3s\n

Simplifying,\n Zn'(s)
=\n

2s4 + 5s* + 2
\n2s8 + 3s\n

(12-17)\n

(12-18)\n

The driving-point admittance is the reciprocalof Zw and so is given

\nby the expression\n

Yn<>) = (12-19)\n

or\n Fn'(s)
=\n

2s4 + 5s* + 2\n

s8 + 1.5s

\ns4 + 2.5s* + 1\n
(12-20)\n
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A comparison of the various derived expressions for driving-point
\nimmittance will show a number of common features:\n

(1) All the equations\342\200\224Eqs. 12-5, 12-9, 12-13, and 12-20, as well as
\nintermediate steps\342\200\224are quotients of polynomials in \302\253with a

\nconstant multiplier.\n

(2) The order of the numeratoranddenominator polynomials never

\ndiffers by more than unity.\n

(3) The polynomials have only even powers of s or odd powers of s

\nin any one polynomial. Further, if the numerator polynomial
\nhas only odd powers of a, the denominator polynomial always

\nhas only even powers of a, and vice versa.\n

(4) In a polynomial with even powers of a, no eventermof degree

\nless than the term of maximum degree can be missing.The

\nsame condition holds for odd terms in odd polynomials.\n

Now a polynomial with only even powers of a (or whatever the var\302\254

\niable may be) is by definition an even polynomial. Similarly,a poly\302\254

\nnomial with only odd powers of a is by definition an oddpolynomial.
\nHence statement (3) may be expressed in different words as: the
\ndriving-point immittance functions are all odd to even or even to odd
\nquotients of polynomials.\n

To illustrate further the concept of even and oddpolynomials,the

\nequation\n

Px(a)
= a8a8 + a\302\253a# + cua4 + 02a2 + aoa\302\260 (12-21)\n

is an even polynomial, since it contains only even powersof a. Sim\302\254

\nilarly, the equation\n

P2(s) = a7a7 + a6a6 + a3a3+ 01a (12-22)\n

is an odd polynomial containing only odd powers of a. The equation\n

P3(s)
= ats* + a3a* + a2a2+ aia + a0 (12-23)\n

contains both even and odd powers of a and so is neitheran even nor

\nan odd polynomial, but has both an even and an odd part.\n

The four statements just given are made on the basis of only a

\nlimited number of examples. However, these statements are shown

\nto be true in general for LC networks in advanced textbooks.*Fur\302\254

\nther, statements (1) and (2) are true for the driving-pointimmittance
\nof any network\342\200\224RL, RC, or the general RLC. Only statements (3)
\nand (4) apply only in the case of the dissipationless LC network.\n

\342\231\246SeeGuillemin, Communications Network, Vol. II (John Wiley A Sons, Inc.,

\nNew York, 1935), pp. 184 ff., or Tuttle, Network Synthesis, 2 vols. (John Wiley A

\nSons, Inc., New York, in preparation).\n
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On the basis of the above discussion, we will assumethat driving-

\npoint immittances for dissipationless (LC) networks are quotients of

\neven to odd polynomials or odd to even polynomials. Further, the
\norder of the numerator and denominator polynomials will never differ

\nby more than unity. Such a general impedance (and the samewill hold

\nfor admittance) can be written in the form\n

Z(s)
=\n

at nS2n + a2n-2S2n~2 + \342\200\242\342\200\242\342\200\242+ c^s2 + qp\n

&2n-lS2n_1 + 62n-3S2n_3 + . . . + blS\n
(12-24)\n

as a quotient of an even to odd polynomial,and with ao = 0 such that

\nan s may be factored out of both numerator and denominator,an odd

\nto even polynomial. The numerator polynomial may be consideredto
\nbe an equation in s2 which may be factored into its n roots.After the

\ncommon s is factored from the denominator of the last equation, the

\nequation can be factored into n \342\200\2241 roots in s2. In factored form, the
\nequation becomes\n

7(n\\ \342\200\224ff
\302\256l2)(s2 + *32). . . (S2 + \302\2532n-l2)\n

W
S(S2 + S22)(S2 + \302\25342)\342\200\242\342\226\240\342\200\242(S2 + \302\2532n-22)\n

(12-25)\n

where\n H = ,a2n > a constant (12-26)\n
t>2n-l\n

Typical form of the factors in Eq. 12-25is (s2+ Si2), which factors into

\ntwo roots as\n

s2 = -s:2; s =
\302\261js i (12-27)\n

The roots are thus purely imaginary. Such imaginary valuesof roots

\nhave previously been associated with radian frequency. To emphasize

\nthis identification, we will change notation at this point by letting
\nterms of the form sn become Hence typical roots of the impedance

\nequation will have roots occurring in pairs as purely imaginarynumbers

\nof the form\n

s =
\302\261jan (12-28)\n

Then the driving-point impedance expression becomes\n

Z(s)\n

H (s2 + o>12)(s2 + o>32)...\n
S (s2 + G>22) (s2 + 0)42) . . .\n

(12-29)\n

or, if Oo = 0 in Eq. 12-24,\n

Z(s)
= Hs\n

(s2 + 0)22)(s2 + 0>42) . . .

\n(\302\2562+ 0)12)(s2 + 0)32)...\n
(12-30)\n

The reason for the particular choice of subscripts for to will be discussed

\nlater.\n
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From this point on, we will restrict our considerationsto thespecial
\ncase of the sinusoidal steady state. The mathematical consequence of
\nthis restriction is that s = j<a and that the s2 terms in the previous

\nequations become s2 = \342\200\224w2. For the two cases of the last two equa\302\254

\ntions, the substitution s = jta gives\n

or\n

ZU\\n")

H (w2

\nj<0 fa2\n

z (j\302\273)
=

\302\261j\302\273H

\302\243\302\243\n

-
\302\253i2)(tt2

\342\200\224
0>82) .\n

-
&>22)(tt2

\342\200\224
\302\25342).\n

\342\200\224
&>22)(\302\2532

\342\200\224
W42)\n

\342\200\224
Wi2)(o)2

\342\200\224
\302\253J2)\n

(12-31)\n

(12-32)\n

The \302\261sign in these equations is introduced to account for therebeing
\nmore (\342\200\2241)factors removed from the numerator than the denominator
\nor vice versa.\n

In the sinusoidal steady state, the general driving-pointimmittance
\nfunctions are complex and of the form\n

Z(j\302\273)
=

fl(\302\253) + jX(u) (12-33)\n

or F(j\302\253)
-

<?(\302\253) + jB(\302\273) (12-34)\n

where R(a) = resistance, X(w) = reactance, G(a) = conductance,
\nB(o))

=
susceptance. According to Eqs. 12-31 and 12-32 written for

\nthe driving-point impedance (and of the same form for the driving-
\npoint admittance), Z(jw) is purely imaginary. This follows because
\nterms of the form (<o2 \342\200\224

co\342\200\2362)are always real, and likewise the multiply\302\254

\ning constant H is always real as well as positive. Thusfor LC networks,\n

Z0\302\253)
=

jX (\302\253) and Y(j<*)
= jB(u) (12-35)\n

Since the impedance function is purely reactive,LC networks are

\nspoken of as reactive networks.\n

12-2. Separation property for reactive networks\n

When the reactance function X(u>) discussed in the previoussection
\nis differentiated with respect to radian frequency w, the resultant func-\n

Pig. 12-4. Geometry of positive and negative slope.\n

tion is always positive; that is,\n

dX\n

dco\n

> 0\n (12-36)\n



280\n ONE-TERMINAL-PAIR REACTIVE NETWORKS\n Chap. 12\n

We will postpone the proof for this statement until the partialfraction

\nexpansion of X(co) is studied. In terms of a plot of X asa function of

\nfrequency, the slope of the curve must always be positive;that is,
\nmust be increasing with increasing co. If we start with a givenvalue

\nof reactance, Xx at some frequency coi, then as frequency increases,X

\nmust increase, finally to an infinite value. This is illustrated in Fig.\n

12-5. At the frequency of infinite reactance, the sign of X changes.\n

Fig. 12-6. Reactance as a function of frequency.\n

Starting again at X(<a) = \342\200\224
\302\260o,the slope must again be positive. The

\ncurve of X is shown to increase to zero value, thenceincreaseto infinite

\nvalue before the cycle of change is repeated. The reactancefunction

\nhas a magnitude which varies from zero value to infinitevalueasfre\302\254

\nquency changes. Those values of frequency which result in a zerovalue

\nfor the reactance are zeros (of frequency). Frequencies resultingin

\ninfinite magnitude of reactance are poles (of frequency). The zerofre\302\254

\nquencies are also sometimes spoken of as resonant frequencies (frequen\302\254

\ncies of zero reactance), and the pole frequencies are calledantiresonant

\nfrequencies (infinite reactance).\n

Because of the property of reactive networks that the derivative

\ndX/dco always be positive, the poles and zeros of the reactivenetwork

\nfunction must alternate. The poles must be separated by zerosand the

\nzeros by poles. This is referred to as the separationproperty for reac\302\254

\ntive networks.\n

The poles and zeros of the reactance function illustratedinFig.12-5

\ncan be located by inspection of the reactance function. A term of

\nthe form (co2 \342\200\224
w\342\200\2362)in the numerator of X(co) locates two zeros at

\nco =
\302\261con. Similarly, a term (to2

\342\200\224
com2) in the denominator of X(a)

\nlocatestwo polesat co =
\302\261com. There remain only to consider the poles

\nand zeros at zero frequency and at infinite frequency. We will start our

\nstudy of these lower and upper limit frequenciesby considering the be\302\254

\nhavior of elements and combinations of elements at co = 0 and co = <*.\n

The reactance of an inductance varies with frequency as given by

\nthe equation\n
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XL = (oL (12-37)\n

Thus XL has a zero at w = 0 and a pole at w =
\302\273, since XL varies

\ndirectly with \302\253.The expression for the reactance of a capacitance\n

X\n (12-38)\n

showing that since Xc varies inversely with w, Xc is infinite at zero

\nfrequency so that zero frequency is a pole and is zeroat infinite fre\302\254

\nquency so that infinite frequency defines a zero. These relationships
\nfor inductance and capacitance are summarized below.\n

CO\n Xc\n XL\n

0\n pole\n zero\n

00\n zero\n pole\n

In the case of LC networks, we can attach a physical significance to

\nthe terms pole and zero. A pole of reactance means an infinitevalue

\nof reactance which we interpret physically as an open circuit. The
\ncapacitance does appear to be an open circuit at zerofrequency(direct
\ncurrent) since the capacitor plates are not in physical contact. Sim\302\254

\nilarly, an inductance appears to be an open circuit at very high
\n(approaching infinite) frequencies. The word \342\200\234choke\342\200\235is applied to

\nthe inductor because of this high reactance at high frequency. Bydual
\nreasoning, a zero of reactance means zero value of reactance. Zero
\nreactance (and thus zero impedance, since there is no resistancepres\302\254

\nent in the networks being considered) is interpreted as a shortcircuit.
\nAn inductance appears to be a short circuit at zero frequency(direct
\ncurrent) because (d/dt)(Li)

= 0 and no voltage appears across the
\ninductance. Likewise, the capacitance appears to be a short circuitat
\ninfinite frequency. This physical interpretation of poles and zeros at
\n<o = 0 and \302\253= oo allows the zero and infinite poles and zerosof a net\302\254

\nwork to be found by inspection. Several examples will illustrate this
\nfeature.\n

o\342\200\224\342\200\224If
\nL

c\n

Z-+\n

o \t\n

(a)\n

o-\n

Z\n

o-\n

L2\n

Fig. 12-6. LC networks for examples.\n

Figure 12-6(a) shows a simpleseriesLC network. At zero frequency

\n(direct current) the capacitor acts as an open circuit. Hence the
\ndriving-point impedance for this network has a pole at zero. At infinite\n
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frequency, the inductance acts as an opencircuit.Thusthe impedance

\nfunction also has a pole at infinity. A more complicated network is

\nshown in Fig. 12-6(b). At zero frequency, C\\ acts as an open circuit,

\nmaking the behavior of any otherelements in the network at zero fre\302\254

\nquency Irrelevant. The driving-point impedance thus has a pole at
\nzero frequency. At \302\253= <*>, C1, C2, and C3 behave as short circuits,
\nand L? and L2 as open circuits. There is a zeroimpedancepath from

\nterminal to terminal through Ci-Cz-Cz. Then the driving-point imped\302\254

\nance has a zero at infinite frequency. We conclude that the network

\nof Fig. 12-6 (b) has a pole at zero and a zeroat infinity.\n

The behavior of the driving-point impedance at zero and infinite

\nfrequencies can be determined from the mathematical form of the
\nimpedance function. Using s in place of j<a to simplify notation,the
\ndriving-point impedance given as Eq. 12-24 may be rewritten as\n

yr
\\ _ Un$n ~f~ dn-2Sn

2
~l~ ... dp

\nbmsm -f- 6m_2sOT-2 + ... + bi$\n
(12-39)\n

where n is even and m odd. As s = jcoapproachesa very large value,

\nonly the highest-ordered term of the numerator and denominator
\npolynomials need be considered. This is to say that\n

lim Z(s)
= lim\n

bmsm\n
(12-40)\n

Now n and m can differ at most by unity and are never equal, as

\ndiscussed in the last section. Hence as s approachesinfinity, Z(s)

\napproaches either zero or infinity, depending on whether m is larger

\nthan worn larger than m. In either case, because n andm can differ

\nby unity at most, the pole or zero at infinity willbe simple (not mul\302\254

\ntiple) . In summary: If the order of the numerator polynomialisgreater

\nthan the order of the denominator polynomial, there willbe a simple

\npole at infinity. If the converse is true, there will be a simple zero at

\ninfinity.\n

For the low-frequency case, only the lowest-orderedtermsin the

\npolynomials of the impedance function need be considered. In Eq.\n

12-39, the higher-order terms may be ignored as\n

Z(\302\253)
=\n

... -f- d2s2 -|- do
\n... -f- 6js*-|- bi$\n

(12-41)\n

The two possible cases of an even-to-odd or odd-to-evenquotientof

\npolynomials can be taken into account by considering two possibilities
\nin this equation: (1) do ^ 0, and (2) do

= 0. For case (1),\n



Art. 12-2\n ONE-TERMINAL-PAIR REACTIVE NETWORKS\n 283\n

lim Z(s)
= lim \342\200\224= + oo

\n\342\200\242\342\200\224\302\273o\302\253->0\302\253\n

and there is a pole at zero frequency. For case (2),\n

(12-42)\n

lim Z(s)
= lim Hs = 0 (12-43)\n

8\342\200\224>0\n

and there is a zero at zero frequency. From this discussion,we see that

\nwhen the lowest-ordered term of the numerator is of higher order
\nthan the lowest-ordered term of the denominator, there will be a sim\302\254

\nple zero at zero. If the converse is true, there willbe a simple pole at

\nzero.\n

In all cases, zero and infinity (frequency) are either polesor zeros

\nfor LC networks. Further, these poles and zeros are always simple.
\nTwo examples will illustrate these conclusions.\n

Example S\n

For this example, suppose that the driving-point impedance is given
\nby the expression\n

Z(s) = 2\n
(s2 + 1 )(s2 + 9)

\ns(s2 + 4)\n

(12-44)\n

The order of the numerator polynomial is 4, and that of the denom\302\254

\ninator is 3. Applying the rule for infinite frequency stated onpage282,
\ninfinity is a pole, since the order of the numerator is greaterthanthat
\nof the denominator. Since for small values of s, Z(s) approachesthe
\nform H/s, zero frequency is also a pole. By inspection,thereare finite\n

s-plane\n

x at oo\n

ju\n

Fig. 12-7. s plane and reactance plot of Example3.\n

zeros at to =
\302\2611 and \302\253= \302\2613, and a finite pole at o> =

\302\2612. The pole-

\nzero configuration and a plot of this reactancefunctionare shown in

\nFig. 12-7. The reactance function X(<a) may be found from Eq. 12-44
\nand different values of \302\253substituted into this equation to make the plot.\n
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Example 4\n

For this example, consider an impedance function with the order
\nof the denominator greater than that of the numerator. Let\n

- 3
(* + l)tA 9) (m3)\n

In this equation,the order of the numerator is 3 and that of the
\ndenominator is 4. Analysis of this equation shows that both zeroand
\ninfinity are zeros and that there are finite poles at go =

\302\2611and go \342\200\224
\302\2613\n

| w e
*\342\200\224\342\200\224<}>\n

w\342\200\2340\302\253\342\200\2341\302\253-2 w~3 to-oo\n

Fig. 12-8. Plots of Example 4.\n

and one finite zero at <o =
\302\2612. The s-plane representation and the

\nreactance function plot are shownin Fig.12-8.\n

12-3. The four reactance function forms\n

It has been shown in the previous section that zero and infinite

\nfrequencies are always either poles or zeros. The four possibilitiesfor

\nthe two possible conditions at the two frequencies are tabulatedbelow.\n

Case\n <o = 0\n CO = 00\n

1\n pole\n pole\n

2\n zero\n zero\n

3\n pole\n zero\n

4\n zero\n pole\n

There remains the task of finding the form of the driving-point imped\302\254

\nance (or admittance) corresponding to each of these four cases.There

\nare but two forms of factors for the numerator and the denominator:
\n(\302\253*+ an2) and 8.\n

Ccue 1. With a pole at both zero and infinity, there mustbe an

\n8 in the denominator and one more (a2 + s\302\2732) type factor in the\n
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numerator than in the denominator. The general form for thindriving-
\npoint impedance is\n

where\n

Z(8)\n

H (a2 + a>x\302\273).., (a2 + a>n2)\n

8 (S2 + ttj2) . . . (a2 + tt\302\273_i2)\n

\302\2731< \302\2732< \302\2533< \342\200\242. . < \302\253n-l < \302\253\302\273\n

(12-46)\n

(12-47)\n

The first and last finite critical frequencies (polesor zeros)are in the

\nnumerator of this equation. The general form of the corresponding

\nreaction function is shown in Fig. 12-9.\n

Fig. 12-9. Reactance plot for Case 1.\n

Case #. This is the inverse of Case 1. With a zero both at zero and

\nat infinity, it is necessary that there be an s termin the numerator and

\nan additional (a2 + a\302\2732)type term in the denominator. For Case 2, the
\ndriving-point impedance has the form\n

Z(a)
= He\n

(a2 + &>22)... (a2 + w\302\273-i2)

\n(a2 + wi2)... (a2 + \302\253\342\200\2362)\n

(12-48)\n

where the same relationship exists for the to\342\200\231sof this equation as given

\nin Eq. 12-47. The reactance function plot for Case 2 is shown in Fig.\n

12-10.\n

Case S. To have a pole at zerofrequency requires an H/s multiplier
\nfor the impedance function. For there to be a zeroat infinity,the total

\norder of the denominator must be greater than that of the numerator.

\nSince there is already an a in the denominator,there must be just as

\nmany (a2 + a\342\200\2362)type terms in the numerator as in the denominator.\n
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The driving-point impedance becomes\n

7( s H (s2 + fa?l2). . . (s2 + C0n-12)\n

K)
S (s2 + o>22)...(s2 + g>\342\200\2362)\n

The Case 3 reactance function is plotted in Fig. 12-11.\n

Fig.12-11.Reactance plot for Case 3.\n

Chap. 12\n

(12-49)\n

Case 4- For this case, there must also be an equal number of

\n(s2 + sn2) factors in the numerator and denominatorwith,in addition,

\nan (Hs) multiplying factor in the numerator. The driving-point imped\302\254

\nance for Case 4 is\n

Z(s)
= Hs\n

Cs2 + W)
\n(s2 + COi2) .\n

. (s2 + 0)n2)\n

(S2 + Wn-12)\n

The Case 4 reactance function is plotted in Fig.12-12.\n

(12-50)\n

From the four cases just discussed, it is seen that in the sinusoidal

\nsteady state (s = ju) the form of the reactancefunction for Case 1 and

\nCase 3 is\n

y, > _ +H (\302\2532-mi2)(\302\2532-<032)...\n
^

0) (w2
\342\200\224

0>22)(w2
\342\200\224

\302\25342). \342\200\242\342\200\242\n

and that for Case 2 and Case 4, the form is\n

X(\302\253)
= i Ho)\n

(to2
\342\200\224

0>22) (t>)2
\342\200\224

0>42) \342\200\242\342\200\242\342\200\242

\n(tt2
\342\200\224

\302\253l2)(ft)2
\342\200\224

Wa2) \342\200\242\342\200\242\342\200\242\n
(12-52)\n

In each case the sign of the reactance functionmustbe selected to give

\na positive slope to dX/du (see Prob. 12-7). In order to havethisposi\302\254\n
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tive slope, the value of X at <a = 0 must either be zero or negative
\ninfinity. The sign of X changes each time the frequencypassesa pole
\nor a zero. Consider the factor\n

(\302\2532
-

\302\253n2) (12-53)\n

For a less than the sign of the factor is negative.When <a exceeds

\n6)\342\200\236,
the sign of the factor becomes positive. Since the polesand zeros

\nmust alternate (the separation property), the sign of the reactance
\nfunction alternates from positive to negative, changing successively
\nat the pole and zero frequencies. In the two forms of the reactance

\nfunction given above, the pole and zero frequencies must satisfy the
\ncondition\n

0 < COi < 0)2 < <03 < <04 < ... (12-54)\n

The statements made in this section for the reactance functionX(u)
\napply directly to the admittance case, where Y(ja>) = jB(co),and B(w)

\nis the susceptance function.\n

The factor H which appears in all the reactance equations is a
posi\302\254

\ntive real constant known as the multiplying or scalefactor. The func\302\254

\ntion of H in terms of the reactance is to fix the scale of the reactance.

\nDoubling the value of H, for example, doubles the valuesof the react\302\254

\nance function for all values of frequency. Thus H fixes the levelof

\nimpedance.\n

12-4. Specifications for reactance functions\n

In this section, we will discuss the nature and numberof quantities

\nwhich must be known to completely specify the impedancefunction
\nfor an LC network. The term critical frequency will be definedto mean

\neither a pole or a zero frequency. From the last section,we know that

\nzero frequency and infinite frequency are always critical frequencies.
\nThese poles and zeros at zero and infinity (frequency) are definedas
\nexternal critical frequencies. Poles and zeros at finite, nonzero frequen\302\254

\ncies are defined as internal critical

\nfrequencies. The internal and exter\302\254

\nnal critical frequencies for a particu\302\254

\nlar pole-zero configuration are iden\302\254

\ntified in Fig. 12-13. We know that
\nthe poles and zeros must alternate

\nas frequency increases because of the

\nseparationproperty for LCnetworks,
\nare specified as poles or zeros, there remains no choice for the external
\ncritical frequencies. They must be the opposite of the nearest finite(or
\ninternal) critical frequency in order that the poles and zeros alternate\n

Internal\n

Fig. 12-13. Designations for critical
\nfrequencies.\n

If the internal critical frequencies\n
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as required. In summary: If the nature of the internalcriticalfrequen\302\254

\ncies is specified, the nature of the external critical frequenciesis fixed.

\nThe specification of internal critical frequencies specifies all critical
\nfrequencies.\n

We next observe, from Eqs. 12-51 and 12-52, the onlypossibleforms

\nof the reactance function, that if all critical frequencies are known,

\nthere remains only the scale factor H (or the equivalent) to bespecified

\nin order to determine completely the driving-point impedance function
\nfor reactive networks. In place of the value of H, an equivalentspec\302\254

\nification would be either (a) a value of the reactance at somenoncritical

\nfrequency, or (b) a value of the slope of the reactancecurvedX/duat
\nsome frequency other than a pole frequency. This information is sum\302\254

\nmarized below.\n

Specifications for Reactive Networks\n

A. The internal critical frequencies.\n

B. One additional bit of information to give H or to allow H

\nto be computed. The three most common forms of this second

\nspecification are:\n

(a) the value of H,\n

(b) the value of X at a noncritical frequency, or\n

(c) the value of dX/du at some nonpole frequency.\n

When these two types of specification are made, Z(s) canbe found by

\nmaking the substitution \302\253= s/j in the equations of the form of
Eq.\n

12-51 or Eq. 12-52. We will next study the problemofdesigningnet\302\254

\nworks to meet the Z(s) specification.\n
Reactance functions of the type studiedin the chapter thus far

\nwere first investigated in 1924 by R. M. Foster, then of the Bell Tel\302\254

\nephone Laboratories but now at Brooklyn Polytechnic Institute.
\nFeaturesof this study are classified under the heading of Foster\342\200\231s

\nreactance theorem.\n

12-5. Foster form of reactive networks\n

The partial fraction expansion of reactance functions may bestudied
\nby considering Case 1 and then specializing to the other threecases,

\nThe driving-point impedance function for Case 1 is given in Eq.1246,
\nwhich is\n

nt \\ _
H (s2 + o>i2)(a2 + q>s2).\342\231\246.\n

* (s* + \302\2532*)(s2 + W4*) . . .\n

where there is one more factor of the form (s24- coj2) in the numerator\n
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than in the denominator. In the partial fraction expressionof this
\nequation, terms of the type (s2 + \302\253j2) will expand as\n

m
I

g.\302\253
(12-56)\n

(\302\253*+ \302\25322) (s + (s \342\200\224
(8 + JO)2) (8 \342\200\224

JO) 2)\n

where is the conjugate of f*L2. It is shown in advanced texts that
\nthe ^-coefficients in the partial fraction expansion of terms with imag\302\254

\ninary roots are always positive and real. This being the case,K2 and

\nKt* are equal, so that\n

K2 k2*\n

(8 + JO) 2) (s
\342\200\224

JO) 2)\n 82 + 0)22\n
(12-57)\n

Using this form of expansion for the (s2+ o>22) terms, Eq. 12-55 for

\nCase 1 expands as\n

Z(\302\253)
= \342\200\2241+ t2*''* , + ,2f48 , + ... +Hs (12-58)\n

8 82 + 0)22 S2 + 0)42\n

The last term in the expansion, Hs, is necessaryto give the pole at

\ninfinity in Case 1. The H value of the coefficientmay be verified either

\nby application of ^Hospital\342\200\231s rule or by direct division.\n

For a series combinationofimpedances,the total impedance will be

\nthe sum of the series impedances; that is,\n

Z(s)
= Zi(s) + Z,(\302\253) + Zz(s) + ... + Zn(s) (12-59)\n

The philosophy of the design procedure to arrive at a Fosternetwork

\nis to identify each term in the last equation as the impedanceof a sim\302\254

\nple network configuration. These configurations will then be combined
\nin series to give a composite network having the requireddriving-point
\nimpedance Z(s).\n

Following this philosophy, we will associate the impedance Zi in
\nthe last equation with the term K0/s in Eq. 12-58.ThusZi(s) =

K0/s

\nrepresents a capacitor of value C = l/2Co.SimilarlyassociatingZn(s)

\nand Hs leads to the conclusion that Zn(s) represents an inductorof

\nvalue L = H henrys. All other terms in the impedanceexpressionare

\nof the same form and represent a parallel combination of inductorand
\ncapacitor. The impedance of such a network is\n

Z^ =
Cs + l/Ls

=
s2Vl/LC (12-60)\n

Comparing this equation with, for example, Eq. 12-57, gives values\n
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for the capacitors and inductors in the network as\n

Chap. 12\n

Cn\n

Ln\n

1\n

2 Kn

\n1\n

0>n Cn\n

2 Kn\n

(12-61)\n

(12-62)\n

for the nth term in the partial fraction expansion.Theseconclusions

\nare summarized in Fig. 12-14.\n

Term\n Network\n Element values\n

K0\n **\n
C0~fara(J\n8\n

Co\n

Hs\n

L0\n

L0mH henry\n

2K\342\200\236b\n
r-Wn\n

Ln\n

C.-
2Jt_

farad\n

\302\2532+\302\253i\n
1/\n

Ln-~^~
henry\n

11\n

Cn\n

Fig. 12-14. Impedance expressions and equivalent networks.\n

The realization of the network corresponding to the expanded
\nexpression for Z(s) is shown in Fig. 12-15. This realization is known

\nas the first Foster form (series impedances). The network of thefigure

\nis for Case 1. There remains the problem of specializing to the other\n

Pole at origin\n

\342\200\224 I\342\200\224\342\200\224\n

c\342\200\236 /\n

Pole at infinity\n

Fig. 12-16. Network of the first Foster type.\n

three cases. Before undertaking this study, let us consider the role

\nof each element in the network in terms of the known pole-zero
\nconfiguration.\n

(1) Capacitor Co. Capacitor Co appears in the network becauseof

\nthe term Kq/s in the partial fraction expansion. This term corresponds
\nto a pole at the origin. Hence the presence of Codependson there being

\na pole at the origin.\n

(2) Inductor La. Inductor L0appears in the network from the imped\302\254

\nance expression Hs in the partial fraction expansion. This term is pres-\n
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ent because of the pole at infinity. Hence the presenceof Lo depends on

\nthere being a pole at infinity.\n

(3) \tParallel L\302\273Cn network. Each term of the type (a2 + \302\253\302\2732)in the

\ndenominator of Z(s) gives rise to a parallelLCnetwork.Thefrequency

\no>n of each term is a pole frequency. Thus antiresonance in the individ\302\254

\nual LC parallel networks gives rise to the poles of Z(s). Thezeros of

\nZ(s) cannot be associated with any specific elements. In terms of the

\nreactance function X(<o), each of the parallel circuits changessignas
\nthe frequency increases through antiresonance. At some frequency,
\nthe reactance of a group of parallel circuits is equal to andopposite in

\nsign to the reactance of all remaining parallelcircuits.Underthiscon\302\254

\ndition there is a zero of Z(s). There will be as many zeros as there are

\npoles because of the separation property. These zeros can be thoughtof
\nas being caused by the first parallel network being in \342\200\234series\342\200\235res\302\254

\nonance (the resonance of zero impedance) with the rest of the network,

\nthen the first and second parallel networks in resonance with the

\nremaining network and so on, until finally the last parallelnetwork

\nresonates with the combined preceding network.\n

Since the distinguishing features of the four cases of reactive net\302\254

\nworks considered are the poles and zeros at zero and infinity,it follows

\nthat Cases 2, 3, and 4 can be specialized fromCase1simply by leaving

\nout either or both of Co and Lo. For example,if thereisno s term in the

\ndenominator of Z(s), there willbe noK0/s term in the partial fraction

\nexpansion. Similarly, if the order of the denominator polynomial is

\ngreater than the numerator polynomial, there will be noHs factor in

\nthe partial fraction expansion, and consequently, in terms ofthe phys\302\254

\nical elements, no series inductor in the circuit. The nature ofthe \342\200\234end

\nelements\342\200\235 for the four cases is summarized below.\n

End Element Values in First Foster Networks\n

Case\n CO = 0\n CO = \302\260\302\260\n Co\n Lo\n

1\n pole\n pole\n present\n present\n

2\n zero\n zero\n short-circuited\n short-circuited\n

3\n pole\n zero\n present\n short-circuited\n

4\n zero\n pole\n short-circuited\n present\n

In his 1924 paper, Foster pointed out that if the admittance corre\302\254

\nsponding to a given impedance function Y(s) = 1/Z(s) is determined,

\nit is possible to realize a physical network for the admittancefunction.
\nNetworks found by an admittance expansion are known as networks
\nof the second Foster form.\n

Consider an admittance function of Case 1 with a pole at both zero

\nand infinity. This function has the same form as Eq. 12-55with Y(s)\n
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replacing Z{&). The partial fraction expansion for F(s) is the sameas

\nEq. 12-58. There remains the problem of identifying individual terms
\nin the partial fraction expansion as admittance expressions for LC
\nnetwork configurations. The driving-point admittance of parallel net\302\254

\nworks is the sum of the admittances of the networks in parallel;that is,\n

F(\302\253)
= Fx(s) + F2(s) + F3(s) + ... + F\342\200\236(s) (12-63)\n

Comparing this equation with Eq. 12-58, we see that the termKo/s

\ncorresponds to the first admittance, so that Fx(s) = K0/s. Then
Fx(s)

\nrepresents the admittance of an inductor of value L = l/K0 henry.

\nSimilarly F\342\200\236(s)
= Hs is the admittance of a capacitor ofH farad value.

\nAll other terms in the admittance expression are the sameand
represent

\nthe admittance of a series inductor and capacitor (the dual of the net\302\254

\nwork found for the first Foster form). The admittance of the series
\nLC network is\n

Y(s)
-\n

1 _ s/L\n

Ls + l/Cs s2 + 1/LC\n
(12-64)\n

Comparing this equation with Eq. 12-57 permits identification of the

\nrequired values of L and C for the network correspondingto thenth

\npole of admittance as\n

Ln\n

Cn\n

1\n

2 Kn\n
(12-65)\n

1 _ 2Kn\n

(12-66)\n
L\342\200\2360)\342\200\2362co\342\200\2362\n

These conclusions are summarized in Fig. 12-16.\n

Term\n Network\n Element values\n

Kp\n

t\n
Lq\n

L0-
\342\200\224

henry\n
Ap\n

Ha\n
|f

\302\260\n Cq-H farad\n

2K\342\200\236t\n

Co\n

\342\200\242L\302\273'dbhenry\n

\302\2732+\302\253S\n

o\342\200\224\342\200\224\342\200\242uuu \342\226\240\342\226\240ir o

\nCn\n C\342\200\236farad\n

Fig. 12-16. Admittance expressions and equivalent networks.\n

The combination of networks of the types shown in Fig.12-16to
\nconform with Eq. 12-63 for parallel admittances is showninFig.12-17.

\nThe network shown is for Case 1 but specializes to the otherthree cases

\njust as in the first Foster type of network. The role of each type of\n
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network configuration in terms of the poles and zeros of the driving-
\npoint admittance function is summarized as follows:\n

(1) Inductor Lo. InductorLo appears because of the pole (of Y) at
\nthe origin which gives rise to the Kq/s term in the partial fraction
\nexpansion.\n

(2) Capacitor Co. Capacitor Co appears because of the pole (of Y)

\nat infinity which causes the Hs term to appear in the partialfraction
\nexpansion.\n

(3) Series LnCn network. Each series LC network corresponds to a
\nfactor of the type (s2 + \302\253\302\2732)in the denominator of F(s). The fre\302\254

\nquency <an of each such term is a pole frequencywhich is associated\n

Pole at
\norigin\n

Pole at

\ninfinity\n

^C0\n

Fig. 12-17. Network of the second Foster type.\n

with resonance (in contrast to antiresonance in the series impedance
\nrealization) of the LC networks. Thus all poles can be associated
\ndirectly with specific elements in the sense that resonance within
\nindividual networks cause the entire network to have a poleof admit\302\254

\ntance. As in the case of the first Foster form, the zerosof Y(s) cannot

\nbe so identified. Every element contributes some part to the condi\302\254

\ntions associated with a zero of admittance, in much the sameway as

\ndiscussed for the first Foster form.\n

The \342\200\234endelements\342\200\235 (that is, L0 and Co) are associated with the poles
\nof F(\302\253) at zero and infinity (frequency). The presence of a zeroin
\nplace of a pole thus infers the absence of an end element.Endcondi\302\254

\ntions for the four cases of the second Foster type of networks are sum\302\254

\nmarized below for impedance functions.\n

End Element Values in Second Foster Networks\n

Case\n <o
\342\200\224

0\n co = oo\n Lo\n Co\n

1\n pole\n pole\n present\n present\n
2\n zero\n zero\n absent\n absent\n

3\n pole\n zero\n present\n absent\n

4\n zero\n pole\n absent\n present\n

From this discussion, we see that fromany specifications two com\302\254

\npletely equivalent networks can be designed. The first Foster network
\nform is a series impedance realization of Z(s); the second Foster net\302\254\n
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work form is found by forming Y(s) by inverting Z(s), as F(s)
=

\n1/Z(s), and then expanding as parallel admittance functions which

\nare identified with specific network forms. It is important to observe
\nthat Z(s) and Y(s) will never be of the same caseclassificationsfor one

\nset of specifications. Inverting a function interchanges polesandzeros,
\nand since Z(s) will never have the same number of internal polesas
\ninternal zeros, the case designation will differ for Z(s) and Y(s)=
\n1/Z(s). The following conclusions can easily be verified.\n

If a given Z(s) is:

\nCase 1
\nCase 2

\nCase 3

\nCase 4\n

The corresponding F(s) is:

\nCase 2
\nCase 1

\nCase 4

\nCase 3\n

An example will illustrate the procedure for finding the first and
\nsecond Foster networks for a given Z(s). Consider the impedance\n

(s2 + l)(s2 + 9)\n

Z(s)
= 2\n (12-67)\n

s(s2 -f- 4)\n

This impedance function is of Case 1 and the partialfractionexpansion\n

is\n

\342\200\234

T
+

s-T72
+

i\n

k2*\n

-j2\n
+ Hs\n (12-68)\n

Zls)\n

i farad\n

Mr\n

& farad\n

'~\\SlQSLrJ

\n$ henry\n

2 henry\n

The constants of this equation may
\nbe evaluated by the Heaviside rule

\nas follows.\n

2 X 9 =
9

\n1

\342\200\235

2\n
Ao =\n

Fig. 12-18. First Foster network of

\nexample.\n

and since H \342\200\224
2 by inspection,\n

*(.) = ^\n

K2 =\n
2(s2 + l)(s2 + 9)

\n\302\253(\302\253
~

i2)\n *= -}2\n

15\n

4\n

2(158/4)\n
+

s2 + 4 +ZS\n (12-69)\n

Using the equationsdisplayedin Fig. 12-14, the element values and

\nfirst Foster form network are found as shown in Fig. 12-18.\n
To determine the second Foster form of network, the admittance

\nfunction is found as\n

Y(s) =
^ i s(s2 + 4)\n

W
Z(s) 2 (s* + l)(s2 + 9)\n

_ 2KiS 2Kzs
\n\342\200\234

s2 + 1
+

s2 + 32\n

(12-70)\n

(12-71)\n
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The two constants Ki and K* are found by the Heavisidemethodas\n

92+ 4)\n
Kl =

\nXs
=\n

2(s-il)(s2 + 9)\n

s(s2 + 4)\n

2(s2 + l)(s
-

jZ)\n

\302\273--ji\n

\302\273--j3\n

z_\n

32\n

5_\n

32\n

O
1\n

henry
<\n3 henry \302\253\n

Zis)
c\n

h farad\"\n

o \t\n

=: farad\"\n

Making use of the chart of Fig. 12-16, the network configurationand
\nelement values are determined as

\nshown in Fig. 12-19. The two equiv\302\254

\nalent networks have the same number

\nof elements.\n

Before we consider two other forms
\nof equivalent networks, let us digress
\nto consider the unfinished business of

\na proof for the separation property.\n
Now that we have completedthe partialfraction expansion for immit-

\ntance functions, we know that any immittance function is composed
\nof, at most, three types of terms:\n

Ko 2Kns\n

s\n

Tig. 12-19. Second Foster net\302\254

\nwork of example.\n

S2 + 0>\302\2732\n

The reactance expressions for these terms are\n

Hs\n (12-72)\n

*1\302\256\n

1\nII\n
H\ni*l\n (12-73)\n

Y
2Knu\n

\342\200\235
\342\200\234

-CO2 + 0>\342\200\2362\n
(12-74)\n

3\nII\n
CO\n*\n (12-75)\n

(Susceptance

\ntives of these\n

expressions have exactly the same
\nthree expressions are\n

form.) The deriva-\n

dXi _ ,Ko
\ndo) co2\n

(12-76)\n

dXn _ +2tfnco2 + 2EW
\ndco (co\342\200\2362

\342\200\224
co2)2\n

(12-77)\n

ft\n 09\n
II\n

+\n iS\n (12-78)\n

Each of the three typical terms is positivefor bothpositive and neg\302\254

\native values of frequency co. Since the reactance function for the
\ndriving-point terminals (and the same thing might be said for the sus-\n
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ceptance function) is given as a sumof reactances,\n

Chap. 12\n

\342\200\242 X =

^
Xi (12-79)\n

y-i\n

which may be differentiated term by term to give\n

Then dX/dw is positive,\n

;= y dxj\n

A/ do\n
/-1\n

(12-80)\n

8-1

ft\n
V\n o\n (12-81)\n

for both positive and negative values of frequency \302\253.From this con\302\254

\nclusion, the separation property follows.\n

12-6. Cauer form of reactive networks\n

An important extension to the Foster reactance theorem was made
\nin Germany by W. Cauer* in 1927. He first pointed out that the react\302\254

\nance function could be represented by two different network configura\302\254

\ntions by a continued fraction expansion of the driving-point impedance.
\nThe basic form of the network for the Cauer realization is the ladder\n

o VW\n

Zi\n

Z{s)\n

\342\200\224AAA/
\t\n

^7\n

n\n

Fig. 12-20. Ladder network.\n

shown with impedance and admittance designations in Fig. 12-20.The

\ndriving-point impedance of such a network may be written in the form

\nof a continued fraction as\n

Z(s)
- Zx +\n (12-82)\n

Z* +\n

f4 +\n

z% +\n

Yt +\n

* W. Cauer, Arch. Elektroteck., 17, 365 (1927).\n
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Let us restrict our discusssion to an impedance function with a pole
\nat infinity. In the general expression for the driving-point impedance\n

Z(8)
=\n

Q>\302\2738n+ an_2Sn
2 4~ ...

\nbmsm + bm-iSm~2 + ...\n (12-83)\n

this means that n is greater than m. The procedure for forming the
\ncontinued fraction is to divide, then invert and divide, invert and
\ndivide, and continue this process until the expansion terminates (as
\nit must). This procedure can best be illustrated with a numerical
\nexample. Consider the impedance function\n

Z(s) =\n
12s4 + 12s2 + 1

\n6s8 + 3s\n
(12-84)\n

Direct division proceeds as follows.\n

6s8 + 3s) 12s4 + 12s2 + 1 (2s\n

12s4 + 6s2\n

6s2 + 1\n

+ 1\n

so that Z(s) =2s +
Qg3 + 3g\n

Inverting the remainder term and dividing gives\n

6s2 + 1) 6s8 + 3s (s\n

6s8 + s

\n2s\n

or ZW = 28 +
\302\273+ 2V(6s> + 1)\n

Continuing the invert and divide procedure,\n

2s) 6s2+ 1 (3s\n

6s2\n

such that, finally,\n

1\n

Z(s)
\342\200\2242s -|-\n

s +\n

3s +
2i\n

(12-85)\n

(12-86)\n

(12-87)\n

Comparing this expression with Eq. 12-82, we see that: Z\\
= 2s rep\302\254

\nresents an inductor of 2 henrys, Yz \342\200\224s represents a capacitor of

\n1 farad, Z\302\273
= 3s represents an inductor of 3 henrys, Y*

= 2s represents

\na capacitor of 2 farads. The network configuration for this specific\n



298\n ONE-TERMINAL-PAIR REACTIVE NETWORKS\n Chap. 12\n

example is shown in Fig. 12-22. For this case, a poleat infinity,
the

\nfirst Cauer network will always be of the form of Fig. 12-21 with

\n\342\200\234series\342\200\235inductors and
\342\200\234parallel\342\200\235 capacitors extending as far as

\nrequired by the continued fractionexpansion.There is only one other\n

o\342\200\224<innrL-\n

Lx\n

i-W-n\n \342\200\224'TRHP\342\200\2241\n

l3\n L%\n Li\n

~'C2
~\n

-c4
\342\200\234\n

-C6 -\n ^Cq\n

Tig. 12-21. General form of first Cauer network(poleat *>).\n

case to be considered: a zero at infinity. For this case,m exceeds n by

\nunity in Eq. 12-83, and before the continuedfractionexpansion can

\nbe made, it is necessary to invert the polynomial. The form of the

\nexpansion will be\n

m =\n

i% +\n

Z* +\n

f4 +\n
Z 6 +\n

(12-88)\n

Zls)\n

2 henry\n

1 farad:\n

-nm' 1\n

3 henry\n

2 farad:\n

Comparing this equation with Eq. 12-82, we see that the only differ\302\254

\nence is that Zi = 0 in the second case. If Z\\
=

0, then Li, the first\n

series inductor, is absent from Fig.
\n12-22.The form of the first Cauer net\302\254

\nwork with a zero at infinity is shown
\nin Fig. 12-23. In summary, the first or
\n\342\200\234end\342\200\235element in the first Cauer net\302\254

\nwork form is determined by the behav\302\254

\nior of the network function at infinite

\nfrequency. A pole at infinity requires
\nthat the first element be a series inductor. A zero at infinity requires
\nthat the first element be a parallel (or shunt) capacitor.\n

Fig.12-22.First Cauer network

\nfor Eq. 12-84.\n

\342\200\224'T5W'1\342\200\224i\n\342\200\224nm'\342\200\224|\n\342\200\224\342\200\224i\nr-^tRKP r\n

l3\n is\n L?\n l9\n

=:C2 -\n -c4
-\n

-C6
-\n

=:c8 ^\nZls) ^pC4 ^C6 ^C8 ^Cio\n

Tig. 12-28.General form of first Cauer network (zero at \302\253).\n

Let us focus our attention on the way the Cauernetworkendsnow

\nthat we have studied the factor controlling the way it begins.There\n
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are but two possible ways the ladder network can end. Oneiswith an

\ninductor as shown in Fig. 12-24(a); the otheris with a capacitor as in

\nFig. 12-24 (b). Imagine these networks attached to the general form
\nof the network (with any number of elements in a ladderarrangement)
\nshown in Figs. 12-22 and 12-23. With the inductor as the lastelement,

\nthere are series inductors in a path from one terminal to the other. At\n

\342\200\224i\n

(a) (6)\n

lig. 12-24. Last element forms for first Cauer network.\n

zero frequency (direct current), these inductors offer zero impedance
\nsuch that zero frequency is a zero of impedance. Alternately, if the
\nlast element is a capacitor, there is a \342\200\234break\342\200\235in the path from ter\302\254

\nminal to terminal and at zero frequency there is a poleof impedance.

\nIn summary: The last (or far end) element in a firstCauernetwork is

\ndetermined by the nature of the impedance function at zerofrequency.
\nA zero at zero requires that the last element be an inductor.A pole at

\nzero requires a capacitor as the last element. These conclusions are
\nsummarized below.\n

First Cauer Network End Elements\n

Case\n w = 0\n 03 = 00\n First element\n Last element\n

1\n pole\n pole\n L\n C\n

2\n zero\n zero\n C\n L\n

3\n pole\n zero\n C\n C\n

4\n zero\n pole\n L\n L\n

The basic form for the second Cauer network is again the ladder
\nnetwork, but with the position of capacitor and inductor interchanged.\n

Fig. 12-26. Second Cauer network form (pole at 0).\n

Such a ladder network is illustrated in Fig. 12-25. The impedanceof

\nthe first element is Zi(s) = l/Cis; similarly, the admittance of the
\nsecond (parallel or shunt) element is F2 = 1/L2s. The continuedfrac\302\254\n
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tion expansion for the realization of this network form must be\n

zw =
c^

+ -1 ,

1
1\n

L%s 1
,\n

CiS
^ \342\200\242\342\200\242*\n

To obtain this form of continued fraction expansion will requirea
\ndifferent procedure than that used for the first Cauer network. To
\nillustrate, consider the case of an impedance function with a poleat
\nzero. An example of such a function is\n

-

w-6 (1M0)\n

To expand this function in the form of Eq. 12-89,we first turn it end

\nfor end as\n

m =
3\302\253+ 2s1

(12-91>\n

The \342\200\234invert-and-divide\342\200\235 procedure may now be started. We divide
\nthe denominator into the numerator to obtain one term; the remainder
\nis then inverted and the division repeated. In our example,\n

3s + 2s8) 6 + 7s2 + s4 (2/s
\n6 +4s2\n

3s2 + s4\n

* 2 , 3s2 + s4\n

\302\260r

s
+

3s + 2s8\n

Inverting the remainder term and dividing gives\n

3s2 + s4) 3s + 2s8 (1/s
\n3s + s8\n

such that Z(s) is\n

Z(s)
= f

+\n

1\n

i
+\n

s 3s2 + s4\n

The final \342\200\234invert-and-divide\342\200\235 step gives\n

(12-92)\n

(12-93)\n

s8) 3s2+ s4 (3/s
\n3s2\n

<*\n
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such that the final form of the continued fraction is\n

Z(s)
-

-s
+ j J-j\342\200\224

(12-94)\n

s
+

3,1
\n\302\253\"*\"1

\n\302\253\n

Comparing this expression with Eqs. 12-82 and 12-89, the following
\nidentifications are made:\n

2\n

Zi(\302\253)
= - represents a capacitor of \302\243farad.\n

s\n

r*(s)
= - represents an inductor of 1henry,

\ns\n

3\n

Zz(s)
= - represents a capacitor of ^ farad.

\ns\n

Yi(s)
= - represents an inductor of 1henry.

\ns\n

The network configuration of the second Cauer form, whichis equiv\302\254

\nalent to the last equation, is shown in
\nFig. 12-26. The impedance function for LC
\nnetworks must be an even-to-odd or odd-
\nto-even quotient of polynomials. For the

\nprocedurejust shown by exampleto work,

\nthe quotient must be an even-to-odd poly\302\254

\nnomial. This is equivalent to saying that
\nthe function expanded must have a pole
\nat zero. If the impedance function has a zero at zero, it is necessary

\nto invert first before dividing such that the continued fraction willbe
\nof the form\n

Z(\302\253)
=

-j j (12-95)\n

ES
+ T- 1

\t\n

c.s+
j_\n

i farad L

\nZ(s) 1 henry\302\256\n

i farad

\n1 henry*\n

Fig. 12-26. Second Cauer net\302\254

\nwork for example.\n

Comparison of Eq. 12-95 and Eq. 12-89showsthat with a zero at zero

\nthe first element is an inductor and that C\\is not present. In summary:
\nThe first element in the second Cauer network is a capacitorif the

\nimpedance function has a pole at zero; it isan inductor if the impedance

\nfunction has a zero at zero.\n
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By analogy to the other Cauer case, the infinite frequencybehavior
\nof the network is determined by the way the network ends; that is,
\nwhether the last element is an inductor or a capacitor. The two pos\302\254

\nsible networks are shown in Fig. 12-27. Attaching these terminating\n

(a) (6)\n

Fig. 12-27. Last element forms for second Cauer network.\n

networks to the general network of Fig. 12-25, we can seethat if the

\nlast element is a capacitor, the network has zeroimpedanceat infinite

\nfrequency, there being a short-circuited path from terminal to ter\302\254

\nminal. On the other hand, if the last element is an inductor,the net\302\254

\nwork has a pole of impedance at infinite frequency. In summary:The
\nlast element in the second Cauer network is an inductor if the imped\302\254

\nance function has a pole at infinity; it is a capacitorif the impedance

\nfunction has a zero at infinity. These conclusions are summarized
\nbelow.\n

Second Cauer Network End Elements\n

Case\n \302\253= 0\n O) = CO\n First element\n Last element\n

1\n pole\n pole\n C\n L\n

2\n zero\n zero\n L\n C\n

3\n pole\n zero\n C\n C\n

4\n zero\n pole\n L\n L\n

12-7. Choice of network realizations\n

In discussing the specificationsfor a reactive network leading to the

\nsummary on page 288 it was found that the specification of (1) the

\ninternal critical frequencies and (2) the scalefactor H, or some equiv\302\254

\nalent specification, was sufficient to fix the driving-point impedance
\nZ(s). In the last two sections, we have shown that a network can be

\nrealized in four basic forms from the driving-pointimpedanceonly.

\nIn any network there are as many unknowns as there are elements,
\nand these unknowns must be specified by Z(s). In the solutionof any

\nsystem of equations, there must be as many specificationsas there are

\nunknowns. The total number of specifications that we have found
\nsufficient is one more than the number of internal critical frequencies.
\nThe total number of unknowns equals the total number of elements.
\nFrom the equality of specifications and unknowns, we conclude that\n
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the minimum number of elements in a network realization is onemore
\nthan the number of internal critical frequencies. It should be noted
\nthat in this statement each pair of conjugate critical frequenciescount
\nas one critical frequency. We do not distinguish between \302\253\302\273and \342\200\224\302\253\302\273.\n

A knowledge of the number of elements required to realize a net\302\254

\nwork specification along with our association of end elements with
\nnetwork behavior at zero and infinite frequency can be used in drawing

\nthe four possible network configurations directly by inspection of the
\npole-zero configuration. As example will illustrate the procedure.\n

Example5\n

Consider the pole-zero specifications given in Fig. 12-28. The inter\302\254

\nnal critical frequencies consist of two poles and one zeroforZ(s). The\n

s-plane\n
00 Q\n

JO\302\273\n

<>\n

-6-\n

o\n

<T\n
X O -H\n

Q> *0\n

0)\n

ci)\n

Fig. 12-28. Pole-zero configuration of Example 5.\n

external critical frequencies are constrained by the separation prop\302\254

\nerty to be zeros. Since there are three internal criticalfrequencies,
\nthere must be four elements in each network realization. Considerthe
\nrealizations one at a time.\n

(1) First Foster network. Because zeroand infinity are both zeros,

\nthe end elements are missing in the basic Foster form of network

\nFig. 12-15. The network must have two parallel LC networksto give
\nthe two poles (antiresonant frequencies). The network is shown in
\nFig. 12-29 (a).\n

(2) Second Foster network. In finding the critical frequenciesfor\n

Y(s)
= 1/Z(s), the poles of Z(s) become zerosof F(s)andvice versa.

\nSince both zero and infinity are poles, both endelementsare present.

\nThe one internal pole is caused by a singleseriesLC network in the

\nbasic network shown in Fig. 12-17. The four-element network is shown
\nin Fig. 12-29 (b).

\342\200\242\n

(3) First Cauer network. The end elements will first be foundforthe
\nfirst Cauer network. Referring to the table of page 299, we see that

\na zero of Z(s) at infinity means the first element is a capacitor.Also

\nsince there is a zero of Z(s) at zero, the last elementisAn inductor.\n
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There being only four elements in the network, specificationof the
\nfirst and last element determines the schematic shown in Fig. 12-29(c).\n

(4) \tSecond Ca/uer network. The table of page 302 may be usedto

\nadvantage in investigating the second Cauer network form. From the\n

Fig. 12-29. The four network realizations of Example 5.\n

table, a zero at zero implies that the first elementis an inductor.The

\nzero at infinity identifies the last element as a capacitor.The four-

\nelement realization is shown in Fig. 12-29 (d).\n

To find element values, the value of H must begiven,andthe partial

\nor continued fraction expansions must be completed.\n
There are a numberof practical matters involved in selecting a net\302\254

\nwork from the four possible forms for a specific application. These
\ninclude:\n

(1) Element component values. There are but a limited rangeof com\302\254

\nponent sizes available in commercial quantities. For example, 1-farad
\ncapacitors

with any reasonable voltage rating are hard to comeby.
\nEconomic factors may thus give one network form the advantage over

\nthe other three.\n

(2) Stray capacitance. It is impossible to constructinductorswith\302\254

\nout stray capacitance. This capacitance can be taken into accountby

\nreducing the size of the parallel capacitor in the first Fosterform of

\nrealization. This is especially important when specifications are rigid
\nor when the operating frequency is high.\n

(3) Use in vacuum tube circuits. Vacuum tube circuits frequently
\nrequire blocking capacitors in interstage coupling networks. This

\nrequirementmay specifywhichnetworkmustbe used.\n

12-8. Use of normalized frequency\n

The examples given in this chapterhave made use of small integer
\ncriticalfrequency values to advantagein simplifying numerical opera-\n
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lions. In many practical problems, the criticalfrequenciesare in thou\302\254

\nsands or millions of radians per second. In such cases,the arithmetic
\ncan be simplified by normalizing frequency to some value that makes
\nthe critical frequency values small integers. To normalize frequency
\nand observe the effect on element values, let\n

Xl \342\200\224
CoLaet

\342\200\224
OioEaet

y\n

-
)

= LnW*'
\n>\302\253o/\n

(12-96)\n

and\n Be \342\200\224
<oCaet

= MoCact
^\n

-)
= Cner^o'

\n.\"0/\n

(12-97)\n

where\n Laet = the actual inductance,\n Co* = the actual capacitance\n

Lnom
= the normalized inductance =

<o0\302\243/\302\253\302\253* (12-98)\n

Cnorm = the normalized capacitance =
u>oCaci (12-99)\n

w' = the normalized frequency =
o\302\273/oto (12-100)\n

The actual element values can be found from the normalizedvalues
\nfrom the equations\n

Laet = L^i (12-101)\n
COo\n

Cact
= (12-102)\n

0)0\n

With frequency normalized, the actual values of capacitance and
\ninductance can be found from the normalized values found in the
\npartial fraction or continued fraction expansion. An example will
\nillustrate the procedure in normalizing an equation in frequency.\n

Example 6\n

A driving-point impedance is known to have zeros at 1000and4000
\ncycles per second and a pole at 3000 cycles per second. Fromthedata,
\nthe reactance function is\n

X(<o)
= [ c\302\2602+ X 1QI)*TC

+a^1T
X 1Q3)2]

(12-103)\n
fa)[-w2 + (6r X 103)2]

\nLet the normalizing frequency be\n

o)o = 2v X 10s radians/sec\n (12-104)\n

Severalother choicesof normalizing frequency might have been made.

\nSubstituting\302\253= wow' into Eq. 12-103 gives\n

w \342\200\236_ -Ho,o(-co/2 + l)(-\302\253'2 + 16)\n
X(w)

w' (-fa)'2+ 9)\n

(12-105)\n
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Suppose that it is required that the reactance be 100 ohmswhen

\na) = 4tt X 108 radians/sec corresponding to \302\253'= 2. Substituting

\nthese values into Eq. 12-105 fixesthe valueof Huo at 1000/36 so that
\nthe normalized impedance function becomes\n

^ _ 1000(s'2+ l)(s'2+ 16)

\nKS)
36s'(s'2 + 9)\n

(12-106)\n

^
After normalized values of the elements are found by the expansion of

\nthis equation, the actual values can be found by divisionby w0 as\n

-
2^00 <12-107)\n

C\342\200\234\342\200\230
=

2ir X 1000 (12-108)\n

FURTHER READING\n

For further study on the topic of one-terminal-pair networks,
\nE. A. Guillemin\342\200\231s Communications Networks, Vol. II (John Wiley &

\nSons, Inc., New York, 1935), Chap. 5, is recommended, as well as

\nD. F. Tuttle, Jr., Network Synthesis, 2 vols. (John Wiley& Sons, New

\nYork, in preparation). Source material may be found in articlesby

\nR. M. Foster, \342\200\234Areactance theorem,\342\200\235 Bell System Tech. J., 3, 259
\n(1924), and W. Cauer, \342\200\234DieVerwirklichung von Wechselstromwider-

\nstanden vorgeschriebener Frequenzabhangigkeit,\342\200\235 Arch. Elektrotech.,

\n17, 355 (1927).\n

PROBLEMS\n

12-1. For the networks shown in the
figure, find the driving-point

\nimpedance as a quotient of polynomials. Identify the even and odd\n

Prob. 12-1.\n

polynomials. Compare the order of the numeratorand denominator

\npolynomials. Answer. (a) (s4 + 4s* + l)/(3s* + s); (b) 3s/(s*+ 1).\n
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12-2. Repeat Prob. 12-1 but find the driving-point admittanceof
\nthe networks shown below. Answer, (a) (\302\2534+ lls2/6 + 1/6)/(s* + s/2);
\n(b) 3(s\302\256+ 7s/2)/(s4 + 14s2 + 30).\n

1 \302\256-\n

3h<\n

lo-\n

(a)\n

2f\n

lh\n

io\342\200\224nmrHt\n

lo-\n 3z__T\n

(6)\n

Prob. 12-2.\n

12-3. A certain LC network is known to havea
driving-point imped\302\254

\nance with poles at the frequencies of 0 and 2 radians/secand zeros at

\n1 and 3 radians/sec. Determine the driving-point impedance as a
\nquotient of polynomials (expanded) if ff, the multiplying factor, is
\nunity. Answer. Z(s)

= (s4 + 10s2 + 9)/(s3 + 4s).\n

12-4. Which of the following functions may represent driving-point
\nimpedances for LC networks? In each case, why?\n

(a) \302\26173 X\n
(co2

- 4)(co2 - 25)
\n(co2

- 16) (co2 -
64)\n

(c) \302\261jo) X\n
(co2

-
3)\n

(w2
- l)(a>2 -

5)\n

(b)\n

10 (co2
- 25) (co2

- 36)
\n\302\261

jco

X
(co2

-
49)\n

(d) \302\261j'5co X\n
(co2

- 16) (co2
-

25)

\n(co2
- 4)(co2 -

9)\n

Answer, (a) No\342\200\224no pole or zero at \302\253
; (b) No\342\200\224separation property.\n

12-5. For the LC networks shown in the figure, determine: (a)

\nwhether zero frequency represents a pole or a zero,and (b) whether

\ninfinity (frequency) represents a pole or a zero ofthe impedance func\302\254

\ntion. Do this by inspection of the networks (and not by determining

\nthe driving-point impedance).\n

Prob. 12-5.\n
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12-6. For the following network functions (representing LC net\302\254

\nworks), (a) sketch the pole-zero configuration in the s plane, and
\n(b) sketch the reactance function X as a function of frequencyw.

\nExamples of the type of sketches desired are given in Fig. 12-7and in

\nFig. 12-8.\n

. (s2 + 36) (s2 + 100) ... 10 (s2 + l)(s2 + 36)\n

W
(s2 + 16) (s2 + 81)

W s (s2-1- 9)(s2 + 64)\n

M s(s2 + 5 )(s2 + 49) , (s2+ 25)(s2 + 81) (s2 + 144)\n

w
(s2 + 4) (s2 + 25)(s2+ 81)w

s(s2 + 64) (s2 + 100)\n

12-7. In this problem, we will consider which sign shouldbeused in

\nEqs. 12-51 and 12-52. Show that for Case 2 and Case3 the sign of the

\nequation should be negative and that for case1 and Case 4 the sign\n

should be positive.\n

12-8. A network function has a pole
\nat a) = 4 and a zero at o> = 10. These

\ntwo are the only internal critical fre\302\254

\nquencies. It is required that the magni\302\254

\ntude of reactance be 100 ohms at <a = 6

\nradians/sec. Determine (a) the sche\302\254

\nmatic diagrams of the two Foster net\302\254

\nworks corresponding to these specifications, and (b) the element values
\nfor the two networks.\n

12-9. A reactive network is to bedesignedto serve as the load for a

\nvacuum tube amplifier. The followingspecificationsare given for the

\nLC impedance function. (1) The internal critical frequenciesare:
\n1000 cycles/sec (a zero), 3000 cycles/sec, 4000 cycles/sec. (2) The
\nslope of the reactance vs. frequency curve must be 100ohmsper kilo-

\ncycle/sec at a frequency of 1000 cycles per second. From thesespec\302\254

\nifications: (a) Sketch the pole-zero configuration and the X(u>) curve.\n

(b) Determine the schematic diagrams for the two Foster networks.\n

(c) Determine each element value in the two networks ofpart (b). (d)

\nWhich of the two networks would you select for a practical applica\302\254

\ntion? Consider such factors as estimated cost of elements, takinginto
\naccount the stray capacitance of coils, etc.\n

12-10. A driving-point impedance is given by the equation,\n

, _ 15s6 + 29s3 + 6s
\nZW

7.5s4 + 7s2 + 1\n

For this impedance function: (a) Determine the first Cauer network

\nconfiguration, (b) Determine the value of each element in the network,

\n(c) Find the nature of the external critical frequencies (that is, does\n
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zero frequency represent a pole or a zero, etc.), (d) Sketchthe pole-
\nzero configuration for Z(s).\n

12-11. A driving-point impedance is given as\n

Z(s)
=\n

2 s* + 13s2 + 5
\n12s8 + 58\n

For this impedance function: (a) Determine the second Cauer network
\nconfiguration, (b) Find the value for each element in the network,\n

(c) \tInvestigate the nature of the external critical frequencies (are they
\npoles or zeros?), (d) Sketch the pole-zero configuration for Z(s).\n

12-12. For the pole-zero configuration shown, draw the schematic
\ndiagrams of the two Foster and two Cauer networks. (Do not deter\302\254

\nmine element values.) Plots are of impedance unless otherwise noted.\n

f
0 > -O * ^ <f

X 0\342\200\224x
\302\253\342\200\224if\n

w-0 <*>\"\302\253> w -0 <\302\253>\"oo\n

(!) <*>\n

Prob. 12-12. Prob. 12-13.\n

12-13. For the pole-zero configuration shown, draw the schematic

\ndiagrams of the two Foster and two Cauernetworks.(Do not deter\302\254

\nmine element values.)\n

12-14. Repeat Prob. 12-13 for the pole-zeroconfigurationof the

\nfigure.\n

1 \342\231\246\n

co *0 <*>
\342\200\242oo\n

<*>\n

Prob. 12-14.\n

12-15. Starting with Eq. 12-103, verify Eq. 12-106.\n
12-16.Draw the two Foster and two Cauer networks for the pole-

\nzero configuration shown in the figure.\n

* *\n

co \"0 co\n

CO\n

Prob. 12-16.\n

12-17. The following specifications are made for an LC network:\n

(a) the first element must be a capacitor in series(toavoid a d-c path),\n

(b) the network must have zero impedanceat <a = 2 radians/sec, (c)
\nat 1 radian/sec, the impedance must have a magnitude of 10 ohms;
\nthat is, \\Z(jl)\\

= 10, (d) the network must have the smallestpossible
\nnumber of elements. Draw the network schematic and indicate ele\302\254

\nment values. Answer. L = henrys, C =
-rtr farad.\n



CHAPTER 13\n

TWO-TERMINAL-PAIR REACTIVE

\nNETWORKS (FILTERS)\n

The discussionsin Chapter12were confined to networks with one
\nterminal pair (the driving-point terminals). In this chapter, we will

\nstudy tow-terminal-pair networks. One of the terminal pairs will be

\nidentified as the input, the other as the output. Ourultimateobjective

\nis to design networks to give a specified relationship betweenvoltages
\nor currents at one terminal pair and voltages or currents at the other.\n

The concepts in this chapter are thus
\ntransfer as well as driving-point in

\nnature in contrast to exclusively
\ndriving-point in Chapter 12. A

rep\302\254

\nresentation of a two-terminal-pair

\nnetwork is shown in Fig. 13-1.In
\nthe work to follow, the two terminals

\nmarked 1-1 will be identifiedwith the input and the two marked 2-2
\nwith the outpilt unless otherwise specifically noted.\n

Fig. 13-1. Two-terminal-pair net

\nwork.\n

13-1. The ladder network\n

Most of our studies will concern the ladder network structure.The
\nladder structure is important historically; it was the first structureused
\nin constructing a design procedure for filters. In addition, the concepts
\ndeveloped

for the ladder structure can be applied to other structures\n

Fig. 13-3. Standard ladder network designations.\n

such as the lattice. A standard ladder network is shown in Fig. 13-2.
\nBy convention, the impedance of all series elements is Zi(s) and of all

\nshunt elements is Zs($). For our studies, it will be convenientto sep\302\254

\narate the standard ladder network into two other network structures:
\nthe T section and the t section. This separation and the resulting
\nvalues for the series and shunt impedances is illustrated in Fig. 13-3.\n

310\n
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The network shown in Fig. 13-3 (c), together with the specificimped\302\254

\nance designations, will be adopted as a standard T section.The net\302\254

\nwork of Fig. 13-3 (d) will likewise be adopted as a standardr section.

\nAll equations we shall develop for T or w sections will refer to these

\nspecific
standard networks. The T and ir section building blocks can\n

Fig. 13-3. Evolution of the ladder network into tandemnetworks

\nof (a) T sections; (b) x sections; (c) a T section;(d) a x section; and (e)
\nan L section.\n

o\342\200\224A/W-\n

Zx/2\n

2 Z2\n

o\n

AAA/\342\200\224\302\260\n

Zj/2\n

2 Z2\n

\342\226\240o\n

(a)\n

VWtAA/V

\nZJ2\n

'2Zz\n

lb)\n

Fig. 13-4. (a) T section from two L sections;(b) x section from two\n

L sections.\n

be divided one step further into a more primitivenetwork shown in

\nFig. 13-3 (e). This primitive network is designated as a standardL
\nsection (although the term \342\200\234inverted L,\342\200\235or gamma network when

\nturned end-for-end, might seem more appropriate from the point of
\nview of geometrical similarity). The construction of the standard T
\nsection and the standard ir section from the primitive L sectionis shown

\nin Fig. 13-4. These three network structures will form the basis ofthe
\nstudies to follow.\n
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13-2. Image impedance\n

The T section and t sectionjust discussedare symmetrical in the

\nsense that terminals 1-1 and 2-2 could be interchanged.The L sec\302\254

\ntion, however, is unsymmetrical. In order to derive an equation that
\nwill apply to either a symmetrical or an unsymmetrical network, con\302\254

\nsider the unsymmetrical T section shown in Fig. 13-5. Let the gen\302\254

\nerator impedance be Z\342\200\236and the load impedance be ZL. We will also\n

define Zu as the impedance at terminals 1-1 with ZL connected (and

\nZ, disconnected), and similarly Za* as the impedance at terminals2-2
\nwith Zg connected (but ZL disconnected). When the impedances Zg

\nand ZL are adjusted such that\n

Zg
*

Z\\\\ and Zi, \342\200\224Ztt (13-1)\n

an image match is said to exist at terminals1-1and 2-2. To add empha\302\254

\nsis to the special impedance defined by Eq. 13-1,Zn will be written

\nZu, the image impedance at terminal pair 1, and similarlyZtt will be

\nwritten Zw, the image impedance at terminal pair 2.\n

The reason for using the word image is suggested by Eq. 13-1.
\nUnder the specified conditions, the impedance seen \342\200\234looking in\342\200\235at

\nterminals 1-1 is the same as that \342\200\234seen\342\200\235in a mirror (constructed to see

\nimpedance) which views the generatorimpedance.An image match

\nexists when the driving-point impedance is the same as the image

\nimpedance of the generator if terminals 2-2 are also terminatedin their

\nimage impedance.\n

For the network of Fig. 13-5, expressions for Zu and Zu can be

\nwritten in terms of Zh Zt, and Z%. These equations are\n

at\n

Zu\n

= Zi +\n

= Zt +\n

Z\302\273(Z i + Zu)

\nZt + Z% + Zu\n

Zt(Z\\ -f- Z\\i)\n

Z\\ + Z% + Zu\n

(13-2)\n

(13-3)\n

We have here two equations in two unknowns, Zu andZ\302\253. By routine

\nalgebraic operation, it is possible to solve for the unknowns. However,\n
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a more useful result is found by solving for Zu andZuin terms of open-

\ncircuit and short-circuit impedances. Let

\nZu
= the impedance at terminal-pair 1 with terminal-pair 2 open,

\nZu
\342\200\224the impedance at terminal-pair 1 with terminal-pair 2 short-

\ncircuited,\n

Zu = the impedance at terminal-pair 2 with terminal-pair 1 open,
\nZu

= the impedance at terminal-pair 2 with terminal-pair 1 short-
\ncircuited.\n

For the network of Fig. 13-5, the open-circuit and short-circuit imped\302\254

\nances for terminal pair 1 have the values\n

Z\\o
\342\200\224Z\\ + Zz\n (13-4)\n

Zu \342\200\224Z i +\n

z%z%\n

Z% + Zs\n
(13-5)\n

By algebraic manipulation of the last four equations, it is foundthat\n

Zu = VZioZu (13-6)\n

Similarly, Zu = s/Z^Zu (13-7)\n

These two equations are the foundation of much of the analysisto fol\302\254

\nlow. For the symmetrical network, the image impedances are equal.
\nFor this case, the notation will be simplified by letting\n

Zu = Zu = Zi (13-8)\n

Several examples, important in termsof the discussion to follow, will

\nbe given next.\n

Image Impedance of the T Section. For the T sectionshown in Fig.\n

13-3 (c) the image impedance is\n

Z* = vz^zr. =
V(t

+ Mfz) (I + z) (13-9)\n

ZiT
= V^i2/4 + ZxZ2 (13-10)\n

Image Impedanceof the ir Section. The v section is shown in Fig.\n

13-3(d). The image impedance is found as follows:\n

7 \342\200\224.%/7 7 \342\200\224/ 2Z2(Zi + 2Zj) 2ZiZj\n

ZiT VZioZu -
y/2z2 + 2Zi + Zi (Zi+ 2Zj)

(13-11)\n

Z\\Zi\n
ZiT =\n

\\/ Zi2/4 + Z \\Zi\n
(13-12)\n
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Image Impedance of the L Section. The L section shownin
Fig.\n

13-3(e) is reproduced below as Fig. 13-6. This network is unsymmet-

\nrical, and the image impedance must be computed for eachterminalpair.\n

At terminals 1-1, the image impedance is\n

1\302\260\342\200\224AAA/\n

Zi/2\n

-o2\n

Zul \342\200\224
y/(Zi/2 + 2Zz)Zi/2\n

2Z,\n

lo-\n -o2\n

Fig. 13-6. L section.\n

= v%2/4 + ZxZi (13-13)

\nComparison with Eq. 13-10 shows that

\nZul
= ZiT (13-14)\n

or that the image impedance of the L sectionat terminals 1-1 is the

\nimage impedance of the T section. At the otherterminal pair\n

*2iL\n (2 Zi)\n
2Zs(Zi/2)\n Z \\Z 2\n

2Z2 + Zi/2 y/z i2/4 + ZxZz\n

Comparison of this equation with Eq. 13-12 shows that\n

Zul \342\200\224
Zir\n

(13-15)\n

(13-16)\n

Thus at terminal pair 2 the imageimpedanceisthat of the symmetrical

\nir section. The image impedance of the L section appears asa T section

\nlooking in one direction, and as a ir section lookingin the other. From

\nanother point of view this conclusion seems reasonable. TwoLsections
\ncan be combined with an image match to form a T section,with the

\nimage impedance ZiT on each end as shown in Fig. 13-7.Similarly,\n

\302\260AAA/\n

ZiT\n

\342\200\242oo\n

-Zir\n

o o\n

(c)\n

AAA/-\302\260\n

ZiT\n

A/W-0---0-VW\n

Zt.\n

Fig. 13-7. Combination of image matched L sectionsto form (a) the

\nT section, and (b) the 7r section.\n

L sections combine with an image match to form a ir section with Z\342\200\236

\nat both terminal pairs as required.\n

13-3. Image transferfunction\n

It is evident that we need something in addition to the image imped\302\254

\nance concept in the two-terminal-pair problem. The image impedance
\nis a driving-point concept. We need a function to relate variablesat
\none terminal pair to the other terminal pair. For the time being,we\n
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will restrict the transfer function to the ratio of currents; thus\n

h(s)\n

/*(\342\200\242)\n

-<?(\342\200\242)\n (13-17)\n

where h is the input current, 12 is the output (or load) current, and

\nG(s) is the transfer function. In the sinusoidal steady state, the trans\302\254

\nfer function becomes a complex number which may be expressedas a
\nmagnitude and phase angle as\n

G(ju>)
=

\\G(ja)\\eiAna
a(ia) (13-18)\n

In practice, the magnitude |Cr(jw)|
is measured in a logarithmic unit

\n(the neper) so that\n

\\G(j<\302\273)\\
= e\342\200\234 (13-19)\n

The angle of G(j<a) is designated /3, so that\n

G(jco)
= eae* = ey (13-20)\n

where a = the attenuation(nepers), /S
= the phase shift (radians),

\n7
= the image transfer function. As a practical matter, the mostcom\302\254

\nmon unit for attenuation is the decibel, abbreviated db, even though
\nthe definition for the decibel involves the ratio of powers\342\200\224not voltages

\nor currents\342\200\224as follows.\n

oidb = 10 logio (P1/P2) db (13-21)\n

If the powerratio is related to the voltage or current ratio as\n

Then\n

Pi\n Ei\n
2\n

Pi\n Ii
2\n

P2\n Ej2\n

or
K

=\n

It\n

otdb \342\200\22420 logxo\n
Ei\n

E2\n

or 20 logxo\n
I_i\n

It\n

(13-22)\n

(13-23)\n

To find the number of decibels correspondingto a neper, under the

\nrestriction that Eq. 13-22 applies, we substitute for the current ratio

\nin the last equation as\n

adb
= 20 logio e\" = 8.686 a db (13-24)\n

Thus adb in decibels is found by multiplying a in nepersby the factor

\n8.686 (the neper being the larger unit).\n

It should be emphasized that the quantities a and /9 are transfer in

\nnature. The attenuation is a measure of the ratio of the magnitudeof

\nthe input current (which must be sinusoidal for a to have meaning)
\nto the magnitude of the output current. The phase angle/3 is the phase\n
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of the input sinusoid measured with respect to the output sinusoid.
\nKnowing the input current and the image transfer function, the out\302\254

\nput current is determined when the network is terminated in the image
\nimpedance.\n

Tig. 13-8. Network for computing image transfer function.\n

To find the image transfer function for a symmetrical network,
\nconsider the T section shown in Fig. 13-8. The currentsare related

\nby the equation\n

Ii ^ Zi + Zi/2 4- Zi 1 , Zi | Zi /10
\n7-

= ey =
7

= 1 + ot~ +
-7- (13-25)\n

Solving this equation for Zit there results\n

Z<
= Z,Uer-

1)-^]
(13-26)\n

This image impedanceis the image impedance of the T section which
\nis given by Eq. 13-10, which is\n

ZiT2
=

1\342\200\234ZlZi\n (13-27)\n

Squaring Eq. 13-26 and equating this squared equation to Eq. 13-27,
\nthere results, after common terms are canceled,\n

or\n

Z2V7
- 2ey + 1) -

ZiZ2ey
= 0 (13-28)\n

e27 \342\200\2242e7 -I- 1 Z\\\n

e7 Zl\n
(13-29)\n

This equation can be put in hyperbolic form by recognizingthat

\n?(ey + e~y) = cosh 7, so that finally\n

cosh y = 1 + ^ (13-30)\n

A similar expression for the hyperbolic sine is found by makinguse of

\nthe identity\n

cosh 7 sinh 7 = e7\n (13-31)\n
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Comparing this equation with Eq. 13-25, it is seen that\n

sinh t = (13-32)\n

Dividing Eq. 13-32 by 13-30and canceling the common Z2, an equa\302\254

\ntion is found for the hyperbolic tangent of 7, which is\n

tonh \302\273
=

zjhz>
f13-33*\n

This equation can be expressedin terms of the open- and short-circuit

\nparametersby making use ofEq. 13-6.\n

Zi = y/ZuZu (13-34)\n

(which could be written for side2 by replacing the l\342\200\231sby 2*s, since the

\nnetwork is symmetrical) and the expression for the open-circuit imped\302\254

\nance for the T network.\n

Zi/2 + Z2 = Zl0 (13-35)\n

Using these two identities, Eq. 13-33 may be written\n

tanh 7 =
\342\226\240%/Zu/Z\\o (13-36)\n

This is a most useful form of the equation for the image-transfer func\302\254

\ntion, which with Eq. 13-34 forms the basis of much of the discussion
\nto follow. This equation is more general than is implied by our deriva\302\254

\ntion. It holds for any passive reciprocal network. (SeeProb.13-2,for

\nexample.)\n

13-4. Application to LC networks\n

In a very important class of two-terminal-pair networks, all the
\nelements within the network are inductors and capacitors. Since all
\npractical elements have resistance, any result based on the assumption\n

of purely LC networks is approximate. The results conform to meas\302\254

\nurements sufficiently well, however, to be of engineering value. From
\nChapter 12, we know that the driving-point impedance of an LC net\302\254

\nwork is purely reactive (and the admittance purely susceptive) such\n
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that\n

Z 0\342\200\230co)
=

\302\261jX(ui) and Y(ju>)
=

\302\261jB(u>)\n (13-37)\n

The foundation equations for our analysis are\n

Z%
\342\200\224

VZuZu = y/ZuZu\n (13-38)\n

tanh y = y/Zu/Zt\\0 =
yjZ^/Zio\n (13-39)\n

for symmetrical networks. In the equations to follow, the subscript1
\nwill be used with the understanding that it can be replacedbya 2asin

\nthese equations given above, as long as the network is symmetrical.
\nFor reactive networks in the sinusoidal steady state, equations for the
\nimage impedance and image transfer function become\n

Zi =
\342\226\240\\/(\302\261jXi.) (\302\261jX i.) (13-40)\n

tanh * =
y/jjk

('W\n

From our knowledgeof the properties of LC networks discussed in
\nChapter 12, we know that the sign of the reactance functionchanges
\nwith frequency for driving-point reactances. Here Xu and Xu are
\ndriving-point reactance functions, although their quotient relates to
\na transfer function. As frequency changes, the sign as well as the
\nmagnitude of Xu and Xu changes. There are four possiblesigncon\302\254

\nditions summarized below.\n

Case\n Xu\n Xu\n Zi\n tanh y\n

1\n +\n +\n jXi\n real\n

2\n
\342\200\224\n \342\200\224\n

jXi\n real\n

3\n +\n
\342\200\224\n

Ri\n imaginary\n

4\n
\342\200\224\n

+\n Ri\n imaginary\n

If the signs are the same for Xu and Xu, the image impedance is

\nimaginary and tanh y is real. For opposite signs, Z, is real and tanh y

\nis imaginary. These are the only choices. Both Zt and tanh y must be

\nreal or imaginary, but can never be complex. We next turn our atten\302\254

\ntion to an investigation of the conditions under which tanh y can be

\nreal or imaginary. Since y = a + j(3,tanh y can be expanded as\n

, , sinh y sinh a cos P + j cosha sinP ,10\n
tanh y = \342\200\224L =

\342\200\224r (13-42\n
cosh y cosh a cos P + j sinh a sin /3\n

Dividing both numerator and denominator of the equation by the

\nfactor cosh a cos 0 gives\n

tanh y = ,tonh
a

+J
tan 3

\nT
1 +j tanh a tan (3\n

(13-43)\n
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Our problem is to make this expression either purely real or purely
\nimaginary. There are several possibilities.\n

(1) Let a = 0 suchthat tanha \342\200\224
0. For this condition,\n

tanh y = j tan 0 (for a
\342\200\224

0) (13-44)\n

and tanh y is purely imaginary.\n
(2) Let 0 = 0 such that tan 0 = 0; then\n

tanh 7 = tanh a (for 0 = 0, \302\261t, \302\2612x, ...) (13-45)\n

and tanh y is purely real.\n

(3) Let 0 = t/2 (or odd multiples of this angle)suchthat tan0
\napproaches infinity. In the limit,\n

tanh'>'
=

sir; (for
0 =

\302\261
r

\302\261
t

\302\261
t\342\200\231

\342\200\242\342\200\242

)
(13_46)\n

and again tanh y is purely real.\n

Any other values of a and 0 will maketanh y complex, and this is

\nnot permitted. Hence there are only three possibilities for values for
\n\302\253and for 0, as summarized below.\n

Conditions of a and 0
\n'

a = tanh-
^\n

1 0 = 0, +ir, +2t, ... (13-47)\n

I or\n

I a = tanh-1\n

0 =
\302\261| \302\261

^
\342\200\242\342\200\242\342\200\242 (13j*8)\n

a = 0\n

0
= tan-1 (13-49)\n

It is now possible to extendthe tablegiven on page 318 to include

\nthe values of a and 0 for the four cases.\n

Case\n jXl8\n jXu,\n Zi\n tanh 7\n a\n 0\n

1\n +\n +\n jXi\n real\n a tA 0\n 0 or ir/2\n

2\n
\342\200\224\n \342\200\224\n

JX<\n real\n a 5^ 0\n 0 or x/2\n

3\n +\n
\342\200\224\n

Ri\n imaginary\n 0\n MO\n

4\n
\342\200\224\n

+\n Ri\n imaginary\n 0\n 0*0\n

We now have sufficient information to examine the differentcasesin
\nterms of both a transfer quantity, the image transfer function, and a\n

Value of tanh y\n

Real\n

Imaginary\n
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driving-point quantity, the image impedance. At some value of fre\302\254

\nquency, assume that the signs of Xu and Xu are such that the con\302\254

\nditions of Case 1 or Case 2 apply. Then the image impedanceat
\nterminals 1-1 is imaginary. This is the impedance of the network

\npresented to the generator when terminated in Z\302\273.We associate this

\nreactive load with the condition of nopowertransfer. From the trans\302\254

\nfer point of view, the attenuation a is positive and real, which means

\nthat the load current It is smaller than the generatorcurrent h (see

\nEq. 13-17). The current is attenuated or, so to speak \342\200\234stopped.\342\200\235

\nUnder the conditions of Case 1 and Case 2, the frequenciesare desig\302\254

\nnated stop frequencies, and the band of stop frequencies is designated
\nthe stop band.\n

When the signs of Xu and Xu are opposite,we have Case 3 and

\nCase 4, where the image impedanceis real and the attenuation a is

\nzero. From the driving-point impedance point of view, the load is now

\nresistive and there is power transfer. Withno attenuation,the mag\302\254

\nnitude of 72 is equal to the magnitude of h (althoughtherewill be a

\ndifference in the phase of the two currents). For thesecases,the cur\302\254

\nrent is \342\200\234passed.\342\200\235Such frequencies as give the conditions of Case 3
\nand Case 4 are designated pass frequencies. A band of pass frequencies
\nis identified as a pass band. The frequency of transition from passband

\nto stop band or vice versa is assigned the name cutofffrequency.\n

The reactance function Xu and Xu vary with frequency according
\nto several rules discussed in Chapter 12:\n

(1) The slope of the reactance curve dX/do) is alwayspositive.\n

(2) As a consequence of the slope property, the polesand zeros (or

\npoints of resonance and antiresonance) alternate as a functionof
\nfrequency.\n

(3) The external frequencies (that is, u> = 0 and \302\253= \302\273)are always

\neither poles or zeros.\n

Since the critical frequenciesof the reactance function determine the

\nnature of the reactance versus frequency plot, we suspect that the

\ncritical frequencies somehow relate to the pass band, the stop band,

\nand the cutoff frequencies. We can study the relationships by compar\302\254

\ning the reactance curves made for Xu and Xu. Both plotswill have

\nthe general appearance of the plot shown in Fig. 13-10.In comparing

\nthe critical frequencies of Xu and Xu, we recognize that therearethree

\npossibilities: (1) the critical frequencies will coincide but be opposite
\nin nature, (2) the critical frequencies will coincide but be the same
\ntype, and (3) the critical frequencies will not coincide. These three
\npossibilitiesareillustratedin Fig. 13-11.\n
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The reactance plots for Xu and Xu, for the first possibility are

\nshown in Fig. 13-12. At noncritical frequencies, the signsforXu and
\nXu, are always opposite. At critical frequencies, the two functions
\nchange signs at the same time to preserve this oppositesignnature.
\nFrom the table on page 319, we see that oppositesignsfor Xu and Xu,\n

Fig. 13 -10. Reactance plot for LC network.\n

*1.\n xu\n Xu\n

1\n
1\n
1\n

1 0)
\n1
\n1\n

1\n
1\n
|\n

i\n
i\n

u>\n T\n
i\n
|\n

!
w

\ni\n

Xu\n

1\n

!\n

A\n

1\n
1\n
1\n
1\n Xl0\n

1\n

!\n

i\n
i\n
i\n

i\n
Xu\n

l\n
i\n
i\n
i\n

i\n
i\n
i\n
\342\200\242\n

i\n
i\n

* o)\n
i\n

\302\245\n
\342\200\242\ni\n

0)\n i\n
i\n T w\n

\302\253i\n u>2\n 012\n 0)1\n 0)2\n

(a) (6) (0\n

Fig. 13-11. Comparison of critical frequencies of Xl0and Xu.\n

correspond to Case 3 and Case 4 for which a = 0. At all frequencies

\nwhere Xu and Xu are opposite in sign, thereis no attenuation and the

\nfrequencies are pass frequencies. A band of frequencies for which this
\ncondition holds is thus a pass band.\n

The second possibility shown in Fig. 13-11(b) results in reactance
\nplots having the same sign for all values of frequency. Sucha reactance\n
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plot is shown in Fig. 13-13. With the same signfor Xu and Xu, we

\nhave Case 1 or Case 2 on the table of page319,corresponding to

\nattenuation. A band of frequencies with the same signforXuandXu

\nis therefore a stop band.\n

The last possibility is illustrated in Fig. 13-14: a critical
frequency

\nexists in either Xu or Xu without being in the other one. At the crit-\n

ng. is-14. Condition for cutoff frequency from .Yu and Xu.\n

Zh\n

t\342\200\224r\n

l\n

1 A\n

\302\273-\342\226\240\342\226\240\n
i\n

l\n

1\n

i\n

4\n

M\t\n
l\n
l\n

1\n

l\n

\302\253
f\n

1\n

T\n

pass\n

\342\200\235'
l

\n1

\n1\n

\302\253
I\n

stop\n

cutoff'\n
(a) -00\n

Fig. 13-15. Stop and pass bands and cutoff frequency.\n

ical frequency, the sign of one reactance function changes but the

\nother does not. This condition corresponds to changing from a pass
\nband to a stop band or vice versa. Such critical frequenciesarethus

\ncutoff frequencies. An example of a plot with each of the threecondi\302\254

\ntions existing and with the corresponding designation of pass band,
\nstop band, and cutoff frequency is shown in Fig. 13-15.\n
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We are now in a position to study further the nature of the image

\nimpedance Z, in terms of the criticalfrequenciesof the open- and short-

\ncircuit impedance functions, ZXo and Zu. The image impedance is
\ngiven by Eq. 13-6 as\n

Zi = VZioZu (13-50)\n

In terms of the poles and zerosof Zu and Zu, the image impedance
\nmay be written\n

7 _ /rr \342\200\236(s2 + \302\25322)(s2 + W42) . . . H2 (s2 + W\342\200\2362).. .\n

*
\\

1
(s2 + \302\253i2)(s2 + o,32) ... \302\253(s2 + o\302\2732). . .\n

(13-51)\n

where two of the possible impedance forms have beenassumedfor Zi<,

\nand Zu. In the pass band, the poles of ZXo are zeros of Zu or vice versa.
\nSuch factors, for example (s2 + o>22) and (s2 + a>62) if =

\302\253&,cancel

\nterm by term and hence are not critical frequenciesof Z<. In the stop

\nband, the poles and zeros of Zi0 and Zi, coincideandsomay be removed

\nfrom the radical. Stop-band critical frequencies are thus critical fre\302\254

\nquencies of A cutoff frequency appears as a critical frequencyin
\neither Zi0 or Zia (never both). In a typical frequency term (inthe
\nsinusoidal steady state where s =

ju),\n

(\342\200\224O)2+ <0l2)\n (13-52)\n

the sign of the term changes as \302\253exceeds
\302\253i,causing a change of sign

\nwithin the radical. This change of sign changes Z, froma realnumber

\nto an imaginary number or vice versa. One plot of Zi for a filter is\n

Fig. 13-16. Image impedance variation in the pass band and stop\n

band.\n

shown in Fig. 13-16. Note that Z< changes from a resistance to a react\302\254

\nance at the cutoff frequency, and again, that the criticalfrequencies
\nof Zu and Zu in the stop band are the criticalfrequenciesof Z, in the

\nstop band.\n
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Example 1\n

To illustrate the application of the concepts of this sectionto specific

\nnetwork configurations, consider first the T section shown in Fig. 13-17.\n

ng. 13-17. T network of Example 1 with open-circuit and short-\n

circuit networks.\n

We will determine the poles and zerosof the impedance functions Zu

\nand Zu, and from this determine the pass band, the stopband,and the

\ncutoff frequency. The open-circuit impedance is\n

n / \\ . _J_
LCs1 2\n

Zl \342\200\242(*)
2

+
Cs 2 Cs\n

(13-53)\n

and the short-circuit impedance function is\n

\342\200\236 _ L* , 1 _ L(LC\302\253\302\273+ 4s)\n
*uW ~

2 Cs + 2/Ls 2(LCs*+ 2)\n

(13-54)\n

From these two impedance functions, the poles and zerosare found to

\nhave the values tabulated below.\n

Zu>\n Zu\n

Poles\n zero\n

infinity\n

infinity
\n\302\253= y/2/LC\n

Zeros\n \302\253= V2/LC\n
zero\n

2\n

CO = 7=\n
\\/LC\n

These are shown in Fig. 13-18,together with the designationsof the

\nfrequencies in the pass band and in the stop band. The value of the

\ncutoff frequency for this network is seen to be\n

- - (1W\n

whichis a zero of Zu. As a filter, this network passes the low frequen\302\254\n
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cies and rejects the high frequencies. Filters of this type aregiventhe
\nname low-pass filters.\n

Example #\n

Another T section is shown in Fig. 13-19,togetherwith the corre\302\254

\nsponding open-circuit and short-circuit networks. For this network we\n

cutoff\n

Fig. 13-18. Low-pass filter poles and zeros.\n

\342\200\242\342\200\224Hf\342\200\224\n

2 C\n

Zlo\n

Z.\n

, 2C\n

Z\\, L\\\n =r=2C\n

Fig. 13-19. T network of Example 2 with the open-circuit and short-\n

circuit networks.\n

o) \302\256oo\n

Fig. 18-20. High-pass filter poles and zeros.\n

see that\n

^ + L. - + 1\n

2 Cs\n

Zu \342\200\224
7T?T +\n

2Cs\n

1\n 4 LCs2 + 1\n

(13-56)\n

(13-57)\n2Cs
1

2 Cs + l/Ls 2Cs(2LCs2 + 1)\n

The poles and zeros for these two functions are shownin Fig.13-20,\n
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together with the pass band, stop band, and cutoff frequencydesigna\302\254

\ntions. As a filter, this network rejects low frequencies but passeshigh

\nfrequencies. This type of filter is designated a high-pass filter.\n

Example S\n

The network for this example has element values given in orderto

\nsimplify the algebra in computing impedances. The network is a T\n

rig. 13-21. T network of Example 3 with the open-circuit and short-\n

circuit networks.\n

4\nf
T ?

\t\n o \t\n

1\n
w\t\n

\342\200\224T f\n

1 I |\n

i i\n

i i\n

1\n

1\n

1\n

1\n

1\n

1 1

\n1

\n1\n

i I\n

1 : \342\231\246\n

1\n

1\n

w\n

1\n

1\n

x\n

1\n

1\n

T
!

J\342\200\224\n
1\n T\n

stop\n

cutoff\n

1\n

pass\n

cutoff\n

U -00\n

stop\n

Tig. 13-22. Band-pass filter poles and zeros.\n

with two elements in each branch. From the schematic diagramsthe
\nimpedance expressions are found to be\n

7 _ s l 1 _ + 4s2+ 1\n

u
2

+
2s

+ s + 1/s 2s(s2+ 1)\n

and similarly,\n

(13-58)\n

* _ \342\200\242
,

1
,

1 _ \302\2736+ 7s4 + 7s1 + 1\n

u
2

+
2s

+ s + l/\302\253 + l/(s/2 + l/2s) 2* (s4 + 4s2 + 1)\n

(13-59)\n

This last equation looks rather formidable, being of sixth order(or\n
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rather third order in s2). However, the fact that an s2+ 1term appears

\nin the equation for Z\\a as a pole leads one to suspectthat (s2 + 1)

\nmight also be a zero of Zu> Inspection of the pole zeroplot of Fig.\n

13-22 with all poles and zeros plotted except the zerosof Zu adds to

\nthe suspicion. Factoring, there results\n

s\302\253+ 7s4 -f 7s2 + 1 = (s2+ l)(s4+ 6s2 + 1) (13-60)\n

from which all zeros can be found usingthe quadratic formula. A

\nsummary of values for the polesand zerosfollows.\n

Z\\o\n Zu\n

zero\n zero\n

Poles\n co = 1\n \302\253= V2 \302\261y/Z\n

infinity\n infinity\n

Zeros\n co = a/ 2 +\n CO = 1\n

w = y/3 \302\2612 \\/2\n

A plot of these poles and zeros is shownin Fig.13-22. It is seen that

\nthere are two cutoff frequencies and that both low-frequency and
\nhigh-frequency bands are stop bands. Frequencies in a center band
\nare pass-band frequencies. Filters of this type are designated band\302\254

\npass filters. An opposite type of filter with pass bands at low and high

\nfrequencies and a stop band at a centerbandof frequencies is a band-

\nelimination filter.\n

Short-circuit and open-circuit measurements can be used as a prac\302\254

\ntical means of analyzing an unknown two-terminal-pair network in the
\nlaboratory. Suppose that the two-terminal-pair network is connected\n

I

O-T\n

Sine wave
\ngenerator \\)\n

1\n

Fig. 13-23. Experimental apparatus to study filters.\n

to a sine wave generator as shown in Fig. 13-23.If the current is

\nmeasured by an ammeter marked I (or a dropping resistor together

\nwith a cathode ray oscillograph) as frequency is changing with output\n

Open or

\nclosed\n
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voltage maintained constant, a plot shown in Fig. 13-24 will be

\nobtained. The current will have a maximum value at a zeroof imped\302\254

\nance and a minimum value at a pole of impedance. The incidental
\nresistance of the elements prevents the current from becoming zeroor
\ninfinity. The same rules that have been used in our networkanalysis
\ncan be applied to the experimental results. If /,\302\253is at a minimum value

\nwhen lot is at a maximum and vice versa, measurements are being\n

made in the pass band. When a maximum or minimumis recorded for

\n/\342\200\236or It but not for the other, that frequencyis a cutoff frequency.

\nWhen Itc and It are both maximum or minimumat a given frequency,

\nthat frequency is in the stop band. The case illustratedin Fig.13-24

\nevidently corresponds to a low-pass filter.\n

We now have practice in locating pass bands, stop bands,andcut\302\254

\noff frequencies. We next turn our attention to the problem of com\302\254

\nputing the attenuation a in the stop band, and the phaseshift /3 in the

\npass band, for a number of important filternetworks.We will also be

\nconcerned with the variation of the image impedancewith frequency

\nfor these networks.\n

13-5. Attenuation and phase shift in symmetricalT andt networks\n

Expressions for the image impedance of symmetrical T and r net\302\254

\nworks were derived as Eqs. 13-10 and 13-12. These equations may be

\nrearranged to show the significance of the factor (Zi/4Zi) as\n

Ztr \342\200\224
V^i*/4 + ZiZ, = V%Z*(1 + Zi/4Z*) (13-61)\n

ZiZ,\n
Zu =\n

\342\226\240^Zi*/4 + ZiZi\n

ZiZ,\n

+ Zi/4Z,\n
(13-62)\n

We have shown that in the pass band the imageimpedanceis real and\n
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that in the stop band the image impedance is imaginary.Theseequa\302\254

\ntions permit determination of pass bands and stop bands, using this
\nimage impedance criterion. When the factor\n

1 + Zi/4Z2 (13-63)\n

changes sign, the nature of the image impedance must change,realto
\nimaginary or imaginary to real. Hence cutoff frequencies occur when\n

Zi\n

4Z2\n
1\n (13-64)\n

This equation offers an alternate method for analyzing a network
\ndirectly in terms of the series and shunt impedances rather than in
\nterms of open- and short-circuit impedances used in the last section.
\nThe factor (Zi/4Z2) is evidently of importance in the analysis offilters,
\nsince once cutoff frequencies are known, the nature of the networkis
\nreadily established by knowing whether the network passes or stops
\nat one additional frequency.\n

An equation may be derived relating the imagetransferfunction to

\nthe factor (Zi/4Z2). The derivation begins with Eq. 13-30,which is\n

cosh y = 1 + (13-65)\n

Thisequationwas derived for a T section, but also applies to a x sec\302\254

\ntion (see Prob. 13-2). Dividing both sides of the equationby 2 and

\nrearranging, we have\n

cosh 7
\342\200\2241 _

\n2\n

By an identity for hyperbolic functions,\n

cosh 7 - 1 _ . , 2\n

z 1\n

4Z2\n

7\n Zx\n

2\n 4Z2\n

(13-66)\n

(13-67)\n

Expanding this equation in terms of the real and imaginary part of

\n7 gives\n

sinh
a

t,
^ = sinh

^

cos
| + j cosh

^

sin
^

=
yj^

(13-68)\n

Now for reactivenetworks,Z\\
=

\302\261jXi and Z2 = +jXz, so that there
\nare two possibilities in the radical expression depending on whether
\nZ\\ and Z2 have the same or opposite signs. We will consider these

\npossibilities separately.\n

(1) When Zi and Z2 have oppositesigns,that is, Z\\
= +jXi and

\nZ2
=

\342\200\224jXi or Zi =
\342\200\224jXi and Z2 = -\\-jXi, then (Zi/4Z2) is negative.\n
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The last equation may be interpreted in terms of a positivefactor

\n(\342\200\224Zi/4Z2). Then\n

sinh
^

cos
^

= 0 (13-69)\n

cosh
Isin |

=
yji\302\247;

<13-70)\n

This equation may be satisfied in two ways: a = 0 or 0
=

\302\261tt, \302\2613t,

\netc. Thus either\n

a = 0\n (13-71)\n

and\n 0 = 2 sin-1 V- ZX/4Z2\n (13-72)\n

or\n 0 = +ir, +3ir, \302\26157r, . . .\n (13-73)\n

and\n a = 2 cosh-1 \\/ \342\200\224Zi/4Z2\n (13-74)\n

(2) When (Zi/4Z2) is 'positive, the radical of Eq. 13-68is
real, and\n

cosh
^

sin
^

= 0\n (13-75)\n

sinh
5

c\302\260s

f
.\n

Uz2\n
(13-76)\n

In this case cosh (a/2) can never equal zero,so that there is only one

\nway in which these equations can be satisfied: 0 must be 0, \302\2612?r, etc.

\nThus the solution is\n

0
= 0, \302\2612x, \302\2614x, ... (13-77)\n

a = 2 sinh-1 \\/Zi/4Z2 (13-78)\n

These two equations apply when (Zi/4Z2) is positive. However,
\nwhen (Zi/4Z2) is negative there are the two possibilities corresponding
\nto Eqs. 13-71 and 13-72 for a pass band, and to Eqs.13-73and 13-74

\nfor a stop band.\n

Since we arrive at different conclusionsforpositiveand for negative

\nvalues of (Zi/4Z2), zero value for (Zi/4Z2) is evidently a
point of

\ndivision for the various forms of equations for a and 0. When (Zi/4Z2)

\nis negative there are two possibilities. The point of division for these
\ntwo equations is given by Eq. 13-64 as Zi/4Z2 = \342\200\2241. The different

\npossibilities are summarized in the followingtable. The equations for

\nnegative values of (Zi/4Z2) find the most frequent application,because
\nmost of our studies will concern networks with opposite signs for X\\

\nand X2.\n
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Zi/4Z2\n

Type of

\nband\n

Attenuation\n

a\n

Phase shift

\n0\nLower\n

limit\n

Upper\n

limit\n

\342\200\22400

\n-1

\n0\n

-1\n

0\n

00\n

stop\n

pass\n

stop\n

2 cosh-1 -\\/\342\200\224Zi/4Z2

\n0\n

2 sinh-1 \\/Zi/4Z2\n

\302\261ir, \302\2613tt, ...\n

2 sin-1 \\/\342\200\224Zi/4Z2

\n0, \302\2612ir, +47T, ...\n

13-6. Constant-# filters\n

An important class of filters is designed under the conditionthat Zi
\nand Z2 (as defined for the standard T and standard t section)are
\nrelated by the equation below, where R is a constant both positive
\nand real.\n

ZXZ2 = R2 (13-79)\n

This equality requires that the impedancesZx and Z2 be purely reac\302\254

\ntive and of opposite sign. In the first discussion of filtersof this type,

\nZobel* used the letter K in place of the R of our equation. Actually

\n11 is a preferred symbol because the quantity is dimensionally ohms,
\nand R turns out to be the value of the terminating resistance.Even
\nthough R has replaced K in the defining equation, filters designedon
\nthe assumption of Eq. 13-79 are universally designated as constant-K
\nfilters. The advantages, if not the justification of the assumedrelation\302\254

\nship between Zi and Z2, will become evident by algebraic simplifica\302\254

\ntion, and later by simple network structures.\n
To simplify the equationsderivedin the last section, we will define

\na new variable for the quantity (Zi/4Z2) as\n

** -
if1

(13-80>\n

This particular choice of signis made in order to make x2 a positive
\nquantity, since Z\\ and Z2 have opposite signs for constant-# filters.
\nThe impedance expressions in Eq. 13-79 are, for reactive networks,\n

ZXZ2 =
(\302\261jX1)(+jX2)

= +M2 = R2 (13-81)\n

It is now possible to write the expressionsfor the imageimpedance in

\nvery simple form in terms of R and x. Equations13-61and 13-62\n

* See reference at end of chapter.\n
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ZiT
= RVl

-
X2 (13-82)\n

Zi, = .
R

, (13-83)\n
v i \342\200\224

x\n

Similarly, the expressions for the attenuation and phase of the last
\nsection become simple in form. Since we are considering onlypositive
\nvalues for x2, only negative values for (Zi/4Z2) in the table onpage331
\nneed be considered for the time being. In the stop band,by Eq. 13-74,

\nwe have\n

a = 2 cosh-1 x (13-84)\n

0 = +?r, +3ir, etc. (13-85)\n

In the pass band, by Eq. 13-72,\n

a = 0 (13-86)\n

0
= 2 sin-1 x (13-87)\n

Plots of ZiT, Zir, a, and 0 againstx are shown in Fig. 13-25. These are

\ngeneralizedplots. In orderfor the plots to be specialized to specific\n

N\n \t\n

^^stop 1\n pass 1 stop \342\200\236
^'\n

-x\n 0 +i +x\n

i1\n
\\;x (xj\n

i! I i\n

ib)\n

Tig. 13-26. Normalized plots in terms of x = \\/ \342\200\224Zi/AZ*.\n

networks, only x as a function of frequency \302\253need be determined.

\nOnce x(o>) is known, the coordinates may be adjustedfor the special\n
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cases. This procedure will be illustrated for severalexamples con\302\254

\nsidered earlier in the chapter.\n

Example 4\n

Consider the standard T section shown in Fig. 13-17,(page324).
\nFor this network, Z\\

=
jwL and Z2 = \342\200\224

j/u>C (note that Z\\ and Z2

\nare opposite in sign as required). The normalized variable x then
\nbecomes\n

x\n
j\342\200\224Z\\

I uL
/

w\n
=

V4Z7
=

\\4/coC
~

sm\n

2\n

4 /LC\n

Now by Eq. 13-55, the cutoff frequency for thisT section is\n

2\n

\302\253o
=\n

so that x becomes\n
y/LC\n

W\n

x = \342\200\224\n

COO\n

Then for this T section, we have the followinginformation:\n

(13-88)\n

(13-89)\n

(13-90)\n

= 0 and 8 = 2 sin-1 \342\200\224 0 ^ w ^ w0\n

Wo\n
(13-91)\n

a = 2 cosh-1 \342\200\224; 8 = tt, w ^ wo\n (13-92)\n
Wo\n

(13-93)\n

R =\n
(13-94)\n

The plots for ZiT, a, and /3 given in Fig. 13-25 apply directly to this
\nnetwork, with x replaced by \302\253/a>0. As discussed previously, the atten\302\254

\nuation a is usually computed in decibels using the relationship,a*\n

=
8.686anepets.\n

Example 5\n

For this example, consider the T network of Fig. 13-19(page325).
\nThe variation of x with \302\253is found as\n

x\n
_ ll/uC _ I 1 _ Wo\n
\342\200\234

\\ ~4wZ7
\342\200\234

\\4^LC

~
^\n

(13-95)\n

where the cutoff frequency wo is identified from Fig. 13-20.This T
\nsection has an inverse relationship to that of Example 1. Theequations\n
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become\n

a = 0 and 0 = \342\200\2242sin-1 \342\200\224>\n

<0\n
\302\251\n3\nAll\n3\n (13-96)\n

a = 2 cosh-1 \342\200\224and 0 =
\342\200\224x,\n

Cd\n

0 ^ w ^ 0)0\n (13-97)\n

1\n

0)0
= 7=\n

2 VLC\n
(13-98)\n

R =
VL/C\n (13-99)\n

These equations evidently identify a high-pass filter. In order to make

\nuse of the normalized plots of Fig. 13-25, only the x axis needbe

\ninverted, the origin becoming infinity and infinity becoming the origin.
\nThe resulting plots for ZiT, a, and 0 are shown in Fig. 13-26.\n

Fig. 13-26. Characteristics of high-pass filter.\n

Example 6\n

For the x section of Fig. 13-27, Z\\
=

j<aL and Z2 =
\342\200\224j/oaC. The

\nvariable x for this network becomes\n

or\n

4/LC\n

o\302\273\n

(do\n
(13-100)\n

since the cutoff condition, Zi/4Z2 = \342\200\2241 defines <d0. This equation is\n

identical with Eq. 13-90, indicat\302\254

\ning that the attenuation and phase\n

lo\n

lo\342\200\224\n

Kg.\n

L\n

=r^C/2 ^C/2\n

of\n

shift of this x network are identi\302\254

\ncal with those of the T network of
\nExample1, and are given in Fig.

\n13-25. There is one important dif\302\254

\nference, however. The image imped\302\254

\nance variation with o)/o>o is differ\302\254

\nent, being that given in Fig. 13-25(5). For these two differentnetworks,

\nthe impedance characteristics are quite different even though a and 0
\nare identical.\n

13-27. x section network

\nExample 3.\n
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Example 7\n

For this example consider the network of Example 3 shownin Fig.\n

13-21. This network was shown to be a band-pass filter. Thereactance
\nfunctions for this network are\n

Z\\ =
j\342\200\224 and Z2 = -j 2

\342\200\234

T (13-101)\n
<j\302\273 ur \342\200\224

1\n

so that\n X\n

O)2 \342\200\224
1\n

2o>\n
(13-102)\n

This last equation relates the frequency w for the filter to the variable
\nx of the standard attenuation, phase shift, and image impedance char\302\254

\nacteristics. By this equation, we perform a frequency transformation.
\nThe same technique can be used for any filter\342\200\224band-pass, band-

\nelimination, or any combination of such specifications. Plots ofa and
\n0 for the band-pass filter of this example as shown in Fig. 13-28.\n

Fig. 13-28. Attenuation and phase characteristics for a band-passfilter.\n

The networks of our four examples have been very simple,but the
\nsame concepts apply to more complicated networks necessary to

\naccomplish multiple-pass or multiple-stop bands. All networks of the
\nconstant-# type must have Z\\ and obeying the inverse relationship\n

Z, = ~ (13-103)\n
Z2\n

and this restriction limits the possible forms for Z\\ and Z%. We are

\nfamiliar with two forms of networks that obey this relationship,the
\nFoster forms of networks. The relationship\n

(13-104)\n
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is satisfied if, for example,\n

7 _ D2 (\302\2562+ \302\256i2)\342\200\242\342\200\242\342\200\242\n

Zl~R
s(s2 + s22)...\n

(13-105)\n

and\n y _ (S2 + Si2) . . .\n

2

s(s2 + S22). . .\n
(13-106)\n

(Other multiplying factors will also satisfy Eq. 104.) Hence if Z\\ is

\nrealized as a Foster No. 1 type of network and Y2 is realized as a Foster\n

Fig. 13-29. Foster networkforms.\n

No. 2 admittance network, the resulting filter will be constant-#. A

\ntypical term in the admittance expansion of Y2 is given by Eq. 12-64;
\nit is\n

Y (\302\253)
=\n

s/L\342\200\236\n

(S2 + 1/LnCn)\n
(13-107)\n

for a series LC network. Similarly,typical terms of the impedance

\nexpansion of Z(s) will have a formgivenby Eq. 12-60, as\n

Z(s)
=\n

s/C\342\200\236\n

(s2 + l/LmCm)\n
(13-108)\n

Since by Eq. 13-104 these equationsfor F(s) andZ(s) containing the

\nabove typical terms must be equal, we have\n

Z1(s)
= R2Y2(s)\n

or, in terms of the product formsfor F(s) andZ(s),

\nN 1(8) _ D2 N2(s)\n= R2\n

(s2 + l/LmCm) (s2 + l/L + l/LnCn)\n

This equality is possible only if, term by term,\n

(13-109)\n

(13-110)\n

LmCm \342\200\224LnCn \342\200\224\n
(13-111)\n

or, for similar network configurations, in the two Foster forms,\n

(13-112)\n
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for the constant-# network. As an illustration of these conclusions,
\nconsider the network shown in Fig. 13-30. In order for this network to

\nbe constant-#, it is necessary that\n

L1C1 = L2C2 = (13-113)\n
wo2\n

This concept is useful in the design of constant-# filters.\n

Fig. 13-31. Ladder networks satisfying the requirement of recipro\302\254

\ncal impedances, ZXZ2 = R*. Note that Zx is the driving-point imped\302\254

\nance and that Z\\ is the impedance of a ladder element.\n

The networks used for Z\\ and Z2 need not be of the Foster forms.
\nThe two ladder structures shown in Fig. 13-31 satisfy the requirement
\nthat ZxZt = R2.\n

We will define a composite filter as a filter madeup of the cascade

\nconnection of a number of standard T or standardir sections. Con-

\nstant-iC networks can be connected in tandem to form a composite

\nfilter provided an image impedance match exists at each terminal pair.
\nTo illustrate, consider a standard T section. Figure 13-32 shows a\n
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representation of n such sections connected in tandem. Note that at
\neach terminal pair in the composite structure there exists an image

\nmatch (such that the equations we have derived hold). The attenua\302\254

\ntion of n sections is\n

a = 2n cosh-1 \342\200\224
(13-114)\n

0>o\n

from Eq. 13-92. Attenuation curves

\nfor several values of n are shown in

\nFig. 13-33. Evidently the effective\302\254

\nness of the composite filter in provid\302\254

\ning attenuation in the stop band is
\nincreasedby increasingthe number of T sections in tandem. However,
\nif a \342\200\234sharp\342\200\235cutoff is required by specifications, a large number of T
\nsections must be used in the composite filter. The limitationsofcon\302\254

\nstant-# composite filters are:\n

Fig. 13-33. Attenuation in com\302\254

\nposite filters.\n

(1) A large number of T sections is required to attainhigh atten\302\254

\nuation in the stop band near the cutoff frequency. This large

\nnumber of elements may make the cost of the compositefilter

\nprohibitive.\n

(2) The composite network cannot be terminated in the required
\nimage impedance shown in Fig. 13-25(a), because no such ter\302\254

\nminating impedance exists. Terminating the filter with a con\302\254

\nstant resistance R introduces mismatch at all but one
frequency.\n

13-7. The m-derived filter\n

The need for a filter section with high attenuation in thestopband

\nnear cutoff frequency led to development of the m-derived filter by

\nO. J. Zobel in 1923. The filters considered in the last sectionwere a\n

o VW\n

Z[/2\n

o\n

la)\n

\342\200\224V\\A/
\302\260\n

zy 2\n

Z$ \"*~Zix\n

AAA/\342\200\224\302\260\n

Zi/2\n

z,T\n

Fig. 13-34. Networks with the same imageimpedances:(a) new; (b)\n

old.\n

very restricted class of filters satisfying the requirement that theprod\302\254

\nuct Z\\Z\\ be a constant. If other combinations of elements are per\302\254

\nmitted, it seems intuitively possible that some arrangement ofelements
\nwill give the required high attenuation near cutoff frequency. Zobel
\napproached this problem with one specification for the new network.\n
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Anticipating that the resulting section might be used in tandemwith

\nconstant-# filter sections, he specified that the image impedance of
\nthe new network be the same as the standard T or standardir section.

\nThis requirement is illustrated in Fig. 13-34. The new impedance terms

\nare designated Z\\ and Z2'; the impedance terms for the constant-#
\nsections are designated Zi and Z2. We have the requirementthat the
\ntwo networks have the same image impedances; we need somefurther
\npremise

in order to relate Z\\, Z%, Zx, and Z2'. Zobel assumed that

\nZ\\ and Zi were related by the equation\n

Zi' = mZi (13-115)\n
where m,is a constant. This may seem to be an unusualassumptionto
\nmake. We should expect that our assumption might instead relate to
\nthe attenuation properties of the new filters, or perhaps the desired
\nform of image impedance. It is difficult to anticipate the surprising
\nresults that follow from this simple beginning.\n

With Z\\ fixed, let us see what happens to Z2' in termsof Zi and Z2.

\nEquating image impedances,\n

Z\302\2611 + Z/Z2' =
^r + Zxz2 (13-116)\n4 4\n

Substituting the condition Z\\
\342\200\224vnZx into this equation and solving

\nfor Z2', there results\n

z*' -
(tjt)

z- + <mi7>\n

The schematic representation of the new m-derived network is shown
\nin Fig. 13-35.\n

A similar derivation may be given
\nfor the tt section by assuming that

\nany new network structure must

\nhave the same image impedance as

\nthe standard tt network and further

\nmaking the assumption that\n

Z2' = \342\200\224
(13-118)\n

The image impedance of the ir section is given by Eq. 13-12.Using this

\nequation and 13-118, the impedance Z\\ is found to havethe value\n

Zi' = *\342\200\224
(13-119)\n

\342\200\224: 1 \t\n

mZ i 4m \342\200\236\n

z2\n

Fig. 13-35. m-derived T section.\n

1 \342\200\224m2\n
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which is the impedance of a parallelcombinationof the impedances\n

mZi and ,
4m

,Z2 (13-120)\n
1

\342\200\224m2\n

The resulting m-derived x section is shown in Fig. 13-36,together with

\nthe schematic for the standard x section.\n

(4m/l-m2)Z2\n

rVWi\n

(a) (6)\n

Fig. 13-36. Comparison of (a) standard section, and (b) m-derived\n

section.\n

Now that we have the m-derived structures, our next task is to

\ncompute the attenuation to see that we have attained our objective.
\nFirst, a physical interpretation of the results thus far can be seenina
\nspecific example. Suppose that we select a low-pass filter of the type

\nshown in Fig. 13-17 and in Fig. 13-27 for the T andx sections, respec-\n

o rflpr-\n
mL/2\n

nm' \t\n

mL/2\n

(a)\n

mL\n

mC/2^-\n

HH\n
_ l-m2 r _

\nAm
^ ^\n \342\200\224mC/2\n

o \t\n o\n

(6)\n

Fig. 13-37. m-derived low-pass filter sections: (a) T section;(b) r\n

section.\n

tively. The equivalent m-derived sections are shown in Fig. 13-37.
\nFor these networks, let us ask, what can possibly give infiniteattenua\302\254

\ntion at a particular frequency? The m-derived T section shownin
\nFig. 13-37 will have infinite attenuation (or no transmission) when the
\nseries LC circuit is in resonance. Under this resonance condition,the
\nseries LC circuit is the equivalent of a short circuit, suchthat allcur\302\254

\nrent by-passes the load. This resonant frequency is thus a frequency
\nof infinite attenuation designated as to.. It has the value\n

=
1 \t\n

\302\260\302\260

\\/[(l
\342\200\224

m2)/4m]L(mC)\n

(13-121)\n
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or\n

top\n

y/l
~

m*\n

(13-122)\n

since the cutoff frequency o>0 has the value 2/\\/LC by Eq. 13-55.\n
At this same frequency, the parallel circuit of Fig. 13-37(b)will be

\nin parallel resonance (antiresonance) having infinite impedance. Under
\nthis open-circuit condition, no current can pass through the series ele\302\254

\nments, and hence there will be no current in the output. Thiscorre\302\254

\nsponds to infinite attenuation for the t section. We now begin to see

\nthat altering Z\\ in the T, and Z2 in the t hasintroduced a new element

\neither in series or in parallel in such a way as to prevent transmission

\nat one particular frequency.\n

The equations for attenuation and phase shift in them-derived filter

\nsections can be found by computing the factor x definedby Eq. 13-80
\nin terms of the new reactance functions Z\\ and ZJ. Thus\n

_ \342\200\224Z\\ _
\342\200\224mZ1 \t\n~

4Zi
~

4[Zi(l - m2)/4m+ Zj/m]\n

\342\200\224to2
\t\n

1 \342\200\224TO2 -|- 4Z2/Z1\n

(13-123)\n

(13-124)\n

In this expression, we recognizethat \342\200\224\\Z%/Z\\
\342\200\224

1/x2, where x is the

\nfactor used in the study of the constant-# filter sections. When this

\nfactor is substituted into Eq. 13-124, there results\n

x\n
'2\n

to2\n

\342\200\224
(1

\342\200\224
wi2) + 1/x2\n

(13-125)\n

From this equation, we see that as x approaches the value given by\n

x2\n

1\n

1 \342\200\224TO2\n
(13-126)\n

then x'2 approaches infinity such that cosh-1 x', the attenuation,also
\napproaches an infinite value. The value of x causing infinite attenua\302\254

\ntion will be designated such that\n

x\n
2\n

00\n (13-127)\n

With this definition, Eq. 13-125 may be written\n

\342\200\224
1/x.2 + l/x2\n

(13-128)\n

In this equation, x = a normalized frequency relating to constant-#
\nfilters, x' = a normalized frequency derived for TO-derivedfiltersas a\n
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function of x,
= the value of x causingx' to beinfinite,andm = a

\nconstant for the m-derived filter section. Inspection of this equation

\nshows that when x is less than
x\302\253, then x'2 is negative, while for x

\nlarger than xM, x'2 is positive. In order to associate these conditions
\nwith pass band or stop band and the equation for attenuation, we will

\nrefer to the table on page 331. Comparing this table with the different

\npossibilities for the sign of x2, we reach the conclusionssummarized

\nbelow.\n

Sign of Limits of Type of Attenuation Phase shift
\nx'2 ** band 0\n

positive 0 g i\342\200\230^ 1 pass a = 0 /3
= 2 sin-1 x'\n

positive 1 ^ x2 ^ stop a = 2 cosh-1x' +*-\n

negative x\342\200\2362^ x2 ^ \302\253ostop a = 2 sinh-1 x' 0\n

, m 1\n

V(-l/x\302\253* + 1/x*)
\"

Vi - m2\n

A plot of these equations (for positive values of x) is shown in Fig.\n

13-38, together with the same characteristics for the constant-Afilter\n

Derived as

\nequations

\n13-71, 13-72

\n13-73, 13-74

\n13-77, 13-78\n

Fig. 13-38. Characteristics of the m-derived filter: (a) m-derived;\n

(b) constant-A.\n

section. The plot illustrates the high attenuation near the edge of the

\nstop-band feature of the m-derived filter. Comparing the plot with

\nthat for the constant-A filter, it is seen that the attenuationfor the
\nm-derived filter approaches a minimum value for large values of x,
\nwhereas the constant-A filter attenuation approaches a large value for
\nlarge x. Each type of filter sections has advantages and disadvantages.
\nSince both sections have the same image impedance, there is a pos\302\254

\nsibility of use of a comMnation of both filter types to get both the high

\nattenuation near the edge of the stop band andat large values of x.\n

Figure 13-38 shows that when x = xK,the phaseshiftinthe m-derived

\nfilter section changes abruptly from x to 0 degrees.In terms of the

\nequations, this is caused by the sign of x'2changingfrom positive to\n
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negative. A physical reason for this phenomenacanbeseen in the low-

\npass
filter illustrated in Fig. 13-37 (a) in terms of the seriesLCcircuit.

\nAs frequency increases through resonance, the LC circuit reactance
\nchanges from negative to positive (or from capacitive to inductive).
\nSince no phase shift is possible in a network with the samekind of

\nreactance in all arms, the \342\200\234effective\342\200\235 inductive network above res\302\254

\nonance gives no phase shift. This resonant frequency, incidently,
\ncorresponds to x\342\200\236.\n

In designing m-derived filters, the question will arise, why not make

\ni.
= 1 by making m = 0 to make the filterhave an extremely sharp

\ncutoff in the stop band? More generally, what happens to the atten\302\254

\nuation characteristics as m is varied? To answer this question,we will

\ninvestigate the attenuation of the m-derived filter at large valuesof

\nx. From the equation for attenuation given in the table on page342,
\nthe attenuation for large x approaches a value atim given as\n

atim
= 2 sinh-1 -\n

Vi
-

m\n

or, from the identity cosh2 aKm \342\200\224sinh2 aKm =
1,\n

(13-129)\n

cosh2\n
&lim\n

= 1 + sinh:\n
&lim\n = 1 +\n

m-\n

1 \342\200\224m2 1 \342\200\224m2\n
(13-130)\n

Now\n

Hence\n

sinh (aum/2) h &iim
= m/V 1 -

m2\n

cosh (aum/2)
an

2 l/y/1 -
m2\n

a/\302\273m
= 2 tanh-1 m\n

(13-131)\n

(13-132)\n

From the last equation, it is seen that asmbecomessmall,approach\302\254

\ning zero, the attenuation for large x,
\naiim also becomes small. Also, from

\nEq. 13-125, x' is seen to become small
\nas m becomes small (for any value of

\nx), and this in turn reduces the mag\302\254

\nnitude of the attenuation for all
\nvalues of x. Thus the price paid for

\nsharp cutoff is reduced attenuation for

\nall frequencies, x being some func\302\254

\ntion of frequency. These conclusions

\nare illustrated in Fig. 13-39 for two
\nvalues of m*\n

Fig. 13-39. Variation of attenu\302\254

\nation characteristics of m-derived

\nfilters as a:* moves closer to cutoff
\n(x

=
1).\n

* Another reason for avoiding small values of m is that finite dissipation in the
\nfilter elements results in finite attenuation at zw, this finite attenuation being
\nsmaller as m \342\200\224>0.\n
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From this discussion, the value of the constant m of the m-derived

\nfilter is seen to determine the nature of the variation of attenua\302\254

\ntion with x. The constant m also determines element valuesin the

\nm-derived T and x sections. Since in these structures, elementvalues
\nare determined by a multiplying factor (1 \342\200\224

ms), it follows that m

\ncannot exceed unity in value; that is,\n

0 < m < 1 (13-133)\n

(Note: This limitationappliesonly to the ladder structures. Values of

\nm larger than 1 are used in lattice structures to givelinearphase char\302\254

\nacteristics.) There is another significance attached to the value of m

\nin terms of image impedance of the m-derived sections. This willbe
\nour next subject for study.\n

13-8. Image impedance of m-derivedhalf (or L) sections\n

The m-derived T section is shown in Fig. 13-35,and the m-derived

\nx section in Fig. 13-36. These sections were found under theassumption
\nthat the image impedances are the same as the constant-^ filtersec\302\254

\ntions. If the T and x sections are divided into half (or L) sections, an

\nunexpected image impedance characteristic is found. This resultwe

\nmust regard as a bonus; certainly it is not a consequenceofany require\302\254

\nments made of the m-derived filter. A different image impedance\n

Z,\n

(2m/l-m2)Z2\n

vig. 13-40. m-derived filter half-sections: (a) m-derivedhalf T; (b)\n

m-derived half r.\n

behavior at the other terminals of a divided T or x section(the half

\nsection) might be expected from the discussion of the imageimpedance
\nof the L section on page 314. There it was found that the image

\nimpedance at one terminal pair was ZiT,and at the other terminal pair

\nwas Ziw. The half-sections for the m-derived filter are shownin Fig.\n

13-40. The image impedances at the \342\200\234back door\342\200\235 terminals are des\302\254

\nignated ZiTm and Ziwm. They may be determined by i\302\253dng Eq. 13-6.\n
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For the T section, we have\n

345\n

ZiTm
\342\200\224

VZloZu\n

Zi +\n \342\200\224
Zi\\\n

m
J\n

mZi
\342\200\224rri1

\342\200\236i
2 ^ \\

\n~~2~ \\~~2m~
Zl + m Zi)\n

(m + l_^m> Zi +
2

z\n

L\\2\n
2m\n m\n

1 + (i
- m>)

4]\n4Z2J 1 4\342\200\234Zi/4Z2

\nSince IB2 = Z1Z2, the image impedance becomes\n

[1
\342\200\224

(1
\342\200\224

m2)x2]\n
ZiTm \342\200\234\"

Vi
-

**\n

(13-134)\n

(13-135)\n

(13-136)\n

where x2 = \342\200\224
Zi/4Z2 is the factor defined for the constant-# filter.\n

The same procedure may be used to find Z\302\273,m for the filter of Fig.\n

13-40(b); thus\n

Zi* m
\342\200\224

VZ10Z1.\n

\342\226\240V\n

1\n

2/mZi -+- (1
\342\200\224

m2)/2mZ2\n

+\n

1\n

2/mZi + (1 \342\200\224
m2)/2mZ2

\n(13-137)\n

]\n

so that\n

+ Zi2/4\n

[1 + (1 -
m2)Z!/4Z2]\n

Z.-Tm \342\200\224iB\n
-\\/l

\342\200\224z2
\t\n

[1
\342\200\224

(1
\342\200\224

m2)x2]\n

(13-138)\n

(13-139)\n

In Fig. 13-41, Z,Tm and Ziwm are shown plotted as a function of x for
\nseveral values of m. The plot for m = 0.6 givesan image impedance

\nconstant within 4% over 90% of the pass band. Othervalues of m

\ngive variations greater than this. This image impedance variation is
\nmuch more constant than the constant-# image impedance functions
\nWe note that for m = 0, Z,xm = Zir by Eq.13-83,and that for m = 1,
\nZi*m

= ZiT by Eq. 13-82 and vice versa for ZiTm- In other words, the

\nm-derived filter sections reduce to constant-# filter sections with

\nm - 1. The new image impedance function Ziwm or ZiTm for m = 0.6
\nmore nearly approximates a constant, and so an image impedance
\nmatch with a constant terminating resistor is a reasonable approxima\302\254

\ntion. This is a very important advantage for the m-derivedhalf sec-\n
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tion. With these remarkable properties of the m-derived filter estab\302\254

\nlished, we next turn to the use of such filters in combinationwith

\nconstant-# filters.\n

13-9. Composite filters\n

The following table summarizes the advantages and disadvantages
\nof constant-# and m-derived filters.\n

Constant-#\n m-derived\n

Attenuation near cutoff (x = 1): small\n

Attenuation at large x: large\n

Image impedance in pass band: not constant\n

large

\nsmall

\nmore nearly

\nconstant; depends
\non m; best when

\nm = 0.6.\n

The table illustrates the inverse attenuation characteristicsofthe two

\ntypes and suggests that a combination of the two types wouldhave

\nadvantages over either type alone. Such a filter is called a composite
\nfilter. The constant-# filter which forms the nucleus about which the

\ncomposite filter is designed is known as the prototype.Them-derived

\nfilter sections will have the same image impedance as the prototype
\nand will have element values found in terms of the constant-#section
\nelement values.\n

In designing a composite filter, two factors must be keptin mind:\n

(1) \tthere must be an image impedance match at the terminalsof each

\nfilter section, and (2) the attenuation properties of each sectionmust

\nbe so selected that the composite attenuation characteristic is that
\ndesired. The impedance and attenuation properties of the various net-\n
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work configurations are summarized in Fig. 13-42 and Fig. 13-43.
\nThese building blocks are the basis of filter design on the imagebasis.
\nSeveral examples will illustrate.\n

o\342\200\224VW

\nZx/2\n

A/VV\342\200\224\302\260\n

ZJ2\n

AAAr\n

z1\n

%\n \342\200\242ZitZ\342\200\234\342\226\272< 2Za 2Z2 \342\200\242\n

-o o-\n

(c)\n

o\342\200\224vw\n

ZJ2\n

AAA/ 0\n

Zx! 2\n

&,r-\n 2Z2\n
\342\200\230Z i\302\253Zjr *

^ 2Z2\n

o\342\200\224\n

(6)\n

'if am\n

Fig. 13-42. Image impedance properties of networks: (a) con-
\nstant-K filter sections; (b) constant-if half (L) sections; (c)m-derived
\nfilter sections; (d) m-derived half (L) sections.\n

Example 8\n

For the first example, one prototype constant-/^ filter and one
\nm-derived filter will be used in a cascade connection. This is to bea
\nlow-pass filter. For this case, we have shown in Eq. 13-90that x =
\nco/o>o. The prototype (a T section in this case) and the m-derivedsec\302\254

\ntion are shown in Fig. 13-44. These two sections willmakeup thecom\302\254

\nposite section of filter. The m-derived section is first split into half
\nsections in order to realize the best impedance properties. An arrange\302\254

\nment of the three sections such that there is an imagematch at each\n
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input is shown in Fig. 13-44. The match, however, is onlyapproximate
\nat the load, so that the computed properties are only approximately\n

Pig. 13-48. Attenuation, phase and image impedance propertiesas a\n

function of x.\n

correct. The input impedance is ZiTm for this arrangement of sections.
\nThe attenuation is found by adding the separate attenuations,\n

at \342\200\224
aje + am (13-140)\n

as shown in the figure. Similarly,\n

ft
= ft + ft* (13-141)\n

The input impedanceand attenuationof the composite filter are
supe\302\254

\nrior to those of either the constant-# filter or the m-derivedfilter

\nseparately. The series inductors of the prototype and the m-derived
\nhalf section are lumped together when actually constructing the filter.\n
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QjflP' ' 1 ' 1 o\n

constant-*\n

prototype\n

o-\n

m-derived\n

section\n

/Tnnp\342\200\224o\n

o\n -o\n o-\n o\n

nm^>-4 -\n

JiTm\"\n HT\n JiT\n -ZL\niT\n

-O-\n -o o\n

r\n

-o-\n -o-\n

JiT\n \342\200\230iTm\nR-\n

-o o-\n

m-derived

\nhalf section\n Prototype\n

m-derived
\nhalf section\n Load\n

Fig. 13-44. Composite low-pass filter characteristics.\n

Example 9\n

In some cases, the attenuation property of the low-passfilter of

\nExample 8 would not be satisfactory, either because the attenuation
\nnear cutoff frequency was not sufficiently sharp or because the at curve
\ndropped to too low a value before beginning to riseagain.In thiscase,\n

\302\251\342\226\240\n \342\200\224i o\n o\n o\n

o\n o\n

(C)\n

o 1\t\n

lb)\n

\342\226\2400\n

Fig. 13-45. (a) Constant-AT prototype and (b) m-derivedlow-pass\n

sections.\n

two or more m-derived sections can be used as longas an image match

\nis realized at each input terminal of the cascade connection ofsections.
\nTo illustrate, suppose that a ir section is selected for the prototypeof

\nthe low-pass filter and a decision is made to usetwom-derivedsections,
\none with m = 0.6 and one with m = 0.3. The

prototype
and m-derived

\nsection are shown in Fig. 13-45. Sincethe m = 0.6 section has superior\n
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image impedance characteristics, it will be divided into two half sec\302\254

\ntions for use at the ends of the filter. An arrangement of sectionsand

\nhalf sections giving an image impedance match at each terminal pair
\nis shown in Fig. 13-46. The input impedance in this case is Zirm and

\nthe total attenuation is\n

os*
= at* + am(0.3) + am(0.6) (13-142)\n

The impedanceandattenuationproperties
of the resulting filter section

\nare also shown in Fig. 13-46. Note the improvement in the attenuation\n

with higher attenuation at all frequencies and sharper cutoff in the
\nstop band.\n

In practice, the various parallel capacitors of the schematicof Fig.\n

13-46 would be combined into equivalent capacitors.\n

Example 10\n

From the conclusions of the first two examples, let us now formulate

\na design procedure to use on any filter sections.\n

(1) \tFirst, we should decide on the specifications to be required for
\nthe attenuation as a function of frequency. The attenuation
\nrequirement may be met with some combination of constant-A
\nfilters and w-derived filters according to the equation\n

at = Aak +\n

/-1\n

(13-143)\n
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where A is the number of constant-# sections,Bjis the number

\nof sections for a specific m, and n is the numberof different m

\nused. There is usually no unique solution to the typeandnum\302\254

\nber of sections required, and cut-and-try must often be used to
\nfind a solution to meet the specifications.\n

(2) Select a constant-# prototypeand find the element values.

\nFrom these element values, find all element values for the
\nm-derived sections.\n

(3) Include at least one m-derived filter section with m = 0.6 for

\nthe beginning and ending section of the filter. This gives the
\noptimum image impedance properties.\n

(4) The type of prototype selectedand the number of sections used

\nare usually limited by cost considerations.\n

13-10. The problemof termination\n

The constant-# and m-derived sections and half sections can easily
\nbe arranged such that there is an image impedance match at eachpoint\n

Zi resistive r\n

Fig. 13-47. Actual termination of image designed filters.\n

of connection. But when we come to the beginning or to the termina\302\254

\ntion of the filter, we have a problem in approximatingan imagematch.

\nThere are no resistors with the properties of our imageimpedances,
\nespecially the ability to change from resistance to reactance at the
\ncutoff frequency. The best that can be done is to terminate(andmake

\nthe generator impedance) a constant. What value should this constant
\nresistance be? Let us review the expressions for image impedances as
\na function of x. By Eqs. 13-82 and 13-83,\n

ZiT
= R \\/l ~

x2\n

\\/l
\342\200\224

x2\n

(13-144)\n

(13-145)\n
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From Eqs. 13-136 and 13-139,\n

ZiTm\n

Zirm\n

D 1 \342\200\224
(1

\342\200\224
m2)x2

\ny/\\
\342\200\224xi\n

r VLzl1-\n
1 - (1 -

m2)x2\n

(13-146)\n

(13-147)\n

Note that all these impedance expressions reduce to Z\302\273-
= R when

\nx \342\200\2240. This constant value is a good approximation to either ZiTm or

\nZi\342\200\236mwith m = 0.6 in the pass band. This is the termination commonly

\nused.* The terminating resistor has a value determined fromthe con-

\nstant-A prototype as\n

R2 = +ZiZ2 (13-148)\n

All results given thus far have beenfound on the basis of (1) dissi\302\254

\npationless elements in the network and (2) an imagematchthroughout
\nthe filter network including the termination. What are the conse\302\254

\nquences of using elements with finite dissipation (primarily the resist\302\254

\nance of inductors) ? What are the consequences of terminating thefilter
\nin a nonimage impedance, R?\n

In answer to the first question, the computed values of attenuation
\nare only approximately correct because of finite dissipation. This dis\302\254

\nsipation causes attenuation in the pass band and finite attenuation
\nat the so-called frequencies of infinite attenuation. A rule of thumb
\nstates that the results of image basis design will be acceptablein most

\nengineering applications if the Q of the inductors is 15 or higher.\n

An answer to the second question requires that we first definethe
\nquantity insertion loss as the loss resulting when a network is intro\302\254

\nduced between a generator and a load. The insertion loss is definedby

\nthe equation\n

eN =\n

u\n
(13-149)\n

where N is the insertion loss in nepers, I% is the current in the load
\nconnecteddirectly to the generator,and/s isthe load current with the

\nnetwork in place. For numerical computationof insertionloss,we let

\nI\\ = h. We thus assume that the generatorcurrentis the same with

\nand without the network and so have a basis for comparison.This
\ncomputation is best made by assuming a unit value for J2 and then
\ntracing through the network to find the corresponding value for I\\. A\n

\342\200\242
A slightly better approximation results if the terminating resistor is smaller

\nthan R for the m-derived half t sectionor larger than R for the m-derived half T
\nsection as the termination.\n
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comparison of insertion loss N and attenuation a for the network of

\nFig. 13-44 with m = 0.6 is shown in Fig. 13-48.\n

Even though the image basis attenuation is only approximately
\nequal to the actual insertion loss, the results are usually sufficiently\n

Fig. 13-48. The effect of non-image termination on filter attenuation.\n

close to be useful. Design on the image basis has the advantage of

\nbeing simple and routine. Tables showing various networks with their
\ncorresponding attenuation characteristics are found in handbooks.*\n

13-11. Latticefilters\n

The discussion to this point has related to the ladderstructureof

\nnetworks. Another common structure used in filter design is the lattice.
\nA symmetrical lattice is shown in Fig. 13-49(a), and the \342\200\234bridge cir-\n

Fig. 13-49. Lattice network structure for filters.\n

cuit\342\200\235equivalent is shown in Fig. 13-49(b). The advantage of the
\nlattice representation over that of the bridge is that sectionsconnected
\nin cascade are more easily drawn as lattice structures.\n

For the symmetricallattice,the image impedance may be computed
\nfrom open-circuit and short-circuit impedances. Since\n

Zio = Za + Zb

(13-150)\n

* For example, see Terman, Radio Engineers\342\200\231 Handbook (McGraw-Hill Book

\nCo., Inc., New York, 1943), pp. 228-236.\n
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and\n
7 2ZaZb
\nZu

=

z0 + Z6\n

(13-151)\n

it follows that\n Zi = VZuZu =
\\/ZaZb\n (13-152)\n

The equation for the image transfer function is also\n a function of Z\342\200\236\n

End Zjf EhS\n

y
= 2 tanh-1 y/Za/Zb\n (13-153)\n

Comparing these equations with Eq. 13-6,which is\n

Zi \342\200\224
\\ZZioZi,\n (13-154)\n

and Eq. 13-39,\n 7 = tanh-1 y/Zi,/Zi0\n (13-155)\n

it is seenthat the analysis made previously for pass-band, stop-band,
\nand cutoff frequency in terms of the poles and zeros of Zu and Zu

\nholds for the lattice filter, with Za replacing Zu and Zb replacing Zy,\\

\nIn summary, when poles of Za coincide with zeros of Zb} or vice versa,

\nthere is defined a pass band. When polesor zeros of Za coincide with

\npoles or zeros, respectively, of Zb,there isdefineda stop band. A critical

\nfrequency in Za but not in Zb,or viceversa,defines a cutoff frequency.

\nThese rules assume that Za and Zb are reactance functions (that is,
\nLC elements only).\n

We also have the results we need to computethe attenuation and

\nphase shift. By Eq. 13-43,\n

, 7 _ tanh (a/2) + j tan (fi/2) _ \\Za\ntann
g l+. tanh (a/2) tan (j8/2)\n

(13-156)\n

If the sign of Za is opposite to that of Zb, then tanh (y/2) is imaginary,
\nand\n

tan! ~yl z>\n
(13-157)\n

a = 0\n (13-158)\n

If Za and Zb have the same sign, then either\n

tanh = tanh
^

and (3
= 0\n (13-159)\n

by Eq. 13-45, or\n

y ^\n

tanh
\302\243

= -\342\200\224, . ... and /3 = ir
\n2 tanh (a/2)\n

(13-160)\n

by Eq. 13-46. Now tanh (a/2) cannotexceedunitvalue corresponding

\nto infinite a. It follows that the choice of these two possibilities\n
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depends on the magnitude of Za and Zb. Then\n

355\n

a = 2 tanh-1 sjZa/Zb, j8
= 0 when Zb > Za (13-161)\n

a \342\200\2242 tanh-1 y/Zb/Za, /3 = it when Zb < Za (13-162)\n

Theseequationspermitcomputation of a and in the pass and stop
\nbands.\n

From Eq. 13-161, we see that the attenuation becomesinfiniteas
\nZa/Zb approaches unit value. Similarly, the attenuation is small when

\nZa/Zb is small. In selecting positions for the poles and zerosfor Za

\nand Zb, the pass-band poles and zeros determine the phasevariation,
\nand their position is determined by the desired form of phasevariation
\n(for example, linear variation is often required). In the stop band,
\nhowever, the poles and zeros of Za and Zb are selected so that the quo\302\254

\ntient Za/Zb remains as nearly unity as possible as frequencyvaries.
\nA procedure for locating these poles and zeros has been givenby Bode
\nand Dietzold.*\n

From Eqs. 13-161 and 13-162, it is seen that as Zb exceeds Za in

\nmagnitude, or vice versa, the phase of the outputchanges by 180\302\260.

\nUnder this condition, the output voltage of the lattice effectively
\nreverses polarity. The filtering action in the case of the latticetakes
\nplace by there being a balance of the bridge circuit shown in Fig.\n

13-49(b). For a perfect balance, corresponding to infinite attenuation,
\nthe components must be of high quality and carefully matched. This
\nis one disadvantage of lattice filters. However it is possible to get
\ninfinite attenuation at the frequency of balance even with finite
\ndissipation, if the effective resistances also balance.\n

Za\n

pass | stop\n
\342\226\272r* >\342\226\240\n

6 1 oo\n

and zeros of Za and Zb.\n

1 henry\n

Fig. 13-60. Lattice and poles\n

Example 11\n

The lattice shown in Fig. 13-50 has element valuessuchthat\n

Za
= s and Zb = (13-163)\n

*H. W. Bode and R. L. Dietzold, \342\200\234IdealWave Filters,\342\200\235 Bell System Tech. J.,
\n14, 215 (1935).\n
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The pole-zero plot shown in Fig. 13-50 indicates that this isa low-

\npass filter with a cutoff frequency of o>0
= 1. Since Za = ju and Zb

=\n

i(\302\2532
~

1/w),\n

a = 0, 0 = 2 tan-1 \\/w2/(\302\2532
-

1), 0 ^ ^ 1 (13-164)\n

by Eqs.13-157and 13-158 and\n

a = 2 tanh-1 V(\302\2532
~

1)M 0 = t, lgu^oo (13-165)\n
by Eq.13-162,since Z0 > Zb for w ^ 1. For this particularlattice,the

\nimage impedance is\n

Zi = \\/l
-

w2 (13-166)\n

Another example illustrating properties of the symmetrical lattice
\nwas given in Art. 11-6, page 263. For that particular case,the entire

\nfrequency range was pass band, and the phase characteristic was given
\nby an equation of the form of Eq. 13-157.\n

13-12. Bartlett\342\200\231s bisection theorem\n

A relationship between the lattice impedances Za and Zb and the

\nopen-circuit and short-circuit impedances was suggested on page354.
\nThe equivalence of these quantities is given in a theorem originallydue
\nto Bartlett. This theorem applies only for symmetrical two-terminal-
\npair networks. Bartlett\342\200\231s bisection theorem provides a means for find\302\254

\ning the lattice impedances for a lattice network equivalentto a symmet\302\254

\nrical ladder network.\n

The first step in the application of this theoremis bisection of the

\nsymmetrical ladder network. By the term bisection,we mean that we

\ndivide the network into identical parts such that the two networks,

\nwhen reversed end for end, have identical geometricalas well as elec\302\254

\ntrical properties. Such a bisected network with only connecting wires\n

Half section\342\200\224\342\200\224Half section

\nFig. 13-51. Bisected symmetrical network.\n

showing appears in Fig. 13-51. Bartlett\342\200\231s bisection theorem,* given

\nhere without proof, states: The lattice equivalent of a symmetrical
\nladder network has a series arm Za equal to the impedanceof a half\n

*
Bartlett, A. C., Theory of Electrical Artificial Lines and Filters, (John Wiley A

\nSons, Inc., New York, 1931), pp. 53-58; Brune,Otto, \342\200\234Noteon Bartlett\342\200\231s bisec\302\254

\ntion theorem,\342\200\231\342\200\231Phil. Mag., 14, 806 (1932).\n



Art. 13-12 TWO-TERMINAL-PAIR REACTIVE NETWORKS\n 357\n

of the bisected network measured at terminals 1-1 or 2-2, with the
\nother terminals short-circuited; the shunt arm Z\\> is equal to the imped\302\254

\nance of the half network with the bisected terminals open. Two exam\302\254

\nples will illustrate the application of this theorem.\n

ExampleIB\n

The standard T section is shown in originalformandalsobisected

\nin Fig. 13-52. Following Bartlett\342\200\231s bisection theorem, the open-circuit\n

\342\226\240o\n

(6) (c)\n

Kg. 13-62. Application of Bartlett\342\200\231s theorem: (a) original network;

\n(b) bisected network; (c) equivalent lattice.\n

L/2\n

0\342\200\224\n o\n

L\n

=C/2 -\n ~d 2\n

0\342\200\224\n \302\273\n

fa)\n

Fig. 13-63. Networks of Example 13: (a) original network;
\nbisected network; (c) equivalent lattice.\n

(b)\n

and short-circuit impedances are found for the half network. The
\nresulting equivalent lattice is shown in the figure.\n

Example 13\n

For this example, the standard v
\nsection is shown for the low-pass
\nfilter case. The bisected network and

\nresulting equivalent lattice are also

\nshown in the figure.\n

To avoid the complicated struc\302\254

\nture of the lattice in drawings, it is
\nusual practice to replace one of the series arms and one of the shunt

\narms by a dashed line. Thus the lattice of Fig.13-54is defined to be

\nidentical with the lattice of Fig. 13-53.\n

Fig. 13-64. Conventional represen\302\254

\ntation of the lattice network.\n
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FURTHER READING\n

The original articles on the constant-# and ra-derivedfiltersby

\nO. J. Zobel are found in the Bell System TechnicalJournal underthe

\ntitles, \342\200\234Theory and design of uniform and composite electric wave
\nfilters\342\200\235 in the volume for 1923 and \342\200\234Extensions to the theory and

\ndesign of electric wave filters\342\200\235 in 1931. For additional discussion of
\nthese topics see: Guillemin\342\200\231s Communication Networks, Vol. II (John
\nWiley & Sons, Inc., New York, 1935), Chaps. 5, 8, 9; D. F. Tuttle,

\nJr., Network Synthesis, 2 vols. (John Wiley, & Sons, Inc., New York,

\nin preparation); W. L. Everitt, Communication Engineering (Mc\302\254

\nGraw-Hill Book Co., Inc., New York, 1937), pp. 179-240; J. D.
\nRyder, Networks, Lines, and Fields (Prentice-Hall, Inc., New York,
\n1949), pp. 114-163; LePage and Seely, General Network Analysis
\n(McGraw-HillBook Co., Inc., New York, 1952), pp. 218-236; and

\nReed, A-C Circuit Theory (Harper & Brothers, New York, 1948),

\npp. 553-597.\n

PROBLEMS\n

13-1. The T and t networks shown in the accompanying figure are

\nalso known in electrical engineering literature as Y and deltanetworks,\n

O\n

O\n

o V\\A^\n

Zi\n

o-\n

lb)\n

\342\200\224VW o\n

z2\n

z3\n

o\n

Prob. 13-1. (a) x or delta network; (b) T or wye network.\n

respectively. Networks can sometimes be simplified by converting
\nfrom a Y to an equivalent delta or from a delta to an

equivalent Y.*

\n(a) Show that, if a delta equivalent of a Y networkexists,the following

\nrelationships hold.\n

y _ ^2 \t\n* Z1Z2-|- ZiZz ZzZ\\\n

y
Zz \t\n

Z\\Zz -|- ZzZz \342\200\234I-ZzZ\\\n

Yc\n
Z i\t\n

%iZz -|\342\200\234Z%Zz -p ZzZ i\n

* The notion of delta-Y equivalence is originallydue to A. E. Kennelly in 1899.
\nHis article, \342\200\234Theequivalence of triangles and three-point stars in conductingnet\302\254

\nworks,\342\200\235appeared in Electric World and Engineering.\n
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(b) Find the corresponding transformation for the Y network equiv\302\254

\nalent of a delta network. Give the values for Zi, Zz,and Z% in terms of

\nYa, Yb, and Fc\n

13-2. A two-terminal-pair x network is shown in the figure. Show

\nthat for this network, coth y
=

\"s/Zu/Zu, where y = a + jfi and
\nh/Iz

=
ey, and ZXo = the impedance at terminal pair 1 with terminal

\npair 2 open, Zu = the impedance at terminal pair 1 with terminal-

\npair 2 short-circuited.\n

lo-\n

lo\n

Prob. 13-2.\n

io\342\200\224\n

lh\n

nnnY\342\200\22402\n
lh\n

:2f\n

lo\n -o2\n

Prob. 13-3.\n

13-3. For the T network shownabovein the figure, determine and,

\nplot the image-impedance Z, for the frequency range co = 0 to o> = 1.

\nAnswer. Zi = y/l \342\200\224w2.\n

13-4. Repeat Prob. 13-3 for the x network shown in the figure.\n

Answer. Zi = l/\\/l
\342\200\224

a>2.\n

[0 \t\n

2h\n

\342\200\224o2\n

Xl\\\342\200\224\n

- o\n
1\n
1\n

K\t\n
i\n
1\n

\342\200\2249\342\200\224\n-1\n

=Uf -\n -If\n

1\n
1\n
1\n

i\n
1\n

1\n
1\n
|\n

o\nT\n
K\t\n
1\n

i\n
\342\200\2241\t\n

1\n
\342\200\2246\342\200\224

\nl\n \342\200\224<\n

lo \t\n \342\200\224o2\n u) \342\200\2340\n \302\2531\n 012\n 013\n CO-00\n
f\n

Prob. 13-4. Prob. 13-5.\n

13-5. A pole-zero plot for Zu and Z\\0 is shown in the accompanying

\nfigure. From the plots, Determine: (a) the pass bands, (b) the stop
\nbands, (c) the cutoff frequencies.\n

13-6. Repeat Prob. 13-5 for the pole-zeroplotshown in the figure.\n

Xuf\342\200\224\n

\342\200\224e\342\200\224\n
i\n

i\n

\342\200\224K\342\200\224\n

i\n
a\n

0\n
1
\n1\n

M\342\200\224\n
i\n
i\n
I\n

1 T\n

i\n

iv\342\200\224\n uuu\n

L/2\n

UUU u\n

L/2\n

I\n

i\n
i\n

1\n
i\n

1\n

1\n
i\n
1\n

i\n
i |\n

-C\n

*lof
\t\n

i\n

i\n

i\n i\n 1\n T \\\n

oi*0\n \302\253i\n012\n 0)3\n 014\n 0)5 01 -00\n
lo\342\200\224\n 02\n

Prob. 13-6.\n Prob.\n 13-7.\n

13-7. The symmetrical T network shown in the figure has element

\nvalues as indicated. Starting with Eqs. 13-30and/or 13-32,which

\napply to the T network, derive an equation in termsof L, C, and \302\253for

\nthe attenuation a in the stop band and for the phaseshift /S in the pass

\nband. Answer, a = cosh-1 (2 \342\200\224
u2LC)/2, /3 = cos-1 (2 \342\200\224

u2LC)/2.\n
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13-8. For the schematic shownin the figure, (a) Analyze the net\302\254

\nwork to determine the pass bands and the stop bands, (b) Determine

\nall cutoff frequencies. Answer. <oCi = 0.781, \302\253C2
= 1.282.\n

lo\n

lo-\n

Prob. 13-8.\n

13-9. Repeat Prob. 13-8 for the t sectionshown below.\n

13-10. Design a low-pass filter having a cutoff frequencyof 1000

\ncycles per second and a purely resistive image impedanceof 100 ohms

\nat 0 cycles per second. Give element values. Answer. C = 3.18nf,

\nL = 31.8 mh.\n

13-11. In Prob. 13-3, it was found that Z, = y/\\ \342\200\224
\302\2532in the pass

\nband. The attenuation found, for example, in Prob.13-7applies only\n

lo GTOID-\n

lh\n

\342\226\240GHHD-\n

lh\n

^2f\n

10-\n

Prob. 13-11.\n

when the T section is terminated in this Z\302\273.As a practical approxima\302\254

\ntion, let Zi = R = 1 ohm (constant). To investigatehow good such

\nan approximation is: (a) Plot the insertion loss of the circuitshown

\nabove by solving for \\I%/Ii\\
\342\200\224

eN defined by Eq. 13-149 for 0 < w < 2.

\n(b) On the same coordinates, plot the function, a \342\200\2242 cosh-1 c*> for

\n1 < a? < 2. This is the approximate result.\n

13-12. For the filter given in Prob. 13-8, determine the valueof x

\nas a function of \302\253.Make a careful sketch of: (a) the attenuation a asa\n
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function of w, (b) the phase shift ft as a function of co, (c) the image
\nimpedance

as a function of \302\253.Make use of the normalized plots of

\nFig. 13-25 in working this problem, (d) What is the value of R in

\nEq. 13-81?\n

13-13. Repeat Prob. 13-12 for the network givenin Prob.13-9.\n

13-14. Show that if F is the number of cutofffrequencies,a single

\nsection of a constant-# filter requires 3F elements.\n
13-15. Designa compositem-derived low-pass filter to the following

\nspecifications:(a) the termination is a 600-ohm resistor, (b) the cutoff\n

0.085 h\n

-i\342\200\224'7RRT'-

\n) 0.127 h\n

o o-\n

\342\200\230'6000\n

Prob. 13-16. Solution.\n

frequency is 1200 cycles per second, (c) the frequenciesof infinite

\nattenuation, are 1500 and 1700 cycles per second. Draw the sche\302\254

\nmatic diagram for the filter with all possible series and parallelelements
\ncombined. Indicate all element values.\n

13-16. Design a filter to the following specifications:\n

Pass band: 0 to 2000 cycles per second.\n

Cutoff: Output must be no more than 5% of the\n

input at 2100 cycles per second and all higher
\nfrequencies.\n

Termination: Load resistor will have a value of 600 ohms.\n

End section: End sections should be m-derived half sections
\nwith m = 0.6.\n

(a) Draw the schematic diagram of the filterandindicateall ele\302\254

\nment values. (Note: As in most design problems, there is no unique
\nsolution to this problem.) (b) How many sections of constant-# filter
\nare needed to meet specifications?\n

13-17. A network is to be composedof the cascade connection of

\nfour constant-# half sections (or L sections) and two m-derived half

\nsections. Draw schematic diagrams of all the possibleways these half

\nsections can be combined such that there is an image impedance match

\nat each of the cascaded terminal pairs. Consider both the ir and T

\nm-derived half sections.\n
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13-18. For the lattice filter shown below, determine (a) the pass
\nband, (b) the stop band, (c) the cutoff frequency, (d) the phaseshift\n

in the pass band, (e) the attenuation in the stop band, (f) the phase

\nshift in the stop band and (g) the image impedance.Answer, (a)

\n0
\342\200\2241 radians/sec, (b) 1 \342\200\224\302\273 radians/sec, (c) = 1 radians/sec,\n

(d) = 2 tan-1 yV/(o2 - 1), (e) a = 2 tanh\"1 vV - 1)M (f)\n

(g) Zi = i/Vi
-

\302\2532-\n

13-19. Determine the lattice equivalent of the network of Prob.
\n13-8. Show all element values.\n

13-20. The network shown in the figureis known as a bridged T.

\nDetermine the lattice equivalent of the network if L\\
=

L2.\n

13-21. A lattice structure is shown without element values. Deter\302\254

\nmine a possible ladder equivalent of this lattice by studying Za and Zb.

\nMark element values (Lx, Lt, Ci, etc.) noting which elementsinZ,
\nand Zb must be equal.\n



CHAPTER 14\n

AMPLIFIER NETWORKS\n

14-1. Shunt peaked amplifier network\n

Frequency-sensitive networks are often used in conjunction with
\nvacuum tube amplifiers to give a combination filter-amplifier. Such a
\nnetwork is shown in Fig. 14-1. In
\nsome practical networks, the inductor

\nmay be the only element connected to
\nthe plate of the vacuum tube, usually
\na pentode. The resistor R represents
\nthe resistance of the inductor, and the

\ncapacitor C may represent the wiring
\ncapacitance and interelectrode capaci\302\254

\ntance of the tube. If the plate resist\302\254

\nance of the vacuum tube is very high (as in the caseof pentodes), the

\noutput voltage is given by the equation*\n

F2 = -gmZV i (14-1)\n

where gm is the tube transconductance and Z is the impedanceof the
\nnetwork connected to the plate. The impedance for the network of
\nFig. 14-1 is\n

Z(s) = (V^s) (Ls + R) lT s + R/L 1 r-.\n

l/Cs +Ls + R C |_s2 + Rs/L + l/LC\\
K }\n

The denominator polynomial has been encountered many times before
\nand may also be written in terms of the dimensionlessdampingratiof
\nand the natural undamped frequency con. From Eq. 14-1, the voltage
\nratio transfer function may be written in terms of the impedance
\nexpression. The resulting equation is\n

Fig. 14-1. Shunt peaked amplifier
\nnetwork.\n

V*(s) = _ 0m s + 2fa>n
,14 o\\\n

V1(s) CsH 2f<OnS+ COn2
U ;\n

The pole-zero configuration of the transfer function is evidentfromthis
\nequation: there are a pair of conjugate poles and one realzero.How\302\254

\never, analysis is frequently made in terms of the circuit Q discussed\n

*
Equation 14-1 is derived in Ryder, Electronic EngineeringPrinciples,2ded.

\n(Prentice-Hall, Inc., New York, 1952), p. 220.\n

363\n
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in Art. 11-4, and so this equation will be rearrangedin terms of this

\nquantity. Circuit Q is defined as\n

q _ WnL 1 con 1\n

^
R 2 R/2L 2r\n

(14-4)\n

The complex frequency s will be normalized by divisionby &>n. This

\nnew frequency variable will be designated by the letter p and defined

\nas\n

P
=

s/w\342\200\236
=

ff/w\342\200\236+ jctf/oon == <Tp + jo) p (14-5)\n

With these substitutions, the equation for the transfer function
\nbecomes\n

Vt(p) _ gm [ P + 1/Q 1\n

^i(p) co\342\200\236CLp2 + p/Q + lJ\n

(14-6)\n

The poles of this function are evidently\n

P\302\253>Pa*
-

2Q
~

^(20)
1 Q (14\342\200\2347)\n

\302\253>* (u-8)\n

In practical networks, Q is much larger than and so the second
equa\302\254

\ntion will be considered the typical case. The pole-zero configuration
\nin terms of circuit Q is shown in Fig. 14-2. The locusof the poles and\n

p-plane\n

D v.\n
y\302\253/w\302\273\n

T\n

A-U/2Q)2\n
1\n

-1/2Q\n

*
a l\n <r/\302\253\302\273\n

\342\200\2341/Q\n

\302\253\342\200\242i\nt \t\n
Pa 1\n

V\n

Fig. 14-2. Pole-zero location in terms
\nof Q.\n Q.\n

zero is shown in Fig. 14-3 for various values of Q greater than the crit\302\254

\nical value of 7. As Q decreases toward -y, the zero approaches the point

\n\342\200\2242,and the poles approach the point \342\200\2241.\n

Frequency response of the shunt peaked amplifier is found by letting
\nV

\342\200\224
j\302\260>pand computing the gain and phase for a number of frequen\302\254

\ncies. The magnitude of the voltage ratio or the amplifiergainisfound\n
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from the relationship\n

Vl(jUp) = 9m | jtJp
~

Pll\n

Vl(jup) 0)nC \\joip
-

Pa\\\\jo)p
-

V*\\\n

(14-9)\n

As the frequency varies from 0 to \302\273, the length |ja>p
\342\200\224

pa| changes

\nrapidly, going through a minimum value when \302\253pis nearest pa. The

\nresponse magnitude reaches a maximum value at a frequencynear
\n(but not at) this minimum. As frequency increases, the magnitude

\nfunction falls at the rate of 6 db

\nper octave for high frequencies. A

\ntypical response curve is shown in

\nFig. 14-4. In contrast to the series
\nRLC circuit considered in Art. 11-4,
\nthe phase angle is not zero at res\302\254

\nonance for this network. This fact

\ncan be readily established by inspec\302\254

\ntion of the pole-zero configuration.\n
This method of visualizing the re\302\254

\nsults in terms of the pole-zero configuration is simpler than an alge\302\254

\nbraic investigation which involves manipu\342\200\231ation of complex numbers.\n

Pig. 14-4. Typical response curvefor
\na shunt peaked amplifier network.\n

14-2. Sta3ser-tuned amplifier networks\n

An important property of the shunt peaked amplifiernetwork,

\nshown in Fig. 14-1, was not discussed in the previoussection.This
\nproperty follows from the fact that the input to the grid ofthevacuum

\ntube draws negligible current and thus has high internal impedance.
\nSpecifically, the property is that this amplifier network may be con\302\254

\nnected to another network without loading; that is, without causing
\nany significant current to flow such that the output voltage of the
\nother network would be altered by connecting the amplifier network.
\nFor this reason, successive stages of amplifier networks may be con\302\254

\nnected together in cascade (or tandem), and each network will be
\n-independent of all others.\n

Stage 1 Stage 2 Stage3\n

Fig. 14-6. Cascade connection of amplifier networks.\n

A cascade connection of amplifier stages is shown in Fig. 14-5,where

\neach stage is represented by a block. The output of the firstamplifier
\nis connected to the input of the second, the output of the second

\namplifier is connected to the input of the third, and so on. Any num\302\254\n
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ber of stages may be so connected. If the amplifier input has a very

\nhigh impedance and the amplifier output has a low impedance, the
\nstages of amplification and filtering will be independent in the sense
\nthat the second amplifier will not affect the first, the third will not

\naffect the second, and so on. Each stage is isolatedfrom all other

\nstages; each stage lives in a world of its own, accepting the voltage it

\nreceives without influencing the \342\200\234giver/\342\200\231
and in turn without being

\ninfluenced by the stage that receivesits output.\n

The practical reason for cascade connection of stages of amplifiers
\nis that one stage does not provide enough voltage gain. The ordinary
\nsuperheterodyne receiver uses at least two stages of amplification (the
\nso-called intermediate frequency, or IF amplifiers); it is common for
\nsix to eight stages of amplification to be used in radar receivers.Each

\nstage is ordinarily terminated in a network made up of resistors,induc\302\254

\ntors, and capacitors. For such networks, the output voltage is a func\302\254

\ntion of frequency. In this section, we will investigate desirable forms
\nof the variation of the output voltage to the input voltagewith radian

\nfrequency.\n

Under the assumption of no loading, the voltageratio transfer func\302\254

\ntions may be written\n

r\302\273(\302\253)\n

vm\342\200\231\n

where Gi, G2, and Gz are successively the voltage ratio transferfunc\302\254

\ntions for the first, second, and third stages. The output voltageF4(s)

\nmay be found in terms of the input voltage V i(s) by the following

\nmanipulation.\n

F2(s) Fj(s) F4(s) F4(s) /nr / \\ /\342\200\236\\/nr(\342\200\236\\/nr/\342\200\236\\/i a\n

Vi(*) Vi(s) Vz(s) Fi(s)
Gt^ Gi(s)G2(s)Gz(s) (14-11)\n

where Gt(s) is the voltage transfer function for the three stages con\302\254

\nnected in cascade. This mathematical operation would not have been
\npossible had not the output voltage been a function of the inputvoltage

\nonly for each stage (i.e., each stage isolated from the others).\n

In the sinusoidal steady state, two properties of the total transfer
\nfunction G(j<a) are important in design. The first is the maximummag\302\254

\nnitude of the transfer function, or the maximum gain. The otheris the

\nvariation of magnitude with radian frequency. It has been found that
\ndesired combinations of gain and gain variation with frequency cannot
\nbe attained by simply cascading identical amplifier network stages.
\nBetter performance can be realized if each stage is made slightlydiffer\302\254

\nent. The composite amplifier network is then said to be stagger
tuned.

\nThe design of stagger-tuned amplifier networks is easily accomplished\n
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in terms of the pole-zero configuration. Our approach to this design
\nproblem

will be to consider first the desirable pole-zefo configurations
\nfor stagger-tuned amplifiers. We will then show how such pole-zero
\nconfigurations can be realized by the design of the amplifiernetworks
\nof each stage.\n

In the discussion to follow, we will restrict ourselvesto the case of

\na low-pass filter; that is, a filter which passes low frequencieswith

\nhigh gain and attenuates high frequencies by means of a low gain.
\nThe techniques will apply directly to the case of band-passfiltersand
\nhigh-pass filters, as will later be illustrated by several examples. For
\nthe time being, we will also restrict our discussion to voltageratio
\ntransfer functions having the form\n

Vn+l(s) = K
1\t\n

Fi(s) bosn + bis\342\200\235-1+ ... +bn\n
(14-12)\n

where n is the number of stages of amplification. In the sinusoidal

\nsteady-state, the magnitude of this transferfunction has the form\n

Fn+l(ico)\n

Fi(jco)\n
= K'\n

1 \t\n
vVn + AiO)2n~2 + ... + An\n

(14-13)\n

This magnitude is a function of <o2, designated ikf(oo2), as may be
\nseen by reviewing the way the magnitude of a complex function
\nis formed; that is, the magnitude is equal to the squarerootof the real

\npart of the function squared, plus the imaginary part squared. The
\nfrequency co raised to either an even or an odd powerhas an even

\nexponent when squared. For example,\n

1\n

a + ju>\n

1\n

\\A>2 + a2\n

(14-14)\n

and the magnitude function contains co to even exponents only.\n

The function represented by Eq. 14-13 has the value K'/y/~An for

\nco = 0. As frequency becomes larger, the magnitude decreasesat the
\nrate of \342\200\224nX 6 db per octave. An
\nideal form for the magnitude as a

j _______\n

function of frequency curve to have \342\200\242
v\n

for intermediate frequencies is shown | Ns\n

in Fig. 14-6. The curve is flat from !\n

w = 0 up to a frequency called the ^
! ~\n

CUH frequency and then asymptoti- /J u_6 IdealflatcharacterW\"
\ncally approaches the \342\200\224n X 6 db per\n

octave rate of decrease. We now face a number ofproblems:Justhow

\nflat can the curve be made? How do we go aboutaccomplishingthis

\nflat characteristic in terms of Eq. 14-13?\n
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The slope of the voltage ratio function with frequency can be made

\nequal to zero by requiring that the derivative of M with respect to

\no)2 (rather than <a since M is a function of <o2) be equal to zero. If the

\nrate of change of the slope of the Jlf(to2)curve is alsomade equal to

\nzero, the flatness of the curve will be improved.Thepatternbecomes

\nclear: make just as many derivatives of M(u>2) zero as we can. The

\nmore derivatives that are zero at w =
0, the flatter the curve will be

\nat a band of frequencies above w = 0.\n

If Eq. 14-13 is differentiated with respect to to2, there results\n

_d_\n

dto2\n

Fn+lO'to) _ A /CO2\" 2 + A 2^<02w
4

+ . \342\226\240\342\200\242+ An-1

\nVl(jto) (to2\" + Axto2\"-2+ . . . + AnY'2

V '\n

This expression can be made equal to zero at to = 0 by setting An-i

\nequal to zero. Setting successively higher derivatives equal to zero
\nwill make all the A-coefficients zero up to A i. Under these conditions,

\nEq. 14-13 has the form\n

Fn+i(ja>) K'\n

y l(i\302\253) Vto2\" + An\n

(14-16)\n

To simplify the form of this equation, let An
= ft2n and to//3 =

<op.

\nThen\n

Vn+i(j<*p) a = 1\n

Vi(j<*p) K'
V\342\200\234P2n + 1\n

(14-17)\n

When staggered amplifiers are designed to satisfy the relationship
\ngiven by this equation, they are said to be maximallyflat. Suchstag\302\254

\ngered amplifiers are also called Butterworth amplifiers after an author
\nwho first described such amplifier design in 1930. (Networks with no
\namplifiers and no isolation may also have the maximally flat character\302\254

\nistic and are called Butterworth fil\302\254

\nters.) The actual curve realized by
\nthe last equation does not exactly
\nfit the ideal shown in Fig. 14-6.
\nThe larger the value of n can be

\nmade, the better the approximation
\nto the ideal curve. A plot of the
\nfunction given by Eq. 14-17 for

\nseveral values of n is shown in Fig.\n

14-7. All the curves pass through
\nthe point 0.707 (the half-power point) at wp

= 1. This will be shown
\nlater in the chapter.\n

The next problem is to find the positionsof the poles of the voltage
\nratio transfer function that will give an absolute magnitude function\n

Fig. 14-7. Maximally flat character\302\254

\nistic.\n
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of the form of Eq. 14-17. To simplify notation, let p =
j<ap or co\342\200\236

=

\np/j. The square root factor of Eq. 14-17 then becomes\n

\342\200\224p2\"_|_ i if n is odd (14-18)\n

p2n + 1 if n is even (14-19)\n

We proceed in our investigation by taking what appears to be an\n

indirect route. Consider the functions\n

F(p) =
p2n\\^.

w *s even (14-20)\n

H(p) =
_pif + t.

n is odd (14-21)\n

The poles of F(p) occur when the denominator of the first of these

\nequations is equal to zero; that is,\n

p2n + 1=0 or p2n = \342\200\2241 (14-22)\n

Similarly, the poles of H (p) occur under the condition\n

\342\200\224
p2n + 1=0 or p2n = +1 (14-23)\n

To find the 2wth roots of \302\2611, we write this number in polar form as\n

\342\200\2241 = e\302\2613> = e\302\261\302\2738ir= e\302\261)'5T = ... (14-24)\n

+ 1 = e\302\2610r = e\302\261*2\302\273= e*iT = ... (14-25)\n

These equations may be written in generalized form as\n

_1 = c\302\261f(jm-i>* m = 1, 2, 3, ... (14-26)\n

+1 =
e\302\261>-2*', k = 0, 1, 2, ... (14-27)\n

Setting these equations equal to p2n and taking the 2nth root of both

\nsides of the equation gives\n

pm
=

**<\302\253\342\200\224\302\273*/\302\273*,m
= 1, 2, 3, ..., n (14-28)\n

pk
= e***'*, k = 0, 1, 2, ..., n (14-29)\n

These expressions locate the poles of F(p) and H(p) givenabove.The
\nmagnitude of each root of the last two equations is unity, andthe roots

\nare separated by ir/n radians. The location of the roots for an odd
\nn (n

= 3) and an even n (n = 4) areshown in Fig. 14-8. Similar plots
\nfor other values of n are readily made by following these rules:\n
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(1) For odd values of n, a root is alwayslocatedon the +o> and on

\nthe
\342\200\224

<rp axis. Other roots are displaced from these real roots
\nby ir/n radians.\n

(2) For even values of n, no roots are located on the real axis.

\nRoots are located r/2n radians from the positiveand negative

\nreal axis. All roots are displaced by t/u radians.\n
(3) Thereis a symmetry with respect to both the real axis and the

\nimaginary axis. No roots occur on the jup axis.\n

Kg. 14-8. Location of roots of \302\2611: (a) n = 3 (odd); (b) n = 4\n

(even).\n

The roots plotted in Fig. 14-8 are really polesof the functions F(p)

\nand H(p) defined by Eqs. 14-20 and 14-21. We know that impedance
\nfunctions and transfer functions cannot have poles in the right half
\nplane as F(p) and H(p) have. These functions, however, are not neces\302\254

\nsarily network functions. They are only arbitrary functions that have
\nbeen invented in the expectation that they might somehow relate to
\nthe transfer functions having magnitudes of the maximally flat form.\n

Because of rule (3) stated above, there are always as manypolesof

\nthe functions F(p) and H(p) in the right half plane as in the left half

\nplane. If the right half-plane poles are grouped together and desig\302\254

\nnated fr(p), and the left half-plane poles are similarly grouped as
\nfi(p),

we can write\n

Fip) = fr(p)fi(p) (14-30)\n

When p =
ju>p

in the sinusoidal steady state, the magnitude of fr{p)is
\nalways equal to the magnitude of fi(p). This can be seenfromthe pole

\nconfiguration: phasors drawn from each of the poles to a pointon the

\nj(ap axis can be matched in identical pairs as far as magnitudeis con\302\254

\ncerned. Because of this equality,\n

|/r0'*p)|
=

I (14-31)\n

the magnitude of F(joi) may be written\n

|F0't0p)|
= \\friM\\\\fl(jo>p)\\

=
|/lO\342\200\230\"p)|*\n (14-32)\n
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Extracting the square root of this equation gives\n

l/<(i\302\273,)l
-

VWGZil. (U-33)\n

Now F(p) is definedby Eq.14-20for even n only. For these even values
\nof n, F(jo>) is a real number having the value\n

=

rrsjs
\302\273\302\253*>\n

Substituting this magnitude into Eq. 14-33 yields\n

/iO\342\200\231u)
= W(1 + <\302\273p2n) (14-35)\n

This equation is precisely of the form of Eq. 14-17which defined the

\nmaximally flat function. Thus the pole configurationdescribedby

\nfi(p) is the one required to give a maximally flat magnitudecharacter\302\254

\nistic. These poles are readily found by Eqs. 14-28 and 14-29\342\200\224alter\302\254

\nnately by the rules of page 370\342\200\224provided only poles in the left half
\nplane are retained. Similarly, it follows that for odd values ofn, that\n

\\hi(jo)p)\\
= V H (jo)p) = \\/l/(l + \"P2n) (14-36)\n

under the same requirement that only left half-plane poles be con-\n

ne- 14-9. Polo locations for maximally flat frequency response ($

\nmeasured from the negative real axis).\n

sidered. The pole configurations to give maximally flat magnitude
\ncharacteristics for several values of n are shown in Fig. 14-9.\n
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Now the b), of the two network functions we have found,Eq. 14-35
\nand Eq. 14-36, is normalized radian frequency. If this term is rewritten

\nas \302\253/\302\253\342\200\236,then in each case we are considering terms of the form\n

1\n

\\/i + (\302\253A>\342\200\236)2n\n

(14-37)\n

This function has the value 1 at <*>/\302\253\342\200\236
= 0. And when co/co\342\200\236

= 1 or

\nto =
<on, the function has the value (l/\\/2) independent of the value

\nof n! This frequency is designated the half-power frequency as was done

\nin Eq. 11-79, and there is another half-power frequency at negative
\noon. The response curve more nearly approximates a constant value
\nfor larger values of n.\n

14-3. Overstaggered amplifiers (Chebyshev polynomials)\n

This last discussion points to a disadvantageof stagger-tuning an

\namplifer for the maximally flat (or Butterworth) condition.The
mag\302\254

\nnitude function approximates a constant for a range of frequencies,
\nbut as frequency becomes larger the approximation is poor. This is
\nillustrated in Fig. 14-10. The ideal characteristic is a constant shown\n

Fig. 14-10. Comparison of responses.\n

as a dashed line. The Butterworthresponse closely approximates the

\nideal characteristic for low frequencies, but the differencebetweenthe

\nideal and actual characteristic becomes large as frequency increases.
\nAll the error (the difference between the ideal and the actual)is lumped

\nat high frequency. The total characteristic would seem to be better
\nif this error could be spread out over the entire band of low frequencies

\n(for this low-pass filter case). Such a frequency responseis shown in

\nFig. 14-10(b). The error is spread out from w = 0 to \302\253= w\342\200\236as an

\n\342\200\234equal ripple,\342\200\235 a series of hills and dales. The maximum error is the
\nsame for several points. Such a frequency response appears to be
\nbetter than the maximally flat response. We face two problems: Can
\nwe write an expression in mathematical form for this response? Can
\nwe find the pole configuration that gives this response?\n

The equalrippletype of functions illustrated in Fig. 14-10(b) were

\noriginallystudied by the RussianmathematicianP. L. Chebyshev\n



Art. 14-3\n AMPLIFIER NETWORKS\n 373\n

some 100 years ago. Chebyshev found a certain type of polynomial
\nuseful in his studies of the action of linkages used in steamengines.

\nThese polynomials, which we will call Chebyshev* polynomials,
\napproximate a constant in the characteristic equal ripple form we have

\nillustrated. The general Chebyshev polynomial of order n is defined\n

by the equation\n

C\302\253(a>)
= cos (n cos-1 to) (14-38)\n

Chebyshev polynomials for severalvaluesof n are as follows.\n

Ci = cos (cos-1 o>)
= a) (14-39)\n

C2 = 2\302\2532
- 1 (14-40)\n

C3 = 4o>3
- 3co (14-41)\n

C4 = 8co4
- 8<o2 + 1 (14-42)\n

C6
= 16co6 - 20(o3+ 5co (14-43)\n

C6 = 32(o8 -
48w4 + 18(o2 - 1 (14-44)\n

Cn+1
= 2(0Cn -

Cn\342\200\224i (14-45)\n

The last equation may be used to calculate higher-orderedChebyshev
\npolynomials.\n

The equation for the magnitude of the voltage ratio transferfunc\302\254

\ntion (for the sinusoidal steady state) corresponding to the maximally
\nflat case defined by Eq. 14-17 has the form, for n stages,\n

V n+lQ\342\200\230(Op)\n

Vi 0\302\253,)\n

= G\n

1\n

\\/l + eC\342\200\2362((op)\n

(14-46)\n

where \342\202\254is a constant (to be defined). Just as in the maximallyflatcase,
\n\302\273will be related to the number and location of the poles(andhenceto
\nthe number of amplifier stages).\n

To construct this equal ripple function,we must start with a
Cheby\302\254

\nshev polynomial of order n and square it. The squaredfunctionismul\302\254

\ntiplied by the constant e and added to unity. The reciprocalof the

\nsquare root of the resulting function is the transferfunctionmagni\302\254

\ntude. This process can be duplicated by performing each step graphi\302\254

\ncally. The Chebyshev polynomial\n

Cn(io) = cos (n cos-1 a) (14-47)\n

is defined for a range of u> from +1 to \342\200\2241(that is \342\200\2241^ w ^ +1).\n

\342\200\242Chebyshev is also variously spelled as Tchebycheff, Tchebichef, etc. These
\nforms apparently resulted from repeated translation: Russian to German, Ger\302\254

\nman to French, etc. The spelling used is consideredthe bestRussian to English

\ntranslation.\n
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When \\a\\ > 1, cos-1 <a *=
j cosh-1 u> and\n

Chap. 14\n

Cn(\302\253)
= cosh (n cosh-' w) (14-48)\n

This function does not havea \342\200\234rippling\342\200\235 nature hut increases with o>

\nat a rate determined by the value of n. Plots of C\342\200\236(w)for several values

\nof n are shown in Fig. 14-11. The functions vary from +1 to \342\200\2241over

\nthe frequency range 0 ^ w 5* 1. Several features of the Chebyshev\n

Fig. 14-11. Chebyshev polynomials: (a) plot for 0 < \302\253< 1; (b) plot\n

for \302\253> 1.\n

0\n 1\n

n - 5 (odd)\n

Fig. 14-12. Squared Chebyshev polynomials.\n

Cl>\n

polynomials can be seen from the plots of Fig. 14-11.Forallodd values

\nof n, Cn(o>) has zero value at \302\253= 0 and the initial slope is alternately
\npositive and negative. For even values of n, C\342\200\236(o>)alternately has the

\nvalue +1 and \342\200\2241at <o = 0. When the Chebyshev polynomials are
\nsquared, all the negative values of the Cn(w) plot will be \342\200\234reflected\342\200\235

\nas positive values. For odd n all plots of Cn2(<o) start from zero and have

\ninitially increasing values; for even n all plots of C\302\273J(w) start from +1

\nand have an initially decreasing values. Typical plots of the squared
\nfunction are shown in Fig. 14-12.\n
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To construct our equal-ripple frequency response, the curvesof

\nFig. 14-12 above are multiplied by e (which will merely reducethe
\nscale) and substituted into the equation\n

IG(M\\
=\n

1\n

Vl + eC'n2(cop)\n
(14-49)\n

When C'n(ttp) has zero value, G(je>p) will have unit value; when C\302\273(<op)

\nhas the value of unity (the maximum value it canhave),the magnitude

\nfunction will be\n

1\n

Vl+~*\n

(14-50)\n

The ripples will vary between these two limitsas shown in Fig. 14-13

\nfor two typical values of n (corresponding to Fig. 14-12).The ripple\n

Fig. 14-13. Equal-ripple frequency response.\n

width is often specifiedin decibels.Thiswidth and t are related by the

\nequation\n

ripple width = 8 = +20 log\342\204\2421\342\200\22420 log\342\204\242 .
*

(14-51)\n
V1 + \302\253\n

or 8 = 10 logio (1 + e) (14-52)\n

where 8 is in decibels. From this equation ccan befoundif 8 is specified

\n(in a design problem).\n

At this point, the quantity e will be defined in terms of a new factor,
\na in order to simplify the computation. This relationship will be jus\302\254

\ntified later in this chapter and will appear as Eq. 14-71.Then,by

\ndefinition,\n

1\n

sinh2 (no)\n
(14-53)\n

or\n o = - sinh-1 \342\200\224;=\n (14-54)\n

where n is the order of the Chebyshev polynomial\n
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In the maximally flat case, the frequency response curve had
\ndropped to 0.707 at \302\253p

= 1. For the Chebyshev equal-ripple frequency
\nresponse,the curvehasa value 1/-\\A + c at the same frequency. In
\nthe Chebyshev case, another frequency has significance. Let

coPl
=

\ncosh a, corresponding to a particular frequency larger than = 1.
\nBy the equation for the Chebyshev polynomial,\n

Now the factor a is defined by Eq. 14-54. Substituting this value for
\na in Eq. 14-56 gives\n

<7n(cosh a) = cosh (cosh-1 \\/l + 1/e) =
y/l + 1/e (14-62)\n

response given by Eq. 14-49.Makingthissubstitution gives\n

if \302\243is much smaller than 1. Thus for the approximationthat e is small

\n(the usual case), the frequency \302\253Pl
= cosh a corresponds to the \342\200\234half\302\254

\npower\342\200\235 frequency in the maximally flat case. This is illustrated in
\nFig. 14-14 (along with other information that we have deduced thus
\nfar). The approximate half-power frequency, cosh a, is determined by\n

C\302\273(cosh a)
= cosh [n cosh-1 (cosh a)]
\n= cosh na\n

(14-55)\n

(14-56)\n

(14-57)\n

The hyperbolic sine and hyperboliccosineare related by the identity\n

(14-59)\n

(14-58)\n

cosh a; = -\\/l + l/c\n (14-60)\n

(14-61)\nor\n x = cosh-1 y/\\ + 1/e\n

Then Eq. 14-57 may be written\n

If this equation issquaredandunity is added to both sides of the equa\302\254

\ntion, there results\n

1 + eCB2(cosha) = 2 + e\n (14-63)\n

This equation is in the form of the square root factorof the frequency\n

\\G(j cosh a) | = . ^ \302\2530.707\n

>/2Tl\n
(14-64)\n
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the value of a, which is determinedby bothn ande. For a large value

\nof n, a is small and cosh a has a valueonlyslightlylarger than unity.

\nIn other words, the larger the value of n, the faster the frequency

\nresponse falls off with frequency above <op
= 1 (giving better filtering

\naction). This steepness of the responsecharacteristic is also dependent

\nupon \342\202\254,which is in turn dependent upon the size of the ripplesin the

\nfrequency range \302\253p
= 0 to o>p = 1. The summary of our knowledge

\nof equal-ripple frequency response characteristics, shown in Fig. 14-14,\n

Fig. 14-14.Half-power point of frequency response (n = number of\n

half cycles of ripple).\n

indicates that specifications are complete and givenin terms of e, a, 5,

\nand n. We next turn our attention to the pole configurationthat will

\ngive the equal-ripple characteristics.\n

The procedure for determining the locationsfor the poles parallels

\nthat for the maximally flat (or Butterworth) case. In thisprocedure,a
\nfunction of the form of Eq. 14-49 with cop replaced by some other var\302\254

\niable is written, and the poles of this function are determined.As in
\nthe maximally flat case, the poles in the right half planeare rejected

\nto give the magnitude function. Paralleling the discussion leading to
\nEqs. 14-18 and 14-19, we let p =

joyp or cop
= p/j and examine the

\nfunction appearing under the radical in Eq. 14-49 which is\n

1 + *Cn*(p/j) = 0 or Cn2(p/j) = -1/e (14-65)\n

Now Cn(x), where x is any variable, is definedas Cn(x)
= cos n cos-1 x,

\n|x| ^ 1, so that the last equation becomes\n

cos n cos-1(p/j) =
\302\261j/s/e (14-66)\n

Since the inverse cosine of a complex number is complexin general, we

\ndefine cos-1 (p/j) = a \342\200\224
ja such that\n

cos (na \342\200\224
jna)

=
\302\261j/ \\/e (14-67)\n

Expansion of the cosine of the differenceof two angles gives\n

cos na cosh na + j sin na sinhna =
+j/\\/e (14-68)\n
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The real and imaginary parts of this equation may he equatedtogive\n

cos na cosh na = 0 and sin na sinh na =
\302\261l/\\/\302\253 (14-69)\n

Since cosh na cannot equal zero for any valueof a, a must have values

\ngiven by the equation\n

2AT -I- 1 r\n

a = radians, N = 0, 1, 2, ..., n (14-70)\n
ft z\n

For these values of a, sin na =
\302\2611 and\n

a -
\302\261

- sinh-' (l/\\/\302\253) (14-71)\n
ft\n

This equation was introduced without proof as Eq. 14-54in orderto

\nsimplify the discussion at that point.\n
Since we have nowdeterminedthe required values of a and a in the

\nequation,p/j \342\200\224
cos (a

\342\200\224
ja), we write\n

or p = cosh a\n

(2N + lr . \\
\342\200\236 n .

0\n
V

= 3 cos I\342\200\224-\342\200\224

2 ~ja)f
W = 0, 1, 2, ..., n\n

( 4 , . 2AT + 1 x , . 2N + l
r\\\n

\302\253811. \342\200\224\342\200\224

2
+ J <\342\200\242<\302\253

2)'\n

N = 0, 1, 2.\n n\n

(14-72)\n

(14-73)\n

This equation defines the roots of Eq. 14-65 as required.Our next

\nstep will be to modify the form of this equationfor comparison with

\nthe results of the maximally flat case. From the identities, cosx -\n

and sin x\n Eq. 14-73 may be written\n

p
= cosh a ( \342\200\224tanh a cos 6 + i sin b) (14-74)\n

where b =
\342\200\224^

~ 1
*>> N = 0, 1, 2, ..., n (14-75)\n

We have already found that the poles for the maximallyflatcaseare

\nlocated on a circle with locations given by the equation\n

p
as e*v = cos b' + j sin b' (14-76)\n

where b' values are given by Eq. 14-28 for even valuesof n and by

\nEq. 14-29 for odd values of n as\n

V \342\200\234
1

x, \302\273even (14-77)\n

V = kr/n, n odd (14-78)\n

We next compare these angles with those of Eq. 14-73.Thesetwo\n
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angles are equal for the following integer values for m and k, foundby

\nequating Eq. 14-75 to Eqs. 14-77 and 14-78\n

and\n

m = (n
\342\200\224

2N)/2 for even n\n

k \342\200\224
(n

\342\200\2241 \342\200\224
2N)/2 for odd n\n

(14-79)\n

where N = 0, 1, 2, ..., n. For a given value of n, the angles b and b'
\nare equal although they are specified in different orders according to
\nEq. 14-79. The equality of these angles for the equal rippleandmax\302\254

\nimally flat cases is the basis for a simplified method for locatingthe

\nroots in the equal ripple case.\n

Comparing the equations, pi = cos6' + j sin 6' and pt = cosh a

\n(-tanha cosb + j sinb), we see that the roots for the equal ripple
\ncase can be found from the roots for the maximally flat case by the

\nfollowing steps: (1) Change the radius of the circleof the maximally

\nflat case from 1 to cosh a. (2) Multiply the realpart of the poles located

\nfor the maximally flat case by tanh a. This constructionis illustrated
\nin Fig. 14-15. The angles tabulated in Fig. 14-9 will be foundusefulin
\nconstructing the new pole configurations for the equal ripple case.\n

Fig. 14-15. Location of poles for Fig. 14-16. Polelocationsfor Cheby'

\nChebyshev case. Real parts of poles on shev case,\n

circle are multiplied by (tanh a).\n

The roots for the equal ripple case are located on the periphery of

\nan ellipse. This can be demonstrated by noting from Eq. 14-74that if
\np

=
<fp + jo)p, then av = \342\200\224sinh a cos b and wp = cosh a sin 6. From

\nthese two equations it follows that\n

+\n
sinha a cosh2 a\n

= 1\n (14-80)\n

This is the equation of an ellipse with its majoraxisalongthe j<>>p axis

\nhaving a major semiaxis of length cosh a and a minor semiaxis of

\nlength sinh a. These features are illustrated in Fig. 14-16.\n
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All computations thus far have been for unit transfer functionmag\302\254

\nnitude and unit cutoff frequency. In a practical case where the cutoff

\nfrequency may be kilocycles/sec and the magnitude is large (as deter\302\254

\nmined by the gain of the tube), the magnitude and frequencycanbe

\nscaled by multiplying all normalized frequencies by ton (usually taken

\nas the half-power frequency) and the magnitude which is the maximum

\ngain of the system under study. In many cases, there willbeadvantage
\nin leaving the scaling to the last step in the design,becauseof the

\nrelative ease of working with small numbers. We turn nextto the actual

\namplifier networks used to realize these stagger-tuned characteristics.\n
Low-Pass Filter Amplifier.An examination of the complex plane

\nfor the Chebyshev case shows that only poles are present; nozeroshave

\nbeen required. There are networks with this transfer characteristic,
\nor a network can be constructed by using results that have already

\nbeen found. Consider the shunt peaked amplifier network studied in
\nArt. 14-1. The voltage ratio transfer function for this network has,
\nfor the high Q case, two poles (conjugate pair) and one zero.The

\nlocation of the poles in the complex plane can be controlledby control\302\254

\nling the Q of the network. This is ac\302\254

\ncomplished in practice by adjusting
\nthe inductance by means of a tuning
\nslug (alternately, the resistance might
\nbe varied). But we still have a zero,
\nand that zero cannot be ignored. Keep
\nthis problem in mind, and let us turn
\nour attention to another network

\nshown in Fig. 14-17. If the tube has

\na high plate resistance (and acts as a current source), the transferfunc\302\254

\ntion for the voltage ratio is\n

(14-81)\n

where Z(s) is the impedance of the plate circuit (termination).For
\nthe network shown, the impedance has the value\n

=

C s + l/RC\n

and the voltagetransferfunction is, in terms of p =
s/w\302\273\n

YM = ^ ( 1 \\\n

ViCp) 0>\302\253CVj> + 1/cOnRC)\n

The network has a pole on the negativerealaxisof the s plane; its

\npositioncan be adjusted by adjustingeitherR or C. Return now to our\n

(14-82)\n

(14-83)\n

Fig. 14-17. RC amplifier network.\n
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problem of the zero: Here we have a network with a singlepole.Might

\nthis pole be used to cancel the unwanted zero? If the two stages can

\nbe connected together in cascade such that the two networksare iso\302\254

\nlated (and this is the case because of the isolatingactionof the ampli\302\254

\nfiers), the answer is yes. The cascade connection has a transferfunction\n

G(p)
= G1(p)G,(p) (14-84)\n

The two appropriate transfer functions are Eqs.14-6and14-83;the

\nover-all transfer function is\n

Vout(p) \t\n

vm
~

<o\342\200\2362CiC2\n (p2 + P/Q + 1)(P + 1
/anRC)_\n

where p
=

\302\253/&>\342\200\236is normalized frequency. If we set\n

(14-85)\n

JL =
1\n

Q u>nRC\n
(14-86)\n

the pole and zero cancel, and the transferfunctionhasonly two poles

\ndefined in terms of Q. This cancellationis illustratedinFig.14-18.*\n

\\ 1\n

Stage 1 *\n
ju>\n Stage 2\n jw\n

a\n a\n
<*\n

x\n

Composite poles x\n

<r\n

x\n

Fig. 14-18. Use of two stages of amplification to give conjugate poles\n

(no zeros).\n

* Another amplifier network with the same characteristics is shown in Prob.
\n14-6. For a discussion of stagger-tuned amplifier design, seeMcWhorter and Pettit,

\nProc. IRE, 43, 923 (1955).\n
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This basic network unit shown in Fig. 14-18 may now be usedto
\nbuild a pole configuration to give either maximally flat or Chebyshev
\nfrequency response. This is illustrated in Fig. 14-19, where the net\302\254

\nworks are adjusted by varying parameters to give maximally flat
\nresponse.These poles mightbe adjustedto give a Chebyshev fre\302\254

\nquency response, using the same basic building blocks in the formof

\nthe networks of Fig. 14-18.\n

Pole pair\n

Fiff. 14-19. Cascade connection of networks to give maximallyflat\n

response (n =
4).\n

Band-Pass Filter Amplifier. Since the poles and zeros can be moved

\nto any position in the s plane by merely adjusting parameters(of

\ncourse, within the range of practical adjustment: the network Qcan
\nbe made only so large with practical elements), the poles can be
\nadjusted to give band-pass filter characteristics, using the same basic
\nideas as in the low-pass filter case. As the building blockin thisexam\302\254

\nple, we will make use of the shunt peaked network whichis the first

\nhalf of the network of Fig. 14-18. The transfer function of this net\302\254

\nwork amplifier was derived as Eq. 14-6 and has two polesandone zero as\n

Vi(p) 9m r (p
-

pi)\n

Vl(p) 0>nC L(p
- Pa)(p -

Pa*)\n

where, as in the low-pass filter case, p =
s/\302\253n. Suppose that four such

\nnetworks are cascaded and the polesareadjustedfor the configuration

\nshown in Fig. 14-20. This time we have zeros. The effect of the zeros
\nmust be taken into account. The over-all transfer function for the
\nfour stages is (using subscript numbers to designate the stage)\n

VUP) _ QmiQmiQmjQmj\t\n
V inip) WftjO7n1b)n|C0n4Cr 1C 2C zC 4\n

w (p
- Pn)(p -

P12) \t\n

(P ~
P\302\253,)(P

\342\200\234
Pa*)iP

~
Pat)(p

~
Pat*)\n

w (p
- pn)(p ~ Pu)\t\n

(P
~

Pat) (.P
- Pa*)(p - Pat)(P~

Pa*)\n

(14-87)\n

(14-88)\n



Art. 14-3\n AMPLIFIER NETWORKS\n 383\n

The cascaded system thus has eight polesandfourzeros.The position

\nof the poles and zeros can be fixed by adjusting the circuitQ for each

\nstage (fixing the poles also fixes the zeros,however).Fora
maximally

\nflat response, suppose that the poles are assigned positions as shownin
\nFig. 14-20 (b). One stage contributes one pole in the upper halfplane,
\none pole in the lower half plane, and one zero. The poleshavepositions\n

Fig. 14-20. Maximally flat band-pass filter characteristics (four
\nstages of amplifier networks): (a) four cascaded stages; (b)pole-zero
\nconfiguration for maximally flat response; (c) basic unit of eachstage
\n(shunt peaking network); (d) maximally flat response curve.\n

on the periphery of a circle having a diameter (\302\253pi
\342\200\224

\302\253P2), where wP2

\nand copi are half-power frequencies for the maximally flat case. For
\nthe sinusoidal steady state, when p =

jo>p, each frequency term in

\nEq. 14-88 can be represented by a phasor as shownin Fig.14-20(b).
\nFor frequencies from

\302\253pito o>P2, the poles in the upper half planehave
\nthe greatest effect on the transfer function magnitude. The phasors
\nfrom these poles are changing rapidly in magnitude, while the phasors
\nfrom the poles in the lower half plane and the zerosarechanging slowly.

\nIn many practical designs, the mid-band frequency coq is high and the\n
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band of pass frequencies (\302\253p2 to wpi) is small. Under these conditions
\nthe last equation can be written in approximate form as\n

Voutjp) _\n
K\n

Vin(p)

\342\200\234

(P
~

Pai)(P
~

?>\302\253,)(?
~

P\302\253*)(P
~

P\302\253\302\253)

\nwhere K is only approximately constant and is given as\n

gmigmtgm&ml (p
~ Pll)(p

~ Pli)(P ~ Pu)(P ~
Pu)\n

(14-89)\n

K =\302\273\n

<*nl0>nt0>ni0>ntClC2CzCi (p
~

Pa*)(P
~ Pa*)(p ~ Pa*){p ~

Pa*)\n

(14-90)\n

This equation for the voltage ratio is of the form requiredfor the two

\ntypes of responses that have been studied. The polesof this equation

\ncan be adjusted to give either maximally flat (Butterworth) frequency
\nresponse as illustrated or equal ripple (Chebyshev) frequency response.
\nThe response for the maximally flat case is shown in Fig. 14-20(d).
\nThe band-pass features of this response are evident. Such response
\ncharacteristicsare required in such applications as intermediate fre\302\254

\nquency amplifiers in superheterodyne receivers.\n

The usual specifications for design are: (a) the mid-bandfrequency

\no)0, (b) the over-all bandwidth, (c) the rate of decrease ofthe
frequency

\nresponse outside of the pass band, and (d) the over-all gain. From
\nthese specifications, n (the number of stages) is determined.\n

For the maximallyflat case (Butterworth), the pole configuration is

\nthen selected from the chart of Fig. 14-9 or from correspondingequa\302\254

\ntions. The parameters of the actual network are used and then
\nadjusted to give the required real and imaginary part for each pole.\n

For the equal ripple (Chebyshev) case, the ripple width is usually
\nspecified in addition to the list given above. From these specifications,\n

(1) Determine8 from Eq. 14-52 as\n

8 = 10 logio (1 + e) decibels\n

(2) Calculatethe factora from Eq. 14-54.\n

a = -- sinh-1\n

(14-91)\n

(14-92)\n

(3)\n Compute cosh a and tanh a. Draw a circle of radius (cosh a),

\nequal to the bandwidth, with a center at the mid-band
frequency.

\nLocate the poles on this circle as in the maximallyflatcase(given

\nabove). Multiply the real part of each pole by tanh o. This
\ngives the pole locations for the Chebyshev case.\n

(4) \tAdjust the parameters of the network being used to give these
\npole locations.\n
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An example will illustrate the design procedure just outlined. Three
\nstages of amplification with shunt peaking are to be stagger-tuned
\nwith an equal-ripple characteristic. The mid-band frequency is to be
\n5.0 megacycles/sec, and the bandwidth to the half-power frequencies
\nis to be 500 kilocycles/sec. The ripple width is specifiedas 1.0db.
\nWe are required to find the mid-band frequency and the Q foreachof

\nthe three stages. The parameters R, L, and C of the shuntpeaking

\nnetwork can in turn be found if one of the threeis fixed (as it often is

\nin practice\342\200\224for example, the interelectrode and wiring capacitance).\n
Following the steps just givenwe first find e from the equation\n

8 = 10 logio (1 + \302\253) decibels\n (14-93)\n

Since 8 =\n 1 db, we have\n

1 = 10 logio (1 + e) or e = 1001 -
1\n (14-94)\n

and\n e = 0.259\n (14-95)\n

We next compute the factor a from Eq. 14-92 as\n

a = - sinh\"1 \\ sinh-1 1.963= 0.475\n (14-96)\n

For this value of the factor a, the hyperbolictangenthasthe value\n

tanh a = 0.442 (14-97)\n

We next turn our attentiononthe pole-zero configuration\342\200\224in partic\302\254

\nular to the location of the poles. Figure 14-9showsthe polelocations

\nfor n = 3 as occurring at 6 = 0\302\260and \302\26160\302\260with respect to the negative
\nreal axis. These pole locations for a bandwidth of 0.500megacycleare
\nshown in Fig. 14-21. With respect to the midbandfrequency,thepoles\n

3 poles\n

3 zeros\n

JU\n

3 poles\n

<\n

(a)\n

yig. 14-21. Pole location for maximally flat frequency response:

\n(a) full scale (approximately); (b) region of interest.\n
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have the locations:\n

AMPLIFIER NETWORKS\n Chap. 14\n

Sl
= (-0.5 + >0.866)0.25,\n

s2 = (-1.0 + >0)0.25, (14-98)\n

\302\2533
=

(\342\200\2240.5
\342\200\224

>0.866)0.25\n

The actual locations in the s plane are shownin Fig.14-21 (hardly to

\nscale even so). For the equal ripple response,the realpart of the pole

\nlocation is multiplied by (tanh a = 0.442). The new locations for the

\npoles then become\n

si' = (-0.221 + >0.866)0.25,\n
s2' =

(-0.442 +>0)0.25, (14-99)\n

S3' = (-0.221 ->0.866)0.25\n

where all measurementsindicatedby these equations are made with

\nrespect to 5.0 megacycles/sec.\n
For the high-Qcase (corresponding

to f <K 1), the bandwidth B is
\nfound from Eqs. 11-86 and 11-87 as\n

B =
2{*b>n\n (14-100)\n

and Q is defined by Eq. 11-77 as\n

Q
=

2T\n

(14-101)\n

Combining these two equations, we have\n

r\\ _ Wn /\302\273\n

*
B Bf\n

(1+102)\n

where /\302\273is the natural undamped frequency in cycles per second,and
\nBf is the bandwidth in cycles per second (the common2irtermcancels).

\nIn Fig. 14-22(b) the distance from the ><o axis to a pole location is\n

la)\n

jw\n

(6)\n

Tig. 14-22. (a) New pole location for the equalripplecase;(b) Si pole

\nenlarged to show distance to jo> axis.\n
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marked d. By Eq. 11-70 this real part of the complexpolehasthe value

\n(fa,,). But by Eq. 14-100, the bandwidth is givenasB =
2fo>,. From

\nthis it is seen that\n

i =
\302\247

(14-103)\n

or that the distance d is the \342\200\234halfbandwidth.\342\200\235\n

We next make use of these last two identitiesto designthe stagger-

\ntuned amplifier corresponding to the computed pole configuration,
\nunder the assumption that the zeros have negligible effect. Assume
\nthat stage 1 will be made to correspond to the poles/ andits

conjugate,

\nstage 2 to and its conjugate, and stage 3 to poless'anditsconjugate.\n

For stage 1 (\302\253/),\n

/,
= 5.0 + (0.866 X 0.25) = 5.217 megacycles/sec

\nBf
= 2 X 0.221 X 0.25 = 0.110 megacycle/sec

\nQ
=

fn/B,
= 47.2

\nFor stage 2 (s2'),\n

/, = 5.0 megacycles/sec

\nB/
= 2 X 0.442 X 0.25 = 0.221 megacycle/sec

\nQ
= 22.6

\nFor stage 3 (s3'),\n

fn = 5.0 \342\200\2240.866 X 0.25 = 4.783 megacycles/sec

\nBf
= 2 X 0.221 X 0.25 = 0.110 megacycle/sec

\nQ
= 43.2\n

The amplifier-network realization of the required equal-ripplechar\302\254

\nacteristic is shown in Fig. 14-23. If required, the circuit parameters\n

fn, mc/sec

\nBf, mc/sec

\nQ\n

Stage 1

\n5.217

\n0.110

\n47.2\n

Stage 2\n

5.00\n

0.221\n

22.6\n

Stage 3\n

4.783\n

0.110\n

43.2\n
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R, L, and C can be found, if oneis assumed fixed. Figure 14-24 shows

\nhow the characteristics of the individual stages are combined by the
\ntandem connection to give the equal-ripple frequency response.\n

The frequenciesmarkedfa and fb are frequencies corresponding to the
\nend of the ripple band. In most of the preceding discussionthis fre\302\254

\nquency has been normalized to unity. By the specifications of this
\nproblem,

it was more convenient to work with the 3-db point frequen\302\254

\ncies (4.75 and 5.25 megacycles/sec). The frequencies fa and
fb

are

\ngiven as\n

ft 25\n

fb, fa
= 500 \302\261

cogh a
megacycles/sec (14-104)\n

= 4.776 megacycles/sec, 5.224 megacycles/sec (14-105)\n

Oneadvantageof the equal-ripple case over the maximally flat case
\nis that the gain is higher for the equal-ripple configuration. This
\nfollows because the poles are closer to the ja> axis in the equal-ripple
\ncase. Referring to Fig. 14-22(a), the gain at the mid-band frequency
\n(5.00 megacycles/sec) may be found in terms of phasor lengths. The
\nratio of gains of the equal-ripple case to the maximally flat caseis
\ngiven as\n

(other pole and zero

\ndistances)\nratio of gains =\n

(the same pole and

\nzero distances)\n

(14-106)\n

The distances to each of the other polesand zeros is approximately the

\nsame for both cases. The three significant distancesmay be found by

\nconverting the complex numbers of Eqs. 14-98 and 14-99to polar
\nform. For this particular problem\n

equal ripple gain _ (0.25)8\n

maximally flat gain

~~
(0.223)2 X 0.1105\n (14-107)\n

at 5.00 megacycles/sec.\n
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Offsetting this gain advantage is the disadvantagethat the phase

\nangle of the output with respect to the input asa function of frequency

\nis not so linear in the equal-ripple case as in the maximallyflat case.

\nThis nonlinear characteristic restricts the application of equal-ripple
\ndesigned amplifiers in such applications as television.\n

FURTHER READING\n
Thebest known treatment of stagger tuning is that in Valley and

\nWallman, Vacuum Tube Amplifiers, Vol. 18 of the Radiation Labora\302\254

\ntory Series (McGraw-Hill Book Co., Inc., New York, 1948) Chap. 4.
\nThis account is based on an MIT Radiation Laboratory report by
\nHenry Wallman issued in 1944. Two earlier papers on stagger tuning
\nare Butterworth, \342\200\234Onthe theory of filter amplifiers/' Wireless Engi\302\254

\nneer, 7, 536 (1930) and V. D. Landon, \342\200\234Cascade amplifiers with

\nmaximal flatness,\" RCA Rev., 5, 347 (1941). Further discussionsof

\nstagger-tuned amplifiers are to be found in T. L. Martin, Jr., Electronic
\nCircuits (Prentice-Hall, Inc., New York, 1955), LePage and Seely,
\nGeneral Network Analysis (McGraw-Hill Book Co., Inc., New York,
\n1952), pp. 238-256, and R. F. Baum, \342\200\234Design of broad-band IF

\namplifiers,\" Jour. Appl. Phys., 17, 519 and 721(1946).An extensive

\nbibliography on the subject is given by H. A. Wheeler,\342\200\234The

\npotential analog applied to the synthesis of stagger-tuned filters,\"
\nProc. IRE, CT-2, 86 (1955).\n

PROBLEMS\n

14-1. For the amplifiernetworkshown in the accompanying figure,
\nfind the voltage ratio transfer function. The vacuum tube has high\n

plate resistance and can be considered a current source. Show a
\ntypical pole-zero configuration if the components have values to corre\302\254

\nspond to the oscillatory case. Networks of this type findapplication
\nin cascade-connected amplifiers.\n

14-2. The amplifier network shown in Fig. 14-3is to be designed

\naccording to the following specifications. The tube used in a 6AK5,

\nfor which a gm of 4500 /xmho may be assumed. Thecapacitanceof the

\namplifier stage is the interstage capacitance only (includingthe tube,\n
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socket, and wiring) which has a value of 12 wxf. If the circuit Q has a
\nvalue of 75 and the frequency at resonance is 12.00 megacycles/sec,
\ndetermine:(a) the values of R and L, (b) the maximum gain of the
\namplifier stage, and (c) the bandwidth. Answer, (a) 14.7 ohms,
\n14.7 Mh, (b) 375, (c) 160 kc.\n

14-3. The network is to be used as a voltage couplingnetwork,

\n(a) For the voltage ratio transfer function to have a maximallyflat\n

Prob. 14-3.\n

frequency characteristic of the form, l/-\\/l + \302\2532n> where co is in

\nradians/sec, what must be the relationship between R and L? (b)

\nDetermine a value for R and forL suchthat the half-power frequency

\n(of the maximally flat characteristic) is 10 radians/sec.\n
14-4. Plot the functionl/\\/l + o>2n for 0 ^ co ^ 4 for n = 1, 2,

\nand 3.\n

14-6. The network shown in the figure is known as a second-order

\nButterworth filter. Find the magnitude of the transfer impedance
\ndefined as\n

F2(io,)\n

hU\\n")

and show that it has maximally flat frequencycharacteristics.Sketch

\nthe frequency response curve and identify significant points such as the
\nhalf-power frequencies, etc.\n

i -
-gmVg\n

14-6. In this problem, the second-order Butterworth network of
\nProb. 14-5 is to be used in the amplifier network shown. It is desired

\nthat the frequency characteristic be maximally flat, but for this net\302\254

\nwork two changes must be made: (1) the load resistanceR must be

\n50 ohms (purely resistive) and (2) the half-power frequency must be\n
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250 kilocycles/sec. Determine the values of L and C to meet these
\nrequirements. Answer. L = 1.414 X 10~4 henry, C = 0.113nf.\n

14-7. The network shown in the figure is a third-orderButterworth

\nJUter (that might be used in a pentode circuit as shownin the last

\nproblem). For this network, show that the magnitudeof the transfer

\nimpedance, |Zi20\342\200\231\302\253)l
has a maximally flat frequency characteristic and

\nthat the transfer impedance has the form\n

Zi2(s)
\342\200\234

(s
_ Sl)(s _ S2)(S _

g3)\n

where sx = \342\200\224
1, s2 = \342\200\224

* + j and s3 =
s2*.\n

>
1
\t\n

jl
<\n

\342\200\224|
\n2h\n

1
0 0 \t\n

<
II\n

\342\200\224|

\n4h\n

1
0\n

18^
'\n -If If-\n ' <10 v2 if-\n - if-\n ^ <10\n

> *\t\n 1 O 0\342\200\224\342\200\224\n 1 O\n

Prob. 14-7. Prob. 14-8.\n

14-8. Show that the transfer impedance,Zi2(s)= U2(s)//i(s),of

\nthe network shown in the figure differs from that givenin Prob.14-7

\nonly by a constant multiplier. Determine the constant.\n
14-9. Plot the functionl/\\/l + eCV^co) where C\342\200\236(w)is the nth

\norder Chebyshev polynomial defined by Eq. 14-38 if c = 0.25for0 ^
\n(j> ^ 4 for n = 1, 2, and 3.\n

14-10. Write the 8th order Chebyshev polynomial, C\302\273(u>), in the

\nform of a polynomial.\n

14-11. Write the 9th order Chebyshev polynomial,Cg(w), in the

\nform of a polynomial.\n

14-12. An equal-ripple frequency response of the form given by

\nEq. 14-49 has the following fixed parameters: n = 5 ande = 0.1. For

\nthis response, determine: (a) the maximum value of |G(ico)|, (b) the
\nminimum value of

|G(j\302\253)|
in the pass band, (c) the ripple width 8 in

\ndecibels, (d) the half-power frequency. Answers, (a) 1, (b) 0.953, (c)
\n0.414 db, (d) 1.07.\n

14-13. Repeat Prob. 14-12 for n = 4 and e = 0.2. Answers, (a) 1,

\n(b) 0.913, (c) 0.79 db, (d) 1.076.\n
14-14. It is requiredthat a system having the frequency-response

\nequation given by Eq. 14-49have a half-power frequency at \302\253= 1.10.

\nIf the ripple width is limited to 0.5 db, what is the minimumvalue n

\nmay have?\n

14-15. The constant factor a in Eq. 14-54is assumed fixed in value.

\nUnder this condition, derive a relationship betweenn and8. Sketch 8

\nand a function of n.\n
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14-16. Refer to Fig. 14-16 plotted for n = 5. For this case, give

\nthe locations of the poles for the Chebyshev caseif a =\n

14-17. A maximally flat low-pass filter-amplifier with n = 3 hasa
\nhalf-power frequency of o> = 1.00. An equal ripple (Chebyshev)filter
\nis to be designed with the same half-power frequency, the samevalue
\nof n, and a ripple width of 0.5 db. Determine the upperandlower fre\302\254

\nquency limits of the pass band (the frequency at whichthe equalripple

\nends).\n

14-18. A filter-amplifier is to be designed on the Chebyshevbasis.
\nIt is specified that the magnitude of the voltage transfer ratio must be\n

G \342\226\2401\n
1\n

V//////A\n 0.5 db\n

t\n

G-0.2\n

777777777777/\n

0 l.(\n 1 1.1 it)\n

Prob. 14-18.\n

inside the crosshatch sections. (No specifications are given for the
\nrange \302\253= 1.0 to 1.1.) What is the required value of n?\n

14-19. The network of Fig. 14-18 is to be used to give a maximally

\nflat frequency characteristic for a low-pass filter amplifier. The ampli\302\254

\nfier is to have a bandwidth of 100 kilocycles/sec (measuredfromw = 0

\nto the half-power frequency), (a) Design an amplifier to meet these
\nrequirements. Select a vacuum tube for each stage. Specify all com\302\254

\nponent values, (b) Compute the maximum gain for the compositesys\302\254

\ntem. (c) Plot the frequency response (gain vs. to) for the first stage.

\nRepeat for the second stage. Plot the frequency response for the com\302\254

\nposite system.\n

14-20. A band-pass amplifier network is to be designedto the fol\302\254

\nlowing specifications: the mid-band frequency is 10.0 megacycles/sec,
\nthe bandwidth to the half-power frequencies is to be 500kilocycles/sec
\nthe ripple is limited to 0.5 db. Based on gain requirements, a decision
\nis made to use 3 stages. Stagger tune these three stages of amplifica\302\254

\ntion to give a Chebyshev equal ripple characteristic, using the basic
\nnetwork shown in Fig. 14-23. Determine Bf, and Q for eachstage.
\nDetermine the ratio of the maximally flat gain to the equalripplegain
\nat the mid-band frequency.\n

14-21. Design a band-pass amplifier networkhavingthe mid-band

\nfrequency and bandwidth given in Prob. 14-20 but for the maximally

\nflat case.\n

14-22. In this problem, we will investigate the transientresponse of

\namplifier networks designed on the equal ripple and maximally flat\n
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basis. For this problem, let n * 2 corresponding to two polesin the

\ns plane
of the form,\n

Z12 (s)\n

Vt(8) 1\n

/l(s) (s
-

\302\253i)(s
-

s2)\n

where si and \302\2532have different values for the two cases (equal ripple
\nand maximally flat). Two time-domain quantities of interest are the\n

rise time and overshoot resulting from a step-function input. One def\302\254

\ninition of rise time is the time interval, measured in secondsbetween
\nthe times the response, that has 10% and 90% of the final(steady-
\nstate) value. The overshoot is defined as\n

(maximum transient value)
\342\200\224

(final value)

\n(final value)\n
X 100%\n

If the driving-force current is a step function; that is, i(t) = u(t),
\ndetermine the rise time and overshoot for (a) a maximallyflat designed
\namplifier network, and (b) an equal-ripple design amplifier network.
\nCompare these quantities for the two amplifier networks. Which
\namplifier seems to have superior transient response? (Check point:
\nthe overshoot for the maximally flat amplifier is about 4%.)\n



CHAPTER 15\n

BLOCK DIAGRAMS\n

Block diagrams are widely used by engineers as a shorthand sym\302\254

\nbolism in describing a system. The block represents components:
\nentirely, in part, or in combination. Lines given direction by arrows
\nindicate the sequence of operations that take place in the system. Block
\ndiagrams,

as we shall use them, are not pictorial representations of
\ncomponents.Severalblocksmay be used to represent a single compo\302\254

\nnent or one block may represent a complex mechanism such asa digital
\ncomputer. Indeed, the blocks may represent the solution of a math\302\254

\nematical equation with no direct physical significance. The block
\ndiagram provides a method for representing a system in such a way as

\nto express a cause-and-effect relationship between the input and the
\noutput. Block diagrams are also referred to by the descriptive name
\nsignal flow diagrams, where we define the signal as any causal quantity
\nintentionally introduced into a system (in contrast to noise).\n

As we study block diagrams, we should keep in mindthe underlying

\nobjectives in their use:\n

(1) Block diagrams are easier to draw than detailed schematic

\ndiagrams. The block diagram is shorthand notation.\n

(2) Block diagrams, together with the transfer function, indicate
\nthe dynamic behavior of the system. They tell the engineernot
\nonly \342\200\234what it is\342\200\235but \342\200\234what it does.\342\200\235\n

(3) The construction of a block diagram is one step in system anal\302\254

\nysis. Once constructed, the blocks may be manipulated by a
\nsystem of algebra to find a simplified equivalent block diagram.
\nThis reduction in complexity is equivalent to algebraic reduction
\nof system equations.\n

15-1. Basic operations for block diasrams\n

Let the input to a system be designated as tq and the output as

\n(where v is any variable such as voltage, current, etc.). The relation\302\254

\nship between the input and output

\nmay be expressed in terms of an

\noperator G, such that
\nFig. 15-1. Block diagram. y2 = Qvl (15-1)\n

We define the blockdiagramshown in Fig. 15-1 to be equivalent to\n

394\n
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this equation. The function G may be any operatoror any linear com\302\254

\nbination of operators. For example, suppose that G represents differen\302\254

\ntiation with respect to time. This means that the input \302\273i(f) is differ\302\254

\nentiated as dvi(t)/dt to be equal to the output, v%(t). The block diagram

\nequivalent to this statement is shown in Fig. 15-2(a).If the operation

\nto be performed is multiplication of a transform function Fi(s) by a
\ntransfer function Kis, then the block diagram and algebraic equivalent
\nare as shown in Fig. 15-2(b). A linear combination of

operations,\n

(0\n

v2(t)w'\n
doM\n

dt\n

V2(8)-KlsVl(s)\n

V2M-.K1\302\2532ViW+*2ViM\n

Fig. 15-2. Block diagram and equation equivalents.\n

-Vl

+>Q\342\200\224=> v3-vx\302\261v2

\n\302\261T

\nv2\n

Fig. 15-3. Summing point symbol.\n

V2\n

\342\200\224n\n

v3\n

V4\n
\342\226\240*\302\273\n Vi-Vx

+ V2-V3\n

Fig. 16-4. Summing point.\n

expressed as G(s) = Kis2 + K3, is shown in Fig.15-2(c).Each term

\nin the expression operates on Fi(s) independently as illustrated.\n
Anotherbasicsymbolis shown in Fig. 15-3. The circle with arrows

\npointing into it is a summing point. Quantities entering the circleor
\nsumming point are either added or subtracted according to directions
\nin the form of a + sign or a \342\200\224

sign on the arrow. If the sign on the
\narrow marked V i is omitted in a diagram, it ispresumedto be positive.

\nIn constructing a block diagram, however, it is wise to usea signfor

\neach input whenever there might be doubt. This is very necessary in

\nthe case when more than two inputs enter a summing point as illus\302\254

\ntrated in Fig. 15-4.\n
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When a single line on a block diagram separates into two or more

\nlines leaving the same point, all linescarry the same unaltered variable.

\nSuch a point is called a pickoffpoint. A pickoff point in a system is

\nillustrated in Fig. 15-5.\n

\342\200\242\n
Vi

>\n G\n

Cj Vi\n

V!\n

Vl
>\n H\n

HVi\n

(a)\n

=\t\n

Vi\n Vi\n

\342\226\272V.\n

(6)\n

Fig. 15-5. Pickoff points.\n

Fig. 15-6. Tandem system.\n

Suppose that several blocks are connectedin cascade (or tandem) as

\nshown in Fig. 15-6. The transfer function for eachblockis given on

\nthe figure, and is the ratio of the output to the input for each of the

\nthree cases. Since\n

Vt Vz Vj V*\n

Vi V, Vz Vi\n
(15-2)\n

the total (or over-all) transfer function is\n

Gt
= GiGiGz\n (15-3)\n

This equality depends on there being \342\200\234noloading\342\200\235 between blocks,

\nas will be discussed in a later section. Thus blocks connectedin tandem\n

Fig. 15-7. Expansion of blocks.\n

may be combined into a singleequivalentblockby multiplying the

\ntransfer functions together for the equivalent transfer function. Like\302\254

\nwise a system may be expanded into several parts as illustratedin
\nFig. 15-7.\n

15-2. Block diagrams for electrical elements\n

Instantaneous value of voltageand current for the electrical ele\302\254\n

ments are related by the following equations.\n
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resistance: \302\273*(<)
*

Riii(t) or ia(t) * Qvn(t), G \342\204\242
1/R\n

inductance: i>l(0
= L dtL(t)/dt or ii{t) = 1/L j v^t) dt (15-4)\n

capacitance: Vc(0 = 1/C J ic(t) dt or ic(t)
\342\200\224C dvc(t)/dt\n

These equations are equivalent to the block diagramsshown in Fig.\n

15-8.\n

Voltage output Current output\n

Resistance\n

Inductance\n

Capacitance\n

Tig. 15-8. Block diagrams for electricalelements.\n

To construct a similar chart for the transform voltages and currents,
\nthe Laplace transformation of each expression in Eq. 15-4 willbe taken
\nwith initial conditions ignored. The resulting equations are:\n

resistance: Fr(s)
= RIr(s) or Ir(s) \342\200\224

GVr(s), G =
1/R\n

inductance: Vl(s)
= LsIl(s) or Il(s) = (1/Ls)Vl(s) (15-5)\n

capacitance: Vc(s)
= (1 /Cs)Ic(s) or Ic(s) =

Cslc(s)\n

The same equations apply for the sinusoidal steady state, with 8

\nreplaced by (jw). Since the transform impedance is the ratio of the

\nvoltage to the current transform (and, similarly, the transformadmit\302\254

\ntance is the ratio of the current to the voltage transform),a chart of

\nblock diagrams for electrical elements may be constructed as shownin
\nFig. 15-9 for transform impedance or admittance. The block diagrams
\nand the expressions for impedance and admittance shown in Fig. 15-9\n

Resistance\n

Inductance\n

Capacitance\n

Impedance Admittance\n

Tig. 15-9. Block diagrams and transfer functions for electrical\n

elements.\n
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reduce to the sinusoidal steady state with the substitution of (jo>)

\nfor s.\n

The use of this chart of block diagrams for the elementswill be

\nillustrated by an example. Consider the electric circuit of Fig. 15-10.
\nThe equation relating current and voltage is\n

Fig. 15-10. RL circuit.\n

v(t)
= L

^ + Ri(t) (15-6)\n

or, in terms of voltage and current trans\302\254

\nforms,\n

7(s)
= Lsl(s) + RI(s) (15-7)\n

if t(0+)
= 0. This last equation tells us that the applied voltage is

\nequal to the voltage drop across the inductoraddedto the voltage drop

\nacross the resistor; that is,\n

V(s)
= VL(s) + 7*(s) (15-8)\n

Equations 15-7 and 15-8may be written in the following form and
\norder:\n

V(s)
- VR(s) = VL(s) (15-9)\n

1l(s)
= Fl(s) (15-10)\n

7*(s) = RI(s) (15-11)\n

There remainsone task before we draw the block diagram equivalent
\nof these equations. We must identify the input and output quantities.
\nFor this problem, let us identify the input as V (s) and the output as

\n/($),corresponding to the excitationand the response. Now, following

\nthe pattern suggested by Eq. 15-1 and the equivalent blockofFig.15-1,\n

Fig. 16-11. Block diagram of net- Fig. 15-12. Blockdiagram for RL\n

work of Fig. 15-10. network.\n

we arrive at the system of Fig. 15-11. Instead of this diagramwith a

\nblock for each element in the network, a singleblockrepresentation

\nmay be found by solving Eq. 15-7 for the ratio ofoutputto input,that

\nis, current to voltage. Thus\n

I(s) 1 _ 1/R\n

V(s) Ls + R Ls/R + 1\n
(15-12)\n
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Thus an equivalent of the block diagram of Fig. 15-11,amplifiedin
\nform, is shown in Fig. 15-12. The two diagrams for one networksug\302\254

\ngest that a method can be found for reducing one to the other. Rules

\nfor such manipulations will be given in a later section.\n

15-3. Open-loop and closed-loop block diagram equivalents\n

An open-loop system is represented in Fig. 15-13 with E(s) as the
\ninput (which will later be called the error input) and 72(s)as the out\302\254

\nput. This block diagram is equivalent to the algebraic equation\n

7*(s)
= G(s)E(s) (15-13)\n

Suppose that a loop is closedaroundthe system of Fig. 15-13 as shown\n

Fig. 15-13. Open-loop system. Fig. 15-14. Closed-loopsystem.\n

in Fig. 15-14, with a new input identified as Fi(s). The new system is

\ndescribed by two equations:\n

E(s) = Fi(s) \302\261V2(s) (15-14)\n

y2(s)
= G(s)E(s) (15-15)\n

The quantity E(s) is now identifiedas the error transform. Eliminat\302\254

\ning E(s) from the two equations gives\n

F2(s)\n

Vi(s)\n

= L(s)\n
G(s)\n

1 + G(s)\n

(15-16)\n

In this equation G(s) is sometimes spoken of as the open-looptransfer

\nfunction and L(s) as the closed-loop transfer function. The last equation
\nrelates the open-loop to the closed-loop transfer function.\n

Vx(8)
} Q

Bis)
y\n

A(s)\n

G(s)\n

1\n

H{8)\n

V2{s)\n

Fig. 16-15. Closed-loop system.\n

In a more generalized representation of a closed-loopsystem, an

\nelement or combination of elements is included in the feedback loop

\nhaving a transfer function H(s). Such a system is showninFig.15-15.\n
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The equations for this system are\n

B(s)
=

r,(\302\273) \302\261A(s)\n (15-17)\n

Vi(s) = G(s)B(s)\n (15-18)\n

A(t) --- H(s)V,(s)\n (15-19)\n

If the two quantitiesA (s) and B(s) are eliminated from these equa\302\254

\ntions, there results\n

_ L(s) - \302\253\302\253..

\nF.(\302\253)

~

1 + G(s)H(s)\n
(15-20)\n

Thus, the two blocks of Fig. 15-16are equivalent, and one may be

\nsubstituted for the other.\n

Pig. 16-16. Equivalent open- and closed-loop system.\n

15-4. Block diagram transformations\n

Manipulations of block diagrams in the last two sections can be

\ngeneralized into a system of block diagram algebra.The objective in

\nthe use of this algebra is simplification; that is, reductionin the num\302\254

\nber of blocks and the number of loops of a system. A large number of

\nrules for manipulations are given in the literature;* a few of the most

\nimportant are tabulated below.\n
Rule 1. Summationpointsmay be interchanged without altering

\nthe system. As illustrated in the figure,\n

Vt = Vi + Vt + Fa = Vi + F, + Va

\n(by the associative law of algebra).\n

\342\200\224*<?\342\200\224- \342\200\224P\342\200\224*9\342\200\224\n

[v2 |v3 |v3 |v2\n

Rule 1\n

Rule 2. Blocks in tandem are multiplied.\n

Ox\n G2\n
V2\n

0\\G2\n

V2\n

Rule 2\n

* See references at the end of the chapter.\n
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Rule 3. Blocks in parallel are added.\n

Rule 3\n

The following four rules indicate the procedure for shiftingblockc
\npast summing-points or take-off points.\n

Rule 4.\n

Rule 5\n

Rule 6.\n

Rule 7\n

The following rules are applications of the rules givenabove.

\nRule 8. Removing a block in the feedback loop.\n
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Rule 9. Transformation from open-loop to closed-loop.\n

Rule 9\n

Rule 10. Transformation from closed-loop to open-loop.\n

15-5. Limitationsin the block diagram representation of physical systems\n

Care must be exercised in dividing a system into parts to be repre\302\254

\nsented by block diagrams. This limitation may be illustrated by refer\302\254

\nence to Fig. 15-17. Two systems are shown, characterized by transfer
\nfunctions G and H. The two systems can be connected together in\n

Fig. 16-17. Fig. 16-18. Two-terminal-pair net\302\254\n

work.\n

tandem, making V2 = F3, only if in making this connectionV2 is

\nunaffected. This is the assumption of negligible loading of onesystem
\nby another. In terms of the electrical network shown in Fig. 15-18,
\nthe assumption of negligible loading means that the output current
\n12 must equal zero or be so small that it may be neglected.If this is

\nnot the case, the interaction must be consideredin writingthe dynamic

\nequations to describe the system. In other words, a sectionof a

\ndynamic system cannot be separated from the system for analysis
\nwithout considering the interaction of this section of the system with

\nthe rest of the system.\n
To illustrate, consider the double RC networkof Fig. 15-19, shown

\nseparated into two separate RC networks. The transferfunction for

\nthe entire system cannot be found by multiplying the transfer func\302\254

\ntions of the parts of the system, since the second networkloadsthe

\nfirst; that is, it causes a current to flow in the output of the first RC

\nnetwork. This will be discussed in Example5 of this section. However,

\nif some isolating device, such as an amplifier, is connected betweenthe
\ntwo networks, then\n

Gt =
GiGi&cf\n (15-21)\n
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where Gt is the over-all transfer function,G\\ is the transfer function of

\nthe first RC section, Gt is the transfer function of the secondRC sec\302\254

\ntion, and Get is the transfer function of the cathodefolloweramplifier\n

Cathode\n

follower\n

(isolation)\n

\342\200\224VV\\r\n

R2\n

C2:\n

O\n

o\n

(b)\n

Fig. 15-19. (a) Double RC network; (b) modificationof (a).\n

(considered a constant). This follows because the cathode follower
\nhas high input impedance and draws negligible current at its input.\n

Several examples will be given to illustrate the conceptofthe trans\302\254

\nfer function, of block diagram representation of physical systems, and
\nof the restrictions on tandem connection\n

of blocks.\n
o\342\200\224 'WV-\n

T
\302\260\n

^pC\n

Example 1\n
\"\342\226\240

rT\\\n < \302\2562\n

The electrical network shown in Fig.\n V\n
<Rz\n

15-20 is known as a lag network. It finds
\napplication as a compensating network in

\nservomechanisms. The relationships be-\n

Fig. 15-20. Lag network.\n

tween the instantaneous voltages and currents are given by Kirch-

\nhoff\342\200\231slaw as\n

Vi = (Ri R2)i
q J

% dt (15-22)\n

V* =
^ J

idt + R2i (15-23)\n

From these equations, the transfer function is found to be\n

= _ R2Cs + 1 #2 (s 4- 1/R2C) __\n

(5T+ r2)Cs~+1
-

Rl'+Tt2 [S + i/{Ri + k2)U\\\n

(15-24)\n
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The block diagram equivalent of the lag network of Fig. 15-20isshown\n

in Fig. 15-21 where T\\ \342\200\224R2C and\n

r2 =
(\302\253x + r2)C.\n*

,\n
r,\302\253+i\n

r*+i\n

Example 2\n

Fig. 16-21. Lag network block An electronic amplifier is shown
\ndiagram. jn Fig. 15-22. From the equivalent\n

circuit, the transferfunctionis found to be\n

hRl\nh\n

Vi\n Tp + Ri\n
(15-25)\n

Fig. 16-22. Vacuum tube amplifier: (a) schematic; (b) equivalent\n

circuit.\n

Example S\n

A cathode follower schematic and the equivalent circuit are shown
\nin Fig. 15-23. The transfer function can be determined from the\n

Fig. 16-23. Cathode follower: (a) schematic; (b) equivalentcircuit.\n

equivalent circuit to be\n

Yj _ (m/1 + p)Rk\n

Vi r9/{ 1 + m) + Rk\n
(15-26)\n

The value of the transfer function isa constantequal to the gain of the\n

electronic circuit.\n
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Example 4\n

The network for this example is shown in Fig. 15-24.Theresistance

\nRg has a very high value such that the current flowingthroughit is
\nnegligible compared with that through Ri (in other words, R0 does not\n

Tig. 16-25. Block diagram equivalentof Fig. 15-24.\n

load the remainder of the network). Also, it may be assumed that the

\ngrid draws negligible current. With these assumptions, it is seen that
\nthe network is actually composed of a lag network, showninFig.15-20,
\nand a cathode follower, shown in Fig.\n

15-23. The block diagram representa\302\254

\ntion of the system is shown in Fig-\n

15-25.\n

Example 5\n

For this example, consider the double
\nRC network shown in Fig. 15-26. The two currents are marked4*1 and

\nt2. By Kirchhoff\342\200\231s law, the system equations are\n

Ri\n r2\n

0\n

Vl \302\260l~\n -C2 V2\n

n\n

Tig. 16-26. Double RC network.\n

V\\
= Riii +\n ii) dt\n

v2\n

C2\n

I\n

I\n

(*2
\342\200\224

4*1) dt + Riiz +
-q~ J

4*2\n dt\n

4*2 dt\n

(15-27)\n

The corresponding transform equations are, if the capacitors are
\ninitially uncharged,\n
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F,(\302\253)
=

*./\342\200\242(\302\273)+ l/i(\302\253)
-

/\342\200\242(\302\253)]\n

0 =
chlh(s)

~ /l(s)1 + RMs) + els /iW (15\342\200\23028)

\nr,(s)
= \302\261

/.(.)\n

Considering Fi as the input and V* as the output, the blockdiagram

\nof Fig. 15-27 is constructed from the algebraic equations of Eq. 15-28.
\nThe block diagram reduction procedure, following the rules stated in\n

Fig. 15-27. Double BC network block diagram.\n

Combined\n

(6)\n

Fig. 15-28. Block diagram reduction.\n

Art. 15-4, is outlined by the sequence of blocks in Fig. 15-28(a). The

\nsimplifiedblock diagram and compositetransferfunction are shown in

\nFig. 15-28(b). The same result could be found by algebraic manipula\302\254

\ntion of the equations of Eq. 15-28 instead of the manipulationof blocks.\n

FURTHER READING\n

Excellent discussions of the use of block diagramsare found in the\n

literature by T. M. Stout, \342\200\234Ablock diagram approach to network\n
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analysis,\342\200\235 Trans. AIEE (Applications and Industry), 3, 255 (1952),
\nand

\342\200\234

Block-diagram solutions for vacuum-tube circuits,\342\200\235 Trans.

\nAIEE (Communication and Electronics), 9, 561 (1953), and by T. D.
\nGraybeal, \342\200\234Block diagram network transformation,\342\200\235Elec. Eng., 70,
\n985 (1951). For a different approach to the same subject, the paper
\nby S. J. Mason,

\342\200\234
Feedback theory\342\200\224some properties of signal flow

\ngraphs,\342\200\235 Proc. IRE, 41, 1144 (1953) is especially recommended.\n

PROBLEMS\n

15-1. For the network shown in the accompanyingfigure, (a) draw

\na block diagram with one block for each element, considering Vi(s) to
\nbe the excitation (or input) and I(s) the response (or output), (b)
\nRepeat part (a) with Fi($) as the excitation but F*(\302\253) as the response.\n

15-2. Repeat Prob. 15-1 for the networkshown in the figure.\n
15-3. Repeat Prob. 15-1 for the networkshown in the figure.\n

Prob. 16-3. Prob. 16-4.\n

15- \t4. Repeat Prob. 15-1 for the network shown in the figure.\n

16- \t5. The schematic shown in the figure is the equivalentcircuitof

\na vacuum tube amplifier. The accompanying block diagram represen\302\254

\ntation shows a number of blocks and arrows labeled a, b, ..., g for

\nidentification. Give the transfer function for each block and identify
\nthe quantity associated with all marked arrows.\n

Rl v\342\200\236\n

)-ltv\n

o\n

Prob. 16-6.\n



16-6. Simplify the block diagram shown as (a) to the form of
(b).\n

Give the value of Gt in terms of Gi, G%, G%, and GY\n

00\n

Prob. 16-6.\n

16-7. Reduce the block diagram shown in (a) to the form shown in

\n(b), giving the value for A and B in the feed-forwardand feedback

\nloops.\n

(a) (6)\n

Prob. 16-7.\n

16-8. Repeat Prob. 15-7 for the blockdiagramshown in the accom\302\254

\npanying figure.\n

Prob. 16-8.\n

16-9. T. M. Stout* has shownthat many networks containing one

\nnonlinear element can be represented by a blockdiagramhaving
the

\nform shown below in (a). The nonlinear element in the circuitof (b)

\nis a diode described by a conductance function, i2 = g(t>i\342\200\224
v2). The

\nequivalent block diagram for the system is shown in (c). Donotattempt\n

* T. M. Stout, \342\200\234Block diagram simplification of some nonlinear circuits,\342\200\235

\nReport No. 9, E. E. Dept., University of Washington,1952.\n
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to combine the nonlinear block with otherblocks(thisisnot permitted

\nsince superposition does not hold). By manipulation andcombination
\nof the blocks, reduce the block diagram of (c) to the standardform

\nshown in (a). Give the values for Gi(s), Gi(s), and H(s).\n

Input block Forward block Output block\n

(a)\n

(c)\n

Prob. 15-9.\n

16-10. The accompanying figure shows a general ladder network

\nwith alternating series and shunt elements or combinations ofelements.
\nShow by discussion and equations that the ladder network can be
\nrepresented by the block diagram of the figure.\n

/i-/3\n

1/Z3\n
-X/3-/5\n

to\n

Prob. 15-10.\n



CHAPTER 16\n

STABILITY IN FEEDBACK SYSTEMS\n

16-1. Feedback systems\n

Many electric and electromechanical systems incorporate a so-called
\nfeedback path by means of which a part of the output is reintroduced

\nat the input. For example, Fig. 16-1(a) showsa plate-tunedoscillator.\n

(a)\n

(0\n

Fig. 16-1. Examples of feedback systems: (a) plate-tunedoscillator;\n

(b) temperature regulating system; (c) feedback system representation.\n

Feedback, whichis essentialto the operation of an oscillator, is accom\302\254

\nplished by means of the coupled coils returning the output from the
\nplate to the grid. Figure 16-1 (b) shows an electromechanicaltempera\302\254

\nture-regulating system. Feedback is accomplished in this system by
\nmeans of the thermocouple, which produces a voltage proportional to
\nthe temperature in the vat. This feedback is compared with the stand-\n

410\n
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ard to produce an \342\200\234error voltage\342\200\235 which in turn controls the amount
\nof steam introduced into the system.\n

By means of block diagramalgebra,discussedin the last chapter,

\nsuch systems as the oscillator and the temperature controlsystemcan
\nbe reduced to a standard form of a feedback system shownin Fig.\n

16-1(c).\n

Feedback systems afford many advantages such as accurate control
\nand improved time of response. These advantages are partially offset
\nby such systems being capable of instability.\n

A system is said to be stable if, for smallvaluesof input, the output

\nremains small or does not increase with time. We do not ordinarily
\nthink of a linear system as being capable of instability by this defini\302\254

\ntion. If the system is made up entirely of passive linear elements,
\nthere is no energy source to supply an output which increaseswith time

\nand thus without limit. There will be a distinctrelationshipbetween

\ninput and output as expressed by the transfer function. Linear ele\302\254

\nments can at most modify the form or the powerlevelof the input.\n

If the output is to increase without limit,energymustbe supplied to

\nthe system. This supply must be within the system closedby the feed\302\254

\nback loop for the output to increase with the input remainingsmall.
\nThe feedback path is required for an unstable system to introduce
\na new input into the system from the output to overridethe initial
\nsmall input.\n

Thus there are two essential features of a system capableof being

\nunstable: (1) there must be a sourceof energy within the system, and (2)
\nthere must be at least one feedback path.\n

These are necessary but not sufficient conditions for instability.
\nThat is to say, feedback systems are, with proper design, not only
\nstable but superior in many respects to systems without feedback. An

\nimportant problem for the engineer is to meet specifications and yet
\navoid instability. This can be done from transfer functions by a math\302\254

\nematical or a graphical procedure. It is these procedures we will con\302\254

\nsider in this chapter.\n

16-2. System stability in terms of the characteristicequation\n

The question of stability is, by the definition just given,fundamen\302\254

\ntally transient in nature, and is related to the transientresponseof the

\nclosed-loop system. The transfer function of the closed loopwritten
\nin terms of the open-loop transfer function was studied in Chapter15,
\nand is\n

V2(5)\n

VAs)\n

= L(s)\n
G(s)\n

1 + G(s)H(s)\n
(16-1)\n
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where G(s) and H(s) are defined in Fig. 15-15; Fj(s) and Vi(s) are the

\noutput and input, respectively. This transfer function has the form

\nof a quotient of polynomials in s. Expanding the denominator polyno\302\254

\nmial, we write\n

V* (\302\253)= na\302\253x\n

V i(s) aoSn + OiSn 1 + ... a\342\200\236-is + an\n

or (a0sn + aisn_1 + ... + a\342\200\236)Fj(s)
=

G(s)Vi(s) (16-3)\n

Written in this form, the denominator polynomial, that is [1 -f

\nG(s)H(s)], when set equal to zero is recognized as the characteristic

\nequation of the system.* If the characteristic equation is factoredinto
\nits n roots, Eq. 16-2 can be written\n

F\302\273(\302\253)= G(s) \t\n
Vi(s) o0(s -

s\302\253)(s
- sb)... (s -

sn)\n

(164)\n

n\n

y-o\n

In solving for the time-domain solution of this equation with vi(t)

\nspecified, the usual procedure is to expand this equation by partial
\nfractions, thus evaluating the arbitrary constants of the transient
\nportion of the solution. (In using the transfer function, we assumethat
\nall initial conditions are zero in this particular time domain solution.)
\nIf there are no repeated roots in the characteristic equation, the

expres\302\254

\nsion for v2(<) will be\n

n\n

Vi(t)
=

^
K,*'* (16-6)\n

y-1\n

In other words, the transient portion of the time-domainsolutionis
\ndetermined in form by the roots of the characteristic equation. For
\nthe general case, the roots of the equation are complexand written as\n

s \342\200\224<r + jco (16-7)\n

The form of the time domain solutioncorrespondingto each root

\ndepends on the magnitude and signs of <r and o>. Several cases are of

\ninterest:\n

Case 1. <r negative for a finite o>. For this case, the solutionwill be

\n(for the combined terms of the conjugate pair a \302\261j<a)}\n

Ke-' sin (\302\253<+ <f>) (16-8)\n

*
Compare this equation with Eq. 6-88and Eqs.7-37 and 7-38.\n
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This expression is termed a damped sinusoid; the magnitudereduces
\nto zero as time t becomes large.\n

Case 2. <r = 0 and finite a. For the conjugate pair of roots \302\261jco,

\nthe solution will be similar in form to Eq. 16-8with <r = 0; that is,\n

K sin {(at + <f>) (16-9)\n

This function oscillates at constant amplitude as a functionof time.\n

Case S. tr positive and a finite \302\253.Again, the solution is similar to

\nEq. 16-8 and is\n

Ke+vl sin (<at + 0) (16-10)\n

In this case,the magnitudeof oscillations increases exponentially and

\nwithout limit for large values of time t.\n

Case 4. <r = 0 and <a = 0. For this limiting case, the solution is a
\nconstant and does not change with time.\n

Fig. 16-2. Comparison of the time response of a system(Vo) with

\npole position in the complex s plane.\n

Case 5. <r either positive or negative, but <a = 0. The solution for

\nthis case (for a simple root) has the form\n

Ke^ (16-11)\n

For negative values of a, the magnitudeof the term diminishes with

\ntime. For positive <r, the term increases exponentially. These several
\ncases are illustrated in Fig. 16-2. From the figure, the effect of the\n
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sign of <r and the role of \302\253can be seen. A finite nonzero value of \302\253

\ncorresponds to oscillation. For negative values of <r, the response

\ndecreases with time, but for positive values of <r, the response increases

\nwithout limit with time. Our concept of stability evidently ties in

\ndirectly with the sign of the real part of the roots of the characteristic

\nequation.\n

By our definition of stability, that the output shouldremain small

\nor not increase with time, the responses of parts (e) and (f) of Fig. 16-2

\nare identified with unstable systems. These both correspond to positive
\nvalues of <r. The transition case shown as part (e) of Fig. 16-2is,
\nstrictly speaking, a stable case. The output does not increase without
\nlimit. It corresponds to sustained oscillations as, for example, in an
\nelectronic oscillator. With negative values of a, there is damping,and
\nthe system is stable. Just as stability is related directly to the sign

\nof the real part of the roots of the characteristicequation,so the basic

\nproblem in determining stability is finding an answer to this question:
\nDoes the characteristic equation, 1 + G(s)II(s) = 0, have any roots with

\npositive real partst This is the basis of all stabilitystudies.\n

The problem of determining stability is thus one of findingthe roots

\nof the equation\n

1 + G(s)H(s) =
do8n + ai8\"_l + at\302\253\"-5 + ... + an-i\302\253 + a\302\273

= 0\n

(16-12)\n

or some equivalent to finding the roots. For first- and second-order
\nequations, n = 1 and n = 2, this is a simplematter:merely factor the

\nequation and so find the roots. But as the order of the equation

\nincreases, the task of finding the roots becomesvery tedious and time

\nconsuming (unless computing machines are available), and alternate
\nmethods are used.\n

Suppose that the characteristic equation is of first order,\n

do* + oi = 0 (16-13)\n

The root of thisequationis\n

s = - \342\200\224
(16-14)\n

The real part of this root is negative as longas Ui and a0 are positive

\nand real; this requirement is met for all physical systems. Likewise
\na second-order characteristic equation,\n

do\302\253* + di\302\253 + dj = 0\n

will have two roots given by the equation\n

dj. , /oi*\n

2d0

X
\\4d02\n

dj\n

do\n

(16-15)\n

(16-16)\n
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The two roots Si and Si* , will have negative real parts onlyas long as

\nthe coefficients do, ai, and 02 are positive.\n

For both the first- and second-order system, a requirementthat the
\nsign of all coefficients be positive is sufficient to guarantee that the
\nreal part of the roots will be negative. But for higher-orderedsystems,
\nthis rule is not sufficient. To illustrate, consider the third-order poly\302\254

\nnomial formed as follows.\n

(s + 4)(s2 -2s + 10)= s8 + 2s2 + 2s + 40 (16-17)\n

In this example, the coefficients of the third-order polynomialare al
\npositive even though there are clearly two roots with positive real
\nparts. There are further requirements that must be satisfied in addi\302\254

\ntion to the positive coefficient requirement. The requirements take
\nthe form of relationships of the magnitudes of the coefficientsof the
\npolynomial given by Routh\342\200\231s criterion. Before turning to a study of
\nthis criterion, let us summarize our findings thus far:\n

(1) In order that there be no roots of a polynomialwith positive

\nreal parts, it is necessary but not sufficientthat the coefficients

\nof the polynomial be positive.\n

(2) If a coefficient of a polynomialis negative, the polynomial has

\nat least one positive real root (since that is the onlyway the

\ncoefficient could be made negative).\n

16-3. The Routh criterion or Routh rule*\n

The Routh rule gives a procedure for determiningthe number of

\nroots of a polynomial with positive real parts withoutactuallyfinding

\nthe roots. Consider the polynomial\n

dosn -|- ais\"-1 -(- a2s71\342\200\2242-|- ... -}\342\200\242d,n\342\200\224is-f- dn \342\200\2240 (10\342\200\22418)\n

As the first step in the application of the rule,form two rows made up
\nof alternate coefficients of the equation; that is, from the first,third,
\nfifth, etc. coefficient form one row, and from the second,fourth,sixth,
\netc. coefficients form a second row as follows:\n

row 1\n

doSn + disn_1 + a2sn_2 + a3s\"-3+ a4sn_4 + a6sn_6 + a6sn~6 + ...\n

row 2\n

(16-19)\n

* E. <J. Routh, Advanced Part of Dynamicsof a System of Rigid Bodies, Vol. II

\n(6th ed.), (Macmillan & Co. Ltd., London, 1930).\n
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Write the two rows in the form\n

do\n

dl\n

d 2

\n#3\n

a4\n

dg\n

do\n

d7\n

d8\n

dg\n

Chap. 16\n

(16-20)\n

As the next step, complete the following array of numbers(shown for

\na sixth-order system):\n

use\n

a0\n CL 2 d4\n

ai\n d3 dg\n

bi\n bz &6\n

Ci\n Cz\n

di\n dz\n

C\\\n

fi\n

a6\n

where the 6, c, d, e, /, and g coefficientsare defined in terms of the a

\ncoefficientsby the followingpattern:\n

a\\'*at\n

Cl\n

ctiUz
\342\200\224

a0a3.

\nax
*\n

biQz
\342\200\224

bzdi

\nbi
;\n

_ a<Kv -'CU _ aiQ4 ~~
<*<#6

\n3

ai'^as a\\\n

etc.\n

In general, any new element is found from the two elementsabove

\nthe element in the same column and the two elementsabovebut in

\nthe column to the right. These elements form a determinant-like
\nstructure. The elements joined by a line with positive slope havea
\npositive sign, while the elements joined by a line with negativeslope
\nhave a negative sign (just the opposite of the rule for determinants).
\nWe subtract these two products and divide this difference by the
\nelement on the lower left-hand corner of the array. This processis
\ncontinued to give the Routh array.\n

The number of changes in sign in elements of the first column

\n(marked use) indicates the number of rootsof the equation with posi\302\254

\ntive real parts. For there to be no roots with positiverealparts,all

\nelements of the first column must have the same sign.\n

For the rule as given to hold, it is necessarythat no powers of s in

\nthe equation be missing. However, if any such terms are missing,the
\nequation has at least one root with a positive real part andsofailsthe

\ntest by inspection. An exception occurs when the equation contains
\nterms which are all even powers or all odd powers, indicatingthatall
\nroots are purely imaginary.\n
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Example 1\n

Consider the identity\n

(s + l)(s + 2)(s + 3)(s + 4)
- s< + 10s3 + 35s2+ 50s+ 24\n

(16-21)\n

The Routh array is formed to give the following:\n

1 35 24\n

10 50\n

30 24\n

42

\n24\n

From the first column, it is seen that there are no roots with positive

\nreal parts (agreeing with the known roots).\n

Example 2\n

As a second example, consider Eq. 16-17.\n

s8 + 2s2 + 2s + 40 = 0 (16-22)\n

which is known to have two roots with positive real parts.\n

1 2

\n2 40\n

-18

\n40\n

There are two changes of sign (2 to \342\200\22418and \342\200\22418to 40) as required.

\nExample 8\n

Consider a third-order equation,\n

OoS3-f- Ois2 + a2s -J-a3 = 0 (16-23)\n

The Routh array for this equation is\n

do d2\n

dl #3\n

did2
\342\200\224

dods

\ndl\n

d3\n

From the array we conclude that it is necessarythat all coefficients in

\nthe equation be positive and, in addition, that Oi\302\2532 > Ooa8 in order

\nthat there be no roots with positive real parts in a third-orderequation.\n
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A Hurwitz polynomial is a polynomialhavingroots with negative

\n\342\200\242ealparts only. Polynomials representing the characteristic equations
\n)f stable systems are therefore Hurwitz polynomials. To apply the
\nHurwitz criterion to a polynomial, carry out the followingsteps:\n

(1) Separate the polynomial into even and odd parts (that is,parts
\nwith even powers in s and with odd powers in s). Forma quo\302\254

\ntient of these two polynomials with the part of higher degree
\nas the numerator polynomial.\n

(2) Expand the quotient of polynomialsas a Stieltjescontinued frac-

\nion; thus\n

Q(\302\253)\n

aiS +\n (16-24)\n

aaS +\n

ass -f\n

en$ +\n

a*s +\n

<*6S + . . .\n

For the polynomial to be Hurwitz, it is necessary that all of the

\na-coefficients be positive
*

However, the test we have describeddoes
\nnot rule out the possibility of roots without real parts (i.e.,on the j<a

\naxis of the s plane) in the polynomial under test. Suchrootscorrespond

\nto (s* + \302\253!*) factors in the polynomial which are incorporated in both
\nthe even and odd parts of the polynomial. Thus\n

(\302\253*+ \302\253i*)[P(\302\253) + Q(s) 1\n

=
(s\342\200\231+ Wl*)P(\302\253) + (s\342\200\231+ au \342\200\231)Q(s)

=
Px(s) + Qi(s) (16-25)\n

Hence, terms of the type (s\342\200\231+ on*) cancel when the quotient Pi(s)/
\nQi(s) is formed in applying the test. The test doesassurethat the poly\302\254

\nnomial is either Hurwitz or a Hurwitz polynomial multiplied by fac\302\254

\ntors of the form, (s\342\200\231+ \302\253i\342\200\231).\n

Formation of the continued fraction is most easily accomplished
\nby an \342\200\234invert-and-divide\342\200\235 procedure. After completion of step (1)
\nlisted above, divide the part of lower degree into the other part and
\ncomplete

one step only. Invert the remainder and continue the process
\nuntil it comes to an end (as it must). This is best illustratedby an

\nexample. Consider the polynomial\n

4s4 + 2s* + 8s\342\200\231+ 3s + 1.5 - 0 (16-26)\n

* A derivation of this criterion is given by Guillemin; see reference at end of
\nchapter.\n
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The quotient of polynomials is formed as follows.\n

419\n

Dividing one step gives\n

4s4 + 8s2 + 1.5
\n2s8 + 3s\n

2s8 + 3s) 4s4 + 8s2+ 1.5 (2s
\n4s4 + 6s2\n

2s2 + 1.5\n

Again, we invert and divide as\n

2s2 + 1.5) 2s8 + 3s (s
\n2s8 + 1.5s

\n1.5s\n

and again,\n 1.5s) 2s2 + 1.5 (|s\n

2s2\n

1.5\n

and finally, 1.5) 1.5s (Is\n

Hence the continued fraction expansion is\n

4s4 + 8s2 + 1-5
\n2s8 + 3s\n

2s +\n

(16-27)\n

(16-28)\n

Since all the a-coefficients are positive, the polynomialis Hurwitz.
\nThe operations shown in four steps above are conveniently carried
\nout as a continued operation as illustrated below.\n

2s8 + 3s) 4s4 + 8s2 + 1.5 (2s
\n4s4 + 6s2\n

2s2 + 1.5) 2s8 + 3s (s\n

2s8 + 1.5s\n

L5s) 2s2 + 1.5 (|s
\n2s2\n

1.5) 1.5s (s\n

1.5s\n

0\n

16-5. The Nyquist criterion\n

The stability criterion we will study next was developedby Nyquist*

\nof the Bell Telephone Laboratories in 1932. While the objectiveofthis
\ncriterion is the same as the Routh criterion and the Hurwitzcriterion,
\nthe approach differs in several respects.\n

* H. Nyquist, \342\200\234Regeneration theory,\342\200\235 Bell System Tech. J., 11, 126 (1932).\n
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(1) Analysis is made in terms of the open-loop transfer function
\nrather than the closed-loop characteristic equation.\n

(2) The method is partiallygraphicaland,as will be shown, inspec\302\254

\ntion of the graphical plot gives more than the \342\200\234yes or no\342\200\235

\nanswer of the Routh and Hurwitz criteria.\n

(3) Analysis is madein terms of the sinusoidal steady state where the

\nconceptsof phase and magnitude ratio are readily related to

\nexperiments.\n

The basic operation in applyingthe Nyquist criterion is a mapping
\nfrom the s plane to the F(s) plane. By the term mapping,we mean

\nthat a set of values of s (for example,Si,s2, and s3) have, for a given
\nF(s),a correspondingset of values of F(s), [namely, F(si), F(s2), and
\nF(sa)]. These three\342\200\224and an infinite number of other\342\200\224points are shown

\nin Fig. 16-3. Here an arbitrary contour in the s planeis \342\200\234

mapped
\342\200\235

into\n

Fig. 16-3. Mapping illustration.\n

6-plane\n

ju>2\n

Flsl-plane\n jImF{8)\n

7a)i\n a\n 00\n Re F{s)\n

0*f\n

\302\253l\\\n

Fig. 16-4. Mapping example for F(s) \342\200\224l/s(sT + 1).\n

a corresponding contour in the F(s) plane. A specific example is shown

\nin Fig. 16-4. The mapping is made for imaginary values of s; that is,
\ns =

j<a for w ^ 0. The specific function is\n

As another example of a mapping operation, not so difficultas the

\none given above, suppose that two function are related by the equation\n

F(s)
- P(s) + 1\n (16-30)\n
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that is, the function P(s) plus a constant (unity) is equalto the func\302\254

\ntion F(s). A typical plot in the two planes is showninFig.16-5.The

\ntransformation evidently moves the plot one unit to the left.\n

F-plane\n jlmF\n

ReF\n

P-plane\n

PA\n

jlmP\n

ReP\n

U\n

Tig. 16-6. Mapping of P(\302\253)
\342\200\224

P(\302\253) + 1.\n

Next, suppose that F(s) is factored to find its polesandzeroswhich

\nare given in the equation\n

F(s) = K\n
(S

\342\200\224
Si)(s

- s2). \342\200\242.(s
- 8n)

\n(s
-

Sa)(s \342\200\224
\302\253fc).. . (s

\342\200\224
Sm)\n

(16-31)\n

where \302\253i,s2, ..., sn are the zeros and s0,sb, ..., sm are the poles. These

\npoles and zeros are displayed on a plot of the s planeshown in Fig.\n

16-6(a) (an arbitrary array for purposes of illustration).A single zero,\n

\302\253i,is isolated in Fig. 16-6(b). This zero comes from the term (s \342\200\224
Si)

\nin Eq. 16-31. At some particular frequency sa, this termhasa value

\n(sa
\342\200\224

$i) which may be expressed in polar form as\n

(sa
\342\200\224

Si)
= M le\342\200\231*1 (16-32)\n

where Mi is the magnitude and <f>i is the phase angle of the phasor
\n(s\302\253

\342\200\224
Si). This magnitude and phase are shown on the s plane in

\nFig. 16-6(b). Any other term in Eq. 16-31 can be similarlyexpressed;
\nfor example,\n

(s\302\253
-

sb) =
Mbe\342\200\231+> (16-33)\n

When all terms are so expressed, Eq. 16-31takes the form\n

|F(s)|e,An*y(*)\n

KMiMiMiMi... ,.A<\n

MaMbMcMd...
e \342\200\230\n

(16-34)\n
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(16-35)\n<l>t
= ^1 + 02 + . . \342\200\242

~
<t>a

~
<f>b\n

This last equation tells us that the total phase at somefrequency sa

\nfor the function F(s) may be found by adding the phaseof the \342\200\234zero

\nphasors\342\200\235 and subtracting the phase of the \342\200\234pole phasors\342\200\235; in other

\nwords,\n

Ang F(s) = Ang (s \342\200\224
si) + Ang (s \342\200\224 \342\200\224

Ang (s
\342\200\224

sa)
- ...\n

(16-36)\n
for any value of s.\n

Figure 16-7 shows the s plane with two zeros, Siand s2, and a map\302\254

\nping contour C (sa is a point on
\nthe contour). Consider the effect of

\nSi (ignoring s2) as sa moves along C
\nin a clockwise direction. After one

\ncomplete traversing of the closed
\ncontour C, the phase of the phasor
\nterm (s

\342\200\224
Si) has increased by \342\200\2242r

\nradians. Next, consider the effect of

\ns2 on the factor (s
\342\200\224

s2), this time

\nignoring si, as the same closed contourCis traversed in the same clock\302\254

\nwise direction. There is no net gain in phase ofthe phasorterm (s
\342\200\224

s2).

\nIn summary, if the closed contour encircles a zero in traversinga closed

\npath in the clockwise direction, the function changes in phaseby
\342\200\2242r

\nradians; if no zero is encircled, there is no changein phase.\n

Exactly the same conclusion may be reached in the case of a pole

\nexcept that the phase is changed by +2tt radians.\n

Suppose next that a contour is selected in the s planeof Fig. 16-6(a)

\nsuch that P poles and Z zeros are encircledas the contour is traversed

\nin a clockwise direction. The net change in the phase of the function

\nF(s) will be given by the equation\n

A Ang F(s)
= 2t(P \342\200\224

Z) radians (16-37)\n

Return next to the mapping of the s planeinto the F(s) plane. Let

\nus examine the behavior of the F(s) plot in the complexplaneas the

\nclosed contour in the s plane is traversed. An increase in the phaseof

\nF(s) manifests itself in the F(s) plane by an encirclement of the origin

\nfor every 2?r radian increase. Further, every zero encircled will cause
\none counterclockwise encirclement of the origin just as every pole will
\ncause a clockwise encirclement. Should the contour not encircle any
\npoles or zeros\342\200\224or if it encircles equal numbers of poles and zeros\342\200\224the

\ncontour in the F(s) plane will not encircle the origin. In
summary,

if

\nthe closed contour C in the s plane encirclesin a clockwise (or negative)\n
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direction P poles and Z zeros, the corresponding contour in the F(s)

\nplane encircles the origin (P \342\200\224
Z) times in a counterclockwise (or\n

positive) direction. Two examples are given in Fig. 16-8 to illustrate
\nthis conclusion.\n

16-6. Application to a closed-loop system\n

The concepts reviewed in the last section will next be appliedto a
\nclosed-loop system having a feed-forward transfer function G(s) and
\na feedback transfer function H(s), shown in Fig. 16-9. The input and
\noutput are related by the closed-loop
\ntransfer function, written in terms of

\nG(s) and H(s) by the equation\n

V2(s) G(s)\n

v;\n

O\n
G[s)\n

His)\n

V.\n

Tig. 16-9. Closed-loop system.\n
Vl(s) 1 + G(s)H(s)

(16'38)\n

The polesand zerosof the two func\302\254

\ntions (1 + GH) and (GH) must be consideredin the derivation of the

\nNyquist criterion. Let\n

1 + \302\251(.)\302\273(.)
= = K\n

(s
\342\200\224

Si)(s
\342\200\224

Si). . .(s
\342\200\224

sn)\n

(8 Sa) (s Sb) . . . (s Sm)\n

(16-39)\n

G(s)H(s)
= K'\n

(s
\342\200\224

Sq) (s
\342\200\224

Sfi). . .(s
\342\200\224

s\342\200\236)

\n(s
\342\200\224

s0)(s
-

*)...(\302\253
\342\200\224

Sm)\n
(16-40)\n

The two functions have the same poles. In Eq. 16-39,the order of the\n
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polynomial P(s) is n, and the order of Q(s) is m. In deriving the

\nNyquist criterion, the orders are restricted to the case n <
m, such

\nthat\n

lim G(s)H(s) =0 or a constant (16-41)\n

8\342\200\224>oo\n

It is important to distinguish the various poles and zeros. They are
\ntabulated as follows:\n

8i, \302\2532.. .s\342\200\236are zeros of [1 + G(s)H(s)].
\nsa, sb.. .8m are poles of [1 + G(s)H(s)].
\ns0, sb.. .8m are also the poles of G(s)H(s).\n
8a, Sp.. .8\342\200\236are the zeros of G(s)H(s).\n

The si, \302\2532,\342\200\242..,s\302\253roots are of vital concern to us because these zerosare
\nzeros of the equation 1 + GH = 0, whichis the characteristic equation

\nof the closed-loop system. These roots must not have positive real
\nparts for the system they represent to be stable. Note that the zeros

\nof (1 + GH) are, by Eq. 16-38, the polesof
(V2/V1).\n

In studying stability, our specific interest is the zeros of the polyno\302\254

\nmial (1 + GH) with positive real parts. This suggeststhat we choose

\na contour in the s plane to include the entire right halfplaneas shown\n

in Fig. 16-10. This contour will enclose
\nall the zeros of interest. The contour is
\ntraced in the direction 1-2-3-4-1, start\302\254

\ning at s =
\342\200\224jo0, avoiding the origin

\n(s
=

0) for the time being, and con\302\254

\ntinuing to s = +jo0, thence on a circle
\nof infinite radius to the point of begin\302\254

\nning. This contour is traversed in a
\nclockwise(or negative) direction.The

\ncontour in the s plane can be mapped
\nin either the (1 + GH) plane or the

\nGH plane (the simple relationship between these mappings was con\302\254

\nsidered in Eq. 16-30). If any poles or zeros of (1+ GH) are encir\302\254

\ncled in the right half of the s plane, then (1) the locus in the (1 + GH)
\nplane will encircle the origin, or (2) the locus in the GH plane will

\nencircle the point (\342\200\2241+ j0).\n

Let Z = the zeros of (1 + GH) with positive real parts, P = the
\npoles of (1 + GH) with positive real parts (alsothe polesof (GH) with

\npositive real parts), R = the net counterclockwiseencirclementsof

\nthe point (\342\200\2241+ jO) in the (GH) plane or the origin in the (1+ GH)

\nplane. Then\n

plane.\n

R = P -
Z\n (16-42)\n
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Since Z, the zeros of (1 + OH) and the polesof V%/V\\ with positive

\nreal parts, must be equal to zero for the system to bestable,the system

\nwith the characteristic equation (1 + OH) \342\200\2240 is stable if and only if\n

R = P (16-43)\n

In most cases P = 0, andthe criterion reduces to the requirement that
\nR

\342\200\224
0 for stability.\n

To apply the Nyquist criterion, plot theG(s)H(s)locusfor the range

\nof frequencies,
\342\200\224

\302\273<\302\253<\302\253. If R is the net counterclockwise
\nencirclements*of the point (\342\200\2241+ jO) and P is the number of poles
\nof G(s)H(s) with positive real parts (and so in the right half plane),
\nthe system is stable if and only if R \342\200\224P.\n

We have thus far avoided any problems that might arisebecauseof

\na pole of G(s)H(s) at the origin or several poles at the origin.Actually,

\nthere is a practical matter involved in taking into account thesepoles
\nat the origin deserving of special attention. To illustrate the problem,
\nconsider a transfer function,\n

which is plotted in Fig. 16-11for frequenciesin the range
\342\200\224\302\273< \302\253

\n< + co. The plot is complete except
\nfor one detail. The points (+0) and

\n(\342\200\2240)should be joined together (as
\nthe same point). If the locus closes

\nthrough the right half plane, the sys\302\254

\ntem is stable, since R = 0; however,
\nif the locus closes the other direction
\nin the left half plane, then R = 1 and
\nthe system is unstable. This is, as we
\nsee, a vital point.\n

As s becomes small, only the pole at the origin has an effect on the

\ntransfer function G(s)H(s). Thus for small s, the transfer functioncan
\nbe written\n

G(s)H(s)
=

\302\247 (16-45)\n

where n is the order (or multiplicity) of the polesat the origin. For\n

* To find the value of R, imagine a phasor with one end securelytiedto the point

\n(
\342\200\2241 + jO) pointing away from this point. Let the end of this phasor trace the

\nlocus starting at \342\200\224\302\273through
\342\200\2240 and +0 finally ending at + 00. Count the net

\nnumber of counterclockwise rotations of this phasor. This is the value of R. A

\nclockwise rotation is designated by a negative number for R.\n

Tig. 16-11. Plot of\n
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the semicircular path shown in Fig. 16-12, the equation of the s plane
\nphasor locus is\n

(s
- 0) = he* (16-46)\n

where 8 is the radius of the semicircle and 6 is the angle of the phasor

\n(s
\342\200\224

0) directed from the origin to a point on the circle.As 5 \342\200\224>0,

\nthe transfer function has the limiting value\n

lim G(s)H(s)
= lim ^ e~in9 = ooe-*nfl (16-47)\n

s->o s->o on\n

Hence as 6 shown in Fig. 16-12 varies from \342\200\224
t/2 to +t/2, the phase

\nof G(s)H(s) ranges from nx/2 to \342\200\224nir/2. In summary, the n poles at
\nthe origin in the transfer function G(s)H(s) cause (n/2) clockwiserota\302\254

\ntions at infinite radius of the phasor locus of
G(j<a)H(j<a).\n

Fig. 16-13. Nyquist plot completed.\n

Applying this rule to the exampleof Eq. 16-44, we see that n = 1
\ncauses clockwise rotation of the phasor locus of G(j<a)H(jui) ingoing
\nfrom s = \342\200\2240to s = +0. Figure 16-11 is completedin Fig.16-13.\n

In making the Nyquist plot, only positive values for co need be con\302\254

\nsidered. Because the real part of G(jo))H(ju>) is even and the imaginary

\npart odd, it follows that\n

Im G{-ju)H(-jv) = -ImO(+i\302\253)H(+i\302\253) (16-48)\n

Re G( \342\200\224ju))H(\342\200\224jo>)
= +Re G(+ju)H(+ja>)\n

The plot for negative values of \302\253can be made by reflecting the plot
\nfor positive frequency upon the real axis of the GH plane.\n

If the transfer function G(s)H(s) has no poles in the righthalfplane
\n(and the Routh or Hurwitz criteria can be used to advantagein

making

\nthis determination) such that P = 0 in Eq. 16-43,a rule of thumb may

\nbe used to advantage. Trace (\342\200\234walk\342\200\235)
from \302\253= 0to\302\253 =

+\302\273 on

\nthe Nyquist plot. If the point (\342\200\2241+ jO) is on the right at the point
\n(w) of nearest approach of G(ju>)H(ja)) to (\342\200\2241+ jO), the system is

\nunstable; if on the leftthe system is stable (P = 0 only).\n
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Several examples will next be considered to illustrate the application
\nof the Nyquist criterion to the studies of system stability.\n

Example 4\n

For this example, consider the transfer function\n

=
jaTK+ i (16-49)\n

The Nyquist plot is shown in Fig. 16-14,whereK is the diameter of the

\ncircle. No matter how large K becomes, the locuscannot encircle the

\npoint \342\200\2241.Hence the transfer function represents an unconditionally
\nstable system.\n

Fig. 16-14. GH = K/(sT + I) plotted. Fig.16-16.Nyquist plot of Eq. 16-50.\n

Example 5\n

Let the locus plotted as Fig. 16-13 serve as a secondexample. Again,

\nit is impossible for the locus to encircle the point \342\200\2241for any positive

\nvalue of gain except infinite gain.\n

Example 6\n

The transfer function\n

awuw -
jSgar+oo.:r,+T) O\342\200\235\302\256\n

is shown in Fig. 16-15 for two values of the constantK. For a value of

\nK such that curve B results, the system is stable, sinceR = 0. How\302\254

\never, if the value of K is increased to give the curvemarked A, then

\nR = \342\200\224
2, and since P = 0 by inspection of Eq. 16-50,the system is

\nunstable. Such a system is described as a conditionallystablesystem.\n

Example 7\n

The exact nature of the transfer function for the plotsshown in Fig.\n

16-16 is not given, but it is known that P = 0 for both cases. The\n
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locus of Fig. 16-16(a) represents a conditionally stable system. The
\nlocus shown in Fig. 16-16(b) is similar to that of (a) exceptthe shape

\nof part of the locus has been altered. Since there are no net rotations\n

(a) lb)\n

Fig. 16-16. Loci for conditionally stable systems: (a) and (b)\n

p = R = Z = 0.\n

about the point \342\200\2241,the system is stable. However, if the gain either
\nincreases or decreases corresponding to a shift of the \342\200\2241point into

\none of the two other loops, the system becomesunstable.Thislocus

\nrepresents a system that is conditionally stable.\n

Example 8\n

Figure 16-17(a) shows a system having a transfer function\n

de-si)\n

For this locus, P = 1, R = \342\200\2241 (one clockwise rotation) and so there\n

(a) (6)\n

Wff. 16-17. Loci for transfer functions having poles with positive

\nreal parts: (a) P =*
1, R = \342\200\224

1, Z = 2; (b) P - 1, R = 1, Z = 0.\n

are two zeros of (1 + GH) with positive real partsandthe system will

\nbe unstable for any value of gain. Such a system can bedesignatedas
\nunconditionally unstable.\n
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Example 9\n

The locus plotted in Fig. 16-17(b) comes from a transferfunction
\nwith one pole with a positive real part. For this particularsystem,
\nhowever, the locus encircles the point \342\200\2241 once in a counterclockwise

\ndirection such that Z = 0, and the system is stable. With the loop
\nclosed, this system is stable. However, with the loop open,the system
\nis unstable. This open-loop instability is, of course, caused by another
\nfeedback path within the \342\200\234open-loop\342\200\235 (as discussed at the beginning
\nof the chapter).\n

FURTHER READING\n

For an interesting comparison of the variousstabilitycriteria, see

\nF. E. Both well\342\200\231sarticle \342\200\234Nyquist diagrams and the Routh-Hurwitz

\nstability criterion,\342\200\235 Proc. IRE, 38, 1345 (1950). Bothwell points out
\nthat Nyquist, Routh, and Hurwitz all employed essentially the same
\nprocedures in their original writings. The articles of these three
\nauthors are: E. J. Routh, Dynamics of a Systemof Rigid Bodies

\n(Macmillan & Co., Ltd., London, Part II, 1905),Chap.6;H.Nyquist,

\n\342\200\234Regeneration theory,\342\200\235 Bell System Tech. J., 11, 126 (1932); and
\nA. Hurwitz, \342\200\234Ueber die Bedingungen unter welchen eine Gleichung
\nnur Wurzeln mit negativen reelen Teilen besitzt,\342\200\235 Math. Ann., 46,
\n273 (1895). For additional reading on the Routh-Hurwitz criterion,
\nsee Guillemin, The Mathematics of Circuit Analysis (John Wiley &
\nSons, Inc., New York, 1949), pp. 395-409, or Tuttle, Network Syn\302\254

\nthesis, 2 vols. (John Wiley & Sons, Inc., New York, in preparation).
\nIn addition, see Chesnut and Mayer, Servomechanisms and Regulating
\nSystem Design (John Wiley & Sons, Inc., New York, 1951), pp.
\n124-156.\n

For an interesting explanation of the process of organic evolution
\nin terms of feedback system concepts and language, see p. 126 of

\nHomer Jacobson, \342\200\234Information, reproduction and the origin of life,\342\200\235

\nAmerican Scientist, 43, 119-127 (1955).\n

PROBLEMS\n

16-1. Determine by means of Routh\342\200\231s stability criterion whether

\nthe systems having the following characteristic equations are stable or
\nnot. (a) 4s3 + 7s2 + 7s + 2 = 0. (b) 2s3 + s2 - 5s + 2 = 0. (c) s3\n

+ 3s2 + 4s + 1 =0. (d) 5s8+ s2 + 6s + 2 = 0. Answers, (a) stable,\n

(d) \tnot stable.\n

16-2. Repeat Prob. 16-1 for the characteristicequations:(a) 5s4 +

\n6s3 + 4s2 + 2s + 3 = 0. (b) s4 + 3s3 + 2s2 + s + 1 = 0. (c) 2s4 +\n

3s3 + 6s2 + 7s + 2 = 0. Answer, (a) not stable.\n
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16-3. Repeat Prob. 16-1 for the characteristic equations: (a) 720s6
\n+ 144s4 + 214s3 + 38s2 + 10s + 1 = 0. (b) 25s5 + 105s4 + 120s3+
\n120s2 + 20s + 1 = 0. Answer, (a) stable.\n

16-4. A system has the characteristic equation,\n

s3 + 5s2+ Ks + 1 = 0\n

(a) Using the Routh criterion, determine the range of the valuesof

\nK that will make the system stable, (b) Investigate systemstability
\nwhen K = Discuss your results.\n

16-6. The feedback system shownin the accompanying figure has

\nbeen analyzed by J. F. Koenig in his paper\342\200\234Stability diagrams for\n

i\342\200\224w\\\342\200\224\n

Ri
L\n

if\n

Vi\n

Amplifier\n

gain-X\n

Prob. 16-6.\n

feedback systems,\342\200\235 AIEE Conference Paper, Baltimore, Oct., 1950.

\n(a) Using Routh\342\200\231s criterion, find the relationship that must exist
\nbetween Ri, Ri, and K for the system to be stable, (b)For the system

\nto oscillate without damping, what must be the relationship between
\nRi, Ri, and K? From this equation, plot K as a functionof Ri/Ri.

\nOn the same plot, show regions of stability and instability.\n
16-6.For a fourth-order characteristic equation,\n

aos4 + ais3 + aiS2+ a3s+ \302\2534
= 0\n

find a set of rules, similar to those given in Example3, by Routh\342\200\231s

\ncriterion, that will insure that all roots of the characteristicequation
\nhave negative real parts such that the equation will represent a stable
\nsystem. Assume that all coefficients must be positive.\n

16-7. Repeat Prob. 16-6for a fifth-order characteristic equation.\n

16-8. Classify the polynomials given in Prob. 16-1as Hurwitz

\n(having all roots in the left half plane) or not.\n

16-9. Apply the Hurwitz test to the polynomials given in Prob.16-2.\n

16-10. Test the polynomials given in Prob. 16-3usingthe Hurwitz

\ncriterion.\n

16-11. Rework Prob. 16-4 making use of the Hurwitz criterion.\n
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16-12. The figure below shows an equivalent circuit of a phase-shift
\noscillator first described by Ginzton and Hollingsworth in Proc. IRE,
\n29, 43 (1941). Show that the necessary condition for oscillationis
\n9mRL ^ 29. (b) Show that the frequency of oscillationwhen gmRL

= 29

\nis <*>o
=

1/y/Q RC.\n

16-13. The tuned-plate oscillator shown in Fig. 16-1of the text

\nmay be represented by the equivalent circuit shown in the accompany\302\254

\ning schematic. Show that the smallest value that the tube constant
\ngm can have if oscillations are to start is gm

=
LP/MR and that the

\nfrequencyof oscillation under this conditionis o>0
= 1 /y/LpC.\n

16-14. Consider the following transfer functions:\n

(a) G(.)ff (\302\253)
= K ~\n

(b) G(\302\273)ff(*)
= K\n

(C) 0(.)*(.) -\n

For each of these functions: (a) plot G(j<a)H(ju>)in the complex
\n(///-plane from \302\253= 0 to w = \302\253>with K = 1. (b) Determine the range
\nof values of K that will result in a stable systemby means of the

\nNyquist criterion.\n

16-16. (a) The locus ofG(ja)H(ju) shown in the figure is for a sys\302\254

\ntem with two poles of G(s)//(s) with positive real parts. Apply the\n

Prob. 16-16.\n
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Nyquist criterion to determine if the system is stable with the loop
\nclosed, (b) The G(j<t))H(ju)) locus shown in (b) is known to represent
\na system with no poles of G(s)H(s) in the right half plane.Willthe

\nsystem be stable with the loop closed?\n
16-16. The following transfer functionsrelate to two servomech\302\254

\nanisms :\n

(a) G(s)H(s)
=\n

(b) G(s)H(s)
=\n

3000\n

s2(l + 0.004s)\n

1500(1 + 0.04s)
\ns2(l + 0.004s)2\n

Investigate the closed-loop stability of system 1 and system2 by

\nmeans of the Nyquist criterion. Answer. System (a) is unstable.\n

16-17. In the network of Prob. 16-12, let R = 1 ohmand (7 = 1

\nfarad (these are normalized values). Plot the Nyquist diagramfor

\n(a) gmRL
= 10 and (b) gmRi. = 40. Which of the two conditions will

\nrepresent a stable (nonoscillating) system?\n
16-18. A certain closed-loop system is described by the transfer

\nfunctions\n

GOO
=\n

K \t\n
s(TiS + 1)(T*2S+ 1)\n

and H(s)
= 1\n

Determine the maximum value of K that may be usedwithoutmaking

\nthe system unstable.\n

16-19. (a) Consider two functions:\n

ew -
H<s> -1\n

H(s)
= 1\n

Plot these two functions for values of s along the contourshown for

\nthe s plane in (a) of the figure. Discusshow your results relate to the

\nNyquist criterion.\n

6-plane\n
Ju s-plane\n ju)\n

rC \\*\n
3\n

r-1^\n

(a)\n

r) -45-y
\nJ

/!'\n

3\n

Prob. 16-19.\n

(6)\n
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(b) Consider two functions:\n

G^ ~
a2 + 2s + 5\342\200\231\n

H(s) =\302\2731\n

G(S)
~

\302\253\342\200\231+ 4. + 5\342\200\231\n
//(\302\253)

= 1\n

Plot these functions for values of s along the contourshown in (b) of

\nthe figure. Does this suggest how the Nyquist criterion might be gen\302\254

\neralized as a criterion for other than poles in the right half plane?
\nDiscuss.\n
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Active element, 27\n

Admittance (also see Immittance), 197

\ncapacitor, 200

\ndriving-point, 215

\ninductor, 199\n

parallel combinations, 200

\nresistor, 198

\ntransfer, 217

\nAmpere\342\200\231slaw, 11

\nAmplifier networks, 363

\ncomparison of frequency responses,
\n388\n

band-pass, 382

\ndouble-tuned, 270

\nlow-pass, 380

\noverstaggered, 372

\nshunt peaked, 363

\nstagger-tuned, 365

\nAngular phase difference, 228

\nAntiresonant frequencies, 280
\nApproximation, 18\n

Asymptotic change of magnitude, 260
\nAttenuation, 315, 328

\nAuxiliary equation, 98\n

Band-pass filter, 335

\nBandwidth, 259, 384
\nrelated to Q, 386

\nBartlett\342\200\231sbisection theorem, 353

\nBilateral elements, 21

\nBisection theorem, 353
\nBlock diagrams:

\nclosed-loop, 399

\ndefinitions, 394
\nelectrical elements, 397

\nlimitations in representing systems,
\n402\n

open-loop, 399

\nreduction procedure, 406
\ntransformations (table), 400

\nBranch, 30

\nBridge network, 263

\nButterworth amplifiers, 368

\nButterworth filters, 391\n

Capacitance, 5

\ndefinition, 7

\nenergy stored in, 22

\nCapacitor, 22

\nnonlinear, 24

\nvoltage divider, 91
\nCascadeconnection, 365
\nCathode follower, 403

\nCauer form of networks, 296
\nCharacteristic equation, 98, 411

\nCharge, 2

\nelectron, 2\n

RLC series circuit, 118

\nChart, 55\n

Chebyshev polynomials, 372

\nCircle diagram, 249, 251
\nCircuit, 30

\nCircuit elements, 30

\nClassicalsolution, 97
\nCofactors, 59\n

Complementary function, 75, lib

\nComplete solution, 75, 113
\nComplex Fourier series, 179

\nComplex frequency, 194

\nComplex inversion integral, 127

\nComplex plane, 220

\nComposite filter, 337, 346

\nConceptual scheme, 1
\nConductance, 18

\nConductivity, 17

\nConductors, 3

\nConjugate,135
\nConservation laws, 15

\nConstant-if filters, 331
\nConstant flux linkages, principle of, 14
\nContinued fractions, 232, 296, 418

\nContinuous frequency spectrum, 183,
\n185\n

pulse, 186

\nrecurrent pulse, 183
\nConvolution integral, 167

\nCoulomb\342\200\231s law, 6

\nCoupled coils, 44

\nCoupling, magnetic, 15, 33, 44

\nCramer\342\200\231srule, 60

\n435\n
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Critical frequencies, 220

\nexternal, 287

\ninternal, 287

\nCritical resistance, 103

\nCritically damped solution, 108

\nCurrent, 2

\nbranch, 41

\nconventional, 28

\ndefinition, 2

\nelectron,28
\nloop, 41\n

positive direction, 42

\nCurrent density, 17

\nCurrent ratio in networks, 315
\nCurrent source, 27

\nCurrent source equivalent, 48
\nCutoff frequency, 320, 367\n

Damped sinusoid, 196

\nDamping factor, 108

\nDamping ratio, 103
\nDatum node, 29, 31

\nDecade, 262

\nDecibel,261, 315
\nDecibel change per octave, 261

\nDelta networks, 358

\nDelta-Y transformation, 358

\nDependent variable, 72
\nDeterminants, 58

\nresistive network, 62

\nsymmetry, 62
\nsystem, 60\n

Differential equation, definitions, 72
\nDirichlet conditions, 173

\nDot convention, 331

\nDoublet, 159
\nDriving-point, 214

\nDriving-point impedances, 194, 274
\nresistrictionson polesand zeros,222

\nDual quantities, 52

\nDuals, graphical construction, 52
\nDuality, 51\n

Edastance, 7

\nElectric field, 6
\nElements:

\nactive, 27

\nextraneous, 51

\npassive, 30\n

Elements of determinant, 58

\nEnergy, 22

\nEnergy sources, 3\n

Envelope, 110\n

Equal ripple characteristics, 372

\nEquilibrium equations, 40

\nEquivalent circuits, 275
\ncurrent source, 48

\ndelta-Y, 358

\nNorton\342\200\231s theorem, 207

\nparallel, 202

\nseries, 200\n

Thfrvenin\342\200\231s theorem, 205

\nvacuum tubes, 407
\nError transform, 399

\nEuler\342\200\231sequation, 101, 107, 179

\nEven function, 174

\nEven polynomial, 277
\nEven symmetry, 174

\nExponential representation of phasors,
\n241\n

Exterior branch, 70\n

Faraday\342\200\231s law, 12

\nFeedback systems, 410
\nFilters (see also Amplifier filters), 310

\nattenuation band, 319
\nband-elimination,327
\nband-pass, 327

\ncomposite, 337, 346

\nconstant-K, 331
\nexperimental study, 327
\nhigh-pass, 325

\nimage impedance of, 312

\nimage transfer function of, 314

\nlattice, 353

\nlow-pass, 234, 324

\nm-derived, 338
\nTO-derived T section, 339

\nm-derived *- section, 340

\nFinal value theorem, 145
\nFlux linkages, 11, 14, 131

\nprinciple of constant, 14

\nForced response, 79
\nForced oscillations, 222

\nForcing function, 72
\nFoster form of networks, 288, 336
\nFoster\342\200\231sreactance theorem, 288

\nFourier analysis, 171
\nFourier integral, 183

\nFourier series, 170

\ncoefficients,173
\ncomplex exponential form, 179

\ngraphical evaluation, 177
\nsquare wave, 175\n
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Fourier series, sweep voltagefunction,
\n180\n

symmetry, 173

\nsymmetry rules, 175
\ntriangular wave, 177

\nFourier transformation, 187

\nunilateral, 188

\nFourier transform pairs, 185
\nrelated to Laplace transforms, 186

\nFrequency:
\ncutoff, 320, 367

\nforced, 211

\nfree, 211\n

half-power, 258, 368, 376

\ninfinite, 224\n

infinite attenuation, 340

\nmid-band, 383

\nnegative, 181, 242

\nneper, 195

\nnormalization, 304
\npass, 320

\nradian, 194, 241

\nresonant, 257

\nstop, 320\n

undamped natural, 225
\nFree response, 79

\nFree oscillations, 222

\nFrequency domain, 126, 177

\nFrequency spectra, 181
\nFrequency scaling, 304

\nFrequency plane, 220

\nFrequency response, graphical interpre\302\254

\ntation, 256\n

Gain, 364\n

General solution, 75, 113
\nGeometrical interpretation of deriva\302\254

\ntives, 86\n

Geometry of networks, 29

\nGraph, 29\n

Graphical construction of duals, 52

\nGraphical evaluation of Fourier series

\ncoefficients, 177\n

Half-power frequencies, 258

\nHalf sections, impedance properties,

\n314, 344\n

Harmonics, 171, 182

\nHeaviside, Oliver, 125
\nHeaviside'sexpansiontheorem,138,142

\nreal roots, 139\n

repeated (multiple) roots, 140\n

High-pass filters, 325, 333

\nHomogeneous differential equations,72,
\n111\n

Hurwitz criterion, 418

\nHurwitz polynomials, 418

\nHyperbolio functions, 106\n

Image impedance, 312
\nL section, 314

\nm-derived L sections, 344
\nx section, 313

\nT section, 313\n

variation with frequency, 323
\nImage match, 312, 338

\nImage transfer function, 314
\nImaginary numbers, 101

\nImaginary part of function, 246
\nImmittance, 215

\ndriving-point, 215, 230

\nequivalent, 275

\ntransfer, 217, 232, 391

\nImpedance,197
\ncapacitor, 200

\ndriving-point, 215, 230

\ninductor, 198

\nparallel combinations, 200

\npoles and zeros of, 222

\nresistor, 198\n

series combinations, 200

\ntransfer, 217, 232, 391

\nImpulse function, 157
\nunit, 158\n

Independent loops, 30

\nIndependent variable, 72
\nInductance parameter, 10

\nself, 13

\nmutual, 13

\nInductor, 22
\nInitial conditions, 84

\nevaluation procedure, 87
\nInitial value theorem, 145

\nInsertion loss, 352
\nInstability conditions, 411

\nInsulators, 3

\nIntegrating factor, 74, 81

\nIntegration, numerical, 178

\nIntegrodifferential equations, 43

\nInverse transformation, 126\n

J, defined, 101

\nJunction (aee Node)\n
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Kirchhoff-law equations, 40
\nKirchhoff\342\200\231s laws:

\ncurrent law, 57

\nvoltage law, 55\n

L Section network, 311
\nLadder network, 65, 232, 310

\nmethod of analysis for, 230

\nLag network, 403

\nLagging phase angle, 250

\nLaplace transform pairs, 127

\ntables, 129, 164

\nLaplacetransformation, 125\n

related to Fourier transformation, 186

\nLaplacetransformation theorems, 129
\ndifferentiation, 129

\nfinal value, 145

\ninitial value, 145

\nintegration, 130

\nlinearity, 129\n

Lattice equivalent of networks, 356
\nLattice filter, 353

\nLattice network, 66, 231, 353
\nLead network, 219

\nLeading phase angle, 250
\nLenz\342\200\231slaw, 35

\nLine spectrum, 183
\nLinear elements, 21

\nLocus of complex frequencies, 105
\nLogarithm, 125

\nLoop analysis, 43

\ncoupled systems, 44

\nLoop currents, 41

\nLoops, 30\n

related to the number of nodes,
\nbranches and separate parts, 31

\nLoops, independent, 30
\nLoss, insertion, 352

\nLow-pass filter, 324, 333
\nLumped system, 22\n

m-DERivED filter, 338

\nMagnetic field, 10

\nMagnetic flux, 11

\nMagnetically coupled systems,15
\ndot convention, 33

\nloop analysis of, 44

\nMagnitude of phasor, 228

\nMapping, 420\n

Maximally flat characteristics, 368

\nMesh (also see Loop), 30

\nMinimum-phase functions, 225\n

Minors, 58\n

Multiplication of phasors, 228, 421
\nMutual inductance, 45, 66\n

Natural frequencies:

\ndamped and undamped, 108, 225
\nopen- and short-circuit, 321

\nNegative frequency, 181, 242
\nNeper frequency, 195

\nNeper unit, 315

\nNetwork, 30\n

one terminal pair, 214, 374
\ntwo terminal-pair, 310

\nNetwork analysis, resistive, 61
\nNetwork equations, general, 53

\nNetwork functions, 214\n

change of magnitude at high fre\302\254

\nquency, 260\n

computation procedure, 230

\nhigh-frequency asymptotes, 246
\nlow-frequency asymptotes, 247

\nmagnitude, 245

\nmagnitude interpretation, 220
\nphase, 245

\nphasor locus, 248

\nNetwork theorems:

\nbisection, 353\n

delta-Y transformation, 358
\nFoster\342\200\231sreactance, 288

\nNorton\342\200\231s, 205

\nsource interchange, 48

\nsuperposition, 79
\nTh&venin\342\200\231s, 205

\nNode, 30

\nNode analysis, 47

\nNode, datum, 29

\nNode pair, 30\n

Nonhomogeneous differential equations,
\n113\n

Nonlinear elements, 21

\nNonsinusoidal wave analysis, 170
\nNormalized frequency, 304

\nNorton\342\200\231stheorem, 205

\nNumerical integration, 178

\nNyquist criteria, 419

\npoles at origin, 426\n

Odd function, 174

\nOdd polynomial, 277

\nOhm\342\200\231slaw, 17, 84\n

Open-circuit impedance function, 313

\nOperational calculus, 125\n
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Oscillator:

\nphase-shift, 431

\ntuned-plate, 431\n

Oscillatory transient response, 108

\nOverdamped response, 108
\nOvershoot, 393\n

Parallel combination of admittances,
\n200\n

Parasitic effects, 20

\nPartial fraction expansion, 134

\nfor complex conjugate roots, 142

\nParticular integral, 75, 113

\nPass band, 320, 332, 354
\nPeriodic function, 171

\nPhase angle of phasor, 228
\nPhase shift, 328

\nimage transfer function, 315
\nPhasor, 195

\nunit rotating, 241

\nPhasor addition, 228, 254, 421

\nit network, 231, 311

\nPickoff point, 396

\nPolarity, 28

\nPolarity markings, 44

\nPoles, 219\n

restriction on locations, 222

\nPositive current direction, 42

\nPotential, 3

\nPower, 5, 22

\nPrincipal diagonal, 58

\nPrototype, 346
\nPulse, 154, 162\n

Q, 255, 363\n

related to bandwidth, 386

\nQuad, 266\n

Quadratic equation, 112, 414

\nQuasi-stationary state, 21\n

Radian frequency, 194

\nRadiation loss, 20
\nRamp function, 157

\nRational function, 215
\nReactive networks, 274

\nCauer form, 296

\ncomparison of features, 302
\nFoster form, 288

\nReactance functions

\ncases, 284

\nspecifications, 287

\nReactance plots, 284\n

Repeated (multiple) roots, 100

\nResistance, 18
\ncritical, 103

\ndefinition, 18

\nparameter, 17
\nResistor, 22

\nResonance, 255

\nResonant frequencies, 280
\nResponse, 72

\nsinusoidal, 252\n

transient, from pole-zero locations,
\n225\n

Right-hand rule, 34

\nRise time, 393\n

Roots of equations, possible forms, 112
\nRotating phasor, 242

\nRouth criterion, 415\n

s-plane, 220\n

constant coptours, 226
\nSawtooth waveform, 177

\nScale factor, 219, 287
\nSchedule, 55

\nSelectors, 258

\nSelf-inductance, 13

\nSeparateparts, 30\n

Separation property of poles and zeros,
\n279, 295\n

Series combination of impedances, 200
\nSeries resonance, 255

\nSeries RLC network, 255
\nShort-circuit impedance function, 313

\nSignal flow diagrams, 394

\nSingular functions, 159
\ntransforms (table), 166

\nSinusoid, damped, 196

\nSolution, general, 72

\nSolution, particular, 72

\nSources,27
\ntransformation of, 48

\nSpectrum:

\ncontinuous, 183

\nline, 181\n

Square wave, 155, 164

\nStability, 410

\nStability criteria:\n

Hurwitz, 418

\nNyquist, 419

\nRouth, 415\n

Stagger-tuned amplifiers, 365

\nStaircase waveform, 191
\nStandard form of solution, 102\n
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Steady-state, 75

\nStep function, 128, 170

\nStop band, 320, 332, 354
\nSubscript convention for mutual induc\302\254

\ntance, 16\n

Summing point, 395

\nSuperposition, principle of, 79
\nSusceptance,279
\nSustained oscillations, 110

\nSymmetrical lattice network, 231, 263
\nSymmetrical ir network, 231

\nSymmetrical T network, 231
\nSymmetry rules for Fourier series, 175

\nSystem determinant, 60\n

T network, 231, 311
\nTandem connection, 365

\nTchebycheff (see Chebyshev), 373
\nTerminal pair, 214

\nTerminals, 214

\nTermination problem, 351
\nTheorems (see Network theorems)

\nThfrvenin\342\200\231s theorem, 205

\nTime constants, 77
\nTime domain, 126

\nTopology of networks, 29
\nTransfer functions, 216

\nminimum phase, 225
\nrestrictionson polesand zeros,224

\nTransform:\n

Fourier, 188

\nLaplace, 127\n

Transform pairs {table), 129, 164

\nperiodic function, 165
\nTransient response, oscillatory, 108

\nfrom pole-zero locations, 225

\nTriangular waveform, 177

\nTrigonometric functions in termsof
\nexponentials, 241\n

Undamped natural angular frequency,
\n103\n

Undetermined coefficients method, 113

\nUnilateral systems, 21

\nUnit doublet, 21

\ntransform, 166

\nUnit impulse, 158

\napplied to capacitor, 160

\napplied to inductor, 159
\nresponse, 168

\ntransform, 165

\nUnit step function, 128

\ndefinition, 153
\nshifted transform, 161\n

Vector (phasor), 195

\nVoltage conventions, 28

\nVoltage divider, 218

\nVoltage source, 27

\nvon Helmholtz rule, 31\n

Y networks, 358

\nY-delta transformation, 358\n

Zeros, 219\n


