

Data Structures
Theory & Practicals

Author
NB Venkateswarlu,

GVPCEW, Visakhapatnam

Reviewer
Dr. Ravi Shankar Singh,
IIT(BHU), Varanasi

All India Council for Technical Education
Nelson Mandela Marg, Vasant Kunj,

New Delhi, 110070

BOOK AUTHOR DETAILS

Dr. NB Venkateswarlu, Professor, Gayatri Vidya Prashad Engineering College for Women,

Visakhapatnam, Andhra Pradesh

Email ID: venkat_ritch@yahoo.com

BOOK REVIEWER DETAILS

Dr. Ravi Shankar Singh, Associate Professor, Indian Institute of Technology (IIT) BHU,

Varanasi, Uttar Pradesh

Email ID: ravi.cse@iitbhu.ac.in

BOOK COORDINATOR (S) – English Version

1. Dr. Amit Kumar Srivastava, Director, Faculty Development Cell, All India Council for

Technical Education (AICTE), New Delhi, India

Email ID: director.fdc@aicte-india.org

 Phone Number: 011-29581312

2. Mr. Sanjoy Das, Assistant Director, Faculty Development Cell, All India Council for

Technical Education (AICTE), New Delhi, India

Email ID: ad1fdc@aicte-india.org

Phone Number: 011-29581339

October, 2022

© All India Council for Technical Education (AICTE)

ISBN : 978-81-959863-1-6

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or

any other means, without permission in writing from the All India Council for Technical

Education (AICTE).

Further information about All India Council for Technical Education (AICTE) courses may be

obtained from the Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070.

Printed and published by All India Council for Technical Education (AICTE), New Delhi.

Laser Typeset by:

Printed at:

Disclaimer: The website links provided by the author in this book are placed for informational,

educational & reference purpose only. The Publisher do not endorse these website links or the views

of the speaker / content of the said weblinks. In case of any dispute, all legal matters to be settled

under Delhi Jurisdiction, only.

ACKNOWLEDGEMENT

The authors are grateful to the authorities of AICTE, particularly Prof. M. Jagadesh Kumar,
Chairman; Prof. M. P. Poonia, Vice-Chairman; Prof. Rajive Kumar, Member-Secretary and Dr
Amit Kumar Srivastava, Director, Faculty Development Cell for their planning to publish the books
on (Data Strctures: Theory & Practicals). We sincerely acknowledge the valuable contributions of
the reviewer of the book Dr. Ravi Shankar Singh, Assoc. Prof., IIT(BHU), Varanasi.

The authors are thankful to Prof MN Murthy, IISC, Bangalore, Prof Roger D Boyle, University of
Leeds, UK for providing “Foreword” for the book. Also, authors appreciate Sri Vishnu Raju garu,
Dr Nagendra, Dr Suryanarayana of Vishnu Institute of Technology, Bhimavaram for allowing the
authors to use their plagiarism checking SW account.

The authors appreciate the support of Dr JVR Murthy, Dr MHM Prasad of JNTUK, Kakinada, Prof
PVGD Prasada Reddy, VC, Andhra University, management members of GVP, Principal, Vice
Principal of GVPCEW.

This book is an outcome of various suggestions of AICTE members, experts and authors who
shared their opinion and thought to further develop the engineering education in our country.
Acknowledgements are due to the contributors and different workers in this field whose published
books, review articles, papers, photographs, footnotes, references and other valuable information
enriched us at the time of writing the book.

Authors

PREFACE

Undoubtedly there are hundreds of books on data structures. However this book is written with the

following salient flavors:

1. All India Council for Technical Education (AICTE) was aptly identified to offer the data
structures course as a skill oriented course. Thus, while writing this book we have included
hundreds of solved and unsolved questions so that students can implement them in C (or
some other programming language) and enrich their coding skills. An addendum having

discussions on the unsolved questions is available for teachers.

2. During the last 4 to 5 years, placement examinations in India are demanding aspiring students
to solve some number of programming puzzles online. It is very open that many of the
programming puzzles are around data structures and algorithms courses. Thus, in this book
we have attempted to motivate students/faculty to introduce programming puzzles around
linked lists, stacks, trees, graphs such that their chances of getting an aspiring job gets hyped.
In order to achieve this, we have also created a competition site/group for the perusal of the
readers of this book.

3. We did include some number of questions that appeared in various competitive examinations
such as Bebras, IOI so as to motivate students to inculcate more interest in data structures
concepts in a determined manner.

4. Many authors have employed program tracing to elucidate most intricate concepts. In this
book, we have included program visualizations for the majority of programs which readers
can pass through step by step fashion and understand the intricate concepts in a better way.
Here, we have used pythontutor.com services to visualize our programs.

First Unit introduces the reader to the need of data structures with many practical examples such as
long integers in programming languages such as Python. Also, this unit introduces empirical and
theoretical algorithmic analysis along with the need for data abstraction, abstract data types, etc.,
allied themes in the easiest possible manner.

Unit on stacks and queues contains many illustrious discussions on their use in practical SW
systems such as operating systems, compilers. This unit discusses how to implement various
operations on stacks and queues using arrays. Also, how stacks can be used for evaluating arithmetic
expressions by employing postfix or reverse polish notation is explained in a lucid manner with
many illustrious examples.

Unit on linked lists begins with many interesting example usages of the “link” concept in our real
day to day life. Also, how the “link” concept is used in practical SW systems such as free data block
management, garbage collection, etc. Operations on the single linked lists, doubly linked lists,
circular lists are explained along with their practical implementations in C language. Also, this unit
contains the implementation of stacks and queues using linked lists.

Unit on non-linear data strctures introduces fundamental aspects of trees and graphs. Binary search
trees, their traversals are with the recursive implementations. Also, sequential representation of
binary search trees is explained along with its implementation. In addition graph theory, graph
representations, graph traversals (breadth first traversal, depth first traversal), path matrix,
Marshalls algorithm, minimum spanning tree, Kruskal algorithm, Prim’s algorithm, Dijkstra’s
algorithm, topological sorting, etc., are explained in a lucid manner.

Every unit is designed to have a set of objective questions and laboratory problems to test and enrich
the students.

OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to develop an
outcome based curriculum and incorporate an outcome based assessment in the education system.
By going through outcome based assessments evaluators will be able to evaluate whether the
students have achieved the outlined standard, specific and measurable outcomes. With the proper
incorporation of outcome based education there will be a definite commitment to achieve a
minimum standard for all learners without giving up at any level. At the end of the programme
running with the aid of outcome based education, a student will be able to arrive at the following
outcomes:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3. Design / development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

COURSE OBJECTIVES

COURSE OUTCOMES:

CO1 Define and classify various data structures, storage structures and common
operations on them.

CO2 Define various linear data structures with their representation and perform
different operations on them.

CO3 Define various non linear data structures with their representation and
perform different operations on them.

CO4 Given a problem, select an appropriate data structure to achieve optimal
performance and compare it with other possible data structures.

CO5 Demonstrate graph traversal algorithms.

PRE-REQUISITES

Programming Skills: C programming, iterative solutions, recursive solutions

Mathematics: Polynomials, algebraic manipulations

Course

Outcomes

Expected Mapping with Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1 3 2 2 2 1 - -

CO-2 3 2 2 1 1 - -

CO-3 3 3 2 1 1 - -

CO-4 3 3 3 2 1 - -

CO-5 3 3 2 1 1 1 -

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) the knowledge level and skill set of the students
should be enhanced. Teachers should take a major responsibility for the proper implementation of
OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

 Within reasonable constraints, they should maneuver time to the best advantage of all

students.

 They should assess the students only upon certain defined criterion without considering any

other potential ineligibility to discriminate them.

 They should try to grow the learning abilities of the students to a certain level before they

leave the institute.

 They should try to ensure that all the students are equipped with quality knowledge as well

as competence after they finish their education.

 They should always encourage the students to develop their ultimate performance

capabilities.

 They should facilitate and encourage group work and team work to consolidate newer

approaches.

 They should follow Bloom's taxonomy in every part of the assessment.

Bloom’s Taxonomy

Level
Teacher

should Check

Student should

be able to

Possible Mode of

Assessment

 Creat

e

 Students ability
to create

Design or
Create

Mini project

Evaluate

 Students ability
to justify

Argue or
Defend

Assignment

Analyse

 Students ability
to distinguish

Differentiate or
Distinguish

Project/Lab
Methodology

Apply

 Students ability
to use

information

Operate or
Demonstrate

Technical
Presentation/

Demonstration

Understand

 Students ability
to explain the

ideas

Explain or
Classify

Presentation/Semi
nar

Remember

Students ability
to recall (or
remember)

Define or
Recall

Quiz

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the responsibilities
(not limited to) for the students in OBE system are as follows:

 Students should be well aware of each UO before the start of a unit in each and every course.

 Students should be well aware of each CO before the start of the course.

 Students should be well aware of each PO before the start of the programme.

 Students should think critically and reasonably with proper reflection and action.

 Learning of the students should be connected and integrated with practical and real life

consequences.

 Students should be well aware of their competency at every level of OBE.

LIST OF FIGURES

Unit -1: Introduction to data structures

Fig. 1.1: Demonstration of overflow in C language addition. 7

Fig. 1.2: A snapshot of matrix multiplication program 15

Fig 1.3. Algorithm for breakfast 28

Fig. 1.4: Algorithm for surya namaskar 29

Fig. 1.5: Algorithm for realizing algorithm 29

Fig. 1.6: Big-Oh definition 38

Fig. 1.7: Growth of chicken and turkey 38

Fig. 1.8: Growth of some functions 45

Fig. 1.9: Growth of some functions and constants of proportionality 46

Fig. 1.10: Two symmetric matrices together to conserve space 51

Fig. 1.11: Operations on Complex type in Python 54

Fig. 1.12: The relationship between data items, abstract data types, and data structures. 54

Fig. 1.13: Relationships between type, ADT, data structures, etc 55

Fig. 1.14: Call tree for the exponentiation algorithm 62

Unit -2: Stacks & Queues

Fig. 2.1 Stack of chairs 69

Fig. 2.2. Plate dispenser 70

Fig. 2.3: A water filter wit a stack of filtering layers 71

Fig. 2.4: Rainwater harvesting pits with a stack of filters 71

Fig. 2.5: Stack of people 72

Fig.2.6: Stack of plates and we take a plate from the top 72

Fig. 2.7: stack of plates to be washed 73

Fig. 2.8: An executives “in” Tray 73

Fig. 2.9: Browsers left and right navigation arrows 74

Fig. 2.10: Navigation of web pages visited 74

Fig. 2.11: An example image stack 77

Fig. 2.12: Program stack: its growth and rewinding 78

Fig. 2.13: A guy wearing 35 T-shirts one above the other(stack of shirts!!) 79

Fig. 2.14: Pop and Push operations on stacks 80

Fig. 2.15: Operators and their precedence 92

Fig. 2.16: People in the queue 104

Fig. 2.17: Vehicle in queue 104

Fig. 2.18: Children queuing in front of an ice cream van 105

Fig. 2.19: Packets in a queue at a router 105

Fig. 2.20: A typical queue with where some service is provided at the front 106

Fig. 2.21: Traffic lights at a four road junction 118

Fig. 2.22: Ready Queue, Waiting Queue in operating systems 119

Fig. 2.23: Ready queue 119

Fig. 2.24: Scheduling processes in round robin fashion 120

Fig. 2.25: Operations on a ready queue 120

Unit -3: Linked Lists

Fig. 3.1: One of the busiest airport Chek Lap Kok (Hongkong) 137

Fig. 3.2. A Sample linked list with an integer and a link to the next node as its
members

138

Fig. 3.3: A circular linked list 138

Fig. 3.4: A doubly-linked list with an integer, the link to the next node, and the link to
the previous node

138

Fig. 3.5: A simple treasure hunt box 138

Fig. 3.6: Two train coaches along with their couplings 140

Fig. 3.7: Blind people crossing the road one after another with the help of a volunteer 141

Fig. 3.8: A necklace 141

Fig. 3.9: Practical links of our daily life 141

Fig. 3.10: How a file is stored in linked allocation method 143

Fig. 3.11: Linked allocation 143

Fig. 3.12: How a file blocks are linked 144

Fig. 3.13: Free space blocks links 145

Fig. 3.14: A Unix system disk partition and its pertinent parts 145

Fig. 3.15: Initial free list 146

Fig. 3.16: Free list after allocating some data blocks 146

Fig. 3.17: Static, stack and heap variables 148

Fig. 3.18: Process address space in Windows 149

Fig. 3.19: Process address space in Linux 150

Fig. 3.20: Free list in heap management 151

Fig. 3.21: Free and allocated blocks that are used in heap management 151

Fig. 3.22: Free list after allocating a block 152

Fig. 3.23: Free list after deleting an object 153

Fig. 3.24: PCB’s as a linked list in process management 153

Unit -4: Non Linear Data Structures

Fig. 4.1: Directory Tree 227

Fig.4.2: NTFS File system 228

Fig. 4.3: A family tree template 228

Fig. 4.4: An Administrative Structure at a typical University 229

Fig. 4.5 : A Sample Tree 229

Fig. 4.6: An example parse or expression tree 230

Fig. 4.7: Call tree for function FIB() 230

Fig. 4.8: Shows left and right subtrees of a binary tree 231

Fig. 4.9: An example binary tree with levels, height, leaf nodes, non leaf nodes 231

Fig. 4.11: Binary search tree 233

Fig. 4.12: Min Heap 233

Fig. 4.13: Acceptable heaps 233

Fig. 4.14: Inorder traversal 234

Fig. 4.15: Pre-Order Traversal 234

Fig, 4.16: Post-Order Traversal 235

Fig. 4.17: Level Order Traversal 235

Fig. 4.18: Deleting the node which contains both the children 252

Fig. 4.19: Tree traversal using a stack 254

Fig. 4.20: a. strictly binary Tree b. Not a strictly binary tree 257

Fig. 4.21: Working of the function NL 257

Fig. 4.22: Total Non-Leaf Nodes 258

Fig. 4.23: Total Nodes in a tree 258

Fig. 4.24: Recursively calculating the height of a tree 259

Fig. 4.25: Recursive way of checking whether a tree is complete or not. a) tree is not
complete. b)tree is complete

259

Fig. 4.26: Recursive function trace for finding whether the tree is a balanced tree or
not

260

Fig. 4.27: Checking whether two trees are identical or not 262

Fig. 4.28: In-Order Successors 265

Fig. 4.29: Threaded tree 266

Fig. 4.30: Skewed Tree 266

Fig. 4.31: Balanced Binary Search Tree 266

Fig. 4.32: Sequential storage of a binary tree 267

Fig. 4.33: A sample chemical molecule and its graph representation 271

Fig. 4.34: A job assignment problem 272

Fig. 4.35: A sample route map 272

Fig. 4.36: An example Pipe distribution system 272

Fig. 4.37: A sample weighted graph 273

Fig. 4.38: A sample graph 273

Fig. 4.39: A sample graph with its adjacency matrix 275

Fig. 4.40: Adjacency matrix for an undirected graph 276

Fig. 4.41: Converting an undirected graph to directed graph 276

Fig. 4.42: Graph with isolated points with self cycles and their adjacency matrix 276

Fig. 4.43: Graph with isolated points and their adjacency matrix 277

Fig. 4.44: Adjacency matrix of directed graph with a cycle 277

Fig. 4.45: Adjacency matrix of a graph with single cycle and undirected edges 278

Fig. 4.46: Adjacency matrix of a graph in which all the nodes in a circular chain with
self cycles

278

Fig. 4.47: Adjacency matrix of a weighted graph 278

Fig. 4.48: Adjacency List representation of the graph 279

Fig. 4.49: Adjacency Matrix and Adjacency List of a weighted graph 280

Fig. 4.50: Set representation of a weighted graph 281

Fig. 4.51: Paths of square of an adjacency matrix 281

Fig. 4.52: Depth First Traversal snap shot on a selected graph 284

Fig. 4.53: DFS traversal of a graph 285

Fig. 4.54: BFT traversal of a graph 286

Fig. 4.55: Breadth first traversal of a graph 287

Fig. 4.56: Dijkstra’s Algorithm’s working 288

Fig. 4.57: Spanning tree 291

Fig. 4.58: Kruskal's algorithm in working 293

Fig. 4.59: Prim’s algorithm in working 294

Fig. 4.60: A sample course registration in a University 295

Fig. 4.61: Sample graph for possible topological sorting 295

Fig. 4.62: Topological ordering on a sample graph 296

LIST OF TABLES

Unit 3: Linked Lists

Table. 3.1. Comparison of static, stack and heap variables or objects 154

Table. 3.2. Comparison of arrays and lists 155

Table. 3.3. Performance comparison of arrays and lists 155

Table. 3.4. A snapshot of Linked List Creation 168

Table. 3.5. Traversing a Singly Linked List 169

Unit 4: Non-Linear data structures

Table 4.1. Explains the binary search tree creation 244

Table 4.2: How BST with father tree is created 251

Table. 4.3. Comparison of adjacency matrix and lists 279

CONTENTS

1.1 Introduction to Data Structures 3

1.2 Classifications of Data Structures 20

Text and File Editing 23

Partially Persistent 26

Fully Persistent 26

Confluently Persistent 26

1.2.1 Advantages of Data structures 27

1.3 Operations on Data Structures 27

1.3.1 Algorithms: a briefing 28

1.3.2. Empirical vs theoretical algorithm time complexity analysis 32

1.3.2.1 Problem Size 35

1.3.2.2 The Big-Oh Notation 36

1.3.2.2.1. Fundamental step 41

1.3.2.3 Space Complexity 46

1.3.3 A note on abstract data types 50

1.3.4. Common algorithm design paradigms 54

Multiple Choice questions 56

Descriptive questions 59

Laboratory Programming Tasks 59

Welcome to participate in the online competition 65

Programming puzzles 65

References 65

2.1. Linear data structures 67

2.1.1 Stack 67

2.1.2 Operations on stacks 77

2.1.3 Realization of Stacks Using Arrays 77

2.1.4. Applications of stacks 83

2.1.4.1 An application of stack for checking expression validity 83

2.1.4.2 INFIX, POSTFIX AND PREFIX Expressions 89

2.1.4.2.1 Algorithm : Evaluation of a Postfix or Suffix expression 90

2.1.4.2.2 Stack based computers 92

2.1.4.2.3 Converting Infix Expressions to Postfix 94

2.2 Introduction to Queues 102

2.2.1 Operations on Queues 104

2.2.2 Array Representation of Queues 104

2.2.2.1 Comparison of Circular queues and Linear queues 111

2.2.3 Deque 111

2.2.4 Circular Queues for Round-Robin scheduling 115

Multiple Choice Questions 120

Descriptive questions 124

Laboratory programming tasks 130

Welcome to participate in the online competition 131

Programming puzzles 131

References 131

3.1 Linked Lists 133

Circular lists 134

Doubly linked lists 134

3.1.1 Single Linked Lists 150

3.1.1.1. Linked List representation in Memory 150

3.1.1.2. Operations on a Single Linked List 159

3.1.2. Circular Linked Lists 186

3.1.3. Doubly Linked Lists 190

3.1.4. Linked List Representation and Operations of Stack 198

3.1.5. Linked List Representation and Operations of Queue 201

3.1.6. Sentinel nodes 204

Multiple choice questions 204

Descriptive questions 209

Laboratory programming tasks 217

Welcome to participate in the online competition 217

Programming puzzles 217

References 217

4. Non Linear data structures 219

4.1. Introduction to trees 219

4.1.1. Definition of a tree 221

4.1.2. Basic terminology 222

4.1.3. Tree Traversals 225

4.1.4. Creating Binary Search Tree 227

4.2. Introduction to graph theory 262

4.2.1.Graph Representations 266

4.2.1.1 Adjacency Matrix Representation of the Graph 266

4.2.1.2. Adjacency List Representation 269

4.2.1.4. Array List representation 272

4.2.2. Transitive Closure and Path Matrix or reachability matrix 272

4.2.2.1. Warshall’s Algorithm 273

4.2.3. Graph Traversals 273

4.2.3.1. DFT Algorithm 274

4.2.3.2. BFT Algorithm 276

4.2.4. Minimum Distance Problems 278

4.2.4.1. Dijkstra’s Algorithm 278

4.2.4.2. Minimum Spanning Tree 281

4.2.4.2.1. Kruskal’s Algorithm 282

4.2.4.2.2. Prim’s Algorithm 284

4.2.5. Topological Sorting 285

Multiple choice questions 288

Descriptive questions 290

Laboratory programming tasks 295

Welcome to participate in the online competition 295

Programming puzzles 295

References 296

List of Appendices 297

UNIT Coverage:

Objectives of the Unit

Learning outcomes of the Unit
After completing the Unit 1, the student

● is able to apply the basic techniques covered in the course in designing algorithms and
implementing them in C (U1-01).

● is able to analyse the time and space complexity of an algorithm using big-O notation
and justify the correctness of an algorithm using, for example, a loop invariant and/or
fundamental step (U1-02).

● has detailed knowledge of abstract data type (U1-03).

● is able to implement the most important tree algorithms and knows their time
complexities (U1-04).

● is familiar with the basic concepts overflow, underflow (U1-05).

● has detailed knowledge of how data structures are instrumental in programming
language design (U1-06).

● applies the basic concepts covered in the unit such as iterative solutions, recursive
solutions, divide and conquer solutions (U1-07).

● is able to pick a suitable algorithm for an application based on, e.g., time complexity

(U1-08).

Data Structures:Theory & Practicals
2

Introduction to data structures 3

Note: We will be using a program visualization tool in our book extensively in order to let students
understand a piece of logic in a better manner and in a visual manner. The application contains the
following buttons:

The button “First” takes you to the beginning of our code, “Prev” takes you to the previous
instruction, “Next” takes you to the next instruction, and the “Last” takes you to the last instruction
of our program. While we move in our program, all the variables values, stack content, heap content
will be displayed in a marvelous manner so as to understand the logic of the code which we are
trying to visualize. If we encounter any problem with the server, try again. Also, this visualization
tool cannot support interactive input(scanf) in C language. Thus, we may be using some random
numbers that are generated from the rand() function as input. However, if we want another set of
input values, you may call srand() function with some integer value as argument.

1.1 Introduction to Data Structures
According to Wikipedia1:

According to Britannica2:

Some authoritative authors of Computer Science consider Algorithms + Data Structures =

Program. In fact, Niklaus Wirth wrote a book with the title ”Algorithms + Data Structures =
Program” that was published by Prentice-Hall in 1975.

Question 1: How many comparisons are needed to find the maximum out of three integers (of any
type)?. Before answering, please do explore the following links which contain various solutions
from our side. In fact, there are many more possible solutions for this problem.
https://tinyurl.com/AICTEDSBOOK2c
https://tinyurl.com/AICTEDSBOOK2d
https://tinyurl.com/AICTEDSBOOK2e
Out of the above code samples, which one takes less number of comparisons? Can you plan another
approach that uses a lesser number of comparisons?

We think the readers are exposed or convergent with one high level programming language

such as C. Thus, we love to construct their data structures foundations on that C knowledge.

1 https://en.wikipedia.org/wiki/Data_structure
2 https://www.britannica.com/technology/data-structure

Data Structures:Theory & Practicals
4

Question 2: How many comparisons are needed to find both the maximum and minimum of out
of the given four integers (of any type)3. Before answering, please do explore the following link
which contains one possible solution from our side.
https://tinyurl.com/NBVMAXABCD

In our solution given at the above link uses divide and conquer approach. It finds the maximum
and minimum of the first two numbers then maximum and minimum of next two numbers. Then,
maximum of the maximums and minimum of minimums are computed as the final solution. Have
a look at the above link. Thus, we will be spending four comparisons.

Can you plan another approach that uses a lesser number of comparisons?

Can you plan another approach that uses exactly six comparisons (three comparisons for

finding maximum and three more comparisons for finding minimum of the given four

numbers) to find the required things?

Question 3: This question was asked in Kansas State University High School Programming contest
HSPC 2004. Assume that given three integers a, b, and c to be ordered such that a will be having
smallest value, c to be having largest value while b to be having intermediate value. Assume that
we have some working code made it available for your experimentation at
https://tinyurl.com/AICTEDSBOOK5

When do we need the worst number of comparisons? When will you need the smallest number

of comparisons? Can you think of any other efficient method for doing the same?

If all the given three are in natural order, how many comparisons it needs?

If all the given three are in descending order, how many comparisons is demands?

When this approach used in the above link takes exactly one comparison?

Data structures are the backbones of High-Level Languages4

We are sure most of you are aware about low level, medium level, high level programming
languages. Also, you know that programming languages have evolved from machine languages to
high level languages via assembly languages. However, many assembly languages along with
BCPL (Basic Combined Programming Language) like low level languages rarely contain rich data
structures. Whereas most of the high-level programming(HLL) languages are popular because of
their rich data structures such as arrays/records. Of course, some higher-level assembly languages
such as MASM(Microsoft Assembler), NASM(GNU Assembler) have some built-in support for
certain data structures. For example C,5 supports user defined types known as structures, unions,
enumerators, and derived types called as arrays (one-dimensional arrays, two dimensional arrays
and multidimensional arrays) while Pascal languages support records and vectors.

Question 4: Assume that C language or some other assembly language does not have a modulus
operator(%). How to realize the same. You know in C language, if a and b are two integer type
variables then a%b is defined as reminder of |a|/|b| with the sign as that of the first operand(a). That
is, 10%3=1, 10%-3=1, -10%3=-1, -10%-3=-1, 3%19=3, 10%2=0, 11%2=1, and vice versa. Also,

3 Can you think of implementing our solution on given four strings and find the strings which comes first

and last in the alphabetical order out of the given four strings?
4 http://orion.lcg.ufrj.br/Dr.Dobbs/books/book2/chap01.htm

5 a direct descendant of BCPL

Introduction to data structures 5

do remember that the language uses integer mode arithmetics if all of the operands of any operator
are integers. Thus, 10/3=1, 5/9=0, 34/3=11, and vice versa. See the following link where a sample
program is proposed by us. Identify the logic we have used in implementing modulus operators
using integer division, multiplication and subtraction.
https://tinyurl.com/AICTEDSBOOK4

Did you understand the logic behind this solution? What happens if the division operation

does not follow integer arithmetic?

For the ease of humans' specification to machine what they want, high level languages are
developed. However, the machine/CPU very much takes instructions in its machine language. Thus,
we need translators that convert high level language programs to machine language. For example,
if we write an arithmetic expression in C language, how with the help of a data structure stack it
will be verified for its validity and then evaluated is introduced in the chapter on stacks and queues?.
Also, related themes known as expression trees are explained in chapter on “trees and graphs”. Let
us take a funny example. Assume you are hungry and ordered an Item from a restaurant. Then what
happens? We don’t know. What we know is that the parcel is going to arrive within 10 minutes.
What SW system, what delivery boy’s organization it uses is masked from us. In the same sense,
when we write a program in high level language without the knowledge of ourselves, the compiler
uses many data structures (some may be already available in the HLL and some or specially
designed) to convert the same into machine language for possible execution.

Just, try to open your Windows task manager app that shows details about processes running on
your computer, memory and CPU performance etc. For example, you can find my task manager
window as shown below. You find that I am running more than one Google Chrome process. What
does that convey further? Windows support multi tasking and also the Chrome app SW is designed
to have multiple or concurrent versions. In the same lines, sometimes some applications demands
their data structures to be concurrently (or parallel) in multiple computing threads6.

6 The high level language program explicitly typed by us is called the source program which is available as

files in our secondary memory systems such as Hard disk, etc.,. After successful compilation, the compiler
generates a machine language file (in the case of Windows it is EXE; whereas in the case of Unix/Linux it
is ELF binary or a.out binary). When we really start this program file, it will be loaded into RAM then it is
called as process. Thus, the process is an executable entity that is in RAM. Process creation takes lots of
computational resources and thus it is called as heavy weight while thread is also an executable entity but
demands less computational resources. Detailed discussion on this theme is beyond the scope of this book

Data Structures:Theory & Practicals
6

Let us try to construct the foundations of data structures based on your current C language
knowledge. You know that Computers are finite devices; i.e., they will have finite memory like
16GB RAM, and finite clock rate, etc. Also, you know that programming languages are also finite
languages. The built-in variables such as int, float, char, long, double of C language will be taking

finite memory. For example, int type variable takes 4 bytes (32 bits in C), and vice versa. In the
following picture (Fig. 1.1), you will find a C program and its output. It tries to add two int types
of variables, two long types of variables with large possible values. Readers may refer to
https://en.wikibooks.org/wiki/C_Programming/limits.h for possible limits for various data types
in C language.

Introduction to data structures 7

Fig. 1.1: Demonstration of overflow in C language addition.

The addition(+) instructions (among two integers(a&b), two long(x&y, m&n) of the above program
leads to overflow (see the above picture) because of finiteness of the memory that is allocated for
the variables. That is, in an int type variable in C language, we can store a maximum value of
2147483647. When we try to add two such variables a and b and store their results in the third
variable c, we bump into overflow (we cannot store more than 2147483647 in variable c as it is
also int type) and thus c variable value is not the actual value we expect; instead we are getting -2
into the c variable. This is happening because of the finiteness of language.

Note: Of course, after seeing the above picture, you may be having a doubt “in the above C program
why 9223372036854775807 becoming 9223372036854776000 in long type in C language?”.
Though, we love to clarify it here, because of the book size limitations we are not explaining here.

The following C program also shows similar behavior.

Output of the above program is given below. You find overflow at every c=a+b statement.
-2

Data Structures:Theory & Practicals
8

-2
-332398594

The following link contains the above code for readers for their experimentation.

https://tinyurl.com/AICTEDSBOOK0b

The following C program also shows similar behavior.

The following link contains the above code for readers experimentation.
https://tinyurl.com/AICTEDSBOOK0a

The following link contains the Python variant of the above programs for readers experimentation.
https://tinyurl.com/AICTEDSBOOK1 .

We welcome readers to experiment the same. Do remember you need not be required to be knowing
Python language to understand the following Python code. Here, also we are adding two variables
and trying to print the results. While experimenting with the following code, you may remove #
from the statement #print(c).

Introduction to data structures 9

a=99223372036854775807922337203685477580792233720368547

7580792233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807922337203685477580792233720

3685477589922337203685477580792233720368547758079223372

0368547758079223372036854775807922337203685477580792233

7203685477580792233720368547758079223372036854775807922

3372036854775807922337203685477580792233720368547758079

2233720368547758072233720368547758079223372036854775807

9223372036854775807992233720368547758079223372036854775

8079223372036854775807922337203685477580792233720368547

7580792233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807223372036854775807922337203

6854775807922337203685477580799223372036854775807922337

2036854775807922337203685477580792233720368547758079223

3720368547758079223372036854775807922337203685477580792

2337203685477580792233720368547758079223372036854775807

9223372036854775807922337203685477580722337203685477580

7922337203685477580792233720368547758079922337203685477

5807922337203685477580792233720368547758079223372036854

7758079223372036854775807922337203685477580792233720368

5477580792233720368547758079223372036854775807922337203

6854775807922337203685477580792233720368547758072233720

3685477580792233720368547758079223372036854775807992233

7203685477580792233720368547758079223372036854775807922

3372036854775807922337203685477580792233720368547758079

2233720368547758079223372036854775807922337203685477580

7922337203685477580792233720368547758079223372036854775

8072233720368547758079223372036854775807922337203685477

5807992233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807922337203685477580792233720

3685477580792233720368547758079223372036854775807922337

Data Structures:Theory & Practicals
10

2036854775807223372036854775807922337203685477580792233

7203685477580799223372036854775807922337203685477580792

2337203685477580792233720368547758079223372036854775807

9223372036854775807922337203685477580792233720368547758

0792233720368547758079223372036854775807922337203685477

5807922337203685477580722337203685477580792233720368547

7580792233720368547758079922337203685477580792233720368

5477580792233720368547758079223372036854775807922337203

6854775807922337203685477580792233720368547758079223372

0368547758079223372036854775807922337203685477580792233

7203685477580792233720368547758072233720368547758079223

3720368547758079223372036854775807072233720368547758079

2233720368547758079223372036854775807

b=99223372036854775807922337203685477580792233720368547

7580792233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807922337203685477580792233720

3685477580722337203685477580792233720368547758079223372

0368547758079922337203685477580792233720368547758079223

3720368547758079223372036854775807922337203685477580792

2337203685477580792233720368547758079223372036854775807

9223372036854775807922337203685477580792233720368547759

9223372036854775807922337203685477580792233720368547758

0792233720368547758079992233720368547758079223372036854

7758079223372036854775807922337203685477580792233720368

5477580792233720368547758079223372036854775807922337203

6854775807922337203685477580792233720368547758079223372

0368547758079223372036854775807223372036854775807922337

2036854775807922337203685477580799223372036854775807922

3372036854775807922337203685477580792233720368547758079

2233720368547758079223372036854775807922337203685477580

7922337203685477580792233720368547758079223372036854775

8079223372036854775807922337203685477580722337203685477

5807922337203685477580792233720368547758079922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807922337203685477580792233720

3685477580792233720368547758079223372036854775807922337

2036854775807922337203685477580792233720368547758072233

7203685477580792233720368547758079223372036854775807992

2337203685477580792233720368547758079223372036854775807

9223372036854775807922337203685477580792233720368547758

0792233720368547758079223372036854775807922337203685477

5807922337203685477580792233720368547758079223372036854

7758072233720368547758079223372036854775807922337203685

4775807223372036854775807922337203685477580792233720368

Introduction to data structures 11

5477580792233720368547758079223372036854775807922337203

6854775807922337203685477599223372036854775807922337203

6854775807922337203685477580792233720368547758079223372

0368547758079223372036854775807922337203685477580792233

7203685477580792233720368547758079223372036854775807922

3372036854775807922337203685477580722337203685477580792

2337203685477580792233720368547758079922337203685477580

7922337203685477580792233720368547758079223372036854775

8079223372036854775807922337203685477580792233720368547

7580792233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758072233720368

5477580792233720368547758079223372036854775807992233720

3685477580792233720368547758079223372036854775807922337

2036854775807922337203685477580792233720368547758079223

3720368547758079223372036854775807922337203685477580792

2337203685477580792233720368547758079223372036854775807

2233720368547758079223372036854775807922337203685477580

7992233720368547758079223372036854775807922337203685477

5807922337203685477580792233720368547758079223372036854

7758079223372036854775807922337203685477580792233720368

5477580792233720368547758079223372036854775807922337203

6854775807223372036854775807922337203685477580792233720

3685477580780792233720368547758072233720368547758079223

3720368547758079223372036854775807

The above program gives the following results.

Interestingly, you find from the above Python program that in the Python language, we are able to
add huge integers also without any overflow (One can verify with this program that it cannot give
any underflow also by taking huge negative values). This became possible as Python uses

BigInteger/Bignum data structure (refer https://peps.python.org/pep-0237/, ,
https://levelup.gitconnected.com/how-python-represents-integers-using-bignum-f8f0574d0d6b
for more details) to achieve this in run time as a dynamic language unlike C.

Data Structures:Theory & Practicals
12

From the above examples, we find Python language uses Bignum data structure because of

which it rarely gives overflow!. This is an example that shows how data structures are used

in high level language design/development.

Why do we need arrays?

Do remember that I am not asking “What is an array”?. An array occupies consecutive memory
locations in the RAM and is used to store similar data. That is, all the elements of an array are of
the same type. However, I am asking “Why do we need arrays”?.

Some people give the answer as “to refer to a group of values with a single name”. Of course, I am
not convinced with this answer fully. To answer my question, pose yourself a question: what if our
language does not support arrays at all? We already understood that some low level programming
languages do not have arrays or vectors.

For example, let us assume that we want a program to calculate average marks of those

students whose marks are more than the class average. Of course, class average also has to

be calculated by your program itself.

See the following solution. 1. We go on reading the students' marks one after another and calculate
their total marks. 2. Now, we calculate class average(avg) using the computed class total marks. 3.
Now, we again read students' marks one after another and compare with class average(avg) and
calculate the number of students whose marks are more than class average(n1) and their total
marks(avg1). 4. Now, we compute the average marks of the students whose marks are more than
the class average as avg1/n1.

The above code is available at https://ideone.com/WHmq6H for readers experimentation.

In the above solution, we are reading all the student’s marks two times. By chance if we make a
mistake in entering the last value during the second time, we are forced to run the program again
and enter all the students marks another two more times. That is, the above solution is demanding
more program I/O bandwidth.

Introduction to data structures 13

Now, see the following solution where all the student’s marks are read only once into an array and
use them a second time without reading again interactively. In fact, once the data is available in the
array (in the memory, RAM), we can use the same as many times as we want without spending any
more program I/O bandwidth. Thus, use of arrays reduces program I/O bandwidth. So, do you
think the program becomes fast? Of course, you are a very very very fast data entry operator then
things may be different. Do you know that we need a few milliseconds to press and release a key
while to read one word from RAM we need a few nanoseconds?

The above code is available at https://ideone.com/CrbIhN for your experimentation.

Thus, an array is a good example for a data structure. From the above two coding examples,
we found that the use of arrays reduces program’s I/O bandwidth. Also, to know the importance of
arrays, one program we have written without arrays while the other with arrays. In practice also,

in order to know the importance of one thing, we need to study what happens if we don’t have

it in our system. This is one of the famous engineering requirements known as risk analysis

or failure analysis!. Also, if a is an array, while accessing ith of it element through a[i], compiler
spends one (implicit) multiplication in computing the address of a[i] with the formula
a+i*sizeof(type of a), where we know that here ‘a’ is the base address of the array ‘a’. In the same
lines, if a is a two dimensional array with four rows and 7 columns then while accessing a[i][j],
compiler will be employing a+(i*7+j)*sizeof(type of a). This is true with multidimensional arrays
also. Thus, array data structure of high level language is masking many technical aspects from its
programmers!.

We recommend readers to refer to the following video to understand more about this (addressing)
concept which is also called as storage order of the arrays. We have two prominent storage orders
known as row major and column major order. C, C++, Java etc., uses row major order while
FORTRAN uses column major order.
https://www.youtube.com/watch?v=aPQM-
SQfe2A&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4NMtVN&index=61

Data Structures:Theory & Practicals
14

Question 5: In the above discussion, we have compared two programs. The second one that
employs arrays is declared to be taking less time. But, what about memory requirements7 of both
the methods? If you observe the first program, it is taking a scalar variable, m, only to read students'
marks. Is it also the most important difference?

Let us debate things further around your knowledge set on C language. We are sure your teacher
might have taught you how to compute the product of two matrices and the same you might have
carried out in the laboratory also.

If A is an m1xn1 matrix, B is an n1xm2 matrix then the product of AB matrices(C) becomes a
m1xn2 matrix. We are sure the same thing is your Mathematics course is represented as:
 𝐶 𝐴 𝐵 , 1 𝑖 𝑚1, 1 𝑗 𝑛2

The same in the C language is implemented as follows with A, B, C as two dimensional arrays. We
are skipping instructions to read the data into arrays A, B for the reasons of brevity or conciseness
of the book.

The following link contains our sample code to compute the matrix product. You are welcome to
experiment with its working.
https://tinyurl.com/AICTEDSBOOK3

The following picture (Fig. 1.2) contains the snapshot of our matrix multiplication code.

7 Space complexity section we shall discuss some more examples on this theme

Introduction to data structures 15

Fig. 1.2: A snapshot of matrix multiplication program

Assume that our C language does not support the two dimensional array concept and we want a
flexible matrix multiplication program. Is it possible to write in C? Do remember that we need a
flexible program. That is, to multiply any sized matrix with any sized matrix and of course meet
the essential requirement of 1st matrix columns to be the same as the second matrix's number of
rows. Did you catch the point? Thus, the two dimensional array data structure of the C

language is the one that is allowing us to write a flexible matrix multiplication program. In
this manner, data structures of a language helps us to implement the solutions in an easy manner8.

Thus, the main objective of the data structures is to manipulate/store the data efficiently in the
primary memory by possibly designing data structures. Of course, it is wiser to relate this to other
areas of Computer Science also. In Computer Science, we do have another area known as Database
Management Systems (DBMS). It also deals with efficient storage and manipulation of the data.
However, there we assume that the data is in secondary memory devices such as hard disks, optical
disks, etc.,. Many algorithms which are used in data structures are equally applicable in DBMS
also. Because of the same reason, sorting methods which are when applied to the data items in the

8 Some authors refer this as tractability

Data Structures:Theory & Practicals
16

primary memory (RAM), are referred to as internal sorting techniques; the same, when applied to
the data items available in the secondary memory devices (either as a databases or as a file), are
referred to as external sorting techniques. Of course, a data structure method that is found to

be good on the data in RAM is not guaranteed to be good if the data is in secondary memory

devices as both the devices (RAM and hard disks) work on different accessing approaches in

their physical forms.

Moreover, the Computer Science curriculum of most of the Universities contains courses such as
1. Design And Analysis of Algorithms 2. Graph Theory 1 and 29 3. Computational Geometry, 4.
Distributed and Parallel Algorithms, etc.,. There exists some overlap between these courses.

More or less, some of the prime objectives of these courses including data structures are:
1. To study algorithms in detail so as to find means of making it efficient in terms of its CPU time
and memory requirements.
2. To study algorithm to find out suitable storage (organization) and manipulation procedures for a
problem,
3. To compare the algorithms which are available for a problem such that one of them can be
recommended in a practical system,
4. To study an algorithm and its computational requirements such as CPU time, memory(RAM) in
terms of its problem size; a.k.a. scalability studies/analysis. What happens if the program is run on
a large data set; does the running time become an issue?. Is the program computationally inefficient
or does it need lots of memory?.
5. Just writing a syntax-error-free program is acceptable when you are in your 1st level computing
course. In reality in practice, we need to know whether the algorithm is correct or not, i.e. whether
it can give correct answers for the inputs (or called instances)?.
6. We can compare algorithms without implementation. This is called the analysis of algorithms,
theoretically. If we implement in a language and carry experimentations, then it is called
experimental study.

It is observed with most of the practical algorithms that if we try to reduce its CPU time
requirements it is bound to consume more memory; if we try to reduce its memory requirements,
it is going to consume more CPU time. This behavior is called the memory space-time tradeoff.
Analysis of an algorithm's CPU time and memory space requirements helps us in selecting suitable
versions of the algorithm for our practical SW systems10. For example, if we happened to have a
system with fast processor and less RAM, then we may select an algorithm which consumes more
CPU time and less RAM. If we happen to have a machine with a less powerful processor with a lot
of RAM, then we can select the algorithm which takes more RAM and less CPU time.

Let us try to explain the first reason with one strong example.

Example 1: Polynomial Evaluation
Let us assume that we have been given a polynomial with its coefficients to evaluate its value at a
given point x as:
a0+a1x+a2x2+………anxn

9 This reminds me of my BITS, Pilani stay during the 1990's. I did not get a chance to see BITS, Pilani

syllabus in the recent years.
10 SW localization. Users will be asked which type of algorithm while configuring a SW system.

Introduction to data structures 17

Now, if we employ a naïve approach, we may need 1+2+…+n multiplications = n(n+1)/2
multiplications. See the function FD in the following pages. Here, we assume to calculate x2 with
one multiplication, x3 with two multiplications etc., One more multiplication for multiplying them
with coefficients.

A second version is shown in function FD1. Here, with only one multiplication (without using pow
function), we propose to calculate x2, x3, x4 …etc.,. Thus, to calculate any term, we may need in
total, two multiplications. Thus, this version needs 2n multiplications.

The third version, FD2, is called Horner's method. It needs only n multiplications. This became
possible by reordering the equation as: (we are taking 6th order equation for clarity reasons):

If we observe the above equation, we may find that with 6 multiplications, we can evaluate the
polynomial value at x. The same thing can be generalized to nth order polynomials also. Thus, we
may need n multiplications to calculate polynomial value using this method.
Program for evaluating a Polynomial using Horner's method in relation to other methods.

Data Structures:Theory & Practicals
18

Output:

The above program is made available on a visualization server for the perusal of readers.
https://tinyurl.com/AICTEDSBOOK6

Example 2: In the following pages, an efficient means of evaluating xn, for some positive value of
n is proposed11. Normal iterative12 procedure if we follow, we need n-1 multiplications.

Solution: We propose to write n as the binary polynomial.

n=ak2
k+ak-12

k-1+……+a12
1+a02

0, Where, k is the largest integer such that 2k<=n, ak values can be
either 0 or 1..

Thus, 𝑥 𝑥

 𝑥 . 𝑥 𝑥 . 𝑥

 𝑥 𝑥 𝑥 𝑥

11 This method is known as repeated squaring or exponentiation by squaring
12 for(prod=1,i=1;i<n;i++)prod=prod*x; //this for loop runs for n times and thus takes (n-1) multiplications

while computing xn.

Introduction to data structures 19

 𝑦 𝑦𝑦 𝑦

To calculate yi value, we can multiply yi-1 with yi-1. Moreover, if ai value is zero we don’t consider
the respective yi value into a product otherwise we will consider. Thus, we may need 2k
multiplications to calculate xn.

That is, initially we verify LSB (least significant bit) of the binary code13 of n, if it is 0 then the
product is taken as 1; else it will be taken as x. The number n, will be right shifted by 1 bit. We
take y value as x. We execute a loop till n value becomes zero. Each time y value is updates as y*y.
If LSB of the n is 1, product is multiplied with y else not.

Output:
16777216

Snapshot of the above program.

n (24) t s We assume n value as 24.

00011000 1 As the least significant bit of n is 0, we consider s value as 1.

 x Initially, t value is taken as x.

00001100 Right shift the n value by 1 bit.

00001100

 x2

00001100 As the least significant bit of n is 0, we don’t multiply s with t.

00000110 Right shift the n value by 1 bit.

00000110 x4

00000110 As the least significant bit of n is 0, we don’t multiply s with t.

00000011 Right shift the n value by 1 bit.

 x8

00000011 x8 As the least significant bit of n is 0, we multiply s with t.

00000001 Right shift the n value by 1 bit.

00000001 x16

13 Why don’t you try to visualize how binary code of a number is computed using recursive implementation.

https://tinyurl.com/NBVbinarycode

Data Structures:Theory & Practicals
20

00000001 x24 As the least significant bit of n is 0, we multiply s with t.

00000000 Right shift the n value by 1 bit.

The above program is made available on a visualization server for the perusal of readers.
https://tinyurl.com/AICTEDSBOOK7

You are also welcome to view a video on this theme.
https://www.youtube.com/watch?v=JFH0C4wCKEg&list=PLXX7XiUxnzzWoLDfgad4s4dwleb
4NMtVN&index=19

By the way, how many times does the loop run in the above program? If you observe the table, you
find that we are executing the loop body once per one bit of the binary code of the required power,
n. Then the question arises is how many bits will be there in the binary code of the required power
n?. It is log2(n). Thus, the above loop can be said to be running for log2(n) times. We strongly
recommend the readers to read our primer on logarithms that is given in the Appendix of this book.

1.2 Classifications of Data Structures
There are three main data structure classifications, each consisting of a pair of characteristics.

Linear and Nonlinear

Linear structures We know that the elements of an array are organized in memory in sequential
manner. To support our statement or to educate yourself, we have written the following program
that displays the addresses of the elements of static and dynamic arrays from a C program.

The above program gives the following output. You will find that from their displayed addresses,
all the elements of an array (both static and dynamic) are consecutive in RAM. That is, they are
linear or sequential in RAM(memory). As an integer takes 4 bytes on my machine, the element

Introduction to data structures 21

address difference is 4. Of course, you will also find in the following output that the character array
elements address difference is 1 as in C language a character takes one byte of memory.

Arrays are thus linear in RAM; rather they are physically linear (one after another). What about
door numbers of two consecutive individual houses in a city? They are consecutive with a
difference value of 1 in them. BTW, what about roll numbers of an attendance register? They are
too consecutive or linear. Sometimes some objects may be logically linear. That is, they may not
be physically linear in memory, but in one sense they are consecutive or linear. We will be knowing
more about such things like linked lists, queues and stacks in the coming chapters.

Let me take one example. You are in an Ice cream shop and found your favorite ice cream is 5
rupees. If you buy two, the cost will be 10, if you buy four, the cost will be 20; if you buy k number
of ice creams, the cost will be 5k. What is the power for k? One. Isn’t it? Thus, your cost is linear
in k. Consider the total cost of your car fuel. Does it exactly depend on the number of kilometers
traveled? Not at all. It depends on your car age, fuel quality, road type(plain or hilly), weather
conditions(sunny or rainy), your mood(whether you are with your girlfriend or not), etc. That is,
the car fuel charge is said to be nonlinear and depends on the above parameters.

If the data doesn’t form a sequence (physically or logically), they are said to be nonlinear data
structures. Consider an example of a family tree where we find grand grand parent, grand parent,
parent, children, grand children etc., in the tree. Here, persons may be having a hierarchical
relationship. We shall introduce in this book two most popular nonlinear data structures, trees
(binary trees) and graphs in forthcoming chapters.

Static and Dynamic

This classification is based on the memory that is allocated for a data structure. Consider an
example of a C array which is declared with the instruction like int a[10]. You may already know
that the memory that is allocated for the array, a, will stay till the end of the program. It will not
change, I mean it is static. How much memory needed for this array can be found at compile time
itself; of course the compiler knows this. Dynamic data structures are uniquely identified by their
non-fixed memory sizes and which can grow or shrink while the program is executing. Also, the
location of their associated memory can change during the execution of the program. Marvelous
examples of dynamic data structures are C++ language’s standard template libraries(STL)14.

➢
We welcome readers to visit the following link and visualize the code available there. We

find that the memory for the array x will be allocated when we enter into the function and the same
memory gets deallocated when we return from the function. This is because the array x is a static
array. However, the other two arrays a and b whose memory is allocated through malloc() will be
available even if the program control exits from the function. This is because they are dynamic
arrays.
https://tinyurl.com/NBVstaticvsdynamicarrays

Mutable/Immutable15

14 Many people advises people to use these STLs in solving programming competitions.
15 https://www.cronj.com/blog/immutable-mutable-data-structures-functional-javascript/

Data Structures:Theory & Practicals
22

Mutable ones are the ones whose state(data) can be changed once it is created like adding, updating
or deleting elements.
Ex: Lists, Dictionary, Set, bytearray are mutable object types in python, queues, linked lists, stacks,
trees.
Immutable ones are the ones whose state (data or content) cannot be modified after creation; we
cannot add, remove or update their elements (data or content).
Ex: String, Integer, Tuples, Frozenset are some of the immutable object types in Python.
For instance, C++ language supports “const” with which we can declare a variable as constant type
such that its value cannot be changed and any attempt to change its value gives error during the
compilation time itself.
If we try to compile the following single line program at https://ideone.com/NiduLs

Introduction to data structures 23

We get the following error:
Compilation error #stdin compilation error #stdout 0s 0KB
prog.cpp: In function ‘int main()’:
prog.cpp:6:4: error: assignment of read-only variable ‘N’
 N=100;

However, “const” and “immutable” are different. Readers are welcome to read this discussion.
https://softwareengineering.stackexchange.com/questions/149555/difference-between-immutable-
and-const

Homogenous and Non-Homogenous

A data structure is said to be homogenous data structure if it consists of the same data elements,
like elements of a C array; otherwise non-homogeneous data structure. That is, in non-homogenous
data structures, the data or members/elements don’t have to be the same type16. For example, see
the following two images that are borrowed from alamy.com. The left side image is the inside of a
passenger aircraft whereas the right side image is of a balla kattu that is used in many parts of India.
The left side one carries humans (not animals or vehicles) whereas the right side carries humans,
cattle, goods, vehicles. By the way, which is homogeneous and which is non-homogeneous?

Persistent and non-persistent data structures

According to Wikipedia17:
In computing, a persistent data structure preserves the previous version when it gets changed.
These data structures also can be said as not ephemeral data structures. When some changes take
place on these data structures, a new version of it will be available. They can be also referred to as
immutable as the operations on them do not (visibly) update their structure in-place.

Text and File Editing

Do you remember Undo and Redo operations that exist in many applications. These two are the
most common operations that are available in most of the Text or File editing tools and allow us to
have (or recall or go back) persisted (all historical) versions through a persistent data structure. Are
you able to catch our point? Let us take one more example. We are sure that you have created some
Google Doc files, Presentations using Google Doc. In fact, I am writing or creating this manuscript
using Google Doc only. See the following picture. It shows when the file is edited. This filename
is Unit1.doc. At any time I can go back to the file status or content of any date and any time.

16 Python lists are good examples for this category of data structures.
17

https://en.wikipedia.org/wiki/Persistent_data_structure#:~:text=The%20data%20structure%20is%20fully,n
ot%20persistent%20are%20called%20ephemeral.

Data Structures:Theory & Practicals
24

That is, the Google Doc document is persistent. Did you come across Github? It is a widely used
SW repository and we can access the contents of our source files that are committed in it of any
data and any time.

An operation on an ordinary data structure leaves a new version, destroying their old version.
However, a persistent structure allows access to any version, old or new18. Multiple versions of a
data structure is a must while working with the allocations such as computational geometry, 3D
graphics, CAD, etc.. A data structure is persistent if it supports access to its multiple versions.

A partially persistent data structure is the one which extends freedom to access all of its versions
with the constraint of being unable to modify all versions except the most recent one. A fully
persistent extends freedom for accessing and modifying all its versions.

Array data structures which are available in C, Java, Python can be said to be non-persistent; if
you change it, you have changed it eternally.

Consider the following two C language statements.
int c=10;
c++;

We know that after the execution of the second statement, variable c value is 11. Is it having c’s
previous value also? No. If we can store the operation that we have applied on c to get this current
value 11, then we can get back c’s previous value. That is, we can achieve persistence for the
variable c. However, as the C language is not storing anything with respect to variable c except its
current value, we say that variable c value is non-persistent.

Non-persistent data structures are efficient, but hard to reason about in complex systems. Persistent
systems are a bit slower and need some semantics about what a reference is. For example, many
databases provide persistence at least within a transaction. Some more advanced systems give even

18 https://www.cs.cmu.edu/~sleator/papers/another-persistence.pdf

Introduction to data structures 25

greater persistence promises: given a timestamp T, the server/system can always return the exact
state of the data at time T.

For example consider a Linked List.

(Courtesy: https://www.hackerrank.com/topics/persistent-data-structures Last accessed: 10th Aug
2022)
Assume that we want to insert two new nodes just before the head of an existing linked list. To
achieve this, we will create a new node and point (link) it to the current head of the linked list. See
the following picture where Head[0] is made pointing to the first linked list, Head[1] is pointing to
the linked list after adding 4, while Head[2] is the that points to the linked list after adding number
5. That is, we can access the old linked list through Head[0], modified linked list after adding 4
through Head[1], and further modified linked list through Head[2]. If we do like this then we can
say we have the persistent linked list. At any time, we can access any version of the linked list. This
became possible with the overhead of two extra pointers, Head[1] and Head[2].

(Courtesy: https://www.hackerrank.com/topics/persistent-data-structures Last accessed: 10th Aug
2022)

We welcome readers to play with this to experience the above explanation. Anyway, we shall be
dwelling linked lists in detail in the third chapter.
https://tinyurl.com/AICTEDSBOOK117

By chance, if we add a new node in between an existing linked list, we cannot have original linked
list and modified linked list; we have the modified one only. That is, it is a non-persistent operation.
Consider a binary tree T:

(Courtesy: https://www.hackerrank.com/topics/persistent-data-structures Last accessed: 10th Aug
2022)

To insert a new value into a persistent binary tree, first we create a new tree with the nodes which
are along the path from the root to the node to which the new node to be added then new node will
be added to it. The remaining nodes of the original persistent tree that are not along the path are
shared between the original and the updated versions of the tree.

Data Structures:Theory & Practicals
26

(Courtesy: https://www.hackerrank.com/topics/persistent-data-structures Last accessed: 10th Aug
2022)

Partially Persistent

We already understood that in partially persistent data structures we can access all versions but
modify the most recent version only. This means historical versions of the data structure are
immutable (read-only). Consider the previous example of the linked list. If we try to add a new
node to an existing linked list at the end, the remaining or original list will not change.

(Courtesy: https://arpitbhayani.me/blogs/persistent-data-structures-introduction Last accessed:
10th Aug 2022)

Fully Persistent

Fully Persistent Data Structures does not restrict any modifications on any version of the data
structure whatsoever it may be at any time. This means we can typically revisit any historical
version and modify it.

(Courtesy: https://arpitbhayani.me/blogs/persistent-data-structures-introduction Last accessed:
10th Aug 2022)

Confluently Persistent

Confluently Persistent Data Structures not only allows modifications to historical versions (past or
previous versions) but also allows to merge with the existing ones so as to create a new version.

Introduction to data structures 27

(Courtesy: https://arpitbhayani.me/blogs/persistent-data-structures-introduction Last accessed:
10th Aug 2022)

Note: Certainly one is expected to relate persistence with mutability also. However, as this book is
aimed at first level readers, it is beyond the scope of the book.

Primitive vs non-primitive(aka derived)

Primitive data types are predefined by the particular programming language. This includes int,
float, decimal, number, char, string and so on, depending on the language.

Non-primitive data types are defined by the programmer. The language will provide keywords like
struct, class, and interface for defining these.

1.2.1 Advantages of Data structures
1. Effective data storage (RAM or secondary memory) is possible by the use of data structures.

2. The use of data structures makes it easier to retrieve data from a storage device in addition
to RAM. However, the data structure that is used to access RAM may not be suitable for other
devices such as hard disks.

3. An aptly designed data structure can extend similar benefits when used with both little and
huge amounts of data. That is, they are scalable.

4. The use of a good data structure may assist a programmer to save a lot of time or processing
time while performing tasks such as data storage, retrieval, or processing.

5. Anybody can use data structures such as arrays, trees, linked lists, stacks, graphs, and so
on as they are thoroughly verified and proved. This may reduce their SW development time.

1.3 Operations on Data Structures
Usually, we will be doing a variety of operations on data structures which may change from data
structure to data structure.

For instance, on an array which we already understood as a data structure, we can access a specific
element, we can change a specific element, we can traverse all the elements of an array, and vice
versa. Also, we need to search(find) whether a given element in the array or not; we may need to

sort all the elements of the array, we may need to partition the array based on some criterion.

Data Structures:Theory & Practicals
28

Also, we may be using inserting (adding) an element, removing (deleting) an element, removing

all elements (cleaning), etc.,.

As such, we did not touch the real subject of data structures, so it is not wise from our side to talk
in the air. Thus, we postpone our discussion on operations on data structures to next chapters.

1.3.1 Algorithms: a briefing
An algorithm may be defined in simple terms as a finite sequence of instructions that solves a
problem. A computer program is simply an implementation of an algorithm on a computer. The
word Algorithm comes from the name of Abu Ja’afar Mohamed ibn Musa Al Khowarizmi (c. 825
A.D.). An Algorithm is a procedure to do a certain task. An Algorithm is supposed to solve a
general, well-specified problem.

How to make your breakfast?
See the following figure (Fig. 1.3) having steps in making breakfast.

Fig 1.3. Algorithm for breakfast

In Yoga, surya namaskar is one form (see Fig. 1.4). The sequence of poses that we carry can be
also considered as an algorithm, of course to do this prakriya.

Fig. 1.4: Algorithm for surya namaskar
Picture courtesy of: https://www.timeslifestyle.net/wp-content/uploads/2018/03/Surya-
Namaskara-benefits-and-how-to-do.jpg

Introduction to data structures 29

Thus, an Algorithm is a set of rules or steps used to solve a problem. An algorithm is a sequence
of instructions or a set of rules to get something done.

An algorithm can be also thought off as a solution to a problem with three properties:
● having list of step-by-step of instructions
● It is a finite process. This means it is guaranteed to finish at some point.
● All the possible instances(situations or cases) of the problem have to be solved.

In computer science, a problem is solved in the following fashion. 1. Analyzing the problem and
preparing the algorithm, 2. Implement the algorithm probably in some language, 3. Test the
algorithm (program) 4. Use the algorithm (program or Software). This sequence of steps also can
be called an algorithm. Ha. Ha. Algorithm for algorithm(see Fig. 1.5).

Fig. 1.5: Algorithm for realizing algorithm
I am happy to know that a board of directors are being appointed by algorithms!.
https://www.bbc.com/news/technology-27426942?ocid=wsnews.chat-apps.in-app-
msg.whatsapp.trial.link1_.auin&fbclid=IwAR2yalns1tNDHPS-
Q8Rbuwc075vAtq9kDI_3J8KxJe9iqNbM4YEugQmPj2w

Example 3: Let us enjoy a real life example and its algorithm
A simple real life example to illustrate what an algorithm is. Assume that there is a mother with
two children. Both the children are having their favourite cups, probably their names on them. They
will have their drinks only when they are served in their respective cups. One loves coffee and the
other loves Horlicks. One fine morning, mother wanted to serve them drinks, but made a mistake
in selecting the cups; rather cups got exchanged. Now, how she can solve the situation. Assume
both the cups are of same size(volume) and she is also having an empty cup also at her disposal.

She transfers coffee to the empty cup.

Data Structures:Theory & Practicals
30

Then, she transfers Horlicks to the cup labelled coffee.

Now, she transfers coffee to the cup labeled as Milk.

The steps that the mother followed can be said as an algorithm to solve her problem.

Now, let us visualize the above operation in a programming language point of view. That is, we
want to exchange the values of two variables(or objects). We have the following six solutions for
our discussion.

Solution A is akin to the cups example which we have explained above. That is, we are using a
temporary variable. That is, assign the value of the variable, a, to temp variable, value of variable
b to variable a, then value of temp variable to variable a. Three steps like the above example.

The following link contains a C language implementation of solution A which is hosted on a
visualization server. We welcome readers to experiment and understand the working of this.
https://tinyurl.com/y84zkj8n

Solution B uses bitwise exclusive-OR operator. The following workout will clarify the steps of
solution B. Observe the original and final bit patterns of a and b.

The following link contains a C language implementation of solution A which is hosted on a
visualization server. We welcome readers to experiment and understand the working of this.

https://tinyurl.com/yab53z3z

Introduction to data structures 31

Let us explore whether the above solutionB works for float type variables or not.

Try to run the above. Refer any book on C language to find whether bitwise operators are
meaningful between float type arguments or not.

Maybe the following corrections will make this work with floats also.

The above is available at https://ideone.com/1WPtp1 for experimentation.

Now let us debate on Solution C. The following link contains the above Solution Cs code on a
visualization server.
https://tinyurl.com/y9vq86os

Example 4: Experiment the above Solution C with
a. Very large values (in the order of 264-1) for a and b.

b. Very large negative values in the order of -(264-1) for a and b.
c. Variable a is very huge positive and while b is very large negative.

d. Both a and b are zeros.
e. Either of a and b are zeroes.
f. Both are positives.

g. Both are negatives.

h. One positive and one negative.
i. Repeat the above for float type values of a and b.

Approach D is available at https://tinyurl.com/y75kabfw and you are most welcome to trace the
same on the visualization server.

Data Structures:Theory & Practicals
32

Approach E code is available at https://tinyurl.com/y7puvwof and you are most welcome to trace
the same on the visualization server.

Approach F code is available at https://tinyurl.com/y9c3n687 and you are most welcome to trace
the same on the visualization server. Find a flaw in this code given above link.

Question 8: Observe with all the above examples when you get overflow/underflow or floating
point exception or NaN(not a number) etc?.

1.3.2. Empirical vs theoretical algorithm time complexity analysis
Most of the Computer Science professionals may encounter one or other day the following type of
doubt. What happens to their SW system if input size is doubled or tripled? If we feed it with a
different input, how will it behave? To answer this, we may employ time complexity analysis which
is a tool to explain how our algorithms behave with the input size.

When we speak of the time complexity, we are not at all interested in absolute times, i.e. how
many CPU seconds it is taking to solve a particular problem for a given input size. The actual
absolute CPU time consumed depends on a number of factors: how fast the computer is, the quality
of code generated by the compiler, the number of users using the computer at that time etc. If you
change any of these, then the absolute time changes.

Thus, absolute time is not useful as a measure of an algorithm’s performance.

Also, do remember we want algorithm performance; not the code performance!

Reasons to analyze the efficiency of an algorithm:
● Analysis helps choose which solution to use to solve a particular problem.
● Experimentation tells us about one test case, while analysis can tell us about all test
cases(performance guarantees).
● Performance can be predicted before programming. If you wait until you’ve coded a large
project and then discover that it runs slowly, much time has been wasted.
● If you can tell which parts of your solution execute quickly and which parts execute slowly,
then you know which to work on to improve the overall solution.

In addition to the above reasons for analyzing the algorithms, we wanted to bring another important
reason. All of us know that there can be a multitude of algorithms to solve a given problem.
Consider the situation where you have a horrible day in the office because of a picky boss and his
brain eating five clock interaction session. You are relieved at 8.00PM and eager to reach home
and relax. Also, assume that you don’t have your own vehicle. There are many options available
for you to reach home. 1. Pooled bus service provided by the office, 2. Public service such as
bus/train/metro, 3. Calling Uber/Ola, 4. Calling your elder son to come from home by vehicle and
pick you up, 5. Ask your better half who is still in her office to pick you up. Which one do you
select to reach your home? Of course, we know that you know the correct answer. You pick a better
one. Better in the sense of time if you are too rich; better in the sense of cost if you are an average
salaried employ.In the same lines, if an algorithm has a multitude of solutions, an immediate
question that arises is “which is better?”. This necessitates the relative analysis of algorithms. In
the example above, if he selects option 3 (Uber/Ola cab), he will reach the house quickly. In the
same lines, to compare algorithms we need to arrive at their computational performance. Also, we
may need to compare algorithms in terms of the amount of space (memory) they consume.

Introduction to data structures 33

We know that each algorithm consists of a finite sequence of instructions/steps. If the algorithm
contains more instructions, the longer it will take to execute. Thus one way to compare algorithms
would be to count the instructions that the algorithm requires to solve a problem. Rather, we
compute the number of instructions as a function of the input size (or problem size which we

explain in the coming pages).

In general algorithms can be analyzed either empirically or theoretically as discussed above.

Empirical analysis involves:
● Implementing an algorithm in some programming language like C, Pascal
● Compiling and generating executable/binary file
● Running the executable/binary file on a specific computer platform and gathering runtime
data for various possible input sizes
● Analyzing the runtime versus size of the input

However, empirical analysis suffers from

1. Empirical analyses conclusions are biased on how it is implemented. How nicely one has
coded, which apt programming language is used in developing the code, etc., influence a lot.

Theoretical analysis which is also called as the time complexity analysis:
● uses a high-level description of the algorithm instead of an implementation of some
programming language
● explore running time versus input size, n.
● considers all possible inputs, often analyzing the worst case and best case
● Algorithm speed is evaluated independent of the hardware/software environment

As per this book, it is assumed that instructions of an algorithm are executed one after another,
serially or sequentially (We are not going to discuss parallel algorithms here). We consider serial
algorithms only. Also, the computer uses RAM (Random Access Model), in which each operation
(e.g. +, -, x, /,=) and each memory access take one run-time unit. Loops and functions can take
multiple time units.

The time complexity of an algorithm, T(n), is represented as a function of its problem size, say n.
The time required is counted in terms of the primitive operations involved in the algorithm.
Primitive operations include

1. Assigning a value to a variable (independent of the size of the value; but the variable
must be a scalar).

2. calling a function such as printf, scanf, pow, sqrt.

3. Performing a (simple) arithmetic operation .

4. Indexing into an array .

5. accessing an object from its reference i.e., pointer.

6. Returning from a function.

As the time complexity of an algorithm, T(n) is represented in terms of number of operations
involved, it becomes “device-independent” measure19. That is, rather than expressing the time
consumed in seconds in empirical analysis, we attempt here to represent how many “elementary
operations” the algorithm executes when presented with instances of different input sizes. This
measure is more useful for answering questions like:

19 Analysis is done before coding. Profiling (a.k.a. benchmarking) is done after the code is written.

Data Structures:Theory & Practicals
34

� If I want to run on a problem on input of double size, how long will it take?
� If we can buy a machine twice as fast as the existing one, what is the size of the input which we
can solve in the same time?

Let us take a simple example, to illustrate what is meant by complexity analysis.

Alice and Bob proposed sorting algorithms with time complexities 256n lg n and n2 comparisons
respectively. Assume that their algorithms are implemented and benchmarked on a machine that
takes 10−3 seconds for one comparison operation and input size of 1024. The following shows the
observed times. From the table, clearly Bob’s algorithm is better.

However, they are asked to observe their algorithms' behaviors for various possible input sizes also.
The following table illustrates their observations.

The table conveys Alice’s algorithm is much better placed for expansion.

Let us try to compute how many items each of these two algorithms sorts in one hour. As one
comparison on the selected machine takes 10-3 seconds, within an hour it can make 3600/10-

3=3600000 comparisons. Assume nA , nB as the number of items that can be sorted by Alice and
Bob’s algorithms in one hour time. Thus,
3600000 = 256nA lg nA = n2

B

We can find nA = 1352, nB = 1897.

That is, Bob’s algorithm seems to be too workaholic!.

Let us analyze what happens if we replace the current machine with another machine that is four
times faster in carrying comparison operations. That is, on the new machine, comparison takes 1/4
× 10−3 seconds. Thus, we can make 3600/(1/4 × 10−3)=14400000 comparisons in the same one hour.
Let us try to compute nA , nB for this situation also. That is,
14400000 = 256nA lg nA = n2

B, yields
nA = 4620, nB = 3794.

Faster the machine, faster are both the algorithms. However, nA value rose by 3.41 (4620/1352),
whereas nB value doubled(3794/1987) only when we replaced the CPU with a four times faster
machine. So, we can say Alice’s algorithm is gaining much more rate from the faster machines
compared to Bob’s algorithm.

Note: We do have some other complexities related to computer science. They are 1. Circuit
Complexity 2. Language complexity. However, the discussion on them is beyond the scope of this
book.

Introduction to data structures 35

1.3.2.1 Problem Size

Usually algorithm’s computational complexities are represented in terms of problem size. For
example, in the case of sorting a set of elements, the number of elements can be considered as
problem size. Similarly, while estimating the complexity of the matrix multiplication problem,
matrix size is taken. For number-theoretic algorithms, the input parameter or problem size is the
measure of how big the number is. So it is the number of bits occupied by the number. Thus, this
is very much associated with the problem.

The time complexity of an algorithm, T(n), is represented as a function of its problem size, say n.
The following table 1.1 summarizes some common problems and their problem sizes.

Table 1.1: Problem size with examples

For instance, take a physical real life example where a store manager will be giving gifts to
customers. Assume there are n customer’s in the queue. That is, here the problem size is this, the
number of customers(n) in the queue. Assume that the Manager brings one gift at a time. Handover
it to one customer. Returns to collect the next gift. What is the time complexity of handling a gift
to a customer?

Answer:

Time complexity = 1 step as manager will take exactly the same time irrespective of the line length.
What is the time complexity of the whole gift distribution activity?
Answer: n steps.

Data Structures:Theory & Practicals
36

Let us explore another physical example. Shifting n items from one room to another room in our
house.

Answer: n pick-ups, n forward moves to the other room, n drops and n reverse moves to the first
room. Total, we have 4 n operations. That is, T(n)=4n steps.

What about exploring another real life example?. Shifting n items from one room to another room
in our house.
At the beginning you are the only one to start the task of items shifting. After you transferred an
item and returned to the first room, one more friend of yours joined. When you have transferred
the second item, two more friends of yours have joined. If we assume your friends are joining you,
how many transfer operations are needed to transfer n items? Assume all the people are equally
energetic. Also, once anyone starts transferring an item, he will not terminate or stop the same in
between. Also, when a friend has joined, he will stay till the end of the room shifting. Transferring
an item involves picking an item, taking it to the other room, placing it, then returning to the first
room. All the people start at the same time and complete at the same time.

Answer: log2n transfers. Let us analyze the situation of shifting chronologically.
The 1st item is moved by you and returned.
New friend of yours did join you.
Both of you carry one item and return to the room.
Two more friends of yours have joined you.
Four of you carry one item and return to the room.
Four more friends of yours join you.
Like this, the items are transferred: 1, 2, 4,8 and vice versa. If we have n items then we need log2(n)
transfers. If we have 15, we need ceil(log2(15))=4 transfers.

Example 5: What made us use computational complexity analysis of algorithms in an abstract
manner instead of empirically?

Answer: Empirical analysis conclusions are very influenced by processor architecture, memory
architecture, compiler implementation, and also many platform(both HW/SW) dependent run-time
factors like the current load(number of processes) of the CPU, the current memory usage,
availability of cache memory and swap memory. Thus, in time complexity analysis, we try to
understand the algorithm’s behavior independent of the above so as to answer some questions.

1.3.2.2 The Big-Oh Notation

“Big-O notation is a relative representation of the complexity of an algorithm”20. Let us explore
the words of this statement.

relative: Let us try to recall an old saying “you can only compare apples to apples, you cannot
compare an apple with a pineapple”. In the same lines in practice, you can compare the performance
of a Prime Minister with another country’s Prime Minister; but not with a lady doctor!!. Consider
an algorithm two compute the inner product of two n dimensional vectors and another algorithm to
find(search) whether a given element x is available in a n element 1-D array or not. In the first one,
multiplications are needed whereas in the second one comparisons are needed. You can't compare
these two algorithms. However, you can compare two separate searching algorithms on a 1-D array.

20 Refer http://ssp.impulsetrain.com/big-o.html for some misconceptions on time complexity orders.

Introduction to data structures 37

representation: Big-O (in its simplest form) reduces the comparison between algorithms to a single
variable. That variable is chosen based on observations or assumptions, out of them are already
mentioned while discussion T(n). For example, sorting algorithms are typically compared based on
comparison operations. This assumes that comparison is expensive. We know the majority of
sorting algorithms do spend element exchanges. But what if the comparison is cheap but
swapping(exchanging) is expensive? It changes the comparison exchanges.

complexity: if it takes my program one second to sort 100,000 elements, how long will it take to
sort one billion elements? Complexity in this instance is a relative measure to something else.

The big O does not give an idea of the time duration of the computation. It just gives how the

duration’s scales with input size or problem size21.

Fig. 1.6: Big-Oh definition

What is the meaning of this?

Fig. 1.7: Growth of chicken and turkey

21 Big O domain calculator

https://www.wolframalpha.com/widgets/view.jsp?id=57ad04c0f04cc92e742205985c18023e

Data Structures:Theory & Practicals
38

We know in general a chicken grows slower than turkey(Fig. 1.7), rather we can say that chicken
size is in O(turkey size). What does it really mean?. We know the following facts of real life.
● Baby chickens might be larger than baby turkeys when they are born.
● After some days(breakpoint), the turkey size will start become more than chicken size.
● Rather, from that breakpoint day onwards, the chicken size will always be smaller than the turkey
size.

In the same fashion, the given function f(n) is guaranteedly smaller than cg(n) for values of n>=n0.

To practically explain about this, consider a live problem. Suppose a company tracks its autos that
are shipped around the world on rail, truck, and water vessel. At the end of each day, this company
uses an algorithm to summarize all auto movement in some meaningful way. Let us consider that
the algorithm does its job in three steps

– The algorithm takes 50,000 msecs to read the data from the database. Do remember that
this time is independent of the number of autos in the company.

– The algorithm takes 1 msec to process each auto movement into summarized data.

– The algorithm takes 5,000 msecs to write the summarized data back to the database. Do
remember that this time is independent of the number of autos in the company.

So, processing n auto movements takes

– (50,000 + 1*n + 5,000) msecs

– The n term will become more important as n becomes very large

– As it turns out, in the real world, n may be in the order of 100,000,000 !!

Thus, n be the input size (number of autos) or problem size here and T(n) becomes the time
complexity of the processing. That is, T(n)= 50,000 + 1*n + 5,000. Obviously, you find that T(n)
is a function of problem size, here it is the number of autos, n.

Let f(n) be another function, preferably without constant factors… n, n2, log2n, etc., We can say
that T(n) is Big-Oh of f(n), or, T(n) is on the order of f(n), or, T(n) = O(f(n)) if:

– T(n) ≤ c*f(n) for some positive constant c, starting at the point where n is ≥ some other
positive constant n0.

– What we are saying is c*f(n) is a bounding function T(n) asymptotically.

– Think of c*f(n) is like a ceiling for T(n); in other words, we can guarantee that our
algorithm will never run in worse time than on the order of f(n).

From the above, the time complexity equation becomes:
T(n)= (50,000 + 1*n + 5,000) msecs
T(n) = n + 55,000

Choose f(n) = n to see if T(n) = O(n)
Definition of Big-Oh: T(n) ≤ c*f(n)
n + 55,000 ≤ c*n solve for c

1 + 55,000/n ≤ c

As n gets bigger and bigger (and approaches infinity), 55,000/n will approach zero.
1 + 55,000/1 ≤ c -> c ≥ 55,001 if n = 1
1 + 55,000/2 ≤ c -> c ≥ 27,500 if n = 2
1 + 55,000/∞ ≤ c -> c ≥ 1 if n approaches infinity.

We need to show this holds for positive constants c and n0 where n ≥ n0

Introduction to data structures 39

– Pick n0 = 1

– 1 + 55,000/1 ≤ c , so c = 55,001

– Does this c = 55,001 still work for n = 2 (because n keeps growing)?

– 1 + 55,000/2 ≤ 55,001

– 27,501 ≤ 55,001 TRUE!

So, T(n) = O(f(n)) because we can find c and n0 that hold as n grows to infinity!. Thus, this
algorithm’s asymptotic complexity is said to be O(n).

Consider another example:
Suppose we have an algorithm that takes 3n2 steps given n inputs(that is, problem size is n).
Does 3n2 = O(n2) ?

The definition of Big-Oh says…

– T(n) ≤ c*f(n) for c and n0 where n ≥ n0

Given: 3n2 ≤ c n2
Choose n0 = 1 and c = 3. That is, LHS and RHS are the same, Which means that the given 3n2 is
O(n2).

Does it still work as n grows? Now, let us try for n = 2. It will work. It will work for values of n
more than 2 also. Thus, we can say that 3n2 = O(n2).

Let us consider another example. The following figure shows the possible operations in a C++
function that is written to find the maximum of a vector(a container).

The possible number of operations are:

If there are n items in the vector, the number of operations needed will be between 5n+2 operations
and 7n operations. If the vector contains elements in descending order then the if condition will
never become true as all the elements will be smaller than the first element. Thus, we need 5n+2
operations. Instead if the vector contains elements in ascending order, each time the if condition
becomes true and maximum changes. Thus, it needs 7n operations. We can prove that it is of O(n)
by taking c=7 and n0=1.

Example 6: Let us explore the algorithm for computing the inner product of two vectors A, B of
size n elements each. the inner product of the two arrays A and B is A[0]*B[0] + A[1]*B[1]
+....A[n-1]*B[n-1], which is the sum of pairwise products. See the following algorithm for this
purpose.

Data Structures:Theory & Practicals
40

● Line 1 can be taken as one operation (assigning a value).
● Initializing the loop also can be taken as one more operation (assigning a value).
● Third statement involves five operations per iteration of the loop (mult, add, two array
references for A[i], B[i], assignment).
● Also, the third statement is executed n times.
● Also, loop control variable, i, incrementation is two operations (an addition and an
assignment)
● Also, loop incrementation is done for n times.
● Also, loop condition testing for termination or continuation is one operation (a comparison
i<n) each time.
● Do remember that loop termination takes place (n+1)th time (n successes, one failure).
● We need to consider that ‘return’ is also one operation when implemented really in any
language..
The total is thus 1+1+5n+2n+(n+1)+1 = 8n+4.

That is, time complexity T(n)=8n+4. You may prove with c=9 and n0=1, this can be proved as O(n)
using the big O definition.

Example 7: Let us explore the following algorithm for computing the inner product of two vectors
A, B of size n elements each. the inner product of the two arrays A and B is A[0]*B[0] + A[1]*B[1]
+....A[n-1]*B[n-1], which is the sum of pairwise products. See the following algorithm for this
purpose. Is there any advantage of this over the previous one?

● Line 1 is four operations (accessing A[0], B[0], calculating their product, and assigning the
result to the variable prod).
● Initializing the loop also can be taken as one more operation (assigning a value).
● Third statement involves five operations per iteration of the loop (mult, add, two array
references for A[i], B[i], assignment).
● Also, the third statement is executed n-1 times.
● Also, loop control variable, i, incrementation is two operations (an addition and an
assignment)
● Also, loop incrementation is done for n-1 times.
● Also, loop condition testing for termination or continuation is one operation (a comparison
i<n) each time.
● Do remember that loop termination takes place nth time (n-1 successes, one failure).
● We need to consider that ‘return’ is also one operation when implemented really in any
language..
The total cost of the above code fragment, T(n) = 4+1+5(n-1)+2(n-1)+n+1 = 8n-1. We may take
c=8 and n0=1 so as to claim its order is O(n) in accordance with the big O definition.

We find both the above two solution’s complexity orders are the same, O(n).

Introduction to data structures 41

1.3.2.2.1. Fundamental step

Example 8: What do you know about fundamental step while carrying out algorithm analysis?

Answer: Fundamental step is “a single line or short group of lines of code that will be executed the
most times”. It will be typically of order O(1) for the following code fragment.

N = length of lis.

How many times is the fundamental step executed? N times
So this algorithm is O(N).

In the following code, the fundamental step is marked with a red square.

Also, the fundamental step is marked with a red square in the following code.

Similarly consider another example of a function call along with the operations involved. We find
that the time complexity T(n) is 6n+4. According to the big O definition, we find that for c=7 and
n0=5 values, its complexity order is O(n).

So, T(n) for this algorithm is 6n+4 and T(n)=O(n).

Example 9: Compare the following two algorithms?

Data Structures:Theory & Practicals
42

Answer: There is a high chance people will conclude that Algorithm1 as O(1) while Algorithm2
as O(N). However, both are O(N). See the following analysis with some simple assumptions.
Assume c1 is the cost of accessing a memory location, c2 is the cost of incrementing variable i
value, comparing i with N etc. As the loop runs N+1 times and in (N+1)th time the condition
becomes false. Thus, we have taken (N+1)*c2. Of course, we did not take into account the i=0
statement’s cost. Because, i++ statement is in principle executed for N times while i<N is executed
for N+1 times. We thought it would balance!. See the following workout for time complexity
computation for both the algorithms.

According to the big O definition, for Algorithm 1, c=c1 and n0=1 while for Algorithm 2,
c=c1+c2+1 and n0=c2+1 to prove their complexity orders are O(n).

Consider another example involving nested loops. Here, each loop runs for n+1 times. Thus, the
innermost k++ statement executes (n+1)*(n+1) times.

Let us take c=8 and try to prove:
3n2+7n+4<=8n2.
-5n2+7n+4<=0

If we solve the above quadratic equation22, we find roots as -0.43578167 and 1.83578167. We take
the ceiling of positive root as n0. That is, n0=2. According to the big O definition, we can say that

22 https://quadraticsolver.com/

Introduction to data structures 43

the above algorithm’s order is O(n2). To cross check, for n=1, 3n2+7n+4=14 while 8n2 value is 8.
For n=2, 3n2+7n+4=30 while 8n2 value is 32. We find that for all values of n=2, 3n2+7n+4 <8n2 .

Example 10: In the following, we have two functions prefixAverages1() and prefixAverages2().
Which one is better in terms of their computational complexity order?

Answer: Operations needed for both the methods are also shown below. First one needs
4n+1+n(n+1) operations while second one needs 4n+2 operations. As, the first one is having n2
term while the second one is not; thus, the second one is most preferred as it is computationally
cheaper.

Example 11: What c and n0 values are needed to prove 7 � O(1)?

Answer: We need to find c, n0 such that for all n ≥ n0 we have
7 ≤ c ꞏ 1
Take c = 7, n0 = 1.

Example 12: What c and n0 values are needed to prove 2n+1 big-Oh order is O(n)?

Answer: We need to find c, n0 such that for all n ≥ n0 we have
2n + 1 ≤ c ꞏ n
We choose c = 3, n0 = 1. Then 3 ꞏ n = 2n + n ≥ 2n + 1. Thus, we can say that 2n+1 is of order O(n).

Example 13: What c and n0 values are needed to prove 7n-2 big-Oh order is O(n)?

Answer: We need to find c, n0 such that for all n ≥ n0 . We have
7n − 2 ≤ c ꞏ n
We choose c = 7, n0 = 1.

Example 14: 3x4 + 5x2 – 19 = O (x4). Does it convey that there’s a function O (x4) and which is
equal to 3x4 + 5x2 – 19 ?

Data Structures:Theory & Practicals
44

Answer: No. Rather the example is read as:“3x4 + 5x2 – 19 is big-Oh of x4”. Which actually
means:“ 3x4 + 5x2 – 19 is asymptotically dominated by x4”

Example 15: What c and n0 values are needed to prove (3n3 + 5n2 + 2 � O(n3))?

Answer: We need to find c, n0 such that for all n ≥ n0 we have 3n3 + 5n2 + 2 ≤ c ꞏ n3.
Here, the highest ordered term is n3 and its coefficient is 3. For this coefficient, we need to add
something such that 5n2 + 2 contribution is also taken into account. For which value of n, n3>5n2 +
2?.

n 1 2 3 4 5 6 7 8

n3 1 8 27 64 125 256 343 512

5n2 + 2 7 22 47 82 127 182 247 322

Thus, we add 1 to the coefficient of n3 term, that is 3 and thus 3+1 is taken as c. Also, n0 value can
be taken as 6 from the above table. Thus, c=4 and n0=6.

Example 16: Consider an example in which data has to be read from a file. This inturn involves
reading a filename interactively and opening the file with a function like fopen() or through system
call like open(). Assume for this initial activity it needs 500 operations. Assume to read one item
from disk, it needs 10 operations. Thus, T(n)=500+10n. Assume that we want to compare this with
two other algorithms whose complexities n, 20n respectively. The following picture(Fig. 1.8)
shows the function 500 + 10n plotted against n, the problem size.

Fig. 1.8: Growth of some functions

If you observe the figure, you will find that the function n will never be larger than the function
500 + 10 n. However, there are constants c and n0 such that 500 + 10n <= cn when n >= n0 . One
choice for these constants is c >= 20 and n0 >= 50. Therefore, T(n)=500 + 10n = O(n). That is, this
data reading problem is of order O(n). Of course, there can be other choices for c and n0 to arrive
in big-O order. By the way, what is the big-O order of the algorithm whose T(n) is 20n?. What are
c, and n0 values?

Example 17: Consider the following two algorithms A, B.

Introduction to data structures 45

Algorithm A sets up faster than B, but does more operations on the data. The execution time of A
and B will be TA(n) = 50 + 3*n + (10 + 5 + 15)*n = 50 + 33*n and TB(n) =200 + 3*n + (10 + 5)*n
= 200 + 18*n respectively. The above graph shows the execution time for the two algorithms as a
function of n. Algorithm A is the better choice for small values of n. For values of n > 10, algorithm
B is the better choice. Remember that both algorithms have time complexity O(n). The reason is
that asymptotic analysis ignores constants of proportionality (see Fig. 1.9). In the following figure,
if you can draw another line for T(n)=n, you will find that it will be smaller than both the curves
for all problem sizes. Thus, these both algorithms are of the same order O(n) though they have
different constant multiplication factors(33,18) in their time complexities.

Fig. 1.9: Growth of some functions and constants of proportionality

Relatives of the Big-Oh

Big-Omega and Big-Theta

Data Structures:Theory & Practicals
46

Definition: We write f(n) is Θ(g(n)) if both f(n) is O(g(n)) and f(n) is Ω(g(n)).

Remarks We pronounce f(n) is Θ(g(n)) as "f(n) is big-Theta of g(n)"

Little-Oh and Little-Omega

Examples: log(n) is o(n) and x2 is ω(nlog(n)).

As this book is an introductory level book, we are not discussing the Importance of

Asymptotics analysis of algorithms.

1.3.2.3 Space Complexity

We know that space complexity of an algorithm is also an important criterion while comparing and
selecting the algorithms for practical problems. Also, it is vital to reduce the space requirements of
algorithms. In a nutshell, we may employ some alternative physical storage schemas to reduce
memory space requirements of an algorithm. However, it poses another difficulty. That is, if we
propose another schema of storage; then we also need to propose (new) mechanisms (data strctures)
to do the operations.

For example, if we propose to store a 2D matrix in a 1-D array, then implementations of all the
operations such as additions, subtractions, etc. which we normally carry on a 2-D matrix have to
be modified such that they assume the matrix is in a 1-D array.

Compared to the 1970's, today the unit cost of RAM is cheap. However, revolutionary
developments that are taking place under the name of Internet of Things(IOT) are employing
trillions of trillions internet enabled tiny inexpensive processors with tiny memory. These tiny
memory devices continue to demand programs that consume less memory. Otherwise also,
reducing memory requirements is a classic activity on its own.

In the following, we propose some examples which illuminate the reader about reducing memory
space requirements of algorithms.

Example 18: Propose a method to map a symmetric matrix into a 1-D array along with methods to
add, subtract, multiply symmetric matrices which are in the 1-D array fashion.

We know that symmetric matrices will have their upper and lower triangular portion elements the
same. Thus, to conserve memory, we propose to store only the lower triangular part of the matrix
including main diagonal elements. If one observes, we can find that ith row jth column element of
the symmetric matrix is stored in location i*(i+1)/2+j of 1-D array. For example, 2nd row 2nd
column element, i.e., x5 will be available at: 2*(2+1)/2+2=3+2=5.

Introduction to data structures 47

Total number of elements in the 2-D symmetric matrix = n2

Number of elements needed in the 1-D representation= 1+2+…+n = n(n+1)/2
Thus, a saving of almost 50%.

If we want ith row jth column element of the symmetric matrix, its location in the 1-D array can be
calculated as: i*(i+1)/2+j. However, this will not work for upper triangular portion elements. Thus,
if we want upper triangular portion elements of the 2-D array, we simply exchange their row (i)
and column(j) indexes and then apply the above formula to get the required element. This became
possible because of symmetry.

The following program demonstrates the storage of a symmetric matrix in a 1-D array and accessing
the same. Remember, really 2-D array information is in 1-D fashion. However, users can still work
at 2-D notation by using the above mapping function.

Data Structures:Theory & Practicals
48

Now, let us discuss how to add two symmetric matrices which are represented in 1-D array fashion
as explained above.

Consider First matrix A and its 1-D array representations are:

Consider Second symmetric matrix and its 1-D representation:

Now their sum matrix and its 1-D representations are:

By observing the above workout, we can say that adding two 2-D symmetric matrices in this
representation is the same as adding their resective 1-D representations element by element. It is
true with the subtraction of two symmetric matrices. The following function allows us to do
addition of two symmetric matrices which are in their1-D representation.

Introduction to data structures 49

We know that in nxn elements, total n*(n+1)/2 elements are stored in the 1-D array. Thus, in the
function, we allocate a dynamic array to store n*(n+1)/2 elements. The address of this array is
returned as the resultant matrix in 1-D representation.

We can carry the subtraction also in the same fashion. For multiplication, we propose the following
function. Verify whether it will give the expected results are not. Remember, we need to calculate
only the lower triangular portion of the product of two symmetric matrices.

Example 19: Now consider storing two symmetric matrices of same size (nxn) in a 2-D array to
conserve space.

Fig. 1.10: Two symmetric matrices together to conserve space

As we know that the symmetric matrices will be having redundancy, we proposed to store two nxn
symmetric matrices lower triangular portions in a nx(n+1) matrix. Here, we may find a savings of
almost 50%. That is, as such for both the matrices A and B together we need 2n2 elements. If we
store both in a 2-D array like C, we need n2+n elements. This is 2-D array to 2-D array mapping(see
Fig. 1.10).

Probable mapping steps are:

Data Structures:Theory & Practicals
50

Of course, if we want to ith row jth column element of Matrix A, it can be accessed simply as ith
row jth column element of C as it is stored like that way. Similarly, if we want ith row jth column
element of matrix B, the same can be accessed as C[n-1-i][n-j] as it is stored like that as shown in
the above code fragment. That is, whatever way we have stored the element, the same way we can
access. However, with both the matrices A and B, if we want upper triangular portion elements,
then we can exchange their row and column elements and then access from C.

An algorithm is said to be “in-place23” if the amount of additional memory required by the
algorithm does not grow with increase in the input size. For example, algorithms like Insertion
Sort and Bubble Sort are in place because the amount of additional memory (like the use of
temporary variables) needed by these algorithms does not grow with input size.
� In-place algorithms are said to have Θ(1) space complexity.
� An algorithm is said to be “out-of-place” if the amount of additional memory required by the
algorithm grows with increase in input size. – For example, if an algorithm copies the contents of
the input array to another new array, then the amount of additional memory (to be allocated for the
new array) grows with increase in the size of the input array. E.g., Merge Sort.

We welcome readers to refer to the following video to get littlemore enlightenment of this theme.
https://www.youtube.com/watch?v=5Fjmbm-
Pguc&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4NMtVN&index=75

A simple tool to estimate time.

https://csfieldguide.org.nz/en/interactives/algorithm-timer/

1.3.3 A note on abstract data types
Elsewhere you might have come across the statement that C language has primitive data
types(char,int,float,double), derived type(strings, 1-D,2-D,multidimensional arrays, user defined
types(structs, unions, and enumerators). In order to explain ADT (abstract data type), we feel it is
wiser to open a little more theoretical background of computing also.

In Mathematics, Integers are said to be a set of all positive numbers without any fractional parts.
They are abstracted in C and other languages as int type. In similar lines, real numbers are a set of
all possible numbers including integers. They are abstracted in C and other languages as float or

double or long double types. We are sure that you are already familiar with these words. In the
computing point of view, A type can be said as a collection of values. For example, the boolean
type (available in C++, Java, Python, R but not in C) consists of the possible values true or false.
The integers also form a type.

An integer is a simple type because its values can be any number from the universe of integers
from Mathematics.

23 in-place, in-situ, in-core, in-memory are synonyms

Introduction to data structures 51

A student record will have name, address, account number, age, and marks. Such a record is an
example of an aggregate type or composite type. A data item is a piece of information or a record
whose value is drawn from a type. A data item is said to be a member of a type.
Also, a data type is a type along with a set of permissible operations to process the type. For
example, an integer variable is a member of the integer data type. Addition, subtraction,
multiplication are example operations on the two integer data types.

An abstract data type (ADT) is the specification of a data type within some language, independent
of an implementation. The interface for the ADT is defined in terms of a type and a set of operations
on that type. The behavior of each operation is determined by its inputs and outputs. An ADT does
not specify how the data type is implemented. These implementation details are hidden from the
user of the ADT and protected from outside access, a concept referred to as encapsulation.

Let us consider an example. Assume you are the richest person and you love cars. You have
purchased every model of the car from every car company. Also, assume that you have some
number of licensed drivers. You can call any driver and ask him to drive any car of your interest
on any day. The chance of a driver telling you that I cannot drive this car as the primary activities
such as steering, accelerating, and braking are the same for all passenger cars. He can steer any car
by turning the steering wheel, accelerate any car by pushing the accelerator pedal through his leg,
and slow any car by applying brakes by pushing the brake pedal through his leg. This design for
cars can be viewed as an ADT with operations “steer”, “accelerate”, and “brake”. However, each
car might implement these operations in radically different ways, say with different types of engine,
or front- versus rear-wheel drive. Brakes can be realized in one car through hydraulic means; while
in some other cars by some other means. Nowadays, everyone is able to drive cars by just knowing
the functionalities of steering, accelerating, and breaking. Thus, any driver can operate many
different cars because the ADT presents a uniform method of operation that does not require the
driver to understand the specifics of any particular engine, breaking system, or drive design. In fact,
these specifics of important parts (engine, break, drive system) of the car are deliberately hidden
(data hiding, one of the concepts of object oriented systems and languages).

A data structure is the realization for an ADT. We have already understood that the term data

structure connotes data stored in a computer’s main memory, RAM. The related term file

structure refers to data on secondary memory devices.

The int variable type (say in languages such as C, C++, Java), along with the operations that act on
an int variable, form an ADT. Unfortunately, the int implementation is not completely true to the
abstract integer, as there are limitations on the range of values an int variable can store because of
the finiteness of computers. If these limitations prove unacceptable, then some other representation
for the ADT “integer” must be devised, and a new implementation must be used for the associated
operations (Do recollect the example discussed in the first pages on Python in which we understood
that Python will be using Bignum data structure to have overflow free integer additions).

Also, some programming languages such as Python, R, MATLAB, Wolfram, did abstract the
Mathematical quantity, complex number. Majority of the operations that we can do on complex
numbers in Mathematics can be happily carried out in these languages. For example, if we add two
complex numbers we will get a complex number in Mathematics and this is very possible in the
above programming languages also. This is applicable to other operations such as subtraction,
multiplication, division with complex type quantities. For example, the following R code
demonstrates the same. How it is (abstraction) implemented is transparent to the user of complex
objects.
https://tinyurl.com/AICTEDSBOOK8

Data Structures:Theory & Practicals
52

Do remember that complex type variable type is not available in C language. However, of course
we can realize complex type through structures. Python language also abstracts the Mathematical
concept of complex numbers. We welcome the readers to visit the following link to experiment
with a sample Python code involving complex objects.
https://tinyurl.com/AICTEDSBOOK11

The following picture (Fig. 1.11) is the snapshot of the above code. The code that is available in
the link declares two complex type objects(variables) x and y. It shows how one can use x+y, x-y,
x*y, x/y operators between x and y like Mathematics.

Fig. 1.11: Operations on Complex type in Python

Also, we know that in Mathematics, we can add, subtract, multiply two vectors. This is abstracted
in R language such that a Mathematical expression involving vectors can be directly executed in R
language. The same if we want in C language, we need to put more effort such as using loops etc.
The following examples demonstrate the Vector operations in R language.
https://tinyurl.com/AICTEDSBOOK9
In the following link, you find how two matrices can be multiplied in R language with a simple
operator. Do you remember our discussion elsewhere in the book that we need three nested for
loops to achieve the same in C language.
https://tinyurl.com/AICTEDSBOOK10

This became very much possible as the R programming language has nicely abstracted the
Mathematical quantity matrix. This is true with MATLAB language also. You may visit the
following link to explore matrix multiplication in MATLAB.
https://in.mathworks.com/help/matlab/ref/mtimes.html

Do remember that MATLAB abstracted complex numbers, vectors very nicely.

Introduction to data structures 53

Data types will have logical forms and physical forms. The ADT specification of a data type is
its logical form while its realization using a data structure is its physical form(see Fig. 1.12).

Fig. 1.12: The relationship between data items, abstract data types, and data structures. (Courtesy:
https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/ADT.html Last accessed: 10th Aug 2022)

The following picture (Fig. 1.13) illustrates the relationships between type, ADT, data structures,
etc., terms which are explained in the above pages.

Fig. 1.13: Relationships between type, ADT, data structures, etc
(Source: https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/ADT.html Last accessed: 10th
Aug 2022)

Let me take one more example which you are already exposed to in your C programming course.
You might have certainly used “FILE *” type variables while reading and writing data into a file.
Do you know what the contents of the FILE structure are? It is given below.

typedef struct _iobuf{

Data Structures:Theory & Practicals
54

 char* _ptr;

 int _cnt;

 /* indicates how much space is still available in the

buffer*/

 char* _base;

 int _flag; /* mode of opening*/

 int _file; /* A unique number associated with the file*/

 int _charbuf; /* The I/O buffer*/

 int _bufsiz; /* The buffer size*/

 char* _tmpfname;

} FILE;

We can say the above as ADT for FILE *. And the standard I/O library24 that implemented
functions(operations) such as fopen(), fclose(), fread(), fwrite(), fprintf(), fscanf(), ftell(), fseek(),
feof(), fgetc(), fputc(), fputs(), fgets() is the data structure of this ADT.

1.3.4. Common algorithm design paradigms
We do require to know about common program design paradigms that are prominently used in the
literature. They are:
– Divide-and-conquer
– Iterative
– Recursive
– Back tracking
– Dynamic programming
– Greedy algorithms
– Randomized/probabilistic

Already, we have got exposure to iterative, and recursive solutions in C programming. We will
explore divide-and-conquer based solutions in the coming chapters. Other paradigms are beyond
the scope of this book.

In the following example, we have included a simple example of permutations of a string using
both iterative and recursive means. In practice, we may need to study which is better in terms of
time, space, scalability, and ease of implementation.

Example 20: Printing permutations of a string.

#include < stdio.h >

24 A collection functions is called as library or package

Introduction to data structures 55

The following link contains the above code for readers for their experimentation.
https://tinyurl.com/AICTEDSBOOK13

Example 21: Recursive permutations

The following link contains the above code for readers for their experimentation.
https://tinyurl.com/AICTEDSBOOK14

Data Structures:Theory & Practicals
56

If we observe, the recursive version has better scalability.

Example 22:
Some algorithms will have best case and worst case behaviors. For example, let us assume that we
wanted to a function to check whether a square matrix is symmetric or not. We have already given
solution in previous chapters. Here, we compare ij’th element with ji’th element by traversing the
matrix in lower triangular portion. If the first pair itself are not same, we can say with one
comparison that the matrix is not symmetric. Only after comparing all the pairs, we can say it is a
symmetric matrix (worst case situation).

Best Case= 1 pair of comparisons.
Worst Case= 1+2+….n-1= n(n-1)/2 pairs of comparisons. That is O(n2) complexity.

The following link contains the above code on a visualization server that shows both best and worst
case scenarios of this algorithm.
https://tinyurl.com/AICTEDSBOOK12

Question 7: How to transpose a square matrix in-place?
Hint: Think of exchanging a[i][j], a[j][i] of the above issymmteric() function.

Multiple Choice questions

1. Minimum how many comparisons are needed to find the minimum of three integers?
a. 1

b. 2
c. 3

d. 4

2. Minimum how many comparisons are needed to find both the maximum and minimum of
three integers?
a. 1

b. 2
c. 3

d. 4

3. How many bytes of memory is allocated for int type variables in C language?
a. 2

b. 4
c. 6

d. 8

4. Assume a, b, c are the variables having three sides of a triangle. The following expression
is written to check whether a, b, c form an equilateral triangle or not.
 (expr)?printf(“Equilateral\n”):printf(“Not equilateral\n”);

 How many minimum number of comparisons that “expr” can be made of?
a. 2

b. 3

Introduction to data structures 57

c. 4

d. 5

5. Minimum how many comparisons and logical operators are needed to check the uniqueness
of given three numbers a, b, and c?
a. 2

b. 2 comparisons and one logical AND
c. 4

d. None

6. Minimum how many exchanges are needed to reverse elements of a 1-D array with n
elements? (You may look at the following before answering
https://tinyurl.com/THANKYOUVASU3
a. n

b. 1
c. n/2

d. None

7. Minimum how many comparisons are needed to check whether a given nxn square matrix
is symmetric or not?
a. 1

b. n/2
c. n(n-1)/2

d. None

8. Worst case, how many comparisons are needed to check whether a given nxn square matrix
is symmetric or not?
a. 1

b. n/2
c. n(n-1)/2

d. 1+2+3+...+(n-1)

9. Minimum how many comparisons are needed to check whether a given n element array is
unique or not?
a. 1

b. n/2
c. n(n-1)/2

d. None
10. Worst case, how many comparisons are needed to check whether a given n element array
is unique or not?
a. 1

b. n/2
c. n(n-1)/2

d. 1+2+3+...+(n-1)
11. In which programming language, vectors are abstracted aptly like Mathematical vectors?
a. MATLAB

b. R
c. C++

d. C
12. How many multiplications are needed to multiply two nxn matrices?
a. n2

b. n3
c. n

d. n4

Data Structures:Theory & Practicals
58

13. Declaration of an array in C language with the statement “int a[10]” is:
a. Linear data structure

b. Static data structure
c. Homogeneous data structure

d. Mutable data structure
e. All are valid data structure
14. How many comparisons are needed in the best case to check whether a given n element 1-
D array is having all the same valued elements or not?
a. 1

b. n-1
c. n2

d. None
15. How many comparisons are needed in the worst case to check whether a given n element
1-D array is having all the same valued elements or not?
a. 1

b. n-1
c. n2

d. None
16. A compiler can compile source codes into executable programs. But what compiles the
compiler (which is a program itself)? Of course we would need a compiler for this job.

Source code A is the source code of Compiler A. When we compile Source code A by Compiler
A, we will get back Compiler A. Source code B is the source code of Compiler B. When we compile
Source code B by Compiler A, we will get Compiler B. Which of the followings must be true?
Note that we call two files identical if they are bit-by-bit identical.
i. Compiler A and Compiler B are compilers for the same programming language. ii. If we compile
Source code A by Compiler B, the output is identical to Compiler A.
iii. If we compile Source code B by Compiler B, the output is identical to Compiler B.
a. None of the statements

b. i only
c. ii only

d. iii only
17. We now modify Source code A to a new version -- Source code C. When we compile
Source code C by Compiler A, we get Compiler C. Compiler A and Compiler C are compilers for
the same programming language, and Compiler C always give faster programs compared to
Compiler A, which means that when the same source code is compiled by the two compilers (and
no compilation error occurs), and then the same input are fed to the two programs, the outputs of
the two programs are the same (if no runtime error occurs), and the program compiled by Compiler
C runs faster than that compiled by Compiler A (if both programs terminates) for any input. When
we compile Source code A by Compiler C, we get Compiler A2. When we compile Source code C
by Compiler C, we get Compiler C2. Which of the following must be true?
i. Compiler A2 runs faster than Compiler A (it needs a shorter time to compile any source code).
ii. Compiler A2 runs faster than Compiler C (it needs a shorter time to compile any source code).
iii. Compiler C2 runs faster than Compiler A (it needs a shorter time to compile any source code).
a. i only

b. iii only
c. i and iii only

d. i, ii and iii

Answers:

Introduction to data structures 59

Descriptive questions

Laboratory Programming Tasks

Task 1: Assume that xn calculation is represented in the following equation. 𝑥 𝑥 𝑥 if n>1

 𝑥 𝑖𝑓 𝑛 1

That is, calculation of xn for n>1 is divided into two subproblems (divide and conquer method);
computing xn and xn-n/2. The following C program is implemented using the above recursive
relationship. This program also computes the height of the call tree.

The above code is available on a visualization server. We have modified the above
repeatedSquaring1() function such that it counts how many recursive calls it has made and also
what is the recursion tree height. The code is written in C language.
https://tinyurl.com/ychju2f5

Data Structures:Theory & Practicals
60

The above method’s complexity is O(2n). The following is the call tree(Fig. 1.14) for x^43. The red
marked nodes are once which are calculated first25.

Fig. 1.14: Call tree for the exponentiation algorithm

Task 2: You are asked to write a C program to compute the product of two integers without using
any multiplication and any loop.
May be, you can get inspiration from the following link https://tinyurl.com/y3jdgdcs

Task 3: For example, if x1, x2, …...xN are a set of students marks of a class and we are interested
to find standard deviation of their marks, then we need to use the following statistical formula 𝜎∑𝑁𝑖 1 𝑥𝑖 𝜇 2𝑁 , where 𝜇 is the mean of the students marks which can be calculated using

...
.

However, if we want to implement the above equation to compute standard deviation in a selected
programming language, we first need to compute 𝜇 for which we need to use students marks

once(probably using a loop) and then only𝜎can be calculated using the students marks again and

calculating their deviations from the class mean(this may need another loop). Thus, it forces us to
go through all the students' marks more than once and also demands two iterations or loops to be
used in the language. See the following solution that is implemented in C language.

25 If you observe the figure, you will find some powers of x are computed more than once. In fact, we can

store them in an array and use them as and when needed so as to speed up the function. Wow, this is the
essence of dynamic programming, another algorithm design paradigm.

Introduction to data structures 61

The above code is available at https://ideone.com/ET7V3O for experimentation.

With some mathematical manipulations, standard deviation calculation can be represented as: 𝜎 𝛴𝑥𝑖2𝑁 𝜇2

This form allows us to calculate 𝜎 with one pass of students marks. That is, with one loop we can

find the required salutation. That is, in the loop itself, we can compute sum of the students marks
(𝛴𝑥𝑖) and sum of the squares of the students marks(𝛴𝑥𝑖2). Also, this equation alleviates the need

for an array. After exiting from the loop, we first calculate 𝜇 and then 𝛴. The following is the C

language solution using this approach which we call a tractable form. The following is a video that
elucidates the standard deviation calculation using this tractable form.
https://www.youtube.com/watch?v=NFcUU9d8XFs&list=PLXX7XiUxnzzUILTy1F68tpk7FZ56
nJrOg&index=40

The above code is available at https://ideone.com/UC0TOi.

Data Structures:Theory & Practicals
62

Task 4: Let us explore another example to elucidate the concept of tractability. We are given a
sequence a1, . . . , aN numbers. Give an algorithm that computes the value of

The following implements the above function calculation through a C language. You may play with
it at https://ideone.com/JSsmmo.

The above code is available on a visualization server also. We welcome readers to trace the same
at https://tinyurl.com/y9okpu48 .

In the above program, we find that we have used two nested for loops to compute F. Let us expand
the above mathematical equation to identify for possible tractable for,

Let us take N=4 and expand the above equation. We get the following. We find that 𝑎 𝑎1, 𝑎 𝑎1 𝑎 2𝑎 , 𝑎 𝑎1 𝑎 2𝑎 𝑎 3𝑎 , etc., terms are seen in all the

subsequent terms. That is, once these terms are calculated, they can be used in subsequent terms
also. 𝑎 𝑎

2

𝑎 𝑎 𝑎 2𝑎
2 ∗ 3

𝑎 𝑎 𝑎 2𝑎 𝑎 3𝑎
3 ∗ 4𝑎 𝑎 𝑎 2𝑎 𝑎 3𝑎 𝑎 4𝑎

4 ∗ 5

By exploiting this property, we propose the following solution that uses a single loop.

Introduction to data structures 63

The above code is available at https://ideone.com/gNcbe4

Also, the above code is available on a visualization server to trace its working.
https://tinyurl.com/y7kzfh56

For this problem, the computational complexity of the first solution is O(n2) while the second one
is O(n).

Task 5: Sum of a 1-D array
Majority of us most commonly employ an iterative solution26 to calculate the sum of the elements
of a 1-D array with time complexity O(n).

Sum of a 1-D array using Exclude & Conquer approach.

That is, we want to use the following recurrence relation:

Sum_of_n_element_array=Sum_of_first_n-1_elements+last element if n>1

Sum_of_the_array_with_one_element=that_element_or_zeroth_element_itself if n=1

That is, to find the sum of an n-element array, somehow we find the sum of the elements of the first
n-1 elements and add the last element. This, we apply recursively. That is, to find the sum of an (n-
1)-element array, somehow we find the sum of the elements of the first n-2 elements and add the
last but one element. We reach the base case when n becomes 1. The following recursive function
is written that exploits the above recurrence.

26 int sum(int a[], int n){

 int i, sum=0;

 for(i=0;i<n;i++)sum+a[i];

 return sum;

 }

Data Structures:Theory & Practicals
64

You can visit the following sites to test the above code.
https://tinyurl.com/sum1D
https://tinyurl.com/y3ygy5l9?fbclid=IwAR3XcV1i-
Ri75Guwc_u5_h5clLsMTWt268NSejtedfIFS7e3ZHLvRzSvAao

The following uses the following recurrence that is different from previous.

Sum_of_n_element_array=first_element + Sum_of_last_n-1_elements if n>1

Sum_of_the_array_with_one_element=that_element_itself if n=1

https://tinyurl.com/y22t4hyy?fbclid=IwAR34q10UdBW1Mdn7DzYJNY2AYDX5YqWM0XW8
vop0jVuPtAB4p0p4e5A2ELg

Divide & Conquer approach

The following is divide conquer based solution like binary searching.

Sum_of_n_elements=Sum_of_left_half+Sum_of_right_half

Base case:

If any subarray becomes of size one then that element itself becomes that subarray sum.

https://tinyurl.com/y3jfczf6

Introduction to data structures 65

Welcome to participate in the online competition
We are hosting a competition so as to encourage students to build their competence in coding. This
will be very useful for placements also in the coming years. Thus, welcome students to attempt the
competition at the following link.
https://www.hackerrank.com/aictedsbook

Programming puzzles
Some programming puzzles along with their solutions around this chaper’s concepts are made
available at the following link.
https://docs.google.com/document/d/1QtNTk0riNJjuHpsbrTCOMly9CT79GmGVJKN0DPu8K4
A/edit?usp=sharing

References

1. Fundamentals of Data Structure in C, Horowitz, Ellis, Sahni, Sartaj, Anderson-Freed,
Susan, University Press, India.

2. Data Structures: A Pseudocode approach with C, Richard F. Gilberg, Behrouz A. Forouzan,
CENGAGE Learning, India.

3. My class notes on Algorithmic Complexity, now a refresher for craving teachers and
knowledge greedy students: A must primer for GATE(India), Adv. GRE appearing students.
https://www.amazon.com/dp/B09DJCW78T

4. C and Data Structures, NB Venkateswarlu & EV Prasad, 2010, S Chand & Co, New Delhi

Data Structures: Theory & Practicals 66

Unit coverage

Objectives of the Unit

Learning outcomes of the Unit

Stacks & Queues 67

2.1. Linear data structures

Linear data structures are the ones in which elements are organized in a sequential fashion (either
physically in memory or logically) so that they can be accessed in a linear fashion (one after
another). In this chapter, we will be exploring two linear data structures to name stacks and queues.
In the next chapter, another linear data structure, known as linked lists will be discussed.

Fig. 2.1: Stack of chairs
(Courtesy: https://www.dreamstime.com/stock-photo-stack-plastic-chairs-isolation-white-
background-image76425428 Last Accessed: 15th Aug 2022)

2.1.1 Stack

Let us assume we have a set of moulded (plastic) chairs. When we have visitors to our home, we
take chairs one after another (from top) and allow the visitors to sit. When they leave, in order to
tidy up the house, we put all the chairs one–by-one, i.e., one on top of the other. Is it possible to
pull the middle chair?. No. Is it possible to insert a chair in between two chairs?. No. We can insert
a new chair at the top only. Also, we can remove a chair from the top only. This type of thing is
called a stack. In fact, we refer to these chairs as a stack of chairs (See Fig. 2.1). Of course, we

Data Structures: Theory & Practicals 68

will have many of these types of things in our daily life, for instance a railway porter carrying a

stack of bags on the right side of Fig. 2.1.

You may love to see the following Facebook post that shows how a skilled labour carries that many
number of bricks as a stack.
https://www.facebook.com/watch/?ref=saved&v=658368031847687

Also think of spring loaded plate dispensers (Fig. 2.2). Whenever we press the top lever, we get a
plate ejected from the stack of plates. Here, also, we cannot take plates that are in the middle. Also,
some dispensers will have freedom to insert some more plates on the top but not in the middle.

Fig. 2.2: Plate dispenser

One of the 21st century challenges is providing safe drinkable water for masses. There are hundreds
of innovations that are aimed at producing safe water from various sources such as ground water,
river water, water from air through dehumidification. The following is an indigeneous design
proposed by authors from Nigeria27 for producing potable water from the ground water. If you
observe, you find a series(stack) of filters (pebbles, sand, a mesh, charcoal) in the tank. Pebbles,
sand layers control suspended matter from the ground water; while the charcoal layer takes care of
bacteria, odour (see Fig. 2.3).

27 Performance evaluation of a locally developed domestic drinking water filter, Bolaji, B. O. , Bolaji, G. A.

and Ismaila, S. O., October 2010, International Journal of Environmental Studies 67(5):763-771.

Stacks & Queues 69

Fig. 2.3: A water filter wit a stack of filtering layers

All of you will agree with me that the performance of these filtering layers will decay as time
progresses and we may certainly need to replenish them. Actually, this replenishment is carried all
layers at once. If we want to replenish only a certain filter layer, it is not possibly easy. Probably,
we may replenish the top layer without disturbing other layers. This example shows that we cannot
replenish bottom layers without removing other layers.

Also, in recent years the Government of India and all the state governments are encouraging people
to replenish groundwater (rain water harvesting) by digging rainwater discharge ponds which are
also designed with a series of layers as explained above. See the following figures (Fig. 2.4).

Fig. 2.4: Rainwater harvesting pits with a stack of filters.
(Source: https://rain-water-harvesting-in-hyderabad.blogspot.com/2019/06/ Last accessed: 27th
Aug, 202)
For all Hindu’s Lord Krishna’s birthday (Krishnashtami) is a very very auspicious day. One
prominent program which is celebrated on that day is “Utti Kottu (or Utti Kottadam or Dahi

Data Structures: Theory & Practicals 70

Handi28)”. In this program, a clay pot filled with yogurt (dahi), butter, or any other milk-based
foods at a convenient or tall height. Young men and boys form teams, make a human pyramid (one
layer of standing people, on the top of them another layer of standing people, like this on the top
one person will be seen), and attempt to reach or break the pot. The following picture (Fig. 2.5)
shows the stack of people breaking the clay pot.

Fig. 2.5: Stack of people (Courtesy of www.alamy.com Last Accessed: 15th Aug 2022)

In the human pyramid, new people will be added on the top only while forming the human pyramid.
After breaking the clay pot, the top layer people come down; this is repeated for all the layers of
the people. That is, while adding people to the pyramid they get added at the top only, while
removing the people from the human pyramid, people on the top will be asked to come down.

Fig.2.6: Stack of plates and we take a plate from the top
Let us have one more example. Consider that we are in a buffet. Obviously, on the first table we
may find a pile of plates (a.k.a stack of plates). We go along with other people in the queue and
take the top plate when our turn comes (See Fig. 2.6).

28 https://en.wikipedia.org/wiki/Dahi_Handi

Stacks & Queues 71

Once we finish our dinner, we leave our plate on the top of another pile of plates which are meant
for cleaning (see Fig. 2.7). Do you dare to push your used plate in between two plates of the pile of
plates that are meant for cleaning? No. No. Not at all. You will keep on the top of the existing pile
of plates only. Here, we can say that the pile of plates is a stack of plates.

Fig. 2.7: stack of plates to be washed

Let us explore another example where stack is involved. A busy office executive maintains two
trays, “in” tray and “out” trays. When a file arrives at his desk, it will be left in the “in” tray(see
Fig. 2.8). Thus files pile up in the “in” tray. Whenever the executive has time to clear the files,
he/she takes one file from the top. That is, files are added to the “in” tray at the top, and removed
from the “in” tray also from the top. Therefore stacks are sometimes referred to as LIFO (Last in

First Out)structures. Stacks are also referred to as pushdown lists as the previous items go down

when a new item is pushed.

 Fig. 2.8: An executives “in” Tray

Let us take one more example related to our daily life which is none other than browsing the Internet
using our browsers such as Google Chrome, Firefox, etc.,. See the following Fig. 2.9 where you
see left and right arrows with which we can browse through the web pages which we have visited
(already).

Data Structures: Theory & Practicals 72

Fig. 2.9: Browsers left and right navigation arrows

In the above figure, if we click the left arrow then the browser gets loaded with the web site that is
visited before the present web page. If we click the left arrow further, it makes the browser load
the site that is earlier to the recent one. OK. OK. Are you catching my point? Here, the web pages
visited are in the stack fashion29. (see Fig. 2.10)

Fig. 2.10: Navigation of web pages visited

Let us explore some high school level competition examples that appeared in Bebras30 challenges.

ICE Cream (UK Bebras, 2015, Australia Bebras 2015)

(Source: https://www.bebras.edu.au/wp-content/uploads/2016/10/2015-Bebras-Solution-
Guide.pdfLast Accessed: 15th Aug 2022)

At an ice cream parlour, cones will be filled(stacked) with one scoop after another according to
your specification.

Question 1: If you want ice cream as shown in the picture, you specify __

29 In fact, two stacks. This in principle can be called deque.
30 Courtesy of bebras.org

Stacks & Queues 73

Answer: B. Strawberry, Smurf and Chocolate! The actual order used in this task is stack order. In
particular “Last in, First out” or LIFO(LIFO)31.

Stack of plates (2010, Germany)

(Source: http://www.ict-21.ch/com-ict/IMG/pptx/Promoting-Inclusive-Informatics-Education-
Through-the-Bebras-Challenge-G.S..pptx Last Accessed: 15th Aug 2022)

In Beavers hostel, two kinds of plates are used. The high green ones for the small beavers whereas
the flat brown ones for the big beavers. One day, due to building activities, there is only room for
one stack of plates. Beavers will be standing in a queue for their lunch. The kitchen beavers need
to put the plates on the stack in the right order to make the stack match to the queue as shown in
the following figure.

Question 2: In the following pictures, we are supplied four types of Beavers queues and an
associated stack of plates. In which one exists a mismatch between queue and stack?

31 While traversing trees, graphs using stacks, we use this concept or order. That is, the nodes which are to

be processed later are pushed into the stack.

Data Structures: Theory & Practicals 74

Answer: B. First two Beavers are larger ones, while the top plates on the stack are green ones.

Remaining all three pairs are in correct form.

How can we solve this? Let us use some coding. Assume big Beaver as 1 and small one as 0. In the
same fashion, brown plate as 1 and green as 0. Now, code bevers from left to right while plates
from top to bottom.

We do have image stacks32(see Fig. 2.11) which are collections of images. They are also referred
to as layers or slices. Assume that you want to analyze how the coast of your town is changing year
by year. By stacking the satellite images of your town of various years, and displaying them one
after another, we can understand how the coast is changing in that city.

Fig. 2.11: An example image stack

32 https://serc.carleton.edu/earth_analysis/image_analysis/introduction/day_2_part_2.html

Stacks & Queues 75

In addition, while running programs which are having functions, functions that are calling other
functions, the computer system inherently maintains a special structure known as program stack
where return addresses are stored. See the following example program that contains a set of
functions that are called from other functions as a chain fashion.

Whenever a function is called, the address of the next instruction (of the function call instruction)
is stored in the program stack and then program execution will be switched to the function that is
called. Whenever either a return statement is encountered or the last statement of the function has
reached, program execution will be continued from the address which is on the top of the program
stack. For example, consider the above set of functions and the main. Program execution starts
from main. Thus, when FUNCT3() is called, the next instruction address (i.e., Address1) is stored
in the program stack and then control switches to FUNCT3(). While running FUNCT3(), when
FUNCT2() is called, the next instruction address (Address 2) is stored in the program stack before
jumping to FUNCT2(). Like this functions are executed. Thus, the program stack maintains the
return addresses. An address is added at the top when a function is called and also an address is
removed from the top of the program stack when the program control returns from the function.
The following figure illustrates this concept (Fig. 2.12).

Fig. 2.12: Program stack: its growth and rewinding

Data Structures: Theory & Practicals 76

We welcome readers to visit the following link. Here, we are trying to print the Program

Counter(PC33) value before and after the function calls. Identify which addresses are the ones that
goes to program stack34.
https://tinyurl.com/AICTEDSBOOK19
https://ideone.com/cZC9hA

The insertion operation into the stack is called PUSH; while the deletion operation is called POP.
The most accessible element in a stack is known as the TOP of the stack (TOS).

As insertion and deletion operations are performed at the same end of the stack, if elements are
removed one after another, their order becomes the opposite order of their addition to the stack.
That is, the most recently added item will be the one removed first. Thus, this type of structure is
called the LIFO (Last In First Out) queue.

Thus, theoretically, we can have any type of stacks such as: stack of chairs, stack of plates, stack
of documents, stack of addresses, stack of tables, stack of people, etc.,.

In practice, we can realize stack of characters, stack of integers, stack of structures, etc.,.

In practical implementations, we can realize stacks either using arrays or using linked lists35. From
the examples, we are sure that you might have also got a feeling that stack is a linear data structure
like array.

The following guy (see Fig. 2.13) made a rare Guiness record of wearing 35 T-shirts one above the
other within 1 minute36. Wow. That is, a stack of shirts. Is it possible to remove a 10th T-shirt
without removing the T-shirts above it? No way. Is it possible to wear another (insert) T-shirt above
the 10th T-shirt of the present stack of 36 T-shirts? No way it is possible. He can put a new T-shirt
on the top of the current T-shirt and also he can remove the T-shirt which is on the top. Just trying
to kid with you. Can he remove all the T-shirts(stack) in one go?. If so, he can wear all the 35 T-
shirts much before 60 seconds. Ha. Ha.

Fig. 2.13: A guy wearing 35 T-shirts one above the other(stack of shirts!!)

From our illustrative examples, we tried to convey that stack is a generic concept. That is, we

can have a stack of moulded chairs, a stack of filters, a stack of people, a stack of ice cream

snoops, etc.,.

33 Not even, the famous bollywood heroine Priyanka Chopra or Personal Computer
34 We have tested on 8086 machine
35 We will be implementing this in the next chapter.
36 https://www.youtube.com/watch?v=RosxpIGnRC0

Stacks & Queues 77

2.1.2 Operations on stacks

According to Wikipedia37:

In computer science, a stack is an abstract data type that serves as a collection of elements, with

two main principal operations:

● Push, which adds an element to the collection, and
● Pop, which removes the most recently added element that was not yet removed.

We do have some other operations on stacks such as as peek(also known as top), isempty, isfull.
We shall deal with this along with stack’s implementation in the C programming language.

The following video illustrates the operations on stacks.
https://www.youtube.com/watch?v=V1voux_sU5M&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4
NMtVN&index=2&t=7s

2.1.3 Realization of Stacks Using Arrays

We use a pointer TOP or index variable that is used to show or point the top of the stack at any
time. That is, the TOP value will be the index of the array element which was inserted recently. We
assume that the array has sz elements. We are sure that you will accept with us that an array in C
language (for that matter in any language) is a consecutive sequence of memory locations which is
thus considered as linear in accessing the same. As we are using this for realising our stack and
elements are also manipulated in a sequential manner, the stack also becomes linear one.

That is, a pointer or index variable TOP keeps track of the top element in the stack or top of

stack(TOS). When the stack is empty, TOP value is set to –1. This is done when a stack object
or variable is created or instantiated. When the stack contains a single element, TOP will be made
to have a value of 0 (Zero) and so on. Each time a new element is inserted in the stack (called as
PUSH operation); the pointer (TOP) is incremented by 1. The pointer (TOP) is decremented by 1
whenever an element is deleted from the stack.

How long can we continue this PUSH operation?. The answer is till there are some free elements
in the array (which is used for realizing the stack). An attempt to PUSH an element into a stack
which is already full is said to be over flow condition.

Similarly as briefed above, we have another operation which we can do on a stack known as POP.
When this is executed, the top most element is removed from the stack and TOP is adjusted
(reduced) to point to one element below the current one.

Obviously, we may get a doubt about how long or how many times we can do POP operation?. The
answer is we can do it till the array elements are exhausted. Rather, whenever POP operation is
done; TOP value will be reduced by one. When this becomes -1, then no elements are there in the
stack. Any attempt to POP from an empty stack will be said to be under flow.

37 https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Data Structures: Theory & Practicals 78

In the above algorithm for PUSH, the 1st step checks for an overflow condition. If such a condition
exists (that is the array used is fully occupied), the insertion can't be performed and instead an
appropriate error message will be displayed. If the stack is not full, then insertion takes place and
TOP is adjusted accordingly.

The following figure (Fig. 2.14) demonstrates a series of PUSH and POP operations on a stack.

Fig. 2.14: Pop and Push operations on stacks

Stacks & Queues 79

In the above algorithm for POP operation, an underflow condition is checked in the first step of the
algorithm. If such a condition exists(i.e TOP value is less than 0), then the deletion cannot be
performed and instead an appropriate error message will be displayed.

We do have another operation known as PEEK, which is used on stacks in many applications. It
returns the element on the top of the stack but not removed. That is, the top element is returned but
the TOP value is not reduced. That is, if we call PEEK followed by POP, we get the same output.

Example 1: The following program realizes the stack using arrays in C language. All the functions
are implemented with the above background.

Just to show how to use this stack, we have used a simple example. Elements of a string are pushed
into the stack and printed the same by popping one after another.

Data Structures: Theory & Practicals 80

Output:
amar

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/AICTEDSBOOK16

The following video explains the above code.
https://www.youtube.com/watch?v=2GElnTKyi3E&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4
NMtVN&index=6

Question 3: See the following code that is available at https://ideone.com/qwGjjw for
experimentation38. Is this implementation of stack better or the above one?

38 These types of programs are taught by many teachers in many colleges. Thus, we are of the opinion that it

is our responsibility to address whether such implementations are good or bad. Thus, we have framed this
question. We welcome teachers and students to compare in terms of reusability and abstraction.

Stacks & Queues 81

Question 4: Why is the initial value of top taken as -1 in the above program?

Question 5: Assume that in some programming language array’s first element is at location 1
instead of 0 like in C language. Then, what will be the initial value of top?

Question 6: Assume that in some programming language array’s first element is at location 1
instead of 0 in C language. Identify what modifications you need to apply to the functions used in
the above implementation?

Data Structures: Theory & Practicals 82

Question 7: Assume that we want the stack (in the array) to grow in the opposite direction that is
used in our implementation. What is the initial value of TOP if you plan to do so? Identify what
modifications you need to apply to all the functions used in the above implementation?

Question 8: Assume that we want to implement the stack in a language in which array elements
are indexed as n:m, where n<m and lowest indexed element is at location n and higher indexed
element is at the location m in the array. What is the initial value of TOP if you plan to implement
the stack in this language? Identify what modifications you need to apply to all the functions used
in the above implementation?

Question 9: We welcome readers to visit the following link. Here, we are trying to maintain
students in a stack. Here, ‘stud’ is defined with his roll number (RNO) and name. For ease of
explanation, we have used only two data members; in reality we can have any number of data
members to define the student.

struct stud{

 int RNO;

 char name[9];

};

The following link contains our code on a visualization server. We welcome readers to visit the
link and execute the same and understand how generic is the concept of stack.
https://tinyurl.com/AICTEDSBOOK15

Example 2: An example to simulate the operations on the stack. A menu is given to the user, with
which he can do operations on the stacks and see the effect.

Stacks & Queues 83

The following link contains the code that demonstrates the stack overflow, stack empty conditions.
https://tinyurl.com/NBVstackusingarray

Question 10: Name the data structure that keeps items in order and only allows to add or remove
the elements at one side only?

Answer: The stack

Question 11: Assuming that “A”, “B”, “C” elements are pushed in order into a stack. After one
pop operation, which elements will be left in the stack?

Answer: “A” and “B”.

2.1.4. Applications of stacks

2.1.4.1 An application of stack for checking expression validity

See the following C language statement.

 printf("%d\n", 2+3*(2 - 3* (2-3)*6 + 3*1-(3*3-4);
If we try to compile the program using the above line, we get the following errors in the Dev C/C++
compiler.

Data Structures: Theory & Practicals 84

C:\Users\Administrator\Desktop\AICTEBOOK\Untitled1.cpp In

function 'int main()':

4 63

C:\Users\Administrator\Desktop\AICTEBOOK\Untitled1.cpp [Error]

expected ')' before ';' token

4 63

C:\Users\Administrator\Desktop\AICTEBOOK\Untitled1.cpp [Error]

expected ')' before ';' token

If we observe the above printf statement, we find that the statement is invalid in terms of
parentheses. That is, the statement is missing one ‘)’. The above compiler error messages are also
conveying the same.

See the above code where we have used beginning double quotes but forgot closing double quotes

in a C language statement. The above compiler error messages are reporting this. The compiler is
showing “missing “ character” on the line in which a mistake is made. Also, it is considering the
next line is also an error as it could not find closing double quotes in that line also!.

See the following code where we have declared a five dimensional array. On statement 4, we have
purposefully missed a “(“ and thus that statement is identified by an erroneous statement by the
compiler. The compiler reports that it is expecting “(“ before “]” which of course is very much
valid also.

Stacks & Queues 85

We have used all these examples to show that compilers are supposed to validate statements in
terms of brackets, double or single quotes and vice versa. Here, we propose an ad hoc method for
this type of validation.

We traverse the given expression element by element. Whenever, we find an opening type bracket
such as ‘(‘, ‘[‘, and ‘{.’, the same will be pushed into the stack. When we find a closing type bracket
such as ‘)’, ‘}’, and ‘]’, we pop the character from the stack and compare the current closing bracket.
If they are matching of type, the expression is valid till that element. Otherwise, we can out rightly
say that the expression is invalid. We proceed like this till we encounter the null character in the
given input string or statement. After that we check whether the stack is empty or not. If the stack
is empty, it means all the opened brackets are closed and that too with correct matching type
brackets. Thus, the given expression is valid; otherwise, the expression is invalid as some brackets
which are closed did not get closed.

Example 3: Evaluating the expression for their parenthesis.

Solution: We will be using the above stack structure and related functions here. In addition, we
will be using the following functions.

Data Structures: Theory & Practicals 86

Output:

Enter an expression
2+3*(2 - 3* [2-3]*6 + 3*{1-3*3}-4
Invalid Expr

Enter an expression
2+3*(4+3*[2-3]*6-{2*3-4}+4)-3
Valid Expr

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/NBVparenthesisvalidation

Question 12: See the following type of expression which have some spurious (extra) closing
brackets. What happens if we input this type of expressions to the above program? Do we get
“invalid expression” message? If not, what changes you need to do for the above code?
2+3*(4+3*[2-3]])*6-{2*3-4}+4)-3

Example 4: We wanted to realize two stacks in the same array. First stack, we call A and second
one B. We assume, stack A will grow from bottom to top locations of the array (like previous stack)
while stack B grows from top to bottom. This is proposed to utilize the array in a better way. It

is possible in practical applications, some stacks will grow very much compared to others. To

increase the utility of array memory we want both the stacks to be using the same array.

Stacks & Queues 87

We take two indexes known as topA and topB. They will be initialized to -1 and sz respectively as
array elements indexes are 0 to sz-1. When an element is pushed into stack A, topA is incremented
at that location element is inserted. While an element is pushed into stack B, topB is reduced and
then element is inserted in element pointed by topB. When we pop from stack A, topA is reduced
after returning the element. While an element is popped from stack B, topB is increased after
returning the element.

We can go on inserting elements into stack A or B till the array has some space. That is, if topA+1
is the same topB, then we can conclude that the stack is full. Stack A will be empty if topA value
is -1. While stack B is empty if topB is the same as sz.

Data Structures: Theory & Practicals 88

Output:
aAmMaArR

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/AICTEDSBOOK17

The following link contains a video that explains the above double stack implementation.
https://www.youtube.com/watch?v=WLpRLIhWZ8Q&list=PLXX7XiUxnzzWoLDfgad4s4dwleb
4NMtVN&index=17

Question 13: Assume that we want to implement two stacks in the same array like the previous
example with the exception that both the stack grows as shown below.

Stacks & Queues 89

That is, the left half of the array used for stack for stack A, while the right half of the array for
growing stack B. You plan what you are going to do if the array size is even and similarly if it is
odd. Modify the whole code given above for implementing the two stacks in this fashion.

2.1.4.2 INFIX, POSTFIX AND PREFIX Expressions

We are usually taught mathematical operations such as addition, subtractions etc.. during our school
days. Adding two quantities A, B is mentioned as A+B. That is, the operator + is placed in between
the two operands A, B and this representation is called an infix representation. We do have other
representations of mathematical operations. These are

The three prefixes “pre-“, “post-“ and “in-“ convey the relative position of the operator in relation
to the two operands. I

In Prefix notation (also known as polish notation) the operator will be before (precedes) the two
operands.
In Postfix notation (also called reverse polish notation, RPN) the operator will be after (follows)
the two operands.
In Infix notation the operator is in between the two operands.

Do you remember the BODMAS rule that would have been taught during your school days? BTW,
does BODMAS stand for person or acronym? Ha. Ha. It is an acronym. The following table in
support of this rule says while evaluating expressions, one needs to evaluate brackets, powers,
division, multiplication, addition, subtraction in the order left to right.

Consider the evaluation of the expression infix expression A + B * C. We “know” that
multiplication is to be done before addition). That is, A+B*C can be interpreted as A + (B * C).

How to write A + B * C in postfix or reverse polish notation?. This can be done by applying the
rules of precedence. That is, we first convert the portion of the infix expression that is evaluated
first into postfix, namely here the multiplication. Then, we convert the + operation as it is done
after *. That is :

Data Structures: Theory & Practicals 90

Let us carry the similar conversion operation on the infix expression (A+B)*C.

In the above example the addition is converted before the multiplication because of the parenthesis.
In going from (A + B) * C to (AB+) * C, A and B are the operands and + is the operator. In going
from (AB+) * C to (AB+) C *, (AB+) and C are the operands and * is the operator. The rules
for converting from infix to postfix are simple. The following figure (Fig. 2.15) provides the order
of precedence.

Fig. 2.15: Operators and their precedence

2.1.4.2.1 Algorithm : Evaluation of a Postfix or Suffix expression

Here, we assume operands in the given expression are single digit operands. Thus, we can use the
stack explained in the first examples. Also, we assume our postfix string will contain only digits
and operators.

A snapshot of evaluating a postfix expression: 236*+42/+

6
3
2

18
2

20

2
4
20

2
20

22

U l P Bi
+

-

*

L R

L R

L R

Addition

Subtracti
on

Stacks & Queues 91

TOP=2 TOP=1 TOP=0 TOP=2 TOP=1 TOP=0

Initially the
stack is
empty.

Now, 2,3,6
are pushed
into the
stack.

As, we
have
encountere
d *
operator,
we pop 6,3
and
calculate
their
product
and push
the same
into the
stack.

As we have
now
encountere
d +
operator,
we pop 18,
2 and
calculate
their sum
and push
the result
into the
stack.

Now, 4,2
are pushed
into the
stack.

As we have
now
encountere
d /, we pop
2,4 and
calculate
their
division
and push
the same
into the
stack.

As we have
encountere
d +, we pop
2,20 and
calculate
their sum
and push
the same
into the
stack.

Readers are welcome to run the following program on a visualization tool to verify the above table.
https://tinyurl.com/AICTEDSBOOK28

Example 5: Evaluating Postfix expression

Solution: We propose to take the same stack structure as discussed in previous examples. Also, we
assume operands are simple single digit operands. As the stack is character stack, we are pushing
the operands as characters. However, once we pop the same from the stack, we are subtracting 48
to get digit value before evaluating the operator. Also, 48 is added to the result before pushing into
the stack. At the end, 48 is subtracted from the popped item to get the integer result.

Data Structures: Theory & Practicals 92

Output:
Enter a Postfix expression
234*+42/-6+
18

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/AICTEDSBOOK18

The following link contains a video that explains infix to postfix conversion using a stack.
https://www.youtube.com/watch?v=cDGtjfz3kmk&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4N
MtVN&index=28

Question 14a: In the expr() function of the above code, we are not using any break statement after
return statements. By chance if we insert break after each of the return statements of switch
construct, what compilation error are you going to get. Please experiment on a variety of compilers
instead of one compiler.

Answer: You will get unreachable code.

Question 14b: In our stack, we have used character array, x in the stack structures. Assume that
we have modified the stack structure to have an integer array instead of character array as shown
below.

What modifications one has to do for the above code so as to use for expression evaluation.
Hint: You may look at the following link after your initial thought process.
https://tinyurl.com/AICTEDSBOOK20

Question 15: What is the postfix expression whose evaluation changes the stack content as shown
in the following figure?

2.1.4.2.2 Stack based computers

Stacks & Queues 93

We do have stack based computers39; we mean HW which internally uses the operations push and
pop in HW. Also, we do have some freely available SW to simulate them40. We request teachers to
use them during their classes.

Conventional processors of contemporary design will have a finite set of named registers. However,
in a stack machine CPU, the registers are arranged in a stack fashion. It supports the usual range of
arithmetic operators and stack manipulation instructions push, pop. Do remember that we are
referring to HW aspects. That is, these push, pop are of that stack processor’s machine language or
level instructions.

As usual, any expression can be converted to RPN and a stack computer can be used to evaluate
that expression without. For example, if we want to evaluate X + Y - Z, its postfix form XY + Z

- is computed.

Now, we can give instructions: push val X, push val Y, add, push val Z, sub.

Of course, in this machine also, to execute an operation like add or sub, top two items from stack
are used and the result will be pushed back to stack. We welcome readers to visit the following site
for more details.

https://www.cs.csustan.edu/~xliang/Courses/SimulatorWeb/Examples/StackMachine/Expr_0a

Stack machine code for computing expression (X+Y)*(W-Y)

Question 16: In order to evaluate an expression 5+(((9+8)*(4*6))+7), the following steps are taken
by a stack based computer. Are they valid steps?

39 https://people.ece.cornell.edu/land/courses/ece5760/DE2/Stack_cpu_2011.html
40 https://www.cs.csustan.edu/~xliang/Courses/SimulatorWeb/index.htm

Data Structures: Theory & Practicals 94

Question 17: The following pictures illustrate the evaluation of a RPN expression. Is there any
mistake in it? (Source: http://ds.nathanielgmartin.com Last Accessed: 15th Aug 2022)

Answer: Yes. There is a mistake at the end. That is, the stack is supposed to have 45 instead of 5
as 9*6 is 45. You are welcome to visit the following visulaization to verify the above.
https://tinyurl.com/AICTEDSBOOK27

2.1.4.2.3 Converting Infix Expressions to Postfix

We have discussed in the previous example about evaluating a postfix expression. Now, we have
to know how to convert an infix expression to postfix.

We know that the postfix expression contains the operands which have high precedence before to
operands whose precedence is lower. Thus, we traverse the given string (we assume here also the
operands are single digit operands for our convenience sake) character by character. If we encounter
an operand, we simply output. When we encounter an operator we will check the stack if it is free
simply we can push into it. Else, we compare the operator at TOS, if TOS character precedence is
higher we will pop and print. (here, this stack is called an operator stack as we are pushing the
operators into it).This, we repeat till the stack is empty or till we encounter an operator whose
precedence is lesser than the current operator. Then, we push the current character into the stack.
Once after processing all the elements of the expression, we pop the all operators from the stack
and print.

Stacks & Queues 95

We have demonstrated in our examples that the postfix expression does not contain parenthesis.
Without them also, evaluation will be carried out correctly. Thus, we propose to push a bracket of
opening type into the stack. Any operator will be having high precedence (this we have assumed
for our programming convenience). When a closing bracket is encountered, we go on pop and print
operators from the stack till we encounter the opening bracket from the stack. However, we will
not print popped bracket in the postfix string.

Example 6: To convert an infix expression to postfix.

/* The following function returns 1 if operator 1 has higher precedence than

b*/

Data Structures: Theory & Practicals 96

Output:
Enter an InFix expression
2+3*6+4/2+6
Post Fix Expression=236*+42/+6+

A snapshot of the program which converts an infix expression to postfix is given below.

Input String: 2+3*6+4/2+6

Stacks & Queues 97

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/NBVinfixtopostfix

Question 18: Reverse polish notation of an infix expression 5+(((9+8)*(4*6))+7) is given as : 5 9
8+4 6 * * 7 + * (for clarity reasons, we have used spaces). Is this a valid equivalent?

Question 19: Analyse the working of PRECED() function defined above by filling the returned
value of this function in the following table for various values of arguments a, b.

Data Structures: Theory & Practicals 98

Question 20: In the above program, we have assumed that our expressions are having only +, -, *
and / operators. According to the logic of PRECED() function is developed. What is we want to
consider another operand $, which can be assumed as exponentiation whose precedence is
considered to be more than * and /. Do remember that this operator is also a binary operator (that
is, it will also have two operands). That is, A$B is equivalent to AB. Explore what modification you
need to apply for PRECED() function.

The following figure illustrate how the infix expression A + B * C - D / E is converted to postfix.

Readers are welcome to visit the following link to visualize the conversion.
https://tinyurl.com/AICTEDSBOOK29

The following figure illustrate how the infix expression A*B-(C-D)+E is converted to infix to
postfix. Do observe that the previous one is free from any brackets compared to this example.

Stacks & Queues 99

The following link contains the code to verify the above table.
https://tinyurl.com/AICTEDSBOOK30

Example 7: You are given the daily stock price of a company for some number of consecutive
market days. You need to compute the span value for all the given days. Span value of a day i (si)
is the maximum number of consecutive days (up to the day i) for which the stock price of the stock
is <= stock price of day i.
(Courtesy: https://www.heppenstall.ca - /academics/doc/242/ Last Accessed: 15th Aug 2022)

Assuming P is a 1-D array having stock’s daily price values. Let us take another 1-D array S to
store the span of the stock for every ith day. The following is a little crude procedure with time
complexity O(n2) where n is the number of consecutive days for which stock’s price is given.

Data Structures: Theory & Practicals 100

The author of this problem has suggested the following algorithm that uses a stack. Take here the
function top() as our peek(). Also, the pseudo language what the algorithm is little inspired by
object oriented languages such as Java.

We have made a solution and it is made available at the following link. Explore how time
complexity of this method is compared to the crude approach given above.
https://tinyurl.com/AICTEDSBOOK21

Question 21: What is the complexity of push(), pop(), peek() operations on a stack implementation
that uses an array?

Question 22: Assume that we want to design a growable stack in C language by using functions
such as realloc(), malloc(). Maybe, initially you can create a dynamic array in the stack structure
that was proposed earlier. Also, the initstack function can be made to create a dynamic array, x.
See the possible stack structure.

Stacks & Queues 101

Assume that whenever we find the available space of the array x becomes full, then by calling
malloc() function create a new dynamic array with twice the size of the current array, x, and then
copy the present stack content into it then make that new dynamic array as x. Like this, we want
you to implement a growable stack using the array.

Question 23: The following table illustrates conversion of the infix expression a - (b + c * d)/e to
postfix form. Is there any mistake in this trace?

Readers are welcome to visit the following link to visualize the conversion.
https://tinyurl.com/AICTEDSBOOK35

Answer: No

Question 24: Is there any mistake in the following infix to postfix conversion table of the
expression 2*3/(2-1)+5*3?

Data Structures: Theory & Practicals 102

Readers are welcome to visit the following link to visualize the conversion.
https://tinyurl.com/AICTEDSBOOK36

Answer: No

2.2 Introduction to Queues

We will find queues very commonly in our daily life where we will find people will be waiting in
the queue for some service (see Fig. 2.16)

Fig. 2.16: People in the queue
Courtesy: https://depositphotos.com/stock-photos/queue.html Last Accessed: 15th Aug 2022

Fig. 2.17: Vehicle in queue

Stacks & Queues 103

The above Fig. 2.17(left) shows vehicles at a toll gate. Fig. 2.17 (right) shows how orderly the
traffic is in Aizawl, State of Mizoram, India. Hats off to the Mizoram people. The following is a
figure (Fig. 2.18) where childrens will be standing in a queue to get their turn of ice cream.

Fig. 2.18: Children queuing in front of an ice cream van

The following figure (Fig. 2.19) shows packets in a queue at a router.

Fig. 2.19: Packets in a queue at a router
Courtesy: https://www.geeksforgeeks.org/packet-queuing-and-dropping-in-routers/ Last Accessed:
15th Aug 2022

Keyboard buffering

Queues are even used in keyboard management. Here, our key presses are maintained in a buffer
which is often called a keyboard buffer. Sometimes whatever we have typed will not immediately
appear on the screen; but appear with some delay. This may be due to the processor busyness with
some other task. That means, whatever we have typed, that key presses will be temporarily stored
in a queue, till the processor becomes free and reads it. Once the processor becomes free, all the
keystrokes that are in the queue are read in the sequence of their key presses and displayed on the
screen at once. Have you ever experienced this?. Similarly, mouse events are also maintained in
special buffers.

Let us consider that we went to a ration shop. We will stand in a place where already some people
are waiting. People who come after us, will be standing after us. Ration will be given first to the
people who are before us then we will get our turn. People who joined after us will be getting their
turn only after we get our turn. Thus, people who come first to the shop will be given service first.
Thus, this type of structure is called the First in First Out (FIFO) queue. Evidently, items (here
people) will be added at one end, while people will be leaving from the other end after getting
service. The end, where people are added is referred to as the rear end; the end from which people
will be served (and will leave the queue) is called the front end. That is, at the rear end items will
be added; while at the rear end service will be given and removed from the queue.

Data Structures: Theory & Practicals 104

2.2.1 Operations on Queues

Evidently, we have the following operations which are carried out on queues.

1. Insert: An item is added at the rear end. The REAR pointer will be changing (This
operation is also called an enqueue).

2. Remove: An item is removed from the front end. The FRONT pointer will be changed to
show the effect (This operation is also called dequeue).

3. Isempty: This will indicate whether the queue is empty or not. If empty, it returns true else
false.

4. Isfull: This is used with only array based queue realizations. It is to check whether the
space available in the array is full or not. If full, it returns true else false.

Theoretically, we can have a queue of any living things or non living things. That is, this is also a
generic concept. Also, queues can be realized either using arrays or linked lists. In the following
pages, we will first explain how to realize a queue using arrays and then using linked lists. The
following Fig. 2.20 shows FRONT, REAR41 etc.

Fig. 2.20: A typical queue with where some service is provided at the front

The following video introduces queues in practice.
https://www.youtube.com/watch?v=pGjMwP-
r8LU&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4NMtVN&index=32

Question 25: Assuming that “A”, “B”, “C” elements are inserted in order into a queue. After one
remove operation, which elements will be left in the queue?

Answer: “B” and “C”.

2.2.2 Array Representation of Queues

Linear Queues

Let us consider that we propose to use arrays to realize queues. Rather, we want to realize queue to
store characters. We assume that initially FRONT and REAR to be pointing to an imaginary cell
before the 0th element.

41 Rear is sometimes referred to as tail, back, end also.

Stacks & Queues 105

When we insert a first element, we assume we will adjust both FRONT and REAR to 0 as shown
below.

Now, if we insert some more elements (say X,Y,Z,T,U,B), only REAR will be changing.

Now, let us assume that we have removed the first three elements. Thus, FRONT will be adjusted.
Thus, the queue looks like:

The following link demonstrates the implementation of stack using the above concepts. We
welcome readers to explore this without fail.
https://tinyurl.com/AICTEDSBOOK33

Circular Queue

Now, if we think of doing insertion and deletion operations like this, in the above example, we may
have one more element that can be inserted. However, if we observe some free elements or locations
are available at the beginning which are previously allocated to some elements. If we want to utilize
them, we can think of moving all the elements towards the left such that we can maintain some
more elements in the queue. However, this demands memory movements. Thus, in the following

program we have proposed a solution which utilizes the free elements by considering the

array as a cyclic array(This can be also called as wrap-around).

Initially, we assume both FRONT and REAR (often called as back also) will be set to size-1 as
shown below.

Thus, we consider when FRONT is REAR then the queue is empty.

If we insert an item first, REAR will be set to zero if it is sz-1 else REAR is incremented by one.
Then, we insert the at the index referred by REAR. For instance like:

Now, if we call remove, we want to return the first element ‘X’. Thus, we have to adjust FRONT.
When remove is called FRONT is adjusted. If FRONT is sz-1 it will be made as 0, else it will be
incremented by one. Then, we return the element which is referred to by FRONT. In this case it is
‘X’. However, one important point we are missing here. Before changing FRONT, we have to
check whether the queue is empty or not. If not, then only FRONT has to be adjusted. Thus, the
queue becomes:

Data Structures: Theory & Practicals 106

Now, is it possible to call remove?. As FRONT is same as REAR no elements are there. Thus,
remove fails.

Let us proceed our discussion assuming the state of the queue as:

Now, let we have inserted items ‘P’,’N’,’R’. Whenever we insert, we change REAR and at that
modified position, the new element is inserted. Thus, queue now becomes

How long insertion can be carried out?. If we insert till (including) 7th element also then REAR
becomes 7. As we are assuming if FRONT is the same as REAR, the queue is empty. Thus, if we
insert till 7th location we may come to the wrong conclusion that the queue is empty. So, we will
insert till sixth only. Rather, when we call insertion, we will change the REAR value and check
whether it is the same as FRONT or not. If the same, we rise as “overflow” or full and terminate
the operation. Otherwise, we continue the insertion operation.

Thus, if we assume some more elements ‘M’, ‘N’, and ‘L’ are inserted and the queue looks like:

If we try to insert another element, it becomes an illegal operation. However, if we remove one
element, the queue looks like:

Now, we can insert another element (say ‘U’). The queue looks like:

Is it possible to insert another element? No. When we try to insert, REAR becomes 0. Thus, REAR
becomes FRONT. So, we don’t insert.

Let, two more elements are removed. Thus, queue looks like:

Now, we have space at the beginning to insert two more elements only. If we assume that we have
inserted ‘O’ and ‘Y’, the queue looks like:

Stacks & Queues 107

Thus, by moving REAR and FRONT cyclically, we can utilize the array space in a better manner.
The following code fragment implements the above steps.

We consider the given array as a circular array. We are using a circle with equal annular portions.
Just like a linear array, we did number these annular parts starting from 0. Initially, we kept front
and back(read) at size-1. Here, they are initialized to 7 as we have eight annular parts along the
periphery of the circle. If the annular part is grey, it is not occupied; otherwise it is occupied with
some element. The following figure indicates that the queue is empty.

Assuming that we have inserted 2, 4, 1, and 7 into the queue. Thus, queue looks like the following
figure.

If we remove one element, that is 2 then the queue becomes as shown below.

Assuming that we remove (4) and then add 9 then the queue becomes as shown below.

Data Structures: Theory & Practicals 108

If we remove 1 and 7 in sequence then the queue looks like the following.

The following picture shows the queue in full condition. Do remember that we want to waste one
location. If we try to insert any element, it should raise a queue full error.

Example 8: Realizing queue using arrays.

Stacks & Queues 109

Output:
Output from the queue
rama

The following link contains the above code hosted on a visualization server. We welcome readers
to experiment with the same.
https://tinyurl.com/NBVQueueusingarray

The following video explains about queue realization in C language using an array.
https://www.youtube.com/watch?v=8ClFbAxtKB0&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4
NMtVN&index=3

Question 26: In the above implementation of Queue, we want to implement some change.
The following lines

 to be replaced with

Similarly, the following lines

Data Structures: Theory & Practicals 110

to be replaced with

The following link contains the modified code.
https://tinyurl.com/AICTEDSBOOK23
Explore whether this works in the same fashion as that of the previous implementation of queue or
not.

Question 27: If you observe the above implementation of the queue, you find it is inserting
elements at 0, 1, 2,.....size-1, 0, 1, 2,....size-1, and vice versa in the cyclic fashion as long as one
empty slot is available (see the following figure).

Can you plan to realize the same in the opposite direction? That is, first element to go to the location
size-1, that next to size-2,....2.1.0 then again from the location size-1, size-2,...,2,1,0, and vice versa?

Question 28: In the queue implemented above, we plan to use another variable Count representing
the current number of elements in the queue.

We have modified all the functions taking the new variable count into account. Also, unlike our
previous implementation, we were wasting one element of the array, this uses all the elements of
the array to realize the queue. Is there any advantage of this method in relation to our previous
implementation? The following link contains the code that is using Count data members in our
implementation.
https://tinyurl.com/AICTEDSBOOK24

Question 29: In the lines of Question 28, we plan to use another variable Count representing the
current number of elements in the queue. Assume that the array is of size 25. We initialise Rear,
Front and Count to 0.

Stacks & Queues 111

Question 30: If one observes all the functions such as insert(), remove(), isfull(), iseempty(),
INITQUEUE() all are designed to take the address of the queue as an argument as shown like
INITQUEUE function.

Is it possible to send a queue as a passing by value style (not passing by address fashion) to all the
functions? Maybe, you may look at the following link to guess the answer.
https://tinyurl.com/AICTEDSBOOK25

Question 31: What is meant by the False-Overflow Issue in linear queue?
Answer: There are some free elements in the queue but the rear reaches the end of the queue. In
order to use those free spaces, elements will be moved.

2.2.2.1 Comparison of Circular queues and Linear queues

● Linear queue consumes more memory as compared to circular queue.
● A circular queue is an efficient way for memory utilization.
● In a circular queue, new data can be inserted again at a particular position after deleting
previous data on that position which is not the same in the case of a linear queue.
● In a linear queue, if the rear pointer reaches last and the front pointer deletes all data from
the queue, it continues to show the message of “Overflow”, which is the main drawback of the
linear queue. Whereas in a circular queue, an overflow message is shown when the queue is full.
● Easy to perform dequeue operation and enqueue operation in linear queue.

2.2.3 Deque

A double-ended queue or deque42 is a double-ended linear data structure that is more general than
stack and queue. A deque has four major operations: insertFront(), insertRear(), removeFront(),
removeRear().

There are two types of deques based on the restrictions put to perform either the insertions or
deletions only at one end. They are:
(i) Input-restricted deque
(ii) Output-restricted deque.

Input-restricted deque: In input-restricted deque, insertion can be made only at one end while
deletions can be carried out at both ends.

Output-restricted deque: In output-restricted deque deletion can be made only at one end while
insertions can be carried out at both ends.

A deque can be also realized using either arrays or linked lists. In this section we will use an array
based deque. Do recall why we have implemented our queue in a wrap-around manner. For the

42 It is also often called a head-tail linked list

Data Structures: Theory & Practicals 112

same reasons, we continue to employ wrap-around approach(circular buffer) on the selected array43
to realize deque.

Assume that we have a 10-element array to realize a deque of characters. Assume the array is
initially empty. Now, assume that we have added six elements to it by calling insertRear() function
and passing A, then B, C, D, E, and then F as its arguments.

After this, we have called removeFront()function three times. Then the queue status is shown below.

To use all available array space, a circular buffer (wrap-around) to its other end if needed. Suppose
the client calls removeFront on D, then calls insertRear() six more times, adding G, H, I, J, K, and
L. The deque's state is now becomes:

We want wrapping to occur in both directions. Suppose the queue is currently having D-F in
indexes 3-5, and we have called insertFront() five more times to add M, N, O, P, and Q. The deque's
state will be:

Assume that we have inserted ‘R’ at the front by insertFront(). The queue status becomes as shown
in the following figure.

Can we insert one more element either at the front or rear? No. We want to take this situation as
the deque full condition. We want this to raise as an error. Do remember we have followed the
same approach in our queue implementation.

Assume that we want to remove all the elements from front by calling removeFront(). That is, R,
Q, P, O, N, M, D, E, F to be removed in the order. After that front value and rear values are as
shown below and now deque is empty.

Instead, if we call removeRear() and remove F, E, D, M, N, O, P, Q, R then front and rear values
will be as shown below.

Do remember that when we say we are removing, we are simply adjusting Front, Rear values; we
are not clearing the array element values. OK.

43 https://courses.cs.washington.edu/courses/cse373/13wi/homework/3/spec.pdf

Stacks & Queues 113

Example 9: The following code is our implementation of deque.

Data Structures: Theory & Practicals 114

We have made a solution and it is made available at the following link. Explore the same.
https://tinyurl.com/AICTEDSBOOK26

Question 32: You have to implement a deque that is growable. First, assume you are using a

dynamic array that is created through malloc() to realize deque. Initially it will be having some size.

If the deque becomes full, first create another dynamic array with malloc() whose size is twice the

size of the current array. Then, copy the current array content into the newly created. Do remember

that one cannot simply copy the contents such that ith element of the old array will become the ith

element in the new array, because of the wrapping that affects Front and Rear values a lot. If we

start from the 10-element array just shown below.

You have observed that the deque is full. Now, we create a new array as shown below and copy

elements and adjust Front and Rear values as shown below.

Stacks & Queues 115

Modify the above deque implementation of ours so as to accommodate this enlarging concept.

Question 33: Assume that we want to realize deque using the same circular array concept. The
following things are proposed as the changes to front and rear whose initial values are taken as sz-
1 where sz is the size of the zero indexed array.

Are they going to give correct deque implementation?

Question 34: Assume that we want to implement a deque using the following structure where we
are using number elements in the deque as an argument instead of rear.

We have provided below (see the link below) one cooked up program for implementing the deque
using the above structure. Explore its working in relation to our previous solution above. Identify
the advantage of this over the above if any advantage is existing.
https://tinyurl.com/AICTEDSBOOK32

2.2.4 Circular Queues for Round-Robin scheduling

Fig. 2.21: Traffic lights at a four road junction

See the above figure (Fig. 2.21) having traffic signals at a four road junction. Here, traffic lights
will be controlling the traffic using circular fashion or round robin fashion. Maybe, green light will
be issued for north bound traffic, then west bound, south bound, and east bound traffic in a cyclic
manner. This is a good example for round robin scheduling.

A program under execution is called a process. In order to run or execute a process, it needs CPU
(central processing unit or simply processor). Scheduler of operating systems decides to which
process the CPU has to be attached. When a CPU is attached to a process, it(process) is said to be
in running state. The processes that are waiting for the scheduler's attention (or service) are in the

ready queue. When a process is running, it (process) may ask the OS for some resource(such as

Data Structures: Theory & Practicals 116

printer or plotter) which makes the scheduler put this process in another queue known as waiting

queue. Thus, queues are used in many SW systems in addition to operating systems, compilers,
network monitors. The following picture (Fig. 2.22) shows how processes changes their states in
an operating system.

Fig. 2.22: Ready Queue, Waiting Queue in operating systems
Courtesy: https://www.researchgate.net/figure/Process-state-transition-diagram_fig3_332546783
Last Accessed: 15th Aug 2022

As mentioned above, in a multitasking operating system, the available CPU time is shared between
competing processes. In order to run or execute, CPU has to be given to a program. On uni-
processor machines, at any given instant of time, only one process is running, all the others are in
‘sleeping’ or waiting state. The CPU allocation/deallocation is administered by the scheduler. The
scheduler keeps all the current processes in a queue(ready queue) with the active process at the
front of the queue (Fig. 2.23).

Fig. 2.23: Ready queue

In Round-Robin Scheduling, every process is granted a specific amount of CPU time called the
time slice or time ‘quantum’. That is, for that duration of the time, CPU is allocated for that process.
If the process is still not completed even after its allocated time quantum, it is suspended and put
towards the end of the queue44. See the following figure (Fig. 2.24). Assume that process “A” is
selected by the scheduler for execution and it runs for a given amount of time slice then it will be
suspended if not completed) and kept at the end of the ready queue then the next process in the
ready queue, that is “B” is selected for execution. Thus, processes may change their states ready,
running, ready. Also, they may change their states ready, running, waiting, ready.

44 This is known as context switching in operating systems terminology. Of course, context switching may

take place because of many reasons.

Stacks & Queues 117

Fig. 2.24: Scheduling processes in round robin fashion

We can implement a round robin scheduler using a queue, Q. That is, the current process that is at
the head will be allocated a time slot, after its expiry this process will be put at the rear of the queue.
The same can be represented as: (Fig. 2.25):
1. e = remove()
2. Run e for the duration equivalent to time quantum.
3. Insert the process.

Fig. 2.25: Operations on a ready queue

In fact, current Unix/Linux uses priority oriented round robin scheduling where the processes will
be having some priority which may even change with time and the number of time slices it has
already consumed. That is, in the ready queue processes may be maintained in some order; which
indirectly indicates removal, insertion of the processes into such a queue may not be necessarily at
front or rear always. More discussion on this theme is beyond the scope of the book.

Question 35: Algebraic expression to call a function of two variables "X" and "Y" which is the
sum operators "+" and the product "." and as delimiters to parentheses "(" and ")". Write a program
which reads an algebraic expression and values for X and Y then evaluates the expression for the
given values of X and Y.

Examples:
If the expression is: XYX + X + Y + Y.Y andX = 1 and Y = 2, the evaluation result is 9.
If the expression is: (Y + (X + YX)). X + X + YY and X = 3 and Y = 1 then the evaluation result
is 25.

The input format has to be the algebraic expression and the values of X and Y prepended with a
slash "\":

Example Inputs:

Data Structures: Theory & Practicals 118

Question 36: Translate and evaluate an expression using the following specifications.
(Source: Data Structures, Assignment 3, April 13, 2001, The University of Texas at San Antonio)

● The input source will be made up of the following elements:
● single-digit integer constants, 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.
● single-letter variables, like a or X.
● operators: , * /, +, or - ,= .
● parentheses: ‘(‘ and ‘)’.
● the special symbols: # to terminate the whole input (and ; to terminate an expression).

To make things easier you are allowed to assume operands as single-digits or single alphabetic
characters in any case. As usual all whitespace (space, newline, tab, etc.) should be ignored while
processing the input. Always, assume the given input will terminate with a ‘#’; also you need to
output a ‘#’ after your processing results.

While converting the infix expression to postfix expression the following operator associativity and
precedence has to be used. Certainly this is not too different from our discussions with the exception
of extra operators to be considered in this assignment.

For example, assume that we want to compute one root of the quadratic equation y=x2+3x+2. We
know a=1,b=3, c=2 are the coefficients of the quadratic equation in a casual Mathematical sense.
We also know that one of the root is √ which can be also written as ((bˆ2 - 4*a*c)ˆ(1/2) -

b)/(2*a).

Your program has to do two things. First it has to convert the expression into postfix. Always,
assume that all the variables of an expression will be specified in advance before the expression.
Of course, users may directly give expressions with only digits, no variables. For example, if the
following is the input ending with a ‘#’ character:
a=1;b=3;c=2;
((bˆ2 - 4*a*c)ˆ(1/2) - b)/(2*a)#

After the first step, we have to get the following expression as output:
a1=b3=c2=b2^4a*c*-12/^b-2a*/#.

The final value to be outputted as:

Stacks & Queues 119

0.50000#

Do remember that the arithmetic should be carried in double precision. The output should be
also in double precision.You may use the function pow(x, y) of the math library.

One more sample input for reasons of understanding of the problem is given below.

For the above input, the final result is:
-2.0000 -1.0000#

The intermediate reverse Polish form would be:
a1=b03-=c2=db2ˆ4a*c*-12/ˆ=r0b-d+2a*/=s0b-d-2a*/=rs#
Develop a program for the above specified problem.

Question 37: Assume that we want one more nonrecursive algorithm to check whether a given
string is palindrome or not. Traverse the given string from till you encounter a null character, insert
each character into both a queue and a stack. Now compare the characters at the front of the queue
and the top of the stack. If both of them are the same then pop a character from the stack and remove
one character from the queue; otherwise declare the given string is not a palindrome. If either stack
or queue are empty, declare the given string as palindrome.

What is the complexity of this approach in relation to an iterative solution whose code is given
below?.
https://tinyurl.com/THANKYOUVASU2
https://tinyurl.com/THANKYOUVASU1

Question 38: Implement a decimal to binary conversion algorithm with the following pseudocode
as inspiration.

If you observe the pseudocode, you will find that it will be giving binary digits of the number

backwards. (ex: if the number value is 19, we get 11001 instead of 10011). To remedy this problem,

Data Structures: Theory & Practicals 120

instead of printing the digit right away, we will push it into a stack. At the end, we pop the digit out
of the stack and print it till the stack is empty. Maybe, the following pseudocode may be of use
while developing your code.

Note: Linked list implementation of stacks and queues are discussed in the forthcoming

chapters.

Multiple Choice Questions

1. Stacks can be realized using
a. Arrays

b. Linked lists
c. Both a & b

d. None

2. Stack is also called as
a. MEMO

b. FIFO
c. LIFO

d. none

3. Postfix equivalent of 2+3*4
a. 3*4+2

b. 2+*34
c. 234*+

d. None

4. Prefix equivalent of 2+3*4
a. 3*4+2

b. 234*+
c. +2*34

d. None

5. In evaluating a postfix expression using a stack, the stack is called as
a. Program stack

b. LIFO
c. Operand stack

d. Operator stack

6. While converting an infix expression to a postfix expression using a stack, the stack is
called as
a. Program stack

b. LIFO
c. Operator stack

d. Operand stack

7. While executing program with functions, compiler uses the stack which is called as
a. operand stack

Stacks & Queues 121

b. LIFO
c. program stack

d. Operator stack

8. Assume that we have a series of n number of character stacks. We take a string and push
all the characters of the string from beginning to till null (‘\0’, excluding null) are pushed into the
first stack of the chain of stacks. Then, we go on pop() from the first stack and push to the next
stack of the chain of stacks. This, we repeat for each of the stacks except the last stack. Whatever
we get from the last stack when we apply pop() operations and simply display the popped characters
from it. Assume none gives any overflow errors. If we are getting the original string then n is
a. 1

b. Even
c. Odd

d. None

9. Assume that we have a series of n (even) numbers of character stacks and queues (that is
stack, queue, stack, queue, and vice versa). We take a string and push all the characters of the string
from beginning to till null (‘\0’, excluding null) are pushed into the first stack of the chain of stacks.
Then, we go on pop() from the first stack and insert to the next available queue. This, we repeat for
each of the stacks/queues except the last stack/queue. Whatever we get from the last stack/queue
when we apply pop()/remove operations, we simply display the popped/removed characters from
it. Assume none gives any overflow errors. What do we get on the screen?
a. Given string itself

b. Reverse of the given string
c. A series of characters

d. None
10. Assume that we have a series of n (n is divisible with 3) numbers of character stacks and
queues (that is stack, queue, queue, stack, queue, queue, and vice versa). We take a string and push
all the characters of the string from beginning to till null (‘\0’, excluding null) are pushed into the
first stack of the chain of stacks. Then, we go on pop() from the first stack and insert to the next
available queue. This, we repeat for each of the stacks/queues except the last stack/queue. Whatever
we get from the last stack/queue when we apply pop()/remove operations, we simply display the
popped/removed characters from it. Assume none gives any overflow errors. What do we get on
the screen?
a. Given string itself

b. Reverse of the given string
c. A series of characters

d. None
11. Queue is also called as
a. MEMO

b. FIFO
c. LIFO

d. none
12. The ADT which can be used both as a stack and queue is
a. Circular queue

b. Double stack in a array
c. Deque

d. None
13. The ADT which can allows insertion and removal at both the ends is
a. Circular queue

b. Double stack in a array
c. Deque

d. Dequeue

Data Structures: Theory & Practicals 122

14. In our RPN expression evaluation code, we are using 48, why?
a. Every author uses this, so

b. 48 is ASCII code of symbol 0
c. We are using char stack and RPN expression is processed character by character while the
operands are considered as single digit operands. To get digit value, we are subtracting 48.

d. None
15. Assume that we have an ADT stack of character stacks. Assume A is such a type of variable.
Assume both stack of stacks and character stacks are realized using an array. Do we need to take
the same size (sz) for both types of stacks?
a. Yes

b. No
c. Not necessary

d. I don’t know
16. Assume that we have a stack that uses an n element array where n can be an even or odd
positive integer. Assume that n/2 push and n/2 pop operations have taken place. Here, order of push
or pop operations are not specified and n/2 value is taken in integer mode. Which of the following
are invalid statements? We are assuming here that the operations will continue even after underflow
or overflow errors also.
a. Overflow will never take place.

b. Underflow can take place.
c. Underflow take place more than once

d. Overflow take place guaranteedly
17. Assume that we have a queue that uses an n element array where n can be an even or odd
positive integer. Assume that n/2 insert and n/2 remove operations have taken place. Here, order of
insert or remove operations are not specified and n/2 value is taken in integer mode. Which of the
following are invalid statements? We are assuming here that the operations will continue even after
underflow or overflow errors also.
a. Overflow will never take place.

b. Underflow never takes place.
c. rear value will be n/2

d. Overflow take place guaranteedly
18. Assume that we have an empty stack which is realised using an array of size 10. The
following operations are applied on it in sequence: one pop, two push operations, one pop,four push
operations, two pop operations. How many elements are in the stack? We are assuming here that
the operations will continue even after underflow or overflow errors also.
a. 4

b. 3
c. 8

d. 2
19. Assume that we have an empty stack which is realised using an array of size 10. The
following operations are applied on it in sequence: one pop, two push operations, one peek, four
push operations, two peek operations. How many elements are in the stack? We are assuming here
that the operations will continue even after underflow or overflow errors also.
a. 4

b. 3
c. 6

d. 2
20. Assume that we have an empty queue which is realised using an array of size 10. The
following operations are applied on it in sequence: one remove, two insert operations, one remove,
four insert operations, two remove operations. How many elements are in the queue? We are
assuming here that the operations will continue even after underflow or overflow errors also.

Stacks & Queues 123

a. 4

b. 3
c. 8

d. 2
21. Assume that we have an empty stack which is realised using an array of size 10. The
following operations are applied on it in sequence: one pop, two push operations, one pop, four
push operations, two pop operations. What is the value of the TOP of the stack assuming the initial
value of the TOP is -1? We are assuming here that the operations will continue even after underflow
or overflow errors also.
a. 4

b. 3
c. 8

d. 2
22. Assume that we have an empty stack which is realised using an array of size 10. The
following operations are applied on it in sequence: one pop, two push operations, one peek, four
push operations, two peek operations. What is the value of the TOP of the stack assuming the initial
value of the TOP is 10? We are assuming here that the operations will continue even after underflow
or overflow errors also.
a. 4

b. 5
c. 6

d. 2
23. Assume that we have an empty stack which is realised using an array of size 10. The
following operations are applied on it in sequence: one pop, two push operations, one pop, four
push operations, two pop operations. What is the value of the TOP of the stack assuming the initial
value of the TOP is 10? We are assuming here that the operations will continue even after underflow
or overflow errors also.
a. 4

b. 3
c. 8

d. 5
24. Assume that we have an empty stack which is realised using an array of size 10. The
following operations are applied on it in sequence: one pop, two push operations, one peek, four
push operations, two peek operations. What is the value of the TOP of the stack assuming the initial
value of the TOP is -1? We are assuming here that the operations will continue even after underflow
or overflow errors also.
a. 4

b. 5
c. 6

d. 2
25. Assume that we have an empty queue which is realised using an array of size 10. The
following operations are applied on it in sequence: one remove, two insert operations, one remove,
four insert operations, two remove operations. What is the value of the front of the queue assuming
the initial value of the front is -1, rear is -1? We are assuming here that the operations will continue
even after underflow or overflow errors also.
a. 4

b. 3
c. 8

d. 2

Answers:

Data Structures: Theory & Practicals 124

Descriptive questions

1. Question: Assume that we have used a five element array (zero indexed) for realizing the
queue. Also, initial values of Front=-1 and Rear=-1. Assume that the following operations are
carried out on the queue one after another.

What is the status of the queue?

Answer:

2. See the following implementation of insert function of a queue. What modifications one
need to apply if the language uses 1-D arrays with valid array indices starting from 1?

Answer: See the following figure with modifications.

Stacks & Queues 125

3. See the following method for removing an element from the queue. Assume FRONT=-1,
REAR=-1 initially and the array size is N.

Is it going to work correctly?

Answer: No.

With the above queue, after five calls to the REMOVE() function the given queue becomes empty
and if we continue to call REMOVE() we need to get a “QUEUE EMPTY” error which the above
code will not give. Similarly, in the following queue also the fourth successive call to the
REMOVE() function will not give a “QUEUE EMPTY” message.

4. See the following implementations of INSERT() and REMOVE() functions to implement
a circular queue using an array. Compare this with our solution discussed in the book. (Source:
http://ds.nathanielgmartin.com/wk09/W9L1-Queues.pdf Last Accessed: 15th Aug 2022)

Data Structures: Theory & Practicals 126

5. Compare our realization of deque in the book with the following from
http://ds.nathanielgmartin.com/wk09/W9L1-Queues.pdf .

Stacks & Queues 127

6. A deque can be used as either a stack or a queue. Do you think that it is faster or slower in
execution time than either a dynamic array stack or a linked list stack? Can you design an exercise
to test your hypothesis? In using a Deque as a stack there are two choices; you can either add and
remove from the front, or add and remove from the back. Is there a measurable difference in
execution time between these two alternatives? (Source:
http://web.engr.oregonstate.edu/~sinisa/courses/OSU/CS261/CS261_Textbook/Chapter07.pdf
Last Accessed: 15th Aug 2022) Note: You may attempt once the linked lists chapter is read by you.

7. Assume that you want to realize a stack and a queue in an array of size sz(=8) as shown
below. That is, the stack is supposed to grow from left to right while the queue grows from right to
left. It is possible that sometimes the stack may grow faster while some other times the queue may
grow faster. Total available space for both is sz number of elements.

Data Structures: Theory & Practicals 128

For example, stack is having there elements while queue is having five elements as shown below.
There are no free elements available in which case both stack and queue insertion/push operations
raise “overflow error”.

However, consider the following situation in which there are some free elements in the queue.

Now, we propose to move the elements towards the right and create space for both stack and queue
to grow. This can be done either by operations of stack or queue.

Do remember your design should be such that stack alone can occupy all the sz elements or queue
alone can occupy all the sz elements. However, do remember that some free elements are available
in the queue at any time then the elements of the queue have to be moved to the right side to create
space for further growth of stack/queue.

8. Implement two queues (A & B) in a single array as shown below. Both the queues can
occupy the whole array. Also, whenever an “overflow” situation arises, think of moving elements
either to left or right to create space to grow.

9. Implement two queues (A & B) in a single array as shown below. Both the queues can
occupy the whole array. Also, assume both the queues can move their elements to use free spaces.

Stacks & Queues 129

10. Verify whether the following code is working fine to realize a stack or not. Compare this
with our original stack implementation. This code is already available on the visualization server
at https://tinyurl.com/AICTEDSBOOK34 . You are welcome to test and then compare.

Data Structures: Theory & Practicals 130

11. Write a program that takes a prefix expression and evaluates the expression value. For
example, +3*45 should be evaluated as 23. Do remember that the operands in the given prefix
expression are single digit operands (0-9). Hint: Process the given prefix expression string from the
last character to first character
12. Polish Notation (Source:
https://egr.vcu.edu/media/engineering/documents/cs/VCU_HSContest_2016_Problems.pdf Last
Accessed: 15th Aug 2022)
Computer scientists have a strange way of looking at arithmetic expressions. What a regular person
sees as 3+4*5 looks like + 3 * 4 5 to a computer scientist. The former is called the infix notation,
while the latter is called the prefix notation, or the Polish notation. In the Polish notation, the
operator (e.g. +) comes first, followed by the left-hand side sub-expression, followed by a right-
hand side subexpression. Each of the subexpressions again is in the prefix notation. One benefit is
that no brackets are needed, they can be inferred: + 3 * 4 5 can be unambiguously understood as +
3 (* 4 5), that is, as 3+(4*5).

You task is to write a converter from prefix notation to infix notation for expressions that involve
numbers in the range 0-9 (that is, every number is a single digit, there won’t be numbers such as
123), as well as two binary operators: + and *. The converter should preserve the left-right order,
that is, + 3 4 is translated to 3+4 and not to 4+3. To simplify things, every binary operation should
be enclosed in brackets: instead of 3+4*5 you should print (3+(4*5)).

Input A string of length up to 100 characters representing an expression in prefix notation. The
string will contain only the following characters: 0123456789+* and each character will be
separated from the next by a single white space.

Output A string representing the expression in infix notation. Do not use any white spaces.

Sample Input

+ * 3 + + 4 5 6 7

Sample Output
((3*((4+5)+6))+7

Laboratory programming tasks

1. Implement stack using array as explained in this chapter.

2. Implement reverse polish notation(RPN) or postfix expression evaluator.

3. Implement infix to postfix expression converter.

4. Implement double stack in an array.

5. Implement a queue using an array

6. Implement input-restricted deque.

Stacks & Queues 131

7. Implement output-restricted deque.

Welcome to participate in the online competition

We are hosting a competition so as to encourage students to build their competence in coding. This
will be very useful for placements also in the coming years. Thus, welcome students to attempt the
competition at the following link.
https://www.hackerrank.com/aictedsbook

Programming puzzles
Some programming puzzles along with their solution around stacks and queues are made
available at the following link.
https://docs.google.com/document/d/1oMC1DctCaWYWO9L5hvdTuYQsUczT_RgAgM6_Hk92
spM/edit?usp=sharing

References

1. Fundamentals of Data Structure in C, Horowitz, Ellis, Sahni, Sartaj, Anderson-Freed,
Susan, University Press, India.

2. Data Structures: A Pseudocode approach with C, Richard F. Gilberg, Behrouz A. Forouzan,
CENGAGE Learning, India.

3. My class notes on Algorithmic Complexity, now a refresher for craving teachers and
knowledge greedy students: A must primer for GATE(India), Adv. GRE appearing students.
https://www.amazon.com/dp/B09DJCW78T

4. C and Data Structures, NB Venkateswarlu & EV Prasad, 2010, S Chand & Co, New Delhi

5. http://web.engr.oregonstate.edu/~sinisa/courses/OSU/CS261/CS261_Textbook/Chapter0
7.pdf

6. https://visualgo.net/en

Data Structures: Theory & Practicals 132

Unit Coverage

Objectives of the Unit

Learning outcomes of the Unit
After completing the Unit, the student

● has detailed knowledge of linked list based stack abstract data type, queue (U3-01).

● has detailed knowledge of single linked lists, doubly linked lists, circular lists (U3-02).

● is familiar with the basic concepts null pointer exception in various ADTs(U3-03).

● has detailed knowledge of how linked lists, doubly linked lists, circular lists are used in
practical SW systems such as operating systems, networks, etc(U3-04).

● is familiar with processes scheduling in operating systems (U3-05).

● is familiar with recursive implementations of various operations on single linked lists,
circular lists, doubly linked lists.(U3-06)

● has knowledge of implementing multiply linked lists which contains more than two links

(U3-07)

Unit-3
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong

Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5

U3‐O1 3 3 -

U3‐O2 3 3

Linked Lists 133

U3‐O3 1

U3‐O4 1

U3‐O5 1 1

U3‐06 1

U3‐07 1

3.1 Linked Lists
Why do we need linked lists?

Let us assume that you are asked to write a program that takes ID numbers of people who are
visiting a busy airport. Maybe, you can assume that the airport has only one way!.

Fig. 3.1: One of the busiest airport Chek Lap Kok (Hongkong)
(Source: https://www.frommers.com/slideshows/820279-the-10-best-business-friendly-airports
Last Accessed: 1st Sep 2022)

An immediate idea people usually get is using an array (either static or dynamic through malloc).
We are sure you are all aware that either to declare a static array or to create a dynamic array, one
needs to supply the required number of elements of the array. Of course, we want to store one
visitor ID in one element of the array. To do this, we need to know how many visitors are going to
visit the airport today(see Fig. 3.1). Oh. my God. Does anyone know this in advance to either
declare or create an array? Not at all. Today, maybe 100000 people may visit the airport, tomorrow
120202 people may visit. Thus, an array based solution is not an apt one in this problem. That is,
the number of people who visit the airport is a dynamic quantity. It may vary from day to day.
Whereas an array based solution tries to solve using a statically sized(fixed sizes) array. Somedays,
it (array) may be sufficient to store visitors IDs while on some other days it may not be sufficient
to store visitors IDs. This is where linked list based solutions rescue us. They can grow to any
extent and they can shrink to any extent also. Thus, we can say that linked list based solutions

are vital in solving dynamic systems.

32. Linked Lists

The data structure singly linked list consists a sequence of data records45(not physically in memory
but logically) with a data member whose value can be an address or reference (i.e., a link) to the
next record in the sequence (see Fig. 3.2).

45 also referred to nodes or elements

Data Structures: Theory & Practicals 134

Fig. 3.2: A Sample linked list with an integer and a link to the next node as its members (source
www.wikipedia.com Last Accessed: 1st Sep 2022)

We have a variety of linked lists known as single linked lists (as shown above in Fig.3.2), circular
lists (Fig. 3.3), and double linked lists (Fig. 3.4).

Circular lists

In a single linked list, the last node of a list will be a null46 link47 field; a special value that is
interpreted by programs as "there is no such node/records/elements or no more nodes further".
Instead of null in the last node, we let it point to the first node of the list; thus the list is said to be

circular or circularly linked48. Without this link to the first node, the list is said to be open or

linear (see Fig. 3.3).

Fig. 3.3: A circular linked list (source www.wikidpedia.com Last Accessed: 1st Sep 2022)

Doubly linked lists

Unlike a single linked list, in a doubly-linked list, each node/record contains two links; one to the
next-node in the sequence, the other to the previous node in the sequence (see Fig. 3.4). These two
links may also be referred to forward(s) and backward(s) respectively.

Fig. 3.4: A doubly-linked list with an integer, the link to the next node, and the link to the
previous node (www.wikepedia.com Last Accessed: 1st Sep 2022)

If the nodes of the sequences are designed to be having more than two or more links they are called
as multiply-linked list,

Treasure hunt: A lively example

Fig. 3.5: A simple treasure hunt box
(Source: https://www.wikihow.com/Make-a-Treasure-Hunt Last Accessed: 1st Sep 2022)

46 null has different meanings. Please refer to the following for more understanding. However, we follow to

use 0 as null in our book. https://stackoverflow.com/questions/1296843/what-is-the-difference-between-
null-0-and-0 ,https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
47 null link means it is not pointing to any more record/node/element
48 it is also referred to closed list

Linked Lists 135

Linked list is more similar to a treasure hunt game(Fig. 3.5) that is organized in schools or in some
kitty parties. You will find a clue for the next one. That next one will be having a clue for the
following one, and vice versa Here, the clue can be considered as the link of the linked list.

The following is the problem statement of a problem that appeared in the Australian Bebras
competition.

Secret Recipe (Australia, Bebras, 2017)
(Source: https://www.bebras.edu.au/wp-
content/uploads/2018/01/2017_Bebras_Solution_Guide_AU.pdf Last Accessed: 1st Sep 2022)

Assume that you are asked to cook a special cake made of five ingredients out of the ones that are
placed in the garden. For some items, you will find labels which convey which is the next ingredient
to be added. Here, labels are the links with which you will identify the next ingredient to be added
to the cake. By the way, what is data here? Data are the ingredients.

Question 1: Which ingredient should be added first?

Answer: B

 All the five ingredients in the right order gets added if we start with the flower. Of course, the first
added ingredient will be the one with no label. If you choose the strawberry, you can not select any
more ingredients as there is no label along with it. If you start with the apple, you will be missing
the red flower. If you would have started with the pine cone, you would be skipping the apple and
red flower. Like this, to reach one goal there will be hints (clues or links) to the next goal.

 Here, the linked list is the recipe. The ingredients are the node’s data items with the label being
the pointer to the valid next item of the recipe. The first ingredient is that ingredient with a label
and is not referred to by any label

Data Structures: Theory & Practicals 136

The following is a link to an online treasure hunt game. My request to teachers is to encourage
children to play this game.
https://brainchase.com/the-treasure-hunt/

The following link contains a GPS treasure hunt that is spread across the world.
https://www.nationalgeographic.com/travel/article/gps_treasure_hunting#:~:text=So%20why%20
not%20try%20taking,located%20all%20over%20the%20world.

We welcome teachers to have a glance at the following videos that explain about linked lists.
https://www.youtube.com/watch?v=-3G-K51h2oA
https://www.youtube.com/watch?v=Ujf9q3mbjrY&t=61s

The following link contains a linked list visualization tool.
https://visualgo.net/en/list

Wow. A train is nothing but a Linked List!!

Fig. 3.6: Two train coaches along with their couplings

Let us take one real life example which is none other than trains (both passenger and goods trains).
If you see the above picture(Fig. 3.6) you will find two coaches are connected to each other (by a
special thing known as coupler which we can consider as our link which connects a node with
another node of our SW linked list)49. In reality a train is formed by an engine (an electric engine
or loco engine), a series of coaches connected one after another and at the end a special coach
known as Guard’s coach. Here, engine and Guard coaches are different from normal coaches. We
may also have some special coaches such as Railway Mail Service coaches, refreshment
coaches(pantry coach), etc., on the trains. Also, in the case of goods trains we may have special
types of coaches such as open type or closed type, A/C type to carry perishable goods, water tankers,
oil tankers, special units to ship cars/vehicles etc. Many operations are possible on trains(or goods
trains), we can remove the engine, we can add new coaches either at the end or at the front, we can
break a train into two small trains, etc. In the same fashion, we may find operations on linked lists
also. BTW, in this example point of view, which is the data? Here, data is nothing but people

who will be transported in passenger coaches or items that are transported in good vagons.

Humanity cherish for long

49 In terms of programming, one may consider the coach body as the data (value) node
and coupler (connector) as a reference pointer.

Linked Lists 137

Fig. 3.7: Blind people crossing the road one after another with the help of a volunteer.

Let us have one more example that has a closest analogy with linked lists. We are sure you might
have seen a group of blind people crossing a road or walking on the road with the help of a person.
Sometimes, a trained dog will also help the group of blind to walk. See the picture Fig. 3.7. Who
is head here? The starting person who is incidentally not blind. Who are coaches (or data) here?
The blind people who formed as a chain (one after another see Fig. 3.7). Which is the link here?
One blind person’s on the shoulder of a blind person before him is the link.

A necklace(see Fig. 3.8) can be also considered as akin to a linked list. If we don't like that blue
jewel anymore, we can remove it from the sequence and tie the resulting two ends together.

Source: iStock.com Last Accessed: 1st Sep 2022

Fig. 3.8: A necklace

A roller chain is also another marvelous example to links. Also, a cycle chain is another one(see
Fig. 3.9).

Fig. 3.9: Practical links of our daily life

We all know that each of the chain parts is connected to two chains as shown above. We can
break any spoiled chain and insert a new one easily.

Want to be a 21st century Sherlock Holmes?

Let us take one more example. When a crime takes place, police will start their investigations from
some number of suspects. They will get clues from these investigations about the real culprits.

Data Structures: Theory & Practicals 138

BTW, have you read Sherlock Holmes novels? Wow. They are mostly around criminals and clues!.
Nowadays, phone call data is also helping police officers to catch the criminal. Ofcourse,
sometimes criminals are more sophisticated than police; while some other times they are innocent
enough to leave clues. Think, here in this example where are the links and what is data?

Document registration

Also, we would like to share one more practical example that uses the concept of link and of course
the example may be specific to India. Say, you want to take a loan from a Bank by pledging your
property. Bank people ask the registered document or sale deed of the property in addition to all

link documents. That is, from whom I have purchased, from whom that person(my seller) has
purchased, and vice versa. Every document will have its associated link document number. That is,
my registered document(a set of printed pages) contains the document number of my seller. If I get
a copy of my seller's document from that number, it contains the document number of his seller,
and vice versa. Here, document numbers that are maintained in the registry are linked.

URL

Let us bring another lively example which we presume that the majority of people know. That is,
none other than WWW(world wide web) which is a collection of hyper documents. A hyper
document contains some text, images, videos, sound, along with hyper links such as the link
http://bit.ly/BEBRASTELUGUBOOK. We see hyperlinks or Uniform Resource Locators (URL’s)
in web pages. If we click on one URL, then the page pointed by that URL will be displayed. That
URL may have some more links, which may be pointing to other pages on the Internet. Thus, we
use links very commonly in our daily life. BTW, is WWW is SW or HW? Oh. Yes. It is SW.

What is the Internet? Yes. Yes. I know, you know it. Yes. It is HW.

Index pages of a book

To have a real feeling of what is meant by links, let us recollect some practical applications.
Consider index pages of any book like ours. Index pages contain the most important key words of
the book and in which pages they are used. If we are in a hurry to know about a topic which is not
listed in the content pages, we often open index pages and then find the pages where that topic
would have been discussed. Thus, we can say that keywords and the page numbers associated with
them can be considered as links.

Consider another situation. Let us consider we are reading a book and authors have referred to
another book for more details about a concept. To know more, we will try to get that book and read.
Probably, that second book might refer to another book or journal. That is, the first book is referring
to the second book; the second book may be referring to the third, and vice versa. Like this, in real
life also, we may use links commonly.

Files & Directories

Let us also consider another practical example which is related to storing files/directories in
secondary memory devices such as hard disks. Smallest addressable entity in secondary memory
devices such as hard disks is usually called a block (physical block) or a cluster (a group of sectors
is called a block).

There are various data block allocation policies for storing files. One such approach is called linked

allocation, which is of course a very very old one. Here, files (we mean a file’s content) are stored
as linked lists, with the expense of the storage space consumed by each link. Assume that block
size 512 and block addresses are 4 bytes. That is, any data block number is 4 bytes long. For
example, a file size 1500 bytes and data blocks 50, 56 and 57 are allocated to store these 1500 bytes.
That is, in the data block 50, 508 bytes of the file is stored and then the next file data block number

Linked Lists 139

(i.e., 56) is stored in the remaining four bytes of the block 56. This is carried for the remaining
blocks of the file also (see Fig. 310.).

Fig. 3.10: How a file is stored in linked allocation method

This can be also shown with the following figure Fig. 3.11 in disk point of view.

Fig. 3.11: Linked allocation

(Source:
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/12_FileSystemImplementation.htm
l Last Accessed: 17th Aug 2022)

Fig. 3.12: How a file blocks are linked

Data Structures: Theory & Practicals 140

Whenever we save a new file in the disk, a group of free block50s (or clusters) and in them file
content will be saved. Also, that file's first cluster is saved or added to the directory in which the
file is located. In the following figure, we have details of a directory and associated FAT(file
allocation table). FAT is used in DOS51 based file systems. For example, if the first cluster/block
number is 4 in which file content is available then we can find remaining data blocks in which file
content is available can be found using FAT as shown below. Next data block is 8, the next data
block is 3, and the next data block is 6. That is, the file content is available in data blocks (clusters)
4,8,3, and 6. Did you observe links here?. Similarly, if a file is starting from the 7th cluster then
the following data blocks are 5, 10, 11(see Fig. 3.12) in which file content is available .

Free-Space Management is an important aspect of disk management that keeps track of free space
and allocates free data blocks whenever needed. There are many methods in realizing the same.
One of them is using a Linked List. The FAT table shown in figure 3.13 displays how a free data
blocks list is maintained as a linked list.

Fig. 3.13: Free space blocks links
(Source:
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/12_FileSystemImplementation.htm
l Last Accessed on 17th Aug 2022)

Fig. 3.14: A Unix system disk partition and its pertinent parts

Let us also understand another free data block management that is used in the original Unix V. A
disk partition in a Unix system is considered to be having boot block, super block, inode blocks
and data blocks as shown below(see Fig. 3.14).

50 Here a block is called a physical data block whereas in database management systems(DBMS), a record

(one row of a table or relation) is called a logical record.
51 DOS stands for disk operating system. Of course, it can be also denial of service(DOS) attack or

distributed operating system(DOS)

Linked Lists 141

Free list here is a form of linked list and the filesystem's superblock contains the first part of the
same. When the filesystem is first created, all data blocks appear on the free list as obviously they
are free by then. By the way, do you know the technical name of this operation? Did you ever install
any operating system on a fresh hard disk? The operation is known as formatting. During the
formatting time, the above logical structure of the disk partition(Fig 3.14) will be created.

However, as the space in the super block is limited, only a small part of the free list will be
maintained in the superblock while the most of free list information is really stored in free data
blocks. The data block number(for example 200) of which is arranged to be the last block number
in the super block list points to the remaining free list details. This idea is repeated, using free data
blocks to store free lists block numbers. That is, the last free block number in each free list segment
is the data block that is having the next list of free block numbers. This idea is shown in Fig. 3.15.

For example, in the following figure you will find in the super block that block numbers 171-200
as free. If we want the next free block numbers, simply we need to read the data block whose
number is 200. If we find in data block 200 that free data blocks are 201 to 230 then the next portion
of the free list can be found by reading data block whose number is 230.

Fig. 3.15: Initial free list
(Source: https://www.cems.uwe.ac.uk/~irjohnso/coursenotes/lrc/internals/filestore/fs3.htm Last
Accessed: 1st Sep 2022)

If a request is made for a new data block to store a file’s content, the next free one on the super
block list will be allocated first (blocks will be allocated right to left in the above diagram). That is,
data block 171 will be allocated. Which means, the file’s content is stored in the data block whose
number or address is 171. As more data blocks are requested, required free data block numbers can
be taken from the super block (next 172, that next 173, and vice versa) until the super block free
list has only one entry left in it. Why is that one entry cannot be removed? That last block number
in the super block list is the data block that contains the block numbers of the remaining part of the
system's free block list. By reading that data block, we fetch the block numbers of the remaining
free list into the super block (see Fig. 3.16).

Fig. 3.16: Free list after allocating some data blocks

Data Structures: Theory & Practicals 142

(Source: https://www.cems.uwe.ac.uk/~irjohnso/coursenotes/lrc/internals/filestore/fs3.htm Last
Accessed: 1st Sep 2022)

Fig. 3.16 shows the situation after all the initial list of free block numbers in the super block have
been allocated to a request and then the contents of the data block number whose address is 200 is
fetched into the super block. Of course, after that data block whose address is 200 will be declared
as free and added to the free list. In the same lines, when files are deleted and their data blocks
become free, their block numbers are just added to the free list and accordingly super block content
will be updated. We are afraid, detailed discussion on this theme further makes this book bulky.

Linked lists in memory management

Linked lists are extensively used in memory (RAM) management also. Every piece of memory
used by a process (a running program) is allocated from one of three different areas:
� static area: The static area is used to store global variables and constants. Its requirements such
as size (and layout) is computed during compilation time and allocated when the program starts.
� stack: This area stores the arguments of the function call, variables declared inside the
function(called as scratch variables). The data structure that stores all these things is known as stack
frame or activation record52. From the stack area memory is allocated (when a function is called)
and freed(when you return from the function) dynamically, in LIFO order. Also, in most of the
programming languages including C language, a function call’s arguments are pushed into stack in
right to left fashion, that is in LIFO order.
� heap: From heap dynamic memory is allocated and freed, in any order. The heap is used to store
objects that are supposed to outlive after the function that created them. To make things easy, when
we call malloc() memory will be allocated from the heap and when we call free() it will be
deallocated.

For example, in the following C program, we have commented the variables along with their
type(static type, stack type, heap type) for ease of understanding.

52 Do remember that nothing is infinite including the memory allocated for the program stack. Because of

this finiteness of program stack, usually recursive functions encounter a serious runtime error known as
“stack overflow” problem where because of repeated creation of activation records, the available program
stack gets exhausted and thus we face this situation. Of course, do remember this word “stack overflow” is
used with some issues regarding databases and their online form fill data.

Linked Lists 143

The above program is available on a visualization server. Readers are welcome to execute the same
to understand the theme of static, stack, heap type variables or objects.
https://tinyurl.com/AICTEDSBOOK43

The following picture(Fig. 3.17) illustrates these concepts while the above program is getting
executed on the visualization server. The variable a will be having its memory allocated much
before the main program is started. Similarly, memory for a, b, c are allocated from stack while the
dynamic memory (through malloc) is allocated from heap.

Fig. 3.17: Static, stack and heap variables

Advantages and disadvantages of each of static, automatic(stack), and dynamic(heap) are presented
in the following table 3.1.

Data Structures: Theory & Practicals 144

Table. 3.1. Comparison of static, stack and heap variables or objects.

Garbage Collection or Heap Management
We have explained that the dynamic memory is allocated from the heap area. In order to give a
real feeling of execution of a program, we will try to explain tersely how memory is managed
during the execution of a program.

The three areas (stack, heap etc) just described above can be organised as follows in the address
space of a running program in primary memory or virtual memory. By the way, if someone asks
you what an executable file contains, what is your answer? Typically an executable file contains
two important areas to name: text segment or area (which is also called code segment) and data
segment. When we run the executable file its code or text segment and data segment are mapped
onto the address space in RAM as shown below (Fig. 3.18, 3.19). Only when this structure is created,
that program is said to be a process.

Fig. 3.18: Process address space in Windows

Linked Lists 145

Fig. 3.19: Process address space in Linux
(Source: https://www.tenouk.com/Bufferoverflowc/Bufferoverflow1c.html Last Accessed: 1st Sep
2022)

What is Garbage Collection?

1. track every dynamic object
2. find all accessible objects (difficult process!)
3. free all inaccessible objects

See the following example.

We welcome readers to visualize the above code here at the following link.
https://tinyurl.com/AICTEDSBOOK42

In this example, we would like to show that if the memory allocated is now no longer referenced
by any pointers in the program that will be taken back by garbage collector in automatic garbage
collectors. In the above program, we are creating a dynamic memory with 4 bytes and making it to
be referenced by two pointers x and z. Also, another pointer y is made to point to another 10 bytes
dynamic memory. That is, once we set x to 0, we no longer have two pointers referring to the
allocated 4 bytes of memory. Also, when we call free() function with pointer y as argument, that
10 bytes also disappeared or deallocated (of course now y is called a dangling pointer. see the
difference between x and y in the visualization tool) . When the z=0; statement got executed then
only that four bytes memory got deallocated.

Data Structures: Theory & Practicals 146

Managing the static area and the stack is trivial and beyond the scope of this book because of book
size limitations. Managing the heap which is also called as garbage collection is much more
difficult because of the irregular lifetimes of the blocks(that are hosting objects or variables) it
contains. It prominently involves satisfying: 1. memory allocation requests (which consist in
finding a free block of memory big enough to satisfy the request, remove it from the set of free
blocks, and return it to the program), 2. memory deallocation requests, which consist in returning
a previously-allocated block to the set of free blocks, to make it available for further allocation
requests.

Which area of the heap is free and which is in use is tracked by the memory manager. For this
purpose, free memory blocks details are maintained in a special data structure known as the free

list. Notice that the term free list is used even when the data-structure used to track free memory is
not a list. There is no need to keep a list of allocated blocks, as it can be computed using the free
list – all blocks that are not in the free list are allocated.

Since the blocks stored in the free list are by definition not used by the program, the memory
manager can store information in them! For example, if the free list is represented as a singly linked
list(see Fig. 3.20), then the pointer to the next free block can be stored in the blocks themselves:

Fig. 3.20: Free list in heap management

Apart from the link to their successor and/or to their predecessor, free blocks must contain their
size. Allocated blocks do not require links to other blocks, but must also contain their size(Fig.
3.21). This information is stored in the block’s header, situated just before the area used by the
client, and invisible to it.

Fig. 3.21: Free and allocated blocks that are used in heap management

Data structures are extensively used for heap management. Here, we shall explain how heap memory can be
managed using a circular linked list. Here, we maintain a circular linked list of allocated blocks. Each block contains
its used size, the size of the free space after it, and a pointer to the next block as shown in Figure 3.22. The block at
the top of the heap points to the block with some free space after it (see Figure). Every node points to the next used
block. In the sample figure, heap memory is assumed to be having 60 bytes. The following steps are needed while
allocating memory for a malloc() call:

Linked Lists 147

● search for a block with enough free space after it
● Go to the end of that blocks used space
● Insert the new block into the heap
● Calculate the remaining free space
● Assign the previous block’s free space to 0
● Update the list

Fig. 3.22: Free list after allocating a block
When a call is made for free(), the following steps takes place
● Start from the top block of heap
● Traverse the list till we find the block to be removed
● Adjust the previous block such that this free area will be considered as free or un-allocated (see Fig. 3.23)

Fig. 3.23: Free list after deleting an object

Process Management

Data Structures: Theory & Practicals 148

In the previous chapter we did introduce process scheduling in operating systems using circular
queues, ready queues. In fact, in process control block (PCB5354) OS maintains all the information
it needs to know about a process such as: opened files, memory, process identification number,
owner, priorities of the process, process group, etc.

These PCBs are maintained as a ready queue and device queues55 as shown in the following figure
3.24.

Fig. 3.24: PCB’s as a linked list in process management

In Networks too linked lists are in demand!

Let's consider you are asked to write code for a firewall. Is it not obvious for you to monitor
Internet Protocol (IP) addresses such that some to be allowed and some other to be blocked? Your
machine IP, your jobs IPs, and some other testing IP's need to be whitelisted as you want to use
them; while a list of known IP's that may harm you to be blacklisted.You may get a doubt why
might I use LinkedList for this? The operation is fast for adding/removing an item from the list.
Also, You do not know how many IP's are going to be blocked/whitelisted.

In summary

The principal benefit of a linked list over a conventional array is that the order of the linked items
may be different from the order that the data items are stored in physical memory(RAM) or on disk.
For that reason, linked lists allow insertion and removal of nodes(records) at any point in the list,
with a constant number of operations, that is with complexity of O(1). Usually, language supported
arrays will allow us to have their size fixed during their declaration itself. This may make some
practical problems lose flexibility. Here, the linked list will come to rescue us. We can add and
remove at any time.

In an array we can access any element by directly specifying its index. That is, they allow the
random accessing of the data. However, in the case of linked lists this random accessing to the data

53 https://www.cs.auckland.ac.nz/courses/compsci340s2c/lectures/lecture06.pdf
54 PCB stands for printed circuit board also. Ha. Ha. This is also related to computers!
55 http://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/chapter3.pdf

Linked Lists 149

is not possible or demanding more CPU time. Thus, many basic operations such as obtaining the
last but one node of the list, or finding a node(s) that contains a given data, or locating the place
where a new node should be inserted, etc., in linked list may require scanning most of the list
elements and becomes comparatively computationally costly.

The following table 3.2 contains the comparison between arrays and linked lists.

Array Linked List

size or number of elements of the data which
we can store at most is fixed at the size of the
array.

size or the number of data elements which we
can store in a linked list is not fixed. It can
grow to any extent with the limitations from
available memory for our process.

Required memory is allocated from the stack
area of our process.

Required memory is allocated from the heap
area of our process.

It takes less memory to store n elements. It takes more memory to store n elements as
here we will be storing the next element or
node’s address also.

You cannot remove an element in the middle. You can happily remove any element from
anywhere.

If an array is full and we want to add some
more elements at the front of the array. This
demands a lot of effort as we need to create
another bigger array, copy the current
elements, etc

This is very easy here.

Insertion of a new element may demand
movement of some elements. Thus, it takes
more effort.

The insertion operation is also very easily
here.

Table. 3.2. Comparison of arrays and lists
The following table 3.3 shows the tradeoff between arrays and linked lists in terms of various
parameters.

Parameter Arrays Linked Lists

Sequential access Efficient Efficient

Random access Efficient with complexity of
O(1)

Inefficient with complexity of
O(n) where n is the number of
elements in the linked list.

Overhead None 1 address for ea h element in
the case of single linked lists,
2 addresses for each element
in the double linked lists.

Data Structures: Theory & Practicals 150

Growing/shrinking Not possible at all. In accordance with our wish it
can grow and shrink also.

Ease of arranging elements Inefficient Efficient

Table. 3.3. Performance comparison of arrays and lists

The following video introduces linked lists.
https://www.youtube.com/watch?v=45-fO24-
iv4&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4NMtVN&index=40

3.1.1 Single Linked Lists
In the following example, we want to introduce the creation of a linked list in the simplest possible
manner. Do remember that we can maintain anything in a linked list. But, for ease of understanding
we proposed to create a linked list of integers. For this, we have proposed the following structure,
a user defined variable in C language. Do recollect from our examples in the introductory section,
a linked list’s node essentially contains data and a link (or a pointer or a reference) to the next
item(node) in the list. Thus, we have used the following structure with two data members, n (an
integer) and next(a pointer) as we want to maintain integers as a linked list. Do remember that n is
referred to as data of the linked list node56. As all the nodes are of the same type, the next data
member will be a pointer of the node type, that is whatever name we are going to give to the
node(structure), the next will be a pointer of that type. That is, we will be using self referencing
structures in building the linked lists.

3.1.1.1. Linked List representation in Memory

The above code is available on the visualization server. We advise readers to visualize the same
before processing further.
https://tinyurl.com/nbvstruct11
https://tinyurl.com/NBVsimplesinglelinkedlist

56 Do remember we can maintain in a node/item/record of a linked list any number data members of any

type. However, for ease of explanation we are taking only one integer data member and a pointer.

Linked Lists 151

In the above program, we are declaring struct lst type variables A, B and C along with struct lst
type pointer type variable H. Then, we are storing integer numbers in each of the objects A, B and
C with the following three instructions.

A.n=10;

B.n=109;

C.n=22;

We are then assigning the a lst object to the next data member of each of the variables A, B and C.
Now, a linked list is formed among A, B and C.At the end, we are assigning the address of A to
H. This H can be called as the head of the linked list.

A.next=&B;

B.next=&C;

C.next=0;

H=&A;

The following picture is a snap-shot of the above steps.

The following picture is a snap-shot of the while loop that is used to traverse57 the linked list from
head to bottom (or top to end). Do remember that pointer values will be other than zero if they are
pointing to some object (or memory of an object).Thus, while(H) will be true whenever H is
pointing to an object like either A or B or C. When H value becomes null, while(H) becomes false
and we exit from the loop.

57 Traversing (moving from one node to another) in a linked list is called link hopping or pointer

hopping.

Data Structures: Theory & Practicals 152

The following video explains the linked list creation.
https://www.youtube.com/watch?v=-3G-
K51h2oA&list=PLXX7XiUxnzzUILTy1F68tpk7FZ56nJrOg&index=131&t=192s
https://www.youtube.com/watch?v=Ujf9q3mbjrY&list=PLXX7XiUxnzzUILTy1F68tpk7FZ56nJ
rOg&index=132&t=8s

Question 2: Assuming A, B are struct lst type(whose definition is given above) variables. Is the
memory(amount) allocated for A and B the same?

Answer: Yes. Very much the same. You may use the sizeof() function like the following.

Question 3: Assuming A, B are struct lst type(whose definition is given above) variables. Is the
memory allocated for A is same as B?

Answer: No. The memory allocated for A is different from memory allocated for B. You may
check their addresses like the following. Both of them will be having different
addresses.

Question 4: How much memory is assigned for struct lst type object or variable?

Answer: On my machine, pointers are taking four bytes. The amount of memory for data member

n plus the amount of memory for the pointer type data member next. In my machine, it is 4+4=8
bytes. You can happily call the sizeof() function to find the answer on your machine with

instructions such as: struct lst A; printf(“%d\n”, sizeof(A));

Question 5: How much memory is allocated for struct lst type of pointer variable?

Answer: For any pointer irrespective of its type, memory allocated will be the same. Thus, to know
the amount of memory allocated for struct lst type pointer, simply one can call sizeof(struct lst *).
On my machine, I am getting 4 bytes. Of course, you may get 8 bytes indicating that your
compiler/computer is a 64 bit compiler.

Question 6: Does the following code give 19 on the standard output?

Answer: Yes. You may verify the same at https://tinyurl.com/AICTEDSBOOK104

Question 7: Is the following code statement valid?

struct lst *A={19,0};
Answer: No. You may verify the same at https://tinyurl.com/AICTEDSBOOK105

Linked Lists 153

Question 8: Assuming that the while loop in the above program is modified as follows. Do you get
the same results?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK50

Question 9: Assuming that the while loop in the above program is modified as follows. Do you get
the same results?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK51

Question 10: Assuming that the while loop in the above program is modified as follows. Do you
get the same results?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK52

Question 11: Assuming that the while loop in the above program is modified as follows. Do you
get the same results?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK53

Question 12: Assuming that the while loop in the above program is modified as follows. Do you
get the same results?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK54

Question 13: Assuming that the while loop in the above program is modified as follows. Do you
get the same results?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK55

Question 14: Assuming that the while loop in the above program is modified as follows. Do you
get the same results?

Data Structures: Theory & Practicals 154

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK56

Question 15: Assuming that the while loop in the above program is modified as follows. Do you
get the same results?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK57

Question 16: Assuming that the while loop in the above program is modified as follows. Do you
get the same results? That is, is it going to print all the elements of the linked list? Is it going to
encounter any runtime errors?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK58

Question 17: Does this piece of code display all the node’s values? Here, H is the head of a linked
list?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK65

Question 18: Does this piece of code display the last node’s value? Here, H is the head of a linked
list?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK65

Question 19: Assume that H is the head of a linked list. After executing the while loop, to which
node H will be pointing?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK65

Question 20: Assume that H is the head of a linked list. After executing the while loop, to which
node H will be pointing?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK66

Linked Lists 155

Question 21: Assume that H is the head of a linked list. After executing the while loop, which
node’s values are displayed?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK67

Question 22: Assume that H is the head of a linked list. After executing the while loop, which
node’s values are displayed?

You are welcome to explore the following link before answering.

 https://tinyurl.com/AICTEDSBOOK68

Question 23: Assume that H is the head of a linked list. After executing the while loop, which
node’s values are displayed?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK69

Question 24: Assume that H is the head of a linked list. After executing the while loop, which
node’s values are displayed?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK70

Question 25: Does the following program behave in the same fashion as that of the above program?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK83

Answer: Yes. It also creates a linked list with three nodes and prints the same.

Data Structures: Theory & Practicals 156

Question 26: Does the following statement create a linked list for which H is a pointer? Of course,
the definition for struct lst is the same as above.

struct lst C={22,0}, B={109,&C},A={10,&B}, *H=&A;
Answer: Yes

Question 27: What will you get on the screen? Of course, the definition for struct lst is the same
as above.

You may experiment the code at the following link before answering
https://tinyurl.com/AICTEDSBOOK88

Question 28: What will you get on the screen? Of course, the definition for struct lst is the same
as above.

You may experiment the code at the following link before answering
https://tinyurl.com/AICTEDSBOOK84

Question 29: What will you get on the screen? Of course, the definition for struct lst is the same
as above.

You may experiment the code at the following link before answering
https://tinyurl.com/AICTEDSBOOK85

Question 30: What will you get on the screen? Of course, the definition for struct lst is the same
as above.

You may experiment the code at the following link before answering
https://tinyurl.com/AICTEDSBOOK86

Question 31: What will you get on the screen? Of course, the definition for struct lst is the same
as above.

You may experiment the code at the following link before answering
https://tinyurl.com/AICTEDSBOOK87

We know you might find the following definition of the structure is used by many people to
maintain a set of integers as a linked list. I am sure you are able to identify the difference in our
structure and this. After all, variable name n is taken as data.

Linked Lists 157

We can declare variables and pointers of Node type as:

Node A, B, C, *H;

The above program using this structure definition is available for readers experemination at:
https://tinyurl.com/AICTEDBOOK40

This type of structure is also used by many people.

We can declare variables and pointers of Node type as:

Node A, B, C, *H;

The above program using this structure definition is available for readers experemination at:
https://tinyurl.com/AICTEDSBOOK44

During the last thirty years of my lecturing I have used the above structure lst with data

member names as n and next. I love to follow the same in this book also.

Question 32: Is this type of structure valid to use?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK93

Question 33: Does the following program work?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK94

Data Structures: Theory & Practicals 158

Question 34: Does the following program work? What will be the output of this program?

We welcome readers to experiment with the following link where the above code is hosted.
Evidently, this shows how two linked lists are created, one in the global area and the other in stack
space.
https://tinyurl.com/AICTEDSBOOK95

Question 35: Are there any mistakes in the following program? First of all, does this program get
compiled?

struct _{

 int _;

 struct _ *__;

};

int main() {

 struct _ _, __, ___, *____;

 .=10;

 __._=50;

 ___._=190;

 _.__=&__;

 __.__=&___;

 ___.__=0;

 ____=&_;

 while(____&&printf("%d\n", ____->_),____=____->__);

 return 0;

}
You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK110

Question 36: In a cryptic single linked list if the following refers to an integer, what will be the
structure members in the most pessimistic manner?
____->__->__->_

Answer:

struct xxx{

 int _;

 struct xxx *__;

};
You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK111

Linked Lists 159

3.1.1.2. Operations on a Single Linked List

Displaying Linked List content or data

Assume that we want to convert the above while loop that traverses the linked lists and displays
each node’s data as a function. The following is our solution. If you observe, we have made that
while block inside the function. This function can be used to display the contents of a linked list.

We welcome readers to visit the following link to test the above function.
https://tinyurl.com/AICTEDSBOOK45

Time complexity of this function is O(n) as every node of the list has to be visited.

Question 37: Assume that we want to write a function that takes the head of a linked list having
numbers in it and returns the sum of the integers of each node of the linked list. The following
solution is proposed by us. Verify the same with the following link given below.

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK47

Time complexity of this function is O(n) as every node of the list has to be visited.

Question 38: The following is the recursive version of the above function.

Data Structures: Theory & Practicals 160

We welcome the readers to experiment the above code that is available on the visualization server
at:
You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK48

Let us assume that the first time when this function is called, H will be pointing to the head node
of the linked list. As H is true, another recursive call is made. Thus, during the second call, H will
be pointing to the second node in the list. In that call also, as H is true another recursive call is
made to the same function. In the third call, H will be pointing to the last (third node here). Logic
behind this is that the sum of the linked list nodes with n elements is the same as the sum of the
element in the first node plus sum of node elements of remaining n-1 nodes. To find out the sum
of the n-1 node elements, the function is called again. This is repeated till H becomes 0 in a recursive
call. At this junction (here in the fourth call), the function returns 0. That and the value of the node
in the previous call, i.e., 108 is returned to its previous call and vice versa.

Time complexity of this function is O(n) as every node of the list has to be visited.

Also, explore the following two links and identify the complexity of each of them. Which one is
iterative and which one is a recursive approach to find a node having a given value?
https://tinyurl.com/findlist

https://tinyurl.com/recursivefind

Question 39: Explain what will be the output of the following function..

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK77

Linked Lists 161

Example 1: A simple example to explain the creation of a simple linked list dynamically. This
program reads a set of integers till we enter 0 and maintains them in a single linked list and prints
the same. This allows us to insert the integers in a stack fashion. That is, the most recent integer
will be pointed by the head pointer, H.

Output:
Enter an integer
10
Enter an integer
19
Enter an integer
79
Enter an integer
0
Numbers in Single linked list are: 10 19 79

The following pages we have used two tables to demonstrate how the above program works. Table
3.4 explains about the creation of a linked list. Because of the space limitations, we have explained
the linked list with three numbers only. However, it can work with any number of integers. How
many numbers we can maintain in a linked list very much depends on the available virtual memory
for our program.

Data Structures: Theory & Practicals 162

Statements and their effect

struct lst *A,*H=0;
Two lst type pointers are created and for H
initial value is given as 0.

H A

0

Assume that user has entered 11. Thus, a new lst
object is created (with address 2222) and 11 is
assigned to A->n. That is,

A->n=m;

A->next=H;

H=A; are executed.

Assume that the user has entered 190 now. Thus,
a new lst object is created (with address 2122)
and 100 is stored in A->n.

A->n=m;

A->next=H;

H=A; are executed.

Assume that user has entered 100. Thus, a new
lst object is created (with Address 2004) and 100
is assigned to A->n.

A->n=m;

A->next=H;

H=A;

Table. 3.4. A snapshot of Linked List Creation

Table 3.5 explains about the traversal of a linked list from the top node (which is often referred as
head node). As long as the head pointer, H, is positive (we know acceptable addresses are always
positive numbers) we can traverse the linked list and print the information available (in this case
integer number) in each node.

Linked Lists 163

while(H) is tested.
As H value is 2004, the loop condition becomes true.
Thus, while
Block will be executed once. Thus, H->n, i.e. 100 is
printed and H=H->next statement gets executed. Thus
H value becomes 2122. That is H points to B.

while(H) is tested.
As H value is 2122, the loop condition becomes true.
Thus, while
block will be executed once. Thus, H->n, i.e. 190 is
printed and H=H->next statement gets executed. Thus
H value becomes 2222. That is H points to C.

while(H) is tested.
As H value is 2222, the loop condition becomes true.
Thus, the while block will be executed once. Thus, H-
>n, i.e. 11 is printed and H=H->next statement gets
executed. Thus H value becomes 0. That is H points to
nothing.

while(H) is tested. As H value is zero, we will come
out from the while loop. This is how we can traverse a
linked list and visit each node.

Table. 3.5. Traversing a Singly Linked List

The following link contains a little variant of the above code on a visualization server. Please do
observe the addresses that this code displays. Also, as this Visualization server does not support
interactive input, we have supplied a function that emulates scanf function by returning a random
number.
https://tinyurl.com/dynamiclinkedlist

Data Structures: Theory & Practicals 164

We have converted the above main program into a function and called from the main as shown
below.

We welcome readers to experiment with the above function at the following link.
https://tinyurl.com/dynamiclinkedlistusingfunct

Question 40: Consider the following two statements of the above createlist() function.

Explore what happens if we replace the above two statements with the following lines.

Here, A,B,C are lst type of pointers and the initial value of H is 0.

Creating a node dynamically

The following function takes an integer as an argument and creates an lst type object dynamically
by invoking malloc() function then it assigns x to n and 0 to next of the object created. At the end
it returns the address of the node created.

Linked Lists 165

The following link contains the above function and associated main program for experimentation
sake.
https://tinyurl.com/AICTEDSBOOK46

Question 41: Assume H, Even, Odd, A, B are struct lst type
pointers. Also assume H is pointing to the head of a linked
list. What happens if we execute the right side code fragment?
What Even and Odd pointers will be pointing?

The following link contains the right side and associated main
program for experimentation sake. You are welcome to
experiment with this code before answering.

https://tinyurl.com/AICTEDSBOOK71

Question 42: Assume H, Even, Odd, A, B are struct lst type
pointers. Also assume H is pointing to the head of a linked
list. In addition, the value of the variable i before this while
loop is zero. What happens if we execute the right side code
segment? What Even and Odd pointers will be pointing?

The following link contains the right side code and
associated main program for experimentation sake. You are
welcome to experiment with this code before answering.

https://tinyurl.com/AICTEDSBOOK73

Example 2: Creating a linked list with elements in
descending order.
Here also, we assume users will be asked to enter integers.
They will be taken and kept in the linked list in descending order till 0 is entered by them. The last
number 0 will not be kept in the linked list. If one wants, they can change this while loop according
to their wish. For example, a user can be asked to enter how many numbers he wanted to maintain
in the linked list. He/she can write a loop (while or for loop) which runs for n times and reads each
time a number and maintains them in the linked list.

When the first number is entered, the same will be kept in a dynamically allocated lst type of node
while initializing its next member as 0. This node will be made as the head for the linked list. Next
number on wards the following actions will be taken

1. If the new number is larger than the number in the head node then a new node will be added
before the current head and it will be made as new head.

Data Structures: Theory & Practicals 166

2. If the new number is smaller than the number in the head node then we will traverse the
linked list from the second node onwards till we find a node whose value is smaller than the new
number. A new node is created with this new number and inserted before the node whose value is
less than the new number. It may happen that the new node might be inserted either at the end of
the linked list or in between the available list of nodes.

Output:
Enter Numbers
11
100
190
10
0
Items in the Single Linked List:
190 100 11 10

A little variant of the above program that suits the visualization server is available at the following
link. We recommend readers to explore this code.
https://tinyurl.com/sortedlinkedlist

In the following link you will find how we have converted the above main program into a function
(createsortlist) and invoked the same from another main program in creating a sorted linked list.

Linked Lists 167

https://tinyurl.com/insertionlistfunction

A Snapshot of Linked List Creation

Initially, assume that we have taken head of the
list, H as 0.

Inserting at the front:

Now, let us assume that the user has entered 11.
A new node will be created with its n =11 and
next data member as 0. The head, H, will be
made to point to this new node.

Inserting at the front:

Now, let us assume that the user has entered
100. As 100 is larger than 11 (which is
currently in the head node), a new node has to
be inserted before the current head and it has to
be made as the next current head.

Inserting at the front:

Now, let us consider that the user has entered
190. As 190 is larger than 100 (which is
currently in the head node), a new node will be
inserted before the current head and it will be
made as the next current head of the linked list.

Inserting at the last:

Now, consider that the user has entered a
number 10 . As it is smaller than the head value,
i.e., 190, it has to be inserted to the right hand
side of the head node. Rather, we have to
traverse the linked list and find a node whose
value is less than 10, before that the new node
will be inserted with its value as 10. Here also
we may have two possibilities. A new node
might be added at the end if the given number
is smaller than the values in all the nodes of the
current linked list; otherwise, a new node will
be added in between two nodes in the existing
linked list.

To carry out this operation, we take two
pointers B and C which point to head and next
node to head respectively. As we have already
checked with the head node, we continue the
checking from the next node onwards.

Data Structures: Theory & Practicals 168

As the value in the node pointed by the pointer
C, i.e., 11 is more than 10, B is adjusted to point
current C and C is made as C->next. Thus, C
becomes zero. Control comes out of the while
loop. This indicates that the new node has to be
added at the end, that is after B.

Inserting in the middle:

Now, consider that the user has given a number
15. We assume that the current list contains
numbers 190, 100 and 11 in descending order.
This 15 is not more than 190, which is the
number in the head node. Thus, we will have to
traverse the list as explained above and find the
node having value less than 15. While
traversing the list, when C is pointing to the
node having 11, the loop condition becomes
false. That is, the new node has to be inserted
before it (C). That is, in between B and C as
shown in the figure.

Question 43: We want a recursive version of the above insertion sort function. The following is
our proposal. Test whether it is going to work as expected or not.

struct lst *insert(struct lst *H, int x){

 struct lst *A, *P,*Q;

 if(H==0 || H->n<=x){

 A=createNode(x);

 A->next=H;

 return A;

 }

 else{ H->next=insert(H->next,x);

 return H;

 }

}

 We made a fully functional program that calls the above function on a visualization server at the
following link. We welcome readers to experiment with it before answering.
https://tinyurl.com/AICTEDSBOOK59

Question 44: Is iterative solution simpler than recursive solution for a problem? What is the
problem with recursive solutions?

Answer: No. Not at all. It depends on the problem.

Question 45: What will be the result of the following function?

Linked Lists 169

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK78

Question 46: What will be the result of the following function?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK79

Question 47: What will be the result of the following function?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK80

BTW, what does the following statement convey? Assume H is the head of a linked list.

xyz(H)->n

Question 48: What will be the result of the following function?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK81

Example 3: Explain how the following function works.

Data Structures: Theory & Practicals 170

Let us assume that the first time when this function is called, H will be pointing to the head node
of the linked list. As it is having the next node, a recursive call is made further. Thus, during the
second call, H will be pointing to the second node in the list. As this is also having its next node
(i.e. H->next is true), another recursive call is made to this function. Thus, H in the third call will
be pointing to the next node (third node here). This recursive calls will continue a node without any
next node. In each recursive call, the printf statement will be executed. Thus, 10 will be printed.
Then, control comes back to the previous function call. Here again, printf statement is executed.
Thus, 11 will be printed. Then, control returns to the previous function call. Thus, we get 100 when
printf is executed. Here, we understand that the first last node is processed (last node element is
printed), then last but one, and vice versa. We get the elements of the linked list in reverse fashion.

Question 49: What will be the result from this function if we send the address of a linked list
which is created through creatsortlist() function.

Question 50: What will be the error if H becomes 0 in the first call itself.

Example 4: Function that takes head of a linked list and an integer x and deletes the first node
having x.

Also, the function to delete all the nodes having a given number from the linked list. We have
written a function which takes head of a linked list having integers and an integer number which
has to be removed from the list as arguments and removes all the occurrences of the nodes having
given number and returns the head of the modified linked list.
The node(s) that can be deleted can be either at the front (head) or in the middle or even the last
node also.
If we want to remove the head node as it is having x then we move H to point to the next node then
free the head node.

If we want to remove the node which is in the middle of the link then we need to adjust links before
removing the node having x.

//this removes single node

Linked Lists 171

This removes all the nodes having x

The following link contains a working program loaded on a visualization server.We welcome
readers to experiment the same.
https://tinyurl.com/AICTEDSBOOK60
https://tinyurl.com/deleteanodefromlist1

Data Structures: Theory & Practicals 172

https://tinyurl.com/deletenodeinalist

Example 5: Program to delete all nodes with a given number from a descending ordered single
linked list.

This is almost the same as the above example. As the linked list is in descending ordered one, we
can make a better algorithm. For example, if the number which we have to remove is larger than
the number in the head node, then we can simply return the head of the linked list without traversing
the list at all as all the nodes will be having numbers less than the given number. Similarly, we can
stop searching if we find a node whose value is less than the given number. See the changes we
made.

We have also written a function createsortlist() which reads a set of numbers and maintains them
in descending order. This is used in the main program to test our Delete() function.

Linked Lists 173

Output:
Creating List
Enter Numbers
12 1 20 20 12 20 90 28 10 10 89 21 10 0
Items in the Single Linked List:
90 89 28 21 20 20 20 12 12 10
10 10 1
Enter Number whose all the occurrences to be removed
10
List after deleting 10
Items in the Single Linked List:

Data Structures: Theory & Practicals 174

90 89 28 21 20 20 20 12 12 1

Best case time complexity of this function is O(1) and the worst case complexity is O(n) as every
node of the list has to be visited if the element required to be deleted is not in the linked list at all.

Question 51: Modify the above Delete() function assuming that the linked list contains numbers
in ascending order.

Question 52: Modify the above Delete() function such that it contains only a single while loop.

Question 53: What is the return value of the following function?

Question 54: What is the return value of the following function?

Example 6: Write a function to insert a node at the end of a linked list.

Solution: If the linked list is null (H==0), then the new node itself is returned as itself becomes the
first and last element of the list. Otherwise, we take a pointer B which points to H (top most node)
and will be made to traverse one by one till the last node. Then, new node A is made next to the
node B and then H is returned.

Linked Lists 175

Output:

Case 1: Already Linked list is available:
Creating List
Enter Numbers
20 30 30 21 0
Items in the Single Linked List:
20 30 30 21
Enter Number 34
List after inserting 34
Items in the Single Linked List:
20 30 30 31 34

Case 2: No linked list is existing
Creating List
Enter Numbers
0
Items in the Single Linked List:

Enter Number 34
List after inserting 34
Items in the Single Linked List:
34
See the following picture for more understanding

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK61

Example 7: Insert a node with a given value, x, after nth node.

Data Structures: Theory & Practicals 176

Solution: If the linked list is null, the new node itself is the resultant linked list. If the linked list is
not having n nodes, no insertion takes place. Otherwise, insertion takes place.

Output:
Creating List
Enter Numbers
20 30 12 22 89 77 12 22 0
Items in the Single Linked List:
22 12 77 89 22 12 30 20
Enter Number whose occurrences to be removed
7
List after inserting 7
Items in the Single Linked List:
22 12 77 89 22 12 7 30 20

You are welcome to explore the following link to test the above code..
https://tinyurl.com/AICTEDSBOOK62

Question 55: Create a new node with a given value x, after the nth node in the descending
ordered list. The following code is proposed. Will it work?.

Linked Lists 177

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK82

Example 8: Merging Two Linked Lists having numbers in descending order. We wanted to adjust
their links such that all the nodes of both the lists forms as a singled linked list with all the numbers
in descending order.

Data Structures: Theory & Practicals 178

Output:
Enter Numbers
10
2
33
80
4
0
Enter Numbers
12
44
123
41
92
32
21
0
First List
Items in the Linked List:
80 33 10 4 2
Second List
Items in the Linked List:
123 92 44 41 32 21 12
Merged List
Items in the Linked List:
123 92 80 44 41 33 32 21 12 10 4 2

Explanation
Two lists are given below. If any of the lists are null lists, the other list becomes a merged list.

Linked Lists 179

First, we compare the values of both the heads of both the lists and we assign two pointers H and
C to point to the largest one as shown below. Also, A or B adjusted to point to the next node in its
list. In this example, list B’s head node is larger, thus H and C will be made pointed to it. While B
is adjusted to point to the next node.

Now, we enter into the while loop and compare values of the nodes pointed by A and B. C will be
adjusted to point to the largest of them. After that A (or B) is adjusted to point to the next node.

For example, currently A is pointing to 50 while B is pointing to 35. Thus, we make C’s next as A,
C as A and then A is made a pointer to the next node (i.e., the node with 40).

Data Structures: Theory & Practicals 180

Similarly, the next pointer adjustment takes place as shown below.

Finally, the merged linked list is as follows.

Thus, if we traverse from H, we may get all the node values of both the lists in descending order.

Linked Lists 181

You are welcome to explore the following links to understand things further.

https://tinyurl.com/mergingtwolists
https://tinyurl.com/mergesortedlists

Question 56: What do we get if we send A and B to display() function after merging. Verify the
figure and check.

Example 9: The following program merges two Linked Lists having numbers in descending order
and creates a resultant linked list such that elements of both the lists will be in descending order.
Whatever memory is needed for the resultant list will be allocated dynamically. Original lists
should not get modified.

Data Structures: Theory & Practicals 182

Output:
Enter Numbers
12
2
33
22
12
2
0
Enter Numbers
44
12
90
2
12
44
45
0
First List
Items in the Linked List:
33 22 12 12 2 2
Second List
Items in the Linked List:
90 45 44 44 12 12 2
Merged List
Items in the Linked List:
90 45 44 44 33 22 12 12 12 12
2 2 2

Example 10: The following function which takes the address of a single linked list with descending
ordered elements, an integer, n, and lst type pointer to pointer. It splits the list into such that numbers
less than or equal to n will be in the second list and others will be in the first linked list. Second
link list addressed is stored in the third pointer which is sent arguments.

Solution: If list is null or the value if top most node is less than or equal to n, then the second linked
list becomes null and returns H value. Otherwise, we traverse the linked list for the node whose
value is less than or equal to n. That node address is stored in the memory location pointer by

second while making the first list ending is till this node.

Linked Lists 183

Output:
Creating List
Enter Numbers
10 20 30 40 50 60 70 90 0
Items in the Single Linked List:
90 70 60 50 40 30 20 10
Enter Number from which second list has to be created
45
First List after splitting 45
Items in the Single Linked List:
90 70 60 50
Second List after splitting 45
Items in the Single Linked List:
40 30 20 10

Data Structures: Theory & Practicals 184

You are welcome to explore the following link to verify the above code.
https://tinyurl.com/AICTEDSBOOK74

Question 57: See the following function which takes the address of a single linked list having
numbers in descending order, an integer, n, and address of the dlst type of pointer as arguments.
Identify it correctly splits the single linked list such that all the first n nodes will be in the first
single linked list and others are in the second single linked list its address is stored in the memory
pointed by the second pointer. Address of the first list will be returned.

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK75

Example 11: The following program shows how a structure can be defined to maintain a union
type object in the linked list.

Linked Lists 185

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK97

The following picture shows a variety(different) types of elements as a list! Ha. Ha.

Example 12: The following program shows how a structure can be defined to maintain a chain of
functions in the linked list.

int main() {

while(H){

 H->abc(H->n);

 H=H->next;

Data Structures: Theory & Practicals 186

}

 return 0;

}
You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK96

3.1.2. Circular Linked Lists
This is a simple variant of a single linked list. Unlike a single linked list, here there is no node
which can be called as head or tail node. In a single linked list, tail node will be having null as its
next. Here, we don’t have such a node at all. All the nodes will be having their next. To create this
type list, we may first create a singly linked list then head of it will be assigned to the last node’s
next. The following code fragment demonstrates how the same can be done in practice.

Readers may play with the above code on the visualization server given below.

https://tinyurl.com/circularlists
The following snapshot shows the circular list creation. Especially when D.next=&A is executed,
the circular list is getting created.

Linked Lists 187

The following is the snapshot that explains how we can traverse a circular list. Initially, P and H
are pointers to A. The pointer P stays at A only while H moves till it reaches again P. In the
following picture you may find how H is changing.

This type of list is useful for having priority queues. It is not uncommon to call in circular lists also
a node as head node, Though, every node is equally eligible to be called head node. Usually, from
the priority queue point of view a node whose value is high is called a head node such that whenever
we carry insertions or deletions from the priority queue, we shall with the help of this head node.

In the following example, we have the function createcirlist(), which takes the head of a circular
list and an integer to be inserted and inserts a new node in the circular list at its appropriate place
and returns the head of the modified circular list. This is more similar to creating a sorted linked
list with simple modification.

First time, circular list is assumed as null list. When we send this and a new number to createcirlist()
function, then a new node will be created with the given number and its address itself is assigned
to its next data member of itself such that a circular list of single node is formed. This node’s
address is returned from the function. Next time onwards, the returned address of the function
createcirlist() and new number will be sent to the function createcirlist(). Thus, circular list will be
created.

Example 13: Program to create single circular lists.

/* Circular single list*/

Data Structures: Theory & Practicals 188

Output :
Enter Numbers
12 3 2 29 8 78 21 0
Numbers in circular list are
78
29
21
12
8
3

Linked Lists 189

2

Question 58: In the following link we have code loaded on to the visualization server. Check
whether it is deleting a given node from the circular linked list or not.
https://tinyurl.com/deletingcircularlist

Example 14: The following function takes the head of a circular linked list and an integer n as
arguments then adds a new node with n as its data and then returns the head of the modified circular
linked list.

Data Structures: Theory & Practicals 190

We welcome readers to visit the following link to check the working of the above function.
https://tinyurl.com/insertcircularlist

Question 59: What is the output of the following code fragment?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK106

3.1.3. Doubly Linked Lists
Here in the double linked list(DLL)58, for each node, we will be having two pointers (next, prev)
which are pointing to next and previous nodes of the double linked list. In addition to pointers, we
can maintain any information in each node. For example, the following structure is used to store
integer numbers in a double linked list.

58 DLL also stands for dynamic link library. Ever did you come across with an error window in windows

such as “This application cannot run, so and so DLL is missing” etc?

Linked Lists 191

Example 15: The following programming example defines a structure to realize a double linked
list. Also, three such variables are declared and links are created to show how a double linked list
can be created. Also, a while loop is written to show the traversal of the double linked list using the
next link.

struct dlst{

 int n;

 struct dlst *next;

 struct dlst *prev;

};

void display(struct dlst *B){

 printf("Items in the Double Linked List:\n");

 while(B){

 printf("%d\t", B->n);

 B=B->next;

 }

 printf("\n");

}

Analysis of the above Program
When struct dlst A, B, C, *H; statement is executed, memory for them will be allocated as shown
below.

When the following statements are executed, the variables A,B,C may contain members like this.

A.n=10;

 B.n=90;

 C.n=78;

Data Structures: Theory & Practicals 192

When the statements A.next=&B and A.prev=0 executed, the following actions take place.

Similarly, when B.next=&C and B.prev=&A is executed the following actions take place.

Similarly, when C.next=0 and C.prev=&B is executed, the following actions take place.

When the H=&A statement is executed, the address of A is assigned to H as shown below.

The above structure is called a double linked list.

Now, analyze the while loop which traverses the double linked list and prints elements in it. Initially,
H value is the address of A, i.e. 2408, thus the while loop condition becomes true. Thus, control
goes to the while(H) block and H->n, i.e., 10 is printed and then H->next, i.e., 2208 is assigned to
H, which is the address of B. Thus, H now will be pointing to B.

Linked Lists 193

Again, while(H) is executed. As, current value of H is 2208, loop control goes to the loop block.
Thus, H->n, i.e., 90 will be printed. Then, H->next, i.e., 2100 is assigned to H. Thus, H now points
to C.

Now, again while(H) condition becomes true. Thus, loop control enters into the while loop block.
The H->n value, i.e. 78 is printed. Then, H->next value, i.e., 0, is assigned to 0. Thus, in the next
iteration while(H) condition becomes false. Control comes out of the while loop. Like this, double
linked lists can be traversed.
https://tinyurl.com/AICTEDSBOOK89

Question 60: Assuming that H, rH are struct dlst type of pointers and H is currently pointing to the
head of the double linked list. What happens if the following code gets executed?

You are welcome to explore the following link before answering.
 https://tinyurl.com/doublelinkedlist

Question 61: Assuming that H is struct dlst type of pointer and H is currently pointing to the head
of the double linked list. What happens if the following code gets executed?

Data Structures: Theory & Practicals 194

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK90

Question 62: What does the following code fragment do?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK98

In the above example, a double linked list is created with static objects. Let us assume that we want
to create a doubly linked list with dynamically created nodes. For that, we have written the
following function that takes an integer as argument and creates a dynamic node by calling malloc
function then stores this integer while setting next, prev members of the nade as zero.

You are welcome to explore the following links before answering.
https://tinyurl.com/doublelinkedlists1
https://tinyurl.com/doublelinkelists2

Question 63: For the above working double linked list program, can we use the following structure?
Then, can we declare this structure type objects and pointers as Node A, B, *C?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK99

Question 64: For the above working double linked list program, can we use the following structure?
Then, can we declare this structure type objects and pointers as Node A, B, *C?

Linked Lists 195

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK100

Question 65: Assuming that H, rH are struct dlst type of pointers and H is currently pointing to the
head of the double linked list. What happens if the following code gets executed?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK103

Example 16: The following function takes head of a linked list, an integer n as arguments then
adds a new node with n as its data at the front of the linked list. At the end, returns the head of the
modified linked list.

You are welcome to explore the following link before answering.
https://tinyurl.com/doublelinkedlistinsert

Assume that we want to create a doubly linked list in the sorted fashion. For this purpose, the
following function takes head of a linked list having numbers in descending order, an integer n as
arguments then adds a new node with n as its data at its appropriate place in the doubly linked list.
At the end, it returns the head of the modified linked list. As usual, like singly linked lists, here
also the new node may be added before the front, after the last node or in between the doubly linked
list.

Data Structures: Theory & Practicals 196

You are welcome to explore the following link to understand the concepts further.
https://tinyurl.com/doublelinkedlistsorteddes

Question 66: Do visit the following link that is having a main program which shows how a node
can be deleted from a doubly linked list. After exploring that main program, convert the main
program into a function to delete a node with a given value x from the given double linked list.
You are welcome to explore the following link before answering.
https://tinyurl.com/doublelinkedlistdeletion

Example 17: The following code will add a new number at the end of the double linked list.

Linked Lists 197

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK91

Question 67: We wanted to insert a new node to the double linked list with value x and after nth
node. The following function takes the address of the double linked list, n, and x arguments and
returns the head of the modified double linked list. Verify if it works or not.

Before answering the question, please do explore the following link.

https://tinyurl.com/AICTEDSBOOK92

Question 68: In the following, we have a function, display which takes a dlst type pointer. Is it
acceptable to send a lst type pointer as an argument?

Data Structures: Theory & Practicals 198

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK101

Question 69: In the following, we have a function, display which takes a lst type pointer. Is it
acceptable to send a dlst type pointer as an argument?

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK102

3.1.4. Linked List Representation and Operations of Stack
Example 18: The following example demonstrates the use of linked lists in realizing stacks. As we
will be creating nodes dynamically, we may not find a need for isfull() function. Remaining all
functions that are discussed in the previous chapter are implemented below. We are taking a struct
lst type of data member with the TOP in the stack structure. When the stack type object or variable
is initiated this TOP value will be set to 0 to indicate that the stack is empty. Whenever a new object

Linked Lists 199

is pushed, a new struct lst type object is created and current TOP is made as next to this new object
then TOP is made to point to this new object. Whenever pop is called the object which TOP is
pointing to will be removed and TOP is adjusted to point to the next object.

A Snapshot of stack operations on linked list based stack. Now, a new number 10 is pushed. Thus,
TOP points to the node having 10.

Data Structures: Theory & Practicals 200

Now, a new number 19 is pushed. Thus, TOP points to the node having 19 while the previous node
will be next to this.

Now, a new number 91 is pushed. Thus, TOP points to the node having 91 while the previous node
will be next to this.

If we assume that pop is called. Which means 91 will be printed and the node having 91 will be
freed after making TOP to point to the next node, i.e. the node having 19. State of the stack will be
as shown next.

If we assume that pop is called. Which means 19 will be printed and the node having 19 will be
freed after making TOP to point to the next node, i.e. the node having 10.State of the stack will be
as shown next.

If we assume that pop is called. Which means 10 will be printed and the node having 10 will be
freed after making TOP to point to the next node, i.e. null node now.

Linked Lists 201

You are welcome to explore the following link to understand the things further.
https://tinyurl.com/NBVstackusinglinkedlists

The following video explains how a stack can be realized using a linked list.
https://www.youtube.com/watch?v=L0hTOwXC5yU&list=PLXX7XiUxnzzWoLDfgad4s4dwleb
4NMtVN&index=39

3.1.5. Linked List Representation and Operations of Queue
Example 19: Realizing the queues using a single linked list. As we will be creating nodes
dynamically, we may not find a need for isfull() function. Remaining all functions that are discussed
in the previous chapter are implemented below. We are taking a struct lst type of data members
FRONT, REAR in the queue structure. When this type object or variable is initiated this FRONT,
REAR values will be set to 0 to indicate that the queue is empty. Whenever a new object is inserted,
a new struct lst type object is created and current REAR is made as next to this new object then
REAR is made to point to this new object. Also, when the first object is inserted FRONT is made
to point to it. Whenever we call remove, the object which FRONT is pointing to will be removed
and FRONT is adjusted to point to the next object. Also, when FRONT becomes zero, REAR also
initialized to zero.

Data Structures: Theory & Practicals 202

Output:
90
12
22
3
23
22
0
Elements from the queue
90
12
22
3
23
22
The following is an explanation of how a queue is realized using linked lists.
When a new number 10 is inserted into an empty queue, a new node of lst type is created. Its n data
member is assigned to 10 and the next data member to 0. Then, both FRONT and REAR are made
point to this node.

Linked Lists 203

When another number 19 is inserted in the queue, a new lst type of object is created (its n and next
values are initialized to 19 and 0) and it is linked as next node to current last node. Then, REAR is
made to point to this new node. That is, whenever a new node is inserted, REAR will be changed
to point to that.

When another number 91 is inserted in the queue, a new lst type of object is created (its n and next
values are initialized to 91 and 0) and it is linked as next node to current last node. Then, REAR is
made to point to this new node. That is, whenever a new node is inserted, REAR will be changed
to point to that. We can see this change in the figure.

Now, let's remove an item from the queue. When we remove an item from the queue from the above
queue, 10 will be returned and FRONT will be made pointer to the next node in the queue. The
node having 10 will be removed. The modified queue will be as shown in figure.

Now, let us assume that we wanted to remove one more item from the queue. Currently FRONT is
pointing to the node having 19. Thus, 19 will be returned. Then, FRONT is adjusted to point to the
next node in the queue. Then, the node having 19 will be removed. Thus, when remove is called,
the FRONT pointer will be adjusted. The resultant queue is shown in the next Figure.

Now, let us assume that we wanted to remove one more item from the queue. Currently FRONT is
pointing to the node having 91. Thus, 91 will be returned. Then, FRONT is adjusted to point to the
next node in the queue. Then, the node having 91 will be removed. Thus, when remove is called,
the FRONT pointer will be adjusted. However, the resultant queue is null here, as 91 is the last item
in the queue. When FRONT becomes null (0), REAR also will be made as 0.

Data Structures: Theory & Practicals 204

You are welcome to explore the following links to understand the things further.
https://tinyurl.com/AICTEDSBOOK76
https://tinyurl.com/NBVpriorityqueueusinglists

The following video explains how queues can be realized using linked lists.
https://www.youtube.com/watch?v=uZLLh4wApuA&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4
NMtVN&index=57

3.1.6. Sentinel nodes
Oftentimes we add sentinel (a.k.a. dummy) nodes to the beginning and end of a doubly linked list
which are called the header and the trailer. Of course, we do add a header node(sentinel node) to a
single linked list. Use of sentinels simplify programming. A real list node contains data, whereas
sentinels are not.

These sentinel or dummy nodes eliminate null pointer problems. They ensure that next and prev
references exist for every data node. Instead of checking current.next == null, check if current.next
== trailer or current.prev == header etc., makes programming a little convenient. However, for
many short lists, sentinel nodes use up extra space. The following figure shows a DLL with sentinel
nodes.

Multiple choice questions

1. Best suitable one for realizing deque is
a. single linked list
b. doubly linked list
c. circular linked list
d. None
2. The head of a list concept is not applicable for
a. single linked list
b. doubly linked list
c. circular linked list
d. a & b
3. The memory that is consecutive in
a. single linked list
b. doubly linked list
c. circular linked list
d. Array
4. Link overhead is more in
a. double circular list
b. single linked list
c. doubly linked list
d. circular linked list

Linked Lists 205

e. a&c
5. Assuming H is a pointer to a node in a list. After the execution of H=H->next; statement also H is

pointing to the same node then the list is
a. double circular list
b. single linked list
c. doubly linked list
d. circular linked list
e. a & d
6. Assuming H is a pointer to a node in a list. After the execution of H=H->next; statement also H is

pointing to the same node then the list is having __ number of nodes.
a. 0
b. 1
c. 2
d. n
7. Assuming H is a pointer to a node in a list. After the execution of H=H->next; statement for 5 times

also H is pointing to the same node then the circular list is having __ number of nodes.
a. 5
b. 4
c. 2
d. 6
8. Assuming H is a pointer to a node in a list. After the execution of H=H->next; statement for 5 times

H value becomes null then the list is having __ number of nodes.
a. 5
b. at least five nodes
c. 2
d. n
9. Assuming H is a pointer to a node in a list. After the execution of H=H->next; statement for 5 times

also H value is not null then the list is having __ number of nodes.
a. 5
b. at least five nodes
c. 2
d. n

10. Assuming H is a pointer to a node in a list. When we try to execute the H=H->next; statement in a
loop, after the fifth iteration we have encountered a runtime error then the list is having __ number
of nodes.

a. 5
b. at least five nodes
c. more than five nodes
d. n

11. The average time complexity of removing an element from a single linked list
a. O(0)
b. O(1)
c. O(n)
d. None

12. Assuming that on your machine pointer takes 4 bytes then the amount of memory needed for a
node of a circular doubly linked list whose node’s data is a character is

a. 5
b. 8
c. 9
d. 32

13. Assuming that on your machine pointer takes 8 bytes then the amount of memory needed for a

Data Structures: Theory & Practicals 206

node of a circular doubly linked list whose node’s data is a also a pointer i
a. 15
b. 24
c. 19
d. 32

14. Assuming that on your machine pointer takes 8 bytes then the amount of memory needed for a node
of a circular doubly linked list whose node’s data is a 1-D static character array of size 10 is

a. 26
b. 24
c. 19
d. 32

15. Linked lists are not used in
a. RAM fabrication
b. Operating Systems
c. Networks
d. Compilers

16. ___ is the linear structure which needs O(1) time to access ith element out of available n elements,
where i<n

a. single linked list
b. circular list
c. array
d. double linked list

17. The operation on a singly linked list whose time complexity is not O(1).
a. adding new element before the head
b. adding new element soon after the head
c. inserting a new node
d. deleting head node

18. The operation on a singly linked list whose time complexity is not O(1).
a. adding new element before the head
b. adding a new element after a given node
c. inserting a new node
d. deleting a node

19. The data structure in which we can not traverse the elements in both the directions.
a. array
b. double linked list
c. single circular list
d. double circular list

20. The data structure that takes exactly n*sizeof(node type) to store n elements is
a. singly linked list
b. doubly linked list
c. circular lists
d. arrays

21. Total number of null pointers in a single circular list are
a. 0
b. 1
c. 2
d. 3

22. Total number of null pointers in a double circular list are
a. 0
b. 1
c. 2

Linked Lists 207

d. 3
23. Total number of null pointers in a doubly linked list are

a. 0
b. 1
c. 2
d. 3

24. At most how many null pointers will you have in any of the linked lists, single, double, circular
etc.,?

a. 0
b. 1
c. 2
d. 3

25. It is possible to create linked lists in __ area(s) of the process address space.
a. stack
b. heap
c. static or BSS
d. all three areas

26. Data structure that is easiest to access the ith element.
a. singly linked list
b. doubly linked list
c. array
d. circular list

27. The operation of a singly linked list that very much depends on the length of the list is
a. Deleting the last element of the list
b. Adding a new element before the head
c. Deleting the first node of the list
d. checking whether the list is empty or not

28. Assume that the address of an object of type struct dlst{int n;struct dlst next, struct dlst prev;} is
34412 and both pointers and int are of 4 bytes size. Then, what is the address of its data member,
prev?

a. 34412
b. 34416
c. 34420
d. We can’t say

29. Assume that at present H is pointing to a node in a double linked list. We observed while(H)H=H-

>next; and while(H)H=H->prev; loops are iterating same number of times, then
a. double linked list is having only one node
b. a double linked list has an odd number of nodes.
c. a & b
d. None

30. Assume that at present H, P are pointing to a node in a circular double linked list. We observed

do{H=H->next;}while(H!=P); and do{H=H->prev;}while(H!=P); loops are iterating same
number of times, then

a. double linked list is having only one node
b. a double linked list may be having an even or odd number of nodes..
c. a & b
d. None

31. When inserting a new node in a double linked list, worst number of link adjustments needed are
a. 0
b. 1
c. 2

Data Structures: Theory & Practicals 208

d. 4
32. While inserting a new node either at front/rear in a double linked list, the worst number of link

adjustments needed are assuming that when a new node is created by calling a function, it sets the
nodes next, prev to zero before returning its address.

a. 0
b. 1
c. 2
d. 4

33. When inserting a new node in an existing double circular linked list, we always need __ number
of link adjustments.

a. 0
b. 1
c. 2
d. 4

34. Assume that X is pointing to a node in a single linked list. X is not the last node in the list.
Assume that we want to delete the node after X. Which of the following statements can be used?

35. To delete the head of a single linked list, which of the following statements can be used?

36. Assume that X is pointing to the last node in a double linked list. Assume that we want to
delete the node X. Which of the following statements can be used?

37. Assume that X is pointing to the head node in a double linked list. Assume that we want
to delete the node X. Which of the following statements can be used?

38. Assuming that H is the head of a single linked list, which code places H on the last node?

39. Assuming that H is the tail of a double linked list, which code places H on the head node?

Linked Lists 209

40. Assuming that H is a pointer to a single circular linked list, which code places H on the
last node(i.e., just before starting H)?

Descriptive questions
Question 70: See the following linked list of words.

The value of words.value is I. What is the value of words.next.next.value?

Answer: the

Question 71: See the following figure which shows a dummy(sentinel node) with two fields field1,
filed2 that are pointing to beginning and ending nodes of a linked list.

Which field would you use for the back of the queue (where items are enqueued) and which field
would you use for the front of the queue (where items are dequeued from)? Briefly explain your
choice. What happens if the nodes are of double linked list nodes with pointers to next, previous
nodes?

Answer:
Front: field 2
Rear: field 1
It is cheap to add a node after the node that field 1 points at, but it is expensive to delete that node,
so this should be where we add nodes.
It is cheap to add or delete nodes at field 2.

Data Structures: Theory & Practicals 210

If we use double linked list nodes then both insertion removal operations become simple. The
following steps are proposed for the operations. Verify whether they are OK or not.

To delete last node:

A=field1;

field1=A->prev;

fields1->next=0;

free(A);

To delete first node:

A=field2;

field2=A->next;

fields2->prev=0;

free(A);

To insert after the last node:

A=createnode(x);

A->prev=field1;

fields1->next=A;

A->next=0;

To insert before the last node:

A=createnode(x);

A->next=field2;

fields2=A;

A->prev=0;

Implement the above four operations as functions in your program.

Question 72: Suppose the variable myList points to a linked list of three items (“A”, “B”, and “C”).
Draw a diagram of the linked list. How do you represent “null” using only myList and next?

Answer:

Question 73: Show the changes to the original linked list whose head is pointed by myList after
the following statement:

myList->next->next = createnode(“Y”) ;

Linked Lists 211

Question 74: Which is the dangling object in the following figure?

Answer: the node having C.

Question 75: We have a linked list whose head is pointed by myList. What happens if we execute
the following instruction?

myList->next->next->next=myList->next;

Question 76: Implement the following using linked lists.
Can we work out enough about each element/key in an array to trivialize sorting? Version 1:
comparison counting for each element, calculate the number of elements smaller than it, and output
the elements in order of fewest “smaller” elements Version 2: distribution counting count the
number of elements associated with each value between l and u (l u), and redistribute the array
elements according to the number of items associated with each value

Question 77: Write a function that takes in a pointer to the front(head) of a linked list of integers
and returns whether or not the list that's pointed to is in sorted (nondecreasing) order. An empty list
is considered to be sorted. You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK37

Also, see the following link also which has a function that takes head of a linked list and returns 1
if its elements are in ascending order; otherwise returns 0.

int isSorted(struct lst *H){

 int Flag;

 Flag=1;

 while(H&&H->next){

 if(H->n>H->next->n){

 Flag=0;

 break;

 }

Data Structures: Theory & Practicals 212

 H=H->next;

 }

 return Flag;

}
You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK63

The following is the recursive version of the above function. Fully working code is also available
on the visualization server whose link is given below. Readers are most welcome to verify its
working.

int isSorted(struct lst *H){

 int isOrd;

 if(H&&H->next){

 isOrd=(H->n<H->next->n);

 if(isOrd)return(isSorted(H->next));

 else return 0;

 }

 else return 1;

}
You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK64

Question 78: See the following code fragment. Initially H is the head of the linked list. This code
fragment is giving segment violation error(linux). Can you explore why?

 while(H){

 if(H->n>H->next->n){

 break;

 }

 H=H->next;

 }
You are welcome to run the following code on a visualization server to find the reason.
https://tinyurl.com/AICTEDSBOOK38

Question 79: The following code fragment is proposed to reverse a linked list. That is, assuming
H is the head of the linked list and P, Q are struct lst * type variables, the following code fragment
reverses the linked list such that after the execution of this code fragment also yet H points to the
head of the linked list, but reversed linked list.

 Q=0;

 while(H){

 P=H->next;

 H->next=Q;

 Q=H;

 H=P;

 }

 H=Q;

The following link contains the above code fragment uploaded in a visualization server. You are
welcome to run it before answering. https://tinyurl.com/AICTEDSBOOK39

Linked Lists 213

Question 80: Write a program that takes head of a double linked list and reverses the same. Follow
the above solution. See this https://tinyurl.com/AICTEDSBOOK114

Question 81: Verify whether the following function that takes head of a linked list and returns the
number of nodes in the list or not.

int Length(struct lst *A){

 int c=0;

 while(A&&++c)

 A=A->next;

 return c;

}
The following link contains the above code fragment uploaded in a visualization server.
You are welcome to run this before answering: https://tinyurl.com/AICTEDSBOOK40

Verify whether this function works if we send a null list as an argument to it.

What happens if we modify the above code like the following.

int Length(struct lst *A){

 int c=0;

 while(A&&++c,A=A->next);

 return c;

}
Verify whether this function works if we send a null list as an argument to it.

The following link contains the above code fragment uploaded in a visualization server. You are
welcome to run this before answering.https://tinyurl.com/AICTEDSBOOK41

The following is the recursive version of the above.

int recursiveLength(struct lst *A){

 if(A)return 1+recursiveLength(A->next);

 else return 0;

}
The following link contains the above code fragment uploaded in a visualization server. You are
welcome to run this before answering. https://tinyurl.com/AICTEDSBOOK109

Question 82: Using arrays implement adding, subtracting, multiplying two polynomials. You are
welcome to visit the following links to get clues.

https://tinyurl.com/polyadditionusingarrays

https://tinyurl.com/polynomialsubtractionarrays

https://tinyurl.com/polymultarrays

Question 83: Discuss how to represent a polynomial in a linked list fashion. Also, write a function
that takes a polynomial in the linked list and a float number x and then returns the polynomial value
at x. Write functions to implement adding, subtracting, multiplying two polynomials that are in
linked list fashion. You are welcome to visit the following links to get clues.

https://tinyurl.com/createPolynomial
https://tinyurl.com/polynomialaslist

Data Structures: Theory & Practicals 214

https://tinyurl.com/ployEvaluation

https://tinyurl.com/polycreation1

https://tinyurl.com/addingpolynomialsinlists
https://tinyurl.com/polynomialaslist
https://tinyurl.com/AICTEDSBOOKADDMATERIALUNIT3

Question 84: Implement a very large integer in a linked list fashion and discuss how two such
numbers can be added.
You are welcome to refer Additional material available at:

https://tinyurl.com/AICTEDSBOOKADDMATERIALUNIT3

Question 85: Implement deque using doubly linked list.
https://tinyurl.com/NBVDoubleQueues1
You are welcome to refer Additional material available at:

Question 86: Write a function getNth() GetNth() function that takes a linked list head and an integer,
n, and returns the address of the nth node from the head node if existing; otherwise returns zero.
Do assume that the head node is the 1st node, that is if n=1 then the head node address has to be
returned from this function.

The following link contains the above code fragment uploaded in a visualization server.
You are welcome to run it before answering. https://tinyurl.com/AICTEDSBOOK107

Question 87: Write a function that takes heads of two linked lists as arguments and appends the
second list to the first one and returns the head of the modified linked list.

The following link contains the above code fragment uploaded in a visualization server.
You are welcome to run it before answering. https://tinyurl.com/AICTEDSBOOK108

Question 88: Write a function which takes the head of a linked list having integers in each node
then returns the head of the middle node.

Question 89: Assume that we have a single linked list with an even number of elements and at
present H is the head of the linked list.

Linked Lists 215

Explore what happens if we apply the following code.

 H=createlist();

 do{

 A=H;

 while(A){

 B=A->next;

 A->n+=B->n;

 A->next=B->next;

 free(B);

 A=A->next;

 }

 }while(H->next);
Is the linked list going to transform like this?

You are welcome to explore the following link before answering
https://tinyurl.com/AICTEDSBOOK112

Question 90: Define a structure and write a program such that every node contains a link to the
next node and also that next next node. How do you traverse the linked list.

You are welcome to explore the following link before answering.
https://tinyurl.com/AICTEDSBOOK113

Question 91: Can you build a linked list such that it contains links to the nodes that are 1, 2, 4, and
8 units from it. Maybe, you can employ the following structure for the node. Probably the previous

Data Structures: Theory & Practicals 216

problem can be your beginning point to start with where links are created for nodes that 1 and 2
units from each node.

struct lst{

 int n;

 struct lst *next[4];

};

Question 92: See the following figure of a single linked list and some pointers n,x,y and v. At
present x is the next to n and y is the previous node to v. We want to exchange x and y (but not
their values which is a simple thing to achieve).

Answer: n->next=x->next; x->next=v; y->next=x;

Question 93: See the following figure of a double linked list and some pointers n,x,y and v. At
present x is the next to n and y is the previous node to v. We want to exchange x and y (but not
their values which is a simple thing to achieve)

Question 94: See the following program. Here, are the linked lists nodes are sequential in
memory or not?.

You are welcome to explore the following before answering.
https://tinyurl.com/AICTEDSBOOK116

Linked Lists 217

Laboratory programming tasks

Welcome to participate in the online competition
We are hosting a competition so as to encourage students to build their competence in coding. This
will be very useful for placements also in the coming years. Thus, welcome students to attempt the
competition at the following link.
https://www.hackerrank.com/aictedsbook

Programming puzzles
Some programming puzzles along with their solution around linked list concept are made
available at the following link.
 https://tinyurl.com/AICTEDSBOOKLINKEDLISTQUIZZES

References

1. Fundamentals of Data Structure in C, Horowitz, Ellis, Sahni, Sartaj, Anderson-Freed,
Susan, University Press, India.

2. Data Structures: A Pseudocode approach with C, Richard F. Gilberg, Behrouz A. Forouzan,
CENGAGE Learning, India.

3. My class notes on Algorithmic Complexity, now a refresher for craving teachers and
knowledge greedy students: A must primer for GATE(India), Adv. GRE appearing students.
https://www.amazon.com/dp/B09DJCW78T

4. C and Data Structures, NB Venkateswarlu & EV Prasad, 2010, S Chand & Co, New Delhi

5. http://cslibrary.stanford.edu/105/LinkedListProblems.pdf

Data Structures: Theory & Practicals 218

Unit Coverage

Objectives of the Unit

By the end of this unit, student will be able to:
● describe and use the Binary search tree(BST) abstract data types.
● explain inorder, preorder, postorder traversal of trees and how they are used in
development of compilers.
● describe sequential storage of BST.
● describe and use stacks for traversal of trees.
● explain the relevance of graphs in operating systems design, network design, etc.,
● give typical examples of topological sorting in practical applications.

Learning outcomes of the Unit
After completing the Unit, the student

● has detailed knowledge of BST (U4-01).

● has detailed knowledge of graphs, minimum distance problems (U4-02).

● has detailed knowledge of how trees and graphs are used in practical SW systems such as
operating systems, networks, etc(U4-03).

● is familiar with use of minimum spanning trees in network routing (U4-04).

● is familiar with recursive implementations of various operations trees.(U4-05)

● has knowledge of implementing trees sequentially (U4-06)

● has detailed knowledge of implementing various traversing methods of trees, graphs.

(U4-07)

Unit-4
Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong

Correlation)

Non Linear Data Structures 219

CO-1 CO-2 CO-3 CO-4 CO-5

U4‐O1 3 -

U4‐O2 3

U4‐O3 3 2

U4‐O4 2

U4‐O5 1

U4‐06 2

Ur‐07 2 3

4. Non Linear data structures
In the previous chapters, we have discussed linear data structures stack, linked lists, queues. All of
them are linear in the sense that elements of them can be accessed one after another. Also some of
them like arrays are physically linear in the sense that their elements occupy consecutive memory
locations in the physical memory(RAM); whereas some others, especially the ones which are
realized through linked lists are logically linear. However, in the non linear data structures their
elements will not be having such a linear association; instead they may be having hierarchical
(parent-child-grandparent) association like trees. Of course, a tree is considered as a special case of
a graph known as an acyclic graph. Also, in the case of linear structures such as arrays, linked lists
either next or previous elements of any of their elements are at most one. Whereas in the case of
non linear structures such as trees or graphs, this can be any number. Because of this property, if

you change one element, its impact may be on more than one element of them. For example,
since the beginning of the Ukraine war, all of us have been hearing about some statements such as
supply chain disruption, etc. Also, we are all facing one or other problems because of this single
incident.

4.1. Introduction to trees
In real life, we may be using a variety of trees. A good example for a tree is a directory tree of an
operating system such as Windows or Unix. For example, the following figure 4.1 shows a
Unix/Linux style directory tree with the top most directory as the root(/)59.

Fig. 4.1: Directory Tree

The above tree is a logical tree. We also have physical trees. We all know that our data is saved
onto secondary memory devices such as hard disks. An important concept of operating systems
known as file systems deals with this aspect. For example, the NTFS file system of Windows uses
B+Tree in storing the data into data blocks on the disk (see Fig 4.2). This can be called a physical
tree as it is very much available in the disk.

59 Do you know the three ‘root’s in Linux/Unix? Answer: 1. Root directory (/) 2. The home directory of

super user is /root, 3. super user username is ‘root’.

Data Structures: Theory & Practicals 220

Fig.4.2: NTFS File system (Courtesy: https://www.ntfs.com/refs-architecture.htm Last accessed,
6th Sep, 2022)

We can create a family tree of ours with the details of our parents, grandparents, etc. You may visit
https://geni.com or some other sites as shown in the following figure 4.3.

Fig. 4.3: A family tree template at https://www.FreeFamilyTreeTemplates.com Last accessed: 6th
Sep 2022)

Another live example is an administrative structure chart in a University with the Vice Chancellor
being at the top most level, Deans/Directors in the next level, and vice versa (see Fig. 4.4).

Non Linear Data Structures 221

Fig. 4.4: An Administrative Structure at a typical University (source www.jntu.ac.in Last accessed
in Apr 2016)

In recent years, many companies such as Amway are following multi-level marketing(MLM60) to
improve their sales. Here, a person can join as a member under an existing member. Whenever he
purchases items from Amway, some percentage of the profit will be given to the person under
whom he has joined. Also, a person can introduce new members under him; they can introduce new
members under them and vice versa. However, whenever a member purchases some items, the
profit of the company on this purchase is given to people (members) above him at some company
decided fractions. Thus, here we have a tree of people with some hierarchical relationship.

4.1.1. Definition of a tree

A tree is a collection of vertices/nodes (G) and links/edges (E) connecting the vertices. Of course,
the same definition is used for graphs also. However, the main difference is that the tree is also a
graph, to be specifically an acyclic graph. Evidently the tree contains parent, child and

grandchild type hierarchical relationships.

If a tree contains a single node, x, root node then it can be represented as T={x}. This representation
is called a set representation. In the following figure we have a tree which can be represented as
(see Fig.4.5):

Fig. 4.5 : A Sample Tree

Do remember that a null is also considered as a tree. That is, T={} is a valid tree.

In compiler construction, expression or parse trees (see Fig. 4.6) are used for verifying the validity
of expressions.

60 https://www.thebalancesmb.com/the-likelihood-of-mlm-success-1794500

Data Structures: Theory & Practicals 222

Fig. 4.6: An example parse or expression tree.

Another important tree in Computing or Computer Science is a call tree which is used in
representing the recursive function execution. The following figure shows the call tree for the
function FIB() that is written to compute nth Fibonacci number(see Fig. 4.7). For the reasons of
terseness, the function name FIB() is shown as f().

Fig. 4.7: Call tree for function FIB() (source www.wikipedia.com, last accessed: 10 Aug, 2015)

4.1.2. Basic terminology

Root Node: It is the top most node in the tree hierarchy. It is the only one node which does not
contain any parent. This is also simply referred to as root.

Degree of the vertex: The degree of a vertex is the number of siblings or subtrees of a vertex/node.

Leaf Node: Leaf node is the one which does not have any children. That is, leaf node’s degree
value will be zero.

Non-Leaf Node: The nodes that contain child nodes are termed as non-leaf nodes. Thus, the non-
Leaf node's degree value will be greater than zero.

Level: Root node is said to be at 0th level. Level numbers increase downwards. The immediate
children of the root node are said to be at 1st level. Their immediate children are said to be at 2nd
level. Like this, in trees we have hierarchy (see Fig 4.1).

Height (or depth) of the Tree: Height of a tree is the number of levels in which nodes of the tree
are organized. The depth of a tree is the maximum level of the nodes in a tree.

Left subtree or sibling: Left side portion of any non-leaf node is called its left subtree or sibling.

Internal node: An Internal node (or non-leaf node) is the node that is neither root nor a leaf node.

Parent: A node is a parent node if it has child nodes. That is, a parent node’s out degree value will
be greater than 0.

Child: A node is a child node if it has a parent. That is, a child node’s in-degree value will be
greater than 0.

Siblings: Two nodes with the same parent are said to be siblings.

Path: A sequence of adjacent nodes is termed as a path.

Right subtree or sibling: Right side portion of any non-leaf node is called its right subtree or
sibling.

Ancestor: Any node in the path from the root to the given node is called the ancestor to the given
node.

Non Linear Data Structures 223

Descendent: Any node in a path from the given node to a leaf node is called the descendent node
to the given node.

Subtree: A connected tree structure below any non-leaf node is called a subtree(Fig. 4.8).

Fig. 4.8: Shows left and right subtrees of a binary tree.

Balance of a node: Balance of a node is the difference of heights of its left and right subtrees. For
leaf nodes, the balance value will be 0. For a complete binary tree, every node will have a balance
value of zero. If the balance value of a node is positive then its left subtree height is more than its
right subtree; If the balance value of a node is negative then its left subtree height is smaller than
its right subtree; if the balance value of a node is zero then both of its left and right subtrees are of
same height. However, do remember there is nothing wrong in taking the balance value of a node=
height of its right tree - height of its left subtree.

Trees and its variants

Binary trees are the ones in which any node contains at most two children. That is the maximum
allowed degree of any node in a binary tree is 2. Violation of the above rule is seen in the multi-
way trees. That is the nodes may have more than two children. An example binary tree is given in
Figure 4.9.

Fig. 4.9: An example binary tree with levels, height, leaf nodes, non leaf nodes.

An example multiway tree known as B-Tree is shown in Fig. 4.2. Of course, the tree that is shown
in Fig. 4.1 is also a multiway tree because if you observe you will find that the root directory (/) is
having more than two children(sub directories).

Some important points related to binary trees:
● A binary tree may contain at most 2n nodes at level n.
● A strictly binary tree is the one whose non-leaf or internal nodes contain exactly two
children; i.e., all of its non-leaf nodes will have degree value of 2.

Data Structures: Theory & Practicals 224

● A complete binary tree (see the tree in Fig, 4.10) of depth N will be having exactly 2k
nodes for k=0,…,N-1. Complete binary tree is the one in which all leaf nodes will be at the lowest
level and every non-leaf node will have exactly two children. Thus, a complete binary tree is
evidently a strictly binary tree.
● Almost complete binary tree is the one in which all the leaf nodes will be at the lowest
level or one level above it. Some authors further divide these trees as “almost complete strictly

binary tree” and “almost complete binary tree”, where strictness is not maintained(see Fig. 4.10).

Fig. 4.10. Almost complete binary tree and complete binary tree

● Balanced Binary tree or AVL tree: The tree whose node’s balance values are between -
1 to 1. Here, the balance value of anode is defined as left subtree height minus right subtree height.
● The complete binary tree is called a full tree as each of its levels will be a fully possible
number of nodes. That is, its nth level contains 2n nodes for all the possible levels of that tree.
● If all nodes of a tree are having their degree values as 1 then the tree is a degenerate tree
(or simply linked list).
● If a node in a binary search tree contains two children (leaf), then its successor has no left
child and its predecessor has no right child.

� If N is the number of nodes then the depth of an almost complete strictly binary tree will
be less than or equal to log2(N).

� For a given height, a complete binary tree will have more nodes than any binary tree
organizations.

� For any strictly binary tree, the equality “No of Leaf Nodes – No of Non-Leaf Nodes =1”
will be satisfied.

� Given the number of keys, height of the tree becomes minimum if they are organized in
complete binary tree fashion compared to any other binary tree configurations.

� If the lowest level in a complete binary tree is K, then the number of leaf nodes with 2K
and number of non-leaf nodes will be 2K-1. Total number of nodes will be 2K+1 -1.

� If H is the height of the complete binary tree, the number of leaf nodes are 2H-1, the number
of non-leaf nodes are 2H-1-1 and the total number of nodes are 2H-1. This you can verify from the
figure where the height of the tree is 5, number of leaf nodes are 16 (25-1), number of non-leaf nodes
are 15(25-1-1), total nodes are 31(25-1).

Question 1: A tree has an odd number of nodes, n, where n>1. What is the worst possible height
of a strict binary tree which we can make from these n nodes?
Answer: (n+1)/2

Binary Search Trees
From the name itself we can know that Binary search trees are used for searching applications.
Binary search tree is the one in which some order exists among the information of the nodes. For
example, if the nodes contain numbers, then all the nodes which are left to a node will be having

Non Linear Data Structures 225

their node values smaller and right to it will be having their values larger as shown in Figure 11. In
fact, not only numerical data, but any other type of elements also can be organized as BST.

Fig. 4.11: Binary search tree

Of course, one way we can think of a linked list with ascending ordered values also as a binary
search tree. To be critical, such trees are called skewed trees or degenerate trees.

Max Heap & Min Heaps
Max heap is a special type of tree in which any non leaf node value will be more than its children.
For example, see Figure 4.12.

Fig. 4.12: Min Heap

Min Heap is a complimentary to max heap. That is, any node value will be less than its children
values. Moreover, heaps are nearly complete binary trees. That is all nodes at the lowest level will
be on the left side as shown in Figure 4.13.

 Fig. 4.13: Acceptable heaps.

4.1.3. Tree Traversals

In previous chapters, we have discussed various structures like linked lists, doubly linked lists,
circular lists, etc., Always, and we have demonstrated first creation of them followed by traveling
them. In the case of a single linked list we have freedom only to traverse from head node to tail
node. While with a double linked list, we can also traverse from tail to head node; also from any
node to node in any direction, forward or backward. In the case of circular lists we can traverse
cyclically. In the same fashion, trees also can be traversed in the following ways.

While traversing the information in the node will be processed. Here, processing can be simply

printing/displaying or comparing with a search key, etc. Always, we assume traversal starts

from the root node.

In-Order Traversal (Left-Center-Right)
At each node, A, we have to apply the following sequence of operations recursively:
● First, traverse the left subtree of the node A in In-Order manner,

Data Structures: Theory & Practicals 226

● then process the node A (here, we assume process means simply displaying the node A’s
data or value or label),
● then traverse the right subtree of the node A in In-Order manner.

For example, if we traverse the tree in Figure 4.14.we get the sequence: DBEAHFICJGK

Fig. 4.14: Inorder traversal

Pre-Order Traversal(Center-Left-Right)
At each node, A, we have to apply the following sequence of operations recursively:
● First process node A (here, we assume process means simply displaying the node A’s
data or value or label),
● then traverse the left subtree of the node A in Pre-Order manner,
● then traverse the right subtree of the node A in Pre-Order manner.

For example, if we traverse the tree in Figure 4.15 we get the sequence: ABDECFHIGJK

Fig. 4.15: Pre-Order Traversal

Post-Order Traversal(Left-Right-Center)
At each node, A, we have to apply the following sequence of operations recursively:
● Traverse the left subtree of node A in Post-Order manner,
● then traverse right subtree of node A in Post-Order manner,
● then process node A (here, we assume process means simply displaying the node A’s
data or value or label).

For example, if we traverse the tree in Figure 4.16 we get the sequence: DEBHIFJKGCA

Fig, 4.16: Post-Order Traversal

Non Linear Data Structures 227

If we traverse an expression tree (Fig 4.6) in In-Order fashion, we will get its infix representation;
pre-order fashion we will get its prefix representation; post-order traversal gives postfix
representation. For example, three traversals on expression tree in Figure 4.6 gives:

 Similarly, if we traverse a binary search such as the one in Figure 4.11 in In-Order fashion, we
get an ascending ordered sequence of the node values. For example, the In-Order traversal of the
BST in Figure 4.11 gives: 12,18,20,23,35,44,52.

Level-order Traversal
This is somewhat different from previous traversals. Here, all the nodes at each level will be
processed from left-to-right starting from 0th level. For example, level order traversal of the
Figure 4.17 gives sequence: ABCDEFGHIJK

Fig. 4.17: Level Order Traversal

Question 2: See the following figure which contains an ascending ordered array and a BST. Do
you get the ascending ordered array if we traverse the BST in in-order fashion? Is the given BST a
max-heap?

If we traverse this tree in level order fashion, we get {25}, {9,20},{3,8,10,19}. If you observe,
values of each level are in ascending order. Do you get the same order for any max-heap?

4.1.4. Creating Binary Search Tree

Assume that we want to organize a set of integers as a BST fashion. Thus, the node data becomes
an integer. We employ the node structure of a binary search tree with an integer information (or
data element) as:

That is, it is made to have an integer member n and two Node type of pointers which may point to
left and right subtrees.

Data Structures: Theory & Practicals 228

Question 3: Is it OK to take any of the following as the node structure of a binary search tree whose
node data is an integer?

Answer: Yes.

Example 1: The following simple program creates a simple binary search tree with statically
created nodes. Please do visualize the same and observe how the links are getting created.

or

The following table explains what happens in a step by step fashion.

Node A will be created
with data value 12.

Node B will be created
with data value 33.

Non Linear Data Structures 229

Node C will be created
with data value 25 and
also Node A will be made
its left while Node B will
be made its right.

A new Node D will be
created with data value 50.

Node D will be made
Node B’s right by
executing B.right=&D.

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK121
https://tinyurl.com/AICTEDSBOOK120

Question 4: In the above tree, what does tree->n convey?
Answer: 25.

Question 5: In the above tree, what is the root node value?
Answer: 25.

Question 6: In the above tree, what does tree->right->right->n convey?
Answer: 50.

Question 7: In the above tree, what does C.right->right->n convey?
Answer: 50.

Question 8: In the above tree, what does *(tree->right).right->n convey?
Answer: 50.

Data Structures: Theory & Practicals 230

Question 9: In the above tree, what does *(*(tree->right).right).n convey?
Answer: 50.

Question 10: In the above tree, what does &(*(*(tree->right).right))->n convey?
Answer: 50.

Question 11: In the above tree, what does *(&(*(*(tree->right).right))).n convey?
Answer: 50.

Question 12: In the above tree, what does tree->left->n convey?
Answer: 12.

Question 13: Does this code segment work?

You are welcome to play with the following link which has the above code.
https://tinyurl.com/AICTEDSBOOK122

Question 14: Does this code segment work?

You are welcome to play with the following link which has the above code.
https://tinyurl.com/AICTEDSBOOK123

Question 15: Does this code segment work?

Question 16: Does this code segment work?

Non Linear Data Structures 231

Question 17: Does the following code segment work? What is the output?

You are welcome to visit the following link to understand its working.

https://tinyurl.com/AICTEDSBOOK134

Question 18: Does the following code segment work? What will be the output?

struct _{

int ___;

struct _ *_;

struct _ *__;

};

Data Structures: Theory & Practicals 232

You are welcome to visit the following link to understand its working.
https://tinyurl.com/AICTEDSBOOK135

Question 19: In the following program, we have written a function createNode() which takes an
integer as an argument. It creates a one tree node dynamically by calling malloc() function. It stores
the integer argument as the newly created data (that is, assigns argument of this function to data
member ‘n’ of tree node). It also initializes the new node's left and right members to null or zero.
In the main program, some nodes are created by calling the above createNode() function and a
simple binary tree is created.

The above code is available in the following link for experimentation and visualization.
https://tinyurl.com/AICTEDSBOOK124

Question 20: In the following code fragment, we have another variant to create a dynamic node of
a tree. The function createNode1() takes node’s data value(an integer, x) and two node types of
addresses which can be made as this new node’s left and right subtrees. Also, a main program is
included to explain how this function can be used to create a binary search tree manually.

Non Linear Data Structures 233

The above code is available in the following link for experimentation and visualization.
https://tinyurl.com/AICTEDSBOOK125

Question 21: Does this code segment work?

The above code is available in the following link for experimentation and visualization.
https://tinyurl.com/AICTEDSBOOK126

Question 22: Is there any advantage of defining a binary tree’s node in the following manner?

The above code is available in the following link for experimentation and visualization.
https://tinyurl.com/AICTEDSBOOK127

Data Structures: Theory & Practicals 234

Question 23: Can you compare the structure used for the trees and double linked lists?

Example 2: The following program creates a simple binary tree. However, it does not guarantee to
be good for efficient searching. We use the createNode() function that was explained previously.

1. For the first integer, a new node is created by calling createNode() function and itself is
taken as the root node of the tree.

2. For each of the subsequent integers, a new node will be created and inserted to the such
that binary search property is maintained. For this purpose, search is always carried out from the
root node and the node(C) to which this new node will have to be added as a child is found.

This program creates a binary search tree by finding the (leaf) node for which a new node to be
added. That is, whenever a new value to be added to the binary search tree, search starts from the
root node and continues till we find a leaf node for which this new values to be added as a either
left or right node. Table 4.1 shows how the tree grows as numbers are inserted. For example, in the
following tree, to add the number 17, first we find the node with 19 by searching from the root
node. We start from the root. Root node value is 22. As 17 is less than 22, we move to the left child
of 22, which is the node with value 14. Again, we do the same comparison operation. That is, we
compare 17 with 14. As 17 is more than 14, we move to the right child of 14. That is, we arrive at
the node with value 19. As it is a leaf node we stop our search process. Then, as 17 is smaller than
19, we let 17 be the left child of 19. Similarly, number 21 is added to the tree by traversing the tree
from top to bottom checking the binary tree sequence values. Incidentally, this will be also added
as the child of node with 19.

The following link contains the above code hosted on a visualization server. You are welcome to
use the same. Here, we take unique element values only into the tree.
https://tinyurl.com/AICTEDSBOOK119

Non Linear Data Structures 235

The following link contains a little variant of the above in which duplicates will be avoided. You
are welcome to observe the necessary changes to take care of duplicates in the input while creating
the binary search trees.

https://tinyurl.com/NBVCreatingAbinarytree

Let us assume that the user has taken 91 the
first time. A new node is created with 91 which
obviously is the root node.

Let us assume that the user has taken 22 now.
A new node is created with 22. When the
while(B) loop is exited, C will be pointing to
the root node. As 22 is less than the root node
value, this new node will be made as the left
node of the root node.

Let us assume that the user has taken 34 now.
A new node is created with 34. When while(B)
loop is exited C will be pointing to the node
with 22. As 34 is larger than 22, the new node
will be made as right to C.

Let us assume that the user has taken 23 now.
A new node is created with 23. When while(B)
loop is exited C will be pointing to the node
with 34. As 23 is smaller than 34, the new node
will be made as left to C.

Let us assume that the user has taken 44 now.
A new node is created with 44. When while(B)
loop is exited C will be pointing to the node
with 34. As 44 is larger than 34, the new node
will be made as right to C.

Data Structures: Theory & Practicals 236

Let us assume that the user has taken 26 now.
A new node is created with 26. When while(B)
loop is exited C will be pointing to the node
with 23. As 23 is smaller than 25, the new node
will be made as right to C.

Let us assume that the user has taken 123 now.
A new node is created with 123. When
while(B) loop is exited C will be pointing to
the node with 91(root node). As 123 is more
than 91, the new node will be made as right to
C.

Table 4.1. Explains the binary search tree creation.

Question 24: Assume that in the above program, what each of the the following lines displays?

You are welcome to visit the following link to answer the question.
https://tinyurl.com/AICTEDSBOOK128

Question 25: The above main program now we have converted into a function createTree() such
that it takes a 1-D integer array, number of elements of the array as arguments and organizes all the
elements of the array in a binary search tree fashion and returns the address of the root node. If you
observe the following code, you find that it is almost the same as the previous program’s main.

Non Linear Data Structures 237

The following link contains the above createTree() code and a simple main program to test the
same. You are welcome to explore the same with the following link.
https://tinyurl.com/AICTEDSBOOK129

Example 3: The following program illustrates how inorder traversal of the binary search tree can
be implemented in a recursive manner.

You are welcome to play with the following links which have the above code.

https://tinyurl.com/NBVInorderTraversalofTree

Data Structures: Theory & Practicals 238

https://tinyurl.com/AICTEDSBOOK131

Example 4: The following program illustrates how preorder traversal of the binary search tree can
be implemented in a recursive manner.

You are welcome to play with the following links which have the above code.
https://tinyurl.com/NBVPreorderTraversalTree
https://tinyurl.com/AICTEDSBOOK132

Example 5: The following program illustrates how postorder traversal of the binary search tree can
be implemented in a recursive manner.

Non Linear Data Structures 239

You are welcome to play with the following links which have the above code.
https://tinyurl.com/NBVPostorderTraversalofTree
https://tinyurl.com/AICTEDSBOOK133

Question 26: What will be the result of the following function on a binary search tree?.

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK136

Question 27: What will be the result of the following function on a binary search tree?.

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK137

Example 6: The following program allows us to create a binary search tree by calling a recursive
function. We have not taken care of repeated numbers here.

Data Structures: Theory & Practicals 240

Output:
Enter Numbers
50 67 80 25 34 1 0
Inorder Traversal results
1
25
34
50
67
80

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK139
https://tinyurl.com/AICTEDSBOOK138

Example 7: This problem explains the creation of a binary tree with a father node.
This example is exactly the same as Example 1 with a little modification. Here, our nodes are made
to have another link field known as father field which may be supposed to point to father’s node.
Of course, the root node will not be having any father. This node structure is useful for iterative
traversal of the trees and also for some backtracking applications.

The program has few extra lines that are shown in red and underlined compared to the code in
Example 1. We can happily use the functions INORD(), PREORD(), POSTORD() with the BST
tree created with the father field. Why? Because we have used only left, right, n, data members in
these functions which are also available in this new structure and also they mean the same.

Non Linear Data Structures 241

The above code is available at the following link for your experimentation.
https://ideone.com/gGSXUy

Let us assume that the user has taken 91 the
first time. Thus, a new node is created such that
it contains 91. Its left and right members are
made as 0s. It will be taken as the root node of
the tree.

Let us assume that the user has taken 22 now.
A new node is created with 22. When the
while(B) loop is exited, C will be pointing to
the root node. As 22 is less than the root node
value, this new node will be made as the left
node of the root node. At the same time the new
node A’s father node becomes C.

Data Structures: Theory & Practicals 242

Let us assume that the user has taken 34 now.
A new node is created with 34. When while(B)
loop is exited C will be pointing to the node
with 22. As 34 is larger than 22, the new node
will be made as right to C. At the same time the
new node A’s father node becomes C.

Let us assume that the user has taken 23 now.
A new node is created with 23. When while(B)
loop is exited C will be pointing to the node
with 34. As 23 is smaller than 34, the new node
will be made as left to C. At the same time the
new node A’s father node becomes C.

Let us assume that the user has taken 44 now.
A new node is created with 44. When while(B)
loop is exited C will be pointing to the node
with 34. As 44 is larger than 34, the new node
will be made as right to C. At the same time the
new node A’s father node becomes C.

Let us assume that the user has taken 26 now.
A new node is created with 26. When while(B)
loop is exited C will be pointing to the node
with 23. As 23 is smaller than 25, the new node
will be made as right to C. At the same time the
new node A’s father node becomes C.

Non Linear Data Structures 243

Let us assume that the user has taken 123 now.
A new node is created with 123. When
while(B) loop is exited C will be pointing to
the node with 91(root node). As 123 is more
than 91, the new node will be made as right to
C. At the same time the new node A’s father
node becomes C.

Table 4.2: How BST with father tree is created

You are also welcome to the following links also where the father field is used in creating a BST.
https://tinyurl.com/AICTEDSBOOK140

https://tinyurl.com/NBVBinTreeCreatwithFather

The following link contains the inorder traversal code for the tree with the father node.
https://tinyurl.com/AICTEDSBOOK141

The following link contains the preorder traversal code for the tree with the father node.
https://tinyurl.com/AICTEDSBOOK142

The following link contains the postorder traversal code for the tree with the father node.
https://tinyurl.com/AICTEDSBOOK143

Question 28: What will be returned value from the following function when we send the root
node address of a BST with the father node?.

You are welcome to visit the following link before exploring the answer.
https://tinyurl.com/NBVleftmostnode

Question 29: What will be the returned value from the following function when we send the root
node address of a BST with the father node?.

You are welcome to visit the following link before exploring the answer.
https://tinyurl.com/NBVrightmost

33.1.5 Deleting a node from BST
We may need to remove a number from the binary search tree. After removal also, the tree should
satisfy the BST property. The following situations may occur during the deletion.

� Leaf node: If the node required to be deleted is a leaf node(A), then, set its link (A->father-
>left or A->father->right) in its parent to null and free the node required to be deleted (free(A)).

Data Structures: Theory & Practicals 244

� Node having only right subtree: If the node (A) required to be deleted is having only right
subtree, then attach the right subtree A to A’s parent.

� Node having only left subtree: If the node(A) required to be deleted is having only left
subtree, then attach A’s left subtree to A’s parent.

� Node having both left and right subtrees: The node required to be deleted (C) may be
having both left and right subtrees. Then, identify the node B having the smallest element in the
right subtree of the node to be deleted, and assign C->n as the B->n and remove B. See Figure
4.18 where to remove 18, the smallest node in the right subtree of 18 is identified (i.e node with 19)
and 19 is stored as shown in the figure.

 Fig. 4.18: Deleting the node which contains both the children.

Example 8: Deleting a node from binary search tree is implemented below

Non Linear Data Structures 245

Output:
Enter numbers
40 50 60 25 35 34 41 10 21 0
Inorder Traversal results
10 21 25 34 35 40 41 50 60
Inorder Traversal after removing 25
10 21 34 35 40 41 50 60

The following link contains a little variant of the above code.
https://ideone.com/ZATY0i

33. 1. 6 Traversing Tree Using Stacks
We can traverse the trees using stacks such that we can avoid recursive calls which are used in all
the three functions INORD(), PREORD(), POSTORD().

The following pseudo code gives us an idea of how traversal can be done using stack. Let p is the
pointer to the root node of the tree.

A snapshot of the working of the above algorithm along with the sample tree is shown in Figure
4.19.

Data Structures: Theory & Practicals 246

 Fig. 4.19: Tree traversal using a stack.

Inorder traversal of a BST using a stack is implemented and is available in the following link.
Because of book size limitations, we are unable to give the full listing in the book.
https://ideone.com/Gn3H7H

Question 30: Implement the preorder traversal of a BST using a stack by modifying the code at
https://ideone.com/Gn3H7H.

Question 31: Implement the postorder traversal of a BST using a stack by modifying the code at
https://ideone.com/Gn3H7H.

Example 9: The in-order and pre-order traversals of a tree are: “BDFAEC”, “ABDFCE”. Find out
the topology of the tree.

Explanation:
1. From the pre-order sequence, we can understand that A is the root node.
2. If we observe the in-order sequence, BDF will be on the left hand side of node A while EC will
be on the right hand side of root node A. That is, the root node A’s left subtree’s in-order traversal
is BDF while its right subtree’s in-order traversal is EC. We can even say that root node A’s left
subtree contains three nodes, while the right subtree contains two nodes.
3. Now, if observe pre-order sequence of the left subtree of A, it is BDF(“ABDFCE”) . Which
indicates that the root of the left subtree of A is B. That is, A’s immediate left child is B.
4. Now if we observe the given in-order sequence, DF will be on the right side of B. Thus, D
becomes the right child of B.
5. Now , by observing the given in-order sequence “BDFAEC”, we can say that F is right to D.
6. We already understood that EC is on the right of the root A. When we observe the pre-order
sequence, we can see that C is the root of A’s right subtree. That is, C is the immediate right child
of root node A.
7. By observing in-order sequence of A’s right tree (i.e. EC), we can conclude that E is left of C.
This can be concluded from the given pre-order sequence also..

Non Linear Data Structures 247

Thus, the tree topology of the given tree is:

Question 32: The in-order, pre-order traversals of a tree are “ABCDEFGHI”, “DBACIEGFH”.
What is the topology of the tree?.

Example 10: The following program evaluates the various functions with a BST. Detailed
discussion on each of the functions follows subsequently.

Data Structures: Theory & Practicals 248

You are welcome to play with the following links which have the above code.
https://ideone.com/YCllLL

Also,

https://tinyurl.com/NBVtotalnodesinatree

You are welcome to play with the following links which have the above code.

https://tinyurl.com/NBVisstrict

Analysis of the function STRICT()

Non Linear Data Structures 249

This is a recursive function which takes the root node of a binary tree and returns 1 if it is a strictly
binary tree, otherwise returns 0. The function is written such that if we send a null node to the
function it returns 0; if we send a leaf node to then it returns 1. We know that to call a tree strictly
binary, all its non-leaf nodes should contain exactly two children. To call a tree a strictly binary
tree, its left and right subtrees should be strict binary trees. Thus, we have written the recursive
function as shown above.

Fig. 4.20: a. strictly binary Tree b. Not a strictly binary tree

If we observe Figure 4.20.a., we see that if a node receives 1 from both of its children, it returns
their product, i.e., 1 to indicate strict property is satisfied with it. If any where that condition is not
satisfied, it returns 0 (See Figure 4.20.b). One of the node in a subtree returns 0, then all of its parent
nodes will bound to return 0, indicating that tree is not strict.

Analysis of the function NL() which returns the number of leaf nodes
This is also a recursive function which takes the root node of a binary tree and returns the number
of leaf nodes in that tree. We consider the total number of leaf nodes of a tree is the sum of the leaf
nodes in its left subtree plus number of leaf nodes in its right subtree. Thus, we apply this function
recursively on both left and right subtrees recursively. The function is written such that if we send
a null node to the function, it returns 0; if we send a leaf node to a function then it returns 1. See
the Figure 4.21 that shows the returned values from each of the recursive calls.

Fig. 4.21: Working of the function NL.

Analysis of the function NONL() which returns number of non-leaf nodes
This is a recursive function which takes the root node of a binary tree and returns the number of
non-leaf nodes available in it. Here also, we consider the total number of non-leaf nodes at any

Data Structures: Theory & Practicals 250

non-leaf node is the sum of non-leaf nodes in its left subtree plus the number of non-leaf nodes in
its right subtree. We apply the function recursively on both left and right subtrees recursively. The
function will return 0 if we send a null or leaf node to it. See Figure 22, which shows the returned
values from each of the recursive calls.

Fig. 4.22: Total Non-Leaf Nodes

Analysis of the function H() which returns Total number of nodes
This is also a recursive function which takes the root node of a binary tree and returns the total
number of nodes (sum of leaf and non-leaf nodes) in it. Here too we consider the total number of
nodes at any given node as the sum of nodes in its left subtree plus number of nodes in its right
subtree. Thus, we apply the function recursively on both left and right subtrees recursively. The
function will return 0 if we send a null node to it; if we send a leaf node it returns 1. See the Figure
which shows the returned values from each of the recursive calls.

Fig. 4.23: Total Nodes in a tree

Calculating the Height of the tree Recursively
This is also a recursive function which takes the root node of a binary tree and returns the height of
the tree. We consider height at any given node is the maximum of the heights of the left subtree
and the right subtree plus one (i.e. including the current node). Thus, we apply the function
recursively on both left and right subtrees recursively. The function is written such that if we send
a null node to the function, it returns 0; if we send a leaf node to the function then it returns 1. See
Figure 4.24 which shows the returned values from each of the recursive calls.

Non Linear Data Structures 251

Fig. 4.24: Recursively calculating the height of a tree.

Recursive Function to test whether a tree is a Complete Tree or not.
This is also a recursive function which takes the root node of a binary tree and returns height of the
tree if it is complete binary tree else returns -1. We know that in a complete tree, all non-leaf nodes
will be having their left and right subtrees are of the same height. Thus, we apply the function
recursively on both left and right subtrees recursively and check whether this property is satisfied
or not. Anywhere if this property is violated then -1 is returned. At any node, if we receive -1 from
any side, we will simply return -1 to the previous function call. The function is written such that if
we send a null node to the function, it returns 0; if we send a leaf node to the function then it returns
1. See Figure 4.25 which shows the returned values from each of the recursive calls.

Fig. 4.25: Recursive way of checking whether a tree is complete or not. a) tree is not complete.
b)tree is complete

We can see in Figure 24 b that the right most node in level 3 is not having the right child and thus
it returns -1. Thus, all along the path from that node to the root node, the returned value becomes
-1. Thus, the tree is not a complete binary tree. See Figure 24.a where at any non leaf node, left and
right subtree heights are the same. Thus, the height of the node is returned to the previous function
call.

Recursive way of finding whether a tree is a balanced tree or not.
This is also a recursive function which takes the root node of a binary tree and returns height of the
tree if it is a balanced binary tree else returns -1. We know that for all node’s if the balance values
are in between -1 to 1 then the tree can be called a balanced binary tree. We apply the function
recursively on both left and right subtrees recursively and check whether this property is satisfied
or not. Anywhere, if this property is violated then -1 is returned. At any node, if we receive -1 from
any of its sides, we will simply return -1 to its previous function call. The function is written such

Data Structures: Theory & Practicals 252

that if we send a null node to the function, it returns 0; if we send a leaf node to the function then
it returns 1. See Figure 4.26 which shows the returned values from each of the recursive calls.

Fig. 4.26: Recursive function trace for finding whether the tree is a balanced tree or not.

We can see from the above figure b, that if one node balance is missing then the recursive function
call gets rewinded immediately and returns -1 for all the previous function calls.

Example 11: The following program checks whether two trees are topologically and content-wise
the same or not.

Output

Non Linear Data Structures 253

Test1:
Creating first tree
20 30 40 50 60
0
Creating Second Tree
20 30 40 50 60
0
Topologically Same
Topologically and Content
wise Same

Test2:
Creating first tree
20 30 40 50 60 0
Creating Second Tree
50 60 70 80 90 0
Topologically Same
Topologically and content
wise Not Same

Test 3:
Creating first tree
20 30 40 50 60 0
Creating Second Tree
20 30 40 50 60 70 80 0
Topologically Not Same
Topologically and content
wise Not Same

You are welcome to play with the following links which have the above code.
https://ideone.com/HDvMNd

The above functions identicaltopologically() is used to test whether two given trees are having
topological structure or not. In order to call two trees topologically the same, at each level they
have the same topological structure. The same is tested with the above recursive function. Here, we
have employed a rule to check in any recursive call if both a&b either true or null then trees are
topological; else trees are not identical. That is, in any recursive call, a is pointing to a meaningful
node while b is 0; or vice versa. Then, trees are not having same topological structure. Thus, the
function returns 0. At one node, if zero is received, then the same is returned to previous function
calls. See Figure 4.27 for the analysis.

Fig. 4.27: Checking whether two trees are identical or not.

The function identical() used in the above program is same is identicaltopology() with some extra
constraint. That is, we will check the information of nodes pointed by both a and b in each recursive
call.

Example 12: The following code is to create a copy of a given tree.

Data Structures: Theory & Practicals 254

Output:

We have our side code made available at https://ideone.com/C4yNTL . Check any problem here.

Example 13: The following program calculates the mirror of a tree.

Output:

Non Linear Data Structures 255

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK151

Question 33: Check whether the following function will allow us to check whether a tree having
its left and right subtrees are mirrors to each other not.

Example 14: The following function checks the existence of a node with value x in a BST whose
root node is A.

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK147

Recursive Version for Find
This is the recursive version of Find(). If A is null, we return null. If A contains x then it returns
A. Otherwise, we will search for x in its left and right subtrees recursively with the same function.

Example 15: The following function checks the existence of a node with value x in a BST whose
root node is A in a recursive manner.

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK148

Data Structures: Theory & Practicals 256

Question 34: Assume that our binary tree node contains one extra data member, linkcount,
which indicates the number of nodes left of it.

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK149

Find out whether the following function returns the address of kth element of the ordered list or
not.

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK150

Question 35: Write a program to find out the in-order successor of a node with a given value.

In-Order successor of Node, A, can be calculated by employing the following rules.
● If A is left child to its parent and A does not have any right subtree then its parent itself
becomes an in-order successor of A.
● If A is left child to its parent and A has right subtree, then the leftmost child of A’s right
subtree becomes the A’s in-order successor.
● If A is the right child of its parent and A has the right subtree, the leftmost child of A’s
right subtree becomes the A’s in-order successor.
● If A is the right child of its parent and A does not have any right subtree, then backtrack
using the father field till we will find a node B which is left to its parent and then return B’s father
as A’s in-order successor.
● If A is the rightmost node of a tree then its in-order successor is NULL.
● If A is the root node then the leftmost child of its right subtree is its in-order successor.

In Figure 4.28 for nodes marked as A,B, the in-order successors are their parents as A ,B do not
have right subtrees.

Non Linear Data Structures 257

Fig. 4.28: In-Order Successors

For nodes C,D, in-order successors are the left most nodes of its right subtrees. In this case, they
are 14 and 20 respectively.

For nodes Y, Z (which are right children for their parents and do not have any right subtrees), in-
order successors are 35 and NULL.

For nodes, U, X in-order successors are left most children of their right subtrees. That is, 16 and 40
respectively.

For root node, W, in-order successor is 35.

Note: In-Order predecessors of a node can be easily calculated by replacing left with right

and right with left in the above statements.

Threaded Binary Trees are the ones which may contain nodes with their links pointing to in-order
successors or predecessors. A binary tree can be made as a right threaded tree by making all right
pointers point to the inorder successor of the node. If we make left child pointers to point to in-
order predecessors, the resulting tree is called as left-threaded tree (see Figure 4.29)

Fig. 4.29: Threaded tree

Height Balanced Trees or AVL(Adelson-Velsky and Landis) Trees
We have mentioned that binary search trees are primarily meant for searching applications. In
example 1, we have created a binary search tree by reading a set of numbers. If we give the
following input for the above program, the resulting tree will be a skewed tree which is also called
a degenerate tree as shown in figure 4.30.

10 23 44 52 55 90 100

Fig. 4.30: Skewed Tree

Is it not looking like a single linked list?. Indeed it is. What is the cost of finding an element in this
tree, a.k.a. singled linked list?. If the number we wanted is 10, then we will succeed with one search
only (O(1)). If the number we are looking for is 100, then we have to visit all the nodes, in the worst

Data Structures: Theory & Practicals 258

case with order O(n). Thus, its behavior is more like linear search. Of course, if the given number
is not in the tree also, worst case complexity of O(n).

Now consider what if the same set of numbers are organized as a binary search tree as shown in
Figure 4.31:

 Fig. 4.31: Balanced Binary Search Tree

Is there any advantage of this tree over the previous degenerate tree?. Here, if the search number is
52, we will succeed with only one comparison, i.e., it is O(1) order. If we observe the tree, at most
we have to visit three nodes only while searching for a number . Thus, this organization is better.
What have we done here?. We have organized the numbers such that the tree is balanced in some
sense such that we don’t face worst case situations such as the skewed tree. Thus, in practice, while
building binary search trees, we apply some rotations on the tree nodes such that the tree becomes
height balanced or optimal binary tree. Of course, we have to remember that the inorder sequence
has to be preserved (or maintained) during these rotations. If you verify inorder traversal results
of both the above trees, you will find that both will be giving the same inorder sequences. This idea
of rotation is proposed by G.M. Adelson-Velskii and E.M. Landis, in 1962. Thus, these trees are
called AVL trees. What are rotations, how they are carried is beyond the scope of this book

because of the book size limitations.

We find the following site has marvelous BST visualization tools and AVL tree visualization tools.
It illustrates the rotations of the node while AVL tree is created.
https://www.cs.usfca.edu/~galles/visualization/BST.html

33.1.8 Sequential Representation of the Tree:
Sequential representation of a tree means, tree nodes information is stored in an 1-D array fashion
such that ith node’s left, right children values are stored in 2*i+1 and 2*i+2 elements of the array
(see Figure 4.32). Index of the root node is considered as 0. Sequential representation is employed
to reduce time required to read/write tree information from disk to RAM and vice versa where the
tree contains trillions of numbers. That is, if nodes are located sequentially in memory, then time
required to save tree information onto the disk becomes very less. However, after reading the tree
information into RAM, we may need some computations to have new links depending on to which
memory tree is loaded.

Non Linear Data Structures 259

Fig. 4.32: Sequential storage of a binary tree.

Example 16: The following example explains about creating a sequential tree.

We will be asking the user to enter the number of nodes to be maintained in the tree. Then, we
allocate a 1-Dimensional array of Node type of objects by calling malloc. Whenever a new node is
required to be added, one element of this array is assigned. If one observes, we have changed
importantly one statement; A=D+i. In previous examples, whenever a node is required to be added,
it will be created at that time and assigned to A. Here, we are simply assigning the address of one
the node which is already created. This is the major change. Of course, loop control is changed to
run for n times.

Data Structures: Theory & Practicals 260

Output:

The above code is available for experimentation at:
https://tinyurl.com/AICTEDSBOOK145

Non Linear Data Structures 261

The following picture illustrates how a tree is stored in sequential memory.

Question 36: If we have N keys (numbers) and organized as a binary tree fashion such that every
node contains exactly two children. What is the worst possible height of the tree?. Assume, N
value is more than or equal to 3. What is the nature if N is even or odd?. In this type of tree, what
are the number of leaf and non-leaf nodes available?.

Example 17: The following example demonstrates the tree creation using a structured array. We
do not use any pointers. It is more like a sequential tree itself.

Data Structures: Theory & Practicals 262

You are welcome to play with the following links which have the above code.
https://tinyurl.com/AICTEDSBOOK146

4.2. Introduction to graph theory

A marvelous tool for graph analysis is available at:

https://snapapps.github.io/edgy/app/edgy.html

We strongly recommend teachers to use this tool without missing much before starting their

lectures on Graphs. Teachers really can design tasks to raise the interest of students.

Graph theory is the one area which is used in almost all areas including biology, sociology,
engineering, chemistry, etc., Most of the renowned Universities are offering a minimum 2 to 3
courses on this theme for their Computer Science and allied students. The development of graph
theory is very much inspired by the study of games and recreational mathematics.

Generally speaking, we use graphs in many situations of daily life also. A graph is a very convenient
and natural way of representing the relationships between objects (such as cities, people, molecules).

Non Linear Data Structures 263

Objects are represented with vertices while the relationships between them by lines or arcs. Thus,
a graph can be said as a collection of vertices (V) and edges (E). Do remember that we have used
the same definition for a tree also.

Undoubtedly in many situations (including intricate problems), a pictorial representation may help
a lot in illustrating the things easily. In crystallography, the three dimensional structure of atoms
(topoly) structures is explored using graph theoretic approaches. For example, a chemical molecule
and its graph representation is shown in Figure 4.33.

Fig. 4.33: A sample chemical molecule and its graph representation.

Also, there are some problems which are referred to as matching problems. Consider we have the
following set of applicants and the jobs they can do. No applicant is accepted for two jobs, and no
job is assigned to two applicants. The problem is to find a worker for each job.

The possible solution can be given as (Figure 4.34) a graph:

Fig. 4.34: A job assignment problem.

We often look for a route map (such as the one in Figure 4.35) of a place which we may plan to
visit during your next vacation. Such a map may contain details about roads and rail routes in the
area of interest.

Fig. 4.35: A sample route map (source www.iith.ac.in Last accessed: Aug 2016)

Data Structures: Theory & Practicals 264

Fig. 4.36: An example Pipe distribution system

Similarly, we may encounter applications of graph theory in the design of water supply systems,
gas supply systems, etc. Of course, their applications may differ from problem to problem. For
example, in the case of water supply systems design supply water at maximum possible rate with
expected minimum pressure. Here, we can consider the pipes are the edges and intermediate valves
etc., can be considered as nodes. Same is applicable to gas supply systems such as the one shown
in Figure 4.36.

Some graph structures(see Figure 4.37) employ some weights to each edge of the graph like
distance between two places in the road network, or delay between two routers on the Internet, etc.
They are called weighted graphs.

Fig. 4.37: A sample weighted graph.

A website is also represented by a directed graph with web pages as the vertices, urls being the
edges. A directed edge from page A to page B is assumed if page A contains a hyperlink to B.

A graph G consists of vertices and edges. Every edge connects (joins)two vertices. An edge is
represented with two vertices which it is connecting. Here, the vertex order is important to
disambiguate the direction of the connection. For example, two places A, B in a city have a
connecting road which is a one way road for all the time, then we say A —> B, indicating we can
reach B from A, but not the other way wrong. These types of edges are called directed edges;
otherwise undirected edges. The following is a graph (see Figure 4.38) with all of its edges as
undirected. This type of graph is referred to as an undirected graph; otherwise the graphs are called
directed graphs. Even the existence of a single directed edge makes us refer to that graph as a
directed graph.

Fig. 4.38: A sample graph

The collection of vertices of a graph G is represented as V(G) and is also referred to as the vertex

set of G. The total number of elements of vertex set is known as the order of the graph and the same
is represented as |V(G)|.

Non Linear Data Structures 265

The set of edges of a graph G is referred to as the edge set of G or E(G). The collection of edges
of a graph is known as its size, i.e. |E(G)|.

A self loop is a special single edge that starts at a vertex and ends at the same vertex. Anything is
getting into your mind? Yes. Marvelous examples can be ring roads that are typically constructed
to control the traffic of cities.

A link or edge connects two distinct vertices. It is very much possible for two vertices to have
more than one edge. In which case that edge is referred to as multiple edge; otherwise it is simple.
The number of multiple edges between two given vertices is called that edge’s multiplicity while
the maximum multiplicity of a graph's edges is called multiplicity of that graph. Based on this
multiplicity concept, graphs are classified as:
● a simple graph if it has no multiple edges or loops
● a multigraph if it has multiple edges, but no loops,
● a multigraph or pseudograph if it contains both multiple edges and loops.

A graph G’s complement is a graph with the same V(G) but with an E(G) which is the set of

edges that are not there in G.

A graph with zero or more vertices without any edges is referred to as an edgeless graph or an

empty graph.

A null graph is a graph with no vertices and no edges. However, a graph with no edges and any
number n of vertices is called the null graph on n vertices.

A graph with infinitely many vertices or edges or both is referred to as an infinite graph; otherwise

finite graph. Do remember in this course, we shall deal with finite graphs only.

An alternating sequence of vertices and edges that starts and ends with a vertex is called a

walk/path. If a path starts and ends at the same vertex it is a closed path or cycle; otherwise it is
an open path. The number of edges of a path is called the length of the path. A path without any
repeated vertices is called a simple path. A path with distinct edges and vertices is referred to as a

chain.

In the example graph in Figure, (1, 2, 5, 1, 2, 3) is an open path of length 5 while (4, 5, 2, 1, 5, 4)
is a closed path of length 5.

The path with distinct edges is referred to as a trail; while a closed trail is called a tour or circuit.

Do you remember that we have mentioned that a tree is also a graph and is without any cycles;
rather it is acyclic (cycle less graph). If a graph contains a single cycle then the graph is unicyclic
otherwise pancyclic. A cycle that uses all vertices exactly only once is known as spanning or

hamiltonian and that graph is hamiltonian graph. If a cycle uses all of its edges exactly once then
it is Eulerian.

A graph’s shortest possible cycle length is its girth while the longest possible simple cycle is its

circumference.

Data Structures: Theory & Practicals 266

A graph node’s indegree is the number of edges ending there while outdegree is the number of
edges leaving from that node; total of these two is the degree of that node. Can you guess what is
the degree of an isolated vertex? Zero.

The distance of a pair of vertices is the length of the shortest path between them.

If every node can be reached61 from every other node in a graph then that graph is a connected
graph. The worst possible path length in a connected graph with n vertices is n-1.

The largest possible subgraph of a graph in which all nodes are reachable from every other node is
its connected component.

If the removal of any vertex of a graph leads to more connected components then that any vertex is
called a cut point. The set of such a vertex is known as the cutset of that graph.

If the removal of any edge of a graph leads to more connected components then that any edge is
called a bridge. The set of such edges is known as the edge cutset of that graph.

4.2.1.Graph Representations

Pictorially, graphs are drawn with filled or empty circles for their vertices and lines (or arrows) for
their edges. However, we are very much interested in doing some manipulations using a computer
program. There are many approaches that are widely used. We shall discuss each of them in the
following pages.

4.2.1.1 Adjacency Matrix Representation of the Graph

An NxN matrix that is known as an adjacency matrix stores the edge details of a graph with N
number of vertices. If we assume vertices are represented as numbers 0 to N-1 (or 1 to N), then in
the given graph if there exists an edge between ith vertex and jth vertex then ith row jth column
element of the adjacency matrix will be set to 1; otherwise it is set to zero. Of course, if the stations
are having more than one edge, the respective element of the adjacency matrix will be initialized
with that count. From this adjacency matrix, we can draw the graph at any time.

Figure 4.39 contains a sample graph and its adjacency matrix. Observe the principal diagonal
element’s values. All are zeros. This indicates that the stations are not having self cycles or self
loops.

Fig. 4.39: A sample graph with its adjacency matrix.

61 A node is reachable from another node if there exists a path of any length from one to
the other.

Non Linear Data Structures 267

If we observe the last row of the above adjacency matrix, we may find all 0’s indicating that the
station is sink. Which means, there are no edges emanating from that station.

If the above graph is an undirected graph, the adjacency matrix will be created by considering each
undirected edge as two directed edges, one forward and one backward. The resultant adjacency
matrix will be given in Figure 8. However, for a weighted graph (such as the one shown in Figure
4.40), the adjacency matrix will be having weight values of the edges.

Fig. 4.40: Adjacency matrix for an undirected graph

If we observe the adjacency matrix of an undirected graph, we may find it as a symmetric matrix.
Of course, one has to remember that a graph is called a directed graph (or di-graph) even if a single
edge is directed. On the contrary, to call it an undirected graph, all the edges should be un-directed.
Of course, there are some algorithms which work only on directed graphs. In order to apply those
algorithms on undirected graphs, we can replace each un-directed edge with two directed edges,
one forward and one backward as shown in Figure 4.41.

Fig. 4.41: Converting an undirected graph to directed graph.

As mentioned in the above paragraph that the adjacency matrix of a un-directed graph is symmetric
about its principal (or main) diagonal. In un-directed graphs, self loops are not allowed. Thus, the
adjacency matrix contains its main diagonal elements as zeros.

Sum of the elements of an adjacency matrix of an un-directed graph will be even. That is, the sum
of the degrees of all the vertices of an un-directed graph G is equal to twice the number of edges in
G.

If an adjacency matrix of a graph (with N vertices) contains only 1’s in main diagonal and all
remaining elements are 0s, then we can say that the graph containing N connected components are
N isolated points with self cycles (see Figure 4.42).

Data Structures: Theory & Practicals 268

Fig. 4.42: Graph with isolated points with self cycles and their adjacency matrix.

If an adjacency matrix of a graph (with N vertices) contains all 0s, then we can say that the graph
containing N connected components are N isolated points as shown in Figure 4.43.

Fig. 4.43: Graph with isolated points and their adjacency matrix.

An Adjacency matrix of a graph with N nodes contains all 1’s in ith row (except ith element) and
all 0’s in the ith column, then ith station can be said as source. Similarly, An Adjacency matrix of
a graph with N nodes contains all 0’s in ith row (except ith element) and all 1’s in the ith column,
then ith station can be said as sink.

An Adjacency matrix of a graph with N nodes contains all 1’s in ith row (except ith element) and
all 0’s in the remaining portion of the matrix, then the graph can be said as star shaped with ith
station as center and directed edges for all other stations as shown below.

An Adjacency matrix of a graph with N nodes contains all 1’s in ith row (except ith element), all
1’s in ith column (except ith element), and all 0’s in the remaining portion of the matrix, then the
graph can be said as star shaped with ith station as center and un-directed edges for all other stations
as shown below.

If all the stations are connected with exactly one directed edge and all are in a cycle as shown in
Figure 4.44 then the related adjacency matrix looks as shown in Figure4.44.

Non Linear Data Structures 269

Fig. 4.44: Adjacency matrix of directed graph with a cycle.

If the directed edges of the above graph are replaced with undirected edges, then the adjacency
matrix looks like (Figure 4.45)

Fig. 4.45: Adjacency matrix of a graph with single cycle and undirected edges.

What will be the nature of stations if the adjacency matrix looks like a band matrix of width 3 as
shown is Figure ?. All the stations will be having self loops and all are connected through un-
directed edges except last two stations (see Figure 4.46)

Fig. 4.46: Adjacency matrix of a graph in which all the nodes in a circular chain with self cycles.

Adjacency matrix of a weighted graph is shown in Figure 4.47.

Fig. 4.47: Adjacency matrix of a weighted graph.

4.2.1.2. Adjacency List Representation

Data Structures: Theory & Practicals 270

Graph information is maintained in another format known as adjacency list representation. Here,
for each node, its neighbor’s information is maintained in a linked list fashion as shown in Figure
4.48.

Fig. 4.48: Adjacency List representation of the graph

Question 37: From the above adjacency list representation, can you arrive at a suitable C language
structure to represent nodes in the adjacency list and nodes in the vertex vector list?
Answer: If you observe the above figure, in each node of the adjacency list a vertex label and
address of the next node. Thus, it can be defined as:

Also, from the above figure that the node for vertex vector list has to have, vertex label, pointer or
reference to its list of neighbors and a reference to the next node in vertex vector list. Thus, the
following type is an apt one.

Obviously, people may be getting doubts about which representation is better. The answer is, in
practical applications, a combination of both is used. Thus, we really do not want to enter into the
debate of which is better. However, for the sake of comparison, we shall discuss their relative merits
and demerits in Table 4.3.

Table. 4.3. Comparison of adjacency matrix and lists

Figure 4.49 displays the adjacency matrix and adjacency list of a sample weighted graph.

Non Linear Data Structures 271

Fig. 4.49: Adjacency Matrix and Adjacency List of a weighted graph

Question 38: From the above adjacency list representation, can you arrive at a suitable C language
structure to represent nodes in the adjacency list and nodes in the vertex vector list?

Answer: If you observe the above figure, in each node of the adjacency list a vertex label, weight
value, and address of the next node. Thus, it can be defined as:

Also, from the above figure that the node for vertex vector list has to have, vertex label, pointer or
reference to its list of neighbors and a reference to the next node in vertex vector list. Thus, the
following type is an apt one.

4.2.1.3. Set representation

In this representation, edges details are maintained as shown below:

The following picture 4.50 shows the set representation of a directed graph and its set representation.
That is, edges and their weights are maintained in a table.

Fig. 4.50: Set representation of a weighted graph

Data Structures: Theory & Practicals 272

4.2.1.4. Array List representation

Here a 1-dimensional array is used to store the edges details of a graph. In the graph of Figure,
edges details are stored in the following array. We have one edge (1,2). Thus, 2 stored. We have
two edges from vertex 2. They are (2,3), (2,5). Thus, 3, 5 are stored in the array. Like this, edge
details are stored. However, we do need some extra information about each vertex like their degree
(number of edges) has to be stored. However, compared to adjacency list, adjacency matrix this
representation found to be little complex to implement to manipulate the graphs.

4.2.2. Transitive Closure and Path Matrix or reachability matrix

The transitive closure of a graph G conveys the existence of a nontrivial directed path from one
station to another station. Here, a nontrivial directed path indicates the path of any length. The
transitive closure of a graph is usually represented with an binary valued (0 or 1) NxN matrix (here
N is the number of nodes of the given graph), with the value 1 at an element of ith row jth column
conveying the existence of the route (or path or walk) from ith vertex to jth vertex; otherwise non-
existence of the path.

Consider the following sample undirected graph(see Figure 4.51).

Fig. 4.51: Paths of square of an adjacency matrix

What is the physical significance of the above matrix A2?. For example, station 1-5, the value is
given as 2. This indicates the existence of two routes between 1 to 5 with 2 hops or jumps. We can
verify the same as: 1-2-5 and 1-3-5. Similarly, we have 2-2 as 4. The possible routes are: 2-1-2, 2-
3-2, 2-4-2, and 2-5-2 with two jumps. Like this, this matrix A2 indicates the number of paths with
two jumps. Similarly, A3 will indicate the possible routes from one station to another station with
3 jumps or hops. If we add A, A2 and A3 then the resultant matrix indicates the existence of routes
between stations with at most 3 jumps.

We know that any path length can not be more than N edges in a graph with N nodes. Thus, we
can calculate the path matrix or transitive closure by binarising the summation matrix of
A+A2+A3+..+AN. That is,

Non Linear Data Structures 273

This approach of calculating, A, A2, A3,.., AN is computationally demanding. We know that the
matrix multiplication algorithm for two NxN matrices has a time complexity of O(N3). Thus, this
method of finding transitive closure will be of order of complexity as O(N4).

Question 39: Assuming A as an adjacency matrix of a star shaped directed graph with N vertices
(with one center vertex), what will be the matrices A2, A3,..,AN ?.

Question 40: Assuming A as an adjacency matrix of a star shaped un-directed graph with N
vertices (with one center vertex), what will be the path matrix?.

4.2.2.1. Warshall’s Algorithm

The basis of this algorithm is a very simple theme. Let's assume that we have three stations x,y and
z. There exists a path between x to y and y to z. Which means, we have the path for x to z also, but
of course via y. Thus, in this algorithm, we try to explore the existence path between stations by
exploring existing paths of the stations. If we do not have a path currently from station I to J. Then,
we search whether there is a path between I to K and K to J. If path exists, we consider now that
there is a path between I to J. We will vary K such that all the stations are verified by assuming
them as intermediate stations between I and J. However, in order to alleviate unnecessary
computations, if there already exists a path between I and J, we don’t explore further with
intermediate stations.

Pseudo-Code of Warshall's Algorithm

This is an algorithm that is computationally less intensive. Its order of complexity is O(N3).
Moreover, the operations involved here are simple AND, OR operators.

4.2.3. Graph Traversals

Like tree traversals, linked lists traversals discussed in the previous chapters, we do have some
methods to traverse graphs also. They are:
● Depth First Traversal (DFT) or Depth First Search(DFS)
● Breadth First Traversal(BFT) or Breadth First Search(BFS)

Data Structures: Theory & Practicals 274

The basic object of the graph traversal is to visit each node at least once. However, the algorithms
will actually give us much more than that. For instance, DFS can be used to find the path from one
vertex to another vertex.

The DFT algorithm is quite famous and can be used to solve a variety of graph problems. We
employ stacks to traverse the graph in DF manner. As the algorithm proceeds, node status will be
changed. Initially, we assume all the nodes will be in an un-processed state. When they are in the
stack, we assume they are in the ready state. When they leave the stack, we consider that they are
processed.

4.2.3.1. DFT Algorithm

1. Select any node of the graph and push into the stack while making its status as Ready.

2. Repeat step 3 till the stack becomes empty.

3. Pop a node (A) from the stack and make its status as processed. Push all the un-processed
nodes of A into the stack while making their status values as ready.

We try to apply the above algorithm for the graph shown in Figure 4.52 and show how the stack
changes.

1. We assume here that we will be traversing from the node A. We will push the same into the stack.
2. When we pop, we will get A as output. The same will be displayed in the output string. Its
unprocessed neighbor, X, is pushed into the stack.

Fig. 4.52: Depth First Traversal snap shot on a selected graph.

3. Now, when we pop, we will get X. The same will be printed and its unprocessed neighbors, G
and H are pushed into the stack.
4. Now, when we pop, we will get H. The same will be printed and its unprocessed neighbor, E,P
are pushed into the stack.

Non Linear Data Structures 275

5. When we pop, we will get P as output. The same will be printed. As it does not have any
unprocessed neighbors, nothing is pushed into the stack.
6. This time, when we pop, we will get E. The same will be printed and its unprocessed neighbors,
M,Y are pushed into the stack.
7. Now, when we pop, we will get Y. The same will be printed. Though it has a neighbor M, as M
is already in the stack (i.e. its status is ready), nothing will be pushed into the stack.
8. Next when we pop, we will get M as output. The same will be printed. Its unprocessed neighbor
is pushed into the stack.
9. Next, when we pop, we will get J as output. The same will be printed. As it does not have any
neighbors, nothing will be pushed into the stack.
10. Next when we pop, we will get G as output and the same will be printed. As G does not have
unprocessed neighbors, nothing will be pushed into the stack. Remember, though G as neighbors,
all of them are in processed state (i.e. they went to stack and came out. That is, they are processed).
11. Now, stack empty. Thus, it terminates.

The following figure (4.53) explains how the edges get discovered. If you observe the figure, you
will find it visits the deepest vertex first.

Fig. 4.53: DFS traversal of a graph

Backtracking to find the path
Assume that we want to find a path for vertex A(source) to vertex G(destination). See the following
diagram which shows by processing which node, its neighbors are becoming pushed into the stack
or changing their status as Ready.

We start from the destination node in the top row. We check how it has entered into the stack. We
know when we have processed vertex X, G has entered into the stack. Now, we select X in the top
row and find how it has entered into the stack. That is, X has entered into the stack when we have
processed vertex X. Thus, the route becomes G-H-A, a.k.a A to G route is via H, A-H-G.

Data Structures: Theory & Practicals 276

Let us take one more example of finding the path for A to J. By applying the above backtracking
approach, we can find the path as: A-X-H-E-M-J. See the following workout diagram.

One useful aspect of the DFS algorithm is that it traverses connected components one at a time,
and thus it can be used to identify the connected components in a given graph.

We welcome readers to visit the following visualization resource for experiencing real time BFS
on a graph. You may set animation speed to a small value such that you can feel the working of
BFS algorithm in an easy manner.
https://www.cs.usfca.edu/~galles/visualization/DFS.html

4.2.3.2. BFT Algorithm

In the case of the BFT algorithm, we employ the queue. Other notations are the same as above.

1. Select any node of the graph and insert into the queue while making its status as Ready.
2. Repeat step 3 till the queue becomes empty.
3. Remove a node (A) from the queue and make its status as processed. Insert all un-processed
nodes of A into the queue while making their status value as Ready.

Let us apply the BFT traversal algorithm on the graph given in Figure 4.54.

1. We assume that traversal starts from node A. Thus, we insert the same into the queue while
making its status as Ready.
2. We will remove a node from the queue. Obviously, it is A itself. We will mark the same as
processed and insert its unprocessed neighbors into the queue while making their status as Ready.
The following figure illustrates the snapshot of the above algorithm.

Fig. 4.54: BFT traversal of a graph

3. Next, when we remove a node from the queue, we will get node X. The same will be printed. Its
unprocessed neighbors G, H are inserted into the queue.

Non Linear Data Structures 277

4. Next, when we remove a node, we will get node G. The same will be printed. Its unprocessed
neighbor is inserted into the queue while making its status as ready (Of course, though H is also
G’s neighbor it is not inserted as it is already in the queue).
5. Next, when we remove a node from the queue, we will get node H. The same will be printed. Its
unprocessed neighbor, E, is inserted into the queue.
6. When we remove a node from the queue, we will get node P. It does not have any neighbors to
be inserted into the queue.
7. Next, we remove a node, we will get node E. The same will be printed. Its unprocessed neighbors,
M.Y are inserted into the queue while making their status as ready.
8. Next, when we remove, we will get M as output. Its unprocessed neighbor is inserted into the
queue.
9. Next, when we remove, we will get Y as output. As it does not have any unprocessed neighbors.
Nothing will be inserted into the queue.
10. Next, when we remove a node from the queue, we will get node J. The same will be printed.
As it does not have any neighbors, nothing will be inserted into the queue.
11. Now, the queue is empty. Thus, the algorithm terminates.

The following figure (4.55) explains how the nodes get discovered. If you observe the figure, you
will find it traverses all the possible edges of a vertex before going further downwards. For instance,
for vertex (X), two edges are available. Both the edges get discovered one after another before
going further downwards. Similarly, consider another vertex, E. For this node also two edges are
available. They will be traversed one after another.

Fig. 4.55: Breadth first traversal of a graph

Data Structures: Theory & Practicals 278

We welcome readers to visit the following visualization resource for experiencing real time BFS
on a graph. You may set animation speed to a small value such that you can feel the working of
BFS algorithm in an easy manner.
https://www.cs.usfca.edu/~galles/visualization/BFS.html

The following link can be used to understand about the connected component analysis.
https://www.cs.usfca.edu/~galles/visualization/ConnectedComponent.html

4.2.4. Minimum Distance Problems

There are a plethora of problems in which we need to find out the minimum distance between two
nodes of a graph. For example, while planning our holiday trip, we need to find minimum distances
between the places which we have identified to visit. Similarly, in computer networks (i.e., in
Internet), we need to find our best route to rout the packet. Here, we may consider many parameters
such as minimum delay or minimum cost, minimum jitter, etc. In some other applications also we
may have to find minimum cost routes.

In all the above problems, we will be given a weighted graph and we need to find out the minimum
distance route between any given two stations. In the literature, we may find many solutions to
solve this problem. However, Dijkstra’s algorithm is the most popular out of all.

4.2.4.1. Dijkstra’s Algorithm

Here also, we assume the same notations as in the graph traversals algorithm. Initially, all the
stations are at infinite distance from the source station. That is their state is considered as
unprocessed. When we find a route (may not be the best route) for a station from source, those
stations are said to be in ready state. If we have found the best possible route to a station, we mark
its status as processed. The algorithm is given as follows.

1. Select the source node and mark it as processed.
2. Select all the neighbors of the source station and mark them as ready and update their minimum
distances as the distances from source.
3. Repeat step 4 till destination station status becomes processed.
4. Select the station (B) which is having minimum distance out of the stations which are in the
ready status. Make status of B as processed and update all of its unprocessed, ready state nodes
minimum distance (by adding distance from B to this station to distance of B from source) while
making their status as ready (see Figure 4.56)

Non Linear Data Structures 279

Fig. 4.56: Dijkstra’s Algorithm’s working

Let us apply Dijkstra’s algorithm to the above graph shown in Figure 19 .
1. We have assumed the source station is A and destination station is F.
2. We have marked A’s status as Processed. Its neighbors, B, C are kept in ready state and their
minimum distances from A is marked as their actual distances themselves. That is, 1 and 9
respectively.
3. As of now, we have B and C in ready state. We select B as it has minimum distance. We will
make B’s status as Processed. Also, we make B’s neighbors C, D as ready and their distances are
updated.
4. As of now, C and D are in ready state and their distances from A are 3 and 6 respectively (via
B). Thus, we select C as it has the smallest distance. Make its status as processed. Make its
neighbors, D,E as ready while adjusting their distances.
5. As of now, we have D, E in the ready state with minimum distances of 6 and 7. Of course, for
D, we have two routes with minimum distance. That is A-B-D or A-B-C-D. We can select any one
of them. We have selected A-B-C-D. Now, we select D and make its status as processed. Make its
unprocessed neighbors as Ready and update their minimum distances.
6. Now, E and F are in ready state with distance 7 and 9. We select E and make its status as
processed. Its neighbor F minimum distance will not change.
7. Now, we have only F in the ready state. Make it processed. We will come out of the algorithm.

The figure contains red edges which form the minimum route from A to F. Observe all the red
edges which connect all the nodes. These edges make the minimum spanning tree for node A. This
tree contains shortest routes from A to all other nodes. In computer networks, if A is a router and
wants to broadcast (broadcast means sending to all) a message, it can select these routes to send
messages.

Example 18: The following is our C implementation of Dijkstra’s Algorithm. This code deals with
graphs having utmost 10 vertices. One can modify this code while dealing with large graphs.

Data Structures: Theory & Practicals 280

Output:
Enter Number of Nodes
6
Enter Weights

Enter Source and Destination Station Indexes
0 5
Backtracking
F->D->B->A

Non Linear Data Structures 281

Note: Please note the difference in the path solved in the figures. We have mentioned B is having
two routes with the same minimum distance. While solving, we have taken one route. The program
has taken the other. The following link contains the above code, graph data loaded into a server for
experimentation.
https://ideone.com/kFXF8C

The following link contains the visualization tool for this algorithm.
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html

Example : Run the above program for the weighted graph given in Figure 15.

Output:
Enter Number of Nodes
6
Enter Weights

Enter Source and Destination Station Indexes
0 5
Backtracking
F->D->C->A

The following link contains the above code, graph data loaded into a server for experimentation.
https://ideone.com/wigttc

Note: In our discussion, we have assumed that the graph is having positive edges. If anyone wants
to know more about what happens when there are negative edges and negative cycles, we advise to
refer to a simple discussion at http://www.cs.berkeley.edu/~jordan/courses/170-
fall05/notes/lecture7.pdf .

4.2.4.2. Minimum Spanning Tree

In network design, we often need to find the need to send a packet from one router to all the routers
of a network in the optimal manner. For this purpose, we need to find a minimal spanning tree that
connects all the n nodes with n-1 best edges such that total delay will be minimal (see Figure 4.57).

Fig. 4.57: Spanning tree

We know that a tree is the one that does not have any cycles. In some algorithms in computer
networks such as flooding, a packet is required to be broadcasted, that is it has to be sent to all the

Data Structures: Theory & Practicals 282

nodes or routers of a network. To achieve this a spanning tree is used. The spanning tree is the one
that connects n nodes (or routers) with n-1 edges as shown in the above figure. For a graph, there
can be more than one spanning tree possible based on its topological structure. However, if the
graph is weighted, which is often true in the case of computer networks, we need to find the
minimum (cost) spanning tree, where a spanning tree cost is the sum total of weights of its edges.

4.2.4.2.1. Kruskal’s Algorithm

 1. Arrange all edges in a list (L) in non-decreasing order

2. Select edges from L, and include that in set T, if its inclusion does not induce a cycle.

3. Repeat 2 until T all vertices of the graph without any cycles.
Let us apply this algorithm. The given figure 4.58 a-j below illustrates its application.

Non Linear Data Structures 283

Fig. 4.58: Kruskal's algorithm in working

1. First edge {1,2} is selected (see Figure b). Its inclusion did not give any cycle in the graph.
2. Edge {3,4} is selected (see Figure c). Its inclusion did not give any cycle in the graph.
3. Edge {1,8} is selected (see Figure d). Its inclusion did not give any cycle in the graph.
4. Edge {4,5} is selected (see Figure e). Its inclusion did not give any cycle in the graph.
5. Edge {2,7} is selected (see Figure f). Its inclusion did not give any cycle in the graph.
6. Edge {3,6} is selected (see Figure g). Its inclusion did not give any cycle in the graph.
7. Edges {7,8}, {5,6} are not selected as their inclusion may lead to a cycle in the graph.
8. Edge {5,8} is selected (see Figure h). Its inclusion did not give any cycle in the graph.
9. By now, we have selected all the necessary edges (8-1, where 8 is the number of nodes in the
graph). Thus, the algorithm terminates.

We welcome readers to visit this link for playing with Kruskal’s algorithm.

Data Structures: Theory & Practicals 284

https://www.cs.usfca.edu/~galles/visualization/Kruskal.html

4.2.4.2.2. Prim’s Algorithm

This is a complementary approach to Kruskal's algorithm.
1. Maintain all the edges in the descending order.
2. Select an edge and identify whether its removal leads to breaking the connectivity of the graph.
If the graph breaks then retain that edge else remove.
3. Repeat step 2 till all n-1 edges are selected.

Application of the above algorithm of the same graph of the previous example.
1. Edge {2,3} is not important as its removal is not disturbing the connectivity. So, remove it from
the list.
2. Edge {1,4} is not important as its removal is not disturbing the connectivity. So, remove it from
the list.
3. Edge {6,7} is not important as its removal is not disturbing the connectivity. So, remove it from
the list.
4. Edge {5,8} is important as its removal is disturbing the connectivity. So, retain.
5 Edge {5,6} is not important as its removal is not disturbing the connectivity. So, remove it from
the list.
6. Edge {7,8} is not important as its removal is not disturbing the connectivity. So, remove it from
the list.
7. By now, N-1 edges (8-1) are left in the list. They form the MST of the graph.

Let us apply this algorithm. The given figure 4.59 a-f below illustrates its application

Non Linear Data Structures 285

Fig. 4.59: Prim’s algorithm in working
We welcome readers to visit the following link to experiment with Prims algorithm.
https://www.cs.usfca.edu/~galles/visualzation/Prim.html

4.2.5. Topological Sorting

In some applications, we need ordering of the nodes while maintaining some ordering information.
For example, consider an example of course registration rules in an academic system as shown in
Figure 4.60. That is, to register in CS234, students have to complete CS232. Of course, to register
in CS232, students have to complete CS231, and vice versa.

Data Structures: Theory & Practicals 286

Fig. 4.60: A sample course registration in a University

We can know from the above graph that one can register in the course CS350 without any constraint.
That is, there is no prerequisite for CS350. However, in order to register in CS340 they have to
complete CS231, CS232 and CS234 or they can do extra CS323, CS333 and join.In this type of
problem if we want to order the course names, we have some acceptable ordering and some or not
acceptable. Topological sorting is used to find out the acceptable orderings.

For the above problem, the legal ordering can be : CS231, CS350, CS232,CS234, CS323, CS333,
and CS340.

Consider another example, related to construction of a house. Here, we have shown activities as
the nodes. The possible sequence is also shown in Figure 4.61.

Fig. 4.61: Sample graph for possible topological sorting.

Topological sorting is applicable only to DAGs. Here, if there is a path from vertex v to vertex w
in the given graph, vertex v is assumed to be coming before vertex w in the final ordering. That is,
we want to generate vertex ordering satisfying this constraint.

In a graph with no cycles, there must always be at least one vertex with 0 indegree, so we will start
at one of these vertices.What do you mean by zero indegree means?. If you take our course
registration example, the course which does not have any prerequisites. We print it and remove all
of its outgoing edges. We repeat this till all the nodes are printed on the output sequence.

The Steps in a topological ordering can be mentioned as:
1. For each vertex calculate in-degree values.
2. Repeat step 3 till there are no more vertices in the graph.
3. Select a vertex whose indegree value is zero and print the same in the output list while reducing
the indegree values of all other nodes which are having an outgoing edge from this node.

1. The graph has 7 vertices as shown in Figure a.
2. We found that both A and F are the nodes with zero indegree value. We have selected vertex A
and printed the same in the output list. Also, edges coming out from A are removed.
3. Now, vertex F is printed as output as its indegree value is zero.
4. Now, vertex B is identified to be having zero indegree. Thus, the same is printed. Its outgoing
edges are removed.
5. Now, C is selected as its in-degree is zero and printed. Outgoing edges from it are removed.

Non Linear Data Structures 287

6. Now, D is selected as its in-degree is zero and printed. Outgoing edges from it are removed.
7. Finally, E is printed as its in-degree is zero.

To find a node with an in-degree value of zero, we need to scan the array of vertices. Thus, we need
N comparisons. The same operation we need to do with each of the outputting vertices, thus the
complexity of this algorithm will be O(N2). The following figure 4.62 illustrates the working of
topological sorting algorithm.

Fig. 4.62: Topological ordering on a sample graph

Example 19: The following is our implementation of topological sorting given the adjacency
matrix details of a graph.

Data Structures: Theory & Practicals 288

Output:
Enter the no of vertices:
7
Enter the adjacency matrix:

The topological order is:1723456

You are welcome to play with the following links which have the above code.
https://ideone.com/a8hkHF

The following site contains a visualization tool to animate the working of the above topological
sorting algorithm. We welcome readers to use the same.
https://www.cs.usfca.edu/~galles/visualization/TopoSortIndegree.html

Multiple choice questions
1. The maximum number of leaves for a BST with 15 nodes are ___
a. < 8
b. 8

Non Linear Data Structures 289

c. 7
d. 11
2. Sixteen integers are maintained in almost complete BST then the number of leaf nodes in the

resulting tree are ___
a. < 8
b. 8
c. 7
d. 11
3. If a complete BST with 500 nodes is sequentially stored in an array b[0]..b[499], where will be

the parent and the left child of the node b[100]?
a. at 49, 200
b. at 49, 201
c. at 50, 200
d. at 50, 201
4. If total number of nodes in an almost complete binary tree are 2q, where q is a positive integer then

the number of leaf nodes at the lowest level are —
a. 1
b. q
c. 2q
d. None
5. If total number of nodes in an almost complete binary tree are 2q, where q is a positive integer then

the number of levels with full nodes are —
a. 1
b. q
c. 2q
d. None
6. In the following graph, __ cut point(s)

a. D
b. C
c. D &C
d. None
7. In the graph given in question 6, bridges are
a. DG edge
b. CD edge
c. EB edge
d. a,b,c
8. Row sums of an adjacency matrix represents
a. rank of the graph
b. order of the graph
c. out degree of the vertices
d. None
9. Row sum of a row in an adjacency matrix is zero conveys
a. matrix is connected
b. graph is connected

Data Structures: Theory & Practicals 290

c. the respective vertex is a sink
d. None

10. A vertex is seen in adjacency lists of all the vertices and also that vertex’es adjacency list is empty
then that vertex is —--

a. sink
b. source
c. isolated vertex
d. None

11. Assuming that the words “Rama”, “Rajyam”, “Hamara”, “prerana”, “hai” are inserted into an
empty tree and organized as BST based on their alphabetical order. What is the height of the
resulting tree?

a. 2
b. 3
c. 4
d. 5

12. Assuming that the words “Rama”, “Rajyam”, “Hamara”, “prerana”, “hai” are inserted into an
empty tree and organized as BST based on their alphabetical order. The number of leaf nodes in
the resulting tree are __

a. 2
b. 3
c. 4
d. 5

13. Assuming that the characters of the string “NAMO” are inserted into an empty tree and organized
as BST based on their alphabetical order. What is the height of the resulting tree?

a. 2
b. 3
c. 4
d. 5

14. Assume that a tree is sequentially stored in an array whose index starts from 1. Indexes of left and
right children of ith node ____

a. 2i-1,2i+2
b. 2i,2i-1
c. 2i,2i+1
d. None

15. Assuming that the characters of the string “NAMO” are inserted into an empty tree and organized
as BST based on their alphabetical order. How many leaf nodes are seen in the resulting tree?

a. 2
b. 3
c. 1
d. 5

Descriptive questions

Non Linear Data Structures 291

Question 41: See the following graph.

Is the graph a tree?
What is its DFS sequence starting from A?
What is its BFS sequence starting from A?

Question 42: Assume that two BS trees are created using the following two sets of integers.
(a) 5, 7, 9, 11, 13, 15, 17
(b) 11, 7, 5, 9, 15, 13, 17
Which of them are better from a search point of view?
Answer: Tree (b) is preferred because of the smaller tree height. That is, the search cost is smaller
than tree (a).

Question 43: Write a function called maximumDegree that takes the adjacency matrix and
number of nodes of the undirected graph as arguments then returns the vertex index that has the
maximum number of neighbors of the undirected graph.

Question 44: What is the maximum and minimum number of nodes that could be in a binary tree
of depth 2 (three levels of nodes)

Answer: 7 & 3. Maximum number of nodes will be seen if the tree is a complete binary tree with
depth 2; while minimum number of nodes will be seen if the tree is a degenerate tree (left or right
degenerate tree).

Question 45: The following code is proposed to find the maximum value out of the leaf nodes of
a given tree whose root is H? Is it going to suffice our requirement?

int max=-32767;

void traverse(struct Node *H){

if(H==0) return;

else if((H->left==0)&&(H->right==0)){

if(H->n>max)max=H->n;

}

else{

traverse(H->left);

traverse(H->right);

Data Structures: Theory & Practicals 292

}

}
After you return from the function, the global variable max contains the maximum value among
the leaf nodes values.

Question 46: Write a program that takes the root of a binary tree having integers in each of its
nodes as the data and returns 1 if the data of its nodes satisfies binary search property; otherwise
returns 0.

Question 47: The ring, the star, and the fully connected mesh are three possible network topologies.

You were given the adjacency matrix of a graph and you need to explain how to distinguish them.

Answer: For fully connected mesh, the adjacency matrix looks like the following. That is, except

diagonal, all elements are 1’s.

If we assume A is nxn adjacency matrix, if we check all diagonal elements are zeroes and all off

diagonal elements are 1s then we can decide whether the graph is fully connected or not.

Non Linear Data Structures 293

Best case occurs when A[0][0] is not zero. That is, the 0th node has a self cycle. Thus, the best case

complexity is O(1). Worst case situation arises when the matrix is indeed a fully connected matrix.

That is, when we reach the last return statement. Thus, the worst case complexity can be said as

O(n2).

Let us explore a star shaped graph. If we assume the middle most node as 1st node of the graph,

then the adjacency matrix looks like:

If we assume the middle most node as last node of the graph, then the adjacency matrix looks like:

If we assume the middle most node as the fourth node of the graph, then the adjacency matrix looks

like:

What is your observation from the above adjacency matrices? Total number of 0’s are exactly n2-

2*(n-1). Also, all the 1s will be either in the kth row or kth column. We need to traverse the

adjacency matrix once to verify the total number of zeros as n2-2*(n-1). For this, we need an O(n2)

algorithm. After that we need to check other patterns such as 1s in a row and 1s in a column for

which we may need at most O(n) efforts. Thus, the worst case complexity of this algorithm can be

said as O(n2).

Let us take the ring network. If we take left, top most as the 1st node and then prepare the adjacency

matrix, it looks like the following.

Data Structures: Theory & Practicals 294

How many 0s and 1’s do you find? Every row and every column has two 1s. This is acceptable, in

the ring network every one will be having its in-degree and out degree as 2. Total number of 1s=2n.

Total number of 0s=n2-2n. It looks to me that we need to traverse the adjacency matrix once. Thus,

its worst case order is O(n2).

Question 48: You were given an acyclic directed graph G with n vertices v1, v2, ..., vn. All the

edges of the graph are forward; that is, if (vi, vj) is an edge then i < j.

Suggest an efficient algorithm to compute the number of paths from vertex v1 to vertex vn of the

given graph. What is the running time of the same?

Answer: See the following code segment.

Answer: Running Time: Let m = |E|. Assume G is represented by an adjacency list. The external

loop has O(n) iterations, while the internal loop considers each edge only once, so the running time

is O(m + n).

Question 49: Assuming that you were given a valid tree that is represented in set notation as:

Write a program to find each node’s level in the given tree. Hint: Refer chapter on Stacks and
example of matching parenthesis.

Question 50: We have N numbers (where N = 2q-1, for some positive integer value of q) are to be
organized in a binary search tree fashion such that there exists N/2 non-leaf nodes, N/2+1 leaf nodes

Non Linear Data Structures 295

and at any level (other than 0th level) exactly two nodes are seen, one leaf and the other is non-leaf.
Physically they are proposed to be stored in an array. Root node will be stored in the 0th location in
the array. Its two children are stored in locations 1 and 2. That is, ith node’s left and right childrens
will be at 2i+1 and 2i+2 locations in the array. Calculate the number of empty elements in the array
as a function of N.

Question 51: See the following function to calculate the sum of the node’s values of a BST with
integers as its data. Is it going to work?

You may experiment with the above code at the following link before answering.
https://tinyurl.com/AICTEDSBOOK153

Laboratory programming tasks

Welcome to participate in the online competition
We are hosting a competition so as to encourage students to build their competence in coding. This
will be very useful for placements also in the coming years. Thus, welcome students to attempt the
competition at the following link.
https://www.hackerrank.com/aictedsbook

Programming puzzles
Some programming puzzles along with their solution around trees and graph concepts are made
available at the following link. We request teachers to use them in their teaching and encourage
students to attempt such a type of puzzles to win placements.
https://docs.google.com/document/d/1xhNJU8jq2Xi5bL2a_StUK0G6diu-
0oTQahJ3f9Fp8hc/edit?usp=sharing

Data Structures: Theory & Practicals 296

References

1. Fundamentals of Data Structure in C, Horowitz, Ellis, Sahni, Sartaj, Anderson-Freed,
Susan, University Press, India.

2. Data Structures: A Pseudocode approach with C, Richard F. Gilberg, Behrouz A. Forouzan,
CENGAGE Learning, India.

3. My class notes on Algorithmic Complexity, now a refresher for craving teachers and
knowledge greedy students: A must primer for GATE(India), Adv. GRE appearing students.
https://www.amazon.com/dp/B09DJCW78T

4. C and Data Structures, NB Venkateswarlu & EV Prasad, 2010, S Chand & Co, New Delhi

5. http://cslibrary.stanford.edu/105/LinkedListProblems.pdf

Non Linear Data Structures 297

List of Appendices

1. The following link contains discussion on logarithms with computation point of view.
https://tinyurl.com/AICTEDSBOOKAPPENDIX-A

2. The following link contains row and column major order storage concepts and their impact
on designing algorithms. https://tinyurl.com/AICTEDSBOOKAPPENDIX-B

3. The following link contains a brief explanation of various searching and sorting algorithms
along with their implementations. Because of the book size limitations, we have made this content
available as an appendix. https://tinyurl.com/AICTEDSBOOKAPPENDIX-C

Data Structures: Theory & Practicals 298

CO AND PO ATTAINMENT TABLE

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after

the completion of the course and a correlation can be made for the attainment of POs to analyze the

gap. After proper analysis of the gap in the attainment of POs necessary measures can be taken to

overcome the gaps.

Table for CO and PO attainment

Course

Outcomes

Attainment of Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO‐1 PO‐2 PO‐3 PO‐4 PO‐5 PO‐6 PO‐7 PO‐8 PO‐9 PO‐10 PO‐11 PO‐12

CO‐1

CO‐2

CO‐3

CO‐4

CO‐5

CO‐6

The data filled in the above table can be used for gap analysis.

Non Linear Data Structures 299

