

Data Structures
Theory & Practicals

Author
NB Venkateswarlu,

GVPCEW, Visakhapatnam

Reviewer
Dr. Ravi Shankar Singh,
IIT(BHU), Varanasi

All India Council for Technical Education
Nelson Mandela Marg, Vasant Kunj,

New Delhi, 110070

BOOK AUTHOR DETAILS

Dr. NB Venkateswarlu, Professor, Gayatri Vidya Prashad Engineering College for Women,

Visakhapatnam, Andhra Pradesh

Email ID: venkat_ritch@yahoo.com

BOOK REVIEWER DETAILS

Dr. Ravi Shankar Singh, Associate Professor, Indian Institute of Technology (IIT) BHU,

Varanasi, Uttar Pradesh

Email ID: ravi.cse@iitbhu.ac.in

BOOK COORDINATOR (S) – English Version

1. Dr. Amit Kumar Srivastava, Director, Faculty Development Cell, All India Council for

Technical Education (AICTE), New Delhi, India

Email ID: director.fdc@aicte-india.org

 Phone Number: 011-29581312

2. Mr. Sanjoy Das, Assistant Director, Faculty Development Cell, All India Council for

Technical Education (AICTE), New Delhi, India

Email ID: ad1fdc@aicte-india.org

Phone Number: 011-29581339

October, 2022

© All India Council for Technical Education (AICTE)

ISBN : 978-81-959863-1-6

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or

any other means, without permission in writing from the All India Council for Technical

Education (AICTE).

Further information about All India Council for Technical Education (AICTE) courses may be

obtained from the Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070.

Printed and published by All India Council for Technical Education (AICTE), New Delhi.

Laser Typeset by:

Printed at:

Disclaimer: The website links provided by the author in this book are placed for informational,

educational & reference purpose only. The Publisher do not endorse these website links or the views

of the speaker / content of the said weblinks. In case of any dispute, all legal matters to be settled

under Delhi Jurisdiction, only.

ACKNOWLEDGEMENT

The authors are grateful to the authorities of AICTE, particularly Prof. M. Jagadesh Kumar,
Chairman; Prof. M. P. Poonia, Vice-Chairman; Prof. Rajive Kumar, Member-Secretary and Dr
Amit Kumar Srivastava, Director, Faculty Development Cell for their planning to publish the books
on (Data Strctures: Theory & Practicals). We sincerely acknowledge the valuable contributions of
the reviewer of the book Dr. Ravi Shankar Singh, Assoc. Prof., IIT(BHU), Varanasi.

The authors are thankful to Prof MN Murthy, IISC, Bangalore, Prof Roger D Boyle, University of
Leeds, UK for providing “Foreword” for the book. Also, authors appreciate Sri Vishnu Raju garu,
Dr Nagendra, Dr Suryanarayana of Vishnu Institute of Technology, Bhimavaram for allowing the
authors to use their plagiarism checking SW account.

The authors appreciate the support of Dr JVR Murthy, Dr MHM Prasad of JNTUK, Kakinada, Prof
PVGD Prasada Reddy, VC, Andhra University, management members of GVP, Principal, Vice
Principal of GVPCEW.

This book is an outcome of various suggestions of AICTE members, experts and authors who
shared their opinion and thought to further develop the engineering education in our country.
Acknowledgements are due to the contributors and different workers in this field whose published
books, review articles, papers, photographs, footnotes, references and other valuable information
enriched us at the time of writing the book.

Authors

PREFACE

Undoubtedly there are hundreds of books on data structures. However this book is written with the

following salient flavors:

1. All India Council for Technical Education (AICTE) was aptly identified to offer the data
structures course as a skill oriented course. Thus, while writing this book we have included
hundreds of solved and unsolved questions so that students can implement them in C (or
some other programming language) and enrich their coding skills. An addendum having

discussions on the unsolved questions is available for teachers.

2. During the last 4 to 5 years, placement examinations in India are demanding aspiring students
to solve some number of programming puzzles online. It is very open that many of the
programming puzzles are around data structures and algorithms courses. Thus, in this book
we have attempted to motivate students/faculty to introduce programming puzzles around
linked lists, stacks, trees, graphs such that their chances of getting an aspiring job gets hyped.
In order to achieve this, we have also created a competition site/group for the perusal of the
readers of this book.

3. We did include some number of questions that appeared in various competitive examinations
such as Bebras, IOI so as to motivate students to inculcate more interest in data structures
concepts in a determined manner.

4. Many authors have employed program tracing to elucidate most intricate concepts. In this
book, we have included program visualizations for the majority of programs which readers
can pass through step by step fashion and understand the intricate concepts in a better way.
Here, we have used pythontutor.com services to visualize our programs.

First Unit introduces the reader to the need of data structures with many practical examples such as
long integers in programming languages such as Python. Also, this unit introduces empirical and
theoretical algorithmic analysis along with the need for data abstraction, abstract data types, etc.,
allied themes in the easiest possible manner.

Unit on stacks and queues contains many illustrious discussions on their use in practical SW
systems such as operating systems, compilers. This unit discusses how to implement various
operations on stacks and queues using arrays. Also, how stacks can be used for evaluating arithmetic
expressions by employing postfix or reverse polish notation is explained in a lucid manner with
many illustrious examples.

Unit on linked lists begins with many interesting example usages of the “link” concept in our real
day to day life. Also, how the “link” concept is used in practical SW systems such as free data block
management, garbage collection, etc. Operations on the single linked lists, doubly linked lists,
circular lists are explained along with their practical implementations in C language. Also, this unit
contains the implementation of stacks and queues using linked lists.

Unit on non-linear data strctures introduces fundamental aspects of trees and graphs. Binary search
trees, their traversals are with the recursive implementations. Also, sequential representation of
binary search trees is explained along with its implementation. In addition graph theory, graph
representations, graph traversals (breadth first traversal, depth first traversal), path matrix,
Marshalls algorithm, minimum spanning tree, Kruskal algorithm, Prim’s algorithm, Dijkstra’s
algorithm, topological sorting, etc., are explained in a lucid manner.

Every unit is designed to have a set of objective questions and laboratory problems to test and enrich
the students.

OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to develop an
outcome based curriculum and incorporate an outcome based assessment in the education system.
By going through outcome based assessments evaluators will be able to evaluate whether the
students have achieved the outlined standard, specific and measurable outcomes. With the proper
incorporation of outcome based education there will be a definite commitment to achieve a
minimum standard for all learners without giving up at any level. At the end of the programme
running with the aid of outcome based education, a student will be able to arrive at the following
outcomes:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3. Design / development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

COURSE OBJECTIVES

COURSE OUTCOMES:

CO1 Define and classify various data structures, storage structures and common
operations on them.

CO2 Define various linear data structures with their representation and perform
different operations on them.

CO3 Define various non linear data structures with their representation and
perform different operations on them.

CO4 Given a problem, select an appropriate data structure to achieve optimal
performance and compare it with other possible data structures.

CO5 Demonstrate graph traversal algorithms.

PRE-REQUISITES

Programming Skills: C programming, iterative solutions, recursive solutions

Mathematics: Polynomials, algebraic manipulations

Course

Outcomes

Expected Mapping with Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1 3 2 2 2 1 - -

CO-2 3 2 2 1 1 - -

CO-3 3 3 2 1 1 - -

CO-4 3 3 3 2 1 - -

CO-5 3 3 2 1 1 1 -

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) the knowledge level and skill set of the students
should be enhanced. Teachers should take a major responsibility for the proper implementation of
OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

 Within reasonable constraints, they should maneuver time to the best advantage of all

students.

 They should assess the students only upon certain defined criterion without considering any

other potential ineligibility to discriminate them.

 They should try to grow the learning abilities of the students to a certain level before they

leave the institute.

 They should try to ensure that all the students are equipped with quality knowledge as well

as competence after they finish their education.

 They should always encourage the students to develop their ultimate performance

capabilities.

 They should facilitate and encourage group work and team work to consolidate newer

approaches.

 They should follow Bloom's taxonomy in every part of the assessment.

Bloom’s Taxonomy

Level
Teacher

should Check

Student should

be able to

Possible Mode of

Assessment

 Creat

e

 Students ability
to create

Design or
Create

Mini project

Evaluate

 Students ability
to justify

Argue or
Defend

Assignment

Analyse

 Students ability
to distinguish

Differentiate or
Distinguish

Project/Lab
Methodology

Apply

 Students ability
to use

information

Operate or
Demonstrate

Technical
Presentation/

Demonstration

Understand

 Students ability
to explain the

ideas

Explain or
Classify

Presentation/Semi
nar

Remember

Students ability
to recall (or
remember)

Define or
Recall

Quiz

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the responsibilities
(not limited to) for the students in OBE system are as follows:

 Students should be well aware of each UO before the start of a unit in each and every course.

 Students should be well aware of each CO before the start of the course.

 Students should be well aware of each PO before the start of the programme.

 Students should think critically and reasonably with proper reflection and action.

 Learning of the students should be connected and integrated with practical and real life

consequences.

 Students should be well aware of their competency at every level of OBE.

LIST OF FIGURES

Unit -1: Introduction to data structures

Fig. 1.1: Demonstration of overflow in C language addition. 7

Fig. 1.2: A snapshot of matrix multiplication program 15

Fig 1.3. Algorithm for breakfast 28

Fig. 1.4: Algorithm for surya namaskar 29

Fig. 1.5: Algorithm for realizing algorithm 29

Fig. 1.6: Big-Oh definition 38

Fig. 1.7: Growth of chicken and turkey 38

Fig. 1.8: Growth of some functions 45

Fig. 1.9: Growth of some functions and constants of proportionality 46

Fig. 1.10: Two symmetric matrices together to conserve space 51

Fig. 1.11: Operations on Complex type in Python 54

Fig. 1.12: The relationship between data items, abstract data types, and data structures. 54

Fig. 1.13: Relationships between type, ADT, data structures, etc 55

Fig. 1.14: Call tree for the exponentiation algorithm 62

Unit -2: Stacks & Queues

Fig. 2.1 Stack of chairs 69

Fig. 2.2. Plate dispenser 70

Fig. 2.3: A water filter wit a stack of filtering layers 71

Fig. 2.4: Rainwater harvesting pits with a stack of filters 71

Fig. 2.5: Stack of people 72

Fig.2.6: Stack of plates and we take a plate from the top 72

Fig. 2.7: stack of plates to be washed 73

Fig. 2.8: An executives “in” Tray 73

Fig. 2.9: Browsers left and right navigation arrows 74

Fig. 2.10: Navigation of web pages visited 74

Fig. 2.11: An example image stack 77

Fig. 2.12: Program stack: its growth and rewinding 78

Fig. 2.13: A guy wearing 35 T-shirts one above the other(stack of shirts!!) 79

Fig. 2.14: Pop and Push operations on stacks 80

Fig. 2.15: Operators and their precedence 92

Fig. 2.16: People in the queue 104

Fig. 2.17: Vehicle in queue 104

Fig. 2.18: Children queuing in front of an ice cream van 105

Fig. 2.19: Packets in a queue at a router 105

Fig. 2.20: A typical queue with where some service is provided at the front 106

Fig. 2.21: Traffic lights at a four road junction 118

Fig. 2.22: Ready Queue, Waiting Queue in operating systems 119

Fig. 2.23: Ready queue 119

Fig. 2.24: Scheduling processes in round robin fashion 120

Fig. 2.25: Operations on a ready queue 120

Unit -3: Linked Lists

Fig. 3.1: One of the busiest airport Chek Lap Kok (Hongkong) 137

Fig. 3.2. A Sample linked list with an integer and a link to the next node as its
members

138

Fig. 3.3: A circular linked list 138

Fig. 3.4: A doubly-linked list with an integer, the link to the next node, and the link to
the previous node

138

Fig. 3.5: A simple treasure hunt box 138

Fig. 3.6: Two train coaches along with their couplings 140

Fig. 3.7: Blind people crossing the road one after another with the help of a volunteer 141

Fig. 3.8: A necklace 141

Fig. 3.9: Practical links of our daily life 141

Fig. 3.10: How a file is stored in linked allocation method 143

Fig. 3.11: Linked allocation 143

Fig. 3.12: How a file blocks are linked 144

Fig. 3.13: Free space blocks links 145

Fig. 3.14: A Unix system disk partition and its pertinent parts 145

Fig. 3.15: Initial free list 146

Fig. 3.16: Free list after allocating some data blocks 146

Fig. 3.17: Static, stack and heap variables 148

Fig. 3.18: Process address space in Windows 149

Fig. 3.19: Process address space in Linux 150

Fig. 3.20: Free list in heap management 151

Fig. 3.21: Free and allocated blocks that are used in heap management 151

Fig. 3.22: Free list after allocating a block 152

Fig. 3.23: Free list after deleting an object 153

Fig. 3.24: PCB’s as a linked list in process management 153

Unit -4: Non Linear Data Structures

Fig. 4.1: Directory Tree 227

Fig.4.2: NTFS File system 228

Fig. 4.3: A family tree template 228

Fig. 4.4: An Administrative Structure at a typical University 229

Fig. 4.5 : A Sample Tree 229

Fig. 4.6: An example parse or expression tree 230

Fig. 4.7: Call tree for function FIB() 230

Fig. 4.8: Shows left and right subtrees of a binary tree 231

Fig. 4.9: An example binary tree with levels, height, leaf nodes, non leaf nodes 231

Fig. 4.11: Binary search tree 233

Fig. 4.12: Min Heap 233

Fig. 4.13: Acceptable heaps 233

Fig. 4.14: Inorder traversal 234

Fig. 4.15: Pre-Order Traversal 234

Fig, 4.16: Post-Order Traversal 235

Fig. 4.17: Level Order Traversal 235

Fig. 4.18: Deleting the node which contains both the children 252

Fig. 4.19: Tree traversal using a stack 254

Fig. 4.20: a. strictly binary Tree b. Not a strictly binary tree 257

Fig. 4.21: Working of the function NL 257

Fig. 4.22: Total Non-Leaf Nodes 258

Fig. 4.23: Total Nodes in a tree 258

Fig. 4.24: Recursively calculating the height of a tree 259

Fig. 4.25: Recursive way of checking whether a tree is complete or not. a) tree is not
complete. b)tree is complete

259

Fig. 4.26: Recursive function trace for finding whether the tree is a balanced tree or
not

260

Fig. 4.27: Checking whether two trees are identical or not 262

Fig. 4.28: In-Order Successors 265

Fig. 4.29: Threaded tree 266

Fig. 4.30: Skewed Tree 266

Fig. 4.31: Balanced Binary Search Tree 266

Fig. 4.32: Sequential storage of a binary tree 267

Fig. 4.33: A sample chemical molecule and its graph representation 271

Fig. 4.34: A job assignment problem 272

Fig. 4.35: A sample route map 272

Fig. 4.36: An example Pipe distribution system 272

Fig. 4.37: A sample weighted graph 273

Fig. 4.38: A sample graph 273

Fig. 4.39: A sample graph with its adjacency matrix 275

Fig. 4.40: Adjacency matrix for an undirected graph 276

Fig. 4.41: Converting an undirected graph to directed graph 276

Fig. 4.42: Graph with isolated points with self cycles and their adjacency matrix 276

Fig. 4.43: Graph with isolated points and their adjacency matrix 277

Fig. 4.44: Adjacency matrix of directed graph with a cycle 277

Fig. 4.45: Adjacency matrix of a graph with single cycle and undirected edges 278

Fig. 4.46: Adjacency matrix of a graph in which all the nodes in a circular chain with
self cycles

278

Fig. 4.47: Adjacency matrix of a weighted graph 278

Fig. 4.48: Adjacency List representation of the graph 279

Fig. 4.49: Adjacency Matrix and Adjacency List of a weighted graph 280

Fig. 4.50: Set representation of a weighted graph 281

Fig. 4.51: Paths of square of an adjacency matrix 281

Fig. 4.52: Depth First Traversal snap shot on a selected graph 284

Fig. 4.53: DFS traversal of a graph 285

Fig. 4.54: BFT traversal of a graph 286

Fig. 4.55: Breadth first traversal of a graph 287

Fig. 4.56: Dijkstra’s Algorithm’s working 288

Fig. 4.57: Spanning tree 291

Fig. 4.58: Kruskal's algorithm in working 293

Fig. 4.59: Prim’s algorithm in working 294

Fig. 4.60: A sample course registration in a University 295

Fig. 4.61: Sample graph for possible topological sorting 295

Fig. 4.62: Topological ordering on a sample graph 296

LIST OF TABLES

Unit 3: Linked Lists

Table. 3.1. Comparison of static, stack and heap variables or objects 154

Table. 3.2. Comparison of arrays and lists 155

Table. 3.3. Performance comparison of arrays and lists 155

Table. 3.4. A snapshot of Linked List Creation 168

Table. 3.5. Traversing a Singly Linked List 169

Unit 4: Non-Linear data structures

Table 4.1. Explains the binary search tree creation 244

Table 4.2: How BST with father tree is created 251

Table. 4.3. Comparison of adjacency matrix and lists 279

CONTENTS

1.1 Introduction to Data Structures 3

1.2 Classifications of Data Structures 20

Text and File Editing 23

Partially Persistent 26

Fully Persistent 26

Confluently Persistent 26

1.2.1 Advantages of Data structures 27

1.3 Operations on Data Structures 27

1.3.1 Algorithms: a briefing 28

1.3.2. Empirical vs theoretical algorithm time complexity analysis 32

1.3.2.1 Problem Size 35

1.3.2.2 The Big-Oh Notation 36

1.3.2.2.1. Fundamental step 41

1.3.2.3 Space Complexity 46

1.3.3 A note on abstract data types 50

1.3.4. Common algorithm design paradigms 54

Multiple Choice questions 56

Descriptive questions 59

Laboratory Programming Tasks 59

Welcome to participate in the online competition 65

Programming puzzles 65

References 65

2.1. Linear data structures 67

2.1.1 Stack 67

2.1.2 Operations on stacks 77

2.1.3 Realization of Stacks Using Arrays 77

2.1.4. Applications of stacks 83

2.1.4.1 An application of stack for checking expression validity 83

2.1.4.2 INFIX, POSTFIX AND PREFIX Expressions 89

2.1.4.2.1 Algorithm : Evaluation of a Postfix or Suffix expression 90

2.1.4.2.2 Stack based computers 92

2.1.4.2.3 Converting Infix Expressions to Postfix 94

2.2 Introduction to Queues 102

2.2.1 Operations on Queues 104

2.2.2 Array Representation of Queues 104

2.2.2.1 Comparison of Circular queues and Linear queues 111

2.2.3 Deque 111

2.2.4 Circular Queues for Round-Robin scheduling 115

Multiple Choice Questions 120

Descriptive questions 124

Laboratory programming tasks 130

Welcome to participate in the online competition 131

Programming puzzles 131

References 131

3.1 Linked Lists 133

Circular lists 134

Doubly linked lists 134

3.1.1 Single Linked Lists 150

3.1.1.1. Linked List representation in Memory 150

3.1.1.2. Operations on a Single Linked List 159

3.1.2. Circular Linked Lists 186

3.1.3. Doubly Linked Lists 190

3.1.4. Linked List Representation and Operations of Stack 198

3.1.5. Linked List Representation and Operations of Queue 201

3.1.6. Sentinel nodes 204

Multiple choice questions 204

Descriptive questions 209

Laboratory programming tasks 217

Welcome to participate in the online competition 217

Programming puzzles 217

References 217

4. Non Linear data structures 219

4.1. Introduction to trees 219

4.1.1. Definition of a tree 221

4.1.2. Basic terminology 222

4.1.3. Tree Traversals 225

4.1.4. Creating Binary Search Tree 227

4.2. Introduction to graph theory 262

4.2.1.Graph Representations 266

4.2.1.1 Adjacency Matrix Representation of the Graph 266

4.2.1.2. Adjacency List Representation 269

4.2.1.4. Array List representation 272

4.2.2. Transitive Closure and Path Matrix or reachability matrix 272

4.2.2.1. Warshall’s Algorithm 273

4.2.3. Graph Traversals 273

4.2.3.1. DFT Algorithm 274

4.2.3.2. BFT Algorithm 276

4.2.4. Minimum Distance Problems 278

4.2.4.1. Dijkstra’s Algorithm 278

4.2.4.2. Minimum Spanning Tree 281

4.2.4.2.1. Kruskal’s Algorithm 282

4.2.4.2.2. Prim’s Algorithm 284

4.2.5. Topological Sorting 285

Multiple choice questions 288

Descriptive questions 290

Laboratory programming tasks 295

Welcome to participate in the online competition 295

Programming puzzles 295

References 296

List of Appendices 297

UNIT Coverage:

Objectives of the Unit

Learning outcomes of the Unit
After completing the Unit 1, the student

● is able to apply the basic techniques covered in the course in designing algorithms and
implementing them in C (U1-01).

● is able to analyse the time and space complexity of an algorithm using big-O notation
and justify the correctness of an algorithm using, for example, a loop invariant and/or
fundamental step (U1-02).

● has detailed knowledge of abstract data type (U1-03).

● is able to implement the most important tree algorithms and knows their time
complexities (U1-04).

● is familiar with the basic concepts overflow, underflow (U1-05).

● has detailed knowledge of how data structures are instrumental in programming
language design (U1-06).

● applies the basic concepts covered in the unit such as iterative solutions, recursive
solutions, divide and conquer solutions (U1-07).

● is able to pick a suitable algorithm for an application based on, e.g., time complexity

(U1-08).

Data Structures:Theory & Practicals
2

Introduction to data structures 3

Note: We will be using a program visualization tool in our book extensively in order to let students
understand a piece of logic in a better manner and in a visual manner. The application contains the
following buttons:

The button “First” takes you to the beginning of our code, “Prev” takes you to the previous
instruction, “Next” takes you to the next instruction, and the “Last” takes you to the last instruction
of our program. While we move in our program, all the variables values, stack content, heap content
will be displayed in a marvelous manner so as to understand the logic of the code which we are
trying to visualize. If we encounter any problem with the server, try again. Also, this visualization
tool cannot support interactive input(scanf) in C language. Thus, we may be using some random
numbers that are generated from the rand() function as input. However, if we want another set of
input values, you may call srand() function with some integer value as argument.

1.1 Introduction to Data Structures
According to Wikipedia1:

According to Britannica2:

Some authoritative authors of Computer Science consider Algorithms + Data Structures =

Program. In fact, Niklaus Wirth wrote a book with the title ”Algorithms + Data Structures =
Program” that was published by Prentice-Hall in 1975.

Question 1: How many comparisons are needed to find the maximum out of three integers (of any
type)?. Before answering, please do explore the following links which contain various solutions
from our side. In fact, there are many more possible solutions for this problem.
https://tinyurl.com/AICTEDSBOOK2c
https://tinyurl.com/AICTEDSBOOK2d
https://tinyurl.com/AICTEDSBOOK2e
Out of the above code samples, which one takes less number of comparisons? Can you plan another
approach that uses a lesser number of comparisons?

We think the readers are exposed or convergent with one high level programming language

such as C. Thus, we love to construct their data structures foundations on that C knowledge.

1 https://en.wikipedia.org/wiki/Data_structure
2 https://www.britannica.com/technology/data-structure

Data Structures:Theory & Practicals
4

Question 2: How many comparisons are needed to find both the maximum and minimum of out
of the given four integers (of any type)3. Before answering, please do explore the following link
which contains one possible solution from our side.
https://tinyurl.com/NBVMAXABCD

In our solution given at the above link uses divide and conquer approach. It finds the maximum
and minimum of the first two numbers then maximum and minimum of next two numbers. Then,
maximum of the maximums and minimum of minimums are computed as the final solution. Have
a look at the above link. Thus, we will be spending four comparisons.

Can you plan another approach that uses a lesser number of comparisons?

Can you plan another approach that uses exactly six comparisons (three comparisons for

finding maximum and three more comparisons for finding minimum of the given four

numbers) to find the required things?

Question 3: This question was asked in Kansas State University High School Programming contest
HSPC 2004. Assume that given three integers a, b, and c to be ordered such that a will be having
smallest value, c to be having largest value while b to be having intermediate value. Assume that
we have some working code made it available for your experimentation at
https://tinyurl.com/AICTEDSBOOK5

When do we need the worst number of comparisons? When will you need the smallest number

of comparisons? Can you think of any other efficient method for doing the same?

If all the given three are in natural order, how many comparisons it needs?

If all the given three are in descending order, how many comparisons is demands?

When this approach used in the above link takes exactly one comparison?

Data structures are the backbones of High-Level Languages4

We are sure most of you are aware about low level, medium level, high level programming
languages. Also, you know that programming languages have evolved from machine languages to
high level languages via assembly languages. However, many assembly languages along with
BCPL (Basic Combined Programming Language) like low level languages rarely contain rich data
structures. Whereas most of the high-level programming(HLL) languages are popular because of
their rich data structures such as arrays/records. Of course, some higher-level assembly languages
such as MASM(Microsoft Assembler), NASM(GNU Assembler) have some built-in support for
certain data structures. For example C,5 supports user defined types known as structures, unions,
enumerators, and derived types called as arrays (one-dimensional arrays, two dimensional arrays
and multidimensional arrays) while Pascal languages support records and vectors.

Question 4: Assume that C language or some other assembly language does not have a modulus
operator(%). How to realize the same. You know in C language, if a and b are two integer type
variables then a%b is defined as reminder of |a|/|b| with the sign as that of the first operand(a). That
is, 10%3=1, 10%-3=1, -10%3=-1, -10%-3=-1, 3%19=3, 10%2=0, 11%2=1, and vice versa. Also,

3 Can you think of implementing our solution on given four strings and find the strings which comes first

and last in the alphabetical order out of the given four strings?
4 http://orion.lcg.ufrj.br/Dr.Dobbs/books/book2/chap01.htm

5 a direct descendant of BCPL

Introduction to data structures 5

do remember that the language uses integer mode arithmetics if all of the operands of any operator
are integers. Thus, 10/3=1, 5/9=0, 34/3=11, and vice versa. See the following link where a sample
program is proposed by us. Identify the logic we have used in implementing modulus operators
using integer division, multiplication and subtraction.
https://tinyurl.com/AICTEDSBOOK4

Did you understand the logic behind this solution? What happens if the division operation

does not follow integer arithmetic?

For the ease of humans' specification to machine what they want, high level languages are
developed. However, the machine/CPU very much takes instructions in its machine language. Thus,
we need translators that convert high level language programs to machine language. For example,
if we write an arithmetic expression in C language, how with the help of a data structure stack it
will be verified for its validity and then evaluated is introduced in the chapter on stacks and queues?.
Also, related themes known as expression trees are explained in chapter on “trees and graphs”. Let
us take a funny example. Assume you are hungry and ordered an Item from a restaurant. Then what
happens? We don’t know. What we know is that the parcel is going to arrive within 10 minutes.
What SW system, what delivery boy’s organization it uses is masked from us. In the same sense,
when we write a program in high level language without the knowledge of ourselves, the compiler
uses many data structures (some may be already available in the HLL and some or specially
designed) to convert the same into machine language for possible execution.

Just, try to open your Windows task manager app that shows details about processes running on
your computer, memory and CPU performance etc. For example, you can find my task manager
window as shown below. You find that I am running more than one Google Chrome process. What
does that convey further? Windows support multi tasking and also the Chrome app SW is designed
to have multiple or concurrent versions. In the same lines, sometimes some applications demands
their data structures to be concurrently (or parallel) in multiple computing threads6.

6 The high level language program explicitly typed by us is called the source program which is available as

files in our secondary memory systems such as Hard disk, etc.,. After successful compilation, the compiler
generates a machine language file (in the case of Windows it is EXE; whereas in the case of Unix/Linux it
is ELF binary or a.out binary). When we really start this program file, it will be loaded into RAM then it is
called as process. Thus, the process is an executable entity that is in RAM. Process creation takes lots of
computational resources and thus it is called as heavy weight while thread is also an executable entity but
demands less computational resources. Detailed discussion on this theme is beyond the scope of this book

Data Structures:Theory & Practicals
6

Let us try to construct the foundations of data structures based on your current C language
knowledge. You know that Computers are finite devices; i.e., they will have finite memory like
16GB RAM, and finite clock rate, etc. Also, you know that programming languages are also finite
languages. The built-in variables such as int, float, char, long, double of C language will be taking

finite memory. For example, int type variable takes 4 bytes (32 bits in C), and vice versa. In the
following picture (Fig. 1.1), you will find a C program and its output. It tries to add two int types
of variables, two long types of variables with large possible values. Readers may refer to
https://en.wikibooks.org/wiki/C_Programming/limits.h for possible limits for various data types
in C language.

Introduction to data structures 7

Fig. 1.1: Demonstration of overflow in C language addition.

The addition(+) instructions (among two integers(a&b), two long(x&y, m&n) of the above program
leads to overflow (see the above picture) because of finiteness of the memory that is allocated for
the variables. That is, in an int type variable in C language, we can store a maximum value of
2147483647. When we try to add two such variables a and b and store their results in the third
variable c, we bump into overflow (we cannot store more than 2147483647 in variable c as it is
also int type) and thus c variable value is not the actual value we expect; instead we are getting -2
into the c variable. This is happening because of the finiteness of language.

Note: Of course, after seeing the above picture, you may be having a doubt “in the above C program
why 9223372036854775807 becoming 9223372036854776000 in long type in C language?”.
Though, we love to clarify it here, because of the book size limitations we are not explaining here.

The following C program also shows similar behavior.

Output of the above program is given below. You find overflow at every c=a+b statement.
-2

Data Structures:Theory & Practicals
8

-2
-332398594

The following link contains the above code for readers for their experimentation.

https://tinyurl.com/AICTEDSBOOK0b

The following C program also shows similar behavior.

The following link contains the above code for readers experimentation.
https://tinyurl.com/AICTEDSBOOK0a

The following link contains the Python variant of the above programs for readers experimentation.
https://tinyurl.com/AICTEDSBOOK1 .

We welcome readers to experiment the same. Do remember you need not be required to be knowing
Python language to understand the following Python code. Here, also we are adding two variables
and trying to print the results. While experimenting with the following code, you may remove #
from the statement #print(c).

Introduction to data structures 9

a=99223372036854775807922337203685477580792233720368547

7580792233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807922337203685477580792233720

3685477589922337203685477580792233720368547758079223372

0368547758079223372036854775807922337203685477580792233

7203685477580792233720368547758079223372036854775807922

3372036854775807922337203685477580792233720368547758079

2233720368547758072233720368547758079223372036854775807

9223372036854775807992233720368547758079223372036854775

8079223372036854775807922337203685477580792233720368547

7580792233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807223372036854775807922337203

6854775807922337203685477580799223372036854775807922337

2036854775807922337203685477580792233720368547758079223

3720368547758079223372036854775807922337203685477580792

2337203685477580792233720368547758079223372036854775807

9223372036854775807922337203685477580722337203685477580

7922337203685477580792233720368547758079922337203685477

5807922337203685477580792233720368547758079223372036854

7758079223372036854775807922337203685477580792233720368

5477580792233720368547758079223372036854775807922337203

6854775807922337203685477580792233720368547758072233720

3685477580792233720368547758079223372036854775807992233

7203685477580792233720368547758079223372036854775807922

3372036854775807922337203685477580792233720368547758079

2233720368547758079223372036854775807922337203685477580

7922337203685477580792233720368547758079223372036854775

8072233720368547758079223372036854775807922337203685477

5807992233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807922337203685477580792233720

3685477580792233720368547758079223372036854775807922337

Data Structures:Theory & Practicals
10

2036854775807223372036854775807922337203685477580792233

7203685477580799223372036854775807922337203685477580792

2337203685477580792233720368547758079223372036854775807

9223372036854775807922337203685477580792233720368547758

0792233720368547758079223372036854775807922337203685477

5807922337203685477580722337203685477580792233720368547

7580792233720368547758079922337203685477580792233720368

5477580792233720368547758079223372036854775807922337203

6854775807922337203685477580792233720368547758079223372

0368547758079223372036854775807922337203685477580792233

7203685477580792233720368547758072233720368547758079223

3720368547758079223372036854775807072233720368547758079

2233720368547758079223372036854775807

b=99223372036854775807922337203685477580792233720368547

7580792233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807922337203685477580792233720

3685477580722337203685477580792233720368547758079223372

0368547758079922337203685477580792233720368547758079223

3720368547758079223372036854775807922337203685477580792

2337203685477580792233720368547758079223372036854775807

9223372036854775807922337203685477580792233720368547759

9223372036854775807922337203685477580792233720368547758

0792233720368547758079992233720368547758079223372036854

7758079223372036854775807922337203685477580792233720368

5477580792233720368547758079223372036854775807922337203

6854775807922337203685477580792233720368547758079223372

0368547758079223372036854775807223372036854775807922337

2036854775807922337203685477580799223372036854775807922

3372036854775807922337203685477580792233720368547758079

2233720368547758079223372036854775807922337203685477580

7922337203685477580792233720368547758079223372036854775

8079223372036854775807922337203685477580722337203685477

5807922337203685477580792233720368547758079922337203685

4775807922337203685477580792233720368547758079223372036

8547758079223372036854775807922337203685477580792233720

3685477580792233720368547758079223372036854775807922337

2036854775807922337203685477580792233720368547758072233

7203685477580792233720368547758079223372036854775807992

2337203685477580792233720368547758079223372036854775807

9223372036854775807922337203685477580792233720368547758

0792233720368547758079223372036854775807922337203685477

5807922337203685477580792233720368547758079223372036854

7758072233720368547758079223372036854775807922337203685

4775807223372036854775807922337203685477580792233720368

Introduction to data structures 11

5477580792233720368547758079223372036854775807922337203

6854775807922337203685477599223372036854775807922337203

6854775807922337203685477580792233720368547758079223372

0368547758079223372036854775807922337203685477580792233

7203685477580792233720368547758079223372036854775807922

3372036854775807922337203685477580722337203685477580792

2337203685477580792233720368547758079922337203685477580

7922337203685477580792233720368547758079223372036854775

8079223372036854775807922337203685477580792233720368547

7580792233720368547758079223372036854775807922337203685

4775807922337203685477580792233720368547758072233720368

5477580792233720368547758079223372036854775807992233720

3685477580792233720368547758079223372036854775807922337

2036854775807922337203685477580792233720368547758079223

3720368547758079223372036854775807922337203685477580792

2337203685477580792233720368547758079223372036854775807

2233720368547758079223372036854775807922337203685477580

7992233720368547758079223372036854775807922337203685477

5807922337203685477580792233720368547758079223372036854

7758079223372036854775807922337203685477580792233720368

5477580792233720368547758079223372036854775807922337203

6854775807223372036854775807922337203685477580792233720

3685477580780792233720368547758072233720368547758079223

3720368547758079223372036854775807

The above program gives the following results.

Interestingly, you find from the above Python program that in the Python language, we are able to
add huge integers also without any overflow (One can verify with this program that it cannot give
any underflow also by taking huge negative values). This became possible as Python uses

BigInteger/Bignum data structure (refer https://peps.python.org/pep-0237/, ,
https://levelup.gitconnected.com/how-python-represents-integers-using-bignum-f8f0574d0d6b
for more details) to achieve this in run time as a dynamic language unlike C.

Data Structures:Theory & Practicals
12

From the above examples, we find Python language uses Bignum data structure because of

which it rarely gives overflow!. This is an example that shows how data structures are used

in high level language design/development.

Why do we need arrays?

Do remember that I am not asking “What is an array”?. An array occupies consecutive memory
locations in the RAM and is used to store similar data. That is, all the elements of an array are of
the same type. However, I am asking “Why do we need arrays”?.

Some people give the answer as “to refer to a group of values with a single name”. Of course, I am
not convinced with this answer fully. To answer my question, pose yourself a question: what if our
language does not support arrays at all? We already understood that some low level programming
languages do not have arrays or vectors.

For example, let us assume that we want a program to calculate average marks of those

students whose marks are more than the class average. Of course, class average also has to

be calculated by your program itself.

See the following solution. 1. We go on reading the students' marks one after another and calculate
their total marks. 2. Now, we calculate class average(avg) using the computed class total marks. 3.
Now, we again read students' marks one after another and compare with class average(avg) and
calculate the number of students whose marks are more than class average(n1) and their total
marks(avg1). 4. Now, we compute the average marks of the students whose marks are more than
the class average as avg1/n1.

The above code is available at https://ideone.com/WHmq6H for readers experimentation.

In the above solution, we are reading all the student’s marks two times. By chance if we make a
mistake in entering the last value during the second time, we are forced to run the program again
and enter all the students marks another two more times. That is, the above solution is demanding
more program I/O bandwidth.

Introduction to data structures 13

Now, see the following solution where all the student’s marks are read only once into an array and
use them a second time without reading again interactively. In fact, once the data is available in the
array (in the memory, RAM), we can use the same as many times as we want without spending any
more program I/O bandwidth. Thus, use of arrays reduces program I/O bandwidth. So, do you
think the program becomes fast? Of course, you are a very very very fast data entry operator then
things may be different. Do you know that we need a few milliseconds to press and release a key
while to read one word from RAM we need a few nanoseconds?

The above code is available at https://ideone.com/CrbIhN for your experimentation.

Thus, an array is a good example for a data structure. From the above two coding examples,
we found that the use of arrays reduces program’s I/O bandwidth. Also, to know the importance of
arrays, one program we have written without arrays while the other with arrays. In practice also,

in order to know the importance of one thing, we need to study what happens if we don’t have

it in our system. This is one of the famous engineering requirements known as risk analysis

or failure analysis!. Also, if a is an array, while accessing ith of it element through a[i], compiler
spends one (implicit) multiplication in computing the address of a[i] with the formula
a+i*sizeof(type of a), where we know that here ‘a’ is the base address of the array ‘a’. In the same
lines, if a is a two dimensional array with four rows and 7 columns then while accessing a[i][j],
compiler will be employing a+(i*7+j)*sizeof(type of a). This is true with multidimensional arrays
also. Thus, array data structure of high level language is masking many technical aspects from its
programmers!.

We recommend readers to refer to the following video to understand more about this (addressing)
concept which is also called as storage order of the arrays. We have two prominent storage orders
known as row major and column major order. C, C++, Java etc., uses row major order while
FORTRAN uses column major order.
https://www.youtube.com/watch?v=aPQM-
SQfe2A&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4NMtVN&index=61

Data Structures:Theory & Practicals
14

Question 5: In the above discussion, we have compared two programs. The second one that
employs arrays is declared to be taking less time. But, what about memory requirements7 of both
the methods? If you observe the first program, it is taking a scalar variable, m, only to read students'
marks. Is it also the most important difference?

Let us debate things further around your knowledge set on C language. We are sure your teacher
might have taught you how to compute the product of two matrices and the same you might have
carried out in the laboratory also.

If A is an m1xn1 matrix, B is an n1xm2 matrix then the product of AB matrices(C) becomes a
m1xn2 matrix. We are sure the same thing is your Mathematics course is represented as:
 𝐶௜௝ ൌ ෍௡ଵ௞ୀଵ 𝐴௜௞𝐵௞௝ , 1 ൏ൌ 𝑖 ൏ൌ 𝑚1, 1 ൏ൌ 𝑗 ൏ൌ 𝑛2

The same in the C language is implemented as follows with A, B, C as two dimensional arrays. We
are skipping instructions to read the data into arrays A, B for the reasons of brevity or conciseness
of the book.

The following link contains our sample code to compute the matrix product. You are welcome to
experiment with its working.
https://tinyurl.com/AICTEDSBOOK3

The following picture (Fig. 1.2) contains the snapshot of our matrix multiplication code.

7 Space complexity section we shall discuss some more examples on this theme

Introduction to data structures 15

Fig. 1.2: A snapshot of matrix multiplication program

Assume that our C language does not support the two dimensional array concept and we want a
flexible matrix multiplication program. Is it possible to write in C? Do remember that we need a
flexible program. That is, to multiply any sized matrix with any sized matrix and of course meet
the essential requirement of 1st matrix columns to be the same as the second matrix's number of
rows. Did you catch the point? Thus, the two dimensional array data structure of the C

language is the one that is allowing us to write a flexible matrix multiplication program. In
this manner, data structures of a language helps us to implement the solutions in an easy manner8.

Thus, the main objective of the data structures is to manipulate/store the data efficiently in the
primary memory by possibly designing data structures. Of course, it is wiser to relate this to other
areas of Computer Science also. In Computer Science, we do have another area known as Database
Management Systems (DBMS). It also deals with efficient storage and manipulation of the data.
However, there we assume that the data is in secondary memory devices such as hard disks, optical
disks, etc.,. Many algorithms which are used in data structures are equally applicable in DBMS
also. Because of the same reason, sorting methods which are when applied to the data items in the

8 Some authors refer this as tractability

Data Structures:Theory & Practicals
16

primary memory (RAM), are referred to as internal sorting techniques; the same, when applied to
the data items available in the secondary memory devices (either as a databases or as a file), are
referred to as external sorting techniques. Of course, a data structure method that is found to

be good on the data in RAM is not guaranteed to be good if the data is in secondary memory

devices as both the devices (RAM and hard disks) work on different accessing approaches in

their physical forms.

Moreover, the Computer Science curriculum of most of the Universities contains courses such as
1. Design And Analysis of Algorithms 2. Graph Theory 1 and 29 3. Computational Geometry, 4.
Distributed and Parallel Algorithms, etc.,. There exists some overlap between these courses.

More or less, some of the prime objectives of these courses including data structures are:
1. To study algorithms in detail so as to find means of making it efficient in terms of its CPU time
and memory requirements.
2. To study algorithm to find out suitable storage (organization) and manipulation procedures for a
problem,
3. To compare the algorithms which are available for a problem such that one of them can be
recommended in a practical system,
4. To study an algorithm and its computational requirements such as CPU time, memory(RAM) in
terms of its problem size; a.k.a. scalability studies/analysis. What happens if the program is run on
a large data set; does the running time become an issue?. Is the program computationally inefficient
or does it need lots of memory?.
5. Just writing a syntax-error-free program is acceptable when you are in your 1st level computing
course. In reality in practice, we need to know whether the algorithm is correct or not, i.e. whether
it can give correct answers for the inputs (or called instances)?.
6. We can compare algorithms without implementation. This is called the analysis of algorithms,
theoretically. If we implement in a language and carry experimentations, then it is called
experimental study.

It is observed with most of the practical algorithms that if we try to reduce its CPU time
requirements it is bound to consume more memory; if we try to reduce its memory requirements,
it is going to consume more CPU time. This behavior is called the memory space-time tradeoff.
Analysis of an algorithm's CPU time and memory space requirements helps us in selecting suitable
versions of the algorithm for our practical SW systems10. For example, if we happened to have a
system with fast processor and less RAM, then we may select an algorithm which consumes more
CPU time and less RAM. If we happen to have a machine with a less powerful processor with a lot
of RAM, then we can select the algorithm which takes more RAM and less CPU time.

Let us try to explain the first reason with one strong example.

Example 1: Polynomial Evaluation
Let us assume that we have been given a polynomial with its coefficients to evaluate its value at a
given point x as:
a0+a1x+a2x2+………anxn

9 This reminds me of my BITS, Pilani stay during the 1990's. I did not get a chance to see BITS, Pilani

syllabus in the recent years.
10 SW localization. Users will be asked which type of algorithm while configuring a SW system.

Introduction to data structures 17

Now, if we employ a naïve approach, we may need 1+2+…+n multiplications = n(n+1)/2
multiplications. See the function FD in the following pages. Here, we assume to calculate x2 with
one multiplication, x3 with two multiplications etc., One more multiplication for multiplying them
with coefficients.

A second version is shown in function FD1. Here, with only one multiplication (without using pow
function), we propose to calculate x2, x3, x4 …etc.,. Thus, to calculate any term, we may need in
total, two multiplications. Thus, this version needs 2n multiplications.

The third version, FD2, is called Horner's method. It needs only n multiplications. This became
possible by reordering the equation as: (we are taking 6th order equation for clarity reasons):

If we observe the above equation, we may find that with 6 multiplications, we can evaluate the
polynomial value at x. The same thing can be generalized to nth order polynomials also. Thus, we
may need n multiplications to calculate polynomial value using this method.
Program for evaluating a Polynomial using Horner's method in relation to other methods.

Data Structures:Theory & Practicals
18

Output:

The above program is made available on a visualization server for the perusal of readers.
https://tinyurl.com/AICTEDSBOOK6

Example 2: In the following pages, an efficient means of evaluating xn, for some positive value of
n is proposed11. Normal iterative12 procedure if we follow, we need n-1 multiplications.

Solution: We propose to write n as the binary polynomial.

n=ak2
k+ak-12

k-1+……+a12
1+a02

0, Where, k is the largest integer such that 2k<=n, ak values can be
either 0 or 1..

Thus, 𝑥௡ ൌ 𝑥௔ೖଶೖା௔ೖషభଶೖషభା.......ା௔భଶభା௔బ

 ൌ 𝑥௔ೖଶೖ . 𝑥௔ೖషభଶೖషభ 𝑥௔భଶభ . 𝑥௔೚

 ൌ ቀ𝑥ଶೖቁ௔ೖ ቀ𝑥ଶೖషభቁ௔ೖషభ ሺ𝑥ଶሻ௔భሺ𝑥ଵሻ௔೚

11 This method is known as repeated squaring or exponentiation by squaring
12 for(prod=1,i=1;i<n;i++)prod=prod*x; //this for loop runs for n times and thus takes (n-1) multiplications

while computing xn.

Introduction to data structures 19

 ൌ 𝑦௞௔ೖ𝑦௞ିଵ௔ೖషభ𝑦ଵ௔భ𝑦଴௔బ

To calculate yi value, we can multiply yi-1 with yi-1. Moreover, if ai value is zero we don’t consider
the respective yi value into a product otherwise we will consider. Thus, we may need 2k
multiplications to calculate xn.

That is, initially we verify LSB (least significant bit) of the binary code13 of n, if it is 0 then the
product is taken as 1; else it will be taken as x. The number n, will be right shifted by 1 bit. We
take y value as x. We execute a loop till n value becomes zero. Each time y value is updates as y*y.
If LSB of the n is 1, product is multiplied with y else not.

Output:
16777216

Snapshot of the above program.

n (24) t s We assume n value as 24.

00011000 1 As the least significant bit of n is 0, we consider s value as 1.

 x Initially, t value is taken as x.

00001100 Right shift the n value by 1 bit.

00001100

 x2

00001100 As the least significant bit of n is 0, we don’t multiply s with t.

00000110 Right shift the n value by 1 bit.

00000110 x4

00000110 As the least significant bit of n is 0, we don’t multiply s with t.

00000011 Right shift the n value by 1 bit.

 x8

00000011 x8 As the least significant bit of n is 0, we multiply s with t.

00000001 Right shift the n value by 1 bit.

00000001 x16

13 Why don’t you try to visualize how binary code of a number is computed using recursive implementation.

https://tinyurl.com/NBVbinarycode

Data Structures:Theory & Practicals
20

00000001 x24 As the least significant bit of n is 0, we multiply s with t.

00000000 Right shift the n value by 1 bit.

The above program is made available on a visualization server for the perusal of readers.
https://tinyurl.com/AICTEDSBOOK7

You are also welcome to view a video on this theme.
https://www.youtube.com/watch?v=JFH0C4wCKEg&list=PLXX7XiUxnzzWoLDfgad4s4dwleb
4NMtVN&index=19

By the way, how many times does the loop run in the above program? If you observe the table, you
find that we are executing the loop body once per one bit of the binary code of the required power,
n. Then the question arises is how many bits will be there in the binary code of the required power
n?. It is log2(n). Thus, the above loop can be said to be running for log2(n) times. We strongly
recommend the readers to read our primer on logarithms that is given in the Appendix of this book.

1.2 Classifications of Data Structures
There are three main data structure classifications, each consisting of a pair of characteristics.

Linear and Nonlinear

Linear structures We know that the elements of an array are organized in memory in sequential
manner. To support our statement or to educate yourself, we have written the following program
that displays the addresses of the elements of static and dynamic arrays from a C program.

The above program gives the following output. You will find that from their displayed addresses,
all the elements of an array (both static and dynamic) are consecutive in RAM. That is, they are
linear or sequential in RAM(memory). As an integer takes 4 bytes on my machine, the element

Introduction to data structures 21

address difference is 4. Of course, you will also find in the following output that the character array
elements address difference is 1 as in C language a character takes one byte of memory.

Arrays are thus linear in RAM; rather they are physically linear (one after another). What about
door numbers of two consecutive individual houses in a city? They are consecutive with a
difference value of 1 in them. BTW, what about roll numbers of an attendance register? They are
too consecutive or linear. Sometimes some objects may be logically linear. That is, they may not
be physically linear in memory, but in one sense they are consecutive or linear. We will be knowing
more about such things like linked lists, queues and stacks in the coming chapters.

Let me take one example. You are in an Ice cream shop and found your favorite ice cream is 5
rupees. If you buy two, the cost will be 10, if you buy four, the cost will be 20; if you buy k number
of ice creams, the cost will be 5k. What is the power for k? One. Isn’t it? Thus, your cost is linear
in k. Consider the total cost of your car fuel. Does it exactly depend on the number of kilometers
traveled? Not at all. It depends on your car age, fuel quality, road type(plain or hilly), weather
conditions(sunny or rainy), your mood(whether you are with your girlfriend or not), etc. That is,
the car fuel charge is said to be nonlinear and depends on the above parameters.

If the data doesn’t form a sequence (physically or logically), they are said to be nonlinear data
structures. Consider an example of a family tree where we find grand grand parent, grand parent,
parent, children, grand children etc., in the tree. Here, persons may be having a hierarchical
relationship. We shall introduce in this book two most popular nonlinear data structures, trees
(binary trees) and graphs in forthcoming chapters.

Static and Dynamic

This classification is based on the memory that is allocated for a data structure. Consider an
example of a C array which is declared with the instruction like int a[10]. You may already know
that the memory that is allocated for the array, a, will stay till the end of the program. It will not
change, I mean it is static. How much memory needed for this array can be found at compile time
itself; of course the compiler knows this. Dynamic data structures are uniquely identified by their
non-fixed memory sizes and which can grow or shrink while the program is executing. Also, the
location of their associated memory can change during the execution of the program. Marvelous
examples of dynamic data structures are C++ language’s standard template libraries(STL)14.

➢
We welcome readers to visit the following link and visualize the code available there. We

find that the memory for the array x will be allocated when we enter into the function and the same
memory gets deallocated when we return from the function. This is because the array x is a static
array. However, the other two arrays a and b whose memory is allocated through malloc() will be
available even if the program control exits from the function. This is because they are dynamic
arrays.
https://tinyurl.com/NBVstaticvsdynamicarrays

Mutable/Immutable15

14 Many people advises people to use these STLs in solving programming competitions.
15 https://www.cronj.com/blog/immutable-mutable-data-structures-functional-javascript/

Data Structures:Theory & Practicals
22

Mutable ones are the ones whose state(data) can be changed once it is created like adding, updating
or deleting elements.
Ex: Lists, Dictionary, Set, bytearray are mutable object types in python, queues, linked lists, stacks,
trees.
Immutable ones are the ones whose state (data or content) cannot be modified after creation; we
cannot add, remove or update their elements (data or content).
Ex: String, Integer, Tuples, Frozenset are some of the immutable object types in Python.
For instance, C++ language supports “const” with which we can declare a variable as constant type
such that its value cannot be changed and any attempt to change its value gives error during the
compilation time itself.
If we try to compile the following single line program at https://ideone.com/NiduLs

Introduction to data structures 23

We get the following error:
Compilation error #stdin compilation error #stdout 0s 0KB
prog.cpp: In function ‘int main()’:
prog.cpp:6:4: error: assignment of read-only variable ‘N’
 N=100;

However, “const” and “immutable” are different. Readers are welcome to read this discussion.
https://softwareengineering.stackexchange.com/questions/149555/difference-between-immutable-
and-const

Homogenous and Non-Homogenous

A data structure is said to be homogenous data structure if it consists of the same data elements,
like elements of a C array; otherwise non-homogeneous data structure. That is, in non-homogenous
data structures, the data or members/elements don’t have to be the same type16. For example, see
the following two images that are borrowed from alamy.com. The left side image is the inside of a
passenger aircraft whereas the right side image is of a balla kattu that is used in many parts of India.
The left side one carries humans (not animals or vehicles) whereas the right side carries humans,
cattle, goods, vehicles. By the way, which is homogeneous and which is non-homogeneous?

Persistent and non-persistent data structures

According to Wikipedia17:
In computing, a persistent data structure preserves the previous version when it gets changed.
These data structures also can be said as not ephemeral data structures. When some changes take
place on these data structures, a new version of it will be available. They can be also referred to as
immutable as the operations on them do not (visibly) update their structure in-place.

Text and File Editing

Do you remember Undo and Redo operations that exist in many applications. These two are the
most common operations that are available in most of the Text or File editing tools and allow us to
have (or recall or go back) persisted (all historical) versions through a persistent data structure. Are
you able to catch our point? Let us take one more example. We are sure that you have created some
Google Doc files, Presentations using Google Doc. In fact, I am writing or creating this manuscript
using Google Doc only. See the following picture. It shows when the file is edited. This filename
is Unit1.doc. At any time I can go back to the file status or content of any date and any time.

16 Python lists are good examples for this category of data structures.
17

https://en.wikipedia.org/wiki/Persistent_data_structure#:~:text=The%20data%20structure%20is%20fully,n
ot%20persistent%20are%20called%20ephemeral.

Data Structures:Theory & Practicals
24

That is, the Google Doc document is persistent. Did you come across Github? It is a widely used
SW repository and we can access the contents of our source files that are committed in it of any
data and any time.

An operation on an ordinary data structure leaves a new version, destroying their old version.
However, a persistent structure allows access to any version, old or new18. Multiple versions of a
data structure is a must while working with the allocations such as computational geometry, 3D
graphics, CAD, etc.. A data structure is persistent if it supports access to its multiple versions.

A partially persistent data structure is the one which extends freedom to access all of its versions
with the constraint of being unable to modify all versions except the most recent one. A fully
persistent extends freedom for accessing and modifying all its versions.

Array data structures which are available in C, Java, Python can be said to be non-persistent; if
you change it, you have changed it eternally.

Consider the following two C language statements.
int c=10;
c++;

We know that after the execution of the second statement, variable c value is 11. Is it having c’s
previous value also? No. If we can store the operation that we have applied on c to get this current
value 11, then we can get back c’s previous value. That is, we can achieve persistence for the
variable c. However, as the C language is not storing anything with respect to variable c except its
current value, we say that variable c value is non-persistent.

Non-persistent data structures are efficient, but hard to reason about in complex systems. Persistent
systems are a bit slower and need some semantics about what a reference is. For example, many
databases provide persistence at least within a transaction. Some more advanced systems give even

18 https://www.cs.cmu.edu/~sleator/papers/another-persistence.pdf

Introduction to data structures 25

greater persistence promises: given a timestamp T, the server/system can always return the exact
state of the data at time T.

For example consider a Linked List.

(Courtesy: https://www.hackerrank.com/topics/persistent-data-structures Last accessed: 10th Aug
2022)
Assume that we want to insert two new nodes just before the head of an existing linked list. To
achieve this, we will create a new node and point (link) it to the current head of the linked list. See
the following picture where Head[0] is made pointing to the first linked list, Head[1] is pointing to
the linked list after adding 4, while Head[2] is the that points to the linked list after adding number
5. That is, we can access the old linked list through Head[0], modified linked list after adding 4
through Head[1], and further modified linked list through Head[2]. If we do like this then we can
say we have the persistent linked list. At any time, we can access any version of the linked list. This
became possible with the overhead of two extra pointers, Head[1] and Head[2].

(Courtesy: https://www.hackerrank.com/topics/persistent-data-structures Last accessed: 10th Aug
2022)

We welcome readers to play with this to experience the above explanation. Anyway, we shall be
dwelling linked lists in detail in the third chapter.
https://tinyurl.com/AICTEDSBOOK117

By chance, if we add a new node in between an existing linked list, we cannot have original linked
list and modified linked list; we have the modified one only. That is, it is a non-persistent operation.
Consider a binary tree T:

(Courtesy: https://www.hackerrank.com/topics/persistent-data-structures Last accessed: 10th Aug
2022)

To insert a new value into a persistent binary tree, first we create a new tree with the nodes which
are along the path from the root to the node to which the new node to be added then new node will
be added to it. The remaining nodes of the original persistent tree that are not along the path are
shared between the original and the updated versions of the tree.

Data Structures:Theory & Practicals
26

(Courtesy: https://www.hackerrank.com/topics/persistent-data-structures Last accessed: 10th Aug
2022)

Partially Persistent

We already understood that in partially persistent data structures we can access all versions but
modify the most recent version only. This means historical versions of the data structure are
immutable (read-only). Consider the previous example of the linked list. If we try to add a new
node to an existing linked list at the end, the remaining or original list will not change.

(Courtesy: https://arpitbhayani.me/blogs/persistent-data-structures-introduction Last accessed:
10th Aug 2022)

Fully Persistent

Fully Persistent Data Structures does not restrict any modifications on any version of the data
structure whatsoever it may be at any time. This means we can typically revisit any historical
version and modify it.

(Courtesy: https://arpitbhayani.me/blogs/persistent-data-structures-introduction Last accessed:
10th Aug 2022)

Confluently Persistent

Confluently Persistent Data Structures not only allows modifications to historical versions (past or
previous versions) but also allows to merge with the existing ones so as to create a new version.

Introduction to data structures 27

(Courtesy: https://arpitbhayani.me/blogs/persistent-data-structures-introduction Last accessed:
10th Aug 2022)

Note: Certainly one is expected to relate persistence with mutability also. However, as this book is
aimed at first level readers, it is beyond the scope of the book.

Primitive vs non-primitive(aka derived)

Primitive data types are predefined by the particular programming language. This includes int,
float, decimal, number, char, string and so on, depending on the language.

Non-primitive data types are defined by the programmer. The language will provide keywords like
struct, class, and interface for defining these.

1.2.1 Advantages of Data structures
1. Effective data storage (RAM or secondary memory) is possible by the use of data structures.

2. The use of data structures makes it easier to retrieve data from a storage device in addition
to RAM. However, the data structure that is used to access RAM may not be suitable for other
devices such as hard disks.

3. An aptly designed data structure can extend similar benefits when used with both little and
huge amounts of data. That is, they are scalable.

4. The use of a good data structure may assist a programmer to save a lot of time or processing
time while performing tasks such as data storage, retrieval, or processing.

5. Anybody can use data structures such as arrays, trees, linked lists, stacks, graphs, and so
on as they are thoroughly verified and proved. This may reduce their SW development time.

1.3 Operations on Data Structures
Usually, we will be doing a variety of operations on data structures which may change from data
structure to data structure.

For instance, on an array which we already understood as a data structure, we can access a specific
element, we can change a specific element, we can traverse all the elements of an array, and vice
versa. Also, we need to search(find) whether a given element in the array or not; we may need to

sort all the elements of the array, we may need to partition the array based on some criterion.

Data Structures:Theory & Practicals
28

Also, we may be using inserting (adding) an element, removing (deleting) an element, removing

all elements (cleaning), etc.,.

As such, we did not touch the real subject of data structures, so it is not wise from our side to talk
in the air. Thus, we postpone our discussion on operations on data structures to next chapters.

1.3.1 Algorithms: a briefing
An algorithm may be defined in simple terms as a finite sequence of instructions that solves a
problem. A computer program is simply an implementation of an algorithm on a computer. The
word Algorithm comes from the name of Abu Ja’afar Mohamed ibn Musa Al Khowarizmi (c. 825
A.D.). An Algorithm is a procedure to do a certain task. An Algorithm is supposed to solve a
general, well-specified problem.

How to make your breakfast?
See the following figure (Fig. 1.3) having steps in making breakfast.

Fig 1.3. Algorithm for breakfast

In Yoga, surya namaskar is one form (see Fig. 1.4). The sequence of poses that we carry can be
also considered as an algorithm, of course to do this prakriya.

Fig. 1.4: Algorithm for surya namaskar
Picture courtesy of: https://www.timeslifestyle.net/wp-content/uploads/2018/03/Surya-
Namaskara-benefits-and-how-to-do.jpg

Introduction to data structures 29

Thus, an Algorithm is a set of rules or steps used to solve a problem. An algorithm is a sequence
of instructions or a set of rules to get something done.

An algorithm can be also thought off as a solution to a problem with three properties:
● having list of step-by-step of instructions
● It is a finite process. This means it is guaranteed to finish at some point.
● All the possible instances(situations or cases) of the problem have to be solved.

In computer science, a problem is solved in the following fashion. 1. Analyzing the problem and
preparing the algorithm, 2. Implement the algorithm probably in some language, 3. Test the
algorithm (program) 4. Use the algorithm (program or Software). This sequence of steps also can
be called an algorithm. Ha. Ha. Algorithm for algorithm(see Fig. 1.5).

Fig. 1.5: Algorithm for realizing algorithm
I am happy to know that a board of directors are being appointed by algorithms!.
https://www.bbc.com/news/technology-27426942?ocid=wsnews.chat-apps.in-app-
msg.whatsapp.trial.link1_.auin&fbclid=IwAR2yalns1tNDHPS-
Q8Rbuwc075vAtq9kDI_3J8KxJe9iqNbM4YEugQmPj2w

Example 3: Let us enjoy a real life example and its algorithm
A simple real life example to illustrate what an algorithm is. Assume that there is a mother with
two children. Both the children are having their favourite cups, probably their names on them. They
will have their drinks only when they are served in their respective cups. One loves coffee and the
other loves Horlicks. One fine morning, mother wanted to serve them drinks, but made a mistake
in selecting the cups; rather cups got exchanged. Now, how she can solve the situation. Assume
both the cups are of same size(volume) and she is also having an empty cup also at her disposal.

She transfers coffee to the empty cup.

Data Structures:Theory & Practicals
30

Then, she transfers Horlicks to the cup labelled coffee.

Now, she transfers coffee to the cup labeled as Milk.

The steps that the mother followed can be said as an algorithm to solve her problem.

Now, let us visualize the above operation in a programming language point of view. That is, we
want to exchange the values of two variables(or objects). We have the following six solutions for
our discussion.

Solution A is akin to the cups example which we have explained above. That is, we are using a
temporary variable. That is, assign the value of the variable, a, to temp variable, value of variable
b to variable a, then value of temp variable to variable a. Three steps like the above example.

The following link contains a C language implementation of solution A which is hosted on a
visualization server. We welcome readers to experiment and understand the working of this.
https://tinyurl.com/y84zkj8n

Solution B uses bitwise exclusive-OR operator. The following workout will clarify the steps of
solution B. Observe the original and final bit patterns of a and b.

The following link contains a C language implementation of solution A which is hosted on a
visualization server. We welcome readers to experiment and understand the working of this.

https://tinyurl.com/yab53z3z

Introduction to data structures 31

Let us explore whether the above solutionB works for float type variables or not.

Try to run the above. Refer any book on C language to find whether bitwise operators are
meaningful between float type arguments or not.

Maybe the following corrections will make this work with floats also.

The above is available at https://ideone.com/1WPtp1 for experimentation.

Now let us debate on Solution C. The following link contains the above Solution Cs code on a
visualization server.
https://tinyurl.com/y9vq86os

Example 4: Experiment the above Solution C with
a. Very large values (in the order of 264-1) for a and b.

b. Very large negative values in the order of -(264-1) for a and b.
c. Variable a is very huge positive and while b is very large negative.

d. Both a and b are zeros.
e. Either of a and b are zeroes.
f. Both are positives.

g. Both are negatives.

h. One positive and one negative.
i. Repeat the above for float type values of a and b.

Approach D is available at https://tinyurl.com/y75kabfw and you are most welcome to trace the
same on the visualization server.

Data Structures:Theory & Practicals
32

Approach E code is available at https://tinyurl.com/y7puvwof and you are most welcome to trace
the same on the visualization server.

Approach F code is available at https://tinyurl.com/y9c3n687 and you are most welcome to trace
the same on the visualization server. Find a flaw in this code given above link.

Question 8: Observe with all the above examples when you get overflow/underflow or floating
point exception or NaN(not a number) etc?.

1.3.2. Empirical vs theoretical algorithm time complexity analysis
Most of the Computer Science professionals may encounter one or other day the following type of
doubt. What happens to their SW system if input size is doubled or tripled? If we feed it with a
different input, how will it behave? To answer this, we may employ time complexity analysis which
is a tool to explain how our algorithms behave with the input size.

When we speak of the time complexity, we are not at all interested in absolute times, i.e. how
many CPU seconds it is taking to solve a particular problem for a given input size. The actual
absolute CPU time consumed depends on a number of factors: how fast the computer is, the quality
of code generated by the compiler, the number of users using the computer at that time etc. If you
change any of these, then the absolute time changes.

Thus, absolute time is not useful as a measure of an algorithm’s performance.

Also, do remember we want algorithm performance; not the code performance!

Reasons to analyze the efficiency of an algorithm:
● Analysis helps choose which solution to use to solve a particular problem.
● Experimentation tells us about one test case, while analysis can tell us about all test
cases(performance guarantees).
● Performance can be predicted before programming. If you wait until you’ve coded a large
project and then discover that it runs slowly, much time has been wasted.
● If you can tell which parts of your solution execute quickly and which parts execute slowly,
then you know which to work on to improve the overall solution.

In addition to the above reasons for analyzing the algorithms, we wanted to bring another important
reason. All of us know that there can be a multitude of algorithms to solve a given problem.
Consider the situation where you have a horrible day in the office because of a picky boss and his
brain eating five clock interaction session. You are relieved at 8.00PM and eager to reach home
and relax. Also, assume that you don’t have your own vehicle. There are many options available
for you to reach home. 1. Pooled bus service provided by the office, 2. Public service such as
bus/train/metro, 3. Calling Uber/Ola, 4. Calling your elder son to come from home by vehicle and
pick you up, 5. Ask your better half who is still in her office to pick you up. Which one do you
select to reach your home? Of course, we know that you know the correct answer. You pick a better
one. Better in the sense of time if you are too rich; better in the sense of cost if you are an average
salaried employ.In the same lines, if an algorithm has a multitude of solutions, an immediate
question that arises is “which is better?”. This necessitates the relative analysis of algorithms. In
the example above, if he selects option 3 (Uber/Ola cab), he will reach the house quickly. In the
same lines, to compare algorithms we need to arrive at their computational performance. Also, we
may need to compare algorithms in terms of the amount of space (memory) they consume.

Introduction to data structures 33

We know that each algorithm consists of a finite sequence of instructions/steps. If the algorithm
contains more instructions, the longer it will take to execute. Thus one way to compare algorithms
would be to count the instructions that the algorithm requires to solve a problem. Rather, we
compute the number of instructions as a function of the input size (or problem size which we

explain in the coming pages).

In general algorithms can be analyzed either empirically or theoretically as discussed above.

Empirical analysis involves:
● Implementing an algorithm in some programming language like C, Pascal
● Compiling and generating executable/binary file
● Running the executable/binary file on a specific computer platform and gathering runtime
data for various possible input sizes
● Analyzing the runtime versus size of the input

However, empirical analysis suffers from

1. Empirical analyses conclusions are biased on how it is implemented. How nicely one has
coded, which apt programming language is used in developing the code, etc., influence a lot.

Theoretical analysis which is also called as the time complexity analysis:
● uses a high-level description of the algorithm instead of an implementation of some
programming language
● explore running time versus input size, n.
● considers all possible inputs, often analyzing the worst case and best case
● Algorithm speed is evaluated independent of the hardware/software environment

As per this book, it is assumed that instructions of an algorithm are executed one after another,
serially or sequentially (We are not going to discuss parallel algorithms here). We consider serial
algorithms only. Also, the computer uses RAM (Random Access Model), in which each operation
(e.g. +, -, x, /,=) and each memory access take one run-time unit. Loops and functions can take
multiple time units.

The time complexity of an algorithm, T(n), is represented as a function of its problem size, say n.
The time required is counted in terms of the primitive operations involved in the algorithm.
Primitive operations include

1. Assigning a value to a variable (independent of the size of the value; but the variable
must be a scalar).

2. calling a function such as printf, scanf, pow, sqrt.

3. Performing a (simple) arithmetic operation .

4. Indexing into an array .

5. accessing an object from its reference i.e., pointer.

6. Returning from a function.

As the time complexity of an algorithm, T(n) is represented in terms of number of operations
involved, it becomes “device-independent” measure19. That is, rather than expressing the time
consumed in seconds in empirical analysis, we attempt here to represent how many “elementary
operations” the algorithm executes when presented with instances of different input sizes. This
measure is more useful for answering questions like:

19 Analysis is done before coding. Profiling (a.k.a. benchmarking) is done after the code is written.

Data Structures:Theory & Practicals
34

� If I want to run on a problem on input of double size, how long will it take?
� If we can buy a machine twice as fast as the existing one, what is the size of the input which we
can solve in the same time?

Let us take a simple example, to illustrate what is meant by complexity analysis.

Alice and Bob proposed sorting algorithms with time complexities 256n lg n and n2 comparisons
respectively. Assume that their algorithms are implemented and benchmarked on a machine that
takes 10−3 seconds for one comparison operation and input size of 1024. The following shows the
observed times. From the table, clearly Bob’s algorithm is better.

However, they are asked to observe their algorithms' behaviors for various possible input sizes also.
The following table illustrates their observations.

The table conveys Alice’s algorithm is much better placed for expansion.

Let us try to compute how many items each of these two algorithms sorts in one hour. As one
comparison on the selected machine takes 10-3 seconds, within an hour it can make 3600/10-

3=3600000 comparisons. Assume nA , nB as the number of items that can be sorted by Alice and
Bob’s algorithms in one hour time. Thus,
3600000 = 256nA lg nA = n2

B

We can find nA = 1352, nB = 1897.

That is, Bob’s algorithm seems to be too workaholic!.

Let us analyze what happens if we replace the current machine with another machine that is four
times faster in carrying comparison operations. That is, on the new machine, comparison takes 1/4
× 10−3 seconds. Thus, we can make 3600/(1/4 × 10−3)=14400000 comparisons in the same one hour.
Let us try to compute nA , nB for this situation also. That is,
14400000 = 256nA lg nA = n2

B, yields
nA = 4620, nB = 3794.

Faster the machine, faster are both the algorithms. However, nA value rose by 3.41 (4620/1352),
whereas nB value doubled(3794/1987) only when we replaced the CPU with a four times faster
machine. So, we can say Alice’s algorithm is gaining much more rate from the faster machines
compared to Bob’s algorithm.

Note: We do have some other complexities related to computer science. They are 1. Circuit
Complexity 2. Language complexity. However, the discussion on them is beyond the scope of this
book.

Introduction to data structures 35

1.3.2.1 Problem Size

Usually algorithm’s computational complexities are represented in terms of problem size. For
example, in the case of sorting a set of elements, the number of elements can be considered as
problem size. Similarly, while estimating the complexity of the matrix multiplication problem,
matrix size is taken. For number-theoretic algorithms, the input parameter or problem size is the
measure of how big the number is. So it is the number of bits occupied by the number. Thus, this
is very much associated with the problem.

The time complexity of an algorithm, T(n), is represented as a function of its problem size, say n.
The following table 1.1 summarizes some common problems and their problem sizes.

Table 1.1: Problem size with examples

For instance, take a physical real life example where a store manager will be giving gifts to
customers. Assume there are n customer’s in the queue. That is, here the problem size is this, the
number of customers(n) in the queue. Assume that the Manager brings one gift at a time. Handover
it to one customer. Returns to collect the next gift. What is the time complexity of handling a gift
to a customer?

Answer:

Time complexity = 1 step as manager will take exactly the same time irrespective of the line length.
What is the time complexity of the whole gift distribution activity?
Answer: n steps.

Data Structures:Theory & Practicals
36

Let us explore another physical example. Shifting n items from one room to another room in our
house.

Answer: n pick-ups, n forward moves to the other room, n drops and n reverse moves to the first
room. Total, we have 4 n operations. That is, T(n)=4n steps.

What about exploring another real life example?. Shifting n items from one room to another room
in our house.
At the beginning you are the only one to start the task of items shifting. After you transferred an
item and returned to the first room, one more friend of yours joined. When you have transferred
the second item, two more friends of yours have joined. If we assume your friends are joining you,
how many transfer operations are needed to transfer n items? Assume all the people are equally
energetic. Also, once anyone starts transferring an item, he will not terminate or stop the same in
between. Also, when a friend has joined, he will stay till the end of the room shifting. Transferring
an item involves picking an item, taking it to the other room, placing it, then returning to the first
room. All the people start at the same time and complete at the same time.

Answer: log2n transfers. Let us analyze the situation of shifting chronologically.
The 1st item is moved by you and returned.
New friend of yours did join you.
Both of you carry one item and return to the room.
Two more friends of yours have joined you.
Four of you carry one item and return to the room.
Four more friends of yours join you.
Like this, the items are transferred: 1, 2, 4,8 and vice versa. If we have n items then we need log2(n)
transfers. If we have 15, we need ceil(log2(15))=4 transfers.

Example 5: What made us use computational complexity analysis of algorithms in an abstract
manner instead of empirically?

Answer: Empirical analysis conclusions are very influenced by processor architecture, memory
architecture, compiler implementation, and also many platform(both HW/SW) dependent run-time
factors like the current load(number of processes) of the CPU, the current memory usage,
availability of cache memory and swap memory. Thus, in time complexity analysis, we try to
understand the algorithm’s behavior independent of the above so as to answer some questions.

1.3.2.2 The Big-Oh Notation

“Big-O notation is a relative representation of the complexity of an algorithm”20. Let us explore
the words of this statement.

relative: Let us try to recall an old saying “you can only compare apples to apples, you cannot
compare an apple with a pineapple”. In the same lines in practice, you can compare the performance
of a Prime Minister with another country’s Prime Minister; but not with a lady doctor!!. Consider
an algorithm two compute the inner product of two n dimensional vectors and another algorithm to
find(search) whether a given element x is available in a n element 1-D array or not. In the first one,
multiplications are needed whereas in the second one comparisons are needed. You can't compare
these two algorithms. However, you can compare two separate searching algorithms on a 1-D array.

20 Refer http://ssp.impulsetrain.com/big-o.html for some misconceptions on time complexity orders.

Introduction to data structures 37

representation: Big-O (in its simplest form) reduces the comparison between algorithms to a single
variable. That variable is chosen based on observations or assumptions, out of them are already
mentioned while discussion T(n). For example, sorting algorithms are typically compared based on
comparison operations. This assumes that comparison is expensive. We know the majority of
sorting algorithms do spend element exchanges. But what if the comparison is cheap but
swapping(exchanging) is expensive? It changes the comparison exchanges.

complexity: if it takes my program one second to sort 100,000 elements, how long will it take to
sort one billion elements? Complexity in this instance is a relative measure to something else.

The big O does not give an idea of the time duration of the computation. It just gives how the

duration’s scales with input size or problem size21.

Fig. 1.6: Big-Oh definition

What is the meaning of this?

Fig. 1.7: Growth of chicken and turkey

21 Big O domain calculator

https://www.wolframalpha.com/widgets/view.jsp?id=57ad04c0f04cc92e742205985c18023e

Data Structures:Theory & Practicals
38

We know in general a chicken grows slower than turkey(Fig. 1.7), rather we can say that chicken
size is in O(turkey size). What does it really mean?. We know the following facts of real life.
● Baby chickens might be larger than baby turkeys when they are born.
● After some days(breakpoint), the turkey size will start become more than chicken size.
● Rather, from that breakpoint day onwards, the chicken size will always be smaller than the turkey
size.

In the same fashion, the given function f(n) is guaranteedly smaller than cg(n) for values of n>=n0.

To practically explain about this, consider a live problem. Suppose a company tracks its autos that
are shipped around the world on rail, truck, and water vessel. At the end of each day, this company
uses an algorithm to summarize all auto movement in some meaningful way. Let us consider that
the algorithm does its job in three steps

– The algorithm takes 50,000 msecs to read the data from the database. Do remember that
this time is independent of the number of autos in the company.

– The algorithm takes 1 msec to process each auto movement into summarized data.

– The algorithm takes 5,000 msecs to write the summarized data back to the database. Do
remember that this time is independent of the number of autos in the company.

So, processing n auto movements takes

– (50,000 + 1*n + 5,000) msecs

– The n term will become more important as n becomes very large

– As it turns out, in the real world, n may be in the order of 100,000,000 !!

Thus, n be the input size (number of autos) or problem size here and T(n) becomes the time
complexity of the processing. That is, T(n)= 50,000 + 1*n + 5,000. Obviously, you find that T(n)
is a function of problem size, here it is the number of autos, n.

Let f(n) be another function, preferably without constant factors… n, n2, log2n, etc., We can say
that T(n) is Big-Oh of f(n), or, T(n) is on the order of f(n), or, T(n) = O(f(n)) if:

– T(n) ≤ c*f(n) for some positive constant c, starting at the point where n is ≥ some other
positive constant n0.

– What we are saying is c*f(n) is a bounding function T(n) asymptotically.

– Think of c*f(n) is like a ceiling for T(n); in other words, we can guarantee that our
algorithm will never run in worse time than on the order of f(n).

From the above, the time complexity equation becomes:
T(n)= (50,000 + 1*n + 5,000) msecs
T(n) = n + 55,000

Choose f(n) = n to see if T(n) = O(n)
Definition of Big-Oh: T(n) ≤ c*f(n)
n + 55,000 ≤ c*n solve for c

1 + 55,000/n ≤ c

As n gets bigger and bigger (and approaches infinity), 55,000/n will approach zero.
1 + 55,000/1 ≤ c -> c ≥ 55,001 if n = 1
1 + 55,000/2 ≤ c -> c ≥ 27,500 if n = 2
1 + 55,000/∞ ≤ c -> c ≥ 1 if n approaches infinity.

We need to show this holds for positive constants c and n0 where n ≥ n0

Introduction to data structures 39

– Pick n0 = 1

– 1 + 55,000/1 ≤ c , so c = 55,001

– Does this c = 55,001 still work for n = 2 (because n keeps growing)?

– 1 + 55,000/2 ≤ 55,001

– 27,501 ≤ 55,001 TRUE!

So, T(n) = O(f(n)) because we can find c and n0 that hold as n grows to infinity!. Thus, this
algorithm’s asymptotic complexity is said to be O(n).

Consider another example:
Suppose we have an algorithm that takes 3n2 steps given n inputs(that is, problem size is n).
Does 3n2 = O(n2) ?

The definition of Big-Oh says…

– T(n) ≤ c*f(n) for c and n0 where n ≥ n0

Given: 3n2 ≤ c n2
Choose n0 = 1 and c = 3. That is, LHS and RHS are the same, Which means that the given 3n2 is
O(n2).

Does it still work as n grows? Now, let us try for n = 2. It will work. It will work for values of n
more than 2 also. Thus, we can say that 3n2 = O(n2).

Let us consider another example. The following figure shows the possible operations in a C++
function that is written to find the maximum of a vector(a container).

The possible number of operations are:

If there are n items in the vector, the number of operations needed will be between 5n+2 operations
and 7n operations. If the vector contains elements in descending order then the if condition will
never become true as all the elements will be smaller than the first element. Thus, we need 5n+2
operations. Instead if the vector contains elements in ascending order, each time the if condition
becomes true and maximum changes. Thus, it needs 7n operations. We can prove that it is of O(n)
by taking c=7 and n0=1.

Example 6: Let us explore the algorithm for computing the inner product of two vectors A, B of
size n elements each. the inner product of the two arrays A and B is A[0]*B[0] + A[1]*B[1]
+....A[n-1]*B[n-1], which is the sum of pairwise products. See the following algorithm for this
purpose.

Data Structures:Theory & Practicals
40

● Line 1 can be taken as one operation (assigning a value).
● Initializing the loop also can be taken as one more operation (assigning a value).
● Third statement involves five operations per iteration of the loop (mult, add, two array
references for A[i], B[i], assignment).
● Also, the third statement is executed n times.
● Also, loop control variable, i, incrementation is two operations (an addition and an
assignment)
● Also, loop incrementation is done for n times.
● Also, loop condition testing for termination or continuation is one operation (a comparison
i<n) each time.
● Do remember that loop termination takes place (n+1)th time (n successes, one failure).
● We need to consider that ‘return’ is also one operation when implemented really in any
language..
The total is thus 1+1+5n+2n+(n+1)+1 = 8n+4.

That is, time complexity T(n)=8n+4. You may prove with c=9 and n0=1, this can be proved as O(n)
using the big O definition.

Example 7: Let us explore the following algorithm for computing the inner product of two vectors
A, B of size n elements each. the inner product of the two arrays A and B is A[0]*B[0] + A[1]*B[1]
+....A[n-1]*B[n-1], which is the sum of pairwise products. See the following algorithm for this
purpose. Is there any advantage of this over the previous one?

● Line 1 is four operations (accessing A[0], B[0], calculating their product, and assigning the
result to the variable prod).
● Initializing the loop also can be taken as one more operation (assigning a value).
● Third statement involves five operations per iteration of the loop (mult, add, two array
references for A[i], B[i], assignment).
● Also, the third statement is executed n-1 times.
● Also, loop control variable, i, incrementation is two operations (an addition and an
assignment)
● Also, loop incrementation is done for n-1 times.
● Also, loop condition testing for termination or continuation is one operation (a comparison
i<n) each time.
● Do remember that loop termination takes place nth time (n-1 successes, one failure).
● We need to consider that ‘return’ is also one operation when implemented really in any
language..
The total cost of the above code fragment, T(n) = 4+1+5(n-1)+2(n-1)+n+1 = 8n-1. We may take
c=8 and n0=1 so as to claim its order is O(n) in accordance with the big O definition.

We find both the above two solution’s complexity orders are the same, O(n).

Introduction to data structures 41

1.3.2.2.1. Fundamental step

Example 8: What do you know about fundamental step while carrying out algorithm analysis?

Answer: Fundamental step is “a single line or short group of lines of code that will be executed the
most times”. It will be typically of order O(1) for the following code fragment.

N = length of lis.

How many times is the fundamental step executed? N times
So this algorithm is O(N).

In the following code, the fundamental step is marked with a red square.

Also, the fundamental step is marked with a red square in the following code.

Similarly consider another example of a function call along with the operations involved. We find
that the time complexity T(n) is 6n+4. According to the big O definition, we find that for c=7 and
n0=5 values, its complexity order is O(n).

So, T(n) for this algorithm is 6n+4 and T(n)=O(n).

Example 9: Compare the following two algorithms?

Data Structures:Theory & Practicals
42

Answer: There is a high chance people will conclude that Algorithm1 as O(1) while Algorithm2
as O(N). However, both are O(N). See the following analysis with some simple assumptions.
Assume c1 is the cost of accessing a memory location, c2 is the cost of incrementing variable i
value, comparing i with N etc. As the loop runs N+1 times and in (N+1)th time the condition
becomes false. Thus, we have taken (N+1)*c2. Of course, we did not take into account the i=0
statement’s cost. Because, i++ statement is in principle executed for N times while i<N is executed
for N+1 times. We thought it would balance!. See the following workout for time complexity
computation for both the algorithms.

According to the big O definition, for Algorithm 1, c=c1 and n0=1 while for Algorithm 2,
c=c1+c2+1 and n0=c2+1 to prove their complexity orders are O(n).

Consider another example involving nested loops. Here, each loop runs for n+1 times. Thus, the
innermost k++ statement executes (n+1)*(n+1) times.

Let us take c=8 and try to prove:
3n2+7n+4<=8n2.
-5n2+7n+4<=0

If we solve the above quadratic equation22, we find roots as -0.43578167 and 1.83578167. We take
the ceiling of positive root as n0. That is, n0=2. According to the big O definition, we can say that

22 https://quadraticsolver.com/

Introduction to data structures 43

the above algorithm’s order is O(n2). To cross check, for n=1, 3n2+7n+4=14 while 8n2 value is 8.
For n=2, 3n2+7n+4=30 while 8n2 value is 32. We find that for all values of n=2, 3n2+7n+4 <8n2 .

Example 10: In the following, we have two functions prefixAverages1() and prefixAverages2().
Which one is better in terms of their computational complexity order?

Answer: Operations needed for both the methods are also shown below. First one needs
4n+1+n(n+1) operations while second one needs 4n+2 operations. As, the first one is having n2
term while the second one is not; thus, the second one is most preferred as it is computationally
cheaper.

Example 11: What c and n0 values are needed to prove 7 � O(1)?

Answer: We need to find c, n0 such that for all n ≥ n0 we have
7 ≤ c ꞏ 1
Take c = 7, n0 = 1.

Example 12: What c and n0 values are needed to prove 2n+1 big-Oh order is O(n)?

Answer: We need to find c, n0 such that for all n ≥ n0 we have
2n + 1 ≤ c ꞏ n
We choose c = 3, n0 = 1. Then 3 ꞏ n = 2n + n ≥ 2n + 1. Thus, we can say that 2n+1 is of order O(n).

Example 13: What c and n0 values are needed to prove 7n-2 big-Oh order is O(n)?

Answer: We need to find c, n0 such that for all n ≥ n0 . We have
7n − 2 ≤ c ꞏ n
We choose c = 7, n0 = 1.

Example 14: 3x4 + 5x2 – 19 = O (x4). Does it convey that there’s a function O (x4) and which is
equal to 3x4 + 5x2 – 19 ?

Data Structures:Theory & Practicals
44

Answer: No. Rather the example is read as:“3x4 + 5x2 – 19 is big-Oh of x4”. Which actually
means:“ 3x4 + 5x2 – 19 is asymptotically dominated by x4”

Example 15: What c and n0 values are needed to prove (3n3 + 5n2 + 2 � O(n3))?

Answer: We need to find c, n0 such that for all n ≥ n0 we have 3n3 + 5n2 + 2 ≤ c ꞏ n3.
Here, the highest ordered term is n3 and its coefficient is 3. For this coefficient, we need to add
something such that 5n2 + 2 contribution is also taken into account. For which value of n, n3>5n2 +
2?.

n 1 2 3 4 5 6 7 8

n3 1 8 27 64 125 256 343 512

5n2 + 2 7 22 47 82 127 182 247 322

Thus, we add 1 to the coefficient of n3 term, that is 3 and thus 3+1 is taken as c. Also, n0 value can
be taken as 6 from the above table. Thus, c=4 and n0=6.

Example 16: Consider an example in which data has to be read from a file. This inturn involves
reading a filename interactively and opening the file with a function like fopen() or through system
call like open(). Assume for this initial activity it needs 500 operations. Assume to read one item
from disk, it needs 10 operations. Thus, T(n)=500+10n. Assume that we want to compare this with
two other algorithms whose complexities n, 20n respectively. The following picture(Fig. 1.8)
shows the function 500 + 10n plotted against n, the problem size.

Fig. 1.8: Growth of some functions

If you observe the figure, you will find that the function n will never be larger than the function
500 + 10 n. However, there are constants c and n0 such that 500 + 10n <= cn when n >= n0 . One
choice for these constants is c >= 20 and n0 >= 50. Therefore, T(n)=500 + 10n = O(n). That is, this
data reading problem is of order O(n). Of course, there can be other choices for c and n0 to arrive
in big-O order. By the way, what is the big-O order of the algorithm whose T(n) is 20n?. What are
c, and n0 values?

Example 17: Consider the following two algorithms A, B.

Introduction to data structures 45

Algorithm A sets up faster than B, but does more operations on the data. The execution time of A
and B will be TA(n) = 50 + 3*n + (10 + 5 + 15)*n = 50 + 33*n and TB(n) =200 + 3*n + (10 + 5)*n
= 200 + 18*n respectively. The above graph shows the execution time for the two algorithms as a
function of n. Algorithm A is the better choice for small values of n. For values of n > 10, algorithm
B is the better choice. Remember that both algorithms have time complexity O(n). The reason is
that asymptotic analysis ignores constants of proportionality (see Fig. 1.9). In the following figure,
if you can draw another line for T(n)=n, you will find that it will be smaller than both the curves
for all problem sizes. Thus, these both algorithms are of the same order O(n) though they have
different constant multiplication factors(33,18) in their time complexities.

Fig. 1.9: Growth of some functions and constants of proportionality

Relatives of the Big-Oh

Big-Omega and Big-Theta

Data Structures:Theory & Practicals
46

Definition: We write f(n) is Θ(g(n)) if both f(n) is O(g(n)) and f(n) is Ω(g(n)).

Remarks We pronounce f(n) is Θ(g(n)) as "f(n) is big-Theta of g(n)"

Little-Oh and Little-Omega

Examples: log(n) is o(n) and x2 is ω(nlog(n)).

As this book is an introductory level book, we are not discussing the Importance of

Asymptotics analysis of algorithms.

1.3.2.3 Space Complexity

We know that space complexity of an algorithm is also an important criterion while comparing and
selecting the algorithms for practical problems. Also, it is vital to reduce the space requirements of
algorithms. In a nutshell, we may employ some alternative physical storage schemas to reduce
memory space requirements of an algorithm. However, it poses another difficulty. That is, if we
propose another schema of storage; then we also need to propose (new) mechanisms (data strctures)
to do the operations.

For example, if we propose to store a 2D matrix in a 1-D array, then implementations of all the
operations such as additions, subtractions, etc. which we normally carry on a 2-D matrix have to
be modified such that they assume the matrix is in a 1-D array.

Compared to the 1970's, today the unit cost of RAM is cheap. However, revolutionary
developments that are taking place under the name of Internet of Things(IOT) are employing
trillions of trillions internet enabled tiny inexpensive processors with tiny memory. These tiny
memory devices continue to demand programs that consume less memory. Otherwise also,
reducing memory requirements is a classic activity on its own.

In the following, we propose some examples which illuminate the reader about reducing memory
space requirements of algorithms.

Example 18: Propose a method to map a symmetric matrix into a 1-D array along with methods to
add, subtract, multiply symmetric matrices which are in the 1-D array fashion.

We know that symmetric matrices will have their upper and lower triangular portion elements the
same. Thus, to conserve memory, we propose to store only the lower triangular part of the matrix
including main diagonal elements. If one observes, we can find that ith row jth column element of
the symmetric matrix is stored in location i*(i+1)/2+j of 1-D array. For example, 2nd row 2nd
column element, i.e., x5 will be available at: 2*(2+1)/2+2=3+2=5.

Introduction to data structures 47

Total number of elements in the 2-D symmetric matrix = n2

Number of elements needed in the 1-D representation= 1+2+…+n = n(n+1)/2
Thus, a saving of almost 50%.

If we want ith row jth column element of the symmetric matrix, its location in the 1-D array can be
calculated as: i*(i+1)/2+j. However, this will not work for upper triangular portion elements. Thus,
if we want upper triangular portion elements of the 2-D array, we simply exchange their row (i)
and column(j) indexes and then apply the above formula to get the required element. This became
possible because of symmetry.

The following program demonstrates the storage of a symmetric matrix in a 1-D array and accessing
the same. Remember, really 2-D array information is in 1-D fashion. However, users can still work
at 2-D notation by using the above mapping function.

Data Structures:Theory & Practicals
48

Now, let us discuss how to add two symmetric matrices which are represented in 1-D array fashion
as explained above.

Consider First matrix A and its 1-D array representations are:

Consider Second symmetric matrix and its 1-D representation:

Now their sum matrix and its 1-D representations are:

By observing the above workout, we can say that adding two 2-D symmetric matrices in this
representation is the same as adding their resective 1-D representations element by element. It is
true with the subtraction of two symmetric matrices. The following function allows us to do
addition of two symmetric matrices which are in their1-D representation.

Introduction to data structures 49

We know that in nxn elements, total n*(n+1)/2 elements are stored in the 1-D array. Thus, in the
function, we allocate a dynamic array to store n*(n+1)/2 elements. The address of this array is
returned as the resultant matrix in 1-D representation.

We can carry the subtraction also in the same fashion. For multiplication, we propose the following
function. Verify whether it will give the expected results are not. Remember, we need to calculate
only the lower triangular portion of the product of two symmetric matrices.

Example 19: Now consider storing two symmetric matrices of same size (nxn) in a 2-D array to
conserve space.

Fig. 1.10: Two symmetric matrices together to conserve space

As we know that the symmetric matrices will be having redundancy, we proposed to store two nxn
symmetric matrices lower triangular portions in a nx(n+1) matrix. Here, we may find a savings of
almost 50%. That is, as such for both the matrices A and B together we need 2n2 elements. If we
store both in a 2-D array like C, we need n2+n elements. This is 2-D array to 2-D array mapping(see
Fig. 1.10).

Probable mapping steps are:

Data Structures:Theory & Practicals
50

Of course, if we want to ith row jth column element of Matrix A, it can be accessed simply as ith
row jth column element of C as it is stored like that way. Similarly, if we want ith row jth column
element of matrix B, the same can be accessed as C[n-1-i][n-j] as it is stored like that as shown in
the above code fragment. That is, whatever way we have stored the element, the same way we can
access. However, with both the matrices A and B, if we want upper triangular portion elements,
then we can exchange their row and column elements and then access from C.

An algorithm is said to be “in-place23” if the amount of additional memory required by the
algorithm does not grow with increase in the input size. For example, algorithms like Insertion
Sort and Bubble Sort are in place because the amount of additional memory (like the use of
temporary variables) needed by these algorithms does not grow with input size.
� In-place algorithms are said to have Θ(1) space complexity.
� An algorithm is said to be “out-of-place” if the amount of additional memory required by the
algorithm grows with increase in input size. – For example, if an algorithm copies the contents of
the input array to another new array, then the amount of additional memory (to be allocated for the
new array) grows with increase in the size of the input array. E.g., Merge Sort.

We welcome readers to refer to the following video to get littlemore enlightenment of this theme.
https://www.youtube.com/watch?v=5Fjmbm-
Pguc&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4NMtVN&index=75

A simple tool to estimate time.

https://csfieldguide.org.nz/en/interactives/algorithm-timer/

1.3.3 A note on abstract data types
Elsewhere you might have come across the statement that C language has primitive data
types(char,int,float,double), derived type(strings, 1-D,2-D,multidimensional arrays, user defined
types(structs, unions, and enumerators). In order to explain ADT (abstract data type), we feel it is
wiser to open a little more theoretical background of computing also.

In Mathematics, Integers are said to be a set of all positive numbers without any fractional parts.
They are abstracted in C and other languages as int type. In similar lines, real numbers are a set of
all possible numbers including integers. They are abstracted in C and other languages as float or

double or long double types. We are sure that you are already familiar with these words. In the
computing point of view, A type can be said as a collection of values. For example, the boolean
type (available in C++, Java, Python, R but not in C) consists of the possible values true or false.
The integers also form a type.

An integer is a simple type because its values can be any number from the universe of integers
from Mathematics.

23 in-place, in-situ, in-core, in-memory are synonyms

Introduction to data structures 51

A student record will have name, address, account number, age, and marks. Such a record is an
example of an aggregate type or composite type. A data item is a piece of information or a record
whose value is drawn from a type. A data item is said to be a member of a type.
Also, a data type is a type along with a set of permissible operations to process the type. For
example, an integer variable is a member of the integer data type. Addition, subtraction,
multiplication are example operations on the two integer data types.

An abstract data type (ADT) is the specification of a data type within some language, independent
of an implementation. The interface for the ADT is defined in terms of a type and a set of operations
on that type. The behavior of each operation is determined by its inputs and outputs. An ADT does
not specify how the data type is implemented. These implementation details are hidden from the
user of the ADT and protected from outside access, a concept referred to as encapsulation.

Let us consider an example. Assume you are the richest person and you love cars. You have
purchased every model of the car from every car company. Also, assume that you have some
number of licensed drivers. You can call any driver and ask him to drive any car of your interest
on any day. The chance of a driver telling you that I cannot drive this car as the primary activities
such as steering, accelerating, and braking are the same for all passenger cars. He can steer any car
by turning the steering wheel, accelerate any car by pushing the accelerator pedal through his leg,
and slow any car by applying brakes by pushing the brake pedal through his leg. This design for
cars can be viewed as an ADT with operations “steer”, “accelerate”, and “brake”. However, each
car might implement these operations in radically different ways, say with different types of engine,
or front- versus rear-wheel drive. Brakes can be realized in one car through hydraulic means; while
in some other cars by some other means. Nowadays, everyone is able to drive cars by just knowing
the functionalities of steering, accelerating, and breaking. Thus, any driver can operate many
different cars because the ADT presents a uniform method of operation that does not require the
driver to understand the specifics of any particular engine, breaking system, or drive design. In fact,
these specifics of important parts (engine, break, drive system) of the car are deliberately hidden
(data hiding, one of the concepts of object oriented systems and languages).

A data structure is the realization for an ADT. We have already understood that the term data

structure connotes data stored in a computer’s main memory, RAM. The related term file

structure refers to data on secondary memory devices.

The int variable type (say in languages such as C, C++, Java), along with the operations that act on
an int variable, form an ADT. Unfortunately, the int implementation is not completely true to the
abstract integer, as there are limitations on the range of values an int variable can store because of
the finiteness of computers. If these limitations prove unacceptable, then some other representation
for the ADT “integer” must be devised, and a new implementation must be used for the associated
operations (Do recollect the example discussed in the first pages on Python in which we understood
that Python will be using Bignum data structure to have overflow free integer additions).

Also, some programming languages such as Python, R, MATLAB, Wolfram, did abstract the
Mathematical quantity, complex number. Majority of the operations that we can do on complex
numbers in Mathematics can be happily carried out in these languages. For example, if we add two
complex numbers we will get a complex number in Mathematics and this is very possible in the
above programming languages also. This is applicable to other operations such as subtraction,
multiplication, division with complex type quantities. For example, the following R code
demonstrates the same. How it is (abstraction) implemented is transparent to the user of complex
objects.
https://tinyurl.com/AICTEDSBOOK8

Data Structures:Theory & Practicals
52

Do remember that complex type variable type is not available in C language. However, of course
we can realize complex type through structures. Python language also abstracts the Mathematical
concept of complex numbers. We welcome the readers to visit the following link to experiment
with a sample Python code involving complex objects.
https://tinyurl.com/AICTEDSBOOK11

The following picture (Fig. 1.11) is the snapshot of the above code. The code that is available in
the link declares two complex type objects(variables) x and y. It shows how one can use x+y, x-y,
x*y, x/y operators between x and y like Mathematics.

Fig. 1.11: Operations on Complex type in Python

Also, we know that in Mathematics, we can add, subtract, multiply two vectors. This is abstracted
in R language such that a Mathematical expression involving vectors can be directly executed in R
language. The same if we want in C language, we need to put more effort such as using loops etc.
The following examples demonstrate the Vector operations in R language.
https://tinyurl.com/AICTEDSBOOK9
In the following link, you find how two matrices can be multiplied in R language with a simple
operator. Do you remember our discussion elsewhere in the book that we need three nested for
loops to achieve the same in C language.
https://tinyurl.com/AICTEDSBOOK10

This became very much possible as the R programming language has nicely abstracted the
Mathematical quantity matrix. This is true with MATLAB language also. You may visit the
following link to explore matrix multiplication in MATLAB.
https://in.mathworks.com/help/matlab/ref/mtimes.html

Do remember that MATLAB abstracted complex numbers, vectors very nicely.

Introduction to data structures 53

Data types will have logical forms and physical forms. The ADT specification of a data type is
its logical form while its realization using a data structure is its physical form(see Fig. 1.12).

Fig. 1.12: The relationship between data items, abstract data types, and data structures. (Courtesy:
https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/ADT.html Last accessed: 10th Aug 2022)

The following picture (Fig. 1.13) illustrates the relationships between type, ADT, data structures,
etc., terms which are explained in the above pages.

Fig. 1.13: Relationships between type, ADT, data structures, etc
(Source: https://opendsa-server.cs.vt.edu/ODSA/Books/CS3/html/ADT.html Last accessed: 10th
Aug 2022)

Let me take one more example which you are already exposed to in your C programming course.
You might have certainly used “FILE *” type variables while reading and writing data into a file.
Do you know what the contents of the FILE structure are? It is given below.

typedef struct _iobuf{

Data Structures:Theory & Practicals
54

 char* _ptr;

 int _cnt;

 /* indicates how much space is still available in the

buffer*/

 char* _base;

 int _flag; /* mode of opening*/

 int _file; /* A unique number associated with the file*/

 int _charbuf; /* The I/O buffer*/

 int _bufsiz; /* The buffer size*/

 char* _tmpfname;

} FILE;

We can say the above as ADT for FILE *. And the standard I/O library24 that implemented
functions(operations) such as fopen(), fclose(), fread(), fwrite(), fprintf(), fscanf(), ftell(), fseek(),
feof(), fgetc(), fputc(), fputs(), fgets() is the data structure of this ADT.

1.3.4. Common algorithm design paradigms
We do require to know about common program design paradigms that are prominently used in the
literature. They are:
– Divide-and-conquer
– Iterative
– Recursive
– Back tracking
– Dynamic programming
– Greedy algorithms
– Randomized/probabilistic

Already, we have got exposure to iterative, and recursive solutions in C programming. We will
explore divide-and-conquer based solutions in the coming chapters. Other paradigms are beyond
the scope of this book.

In the following example, we have included a simple example of permutations of a string using
both iterative and recursive means. In practice, we may need to study which is better in terms of
time, space, scalability, and ease of implementation.

Example 20: Printing permutations of a string.

#include < stdio.h >

24 A collection functions is called as library or package

Introduction to data structures 55

The following link contains the above code for readers for their experimentation.
https://tinyurl.com/AICTEDSBOOK13

Example 21: Recursive permutations

The following link contains the above code for readers for their experimentation.
https://tinyurl.com/AICTEDSBOOK14

Data Structures:Theory & Practicals
56

If we observe, the recursive version has better scalability.

Example 22:
Some algorithms will have best case and worst case behaviors. For example, let us assume that we
wanted to a function to check whether a square matrix is symmetric or not. We have already given
solution in previous chapters. Here, we compare ij’th element with ji’th element by traversing the
matrix in lower triangular portion. If the first pair itself are not same, we can say with one
comparison that the matrix is not symmetric. Only after comparing all the pairs, we can say it is a
symmetric matrix (worst case situation).

Best Case= 1 pair of comparisons.
Worst Case= 1+2+….n-1= n(n-1)/2 pairs of comparisons. That is O(n2) complexity.

The following link contains the above code on a visualization server that shows both best and worst
case scenarios of this algorithm.
https://tinyurl.com/AICTEDSBOOK12

Question 7: How to transpose a square matrix in-place?
Hint: Think of exchanging a[i][j], a[j][i] of the above issymmteric() function.

Multiple Choice questions

1. Minimum how many comparisons are needed to find the minimum of three integers?
a. 1

b. 2
c. 3

d. 4

2. Minimum how many comparisons are needed to find both the maximum and minimum of
three integers?
a. 1

b. 2
c. 3

d. 4

3. How many bytes of memory is allocated for int type variables in C language?
a. 2

b. 4
c. 6

d. 8

4. Assume a, b, c are the variables having three sides of a triangle. The following expression
is written to check whether a, b, c form an equilateral triangle or not.
 (expr)?printf(“Equilateral\n”):printf(“Not equilateral\n”);

 How many minimum number of comparisons that “expr” can be made of?
a. 2

b. 3

Introduction to data structures 57

c. 4

d. 5

5. Minimum how many comparisons and logical operators are needed to check the uniqueness
of given three numbers a, b, and c?
a. 2

b. 2 comparisons and one logical AND
c. 4

d. None

6. Minimum how many exchanges are needed to reverse elements of a 1-D array with n
elements? (You may look at the following before answering
https://tinyurl.com/THANKYOUVASU3
a. n

b. 1
c. n/2

d. None

7. Minimum how many comparisons are needed to check whether a given nxn square matrix
is symmetric or not?
a. 1

b. n/2
c. n(n-1)/2

d. None

8. Worst case, how many comparisons are needed to check whether a given nxn square matrix
is symmetric or not?
a. 1

b. n/2
c. n(n-1)/2

d. 1+2+3+...+(n-1)

9. Minimum how many comparisons are needed to check whether a given n element array is
unique or not?
a. 1

b. n/2
c. n(n-1)/2

d. None
10. Worst case, how many comparisons are needed to check whether a given n element array
is unique or not?
a. 1

b. n/2
c. n(n-1)/2

d. 1+2+3+...+(n-1)
11. In which programming language, vectors are abstracted aptly like Mathematical vectors?
a. MATLAB

b. R
c. C++

d. C
12. How many multiplications are needed to multiply two nxn matrices?
a. n2

b. n3
c. n

d. n4

Data Structures:Theory & Practicals
58

13. Declaration of an array in C language with the statement “int a[10]” is:
a. Linear data structure

b. Static data structure
c. Homogeneous data structure

d. Mutable data structure
e. All are valid data structure
14. How many comparisons are needed in the best case to check whether a given n element 1-
D array is having all the same valued elements or not?
a. 1

b. n-1
c. n2

d. None
15. How many comparisons are needed in the worst case to check whether a given n element
1-D array is having all the same valued elements or not?
a. 1

b. n-1
c. n2

d. None
16. A compiler can compile source codes into executable programs. But what compiles the
compiler (which is a program itself)? Of course we would need a compiler for this job.

Source code A is the source code of Compiler A. When we compile Source code A by Compiler
A, we will get back Compiler A. Source code B is the source code of Compiler B. When we compile
Source code B by Compiler A, we will get Compiler B. Which of the followings must be true?
Note that we call two files identical if they are bit-by-bit identical.
i. Compiler A and Compiler B are compilers for the same programming language. ii. If we compile
Source code A by Compiler B, the output is identical to Compiler A.
iii. If we compile Source code B by Compiler B, the output is identical to Compiler B.
a. None of the statements

b. i only
c. ii only

d. iii only
17. We now modify Source code A to a new version -- Source code C. When we compile
Source code C by Compiler A, we get Compiler C. Compiler A and Compiler C are compilers for
the same programming language, and Compiler C always give faster programs compared to
Compiler A, which means that when the same source code is compiled by the two compilers (and
no compilation error occurs), and then the same input are fed to the two programs, the outputs of
the two programs are the same (if no runtime error occurs), and the program compiled by Compiler
C runs faster than that compiled by Compiler A (if both programs terminates) for any input. When
we compile Source code A by Compiler C, we get Compiler A2. When we compile Source code C
by Compiler C, we get Compiler C2. Which of the following must be true?
i. Compiler A2 runs faster than Compiler A (it needs a shorter time to compile any source code).
ii. Compiler A2 runs faster than Compiler C (it needs a shorter time to compile any source code).
iii. Compiler C2 runs faster than Compiler A (it needs a shorter time to compile any source code).
a. i only

b. iii only
c. i and iii only

d. i, ii and iii

Answers:

Introduction to data structures 59

Descriptive questions

Laboratory Programming Tasks

Task 1: Assume that xn calculation is represented in the following equation. 𝑥௡ ൌ 𝑥೙మ𝑥௡ି೙మ if n>1

 ൌ 𝑥 𝑖𝑓 𝑛 ൌ 1

That is, calculation of xn for n>1 is divided into two subproblems (divide and conquer method);
computing xn and xn-n/2. The following C program is implemented using the above recursive
relationship. This program also computes the height of the call tree.

The above code is available on a visualization server. We have modified the above
repeatedSquaring1() function such that it counts how many recursive calls it has made and also
what is the recursion tree height. The code is written in C language.
https://tinyurl.com/ychju2f5

Data Structures:Theory & Practicals
60

The above method’s complexity is O(2n). The following is the call tree(Fig. 1.14) for x^43. The red
marked nodes are once which are calculated first25.

Fig. 1.14: Call tree for the exponentiation algorithm

Task 2: You are asked to write a C program to compute the product of two integers without using
any multiplication and any loop.
May be, you can get inspiration from the following link https://tinyurl.com/y3jdgdcs

Task 3: For example, if x1, x2, …...xN are a set of students marks of a class and we are interested
to find standard deviation of their marks, then we need to use the following statistical formula 𝜎 ൌට∑𝑁𝑖െ1 ሺ𝑥𝑖െ𝜇ሻ2𝑁 , where 𝜇 is the mean of the students marks which can be calculated using

௫ଵା௫ଶା௫ଷା...௫ேே .

However, if we want to implement the above equation to compute standard deviation in a selected
programming language, we first need to compute 𝜇 for which we need to use students marks

once(probably using a loop) and then only𝜎can be calculated using the students marks again and

calculating their deviations from the class mean(this may need another loop). Thus, it forces us to
go through all the students' marks more than once and also demands two iterations or loops to be
used in the language. See the following solution that is implemented in C language.

25 If you observe the figure, you will find some powers of x are computed more than once. In fact, we can

store them in an array and use them as and when needed so as to speed up the function. Wow, this is the
essence of dynamic programming, another algorithm design paradigm.

Introduction to data structures 61

The above code is available at https://ideone.com/ET7V3O for experimentation.

With some mathematical manipulations, standard deviation calculation can be represented as: 𝜎 ൌ ඨ𝛴𝑥𝑖2𝑁 െ 𝜇2

This form allows us to calculate 𝜎 with one pass of students marks. That is, with one loop we can

find the required salutation. That is, in the loop itself, we can compute sum of the students marks
(𝛴𝑥𝑖) and sum of the squares of the students marks(𝛴𝑥𝑖2). Also, this equation alleviates the need

for an array. After exiting from the loop, we first calculate 𝜇 and then 𝛴. The following is the C

language solution using this approach which we call a tractable form. The following is a video that
elucidates the standard deviation calculation using this tractable form.
https://www.youtube.com/watch?v=NFcUU9d8XFs&list=PLXX7XiUxnzzUILTy1F68tpk7FZ56
nJrOg&index=40

The above code is available at https://ideone.com/UC0TOi.

Data Structures:Theory & Practicals
62

Task 4: Let us explore another example to elucidate the concept of tractability. We are given a
sequence a1, . . . , aN numbers. Give an algorithm that computes the value of

The following implements the above function calculation through a C language. You may play with
it at https://ideone.com/JSsmmo.

The above code is available on a visualization server also. We welcome readers to trace the same
at https://tinyurl.com/y9okpu48 .

In the above program, we find that we have used two nested for loops to compute F. Let us expand
the above mathematical equation to identify for possible tractable for,

Let us take N=4 and expand the above equation. We get the following. We find that 𝑎ଵଶ െ 𝑎1, 𝑎ଵଶ െ 𝑎1 ൅ 𝑎ଶଶ െ 2𝑎ଶ , 𝑎ଵଶ െ 𝑎1 ൅ 𝑎ଶଶ െ 2𝑎ଶ ൅ 𝑎ଷଶ െ 3𝑎ଷ , etc., terms are seen in all the

subsequent terms. That is, once these terms are calculated, they can be used in subsequent terms
also. 𝑎ଵଶ െ 𝑎ଵ

2
൅ 𝑎ଵଶ െ 𝑎ଵ ൅ 𝑎ଶଶ െ 2𝑎ଶ

2 ∗ 3
൅ 𝑎ଵଶ െ 𝑎ଵ ൅ 𝑎ଶଶ െ 2𝑎ଶ ൅ 𝑎ଷଶ െ 3𝑎ଷ

3 ∗ 4൅ 𝑎ଵଶ െ 𝑎ଵ ൅ 𝑎ଶଶ െ 2𝑎ଶ ൅ 𝑎ଷଶ െ 3𝑎ଷ ൅ 𝑎ସଶ െ 4𝑎ସ
4 ∗ 5

By exploiting this property, we propose the following solution that uses a single loop.

Introduction to data structures 63

The above code is available at https://ideone.com/gNcbe4

Also, the above code is available on a visualization server to trace its working.
https://tinyurl.com/y7kzfh56

For this problem, the computational complexity of the first solution is O(n2) while the second one
is O(n).

Task 5: Sum of a 1-D array
Majority of us most commonly employ an iterative solution26 to calculate the sum of the elements
of a 1-D array with time complexity O(n).

Sum of a 1-D array using Exclude & Conquer approach.

That is, we want to use the following recurrence relation:

Sum_of_n_element_array=Sum_of_first_n-1_elements+last element if n>1

Sum_of_the_array_with_one_element=that_element_or_zeroth_element_itself if n=1

That is, to find the sum of an n-element array, somehow we find the sum of the elements of the first
n-1 elements and add the last element. This, we apply recursively. That is, to find the sum of an (n-
1)-element array, somehow we find the sum of the elements of the first n-2 elements and add the
last but one element. We reach the base case when n becomes 1. The following recursive function
is written that exploits the above recurrence.

26 int sum(int a[], int n){

 int i, sum=0;

 for(i=0;i<n;i++)sum+a[i];

 return sum;

 }

Data Structures:Theory & Practicals
64

You can visit the following sites to test the above code.
https://tinyurl.com/sum1D
https://tinyurl.com/y3ygy5l9?fbclid=IwAR3XcV1i-
Ri75Guwc_u5_h5clLsMTWt268NSejtedfIFS7e3ZHLvRzSvAao

The following uses the following recurrence that is different from previous.

Sum_of_n_element_array=first_element + Sum_of_last_n-1_elements if n>1

Sum_of_the_array_with_one_element=that_element_itself if n=1

https://tinyurl.com/y22t4hyy?fbclid=IwAR34q10UdBW1Mdn7DzYJNY2AYDX5YqWM0XW8
vop0jVuPtAB4p0p4e5A2ELg

Divide & Conquer approach

The following is divide conquer based solution like binary searching.

Sum_of_n_elements=Sum_of_left_half+Sum_of_right_half

Base case:

If any subarray becomes of size one then that element itself becomes that subarray sum.

https://tinyurl.com/y3jfczf6

Introduction to data structures 65

Welcome to participate in the online competition
We are hosting a competition so as to encourage students to build their competence in coding. This
will be very useful for placements also in the coming years. Thus, welcome students to attempt the
competition at the following link.
https://www.hackerrank.com/aictedsbook

Programming puzzles
Some programming puzzles along with their solutions around this chaper’s concepts are made
available at the following link.
https://docs.google.com/document/d/1QtNTk0riNJjuHpsbrTCOMly9CT79GmGVJKN0DPu8K4
A/edit?usp=sharing

References

1. Fundamentals of Data Structure in C, Horowitz, Ellis, Sahni, Sartaj, Anderson-Freed,
Susan, University Press, India.

2. Data Structures: A Pseudocode approach with C, Richard F. Gilberg, Behrouz A. Forouzan,
CENGAGE Learning, India.

3. My class notes on Algorithmic Complexity, now a refresher for craving teachers and
knowledge greedy students: A must primer for GATE(India), Adv. GRE appearing students.
https://www.amazon.com/dp/B09DJCW78T

4. C and Data Structures, NB Venkateswarlu & EV Prasad, 2010, S Chand & Co, New Delhi

Data Structures: Theory & Practicals 66

Unit coverage

Objectives of the Unit

Learning outcomes of the Unit

Stacks & Queues 67

2.1. Linear data structures

Linear data structures are the ones in which elements are organized in a sequential fashion (either
physically in memory or logically) so that they can be accessed in a linear fashion (one after
another). In this chapter, we will be exploring two linear data structures to name stacks and queues.
In the next chapter, another linear data structure, known as linked lists will be discussed.

Fig. 2.1: Stack of chairs
(Courtesy: https://www.dreamstime.com/stock-photo-stack-plastic-chairs-isolation-white-
background-image76425428 Last Accessed: 15th Aug 2022)

2.1.1 Stack

Let us assume we have a set of moulded (plastic) chairs. When we have visitors to our home, we
take chairs one after another (from top) and allow the visitors to sit. When they leave, in order to
tidy up the house, we put all the chairs one–by-one, i.e., one on top of the other. Is it possible to
pull the middle chair?. No. Is it possible to insert a chair in between two chairs?. No. We can insert
a new chair at the top only. Also, we can remove a chair from the top only. This type of thing is
called a stack. In fact, we refer to these chairs as a stack of chairs (See Fig. 2.1). Of course, we

Data Structures: Theory & Practicals 68

will have many of these types of things in our daily life, for instance a railway porter carrying a

stack of bags on the right side of Fig. 2.1.

You may love to see the following Facebook post that shows how a skilled labour carries that many
number of bricks as a stack.
https://www.facebook.com/watch/?ref=saved&v=658368031847687

Also think of spring loaded plate dispensers (Fig. 2.2). Whenever we press the top lever, we get a
plate ejected from the stack of plates. Here, also, we cannot take plates that are in the middle. Also,
some dispensers will have freedom to insert some more plates on the top but not in the middle.

Fig. 2.2: Plate dispenser

One of the 21st century challenges is providing safe drinkable water for masses. There are hundreds
of innovations that are aimed at producing safe water from various sources such as ground water,
river water, water from air through dehumidification. The following is an indigeneous design
proposed by authors from Nigeria27 for producing potable water from the ground water. If you
observe, you find a series(stack) of filters (pebbles, sand, a mesh, charcoal) in the tank. Pebbles,
sand layers control suspended matter from the ground water; while the charcoal layer takes care of
bacteria, odour (see Fig. 2.3).

27 Performance evaluation of a locally developed domestic drinking water filter, Bolaji, B. O. , Bolaji, G. A.

and Ismaila, S. O., October 2010, International Journal of Environmental Studies 67(5):763-771.

Stacks & Queues 69

Fig. 2.3: A water filter wit a stack of filtering layers

All of you will agree with me that the performance of these filtering layers will decay as time
progresses and we may certainly need to replenish them. Actually, this replenishment is carried all
layers at once. If we want to replenish only a certain filter layer, it is not possibly easy. Probably,
we may replenish the top layer without disturbing other layers. This example shows that we cannot
replenish bottom layers without removing other layers.

Also, in recent years the Government of India and all the state governments are encouraging people
to replenish groundwater (rain water harvesting) by digging rainwater discharge ponds which are
also designed with a series of layers as explained above. See the following figures (Fig. 2.4).

Fig. 2.4: Rainwater harvesting pits with a stack of filters.
(Source: https://rain-water-harvesting-in-hyderabad.blogspot.com/2019/06/ Last accessed: 27th
Aug, 202)
For all Hindu’s Lord Krishna’s birthday (Krishnashtami) is a very very auspicious day. One
prominent program which is celebrated on that day is “Utti Kottu (or Utti Kottadam or Dahi

Data Structures: Theory & Practicals 70

Handi28)”. In this program, a clay pot filled with yogurt (dahi), butter, or any other milk-based
foods at a convenient or tall height. Young men and boys form teams, make a human pyramid (one
layer of standing people, on the top of them another layer of standing people, like this on the top
one person will be seen), and attempt to reach or break the pot. The following picture (Fig. 2.5)
shows the stack of people breaking the clay pot.

Fig. 2.5: Stack of people (Courtesy of www.alamy.com Last Accessed: 15th Aug 2022)

In the human pyramid, new people will be added on the top only while forming the human pyramid.
After breaking the clay pot, the top layer people come down; this is repeated for all the layers of
the people. That is, while adding people to the pyramid they get added at the top only, while
removing the people from the human pyramid, people on the top will be asked to come down.

Fig.2.6: Stack of plates and we take a plate from the top
Let us have one more example. Consider that we are in a buffet. Obviously, on the first table we
may find a pile of plates (a.k.a stack of plates). We go along with other people in the queue and
take the top plate when our turn comes (See Fig. 2.6).

28 https://en.wikipedia.org/wiki/Dahi_Handi

Stacks & Queues 71

Once we finish our dinner, we leave our plate on the top of another pile of plates which are meant
for cleaning (see Fig. 2.7). Do you dare to push your used plate in between two plates of the pile of
plates that are meant for cleaning? No. No. Not at all. You will keep on the top of the existing pile
of plates only. Here, we can say that the pile of plates is a stack of plates.

Fig. 2.7: stack of plates to be washed

Let us explore another example where stack is involved. A busy office executive maintains two
trays, “in” tray and “out” trays. When a file arrives at his desk, it will be left in the “in” tray(see
Fig. 2.8). Thus files pile up in the “in” tray. Whenever the executive has time to clear the files,
he/she takes one file from the top. That is, files are added to the “in” tray at the top, and removed
from the “in” tray also from the top. Therefore stacks are sometimes referred to as LIFO (Last in

First Out)structures. Stacks are also referred to as pushdown lists as the previous items go down

when a new item is pushed.

 Fig. 2.8: An executives “in” Tray

Let us take one more example related to our daily life which is none other than browsing the Internet
using our browsers such as Google Chrome, Firefox, etc.,. See the following Fig. 2.9 where you
see left and right arrows with which we can browse through the web pages which we have visited
(already).

Data Structures: Theory & Practicals 72

Fig. 2.9: Browsers left and right navigation arrows

In the above figure, if we click the left arrow then the browser gets loaded with the web site that is
visited before the present web page. If we click the left arrow further, it makes the browser load
the site that is earlier to the recent one. OK. OK. Are you catching my point? Here, the web pages
visited are in the stack fashion29. (see Fig. 2.10)

Fig. 2.10: Navigation of web pages visited

Let us explore some high school level competition examples that appeared in Bebras30 challenges.

ICE Cream (UK Bebras, 2015, Australia Bebras 2015)

(Source: https://www.bebras.edu.au/wp-content/uploads/2016/10/2015-Bebras-Solution-
Guide.pdfLast Accessed: 15th Aug 2022)

At an ice cream parlour, cones will be filled(stacked) with one scoop after another according to
your specification.

Question 1: If you want ice cream as shown in the picture, you specify __

29 In fact, two stacks. This in principle can be called deque.
30 Courtesy of bebras.org

Stacks & Queues 73

Answer: B. Strawberry, Smurf and Chocolate! The actual order used in this task is stack order. In
particular “Last in, First out” or LIFO(LIFO)31.

Stack of plates (2010, Germany)

(Source: http://www.ict-21.ch/com-ict/IMG/pptx/Promoting-Inclusive-Informatics-Education-
Through-the-Bebras-Challenge-G.S..pptx Last Accessed: 15th Aug 2022)

In Beavers hostel, two kinds of plates are used. The high green ones for the small beavers whereas
the flat brown ones for the big beavers. One day, due to building activities, there is only room for
one stack of plates. Beavers will be standing in a queue for their lunch. The kitchen beavers need
to put the plates on the stack in the right order to make the stack match to the queue as shown in
the following figure.

Question 2: In the following pictures, we are supplied four types of Beavers queues and an
associated stack of plates. In which one exists a mismatch between queue and stack?

31 While traversing trees, graphs using stacks, we use this concept or order. That is, the nodes which are to

be processed later are pushed into the stack.

Data Structures: Theory & Practicals 74

Answer: B. First two Beavers are larger ones, while the top plates on the stack are green ones.

Remaining all three pairs are in correct form.

How can we solve this? Let us use some coding. Assume big Beaver as 1 and small one as 0. In the
same fashion, brown plate as 1 and green as 0. Now, code bevers from left to right while plates
from top to bottom.

We do have image stacks32(see Fig. 2.11) which are collections of images. They are also referred
to as layers or slices. Assume that you want to analyze how the coast of your town is changing year
by year. By stacking the satellite images of your town of various years, and displaying them one
after another, we can understand how the coast is changing in that city.

Fig. 2.11: An example image stack

32 https://serc.carleton.edu/earth_analysis/image_analysis/introduction/day_2_part_2.html

Stacks & Queues 75

In addition, while running programs which are having functions, functions that are calling other
functions, the computer system inherently maintains a special structure known as program stack
where return addresses are stored. See the following example program that contains a set of
functions that are called from other functions as a chain fashion.

Whenever a function is called, the address of the next instruction (of the function call instruction)
is stored in the program stack and then program execution will be switched to the function that is
called. Whenever either a return statement is encountered or the last statement of the function has
reached, program execution will be continued from the address which is on the top of the program
stack. For example, consider the above set of functions and the main. Program execution starts
from main. Thus, when FUNCT3() is called, the next instruction address (i.e., Address1) is stored
in the program stack and then control switches to FUNCT3(). While running FUNCT3(), when
FUNCT2() is called, the next instruction address (Address 2) is stored in the program stack before
jumping to FUNCT2(). Like this functions are executed. Thus, the program stack maintains the
return addresses. An address is added at the top when a function is called and also an address is
removed from the top of the program stack when the program control returns from the function.
The following figure illustrates this concept (Fig. 2.12).

Fig. 2.12: Program stack: its growth and rewinding

Data Structures: Theory & Practicals 76

We welcome readers to visit the following link. Here, we are trying to print the Program

Counter(PC33) value before and after the function calls. Identify which addresses are the ones that
goes to program stack34.
https://tinyurl.com/AICTEDSBOOK19
https://ideone.com/cZC9hA

The insertion operation into the stack is called PUSH; while the deletion operation is called POP.
The most accessible element in a stack is known as the TOP of the stack (TOS).

As insertion and deletion operations are performed at the same end of the stack, if elements are
removed one after another, their order becomes the opposite order of their addition to the stack.
That is, the most recently added item will be the one removed first. Thus, this type of structure is
called the LIFO (Last In First Out) queue.

Thus, theoretically, we can have any type of stacks such as: stack of chairs, stack of plates, stack
of documents, stack of addresses, stack of tables, stack of people, etc.,.

In practice, we can realize stack of characters, stack of integers, stack of structures, etc.,.

In practical implementations, we can realize stacks either using arrays or using linked lists35. From
the examples, we are sure that you might have also got a feeling that stack is a linear data structure
like array.

The following guy (see Fig. 2.13) made a rare Guiness record of wearing 35 T-shirts one above the
other within 1 minute36. Wow. That is, a stack of shirts. Is it possible to remove a 10th T-shirt
without removing the T-shirts above it? No way. Is it possible to wear another (insert) T-shirt above
the 10th T-shirt of the present stack of 36 T-shirts? No way it is possible. He can put a new T-shirt
on the top of the current T-shirt and also he can remove the T-shirt which is on the top. Just trying
to kid with you. Can he remove all the T-shirts(stack) in one go?. If so, he can wear all the 35 T-
shirts much before 60 seconds. Ha. Ha.

Fig. 2.13: A guy wearing 35 T-shirts one above the other(stack of shirts!!)

From our illustrative examples, we tried to convey that stack is a generic concept. That is, we

can have a stack of moulded chairs, a stack of filters, a stack of people, a stack of ice cream

snoops, etc.,.

33 Not even, the famous bollywood heroine Priyanka Chopra or Personal Computer
34 We have tested on 8086 machine
35 We will be implementing this in the next chapter.
36 https://www.youtube.com/watch?v=RosxpIGnRC0

Stacks & Queues 77

2.1.2 Operations on stacks

According to Wikipedia37:

In computer science, a stack is an abstract data type that serves as a collection of elements, with

two main principal operations:

● Push, which adds an element to the collection, and
● Pop, which removes the most recently added element that was not yet removed.

We do have some other operations on stacks such as as peek(also known as top), isempty, isfull.
We shall deal with this along with stack’s implementation in the C programming language.

The following video illustrates the operations on stacks.
https://www.youtube.com/watch?v=V1voux_sU5M&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4
NMtVN&index=2&t=7s

2.1.3 Realization of Stacks Using Arrays

We use a pointer TOP or index variable that is used to show or point the top of the stack at any
time. That is, the TOP value will be the index of the array element which was inserted recently. We
assume that the array has sz elements. We are sure that you will accept with us that an array in C
language (for that matter in any language) is a consecutive sequence of memory locations which is
thus considered as linear in accessing the same. As we are using this for realising our stack and
elements are also manipulated in a sequential manner, the stack also becomes linear one.

That is, a pointer or index variable TOP keeps track of the top element in the stack or top of

stack(TOS). When the stack is empty, TOP value is set to –1. This is done when a stack object
or variable is created or instantiated. When the stack contains a single element, TOP will be made
to have a value of 0 (Zero) and so on. Each time a new element is inserted in the stack (called as
PUSH operation); the pointer (TOP) is incremented by 1. The pointer (TOP) is decremented by 1
whenever an element is deleted from the stack.

How long can we continue this PUSH operation?. The answer is till there are some free elements
in the array (which is used for realizing the stack). An attempt to PUSH an element into a stack
which is already full is said to be over flow condition.

Similarly as briefed above, we have another operation which we can do on a stack known as POP.
When this is executed, the top most element is removed from the stack and TOP is adjusted
(reduced) to point to one element below the current one.

Obviously, we may get a doubt about how long or how many times we can do POP operation?. The
answer is we can do it till the array elements are exhausted. Rather, whenever POP operation is
done; TOP value will be reduced by one. When this becomes -1, then no elements are there in the
stack. Any attempt to POP from an empty stack will be said to be under flow.

37 https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Data Structures: Theory & Practicals 78

In the above algorithm for PUSH, the 1st step checks for an overflow condition. If such a condition
exists (that is the array used is fully occupied), the insertion can't be performed and instead an
appropriate error message will be displayed. If the stack is not full, then insertion takes place and
TOP is adjusted accordingly.

The following figure (Fig. 2.14) demonstrates a series of PUSH and POP operations on a stack.

Fig. 2.14: Pop and Push operations on stacks

Stacks & Queues 79

In the above algorithm for POP operation, an underflow condition is checked in the first step of the
algorithm. If such a condition exists(i.e TOP value is less than 0), then the deletion cannot be
performed and instead an appropriate error message will be displayed.

We do have another operation known as PEEK, which is used on stacks in many applications. It
returns the element on the top of the stack but not removed. That is, the top element is returned but
the TOP value is not reduced. That is, if we call PEEK followed by POP, we get the same output.

Example 1: The following program realizes the stack using arrays in C language. All the functions
are implemented with the above background.

Just to show how to use this stack, we have used a simple example. Elements of a string are pushed
into the stack and printed the same by popping one after another.

Data Structures: Theory & Practicals 80

Output:
amar

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/AICTEDSBOOK16

The following video explains the above code.
https://www.youtube.com/watch?v=2GElnTKyi3E&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4
NMtVN&index=6

Question 3: See the following code that is available at https://ideone.com/qwGjjw for
experimentation38. Is this implementation of stack better or the above one?

38 These types of programs are taught by many teachers in many colleges. Thus, we are of the opinion that it

is our responsibility to address whether such implementations are good or bad. Thus, we have framed this
question. We welcome teachers and students to compare in terms of reusability and abstraction.

Stacks & Queues 81

Question 4: Why is the initial value of top taken as -1 in the above program?

Question 5: Assume that in some programming language array’s first element is at location 1
instead of 0 like in C language. Then, what will be the initial value of top?

Question 6: Assume that in some programming language array’s first element is at location 1
instead of 0 in C language. Identify what modifications you need to apply to the functions used in
the above implementation?

Data Structures: Theory & Practicals 82

Question 7: Assume that we want the stack (in the array) to grow in the opposite direction that is
used in our implementation. What is the initial value of TOP if you plan to do so? Identify what
modifications you need to apply to all the functions used in the above implementation?

Question 8: Assume that we want to implement the stack in a language in which array elements
are indexed as n:m, where n<m and lowest indexed element is at location n and higher indexed
element is at the location m in the array. What is the initial value of TOP if you plan to implement
the stack in this language? Identify what modifications you need to apply to all the functions used
in the above implementation?

Question 9: We welcome readers to visit the following link. Here, we are trying to maintain
students in a stack. Here, ‘stud’ is defined with his roll number (RNO) and name. For ease of
explanation, we have used only two data members; in reality we can have any number of data
members to define the student.

struct stud{

 int RNO;

 char name[9];

};

The following link contains our code on a visualization server. We welcome readers to visit the
link and execute the same and understand how generic is the concept of stack.
https://tinyurl.com/AICTEDSBOOK15

Example 2: An example to simulate the operations on the stack. A menu is given to the user, with
which he can do operations on the stacks and see the effect.

Stacks & Queues 83

The following link contains the code that demonstrates the stack overflow, stack empty conditions.
https://tinyurl.com/NBVstackusingarray

Question 10: Name the data structure that keeps items in order and only allows to add or remove
the elements at one side only?

Answer: The stack

Question 11: Assuming that “A”, “B”, “C” elements are pushed in order into a stack. After one
pop operation, which elements will be left in the stack?

Answer: “A” and “B”.

2.1.4. Applications of stacks

2.1.4.1 An application of stack for checking expression validity

See the following C language statement.

 printf("%d\n", 2+3*(2 - 3* (2-3)*6 + 3*1-(3*3-4);
If we try to compile the program using the above line, we get the following errors in the Dev C/C++
compiler.

Data Structures: Theory & Practicals 84

C:\Users\Administrator\Desktop\AICTEBOOK\Untitled1.cpp In

function 'int main()':

4 63

C:\Users\Administrator\Desktop\AICTEBOOK\Untitled1.cpp [Error]

expected ')' before ';' token

4 63

C:\Users\Administrator\Desktop\AICTEBOOK\Untitled1.cpp [Error]

expected ')' before ';' token

If we observe the above printf statement, we find that the statement is invalid in terms of
parentheses. That is, the statement is missing one ‘)’. The above compiler error messages are also
conveying the same.

See the above code where we have used beginning double quotes but forgot closing double quotes

in a C language statement. The above compiler error messages are reporting this. The compiler is
showing “missing “ character” on the line in which a mistake is made. Also, it is considering the
next line is also an error as it could not find closing double quotes in that line also!.

See the following code where we have declared a five dimensional array. On statement 4, we have
purposefully missed a “(“ and thus that statement is identified by an erroneous statement by the
compiler. The compiler reports that it is expecting “(“ before “]” which of course is very much
valid also.

Stacks & Queues 85

We have used all these examples to show that compilers are supposed to validate statements in
terms of brackets, double or single quotes and vice versa. Here, we propose an ad hoc method for
this type of validation.

We traverse the given expression element by element. Whenever, we find an opening type bracket
such as ‘(‘, ‘[‘, and ‘{.’, the same will be pushed into the stack. When we find a closing type bracket
such as ‘)’, ‘}’, and ‘]’, we pop the character from the stack and compare the current closing bracket.
If they are matching of type, the expression is valid till that element. Otherwise, we can out rightly
say that the expression is invalid. We proceed like this till we encounter the null character in the
given input string or statement. After that we check whether the stack is empty or not. If the stack
is empty, it means all the opened brackets are closed and that too with correct matching type
brackets. Thus, the given expression is valid; otherwise, the expression is invalid as some brackets
which are closed did not get closed.

Example 3: Evaluating the expression for their parenthesis.

Solution: We will be using the above stack structure and related functions here. In addition, we
will be using the following functions.

Data Structures: Theory & Practicals 86

Output:

Enter an expression
2+3*(2 - 3* [2-3]*6 + 3*{1-3*3}-4
Invalid Expr

Enter an expression
2+3*(4+3*[2-3]*6-{2*3-4}+4)-3
Valid Expr

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/NBVparenthesisvalidation

Question 12: See the following type of expression which have some spurious (extra) closing
brackets. What happens if we input this type of expressions to the above program? Do we get
“invalid expression” message? If not, what changes you need to do for the above code?
2+3*(4+3*[2-3]])*6-{2*3-4}+4)-3

Example 4: We wanted to realize two stacks in the same array. First stack, we call A and second
one B. We assume, stack A will grow from bottom to top locations of the array (like previous stack)
while stack B grows from top to bottom. This is proposed to utilize the array in a better way. It

is possible in practical applications, some stacks will grow very much compared to others. To

increase the utility of array memory we want both the stacks to be using the same array.

Stacks & Queues 87

We take two indexes known as topA and topB. They will be initialized to -1 and sz respectively as
array elements indexes are 0 to sz-1. When an element is pushed into stack A, topA is incremented
at that location element is inserted. While an element is pushed into stack B, topB is reduced and
then element is inserted in element pointed by topB. When we pop from stack A, topA is reduced
after returning the element. While an element is popped from stack B, topB is increased after
returning the element.

We can go on inserting elements into stack A or B till the array has some space. That is, if topA+1
is the same topB, then we can conclude that the stack is full. Stack A will be empty if topA value
is -1. While stack B is empty if topB is the same as sz.

Data Structures: Theory & Practicals 88

Output:
aAmMaArR

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/AICTEDSBOOK17

The following link contains a video that explains the above double stack implementation.
https://www.youtube.com/watch?v=WLpRLIhWZ8Q&list=PLXX7XiUxnzzWoLDfgad4s4dwleb
4NMtVN&index=17

Question 13: Assume that we want to implement two stacks in the same array like the previous
example with the exception that both the stack grows as shown below.

Stacks & Queues 89

That is, the left half of the array used for stack for stack A, while the right half of the array for
growing stack B. You plan what you are going to do if the array size is even and similarly if it is
odd. Modify the whole code given above for implementing the two stacks in this fashion.

2.1.4.2 INFIX, POSTFIX AND PREFIX Expressions

We are usually taught mathematical operations such as addition, subtractions etc.. during our school
days. Adding two quantities A, B is mentioned as A+B. That is, the operator + is placed in between
the two operands A, B and this representation is called an infix representation. We do have other
representations of mathematical operations. These are

The three prefixes “pre-“, “post-“ and “in-“ convey the relative position of the operator in relation
to the two operands. I

In Prefix notation (also known as polish notation) the operator will be before (precedes) the two
operands.
In Postfix notation (also called reverse polish notation, RPN) the operator will be after (follows)
the two operands.
In Infix notation the operator is in between the two operands.

Do you remember the BODMAS rule that would have been taught during your school days? BTW,
does BODMAS stand for person or acronym? Ha. Ha. It is an acronym. The following table in
support of this rule says while evaluating expressions, one needs to evaluate brackets, powers,
division, multiplication, addition, subtraction in the order left to right.

Consider the evaluation of the expression infix expression A + B * C. We “know” that
multiplication is to be done before addition). That is, A+B*C can be interpreted as A + (B * C).

How to write A + B * C in postfix or reverse polish notation?. This can be done by applying the
rules of precedence. That is, we first convert the portion of the infix expression that is evaluated
first into postfix, namely here the multiplication. Then, we convert the + operation as it is done
after *. That is :

Data Structures: Theory & Practicals 90

Let us carry the similar conversion operation on the infix expression (A+B)*C.

In the above example the addition is converted before the multiplication because of the parenthesis.
In going from (A + B) * C to (AB+) * C, A and B are the operands and + is the operator. In going
from (AB+) * C to (AB+) C *, (AB+) and C are the operands and * is the operator. The rules
for converting from infix to postfix are simple. The following figure (Fig. 2.15) provides the order
of precedence.

Fig. 2.15: Operators and their precedence

2.1.4.2.1 Algorithm : Evaluation of a Postfix or Suffix expression

Here, we assume operands in the given expression are single digit operands. Thus, we can use the
stack explained in the first examples. Also, we assume our postfix string will contain only digits
and operators.

A snapshot of evaluating a postfix expression: 236*+42/+

6
3
2

18
2

20

2
4
20

2
20

22

U l P Bi
+

-

*

L R

L R

L R

Addition

Subtracti
on

Stacks & Queues 91

TOP=2 TOP=1 TOP=0 TOP=2 TOP=1 TOP=0

Initially the
stack is
empty.

Now, 2,3,6
are pushed
into the
stack.

As, we
have
encountere
d *
operator,
we pop 6,3
and
calculate
their
product
and push
the same
into the
stack.

As we have
now
encountere
d +
operator,
we pop 18,
2 and
calculate
their sum
and push
the result
into the
stack.

Now, 4,2
are pushed
into the
stack.

As we have
now
encountere
d /, we pop
2,4 and
calculate
their
division
and push
the same
into the
stack.

As we have
encountere
d +, we pop
2,20 and
calculate
their sum
and push
the same
into the
stack.

Readers are welcome to run the following program on a visualization tool to verify the above table.
https://tinyurl.com/AICTEDSBOOK28

Example 5: Evaluating Postfix expression

Solution: We propose to take the same stack structure as discussed in previous examples. Also, we
assume operands are simple single digit operands. As the stack is character stack, we are pushing
the operands as characters. However, once we pop the same from the stack, we are subtracting 48
to get digit value before evaluating the operator. Also, 48 is added to the result before pushing into
the stack. At the end, 48 is subtracted from the popped item to get the integer result.

Data Structures: Theory & Practicals 92

Output:
Enter a Postfix expression
234*+42/-6+
18

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/AICTEDSBOOK18

The following link contains a video that explains infix to postfix conversion using a stack.
https://www.youtube.com/watch?v=cDGtjfz3kmk&list=PLXX7XiUxnzzWoLDfgad4s4dwleb4N
MtVN&index=28

Question 14a: In the expr() function of the above code, we are not using any break statement after
return statements. By chance if we insert break after each of the return statements of switch
construct, what compilation error are you going to get. Please experiment on a variety of compilers
instead of one compiler.

Answer: You will get unreachable code.

Question 14b: In our stack, we have used character array, x in the stack structures. Assume that
we have modified the stack structure to have an integer array instead of character array as shown
below.

What modifications one has to do for the above code so as to use for expression evaluation.
Hint: You may look at the following link after your initial thought process.
https://tinyurl.com/AICTEDSBOOK20

Question 15: What is the postfix expression whose evaluation changes the stack content as shown
in the following figure?

2.1.4.2.2 Stack based computers

Stacks & Queues 93

We do have stack based computers39; we mean HW which internally uses the operations push and
pop in HW. Also, we do have some freely available SW to simulate them40. We request teachers to
use them during their classes.

Conventional processors of contemporary design will have a finite set of named registers. However,
in a stack machine CPU, the registers are arranged in a stack fashion. It supports the usual range of
arithmetic operators and stack manipulation instructions push, pop. Do remember that we are
referring to HW aspects. That is, these push, pop are of that stack processor’s machine language or
level instructions.

As usual, any expression can be converted to RPN and a stack computer can be used to evaluate
that expression without. For example, if we want to evaluate X + Y - Z, its postfix form XY + Z

- is computed.

Now, we can give instructions: push val X, push val Y, add, push val Z, sub.

Of course, in this machine also, to execute an operation like add or sub, top two items from stack
are used and the result will be pushed back to stack. We welcome readers to visit the following site
for more details.

https://www.cs.csustan.edu/~xliang/Courses/SimulatorWeb/Examples/StackMachine/Expr_0a

Stack machine code for computing expression (X+Y)*(W-Y)

Question 16: In order to evaluate an expression 5+(((9+8)*(4*6))+7), the following steps are taken
by a stack based computer. Are they valid steps?

39 https://people.ece.cornell.edu/land/courses/ece5760/DE2/Stack_cpu_2011.html
40 https://www.cs.csustan.edu/~xliang/Courses/SimulatorWeb/index.htm

Data Structures: Theory & Practicals 94

Question 17: The following pictures illustrate the evaluation of a RPN expression. Is there any
mistake in it? (Source: http://ds.nathanielgmartin.com Last Accessed: 15th Aug 2022)

Answer: Yes. There is a mistake at the end. That is, the stack is supposed to have 45 instead of 5
as 9*6 is 45. You are welcome to visit the following visulaization to verify the above.
https://tinyurl.com/AICTEDSBOOK27

2.1.4.2.3 Converting Infix Expressions to Postfix

We have discussed in the previous example about evaluating a postfix expression. Now, we have
to know how to convert an infix expression to postfix.

We know that the postfix expression contains the operands which have high precedence before to
operands whose precedence is lower. Thus, we traverse the given string (we assume here also the
operands are single digit operands for our convenience sake) character by character. If we encounter
an operand, we simply output. When we encounter an operator we will check the stack if it is free
simply we can push into it. Else, we compare the operator at TOS, if TOS character precedence is
higher we will pop and print. (here, this stack is called an operator stack as we are pushing the
operators into it).This, we repeat till the stack is empty or till we encounter an operator whose
precedence is lesser than the current operator. Then, we push the current character into the stack.
Once after processing all the elements of the expression, we pop the all operators from the stack
and print.

Stacks & Queues 95

We have demonstrated in our examples that the postfix expression does not contain parenthesis.
Without them also, evaluation will be carried out correctly. Thus, we propose to push a bracket of
opening type into the stack. Any operator will be having high precedence (this we have assumed
for our programming convenience). When a closing bracket is encountered, we go on pop and print
operators from the stack till we encounter the opening bracket from the stack. However, we will
not print popped bracket in the postfix string.

Example 6: To convert an infix expression to postfix.

/* The following function returns 1 if operator 1 has higher precedence than

b*/

Data Structures: Theory & Practicals 96

Output:
Enter an InFix expression
2+3*6+4/2+6
Post Fix Expression=236*+42/+6+

A snapshot of the program which converts an infix expression to postfix is given below.

Input String: 2+3*6+4/2+6

Stacks & Queues 97

The following link contains the above code on a visualization server. We welcome readers to visit
the link and execute the same.
https://tinyurl.com/NBVinfixtopostfix

Question 18: Reverse polish notation of an infix expression 5+(((9+8)*(4*6))+7) is given as : 5 9
8+4 6 * * 7 + * (for clarity reasons, we have used spaces). Is this a valid equivalent?

Question 19: Analyse the working of PRECED() function defined above by filling the returned
value of this function in the following table for various values of arguments a, b.

Data Structures: Theory & Practicals 98

Question 20: In the above program, we have assumed that our expressions are having only +, -, *
and / operators. According to the logic of PRECED() function is developed. What is we want to
consider another operand $, which can be assumed as exponentiation whose precedence is
considered to be more than * and /. Do remember that this operator is also a binary operator (that
is, it will also have two operands). That is, A$B is equivalent to AB. Explore what modification you
need to apply for PRECED() function.

The following figure illustrate how the infix expression A + B * C - D / E is converted to postfix.

Readers are welcome to visit the following link to visualize the conversion.
https://tinyurl.com/AICTEDSBOOK29

The following figure illustrate how the infix expression A*B-(C-D)+E is converted to infix to
postfix. Do observe that the previous one is free from any brackets compared to this example.

Stacks & Queues 99

The following link contains the code to verify the above table.
https://tinyurl.com/AICTEDSBOOK30

Example 7: You are given the daily stock price of a company for some number of consecutive
market days. You need to compute the span value for all the given days. Span value of a day i (si)
is the maximum number of consecutive days (up to the day i) for which the stock price of the stock
is <= stock price of day i.
(Courtesy: https://www.heppenstall.ca - /academics/doc/242/ Last Accessed: 15th Aug 2022)

Assuming P is a 1-D array having stock’s daily price values. Let us take another 1-D array S to
store the span of the stock for every ith day. The following is a little crude procedure with time
complexity O(n2) where n is the number of consecutive days for which stock’s price is given.

Data Structures: Theory & Practicals 100

The author of this problem has suggested the following algorithm that uses a stack. Take here the
function top() as our peek(). Also, the pseudo language what the algorithm is little inspired by
object oriented languages such as Java.

We have made a solution and it is made available at the following link. Explore how time
complexity of this method is compared to the crude approach given above.
https://tinyurl.com/AICTEDSBOOK21

Question 21: What is the complexity of push(), pop(), peek() operations on a stack implementation
that uses an array?

Question 22: Assume that we want to design a growable stack in C language by using functions
such as realloc(), malloc(). Maybe, initially you can create a dynamic array in the stack structure
that was proposed earlier. Also, the initstack function can be made to create a dynamic array, x.
See the possible stack structure.

Stacks & Queues 101

Assume that whenever we find the available space of the array x becomes full, then by calling
malloc() function create a new dynamic array with twice the size of the current array, x, and then
copy the present stack content into it then make that new dynamic array as x. Like this, we want
you to implement a growable stack using the array.

Question 23: The following table illustrates conversion of the infix expression a - (b + c * d)/e to
postfix form. Is there any mistake in this trace?

Readers are welcome to visit the following link to visualize the conversion.
https://tinyurl.com/AICTEDSBOOK35

Answer: No

Question 24: Is there any mistake in the following infix to postfix conversion table of the
expression 2*3/(2-1)+5*3?

