R.G.Dromey
How to Solve it
by Computer

C.A.R.HOARE SERIES EDITOR

o
<

R. G. DROMEY

Department of Computing Science
The University of Wollongong

PH]

Prentice /Hall interational

ENGLEWOOD CLIFFS, NEW JERSEY LONDON NEW DELHI

SINGAPORE SYDNEY TOKYO TORONTO WELLINGTON

Library of Congress Cataloging in Publication Data

DROMEY, R. G, 1946~
How to Solve it by Computer.
Bibtiography: p.
Includes index
1. Mathematics—Data processing

2. Problem solving—Data processing
2. Efectronic digital computers—Programming

I. Title.
QAT76.95.D76 5194 81-19164
ISBN 0-13-433995.9 AACR2

ISBN 0-13-434001-9 (pbk.)

British Library Caraloging in Publication Data

DROMEY, R. G.
How to Solve it by Computer.

1. Title

511°.8 QA9.58

ISBN 0-13-433995.9

ISBN 0-13-434001-9 (pbk)

© 1982 by PRENTICE-HALL INC., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the publisher.

ISBN 0-13-43u00k~% {PBK}

PRENTICE-HALL INTERNATIONAL, INC, London
PRENTICE-HALL OF AUSTRALIA PTY. LTD., Sydney
PRENTICE-HALL CANADA, INC,, Toronto

PRENTICE-HALL OF INDIA PRIVATE LTD., New Delhi
PRENTICE-HALL OF JAPAN, INC,, Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE,, LTD., Singapore
PRENTICE-HALL, INC,, Englewood Cliffs, New Jersey
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

Printed in the United States of America

10987654321

This book is dedicated to
George Polya

We learn most when
We have to invent

Piaget

PREFACE xiii
ACKNOWLEDGEMENTS xxi

INTRODUCTION TO COMPUTER PROBLEM-SOLVING

1 Introduction 1

2 The Problem-solving Aspect 3

3 Top-down Design 7

4 Implementation of Algorithms 14
J
6
7
b

1.
1.
1.
i.
i I'!Ugldlli VC!lllkdUUll 19

1.6 The Efficiency of Algorithms 29
1.7 The Analysis of Algorithms 33
Bibliography 39

FUNDAMENTAL ALGORITHMS 42

Introduction 42

AIELA NS NA AR LR

Algorithm 2.1 Exchanging the Values of Two Variables 43
Algorithm 2.2 Counting 47

Algorithm 2.3 Summation of a Set of Numbers 51
Algorithm 2.4 Factorial Computation 56

Algorithm 2.5 Sine Function Computation 60

Algorithm 2.6 Generation of the Fibonacci Sequence 64
Algorithm 2.7 Reversing the Digits of an Integer 69
Algorithm 2.8 Base Conversion 74

Algorithm 2.9 Character to Number Conversion 80

Bibliography 84

X

X CONTENTS

3 FACTORING METHODS 85

Intraduction 85
Algorithm 3.1 Finding the Square Root of a Number 86
Algorithm 3.2 The Smallest Divisor of an Integer 92
Algorithm 3.3 The Greatest Common Divisor of Two

Integers 97
Algorithm 3.4 Generating Prime Numbers 105
Algorithm 3.5 Computing the Prime Factors of an Integer 116
Algorithm 3.6 Generation of Pseudo-random Numbers 120
Algorithm 3.7 Raising a Number to a Large Power 124

Algorithm 3.8 Computing the nth Fibonacci Number 132

Bibliography 138

=
-

Algorithm 4.1 Array Order Reversal 140

Algorithm 4.2 Array Counting or Histogramming 144

Algorithm 4.3 Finding the Maximum Number in a Set 147

Algorithm 4.4 Removal of Duplicates from an Ordered
Array 152

Algorithm 4.5 Partitioning an Array 156

Algorithm 4.6 Finding the kth Smallest Element 166

Algorithm 4.7 Longest Monotone Subsequence 174

Bibliography 180

5 MERGING, SORTING AND SEARCHING 181

Introduction 181

Algorithm 5.1 The Two-way Merge 182

Algorithm 5.2 Sorting by Selection 192

Algorithm 5.3 Sortmg by Exchange 198

nlgOI’iiulu 5.4 St‘)i‘tii‘ig Dy Insertion 204

Algorithm 5.5 Sorting by Diminishing Increment 209
Algorithm 5.6 Sorting by Partitioning 216

Algorithm 5.7 Binary Search 227

Algorithm 5.8 Hash Searching 237

Bibliography 246

N

TEXYT PROACECSCING AND
Tl Yl BB e FE W Nl il Wi

A A FY

N

Introduction 248

Algorithm 6.1 Text Line Length Adjustment 249
Algorithm 6.2 Left and Right Justification of Text 256
Algorithm 6.3 Keyword Searching in Text 267
Algorithm 6.4 Text Line Editing 274

Algorithm 6.5 Linear Pattern Search 282
A!ggri{hm 6.6 Sublinear Pattern Search 203

LI L Qi AL 83 NRR

Bibliography 303

CONTENTS xi

DYNAMIC DATA STRUCTURE ALGORITHMS 304

Introduction 304

Algorithm 7.1 Stack Operations 306

Algorithm 7.2 Queue Addition and Deletion 314
Algorithm 7.3 Linked List Search 325

Alanrithm 7 A I inkad 1 ict Incortinn and Nalatinn
l'llsul dLiE1Ld i A lEEi A dE £ 0 I1 EEROWE VARSL] (LIS LW AN LAMSES

Algorithm 7.5 Binary Tree Search 342
Algorithm 7.6 Binary Tree Insertion and Deletion 349
Bibliography 366

1T
|

00

DEMIDONIE Al RAADITEHIRAC -5 0¥

T WY i MLWEWIIE] FEEVI wir
Introduction 367

Algorithm 8.1 Binary Tree Traversal 373
Alomvithae @ 7 B oriveos fMainb cmet A9
r"usua IREELE . 4 A\u\.u: D!\"\a LAULWROUIIL SdOUF

Algorithm 8.3 Towers of Hanoi Problem 391
Algorithm 8.4 Sample Generation 404
Algorithm 8.5 Combination Generation 414
Algorithm 8.6 Permutation Generation 422
Bibliography 433

INDEX 435

PREFACE

The inspiration for this book has come from the classic work of Polya on
general and mathematical problem-solving. As in mathematics, many
beginners in computing science stumble not because they have difficulty

writh la lanaitaos fany athao homraiicas thou ara 11}
haFET! l\oﬂliilllé G PlUElﬂlllllillis lausuasb Uui latilbi I W (A L0 l.ll\.«y CEl A 1537

prepared to handle the problem-solving aspects of the discipline. Unfortu-
nately, the school system seems to concentrate on training people to answer
questions and remember facts but not to really solve problems.

In response to this situation, it was felt there was a definite need for a
book written in the spirit of Polya’s work, but transtated into the computing
science context. Much of Polya’s work is relevant in the new context but,
with computing problems, because of their general requirements for itera-
tive or recursive solutions, another dimension is added to the problem-
solving process.

If we can develop probiem-solving skilis and couple them with top-
down design principles, we are well on the way to becoming competent at
algorithm design and program implementation, Emphasis in the book has
been placed on presenting strategies that we might employ to “discover”
efficient, well-structured computer algorithms. Throughout, a conscious

effort has been made to convey something of the flavor of either a nersonal

AANSE N AEREG L TR W07 WASRLN W) WSS R RRA AR RAR RAANW Lada AL WAL ARW yvquualul

dialogue or an instructor-student dialogue that might take place in the
solution of a problem. This style of presentation coupled with a carefully
chosen set of examples, should make the book attractive to a wide range of
readers.

The student embarking on a first course in Pascal should find that the
material provides a lot of useful guidance in separating the tasks of learning
how to develop computer algorithms and of then implementing them in a
programming language like Pascal. Too often, the end is confused with the

Xiii

xiv PREFACE

means. A good way to work with the book for seif-study 1s to read only as
much as you need to get started on a problem. Then, when you have
developed your own solution, compare it with the one given and consciously
reflect on the strategies that were helpful or hindersome in tackling the

nroblem. As Yohet has rieghtly pointed out “orogramming framnuter
l—’auv‘\llll- A PR N ER Y v ll&ll‘l] l}\}lllt\ou WAL H‘UB‘“I’III"'IB L\V\Jlllt}u‘\wl

problem-solving] is an art [and] as in all art forms, each individual must
develop a style which seems natural and genuine.”

Instructors should also find the style of presentation very useful as
lecture material as it can be used to provide the cues for a balanced amount
of instructor—class dialogue. The author has found students receptive and

The home-computer hobbyist wishing to develop his or her problem-
solving and programming skills without any formal lectures should find the
completeness of presentation of the various algorithms a very valuable
suppiement to any introductory Pascal text. [t is hoped that even some of the
more advanced algorithms have been rendered more accessible to beginners
than is usually the case.

The material presented, although elementary for the most part, con-
tains some examples and topics which should be of sufficient interest and

challenge to spark. in the hpg:nnsng ctnripnt the enthusiasm for ('-nmnnhng

RAKR AR NN b Gy RS Py lll e

that we so often see in students who have begun to master their subject.
Readers are urged not to accept passively the algorithm solutions given.
Wherever it is possible and practical, the reader should strive for his or her
own simpler or better algorithms. As always, the limitations of space have
meant that some topics and examples of importance have either had to be
omitted or limited in scope. To some degree the discussions and supplemen-
tary problems that accompany each algorithm are intended to compensate
for this. The problem sets have been carefully designed to test, reinforce, and
extend the reader’s understanding of the strategies and concepts presented.
Readers are therefore strongly urged to attempt a considerable proportion
of these problems.

Each chapter starts off with a discussion of relatively simple, graded
examples, that are usually related in some fairly direct way. Towards the
middle and end of each chapter, the examples are somewhat more involved.
A good way to work with the book is to only consider the more fundamental

aigor:thms in each chapter at a first readmg. This should allow the necessary
build-up of background needed to study in detail some of the more advanced
algorithms at a later stage.

The chapters are approximately ordered in increasing order of concep-
tual difficulty as usually experienced by students, The first chapter intro-

t J. M. Yohe, “An overview of programming practices”, Comp. Surv., 6, 221-46
(1974).

PREFACE xv

duces the core aspects of computer problem-solving and algorithm design.
At a first reading the last half of the chapter can be skimmed through. Where
possible, the ideas are reinforced with examples. The problem-solving dis-
cussion tries to come to grips with the sort of things we can do when we are

('f!ll‘lf wi ith o rarahlam Tha imnartant tanis nf nrogram ve
R ML ¥Y QLAE }f‘UUl\vlil a2 v l‘ll}ful t“ill ‘.UPIM LW Flusla i ¥

sented in a way that should be relatively easy for the reader to grasp and
apply at least to simple algorithms. Examples are used to convey something
of the flavor of a probabilistic analysis of an algorithm.

The second chapter concentrates on developing the skill for formulating
iterative solutions to problems—a skill we are likely to have had little

also considered which should allow us to come to a practical understanding
of how computers represent and manipulate information. The problem of
conversion from one representation to another is also addressed. The
algorithms in this chapter are all treated as if we were faced with the task of
discovering them for the first time. Since our aim is to foster skill in computer
problem-solving, this method of presentation would seem to be appropriate
from a pedagogical standpoint. Algorithms in the other chapters are also
discussed in this styie.

In the third chapter. we consider a number of
L LR L

robhlame that
AL % RAW “I,l“ vll“y‘ul , Y Ny dLuFd d &4 EinAN1L L S o A4

.
ave their
A1d L% 1 * AAAA e 1 Al

D ve the
origin in number theory. These algorithms require an extension of the
iterative techniques developed in the first chapter. Because of their nature,
most of these problems can be solved in a number of ways and can differ
widely in their computational cost. Confronting the question of efficiency
adds an extra dimension to the problem-solving process. We set out to
“discover” these algorithms as if for the first time.

Array-processing aigorithms are considered in detail in Chapter 4.
Facility with the use of arrays needs to be developed as soon as we have
understood and are able to use iteration in the development of algorithms.
Arrays, when coupled with iteration, provide us with a very powerful means
of performing computations on collections of data that share some common
attribute. Strategies for the efficient processing of array information raise
some interesting problem-solving issues. The algorithms discussed are

intended to address at least some of the more important of these issues.

Once arravs and iteration have heen covered, we have the necessary

WA FRRAG O QAN llMAu\-IUIA ARG YV Wl WA Y wl ey A 1Y W Tiiw AR

tools to consider merging, sorting and searching algorithms. These topics are
discussed in Chapter 5. The need to organize and subsequently efficiently
search large volumes of information is central in computing science. A
number of the most well-known internal sorting and searching algorithms
are considered. An attempt is made to provide the settings that would allow
us to “discover” these algorithms

;he $ixth Lﬂdpicr on texi dI}G blflﬂg procesbmg rcprebemb d Lll\/t:fbl()ﬂ
from the earlier emphasis on “numeric’”” computing. The nature and organ-

xvi PREFACE

ization of character information raises some important new problem-solving
issues. The demands for efficiency once again lead to the consideration of
some interesting algorithms that are very different from those reviewed in
earlier chapters. The algorithms in this chapter emphasize the need to

AdAavalan the clill nf rocnoni7zing the oaccontiale nf a nrahlem withnnt heing
LUVLIU R AT ORI Ul SOVURINATRE L0 CO0L LGRS VL O pruuivin vvl VAL LT,

confused or misled by extraneous detail. “Discovering” some of these
algorithms provides an interesting test-bed for us to apply some of the
problem-solving skills we should have absorbed after covering the first five
chapters.

Chapter 7 is devoted to the fundamental algorithms for maintaining and

binary trees). The issues in this chapter arise mostly at the implementation
level and with the use of pointers.

In the final chapter, the topic of recursion i1s introduced. A recursive call
is presented as an extension of the conventional subprocedure cali. The
simplest form of recursion, linear recursion, is only briefly treated because
the view is taken that there are almost always simple iterative schemes that
can be found for performing what amounts to linear recursion, Furthermore,
linear recursion does little to either convey anything of the power of recur-

gion or to rpnnu rlnpnpn our nndnrcfnndtnn of the mechanism The same
L) | r] Tl Y d LFRLALAINEELE & e L% wiftldl o pidl. A Ah% IR ALAN

cannot usually be said for problems involving either binary recursion or the
more general non-linear recursion, Algorithms that belong to both these
classes are discussed in detail, with special emphasis being placed on recog-
nizing their underlying similarities and deepening our understanding of
recursion mechanisms.

As a conciuding remark about the book if {hc author were to hope that

,,,,,

others to embark on a journey of dzscovermg thmgs for themselves!

A SUGGESTION FOR INSTRUCTORS

‘...any idea or problem or body of knowledge can be

presented in a form simp!e enough ny particular

that
| T SR ecoanizab
1i€arney carn unacrsid lu it in a recognizad

Vil
[¢')
v—n
-
-
-
o

—Bruner.

In comparison with most other human intellectual activities, computing is in

its infancy despite the progress we seem to have made in such a short time.
RBecause the demand for computers and npnnle with cnmnnrmo skills 18 so

great in our rapidly changing wor!cl, we have not had time to sit back and

A SUGGESTION FOR INSTRUCTORS xvii

reflect on the best way to convey the “computing concept” on a wide scale.
In time, computing will mature and evolve as a well-understood discipline
with clear and well-defined methods for introducing the subject to begin-
ners—but that is in the future. For the present, because we are not in this

hannu citiintiman 1 1¢ mact nrisrdont tn fank ta Aathar mature Adicmintinsce far
Ilﬂi_}}.}: SAILGECER LIS, it 13 E1ELFOL Fl AW EEE AU UL R LU LFLIIVE IRACER A AW unovlpuuva ENFE

guidance on how we should introduce computing to beginners. Assuming we
want to have the highest possible success rate in introducing computing to
students (a situation which clearly at present does not prevail) and that we
want to teach computing on the widest possible scale, then the most obvious
discipline to turn to is that of learning to read and write.

write to the extent that these skills are able to be transmitted on a very wide
scale, efficiently, and with a very high rate of success. Putting aside the
various methods within the learning-to-read-and-write discipline we see that
there are some fundamental principles acknowiedged by ail methods that
are highly relevant to teaching computing.

In teaching people to read and write a very substantial time (years in
fact) is devoted to reading. Only after such preparation is it considered
appropriate that they should attempt to write stories or essays, or books, etc.
In fact, even before people attempt to learn to read they undergo several
years of listening to language, speaking, and being “read to”. Clearly, in
learning a language, the ultimate goal is to be able to verbalize and write
fluently in that language. Similarly in computing the goal is to be able to
program {or design and implement algorithms) effectively. In learning to
read and write it has long been recognized that reading is easier and that it
must precede writing by a considerable margin of time to allow the assimila-
tion of enough models and constructs of text to make writing possible.

In teaching computing we seem to have overlooked or neglected what
corresponds to the reading stage in the process of learning to read and write.
To put it strongly, asking people to design and write programs early on in
their computing experience is like expecting that they be able to competently
write essays before they have learned to read or even to write short sen-
tences—it is expecting just too much of a lot of people. It also probably
explains why many otherwise very able people just don’t get started in
computing.

What we are therefore proposing is that in teaching computing we
should draw as much as we can from the learning-to-read-and-write analogy.
This means that we must be able to provide the beginning student with hisor
her “reading experience” in computing before embarking on the more
difficult computer problem-solving tasks which require considerably more
creative effort, discipline, and technical skill.

At this point it is important to recognize that the “reading experience”
cannot be gained by sitting down with a book of programs and attempting to

xviii PREFACE

“read” them. The problem with this approach is that program instructions as
written on a piece of paper are a static representation of a computer
algorithm. As such they do not very fluently convey anything of the dynamic
aspect of computer algorithms and programs.

It ran ha aranad that it 1 imnartant ta have a ~laay
AL WiOlli Wi alsu\.u Tiidr 1L 13 il!llJUl\ulll L 1OV LY 4 wiwdd

understanding of the dynamic character of programs before attempting
algorithm design and program implementation. Whatis needed is a practical
and economical method of giving students their “reading experience” in
computing. To gain this experience the students need to “see” programs
wrltten 1N a h:gh level language executmg Tradltlonally, all the student sees

program when it requires input from the terminal. This level of “seeing” a
program execute is unsatisfactory for beginners because it conveys very little
about the program’s flow of control or about the effects of individual and
groups of program statements, What we need is much more explicit demon-
strations of what is happening in a program that causes it to produce the
outputs that it does. A far more transparent way to do this is to place before
the student on a terminal the text of the program being executed and then to
trace the execution on the displayed program while at the same time dynam-

tr‘nﬂu nndﬁhnn on the sereen the changes in program variables as they are
MWALELILY 6 AL REAWw W%l Wil ‘ll\r "llui‘s\d\’ &R }IIU&AH&I& YOEL ACA L/ L% AT &1 J

made and related to steps in the displayed program. This dynamic method of
studying algorithms can greatly assist the student in acquiring a level of
understanding necessary to design and implement his or her own algorithms,

The facilities and software tools needed to adequately demonstrate
execution of a program in this way are relatively economical to provide. All
that is needed is a terminal with cursor addressing facilities and a small set of
software tools (several hundred lines of code) that can be inserted into the
program being studied to make its execution “‘visible” on the screen. Only
one procedure call per statement of the program being studied is needed to
operate it in a visible mode (this software is available from the author). The
display software is transparent to the user. The appropriate tools allow us to
see a program execute in single-step mode while monitoring the changes in
variables as they are dynamically displayed on the screen. The student can

cause the program to execute the next statement at each stage by simply
rr}rpccinﬂ c;nolp kev {P g the QFTIIQN\ on the terminal

AN SRR B« e ¥ Ser ey AnEo & NS RwL RFil LEine Lwed paziazias.

As an example, the screen layout for “visible” execution of a selection
sorting procedure in Pascalis asillustrated in Fig. 1. The next statementtobe
executed at each stage is tracked by having an arrow that can be moved from
statement to statement on the procedure text displayed on the screen. A
more complete description of the software is given elsewhere.?

+ R. G. Dromey, Before Programming—On Teaching Introductory Computing,
Technical Report No. 81/6, Dept. of Computing Science, University of Wollon-
gong (1981).

A SUGGESTION FOR INSTRUCTORS xix

procedure selectionsort{a:nelements; n.integer);
var i {index for sorted part}, j {index for unsorted part},

p {position of minimum}, min {minimum in unsorted part}: integer;

begin
fori:= 1ton~1do i 1 jali}:i 12
begin
min = a[i];
p =i j: 2 idj: 4
forj:= i+1tonde
if a[j1< min then
begin p:i 1 idlpl:} 12
min = gf j];
s p:=]
end;
alp] := alil; n:i 8 min:| 4
dli] := min
end
end

array: 12 4 56 67 9 23 45

condition: af j1< min 1} true

i

Fig. 1 Screen layout for visible program execution,

The cause-and-effect nature of what is displayed when executing prog-

rams in this manner {automatic single-step mode) can accomplish a number
of things.

£E
(i)

o~
3]
o

3

(4)

~ s

Mosi importantly, it provides a good understanding of the dynamic
nature of algorithms—an essential prerequisite if students are to later
de51gn and implement their own algorithms

It gives a deep insight into the basic laws of composition of computer
algorithms (sequence, selection, iteration, and modularity}).

Itis a useful vehicle for helping students to learn various programming
constructs. Actually observing constructs being used within different

programming contexts and linking these constructs to changes in the
values of variables and conditions gives the student the necessary

¥lraiahe AT VLRI ALLAINeS fRli%e WRTLINAILESSLIO EV Read SRR%w SBELSANARsIal Lo nile il

concrete demonstrations that will enable him or her to master the use
of these constructs.

It conveysin a very vivid fashion the workings of a particular algorithm.
For example, the selection sort algorithm when visibly executed con-
veys the difficult concept of how we can have one loop executing within
another loop It also highlights the difference between subscripted

PERTR MR-y

variables and subscripts.

xX PREFACE

(5) 1t also provides an ideal tool for teaching students debugging tech-
niques. Thatis, programs with logical bugs can be implemented and the
student asked to diagnose the problem after studying the program in
visible execution mode.

Visible program execution has the added advantage of being ideally
suited for use in the lecture room, classroom, or library. Most terminals have
the capability of video output which can be connected to a video recorder.
Using these facilities it is very easy and cheap to monitor and record the

.......... ~ PR 54 I — Lt crexrenge o s Ao e T

lilUHltUlb ili tl C 'i'd WSTOOIT OF ﬂUI'al'y. IR gi'\f"t:b us a teac g diU idal >upcer !Ui
to handwritten blackboard examples when lecturing about algorlthms in the
classroom. We have recorded and used a number of programs in this way.

We can take the visible mode of prograii execution a step further b oy
making it more active with respect to the student. At each step in the
program’s execution we can ask the student to supply the appropriate value
of the variable or condition etc. How this works can be best illustrated by
referring back to the figure. The arrow is indicating that the 7' statement
(i.e. p := j)is the next one to be executed. What the software can do is move
the cursor to the “p” box on the screen and indicate to the student that he
must supply the appropriate value for p (in this case 2) before the program
will continue. If the user enters the wrong value the word ERROR will flash
in the p-box. This will be followed by a flashing of the INPUT sign to prompt
the user to again try to enter the proper p value. If the user gets it wrong twice
the software flashes VALUE in the p-box and then supplies the user with the
correct vaghc switches from interactive to automatic S;ng:e step mudc and
moves to the next program statement to be executed.

Using a visible program i interactive single-step mode can in a very

f‘ill"ﬂﬂf SLrAL) T nfnrna "‘\Cﬁ ﬂfslf‘;aﬂ FolaY it b al Lﬂﬂ{‘ Fa’tsl l‘\; ;\ L7 2% of R L L bl o o f‘mnlllf
GIrcet way rcinioice ind student’s \..Uluyl\..uuualuu O1 (I0W plusa alli Ivadiry

works and what individual program statements accomplish. At the same
time it can give the student very positive and direct feedback when he gets
something wrong.

What we are therefore advocating is that students be given considerable
exposure to visible “program-reading” in both the modes described as a
preparatory step to considering the problem-solving aspect of computer
algorithm design. Exposure to visible program execution (VPE) should be
accompanied by a study of the basic laws of composition of computer
algorithms (sequence, selection, iteration and modularity) including how
these laws of form relate to the way programs are executed. Concurrently, a

study should also be made of the syntax of the programming language being

The inspiration for the approach taken in this book grew out of an admira-

tian £ nmnrna Dnh:n ¢ prlaccin wnrbc nrahla endvima TMarin tha
tIOn 07 MICOTEC rOiya 5 Ciddsic WOTKS On }JlUUl\...il.l autvauﬁ uullus tne

summer and autumn of 1980, | had the pleasure of spending a number of
afternoons chatting with Professor and Mrs. Polya.

The influence of Polya’s work and that of the pioneers of the discipline
of computing science, E. W. Dijkstra, R. W. Floyd, C. A. R. Hoare, D. E.
Knuth, and N. Wirth, is freely acknowledged. There is also a strong influence
of Jeff Rohl’s work in the last chapter on recursion.

1 sincerely apprectate the guidance and encouragement given to me by
Professor Hoare, Henry Hirschberg, Ron Decent, and my reviewers.

I am also grateful to the University of Wollongong and Stanford Uni-
versity for the use of their facilities,

A number of people have generously given helpful comments and
support during the preparation of the manuscript. I would particularly like to
thank Tom Bailey, Miranda Baker, Harold Brown, Bruce Buchanan, Ann

Cartwright, John Farmer, Tony Guttman, Joan Hutchinson, Leanne Koring,
Donald Knuth Reaesgalvn Maloney Richard Miller Roace Nealan lare

AALFEARLA NS ARISILALEE, A\\JO“IJ +1 l'lul\ll!\;; AMANWRELE L Wk AVARRER N5 o AW A i VA LARALEy d“le

Nievergelt, Richard Patis, lan Pirie, Juris Reinfelds, Tom Richards, Michael
Shepanksi, Stanley Smerin and Natesa Sridharan and my students at Wol-
longong.

The understanding and encouragement throughout this whole project
that 1 have received from my wife Aziza is deeply appreciated.

Finally, I wish to extend my deepest gratitude to Bronwyn James for her
loyalty and untiring and able support in the preparation and typing of the
manuscript.

XXi

PROBLE SOLVING

1.1 INTRODUCTION

Computer problem-solving can be summed up in one word—it is demand-
ing! It is an intricate process requiring much thought, careful planning,
:c»gican {)I’t’fCiSiGﬁ perSistence and attention to detail. At the same time it can
be a challenging, exciting, and satisfying experience with considerable room
for personal creativity and expression. If computer problem-solving is
approached in this spirit then the chances of success are greatly ampilified. In
the discussion which follows in this introductory chapter we will attempt to
lay the foundations for our study of computer problem-solving.

1.1.1 Programs and algorithms

The vehicle for the computer solution to a problem is a set of explicit and
unambiguous instructions expressed in a programming language. This set of
instructions is called a program. A program may also be thought of as an
algorithm expressed in a programming language. An algorithm therefore

Arracreansde fon o0 omlind nn ton o wmrablore that ic ssAdon

COT XEE}PUHUQ W L DVIERI W a pPiuviiaviia
ming language.

To obtain the computer solution to a problem once we have the pro-
gram we usually have to supply the program with input or data. The program
then takes this input and manipulates it according to its instructions and
eventually produces an output which represents the computer solution to the
problem. The realization of the computer output is but the last step in a very
long chain of events that have led up to the computer solution to the
problem.

o d I\““ TEVVLES nrr\nrom
TrEL WS ﬂll] lJ 51 [%) ¥l

2 COMPUTER PROBLEM-SOLVING CHAP. 1

Qur goal in this work is to study in depth the process of algorithm design
with particular emphasis on the problem-solving aspects of the task. There
are many definitions of an algorithm. The following definition is appropriate
in computing science. An algorithm consists of a set of explicit and unam-

h‘ﬁllﬁ]lc F!!‘II"C‘ ctarmo (l!"lll"l‘l \lf;‘lﬂﬂ Fad b ik i] .ﬁ(‘l I3 4 Fl‘\l‘ i ﬁ!llﬂﬂ [o =1 l‘\‘ I‘\‘ nnﬂl‘l
UIBUOUS DG 58PS WRICH, WacH Carticd Ut IGr a Eivill set of initial condi-

tions, produce the corresponding output and terminate in a finite time.

1.1.2 Requirements for solving problems by computer

problems. For exampie, to look up someone’s telephone number in a tele-
phone directory we need to employ an algorithm. Tasks such as this are
usually performed automaticaily without any thought to the complex under-
lying mechanism needed to effectively conduct the search. It therefore
comes as somewhat of a surprise to us when developing computer algorithms
that the solution must be specified with such logical precision and in such
detail. After studying even a small sample of computer problems it soon
becomes obvious that the conscious depth of understandmg needed to design

pffnnhun comnuter aleorithms is far ereater than we
llll.lu‘\w 5\}' ALihEAAT i\) LEEE 51 il "1 LLELELIL FY W

in almost any other problem-solving situation.

Let us reflect for a moment on the telephone directory look-up prob-
lem. A telephone directory quite often contains hundreds of thousands of
names and telephone numbers yet we have little trouble finding the desired
telephone number we are seeking. We might therefore ask why do we have
so little difficulty with a problem of seemingly great size? The answer is
simpie. We quite naturally take advantage of the order in the directory to
quickly eliminate large sections of the list and home in on the desired name
and number. We would never contemplate looking up the telephone number
of J. R. Nash by starting at page 1 and examining each name in turn until we
finally come to Nash’s name and telephone number. Nor are we likely to
contemplate looking up the name of the person whose number is 2987533.
To conduct such a search, there is no way in which we can take advantage of
the order in the directory and so we are faced with the prospect of doing a

numi\r—ar-iﬁu number search starting at page 1 1If anthe other har}d we hada

[SEFR SRRV R W e TR Swd G KAR WAR HAGRL RAREL G RSGEN A KRR SRR VAW RSRARNd dadAR

list of telephone numbers and names ordered by telephone number rather
than name, the task would be straightforward. What these examples serve to
emphasize is the important influence of the data organization on the perfor-
mance of algorithms. Only when a data structure is symbiotically linked with
an algorithm can we expect high performance. Before considering these and
other aspects of algorithm design we need to address the topic of problem-
solving in some detail.

SEC. 1.2 THE PROBLEM.SGLVING ASPECT 3

1.2 THE PROBLEM-SOLVING ASPECT

It is widely recognized that problem-solving is a creative process which
largely defies systematization and mechanization. This may not sound very
encouraging to the would-be problem-solver. To balance this, most people,
during their schooling, acquire at least a modest set of problem-solving skills
which they may or may not be aware of.

Even if one is not naturally skilied at problem-solving there are a
number of steps that can be taken to raise the level of one’s performance. itis
not implied or intended that the suggestions in what follows are in any way a

rocine for nrahlamoeniving The nlain fant Af the mattar ic that thars ic nn
vl U0 PrOICHI-OUIVIGE,. 2 Ul Phalls talyl O 1l fhaadd i5 (ady ineic i 06

universal method. Different strategies appear to work for different people.
Within this context, then, where can we begin to say anythzng useful

ahanut comniiisr nrahlamocnlvinog? Waoe mact ctors ftroom tha n
uuuut \rUilIi}“l\wl l.."l LF A F LVl EE JUl\'llla L™ Ed1383% JULEE § B4 LFIEL LA lJ

computer problem-solving is about understanding.

1.2.1 Problem definition phase
Su

Sticcess in solvine anv nroblem is only nossible after we have made the effort

S
(i
- &
<
T
¢
¢
¢
<
{
t:
.
4
g
s
$
¢
£
-
¢
¢
E
t
£
{
¢

to come to terms with or understand the problem at hand. We cannot hope to
make useful progress in solving a problem until we fully understand what itis
we are trying to solve. This preliminary investigation may be thought of as
the problem definition phase. In other words, what we must do during this
phase is work out what must be done rather than how to do it. That is, we
must {ry to extract from the problem statement (which is often quite tmpre-
leC dl'!U ma)’UC even ammguoua; a sei Ui pf@ClSCl)’ UCHI’!CU iasks. IHCXPCH'
enced problem-solvers too often gallop ahead with how they are going to
solve the problem only to find that they are either solving the wrong problem
or mcy are soiv ‘i“:g, 3{151 a very S;‘)t’:(‘.idi case of what is actuauy req%jirt‘:u In
short, a lot of care should be taken in working out precisely what must be
done. The development of algorithms for finding the square root (algorithm
3.1) and the greatest common divisor (algorithm 3.3) are good illustrations
of how tmportant it is to carefully define the problem. Then, from the
defimitions, we are led in a natural way to algorithm desions for these two

XSRS LUAE b az{ivia: AT SE AR AT R RANe e

problems.

122 Getting started on a problem

There are many ways to solve most problems and also many solutions to
most problems. This situation does not make the job of problem-solving
easy. When confronted with many possible lines of attack it is usually

4 COMPUTER PROBLEM-SOLVING CHAP. 1

difficult to recognize quickly which paths are likely to be fruitless and which
paths may be productive.

Perhaps the more common situation for people just starting to come to
grips with the computer solution to problems is that they just do not have any

idan whaera tnctort an tho mnrahlam avean aftor tha nrahlom dafinitinn nhaca
iGha walil wU swaly UL val PIOLIE, VO aiill (G0 Procacny GUONnaon paasc,

When confronted with this situation, what can we do? A block often occurs
at this point because people become concerned with details of the implemen-
tation before they have completely understood or worked out an
implementation-independent solution. The best advice here is not to be too
concerned about detail. That can come later when the complexity of the

proverb’ which says *‘the sooner you start coding your program the longer it
is going to take” is usually painfully true.

1.2.3 The use of specific examples

A useful strategy when we are stuck is to use some props or heuristics (i.e.
rules of thumb) to try to get a start with the problem. An approach that often
allows us to make a start on a problem is to pick a specific example of the

aanaral nrahlsm we wich tn cnhro onr‘l !'v'u tn urr\rl{ it thae arhaonicm that nn“
5\fll\wlul l.Jl UU‘\-'III YW ¥YLIJILE LW/ ALY W {41 j FYL/AL I AL I.ll‘.v lll\.«\rll“lllﬂlll ‘ll‘.ll. ¥Yii

allow us to solve this particular problem {e.g. if you want to find the
maximum in a set of numbers, choose a particular set of numbers and work
out the mechanism for finding the maximum in this set—see for example
algorithm 4.3). It is usually much easier to work out the details of a solution
to a specific problem because the relationship between the mechanism and
the particular problem is more clearly defined. Furthermore, a specific
probiem often forces us to focus on details that are not so apparent when the
problem is considered abstractly. Geometrical or schematic diagrams rep-
resenting certain aspects of the problem can be usefully employed in many
instances (see, for example, algorithm 3.3}

This approach of focusing on a particular problem can often give us the
foothold we need for making a start on the solution to the general problem.
The method should, however, not be abused. It is very easy to fall into the
trap of thinking that the solution to a specific problem or a specific class-of

nrahlamc ic alen o enliitinn tn tha ganaral nrahlam Camoetimaoc thic hannanc
PULIKIns 1o @b a shiUiUn WO i guiiCial prooicnl. SUNICUINCS tlls nappons

but we should always be very wary of making such an assumption.
Ideally, the specifications for our particular problem need to be
examined very carefully to try to establish whether or not the proposed
algorithm can meet those requirements. If the full specifications are difficult
to formulate sometimes a well-chosen set of test cases can give us a degree of

T H. F. Ledgard, Programming Froverbs, Hayden, Rocheiie Park, N.J., 1973,

SEC. 1.2 THE PROBLEM-SOLVING ASPECT 5

confidence in the generality of our solution. However, nothing less than a
complete proof of correctness of our algorithm is entirely satisfactory. We
will discuss this matter in more detail a little later.

1.2.4 Similarities among problems

We have already seen that one way to make a start on a problem is by
considering a specific example. Another thing that we should always try to
do is bring as much past experience as possible to bear on the current
problem. In this respect it is important to see if there are any similarities

)
-
- 1

e e e = A e s

have seen solved. UﬂCf. we have had a littie cxp nce in Compuictr
problem-solving it is unhkeiy that a new problem w1i be completely
divorced from other problems we have seen. A good habit therefore is to
always make an effort to be aware of the similarities among problems. The
more experience one has the morefstools and techniques one can bring to
bear in tackling a given problem. The contribution of experience to our
ability to solve problems is not always helpful. In fact, sometimes it blocks us
from discovering a desirable or better solution to a problem. A classic case of
experience hlnr-i(mg progress was Einstein’s dmnnueru of rplntwlt\r For a

S b gl R AR RN ASARS AR

considerable time before Einstein made his discovery the scientists of the
day had the necessary facts that could have led them to relativity but it is
almost certain that their experience blocked them from even contemplating
such a proposal-—Newton’s theory was correct and that was all there was to
it! On this point it is therefore probably best to place only cautious reliance
on past experience. In trying to get a better solution to a problem, sometimes
too much btuuy of the cxxbui‘lg solution or a similar ;‘)FOU:cu: forces us down
the same reasoning path (which may not be the best) and to the same dead
end. In trying to get a better solution to a problem, it is usually wise, in the
first instance at least, to iryto muépé?iuemty solve the pIOU:cm We then gi‘v‘e
ourselves a better chance of not falling into the same traps as our predeces-
sors. In the final analysis, every problem must be considered on its merits.

A skill that it is important to try to develop in problem-solving is the
ability to view a problem from a variety of angles. One must be able to
metaphaorically turn a problem unmde down, inside out, sideways, bhack-

wards, forwards and so on. Once one has developed this skill it should be
possible to get started on any problem.

125 Working backwards from the solution

There are still other things we can try when we do not know where to start on
a problem. We can, for example, in some cases assume that we already have

6 COMPUTER PROBLEM-SOLVING CHAP. |

the solution to the problem and then try to work backwards to the starting
conditions. Even a guess at the solution to the problem may be enough to
give us a foothold to start on the problem. (See, for example, the square root
problem——algorithm 3.1}. Whatever attempts that we make to getstarted on

a nrahlam wa chanld write dawn e wa on alane tha variance ctance anedd
d PRUUIviE WL SITUREIU WL UMUWIE ad WL EU divilg L Yalivug owvp/o didg

explorations made. This can be important in allowing us to systematize our
investigations and avoid duplication of effort. Another practice that helps us
develop our problem-solving skills is, once we have solved a problem, to
consciously reflect back on the way we went about discovering the solution.
This can help us significantly. The most crucial thing of all in developing
b1 lving skills is e i { thi celv with]

statement that “we learn most when we have to invent.”

1.2.6 General problem-solving strategies

There are a number of general and powerful computational strategies that
are repeatedly used in various guises in computing science. Often it is
possible to phrase a probiem in terms of one of these strategies and achieve
very constderable gains in computational efficiency.

Drr\l\nk tha t wiidaly baawn nnd mact nftan necard afthoca n
£ P ﬂul] tll\w lllUGl wiu\,l] DEIVIVY LD auu lllual Ull\uli LE o LWL S I8 WS 3 lll\.—O\.r lJ

is the divide-and-conquer strategy. The basic idea with divide-and-conqueris
to divide the original problem into two or more subproblems which can
hopefully be solved more efficiently by the same technique. I itis possibie to
proceed with this splitting into smaller and smaller subproblems we will
eventually reach the stage where the subproblems are small enough to be
solved without further splitting. This way of breaking down the solution to a
problem has found wide application in particular with sorting, selection, and
searching algorithms. We will see later in Chapter 5 when we consider the
binary search algorithm how applying this strategy to an ordered data set
results in an algorithm that needs to make only log, n rather than n compari-
sons to focate a given item in an ordered list 7 elements long. When this
principle is used in sorting algorithms, the number of comparisons can be
reduced from the order of n? steps to n log,n steps, a substantial gain
particularly for large n. The same idea can be applied to file comparison and

in manv other instances to oive subctantial gains in comnutational 9ff|mr—‘po}f

ARE FRACAAR Y WANRER GRISUQIILAS WA LI VL OGSO BRI BAR WS R A LA AN ARG S i

It is not absolutely necessary for divide- and -conquer to always exactly halve
the problem size. The algorithm used in Chapter 4 to find the k' smallest
element repeatedly reduces the size of the problem. Ailthough it does not
divide the problem in half at each step it has very good average performance.

It is also possible to apply the divide-and-conquer strategy essentially in
reverse to some problems. The resulting binary doubling strategy can give
the same sort of gains in computational efficiency. We will consider in
Chapter 3 how this complementary technique can be used to advantage to

SEC. 1.3 TOP-DOWN DESIGN 7

raise a number to a large power and to calculate the n'* Fibonacci number.
With this doubling strategy we need to express the next term n to be
computed in terms of the current term which is usually a function of n/2 in
order to avoid the need to generate intermediate terms.

Annthar ganaral nrahlam_enlving cirataoy that wa unll hrioflv raang
ARotner ECiiCiai PrOgMCH-5URVIGE SUdWEY widy WO Wi LUliCny LU

is that of dynamic programming. This method is used most often when we
have to build up a solution to a problem via a sequence of intermediate steps.
The monotone subsequence problem in Chapter 4 uses a variant of the
dynamic programming method. This method relies on the idea that a good
solution to a large problem can sometimes be built up from good or optimal
for many optimization problems that one frequently encounters in opera-
tions research. The techniques of greedy search, backtracking and branch-
and-bound evaluations are all variations on the basic dynamic programming
idea. They all tend to guide a computation in such a way that the minimum
amount of effort i1s expended on exploring solutions that have been estab-
lished to be suboptimal. There are still other general computational
strategies that we could consider but because they are usually associated
with more advanced algorithms we will not proceed further in this direction.

1.3 TOP-DOWN DESIGN

The primary goal in computer problem-solving is an algorithm which is
capable of being implemented as a correct and efficient computer program.
In our discussion leading up to the consideration of algorithm design we have
been mostly concerned with the very broad aspects of problem-solving. We
now need to consider those aspects of probiem-solving and algorithm design
which are closer to the algorithm implementation.

Once we have defined the problem to be solved and we have at least a
vague idea of how to solve it, we can beégin to bring to bear powerful
techmques for designing algorithms. The key to being able to successfully

design algorithms lies in being able to manage the inherent complexity of
most nroblems that reauire computer solution. People as problem-solvers

RERLAFL LIV Vg L WA VARA W WRTRRIARINANSAE ORJRRANERSIL. 3 MR RO SASA Y el

are only able to focus on, and comprehend at one time, a very limited span of
logic or instructions. A technique for algorithm design that tries to accom-
modate this human limitation is known as top-down design or stepwise
refinement.

Top-down design is a strategy that we can apply to take the solutionof a
computer problem from a vague outline to a precisely defined algorithm and
program implementation. Top-down design provides us with a way of hand-
ting the inherent logical complexity and detail frequently encountered in

8 COMPUTER PROBLEM-SOLVING CHAP. 1

computer algorithms. It allows us to build our solutions to a problem in a
stepwise fashion. In this way, specific and complex details of the implemen-
tation are encountered only at the stage when we have done sufficient
groundwork on the overall structure and relationships among the various

rig
LY W

1.3.1 Breaking a problem into subproblems

Before we can apply top-down design to a problem we must first do the
problem-solving groundwork that gives us at least the broadest of outlines of

a solution. Sometimes this might demand a lengthy and creative investiga-
tion into the problem while at other times the problem description may in
itself provide the necessary starting point for top-down design. The general
outline may consist of a single statement or a set of statements, Top-down
design suggests that we take the general statements that we have about the
solution, one at a time, and break them down into a set of more precisely
defined subtasks. These subtasks should more accurately describe how the
final goal is to be reached. With each splitting of a task into subtasks it is
essential that the way in which the subtasks need to interact with each other
be precisely defined. Only in this way is it possible to preserve the overall

structure nf'thp solution to the problem. Preservation of the overall structure
28 AW LEA t} AN VLRI ET Y 3 FLLLAWSES WFh S Ea% WS ¥ Wil lill JLL LW

in the solution to a problem is important bdth for making the algorithm
comprehensible and also for making it possible to prove the correctness of
the solution. The process of repeatedly breaking a task down into subtasks
and then each subtask into still smaller subtasks must continue until we
eventually end up with subtasks that can be implemented as program state-
ments. For most algorithms we only need to go down to two or three levelis
although obviously for large software projects this is not true. The larger and
more complex the problem, the more it will need to be broken down to
be made tractable. A schematic breakdown of a problem is shown in
Fig. 1.1.

The process of breaking down the solution to a problem into subtasks in
the manner described results in an implementable set of subtasks that fit
quite naturally into block-structured languages like Pascal and Algol. There

can therefore be a smooth and natural interface between the stepwise-
refined alonr:thm and the final program tmnlemenmtmnmn hmhhf desirable

situation for keeping the zmplementanon task as simple as poss:b!e.

1.3.2 Choice of a suitable data structure

O At wnra P P P o RN

UHC Ui ti-e IGS[Hlii)Ulldlll UCblblUHb Wi iid\"C {0 maxe HI lUllllU!dUllg
computer solutions to problems is the choice of appropriate data structures.

SEC. 1.3 TOP-DOWN DESIGN 9

General outline

Input conditions Qutput requirements

Body of algorithm

,/ \1
Subtask 1 Subtask 3

x;
/\ Quihtacl 9
/ \ SintasK 2

Subtask la

Subtask 2a

Fig. 1.1 Schematic breakdown of a problem into subtasks as employed in top-down design.

All programs operate on data and consequently the way the data is organ-
ized can have a profound effect on every aspect of the final solution. In
particular, an inappropriate choice of data structure often leads to clumsy,
inefficient, and difficult implementations. On the other hand, an appropriate
choice usually ieads to a simple, transparent, and efficient implementation.

There is no hard and fast rule that tells us at what stage in the develop-
ment of an algorithm we need to make decisions about the associated data
structures. With some problems the data structure may need to be consi-
dered at the very outset of our problem-solving explorations before the

tan_dawn dacian while in athar nrahlame 1+t mav ha nactnanad asntil wa are
RO USRI, WARAL A0 UL RHUUILHD 1 dlay UL PULLPUHILU Wi WE dio

well advanced with the details of the implementation. In other cases still, it
can be refined as the algorithm is developed.

The key to effectively solving many problems really comes down to
making appropriate choices about the associated data structures. Data struc-
tures and algorithms are usually intimately linked to one another. A small
change in data organization can have a significant influence on the algorithm
required to solve the problem. It is not easy to formulate any generally
applicable rules that say for this class of problem this choice of data structure

10 COMPUTER PROBLEM-SQLVING CHAP.

is appropriate. Unfortunately with regard to data structures each problem
must be considered on its merits.

The sort of things we must however be aware of in setting up data
structures are such questions as:

a——
jum—
S

How can intermediate results be arranged to allow fast access to
information that will reduce the amount of computation required at a
later stage?

{2) Can the data structure be easily searched?
(3) Can the data structure be easily updated?

(4) Does the data structure provide a way of recovering an earlier state in
the computation?

(5) Does the data structure involve the excessive use of storage?

(6) Is it possible to impose some data structure on a problem that is not
initially apparent?

(7} Can the problem be formulated in terms of one of the common data
structures (e.g. array, set, queue, stack, tree, graph, list)?

These considerations are seemingly general but they give the flavor of the
sort of things we need to be asking as we proceed with the development of an
algorithm.

13.3 Construction of loops

In moving from general statements about the implementation towards sub-
tasks that can be realized as computations, almost invariably we arc led to a

series of iterative constructs. or loons. and structures that are conditionally

ek RNt LFA KW R LARAY WARSLEGR A WLy WAL AR RS, DR DL U R AR O RRACEE QAW WASREMAALIRSARRLIL Y

executed. These structures, together with input/output statements, comput-
able expressions, and assignments, make up the heart of program implemen-
tations.

At the time when a subtask has been refined to something that can be
realized as an iterative construct, we can make the task of implementing the
toop easier by being aware of the essential structure of all loops. To construct
any loop we must take into account three things, the initial conditions that
need to apply before the loop begins to execute, the invariant relation that
must apply after each iteration of the loop, and the conditions under which
the iterative process must terminate.

In constructing loops people often have trouble in getting the initial
e the

conditions correct and in getting the Innp to execut

WAFEIRARMALI RIS WRIA RSN DRARe 20A myeLRRals, AR GRS

riocht number
rignt numbper

SEC. 1.3 TOP-DOWN DESIGN 11

of times rather than one too few or one too many times. For most prob-
lems there is a straightforward process that can be applied to avoid these
errors.

1.3.4 Establishing initial conditions for loops

To establish the initial conditions for a loop, a usually effective strategy is to
set the loop variables to the values that they would have to assume in order to
solve the smallest problem associated with the loop. Typically the number of
iterattons n that must be made by a loop are in the range 0<i=n. The

smallest problem usually corresponds to the case where i either equals Qor
equa!s 1. Algorithms 2.2. and 4.3 illustrate both these situations. To bring
[ﬂlb p()]ﬂl home lei us bUpp()SG mai weg Wibﬂ fo sum a set Ui IIUIIlUCi'b lﬂ
an array using an iterative construct. The loop variables are i the array and
loop index, and s the variable for accumulating the sum of the array
elements.

The smallest problem in this case corresponds to the sum of zero
numbers. The sum of zero numbers is zero and so the initial valuesof i and s
must be:

h Wy

[

oo
—

} solution for n =0

1.3.5 Finding the iterative construct

nce we have the conditions for solvi
to try to extend it to the next smallest probiem (int
is we want to build on the solution to the problem fo

(}'C}
-
2!
A
D
S o
L
=
- m 'C_:
[}
=
o
-
o

—ry
p..a

ri=

The solution for n=1 is:

=1 } solution forn = 1

s 1= a{1]

This solution for # =1 can be built from the solution for n = 0 using the values
for i and s when n =0 and the two exnremmnq

= i+1 . .
: generalized solution for n>0
s = s+afi}
The same two steps can be used to extend the solution from whenn=11
LA._ 2 o Y man] o G Pl o fassrn wdooan tam rmanwn oo we s PR | LA om it e
WHIL I FE7 4 diiid OAF Uil T HOOE LW Ji0LD Wlll H § BClltldl CAtC! O 0 S0IUIOn

12 COMPUTER PROBLEM-SOLVING CHAP. 1

from the (i—1)™ case to the i'* case (where i=1). They can therefore be used
as the basis of our iterative construct for solving the problem for n=1.

ji= 0 initialization condi‘tions
. _ ¢ for loop and solution to
" 7 7 summing problem when n=0
while i<n do L solution to summation
begin solution of the problem for n=0
i:=i+1; array summation
s := s+ali} probiem for n=1
end J

The process we have gone through to construct the !oo;) is very similar to that
of mathematical induction. We will consider these ideas more closely when
proof of correctness and invariant relations are discussed.

The other consideration for constructing loops is concerned with the

setting up of the termination conditions.

1.3.6 Termination of loops

There are a number of ways in which loops can be terminated. In general the
termination conditions are dictated by the nature of the problem. The
simplest condition for terminating a loop occurs when itis known in advance
how many iterations need to be made. In these circumstances we can use
dlrectiy the term;nat;on facilities buiit mto programmmg 1anguages For

This loop terminates unconditionally after n iterations.
A second way in which loops can terminate is when some conditional
expression becomes false. An example is:

while (x>0) and (x<10) do

2 S - 8 Ll B

begin

Q.

With loops of this type it cannot be directly determined in advance how
............ +1 +hoa 1 :
1i1C §

P ko -
llldli)’ 1lCldliUllb {here Wul UC Ui".:l ic <

SEC. 1.3 TOP-DOWN DESIGN 13

no guarantee that loops of this type will terminate at all. In these circum-
stances the responsibility for making sure that the loop will terminate rests
with the algorithm designer. If the model for the computation is straightfor-
ward it may be a simple matter to guarantee termination (e.g. inour example

alnua if vic rhaonoad with ansh itaratisam in thar a manatanioally snarancing
ALY 12 A D \ullﬂllsku Wi Calin indirauon lil bllll\.l [+ ltlUilUtUlil\wall] lil\wi\.«ﬂﬂlils

or decreasing fashion, then eventually the conditional expression (x>>0) and
(x<10}) will become false. There are loops of this kind where it is very
difficult to prove that termination is guaranteed. Algorithm 3.1 (for comput-
ing square roots) contains a loop that is typical for this type of termination.

Yet another way in whlch termmation of a loop can be set up is by

false. This approach to termination can be very useful for simplifying the test
that must be made with each iteration. An example best illustrates this
method of loop termination. Suppose we wish to establish that an array ot n
elements is in strictly ascending order (i.e. a{1]<a{2]<---<a[n]}). To do this
we can use the following instructions:

ain+1} := aln};
i:=1;
while gf{j<a{i+1]j do i := i+1

If n was assigned the value 5 and the datasetwas 2,3, 5,11, 14, then the first
assignment prior to the loop would result in the array configuration below:

a1l af2] -~ aln] aln+1]
2 3 5 i1 14 1 14

T. e two 14s guarantee that the test afi+ }} ..1!! be false wheni=n and
o the loop will terminate correczi h ni= ot before.

The general rule for using this method of termmatzon is to arrange the
data at the end of the array so that it will force the conditional expression for
the loop to become false. If we were not to use this device for loop termina-
tion in this situation our only alternative would be a loop implementation

that uses two tests e€.8.

[:=2;
while (a[i—1]<a[/}) and (i<n) do i := i+1

We have now completed an examination of the most common ways in which

lareg nea tapmiinat

ard
HAPD dic v miingica.

14 COMPUTER PROBLEM-SOLVING CHAP. 1

14 IMPLEMENTATION OF ALGORITHMS

The implementation of an algorithm that has been properly designed in a
top-down fashion should be an ailmost mechanical process. There are, how-
ever, a number of points that should be remembered.
If an algorithm has been properly designed the path of execution should
flow in a straight line from top to bottom. It is important that the program
implementation adheres to this top-to-bottom rule. Programs (and subpro-
grams) implemented in this way are usually much easier to understand and
— debug. They are also usually much easier to modify should the need arise
because the relationships between various parts of the program are much

141 Use of procedures to emphasize modularity

To assist with both the development of the implementation and the readabil-
ity of the main program it is usually helpful to modularize the program along
the lines that follow naturally from the top-down design. This practice allows
us to implement a set of independent procedures to perform specific and
weil-defined tasks. For example, if as part of an algorithm it is required to
sort an array, then a specific independent procedure should be used for the
sort. In applying modularization in an implementation one thing to watch is
that the process is not taken too far, to a point at which the implementation
again becomes difficult to read because of the fragmentation. When it is

nonaccary tnimnlamant comaeawhnt laraosr enftwanrs nraiscte a onnd ctrataoy ic
b vosal ¥ AW HUIPICILGLIIR QUBRCWRHAGL A2 20 UMW G L IV G gl ol aic g ¥ (o

to first complete the overall design in a top-down fashion. The mechanism
for the main program can then be implemented with calls to the various

.
nraceduracthat will he nesdad in the final imnlementatinn In the firet nhage
t./‘ WS Rl LR T RAAAE FY ER] LW FRWw WAl BA VAW LARRLAL]lllyl*lll\ull‘“‘lvl’- Edl LifWw ALLWTRL !..'iluu‘v'

of the implementation, before we have implemented any of the procedures,
we can just place a write statement in the skeleton procedures which simply
writes out the procedure’s name when it is called; for example,

procedure sort;
begin

writeln{'sort called’)
end

This practice allows us to test the mechanism of the main program at an early
stage and implement and test the procedures one by one. When a new
procedure has been implemented we simply substitute it for its “dummy”

rocedure
rocedqure.

SEC. 1.4 IMPLEMENTATION OF ALGORITHMS 135

14.2 Choice of variable names

Another implementation detail that can make programs more meaningful
and easier to understand is to choose appropriate variable and constant
names. For example, if we have to make manipulations on days of the week
we are much better off using the variable day rather than the single letterag or

some other variable. This nractice tends to make nroorams much more

WAALE N WARRAW R T AL AL LWAANW A LLAF t}xuwtlw\.« T DIRELF AW ERARL NN t.ll Usl“llik’ EdL%E%r 35 JHIWSE N

self-documenting. In addition, each variable should only have one role in a
given program. A clear definition of all variables and constants at the start of
each procedure can also be very helpful.

Another useful documenting practice that can be employed in Pascal in
particular is to associate a brief but accurate comment with each begin
statement used. This is appropriate because begin statements usually signal
that some modular part of the computation is about to follow. A related part
of program documentation is the information that the program presents to
the user during the execution phase. A good programming practice is to
always write programs so that they can be executed and used by other people

unfamiliar with the workings and input requirements of the program. This
means that the program must c;npmf\; durine execution pvsmtl\r what

RIS, LIEIG RERARAT LIS AN ES RN SRRSO RAL Y WL ENRE, WAL LLIVEL AR

responses (and their format) it requires from the user. Conszderable care
should be taken to avoid ambiguities in these specifications. They should be
concise but accurately specify what is required. Also the program should
“catch” incorrect responses to its requests and inform the user in an appro-
priate manner.

14.4 Debugging programs

In implementing an algorithm it is always necessary to carry out a number of
tests to ensure that the program is behaving correctly according to its
specifications. Even with small programs it 1s likely that there will be logical
errors that do not show up in the compilation phase.

To make the task of detecting logical errors somewhat easier it is a good
idea to build into the program a set of statements that will print out informa-
tion at strategic points in the COmpumuuu These statements that print out
additional information to the desired output can be made conditionally
executable. If we do this then the need to remove these statements at the
time when we are satisfied with the program becomes unnecessary. The
simplest way to implement this debugging tool is to have a Boolean variable

(e.g. debug) which is set to true when the verbose debugging output for the

16 COMPUTER PROBLEM-SOLVING CHAP. 1

program is required. Each debugging output can then be parenthesized in
the following way:

if debug then
begin
writeln(...)

end

The actual task of trying to find logical errors in programs can be a very
testing and frustrating experience. There are no foolproof methods for
ebugging but there are some steps we can take to ease the burden of the

process. Probably the best advice is to always work the program through by

hand hofrrs aver attamnting tn avecnte it I AdArne cuctemationlly and
LG UL 0 CVL ditilp/iiing U CALLVULL H1. B UVRG oyoliiigiiany anla

thoroughly this should catch most errors. A way to do this is to check each
module or isolated task one by one for typical input conditions.

The simplest way to do this is to draw up a two-dimensional table
consisting of steps executed against all the variables used in the section of
program under consideration. We must then execute the statements in the
section one by one and update our table of variables as each variable is
changed. If the process we are modelling s a loop it is usually only necessary
to check the first couple of iterations and the last couple of iterations before
termination,

As an example of this, consider the table we could draw up for the
binary search procedure (algorithm 5.7).

The essential steps in the procedure are:

lower := 1; upper .= n,
while lower<upper do
begin
svsr AT LR {lassrom b ssrr s Y A I
FRLHALLLL \IUWI:!) MPPCIJ Uy &,

if x>a{middle} then
lower .= middle+1
else
upper = middle
end;
found := {(x =allower])

For the search value x and the array a[1. . n] where x = 44 and n =15 we may
have:

Initial af1] a[15]
configuration [10]12120123{2713031|39]42]44[45]49|57]63|70

1} 1} 1}

L]

lower middle u;;per

SEC. 1.4 IMPLEMENTATION OF ALGORITHMS 17

Then the associated execution table s given by Table 1.1.

Table 1.1 Stepwise execution table for binary search.

Iteration no. lower middle upper lower < upper dalmiddle] x > a[middle]

Initially i — 15 true - o
1 9 8 15 true 39 true
2 9 12 12 true 49 false
3 9 10 10 true 44 false
4 10 9 10 false 42 true

NOTE: The values of variables associated with each iteration apply affer the
iteration has been completed.

If we get to the stage where our program is executing but producing
incorrect results {e.g. it might be a sort routine that places most, but not ali,
elements in order) the best idea is to first use a debugging trace to print out
strategic information. The next step is to follow the program through by
hand in a stepwise fashion checking against the computer’s debugging out-
put as we go. Whenever we embark on a debugging procedure of this kind we
should be careful to ensure that we follow in a straight line along the path of
execution. It is usually a wasted effort to assume that some things work and
only start a systematic study of the aigcrithm halfway through the execution

math A oo il Forllo iy Aol e mayertleg ing
l.)ﬂtll Fith 3 SUUU suu.. \,U XUIIU\"\’ Wll\all uuuussius IB (lU\, l.U aa;:uuu.. auy il 5

145 Program testing

mioht ~rha Iff)a\lr"\

1 o rtho nrao m cnivac th
illlslll \ull\u\wl\ 318 ¥Y iy L

nerine progranl soives

whether it handles the case when all data values are the same, and so on.
Unusual cases like these are usually the ones that can cause a program to
falter.

As an example, consider the testing we would need for the binary search
algorithm (i.e. algorithm 5.7). Appropriate data sets and tests are given in
Table 1.2.

it 1s often not possible or necessary to write programs that handle ali
input conditions that may be supplied for a given problem. Wherever poss-
ible programs should be accompanied by input and output assertions as
described in the section on program verification. Although it is not always
practical to implement programs that can handle all possible input condi-

ttnn(: wer c!’!nu;(‘l Ql\ucu}c cfrnu:- fn hinid inta o nrogram me acrhanicme that allaw
FAFAAA NS LKL J LALALENRE LESLN L l.) 51 EdLd 103 % %Al DLl LESGAY LALENSYY

it to gracefully and informatively respond to the user when it receives input
conditions it was not designed to handle.

18 COMPUTER PROBLEM-SOLVING

CHAP. |

Table 1.2 Appropriate data sets for testing binary search algorithm

Test

Search

value(s) x

Sample data

Wil the ailgorithm handle

the coarcrh Af arrav af Ans
TON SLGiLE Ve daray Vi Uioio

efement?

Wil it handle the case where
all array values are equal?

Will it handle the case where
the element sought equals

arvay
—Fh%fél%[—\#&lﬂ%lﬁ—?h@ array-

(vi)

(vit)

(viii)

(ix)

0,1,2

0,1, 2

alll=1

afl]=1

all]=1

aj2]=1

al2]=2

aln}=1

aln}=n

Will it handle the case where
the value Qm;ghz gqimlq the

fast value in the array?

Wil it handle the case where
the value sought is less than
the first element in the
array?

Will it handle the case where
than the last value in the

YL
airay:

Will it handle the case where
the value sought is at an even
array location?

her

W
at an nd
eSS LAAT LILe

%

Will it handle the case

the valne canaht i

i ¥ LlLAW JU“&!I‘. &
array location?

a,

Will it handle the case where

the valiie canoht ic aheant
Sd i FLAE LA JUU&!!‘ iF e T FAL

but within the range of array
values?

n+1i

a{1]=1

ai}=1

af1l=1

afi}=1

a{2]=2

a2}=2

af2]=2

af2}=2

alnl=n

afnl=n

alnl=n

alnl=n

alnl=n

aln}=2n

The last statement should not, however, be taken to mean that we

should only design algorithms to solve specific problems. This approach
should be far from our goal. Almost without exception we should design
algorithms to be very general so that they will handle a whole class of
probiems rather than just one specific case. The latter approach of writing
programs for specific cases usually, in the long run, amounts to a lot of wasted
effort and time. It is far better to do a thorough job in the first place and
produce a program that will solve a wide range of problems. This brings us to
a bad practice that beginning programmers (and some others) often adopt.
The practice referred to is that of using fixed constants where variables

SEC. 1.5 PROGRAM VERIFICATION 19

should be used. For example, we should not use statements of the form
while (<100 do

The 100 should always be replaced by a variable, i.e.
while i<n do

A good rule to follow is that fixed numeric constants should only be used in
programs for things like the number of months in a year, and so on. Pascal
provides for the use of constant declarations.

The considerations we have made concerning the implementation of

mean by a good solution to a problem and, secondly, the question of wh
actually constitutes a correct program,

1.5 PROGRAM VERIFICATION

he cost Of developmcm Oi Lompmmg software has become a mdj()r
expense in the application of computers, Experience in working with compu-
ter systems has led to the observation that generally more than half of all
programming effort and resources is spent in correcting errors in programs
and carrying out modification of programs. As larger and more complex
programs are developed, both these tasks become harder and more time-
consuming. In some specialized military, space, and medical applications,
program correctness can be a matter of life and death. This suggests two
things. Firstly, that considerable savings in the time for program modifica-
tion shou!d be possible if more care is put into the creation of ciearly written
code at the time of program development., We have already seen that
top-down design can serve as a very useful aid in the writing of programs that
are readable and able to be understood at both superficial and detailed levels
of implementaion.

The other problem of being able to develop correct as well as clear code
also wquni‘es the appucauﬁf‘l ofa S}'bu’fi‘i‘l&llc 'pi'GCF:umc ri‘O‘v‘ii‘lg €ven Sii‘:‘;p;c
programs correct turns out to be a far from easy task. It is not simply a matter
of testing a program’s behavior under the influence of a variety of input
conditions to prove its correctness. This approach to demonstrating a pro-
gram’s correctness may, in some cases, show up errors but it cannot guaran-
tee their absence. It is this weakness in such an approach that makes it
necessary to resort to a method of program verification that is based on

sound mathematical principles.

"
1

20 COMPUTER PROBLEM-SOLVING CHAP. |

Program verification refers to the application of mathematical proof
techniques to establish that the results obtained by the execution of a
program with arbitrary inputs are in accord with formally defined output

specifications.
AlthAanoh we

]

Liew l‘\ﬂ§ 7

-
%
[

)
EANSYY

b1
ARELRILIRAE S VYL SLO VW LA

design, it 1S not meant to imply that thls process should be carried out after
the complete development of the algorithm. In fact, a far better strategy is to
develop the proof in a top-down fashion along with the top-down develop-
ment of the algorithm. That is, we start out by proving the correctness of the
very basic structure of the algorithm at an abstract or superficial level. Then

ensure that these refinements do not alter the correciness of the more
abstract level, This process is repeated until we get down to the specific
program steps.

1.5.1 Computer model for program execution

To pursue this goal of program verification, we must fully appreciate what
happens when a program is executed under the influence of given input
conditions. What is important in this respect is the execution path that is

fr\“numuri for the given input nnnr‘hhnnc A program mav have a variety of
& t} WAl LA ET A z-’ &l ("R Y] llluJ L ¥ J

execution paths leading to successful termination. For a given set of input
conditions only one of these paths will be followed (although obviously some
paths may share common subpaths for different inputs). The written
algorithm implementation therefore defines a whole set of execution paths.
The progress of a computation from specific input conditions through to
termination can be thought of as a sequence of transitions from one compu-
fation state o another. Each state, including the initial state, is defined by ihe
values of all variables at the corresponding point in time. A stafe transition
and progress towards completion is made by changing the value of a variable
followed by a transfer of control to the next instruction on the current
execution path. As well as instructions that change the computation state
there are also other instructions that simply make tests on the current state.
These tests are used to bring about a change in the sequential flow of

execution. This model for program execution provides us with a foundation
on which to construct correctness nroofs of nlonrlthmc

SOAE VY ARANRT BRSO RASRISNE MW WRSA AR RARISOD pARIARS

1.5.2 Input and output assertions

The very first s:tep that needs to be taken in order to prove a program correct

lb I.U *)!U\"IUC a lUl Hldl bldlCillC!ll Ui ll.b prLlliLdUUilb 1!1 lCl Ity Ul EIIC leidUle
that it employs. The formal statement has two parts, an input assertion and

SEC. 1.5 PROGRAM VERIFICATION 2i

an output assertion which can be expressed in logic notation as predicates
that describe the state of the executing program’s variables. The input
assertion should specify any constraints that have been placed on the values
of the input variables used by the program (e.g. an input variable d may play

tha rale nf a divienr in the nenaoram Mlearly A rannat have the trahu‘» n Tha
PHD DL UL o WEVISUAD B RIIC PIIURAIN. SN Al Y ©F LA FiaY L TG Y aluy « R AT

input assertion is therefore d <>). When there are no restrictions on the
values of the input variables the input assertion is given the logical value frue.
The output assertion must specify symbolically the results that the program is
expected to produce for input data that satisfies the input assertion {e.g. if a
program is designed to calculate the quotient g and remainder r resulting

, he divisi oy l l) , . :
(x = g*y+rNr<y)

where the symbol “A” represents the logical connective “and”.

1.5.3 Implications and symbalic execution

The problem of actually verifying a program can be formulated as a set of
implications which must be shown to be logically true. These implications
have the general form:

P-Q

where the logical connective “>” is read as “implies”. P is termed the

assumpnon and Q the conclusion. The associated truth table defining imphi-
wven 1in Tahle 1.3,

(&
SAYRE REE 3 G A

Table 1.3 Truth table defining implication

D N D— 1N

V| 2 1 2
true true true
true false false
false true true

false false true

In order to show that these implications or propositions are logically
true, it is necessary to take into account the effects of executing the program
for arbitrary inputs that satisfy the input assertion. A relatively straight-
forward way to do this is to use the technique of symbolic execution. With
symbolic execution, all input data values are replaced by symbolic valuesand
all arithmetic aperations on numbers transiate into aigebraic manipulation

Ul bylliUUllL Cxprtﬂbbioﬂb As an Cdeple LOR&IUCF the IUllOWng pFUng[Il
segment labelled with input and output assertions:

22 COMPUTER PROBLEM-SOLVING CHAP. 1

A readinix,y});
{assert: true}

X = Xx—Yy,;
y = x+ty;
X:=y—x
R fnocart v e uflA e vl
ALF t_us,a)‘llr A T _‘)‘ AU}
where x0 and y0 refer to the initial values of x and y respectively

T Normal and svmboli s for excl hani

Step Normal execution Symbolic execution
ii‘ip'dl. values: x=3 y=1 iﬁ;‘_‘:‘dt values: x=a y=f3
1 xm x=~y S y=3-1=2 x 1= x-y > x=g-f
2 yi= x+y > y=2+i=3 y = x+ty > y={a-Bi+B=«a
3 X = y-x > x=3-2=1 x :=y=-x = x={{a-B+B—{a-p)=p

Both normal execution and symbolic execution, shown in Table 1.4, indicate
that the values of x and y are exchanged.

Symbolic execution enables us to transform the verification procedure
into proving that the input assertion with symbolic values substituted for all
input variables implies the output assertion with final symbolic values substi-
tuted for all variables. A proposition phrased in this way is referred to as a
verification condition (VC} over the program segment from the input asser-
tion to the output assertion.

To proceed with the verification procedure it is usually necessary to set
up a number of intermediate verification conditions between the inm;_t and

s AR AA AR AR T WA AR AR AN Ml AR SRR FE L § L

output assertions. Taken to the limit this involves carrying out the verifica—
tion procedure statement by statement. For practical purposes it is, however,
usually sufficient to only consider verification conditions for blocks of a
program as marked by straight-line segments, branching segments, and loop
segments. We will adopt the convention that VC(A — B) refers to the verifica-
tion condition over the program segment from A to B. We will now consider

£ [1 TR n turn
H H

th n each of these basic segment types in turr

the verification o

15.4 Verification of straight-line program segments

The best way to illustrate the verification procedure is by example. Our
exchange mechanism mentioned above will serve as an example of a
straight-line program segment.

SEC. 1.5 PROGRAM VERIFICATION 23

The verification condition for this program segment is:
VC(A— B): true » {x = yOAy = x0}

On substitution of the initial and final values of all variables, we get:

VC(A—B): true o ((a—)+p)—(a—p)) = Ma~-B)+B)=a
The conclusion part of the verification condition can be simplified to yie
B =B and a =« which is clearly true and so the implication is true.

155 Verification of program segments with branches

| VRN | DIOGTAM SEemen 1. T T O -1 N R A P

To handle program segments that contain branches it is necessary to set up
and prove verification conditions for each branch separately. Asanexample,
consider the following program segment that ensures that x is less than or
equal to y.

readln(x,y),
A lassert P,: true}
if x>y then
begin
t:= x,
X =Y,
y =t
end

B assert Py ({(x<=y)A(x=x0Ay =y}))V{x = y0Ay = x0) }

In general, the propositions that must be proved for the basic if construct
are:
P,NC,oPyg
PA~C Py
where C, i1s the branch condition.
The two verification conditions needed in this case are given below,
where the initial values of x and y are respectively « and 8

VCA—{)—B): true Na>Bo{({a<sBINB=ala=B)}V(B=BAa=a)

lﬂﬂa Py Y] %
HILC G0 10 %

i l. W
true, the verificat;on condition for the true path is true.
The verification condition for the false path is:

VCA—(f)~B): true A~(a>B)> ((a<B)Aa=arB = B))V{a=BAB=q)

Since ~{a>B)> (a<B) and the conclusion (a = aAf = §) is true the verifica-
tion condition for the false path is true. It follows that the labelled program
segment (A~ B) is true. Case statements can be treated similarly.

It

/
v}
R
.
-
3
2
:L
&5
gl
3
3
>
L
J
-a
J
>
o5

Ualln: 1.C. & (2 TAY) 2§

24 COMPUTER PROBLEM-SOLVING CHAP. 1

15.6 Verification of program segments with loops

There are problems with trying to verify loop segments directly by symbolic
execution because the number of iterations required is usualily arbitrary. To
overcome this problem, a special kind of assertion called a loop invariant
must be employed. A loop invariant should be a property {predicate) that
captures the progressive computational role of the loop while at the same
time remaining true before and after each loop traversal irrespective of how
many times the loop is executed. Once the loop invariant is established,
there are several steps that must be taken to verify the loop segment. To
understand this loop verification procedure, we will use the following

A {input assertion P,}
™

straight-line program segment

B {loop invariant I,}
while loop-condition deo

l\ﬂ":“
ucs.lll
L loop-free program segmentJ

end
C {output assertion P}

(a) The first step that must be taken is to show that the loop invariant is

nnnnnnnn hofara tha lnnm ic antarard Thic san ha dana gy eates

ll v uuuauy, oCiore tnc luui} 1ISEnNCied. i nisCan o Gone Uy Di...i.l.lus Ul..}'

a verification condition V(A — B) for the program segment from A to
B. That is, the input assertion, together with any changes to variables
caused by the segment 4 ~ B, must imply that the loop invariant is true.
We can use symbolic execution to carry out this verification step. That
is, we must show P,n/,.

(b) The second part of verifying a loop involves showing that the loop
invariant is still true after the segment of program within the loop has
been executed. To do this we can set up a verification condition
VC(B— B). This involves showing that the loop invariant with initial
values of variables set, together with the condition for loop execution
Cy, implies the truth of the loop invariant with final values of variables,

SEC. 1.5 PROGRAM VERIFICATION 25

(¢} Asa final step in verifying a loop segment, it is necessary to show that
the invariant, together with the negation of the loop-entry condition,
implies the assertion that applies on exiting from the loop. The verifica-
tion condition in this case for our basicloop structure will be VC(B— ().

FoYoh Y tv oy r\rnr\r\t i wtll hoas
\w-‘JlJUllUills lJ uyuaiu 0 wWin oC]

I . N (-'..ﬁp,.

A better understanding of the application of the loop verification
technique can be gained by studying a specific example. Consider the follow-
ing program segment which can be used to compute factorial.

A Aassert P, n>=0}
z = 0;
f o= 1-
JM " ‘,
B {invariant Iy fact = ilAi<n}
while i<rn do

begin
i :=i+1;
fact = i*fact
end

el f 2 n r P (k]

C assert P.: faci=n!}
Assume the input value of n is y and the current values of { and fact are o and
B respectively. Using symbolic execution we can show that the associated
verification conditions that must be proved are:

i. VCA-B): P, Iy
1y=0o1=0IA0=<y
Now 1 =0!1s true by definition and y=0-0=<1y is trivially true and so the
vertfication condition V(TA — R§ ic true,

Fw R ARAWERTIN RS wASLANAARERARNE

2. VC(B B) . IB/\CBDIB
B = alAasyrha<yo{a+1)8 = (a+ DN+ D)=y

Iy Cp

Since B=a!

we have (a+1)B = (a+1}a! =(a+1}=(a+1}a! by definition

and so 8= aln{a+1)8={(a+1)! is true,

Also asyAa<yoa<y

and so {a+1)<y for integer « and .

It follows that the verification condition VC(B— B) is true.
3. VOB~C): IZA~Cygo P,

: B=alhasyA ~(a<y)>B = y!

Since ~{a<y)na=y

then asyhazyoa=1y

and so because a =y it follows that 8=al>8=v!is true

and so the verification condition VC(B— () is true

2382 LS LEA% VAR ARSRORLRALIRR RRSRRRILEVINS P A I i a

26 COMPUTER PROBLEM-SOLVING CHAP. |

Since the verification conditions for all three program segments are correct,
the complete program segment is said to be partially correct.

What the verification method we have described gives us isonly a proof
of partial correctness, with the implication that if the algorithm terminates

tha raciilt mradiirad will ha Anrroant ar mraarame that cantain Imaame wa nea
LA PSR iU BIVL U YL UL WUld L, W yivsl QAElTD lllat wAIIIRQAELN 1uuya wWie aic

therefore left with the separate but necessary task of proving that the
program terminates in order to establish rotal correctness.

Before considering in detail a method for proof of termination, we will
consider setting up the verification conditions for a program example that
employs an array.

15.7 Verification of program segments that employ arrays

The idea of symbolic execution developed in the preceding sections can be
extended to some of the simpler examples that employ arrays aithough it
now becomes necessary to account for the symbolic values of all array
elements. As an example of verification of a program segment containing an
array we will set up the verification conditions for a program that finds the
macitinan F tha cmallact alamiant in tha arvau

PUBIL]U!I WAk LW OHIIAdtivOt iU iHIWRLY B LLEA auay.

The program annotated with assertions may take the following form:

A lassert P, n=1}
i:=1;
p:=1
B {invariant I (AsismANI<sp<siialpl=a[l], 4[2], ..., ali])}
while i<n do
begin
i
if a[ij<<a{p] then p :=
end
C lassert P.: (1spsn)A\afpl=a[l], 4[2], ..., a[n])}

where we have used the shorthand convention that:

alpi=a{l], a[2], ..., e[n]=a{pi=a[1]na[p]=a[2]A - Na[pl=a]n]

Assuming that the initial values of a[1], a[2], ..., a[n] are respectively
oy, ..., &,, and that the initial value of n is 8, we can use symbolic execution to
check the verification conditions:

VA~ B): s=1o(I1=s1=s=HNI=s1sDAa=q

With i and p having initial values of 8 and y respectively, the verification
conditions for the two paths through the loop are:

S$EC. L5 PROGRAM VERIFICATION 27

VO(B—-(t)—B): (1sB=d)A(I=sy=sBiMa,<a,, ay, ..., ag)AB<INAa, <a,
D(ISLHIHA(I=sB+1=s8+1)Aag <oy, ay, ..., Qg
VC(B—(f)~B): (1=B=3)A(1=y=IN(o,=a,, ay, ..., ap)
AB<EA ~{ag, <o)
S(1<B+H1<HAI=y<B+ DA (o, <a
VC(B—C): (1sB<sHNIsy=sB)Na,<a,, a,, ..., ag)\~{(B<S)
>(l=sy=$HMa, <oy, ay, ..., a;)

The example above should give some flavor of how programs with
arrays may be treated. We will now return to consideration of the problem of
proving program termination.

15.8 Proof of termination

To prove that a program terminates, it is necessary to show that it accom-
plishes its stated objective in a finite number of steps. This amounts to
showing that every loop in the program terminates in a finite number of
steps. In many instances, proof of termination follows directly from the
propertics of the various iterative constructs. Consider, for example, the

v hoatooe

[P
IO-100p OCIOW!

Frar 7 o— 1 ¢t 1 A
L0 S 2 1 WU 71t uv
begin
end

When n is positive and finite this is guaranteed to terminate because, with
each iteration, the number of steps to the termination condition being
satisfied is reduced by at least one. This reduction can only be carried out a
finite number of times and so the loop must terminate,

There are obviously loops for which the proof of termination is much
more subtle and elusive. One of two situations usually prevails in such
circumstances. When there is no single variable that 1s monotonically pro-
gressing towards the termination condition, we often find that an arithmetic
combination of two (or more) variables makes progress towards termination

with annh itaratinn
YWELLE OBl Bl CERELFD.

If the termination characteristic of the program is not of this type, it
usually remains to show that there is some property of the data (perhaps a
sentinel) that will guarantee termination.

More formally, the problem of proving loop termination can often be
approached by associating another expression, in addition to the loop
invariant, with each loop. The expression, €, should be chosen to be a
function of the variables used in the loop. It should always be non-negative
and it must be shown to decrease in value with each loop iteration. If these

28 COMPUTER PROBLEM-SOLVING CHAP. 1

criteria are satisfied, the loop must terminate. Proof of termination can
therefore be reduced to establishing the truth of the following termination

conditions.
1 aforring harl tannirasnaralized Inam ctreiotitrs wae muct chnw that thae
i) AACAVIR AR VG s AU UL BT GRIACU VUL DL ULV G WG T a3t 35UV 1hal v

truth of the loop invariant I, together with condition for loop execu-
tion Cg, implies that the value of the expression € is greater than zero.
That is,

TC1(B): I,ACye >0
t{:! i- N ,_‘B l - - E ’ l .

In some instances, the invariant used for establishing partial cor-
rectness is not sufficient for use in a proof of termination. This problem
can be overcome by attaching additional conditions (derived from
earlier assertions) to the invariant.

(i1} The second proposition that must be proven is to show that the loop
invariant Iz, together with the condition for loop execution, Cg, implies
that the value €, of the expression before execution is strictly greater
than its value € after loop execution, i.e. for a loop B

TC2(B~ B): I,ACyo(e,>€)A(€20)

The final value of € can be obtained by symbolic execution of the
statements in the loop.

Once these two propositions have been shown to be true, we can
immediately conclude that the repetition process is finite since € can only be

decreased a finite number of times while remaining positive as required by
TC1(B). The considerations of termination for repeat. . until loops follow a

e e ARSEAL R LAVIATRRS WL LA AAREIRGATNR AL A RepewiRe u-.w.- au...- P RNAAS

similar line of reasoning.
A proof of termination for the quotient/remainder program given
below will now be outlined.

begin
lmccort P - {v=MAfv=M1
A1 PEOILTE & 4. AT U YU
ro=x;q:=0

B {invariant 1. r=0/Ax = y*q+r}
while y<r do

begin
ri=r—y,
q:=q+1
end

C {assert P.: (x=y*q+rAN0sr<y)}

SEC. 1.6 THE EFFICIENCY OF ALGORITHMS 20

To prove termination for this program segment we will use:

€e=r+t+y
In order to establish the first termination condition, we will need to attach
the additional condition y>0 from P, to the invariant /5. We then have
CH IR (r2MAly = vead+- AT SDAf vV~ rd vy
] \J&\U} \""’U)’! \\/‘v J !.1 I l}(\\)‘/ U;! \\} J'l;-w«l\’ \}’ U}
Now
{(r=0A(y=>0>(r+y>0)

— andso TCH{B)ycanbeshowntobe trdte —
Assuming thatx, y, rand g respectively have the symbolic values a, 3, v,
and § on entering the loop, then for TC2{B~ B) we have:

TC2(B~B): (y=0)A(a= B*3+yAN(B>ON(B<sy)>y+B>(y—B)+B
where

g=y+B8 and e=(y-g)+pB

which can easily be shown to be true and so the proof of termination is

r‘nmr\lptp‘

e S A

Once both partial correctness and termination have been established,
the proof is complete. To embark on detailed formal proofs of programs
requires a considerable degree of mathematical maturity and experience.
The length and detail of such proofs is usually considerably greater than the
size of the original program text. In the discussions which follow, we will
therefore only attempt to annotate programs with relevant assertions.

1.6 THE EFFICIENCY OF ALGORITHMS

Efficiency considerations for algorithms are inherently tied in with the

decion imnlamaeantatinn and analucie af aloarithme Fvary aloarithm mauat
u\wﬂl&il, ‘lllt}‘\v"l\vlﬂtu‘-lul" LES R L ullu‘]»’l‘.’ wri ulé\)l AL AENAN T, M'UIJ LAIBUS AERINi04 141 LRTN

use up some of a computer’s resources to complete its task. The resources
most relevant in relation to efficiency are central processor time (CPU time)
and internal memory. Because of the high cost of computing resources it is
always desirable to design algorithms that are economical in the use of CPU
time and memory. This is an easy statement to make but one that is often
difficuit to follow either because of bad design habits, or the inherent
complexity of the problem, or both. As with most other aspects of algorithm
design, there is no recipe for designing efficient algorithms. Despite there

30 COMPUTER PROBLEM-SOLVING CHAP. 1

being some generalities each problem has its own characteristics which
demand specific responses to solve the probliem efficiently. Within the
framework of this last statement we will try to make a few suggestions that
can sometimes be useful in designing efficient algorithms.

1.6.1 Redundant computations

Most of the inefficiencies that creep into the implementation of algorithms
come about because redundant computations are made or unnecessary

storage is used. The effects of redundant computations are most sertous
when they are embedded within a loop that must be executed many times,
The most common mistake USli’]g lOOph is to repeaieoxy recalculate pdﬂ of an
expression that remains constant throughout the entire execution phase of

the loop. The example below illustrates this point:

x := 0;
fori .= 1tondo
begin
x := x+0.01;
y 1= {a*ara+c)rxrx+b*brx,
writeln ('x = ' , x,/)y = ",y)
end

This loop does twice the number of multiplications necessary to com-

piete the computation. The unnecessary muitiplications and additions canbe
removed bv nrprnmnm;nu two other constants a3c and b2 hpfnrp var‘ntgno

e WS F pOS WS LLE [e thea Senre LRI 2) LI PR L E Y

the loop:

alc 1= g*ra*a-+c;
b2 = bxb;
x = 0
fori.= 1tondo
begin
x :=x+0.01;
y 1= a3ckx*x+bl*x;
writeln ('x = " x,'y =
end

'

V)

The savings in this instance are not all that significant but there are
many other situations where they are much more significant. It is always
most important to strive to eliminate redundancies in the innermost loops of

gy P R N V) T PR JVRU 1 ol Uy, U . . RS
LU llputdtluﬂb dd 1L C l ClilLlCliLiCb Cdli bc most Cudity.

SEC. 1.6 THE EFFICIENCY OF ALGORITHMS 31

1.6.2 Referencing array elements

If care is not exercised redundant computations can also easily creep into
array processing. Consider, for examp!e the two versions of an algorithm for

finding the mavimoam
*ll’“‘il& LY ¥4 % Lih

for i := 2 to n do
if a[i]>alp] then p :
max := alp]

Version (2)
p:=1;
max = a[1];
for i := 2 ton do
if ali}>max then
begin
max = a[i];

)} implementation would normally be preferred becan

conditional test (i.e. a{i]>max) which is the dommant instruction is more
efficient to perform than the corresponding test in version (1). It is more
efficient because to use the variable max only one memory reference instruc-
tion is required, whereas to use the variable a{p] requires two memory
references and an addition operation to locate the correct value for use in the
test. Also in version (2), imroduction of the variable max makes it clearer

& | TR PRy 5

what t

The version (2

L

1.6.3 Inefficiency due to late termination

Another place inefficiencies can come into an implementation is where
cnnqtdemhiv maore tests are done than are requ ired to solve the nrnblpm at

hand. This type of inefficiency can be best 1ilustrated by exampie. Suppose
we had to linear search an alphabetically ordered list of names for some
particular name. An inefficient implementation in this instance would be
one where all names were examined even if the point in the list was reached
where it was known that the name could not occur later (e.g. suppose we
were !ookmg for the name MOORE then, as soon as we had encountered a

han MOORE, €.8. MORRIS, there

32 COMPUTER PROBLEM-SOLVING CHAP. |

would be no need to proceed further). The inefficient implementation could
have the form:

A more efficient implementation would be:

1. while name sought > current name and not end-of-file do
(a) get next name from list.

The same sort of inefficiency can be built into the bubblesort algorithm
(algorithm 5.3} if care 1s not taken with the implementation. This can happen
if the inner loop that drives the exchange mechanism always goes the full
length of the array. For example,

fori:= 1ton-1
forj:=1ton—1
if a[j]>a[j+ 1] then “exchange afj] with a[j+1]”

With this sorting mechanism, after the 't iteration, the last i values in the
array will be in sorted order. Thus, for any given i the inner loop should not
proceed beyond n—i. The loop structure will then be:

fori:=1ton—-1
forj:= 1ton—i
if a[j]1>alj+1] then “exchange a[j} with a[j+1]”

The lesson to be learned from this i1s that we should always try to take
advantage of any order or structure in a problem.

1.6.4 Early detection of desired output conditions

The bubblesort also provides us with an example of another related type of
meffmmncv mvnl\;mo termination. [t sometimes hannpnq due to the nature

of the input data, that the algorithm establishes the deszred output condition
before the general conditions for termination have been met, For example, a
bubblesort might be used to sort a set of data that is already almost in sorted
order. When this happens it is very likely that the algorithm will have the
data in sorted order iong before the loop termination conditions are met. Itis
therefore desirable to terminate the sort as soon as it is established that the

¢
s PN I FORS T
aata lb aur:duy SOr LCU iU UU {lllb dll WC IICCU to UU lb LHCLK Wilt:tlit:l HICIC

SEC. 1.7 THE ANALYSIS OF ALGORITHMS 33

have been any exchanges in the current pass of the inner loop. If there have
been no exchanges in the current pass the data must be sorted and so early
termination can be applied {a check of aigorithm 5.3 reveals how this is
implemented for the bubblesort). In general, we must include additional

ctanc and tacte ta datact tha randitinne foar sarly toarminatinon Hoawever rF
QL P aliu u.u:)l.a LU Uil Sl UGG IV Cally Whiinililativin, J5rywo v,

they can be kept inexpensive (as in the bubblesort) then it is worth including
them. That is, when early termination is possible, we always have to trade
tests and maybe even storage to bring about the early termination.

165 Trading storage for efficiency gains

A trade between storage and efficiency is often used to improve the perfor-
mance of an algorithm. What usually happens in this type of tradeoff is that
we precompute or save some intermediate results and avoid having todo a
lot of unnecessary testing and computation later on. (See for example the
longest monotone subsequence problem—algorithm 4.7.)

One strategy that it sometimes used to try to speed up an algorithm is to
implement it using the least number of loops. While this is usually possible,

inevitablv it makes programs much harder to read nn(" Anhnn it 15 thprpfﬁrﬂ
AVE% ¥ L EALSR J IR SEFELFSLY VAN) t} 6' AARAELY 253 %ANALE ZACAE WA

usually better to stick to the rule of having one loop do one job just as we
have one variable doing one job. When a more efficient solution to a
problem is required it is far better to try to improve the algorithm rather than
resorting to “programming tricks” that tend to obscure what is being done.
A clear implementation of a better algorithm is to be preferred to a *“tricky”
implementation of an algorithm that is not as good. We are now left with the
task of trying to measure the efficiency of algorithms.

1.7 THE ANALYSIS OF ALGORITHMS

There are usually many ways to solve any given problem. In computing, asin

mast efforts of human endeavor, we are generallv concerned with ¢ gggd”

EEERAL W Si%00 b0 LAE BLUNARGRE LML VLA, VT Qv Riiui DA ¥ Wi ol LAY}

solutions to problems. This raises certain questions as to just what do we
mean by a “good” solution to a problem? In algorithm design “good” has
both qualitative and quantitative aspects, There are often certain esthetic
and personal aspects to this but, on a more practical level, we are usually
interested in a solution that is economical in the use of computing and human
resources. Among other things, good algorithms usually possess the follow-
ing qualitites and capabilities:

34 COMPUTER PROBLEM-SOLVING CHAP. |

(Y
.

They are simple but powerful and general solutions.

They can be easily understood by others, that is, the implementation is
clear and concise without being “tricky”

They can be easily modified if necessary.

Thavy nre ~rnrrant far slanrly dAofinad critizatinn
Ly ail LOTTOL U7 LGibalny uCLinll Shiuduans.,

)

Ln

They are able to be understood on a number of levels.

They are economical in the use of computer time, computer storage
and peripherals.

7. They are documented well enough to be used by others who do not
have a detailed knowledge of their inner workings.

o QLW I S VA

9. They are abie to be used as a subprocedure for other problems.
0. The solution is pleasing and satisfying to its designer—a product that
the designer feels proud to have created.

These qualitative aspects of a good algorithm are very important butitis
also necessary to try to provide some quantitative measures to compiete the
evaluation of “goodness’” of an algorithm. Quantitative measures are valu-
able in that they can give us a way of directly predicting the performance of

an aleorithm and of comparing the relative nerformance of two or more
AAIE lev ERERALAE LA FANAL 53 VU"‘F“‘I. 5 ‘II\' AW lLELi Y W t}\ll AVl AR SR L¥YYWr v AREWSL W

algorithms that are intended to solve the same problem. This can be impor-
tant because the use of an algorithm that is more efficient means a saving in
computing resources which translates into a saving in time and money.

1.7.1 Computational complexity

To make a quantitative measure of an algorithm’s performance it is neces-
sary to set up a computational model that reflects its behavior under
specified input conditions. This model must capture the essence of the
computation while at the same time it must be divorced from any program-
ming language.

We are therefore required to characterize an algorithm’s performance

in terms of the size (usually n) of the problem being solved. Obviously, more
comnuiing resources are needed to solve larcer nroblems in the same class

ATRAAR AL RS By A ORI PRV LWLV B A N L g AERR By R AR RSRSRRRIRG 2RD LSI% SMAININ. R3S,

The important question that we must settle is, how does the cost of solving the
probiem vary as n increases? Qur first response to this question might be
that as # increases then so does the cost in the same manner (e.g. a probiem
for n = 200 takes twice as long as a problem for n =100). While this linear
dependence on n is true for some simple algorithms in general the behavior
with n follows some other compie{ely different pattern At the lower end of

lIIC deiC wEe IldVC dlgUlliHﬂib Wllli IUgdlIlHi!llb (Ul UCllC!) UCPCI!UCHLC On i,
while at the higher end of the scale we have algorithms with an exponential

SEC 1.7 THE ANALYSIS OF ALGORITHMS 35

dependence on n. With increasing n the relative difference in the cost of a
computation is enormous for these two extremes. Table 1.5 illustrates the
comparative cost for a range of n values.

Table 1.5 Computational cost as a function of problem size for a range of
computational complexities

log,n n n log,n n* n? 2"

1 2 2 4 8 4
3.322 10 33.22 10° 103 > 103
6.644 102 664.4 104 10° >>10%
9.966 10° 9966.0 100 107 >>10230

13.287 104 132,877 108 104 >> 100

What is obvious from this tabie 1s that we can solve only very small
ith him that exhibits cXpoinent ial behavior. Even assum-
ing that a computer can do about one million operations per second, an
exponential algorithm with n =100 would take immeasurably longer than
the existence of the carth to terminate. At the other extreme, for an
algorithm with logarithmic dependence on n, a problem with n=10* would
require only 13 steps which amounts to about 13 microseconds of computer
time. These examples emphasize how important it is to have an understand-
ing of the way in which algorithms behave as a function of the problem size.
What can also come out of analyzing algorithms is a theoretical model of the
inherent computational complexity of particular problems.

In deciding how to characterize the behavior of an algorithm as a
function of the size of the problem n, we must study the mechanism very

onarafiilily ta Adacids 1t what panctitntac tha daminant m.ﬁﬂlﬂnn;cm It mavu ho
WOEWELIELY LW LWLt DL VY ELGL WALISLELULL O til\.« uUlllllialli Bl N3 INRDINAE, 2L 1ua_y W

the number of times a particular arithmetic {or other) expression is evalu-
ated, or the number of comparisons or exchanges that must be made as n

orawe Foar evamnle camnaricenng chanoae and mavac sharastarizva mact
ErowWs. rOF EXxampic, COMParisons, ¢XCnanges, ana moves <aaratitrize most

sorting algorithms. The number of comparisons usually dominates so we use
comparisons in our computational model for sorting algorithms.

the computing time for algorzthms Itis an order notation and it is usually
referred to as the O-notation. An algorithm in which the dominant mechan-
ism is executed cn? times for ¢, a constant, and n the problem size, is said to
have an order n’ complexity which is written as O(n?). Formally, a function
g{n) 1s O(f{n)) provided there is a constant ¢ for which the relationship

glny=cf(n)

36 COMPUTER PROBLEM-SOLVING CHAP. |

holds for all values of n that are finite and positive. With these conventions
we have a means of characterizing the asymptotic compiexity of an algorithm
and hence of determining the size of problems that it can solve using a
conventional sequential computer. We can write the above relationship in

im S—<=c where ¢ is not equal to zero
O f(n)

As an example, suppose we have an algorithm that requires {(37°+6n+3)
comparisons to complete its task. According to the convention just outlined

We hQ\IP‘
woh1aveos

2
g(n)=3n2+6n+3 and lim 3nttontl 4

n— n-

It follows that this particular algorithm has an asymptotic complexity of
O(n?). In using this methodology to decide upon the superiority of one
algorithm over another we need to pay careful attention to the constants of
proportionality. It can happen that an algorithm with a higher asymptotic

complexity has a very smali constant of proportionality and hence for some
?ﬁrhmrlnr range of n it will m\m hetter ?P}"fn!"m')lnf‘f‘ than an alonrtthm with

LEaddae s

£
i

lower complexity and a h:gher proportionality constant.

1.7.3 Worst and average case behavior

In analyzing any given algorithm there are two measures of performance

that are usually considered. These are the worst and average case behavior of
the algorithm. These two measures can be applied to both the time and space
complexity of an algorithm. The worst case complexity for a given probiem
:uzt: F CC‘II“TESPG!IU!S {0 lIl(’." '[TlaXimUIﬂ C()f’ﬁplcxuy enCOuﬁff:rt:u dmong au
problems of size n. Determination of the worst case complexity for many
algorithms is relatively straightforward. We choose a set of input conditions
that force the algorithm to make the least possible progress towards its final
goal at each step.

in many nragtwai anplggat;nnq it is much more 1mpgrtant to have a
measure of the expected complexity of a given algorithm rather than the
worst case behavior. The expected complexity gives a measure of the
behavior of the algorithm averaged over all possible problems of size n. In
comparing two algorithms to solve a given problem, we would generally opt
in preference for the algorithm that has the lower expected complexity.
Unfortunately setting upa computational model to characterize the average

| S
OEHavior Uil.Cli lll\’UlVCh YUiY LUitlplCA auu bU})ii!bilLdtCU LU!IlUllldlU!idl
analyses.

SEC 1.7 THE ANALYSIS OF ALGORITHMS 37

1.7.4 Probabilistic average case analysis

As a simple example, suppose we wish to characterize the behavior of an
algorithm that linearly searches an ordered list of elements for some value x,

[we—y
o
s

the cas
in the list before terminating.
The average case situation is somewhat different. For a probabilistic
average case analysis it is generally assumed that all possible points of
termination are equally likely, i.e. the probability that x will be found at

position 1 is 1/n, and at position 2 is 1/n, and so on. The average search cost
1s therefore the sum of all possible search costs each multiplied by their
associated probability. For exampie, if n=35 we would have:

I

verage T = 5)=3
average search cost=1 142+3+4+

Noting that 14243+ - +n=n{n+1)/2 (i.e. from Gauss’ formula} then in
the general case we have:

+1
average search cost mé(ﬁ (n+ 1)) xﬁ-«;;«-«—

As a second, slightly more complh xample, let u
average case analysis for the binary search procedure described in algor;thm
5.7. What we wish to establish in this analysis is the average number of
iterations of the search loop that are required before the algorithm termi-
nates in a successful search. This analysis will correspond only to the first
binary search implementation proposed in algorithm 5.7 which terminates
as soon as the search value is found. The associated binary search tree for an
array of size 15 is given in Fig. 1.2.

Referring to the tree we see that 1 element can be found with 1
comparison, 2 elements with 2 comparisons, 4 elements with 3 comparisons,
and so on, i.e. sum over all possible elements = 1+2+24+34+34+3+4+34+44 -
In the general case, 2/ elements require {-+ 1 comparisons. Now assuming that
all items present in the array are equally likely to be retrieved (i.e. their
probability of retrieval is 1/n), then the average search cost is again just the

sum over all possible search costs, each multiplied by their associated proba-
bility. That is,+

Hogon} Hogon}
i . 1 NP
average search cost=— z (i+1)yx2 = z iX2i+n
i=0 i=0

t Where | |is used to indicate that |log;n] is the greatest integer less than or equal to
logyn (it is referred to as “Floor” logyn), and 3, is the mathematical summation
symbol.

CHAP. 1

38 COMPUTER PROBLEM-SOLVING

suostredwos 4 mﬂ A

suosuedwod ¢ e

suostredu

D em @Wm >

(o) ()

ooNA

(=)

N \\

wosuedwon | °

ary decision tree for a set of 15 elements,

Fig. 1.2 Bin

BIBLIOGRAPHY 39

This formula is exact only when »n is one less than a power of two. Some
calculus is needed to evaluate the sum:

[logsn]

§= 2 [X2i

i=0

We may recognize that this sum is a geometric progression and we know that
in general:

k+l.—1
T4x4x24 oo pxk=F 2
x—1
We may aiso note that:
[X2i= 4 (2x?)
dx \ }xﬁZ

It follows that to compute our sum we can take the derivative of
(x¥*1-1)/(x—1) multiplied by 2 and evaluated at x =2 where k=|log,n|.
When this is done we get:

And, after substituting for the sum in our average search cost expression, we

find:

(n+1) |log,n|+1
n

average search cost= ={log,n| for large n.

relatively simple example, a degree
uired to carry out the analysis. We now
0 embark on a study of algorithm design.

This example illustrates that ev
of mathematical sophistication is
have some of the tools necessary

o n
1101 &
Ie
{

BIBLIOGRAPHY

Problem-solving

The classic book on problem-solving is Polya’s How to Solve It (1971}, which was first
published in the 1940s. This book is highly recommended to all embarking on
computer problem-solving. Polya’s other works on mathematical problem-solving
contain a wealth of useful hints and exercises. Gardiner’s Aha! Insight is also a
delightful book. The other references listed also contain important ideas on
problem-solving.

40 COMPUTER PROBLEM-SOLVING CHAP. 1

Gardiner, M., Ahal Insight, Freeman, N.Y., 1978.

Polya, G., How to Solve It, Princeton University Press, Princeton, N.J.,, 1971.
Polya, G., Mathematical Discovery: On Understanding, Learning and Teaching
Problem-Solving, Vols I and 1i, Wiley, N.Y., 1962,

4. Polya, G., Mathematics and Plausible Reasoning, Vols I and I, Princeton
University Press, Princeton, N.J., 1954,

Watkins, R, P., Computer Problem-Solving, Wiley, Hong Kong, 1974.
Wickelgren, W. A, How to Solve Problems: Elements of a Theory of Problems
and Problem-Solving, Freeman, S.F., 1974.

L R

G

Top-down design

The references in this section provide a valuable scholarly treatment of structured
programming.

1. Alagiec S and M. A Arhih, The Desio;

Alagic, 8, and M. A. Arbib, The Des
rams, Springer-Verlag, N.Y., 1978,

2. Dahl, O.-J., E. W. Dijkstra and C. A, R. Hoare, Structured Programming,
Academic Press, N.Y., 1972,

3. Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, N.J., 1976.

4. Wirth, N,, “Program development by stepwise refinement”, Comm. ACM, 14,
2217, 1971.

5. Wirth, N., Systematic Programming: An Introduction, Prentice-Hall

Engiewood Cliffs N.J, 1973.

Program verification

The references in this section represent some of the most important and influential

contributions to the discipline of computing science. The article by Kidman (1978)
nrnvndﬁc avery good tutortal introduction to nproeram verification for beginners, The

L L, I x | HV LR IAT ARSI L I GInE VLSRRGS S VS ELTR e)

paper by Wegbrelt (19? 7) also provuies important gmdelmes The original and most

e en b P s+hen £inlf ey ey Y ST, rmen wmade iy Dot

w1, nl H .
i!lllucli{iﬁl LUHUlUullUIIh lU i.llC 111G Ui plugidli! VETNcatlion were madce Uy FlUyU

(1967) and Hoare (1969).

1. Elspas, B., K. N, Levitt, R. J. Waldinger and A, Waksman, “An assessment of
techniques for proving program correctness”, Comp. Surv., 4, 97-147, 1972.
2. Floyd, R. W., “Assigning meanings to programs”, in Proc. Symp. in Appl.

Mnl‘h Mnt}lﬂmghnﬂi Acnacte of amnutar inﬂnna ad I T Srhw rt

s 3
ATAVEETE . AAGIUIR G LIVGL S0P feds W AP el WPl Bty T e R R G

Math. soc, Vol. 19, pp.19-32, 1967.

e PR iLr A Ty o N Wt TI 1L | BN T,
. -
Uijl&h!.id E ¥¥., A Ul.)tl[)tlflﬁ of rrugrum!mng, ru::mu.t: ridi, IS lglCWUUU

Cliffs, N.J., 1976.

4. Hantler, §. L. and }. C. King, ““An introduction to proving the correctness of
programs”, Comp. Surv., 18, 33153, 1976.

5. Hoare, C. A. R., “An axiomatic basis for computer programming”™, Comm.
ACM, 12, 576-80, 1969.

6. Kidman, B. P “An introduction to program verification”, Proc. 8th Australian

Comp. Conf., Canberra, Voi 2, 877902, 1978.

{'.JQ

™

A

BIBLIOGRAPHY 41

Linden, T. A., “A summary of progress toward proving program cosrectness’”,
Fall Joint Computer Conf., Vol. 41, Part 1, 201-11, 1972,

Manna, Z., Mathematical Theory of Computation, McGraw-Hill, NY,, 1974,
Ramamoorthy, C. V. and R. T. Yeh, Tutorial: Software Methodology, IEEE
Computer Society, Chicago, 1978.

Wegbreit, B., “Constructive methods in program verification”, JEEE Trans.
Soft. Eng., SE-3, 193-209, 1977.

Design and analysis of algorithms

The contribution of Knuth (1909, 1972) has been singularly outstanding in this fieid.
The book by Aho e al. (1974) is also an important contribution.

I

2.

o)

Aho, A. V., J. E. Hopcroft and J, D. Ullman, The Design and Analysis of

£t et sy - [y vy Addionn Waslay Bacdins Ao 107A
buruyuscr ﬂlsb" !l”’k’, AQGISon- YLy, AaQUliig, IYidad., 17777,

Goodman, S. E. and S. T. Hedetniemi, Introduction to the Design and Analysis
of Algorithms, McGraw-Hill, N.Y., 1977. ‘
Guttmann, A. I, Programming and Algorithms, Heinemann, London, 1977.
Knuth, D. E., The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley, Reading, Mass., 1969.

Knuth, D. E., “Mathematical analysis of algorithms”, Proceedings IFIP Con-
gress, Ljubljana, 135-143, 1972.

Maiu K. and A. R. Hanson, Fundamentals of Computin

tals of Computing Science,
Hail Englewood Cilffs, N.J., 1978.

Chapter 2
FUNDAMENTAL ALGORITHMS

INTRODUCTION

The computer has come close to reaching the status of a untversal machine
because of its unique ability to perform an almost infinite range of tasks. It
combines versatifity with lightning speed. What comes as a surprise in this

vt that nnn‘-u all mha ~f ha cEriantin sl ten
\wUlllet l\) tllﬂl. Ulll] [+ AW | J a;uau uuuluut Ui UGD!V IilDil uvuuua Gi\w UDDU tU

perform all computations. At the most fundamental level a computer has
instructions for storing information, for performing arithmetic, and compar-
ing information. There are also instructions for controlling the way a compu-
tation is performed. These very basic instructions are used to ultimately
build the more powerful and complex instructions that we find as primitives
in the high level programming languages like Pascal. At the programming
language level the same thing happens. Once again, a few computational
mechanisms are used to build much larger computational procedures. It is
the latter fundamental mechanisms along with considerations of computer
information representation that we will examine in this chapter.

One of the most widely used of these fundamental mechanisms is that
for interchanging the values associated with two variables. In particular, this
operation is widely used in many sorting algorithms. The idea of counting is
also an essential part of many more elaborate computational procedures. An

extension of the countine idea forms the basis of the often-used mecha
CXICNSIoN Of UC CoOUNURE 1GCa 10IMS 1€ DASIS 01 1H¢ OIEN-USCa mMednan

for summing a set of data.

Seemingly, an unlimited number of problems can be expressed in a way
that allows them to be solved by repeating a very basic mechanism over and
over. For example, a set of n numbers can be summed by simply adding
successive numbers from the set to an accumulating sum (see algorithm 2.3).
The basic mechanism that is used in the iterative or repetitive process must
cause changes in the variables and/or information considered by the
mechanism, Only in this way dan progress be made towards termination of

42

SEC. 2.1 EXCHANGING THE VALUES OF TWO VARIABLES 43

the iterative process which is always conditionally terminated.

In implementing computer solutions to problems, probably the most
important skill that we need to develop is the ability to phrase problemsina
way that will allow an iterative solution to be formulated. Unfortunately, for

manct nf ne hafara our f vct anrauntar with COMn itar nranhlamocnluving we
E1F8FIT AL LIJ LA LT R R 231 OV W iSRRI ¥Y L1Lti} DUiIiP Thd lJlUUl\vlll \)Ul"lll& Y W

have had little experience (at the conscious level, at least) of formulating
iterative solutions to probiems. Time and again in our early programming
days we are confronted by simple problems that we can solve very easily (e.g.
like picking the maximum number in a set) but for which we have great
difficuity in formulating an iterative solution. This happens because we can

method used to obtain the solution. When dealing with computers, we are
not granted such a luxury, Once we have grasped the idea of “thinking
iteratively (and also recursively)”’, we start to place ourselves in a position
where we can formulate computer solutions to otherwise very complex
problems.

Another foundation that we must build early in our computing days, is
an understanding of the way in which computers represent and manipulate
information. In particular, we must appreciate the differences between

number and character representations of information and how to mam
.Iul‘luwl LELL W \"lu‘u Lk l.ll\-fd‘vlll-ul-l\.)lld [E RS TRIFANANEE R TE Y LW TENSTY LW I ERETANE]

late and convert between the various representations.

Only after we have digested the essence of these fundamental concepts
are we in a position to tackle the more involved aspects of computer
problem-solving.

Algorithm 2.1
EXCHANGING THE VALUES OF TWO VARIABLES

Problem

Given two variables, 2 and b, exchange the values assigned to them.

Algorithm development

The problem of interchanging the values associated with two variables
involves a very fundamental mechanism that occurs in many sorting and data
manipulation aigorithms To define the problem more clearly we will

L -

CAAIIINIC d prLi!lL C.Kdl!l;)

44 FUNDAMENTAL ALGORITHMS CHAP. 2

Consider that the variables ¢ and b are assigned values as outlined
below. That is,
Starting configuration
a b

721 463

This means that memory cell or variable @ contains the value 721, and
memory cell or variable b contains the value 463. Qur task is to replace the
contents of g with 463, and the contents of b with 721. In other words we
want to end up with the configuration below:

Target configuration

1
a D

AL ~a
400 141

To change the value of a variable we can use the assignment operator.
Because we want a to assume the value currently belonging to b, and b the
value belonging to a we could perhaps make the exchange with the following
assignments:

a:.=b; (D)
b:=gq (2)

where ““:=" is the assignment operator. In (1) “:="" causes the value stored
in memory cell b to be copied into memory cell a.

Let us work through these two steps to make sure they have the desired
effect.

We started out with the configuration

a b
721 463
then after execution of the assignment a:=b we have
a b
463 463

The assignment (1) has changed the value of a but has left the value of b
untouched. Checking with our target configuration we see that ¢ has
assumed the value 463 as required. So far so good! We must also check on b.
When the assignment step (2) i.e. b:= a is made after executing step (1) we

end up with:

b
(o)

£
N
L
£

SEC. 2.1 EXCHANGING THE VALUES OF TWO VARIABLES 43

In executing step (2) a is not changed while b takes on the value that currently
belongs to a. The configuration that we have ended up with does not
represent the solution we are seeking. The problem arises because in making
the assignment:

a:=>b

we have lost the value that originally belonged to a (i.e. 721 has been lost). It
1s this value that we want b to finally assume. Qur problem must therefore be
stated more carefully as:

new value of 4 := old value of b;

new value of b := old value of a
What we have done with our present proposal is to make the assignment
new value of b := new value of a

In other words when we execute step (2) we are not using the value a that will
make things work correctly-——because a has already changed.

To solve this exchange problem we need to find a way of not destroying
“the old value of a” when we make the assignment

a:=»b

A way to do this is to introduce a temporary variable f and copy the original
value of ¢ into this variable before executing step (1). The steps to do this
are:

t:= a;
a:=b
After these two steps we have
a t b
463 721 463

We are better off than last time because now we still have the old value of g
stored in £. It is this value that we need for assignment to b. We can therefore
make the assignment

b:.:=t
After execution of this step we have:
a t b
463 721 721

Rechecking with our target configuration we see that a and b have now been
interchanged as required.
The exchange procedure can now be outlined.

46 FUNDAMENTAL ALGORITHMS CHAP. 2

Algorithm description

1. Save the original value of g in ¢.
2. Assign to a the original value of b.
3. Assign to b the original value of g that is stored in ¢

The exchange mechanism as a programming tool is most usefully
implemented as a procedure that accepts two variables and returns their
exchanged values.

___ Pascal implementation

procedure exchange (var a,b : integer);

var ¢ integer;

begin {save the original value of a then exchange a and b}
{assert: a =a0 Ab =b0}

t:=a;

a:=b;

b:=t

{assert: a =bOAb =a0}
end

Notes on design
1. The use of an intermediate temporary variable aliows the exchange of
two variables to proceed correctly.
2. This example emphasizes that at any stage in a computation a variable
always assumes the value dictated by the most recent assignment made
to that variable.

YWimrbinag throaas tha mashanicms th o »mwao
¥¥Y LU !\llls uuvusu L ¥7 0w i]!b\wllalllblil \"\"ltll [} l}a

useful way of detecting design faults.
4. A more common application of exchange involves two array elements
{e.g. al[i] and a[j]). The steps for such an exchange are:

(s

t .= ali];

a(i] := dljl;

aljl := ¢
Appiications

Sorting algorithms.

Supplementary problems

2.1.1 Giventwo glasses marked A and B. Glass A is full of raspberry drink
and glass B is full of lemonade. Suggest a way of exchanging the
contents of giasses A and B.

SEC. 2.2 COUNTING 47

2.1.2 Design an algorithm that makes the following exchanges:
a—>b—¢

The arrows indicate that b is to assume the value of @, ¢ the value of

l‘\ Ql"lf" cCN NN
u, fAEE%WE I%F WFEE.

2.1.3 Design an algorithm that makes the following exchanges:

ae-be—ce-d

2.1.4 Given two variables of integer type a and b, exhange their values
without using a third temporary varzable

Q‘

& ™
sy

o~
[y

are I an

Algorithm 2.2
COUNTING

Problem

Given a set of n students’ examination marks (in the range 0 to 160) make a
count of the number of students that passed the examination. A pass i
awarded for all marks of 50 and above.

Algorithm development

Counting mechanisms are very frequently used in computer algorithms.
[IO § S g, | . PR, PR SIS . [, Iy S .
UCliCldHy o LUUI![iUst O maae oi lHC AUmoer Of llC!llb lll a set WIHLH
possess some particular property or which satisfy some particular condition
or conditions. This class of problems is typified by the “‘examination marks”
problem.

As a starting point for developing a computer algorithm for this prob-
lem we can consider how we might solve a particular example by hand.

Suppose that we are given !he set of marks
58, 42,77, 63, 29, 57, 89

To make a count of the passes for this set we can start at the left, examine the
first mark (i.e. 55), see if it is =50, and remember that one student has
passed so far. The second mark is then examined and no adjustment is made

eratErey

tha AN7E el [S I -l
tU iilC COUNL. vy OCil wo r.uuvc ﬂl lllC l.lillU Illdll\ WeE SCC ll. ib -"‘JU anG 8o we adad
one to our previous count. The process continues in a similar manner until all
marks have been tested.

48 FUNDAMENTAL ALGORITHMS CHAP. 2

In more detail we have:

Marks Counting details for passes

55 previous count = {) current count = 1
Order in 42 previous count =1 current count=1
which marks 77 previous count= 1 current count=2
[o= Y A N I s Y mnirrant cannt - 1
L3 L B lJl\.v\‘l.UuD LAV EY AN dar WAL AWAIE WRILRRRL -
examined 29 previous count =3 current count=3
57 previous count =3 current count =4
89 previous count = 4 current count=15

.. Number of students passed =5

After each mark has been processed the current count reflects the
number of students that have passed in the marks list so far encountered.

We must now ask, how can the counting be achieved? From our
example above we see that every time we need to increase the count we build
on the previous value. That is,

current_count = previous_count+1
When, for example, we arrive at mark 57, we have
previous _count =73

Current_count therefore becomes 4. Similarly when we get to the next mark
(i.e. 89) the current_count of 4 must assume the role of previous _count. This
means that whenever a new current_count is generated it must then assume
the role of previous_count before the next mark is considered. The two steps
in this process can be represented by

current_count := previous_count+1 (1)
previous_coun! .= currem_counf (2)

™YL, e I, N
11ese two st i

y applied to obtain the count required.
In conjunction w1th the conditional test and input of the next mark we
execute step (1), followed by step (2), followed by step (1), followed by step
(2) and so on.

Because of the way in which previous count is employed in step (1) we
can substitute the exnreqqgnn for previous count in step (?) into step (ﬂ to

obtain the simpler expression -

current_count = current_count+1i
|)
{new value) (old value)

The current _count on the RHS (right-hand side) of the expression assumes

t temerndera

thoa pealda Ao thes $he
lllC TGic Ul prcv:uua Luuru Al tlllh btalCI!lCHt INVOLIVES an aamgulucut uuutu

than an equality {(which would be impossible} it is a valid computer state-

SEC. 2.2 COUNTING 49

ment. What it describes is the fact that the new value of current count is
obtained by adding 1 to the old value of current count.

Viewing the mechanism in this way makes it clear that the existence of
the variable previous count in its own right is unnecessary. As a result we

v
ave a simpler countine mechanism

L ¥ A ‘.)lllit.lt\tl \wU“lllllls I vl dliDELE.

The essential steps in our pass-counting algorithm can therefore be
summarized as:

while less then n marks have been examined do

(a)

read next mark,

Before any marks have been examined the count must have the value zero.
To complete the algorithm the input of the marks and the output of the
number of passes must be included. The detailed algorithm is then as
described below.

Algorithm description
1. Prompt then read the number of marks to be processed.
2. Initialize count to zero.
3 While there are still marks to be processed repeatedly do
(a) read next mark,

(b) ifitis a pass (i.e. =50) then add one to count,
4. Write out total number of passes.

-

Pascal implementation

program passcount {input, output);

const passmark = 50;

var count {contains number of passes on termination},
i {eurrent number of marks processed},
m {eurrent mark},
n {total number of marks to be processed}. integer;

begin {count the number of passes (>=50) in a set of marks}
writeln {enter a number of marks n on a separate line followed by the
marks');
readin {n};
{assert: n>=0}
count := 0;
i:=0;
{invariant ;. count =number of marks in the first i read that
are >=passmark Ni =<n}
while /i <n do

50 FUNDAMENTAL ALGORITHMS CHAP. 2

begin {read next mark, test it for pass and update count if necessary}
i=i+1;
read {m);
if eo/n {input) then readin;
if m>=passmark then count .= count+1
end;
{assert: count =number of passes in the set of n marks read}
writeln {number of passes =', count}
end.

1. [Initially, and each time through the loop, the variable count represents
the number of passes so far encountered. On termination (when i= n)

count represents the total number of nasses in the set, Recause | is
TSRS l‘!’t—llvu"’.“d L ¥ A LWL IE RS SN Ry Wy nFE P [L% L v) £dl LI e b A T o el Bl 7 Ny *

incremented by 1 with each iteration, eventually the condition i<<n will
be violated and the loop will terminate.

2. Itwas possible to use substitution to improve on the original solution to
the problem. The simplest and most efficient solution to a problem is
usually the best all-round solution.

3. An end-of-line test is included to handle multiple lines of data.

Applications

All forms of counting.

Supplementary problems

2.2.1 Modify the algorithm above so that marks are read until an end-of-
file is encountered. For this set of marks determine the total number
of marks, the number of passes, and the percentage pass rate.

2.2.2 Design an aigorithm that reads a list of numbers and makes a count
Ul the I'IUIXIUCT Ul ﬁegauvcs dﬁd the ﬂUiHUC]’ Ul non- ﬁegauvc men-
bers in the set.

2.2.3 Youare given the problem described above. However, assume that
your program is to start out with the variable count initialized to the
total number of students n. On termination, the value of count
should again represent the number of students that passed the
examination. If there were more passes than fails, why would this

implementation be better than the original one?

SEC. 2.3 SUMMATION OF A SET OF NUMBERS 31

Algorithm 2.3
SUMMATION OF A SET OF NUMBERS

Problem

Given a set of n numbers design an algorithm that adds these numbers and
returns the resuitant sum. Assume »n is greater than or equal to zero.

Algorithm development
F b WS L I e e e X Y b T a b e L o BEEL W oa L F Lt L Lk
VHIC UL U ISt tURUd IO A] GHBES tHdl WO aiC HKCLY WO U0 WL & COHPUICE

L d
is to add a set of n numbers. When confronted with this problem in the
absence of a computer we simply write the numbers down one under the
other and start adding up the right-hand column. For example, consider the
addition of 421, 583 and 714.

421
583

OOV

714
-8

In designing a computer algorithm to perform this task we must take a
somewhat different approach. The computer has a built-in device which
accepts two numbers to be added, performs the addition, and returns the
sum of the two numbers (see Fig. 2.1). In designing an algorithm to add a set

. . . e
af niimhere a nrimary cancern ic tha machaniem far the additinn nroacece We
WAL ARRAALELS W R A t}‘ l“iu‘] TS L ANt d 2R R Y RRAW AEAW W LILARAROANE EWSR L RAW CAMANALL LS y‘ WSl TT S

will concentrate first on this aspect of the problem before looking at the
overall design.

First
number (A) \
™~ Computer’s _ Sum of two
arithmetic o numbers (A+ B)
unit
Second /
number (B)

Fig. 2.1 Schematic mechanism for computer’s addition process.

52 FUNDAMENTAL ALGORITHMS CHAP. 2

The simplest way that we can instruct the computer’s arithmetic unit to
add a set of numbers is to write down an expression that specifies the
addition we wish to be performed. For our three numbers mentioned previ-
ously we could write

= 421+583+714 (1)

The assignment operator causes the value resulting from the evaluation
of the right-hand side of statement (1) to be placed in the memory cell
allocated to the variable s.

Expresslon (I) w;ll add three specific numbers as required. Unfortu-

numbers. For this task we would need a new program statement.
It would therefore seem reasonable that all constants in expression (1)
could be replaced by variables. We would then have

s:=at+b+c (2)

Expression (2) adds any three numbers provided they have been previ-
ously assigned as values or contents of a, b, and ¢ respectively. Expression
(2) as the basis of a program for adding numbers is more generai and more
useful than expression (1). It still has a sericus deficiency—
sets of three numbers,

A fundamental goal in designing algorithms and implementing prog-
rams is to make the programs general enough so that they will successfully
handle a wide variety of input conditions. That is, we want a program that
will add any n numbers where n can take on a wide range of values.

The approach we need to take to formulate an algorithm to add n
numbers in a computer is different from what we would do conventionally to
solve the problem. Conventionally we could write the general equation

.
iy

can only add
rhh L E U“IJ AVALS

s={a,+a,+a;+ - +a,) (3)

n

OrF equivalentiy § == Z a; (4) (Reminder: Y is the

mathematical summa-

i=1 tion operator)

We could also write a computer program statement somewhat like equation
{(3) to add our n numbers but this is not very practical because we want to be
able to change n {we may want to use the program to sum a different sized set
of numbers). We must therefore ook for a better mechanism more in
keeping with the way a computer is naturally designed to do things. Several
facts about computers are relevant for our current problem. Firstly, compu-
ters are well suited to do repetitive things. Secondly, the computer’s adding
device is designed so that it can only add two numbers at a time. We might
therefore ask how we can formulate an algorithm for the addition of n

numbers that makes hest use of these facte
WAEAEN Rl W CARRA R ARARA AR LF R WL

RALFL RS Raaeahe RdANLLF.

SEC. 2.3 SUMMATION OF A SET OF NUMBERS 53

One way to do this that takes note of the fact that the computer adds two
numbers at a time is to start by adding the first two numbers a, and a,. That is,

s:=a,ta, (1)

§:i= s+g,) {cf. counting statement
in algorithm 2.2)
In a similar manner:
s:=sta,
ST 3, ..., n—1)
s. =.s+a.

From step (2) onwards we are actually repeating the same process over and

over—mthe on!y difference is that values of g and s change w;th each step. For
general i step we have

$ 1= $+a, (D

This general step can be placed in a loop to iteratively generate the sumof n
numbers.

The algorithm we want to develop for summing n numbers shoul
perform correctly for all values of n greater than or equal to 0 (i.e. n==0). It
must therefore work correctly for the sum of zero (n=0) and the sum of i
(n=1) numbers. This means the step (1) we have used is not appropriate.
However, if we replace i+ 1 in the general step (i), by { and substitute i = 1 we
get:

Ck..

§:=s5ta,

—~
[um—y
N’

The step (1) will be correct provided s 1= 0 before this step is executed.
It follows that all sums for n=1 can be generated iteratively. The instance
where n =0 is a special case which cannot be generated iteratively. The sum
of zero numbers is zero and so we can generate the first sum directly by the
assignment

s:=0

The core of the algorithm for summing # numbers therefore involves a
special step followed by a set of n iterative steps. That 1s,

et

Compute first sum (s=0) as special case.
2. Build each of the n remaining sums from its predecessor by an iterative
process.

2 L} ¥ -,
T ¥¥YiliC Ou

P
:!-
&
W
EZ
o

54 FUNDAMENTAL ALGORITHMS CHAP. 2

The only other considerations involve the input of n, the number of numbers
to be summed, and the input of successive numbers with each tterative step.
Our complete algorithm can now be outlined.

1. Prompt and read in the number of numbers to be summed.
2. Initialize sum for zero numbers.
3. While less than n numbers have been summed repeatedly do

(a) read in next number,
(b) compute current sum by adding the number read to the most
recent sum.
4. Write out sum of n numbers.

Pascal implementationt

nroagram cium h'nnnf putputy+
program su UL, Quiput Rt
var/ {summmg foop index

au Foe s U Ny

it gr:uufuw of numbers ‘t’{‘j be sumir 20y, jnt ger,
a {current number to be summed},
s {sum of n numbers on termination}: real;

begin {computes sum of n real numbers for n>=0}
writeln (input n on a separate line, followed by the numbers to be
summed’);
readin (n});
{assert: n>=0}
i:=0;
s :=0.0;
{invariant: s =sum of first i numbers read Ai=<n}
while i <n do
begm {calculate successive partial sums}
=j+1;
read (a),
it eo/n (input) then readin;
s :=s+a
end;
{assert: s =sum of n numbers read}
writein (sum of n=", n, ' numbers =", s)
end.

t See {7} in Notes on design (next section).
1 A while-loop has been used to emphasize iteration and termination. A for-loop could
equally well have been used.

SEC. 2.3 SUMMATION OF A SET OF NUMBERS 33

Notes on design

1.

To sum n numbers {(n—1) additions must be performed. The present
algorithm has used n additions instead to allow a simpler and cleaner
implementation.

Initially, and each time through the loop, the sum s reflects the sum of
the first / numbers read. On termination (when i=n) s will represent
the sumof n numbers. Because i is incremented by 1 with each iteration
eventually the condition i<n will be violated and the loop will termi-
nate.

loyed makes no consideration of the accuracy of the

[3

The design em

recisitant ¢
ESW o AEL RIS WTLAARA

[N

. ..
.« .

r tha finite ciza nf numhere that can he apciira

13 TEl%W 11EdALN. TELA WL AAREIEALS 2T L4546 Wil LS A% %wiil Lt

taly
i

represented in the computer. An algorithm that minimizes errors in
summation does so by adding, at each stage, the two smallest numbers

rAMaIning

e Y

Observe that only general algorithms should be implemented as pro-
grams. A program parameterized to solve just one problem is usually a
wasted effort.

The obvious or direct solution to the problem is considerably different
to the computer solution. The requirement of flexibility imposes this
difference on the computer solution.

Consideration of the problem at its lowest limit (i.e. n=08) leads to a
mechanism that can be extended to larger values of n by simple
repetition. This is a very common device in computer algorithm design.
A program that reads and sums n numbers is not a very useful pro-
gramming tool. A much more practical implementation is a function

that returnce the cum of an arrav oof » miimhbere That ic
A W * o AT XL AA AL =2 EEe

i ial

begin {compute the sum of n real array elements (n=0)}
sum = 0.0;
for i:= 1ton do
sum = sum+alil;
asum = Sum
end

Appilications

Average calculations, variance and least squares calculations.

56 FUNDAMENTAL ALGORITHMS CHAP. 2

Supplementary problems

2.3.1 Design an algorithm to compute the average of n numbers.

2.3.2 Redesign the algorithm so that it only needs to perform n—1 addi-
tions to sum n numbers.

2.3.3 Design an algorithm to compute the sum of the squares of n num-

Ihare That ic
UTi1i
n
— 2
s = E (a)
=1

2.3.4 The harmonic mean defined by

is sometimes used as a mean of central tendency. Develop an
algorithm to compute the harmonic mean of n data values.

2.3.5 Develop an algorithm to compute the sums for the first n terms
(n=0) of the following series:

(@) s=1+2+3+ -
(b) s=143+5+ -
(¢) s=2+4+6+ -
(d) s=1+1/2+1/3+ -
2.3.6 Generate the first n terms of the sequence
1 2 4 8 16 32

without using multiplication,
Develop an algorithm thai prints ou
1 -1 1 -1

“

e e Et
UCH Of L

a2
(%]

nva
-1

bk

2.3.8 Develop an algorithm to compute the sum of the first n terms (n=1)
of the series

§=]=345-T+9—---

Aigorithm 2.4
CA
FACTORIAL COMPUTATION

Problem

Given a number n, compute n factorial (written as n!) where n=0.

Algorithm development

We can start the development of this algorithm by examining the definition

SEC. 24 FACTORIAL COMPUTATION 57

of nl. We are given that
nl=1X2X3x - X{n—-1}Xn for n=1
and by definition
0r=1

In formulating our design for this problem we need to keep in mind that
the computer’s arithmetic unit can only multiply fwo numbers at a time.
Applying the factorial definition we get

0!=1
I'=1x1
2I=1x%x2

3= 1%x2X3

4! =1x2X3x%x4

We see that 41 contains all the factors of 31. The only difference is the
inclusion of the number 4. We can generalize this by observing that n! can
always be obtained from (n—1)! by simply multiplying it by n (forn=1). That
is,

nt=nx{n—-1)! for n=1

Using this definition we can write the first few factorials as:

1'=1x0!
21 =2x1!
31=3x%x2!

4! =4x3!

If we start with p = 0! = 1 we can rewrite the first few steps in computing n!
as:

p:i=1 (1) = {
p = pxl =11
p = p*2 @2 ... n+1) = 2!
p = p*3 = 3!
p = p*4 = 41

From step (2) onwards we are actually repeating the same process over and
over. For the general (i+1)" step we have

p = pri (i+1)
This general step can be placed in a loop to tteratively generate n!. This
allows us to take advantage of the fact that the computer’s arithmetic unit
can only multiply two numbers at a time.
In many ways this problem is very much like the problem of summing a
setof n numbers (algorithm 2.3). In the summation problem we performed a

38 FUNDAMENTAL ALGORITHMS CHAP. 2

set of additions, whereas in this problem we need to generate a set of
products. It follows from the general (i+1)™ step that all factorials for n=1
can be generated iteratively. The instance where n = 0is a special case which
must be accounted for directly by the assignment

p =1 (by definition of 01)

The central part of the algorithm for computing n! therefore involves a
special initial step followed by n iterative steps.

1.

Treat 0! as a special case (p := 1)

iterative process.
3. Write out the value of n factorial.

Algorithm description

Establish n, the factorial required where n=0.
Set product p for 0! (special case). Also set produc

While loce than »n nradiucte have heen raleulatad ve
¥ LLlil% 3% J0J LtE34L5K5 FE i.’l LA UL 1463 W W L% il % ALE W% d £ 8%

tad B e
—
Q
&
=
o
F aa sl
Ed

[
&

{a) increment product count,
(b) compute the i** product p by multiplying { by the most recent
product.
4. Return the result n!.

This algorithm is most usefully implemented as a function that accepts as
input a number n and returns as output the value of n!. In the Pascal
implementation p has been replaced by the variable factor.

Pascal implementation

function nfactorial (n:integer):integer;
var / {loop index representing ith factorial}:integer;
factor {il}:integer;

begin {computes and returns nlfor n>=0}
{assert.n >= 0}
factor = 1;
{invariant . factor =i! after the ith fteration A\i =<n}
for/ := ton do
factor = [* factor;
nfactorial = factor
{assert. nfactorial =ni}
end

SEC. 2

4 FACTORIAL COMPUTATION 59

Notes on design

1.

The algorithm uses n multiplications to compute n!. There is in fact a
more efficient algorithm that computes n! in essentially log,n steps.
{See note 5 below).

After the " time through the loop the value of factor is i!l. This

eanditinn holde far all 7 On tarminatinn fwhen i = ») fartar will carrec.
wAFAIVERLAWLSAN RALSANELY RWSE CARL B SR LWl FARIAICARINSAN \"‘I\a‘ll" '.)J“‘J.u' Fr 20 Wl AR L W

pond to n!. Because i is incremented by 1 with each iteration, eventu-
ally the condition i = n will be reached and the loop will terminate. The
algorithm performs correctly for all n==0. However, no consideration is
given to the finite size of numbers that can be represented in the

compuier.

Careful definition of the problem and examination of some specific
examples is central to the development of the algorithm. The simplest
problem leads to a generalization that forms the basis of the algorithm.
The idea of accumulating products is very similar to that of accumula-
ting sums (see algorithm 2.3).

A more efficient mechanism is based on the fact that it is possible to
express n! in terms of (n/2)!. In principle, the mechanism is similar to
that used in calculating the n™ Fibonacci number (ref. A. Shamir,

“Factoring numbers in O(log n) arithmetic steps,” Inf. Proc. Letts., 8
28-31, 1979). See also algorithm 3.8.

Applications

Probability, statistical and mathematical computations.

Supplementary probiems

2.4.1
242
243
2.4.4

2.4.5

2.4.6

For a given n, design an algorithm to compute 1/n!.

For a given x and a given n, design an algorithm to compute x"/n!.
Design an algorithm to determine whether or not a number n is a
factorial number.

Design an algorithm which, given some integer n, finds the largest

factorial number present as a factor in n.
Design an algorithm to simulate multiplication by addition. Yo
program should accept as input two integers (they may be zero,
positive, or negative).

The binomial theorem of basic algebra indicates that the coefficient

"C, of the r'* power of x in the expansion of {x-+1)" is given by

2 !
.

C’=r!(n—r)!

60 FUNDAMENTAL ALGORITHMS CHAP. 2

Design an algorithm that evaluates all coefficients of x for a given
value of n.

Alaorithm 2.5

"Is ll"'l’l am o Tl

SINE FUNCTION COMPUTATION

Problem

Design an algorithm to evaluate the function sin(x) as defined by the infinite

series expansion

Q
\)ll

{\mff.__;’f. _’f._.fc.+...
RO 3t st 7

Algorithm development

This problem embodies some of the techniques we have seen in earlier
algorithms Studying the expression for sin (x) we see that powers and

1,3,5,7

s 7, ...
are required. We can easily generate this odd sequence by starting with 1 and
successively adding 2. Our other problem is to compute the general term
x'/it which can be expressed as

X £ 1
T 3 1
!

W

or i

The function we need to compute this will involve the following steps:

fpi=1
j:=0;
while j<\i do
begin
ji=j+1;
fp := fp*x/j
I‘I

The aigorithm can be completed by implementing the additions and subtrac-
tions and making the appropriate termination. With this approach eachterm
(i.e. x'/it} is computed by starting at the smallest j value and working
upwards. In calculating n! we used the efficient approach of calculating each
term from its predecessor. The question this raises is can we do the same with
the present problem? To explore this possibility we can examine the overlap

for some specific terms of the series. For example,

SEC. 2.5 SINE FUNCTION COMPUTATION 61

X} xXxXx _x2 xt =13
3! 3x2x1 3x2 it
X5 XXXXXXxXX _oxr x® =5
51 5x4Xx3x2x1 Sx4 3!
X XXXXXXxXxXxXx_ x* X% P

T TX6XS5X4X3IR2X1 IX6 5

Each of the terms x2/(3%x2), x2/{5%x4), x2/(7Xx6), ... can be described by the
general term:

Yz

W

i(i—1)

Therefore to generate consecutive terms of the sine series we can use

for i=3,5,7,

x2
#i—1)
To get the terms to alternate in sign we can use the device employed in
problem 2.3.8. Repeatedly executing

current /' term = X (previous term)

sign (= — sign

wili generate alternating positive and negative terms. This can be incorpo-
rated directly into our term expression. The initial conditions are therefore

The it term and summ
predecessors are:

[:= i+2;
term = ~termrx*x /{i*{i~1)});
tsin = tsin+term

We now have an effective iterative mechanism for generatin uccessive

toaremae ~F tha oo ne £ ..-.nﬁn.-. T,
LCFMs Of lUC SIRC 1UNCUon. in

the algorithm,

Clearly we can only evaluate sin {(x) to a finite number of terms. An
important consideration here is the desired accuracy we require for sin {x).
Because x is in the range —1=x<=1 we can see that the contribution from
higher terms quickly becomes very small. For example the 4" term (i.e.
x"/7!) makes a contribution of less than 0.0002. In circumstances like this a
useful way to bring about termination is to fix an acceptable error level {e.g.
1x107%) and generate successive terms until the contribution of the current
term is less than the acceptable error. A detailed error analysis of the

s
w

hnr amsees M S T

. T Y] | . o barrviienatba
cuw ll)’ OCt CONSigeration lb HOW 1O ierminaic

62 FUNDAMENTAL ALGORITHMS CHAP. 2

problem confirms that this is an acceptable termination condition. Because
the terms alternate in sign we will have to use the absolute error term value
for the termination test.

The overall strategy for our sine function algorithm can be summarized

ac fallnu
LA LULIIUYY

Algorithm description

1.

Set up initial conditions for the first term that cannot be computed
iteratively.

2.

While the absolute value of current term is greater than the acceptable
error do

(2)
(b)
(©)

identify the current i* term,

generate current term from its predecessor,

add current term with the appropriate sign to the accumulated
sum for the sine function.

Since the sine expression involves the calculation of a single value it is best
implemented as a function.

Pascal implementation

function sin {x: real}: real;
const error = 1.0e-6;
var / {variable to generate sequence 1 3 5 7}: integer;

x2 {x squared},
term {current sum of terms — eventually approximates sin}: real;

begin {function returns sin {x) with an accuracy of = <error}

{assert:—1.0=<x=<1,0}
term = x;
tsin :

=1,

X2 =X *X;
{invariant: after the jth iteration, i=2f+ 1 Aterm = (-1 » (xti) / il

Atsin is sum of first { i+ 1)} terms}

while abs {term)>error do

begin {generate and accurnulate successive terms of sine
expression}

I:=1i+2

term = —term * x2 / {f » (i~1)}

tsin = tsin +term
end;

sin = tsin
{assert. sin =sine (x)A\abs ({term}=<error}

SEC. 2.5 SINE FUNCTION COMPUTATION 63

Notes on design

1.

The number of loop iterations for this algorithm is a function of the
error requirements. For an error of less than 107%only 5 terms need to
be evaluated. This accuracy will suffice for most practical applications.
The cost of generating successive terms of the series is constant. This is

manre faovarahls than tha Ariginal Aacion whaoara thae ract A pcanarating
HIGHC 1avVaidine wiah vl OLIgiidl GOSIET WIILTC UlC COSU G gONICTaing

successive terms was proportional to the position of the terms in the
series (i.e. later terms required more computation).

Before, and throughout the iterative process, at the j** pass (j is not
explicitly defined) ferm represents the j'* term in the sine series expan-

sion and tsin contains the appropriately signed summation of the first §
terms in the series expansion. The invariant restrictions on the vari-
ables tsin and term hold for all j=1. We can be confident that the
algorithm will terminate because for the chosen x range (i.e. ~1=x=<1)
the absolute value of term is a strictly decreasing function. It will
therefore eventually become less than the set error level. In this
discussion we have not considered contributions from round-off
Errors.

The number of multiplications is reduced by precomputing the x*x
term.

This algorithm embodies the same basic mechanism thatis a
the factor:al and summation algorithms. The only differences involve
choice of initial conditions, choice of iterative terms, and choice of
termination conditions.

Where it is appropriate, generation of each term from its predecessor
usually leads to the simplest and most efficient implementation for a
probiem. It is therefore usually worth putting in the extra effortto seeif
terms can be generd[eu from their preuecessors DpBClUC exampzes are
good for this purpose.

Take particular note of the way the alternating sign effect is achieved
and also of the way termination is brought about.

Applications

Mathematical and statistical computations.

Supplementary problems

251

Design an aigorithm to find the sum of the first n terms of the series

H H

F I B] | | T T e |
ST LT LS

e 42"
1 AR of ¢ 3 tn=4)

CD
L

H
g

£
/s

64 FUNDAMENTAL ALGORITHMS CHAP. 2

2.5.2 The exponential growth constant e is characterized by the expres-
sion

Devise an algorithm to compute ¢ to n terms.
2.5.3 Design an algorithm to evaluate the function cos (x) as defined by
the infinite series expansion

x? x* xS
cos (x)m}mf! thTat

The acceptable error for the computation is 10-.

Algorithm 2.6
GENERATION OF THE FIBONACCI SEQUENCE

Problem

Generate and print the first n terms of the Fibonacci sequence where n=1.

The firct fow terme are:
A ORA W A AR WLTR Ay F¥ e L A0 AT AR s

0,1,1,2,3,5,8, 13, ...

Each term beyond the first two i1s derived from the sum of its two nearest
predecessors.

Algorithm development
From the definition we are given that:
new term = preceding term+term before preceding term

The last sentence of the problem statement suggests we may be able to use
the definition to generate consecutive terms (apart from the first two)
iteratively.

Let us define:

a as the term before the preceding term
b as the preceding term
¢ new term

Then to start with we have:

. HERTIE s S B
U 1Ea»L Fioaitacel BiHNUci

1= 1 second Fibonacci number
= a+b third Fibonacci number (from definition)

L R i !

and

SEC. 2.6 GENERATION OF FIBONACC! SEQUENCE 65

When the new term ¢ has been generated we have the third Fibonacci
number. To generate the fourth, or next Fibonacci number, we need to apply
the same definition again. Before we can make this next computation we
need to make some adjustments. The fourth Fibonacci number is derived

fram tha cuim nf the cannnd and third Fihanace: niamhore With rogard ta the
EEUARRD LEIG OUAT U LRRIL DULUIAG Al i3 A A AUVBGVL UV 0, VY dil Fhaaiva wWaand

definition the second Fibonacci number has the role of the term before the
preceding term and the third Fibonacci number has the role of “the preceding
term”. Therefore, before making the next (i.e. the fourth) computation we
must ensure that:

(a) new term (i.e. the third) assumes the role of the preceding term,

thy the nrocading
ll! il Pl\v\v\-ﬁuills

That is,
a:= 9 [1] term before preceding term
b =1 2] preceding term
c:= g+b [3] new term
a:=b {4] term before preceding term becomes preced-
ing term
b:=c¢ (5] preceding term becomes new term

After making step [5] we are in a position where we can use the definition to
generate the next Fibonacci number. A way to do this is to loop back to step
[31. Further investigation of steps [3]—[5] indicates they can be placed in a
foop to iteratively generate Fibonacci numbers (for n>2). The essential
mechanism we could use is:

a:= 0,
b:=1,
[:= 2;
while i<n do
begin
i:=i+1;
c:= a+b;
a .= b;
b:=c
end

Before leaving off this discussion we should ask can any improvements be
made to our algorithm? With the mechanism we have, as each new termcis
computed, the term before the preceding term, a, loses its relevance to the
calculation of the next Fibonacci number. To restore its relevance we made
the assignment

66 FUNDAMENTAL ALGORITHMS CHAP. 2

We know that at all times only two numbers are relevant to the generation of
the next Fibonacci number. In our computation, however, we have intro-
duced a third variable, c. What we can therefore attempt to do is keep the
two variables a and b always relevant. Because the first Fibonacci number

becomes irrelevant as soon as the third Fibonacci is computed we can start
with:

a:= 0, [1]

b:=1, [2]

a:= a+b [3] (this keeps a relevant to generate the next

Fibonacci number)

If we iterate on step [3] to generate successive Fibonacci numbers we run
into trouble because we are not changing b. However, after step [3] we know
the next (i.e. fourth) Fibonacci number can be generated using

next 1= g+b [4] (fourth Fibonacci number)

So we need to ask where is the fault in our reasoning? When we do step [4],
the old value of b, as defined by step [2], loses its relevance. To keep b
relevant at step [4] we can make the assignment:

b:=a+b
The first four steps then become
a:= 0; [1]
b:=1; [2]
a:= a+b; [3]

b:= a+b [4]

After step [4] we find that @ and b as defined are correct for generating
the fifth Fibonacci number. At this point the old a value becomes irrelevant.
Working through several more steps confirms that we can safely iterate on
steps [3] and [4] to generate the required sequence. Because the algorithm
generates Fibonacci numbers in pairs care must be taken to write out exactly
n numbers. The easiest way to do this is to keep the output one step behind
the generation phase.

The complete alg vr.ghm deseri

prEw R

Algorithm description

1. Promptand readn, the number of Fibonacci numbers to be generated.
2. Assign first two Fibonacci numbers a and b.

3. Initialize count of number generated.

A B N I T e L o = A . o Sy 1

“+. ¥¥ BHC 1O Lhdil i CIDORAECCT ITUIRDCTS 1dVe DO gC[lt}ldtC Lo

(a) write out next two Fibonacci numbers;

SEC 2.6 GENERATION OF FIBONACCE SEQUENCE 67

N

{b) generate next Fibonacci number keeping a relevant;

(¢) generate next Fibonacci number from most recent pair keeping b
relevant for next computation;

d) update count of number of Fibonacci numbers generated, i

£ even than write At {act twn Fihanace: numhere alee write Aant
E FE % ¥% il LL3%W ki \'Tlll\v LWL I1Jk l.\'YU A LSS \r\rl LWL VR S - A3l WS L3

second last Fibonacci number.

e B e

Pascal implementation

program F:bonacc; {input, ourpuf)

mber variahio}

nti
L ¥ TRRLF b |y

P

{ ace
- {number of F: bonacci numbe rs generated},
e

r I ST SR Ny

acci numbers to be gen

begin {generate each Fibonacci number from the sum of its two

predecessors}
a:=o;
b:=1;
/= 2;

writein {enter n the number of Fibonacci numbers to be

nnnarnfan" \-
FlUiiciaicu §,

readin n);

{assert: n >0}

{invariant: after jth iteration i =2j+ 2 Afirst { Fib. numbers have
been generated ANa = (i~1th Fib. no. Ab =jth Fib. no.
Ai=<n+1}

while / <n do
begin

writeln la b}

&, M

‘=a+b;

o —_— ﬁ_L‘\'
.~ aTu,

i =7+2
end
if i =n then writein {a, b) else writein {(a)

{assert: first n Fibonacci numbers generated and written out}
end.

o Q

Notes on design

1.

To generate n Fibonacci numbers essentially n steps are required. The
algorithm functions correctly for all values of n=>1.

Throughout the computation the variables a and b always contain the
two most recently generated Fibonacci numbers. Therefore, whenever
an addition is made to generate the next Fibonacci number, the
requirements for that number to be a Fibonacci number are always

bd{inCU DCLdUbC |', lb lliLi CdbCU Wiul Cd\.rli llClduUiI Uli‘: LUHUH%G? l{ﬁ",
will eventually be violated and the algorithm will terminate.

68 FUNDAMENTAL ALGORITHMS CHAP. 2

4o

The second algorithm is more efficient than the first algorithm because
it makes only one assignment per Fibonacci number generated. The
first algorithm makes three assignments per Fibonacci number gener-

ated.
With tha nracant n!

fola) torl re nn:rc
TY itil lll\u l) LY LR D A Y EU il

iLd ki

will not, however, be printed. This is a small sacrifice for the other
gains.
A more advanced algorithm that can calculate the n'* Fibonacci

number in log,n steps will be discussed in algorithm (3.8).

Applications

The Fibonacci sequence has practical applications in botany, electrical net-

work

theory, sorting and searching.

Supplementary problems

2.6.1

2.6.2

2.6.3

2.6.4

2.6.5

Implement the Fibonacci algorithm as a function that accepts as
input two consecutive Fibonacci numbers and returns as output the

next Fibonacct number

Eiruriaddii i AERERARL I i o

The first few numbers of the Lucas sequence which is a variation on
the Fibonacci sequence are:

1 3 4 7 11 18 29

Design an algorithm to generate the Lucas sequence.
Given a=0, b= 1, and c¢=1 are the first three numbers of some
sequence. All other numbers in the sequence are generated from
the sum of their three most recent predecessors. Design an
algorithm to generate this sequence.
Given that two numbers d and e are suspected of being consecutive
members of the Fibonacci sequence design an algorithm that will
refute or confirm this conjecture.
The ascending sequence of all reduced fractions between 0 and 1
which have denominators <n is called the Farey series of order n.
The Farey series of order 5 is:
Q1 11
1 4 3

| —

Denoting this series by

Xy X X

Yo i W2

SEC. 2.7 REVERSING THE DIGITS OF AN INTEGER 69
it can be shown that
Xo=0 Yo=1 x;=1 yi=n
and in general for k=1
+n)
Xpe2 ™ I S I
["k+l I |
+n)
Yiez ™= (y]z J Yie17 Yk
k+1
where |g] is the greatest integer less than or equal to g.
Design an algorithm to generate the Farey series for a given n. (See
D. E. Knuth The Art of Computer Programming, Vol. 1, Funda-
mental Algorithms, Addison-Wesley, Reading, Mass., p. 157,
1969.)
2.6.6 Generate the sequence where each member is the sum of adjacent
factorials, i.e.
f3 = 11+ 0!
f4 21+1!
] p—t Jl—'—"
Note that by definition §!= 1.
Algorithm 2.7
REVERSING THE DIGITS OF AN INTEGER
Problem

Design an algorithm that accepts a positive integer and reverses the order of
its digits.

Algorithm development

Digit reversal is a technique that is sometimes used in computing to remove
bias from a set of numbers. It is important in some fast information-retrieval
algorithms. A specific example clearly defines the relationship of the input to
the desired output. For example,

..-. . o ke Yo Yde]
iput: 27953

In
Qut put. 35972

70 FUNDAMENTAL ALGORITHMS CHAP. 2

Although we might not know at this stage exactly how we are going to make
this reversal one thing is clear—we are going to need to access individual
digits of the input number. As a starting point we will concentrate on this
aspect of the procedure. The number 27953 is actually

21004 TX103+9%X 102+ 5% 10+3

To access the individual digits it is probably going to be easiest to start at one
end of the number and work through to the other end. The question is at
which end should we start? Because other than visually it is not easy to tell
how many digits there are in the input number it will be best to try to

do this we need to effectively “‘chop off” the least significant digit in the
number. In other words we want to end up with 2795 with the 3 removed and
identified.

We can get the number 2795 by integer division of the original number

by 10
i.e. 27953 div 102795

This chops off the 3 but does not allow us to save it. However, 3 is the

remainder that results from dividing 27953 by 10. To get this remai

P UJ LY E b L3 L] *RE
can use the meod function. That 1s,

27953 mod 10-»3
Therefore if we apply the following two steps

r:=n mod 10 (D==(r=3)
n:=n div 10 {(2)=>(n = 2795)

we get the digit 3, and the new number 2795. Applying the same two steps to
the new value of n we can obtain the 5 digit. We now have a mechanism for

iteratively accessing the individual digits of the input number.
Our next major concern is to carry out the digit reversal. When we apply
our digit extraction procedure to the first two digits we acquire first the 3 and

then 5. In the final output they appear as:
3 followed by § (or 35)

If the original number was 53 then we could obtain its reverse by first
extracting the 3, multiplying it by 10, and then adding 5 to give 35. That is,

3X10+5-35

The last three digits of the input number are 953. They appear in the
“reversed’” number as 359. Therefore at the stage when we have the 35 and

P TSP ES T . S UL S RSINPI. I C S TS TS TSRS, I DR I o
tHICH TATI ACL LI F WO CAll ORidi LiIc bCL{UCHbC 227 DY iiiiﬂllpiyl!lg Jo Ly 1y

and adding 9. That is,

SEC. 2.7 REVERSING THE DIGITS OF AN INTEGER 71

35x 10+9-359
Similarly

359%x 10473597
and

3597 x 10+2—35972

The last number obtained from the multiplication and addition process
is the “digit-reversed” integer we have been seeking. On closely examining
the digit extraction, and the reversal process, it is evident that they both

involve a set of steps that can be performed iteratively.
We must now find a mechanism for building up the “reversed” integer

-
digit by digit. Let us assume that the variable dreverse is to be used to build

the reversed integer. At each stage in building the reversed integer its
previous value is used in conjunction with the most recently extracted digit.

Rewriting the multiplication and addition process we have just
described in terms of the variable dreverse we get

Iteration Value of dreverse
[1]1 dreverse := dreversex10+3 3
[2] dreverse := dreverse¥10+5 35
[3] dreverse := dreversex10+9 359

Therefore to build the reversed integer we can use the construct:

dreverse ;= (previous value of dreverse)*10
+(most recently extracted rightmost digit)

The variable dreverse can be used on both sides of this expression. For the
value of dreverse to be correct (i.e. dreverse = 3) after the first iteration it
must initially be zero. This imtialization step for dreverse is also needed to
ensure that the algorithm functions correctly when the input number to be
reversed is zero.

What we have not established yet is under what conditions should the
iterative process terminate. The termination condition must in some way be

rolntad tnth | 29 1otdg 1 ¥ 3 irite
related to the number of digits in the input integer. In fact as soon as all digits

have been extracted and processed termination should apply. With each
iteration the number of digits in the number being reversed is reduced by
one, yielding the sequence shown in Table 2.1. Accumulative integer divi-
sion of the “number being reversed” by 10 produces the sequence 27953,
2795,279, In our example, when the integer division process is applied
for a 5'f time a zero results since 2 is less than 10. Since at this point in the
computation the “reversed” number has been fully constructed we can use
the zero result to terminate the iterative process.

72 FUNDAMENTAL ALGORITHMS CHAP. 2

Table 2.1 Steps in digit reversal

Number being reversed Reversed number being constructed Step
27953 3 {1}

2795 35 (2]

279 359 3]

27 3597 (4]

2 35972 (5]

The central steps in our digit reversal algorithm are:

1. While there are still digits in the number being reversed do
(a) extract the righmost digit from the number being reversed and
append this digit to the right-hand end of the current reversed
number representation;
(b) remove the rightmost digit from the number being reversed.

When we include input and output considerations and details on initializa-
tion and termination we arrive at the following algorithm description.

Algorithm description

1. Establish n, the positive integer to be reversed.
2. Set the initial condition for the reversed integer dreverse.
3. While the integer being reversed is greater than zero do

(a) use the remainder function to extract the rightmost digit of the
number being reversed;

{b) increase the previousreversed integer representation dreverse by
a factor of 10 and add to it the most recently extracted digit to give
the current dreverse value;

(c) wse integer division by 10to remove the rightmost digit from the
number being reversed.

This algorithm is most suitably implemented as a function which accepts as
mput the integer to be reversed and returns as output the integer with its

Pascal impiementation

function dreverse (n: integer): integer;
var reverse: integer,;
begin {reverse the order of the digits of a positive integer}

> >=0An contains k drgtts a(l), a(2) af3),.. a{k}}

Ly n
.= U,

SEC. 2.7 REVERSING THE DIGITS OF AN INTEGER 73

{invariant: after jth iteration, n =al1), a(2), a(3), ... alk —jIA
reverse =alk}, atk -1}, ..., altk—j+1)}
while n >0 do
begin
reverse = reverse * 10+n mod 10;
n := n div i0
end;
{assert: reverse =alk}, atk—1), ..., a{1}}
dreverse = reverse
end

——Notes on- design

i

The number of steps to reverse the digits in an integer is directly
proportional to the number of digits in the integer.

After the i time through the loop (i is not explicitly defined in the
algorithm) the variable dreverse contains the i leftmost digits in the
reversed integer. This condition remains invariant for all i. Also after{
iterations the variable n is reduced by i digits. On termination whenn
has been reduced to zero digits the variable dreverse will contain the
same number of digits as the input integer. The algorithm will ter-
minate because the variable n is reduced by one more digit with each

iteration. The aleorithm performs carrectly for Qﬂ wnlupc nf n={,
6 ARR1F113 t} EE8FL 40343 WS J

In this design we see once again how a complete solution to a problem
is built iteratively from a succession of partial solutions. This is the
fundamental design framework for many algorithms.

In designing this algorithm we have implicitly been working back from
the solution to the starting point. This idea of working backwards is a
very powerful and important concept in computing science which we
will exploit much more explicitly in the design of more advanced
algorithms.

A specific example helps to lead us to a method for building the
reversed representation.

Applications

Hashing and information retrieval, data base applications.

Supplementary problems

2.7.1
2.7.2
2.7.3

Design an algorithm that counts the number of digits in an integer.
Design an algorithm to sum the digits in an integer.

Design an aigorithm that reads in a set of n single digits and converts
them into a single decimal in{eger For example the algorithm

should convert the set of 5 digits {2,7,4,9,3} to the integer 27493.

74 FUNDAMENTAL ALGORITHMS CHAP. 2

Algorithm 2.8
BASE CONVERSION

Problem

Convert a decimal integer to its corresponding octal representation.

Algorithm development

Frequently in computing it is necessary to convert a decimal number to the
binary, octal or hexadecimal number systems. To design an algorithm for
such conversions we need to understand clearly what the base change
entails.

Because initially we probably have no firm ideas on the mechanism for
base conversion we will begin with some groundwork. We can start by trying
to come to terms with exactly what is a decimal number and an octal number.
For this exploration we can look at some specific examples.

The dAerimal f5 0 hace 1TAY numbiar 278 hy 1te reanracantatinm 1€ caan ta
-I-li\r- LA P EEEEEY] \‘ e s LALAON .IV) luiliu\wl R B ¥ 133 l\.rl..'l\.-d\tlllull\lll, 1.0 S il buF
consist of:
5 units 5x1
7 tens 7% 10
2 hundreds 2x 100
275
The decimal system uses the ten digits 0,1,2.3, ..., 9 to represent numbers.

The actual position of each digit in a number determines its value.
Similar conventions apply for the octal (or base 8) number system. The
octal system uses only the eight digits 0,1,2,3, ..., 7 to represent numbers. In
the octal system the position of each digit determines its value tn a similar
(but different) way to the decimal system. Taking a few steps ahead for the
purposes of illustration it can be shown that the octal representation of the

Aarirmal numhbhar 278 ic 471 The nrtal numhar rancicie nfe
MELAAQILEAAN RRMAINEAE LS L RO YT L Ei%W VWil IRMELEILSND RAFREOEIRD LR
? nnite Tw 1
o ULl I\ 1
2 eights 2X8
4 sixty-fours 4 64
275 dectmal

As another illustration in contrast to the decimal number 275 (written as

.y

é/.')m) the octal number 275 {wrlt{en as éf.')sj consists of:

SEC. 2.8 BASE CONVERSION 75

5 units §x1
7 eights 7X8
2 sixty-fours 2X64
189 decimal
We can see that 275, is much smaller in magnitude than 275,,

With this groundwork complete we can now return to our base conver-
sion problem. We have learned that in changing the base of a number we are
not in any way changing the magnitude of the number but rather we are
changing the way the number is represented.

As a starting point we will consider the conversion of a particular
decimal number to its octal representation. This will hopefully reveal much
of the mechanics of the algorithm we are seeking.

Consider that we wish to convert the decimal number 93 to its octal
representation. We know that 93 is made up of 3 units and 9 tens. In diagram
form we have:

W
9 -
< Tens =
wh
O i0 20 30 40 50 o 76 80 993 100
]
< 93 decimal

The corresponding octal number will need to be divided up into “blocks” of
units, eights, sixty-fours and so on, rather than units, tens, hundreds and so
on, Using a diagram for the octal representation we get:

1 3
Sixty-four > Eights —w—

L
0O 8 16 24 32 40 48 56 64 72 80 88 9396
|]
: -

< ? Qctal >

A
A

SHUN G

From our diagram we can see that when we divide 93 decimal up into blocks
of eight there are 5 units left over at the end. Our octal representation must
therefore be of the form ...5. In dividing 93, up into blocks of cight we also
discover that there are 11 blocks of eight (i.e. 11 X8 =88) presentin 93, At
this stage we might be tempted to write down 115 as our octal representation
of 93,. There is a problem with this, however, because 11 i1s not a valid octal
digit {the only octal digits that we can use are 0,1,2,3, ..., 7). We might

76 FUNDAMENTAL ALGORITHMS CHAP. 2

therefore ask where do we go from here? With only eight digits the max-
imum number of eights we can represent is 7. Remembering our previous
examples we know that sixty-fours can be used in the representation. In fact
8 eights can (and must) be represented as 1 sixty-four. it follows that 11

axghic rnan he roanreacantard ne T ociviv_fanr anmd 2 aiochte Annlving tha macis
Cigaid Cdil OC TCPTESUHACU ad 1 SiRy 10Ul diGl O CIgns. ApPpiyYilg (o posl

tional conventions we have encountered earlier we can conclude that the
octal representation of 93 decimal s 135.
The octal number 135 consists of

S units 5x%1
3 eights 3x8
1 sixty-four 1X64
93 decimal

Using a diagram we have arrived at the octal representation for 93,,. What
we must now do is translate what was done with the diagram into an
algorithm. Integer division of 93 by 8 wili tell us how many eights arein 93,;
that is,

93 div 8—>11 eights

The number of sixty-fours in 93, must also be found. This involves breaking
the 11 eights into 1 sixty-four and 3 eights. To be systematic about the
process we should first find the units, then the eights, then the sixty-fours,
and then the five-hundred-and-twelves and so on. We have

93 units-»11 eights and 5 units
11 e1ghts———>1 sxxty -four and 3 eights

AAAAAAA

1 sixty-four—{0 five-hundred-and-twelves and 1 sixty-four

We can now more explicitly identify the base conversion mechanism
8 93
8 il 5 remainder
8 i 3 remainder
0 1 remainder

the decimal number by 8. The remamder of this operation is the least
significant digit (i.e. 5) of the octal representation. The quotient (i.e. 11)is
then taken and divided by 8. The remainder of this operation is the second
least significant digit of the octal representation. The process of dividing the
quotient and using the remainder as the next least significant digit of the
octal represemation continues until a zero quotient 15 encountered This

Inchan g; ga decimal number to its octal renreqentatmn we start bv d:vrdmg

wlre i £n that tha rlﬂv ndn v tha al
bnuauuu 4arss lllC lﬂ\.vl. llldl tliClC arc no illsll%l Oraet 5 i5 M l.lli... U\.,l.ﬂl

representation {in the example above a zero quotient after 3 divisions by 8

SEC. 2.8 BASE CONVERSION 77

indicates that there are no five-hundred-and-twelves in our original number
93--this is clearly true).

We now have the essentials for implementing our base conversion
aigornthm It involves an iterative process where successive octal digits are

r\rl ore fromm o camiianms nf n-nn o ¢ aarh Afwhirh is ier f;i rn
Wi REVIIIE G a»quyu\,\, Lrk \..1 WALINLILD, VAV WE YY IRiNRE 10 1) it

,-

derlved fro zts predecessor by division by 8. More specifically starting with
q := 93 we have

q := g div 8=>¢q := 11 with remainder 5§ {1}
q 1= q div 8=>¢ := 1 with remainder 3 [2]
g := q div 82> := 0 with remainder 1 [3]

To get both the quotient g and the remainder r at each step we will need to
employ both the integer division and remainder functions. For the general i
step we will need

r = g mod 8=>remainder
g = q div 8&=>reduced quotient

As we have already established, the iterative process needs to be terminated
as soon as a zero quotient is encountered. The initial value of the quotient q

c:hnui(‘ ha tha nrlrnncn] Aarimal i?‘);‘ilﬁ r\f tha numhar tna he canvaertad ta actal
WEALFLAINE LW LA éillul A W ld1ECEE ¥ LR LAY LA RALEINZASN] tU L% WD Y el LWk LS AW LLEE .

The essential steps in the algorithm are:

1. Initialize the quotient g to the decimal number to be converted.

2. Derive the octal digits iteratively using a succession of remainder and
quotient computations on consecutive quotient values. Terminate the
process when a zero quotient is encountered.

The algorithm should be implemented so that it will also handlie conver-
sions other than decimal to octal (e.g. decimal to binary, decimal to ternary).
To allow this the inputs to the algorithm should be the new base required and
the decimal number to be converted. For convenience of output the digits of
the new representation should be stored in an array and written out only
after the loop has terminated. Incorporating these refinements we get the
following detailed algorithm.

1. Establish the newbase and initialize the quotient g to the decimal
number to be converted.
2. Set the new digit count ndigit to zero.
Repeatedly
{a) compuie the next most significant digit {i.e. octal) from the
current quotient g as the remainder r after division by newbase,

a

78 FUNDAMENTAL ALGORITHMS CHAP. 2

(b) convert r to appropriate ascii value,t

(c) increment new digit count ndigit and store r in output array
newrep,

(d) compute the next quotient g from its predecessor using integer

divician hy sowhacs
GIVISI0N DY Rewoase

until the guotient is zero.

A character array is used is for output to accommodate newbase values of
more than 10 (see notes 5 and 6).

Pascai implementation

procedure basechange{nnewbase: integer}; i

var i {index for new digit output array},
ascii {ascii value for current digits},t
ndigit {current counter of new digits computed},
q {current quotient},
r {current digit for newbase representationy},
zero {ascif value of zero character}: integer,;

newrep: array[1..100] of char {output array};

begin {changes base of integer from decimal to any base <= 36}

{assert: n>0AN2=<newbase =< 36}

zero = ord('Q');

q:=n;

ndigit := 0;

{invariant: after the ndigitth iteration, q =n div (newbase | ndigit)
Anewrepll.ndigit] contains the ndigit least significant digits
of n i newbase in reverse order Ar contains ndigit least
significant digit}

repeat
r ;= g mod newbase;
ndigit = ndigit +1;
ascii 1= zero +r,
if ascii>ord {'9') then ascii := ascii +7;
newrep|ndigit] 1= chr (ascii};

G .= g div newbase

until ¢ =0;

{assert: newrep[1..ndigit] contains the ndigit representation of n in the
base newbase In reverse order}

writeln {Base ', newbase, ' representation of \ n, ' is '):

for i := ndigit downto 1 do
write {newrep{il);

writein

end

T See algorithm 2.9 for explanation of ascil.
1 The parameters n and newbase should be chee

procedure.

SEC. 2

8 BASE CONVERSION 79

Notes on design

1.

2

The number of steps in this algorithm is a function of the newbase, and
the magnitude of the integer n. More specifically the number of stepsis
proportional to x, where x is the smallest integer satisfying the condi-
tion n<{newbase)*.

T 1 1 1
Throughout the iterative process afte

rightmost digits of the newbase representation have been computed.
This condition remains invariant throughout the iterative process. On
termination the ndigit digits have been computed. After each iteration
r contains the ndigit digit in the new base representation as measured

=N

EEELNeE

from the right. Since newbase is an integer greater than one and the
integer division is performed on g with each iteration ¢ will be
decreased until ¢ = 0. Termination is therefore ensured. The algorithm
functions correctly for all storable integers greater than or equal to
zero. If the output contains more digits than can be printed on a line
then an error will occur,

In designing this algorithm a clear understanding of the nature of the
data we are working with is essential. Specific examples help to lead us
to the required iterative construct and the appropriate termination
condition.

inecs soninin t
LNl ¥ L L u&ulll 1k &

ing an initial condition and then buildin
succession of predecessors.

The algorithm will not handle newbase values of more than 36 (i.e. ten
digits plus 26 alphabetic characters) because of lack of suitable charac-
ters for representing digits.

The algorithm relies on the fact that the alphabetic characters follow
seven characters after the characier 9 as in the ascii (American Stan-
dard Code for Information Interchange) character set.

The algorithm could be made more general by providing for the input

numbers to be in any base up to 36.

wanrk nfactahlich.
Y e Pl N tuul‘

ﬂ&l

the solution iteratively from a

vi=d

Supplementary problems

2.8.1

282
2.83

Modify the algorithm to incorporate the generalization suggested in
note (7).

Design an algorithm that converts binary numbers to octal.
Design an algorithm to convert binary numbers to decimal.

80 FUNDAMENTAL ALGORITHMS CHAP. 2

2.8.4 Design an algorithm that accepts as input a decimal number and
converts it to the binary-coded decimal (bed) representation. In the
bed scheme each digit is represented by a 4-bit binary code,

2.8.5 Design an algorithm that accepts as input a decimal fraction and

converte it ta the carrecnnnding hinary fractinn onf a fived acenracy
T LA F Rl L 1R BRSO LI M\Jllhat’ullu!llb Ullll.‘lJ' AA W LILARAE LSl WA 1MW AW L qu

(e.g. 0.625,,=0.101,= 1X2"1+0x2"2+1x2"3).

-

Alsarithrmm 9 O
RIguorniuinn .J

CHARACTER TO NUMBER CONVERSION

Problem

Given the character representation of an integer convert it to its conven-
tional decimal format.

Algorithm development

Before we embark on a solution to this conversion problem, we must fully
appreciate the difference between the character representation of an integer
and its conventional number representation.

The number of different characters needed to represent textual and
string information is relatively small. The upper and lower case alphabetic
characters, the ten digits, and various punctuation and control characters
make up only about one hundred different characters. In contrast to this, the
range of different integers (and real numbers) that are needed may extend
into the millions, the billions and even further. To obtain unique representa-
tions for such a large span of numbers requires a considerable amount of
“space” to store each individual number. Numbers are represented in the
computer in binary positional notation using just the 0 and 1 digits. As an
example, let us examine the binary and decimal positional representations
for the decimal number 221.

ey

decimal notation =2x10242x 101+ 1x10=22
binary notation =1X27+1X20+0X23+ 1 X244+ 1 X232+ 1 X22+ (X2 +1Xx20
=11011101

Comparing the two representations for 221, we see that only 3 decimal digits

ars nasded tn ranracant 371 wharane € hinary digite ara s1scad Ta ramracant
LA R SR PLNL L N A l\r-yl WO ERY DLl YYRILIACED O Ulllai.y ulélta Ch1 % RIDWRE. L AWS i‘w*—'l‘vﬂ\ylll

one billion, we need 10 decimal digits and about 32 binary digits or bits. The

SEC. 2.9 CHARACTER TO NUMBER CONVERSION Bl

fundamental unit or computer word size for storing numbers is usually one of
16, 32, 36, 60 or 64 bits. Since only 7 or 8 bits (8 bits are called a byte) are all
that is needed to distinguish among the hundred or so characters that we are
likely to need (i.e. 28=256) it is therefore very wasteful of computer

mamanry tn ctnars anly ane rha r'n ot o tho haocin ctnraos unit far nismhare
I.ll\.-l.llul] LAV AW LW Uill] LAIIV WliChE CiWLL] lll lll\.« L b L alulﬂs\.r LIEFIL ER0Y 114111 %0% 10,

The solution is therefore to pack several characters into each computer
word. For example, on 32-bit computers we find that four 8-bit characters
are usually stored in each computer word.

To make this packing possible it has been necessary to assign fixed 8-bit
codes to the one hundred or $o characters One of the most widely used of

Interchange or ascii code. Some exampies from this system are shown in
Table 2.2.

Table 2.2 Ascii character codes and their decimal equivalents
Character R-bit code Decimal value

0 (00110000 48

1 00110001 49

2 00110010 50

3 00110011 51

A 01000001 65

B 01000010 66

C 01000011 67

a 01100001 97

b 01100010 98

Note that the decimal digits 0 I 2.3,. 9 are also assignedS bitcharacter

sent numbers as sequences of characters. For exampie, we might represent a
date by a string of characters; for example,

23 April 1984

With representations like this there are times when it is necessary to do
conventional arithmetic calculations on the numbers represented as se-
quences of 8-bit characters. In our example above the 23 does not have the
value of 2 tens and 3 units but rather there are the decimal values 50 and 51
in successive 8-bit bytes. We cannot do the arithmetic operations directly on
the character code representations because the corresponding binary rep-
resentation does not conform to the standard binary pesitional notation used

tU lCiJl CbCl!t l!UlllUClb lll tliC LUHI*}ULCI OUI Ulliy d.ilCi l!dtl\"c l!l bubh Lllbulll"
stances is to convert the number from its character representation to its

82 FUNDAMENTAL ALGORITHMS CHAP. 2

conventional number internal representation. This brings us back to our
original character-to-number conversion problem.

Our task is therefore to accept as input a character representation of a
number containing a known number of characters and make the conversion

to the conventional decimal renresentation. To do this it will be necessarv to
AW LREWw WL SR Y W IR RERTIIAARE WA WA NIEALEL X \rt}‘ oI RRELLALARLSN R, A WS NARS L EIAEL) k4 YYLEE LS % ll\f\"-’u’\’“‘)

use our knowledge of the particular character code being employed. In this
example, we will choose to work with the ascil code. Fortunately, most
programming languages including Pascal provide some additional functions
to make tasks like this relatively straightforward to perform.

Suppose as an exampie we wanted to convert the four character se-

with is

g 8 4 characters
| |

49157156152 ascii values

To make the conversion, the 49 will need to be converted to 1000, the 57 to
900, the 56 to 80 and the 52 to 4 units. To get the appropriate decimal digitin

each case we have had 10 cui'\trsu‘t 48 fﬂu: gcr'u value of character ﬂ\ from the

widwias wida Ulil LaR

ascii value of each character. Pascal makes this job easier by prov;dmg a
function called ord which accepts an 8-bit character as its argument and
returns as output its corresponding decimal (in our case ascii) value, e.g. the
statement

will assign to x the decimal value 57 t
we will need to subtract ord(’ 0) rom the ascit values of each of
characters in the sequence

Having progressed this far, our next step is to use the digits to construct
the corresponding decimal number. The character sequence will need to be
processed one character at a time to obtain the decimal digits. What we must
now work out is how each digit is to be converted to make its appropriate
contribution to the decimal number we are seeking. If we start processing the
characters from the left. when we encounter the “1" it is not immediatelv

LB RALWE LAY S S RN AR BTy eV LR X s 2 1R RALRIARASCCRRCY

obvious what power of ten it should be multiplied by after the ascii conver-
sion. However, by the time we have encountered a second character in the
sequence we know it should be muitiplied by at least 10. And, at the time we
have encountered the third character, we know the second digit should have
been multiplied by 10 and the first digit multiplied by 100. What this
suggests is that we can proceed using essentially the same mechanism as we

[y g, [gy o

example of 1984,

SEC. 2.9 CHARACTER TO NUMBER CONVERSION 83

1—1 - 1
9-1x10+9 - 19
8—19x10+8 — 198
4-->198%X 10+4 ~»1984

All that is left now is to work out the details of the mechanism for implement-

ing thig nrocess, The “shiftino-to-the-left” mechanism can be obtained at

ikgs LD BSE RSV ORT. Rt AL A L) FAA W RLICAIEALTARL Nwddlx (WA R+ FLwLY

each step by multiplying the previous decimal value by 10 and adding in the
current decimal digit. Details of our implementation can now be outlined. It
is assumed that the length of the character string has been determined and
that a check has been made to confirm that the string represents a positive

integer.

Algorithm description

1. Estabhish the character string for conversion to decimal and its length
n.

Initialize decimal value to zero.

Set base() value to the ascii or ordinal value of "0,

While lece thon » characters have been examined do
TY LIRL W BNl JuF LIdRddl Tk LS %N 18 A SR RA 1AL N S LY L

{a) convert next character to corresponding decimal digit,
(b) shift current decimal value to the left one digit and add in digit for
current character,
5. Return decimal integer corresponding to input character representa-
tion.

S 2 B

function chrtodec {string: nelements; n. integer}. integer;
var / {index for count of characters converted},

dec {used to build converted decimal integer},

baseQ {ascii or ordinal value of character 0 }. integer;

begin {converts character string integer representation to decimal}
{assert: n >=0Astring[1..n] represents a non-negative number}
dec := 0;
base0 = ord {'0');
{invariant: after the ith jteration, dec contains the i leftmost digits
of the string in integer form Ai =<n}
for/ := 1ton do
dec = dec * 10 +ord (string{/]} —basel;
{assert: dec contains the integer representation of the n digits in string}
chrtodec = dec
end

84 FUNDAMENTAL ALGORITHMS CHAP. 2

Notes on design

1. The number of steps to perform the conversion of the character rep-
resentation of an integer to decimal is directly proportional to n, the
number of characters in the original representation.

2. After the i time through the loop the first { characters of the string

n witll o nanvartad tn dicite Alen aftar 5 ttavratinne tha

L= % aSof - ¥4 I{‘\
WAl ¥Rl Uv WAMEY LI LG W LRI, SREOV ORthd F AR AUILiia, L

llil\.-Q\,-l

variable dec will contain the i leftmost digits of the decimal representa-
tion with the leftmost digit multiplied by 10!, the next digit by 102
and the rightmost of the i digits multiplied by 109, Termination of the
for-loop is guaranteed after n iterations. This algorithm does not

nint
FLCEL

handie real numbers nor does it protect against the situation where the
string being converted will cause integer overflow.

Applications

Business applications, tape processing.

Qunnlamantary nrahleme

““rr'“"'“'l‘“! " rl Tl B E AW W

2.9.1 Design an algorithm that will handle conversions to decimal where
the input character string may contain a decimal point.

2.9.2 Design an algorithm to convert a decimal representation for a
number to the corresponding character string representation.

2.9.3 Given that all ascii codes are less than 128, design an algorithm that
reads a given set of data and decides whether or not it may contain
decimal data.

BIBLIOGRAPHY

Most of the algorithms in this chapter are covered in introductory texts. Bartee
(1977) provides a detailed discussion on number systems.

4 TY o iy T Y h:,:“k"’" P . -

p r l"," T e B ALL Y o N :
i. pariee, t. C., Lhigitar Compuler runadamenidqrs, 4in ean, vMiCUraw-riii,

1977.

Chapter 3
FACTORING METHODS

INTRODUCTION

{iraale tha thanry Af nuimhe in osnaroal nd farntarino mathndc in na
SF e DDy lll\u un..ul_y i liulliu\.«ia i1k E\wll\wl Chdy anu 1(.!\..“.:1 5115 LRI RRELFLED LIk }Jﬂ

lar, has been extensively studied. Up until more recent times these studies
were for the most part carried out purely for interest’s sake.

With the development of computers an understanding of these tech-
nigues has begun to be important for very practical reasons as well as their
theoretical interest. Many of the algorithms developed long before the
advent of computers are now very much a part of important computer
applications.

Prime numbers, for example, are used in a number of applications.
Recently developed methods for encrypting text to make its contents
obscure to any outside observer rely on the fact that the product of two very
large primes (more than 100 digits each) is effectively impossible to factorize
in an acceptable time with known factoring methods. The best known
factoring algorithms rely upon the use of greatest common divisors and
related techniques. Prime numbers also play a role in fast methods for

infarmatinan retrisval that amnlny hachinog aloarithme (hachine 1ic diconceed
AFRARSZ ARELARALTER S % LK 3% T LANL RFRALEE Ulllt}lu] Iludllllle ul&ul ELRLIN R \““d‘l*l‘& A2 WA Bl AT T WA

in Chapter 5). With some hashing schemes it turns out to be appropriate to
choose table sizes that are prime numbers. In encryption algorithms, as well
as working with large primes, there is a need to raise numbers to large
powers by efficient means. In this chapter we will consider a technique for
this purpose.

Random numbers are extensively used in many simulation studies. The
method for random number generation that we will consider has evolved
from theoretical developments in the theory of congruences.

)
wn

86 FACTORING METHODS CHAP. 3

Algorithm 3.1
FINDING THE SQUARE ROOT OF A NUMBER

Probiem

Given a number m devise an algorithm to compute its square root.

Algorithm development

When initially confronted with the problem of designing an algorithm to
compute square roots, we may be at a loss as to just where to start. In these
circumstances we need to be really sure of what is meant by ““the square root
of a number”. Taking some specific examples, we know that the square root
of 4 is 2, the square root of 9 is 3, and the square root of 16 is 4 and so on.
That is,

2X2=4
3X3=9
4X4=16

From these examples we can conclude that in the general case the square
root n, of another number m must satisfy the equation

nxXn=m (1)

If we are still unsure as to what to do next, we can take a guess at the
square root and then use equation (1) to check whether or not we have
guessed correctly. Suppose, for example, we do not know the square root of
36. We might guess that 9 could be its square root. Using equation (1) to
check our guess we find that 9x9 = 81 which is greater than 36. Our guess of
9 is too high so we might next try 8. For example, 8 X8 = 64 which is stili
greater than 36 but closer than our original guess.

The investigation we have made suggests that we could adopt the
following systematic approach to solve the problem.

1. Choose a number n less than the number m we want the square root of.

2. Square n and if it is greater than m decrease n by 1 and repeat step 2,
else go to step 3.

3. When the square of our guess at the square root is less than m we can
start increasing n by 0.1 until we again compute a guess greater than m.
At this point, we start decreasing our guess by 0.01 and so on until we
have computed the square root we require to the desired accuracy.

SEC. 3.1 FINDING THE SQUARE ROQT OF A NUMBER 87

Diagramatically, we can see in Fig. 3.1 how this algorithm approaches the
desired solution.

l
+
\ /\ Desired square
Deviation A\ A root
from N _ [\/_“ -
desired
solution
_ » Number of iterations

Fig. 3.1 Oscillating convergence 10 square root.

Studying our algorithm carefully, we observe that the number of itera-
tions it requires depends critically on how good our initial guess is {e.g. if m is
10,000 and our initial guess n is 500 we will need over 400 iterations before
we start to converge rapidly on the square root). This observation raises the
question, can we derive a quicker way of homing in on the square root that is
not so critically dependent on our initial guess?

To try to make progress towards a better algorithm, let us again return
to the problem of finding the square root of 36. In choosing 9 as our initial
guess, we found that

= 81 which is greater than 36.

We know from equation (1) that the 9 should divide into 36 to give a
quotient of 9 if it is truly the square root. Instead 9 divides into 36 to give 4.
Had we initially chosen 4 as our square root candidate, we would have found

4% =16 which is less than 36.

From this we can see that when we choose a square root candidate that is too
large, we can readily derive from it another candidate that is too small. The
larger the guess is that is too large, the correspondingly smaller will be the
guess that is too small. In other words, the 9 and the 4 tend to cancel out each
other by deviating from the square m in opposite directions. Thus,

Square Square Root
B - — — - = = — =~ -~ 9
36 — — — — — — — — — — _ 29
16 — = — = = - — e 4

The square root of 36 must lie somewhere between 9, which is too big, and 4,

g, Y v § s

which 18 too smail. ldKlﬂg the average of 9 and 4:

88 FACTORING METHODS CHAP. 3

(9+4)

2
gives us an estimate “‘in between” 9 and 4. This new estimate may again be
either greater than 36, equal to, or less than 36. We find that 6.5% = 42.25

ke arantar than TA Miviching thic o =1
Will\vil ia Eibﬂl\vl Lilgiil J1ur, UIVIUIIIS LifiOo 1iw ¥y ¥4

=6.5

we see that it again has a complementary value (i.e. 5.53) thatisless than 36.
Thus,

Square Square Root
81 ! greater 9
42.25 than 36 6.5
36 - - - —— - - — - - - 77
30.5809 less 5.53
16 { than 36 4

We can proceed to get an even better estimate of the square root by
averaging these two most recent guesses:

(6.5+5.53)/2=6.015

where 6.015% = 36.6025 which is only slightly greater than the square we are
secking. Although we have not proved it, we may suspect that the strategy of
averaging complementary estimates of the square root will converge very
rapidly to the desired result even for bad initial estimates. At this stage we
should do some mathematical analysis to confirm the validity of this strategy
(see Notes on design). However, we will assume that it is a good strategy and
proceed with the development of the algorithm.

Our first task now is to clarify the averaging rule that we intend to use to
generate successively better approximations to the desired square root. To
work this out, let us return to the “square root of 36 problem”. Asour initial

ousnce o wa rhace @ Wae then nracesded tn avarace thic auase wiith ite
su\vﬂﬂ 5.‘. ¥ W Wl Y L Lilh-i3 i.ll\.)\..—\...\.u!...u LW u\'\;lu&\r L3l 5 o wIT FYARRRE AR

complementary value {36/9=4). In the general case, the complementary
value is given by

m
complementary value := g;i

Our next step was to get an improved estimate of the square root, g2, by
averaging gl and its complementary value (i.e. (9+36/9)/2=6.5). We can
therefore write the expression for g2 in the general case as

g2 := (gl +(m/gl)}/2

SEC. 3.1 FINDING THE SQUARE ROOT OF A NUMBER 89

We should now be able to use this expression as the basis of our square root
finding algorithm.

In our example for finding the square root of 36, we began with g/ =9
and established that g2=6.5. We then repeated the averaging process.

Tiawavar naw i R fia adY accnimad tha rala that nroviancely halanoad ta of
AFUWL YL, LUV UL L. Ba F ADDLIIILA tHL TUIIL Ll PluvalluolyY ViaUngoid v g

in order to compute an even better estimate. We can achieve this repetitive
interchanging of roles by setting up the following loop

82 = (gl+m/gl))/2;

root of m.

A question that still remains open is how are we to terminate the
iterative process? We seem to have no way of knowing in advance how many
iterations wiil be needed in the general case to calculate an acceptable value
for a given square root. We are therefore going to need some other criterion
for stopping the iterative process. We know that with successive iterations
our algorithm produces closer and closer approximations to the square root.
For example, for our square root of 36 problem, we have the sequence

9— 6.5 6015 ...

As the iterations increase, we can expect that the differences between the
square roots estimated with successive iterations will become progressively
smaller. We can therefore terminate the algorithm when the difference
between gl and g2 becomes less than some fixed error (e.g. 0.0001 might be
an acceptable error). We cannot be sure in advance whether or not g2 wili be
progressively larger or smaller than gf. To be safe, the absolute difference
between gl and g2 should be used as our termination criterion.

The only other question that remains open is just how should we choose
our initial guess? Our considerations so far teil us that in one sense it does not
matter much what initial guess we make since the balancing mechanism of
our algorithm will ensure that we fairly rapidly converge on an acceptable
square root. We might therefore be tempted to choose the number mitselfor

perhaps m/2 as our initial guess and leave it at that (see Notes on design).
Our square root algorithm can now be described in detail.

WLV A <3 a H L2 B R s RN iR

Algorithm description

1. Establish m the number whose square root is required and the termina-
tion condition error e.

2. Set the initial guess g2 to m/2.

3. Repeatedly
(a) let gl assume the role of g2,

90 FACTORING METHODS CHAP. 3

(b) generate a better estimate g2 of the square root using the averag-
ing formuia,
until the absolute difference between gl and g2 is less than error e.
4. Return the estimated square root g2.

Pascal implementation

function sgroot{m,error: real): real;
var g7 {previous estimate of square root},
g2 {current estimate of square root}: real;

begin {estimates square root of number m}
{assert: m>0Ag!=m/2}
g2 :=mj2;
{invariant: g2 » g2 —mi=<igl! » g1 ~mIA
vanant. (g« * g« —mj i C LS B
repeat
g? az2;
(9? +m/g1}/2
untli abs(g? g2)<error;
{assert: (g2 » g2 ~m|=<|gl *» g1 —m|A|gT -g2|<error}
sqroot = g2
end

Notes on design

1. [Itisnoteasytoshow how many iterations are needed to find the square

root to a given accuracy in the general case. We can, however, show
rpiﬁtwpiv mmnlv that the method converges rﬁmd!v At the nth step we

R ALy wiIiip afiy L LI RASRINS I RS 2

have
g.=s—e

where s 1s the desired square root of m and e is the corresponding error
term. Making this substitution in our averaging formula, we get

Bni1 = ((s«*e)+(sTe)/2

and with m =g and for e small we get

ez
gn+! :S“e+i—s

and so

gm‘-i - gn +28

SEC. 3.1 FINDING THE SQUARE ROOT OF A NUMBER 91

The quadratic term confirms that the method will converge rapidly to
the desired result. Also the relative errore, = ! 1-(g,/m) | decreases
rapidly since e,,,=¢,*/2.

2. After inspecting the averaging formula, we conclude that in the limit

when gl =\/m our formula yields
Q2= (g] +§'—"}~)/2m (gl +gl)/2=gl

The method therefore shows in principle convergence to the desired
limit. To establish that the algorithm terminates we must show that the

bsol it : . o is strictly .
to the limit. This follows directly from the fact that the algorithm shows
quadratic convergence.

3. In this design, we have applied a feedback principle. That is, we keep
making corrections to our estimate in a way dependent on how much
the previous solution deviated from the desired result. The more
drastic the deviation the more drastic the correction. This is a very
important principle.

4. A specific example has given us the clues we need to set up a general

model,

AL AR N

5. The formula we have developed for computing the square root can be
derived alternatively from Newton’s formula.

fx,)

Xpe1 ™ xn+w

frx,)

6. To compute the n'" root (i.e. where x"=m) we can use

nﬂ=(m~nn+

:--J

It is possible to set up a polynomial expression that will give optimum
starting values for g/ (see E. G. Maursund, “Optimal starting values
for Newton-Raphson calculation of Vx, Communications ACM, 10,
430-2 (1967)}). The square root function in a computer system may be
used thousands of times in a day. In such circumstances it would be
worthwhile using some mathematical knowledge to find an improved

algorithm. For such an often-used routine, the extra cost or research
will probably pay for itself time and time again.

Supplementary problems

3.1.1 Implement the square-root-finding algorithm that was origi-
nally proposed.

92 FACTORING METHODS CHAP. 3

3.1.2 The geometric mean is used to measure central tendency. It is

defined as

G.M. = /(X xy X x3 X+ X X,)
NMeovalnn an aloarithm ta innist 31 numhere and ramnate thaie
AACYL IO il girpliinniiig AU HpUL AE HIBHUGE S Qi VUlbpuie cvil

geometric mean.

3.1.3 Design an algorithm that finds the integer whose square is closest to
but greater than the integer number input as data.

3.1.4 Design and implement an algorithm to iteratively compute the
reciprocal of a number.

Algorithm 3.2
THE SMALLEST DIVISOR OF AN INTEGER

Problem

. ;
(Given an inteoer n devise an al
Tl A K W LA A AR llllybb l AF LR F AW AL WAL

other than one.

Algorithm development

Taken at face value, this problem seems to be rather trivial. We can take the
set of numbers 2, 3, 4, ..., n and divide each one in turn into n. Assoon as we
encounter a number in the set that exactly divides into n our afgorithm can
terminate as we must have found the smallest exact divisor of n. This is all
very straightforward. The question that remains, however, is can we design a
more efficient algorithm?

As a starting point for this investigation, let us work out and examine
the complete set of divisors for some particular number. Choosing the

number 36 as our example, we find that its complete set of divisors is
{2,3,4,6,9, 12, 18}

L] . 2Ly

We know that an exact divisor of a number divides into that number leaving

no remainder. For the exact divisor 4 of 36, we have:

36

-
t
(9%
4
A
¢
~3
C
&

SEC. 3.2 SMALLEST DIVISOR OF AN INTEGER 93

That is, there are exactly 9 foursin 36. It also follows that the bigger number
9 also divides exactly into 36. That is,

36

= 9

0
Y

and 36 1
4%9

Similarly, if we choose the divisor 3, we find that it tells us that there is a

bigger number 12 that is also an exact divisor of 36. From this discussion we
can draw the conclusion that exact divisors of a number must be paired.

Clearly, in this example we would not have to consider either 9 or 12 as
potential candidates for being the smallest divisor because both are linked
with another smaller divisor. For our complete set of divisors of 36, we see
that:

Smaller factor Bigger factor 36
2 is linked with i8 {i.e. 5 i8)
3 is linked with 12
4 is linked with 9
6 18 linked with 6

20 REiEw NS VYV auii ~

From this set, we can see that the smallest divisor {2) is linked with the
largest divisor {18), the second smallest divisor (3) is linked with the second
biggest divisor {12) and so on. Following this line of reasoning through we
can see that our algorithm can safely terminate when we have a pair of
factors that correspond to

{a) the biggest smailler facior s,

(b) the smallest bigger factor b.

Or, in other words, we want an s and b that satisfy
sXb=n

and for which s is less than b. The crossover point and limiting value must
occur when s= b, t.e. when

SXS=n

It follows that it is not necessary to look for smallest divisors of n that are
greater than the square root of n.

This consideration is particularly relevant if we are likely to have to deal
with large prime numbers {(a prime number is an integer that is only exactly

P LG4 NS DU MU RP OV I NP P!
GIVIMLHNC UY 1 dilld UY HSCHL}.

94 FACTORING METHODS CHAP. 3

What this square root limit allows us to do is stop the search for a valid
exact divisor much earlier than we would otherwise be able to if the number
we were considering was a prime number (e.g. for the prime number 127 our
algorithm can terminate after only 10 iterations),

.
Raofeare haino ﬁnmnlntnlu catisfied with our new desion. we should once
B R R AR N u‘w‘lll& "ulllt}l\r“\-’l WLEL LA ANl FY AR EL LAAAL RAN. VY uvul&l] Y W L) LY LWA W L%

again ask are there any other improvements we can make? The set of
divisors that we would now consider are all integers up to \V/(n). For the
prime number 127, the divisors we would consider are

2,3,4,5,6,7,8,9, 10, 11
number we are testing is not divisible by 2 then it certainly will not be
divisible by 4, 6, 8, 10, And so if the number we are testing is odd, we
need only consider odd numbers as potential smallest divisor candidates (i.c.
we need only consider 3,5, 7,9, ...).

In fact, consideration of odd numbers is more than we need to do. We
will not pursue this latter “improvement” here as it is related to the more
challenging problem of generating prime numbers, which we will consider
later.

The overall strate

1. If the number n is even, then the smallest divisor is 2
else
(a) compute the square root r of n,
(b) while no exact divisor less than square root of n do
(b.1) test next divisor in sequence 3, 5, 7,

All that is left to do now is work out the implementation details. The
divisors to test can be generated by starting d at 3 and using

d:=d+2

To determine whether or not a number 18 an exact divisor of another
number, we can check if there is any remainder after division. For this we can

use the mod function. If n mod d= 0 then d is an exact divisor of n.
The two conditions fortermination can be applied directly. It is possible

tions for termination can plied directl s possib
that our algorithm may terminate when elther or both of the conditions
n mod d =0 and d=r apply. An additional test is therefore needed after
termination to check whether or not n does in fact have an exact divisor. We

can now proceed with the detailed description of the algorithm.

Algorithm description

1. Establish n the integer whose smallest divisor is required.

SEC. 3.2 SMALLEST DIVISOR OF AN INTEGER 95

2. If nis not odd then return 2 as the smallest divisor
else
(a) compute r the square root of n,
(b) initialize divisor d to 3,

Y whils nat an avart divicen
W witlhiC NOL gl Xali GIViISo

{c.1) generate next member in odd sequenc
(d) if current odd value d is an exact divisor

then return it as the exact divisor of n

else return 1 as the smallest divisor of n.

e
R

Pascal impiementation

function sdivisor {n: integer): integer;

var o {rurrent divicor and membar nf nded conuonre
F e L L ¥ B P T s

-wmw e PSS REsdnd FiT L MR R AILT u},
-

r {integer less than or equal to square root of n}: integer;

begin {finds the smallest exact divisor of an integer n, returns 1 if n

prime}
{assert. n >0}
if not odd{(n} then
sdivisor ;= 2
else
begin {terminate search for srmallest divisor at sqrt (n)
r = trunci{sqrtin}};
d:= 3

{invariant: d =<r + 1Ano odd integer in [3..d — 2] exactly

divides n}
while (" mod d< >0} and {[d<r)do d := o +2;

{assert: d is smallest exact divisor of n Ad =<rvV{d=<r+1}An

is prime}
if n mod d =0 then
sdivisor 1= d
else
sdivisor :
end
end

1

Notes on design

1. The algorithm takes at most |\/n|/2 (i.e. strictly the largest integer less
than or equal to (\/n)/2) iterations to determine the smallest divisor of

a number n. If n is even, no iterations are performed.

2. After the i'" iteration of the while-loop, the first i members of the odd
sequence 3, 5,7, 9, ... will have been tested for exact division into n.
Also after the i'" iteration it will be established that the /* member of
the sequence 3, 5, 7, ... is the smallest exact divisor of n or that the

96 FACTORING METHODS CHAP. 3

L2

Appli

smallest exact divisor of n is not among the first / members of the odd
sequence. The algorithm is guaranteed to terminate because with each
iteration, d is incremented by 2 and so eventually the condition d=r
will be satisfied.

We nheerve that ac ic gy
TY % WAL 0WE ¥ lllul-, AT 3143 AR

-
o
g
"
Tt
=
-

the mbst obvious
problem is not the best. When designing algorithms we should always
keep this thought in mind.
Consideration of a specific example tells us a lot about the design
although we should always be watchful that we have not picked some

special case.

algorithms (e.g. it is no good considering even numbers as divisor
candidates when the input number n is odd). Even our algorithm as it
stands considers unnecessary candidates {e.g. 9, 15, ...). Ideally, we
should consider only prime numbers as divisor candidates but thisisa
difficult problem in itself (see algorithm 3.4).

It is possible with extra assignments to terminate the while-loop with a
single test. This usually results in a more efficient implementation. In
the present problem, the gains, if any, will be marginal. Notice that
there is no need to assign n mod 4 to a variable. We would not,
however, use (d=sqgrt{n)) as a termination condition because re-
computing sqre(n) after each iteration is costly and unnecessary.
Dijkstra also gives an interesting and efficient method for finding the
smallest prime factor of a large number (see E. Dijkstra, A Discipline
of Programming, Prentice-Hall, Englewood Cliffs, N.J., p. 143, 1976).

cations

Allocation probiems.

Supplementary problems

3.2.1

3.2.2

323

324

[F8]
[
¥

Modify the algorithm so that the square root of n does not need tobe

avnlicitly famnritard
MAlJll\vlll} \wUllllJul\cu-

Design an algorithm to produce a list of all exact divisors of a given
positive integer n.

Design and implement an algorithm that finds the smallest positive
integer that has n or more divisors,

For the integers in the range 1 to 100 find the number that has the
most divisors.

It is possible to improve the efficiency of our smaliest divisor
algorithm by generating a sequence of ds that excludes multiples of

SEC. 33 THE GREATEST COMMON DIVISOR OF TWO INTEGERS 97

3 as well as multiples of 2. Implement an algorithm that includes this
refinement.

3.2.6 An algorithm due to Fermat can be used to find the largest factor f
(less than or equal to \/n) of an odd integer. Fermat established that

the fallawineg relatinne hald foar »
REAW ANFRILFYY RLAD KW ALALIVF0 SIVFINE IS -

where x ={(f+£)/2], y = (g-1)/2]
The algorithm can be implemented by introducing two auxiliary
———variablesx" and ¥ su¢ch that —
x'=2x+1
y'=2y+1

m
i

he odd values that these two variables can assume are:

x': 2lVnl+1, 2]V n]+3, 2|V nj+S, ..
vy 1,35 7, ...

Noting that successive squares can be generated by summing the
odd seauence. the error e {initially set to F1\/n12—n1) when nositive
RS GRS RI Ry RS WRERSE L R RNILARAAL Y OR%R WY VO Th) LS WARAEL LRI S L
is reduced by subtracting successive y' values until it is made zero or
negative, and, when negative it is reduced by adding successive x’
values. This process terminates when e = 0, At this point the factor f
can be found from

f=1"-y")/2

Implement Fermat’s algorithm.

Algorithm 3.3
THE GREATEST COMMON DIVISOR OF TWO INTEGERS

Problem

aa}
oy]

their greatest common divisor (usually abbreviated as ged).

Given two positive non-zero integers n and m design an algorithm for finding

Algorithm development

A1 ¥ VUSSP T S SN J R Y TS A ST SR Y SN
YWHCH HIHIdily CONOIMmCeyd witil tiid PIrodicill, wo SCo Uldi 11 Is SUIewildt

different from other problems we have probably encountered. The difficult

98 FACTORING METHODS CHAP. 3

aspect of the problem tnvolves the relationship between the divisors of two
numbers. Our first step might therefore be to break the problem down and
find all the divisors of the two integers n and m independently. Once we have
these two lists of divisors we soon realize that what we must do is select the

taronct ala nt tey hath licte "Thic alamas vyt
1{115\.-.‘_“ \.rl\.r!li\.vlll buuuuuu L7 LIVILEL HEOLS. L A1ED iV LI IEE 1iFEROL

common divisor for the two integers n and m.

We may expect that this algorithm will be relatively time consuming for
large values of n and m because of the tedious step of having to generate all
factors of two integers.

It was the Greek philosopher, Euclzd who more than 2000 years ago

o

g7

.
-

which has come to be known as Euclid’s aigomnm, was prooabiy invented by
a predecessor of Euchid’s called Eudorus. The ancient Chinese also dis-
covered this algorithm.

To embark on our search for a better algorithm, a good place to start is
with a careful look at just what is the greatest common divisor of two
integers. The ged of two integers is the largest integer that will divide exactly
into the two integers with no remainder. We can build up to the common
divisor of two integers by first considering an exact divisor of a single integer.

An exact divisor of 2 number is another smaller number that divides the
A AR AW KF FARAALALANW K Al SRR RANW A WAALACAE N2 FAKANL LA N L wwend R AN

original number up into a set of equal parts. For example, the divisor §
divides the number 30 up into 6 equal parts. Diagrammatically this can be
represented as:

0 5 16 15 20 25 30
Pyl P | P Ps | P

Py=Py= Py=P;= Ps= Py

Now let us extend this idea and representation to two integers, 30 and 18,
whose ged x we may be seeking. Studying Fig. 3.2, we see that for the
common divisor situation both n and m can be thought of as being divided up
into segments of size x. When the two blocks for n and m are aligned from the
left, the section AB of n must match the full length of m. The number n,

howraea avenacde tha lanath B Tha e vhat non wa cawy
TOWEVETD, CXCEQas M U} the LR . 21 quuauuu la, wiiat can we ay

about the segment BC? If x is going to be an exact divisor of both n and m and
if AB is exactly divided by x, then so too must BC be exactly divided up into
segments of size x.

Having made this observation, our next problem is to try to work out
how to find the largest of the common divisors that n and m may share.
Considering the simpler problem first, we know that the greatest divisorof a
singie number is the number itself (e.g. the greatest exact divisor of 30 is 30).

SEC. 3.3 THE GREATEST COMMON DIVISOR OF TWO INTEGERS 99

A B C
N
" AT
INRANNNN
e e e RS e . A e e I S
18
m
“—X—»
- p segments of > e g segments of —pm
Size ¥ Size x
Fig. 3.2 Schematic represeniation of the ged probiem.
For our example, we have:
(a) the greatest divisor of 30 is 30;
T8 tha oraatact Aivienr nf 1R ¢ 18
\U} L 24 sl\vﬂt\w{)i AREY LORFE O RFL 17 1D R

Our problem is to find the greatest common divisor of two numbers rather
than one number. Clearly no number greater than 18 can be a candidate for
the gcd because it will not divide exactly into 18. We can in fact generalize
this statement to say that the ged of two numbers cannot be bigger than the
smaller of the two numbers. The next question we might ask is, can the ged of
two numbers be equat to the smaiier of those two numbers (IHIS is not true in
the case of 18 and 30 but if we were considering 12 and 36 we would find that
12 is the ged)? We can therefore conclude that the smaller of the two
numbers n# and m must be the upper limit for the ged.

We must now decide how to continue when the smaller of the two
numbers n and m is not their ged.

To try to answer this question let us return to our specific problem of

trying to find the ged of 18 and 30. We have the situation shown in Fig. 3.3.

The other niece of information available to us is that the segment BC will

A diWw NSRLRAWE RSN RAL O MREANFR ANITALANSERL LR Y RARALALS

need to be exactly divided by the gcd. And since 18 is not the gcd the number
x we are secking must be less than 18 and it must exactly divide into the
segment BC. The biggest number that exactly divides into BC must be 12
since BC isitself 12. If 12 is to be the ged of 18 and 30 it will have to divide
exactly into both 18 and 30. In taking this step, we have actually reduced our
original problem to the smaller ged problem involving 12 and 18, asshown in

Fig. 3.4

i00 FACTORING METHODS CHAP. 3

.

.y

B R W 113 137833 It

part

Fig. 3.3 Schematic representation of ged problem showing common part.

12 {ged of 12 and 18 will

AARERRASRURRRNY be ged of 18 and 30)
AMEEAMANRR VAR R AN

s COTTITIE QT s
part

Fig. 3.4 Smailer gcd problem to be solved.

Applying a similar argument to our smaller probiem we discover that
since 12 is not a divisor of 10, wg are g(‘}ii‘:g to end up with a still smaller
problem to consider. That is, we have the situation shown in Fig. 3.5, With
this latter problem, the smaller of the two numbers 6 and 12 (i.e. 6) is an
exact divisor of 12. Once this condition is reached we have established the
ged for the current probiem and hence also for our original problem.

We can now summarize our bhasie strategy for cnmnutmo the ocd of two

numbers:

1. Divide the larger of the two numbers by the smaller number.
2. If the smaller number exactly divides into the larger number
then the smaller number is the gcd

else remove from the larger number the part common to the smaller
nizmihar and vanoat tha whalas ﬂ-‘l\ﬂz‘\!“ ira wsth tha wa natr ~f
HULLUCL aiiud L poal Ll wWHUNIL LU CUUNC Wikl 1NnC ncw Pail vl

numbers.

SEC. 3.3 THE GREATEST COMMON DIVISOR OF TWO INTEGERS 101

MRN
_y

Fig. 3.5 A still smaller gcd problemtobe solved.

12

ged {18, 30)=ged (12, 18)=gcd (6, 12)

QOur task now is to work out the details for implementing and terminating the
ged mechanism. First let us consider how to establish if the smaller number
exactly divides into the larger number. Exact division can be detected by
there being no remainder after integer division. The mod function allows us
to compute the remainder resulting from an integer division. We can use:

r:=nmod m

provided we had initially ensured that n=m. lf ris zero, then m is the ged. If r
is not zero, then as it happens it corresponds to the “non-common’ part
between n and m. (E.g. 30 mod 18 = 12.) It is therefore our good fortune that
the mod function gives us just the part of n we need for solving the new
smaller ged problem. Furthermore, r by definition must be smaller than m.
What we need to do now is set up our iterative construct using the mod
function. To try to formulate this construct, let us return to our ged (18, 30)
problem.
For our specific example we have:

r:= 30 mod 18=12 step (1)
r:=18mod 12= 6 step (2)

r:=12mod 6= 0 step (3)

I “the ged”
o

Our example suggests that with each reduction in the problem size the
smaller integer assumes the role of the larger integer and the remainder
assumes the role of the smaller integer.

The reduction in problem size and role changing steps are carried out

lcpcdwmy um cxau:plc tHCIClUIC buggcblb that the gc echanism ¢an be
captured iteratively with a loop of the form:

102 FACTORING METHODS CHAP. 3

while gcd not found do

(a) get remainder by dividing the larger integer by the smaller integer;
{(b) let the smaller integer assume the role of the larger integer;

(c) let the remainder assume the role of the smaller integer.

Now we must decide in detail how the loop should terminate. Our
earlier discussion established that the current divisor will be the ged when it
divides exactly into the integer that is the larger (or equal) member of the
pair. The exact division will correspond to a zero remainder. It follows that
we can use this condition to terminate the loop. For example:

while non-zero remainder do
“continue search for ged”.

Examining the mechanism we have constructed a litile more carefully
we see that there are two things we have not considered. Firstly, when the
termination condition is tested on entering the loop we will not have com-
puted any remainder. One way to overcome this would be to compute the
remainder for the original pair of integers before entering the loop. That is,

1. compute remainder for original pair of integers.
2. while non-zero remainder do
“continue search for ged”.

We see that with this mechanism, since the remainder has to be computed at
least once, we have a situation where termination could be tested after first
passing through the loop once. This suggests that a simpler mechanism in this
case would be:

repeatedly
“search for ged”
until zero remainder.

The other consideration we must attend to is that when the original pair

of inteoeare ig naccpr‘ tn the innn we do not know which ic the lﬁrﬂrpt‘ A way

ML ALVE G G RROGOW R L Vi VR Y RALS RERIL AWMIRSYY VP ARNWAR RO AR AGR S YYiiy

around this problem would be to exchange the two integers before entering
the loop if their roles are wrongly assigned. This looks clumsy so let’s see
what goes wrong if we fail to make this change before entering the loop. For
our earlier example, if we enter the loop with

= 18 mod 30

. e l_ —

the remdmucr DCLUme 16 the 1drgt:r iﬂngC]’ becomes 38 alld 1€ SiIc
integer becomes 18, What has happened is that the roles of the larger and
smaller integers have been interchanged, which amounts to the exchange we

SEC. 3.3 THE GREATEST COMMON DIVISOR OF TWO INTEGERS 103

had originally intended. It follows that we need not concern ourselves with
the problem of deciding which of the input pair of integers is the larger.
A final point to consider is, which variable will contain the ged when the
mechanism terminates? Referring back to our earlier description of the

marhanicrm we con that in tha final itaratinn hafara tarminatinan tha cmallae
NAAGASICRIEIDIHL ¥V D00 RRRGE A0 LRI0 AARIOE WL QLWL VLIV L AU RIGG UV, Ll Jiiaiici

integer which is the gcd gets assigned the role of the larger integer. Noting
this fact we can now describe our algorithm in detail.

Algorithm description

1. Establis
ged is being sought
2. Repeatedly

{aY oatthe remainder fram di
\u" ev‘v Lil% kW (F 3y Wk LRSS .l

integer,
(b) let the smaller integer assume the role of the larger integer;
(¢} let the remainder assume the role of the divisor
until a zero remainder is obtained.
3. Return the gecd of the original pair of integers.

Pascal implementation

function gcdi{n, m: integer): integer;
var r {remainder after integer division of n by m}: integer;
begin {compules the greatest commaon d,
non-zero integers}
{assert: n>0Am >0}
repeat
{compute next gcd candidate and associated remainder}
r=nmodm,
n:=m;
m:=r
until r=0;
{assert: n =gcd of original pair n, and m}
ged :=n
end

L o
ur

visor for two positive

Notes on design

1. The number of iterations required by the ged algorithm is highly
dependent on the input data and whether or not the two integers have a
common divisor greater than 1. A “worst-case” type situation occurs
when the original pair of integers are adjacent Fibonacci numbers.
Then successive remainders follow the Fibonacci sequence down to

104 FACTORING METHODS CHAP. 3

zero. The number of iterations is therefore bounded by the number of
terms in the Fibonacci sequence up to the point that includes the
original pair of integers. If N is the smaliest Fibonacci number greater

than the larger of n and m, then it can be shown that there will be
Noo. (VSN2 iterations where @ =0 5(1 45

PVEDY VALY e ITLIGlIRS Wilbi v FULHLTN O]

The algorithm we have implemented, although logically tidy, is not
easy to prove correct because it does not have a suitable invariant
relation that holds throughout the computation. If we make the neces-
sary changes to allow our loop to take the form:

repeat

(W8]

Ln

n =
m:=
roe=
until

s > 3

mod m
0

we will get an algorithm that is easier to prove correct, Starting with
m = gandr:= b{where g and b are the original pair of numbers whose
ged is sought) we will have the following invariant relation:

ged{n, m) = ged(a, b)Ar=0
On termination, we will have
m = gcd(n, m) = gedla, b)Ar=10

We can conclude that the algorithm terminates because n mod m is
always less than m and so r is strictly decreasing and so eventually the
condition r= 0 will be met.

We observe that the solution to the gcd problem is brought about by
taking a problem and breaking it down into malier problem that can

be soived by the same mechamsm We wzli see iater that thzs is a very

Definitions play an important role in solvmg this problem.
Simple diagrams are often helpful in discovering algorithms as we have
observed with this problem.

Applications

Reducing a fraction to its lowest terms.

Supplementary probiems

2
-

2
.

1
4

Implement a ged algorithm th
repeat-loop.

SEC. 3.4 GENERATING PRIME NUMBERS 105

3.3.2 Design a gcd algorithm that does not use either division or mod

functions.

3.3.3 Design an algorithm that will find the gcd of n positive non-zero
integers.

3.34 Ifthe twointegers whose ged is sought may contain multiples of two,

then a better way to proceed is by first reducing each of the integers
by their common multiples of two, taking into account their con-
tribution to the gcd. When one integer contains multiples of two it is
best to remove these contributions before proceeding with the
standard gcd mechanism. Try to incorporate these ideas into a more

3.3.5 Design an algorithm to find all common prime divisors of two
numbers. (Hint: Algorithm 3.5 may be useful).

3.3.6 Itis well known that adjacent Fibonacct numbers do not share a
common divisor greater than 1 {(they are relatively prime}. Design
an algorithm that tests this observation for the first n integers.

3.3.7 Design an algorithm to compute the smallest common muitiple

{scm) of two non-zero positive integers 7 and p. The scm is defined

as the smallest integer m such that n and p divide exactly into m.

Design an algorithm to compute the smallest common divisor other

than one of two positive non-zero integers.

3.3.9 Given the two fractions a/b and ¢/d, design an algorithm that
computes their sum in terms of the smallest common denominator.

()
L
o

Algorithm 3.4

GENERATING PRIME NUMBERS

Problem

Design an algorithm to establish all the primes in the first n positive integers.

Algorithm development

The efficient generation of prime numbers is an open problem. We will
consider here the more restricted problem of generating all primes in the
first n integers. A prime number is a positive integer that is exactly divisible
only by 1 and itself. The first few primes are:

2357 11 13 17 19 23 29 31 37

106 FACTORING METHQDS CHAP. 3

All primes apart from 2 are odd.

As a starting point in developing our prime number generator let us
explore how we can establish whether or not a particular number is a prime
number. To do this we can pick a particular example (i.e. the number 13).

. e . . .
Pha definitinn aaf o nrime nuimbhar givegtic thoe ctart we nosd We bnaw thaot if
AEAL ATV UL G P0G EUDE VDO US LG D341 L WL GG, FY O ALIUYY LGl

the number we are testing is prime it will have no exact divisors other than 1
and itself. This suggests that to determine whether or not 13 is prime we need
to divide it in turn by the set of numbers 2, 3, 4, 5, ..., 12. If any of these
numbers divide into 13 without remainder we will know it cannot be prime.
Therefore to test 13 for primality, eleven calls to the mod function are

and tests is going to get very expensive. We must therefore look for ways of
improving the efficiency of our algorithm. A little thought reveals that there
are several avenues open to us. Firstly, we can try to keep to a minimum the
number of numbers that we have to test for primality and secondly we can try
to improve the efficiency of testing a number for primality.

Following up the first suggestion, we know that apart from 2 we do not
need to examine any of the even numbers. Starting x at 1 and using the
increment

X :=x+2

gives us the sequence of numbers
3,5,7,9, 11, 13, 15, 17, ...

For large n this still leaves us with a large set of numbers to consider. So far
we have eliminated numbers divisible by 2. Can we extend this to eliminating
numbers divisible by 3, 3, and so on? To explore this idea let us first write
down the odd sequence with the multiples of 3 removed. We have:

305 7 11 13 17 19 23 25 29..
NANSNN NN NN\
2 2 4 2 4 2 4 2 4

o

ing difference sequence should be able to be generated. We will not dweillon
it here but it is easy to see that the construct below with dx initially 4

dx := abs{dx—6)

has the desired behavior. This device will allow us to eliminate two-thirds of
the numbers from consideration as potential prime numbers candidates.
We might now ask can we eliminate multiples of 5 in a similar manner?

SEC. 3.4 GENERATING PRIME NUMBERS 107

The answer is yes but it would be slightly more involved. This line of attack
does not seem as though it is going to be very fruitful. What we do see from
this however is that one way to generate prime numbers is to simply write
down the list of all integers then cross out multiples of 2,3, 5,7, 11, and so

nn
Jil.

(@ 23 4547 89 W 11 1Z 13 1415 18 17 18 19

1 multiples of 2 crossed out

(py 2 3 5 7 ¥ 11 13 15 17 19

| —_

¢y 235 7 11 13 17 19

At stage {c) in this instance we are left with all prime numbers less than
20. If we start out with a much larger list and successively cross out multiples
of 2, 3, 5,7, 11, ... the numbers that are not crossed out will be prime
numbers. This idea for generating primes dates back to the early Greek
mathematician, Eratosthenes and is usually referred to as the “sieve of

Eratacthenee”
A CARRSIA R A AT .

There is a problem in implementing this method directly if it is neces-
sary to generate a large number of primes. Storage proportional to the span
of integers up to n may be required.

Further investigation of the “crossing out” mechanism indicates that for
large n most elements are crossed out a number of times (e.g. 15 is crossed
out twice because it is a multiple of 3 and also a multiple of 5).

These observations suggest that it is worth while trying to see if there is
any way in which we can cut down on the amount of storage and testing
needed to find a set of primes.

We have previously seen that to determine that 13 is a prime it would
need to be divided by the set of numbers 2, 3, 4, ..., 11, 12. Studying this
mechanism carefully and noting how the search for the smallest divisor of a
number was terminated (algorithm 3.2) we can see that it is not necessary to

test divisors beyond | \/13]. If a number x has an exact divisor then there will
have to be a factor less than oreaual to \/r {See the rpncnmng in ﬂiunrsthm

S R iR AR SR s AR et LI DREESRSRRR

3.2 for an explanation of this.) For large x termination of the d:vzsor testing
at Vx will be a relatively efficient operation (e.g. when x is approximately
1000, division by only the primes up to 31 is all that is needed to test x for
primality-—this involves only 10 divisions). Division by composite numbers
15 never needed because if a composite number is an exact divisor, this
implies that a smaller prime factor of the composite has already been an
exaci divisor.

108 FACTORING METHODS CHAP. 3

At this stage we can propose a basic structure for our algorithm:

while x<n do
begin
{a) generate next x using the construct dx := abs(dx—6),
(b) test whether x is prime using all primes <V/x,

(c)} if a prime is found that is less than v/# then sto

it £,
€ it 107

later testing against larger x values.
end

To test all integers up to n for primality we will need to retain all primes up to
\/n

\ARA X

Every time a new x is brought up for testing we will need to ensure that
we have the appropriate set of primes to divide into x.
Working through some examples we find:

x range prime divisors required
2=x<9 2
9=x<25 2,3
25=x<49 2,3,5
2,3,5, 7

49=x<<121

Our method for generating x values excludes all multiples of 2 and 3.
Therefore our method for generating x values will produce only primes for
values of x less than 25. As soon as x reaches 25 the divisor 5 will need to be
used in the prime test. We can then proceed until x reaches 49 at which stage
7 must be included as a divisor and so on.

Starting out with

"l

I o B S TORRUE i, T S n, 1,
Piij .= «, Ple) o= sP 3] :
and plimsq := 25; limit 1= 3
we can include the following conditional statement before testing each x
value for primality

if x> = plimsq then

begin
limit := limit+1;
plimsq = sqr(p{limit})
end

It is only necessary to increase limit by 1 with this test because the difference
between the squares of adjacent primes is always greater than 4, the largest
increment that is made in x.

There would appear to be a risk here that we may run out of primes to
test against x as it gets very large. To avoid this risk we could ensure that the

SEC. 34 GENERATING PRIME NUMBERS 109

program terminates if we run out of divisors to test for primality. To make
things easier we will use a result from number theory that tells us that:

pli}<pli—-1p

given x, the next step is to actually test x for primality. For this purpose we
can use a loop that successively tests all the prime divisors with indices less
than limit against x.

Some thought reveals there are two conditions under which this loop

1. an exact divisor of x has been found—so it cannot be prime;
2. we have reached the divisor with index one less than limit.

Using the mod function to test for exact division and using the remainder
rem to set the Boolean condition prime we get:

j = 3, prime .= true;
while prime and (j<limit) do

begin
rem = x mod pljl;
prime = rem <> (;
ji=j+1

end

We may anticipate that this loop will be heavily used for large values of n and
S0 in a practical implementation it would be better to reduce the two loop
tests to a single test by removing the test j</imit. This can be done by
temporarily replacing the element in pllimir] with a sentinel equal to x and
making a test on j outside the loop. This is left as an exercise for the reader.

All that 1s now needed is a test to see if the prime-testing loop estab-
lished that x is prime. If it is, then, providing x is less than \/n it is saved,
otherwise it can be written out directly.

The central part of our more detailed algorithm then has the form below
aaqummo limir, dx, and nhmcn have been ﬂnnrnnrmteiu mnitialized

LEXIRINIREER LR ARTP R RERRNeR 7 AEERLRLRLISAA RS

while x<<n do

begin
dx 1= abs{dx—6);
x 1= x+dx;

if limit<i then
if x=plimsq then
begin {include next prime as divisor}

113 FACTORING METHODS CHAP. 3

limit *= limit+1;
if limit<i then
plimsq = sqr(p{limit})
end;
ji=3
prime = true,
while prime and {(j<limit) do
begin {test next number x for primality}
rem = x mod p{jl;

prime ;= rem <> (),
7 +o— 741
J . J LI 9
end
if prime then ““write out x and save if necessary”

end

We now have the basis of a workable algorithm for finding primes. For large
n a lot of time will be spent in the inner loop doing costly divisions {in the
mod function). We might therefore ask is there any way we can alleviate this
division testing? What we get from any division test is either a zero or a
non-zero integer. A non-zero remainder tells us that the particular prime
being used is not an exact divisor of x. Its value also tells us the next value in

FL1 will he an exact divisor. For
¥Yig B \v“ LI Ay

+ ranocs whare t
L * 1 E Sl

tha
L Ei% AW IUIIBM Y LW b

exampie:

t
Previous x Current Next x for
for which x which pfk] will Not yet
plk] was an be an exact processed
exact divisor divisor

We can use this information to “cross out” in advance the next value of x
divisible by nffﬂ Todo thisanotherarravoufil, \/n] will he needed to store

AR AN A ¥ A 57 eSS LiEZ SEial AL fRLLR Y LA S S e S Bm

values crossed out in advance. The crossing out is done by

nxtout := plkl]— rem;
outfnxrout} 1= false

The idea will then be to check the array out before testing a given number for
primality If it 1s already “crossed out” no prime testing need be done. An

l!l\"Cbl!gdllUH d[lu l{:blillg Ul illlb iUCd bilUWb tlld{ it Wlli d!lUW us tocut UUW il Uy
a factor of 4 or 5 the number of numbers that have to be tested for primality.

SEC. 34 GENERATING PRIME NUMBERS 111

This sounds like a useful refinement. Unfortunately whenever a prime x is
gncountered all prime divisors less than \/x must be tested against it. For
large n establishing the primes by this method is going to be computationally
costly.

tey thao ciouns
Dack 1o the sieve ©

|-|~
2
J“
>
b
c...

It may therefore be better
see if there is anything we can do about its large storage cost. The advantage
that the sieve method has is that it does not involve any costly divisions to
establish the primes. To generate all the primes up to n we need to cross out
all multiples less than n of all the primes less than or equal to \/n. We want to

do thls usmg cons;derabiy less than a storage cost of n. The quest:on is how

LA

nally proposed needs to generate multiples of the primes 5,7, 11, ..., Vnin
storage of size n. For example, for 5 we have the multiples

wn
[
o
[
wn
)
—
tad
Ln

5,10, 15,

With this set we notice that every second multiple is even and so it
cannot be a prime candidate. Each new member of the “multiple-of-57
sequence is generated by adding the original prime on to the previous
accumulated multiples of 5. The same condition applies for all multiple
sequences. Using n storage locations for n<<49 we only need to cross out
multiples of 3 and 5. For this example we have:

~multiples of 3

N e st e T

351719911 13115(17119127]23125|27129131133{35137139141143[45]47
S e T [t T

i R

N.multiples of §

sieve method is cross out all the multzples in advance and then make a smgie
pass through the array and pick out the numbers not crossed out.

It is apparent that once we have “‘crossed out” the 9 the space that 3, 5,
7,9 occupy is no longer needed because at that time we will know all primes
less than 9. A similar argument applies when we discover the 15 has been
crossed out. This suggests if we can in some way do our crossing out in a
localized fashion we may not have to pay such a high storage cost. We know
that for n<<49 we only need to consider multiples of 3 and 5 (assuming
multiples of 2 are automatically neglected). We would only need space for
two variables in this instance if we could generate all the multiples of 3 and 5
in consecutive order; e.g., 3X3, 3><5 3X7,5%5,3%9,... A way in which we
can do this is to have a variable x {(as in the previous mei?‘ od) which assumes

all possible odd values. Whenever x is incremented what we must do is

112 FACTORING METHODS CHAP. 3

increment the multiples of 3 and/or § while they are Jess than x. The next
step is then to check if the current multiples of 3 and 5 are equal to x. If
neither muitiple is equal to x then x must be prime. In the general case this

check will need to be made with the muitiples of all primes less than or equal

tn |\/vl
VoW oAG

If limit marks the index of the largest prime less than or equal to | \/x]
then our prime test for the current value of x will be

while prime and (j<!limit) do
begin
while multiple] jl<<x do multiple{j] := multiple{ j1+p[j1*2;

prime ;= x <> multiple {j};
ji=j+1
end

Where the array multiple contains at each stage the muitiples of all primes
<|{Vx]. 2*p[k] is used rather than p|k] to avoid generating even-numbered
multiple candidates. This less expensive method of prime testing can replace
the prime testing by division used in our previous algorithm. Because of the
way the array multiple is used a new prime is not added to the multiple list

auntil itegatiare hacheen reached The new orime multinle can be included by
AR AL AN A AL ‘-"-i BARA L T EARR LT 7 e ey L R e Rl AR Wb A ER% AR TT t_ll kA N lll“llyl!_ll“ T el B F R N AR R R Rl Rl T b UJ

the test

if limit<<i then
if x=plimsq then
begin
multiple{limit] := plimsq;
limit := limit+1;
if limir<i then
plimsq = sqrp{limit}}
end
With these changes to the previous algorithm we now have a method for
generating primes that avoids the division test but achieves the same result.
The cost has been additional storage to store the multiples of the primes less
than V/n. Qur detailed algorithm is now given below.

Algorithm description

1. Intialize and write out the first 3 primes. Also initialize the square of
the 3" prime.

2. Initialize x to 5.

While x less than # do

{a) get next x value excluding multiples of 2 and 3;

(b) if not past end of multiples list then

L

SEC. 3.4 GENERATING PRIME NUMBERS 113

(b.1) if x= square of largest prime then
(1.a) include next prime multiple as its square,
(1.b) update square by squaring next prime >\/x;
(c¢) while have not established x is non-prime with valid prime multi-

pics GO

{c.1) while current prime multiple is less than x, increment by
current prime value doubled,
{c.2) do prime test by comparing x with current multiple;
(d) if current x prime then
(d.1) write out x and if it is less than \/n store it.

Pascal implementation

rensadiira nrimac (0t intanaris
vlv”w“‘v F"f'fp\; i "l‘“”“' I r)

const np = 100;

var multiple: array{1.np] of integer; {muitiples of primes}
p: array[1.np] of integer; {primes up to sqrt (n}
i {index for primes saved},
/ lindex of primes and multiple array},
limit {upper index for primes less than sqrtix)},
plimsq {square of largest prime included so far},
rootn {truncated sqrtin}},
dx {increment either 2 or 4 to avoid multiples of 3},
x {current candidate for prime test}: integer;
prime: boolean;

begin
{assert: n>1}
pl[11:= 2; pl2] := 3; p[3] := 5;/ 1= 3;
if 7 <5 then forj := 1 to {n+1} div 2 do writein {p{j])
else
begin
forj .= 1 to 3 do write/n (pl/})
x = B; plimsg 1= 25; limit := 3; dx = 2,
rootn = truncisqrt{n));
{invariant: after current iteration all primes in [2..x]} have been
written out Ax =<n +2}
while x <n do
begin {test x for primality}
X 1= x+dx;
dx = abs(dx - 6);
if imit <=/ then
if x >=plimsq then
begin
multiple{limit] := plimsq;
fimit 1= limit + 1,
if /imit <=7 then
plimsq = sqripliimitl}
end;

114

FACTORING METHODS CHAP 3

pnme = {rue,
J =3
{invariant: after jth iteration x not divisible by primes
phi.j = 1A =<limit Ax <pllimit] » pliimit]}
hiie pn‘me and (/'<!fmfr) do

while muiftiple{j]<x do
muitipielj] = multipielj}+plj] » 2;
prime = x <>multiplel});
Ji=j+1
end;
{assert: |/ =/limit Ax is prime) V {j = <limit Ax not prime}}

b n
wr:te/n(x)
it x <=rootn then
begm
=7+ 1;
p[/] =X

Notes on design

1.

There are approximately n/log,n primes in the first n positive integers.
The analysis of the final algorithm is rather complex and so we will not
pursue it here. mssemldny U’I‘” "/ K)g e H} dUUI[]UﬂS are TCL}UHGU to estab-
lish the primes in the first n integers.

After the current pass through the outermost while-loop the value x
has been tested for primality and all elements of the array in positions
less than] {excluding positions 1 and 2) are greater than or equal to x.
Also after the current pass, x is less than plimsq. The variable prime will
be true after the current pass if x is prime, otherwise it will be false. In
the inner while-loop for prime-testing after the j* step the first (j—1)

elements of mm’;m!e will he =x and the variable prime will be true if
none of the first j—1 primes are multiples or exact divisors of x. The
innermost while-loop maintains the invaniant relation that muli-
plel j1=x after the (j—1) pass through the prime-test loop.

The outermost loop will terminate because the difference be-
tween x and n decreases by at least 2 with each pass through the
outermost Eoop

The pumc test 1uup will terminate because the difference be-
tween j and limit decreases by 1 with each pass through this loop. The

innermost while-loop involving multiples will terminate because

SEC 34 GENERATING PRIME NUMBERS 115

multiple[j}is incremented by 2 * p{ /] a positive integer with each itera-
tion and so eventually its termination condition will be met. Since all
loops terminate the whole process will terminate. The mechanism will
function correctly for values of n>>1. The fact that n may exceed the
word size or that the array limits may be exceeded has not been
allowed for.

In this problem we have seen how a gain in computational efficiency is
made by using additional storage. Divisions are generally costly and so
in computation-bound applications an attempt should be made to limit
them.

testing loop. Every effort should therefore be made to keep this loop as
simple and efficient as possible. In practice it would be better to use a
single conditional test on the prime-testing loop (see discussion).

Supplementary problems

3.4.1

3.4.2

343

3.44

At the cost of some additional storage the prime-testing loop can be
simplified and speeded up. This involves moving the step for updat-
ing the mudtiple array outside this loop. Try to modify the algorithm

tey inonrnnrate thie rafinamant
{0 InCo1 Puiart LS refmement.

It is possible to implement a sieving algorithm which crosses out
each composite (non-prime) number exactly once rather than a
number of times. The algorithm is based on the idea that any
non-prime x can be written as x = p*q where k=1 and ¢ is a prime
=p. Try toimplement this algorithm (ref. D. Griesand J. Misra, “A
linear sieve algorithm for finding prime numbers”, Comm. ACM,
21, 999-1003 {1978)).

Another interesting sequence of numbers is produced by starting
out with the hist of all integers 1, 2, 3, ..., n. From this list every
second number is removed to produce a new list. From the new list
every third humber is removed to give yet another list. Every fourth
number is removed from this list and so the process continues. The
numbers that remain after this process are called the lucky numbers.

The first seven lucky numbersare 1,3,7,9, 13,15, 21, Design

an alonrithm tn lict the hiurky numbeare in the firet o1 intaocarc
ANl ulbu‘lllllli LV I B & S A ¥)) ‘u\vl‘] RAL44510 %1 3 F20 Lid%Ww X440k 7} ‘l‘l\ls\tl\,-

The largest known primes are called the Mersenne primes. They are
of the form 2°—1 where p is prime. A test called Lucas’ test can be
used to check whether a number of this form is prime. The test can
be stated as follows. If p>2 then 2°~1is prime only if [,_, = O where
the sequence /[can be generated using

l(} =4, l;'+!_ = (Ijz"" 2) mod (2p""

Design an algorithm to generate the Mersenne primes in the first n
integers.

116 FACTORING METHODS CHAP. 3

Algorithm 3.5
COMPUTING THE PRIME FACTORS OF AN INTEGER

Probiem

Every integer can be expressed as a product of prime numbers. Design an
algorithm to compute all the prime factors of an integer n.

Algorithm development

Examination of our problem statement suggests that

n=fXHLXf; - Xf, where n>1 and fisf,< - =f,

The elements f,, f,, ..., f; are all prime numbers. Apply