

About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for	EPUB	and	its	many
features	varies	across	reading	devices	and	applications.	Use	your	device	or	app	settings	to	customize	the
presentation	to	your	liking.	Settings	that	you	can	customize	often	include	font,	font	size,	single	or	double
column,	landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For	additional
information	about	the	settings	and	features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s
Web	site.
Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the	presentation	of	these

elements,	view	the	e-book	in	single-column,	landscape	mode	and	adjust	the	font	size	to	the	smallest
setting.	In	addition	to	presenting	code	and	configurations	in	the	reflowable	text	format,	we	have	included
images	of	the	code	that	mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable
format	may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view	code
image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the	previous	page	viewed,
click	the	Back	button	on	your	device	or	app.

R	for	Everyone
Advanced	Analytics	and	Graphics	Second	Edition	Jared	P.	Lander	

Boston	•	Columbus	•	Indianapolis	•	New	York	•	San	Francisco	•	Amsterdam	•	Cape	Town
Dubai	•	London	•	Madrid	•	Milan	•	Munich	•	Paris	•	Montreal	•	Toronto	•	Delhi	•	Mexico	City

São	Paulo	•	Sydney	•	Hong	Kong	•	Seoul	•	Singapore	•	Taipei	•	Tokyo

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as
trademarks.	Where	those	designations	appear	in	this	book,	and	the	publisher	was	aware	of	a	trademark
claim,	the	designations	have	been	printed	with	initial	capital	letters	or	in	all	capitals.

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no	expressed	or
implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or	omissions.	No	liability	is
assumed	for	incidental	or	consequential	damages	in	connection	with	or	arising	out	of	the	use	of	the
information	or	programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities	(which	may
include	electronic	versions;	custom	cover	designs;	and	content	particular	to	your	business,	training	goals,
marketing	focus,	or	branding	interests),	please	contact	our	corporate	sales	department	at
corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	intlcs@pearson.com.

Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Control	Number:	2017934582

Copyright	©	2017	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected	by	copyright,
and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited	reproduction,	storage	in	a
retrieval	system,	or	transmission	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,
recording,	or	likewise.	For	information	regarding	permissions,	request	forms	and	the	appropriate	contacts
within	the	Pearson	Education	Global	Rights	&	Permissions	Department,	please	visit
www.pearsoned.com/permissions/.

ISBN-13:	978-0-13-454692-6
ISBN-10:	0-13-454692-X

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
../../../../../informit.com/aw
../../../../../www.pearsoned.com/permissions/default.htm

1	17

To	Becky

Contents

Foreword
Preface
Acknowledgments
About	the	Author

1	Getting	R
1.1	Downloading	R
1.2	R	Version
1.3	32-bit	vs.	64-bit
1.4	Installing
1.5	Microsoft	R	Open
1.6	Conclusion

2	The	R	Environment
2.1	Command	Line	Interface
2.2	RStudio
2.3	Microsoft	Visual	Studio
2.4	Conclusion

3	R	Packages
3.1	Installing	Packages
3.2	Loading	Packages
3.3	Building	a	Package
3.4	Conclusion

4	Basics	of	R
4.1	Basic	Math
4.2	Variables
4.3	Data	Types
4.4	Vectors
4.5	Calling	Functions
4.6	Function	Documentation
4.7	Missing	Data
4.8	Pipes
4.9	Conclusion

5	Advanced	Data	Structures

5.1	data.frames
5.2	Lists
5.3	Matrices
5.4	Arrays
5.5	Conclusion

6	Reading	Data	into	R
6.1	Reading	CSVs
6.2	Excel	Data
6.3	Reading	from	Databases
6.4	Data	from	Other	Statistical	Tools
6.5	R	Binary	Files
6.6	Data	Included	with	R
6.7	Extract	Data	from	Web	Sites
6.8	Reading	JSON	Data
6.9	Conclusion

7	Statistical	Graphics
7.1	Base	Graphics
7.2	ggplot2
7.3	Conclusion

8	Writing	R	functions
8.1	Hello,	World!
8.2	Function	Arguments
8.3	Return	Values
8.4	do.call
8.5	Conclusion

9	Control	Statements
9.1	if	and	else
9.2	switch
9.3	ifelse
9.4	Compound	Tests
9.5	Conclusion

10	Loops,	the	Un-R	Way	to	Iterate
10.1	for	Loops
10.2	while	Loops
10.3	Controlling	Loops

10.4	Conclusion

11	Group	Manipulation
11.1	Apply	Family
11.2	aggregate
11.3	plyr
11.4	data.table
11.5	Conclusion

12	Faster	Group	Manipulation	with	dplyr
12.1	Pipes
12.2	tbl
12.3	select
12.4	filter
12.5	slice
12.6	mutate
12.7	summarize
12.8	group_by
12.9	arrange
12.10	do
12.11	dplyr	with	Databases
12.12	Conclusion

13	Iterating	with	purrr
13.1	map
13.2	map	with	Specified	Types
13.3	Iterating	over	a	data.frame
13.4	map	with	Multiple	Inputs
13.5	Conclusion

14	Data	Reshaping
14.1	cbind	and	rbind
14.2	Joins
14.3	reshape2
14.4	Conclusion

15	Reshaping	Data	in	the	Tidyverse
15.1	Binding	Rows	and	Columns
15.2	Joins	with	dplyr
15.3	Converting	Data	Formats

15.4	Conclusion

16	Manipulating	Strings
16.1	paste
16.2	sprintf
16.3	Extracting	Text
16.4	Regular	Expressions
16.5	Conclusion

17	Probability	Distributions
17.1	Normal	Distribution
17.2	Binomial	Distribution
17.3	Poisson	Distribution
17.4	Other	Distributions
17.5	Conclusion

18	Basic	Statistics
18.1	Summary	Statistics
18.2	Correlation	and	Covariance
18.3	T-Tests
18.4	ANOVA
18.5	Conclusion

19	Linear	Models
19.1	Simple	Linear	Regression
19.2	Multiple	Regression
19.3	Conclusion

20	Generalized	Linear	Models
20.1	Logistic	Regression
20.2	Poisson	Regression
20.3	Other	Generalized	Linear	Models
20.4	Survival	Analysis
20.5	Conclusion

21	Model	Diagnostics
21.1	Residuals
21.2	Comparing	Models
21.3	Cross-Validation
21.4	Bootstrap
21.5	Stepwise	Variable	Selection

21.6	Conclusion

22	Regularization	and	Shrinkage
22.1	Elastic	Net
22.2	Bayesian	Shrinkage
22.3	Conclusion

23	Nonlinear	Models
23.1	Nonlinear	Least	Squares
23.2	Splines
23.3	Generalized	Additive	Models
23.4	Decision	Trees
23.5	Boosted	Trees
23.6	Random	Forests
23.7	Conclusion

24	Time	Series	and	Autocorrelation
24.1	Autoregressive	Moving	Average
24.2	VAR
24.3	GARCH
24.4	Conclusion

25	Clustering
25.1	K-means
25.2	PAM
25.3	Hierarchical	Clustering
25.4	Conclusion

26	Model	Fitting	with	Caret
26.1	Caret	Basics
26.2	Caret	Options
26.3	Tuning	a	Boosted	Tree
26.4	Conclusion

27	Reproducibility	and	Reports	with	knitr
27.1	Installing	a	LaTeX	Program
27.2	LaTeX	Primer
27.3	Using	knitr	with	LaTeX
27.4	Conclusion

28	Rich	Documents	with	RMarkdown
28.1	Document	Compilation

28.2	Document	Header
28.3	Markdown	Primer
28.4	Markdown	Code	Chunks
28.5	htmlwidgets
28.6	RMarkdown	Slideshows
28.7	Conclusion

29	Interactive	Dashboards	with	Shiny
29.1	Shiny	in	RMarkdown
29.2	Reactive	Expressions	in	Shiny
29.3	Server	and	UI
29.4	Conclusion

30	Building	R	Packages
30.1	Folder	Structure
30.2	Package	Files
30.3	Package	Documentation
30.4	Tests
30.5	Checking,	Building	and	Installing
30.6	Submitting	to	CRAN
30.7	C++	Code
30.8	Conclusion

A	Real-Life	Resources

A.1	Meetups
A.2	Stack	Overflow
A.3	Twitter
A.4	Conferences
A.5	Web	Sites
A.6	Documents
A.7	Books
A.8	Conclusion

B	Glossary

List	of	Figures

List	of	Tables

General	Index

Index	of	Functions

Index	of	Packages

Index	of	People

Data	Index

Foreword

R	has	had	tremendous	growth	in	popularity	over	the	last	five	years.	Based	on	that,	you’d	think	that	it	was	a
new,	up-and-coming	language.	But	surprisingly,	R	has	been	around	since	1993.	Why	the	sudden	uptick	in
popularity?	The	somewhat	obvious	answer	seems	to	be	the	emergence	of	data	science	as	a	career	and
field	of	study.	But	the	underpinnings	of	data	science	have	been	around	for	many	decades.	Statistics,	linear
algebra,	operations	research,	artificial	intelligence	and	machine	learning	all	contribute	parts	to	the	tools
that	a	modern	data	scientist	uses.	R,	more	than	most	languages,	has	been	built	to	make	most	of	these	tools
only	a	single	function	call	away.
That’s	why	I’m	excited	that	Jared	has	chosen	to	revisit	his	bestselling	first	edition	and	provide	us	with

this	updated	second	edition	that	brings	in	many	of	the	recent	innovations	in	the	R	community.	R	is
indispensable	for	many	data	science	tasks.	Many	algorithms	useful	for	prediction	and	analysis	can	be
accessed	through	only	a	few	lines	of	code,	which	makes	it	a	great	fit	for	solving	modern	data	challenges.
Data	science	as	a	field	isn’t	just	about	math	and	statistics,	and	it	isn’t	just	about	programming	and
infrastructure.	This	book	provides	a	well-balanced	introduction	to	the	power	and	expressiveness	of	R	that
is	aimed	at	a	general	audience.
I	can’t	think	of	a	better	author	to	provide	an	introduction	to	R	than	Jared	Lander.	Jared	and	I	first	met

through	the	NYC	machine	learning	community	in	late	2009.	Back	then,	the	NYC	data	community	was
small	enough	to	fit	in	a	single	conference	room,	and	many	of	the	other	data	meetups	had	yet	to	be	formed.
Over	the	last	seven	years	Jared	has	been	at	the	forefront	of	the	emerging	data	science	profession.
Through	running	the	Open	Statistical	Programming	Meetup,	speaking	at	events,	and	teaching	a	course

on	R	at	Columbia	University,	Jared	has	helped	grow	the	community	by	educating	programmers,	data
scientists,	journalists	and	statisticians	alike.	Jared’s	expertise	isn’t	limited	to	teaching.	As	an	everyday
practitioner	he	puts	these	tools	to	use	while	consulting	for	clients	big	and	small.	In	the	time	since	the	first
edition	of	this	book	was	published	Jared	has	continued	to	do	great	work	in	the	R	community:	from
organizing	the	New	York	R	Conference,	to	speaking	at	many	meetups	and	conferences,	to	evaluating	the
2016	NFL	Draft	with	R.
This	book	provides	both	an	introduction	to	programming	in	R	and	the	various	statistical	methods	and

tools	an	everyday	R	programmer	uses.	This	second	edition	adds	new	material,	making	it	current	with	the
latest	in	the	R	community.	This	includes	sections	on	data	munging	with	libraries	from	the	Tidyverse,	as
well	as	new	chapters	on	RMarkdown,	Shiny	and	others.	Examples	use	publicly	available	datasets	that
Jared	has	helpfully	cleaned	and	made	accessible	through	his	Web	site.	By	using	real	data	and	setting	up
interesting	problems,	this	book	stays	engaging	to	the	end.
—Paul	Dix
Series	Editor

Preface

With	the	increasing	prevalence	of	data	in	our	daily	lives,	new	and	better	tools	are	needed	to	analyze	the
deluge.	Traditionally	there	have	been	two	ends	of	the	spectrum:	lightweight,	individual	analysis	using
tools	like	Excel	or	SPSS,	and	heavy	duty,	high-performance	analysis	built	with	C++	and	the	like.	With	the
increasing	strength	of	personal	computers	grew	a	middle	ground	that	was	both	interactive	and	robust.
Analysis	done	by	an	individual	on	his	or	her	own	computer	in	an	exploratory	fashion	could	quickly	be
transformed	into	something	destined	for	a	server,	underpinning	advanced	business	processes.	This	area	is
the	domain	of	R,	Python	and	other	scripted	languages.
R,	invented	by	Robert	Gentleman	and	Ross	Ihaka	of	the	University	of	Auckland	in	1993,	grew	out	of	S,

which	was	invented	by	John	Chambers	at	Bell	Labs.	It	is	a	high-level	language	that	was	originally
intended	to	be	run	interactively,	where	the	user	runs	a	command,	gets	a	result	and	then	runs	another
command.	It	has	since	evolved	into	a	language	that	can	also	be	embedded	in	systems	and	tackle	complex
problems.
In	addition	to	transforming	and	analyzing	data,	R	can	produce	amazing	graphics	and	reports	with	ease.

It	is	now	being	used	as	a	full	stack	for	data	analysis,	extracting	and	transforming	data,	fitting	models,
drawing	inferences	and	making	predictions,	plotting	and	reporting	results.
R’s	popularity	has	skyrocketed	since	the	late	2000s	as	it	has	stepped	out	of	academia	and	into	banking,

marketing,	pharmaceuticals,	politics,	genomics	and	many	other	fields.	Its	new	users	are	often	shifting	from
low-level,	compiled	languages	like	C++,	other	statistical	packages	such	as	SAS	or	SPSS	and	from	the
800-pound	gorilla,	Excel.	This	time	period	also	saw	a	rapid	surge	in	the	number	of	add-on	packages,
libraries	of	prewritten	code	that	extend	R’s	functionality.
While	R	can	sometimes	be	intimidating	to	beginners,	especially	for	those	without	programming

experience,	I	find	that	programming	analysis,	instead	of	pointing	and	clicking,	soon	becomes	much	easier,
more	convenient	and	more	reliable.	It	is	my	goal	to	make	that	learning	process	easier	and	quicker.
This	book	lays	out	information	in	a	way	I	wish	I	were	taught	when	learning	R	in	graduate	school.

Coming	full	circle,	the	content	of	this	book	was	developed	in	conjunction	with	the	data	science	course	I
teach	at	Columbia	University.	It	is	not	meant	to	cover	every	minute	detail	of	R	but	rather	the	20%	of
functionality	needed	to	accomplish	80%	of	the	work.	The	content	is	organized	into	self-contained	chapters
as	follows.
The	second	edition	has	been	updated	to	cover	many	tools	that	have	been	developed	or	improved	since

the	publication	of	the	first	edition.	Primary	among	the	new	additions	are	dplyr,	tidyr	and	purrr	from	the
Tidyverse	for	munging	data.	Model	fitting	gained	more	attention	with	discussion	of	boosted	trees	and
caret	for	parameter	tuning.	The	knitr	chapter	was	split	in	two,	with	one	covering	knitr	and	LaTeX	and
the	other	devoted	to	RMarkdown,	which	has	been	significantly	improved	in	the	past	few	years,	including
the	creation	of	htmlwidgets	that	allow	for	the	inclusion	of	JavaScript	into	documents.	An	entire	chapter	is
dedicated	to	Shiny,	a	new	tool	for	creating	interactive	Web-based	dashboards	in	R.	The	chapter	on
writing	R	packages	has	been	updated	to	include	code	testing,	and	the	chapter	on	reading	data	has	been
updated	to	cover	new	ways	of	reading	data,	including	using	readr,	readxl	and	jsonlite.	The	new	content
reflects	many	of	the	new	practices	in	the	R	community.
Chapter	1,	“Getting	R,”	covers	where	to	download	R	and	how	to	install	it.	This	deals	with	the	various

operating	systems	and	32-bit	versus	64-bit	versions.	It	also	gives	advice	on	where	to	install	R.
Chapter	2,	“The	R	Environment,”	provides	an	overview	of	using	R,	particularly	from	within	RStudio.

RStudio	projects	and	Git	integration	are	covered,	as	is	customizing	and	navigating	RStudio.
Chapter	3,	“Packages,”	is	concerned	with	how	to	locate,	install	and	load	R	packages.
Chapter	4,	“Basics	of	R,”	is	about	using	R	for	math.	Variable	types	such	as	numeric,	character

and	Date	are	detailed	as	are	vectors.	There	is	a	brief	introduction	to	calling	functions	and	finding
documentation	on	functions.
Chapter	5,	“Advanced	Data	Structures,”	is	about	the	most	powerful	and	commonly	used	data	structure,

data.frames,	along	with	matrices	and	lists,	are	introduced.
Chapter	6,	“Reading	Data	into	R,”	is	about	getting	data	into	R.	Before	data	can	be	analyzed,	it	must	be

read	into	R.	There	are	numerous	ways	to	ingest	data,	including	reading	from	CSVs	and	databases.
Chapter	7,	“Statistical	Graphics,”	makes	it	clear	why	graphics	are	a	crucial	part	of	preliminary	data

analysis	and	communicating	results.	R	can	make	beautiful	plots	using	its	powerful	plotting	utilities.	Base
graphics	and	ggplot2	are	introduced	and	detailed	here.
Chapter	8,	“Writing	R	Functions,”	shows	that	repeatable	analysis	is	often	made	easier	with	user

defined	functions.	The	structure,	arguments	and	return	rules	are	discussed.
Chapter	9,	“Control	Statements,”	covers	controlling	the	flow	of	programs	using	if,	ifelse	and	complex

checks.
Chapter	10,	“Loops,	the	Un-R	Way	to	Iterate,”	introduces	iterating	using	for	and	while	loops.	While

these	are	generally	discouraged,	they	are	important	to	know.
Chapter	11,	“Group	Manipulations,”	provides	a	better	alternative	to	loops—vectorization.

Vectorization	does	not	quite	iterate	through	data	so	much	as	operate	on	all	elements	at	once.	This	is	more
efficient	and	is	primarily	performed	with	the	apply	family	of	functions	and	plyr	package.
Chapter	12,	“Faster	Group	Manipulation	with	dplyr,”	covers	the	next	evolution	in	group

manipulation,	dplyr.	This	new	package	has	been	optimized	to	work	with	data.frames	and	takes
advantage	of	pipes	for	efficient	coding	that	is	easier	to	read.
Chapter	13,	“Iterating	with	purrr,”	provides	another	alternative	to	loops	with	purrr,	for	iterating

over	lists	and	vectors.	This	represents	a	return	to	the	functional	roots	of	R.
Chapter	14,	“Data	Reshaping,”	is	about	the	fact	that	combining	multiple	datasets,	whether	by	stacking

or	joining,	is	commonly	necessary	as	is	changing	the	shape	of	data.	The	plyr	and	reshape2	packages	offer
good	functions	for	accomplishing	this	in	addition	to	base	tools	such	as	rbind,	cbind	and	merge.
Chapter	15,	“Reshaping	Data	in	the	Tidyverse,”	showcases	another	example	of	package	evolution	as

dplyr	and	tidyr	replace	plyr	and	reshape2	for	combining,	reshaping	and	joining	data.
Chapter	16,	“Manipulating	Strings,”	is	about	text.	Most	people	do	not	associate	character	data	with

statistics,	but	it	is	an	important	form	of	data.	R	provides	numerous	facilities	for	working	with	strings,
including	combining	them	and	extracting	information	from	within.	Regular	expressions	are	also	detailed.
Chapter	17,	“Probability	Distributions,”	provides	a	thorough	look	at	the	normal,	binomial	and	Poisson

distributions.	The	formulas	and	functions	for	many	distributions	are	noted.
Chapter	18,	“Basic	Statistics,”	covers	the	first	statistics	most	people	are	taught,	such	as	mean,	standard

deviation	and	t-tests.
Chapter	19,	“Linear	Models,”	extensively	details	the	most	powerful	and	common	tool	in	statistics—

linear	models.
Chapter	20,	“Generalized	Linear	Models,”	shows	how	linear	models	are	extended	to	include	logistic

and	Poisson	regression.	Survival	analysis	is	also	covered.

Chapter	21,	“Model	Diagnostics,”	establishes	the	methods	for	determining	the	quality	of	models	and
variable	selection	using	residuals,	AIC,	cross-validation,	the	bootstrap	and	stepwise	variable	selection.
Chapter	22,	“Regularization	and	Shrinkage,”	covers	prevention	of	overfitting	using	the	Elastic	Net	and

Bayesian	methods.
Chapter	23,	“Nonlinear	Models,”	covers	those	cases	where	linear	models	are	inappropriate	and

nonlinear	models	are	a	good	solution.	Nonlinear	least	squares,	splines,	generalized	additive	models,
decision	trees,	boosted	trees	and	random	forests	are	discussed.
Chapter	24,	“Time	Series	and	Autocorrelation,”	covers	methods	for	the	analysis	of	univariate	and

multivariate	time	series	data.
Chapter	25,	“Clustering,”	shows	how	clustering,	the	grouping	of	data,	is	accomplished	by	various

methods	such	as	K-means	and	hierarchical	clustering.
Chapter	26,	“Model	Fitting	with	Caret,”	introduces	the	caret	package	for	automatic	model	tuning.	The

package	also	provides	a	uniform	interface	for	hundreds	of	models,	easing	the	analysis	process.
Chapter	27,	“Reproducibility	and	Reports	with	knitr,”	gets	into	integrating	R	code	and	results	into

reports	from	within	R.	This	is	made	easy	with	knitr	and	LaTeX.
Chapter	28,	“Rich	Documents	with	RMarkdown,”	showcases	how	to	generate	reproducible	reports,

slide	shows	and	Web	pages	from	within	R	with	RMarkdown.	Interactivity	is	accomplished	using
htmlwidgets	such	as	leaflet	and	dygraphs.
Chapter	29,	“Interactive	Dashboards	with	Shiny,”	introduces	interactive	dashboards	using	Shiny	which

can	generate	Web-based	dashboards	with	the	full	power	of	R	as	a	backend.
Chapter	30,	“Building	R	Packages,”	is	about	how	R	packages	are	great	for	portable,	reusable	code.

Building	these	packages	has	been	made	incredibly	easy	with	the	advent	of	devtools	and	Rcpp.
Appendix	A,	“Real-Life	Resources,”	is	a	listing	of	our	favorite	resources	for	learning	more	about	R

and	interacting	with	the	community.
Appendix	B,	“Glossary,”	is	a	glossary	of	terms	used	throughout	this	book.
A	good	deal	of	the	text	in	this	book	is	either	R	code	or	the	results	of	running	code.	Code	and	results	are

most	often	in	a	separate	block	of	text	and	set	in	a	distinctive	font,	as	shown	in	the	following	example.	The
different	parts	of	code	also	have	different	colors.	Lines	of	code	start	with	>,	and	if	code	is	continued	from
one	line	to	another,	the	continued	line	begins	with	+.

>	#	this	is	a	comment

>

>	#	now	basic	math

>	10	*	10

[1]	100

>	#	calling	a	function

>	sqrt(4)

[1]	2

Certain	Kindle	devices	do	not	display	color,	so	the	digital	edition	of	this	book	will	be	viewed	in
grayscale	on	those	devices.
There	are	occasions	where	code	is	shown	inline	and	looks	like	sqrt(4).
In	the	few	places	where	math	is	necessary,	the	equations	are	indented	from	the	margin	and	are

numbered.

Within	equations,	normal	variables	appear	as	italic	text	(x),	vectors	are	bold	lowercase	letters	(x)	and
matrices	are	bold	uppercase	letters	(X).	Greek	letters,	such	as	α	and	β,	follow	the	same	convention.
Function	names	are	written	as	join	and	package	names	as	plyr.	Objects	generated	in	code	that	are

referenced	in	text	are	written	as	object1.
Learning	R	is	a	gratifying	experience	that	makes	life	so	much	easier	for	so	many	tasks.	I	hope	you	enjoy

learning	with	me.

Register	your	copy	of	R	for	Everyone,	Second	Edition,	at	informit.com/register	for	convenient	access	to
downloads,	updates,	and	corrections	as	they	become	available	(you	must	log-in	or	create	a	new	account).
Enter	the	product	ISBN	(9780134546926)	and	click	Submit.	Once	the	process	is	complete,	you	will	find
any	available	bonus	content	under	“Registered	Products.”	If	you	would	like	to	be	notified	of	exclusive
offers	on	new	editions	and	updates,	please	check	the	box	to	receive	eMail	from	us.

Acknowledgments

Acknowledgments	for	the	Second	Edition
First	and	foremost,	I	am	most	appreciative	of	my	wife-to-be,	Rebecca	Martin.	Writing	this	second	edition
meant	playing	in	R	for	hours	at	a	time,	which	is	fun	on	its	own,	but	was	greatly	enhanced	by	her	presence.
She	is	amazing	in	so	many	ways,	not	least	of	which	is	that	she	uses	R.	She	even	indulged	my	delusions	of
writing	like	Orwell	and	Kipling	while	cruising	up	the	Irrawaddy	on	the	road	to	Mandalay.
As	before,	my	family	has	always	supported	me	in	so	many	ways.	My	parents,	Gail	and	Howard	Lander,

encouraged	me	on	this	path	to	math	and	data	science.	When	this	book	was	first	published	they	said	it
would	be	too	boring	for	them	to	enjoy	and	have	since	kept	their	promise	of	never	reading	it.	It	sits
similarly	unread,	yet	proudly	displayed,	in	the	homes	of	my	grandmother	and	all	my	aunts	and	uncles.	My
sister	and	brother-in-law,	Aimee	and	Eric	Schechterman,	always	humor	my	antics	with	their	kids,	Noah
and	Lila,	whom	I	am	beginning	to	teach	to	program.
There	are	many	people	in	the	open-source	community,	particularly	those	who	attend	and	contribute	to

the	New	York	Open	Statistical	Computing	Meetup,	whose	work	and	encouragement	have	been	great
motivators.	Principal	among	them	is	Drew	Conway,	the	early	leader	of	the	meetup	who	provided	a	place
for	my	love	of	R	to	grow	and	eventually	turned	the	meetup	over	to	my	stewardship.	The	friendship	of	Paul
Puglia,	Saar	Golde,	Jay	Emerson,	Adam	Hogan,	John	Mount,	Nina	Zumel,	Kirk	Mettler,	Max	Kuhn,	Bryan
Lewis,	David	Smith,	Dirk	Eddelbuettel,	JD	Long,	Ramnath	Vaidyanathan,	Hilary	Parker	and	David
Robinson	has	made	the	experience	incredibly	entertaining.	I	even	enjoy	my	time	with	Python	users	Wes
McKinney,	Ben	Lerner	and	James	Powell.
The	Work-Bench	family,	my	coorganizers	for	the	New	York	R	Conference,	are	fantastic	people.	Jon

Lehr,	Jess	Lin,	Stephanie	Manning,	Kelley	Mak,	Vipin	Chamakkala,	Laurel	Woerner,	Michael	Yamnitsky
and	Mickey	Graham	(despite	his	obsession	with	the	Oxford	comma)	are	great	to	be	around.
As	my	business	has	grown	in	recent	years,	many	people	have	helped,	either	as	employees	and	clients	or

by	providing	valuable	advice.	Among	these	are	Joseph	Sherman,	Jeff	Horner,	Lee	Medoff,	Jeroen
Janssens,	Jonathan	Hersh,	Matt	Sheridan,	Omar	De	La	Cruz	Cabrera,	Benjamin	De	Groot,	Vinny	Saulys,
Rick	Spielman,	Scott	Kuhn,	Mike	Band,	Nate	Shea-Han,	Greg	Fuller,	Mark	Barry	and	Lenn	Robbins.	The
teachings	of	Andrew	Gelman,	David	Madigan	and	Richard	Garfield	have	stayed	with	me	far	beyond	the
university.
This	book	is	largely	possible	due	to	the	tireless	efforts	of	the	RStudio	team.	The	efforts	of	JJ	Allaire,

Winston	Chang,	Joe	Cheng,	Garrett	Grolemund,	Hadley	Wickham	and	Yihui	Xie	provide	the	tools	that
make	this	book,	and	much	of	what	we	do	in	R	technically	feasible.	Tareef	Kawaf,	Pete	Knast,	Sean	Lopp,
Roger	Oberg,	Joe	Rickert,	Nathan	Stephens,	Jim	Clemens,	Anne	Carome,	Bill	Carney	and	many	others
support	and	spur	the	growth	of	the	R	community.
The	material	for	this	book	was	largely	drawn	from	the	class	I	taught	at	Columbia	University	with

Rachel	Schutt,	Introduction	to	Data	Science.	The	students	in	that	class	largely	shaped	the	material	and
tone	of	the	book,	including	how	it	was	presented.	Vivian	Peng,	Dan	Chen,	Michael	Piccirilli,	Adam
Obeng,	Eurry	Kim	and	Kaz	Sakamoto	all	inspired	my	writing.
Numerous	people	helped	with	the	writing,	validating,	proofreading	and	editing	of	this	book.	Michael

Beigelmacher	ensured	the	code	works	while	Chris	Zahn	did	the	same	with	the	prose.	Paul	Dix	introduced
me	to	Pearson,	enabling	the	whole	process.	My	editor,	Debra	Williams	Cauley,	has	now	gone	through	two
editions	and	three	videos	of	my	work	patterns	and	is	the	driving	force	that	has	made	the	book	succeed.

Without	her,	this	would	not	exist.
This	second	edition	is	built	upon	all	the	help	of	those	mentioned	in	the	acknowledgments	from	my

original	book,	who	are	still	very	dear	to	me.

Acknowledgments	for	the	First	Edition
To	start,	I	must	thank	my	mother,	Gail	Lander,	for	encouraging	me	to	become	a	math	major.	Without	that	I
would	never	have	followed	the	path	that	led	me	to	statistics	and	data	science.	In	a	similar	vein	I	have	to
thank	my	father,	Howard	Lander,	for	paying	all	those	tuition	bills.	He	has	been	a	valuable	source	of
advice	and	guidance	throughout	my	life	and	someone	I	have	aspired	to	emulate	in	many	ways.	While	they
both	insist	they	do	not	understand	what	I	do,	they	love	that	I	do	it	and	have	helped	me	all	along	the	way.
Staying	with	family,	I	should	thank	my	sister	and	brother-in-law,	Aimee	and	Eric	Schechterman,	for	letting
me	teach	math	to	Noah,	their	five-year-old	son.
There	are	many	teachers	that	have	helped	shape	me	over	the	years.	The	first	is	Rochelle	Lecke	who

tutored	me	in	middle	school	math	even	when	my	teacher	told	me	I	did	not	have	worthwhile	math	skills.
Then	there	is	Beth	Edmondson,	my	precalc	teacher	at	Princeton	Day	School.	After	wasting	the	first	half

of	high	school	as	a	mediocre	student	she	told	me	I	had	“some	nerve	signing	up	for	next	year’s	AP	Calc
given	my	grades.”	She	agreed	to	let	me	in	AP	Calc	if	I	went	from	a	C	to	an	A+	in	her	class,	never	thinking
I	stood	a	chance.	Three	months	later	she	stood	in	stood	in	disbelief	as	I	not	only	got	the	A+	but	turned
around	my	entire	academic	career	and	became	an	excellent	student.	She	changed	my	life.	Without	her	I	do
not	know	where	I	would	be.	I	am	forever	grateful	that	she	was	my	teacher.
For	the	first	two	years	at	Muhlenberg	College	I	was	determined	to	be	a	Business	and	Communications

major	yet	took	math	classes	because	they	just	came	naturally	to	me.	Penny	Dunham,	Bill	Dunham	and
Linda	McGuire	all	convinced	me	to	become	a	math	major,	a	decision	that	has	certainly	improved	my	life.
Greg	Cicconetti	gave	me	my	first	glimpse	of	rigorous	statistics,	my	first	research	opportunity	and	planted
the	idea	in	my	head	that	I	should	go	to	grad	school	for	statistics.	Fortunately,	I	eventually	listened	to	him.
My	time	at	Columbia	University	was	spent	surrounded	by	brilliant	minds	in	statistics	and	programming.

David	Madigan	opened	my	eyes	to	modern	machine	learning	and	Bodhi	Sen	got	thinking	about	statistical
programming.	I	had	the	privilege	to	do	research	with	Andrew	Gelman	whose	insights	have	been
immeasurably	important	to	me.	Richard	Garfield	showed	me	how	to	use	statistics	to	help	people	in
disaster	and	war	zones.	His	advice	and	friendship	over	the	years	have	been	dear	to	me.	Jingchen	Liu
allowed	and	encouraged	me	to	write	my	thesis	on	New	York	City	pizza,1	which	has	brought	me	an
inordinate	amount	of	attention.
While	at	Columbia	University	I	met	my	good	friend—and	one	time	TA—Ivor	Cribben	who	filled	in	so

many	gaps	in	my	knowledge.	Through	him	I	met	Rachel	Schutt,	who	was	a	source	of	great	advice	in	grad
school	and	who	I	am	now	honored	to	teach	with	at	Columbia	University.
Grad	school	might	never	have	happened	without	the	encouragement	and	support	of	Shanna	Lee.	She

took	good	care	of	me	and	helped	maintain	my	sanity	while	I	was	incredibly	overcommited	to	two	jobs,
classes	and	Columbia	University’s	hockey	team.	I	am	not	sure	I	would	have	made	it	through	without	her.
Steve	Czetty	gave	me	my	first	job	in	analytics	at	Sky	IT	Group	and	taught	me	about	databases	while

letting	me	run	wild,	programming	anything	I	wanted.	This	sparked	my	interest	in	statistics	and	data.	Joe
DeSiena,	Philip	DuPlessis	and	Ed	Bobrin	at	the	Bardess	Group	are	some	of	the	finest	people	I	have	ever
had	the	pleasure	to	work	with	and	the	work	they	gave	me	helped	put	me	through	grad	school.	I	am	proud
to	be	able	to	do	statistics	work	with	them	to	this	day.	Mike	Minelli,	Rich	Kittler,	Mark	Barry,	David
Smith,	Joseph	Rickert,	Norman	Nie,	James	Peruvankal,	Neera	Talbert	and	Dave	Rich	at	Revolution
Analytics	let	me	do	one	of	the	best	jobs	I	could	possibly	imagine:	Explaining	to	people	in	industry	why

they	should	be	using	R.	Kirk	Mettler,	Richard	Schultz,	Bryan	Lewis	and	Jim	Winfield	at	Big	Computing
encourage	me	to	have	fun,	tackling	interesting	problems	in	R.	Vinny	Saulys	and	Saar	Golde	were	a	lot	of
fun	to	work	with	at	Goldman	Sachs	and	also	very	educational.
Throughout	the	course	of	writing	this	book	so	many	people	helped,	or	rather	put	up	with,	me.	First	and

foremost	is	Yin	Cheung	who	saw	all	the	stress	I	constantly	felt.	There	were	many	nights	and	days	ruined
when	I	had	to	work	or	write	and	she	suffered	through	those.
My	editor,	Debra	Williams,	knew	just	how	to	handle	me	when	I	was	churning	out	pages,	and	more

frequently,	when	I	was	letting	time	slip	by.	Her	guiding	hand	has	been	invaluable.	Paul	Dix,	the	series
editor	and	friend	of	mine,	is	the	person	who	suggested	I	write	this	book,	so	without	him	none	of	this
would	have	happened.	Thanks	to	Caroline	Senay	and	Andrea	Fox	I	realized	quite	how	many	mistakes	I
made	as	a	writer.	Without	them,	this	book	would	not	be	nearly	as	well	put	together.	Robert	Mauriello’s
technical	review	was	incredibly	useful	in	honing	the	presentation	of	the	included	material.	The	folks	at
RStudio,	particularly	JJ	Allaire	and	Josh	Paulson,	make	an	amazing	product,	which	made	the	writing
process	far	easier	than	it	would	have	been	otherwise.	Yihui	Xie,	the	author	of	the	knitr	package,	put	up
with	a	long	series	of	personal	feature	requests	that	I	desperately	needed	to	write	this	book.	His	software,
and	his	speed	at	implementing	my	requests,	allowed	me	to	make	this	book	look	and	feel	just	the	way	I	felt
was	right.

1.	http://slice.seriouseats.com/archives/2010/03/the-moneyball-of-pizzastatistician-uses-
statistics-to-find-nyc-best-pizza.html

Numerous	people	have	looked	over	parts	of	this	book	and	given	me	valuable	feedback,	including	some
of	those	already	mentioned.	Others	who	have	greatly	helped	me	are	Chris	Bethel,	Dirk	Eddelbuettel,
Ramnath	Vaidyanathan,	Eran	Bellin,	Avi	Fisher,	Brian
Ezra,	Paul	Puglia,	Nicholas	Galasinao,	Aaron	Schumaker,	Adam	Hogan,	Jeffrey	Arnold	and	John

Houston.
Last	fall	was	my	first	time	teaching	and	I	am	thankful	to	the	students	from	the	Fall	2012	Introduction	to

Data	Science	class	at	Columbia	University	for	being	the	guinea	pigs	for	the	material	that	ultimately	ended
up	in	this	book.
There	are	many	people	who	have	helped	me	along	the	way	and	I	am	grateful	to	them	all.

../../../../../slice.seriouseats.com/archives/2010/03/the-moneyball-of-pizzastatistician-uses-statistics-to-find-nyc-best-pizza.html

About	the	Author

Jared	P.	Lander	is	the	Chief	Data	Scientist	of	Lander	Analytics,	a	New	York-based	data	science	firm	that
specializes	in	statistical	consulting	and	training	services,	the	Organizer	of	the	New	York	Open	Statistical
Programming	Meetup—the	world’s	largest	R	meetup—and	the	New	York	R	Conference	and	an	Adjunct
Professor	of	Statistics	at	Columbia	University.	He	is	also	a	tour	guide	for	Scott’s	Pizza	Tours.	With	a
masters	from	Columbia	University	in	statistics	and	a	bachelors	from	Muhlenberg	College	in	mathematics,
he	has	experience	in	both	academic	research	and	industry.	Very	active	in	the	data	community,	Jared	is	a
frequent	speaker	at	conferences	such	as	Strata	and	the	MIT	Sloan	Sports	Analytics	Conference,
universities	and	meetups	around	the	world.	His	writings	on	statistics	can	be	found	at	jaredlander.com,	and
his	work	has	been	featured	in	many	outlets,	in	particular	CBS	and	the	Wall	Street	Journal.

1.	Getting	R

R	is	a	wonderful	tool	for	statistical	analysis,	visualization	and	reporting.	Its	usefulness	is	best	seen	in	the
wide	variety	of	fields	where	it	is	used.	We	alone	have	used	R	for	projects	with	banks,	political
campaigns,	tech	startups,	food	startups,	international	development	and	aid	organizations,	hospitals	and
real	estate	developers.	Other	areas	where	we	have	seen	it	used	are	online	advertising,	insurance,	ecology,
genetics	and	pharmaceuticals.	R	is	used	by	statisticians	with	advanced	machine	learning	training	and	by
programmers	familiar	with	other	languages	and	also	by	people	who	are	not	necessarily	trained	in
advanced	data	analysis	but	are	tired	of	using	Excel.
Before	it	can	be	used	it	needs	to	be	downloaded	and	installed,	a	process	that	is	no	more	complicated

than	installing	any	other	program.

1.1	Downloading	R
The	first	step	in	using	R	is	getting	it	on	the	computer.	Unlike	with	languages	such	as	C++,	R	must	be
installed	in	order	to	run.1	The	program	is	easily	obtainable	from	the	Comprehensive	R	Archive	Network
(CRAN),	the	maintainer	of	R,	at	http://cran.r-project.org/.	At	the	top	of	the	page	are	links
to	download	R	for	Windows,	Mac	OS	X	and	Linux.

1.	Technically	C++	cannot	be	set	up	on	its	own	without	a	compiler,	so	something	would	still	need	to	be	installed	anyway.

There	are	prebuilt	installations	available	for	Windows	and	Mac	OS	X,	while	those	for	Linux	usually
compile	from	source.	Installing	R	on	any	of	these	platforms	is	just	like	installing	any	other	program.
Windows	users	should	click	the	link	“Download	R	for	Windows,”	then	“base”	and	then	“Download	R

3.x.x	for	Windows”;	the	x’s	indicate	the	version	of	R.	This	changes	periodically	as	improvements	are
made.
Similarly,	Mac	users	should	click	“Download	R	for	(Mac)	OS	X”	and	then	“R-3.x.x.pkg”;	again,	the

x’s	indicate	the	current	version	of	R.	This	will	also	install	both	32-	and	64-bit	versions.
Linux	users	should	download	R	using	their	standard	distribution	mechanism	whether	that	is	apt-get

(Ubuntu	and	Debian),	yum	(Red	Hat),	zypper	(SUSE)	or	another	source.	This	will	also	build	and	install
R.

1.2	R	Version
As	of	this	writing,	R	is	at	version	3.4.0	and	has	seen	a	lot	of	improvements	since	the	first	edition	of	this
book	when	the	version	was	3.0.1.	CRAN	follows	a	one-year	release	cycle	where	each	major	version
change	increases	the	middle	of	the	three	numbers	in	the	version.	For	instance,	version	3.2.0	was	released
in	2015.	In	2016	the	version	was	incremented	to	3.3.0	with	3.4.0	released	in	2017.	The	last	number	in	the
version	is	for	minor	updates	to	the	current	major	version.
Most	R	functionality	is	usually	backward	compatible	with	previous	versions.

1.3	32-bit	vs.	64-bit
The	choice	between	using	32-bit	and	using	64-bit	comes	down	to	whether	the	computer	supports	64-bit—
most	new	machines	do—and	the	size	of	the	data	to	be	worked	with.	The	64-bit	versions	can	address
arbitrarily	large	amounts	of	memory	(or	RAM),	so	it	might	as	well	be	used.
This	is	especially	important	starting	with	version	3.0.0,	as	that	adds	support	for	64-bit	integers,

../../../../../cran.r-project.org/default.htm

meaning	far	greater	amounts	of	data	can	be	stored	in	R	objects.
In	the	past,	certain	packages	required	the	32-bit	version	of	R,	but	that	is	exceedingly	rare	these	days.

The	only	reason	for	installing	the	32-bit	version	now	is	to	support	some	legacy	analysis	or	for	use	on	a
machine	with	a	32-bit	processor	such	as	Intel’s	low-power	Atom	chip.

1.4	Installing
Installing	R	on	Windows	and	Mac	is	just	like	installing	any	other	program.

1.4.1	Installing	on	Windows
Find	the	appropriate	installer	where	it	was	downloaded.	For	Windows	users,	it	will	look	like	Figure	1.1.

Figure	1.1	Location	of	R	installer.

R	should	be	installed	using	administrator	privileges.	This	means	right-clicking	the	installer	and	then
selecting	Run	as	Administrator.	This	brings	up	a	prompt	where	the	administrator	password	should	be
entered.
The	first	dialog,	shown	in	Figure	1.2,	offers	a	choice	of	language,	defaulted	at	English.	Choose	the

appropriate	language	and	click	OK.

Figure	1.2	Language	selection	for	Windows.

Next,	the	caution	shown	in	Figure	1.3	recommends	that	all	other	programs	be	closed.	This	advice	is
rarely	followed	or	necessary	anymore,	so	clicking	Next	is	appropriate.

Figure	1.3	With	modern	versions	of	Windows,	this	suggestion	can	be	safely	ignored.

The	software	license	is	then	displayed,	as	in	Figure	1.4.	R	cannot	be	used	without	agreeing	to	this
(important)	license,	so	the	only	recourse	is	to	click	Next.

Figure	1.4	The	license	agreement	must	be	acknowledged	to	use	R.

The	installer	then	asks	for	a	destination	location.	Even	though	the	official	advice	from	CRAN	is	that	R
should	be	installed	in	a	directory	with	no	spaces	in	the	name,	half	the	time	the	default	installation
directory	is	Program	Files\R,	which	causes	trouble	if	we	try	to	build	packages	that	require
compiled	code	such	as	C++	for	FORTRAN.	Figure	1.5	shows	this	dialog.	It	is	important	to	choose	a
directory	with	no	spaces,	even	if	the	default	installation	says	otherwise.

Figure	1.5	It	is	important	to	choose	a	destination	folder	with	no	spaces	in	the	name.

If	that	is	the	case,	click	the	Browse	button	to	bring	up	folder	options	like	the	ones	shown	in	Figure	1.6.

Figure	1.6	This	dialog	is	used	to	choose	the	destination	folder.

It	is	best	to	choose	a	destination	folder	that	is	on	the	C:	drive	(or	another	hard	disk	drive)	or	inside	My
Documents,	which	despite	that	user-friendly	name	is	actually	located	at
C:\Users\UserName\Documents,	which	contains	no	spaces.	Figure	1.7	shows	a	proper
destination	for	the	installation.

Figure	1.7	This	is	a	proper	destination,	with	no	spaces	in	the	name.

Next,	Figure	1.8,	shows	a	list	of	components	to	install.	Unless	there	is	a	specific	need	for	32-bit	files,
that	option	can	be	unchecked.	Everything	else	should	be	selected.

Figure	1.8	It	is	best	to	select	everything	except	32-bit	components.

The	startup	options	should	be	left	at	the	default,	No,	as	in	Figure	1.9,	because	there	are	not	a	lot	of
options	and	we	recommend	using	RStudio	as	the	front	end	anyway.

Figure	1.9	Accept	the	default	startup	options,	as	we	recommend	using	RStudio	as	the	front	end	and
these	will	not	be	important.

Next,	choose	where	to	put	the	start	menu	shortcuts.	We	recommend	simply	using	R	and	putting	every
version	in	there	as	shown	in	Figure	1.10.

Figure	1.10	Choose	the	Start	Menu	folder	where	the	shortcuts	will	be	installed.

We	have	many	versions	of	R,	all	inside	the	same	Start	Menu	folder,	which	allows	code	to	be	tested	in
different	versions.	This	is	illustrated	in	Figure	1.11.

Figure	1.11	We	have	multiple	versions	of	R	installed	to	allow	development	and	testing	with	different
versions.

The	last	option	is	choosing	whether	to	complete	some	additional	tasks	such	as	creating	a	desktop	icon
(not	too	useful	if	using	RStudio).	We	highly	recommend	saving	the	version	number	in	the	registry	and
associating	R	with	RData	files.	These	options	are	shown	in	Figure	1.12.

Figure	1.12	We	recommend	saving	the	version	number	in	the	registry	and	associating	R	with	RData
files.

Clicking	Next	begins	installation	and	displays	a	progress	bar,	as	shown	in	Figure	1.13.

Figure	1.13	A	progress	bar	is	displayed	during	installation.

The	last	step,	shown	in	Figure	1.14,	is	to	click	Finish,	confirming	the	installation	is	complete.

Figure	1.14	Confirmation	that	installation	is	complete.

1.4.2	Installing	on	Mac	OS	X
Find	the	appropriate	installer,	which	ends	in	.pkg,	and	launch	it	by	double-clicking.	This	brings	up	the
introduction,	shown	in	Figure	1.15.	Click	Continue	to	begin	the	installation	process.

Figure	1.15	Introductory	screen	for	installation	on	a	Mac.

This	brings	up	some	information	about	the	version	of	R	being	installed.	There	is	nothing	to	do	except
click	Continue,	as	shown	in	Figure	1.16.

Figure	1.16	Version	selection.

Then	the	license	information	is	displayed,	as	in	Figure	1.17.	Click	Continue	to	proceed,	the	only	viable
option	in	order	to	use	R.

Figure	1.17	The	license	agreement,	which	must	be	acknowledged	to	use	R.

Click	Agree	to	confirm	that	the	license	is	agreed	to,	which	is	mandatory	to	use	R,	as	is	evidenced	in
Figure	1.18.

Figure	1.18	The	license	agreement	must	also	be	agreed	to.

To	install	R	for	all	users,	click	Install;	otherwise,	click	Change	Install	Location	to	pick	a	different
location.	This	is	shown	in	Figure	1.19.

Figure	1.19	By	default	R	is	installed	for	all	users,	although	there	is	the	option	to	choose	a	specific
location.

If	prompted,	enter	the	necessary	password	as	shown	in	Figure	1.20.

Figure	1.20	The	administrator	password	might	be	required	for	installation.

This	starts	the	installation	process,	which	displays	a	progress	bar	as	shown	in	Figure	1.21.

Figure	1.21	A	progress	bar	is	displayed	during	installation.

When	done,	the	installer	signals	success	as	Figure	1.22	shows.	Click	Close	to	finish	the	installation.

Figure	1.22	This	signals	a	successful	installation.

1.4.3	Installing	on	Linux
Retrieving	R	from	its	standard	distribution	mechanism	will	download,	build	and	install	R	in	one	step.	We
will	focus	on	Ubuntu,	which	uses	apt-get.
The	first	step	is	to	edit	the	file	/etc/apt/sources.list,	which	lists	package	sources.	Two

pieces	of	information	need	to	be	included:	the	CRAN	mirror	and	the	version	of	Ubuntu	or	Debian.
Any	CRAN	mirror	can	be	used,	so	we	choose	the	RStudio	mirror	at

http://cran.rstudio.com/bin/linux/ubuntu.
The	supported	versions	of	Ubuntu,	as	of	early	2017,	are	Yakkety	Yak	(16.10),	Xenial	Xerus	(16.04),

Wily	Werewolf	(15.10),	Vivid	Vervet	(15.04),	Trusty	Tahr	(14.04;	LTS)	and	Precise	Pangolin	(12.04;
LTS).2

2.	According	to	https://cran.r-project.org/bin/linux/ubuntu/README

To	install	R	from	the	RStudio	CRAN	mirror	on	Ubuntu	16.04,	we	need	to	add	the	line
Click	here	to	view	code	image

deb	http://cran.rstudio.com/bin/linux/ubuntu	xenial/

to	/etc/apt/sources.list.	This	can	be	done	manually	or	by	running	the	following	command	in
the	terminal.
Click	here	to	view	code	image

sudo	sh	-c	\

'echo	"deb	http://cran.rstudio.com/bin/linux/ubuntu	xenial/"	\

>>	/etc/apt/sources.list'

../../../../../cran.rstudio.com/bin/linux/ubuntu
../../../../../https@cran.r-project.org/bin/linux/ubuntu/README

Then	we	add	a	public	key	to	authenticate	the	packages.
Click	here	to	view	code	image

sudo	apt-key	adv	--keyserver	keyserver.ubuntu.com

--recv-keys	E084DAB9

Now	we	can	update	apt-get	and	install	R.	We	install	both	R	base	and	R	devel	so	we	can	build	packages
from	source	or	build	our	own.
Click	here	to	view	code	image

sudo	apt-get	update

sudo	apt-get	install	r-base

sudo	apt-get	install	r-base-dev

R	is	also	natively	supported	on	Debian,	Red	Hat	and	SuSE.

1.5	Microsoft	R	Open
Microsoft,	which	purchased	Revolution	Analytics,	offers	a	community	version	of	its	build	of	R,	called
Microsoft	R	Open,	featuring	an	Integrated	Development	Environment	based	on	Visual	Studio	and	built
with	the	Intel	Matrix	Kernel	Library	(MKL),	enabling	faster	matrix	computations.	It	is	available	for	free
at	https://mran.microsoft.com/download/.	They	also	offer	a	paid	version—Microsoft	R
Server—that	provides	specialized	algorithms	to	work	on	large	data	and	greater	operability	with
Microsoft	SQL	Server	and	Hadoop.	More	information	is	available	at
https://www.microsoft.com/en-us/server-cloud/products/r-server/.

1.6	Conclusion
At	this	point	R	is	fully	usable	and	comes	with	a	crude	GUI.	However,	it	is	best	to	install	RStudio	and	use
its	interface,	which	is	detailed	in	Section	2.2.	The	process	involves	downloading	and	launching	an
installer,	just	as	with	any	other	program.

../../../../../https@mran.microsoft.com/download/default.htm
../../../../../https@www.microsoft.com/en-us/server-cloud/products/r-server/default.htm

2.	The	R	Environment

Now	that	R	is	downloaded	and	installed,	it	is	time	to	get	familiar	with	how	to	use	R.	The	basic	R
interface	on	Windows	is	fairly	Spartan,	as	seen	in	Figure	2.1.	The	Mac	interface	(Figure	2.2)	has	some
extra	features	and	Linux	has	far	fewer,	being	just	a	terminal.

Figure	2.1	The	standard	R	interface	in	Windows.

Figure	2.2	The	standard	R	interface	on	Mac	OS	X.

Unlike	other	languages,	R	is	very	interactive.	That	is,	results	can	be	seen	one	command	at	a	time.
Languages	such	as	C++	require	that	an	entire	section	of	code	be	written,	compiled	and	run	in	order	to	see
results.	The	state	of	objects	and	results	can	be	seen	at	any	point	in	R.	This	interactivity	is	one	of	the	most
amazing	aspects	of	working	with	R.
There	have	been	numerous	Integrated	Development	Environments	(IDEs)	built	for	R.	For	the	purposes

of	this	book	we	will	assume	that	RStudio	is	being	used,	which	is	discussed	in	Section	2.2.

2.1	Command	Line	Interface
The	command	line	interface	is	what	makes	R	so	powerful,	and	also	frustrating	to	learn.	There	have	been
attempts	to	build	point-and-click	interfaces	for	R,	such	as	Rcmdr,	but	none	have	truly	taken	off.	This	is	a
testament	to	how	typing	in	commands	is	much	better	than	using	a	mouse.	That	might	be	hard	to	believe,
especially	for	those	coming	from	Excel,	but	over	time	it	becomes	easier	and	less	error	prone.
For	instance,	fitting	a	regression	in	Excel	takes	at	least	seven	mouse	clicks,	often	more:	Data	>>

Data	Analysis	>>	Regression	>>	OK	>>	Input	Y	Range	>>	Input	X	Range

>>	OK.	Then	it	may	need	to	be	done	all	over	again	to	make	one	little	tweak	or	because	there	are	new
data.	Even	harder	is	walking	a	colleague	through	those	steps	via	email.	In	contrast,	the	same	command	is

just	one	line	in	R,	which	can	easily	be	repeated	and	copied	and	pasted.	This	may	be	hard	to	believe
initially,	but	after	some	time	the	command	line	makes	life	much	easier.
To	run	a	command	in	R,	type	it	into	the	console	next	to	the	>	symbol	and	press	the	Enter	key.	Entries

can	be	as	simple	as	the	number	2	or	complex	functions,	such	as	those	seen	in	Chapter	8.
To	repeat	a	line	of	code,	simply	press	the	Up	Arrow	key	and	hit	Enter	again.	All	previous	commands

are	saved	and	can	be	accessed	by	repeatedly	using	the	Up	and	Down	Arrow	keys	to	cycle	through	them.
Interrupting	a	command	is	done	with	Esc	in	Windows	and	Mac	and	Ctrl-C	in	Linux.
Often	when	working	on	a	large	analysis	it	is	good	to	have	a	file	of	the	code	used.	Until	a	few	years	ago,

the	most	common	way	to	handle	this	was	to	use	a	text	editor1	such	as	Sublime	Text	or	Notepad++	to	write
code	and	then	copy	and	paste	it	into	the	R	console.	While	this	worked,	it	was	sloppy	and	led	to	a	lot	of
switching	between	programs.	Thankfully,	there	is	now	RStudio,	which	is	a	game	changer	and	detailed	in
Section	2.2.

1.	This	means	a	programming	text	editor	as	opposed	to	a	word	processor	such	as	Microsoft	Word.	A	text	editor	preserves	the	structure	of
the	text,	whereas	word	processors	may	add	formatting	that	makes	it	unsuitable	for	insertion	into	the	console.

2.2	RStudio
While	there	are	a	number	of	IDEs	available,	the	best	right	now	is	RStudio,	created	by	a	team	led	by	JJ
Allaire	whose	previous	products	include	ColdFusion	and	Windows	Live	Writer.	It	is	available	for
Windows,	Mac	and	Linux	and	looks	identical	in	all	of	them.	Even	more	impressive	is	the	RStudio	Server,
which	runs	an	R	instance	on	a	Linux	server	and	enables	the	user	to	run	commands	through	the	standard
RStudio	interface	in	a	Web	browser.	It	works	with	any	version	of	R	(greater	than	2.11.1),	including
Microsoft	R	Open	and	Microsoft	R	Server	from	Microsoft.	RStudio	has	so	many	options	that	it	can	be	a
bit	overwhelming.	We	cover	some	of	the	most	useful	or	frequently	used	features.
RStudio	is	highly	customizable,	but	the	basic	interface	looks	roughly	like	Figure	2.3.	In	this	case	the

lower	left	pane	is	the	R	console,	which	can	be	used	just	like	the	standard	R	console.	The	upper	left	pane
takes	the	place	of	a	text	editor	but	is	far	more	powerful.	The	upper	right	pane	holds	information	about	the
workspace,	command	history,	files	in	the	current	folder	and	Git	version	control.	The	lower	right	pane
displays	plots,	package	information	and	help	files.

Figure	2.3	The	general	layout	of	RStudio.

There	are	a	number	of	ways	to	send	and	execute	commands	from	the	editor	to	the	console.	To	send	one
line,	place	the	cursor	at	the	desired	line	and	press	Ctrl+Enter	(Command+Enter	on	Mac).	To	insert
a	selection,	simply	highlight	the	selection	and	press	Ctrl+Enter.	To	run	an	entire	file	of	code,	press
Ctrl+Shift+S.
When	typing	code,	such	as	an	object	name	or	function	name,	hitting	Tab	will	autocomplete	the	code.	If

more	than	one	object	or	function	matches	the	letters	typed	so	far,	a	dialog	will	pop	up	giving	the	matching
options,	as	shown	in	Figure	2.4.

Figure	2.4	Object	Name	Autocomplete	in	RStudio.

Typing	Ctrl+1	moves	the	cursor	to	the	text	editor	area	and	Ctrl+2	moves	it	to	the	console.	To
move	to	the	previous	tab	in	the	text	editor,	press	Ctrl+Alt+Left	on	Windows,	Ctrl+PageUp	in

Linux	and	Ctrl+Option+Left	on	Mac.	To	move	to	the	next	tab	in	the	text	editor,	press
Ctrl+Alt+Right	in	Windows,	Ctrl+PageDown	in	Linux	and	Ctrl+Option+Right	on	Mac.
On	some	Windows	machines	these	shortcuts	can	cause	the	screen	to	rotate,	so	Ctrl+F11	and
Ctrl+F12	also	move	between	tabs	as	does	Ctrl+Alt+Left	and	Ctrl+Alt+Right,	though	only
in	the	desktop	client.	For	an	almost-complete	list	of	shortcuts,	click	Help	>>	Keyboard
Shortcuts	or	use	the	keyboard	shortcut	Alt+Shift+K	on	Windows	and	Linux	and
Option+Shift+K	on	Mac.	A	more	complete	list	is	available	at	https://support.rstudio.com/hc/en-
us/articles/200711853-Keyboard-Shortcuts.

2.2.1	RStudio	Projects
A	primary	feature	of	RStudio	is	projects.	A	project	is	a	collection	of	files—and	possibly	data,	results	and
graphs—that	are	all	related	to	each	other.2	Each	package	even	has	its	own	working	directory.	This	is	a
great	way	to	keep	organized.

2.	This	is	different	from	an	R	session,	which	is	all	the	objects	and	work	done	in	R	and	kept	in	memory	for	the	current	usage	period,	and
usually	resets	upon	restarting	R.

The	simplest	way	to	start	a	new	project	is	to	click	File	>>	New	Project,	as	in	Figure	2.5.

Figure	2.5	Clicking	File	>>	New	Project	begins	the	project	creation	process.

Three	options	are	available,	shown	in	Figure	2.6:	starting	a	new	project	in	a	new	directory,	associating
a	project	with	an	existing	directory	or	checking	out	a	project	from	a	version	control	repository	such	as	Git
or	SVN3.	In	all	three	cases	a	.Rproj	file	is	put	into	the	resulting	directory	and	keeps	track	of	the	project.

3.	Using	version	control	requires	that	the	version	control	program	is	installed	on	the	computer.

../../../../../https@support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts

Figure	2.6	Three	options	are	available	to	start	a	new	project:	a	new	directory,	associating	a	project
with	an	existing	directory	or	checking	out	a	project	from	a	version	control	repository.

Choosing	to	create	a	new	directory	brings	up	a	dialog,	shown	in	Figure	2.7,	that	requests	a	project
name	and	where	to	create	a	new	directory.

Figure	2.7	Dialog	to	choose	the	location	of	a	new	project	directory.

Choosing	an	existing	directory	asks	for	the	name	of	the	directory,	as	shown	in	Figure	2.8.

Figure	2.8	Dialog	to	choose	an	existing	directory	in	which	to	start	a	project.

Choosing	to	use	version	control	(we	prefer	Git)	firsts	asks	whether	to	use	Git	or	SVN	as	in	Figure	2.9.

Figure	2.9	Here	is	the	option	to	choose	which	type	of	repository	to	start	a	new	project	from.

Selecting	Git	asks	for	a	repository	URL,	such	as	git@github.com:
jaredlander/coefplot.git,	which	will	then	fill	in	the	project	directory	name,	as	shown	in
Figure	2.10.	As	with	creating	a	new	directory,	this	will	ask	where	to	put	this	new	directory.

mailto:git@github.com

Figure	2.10	Enter	the	URL	for	a	Git	repository,	as	well	as	the	folder	where	this	should	be	cloned	to.

2.2.2	RStudio	Tools
RStudio	is	highly	customizable	with	a	lot	of	options.	Most	are	contained	in	the	Options	dialog	accessed
by	clicking	Tools	>>	Global	Options,	as	seen	in	Figure	2.11.

Figure	2.11	Clicking	Tools	>>	Options	brings	up	RStudio	options.

First	are	the	General	options,	shown	in	Figure	2.12.	On	Windows	there	is	a	control	for	selecting	which
version	of	R	to	use.	This	is	a	powerful	tool	when	a	computer	has	a	number	of	versions	of	R.	However,
RStudio	must	be	restarted	after	changing	the	R	version.	In	the	future,	RStudio	is	slated	to	offer	the
capability	to	set	different	versions	of	R	for	each	project.	It	is	also	a	good	idea	to	not	restore	or	save
.RData	files	on	startup	and	exiting.4	This	way	each	time	R	is	started	it	is	a	fresh	session	without

potential	variable	corruptions	or	unnecessary	data	occupying	memory.
4.	RData	files	are	a	convenient	way	of	saving	and	sharing	R	objects	and	are	discussed	in	Section	6.5.

Figure	2.12	General	options	in	RStudio.

Code	editing	options,	shown	in	Figure	2.13,	control	the	way	code	is	entered	and	displayed	in	the	text
editor.	It	is	generally	considered	good	practice	to	replace	tabs	with	spaces,	either	two	or	four,5	as	tabs
can	sometimes	be	interpreted	differently	by	different	text	editors.	Some	hard-core	programmers	will
appreciate	vim	and	Emacs	modes.

5.	Four	is	better	for	working	with	Markdown	documents.

Figure	2.13	Options	for	customizing	code	editing.

Code	display	options,	shown	in	Figure	2.14,	control	visual	cues	in	the	text	editor	and	console.
Highlighting	selected	words	makes	it	easy	to	spot	multiple	occurrences.	Showing	line	numbers	are	a	must
to	ease	code	navigation.	Showing	a	margin	column	gives	a	good	indication	of	when	a	line	of	code	is	too
long	to	be	easily	read.

Figure	2.14	Options	for	customizing	code	display.

Code	saving	options,	shown	in	Figure	2.15,	control	how	the	text	files	containing	code	are	saved.	For
the	most	part	it	is	good	to	use	the	defaults,	especially	selecting	“Platform	Native”	for	the	line	ending
conversion	under	“Serialization.”

Figure	2.15	Options	for	customizing	code	saving.

Code	Completion	options,	shown	in	Figure	2.16,	control	how	code	is	completed	while	programming.
Some	people	like	having	parentheses	added	automatically	after	typing	a	function,	and	others	do	not.	One
particularly	divisive	setting	is	whether	to	put	spaces	around	the	equals	sign	for	named	function	arguments.

Figure	2.16	Options	for	customizing	code	completion.

Code	diagnostics	options,	shown	in	Figure	2.17,	enable	code	checking.	These	can	be	very	helpful	in
identifying	mistyped	object	names,	poor	style	and	general	mistakes.

Figure	2.17	Options	for	customizing	code	diagnostics.

Appearance	options,	shown	in	Figure	2.18,	change	the	way	code	looks,	aesthetically.	The	font,	size	and
color	of	the	background	and	text	can	all	be	customized	here.

Figure	2.18	Options	for	code	appearance.

The	Pane	Layout	options,	shown	in	Figure	2.19,	simply	rearrange	the	panes	that	make	up	RStudio.

Figure	2.19	These	options	control	the	placement	of	the	various	panes	in	RStudio.

The	Packages	options,	shown	in	Figure	2.20,	set	options	regarding	packages,	although	the	most
important	is	the	CRAN	mirror.	While	this	is	changeable	from	the	console,	this	is	the	default	setting.	It	is
best	to	pick	the	mirror	that	is	geographically	the	closest.

Figure	2.20	Options	related	to	packages.	The	most	important	is	the	CRAN	mirror	selection.

The	RMarkdown	options,	seen	in	Figure	2.21,	control	settings	for	working	with	RMarkdown
documents.	This	allows	rendered	documents	to	be	previewed	in	an	external	window	or	in	the	Viewer
pane.	It	also	lets	RMarkdown	files	be	treated	like	notebooks,	rendering	results,	images	and	equations
inline.

Figure	2.21	Options	for	RMarkdown,	including	whether	to	treat	them	like	notebooks.

The	Sweave	options,	seen	in	Figure	2.22,	may	be	a	bit	misnamed,	as	this	is	where	to	choose	between
using	Sweave	or	knitr.	Both	are	used	for	the	generation	of	PDF	documents	with	knitr	also	enabling	the
creation	of	HTML	documents.	knitr,	detailed	in	Chapter	27,	is	by	far	the	better	option,	although	it	must	be
installed	first,	which	is	explained	in	Section	3.1.	This	is	also	where	the	PDF	viewer	is	selected.

Figure	2.22	This	is	where	to	choose	whether	to	use	Sweave	or	knitr	and	select	the	PDF	viewer.

RStudio	contains	a	spelling	checker	for	writing	LaTeX	and	Markdown	documents	(using	knitr,
preferably),	which	is	controlled	from	the	Spelling	options,	shown	in	Figure	2.23.	Not	much	needs	to	be
set	here.

Figure	2.23	These	are	the	options	for	the	spelling	check	dictionary,	which	allows	language	selection
and	the	custom	dictionaries.

The	Git/SVN	options,	shown	in	Figure	2.24,	indicates	where	the	executables	for	Git	and	SVN	exist.
This	needs	to	be	set	only	once	but	is	necessary	for	version	control.

Figure	2.24	This	is	where	to	set	the	location	of	Git	and	SVN	executables	so	they	can	be	used	by
RStudio.

The	last	option,	Publishing,	Figure	2.25,	sets	connections	for	publishing	documents	to	ShinyApps.io	or
RStudio	Connect.

Figure	2.25	This	is	where	to	set	connections	to	ShinyApps.io	or	RStudio	Connect.

2.2.3	Git	Integration
Using	version	control	is	a	great	idea	for	many	reasons.	First	and	foremost	it	provides	snapshots	of	code	at
different	points	in	time	and	can	easily	revert	to	those	snapshots.	Ancillary	benefits	include	having	a
backup	of	the	code	and	the	ability	to	easily	transfer	the	code	between	computers	with	little	effort.
While	SVN	used	to	be	the	gold	standard	in	version	control,	it	has	since	been	superseded	by	Git,	so	that

will	be	our	focus.	After	associating	a	project	with	a	Git	repository6	RStudio	has	a	pane	for	Git	like	the
one	shown	in	Figure	2.26.

6.	A	Git	account	should	be	set	up	with	either	GitHub	(https://github.com/)	or	Bitbucket	(https://bitbucket.org/)
beforehand.

../../../../../https@github.com/default.htm
../../../../../https@bitbucket.org/default.htm

Figure	2.26	The	Git	pane	shows	the	Git	status	of	files	under	version	control.	A	blue	square	with	a
white	M	indicates	a	file	has	been	changed	and	needs	to	be	committed.	A	yellow	square	with	a	white

question	mark	indicates	a	new	file	that	is	not	being	tracked	by	Git.

The	main	functionality	is	committing	changes,	pushing	them	to	the	server	and	pulling	changes	made	by
other	users.	Clicking	the	Commit	button	brings	up	a	dialog,	Figure	2.27,	which	displays	files	that	have
been	modified,	or	new	files.	Clicking	on	one	of	these	files	displays	the	changes;	deletions	are	colored
pink	and	additions	are	colored	green.	There	is	also	a	space	to	write	a	message	describing	the	commit.

Figure	2.27	This	displays	files	and	the	changes	made	to	the	files,	with	green	being	additions	and	pink
being	deletions.	The	upper	right	contains	a	space	for	writing	commit	messages.

Clicking	Commit	will	stage	the	changes,	and	clicking	Push	will	send	them	to	the	server.

2.3	Microsoft	Visual	Studio
Microsoft	Visual	Studio	provides	IDE	tools	for	working	with	R.	While	most	R	users	will	be	more
comfortable	using	RStudio,	this	is	a	nice	option	for	those	familiar	with	Visual	Studio.

2.4	Conclusion
R’s	usability	has	greatly	improved	over	the	past	few	years,	mainly	thanks	to	RStudio.	Using	an	IDE	can
greatly	improve	proficiency,	and	change	working	with	R	from	merely	tolerable	to	actually	enjoyable.7
RStudio’s	code	completion,	text	editor,	Git	integration	and	projects	are	indispensable	for	a	good
programming	work	flow.

7.	One	of	our	students	relayed	that	he	preferred	Matlab	to	R	until	he	used	RStudio.

3.	R	Packages

Perhaps	the	biggest	reason	for	R’s	phenomenally	ascendant	popularity	is	its	collection	of	user	contributed
packages.	As	of	early	February	2017	there	were	over	10,000	packages	available	on	CRAN1	written	by
more	than	2,000	different	people.	Odds	are	good	that	if	a	statistical	technique	exists,	it	has	been	written	in
R	and	contributed	to	CRAN.	Not	only	is	there	an	incredibly	large	number	of	packages;	many	are	written
by	the	authorities	in	the	field,	such	as	Andrew	Gelman,	Trevor	Hastie,	Dirk	Eddelbuettel	and	Hadley
Wickham.

1.	http://cran.r-project.org/web/packages/

A	package	is	essentially	a	library	of	prewritten	code	designed	to	accomplish	some	task	or	a	collection
of	tasks.	The	survival	package	is	used	for	survival	analysis,	ggplot2	is	used	for	plotting	and	sp	is	for
dealing	with	spatial	data.
It	is	important	to	remember	that	not	all	packages	are	of	the	same	quality.	Some	are	built	to	be	very

robust	and	are	well-maintained,	while	others	are	built	with	good	intentions	but	can	fail	with	unforeseen
errors,	and	others	still	are	just	plain	poor.	Even	with	the	best	packages,	it	is	important	to	remember	that
most	were	written	by	statisticians	for	statisticians,	so	they	may	differ	from	what	a	computer	engineer
would	expect.
This	book	will	not	attempt	to	be	an	exhaustive	list	of	good	packages	to	use,	because	that	is	constantly

changing.	However,	there	are	some	packages	that	are	so	pervasive	that	they	will	be	used	in	this	book	as	if
they	were	part	of	base	R.	Some	of	these	are	ggplot2,	tidyr	and	dplyr	by	Hadley	Wickham;	glmnet	by
Trevor	Hastie,	Robert	Tibshirani	and	Jerome	Friedman;	Rcpp	by	Dirk	Eddelbuettel	and	knitr	by	Yihui
Xie.	We	have	written	a	package	on	CRAN,	coefplot,	useful	and	resumer	with	more	to	follow.

3.1	Installing	Packages
As	with	many	tasks	in	R,	there	are	multiple	ways	to	install	packages.	The	simplest	is	to	install	them	using
the	GUI	provided	by	RStudio	and	shown	in	Figure	3.1.	Access	the	Packages	pane	shown	in	this	figure
either	by	clicking	its	tab	or	by	pressing	Ctrl+7	on	the	keyboard.

../../../../../cran.r-project.org/web/packages/default.htm

Figure	3.1	RStudio’s	Packages	pane.

In	the	upper-left	corner,	click	the	Install	Packages	button	to	bring	up	the	dialog	in	Figure	3.2.

Figure	3.2	RStudio’s	package	installation	dialog.

From	here	simply	type	the	name	of	a	package	(RStudio	has	a	nice	autocomplete	feature	for	this)	and
click	Install.	Multiple	packages	can	be	specified,	separated	by	commas.	This	downloads	and	installs	the
desired	package,	which	is	then	available	for	use.	Selecting	the	Install	dependencies	checkbox	will
automatically	download	and	install	all	packages	that	the	desired	package	requires	to	work.	For	example,
our	coefplot	package	depends	on	ggplot2,	plyr,	dplyr,	useful,	stringr	and	reshape2,	and	each	of	those
may	have	further	dependencies.
An	alternative	is	to	type	a	very	simple	command	into	the	console:	Click	here	to	view	code	image
>	install.packages("coefplot")	This	will	accomplish	the	same	thing	as	working	in	the	GUI.

There	has	been	a	movement	recently	to	install	packages	directly	from	GitHub	or	BitBucket
repositories,	especially	to	get	the	development	versions	of	packages.	This	can	be	accomplished	using
devtools.
Click	here	to	view	code	image

>	library(devtools)

>	install_github	(repo="coefplot/jaredlander")	In	order	to	use	functions	in	the	devtools

package	we	first	needed	to	load	the	package	using	library	which	is	explained	in	Section

3.2.

If	the	package	being	installed	from	a	repository	contains	source	code	for	a	compiled	language—
generally	C++	or	FORTRAN—then	the	proper	compilers	must	be	installed.	More	information	is	in
Section	30.7.
Sometimes	there	is	a	need	to	install	a	package	from	a	local	file,	either	a	zip	of	a	prebuilt	package	or	a

tar.gz	of	package	code.	This	can	be	done	using	the	installation	dialog	mentioned	before	but	switching	the
Install	from:	option	to	Package	Archive	File	as	shown	in	Figure	3.3.	Then	browse	to	the	file	and	install.
Note	that	this	will	not	install	dependencies,	and	if	they	are	not	present,	the	installation	will	fail.	Be	sure	to
install	dependencies	first.

Figure	3.3	RStudio’s	package	installation	dialog	to	install	from	an	archive	file.

Similarly	to	before,	this	can	be	accomplished	using	install.packages.
Click	here	to	view	code	image

>	install.packages("coefplot_1.1.7.zip")

3.1.1	Uninstalling	Packages
In	the	rare	instance	when	a	package	needs	to	be	uninstalled,	it	is	easiest	to	click	the	white	X	inside	a	gray
circle	on	the	right	of	the	package	descriptions	in	RStudio’s	Packages	pane	shown	in	Figure	3.1.
Alternatively,	this	can	be	done	with	remove.packages,	where	the	first	argument	is	a	character
vector	naming	the	packages	to	be	removed.

3.2	Loading	Packages
Now	that	packages	are	installed	they	are	almost	ready	to	use	and	just	need	to	be	loaded	first.	There	are
two	commands	that	can	be	used,	either	library	or	require.	They	both	accomplish	the	same	thing:	Loading
the	package.	Using	require	will	return	TRUE	if	it	succeeds	and	FALSE	with	a	warning	if	it	cannot	find
the	package.	This	returned	value	is	useful	when	loading	a	package	from	within	a	function,	a	practice
considered	acceptable	to	some,	improper	to	others.	Calling	library	on	a	package	that	is	not	installed	will
cause	an	error	which	can	be	advantageous	when	running	code	in	scripts.	In	interactive	usage	there	is	not
much	of	a	difference	but	it	is	preferable,	when	writing	scripts,	to	use	library.	The	argument	to	either
function	is	the	name	of	the	desired	package,	with	or	without	quotes.	So	loading	the	coefplot	package
would	look	like:
Click	here	to	view	code	image

>	library(coefplot)

Loading	required	package:	ggplot2

It	also	prints	out	the	dependent	packages	that	get	loaded	as	well.	This	can	be	suppressed	by	setting	the
argument	quietly	to	TRUE.
Click	here	to	view	code	image

>	library(coefplot,	quietly=TRUE)	A	package	only	needs	to	be	loaded	when	starting	a	new	R

session.	Once	loaded,	it	remains	available	until	either	R	is	restarted	or	the	package	is

unloaded,	as	described	in	Section	3.2.1.

An	alternative	to	loading	a	package	through	code	is	to	select	the	checkbox	next	to	the	package	name	in
RStudio’s	Packages	pane,	seen	on	the	left	of	Figure	3.1.	This	will	load	the	package	by	running	the	code
just	shown.

3.2.1	Unloading	Packages
Sometimes	a	package	needs	to	be	unloaded.	This	is	simple	enough	either	by	clearing	the	checkbox	in
RStudio’s	Packages	pane	or	by	using	the	detach	function.	The	function	takes	the	package	name	preceded
by	package:	all	in	quotes.

>	detach("package:coefplot")	It	is	not	uncommon	for	functions	in	different	packages	to

have	the	same	name.	For	example,	coefplot	is	in	both	arm	(by	Andrew	Gelman)	and	coefplot.2

If	both	packages	are	loaded,	the	function	in	the	package	loaded	last	will	be	invoked	when

calling	that	function.	A	way	around	this	is	to	precede	the	function	with	the	name	of	the

package,	separated	by	two	colons	(::).

2.	This	particular	instance	is	because	we	built	coefplot	as	an	improvement	on	the	one	available	in	arm.	There	are	other	instances
where	the	names	have	nothing	in	common.

Click	here	to	view	code	image

>	arm::coefplot(object)

>	coefplot::coefplot(object)	Not	only	does	this	call	the	appropriate	function;	it	also

allows	the	function	to	be	called	without	even	loading	the	package	beforehand.

3.3	Building	a	Package
Building	a	package	is	one	of	the	more	rewarding	parts	of	working	with	R,	especially	sharing	that	package
with	the	community	through	CRAN.	Chapter	30	discusses	this	process	in	detail.

3.4	Conclusion
Packages	make	up	the	backbone	of	the	R	community	and	experience.	They	are	often	considered	what
makes	working	with	R	so	desirable.	This	is	how	the	community	makes	its	work,	and	so	many	of	the
statistical	techniques,	available	to	the	world.	With	such	a	large	number	of	packages,	finding	the	right	one
can	be	overwhelming.	CRAN	Task	Views	(http://cran.r-project.org/web/views/)	offers
a	curated	listing	of	packages	for	different	needs.	However,	the	best	way	to	find	a	new	package	might	just
be	to	ask	the	community.	Appendix	A	gives	some	resources	for	doing	just	that.

../../../../../cran.r-project.org/web/views/default.htm

4.	Basics	of	R

R	is	a	powerful	tool	for	all	manner	of	calculations,	data	manipulation	and	scientific	computations.	Before
getting	to	the	complex	operations	possible	in	R	we	must	start	with	the	basics.	Like	most	languages	R	has
its	share	of	mathematical	capability,	variables,	functions	and	data	types.

4.1	Basic	Math
Being	a	statistical	programming	language,	R	can	certainly	be	used	to	do	basic	math	and	that	is	where	we
will	start.
We	begin	with	the	“hello,	world!”	of	basic	math:	1	+	1.	In	the	console	there	is	a	right	angle	bracket	(>)

where	code	should	be	entered.	Simply	test	R	by	running	>	1	+	1

[1]	2
If	this	returns	2,	then	everything	is	great;	if	not,	then	something	is	very,	very	wrong.
Assuming	it	worked,	let’s	look	at	some	slightly	more	complicated	expressions:	>	1	+	2	+	3

[1]	6

>	3	*	7	*	2

[1]	42

>	4	/	2

[1]	2

>	4	/	3

[1]	1.333333
These	follow	the	basic	order	of	operations:	Parenthesis,	Exponents,	Multiplication,	Division,	Addition

and	Subtraction	(PEMDAS).	This	means	operations	inside	parentheses	take	priority	over	other
operations.	Next	on	the	priority	list	is	exponentiation.	After	that,	multiplication	and	division	are
performed,	followed	by	addition	and	subtraction.
This	is	why	the	first	two	lines	in	the	following	code	have	the	same	result,	while	the	third	is	different.
>	4	*	6	+	5

[1]	29

>	(4	*	6)	+	5

[1]	29

>	4	*	(6	+	5)

[1]	44

So	far	we	have	put	white	space	in	between	each	operator,	such	as	*	and	/.	This	is	not	necessary	but	is
encouraged	as	good	coding	practice.

4.2	Variables
Variables	are	an	integral	part	of	any	programming	language	and	R	offers	a	great	deal	of	flexibility.	Unlike
statically	typed	languages	such	as	C++,	R	does	not	require	variable	types	to	be	declared.	A	variable	can
take	on	any	available	data	type	as	described	in	Section	4.3.	It	can	also	hold	any	R	object	such	as	a
function,	the	result	of	an	analysis	or	a	plot.	A	single	variable	can	at	one	point	hold	a	number,	then	later
hold	a	character	and	then	later	a	number	again.

4.2.1	Variable	Assignment
There	are	a	number	of	ways	to	assign	a	value	to	a	variable,	and	again,	this	does	not	depend	on	the	type	of
value	being	assigned.
The	valid	assignment	operators	are	<-	and	=,	with	the	first	being	preferred.
For	example,	let’s	save	2	to	the	variable	x	and	5	to	the	variable	y.
>	x	<-	2

>	x

[1]	2

>	y	=	5

>	y

[1]	5

The	arrow	operator	can	also	point	in	the	other	direction.
>	3	->	z

>	z

[1]	3

The	assignment	operation	can	be	used	successively	to	assign	a	value	to	multiple	variables
simultaneously.

>	a	<-	b	<-	7

>	a

[1]	7

>	b

[1]	7

A	more	laborious,	though	sometimes	necessary,	way	to	assign	variables	is	to	use	the	assign	function.
>	assign("j",	4)

>	j

[1]	4

Variable	names	can	contain	any	combination	of	alphanumeric	characters	along	with	periods	(.)	and
underscores	(_).	However,	they	cannot	start	with	a	number	or	an	underscore.
The	most	common	form	of	assignment	in	the	R	community	is	the	left	arrow	(<-),	which	may	seem

awkward	to	use	at	first	but	eventually	becomes	second	nature.	It	even	seems	to	make	sense,	as	the
variable	is	sort	of	pointing	to	its	value.	There	is	also	a	particularly	nice	benefit	for	people	coming	from
languages	like	SQL,	where	a	single	equal	sign	(=)	tests	for	equality.
It	is	generally	considered	best	practice	to	use	actual	names,	usually	nouns,	for	variables	instead	of

single	letters.	This	provides	more	information	to	the	person	reading	the	code.	This	is	seen	throughout	this
book.

4.2.2	Removing	Variables
For	various	reasons	a	variable	may	need	to	be	removed.	This	is	easily	done	using	remove	or	its	shortcut
rm.
Click	here	to	view	code	image

>	j

[1]	4

>	rm(j)

>	#	now	it	is	gone

>	j

Error	in	eval(expr,	envir,	enclos):	object	'j'	not	found

This	frees	up	memory	so	that	R	can	store	more	objects,	although	it	does	not	necessarily	free	up	memory
for	the	operating	system.	To	guarantee	that,	use	gc,	which	performs	garbage	collection,	releasing	unused
memory	to	the	operating	system.	R	automatically	does	garbage	collection	periodically,	so	this	function	is
not	essential.
Variable	names	are	case	sensitive,	which	can	trip	up	people	coming	from	a	language	like	SQL	or	Visual

Basic.
Click	here	to	view	code	image

>	theVariable	<-	17

>	theVariable

[1]	17

>	THEVARIABLE

Error	in	eval(expr,	envir,	enclos):	object	'THEVARIABLE'	not	found

4.3	Data	Types
There	are	numerous	data	types	in	R	that	store	various	kinds	of	data.	The	four	main	types	of	data	most
likely	to	be	used	are	numeric,	character	(string),	Date/POSIXct	(time-based)	and	logical
(TRUE/FALSE).
The	type	of	data	contained	in	a	variable	is	checked	with	the	class	function.
>	class(x)

[1]	"numeric"

4.3.1	Numeric	Data
As	expected,	R	excels	at	running	numbers,	so	numeric	data	is	the	most	common	type	in	R.	The	most
commonly	used	numeric	data	is	numeric.	This	is	similar	to	a	float	or	double	in	other	languages.	It
handles	integers	and	decimals,	both	positive	and	negative,	and	of	course,	zero.	A	numeric	value	stored	in
a	variable	is	automatically	assumed	to	be	numeric.	Testing	whether	a	variable	is	numeric	is	done
with	the	function	is.numeric.

>	is.numeric(x)

[1]	TRUE

Another	important,	if	less	frequently	used,	type	is	integer.	As	the	name	implies	this	is	for	whole
numbers	only,	no	decimals.	To	set	an	integer	to	a	variable	it	is	necessary	to	append	the	value	with	an	L.
As	with	checking	for	a	numeric,	the	is.integer	function	is	used.

>	i	<-	5L

>	i

[1]	5

>	is.integer(i)

[1]	TRUE

Do	note	that,	even	though	i	is	an	integer,	it	will	also	pass	a	numeric	check.
>	is.numeric(i)

[1]	TRUE

R	nicely	promotes	integers	to	numeric	when	needed.	This	is	obvious	when	multiplying	an
integer	by	a	numeric,	but	importantly	it	works	when	dividing	an	integer	by	another	integer,
resulting	in	a	decimal	number.

>	class	(4L)

[1]	"integer"

>	class(2.8)

[1]	"numeric"

>	4L	*	2.8

[1]	11.2

>	class(4L	*	2.8)

[1]	"numeric"

>	class(5L)

[1]	"integer"

>	class(2L)

[1]	"integer"

>	5L	/	2L

[1]	2.5

>	class	(5L	/	2L)

[1]	"numeric"

4.3.2	Character	Data
Even	though	it	is	not	explicitly	mathematical,	the	character	(string)	data	type	is	very	common	in	statistical
analysis	and	must	be	handled	with	care.	R	has	two	primary	ways	of	handling	character	data:
character	and	factor.	While	they	may	seem	similar	on	the	surface,	they	are	treated	quite	differently.

>	x	<-	"data"

>	x

[1]	"data"

>	y<-	factor	("data")

>	y

[1]	data

Levels:	data

Notice	that	x	contains	the	word	“data”	encapsulated	in	quotes,	while	y	has	the	word	“data”	without
quotes	and	a	second	line	of	information	about	the	levels	of	y.	That	is	explained	further	in	Section	4.4.2
about	vectors.
Characters	are	case	sensitive,	so	“Data”	is	different	from	“data”	or	“DATA”.
To	find	the	length	of	a	character	(or	numeric)	use	the	nchar	function.
>	nchar(x)

[1]	4

>	nchar("hello")

[1]	5

>	nchar	(3)

[1]	1

>	nchar(452)

[1]	3

This	will	not	work	for	factor	data.
Click	here	to	view	code	image

>	nchar(y)

Error	in	nchar(y):	'nchar()'	requires	a	character	vector

4.3.3	Dates
Dealing	with	dates	and	times	can	be	difficult	in	any	language,	and	to	further	complicate	matters	R	has
numerous	different	types	of	dates.	The	most	useful	are	Date	and	POSIXct.	Date	stores	just	a	date
while	POSIXct	stores	a	date	and	time.	Both	objects	are	actually	represented	as	the	number	of	days
(Date)	or	seconds	(POSIXct)	since	January	1,	1970.
Click	here	to	view	code	image

>	date1	<-	as.Date("2012-06-28")

>	date1

[1]	"2012-06-28"

>	class(date1)

[1]	"Date"

>	as.numeric(date1)

[1]	15519

>	date2	<-	as.POSIXct("2012-06-28	17:42")

>	date2

[1]	"2012-06-28	17:42:00	EDT"

>	class(date2)

[1]	"POSIXct"	"POSIXt"

>	as.numeric(date2)

[1]	1340919720

Easier	manipulation	of	date	and	time	objects	can	be	accomplished	using	the	lubridate	and	chron
packages.
Using	functions	such	as	as.numeric	or	as.Date	does	not	merely	change	the	formatting	of	an	object	but

actually	changes	the	underlying	type.
>	class(date1)

[1]	"Date"

>	class(as.numeric(date1))

[1]	"numeric"

4.3.4	Logical
Logicals	are	a	way	of	representing	data	that	can	be	either	TRUE	or	FALSE.	Numerically,	TRUE	is	the
same	as	1	and	FALSE	is	the	same	as	0.	So	TRUE	∗	5	equals	5	while	FALSE	*	5	equals	0.

>	TRUE	*	5

[1]	5

>	FALSE	*	5

[1]	0

Similar	to	other	types,	logicals	have	their	own	test,	using	the	is.logical	function.
>	k	<-	TRUE

>	class(k)

[1]	"logical"

>	is.logical(k)

[1]	TRUE

R	provides	T	and	F	as	shortcuts	for	TRUE	and	FALSE,	respectively,	but	it	is	best	practice	not	to	use
them,	as	they	are	simply	variables	storing	the	values	TRUE	and	FALSE	and	can	be	overwritten,	which
can	cause	a	great	deal	of	frustration	as	seen	in	the	following	example.

>	TRUE

[1]	TRUE

>	T

[1]	TRUE

>	class(T)

[1]	"logical"

>	T	<-	7

>	T

[1]	7

>	class(T)

[1]	"numeric"

Logicals	can	result	from	comparing	two	numbers,	or	characters.
Click	here	to	view	code	image

>	#	does	2	equal	3?

>	2	==	3

[1]	FALSE

>	#	does	2	not	equal	three?

>	2	!=	3

[1]	TRUE

>	#	is	two	less	than	three?

>	2	<	3

[1]	TRUE

>	#	is	two	less	than	or	equal	to	three?

>	2	<=	3

[1]	TRUE

>	#	is	two	greater	than	three?

>	2	>	3

[1]	FALSE

>	#	is	two	greater	than	or	equal	to	three?

>	2	>=	3

[1]	FALSE

>	#	is	"data"	equal	to	"stats"?

>	"data"	==	"stats"

[1]	FALSE

>	#	is	"data"	less	than	"stats"?

>	"data"	<	"stats"

[1]	TRUE

4.4	Vectors
A	vector	is	a	collection	of	elements,	all	of	the	same	type.	For	instance,	c(1,	3,	2,	1,	5)	is	a	vector
consisting	of	the	numbers	1,	3,	2,	1,	5,	in	that	order.	Similarly,	c(“R”,	“Excel”,	“SAS”,
“Excel”)	is	a	vector	of	the	character	elements,	“R”,	“Excel”,	“SAS”,	and	“Excel”.	A	vector
cannot	be	of	mixed	type.
Vectors	play	a	crucial,	and	helpful,	role	in	R.	More	than	being	simple	containers,	vectors	in	R	are

special	in	that	R	is	a	vectorized	language.	That	means	operations	are	applied	to	each	element	of	the
vector	automatically,	without	the	need	to	loop	through	the	vector.	This	is	a	powerful	concept	that
may	seem	foreign	to	people	coming	from	other	languages,	but	it	is	one	of	the	greatest	things	about	R.
Vectors	do	not	have	a	dimension,	meaning	there	is	no	such	thing	as	a	column	vector	or	row	vector.

These	vectors	are	not	like	the	mathematical	vector,	where	there	is	a	difference	between	row	and
column	orientation.1

1.	Column	or	row	vectors	can	be	represented	as	one-dimensional	matrices,	which	are	discussed	in	Section	5.3.

The	most	common	way	to	create	a	vector	is	with	c.	The	“c”	stands	for	combine	because	multiple
elements	are	being	combined	into	a	vector.
Click	here	to	view	code	image

>	x	<-c	(1,	2,	3,	4,	5,	6,	7,	8,	9,	10)

>	x

[1]	1	2	3	4	5	6	7	8	9	10

4.4.1	Vector	Operations
Now	that	we	have	a	vector	of	the	first	ten	numbers,	we	might	want	to	multiply	each	element	by	3.	In	R
this	is	a	simple	operation	using	just	the	multiplication	operator	(*).
Click	here	to	view	code	image

>	x	*	3

[1]	3	6	9	12	15	18	21	24	27	30

No	loops	are	necessary.	Addition,	subtraction	and	division	are	just	as	easy.	This	also	works	for	any
number	of	operations.
Click	here	to	view	code	image

>	x	+	2

[1]	3	4	5	6	7	8	9	10	11	12

>	x	-	3

[1]	-2	-1	0	1	2	3	4	5	6	7

>	x	/	4

[1]	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50

>	x^2

[1]	1	4	9	16	25	36	49	64	81	100

>	sqrt(x)

[1]	1.000000	1.414214	1.732051	2.000000	2.236068	2.449490	2.645751

[8]	2.828427	3.000000	3.162278

Earlier	we	created	a	vector	of	the	first	ten	numbers	using	the	c	function,	which	creates	a	vector.	A
shortcut	is	the	:	operator,	which	generates	a	sequence	of	consecutive	numbers,	in	either	direction.
Click	here	to	view	code	image

>	1	:10

[1]	1	2	3	4	5	6	7	8	9	10

>	10:1

[1]	10	9	8	7	6	5	4	3	2	1

>	-2:3

[1]	-2	-1	0	1	2	3

>	5:-7

[1]	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6	-7

Vector	operations	can	be	extended	even	further.	Let’s	say	we	have	two	vectors	of	equal	length.	Each	of
the	corresponding	elements	can	be	operated	on	together.
Click	here	to	view	code	image

>	#	create	two	vectors	of	equal	length

>	x	<-	1:10

>	y	<-	-5:4

>	#	add	them

>	x	+	y

[1]	-4	-2	0	2	4	6	8	10	12	14

>	#	subtract	them

>	x	-	y

[1]	6	6	6	6	6	6	6	6	6	6

>	#	multiply	them

>	x	*	y

[1]	-5	-8	-9	-8	-5	0	7	16	27	40

>	#	divide	them--notice	division	by	0	results	in	Inf

>	x	/	y

[1]	-0.2	-0.5	-1.0	-2.0	-5.0	Inf	7.0	4.0	3.0	2.5

>	#	raise	one	to	the	power	of	the	other

>	x^y

[1]	1.000000e+00	6.250000e-02	3.703704e-02	6.250000e-02	2.000000e-01

[6]	1.000000e+00	7.000000e+00	6.400000e+01	7.290000e+02	1.000000e+04

>	#	check	the	length	of	each

>	length(x)

[1]	10

>	length(y)

[1]	10

>	#	the	length	of	them	added	together	should	be	the	same

>	length(x	+	y)

[1]	10

In	the	preceding	code	block,	notice	the	hash	#	symbol.	This	is	used	for	comments.	Anything	following
the	hash,	on	the	same	line,	will	be	commented	out	and	not	run.
Things	get	a	little	more	complicated	when	operating	on	two	vectors	of	unequal	length.	The	shorter

vector	gets	recycled—that	is,	its	elements	are	repeated,	in	order,	until	they	have	been	matched	up	with
every	element	of	the	longer	vector.	If	the	longer	one	is	not	a	multiple	of	the	shorter	one,	a	warning	is
given.
Click	here	to	view	code	image

>	x	+	c(1,	2)

[1]	2	4	4	6	6	8	8	10	10	12

>	x	+	c(1,	2,	3)

Warning	in	x	+	c(1,	2,	3):	longer	object	length	is	not	a

multiple	of	shorter	object	length

[1]	2	4	6	5	7	9	8	10	12	11

Comparisons	also	work	on	vectors.	Here	the	result	is	a	vector	of	the	same	length	containing	TRUE
or	FALSE	for	each	element.
Click	here	to	view	code	image

>	x	<=	5

[1]	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE

>	x	>	y

[1]	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE

>	x	<	y

[1]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

To	test	whether	all	the	resulting	elements	are	TRUE,	use	the	all	function.	Similarly,	the	any	function
checks	whether	any	element	is	TRUE.

>	x	<-	10:1

>	y	<-	-4:5

>	any(x	<	y)

[1]	TRUE

>	all(x	<	y)

[1]	FALSE

The	nchar	function	also	acts	on	each	element	of	a	vector.
Click	here	to	view	code	image

>	q	<-	c("Hockey",	"Football",	"Baseball",	"Curling",	"Rugby",

+	"Lacrosse",	"Basketball",	"Tennis",	"Cricket",	"Soccer")

>	nchar(q)

[1]	6	8	8	7	5	8	10	6	7	6

>	nchar(y)

[1]	2	2	2	2	1	1	1	1	1	1

Accessing	individual	elements	of	a	vector	is	done	using	square	brackets	([]).	The	first	element	of
x	is	retrieved	by	typing	x[1],	the	first	two	elements	by	x[1:2]	and	nonconsecutive	elements	by
x[c(1,	4)].

>	x[1]

[1]	10

>	x[1:2]

[1]	10	9

>	x[c(1,	4)]

[1]	10	7

This	works	for	all	types	of	vectors	whether	they	are	numeric,	logical,	character	and	so	forth.
It	is	possible	to	give	names	to	a	vector	either	during	creation	or	after	the	fact.

Click	here	to	view	code	image

>	#	provide	a	name	for	each	element	of	an	array	using	a	name-value	pair

>	c(One="a",	Two="y",	Last="r")

One	Two	Last

"a"	"y"	"r"

>	#	create	a	vector

>	w	<-	1:3

>	#	name	the	elements

>	names(w)	<-c("a",	"b",	"c")

>	w

a	b	c

1	2	3

4.4.2	Factor	Vectors
Factors	are	an	important	concept	in	R,	especially	when	building	models.	Let’s	create	a	simple
vector	of	text	data	that	has	a	few	repeats.	We	will	start	with	the	vector	q	we	created	earlier	and
add	some	elements	to	it.
Click	here	to	view	code	image

>	q2	<-c(q,	"Hockey",	"Lacrosse",	"Hockey",	"Water	Polo",

+	"Hockey",	"Lacrosse")	Converting	this	to	a	factor	is	easy	with	as.factor.

Click	here	to	view	code	image

>	q2Factor	<-as.factor(q2)

>	q2Factor

[1]	Hockey	Football	Baseball	Curling	Rugby	Lacrosse

[7]	Basketball	Tennis	Cricket	Soccer	Hockey	Lacrosse

[13]	Hockey	Water	Polo	Hockey	Lacrosse

11	Levels:	Baseball	Basketball	Cricket	Curling	Football	...	Water	Polo	Notice	that	after

printing	out	every	element	of	q2Factor,	R	also	prints	the	levels	of	q2Factor.	The	levels

of	a	factor	are	the	unique	values	of	that	factor	variable.	Technically,	R	is	giving	each

unique	value	of	a	factor	a	unique	integer,	tying	it	back	to	the	character	representation.

This	can	be	seen	with	as.numeric.

Click	here	to	view	code	image

>	as.numeric(q2Factor)

[1]	6	5	1	4	8	7	2	10	3	9	6	7	6	11	6	7

In	ordinary	factors	the	order	of	the	levels	does	not	matter	and	one	level	is	no	different	from
another.	Sometimes,	however,	it	is	important	to	understand	the	order	of	a	factor,	such	as	when	coding
education	levels.	Setting	the	ordered	argument	to	TRUE	creates	an	ordered	factor	with	the	order
given	in	the	levels	argument.
Click	here	to	view	code	image

>	factor(x=c("High	School",	"College",	"Masters",	"Doctorate"),

+	levels=c("High	School",	"College",	"Masters",	"Doctorate"),

+	ordered=TRUE)

[1]	High	School	College	Masters	Doctorate

Levels:	High	School	<	College	<	Masters	<	Doctorate	Factors	can	drastically	reduce	the

size	of	the	variable	because	they	are	storing	only	the	unique	values,	but	they	can	cause

headaches	if	not	used	properly.	This	will	be	discussed	further	throughout	the	book.

4.5	Calling	Functions
Earlier	we	briefly	used	a	few	basic	functions	like	nchar,	length	and	as.Date	to	illustrate	some	concepts.
Functions	are	very	important	and	helpful	in	any	language	because	they	make	code	easily	repeatable.
Almost	every	step	taken	in	R	involves	using	functions,	so	it	is	best	to	learn	the	proper	way	to	call	them.	R
function	calling	is	filled	with	a	good	deal	of	nuance,	so	we	are	going	to	focus	on	the	gist	of	what	is
needed	to	know.	Of	course,	throughout	the	book	there	will	be	many	examples	of	calling	functions.
Let’s	start	with	the	simple	mean	function,	which	computes	the	average	of	a	set	of	numbers.	In	its

simplest	form	it	takes	a	vector	as	an	argument.
>	mean(x)

[1]	5.5

More	complicated	functions	have	multiple	arguments	that	can	either	be	specified	by	the	order	they	are
entered	or	by	using	their	name	with	an	equal	sign.	We	will	see	further	use	of	this	throughout	the	book.
R	provides	an	easy	way	for	users	to	build	their	own	functions,	which	we	will	cover	in	more	detail	in

Chapter	8.

4.6	Function	Documentation
Any	function	provided	in	R	has	accompanying	documentation,	with	varying	quality,	of	course.	The	easiest
way	to	access	that	documentation	is	to	place	a	question	mark	in	front	of	the	function	name,	like	this:	?
mean.
To	get	help	on	binary	operators	like	+,	*	or	==	surround	them	with	back	ticks	(`).
>	?`+`

>	?`*`

>	?`==`

There	are	occasions	when	we	have	only	a	sense	of	the	function	we	want	to	use.	In	that	case	we	can
look	up	the	function	by	using	part	of	the	name	with	apropos.
Click	here	to	view	code	image

>	apropos("mea")

[1]	".colMeans"	".rowMeans"	"colMeans"

[4]	"influence.measures"	"kmeans"	"mean"

[7]	"mean.Date"	"mean.default"	"mean.difftime"

[10]	"mean.POSIXct"	"mean.POSIXlt"	"mean_cl_boot"

[13]	"mean_cl_normal"	"mean_sdl"	"mean_se"

[16]	"rowMeans"	"weighted.mean"

4.7	Missing	Data
Missing	data	plays	a	critical	role	in	both	statistics	and	computing,	and	R	has	two	types	of	missing	data,
NA	and	NULL.	While	they	are	similar,	they	behave	differently	and	that	difference	needs	attention.

4.7.1	NA
Often	we	will	have	data	that	has	missing	values	for	any	number	of	reasons.	Statistical	programs	use
various	techniques	to	represent	missing	data	such	as	a	dash,	a	period	or	even	the	number	99.	R	uses	NA.
NA	will	often	be	seen	as	just	another	element	of	a	vector.	is.na	tests	each	element	of	a	vector	for
missingness.
Click	here	to	view	code	image

>	z	<-	c(1,	2,	NA,	8,	3,	NA,	3)

>	z

[1]	1	2	NA	8	3	NA	3

>	is.na(z)

[1]	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE

NA	is	entered	simply	by	typing	the	letters	“N”	and	“A”	as	if	they	were	normal	text.	This	works	for	any
kind	of	vector.
Click	here	to	view	code	image

>	zChar	<-	c("Hockey",	NA,	"Lacrosse")

>	zChar

[1]	"Hockey"	NA	"Lacrosse"

>	is.na(zChar)

[1]	FALSE	TRUE	FALSE

If	we	calculate	the	mean	of	z,	the	answer	will	be	NA	since	mean	returns	NA	if	even	a	single	element	is
NA.

>	mean(z)

[1]	NA

When	the	na.rm	is	TRUE,	mean	first	removes	the	missing	data,	then	calculates	the	mean.
>	mean(z,	na.rm=TRUE)

[1]	3.4

There	is	similar	functionality	with	sum,	min,	max,	var,	sd	and	other	functions	as	seen	in	Section	18.1.
Handling	missing	data	is	an	important	part	of	statistical	analysis.	There	are	many	techniques	depending

on	field	and	preference.	One	popular	technique	is	multiple	imputation,	which	is	discussed	in	detail	in
Chapter	25	of	Andrew	Gelman	and	Jennifer	Hill’s	book	Data	Analysis	Using	Regression	and
Multilevel/Hierarchical	Models,	and	is	implemented	in	the	mi,	mice	and	Amelia	packages.

4.7.2	NULL
NULL	is	the	absence	of	anything.	It	is	not	exactly	missingness,	it	is	nothingness.	Functions	can	sometimes
return	NULL	and	their	arguments	can	be	NULL.	An	important	difference	between	NA	and	NULL	is	that
NULL	is	atomical	and	cannot	exist	within	a	vector.	If	used	inside	a	vector,	it	simply	disappears.

>	z	<-	c(1,	NULL,3)

>	z

[1]	1	3

Even	though	it	was	entered	into	the	vector	z,	it	did	not	get	stored	in	z.	In	fact,	z	is	only	two
elements	long.
The	test	for	a	NULL	value	is	is.null.
>	d	<-	NULL

>	is.null(d)

[1]	TRUE

>	is.null(7)

[1]	FALSE

Since	NULL	cannot	be	a	part	of	a	vector,	is.null	is	appropriately	not	vectorized.

4.8	Pipes
A	new	paradigm	for	calling	functions	in	R	is	the	pipe.	The	pipe	from	the	magrittr	package	works	by
taking	the	value	or	object	on	the	left-hand	side	of	the	pipe	and	inserting	it	into	the	first	argument	of	the
function	that	is	on	the	right-hand	side	of	the	pipe.	A	simple	example	example	would	be	using	a	pipe	to
feed	x	to	the	mean	function.

>	library(magrittr)

>	x	<-1:10

>	mean(x)

[1]	5.5

>	x	%>%	mean

[1]	5.5

The	result	is	the	same	but	they	are	written	differently.	Pipes	are	most	useful	when	used	in	a	pipeline	to
chain	together	a	series	of	function	calls.	Given	a	vector	z	that	contains	numbers	and	NAs,	we	want	to
find	out	how	many	NAs	are	present.	Traditionally,	this	would	be	done	by	nesting	functions.
Click	here	to	view	code	image

>	z	<-	c(1,	2,	NA,	8,	3,	NA,	3)

>	sum(is.na(z))

[1]	2

This	can	also	be	done	using	pipes.
>	z	%>%	is.na	%>%	sum

[1]	2

Pipes	read	more	naturally	in	a	left-to-right	fashion,	making	the	code	easier	to	comprehend.	Using	pipes
is	negligibly	slower	than	nesting	function	calls,	though	as	Hadley	Wickham	notes,	pipes	will	not	be	a
major	bottleneck	in	code.
When	piping	an	object	into	a	function	and	not	setting	any	additional	arguments,	no	parentheses	are

needed.	However,	if	additional	arguments	are	used,	then	they	should	be	named	and	included	inside	the
parentheses	after	the	function	call.	The	first	argument	is	not	used,	as	the	pipe	already	inserted	the	left-hand
object	into	the	first	argument.

>	z	%>%	mean(na.rm=TRUE)

[1]	3.4

Pipes	are	used	extensively	in	a	number	of	modern	packages	after	being	popularized	by	Hadley
Wickham	in	the	dplyr	package,	as	detailed	in	Chapter	14.

4.9	Conclusion
Data	come	in	many	types,	and	R	is	well	equipped	to	handle	them.	In	addition	to	basic	calculations,	R	can
handle	numeric,	character	and	time-based	data.	One	of	the	nicer	parts	of	working	with	R,	although	one	that
requires	a	different	way	of	thinking	about	programming,	is	vectorization.	This	allows	operating	on
multiple	elements	in	a	vector	simultaneously,	which	leads	to	faster	and	more	mathematical	code.

5.	Advanced	Data	Structures

Sometimes	data	require	more	complex	storage	than	simple	vectors	and	thankfully	R	provides	a	host	of
data	structures.	The	most	common	are	the	data.frame,	matrix	and	list,	followed	by	the	array.
Of	these,	the	data.frame	will	be	most	familiar	to	anyone	who	has	used	a	spreadsheet,	the	matrix	to
people	familiar	with	matrix	math	and	the	list	to	programmers.

5.1	data.frames
Perhaps	one	of	the	most	useful	features	of	R	is	the	data.frame.	It	is	one	of	the	most	often	cited	reasons
for	R’s	ease	of	use.
On	the	surface	a	data.frame	is	just	like	an	Excel	spreadsheet	in	that	it	has	columns	and	rows.	In

statistical	terms,	each	column	is	a	variable	and	each	row	is	an	observation.
In	terms	of	how	R	organizes	data.frames,	each	column	is	actually	a	vector,	each	of	which	has

the	same	length.	That	is	very	important	because	it	lets	each	column	hold	a	different	type	of	data	(see
Section	4.3).	This	also	implies	that	within	a	column	each	element	must	be	of	the	same	type,	just	like	with
vectors.
There	are	numerous	ways	to	construct	a	data.frame,	the	simplest	being	to	use	the	data.frame

function.	Let’s	create	a	basic	data.frame	using	some	of	the	vectors	we	have	already	introduced,
namely	x,	y	and	q.
Click	here	to	view	code	image

>	x	<-	10:1

>	y	<-	-4:5

>	q	<-	c("Hockey",	"Football",	"Baseball",	"Curling",	"Rugby",

+	"Lacrosse",	"Basketball",	"Tennis",	"Cricket",	"Soccer")

>	theDF	<-	data.frame(x,	y,	q)

>	theDF

x	y	q

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

This	creates	a	10x3	data.frame	consisting	of	those	three	vectors.	Notice	the	names	of	theDF
are	simply	the	variables.	We	could	have	assigned	names	during	the	creation	process,	which	is	generally	a
good	idea.
Click	here	to	view	code	image

>	theDF	<-	data.frame(First=x,	Second=y,	Sport=q)

>	theDF

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

data.frames	are	complex	objects	with	many	attributes.	The	most	frequently	checked	attributes	are
the	number	of	rows	and	columns.	Of	course	there	are	functions	to	do	this	for	us:	nrow	and	ncol.	And	in
case	both	are	wanted	at	the	same	time	there	is	the	dim	function.

>	nrow(theDF)

[1]	10

>	ncol(theDF)

[1]	3

>	dim(theDF)

[1]	10	3

Checking	the	column	names	of	a	data.frame	is	as	simple	as	using	the	names	function.	This	returns	a
character	vector	listing	the	columns.	Since	it	is	a	vector	we	can	access	individual	elements	of
it	just	like	any	other	vector.
Click	here	to	view	code	image

>	names(theDF)

[1]	"First"	"Second"	"Sport"

>	names(theDF)[3]

[1]	"Sport"

We	can	also	check	and	assign	the	row	names	of	a	data.frame.
Click	here	to	view	code	image

>	rownames(theDF)

[1]	"1"	"2"	"3"	"4"	"5"	"6"	"7"	"8"	"9"	"10"

>	rownames(theDF)	<-	c("One",	"Two",	"Three",	"Four",	"Five",	"Six",

+	"Seven",	"Eight",	"Nine",	"Ten")

>	rownames(theDF)

[1]	"One"	"Two"	"Three"	"Four"	"Five"	"Six"	"Seven"	"Eight"

[9]	"Nine"	"Ten"

>	#	set	them	back	to	the	generic	index

>	rownames(theDF)	<-	NULL

>	rownames(theDF)

[1]	"1"	"2"	"3"	"4"	"5"	"6"	"7"	"8"	"9"	"10"

Usually	a	data.frame	has	far	too	many	rows	to	print	them	all	to	the	screen,	so	thankfully	the	head
function	prints	out	only	the	first	few	rows.
Click	here	to	view	code	image

>	head(theDF)

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

>	head(theDF,	n=7)

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

>	tail(theDF)

First	Second	Sport

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

As	we	can	with	other	variables,	we	can	check	the	class	of	a	data.frame	using	the	class	function.
>	class(theDF)

[1]	"data.frame"

Since	each	column	of	the	data.frame	is	an	individual	vector,	it	can	be	accessed	individually	and
each	has	its	own	class.	Like	many	other	aspects	of	R,	there	are	multiple	ways	to	access	an	individual
column.	There	is	the	$	operator	and	also	the	square	brackets.	Running	theDF$Sport	will	give	the	third
column	in	theDF.	That	allows	us	to	specify	one	particular	column	by	name.
Click	here	to	view	code	image

>	theDF$Sport

[1]	Hockey	Football	Baseball	Curling	Rugby	Lacrosse

[7]	Basketball	Tennis	Cricket	Soccer

10	Levels:	Baseball	Basketball	Cricket	Curling	Football	...	Tennis	Similar	to	vectors,

data.frames	allow	us	to	access	individual	elements	by	their	position	using	square

brackets,	but	instead	of	having	one	position,	two	are	specified.	The	first	is	the	row

number	and	the	second	is	the	column	number.	So	to	get	the	third	row	from	the	second	column

we	use	theDF[3,	2].

>	theDF[3,	2]

[1]	-2

To	specify	more	than	one	row	or	column,	use	a	vector	of	indices.
Click	here	to	view	code	image

>	#	row	3,	columns	2	through	3

>	theDF[3,	2:3]

Second	Sport

3	-2	Baseball

>	#	rows	3	and	5,	column	2

>	#	since	only	one	column	was	selected	it	was	returned	as	a	vector

>	#	hence	the	column	names	will	not	be	printed

>	theDF[c(3,	5),	2]

[1]	-2	0

>	#	rows	3	and	5,	columns	2	through	3

>	theDF[c(3,	5),	2:3]

Second	Sport

3	-2	Baseball

5	0	Rugby

To	access	an	entire	row,	specify	that	row	while	not	specifying	any	column.	Likewise,	to	access	an
entire	column,	specify	that	column	while	not	specifying	any	row.
Click	here	to	view	code	image

>	#	all	of	column	3

>	#	since	it	is	only	one	column	a	vector	is	returned

>	theDF[,	3]

[1]	Hockey	Football	Baseball	Curling	Rugby	Lacrosse

[7]	Basketball	Tennis	Cricket	Soccer

10	Levels:	Baseball	Basketball	Cricket	Curling	Football	...	Tennis

>	#	all	of	columns	2	through	3

>	theDF[,	2:3]

Second	Sport

1	-4	Hockey

2	-3	Football

3	-2	Baseball

4	-1	Curling

5	0	Rugby

6	1	Lacrosse

7	2	Basketball

8	3	Tennis

9	4	Cricket

10	5	Soccer

>	#	all	of	row	2

>	theDF[2,]

First	Second	Sport

2	9	-3	Football

>	#	all	of	rows	2	through	4

>	theDF[2:4,]

First	Second	Sport

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

To	access	multiple	columns	by	name,	make	the	column	argument	a	character	vector	of	the	names.
Click	here	to	view	code	image

>	theDF[,	c("First",	"Sport")]

First	Sport

1	10	Hockey

2	9	Football

3	8	Baseball

4	7	Curling

5	6	Rugby

6	5	Lacrosse

7	4	Basketball

8	3	Tennis

9	2	Cricket

10	1	Soccer

Yet	another	way	to	access	a	specific	column	is	to	use	its	column	name	(or	its	number)	either	as	second
argument	to	the	square	brackets	or	as	the	only	argument	to	either	single	or	double	square	brackets.
Click	here	to	view	code	image

>	#	just	the	"Sport"	column

>	#	since	it	is	one	column	it	returns	as	a	(factor)	vector

>	theDF[,	"Sport"]

[1]	Hockey	Football	Baseball	Curling	Rugby	Lacrosse

[7]	Basketball	Tennis	Cricket	Soccer

10	Levels:	Baseball	Basketball	Cricket	Curling	Football	...	Tennis

>	class(theDF[,	"Sport"])

[1]	"factor"

>	#	just	the	"Sport"	column

>	#	this	returns	a	one	column	data.frame

>	theDF["Sport"]

Sport

1	Hockey

2	Football

3	Baseball

4	Curling

5	Rugby

6	Lacrosse

7	Basketball

8	Tennis

9	Cricket

10	Soccer

>	class(theDF["Sport"])

[1]	"data.frame"

>	#	just	the	"Sport"	column

>	#	this	also	returns	a	(factor)	vector

>	theDF[["Sport"]]

[1]	Hockey	Football	Baseball	Curling	Rugby	Lacrosse

[7]	Basketball	Tennis	Cricket	Soccer

10	Levels:	Baseball	Basketball	Cricket	Curling	Football	...	Tennis

>	class(theDF[["Sport"]])

[1]	"factor"

All	of	these	methods	have	differing	outputs.	Some	return	a	vector;	some	return	a	single-column

data.frame.	To	ensure	a	single-column	data.frame	while	using	single	square	brackets,	there	is	a
third	argument:	drop=FALSE.	This	also	works	when	specifying	a	single	column	by	number.
Click	here	to	view	code	image

>	theDF[,	"Sport",	drop=FALSE]

Sport

1	Hockey

2	Football

3	Baseball

4	Curling

5	Rugby

6	Lacrosse

7	Basketball

8	Tennis

9	Cricket

10	Soccer

>	class(theDF[,	"Sport",	drop=FALSE])

[1]	"data.frame"

>	theDF[,	3,	drop=FALSE]

Sport

1	Hockey

2	Football

3	Baseball

4	Curling

5	Rugby

6	Lacrosse

7	Basketball

8	Tennis

9	Cricket

10	Soccer

>	class(theDF[,	3,	drop=FALSE])

[1]	"data.frame"

In	Section	4.4.2	we	see	that	factors	are	stored	specially.	To	see	how	they	would	be	represented	in
data.frame,	form	use	model.matrix	to	create	a	set	of	indicator	(or	dummy)	variables.	That	is	one
column	for	each	level	of	a	factor,	with	a	1	if	a	row	contains	that	level	or	a	0	otherwise.
Click	here	to	view	code	image

>	newFactor	<-factor(c("Pennsylvania",	"New	York",	"New	Jersey",

+	"New	York",	"Tennessee",	"Massachusetts",

+	"Pennsylvania",	"New	York"))

>	model.matrix(~	newFactor	-	1)

newFactorMassachusetts	newFactorNew	Jersey	newFactorNew	York

1	0	0	0

2	0	0	1

3	0	1	0

4	0	0	1

5	0	0	0

6	1	0	0

7	0	0	0

8	0	0	1

newFactorPennsylvania	newFactorTennessee

1	1	0

2	0	0

3	0	0

4	0	0

5	0	1

6	0	0

7	1	0

8	0	0

attr(,"assign")

[1]	1	1	1	1	1

attr(,"contrasts")

attr(,"contrasts")$newFactor

[1]	"contr.treatment"

We	learn	more	about	formulas	(the	argument	to	model.matrix)	in	Sections	11.2	and	14.3.2	and
Chapters	18	and	19.

5.2	Lists
Often	a	container	is	needed	to	hold	arbitrary	objects	of	either	the	same	type	or	varying	types.	R

accomplishes	this	through	lists.	They	store	any	number	of	items	of	any	type.	A	list	can	contain	all
numerics	or	characters	or	a	mix	of	the	two	or	data.frames	or,	recursively,	other	lists.
Lists	are	created	with	the	list	function	where	each	argument	to	the	function	becomes	an	element	of	the

list.
Click	here	to	view	code	image

>	#	creates	a	three	element	list

>	list(1,	2,	3)

[[1]]

[1]	1

[[2]]

[1]	2

[[3]]

[1]	3

>	#	creates	a	single	element	list

>	#	the	only	element	is	a	vector	that	has	three	elements

>	list(c(1,	2,	3))

[[1]]

[1]	1	2	3

>	#	creates	a	two	element	list

>	#	the	first	is	a	three	element	vector

>	#	the	second	element	is	a	five	element	vector

>	(list3	<-	list(c(1,	2,	3),	3:7))

[[1]]

[1]	1	2	3

[[2]]

[1]	3	4	5	6	7

>	#	two	element	list

>	#	first	element	is	a	data.frame

>	#	second	element	is	a	10	element	vector

>	list(theDF,	1:10)

[[1]]

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

[[2]]

[1]	1	2	3	4	5	6	7	8	9	10

>	#	three	element	list

>	#	first	is	a	data.frame

>	#	second	is	a	vector

>	#	third	is	list3	which	holds	two	vectors

>	list5	<-	list(theDF,	1:10,	list3)

>	list5

[[1]]

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

[[2]]

[1]	1	2	3	4	5	6	7	8	9	10

[[3]]

[[3]][[1]]

[1]	1	2	3

[[3]][[2]]

[1]	3	4	5	6	7

Notice	in	the	previous	block	of	code	(where	list3	was	created)	that	enclosing	an	expression	in
parenthesis	displays	the	results	after	execution.
Like	data.frames,	lists	can	have	names.	Each	element	has	a	unique	name	that	can	be	either

viewed	or	assigned	using	names.
Click	here	to	view	code	image

>	names(list5)

NULL

>	names(list5)	<-c("data.frame",	"vector",	"list")

>	names(list5)

[1]	"data.frame"	"vector"	"list"

>	list5

$data.frame

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

$vector

[1]	1	2	3	4	5	6	7	8	9	10

$list

$list[[1]]

[1]	1	2	3

$list[[2]]

[1]	3	4	5	6	7

Names	can	also	be	assigned	to	list	elements	during	creation	using	name-value	pairs.
Click	here	to	view	code	image

>	list6	<-	list(TheDataFrame=theDF,	TheVector=1:10,	TheList=list3)

>	names(list6)

[1]	"TheDataFrame"	"TheVector"	"TheList"

>	list6

$TheDataFrame

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

$TheVector

[1]	1	2	3	4	5	6	7	8	9	10

$TheList

$TheList[[1]]

[1]	1	2	3

$TheList[[2]]

[1]	3	4	5	6	7

Creating	an	empty	list	of	a	certain	size	is,	perhaps	confusingly,	done	with	vector.
Click	here	to	view	code	image

>	(emptyList	<-	vector(mode="list",	length=4))

[[1]]

NULL

[[2]]

NULL

[[3]]

NULL

[[4]]

NULL

To	access	an	individual	element	of	a	list,	use	double	square	brackets,	specifying	either	the	element
number	or	name.	Note	that	this	allows	access	to	only	one	element	at	a	time.
Click	here	to	view	code	image

>	list5[[1]]

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

>	list5[["data.frame"]]

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

Once	an	element	is	accessed	it	can	be	treated	as	if	that	actual	element	is	being	used,	allowing	nested
indexing	of	elements.
Click	here	to	view	code	image

>	list5[[1]]$Sport

[1]	Hockey	Football	Baseball	Curling	Rugby	Lacrosse

[7]	Basketball	Tennis	Cricket	Soccer

10	Levels:	Baseball	Basketball	Cricket	Curling	Football	...	Tennis

>	list5[[1]][,	"Second"]

[1]	-4	-3	-2	-1	0	1	2	3	4	5

>	list5[[1]][,	"Second",	drop=FALSE]

Second

1	-4

2	-3

3	-2

4	-1

5	0

6	1

7	2

8	3

9	4

10	5

It	is	possible	to	append	elements	to	a	list	simply	by	using	an	index	(either	numeric	or	named)	that
does	not	exist.
Click	here	to	view	code	image

>	#	see	how	long	it	currently	is

>	length(list5)

[1]	3

>	#	add	a	fourth	element,	unnamed

>	list5[[4]]	<-	2

>	length(list5)

[1]	4

>	#	add	a	fifth	element,	name

>	list5[["NewElement"]]	<-	3:6

>	length(list5)

[1]	5

>	names(list5)

[1]	"data.frame"	"vector"	"list"	""	"NewElement"

>	list5

$data.frame

First	Second	Sport

1	10	-4	Hockey

2	9	-3	Football

3	8	-2	Baseball

4	7	-1	Curling

5	6	0	Rugby

6	5	1	Lacrosse

7	4	2	Basketball

8	3	3	Tennis

9	2	4	Cricket

10	1	5	Soccer

$vector

[1]	1	2	3	4	5	6	7	8	9	10

$list

$list[[1]]

[1]	1	2	3

$list[[2]]

[1]	3	4	5	6	7

[[4]]

[1]	2

$NewElement

[1]	3	4	5	6

Occasionally	appending	to	a	list—or	vector	or	data.frame	for	that	matter—is	fine,	but	doing
so	repeatedly	is	computationally	expensive.	So	it	is	best	to	create	a	list	as	long	as	its	final	desired	size
and	then	fill	it	in	using	the	appropriate	indices.

5.3	Matrices
A	very	common	mathematical	structure	that	is	essential	to	statistics	is	a	matrix.	This	is	similar	to	a

data.frame	in	that	it	is	rectangular	with	rows	and	columns	except	that	every	single	element,
regardless	of	column,	must	be	the	same	type,	most	commonly	all	numerics.	They	also	act	similarly	to
vectors	with	element-by-element	addition,	multiplication,	subtraction,	division	and	equality.	The	nrow,
ncol	and	dim	functions	work	just	like	they	do	for	data.frames.
Click	here	to	view	code	image

>	#	create	a	5x2	matrix

>	A	<-	matrix(1:10,	nrow=5)

>	#	create	another	5x2	matrix

>	B	<-	matrix(21:30,	nrow=5)

>	#	create	another	5x2	matrix

>	C	<-	matrix(21:40,	nrow=2)

>	A

[,1]	[,2]

[1,]	1	6

[2,]	2	7

[3,]	3	8

[4,]	4	9

[5,]	5	10

>	B

[,1]	[,2]

[1,]	21	26

[2,]	22	27

[3,]	23	28

[4,]	24	29

[5,]	25	30

>	C

[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]

[1,]	21	23	25	27	29	31	33	35	37	39

[2,]	22	24	26	28	30	32	34	36	38	40

>	nrow(A)

[1]	5

>	ncol(A)

[1]	2

>	dim(A)

[1]	5	2

>	#	add	them

>	A	+	B

[,1]	[,2]

[1,]	22	32

[2,]	24	34

[3,]	26	36

[4,]	28	38

[5,]	30	40

>	#	multiply	them

>	A	*	B

[,1]	[,2]

[1,]	21	156

[2,]	44	189

[3,]	69	224

[4,]	96	261

[5,]	125	300

>	#	see	if	the	elements	are	equal

>	A	==	B

[,1]	[,2]

[1,]	FALSE	FALSE

[2,]	FALSE	FALSE

[3,]	FALSE	FALSE

[4,]	FALSE	FALSE

[5,]	FALSE	FALSE

Matrix	multiplication	is	a	commonly	used	operation	in	mathematics,	requiring	the	number	of	columns
of	the	left-hand	matrix	to	be	the	same	as	the	number	of	rows	of	the	right-hand	matrix.	Both	A	and	B
are	5X2	so	we	will	transpose	B	so	it	can	be	used	on	the	right-hand	side.
Click	here	to	view	code	image

>	A	%*%	t(B)

[,1]	[,2]	[,3]	[,4]	[,5]

[1,]	177	184	191	198	205

[2,]	224	233	242	251	260

[3,]	271	282	293	304	315

[4,]	318	331	344	357	370

[5,]	365	380	395	410	425

Another	similarity	with	data.frames	is	that	matrices	can	also	have	row	and	column	names.
Click	here	to	view	code	image

>	colnames(A)

NULL

>	rownames(A)

NULL

>	colnames(A)	<-	c("Left",	"Right")

>	rownames(A)	<-	c("1st",	"2nd",	"3rd",	"4th",	"5th")

>

>	colnames(B)

NULL

>	rownames(B)

NULL

>	colnames(B)	<-	c("First",	"Second")

>	rownames(B)	<-	c("One",	"Two",	"Three",	"Four",	"Five")

>

>	colnames(C)

NULL

>	rownames(C)

NULL

>	colnames(C)	<-	LETTERS[1:10]

>	rownames(C)	<-	c("Top",	"Bottom")	There	are	two	special	vectors,	letters	and	LETTERS,

that	contain	the	lower	case	and	upper	case	letters,	respectively.

Notice	the	effect	when	transposing	a	matrix	and	multiplying	matrices.	Transposing	naturally	flips
the	row	and	column	names.	Matrix	multiplication	keeps	the	row	names	from	the	left	matrix	and	the
column	names	from	the	right	matrix.
Click	here	to	view	code	image

>	t(A)

1st	2nd	3rd	4th	5th

Left	1	2	3	4	5

Right	6	7	8	9	10

>	A	%*%	C

A	B	C	D	E	F	G	H	I	J

1st	153	167	181	195	209	223	237	251	265	279

2nd	196	214	232	250	268	286	304	322	340	358

3rd	239	261	283	305	327	349	371	393	415	437

4th	282	308	334	360	386	412	438	464	490	516

5th	325	355	385	415	445	475	505	535	565	595

5.4	Arrays
An	array	is	essentially	a	multidimensional	vector.	It	must	all	be	of	the	same	type,	and	individual
elements	are	accessed	in	a	similar	fashion	using	square	brackets.	The	first	element	is	the	row	index,	the
second	is	the	column	index	and	the	remaining	elements	are	for	outer	dimensions.
Click	here	to	view	code	image

>	theArray	<-	array(1:12,	dim=c(2,	3,	2))

>	theArray

,	,	1

[,1]	[,2]	[,3]

[1,]	1	3	5

[2,]	2	4	6

,	,	2

[,1]	[,2]	[,3]

[1,]	7	9	11

[2,]	8	10	12

>	theArray[1,	,]

[,1]	[,2]

[1,]	1	7

[2,]	3	9

[3,]	5	11

>	theArray[1,	,	1]

[1]	1	3	5

>	theArray[,	,	1]

[,1]	[,2]	[,3]

[1,]	1	3	5

[2,]	2	4	6

The	main	difference	between	an	array	and	a	matrix	is	that	matrices	are	restricted	to	two
dimensions,	while	arrays	can	have	an	arbitrary	number.

5.5	Conclusion
Data	come	in	many	types	and	structures,	which	can	pose	a	problem	for	some	analysis	environments,	but	R
handles	them	with	aplomb.	The	most	common	data	structure	is	the	one-dimensional	vector,	which
forms	the	basis	of	everything	in	R.	The	most	powerful	structure	is	the	data.frame—something	special
in	R	that	most	other	languages	do	not	have—which	handles	mixed	data	types	in	a	spreadsheet-like	format.
Lists	are	useful	for	storing	collections	of	items,	like	a	hash	in	Perl.

6.	Reading	Data	into	R

Now	that	we	have	seen	some	of	R’s	basic	functionality	it	is	time	to	load	in	data.	As	with	everything	in	R,
there	are	numerous	ways	to	get	data;	the	most	common	is	probably	reading	comma	separated	values
(CSV)	files.	Of	course	there	are	many	other	options	that	we	cover	as	well.

6.1	Reading	CSVs
The	best	way	to	read	data	from	a	CSV	file1	is	to	use	read.table.	Many	people	also	like	to	use	read.csv,
which	is	a	wrapper	around	read.table	with	the	sep	argument	preset	to	a	comma	(,).	The	result	of	using
read.table	is	a	data.frame.

1.	Even	though	CSVs	can	hold	numeric,	text,	date	and	other	types	of	data,	it	is	actually	stored	as	text	and	can	be	opened	in	any	text	editor.

The	first	argument	to	read.table	is	the	full	path	of	the	file	to	be	loaded.	The	file	can	be	sitting	on	disk
or	even	the	Web.	For	purposes	of	this	book	we	will	read	from	the	Web.
Any	CSV	will	work,	but	we	have	posted	an	incredibly	simple	file	at

http://www.jaredlander.com/data/TomatoFirst.csv.	Let’s	read	that	into	R	using	read.table.
Click	here	to	view	code	image

>	theUrl	<-	"http://www.jaredlander.com/data/TomatoFirst.csv"

>	tomato	<-read.table(file=theUrl,	header=TRUE,	sep=",")	This	can	now	be	seen	using	head.

Click	here	to	view	code	image

>	head(tomato)

Round	Tomato	Price	Source	Sweet	Acid	Color	Texture

1	1	Simpson	SM	3.99	Whole	Foods	2.8	2.8	3.7	3.4

2	1	Tuttorosso	(blue)	2.99	Pioneer	3.3	2.8	3.4	3.0

3	1	Tuttorosso	(green)	0.99	Pioneer	2.8	2.6	3.3	2.8

4	1	La	Fede	SM	DOP	3.99	Shop	Rite	2.6	2.8	3.0	2.3

5	2	Cento	SM	DOP	5.49	D	Agostino	3.3	3.1	2.9	2.8

6	2	Cento	Organic	4.99	D	Agostino	3.2	2.9	2.9	3.1

Overall	Avg.of.Totals	Total.of.Avg

1	3.4	16.1	16.1

2	2.9	15.3	15.3

3	2.9	14.3	14.3

4	2.8	13.4	13.4

5	3.1	14.4	15.2

6	2.9	15.5	15.1

As	mentioned	before,	the	first	argument	is	the	file	name	in	quotes	(or	as	a	character	variable).	Notice
how	we	explicitly	used	the	argument	names	file,	header	and	sep.	As	discussed	in	Section	4.5,
function	arguments	can	be	specified	without	the	name	of	the	argument	(positionally	indicated),	but
specifying	the	arguments	is	good	practice.	The	second	argument,	header,	indicates	that	the	first	row	of
data	holds	the	column	names.	The	third	argument,	sep,	gives	the	delimiter	separating	data	cells.	Changing
this	to	other	values	such	as	“\t”	(tab	delimited)	or	“;”	(semicolon	delimited)	enables	it	to	read	other
types	of	files.
One	often	unknown	argument	that	is	helpful	to	use	is	stringsAsFactors.	Setting	this	to	FALSE

(the	default	is	TRUE)	prevents	character	columns	from	being	converted	to	factor	columns.	This
both	saves	computation	time—this	can	be	dramatic	if	it	is	a	large	dataset	with	many	character
columns	with	many	unique	values—and	keeps	the	columns	as	characters,	which	are	easier	to	work

../../../../../www.jaredlander.com/data/TomatoFirst.csv

with.
Although	we	do	not	mention	this	argument	in	Section	5.1,	stringsAsFactors	can	be	used	in

data.frame.	Re-creating	that	first	bit	of	code	results	in	an	easier-to-use	“Sport”	column.
Click	here	to	view	code	image

>	x	<-	10:1

>	y	<-	-4:5

>	q	<-c("Hockey",	"Football",	"Baseball",	"Curling",	"Rugby",

+	"Lacrosse",	"Basketball",	"Tennis",	"Cricket",	"Soccer")

>	theDF	<-data.frame(First=x,	Second=y,	Sport=q,	stringsAsFactors=FALSE)

>	theDF$Sport

[1]	"Hockey"	"Football"	"Baseball"	"Curling"	"Rugby"

[6]	"Lacrosse"	"Basketball"	"Tennis"	"Cricket"	"Soccer"

There	are	numerous	other	arguments	to	read.table,	the	most	useful	being	quote	and	colClasses,
respectively,	specifying	the	character	used	for	enclosing	cells	and	the	data	type	for	each	column.
Like	read.csv,	there	are	other	wrapper	functions	for	read.table	with	preset	arguments.	The	main

differences	are	the	sep	and	dec	arguments.	These	are	detailed	in	Table	6.1.
Large	files	can	be	slow	to	read	into	memory	using	read.table,	and	fortunately	there	are	alternatives

available.	The	two	most	prominent	functions	for	reading	large	CSVs—and	other	text	files—are
read_delim	from	the	readr	package	by	Hadley	Wickham	and	fread	from	the	data.table	package	by	Matt
Dowle,	covered	in	Sections	6.1.1	and	6.1.2,	respectively.	Both	are	very	fast,	and	neither	converts
character	data	to	factors	automatically.

Table	6.1	Functions,	and	their	default	arguments,	for	reading	plain	text	data

6.1.1	read_delim
The	readr	package	provides	a	family	of	functions	for	reading	text	files.	The	most	commonly	used	will	be
read_delim	for	reading	delimited	files	such	as	CSVs.	Its	first	argument	is	the	full	filename	or	URL	of	the
file	to	be	read.	The	col_names	argument	is	set	to	TRUE	by	default	to	specify	that	the	first	row	of	the
file	holds	the	column	names.
Click	here	to	view	code	image

>	library(readr)

>	theUrl	<-	"http://www.jaredlander.com/data/TomatoFirst.csv"

>	tomato2	<-read_delim(file=theUrl,	delim=',')

Parsed	with	column	specification:

cols(

Round	=	col_integer(),

Tomato	=	col_character(),

Price	=	col_double(),

Source	=	col_character(),

Sweet	=	col_double(),

Acid	=	col_double(),

Color	=	col_double(),

Texture	=	col_double(),

Overall	=	col_double(),

'Avg	of	Totals'	=	col_double(),

'Total	of	Avg'	=	col_double()

)

When	read_delim	is	executed,	a	message	is	displayed	that	shows	the	column	names	and	the	type	of
data	they	store.	The	data	can	be	displayed	using	head.	read_delim,	and	all	the	data-reading	functions	in
readr,	return	a	tibble,	which	is	an	extension	of	data.frame	and	is	further	explained	in	Section
12.2.	The	most	obvious	visual	change	is	that	metadata	is	displayed	such	as	the	number	of	rows	and
columns	and	the	data	types	of	each	column.	tibbles	also	intelligently	only	print	as	many	rows	and
columns	as	will	fit	on	the	screen.
Click	here	to	view	code	image

>	tomato2

#	A	tibble:	16	×	11

Round	Tomato	Price	Source	Sweet	Acid

<int>	<chr>	<dbl>	<chr>	<dbl>	<dbl>

1	1	Simpson	SM	3.99	Whole	Foods	2.8	2.8

2	1	Tuttorosso	(blue)	2.99	Pioneer	3.3	2.8

3	1	Tuttorosso	(green)	0.99	Pioneer	2.8	2.6

4	1	La	Fede	SM	DOP	3.99	Shop	Rite	2.6	2.8

5	2	Cento	SM	DOP	5.49	D	Agostino	3.3	3.1

6	2	Cento	Organic	4.99	D	Agostino	3.2	2.9

7	2	La	Valle	SM	3.99	Shop	Rite	2.6	2.8

8	2	La	Valle	SM	DOP	3.99	Faicos	2.1	2.7

9	3	Stanislaus	Alta	Cucina	4.53	Restaurant	Depot	3.4	3.3

10	3	Ciao	NA	Other	2.6	2.9

11	3	Scotts	Backyard	SM	0.00	Home	Grown	1.6	2.9

12	3	Di	Casa	Barone	(organic)	12.80	Eataly	1.7	3.6

13	4	Trader	Joes	Plum	1.49	Trader	Joes	3.4	3.3

14	4	365	Whole	Foods	1.49	Whole	Foods	2.8	2.7

15	4	Muir	Glen	Organic	3.19	Whole	Foods	2.9	2.8

16	4	Bionature	Organic	3.39	Whole	Foods	2.4	3.3

#	...	with	5	more	variables:	Color	<dbl>,	Texture	<dbl>,

#	Overall	<dbl>,	`Avg	of	Totals`	<dbl>,	`Total	of	Avg`	<dbl>	Not	only	is	read_delim	faster

than	read.table;	it	also	removes	the	need	to	set	stringsAsFactors	to	FALSE	since	that

argument	does	not	even	exist.	The	functions	read_csv,	read_csv2	and	read_tsv	are	special

cases	for	when	the	delimiters	are	commas	(,),	semicolons	(;)	and	tabs	(\t),	respectively.

Note	that	the	data	is	read	into	a	tbl_df	object,	which	is	an	extension	of	tbl,	which	is

itself	an	extension	of	data.frame.tbl	is	a	special	type	of	data.frame	that	is	defined	in

the	dplyr	package	and	explained	in	Section	12.2.	A	nice	feature	is	that	the	data	type	of

each	column	is	displayed	under	the	column	names.

There	are	helper	functions	in	readr	that	are	wrappers	around	read_delim	with	specific	delimiters
preset,	such	as	read_csv	and	read_tsv.

6.1.2	fread
Another	options	for	reading	large	data	quickly	is	fread	from	the	data.table	package.	The	first	argument	is
the	full	filename	or	URL	of	the	file	to	be	read.	The	header	argument	indicates	that	the	first	row	of	the
file	holds	the	column	names	and	sep	specifies	the	field	delimiter.	This	function	has	a
stringsAsFactors	argument	that	is	set	to	FALSE	by	default.
Click	here	to	view	code	image

>	library(data.table)

>	theUrl	<-	"http://www.jaredlander.com/data/TomatoFirst.csv"

>	tomato3	<-fread(input=theUrl,	sep=',',	header=TRUE)	Here,	also,	head	can	be	used	to	see

the	first	few	rows	of	data.

Click	here	to	view	code	image

>	head(tomato3)

Round	Tomato	Price	Source	Sweet	Acid	Color

1:	1	Simpson	SM	3.99	Whole	Foods	2.8	2.8	3.7

2:	1	Tuttorosso	(blue)	2.99	Pioneer	3.3	2.8	3.4

3:	1	Tuttorosso	(green)	0.99	Pioneer	2.8	2.6	3.3

4:	1	La	Fede	SM	DOP	3.99	Shop	Rite	2.6	2.8	3.0

5:	2	Cento	SM	DOP	5.49	D	Agostino	3.3	3.1	2.9

6:	2	Cento	Organic	4.99	D	Agostino	3.2	2.9	2.9

Texture	Overall	Avg	of	Totals	Total	of	Avg

1:	3.4	3.4	16.1	16.1

2:	3.0	2.9	15.3	15.3

3:	2.8	2.9	14.3	14.3

4:	2.3	2.8	13.4	13.4

5:	2.8	3.1	14.4	15.2

6:	3.1	2.9	15.5	15.1

This	is	also	faster	than	read.table	and	results	in	a	data.table	object,	which	is	an	extension	of
data.frame.	This	is	another	special	object	that	improves	upon	data.frames	and	is	explained	in
Section	11.4.
Both	read_delim	or	fread	are	fast,	capable	functions,	so	the	decision	of	which	to	use	depends	upon

whether	dplyr	or	data.table	is	preferred	for	data	manipulation.

6.2	Excel	Data
Excel	may	be	the	world’s	most	popular	data	analysis	tool,	and	while	that	has	benefits	and	disadvantages,
it	means	that	R	users	will	sometimes	be	required	to	read	Excel	files.	When	the	first	edition	of	this	book
was	published,	it	was	difficult	to	read	Excel	data	into	R.	At	the	time,	the	simplest	method	would	be	to	use
Excel	(or	another	spreadsheet	program)	to	convert	the	Excel	file	to	a	CSV	file	and	then	use	read.csv.
While	that	seems	like	an	unnecessary	step,	it	was	actually	the	recommended	method	in	the	R	manual.
Fortunately,	for	anyone	tasked	with	using	Excel	data,	the	package	readxl,	by	Hadley	Wickham,	makes

reading	Excel	files,	both	.xls	and	.xlsx,	easy.	The	main	function	is	read_excel,	which	reads	the	data
from	a	single	Excel	sheet.	Unlike	read.table,	read_delim	and	fread,	read_excel	cannot	read	data
directly	from	the	Internet,	and	thus	the	files	must	be	downloaded	first.	We	could	do	this	by	visiting	a
browser	or	we	can	stay	within	R	and	use	download.file.
Click	here	to	view	code	image

>download.file(url='http://www.jaredlander.com/data/ExcelExample.xlsx',

+	destfile='data/ExcelExample.xlsx',	method='curl')	After	we	download	the	file	we	check

the	sheets	in	the	Excel	file.

Click	here	to	view	code	image

>	library(readxl)

>	excel_sheets('data/ExcelExample.xlsx')

[1]	"Tomato"	"Wine"	"ACS"

By	default	read_excel	reads	the	first	sheet,	in	this	case	the	one	holding	the	tomato	data.	The	result	is	a
tibble	rather	than	a	traditional	data.frame.

Click	here	to	view	code	image

>	tomatoXL	<-read_excel('data/ExcelExample.xlsx')

>	tomatoXL

#	A	tibble:	16	×	11

Round	Tomato	Price	Source	Sweet	Acid

<dbl>	<chr>	<dbl>	<chr>	<dbl>	<dbl>

1	1	Simpson	SM	3.99	Whole	Foods	2.8	2.8

2	1	Tuttorosso	(blue)	2.99	Pioneer	3.3	2.8

3	1	Tuttorosso	(green)	0.99	Pioneer	2.8	2.6

4	1	La	Fede	SM	DOP	3.99	Shop	Rite	2.6	2.8

5	2	Cento	SM	DOP	5.49	D	Agostino	3.3	3.1

6	2	Cento	Organic	4.99	D	Agostino	3.2	2.9

7	2	La	Valle	SM	3.99	Shop	Rite	2.6	2.8

8	2	La	Valle	SM	DOP	3.99	Faicos	2.1	2.7

9	3	Stanislaus	Alta	Cucina	4.53	Restaurant	Depot	3.4	3.3

10	3	Ciao	NA	Other	2.6	2.9

11	3	Scotts	Backyard	SM	0.00	Home	Grown	1.6	2.9

12	3	Di	Casa	Barone	(organic)	12.80	Eataly	1.7	3.6

13	4	Trader	Joes	Plum	1.49	Trader	Joes	3.4	3.3

14	4	365	Whole	Foods	1.49	Whole	Foods	2.8	2.7

15	4	Muir	Glen	Organic	3.19	Whole	Foods	2.9	2.8

16	4	Bionature	Organic	3.39	Whole	Foods	2.4	3.3

#	...	with	5	more	variables:	Color	<dbl>,	Texture	<dbl>,

#	Overall	<dbl>,	`Avg	of	Totals`	<dbl>,	`Total	of	Avg`	<dbl>

Since	toatoXL	is	a	tibble	only	the	columns	that	fit	on	the	screen	(or	in	this	case	the	page)	are
printed.	This	will	vary	depending	on	how	wide	the	terminal	is	set.
Specifying	which	sheet	to	read	can	be	done	by	supplying	either	the	sheet	position	as	a	number	or	the

sheet	name	as	a	character.
Click	here	to	view	code	image

>	#	using	position

>	wineXL1	<-	read_excel('data/ExcelExample.xlsx',	sheet=2)

>	head(wineXL1)

#	A	tibble:	6	×	14

Cultivar	Alcohol	`Malic	acid`	Ash	`Alcalinity	of	ash	`	Magnesium

<dbl>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>

1	1	14.23	1.71	2.43	15.6	127

2	1	13.20	1.78	2.14	11.2	100

3	1	13.16	2.36	2.67	18.6	101

4	1	14.37	1.95	2.50	16.8	113

5	1	13.24	2.59	2.87	21.0	118

6	1	14.20	1.76	2.45	15.2	112

#	...	with	8	more	variables:	`Total	phenols`	<dbl>,	Flavanoids	<dbl>,

#	`Nonflavanoid	phenols`	<dbl>,	Proanthocyanins	<dbl>,	`Color

#	intensity`	<dbl>,	Hue	<dbl>,	`OD280/OD315	of	diluted

#	wines`	<dbl>,	`Proline	`	<dbl>

>	#	using	name

>	wineXL2	<-read_excel('data/ExcelExample.xlsx',	sheet='Wine')

>	head(wineXL2)

#	A	tibble:	6	×	14

Cultivar	Alcohol	`Malic	acid`	Ash	`Alcalinity	of	ash	`	Magnesium

<dbl>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>

1	1	14.23	1.71	2.43	15.6	127

2	1	13.20	1.78	2.14	11.2	100

3	1	13.16	2.36	2.67	18.6	101

4	1	14.37	1.95	2.50	16.8	113

5	1	13.24	2.59	2.87	21.0	118

6	1	14.20	1.76	2.45	15.2	112

#	...	with	8	more	variables:	`Total	phenols`	<dbl>,	Flavanoids	<dbl>,

#	`Nonflavanoid	phenols`	<dbl>,	Proanthocyanins	<dbl>,	`Color

#	intensity`	<dbl>,	Hue	<dbl>,	`OD280/OD315	of	diluted

#	wines`	<dbl>,	`Proline	`	<dbl>

Reading	Excel	data	used	to	be	a	burdensome	experience	but	is	now	as	simple	as	reading	a	CSV	thanks
to	Hadley	Wickham’s	readxl	package.

6.3	Reading	from	Databases
Databases	arguably	store	the	vast	majority	of	the	world’s	data.	Most	of	these,	whether	they	be
PostgreSQL,	MySQL,	Microsoft	SQL	Server	or	Microsoft	Access,	can	be	accessed	either	through	various
drivers,	typically	via	an	ODBC	connection.	The	most	popular	open-source	databases	have	packages	such
as	RPostgreSQL	and	RMySQL.	Other	databases	without	a	specific	package	can	make	use	of	the	more
generic,	and	aptly	named,	RODBC	package.	Database	connectivity	can	be	difficult,	so	the	DBI	package
was	written	to	create	a	uniform	experience	while	working	with	different	databases.
Setting	up	a	database	is	beyond	the	scope	of	this	book	so	we	use	a	simple	SQLite	database	though	these

steps	will	be	similar	for	most	databases.	First,	we	download	the	database	file2	using	download.file.
Click	here	to	view	code	image

>	download.file("http://www.jaredlander.com/data/diamonds.db",

+	destfile	=	"data/diamonds.db",	mode='wb')	2.	SQLite	is	special	in	that	the	entire

database	is	stored	in	a	single	file	on	disk	making	it	easy	for	lightweight	applications

and	sharing.

Since	SQLite	has	its	own	R	package,	RSQLite,	we	use	that	to	connect	to	our	database,	otherwise	we
would	use	RODBC.

>	library(RSQLite)

To	connect	to	the	database	we	first	specify	the	driver	using	dbDriver.	The	function’s	main	argument	is
the	type	of	driver,	such	as	“SQLite”	or	“ODBC.”

>	drv	<-	dbDriver('SQLite')

>	class(drv)

[1]	"SQLiteDriver"

attr(,"package")

[1]	"RSQLite"

We	then	establish	a	connection	to	the	specific	database	with	dbConnect.	The	first	argument	is	the
driver.	The	most	common	second	argument	is	the	DSN3	connection	string	for	the	database,	or	the	path	to
the	file	for	SQLite	databases.	Additional	arguments	are	typically	the	database	username,	password,	host
and	port.
Click	here	to	view	code	image

>	con	<-	dbConnect(drv,	'data/diamonds.db')

>	class(con)

[1]	"SQLiteConnection"

attr(,"package")

[1]	"RSQLite"

3.	This	differs	by	operating	system	but	should	result	in	a	string	name	for	that	connection.

Now	that	we	are	connected	to	the	database	we	can	learn	more	about	the	database,	such	as	the	table

names	and	the	fields	within	tables,	using	functions	from	the	DBI	package.
Click	here	to	view	code	image

>	dbListTables(con)

[1]	"DiamondColors"	"diamonds"	"sqlite_stat1"

>	dbListFields(con,	name='diamonds')

[1]	"carat"	"cut"	"color"	"clarity"	"depth"	"table"

[7]	"price"	"x"	"y"	"z"

>	dbListFields(con,	name='DiamondColors')

[1]	"Color"	"Description"	"Details"

At	this	point	we	are	ready	to	run	a	query	on	that	database	using	dbGetQuery.	This	can	be	any	valid
SQL	query	of	arbitrary	complexity.	dbGetQuery	returns	an	ordinary	data.frame,	just	like	any	other.
Fortunately,	dbGetQuery	has	the	stringsAsFactors	argument	seen	in	Section	6.1.	Again,	setting
this	to	FALSE	is	usually	a	good	idea,	as	it	will	save	processing	time	and	keep	character	data	as
character.
Click	here	to	view	code	image

>	#	simple	SELECT	*	query	from	one	table

>	diamondsTable	<-	dbGetQuery(con,

+	"SELECT	*	FROM	diamonds",

+	stringsAsFactors=FALSE)

>	#	simple	SELECT	*	query	from	one	table

>	colorTable	<-	dbGetQuery(con,

+	"SELECT	*	FROM	DiamondColors",

+	stringsAsFactors=FALSE)

>	#	do	a	join	between	the	two	tables

>	longQuery	<-	"SELECT	*	FROM	diamonds,	DiamondColors

WHERE

diamonds.color	=	DiamondColors.Color"

>	diamondsJoin	<-dbGetQuery(con,	longQuery,

stringsAsFactors=FALSE)	We	can	easily	check	the	results	of	these	queries	by	viewing	the

resulting	data.frames.

Click	here	to	view	code	image

>head(diamondsTable)

carat	cut	color	clarity	depth	table	price	x	y	z

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

>head(colorTable)

Color	Description	Details

1	D	Absolutely	Colorless	No	color

2	E	Colorless	Minute	traces	of	color

3	F	Colorless	Minute	traces	of	color

4	G	Near	Colorless	Color	is	dificult	to	detect

5	H	Near	Colorless	Color	is	dificult	to	detect

6	I	Near	Colorless	Slightly	detectable	color

>	head(diamondsJoin)

carat	cut	color	clarity	depth	table	price	x	y	z

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

Color	Description	Details

1	E	Colorless	Minute	traces	of	color

2	E	Colorless	Minute	traces	of	color

3	E	Colorless	Minute	traces	of	color

4	I	Near	Colorless	Slightly	detectable	color

5	J	Near	Colorless	Slightly	detectable	color

6	J	Near	Colorless	Slightly	detectable	color	While	it	is	not	necessary,	it	is	good

practice	to	close	the	ODBC	connection	using	dbDisconnect,	although	it	will	close

automatically	when	either	R	closes	or	we	open	another	connection	using	dbConnect.	Only	one

connection	may	be	open	at	a	time.

6.4	Data	from	Other	Statistical	Tools
In	an	ideal	world	another	tool	besides	R	would	never	be	needed,	but	in	reality	data	are	sometimes	locked
in	a	proprietary	format	such	as	those	from	SAS,	SPSS	or	Octave.	The	foreign	package	provides	a	number
of	functions	similar	to	read.table	to	read	in	data	from	other	tools.
A	partial	list	of	functions	to	read	data	from	commonly	used	statistical	tools	is	in	Table	6.2.	The

arguments	for	these	functions	are	generally	similar	to	read.table.	These	functions	usually	return	the	data
as	a	data.frame	but	do	not	always	succeed.

Table	6.2	Functions	for	reading	data	from	some	commonly	used	statistical	tools

While	read.ssd	can	read	SAS	data	it	requires	a	valid	SAS	license.	This	can	be	sidestepped	by	using
Microsoft	R	Server	from	Microsoft,	with	their	special	RxSasData	function	in	their	RevoScaleR
package.
Like	many	concepts	in	R,	Hadley	Wickham	has	written	a	new	package,	haven,	that	is	very	similar	to

foreign	but	follows	his	conventions,	is	optimized	for	speed	and	convenience	and	results	in	a	tibble
rather	than	a	data.frame.	The	most	common	haven	functions	for	reading	data	from	other	statistical
tools	are	listed	in	Table	6.3.

Table	6.3	Functions	for	reading	data	from	some	commonly	used	statistical	tools

6.5	R	Binary	Files
When	working	with	other	R	programmers,	a	good	way	to	pass	around	data—or	any	R	objects	such	as
variables	and	functions—is	to	use	RData	files.	These	are	binary	files	that	represent	R	objects	of	any
kind.	They	can	store	a	single	object	or	multiple	objects	and	can	be	passed	among	Windows,	Mac	and
Linux	without	a	problem.
First,	let’s	create	an	RData	file,	remove	the	object	that	created	it	and	then	read	it	back	into	R.

Click	here	to	view	code	image

>	#	save	the	tomato	data.frame	to	disk

>	save(tomato,	file="data/tomato.rdata")

>	#	remove	tomato	from	memory

>	rm(tomato)

>	#	check	if	it	still	exists

>	head(tomato)

Error	in	head(tomato):	object	'tomato'	not	found

>	#	read	it	from	the	rdata	file

>	load("data/tomato.rdata")

>	#	check	if	it	exists	now

>	head(tomato)

Round	Tomato	Price	Source	Sweet	Acid	Color	Texture

1	1	Simpson	SM	3.99	Whole	Foods	2.8	2.8	3.7	3.4

2	1	Tuttorosso	(blue)	2.99	Pioneer	3.3	2.8	3.4	3.0

3	1	Tuttorosso	(green)	0.99	Pioneer	2.8	2.6	3.3	2.8

4	1	La	Fede	SM	DOP	3.99	Shop	Rite	2.6	2.8	3.0	2.3

5	2	Cento	SM	DOP	5.49	D	Agostino	3.3	3.1	2.9	2.8

6	2	Cento	Organic	4.99	D	Agostino	3.2	2.9	2.9	3.1

Overall	Avg.of.Totals	Total.of.Avg

1	3.4	16.1	16.1

2	2.9	15.3	15.3

3	2.9	14.3	14.3

4	2.8	13.4	13.4

5	3.1	14.4	15.2

6	2.9	15.5	15.1

Now	let’s	create	a	few	objects	to	store	in	a	single	RData	file,	remove	them	and	then	load	them	again.
Click	here	to	view	code	image

>	#	create	some	objects

>	n	<-	20

>	r	<-	1:10

>	w	<-data.frame(n,	r)

>	#	check	them	out

>	n

[1]	20

>	r

[1]	1	2	3	4	5	6	7	8	9	10

>	w

n	r

1	20	1

2	20	2

3	20	3

4	20	4

5	20	5

6	20	6

7	20	7

8	20	8

9	20	9

10	20	10

>	#	save	them

>	save(n,	r,	w,	file="data/multiple.rdata")

>	#	delete	them

>	rm(n,	r,	w)

>	#	are	they	gone?

>	n

Error	in	eval(expr,	envir,	enclos):	object	'n'	not	found

>	r

Error	in	eval(expr,	envir,	enclos):	object	'r'	not	found

>	w

Error	in	eval(expr,	envir,	enclos):	object	'w'	not	found

>	#	load	them	back

>	load("data/multiple.rdata")

>	#	check	them	out	again

>	n

[1]	20

>	r

[1]	1	2	3	4	5	6	7	8	9	10

>	w

n	r

1	20	1

2	20	2

3	20	3

4	20	4

5	20	5

6	20	6

7	20	7

8	20	8

9	20	9

10	20	10

These	objects	are	restored	into	the	working	environment,	with	the	same	names	they	had	when	they	were
saved	to	the	RData	file.	That	is	why	we	do	not	assign	the	result	of	the	load	function	to	an	object.

The	saveRDS	saves	one	object	in	a	binary	RDS	file.	The	object	is	not	saved	with	a	name,	so	when	we
use	readRDS	to	load	the	file	into	the	working	environment,	we	assign	it	to	an	object.
Click	here	to	view	code	image

>	#	create	an	object

>	smallVector	<-	c(1,	5,	4)

>	#	view	it

>	smallVector

[1]	1	5	4

>	#	save	to	rds	file

>	saveRDS(smallVector,	file='thisObject.rds')

>

>	#	read	the	file	and	save	to	a	different	object

>	thatVect	<-	readRDS('thisObject.rds')

>	#	display	it

>	thatVect

[1]	1	5	4

>	#	check	they	are	the	same

>	identical(smallVector,	thatVect)

[1]	TRUE

6.6	Data	Included	with	R
R	and	some	packages	come	with	data	included,	so	we	can	easily	have	data	to	use.	Accessing	this	data	is
simple	as	long	as	we	know	what	to	look	for.	ggplot2,	for	instance,	comes	with	a	dataset	about	diamonds.
It	can	be	loaded	using	the	data	function.
Click	here	to	view	code	image

>	data(diamonds,	package='ggplot2')

>	head(diamonds)

#	A	tibble:	6	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

To	find	a	list	of	available	data,	simply	type	data()	into	the	console.

6.7	Extract	Data	from	Web	Sites
These	days	a	lot	of	data	are	displayed	on	Web	pages.	If	we	are	lucky,	then	it	is	stored	neatly	in	an	HTML
table.	If	we	are	not	so	lucky,	we	might	need	to	parse	the	text	of	the	page.

6.7.1	Simple	HTML	Tables
If	the	data	are	stored	neatly	in	an	HTML	table,	we	can	use	readHTMLTable	in	the	XML	package	to
easily	extract	it.	On	my	site	there	is	a	post	about	a	Super	Bowl	pool	I	was	asked	to	analyze	at
http://www.jaredlander.com/2012/02/another-kind-of-super-bowl-pool.	In
that	post	there	is	a	table	with	three	columns	that	we	wish	to	extract.	It	is	fairly	simple	with	the	following
code.
Click	here	to	view	code	image

>	library(XML)

>	theURL	<-	"http://www.jaredlander.com/2012/02/another-kind-of-	+	super-bowl-pool/"

>	bowlPool	<-	readHTMLTable(theURL,	which=1,	header=FALSE,

+	stringsAsFactors=FALSE)

>	bowlPool

V1	V2	V3

1	Participant	1	Giant	A	Patriot	Q

2	Participant	2	Giant	B	Patriot	R

3	Participant	3	Giant	C	Patriot	S

4	Participant	4	Giant	D	Patriot	T

5	Participant	5	Giant	E	Patriot	U

6	Participant	6	Giant	F	Patriot	V

7	Participant	7	Giant	G	Patriot	W

8	Participant	8	Giant	H	Patriot	X

9	Participant	9	Giant	I	Patriot	Y

10	Participant	10	Giant	J	Patriot	Z

Here	the	first	argument	was	the	URL,	but	it	could	have	also	been	a	file	on	disk.	The	which	argument
allows	us	to	choose	which	table	to	read	if	there	are	multiple	tables.	For	this	example,	there	was	only	one
table,	but	it	could	have	easily	been	the	second	or	third	or	fourth....	We	set	header	to	FALSE	to	indicate
that	no	header	was	in	the	table.	Lastly,	we	used	stringsAsFactors=FALSE	so	that	the
character	columns	would	not	be	converted	to	factors.

6.7.2	Scraping	Web	Data
Information	is	often	scattered	about	in	tables,	divs,	spans	or	other	HTML	elements.	As	an	example
we	put	the	menu	and	restaurant	details	for	Ribalta,	a	beloved	New	York	pizzeria,	into	an	HTML	file.	The
address	and	phone	number	are	stored	in	an	ordered	list,	section	identifiers	are	in	spans	and	the	items
and	prices	are	in	tables.	We	use	Hadley	Wickham’s	rvest	package	to	extract	the	data	into	a	usable
format.
The	file	can	be	read	directly	from	the	URL,	or	from	disc,	using	read_html.	This	creates	an

xml_document	object	that	holds	all	of	the	HTML.
Click	here	to	view	code	image

>	library(rvest)

>	ribalta	<-	read_html('http://www.jaredlander.com/data/ribalta.html')

>	class(ribalta)

>	ribalta

[1]	"xml_document"	"xml_node"

{xml_document}

<html	xmlns="http://www.w3.org/1999/xhtml">

[1]	<head>\n<meta	http-equiv="Content-Type"	content="text/html;	cha	...

[2]	<body>\r\n\n<li	class="address">\r\n	<span	class="street	...

By	exploring	the	HTML	we	see	that	the	address	is	stored	in	a	span,	which	is	an	element	of	an

../../../../../www.jaredlander.com/2012/02/another-kind-of-super-bowl-pool

ordered	list.	First	we	use	html_nodes	to	select	all	span	elements	within	ul	elements.
Click	here	to	view	code	image

>	ribalta	%>%	html_nodes('ul')	%>%	html_nodes('span')

{xml_nodeset	(6)}

[1]	48	E	12th	St

[2]	New	York

[3]	10003

[4]	\r\n	\t\r	...

[5]	

[6]	

This	returns	a	list	of	all	span	nodes	inside	ul	elements.	Following	a	highly	nested	hierarchy	of
HTML	elements	can	be	bothersome	and	brittle,	so	we	instead	identify	the	element	of	our	interest	by
specifying	its	class,	in	this	case	’street’.	In	HTML,	class	is	denoted	with	a	period	(.)	and	ID	is
denoted	with	a	hash	(#).	Instead	of	having	html_nodes	search	for	a	span,	we	have	it	search	for	any
element	with	class	’street’.
Click	here	to	view	code	image

>	ribalta	%>%	html_nodes('.street')

{xml_nodeset	(1)}

[1]	48	E	12th	St

We	properly	extracted	the	HTML	element	but	not	the	information	stored	in	the	element.	For	that	we	need
to	call	html_text	to	extract	the	text	stored	inside	the	span	element.
Click	here	to	view	code	image

>	ribalta	%>%	html_nodes('.street')	%>%	html_text()

[1]	"48	E	12th	St"

When	information	is	stored	as	an	attribute	of	an	HTML	element,	we	use	html_attr	rather	than
html_text.	In	this	case	we	extract	the	longitude	value	that	is	an	attribute	of	the	span	element	with	ID
’longitude’.
Click	here	to	view	code	image

>	ribalta	%>%	html_nodes('#longitude')	%>%	html_attr('value')

[1]	"-73.9915618"

In	this	particular	file	a	lot	of	information	is	stored	in	tables	with	class	’food-items’,	so	we
specify	that	html_nodes	should	search	for	all	tables	with	class	’food-items’.	Since	multiple
tables	exist,	we	specify	that	we	want	the	sixth	table	using	the	extract2	function	from	the	magrittr
package.	The	data	is	finally	extracted	and	stored	in	a	data.frame	using	html_table.	In	this	case	the
tables	do	not	have	headers,	so	the	columns	of	the	data.frame	have	generic	names.
Click	here	to	view	code	image

>	ribalta	%>%

+	html_nodes('table.food-items')	%>%

+	magrittr::extract2(5)	%>%

+	html_table()

X1

1	Marinara	Pizza	Rosse

2	Doc	Pizza	Rosse

3	Vegetariana	Pizza	Rosse

4	Brigante	Pizza	Rosse

5	Calzone	Pizza	Rosse

6	Americana	Pizza	Rosse

X2	X3

1	basil,	garlic	and	oregano.	9

2	buffalo	mozzarella	and	basil.	15

3	mozzarella	cheese,	basil	and	baked	vegetables.	15

4	mozzarella	cheese,	salami	and	spicy	oil.	15

5	ricotta,	mozzarella	cheese,	prosciutto	cotto	and	black	pepper.	16

6	mozzarella	cheese,	wurstel	and	fries.	16

6.8	Reading	JSON	Data
A	popular	format	for	data,	especially	for	APIs	and	document	databases,	is	JSON,	which	stands	for

JavaScript	Object	Notation.	It	is	a	data	format,	stored	in	plain	text,	which	is	well	suited	for	nested	data.
The	two	main	R	packages	for	reading	JSON	data	are	rjson	and	jsonlite.
The	following	is	a	sample	from	a	JSON	file	listing	some	of	our	favorite	pizza	places	in	New	York.

There	is	an	entry	for	each	pizzeria.	Within	that	is	a	Name	element	and	an	array,	named	Details,	that
holds	elements	for	Address,	City,	State,	Zip	and	Phone.
Click	here	to	view	code	image

[

{

"Name":	"Di	Fara	Pizza",

"Details":	[

{

"Address":	"1424	Avenue	J",

"City":	"Brooklyn",

"State":	"NY",

"Zip":	"11230"

}

]

},

{

"Name":	"Fiore's	Pizza",

"Details":	[

{

"Address":	"165	Bleecker	St",

"City":	"New	York",

"State":	"NY",

"Zip":	"10012"

}

]

},

{

"Name":	"Juliana's",

"Details":	[

{

"Address":	"19	Old	Fulton	St",

"City":	"Brooklyn",

"State":	"NY",

"Zip":	"11201"

}

]

}

]

The	fromJSON	function	reads	the	file	into	R	and	parses	the	JSON	text.	By	default,	it	attempts	to
simplify	the	data	into	a	data.frame.
Click	here	to	view	code	image

>	library(jsonlite)

>	pizza	<-fromJSON('http://www.jaredlander.com/data/

PizzaFavorites.json')

>	pizza

Name	Details

1	Di	Fara	Pizza	1424	Avenue	J,	Brooklyn,	NY,	11230

2	Fiore's	Pizza	165	Bleecker	St,	New	York,	NY,	10012

3	Juliana's	19	Old	Fulton	St,	Brooklyn,	NY,	11201

4	Keste	Pizza	&	Vino	271	Bleecker	St,	New	York,	NY,	10014

5	L	&	B	Spumoni	Gardens	2725	86th	St,	Brooklyn,	NY,	11223

6	New	York	Pizza	Suprema	413	8th	Ave,	New	York,	NY,	10001

7	Paulie	Gee's	60	Greenpoint	Ave,	Brooklyn,	NY,	11222

8	Ribalta	48	E	12th	St,	New	York,	NY,	10003

9	Totonno's	1524	Neptune	Ave,	Brooklyn,	NY,	11224

The	result	is	a	two-column	data.frame	where	the	first	column	is	the	Name	and	the	second	column,
named	Details,	is	actually	a	one-row	data.frame	for	each	row	of	the	outer	data.frame.	This
may	seem	odd,	but	storing	objects	in	cells	of	data.frames	has	long	been	possible	and	has	recently
become	more	and	more	the	norm.	We	can	see	that	Details	is	a	list-column	where	each	element	is	a
data.frame.

>class(pizza)

[1]	"data.frame"

>	class(pizza$Name)

[1]	"character"

>	class(pizza$Details)

[1]	"list"

>	class(pizza$Details[[1]])

[1]	"data.frame"

This	nested	structure	of	a	data.frame	within	a	data.frame	is	best	unraveled	using	the	tools
available	in	dplyr,	tidyr	and	purrr	described	in	Chapters	12,	15	and	13.

6.9	Conclusion
Reading	data	is	the	first	step	to	any	analysis;	without	the	data	there	is	nothing	to	do.	The	most	common
way	to	read	data	into	R	is	from	a	CSV	using	read.table	or	Excel	using	read_excel.	The	various	database
packages,	and	generically	RODBC,	provide	an	excellent	method	for	reading	from	databases.	Reading
from	data	trapped	in	HTML	is	made	easy	using	the	XML	and	rvest	packages.	R	also	has	special	binary
file	formats,	RData	and	RDS,	for	the	quick	storage,	loading	and	transfer	of	R	objects.

7.	Statistical	Graphics

One	of	the	hardest	parts	of	an	analysis	is	producing	quality	supporting	graphics.	Conversely,	a	good	graph
is	one	of	the	best	ways	to	present	findings.	Fortunately,	R	provides	excellent	graphing	capabilities,	both	in
the	base	installation	and	with	add-on	packages	such	as	lattice	and	ggplot2.	We	will	briefly	present	some
simple	graphs	using	base	graphics	and	then	show	their	counterparts	in	ggplot2.	This	will	be	supplemented
throughout	the	book	where	supporting	graphics—with	code—will	be	made	using	ggplot2	and
occasionally	base	graphics.
Graphics	are	used	in	statistics	primarily	for	two	reasons:	exploratory	data	analysis	(EDA)	and

presenting	results.	Both	are	incredibly	important	but	must	be	targeted	to	different	audiences.

7.1	Base	Graphics
When	graphing	for	the	first	time	with	R,	most	people	use	base	graphics	and	then	move	on	to	ggplot2	when
their	needs	become	more	complex.	While	base	graphs	can	be	beautiful	creations,	we	recommend
spending	the	most	time	learning	about	ggplot2	in	Section	7.2.	This	section	is	here	for	completeness	and
because	base	graphics	are	just	needed,	especially	for	modifying	the	plots	generated	by	other	functions.
Before	we	can	go	any	further	we	need	some	data.	Most	of	the	datasets	built	into	R	are	tiny,	even	by

standards	from	ten	years	ago.	A	good	dataset	for	example	graphs	is,	ironically,	included	with	ggplot2.	In
order	to	access	it,	ggplot2	must	first	be	installed	and	loaded.	Then	the	diamonds	data	can	be	loaded
and	inspected.
Click	here	to	view	code	image

>	library(ggplot2)

>	data(diamonds)

>	head(diamonds)

#	A	tibble:	6	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

7.1.1	Base	Histograms
The	most	common	graph	of	data	in	a	single	variable	is	a	histogram.	This	shows	the	distribution	of

values	for	that	variable.	Creating	a	histogram	is	very	simple	and	illustrated	below	for	the	carat	column
in	diamonds.
Click	here	to	view	code	image

>	hist(diamonds$carat,	main="Carat	Histogram",	xlab="Carat")

Figure	7.1	Histogram	of	diamond	carats.

This	shows	the	distribution	of	the	carat	size.	Notice	that	the	title	was	set	using	the	main	argument	and
the	x-axis	label	with	the	xlab	argument.	More	complicated	histograms	are	easier	to	create	with	ggplot2.
These	extra	capabilities	are	presented	in	Section	7.2.1.
Histograms	break	the	data	into	buckets	and	the	heights	of	the	bars	represent	the	number	of	observations

that	fall	into	each	bucket.	This	can	be	sensitive	to	the	number	and	size	of	buckets,	so	making	a	good
histogram	can	require	some	experimentation.

7.1.2	Base	Scatterplot
It	is	frequently	good	to	see	two	variables	in	comparison	with	each	other;	this	is	where	the	scatterplot	is
used.	Every	point	represents	an	observation	in	two	variables	where	the	x-axis	represents	one	variable
and	the	y-axis	another.	We	will	plot	the	price	of	diamonds	against	the	carat	using	formula	notation.
Click	here	to	view	code	image

>	plot(price	~	carat,	data=diamonds)	The	~	separating	price	and	carat	indicates	that	we

are	viewing	price	against	carat,	where	price	is	the	y	value	and	carat	is	the	x	value.

Formulas	are	explained	in	more	detail	in	Chapters	18	and	19.

Figure	7.2	Scatterplot	of	diamond	price	versus	carat.

It	is	also	possible	to	build	a	scatterplot	by	simply	specifying	the	x	and	y	variables	without	the
formula	interface.	This	allows	plotting	of	variables	that	are	not	necessarily	in	a	data.frame.
Click	here	to	view	code	image

>	plot(diamonds$carat,	diamonds$price)	Scatterplots	are	one	of	the	most	frequently	used

statistical	graphs	and	will	be	detailed	further	using	ggplot2	in	Section	7.2.2.

7.1.3	Boxplots
Although	boxplots	are	often	among	the	first	graphs	taught	to	statistics	students,	they	are	a	matter	of	great
debate	in	the	statistics	community.	Andrew	Gelman	from	Columbia	University	has	been	very	vocal	in	his
displeasure	with	boxplots.1	However,	other	people	such	as	Hadley	Wickham2	and	John	Tukey	are	strong
proponents	of	the	boxplot.	Given	their	ubiquity	(deserved	or	not)	it	is	important	to	learn	them.	Thankfully,
R	has	the	boxplot	function.

1.	http://andrewgelman.com/2009/02/boxplot_challen/	and
http://andrewgelman.com/2009/10/better_than_a_b/

2.	http://vita.had.co.nz/papers/boxplots.pdf

>	boxplot(diamonds$carat)

../../../../../andrewgelman.com/2009/02/boxplot_challen/default.htm
../../../../../andrewgelman.com/2009/10/better_than_a_b/default.htm
../../../../../vita.had.co.nz/papers/boxplots.pdf

Figure	7.3	Boxplot	of	diamond	carat.

The	idea	behind	the	boxplot	is	that	the	thick	middle	line	represents	the	median	and	the	box	is	bounded
by	the	first	and	third	quartiles.	That	is,	the	middle	50	percent	of	data	(the	Interquartile	Range	or	IQR)	is
held	in	the	box.	The	lines	extend	out	to	1.5*IQR	in	both	directions.	Outlier	points	are	then	plotted	beyond
that.	It	is	important	to	note,	that	while	50	percent	of	the	data	are	very	visible	in	the	box,	that	means	50
percent	of	the	data	is	not	really	displayed.	That	is	a	lot	of	information	to	not	see.
As	with	other	graphs	previously	discussed,	more	details	will	be	provided	using	ggplot2	in	Section

7.2.3.
Many	objects,	such	as	linear	models	and	contingency	tables,	have	built-in	plot	functions,	which	we	will

see	later	in	the	book.

7.2	ggplot2
While	R’s	base	graphics	are	extremely	powerful	and	flexible	and	can	be	customized	to	a	great	extent,
using	them	can	be	labor	intensive.	Two	packages—ggplot2	and	lattice—were	built	to	make	graphing
easier.	Over	the	past	few	years	ggplot2	has	far	exceeded	lattice	in	popularity	and	features.	We	re-create
all	the	previous	graphs	in	Section	7.1	and	expand	the	examples	with	more	advanced	features.	Neither	this
chapter	nor	this	book	is	an	exhaustive	review	of	ggplot2.	But	throughout	this	book,	where	there	is	a	plot
the	accompanying	code	(mostly	with	ggplot2,	although	some	use	base	graphics)	is	included.
Initially,	the	ggplot2	syntax	is	harder	to	grasp,	but	the	effort	is	more	than	worthwhile.	It	is	much	easier

to	delineate	data	by	color,	shape	or	size	and	add	legends	with	ggplot2.	Graphs	are	quicker	to	build.
Graphs	that	could	take	30	lines	of	code	with	base	graphics	are	possible	with	just	one	line	in	ggplot2.
The	basic	structure	for	ggplot2	starts	with	the	ggplot	function,3	which	at	its	most	basic	should	take	the

data	as	its	first	argument.	It	can	take	more	arguments,	or	fewer,	but	we	will	stick	with	that	for	now.	After
initializing	the	object,	we	add	layers	using	the	+	symbol.	To	start,	we	will	just	discuss	geometric	layers
such	as	points,	lines	and	histograms.	They	are	included	using	functions	like	geom_point,	geom_line	and
geom_histogram.	These	functions	take	multiple	arguments,	the	most	important	being	which	variable	in

the	data	gets	mapped	to	which	axis	or	other	aesthetic	using	aes.	Furthermore,	each	layer	can	have
different	aesthetic	mappings	and	even	different	data.

3.	The	package	was	previously	called	ggplot,	but	early	on	Hadley	made	massive	changes,	so	he	upgraded	the	name	to	ggplot2.

7.2.1	ggplot2	Histograms	and	Densities
Returning	to	the	histogram	seen	in	Figure	7.1,	we	plot	the	distribution	of	diamond	carats	using	ggplot2.
This	is	built	using	ggplot	and	geom_histogram.	Because	histograms	are	one-dimensional	displays	of
data,	we	need	to	specify	only	one	aesthetic	mapping,	the	x-axis.	Figure	7.4	shows	the	plot.
Click	here	to	view	code	image

>	ggplot(data=diamonds)	+	geom_histogram(aes(x=carat))

Figure	7.4	Histogram	of	diamond	carats	using	ggplot2.

A	similar	display	is	the	density	plot,	which	is	done	by	changing	geom_histogram	to	geom_density.
We	also	specify	the	color	to	fill	in	the	graph	using	the	fill	argument.	This	differs	from	the	color
argument	that	we	will	see	later.	Also	notice	that	the	fill	argument	was	entered	outside	the	aes	function.
This	is	because	we	want	the	whole	graph	to	be	that	color.	We	will	see	how	it	can	be	used	inside	aes	later.
This	results	in	the	graph	shown	in	Figure	7.5.
Click	here	to	view	code	image

>	ggplot(data=diamonds)	+	geom_density(aes(x=carat),	fill="grey50")

Figure	7.5	Density	plot	of	diamond	carats	using	ggplot2.

Whereas	histograms	display	counts	of	data	in	buckets,	density	plots	show	the	probability	of
observations	falling	within	a	sliding	window	along	the	variable	of	interest.	The	difference	between	the
two	is	subtle	but	important.	Histograms	are	more	of	a	discrete	measurement,	while	density	plots	are	more
of	a	continuous	measurement.

7.2.2	ggplot2	Scatterplots
Here	we	not	only	show	the	ggplot2	way	of	making	scatterplots	but	also	show	off	some	of	the	power	of
ggplot2.	We	start	by	re-creating	the	simple	scatterplot	in	Figure	7.2.	Like	before,	we	use	ggplot	to
initialize	the	object,	but	this	time	we	include	aes	inside	the	ggplot	call	instead	of	using	it	in	the	geom.	The
ggplot2	version	is	shown	in	Figure	7.6.
Click	here	to	view	code	image

>	ggplot(diamonds,	aes(x=carat,	y=price))	+	geom_point()

Figure	7.6	Simple	ggplot2	scatterplot.

In	the	next	few	examples	we	will	be	using	ggplot(diamonds,	aes(x=carat,	y=price))
repeatedly,	which	ordinarily	would	require	a	lot	of	redundant	typing.	Fortunately	we	can	save	ggplot
objects	to	variables	and	add	layers	later.	We	will	save	it	to	g.	Notice	that	nothing	is	plotted.
Click	here	to	view	code	image

>	#	save	basics	of	ggplot	object	to	a	variable

>	g	<-ggplot(diamonds,aes(x=carat,	y=price))	Going	forward	we	can	add	any	layer	to	g.

Running	g	+	geom_point()	would	re-create	the	graph	shown	in	Figure	7.6.

The	diamonds	data	has	many	interesting	variables	we	can	examine.	Let’s	first	look	at	color,	which
we	will	map	to	the	color4	aesthetic	in	Figure	7.7.
Click	here	to	view	code	image

>	g	+	geom_point(aes(color=color))	4.	ggplot	will	accept	both	the	American	(color)	and

British	(colour)	spellings.

Figure	7.7	Scatterplot	of	diamonds	data	mapping	diamond	color	to	the	color	aesthetic.

Notice	that	we	set	color=color	inside	aes.	This	is	because	the	designated	color	will	be	determined
by	the	data.	Also	see	that	a	legend	was	automatically	generated.	Recent	versions	of	ggplot2	have	added
flexibility	with	the	legend,	which	we	will	discuss	later.
ggplot2	also	has	the	ability	to	make	faceted	plots,	or	small	multiples	as	Edward	Tufte	would	say.	This

is	done	using	facet_wrap	or	facet_grid.	facet_wrap	takes	the	levels	of	one	variable,	cuts	up	the
underlying	data	according	to	them,	makes	a	separate	pane	for	each	set	and	arranges	them	to	fit	in	the	plot,
as	seen	in	Figure	7.8.	Here	the	row	and	column	placement	have	no	real	meaning.	facet_grid	acts
similarly	but	assigns	all	levels	of	a	variable	to	either	a	row	or	column	as	shown	in	Figure	7.9.	In	this	case
the	upper	left	pane	displays	a	scatterplot	where	the	data	are	only	for	diamonds	with	Fair	cut	and	I1
clarity.	The	pane	to	the	right	is	a	scatterplot	where	the	data	are	only	for	diamonds	with	Fair	cut
and	SI2	clarity.	The	pane	in	the	second	row,	first	column,	is	a	scatterplot	where	the	data	are	only
for	diamonds	with	Good	cut	and	I1	clarity.	After	understanding	how	to	read	one	pane	in	this	plot

we	can	easily	understand	all	the	panes	and	make	quick	comparisons.
Click	here	to	view	code	image

>	g	+	geom_point(aes(color=color))	+	facet_wrap(~color)

Figure	7.8	Scatterplot	faceted	by	color.
Click	here	to	view	code	image

>	g	+	geom_point(aes(color=color))	+	facet_grid(cut~clarity)

Figure	7.9	Scatterplot	faceted	by	cut	and	clarity.	Notice	that	cut	is	aligned	vertically	while	clarity	is
aligned	horizontally.

Faceting	also	works	with	histograms	or	any	other	geom,	as	shown	in	Figure	7.10.
Click	here	to	view	code	image

>	ggplot(diamonds,	aes(x=carat))	+	geom_histogram()	+	facet_wrap(~color)

Figure	7.10	Histogram	faceted	by	color.

7.2.3	ggplot2	Boxplots	and	Violins	Plots
Being	a	complete	graphics	package,	ggplot2	offers	a	boxplot	geom	through	geom_boxplot.	Even	though	it
is	one-dimensional,	using	only	a	y	aesthetic,	there	needs	to	be	some	x	aesthetic,	so	we	will	use	1.	The
result	is	shown	in	Figure	7.11.
Click	here	to	view	code	image

>	ggplot(diamonds,aes(y=carat,	x=1))	+	geom_boxplot()

Figure	7.11	Boxplot	of	diamond	carats	using	ggplot2.

This	is	neatly	extended	to	drawing	multiple	boxplots,	one	for	each	level	of	a	variable,	as	seen	in	Figure
7.12.
Click	here	to	view	code	image

>	ggplot(diamonds,	aes(y=carat,	x=cut))	+	geom_boxplot()

Figure	7.12	Boxplot	of	diamond	carats	by	cut	using	ggplot2.

Getting	fancy,	we	can	swap	out	the	boxplot	for	violin	plots	using	geom_violin	as	shown	in	Figure	7.13.
Click	here	to	view	code	image

>	ggplot(diamonds,	aes(y=carat,	x=cut))	+	geom_violin()

Figure	7.13	Violin	plot	of	diamond	carats	by	cut	using	ggplot2.

Violin	plots	are	similar	to	boxplots	except	that	the	boxes	are	curved,	giving	a	sense	of	the	density	of	the
data.	This	provides	more	information	than	the	straight	sides	of	ordinary	boxplots.
We	can	use	multiple	layers	(geoms)	on	the	same	plot,	as	seen	in	Figure	7.14.	Notice	that	the	order	of

the	layers	matters.	In	the	graph	on	the	left,	the	points	are	underneath	the	violins,	while	in	the	graph	on	the
right,	the	points	are	on	top	of	the	violins.
Click	here	to	view	code	image

>	ggplot(diamonds,	aes(y=carat,	x=cut))	+	geom_point()	+	geom_violin()

>	ggplot(diamonds,	aes(y=carat,	x=cut))	+	geom_violin()	+	geom_point()

Figure	7.14	Violin	plots	with	points.	The	graph	on	the	left	was	built	by	adding	the	points	geom	and
then	the	violin	geom,	while	the	plot	on	the	right	was	built	in	the	opposite	order.	The	order	in	which	the

geoms	are	added	determines	the	positioning	of	the	layers.

7.2.4	ggplot2	Line	Graphs
Line	charts	are	often	used	when	one	variable	has	a	certain	continuity,	but	that	is	not	always	necessary
because	there	is	often	a	good	reason	to	use	a	line	with	categorical	data.	Figure	7.15	shows	an	example	of
a	line	plot	using	the	economics	data	from	ggplot2.	ggplot2	intelligently	handles	Dates	and	plots	them
on	a	logical	scale.
Click	here	to	view	code	image

>	ggplot(economics,	aes(x=date,	y=pop))	+	geom_line()

Figure	7.15	Line	plot	using	ggplot2.

While	this	worked	just	fine,	it	is	sometimes	necessary	to	use	aes(group=1)	with	geom_line.	Yes,	it
is	hacky,	but	it	gets	the	job	done,	just	like	when	plotting	a	single	boxplot	as	in	Section	7.2.3.	It	is	a	quirk
of	ggplot2	that	sometimes	lines	cannot	be	plotted	without	a	group	aesthetic.
A	common	task	for	line	plots	is	displaying	a	metric	over	the	course	of	a	year	for	many	years.	To

prepare	the	economics	data	we	will	use	Wickham’s	lubridate	package,	which	has	convenient	functions
for	manipulating	dates.	We	need	to	create	two	new	variables,	year	and	month.	To	simplify	things	we
will	subset	the	data	to	include	only	years	starting	with	2000.
Click	here	to	view	code	image

>	#	load	the	lubridate	package

>	library(lubridate)

>

>	##	create	year	and	month	variables

>	economics$year	<-	year(economics$date)

>	#	the	label	argument	to	month	means	that	the	result	should	be	the

>	#	names	of	the	month	instead	of	the	number

>	economics$month	<-	month(economics$date,	label=TRUE)

>

>	#	subset	the	data

>	#	the	which	function	returns	the	indices	of	observations	where	the

>	#	tested	condition	was	TRUE

>	econ2000	<-	economics[which(economics$year	>=	2000),]

>

>	#	load	the	scales	package	for	better	axis	formatting

>library(scales)

>

>	#	build	the	foundation	of	the	plot

>	g	<-	ggplot(econ2000,	aes(x=month,	y=pop))

>	#	add	lines	color	coded	and	grouped	by	year

>	#	the	group	aesthetic	breaks	the	data	into	separate	groups

>	g	<-	g	+	geom_line(aes(color=factor(year),	group=year))

>	#	name	the	legend	"Year"

>	g	<-	g	+	scale_color_discrete(name="Year")

>	#	format	the	y	axis

>	g	<-	g	+	scale_y_continuous(labels=comma)

>	#	add	a	title	and	axis	labels

>	g	<-	g	+	labs(title="Population	Growth",	x="Month",	y="Population")

>	#	plot	the	graph

>	g

Figure	7.16	Line	plot	with	a	seperate	line	for	each	year.

Figure	7.16	contains	many	new	concepts.	The	first	part,	ggplot(econ2000,	aes(x=month,
y=pop))	+	geom_line(aes(color=factor(year),	group=year)),	is	code	we	have
seen	before;	it	creates	the	line	graph	with	a	separate	line	and	color	for	each	year.	Notice	that	we
converted	year	to	a	factor	so	that	it	would	get	a	discrete	color	scale.	That	scale	was	named	by	using

scale_color_discrete(name=“Year”).	The	y-axis	was	formatted	to	have	commas	using
scale_y_continuous(labels=comma).	Lastly,	the	title,	x-label	and	y-label	were	set	with
labs(title=“Population	Growth”,	x=“Month”,	y=“Population”).	All	of	these	pieces	put	together	built	a
professional	looking,	publication-quality	graph.
Also	note	the	use	of	which	to	subset	the	data.	This	is	similar	to	a	where	clause	in	SQL.

7.2.5	Themes
A	great	part	of	ggplot2	is	the	ability	to	use	themes	to	easily	change	the	way	plots	look.	While	building	a
theme	from	scratch	can	be	daunting,	Jeffrey	Arnold	from	the	University	of	Rochester	has	put	together
ggthemes,	a	package	of	themes	to	re-create	commonly	used	styles	of	graphs.	Just	a	few	styles—The
Economist,	Excel,	Edward	Tufte	and	the	Wall	Street	Journal—are	exhibited	in	Figure	7.17.
Click	here	to	view	code	image

>	library(ggthemes)

>	#	build	a	plot	and	store	it	in	g2

>	g2	<-	ggplot(diamonds,	aes(x=carat,	y=price))	+

+	geom_point(aes(color=color))

>

>	#	apply	a	few	themes

>	g2	+	theme_economist()	+	scale_colour_economist()

>	g2	+	theme_excel()	+	scale_colour_excel()

>	g2	+	theme_tufte()

>	g2	+	theme_wsj()

Figure	7.17	Various	themes	from	the	ggthemes	package.	Starting	from	top	left	and	going	clockwise:
The	Economist,	Excel	(for	those	with	bosses	who	demand	Excel	output),	Edward	Tufte	and	the	Wall

Street	Journal.

7.3	Conclusion
We	have	seen	both	basic	graphs	and	ggplot2	graphs	that	are	both	nicer	and	easier	to	create.	We	have
covered	histograms,	scatterplots,	boxplots,	line	plots	and	density	graphs.	We	have	also	looked	at	using
colors	and	small	multiples	for	distinguishing	data.	There	are	many	other	features	in	ggplot2	such	as
jittering,	stacking,	dodging	and	alpha,	which	we	will	demonstrate	in	context	throughout	the	book.

8.	Writing	R	functions

If	we	find	ourselves	running	the	same	code	repeatedly,	it	is	probably	a	good	idea	to	turn	it	into	a	function.
In	programming	it	is	best	to	reduce	redundancy	whenever	possible.	There	are	several	reasons	for	doing
so,	including	maintainability	and	ease	of	reuse.	R	has	a	convenient	way	to	make	functions,	but	it	is	very
different	from	other	languages,	so	some	expectation	adjustment	might	be	necessary.

8.1	Hello,	World!
This	would	not	be	a	serious	book	about	a	programming	language	if	we	did	not	include	a	“Hello,	World!”
example,	so	we	will	start	with	that.	Let’s	build	a	function	that	simply	prints	“Hello,	World!”	to	the
console.
Click	here	to	view	code	image

>	say.hello	<-	function()

+	{

+	print("Hello,	World!")

+	}

First,	note	that	in	R	the	period	(.)	is	just	another	character	and	has	no	special	meaning,1	unlike	in	other
languages.	This	allows	us	to	call	this	function	say.hello.

1.	One	exception	is	that	objects	with	names	starting	with	a	period	are	accessible	but	invisible,	so	they	will	not	be	found	by	ls .	A	second
exception	is	when	dealing	with	generic	functions	that	dispatch	to	type-specific	methods,	though	this	will	not	make	a	significant	impact	on
our	usage.

Next,	we	see	that	functions	are	assigned	to	objects	just	like	any	other	variable,	using	the	<-	operator.
This	is	the	strangest	part	of	writing	functions	for	people	coming	from	other	languages.
Following	function	are	a	set	of	parentheses	that	can	either	be	empty—not	have	any	arguments—or

contain	any	number	of	arguments.	We	will	cover	those	in	Section	8.2.
The	body	of	the	function	is	enclosed	in	curly	braces	({	and	}).	This	is	not	necessary	if	the	function

contains	only	one	line,	but	that	is	rare.	Notice	the	indenting	for	the	commands	inside	the	function.	While
not	required,	it	is	good	practice	to	properly	indent	code	to	ensure	readability.	It	is	here	in	the	body	that
we	put	the	lines	of	code	we	want	the	function	to	perform.	A	semicolon	(;)	can	be	used	to	indicate	the	end
of	the	line	but	is	not	necessary,	and	its	use	is	actually	frowned	upon.
Calling	say.hello()	prints	as	desired.

8.2	Function	Arguments
More	often	than	not	we	want	to	pass	arguments	to	our	function.	These	are	easily	added	inside	the
parentheses	of	the	function	declaration.	We	will	use	an	argument	to	print	“Hello	Jared.”
Before	we	do	that,	however,	we	need	to	briefly	learn	about	the	sprintf	function.	Its	first	argument	is	a

string	with	special	input	characters	and	subsequent	arguments	that	will	be	substituted	into	the	special
input	characters.
Click	here	to	view	code	image

>	#	one	substitution

>	sprintf("Hello	%s",	"Jared")

[1]	"Hello	Jared"

>	#	two	substitutions

>	sprintf("Hello	%s,	today	is	%s",	"Jared",	"Sunday")

[1]	"Hello	Jared,	today	is	Sunday"

We	now	use	sprintf	to	build	a	string	to	print	based	on	a	function’s	arguments.
Click	here	to	view	code	image

>	hello.person	<-	function(name)

+	{

+	print(sprintf("Hello	%s",	name))

+	}

>	hello.person("Jared")

[1]	"Hello	Jared"

>	hello.person("Bob")

[1]	"Hello	Bob"

>	hello.person("Sarah")

[1]	"Hello	Sarah"

The	argument	name	can	be	used	as	a	variable	inside	the	function	(it	does	not	exist	outside	the
function).	It	can	also	be	used	like	any	other	variable	and	as	an	argument	to	further	function	calls.
We	can	add	a	second	argument	to	be	printed	as	well.	When	calling	functions	with	more	than	one

argument,	there	are	two	ways	to	specify	which	argument	goes	with	which	value,	either	positionally	or	by
name.
Click	here	to	view	code	image

>	hello.person	<-	function(first,	last)

+	{

+	print(sprintf("Hello	%s	%s",	first,	last))

+	}

>	#	by	position

>	hello.person("Jared",	"Lander")

[1]	"Hello	Jared	Lander"

>	#	by	name

>	hello.person(first="Jared",	last="Lander")

[1]	"Hello	Jared	Lander"

>	#	the	other	order

>	hello.person(last="Lander",	first="Jared")

[1]	"Hello	Jared	Lander"

>	#	just	specify	one	name

>	hello.person("Jared",	last="Lander")

[1]	"Hello	Jared	Lander"

>	#	specify	the	other

>	hello.person(first="Jared",	"Lander")

[1]	"Hello	Jared	Lander"

>	#	specify	the	second	argument	first

>	#	then	provide	the	first	argument	with	no	name

>	hello.person(last="Lander",	"Jared")

[1]	"Hello	Jared	Lander"

Being	able	to	specify	the	arguments	by	name	adds	a	lot	of	flexibility	to	calling	functions.	Even	partial
argument	names	can	be	supplied,	but	this	should	be	done	with	care.
Click	here	to	view	code	image

>	hello.person(fir="Jared",	l="Lander")

[1]	"Hello	Jared	Lander"

8.2.1	Default	Arguments
When	using	multiple	arguments	it	is	sometimes	desirable	to	not	have	to	enter	a	value	for	each.	In	other
languages	functions	can	be	overloaded	by	defining	the	function	mutliple	times,	each	with	a	differering
number	of	arguments.	R	instead	provides	the	capability	to	specify	default	arguments.	These	can	be	NULL,
characters,	numbers	or	any	valid	R	object.
Let’s	rewrite	hello.person	to	provide	“Doe”	as	the	default	last	name.

Click	here	to	view	code	image

>	hello.person	<-	function(first,	last="Doe")

+	{

+	print(sprintf("Hello	%s	%s",	first,	last))

+	}

>

>	#	call	without	specifying	last

>	hello.person("Jared")

[1]	"Hello	Jared	Doe"

>	#	call	with	a	different	last

>	hello.person("Jared",	"Lander")

[1]	"Hello	Jared	Lander"

8.2.2	Extra	Arguments
R	offers	a	special	operator	that	enables	functions	to	take	an	arbitrary	number	of	arguments	that	do	not	need
to	be	specified	in	the	function	definition.	This	is	the	dot-dot-dot	argument	(...).	This	should	be	used
very	carefully,	although	it	can	provide	great	flexibility.	For	now	we	will	just	see	how	it	can	absorb	extra
arguments;	later	we	will	find	a	use	for	it	when	passing	arguments	between	functions.
Click	here	to	view	code	image

>	#	call	hello.person	with	an	extra	argument

>	hello.person("Jared",	extra="Goodbye")

Error	in	hello.person("Jared",	extra	=	"Goodbye"):	unused	argument	(extra	=

"Goodbye")

>	#	call	it	with	two	valid	arguments	and	a	third

>	hello.person("Jared",	"Lander",	"Goodbye")

Error	in	hello.person("Jared",	"Lander",	"Goodbye"):	unused	argument	("Goodbye")

>	#	now	build	hello.person	with	...	so	that	it	absorbs	extra	arguments

>	hello.person	<-	function(first,	last="Doe",	...)

+	{

+	print(sprintf("Hello	%s	%s",	first,	last))

+	}

>	#	call	hello.person	with	an	extra	argument

>	hello.person	("Jared",	extra="Goodbye")

[1]	"Hello	Jared	Doe"

>	#	call	it	with	two	valid	arguments	and	a	third

>	hello.person("Jared",	"Lander",	"Goodbye")

[1]	"Hello	Jared	Lander"

8.3	Return	Values
Functions	are	generally	used	for	computing	some	value,	so	they	need	a	mechanism	to	supply	that	value
back	to	the	caller.	This	is	called	returning	and	is	done	quite	easily.	There	are	two	ways	to	accomplish	this
with	R.	The	value	of	the	last	line	of	code	in	a	function	is	automatically	returned,	although	this	can	be	bad
practice.	The	return	command	more	explicitly	specifies	that	a	value	should	be	returned	and	the	function
should	be	exited.
To	illustrate,	we	will	build	a	function	that	doubles	its	only	argument	and	returns	that	value.

Click	here	to	view	code	image

>	#	first	build	it	without	an	explicit	return

>	double.num	<-	function(x)

+	{

+	x	*	2

+	}

>

>	double.num(5)

[1]	10

>	#	now	build	it	with	an	explicit	return

>	double.num	<-	function(x)

+	{

+	return(x	*	2)

+	}

>

>	double.num(5)

[1]	10

>	#	build	it	again,	this	time	with	another	argument	after	the	explicit	return

>	double.num	<-	function(x)

+	{

+	return(x	*	2)

+	#	below	here	is	not	executed	because	the	function	already	exited

+	print("Hello!")

+	return(17)

+	}

>

>	double.num(5)

[1]	10

8.4	do.call
A	particularly	underused	trick	is	the	do.call	function.	This	allows	us	to	specify	the	name	of	a	function
either	as	a	character	or	as	an	object,	and	provide	arguments	as	a	list.

Click	here	to	view	code	image

>	do.call("hello.person",	args=list(first="Jared",	last="Lander"))

[1]	"Hello	Jared	Lander"

>	do.call(hello.person,	args=list(first="Jared",	last="Lander"))

[1]	"Hello	Jared	Lander"

This	is	particularly	useful	when	building	a	function	that	allows	the	user	to	specify	an	action.	In	the
following	example	the	user	supplies	a	vector	and	a	function	to	be	run.
Click	here	to	view	code	image

>	run.this	<-	function(x,	func=mean)

+	{

+	do.call(func,	args=list(x))

+	}

>

>	#	finds	the	mean	by	default

>	run.this(1:10)

[1]	5.5

>	#	specify	to	calculate	the	mean

>	run.this(1:10,	mean)

[1]	5.5

>	#	calculate	the	sum

>	run.this(1:10,	sum)

[1]	55

>	#	calculate	the	standard	deviation

>	run.this(1:10,	sd)

[1]	3.02765

8.5	Conclusion
Functions	allow	us	to	create	reusable	code	that	avoids	repetition	and	allows	easy	modification.	Important
points	to	remember	are	function	arguments,	default	values	and	returned	values.	Later	in	this	book	we	will
see	functions	that	get	far	more	complicated	than	the	ones	we	have	seen	so	far.

9.	Control	Statements

Control	statements	allow	us	to	control	the	flow	of	our	programming	and	cause	different	things	to	happen,
depending	on	the	values	of	tests.	Tests	result	in	a	logical,	TRUE	or	FALSE,	which	is	used	in	if-like
statements.	The	main	control	statements	are	if,	else,	ifelse	and	switch.

9.1	if	and	else
The	most	common	test	is	the	if	command.	It	essentially	says.	If	something	is	TRUE,	then	perform	some
action;	otherwise,	do	not	perform	that	action.	The	thing	we	are	testing	goes	inside	parentheses	following
the	if	command.	The	most	basic	checks	are:	equal	to	(==),	less	than	(<),	less	than	or	equal	to	(<=),
greater	than	(>),	greater	than	or	equal	to	(>=)	and	not	equal	(!=).
If	these	tests	pass	they	result	in	TRUE,	and	if	they	fail	they	result	in	FALSE.	As	noted	in	Section	4.3.4,

TRUE	is	numerically	equivalent	to	1	and	FALSE	is	equivalent	to	0.
>	as.numeric(TRUE)

[1]	1

>	as.numeric(FALSE)

[1]	0

These	tests	do	not	need	to	be	used	inside	if	statements.	The	following	are	some	simple	examples.
>	1	==	1	#	TRUE

[1]	TRUE

>	1	<	1	#	FALSE

[1]	FALSE

>	1	<=	1	#	TRUE

[1]	TRUE

>	1	>	1	#	FALSE

[1]	FALSE

>	1	>=	1	#	TRUE

[1]	TRUE

>	1	!=	1	#	FALSE

[1]	FALSE

We	can	now	show	that	using	this	test	inside	an	if	statement	controls	actions	that	follow.
Click	here	to	view	code	image

>	#	set	up	a	variable	to	hold	1

>	toCheck	<-	1

>

>	#	if	toCheck	is	equal	to	1,	print	hello

>	if(toCheck	==	1)

+	{

+	print("hello")

+	}

[1]	"hello"

>	#	now	if	toCheck	is	equal	to	0,	print	hello

>	if(toCheck	==	0)

+	{

+	print("hello")

+	}

>	#	notice	nothing	was	printed

Notice	that	if	statements	are	similar	to	functions,	in	that	all	statements	(there	can	be	one	or	multiple)	go
inside	curly	braces.
Life	is	not	always	so	simple	that	we	want	an	action	only	if	some	relationship	is	TRUE.	We	often	want	a

different	action	if	that	relationship	is	FALSE.	In	the	following	example	we	put	an	if	statement	followed	by
an	else	statement	inside	a	function,	so	that	it	can	be	used	repeatedly.
Click	here	to	view	code	image

>	#	first	create	the	function

>	check.bool	<-	function(x)

+	{

+	if(x	==	1)

+	{

+	#	if	the	input	is	equal	to	1,	print	hello

+	print("hello")

+	}else

+	{

+	#	otherwise	print	goodbye

+	print("goodbye")

+	}

+	}

Notice	that	else	is	on	the	same	line	as	its	preceding	closing	curly	brace	(}).	This	is	important,	as	the
code	will	fail	otherwise.
Now	let’s	use	that	function	and	see	if	it	works.
>	check.bool(1)

[1]	"hello"

>	check.bool(0)

[1]	"goodbye"

>	check.bool("k")

[1]	"goodbye"

>	check.bool(TRUE)

[1]	"hello"

Anything	other	than	1	caused	the	function	to	print	“goodbye.”	That	is	exactly	what	we	wanted.	Passing
TRUE	printed	“hello”	because	TRUE	is	numerically	the	same	as	1.
Perhaps	we	want	to	successively	test	a	few	cases.	That	is	where	we	can	use	else	if.	We	first	test	a

single	statement,	then	make	another	test,	and	then	perhaps	fall	over	to	catch	all.	We	will	modify

check.bool	to	test	for	one	condition	and	then	another.
Click	here	to	view	code	image

>	check.bool	<-	function(x)

+	{

+	if(x	==	1)

+	{

+	#	if	the	input	is	equal	to	1,	print	hello

+	print("hello")

+	}else	if(x	==	0)

+	{

+	#	if	the	input	is	equal	to	0,	print	goodbye

+	print("goodbye")

+	}else

+	{

+	#	otherwise	print	confused

+	print("confused")

+	}

+	}

>

>	check.bool(1)

[1]	"hello"

>	check.bool(0)

[1]	"goodbye"

>	check.bool(2)

[1]	"confused"

>	check.bool("k")

[1]	"confused"

9.2	switch
If	we	have	multiple	cases	to	check,	writing	else	if	repeatedly	can	be	cumbersome	and	inefficient.	This	is
where	switch	is	most	useful.	The	first	argument	is	the	value	we	are	testing.	Subsequent	arguments	are	a
particular	value	and	what	should	be	the	result.	The	last	argument,	if	not	given	a	value,	is	the	default	result.
To	illustrate	we	build	a	function	that	takes	in	a	value	and	returns	a	corresponding	result.
>	use.switch	<-	function(x)

+	{

+	switch(x,

+	"a"="first",

+	"b"="second",

+	"z"="last",

+	"c"="third",

+	"other")

+	}

>

>	use.switch("a")

[1]	"first"

>	use.switch("b")

[1]	"second"

>	use.switch("c")

[1]	"third"

>	use.switch("d")

[1]	"other"

>	use.switch("e")

[1]	"other"

>	use.switch("z")

[1]	"last"

If	the	first	argument	is	numeric,	it	is	matched	positionally	to	the	following	arguments,	regardless	of	the
names	of	the	subsequent	arguments.	If	the	numeric	argument	is	greater	than	the	number	of	subsequent
arguments,	NULL	is	returned.
Click	here	to	view	code	image

>	use.switch(1)

[1]	"first"

>	use.switch(2)

[1]	"second"

>	use.switch(3)

[1]	"last"

>	use.switch(4)

[1]	"third"

>	use.switch(5)

[1]	"other"

>	use.switch(6)	#	nothing	is	returned

>	is.null(use.switch(6))

[1]	TRUE

Here	we	introduced	a	new	function,	is.null,	which,	as	the	name	implies,	tests	whether	an	object	is
NULL.

9.3	ifelse
While	if	is	like	the	if	statement	in	traditional	languages,	ifelse	is	more	like	the	if	function	in	Excel.

The	first	argument	is	the	condition	to	be	tested	(much	like	in	a	traditional	if	statement),	the	second
argument	is	the	return	value	if	the	test	is	TRUE	and	the	third	argument	is	the	return	value	if	the	test	if
FALSE.	The	beauty	here—unlike	with	the	traditional	if—is	that	this	works	with	vectorized	arguments.	As
is	often	the	case	in	R,	using	vectorization	avoids	for	loops	and	speeds	up	our	code.	The	nuances	of	ifelse
can	be	tricky,	so	we	show	numerous	examples.
We	start	with	a	very	simple	example,	testing	whether	1	is	equal	to	1	and	printing	“Yes”	if	that	is	TRUE

and	“No”	if	it	is	FALSE.
Click	here	to	view	code	image

>	#	see	if	1	==	1

>	ifelse(1	==	1,	"Yes",	"No")

[1]	"Yes"

>	#	see	if	1	==	0

>	ifelse(1	==	0,	"Yes",	"No")

[1]	"No"

This	clearly	gives	us	the	results	we	want.	ifelse	uses	all	the	regular	equality	tests	seen	in	Section	9.1
and	any	other	logical	test.	It	is	worth	noting,	however,	that	if	testing	just	a	single	element	(a	vector
of	length	1	or	a	simple	is.na),	it	is	more	efficient	to	use	if	than	ifelse.	This	can	result	in	a	nontrivial
speedup	of	our	code.
Next	we	will	illustrate	a	vectorized	first	argument.

Click	here	to	view	code	image

>	toTest	<-	c(1,	1,	0,	1,	0,	1)

>	ifelse(toTest	==	1,	"Yes",	"No")

[1]	"Yes"	"Yes"	"No"	"Yes"	"No"	"Yes"

This	returned	“Yes”	for	each	element	of	toTest	that	equaled	1	and	“No”	for	each	element	of
toTest	that	did	not	equal	1.
The	TRUE	and	FALSE	arguments	can	even	refer	to	the	testing	element.

Click	here	to	view	code	image

>	ifelse(toTest	==	1,	toTest*3,	toTest)

[1]	3	3	0	3	0	3

>	#	the	FALSE	argument	is	repeated	as	needed

>	ifelse(toTest	==	1,	toTest*3,	"Zero")

[1]	"3"	"3"	"Zero"	"3"	"Zero"	"3"

Now	let’s	say	that	toTest	has	NA	elements.	In	that	case	the	corresponding	result	from	ifelse	is	NA.
Click	here	to	view	code	image

>	toTest[2]	<-	NA

>	ifelse(toTest	==	1,	"Yes",	"No")

[1]	"Yes"	NA	"No"	"Yes"	"No"	"Yes"

This	would	be	the	same	if	the	TRUE	and	FALSE	arguments	are	vectors.
Click	here	to	view	code	image

>	ifelse(toTest	==	1,	toTest*3,	toTest)

[1]	3	NA	0	3	0	3

>	ifelse(toTest	==	1,	toTest*3,	"Zero")

[1]	"3"	NA	"Zero"	"3"	"Zero"	"3"

9.4	Compound	Tests
The	statement	being	tested	with	if,	ifelse	and	switch	can	be	any	argument	that	results	in	a	logical
TRUE	or	FALSE.	This	can	be	an	equality	check	or	even	the	result	of	is.numeric	or	is.na.	Sometimes	we
want	to	test	more	than	one	relationship	at	a	time.	This	is	done	using	logical	and	and	or	operators.	These
are	&	and	&&	for	and	and	|	and	||	for	or.	The	differences	are	subtle	but	can	impact	our	code’s	speed.
The	double	form	(&&	or	||)	is	best	used	in	if	and	the	single	form	(&	or	|)	is	necessary	for	ifelse.	The

double	form	compares	only	one	element	from	each	side,	while	the	single	form	compares	each	element	of
each	side.
Click	here	to	view	code	image

>	a	<-	c(1,	1,	0,	1)

>	b	<-	c(2,	1,	0,	1)

>

>	#	this	checks	each	element	of	a	and	each	element	of	b

>	ifelse(a	==	1	&	b	==	1,	"Yes",	"No")

[1]	"No"	"Yes"	"No"	"Yes"

>	#	this	only	checks	the	first	element	of	a	and	the	first	element	of	b

>	#	it	only	returns	one	result

>	ifelse(a	==	1	&&	b	==	1,	"Yes",	"No")

[1]	"No"

Another	difference	between	the	double	and	single	forms	is	how	they	are	processed.	When	using	the
single	form,	both	sides	of	the	operator	are	always	checked.	With	the	double	form,	sometimes	only	the	left
side	needs	to	be	checked.	For	instance,	if	testing	1	==	0	&&	2	==	2,	the	left	side	fails,	so	there	is	no
reason	to	check	the	right	hand	side.	Similarly,	when	testing	3	==	3	||	0	==	0,	the	left	side	passes,
so	there	is	no	need	to	check	the	right	side.	This	can	be	particularly	helpful	when	the	right	side	would
throw	an	error	if	the	left	side	had	failed.
There	can	be	more	than	just	two	conditions	tested.	Many	conditions	can	be	strung	together	using

multiple	and	or	or	operators.	The	different	clauses	can	be	grouped	by	parentheses	just	like	mathematical
operations.	Without	parentheses,	the	order	of	operations	is	similar	to	PEMDAS,	seen	in	Section	4.1,
where	and	is	equivalent	to	multiplication	and	or	is	equivalent	to	addition,	so	and	takes	precedence
over	or.

9.5	Conclusion
Controlling	the	flow	of	our	program,	both	at	the	command	line	and	in	functions,	plays	an	important	role
when	processing	and	analyzing	our	data.	If	statements,	along	with	else,	are	the	most	common—and
efficient—for	testing	single	element	objects,	although	ifelse	is	far	more	common	in	R	programming
because	of	its	vectorized	nature.	Switch	statements	are	often	forgotten	but	can	come	in	very	handy.	The
and	(&	and	&&)	and	or	(|	and	||)	operators	allow	us	to	combine	multiple	tests	into	one.

10.	Loops,	the	Un-R	Way	to	Iterate

When	starting	to	use	R,	most	people	use	loops	whenever	they	need	to	iterate	over	elements	of	a	vector,
list	or	data.frame.	While	it	is	natural	to	do	this	in	other	languages,	with	R	we	generally	want	to	use
vectorization.	That	said,	sometimes	loops	are	unavoidable,	so	R	offers	both	for	and	while	loops.

10.1	for	Loops
The	most	commonly	used	loop	is	the	for	loop.	It	iterates	over	an	index—provided	as	a	vector—and
performs	some	operations.	For	a	first	simple	example,	we	print	out	the	first	ten	numbers.
The	loop	is	declared	using	for,	which	takes	one	English-seeming	argument	in	three	parts.	The	third	part

is	any	vector	of	values	of	any	kind,	most	commonly	numeric	or	character.	The	first	part	is	the
variable	that	is	iteratively	assigned	the	values	in	the	vector	from	the	third	part.	The	middle	part	is
simply	the	word	in	indicating	that	the	variable	(the	first	part)	is	in	the	vector	(the	third	part).

>	for(i	in	1:10)

+	{

+	print(i)

+	}

[1]	1

[1]	2

[1]	3

[1]	4

[1]	5

[1]	6

[1]	7

[1]	8

[1]	9

[1]	10

Here	we	generated	a	vector	holding	the	numbers	1	through	10,	and	then	printed	each.	Notice	that	this
could	have	been	performed	simply	by	using	the	built-in	vectorization	of	the	print	function.
Click	here	to	view	code	image

>	print(1:10)

[1]	1	2	3	4	5	6	7	8	9	10

Sure,	it	does	not	look	exactly	the	same,	but	that	is	just	cosmetic.	The	vector	in	for	loops	does	not
have	to	be	sequential,	it	can	be	any	vector.
Click	here	to	view	code	image

>	#	build	a	vector	holding	fruit	names

>	fruit	<-	c("apple",	"banana",	"pomegranate")

>	#	make	a	variable	to	hold	their	lengths,	with	all	NA	to	start

>	fruitLength	<-	rep(NA,	length(fruit))

>	#	show	it,	all	NAs

>	fruitLength

[1]	NA	NA	NA

>	#	give	it	names

>	names(fruitLength)	<-	fruit

>	#	show	it	again,	still	NAs

>	fruitLength

apple	banana	pomegranate

NA	NA	NA

>	#	loop	through	the	fruit	assigning	their	lengths	to	the	result	vector

>	for(a	in	fruit)

+	{

+	fruitLength[a]	<-	nchar(a)

+	}

>	#	show	the	lengths

>	fruitLength

apple	banana	pomegranate

5	6	11

Again,	R’s	built-in	vectorization	could	have	made	all	of	this	much	easier.
Click	here	to	view	code	image

>	#	simply	call	nchar

>	fruitLength2	<-	nchar(fruit)

>	#	give	it	names

>	names(fruitLength2)	<-	fruit

>	#	show	it

>	fruitLength2

apple	banana	pomegranate

5	6	11

This,	as	expected,	provides	identical	results,	as	seen	next.
Click	here	to	view	code	image

>	identical(fruitLength,	fruitLength2)

[1]	TRUE

10.2	while	Loops
Although	used	far	less	frequently	in	R	than	the	for	loop,	the	while	loop	is	just	as	simple	to	implement.	It
simply	runs	the	code	inside	the	braces	repeatedly	as	long	as	the	tested	condition	proves	true.	In	the
following	example,	we	print	the	value	of	x	and	iterate	it	until	it	reaches	5.	This	is	a	highly	trivial	example
but	shows	the	functionality	nonetheless.

>	x	<-	1

>	while(x	<=	5)

+	{

+	print(x)

+	x	<-	x	+	1

+	}

[1]	1

[1]	2

[1]	3

[1]	4

[1]	5

10.3	Controlling	Loops
Sometimes	we	have	to	skip	to	the	next	iteration	of	the	loop	or	completely	break	out	of	it.	This	is
accomplished	with	next	and	break.	We	use	a	for	loop	to	demonstrate.

>	for(i	in	1:10)

+	{

+	if(i	==	3)

+	{

+	next

+	}

+	print(i)

+	}

[1]	1

[1]	2

[1]	4

[1]	5

[1]	6

[1]	7

[1]	8

[1]	9

[1]	10

Notice	that	the	number	3	did	not	get	printed.
>	for(i	in	1:10)

+	{

+	if(i	==	4)

+	{

+	break

+	}

+	print(i)

+	}

[1]	1

[1]	2

[1]	3

Here,	even	though	we	told	R	to	iterate	over	the	first	ten	integers,	it	stopped	after	3	because	we	broke
the	loop	at	4.

10.4	Conclusion
The	two	primary	loops	are	for,	which	iterates	over	a	fixed	sequence	of	elements,	and	while	which
continues	a	loop	as	long	as	some	condition	holds	true.	As	stated	earlier,	if	a	solution	can	be	done	without
loops,	via	vectorization	or	matrix	algebra,	then	avoid	the	loop.	It	is	particularly	important	to	avoid	nested
loops.	Loops	inside	other	loops	are	extremely	slow	in	R.

11.	Group	Manipulation

A	general	rule	of	thumb	for	data	analysis	is	that	manipulating	the	data	(or	“data	munging,”	a	term
popularized	by	Simple	founder	Josh	Reich)	consumes	about	80	percent	of	the	effort.	This	often	requires
repeated	operations	on	different	sections	of	the	data,	something	Hadley	Wickham	coined	“split-apply-
combine.”	That	is,	we	split	the	data	into	discrete	sections	based	on	some	metric,	apply	a	transformation	of
some	kind	to	each	section,	and	then	combine	all	the	sections	together.	This	is	somewhat	like	the	Map
Reduce1	paradigm	of	Hadoop.2	There	are	many	different	ways	to	iterate	over	data	in	R,	and	we	look	at
some	of	the	more	convenient	functions.	Much	of	the	functionality	seen	in	this	chapter	is	constantly	being
improved,	with	the	latest	tools	covered	in	Chapters	12	and	13.

1.	Map	Reduce	is	where	data	are	split	into	discrete	sets,	computed	on	and	then	recombined	in	some	fashion.
2.	Hadoop	is	a	framework	for	distributing	data	and	computations	across	a	grid	of	computers.

11.1	Apply	Family
Built	into	R	is	the	apply	function	and	all	of	its	relatives	such	as	tapply,	lapply	and	mapply.	Each	has	its
quirks	and	necessities	and	is	best	used	in	different	situations.

11.1.1	apply
apply	is	the	first	member	of	this	family	that	users	usually	learn,	and	it	is	also	the	most	restrictive.	It	must
be	used	on	a	matrix,	meaning	all	of	the	elements	must	be	of	the	same	type	whether	they	are
character,	numeric	or	logical.	If	used	on	some	other	object,	such	as	a	data.frame,	it	will	be
converted	to	a	matrix	first.
The	first	argument	to	apply	is	the	object	we	are	working	with.	The	second	argument	is	the	margin	to

apply	the	function	over,	1	meaning	to	operate	over	the	rows	and	2	meaning	to	operate	over	the	columns.
The	third	argument	is	the	function	we	want	to	apply.	Any	following	arguments	will	be	passed	on	to	that
function.	apply	will	iterate	over	each	row	(or	column)	of	the	matrix,	treating	them	as	individual	inputs
to	the	first	argument	of	the	specified	function.
To	illustrate	its	use	we	start	with	a	trivial	example,	summing	the	rows	or	columns	of	a	matrix.

Click	here	to	view	code	image

>	#	build	the	matrix

>	theMatrix	<-	matrix(1:9,	nrow=3)

>	#	sum	the	rows

>	apply(theMatrix,	1,	sum)

[1]	12	15	18

>	#	sum	the	columns

>	apply(theMatrix,	2,	sum)

[1]	6	15	24

Notice	that	this	could	alternatively	be	accomplished	using	the	built-in	rowSums	and	colSums	functions,
yielding	the	same	results.

>	rowSums(theMatrix)

[1]	12	15	18

>	colSums(theMatrix)

[1]	6	15	24

For	a	moment,	let’s	set	an	element	of	theMatrix	to	NA	to	see	how	we	handle	missing	data	using	the
na.rm	argument	and	the	use	of	additional	arguments.	As	explained	in	Sections	4.7.1	and	18.1,	if	even	a
single	element	of	a	vector	is	NA,	then	the	result	of	sum	will	be	NA.	This	can	avoided	by	setting
na.rm=TRUE,	in	which	case	the	NAs	will	be	removed	and	the	sum	computed	on	the	remaining	elements.
When	using	sum—or	any	other	function—with	apply,	additional	arguments	(such	as	na.rm)	are
specified	after	the	function	itself.	Any	argument	from	the	applied	function	can	be	specified.	Unlike	when
calling	the	function	directly,	the	arguments	must	be	named.
Click	here	to	view	code	image

>	theMatrix[2,	1]	<-	NA

>	apply(theMatrix,	1,	sum)

[1]	12	NA	18

>	apply(theMatrix,	1,	sum,	na.rm=TRUE)

[1]	12	13	18

>	rowSums(theMatrix)

[1]	12	NA	18

>	rowSums(theMatrix,	na.rm=TRUE)

[1]	12	13	18

11.1.2	lapply	and	sapply
lapply	works	by	applying	a	function	to	each	element	of	a	list	and	returning	the	results	as	a	list.
Click	here	to	view	code	image

>	theList	<-	list(A=matrix(1:9,	3),	B=1:5,	C=matrix(1:4,	2),	D=2)

>	lapply(theList,	sum)

$A

[1]	45

$B

[1]	15

$C

[1]	10

$D

[1]	2

Dealing	with	lists	can	be	cumbersome,	so	to	return	the	result	of	lapply	as	a	vector	instead,	use
sapply.	It	is	exactly	the	same	as	lapply	in	every	other	way.

>	sapply(theList,	sum)

A	B	C	D

45	15	10	2

Because	a	vector	is	technically	a	form	of	a	list,	lapply	and	sapply	can	also	take	a	vector	as
their	input.
Click	here	to	view	code	image

>	theNames	<-	c("Jared",	"Deb",	"Paul")

>	lapply(theNames,	nchar)

[[1]]

[1]	5

[[2]]

[1]	3

[[3]]

[1]	4

11.1.3	mapply
Perhaps	the	most-overlooked-when-so-useful	member	of	the	apply	family	is	mapply,	which	applies	a
function	to	each	element	of	multiple	lists.	Often,	when	confronted	with	this	scenario,	people	will	resort
to	using	a	loop,	which	is	certainly	not	necessary.
Click	here	to	view	code	image

>	##	build	two	lists

>	firstList	<-	list(A=matrix(1:16,	4),	B=matrix(1:16,	2),	C=1:5)

>	secondList	<-	list(A=matrix(1:16,	4),	B=matrix(1:16,	8),	C=15:1)

>	#	test	element-by-element	if	they	are	identical

>	mapply(identical,	firstList,	secondList)

A	B	C

TRUE	FALSE	FALSE

>	##	build	a	simple	function

>	##	it	adds	the	number	of	rows	(or	length)	of	each	corresponding	element

>	simpleFunc	<-	function(x,	y)

+	{

+	NROW(x)	+	NROW(y)

+	}

>	#	apply	the	function	to	the	two	lists

>	mapply(simpleFunc,	firstList,	secondList)

A	B	C

8	10	20

11.1.4	Other	apply	Functions
There	are	many	other	members	of	the	apply	family	that	either	do	not	get	used	much	or	have	been
superseded	by	functions	in	the	plyr,	dplyr	and	purrr	packages.	(Some	would	argue	that	lapply	and	sapply
have	been	superseded,	but	they	do	have	their	advantages	over	their	corresponding	dplyr	and	purrr
functions.)
These	include
•	tapply
•	rapply
•	eapply
•	vapply

•	by

11.2	aggregate
People	experienced	with	SQL	generally	want	to	run	an	aggregation	and	group	by	as	their	first	R	task.	The
way	to	do	this	is	to	use	the	aptly	named	aggregate	function.	There	are	a	number	of	different	ways	to	call
aggregate,	so	we	will	look	at	perhaps	its	most	convenient	method,	using	a	formula.
We	will	see	formulas	used	to	great	extent	with	linear	models	in	Chapter	19,	and	they	play	a	useful

role	in	R.	Formulas	consist	of	a	left	side	and	a	right	side	separated	by	a	tilde	(~).	The	left	side
represents	a	variable	that	we	want	to	make	a	calculation	on,	and	the	right	side	represents	a	variable	(or
more)	that	we	want	to	group	the	calculation	by.3

3.	As	we	show	in	Chapter	19,	the	right	side	can	be	numeric,	although	for	the	aggregate 	function	we	will	just	use	categorical	variables.

To	demonstrate	aggregate	we	once	again	turn	to	the	diamonds	data	in	ggplot2.
Click	here	to	view	code	image

>	data(diamonds,	package='ggplot2')

>	head(diamonds)

#	A	tibble:	6	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

We	calculate	the	average	price	for	each	type	of	cut:	Fair,	Good,	Very	Good,	Premium	and	Ideal.
The	first	argument	to	aggregate	is	the	formula	specifying	that	price	should	be	broken	up	(or	group
by	in	SQL	terms)	by	cut.	The	second	argument	is	the	data	to	use,	in	this	case	diamonds.	The	third
argument	is	the	function	to	apply	to	each	subset	of	the	data;	for	us	this	will	be	the	mean.
Click	here	to	view	code	image

>	aggregate(price	~	cut,	diamonds,	mean)

cut	price

1	Fair	4358.758

2	Good	3928.864

3	Very	Good	3981.760

4	Premium	4584.258

5	Ideal	3457.542

For	the	first	argument	we	specified	that	price	should	be	aggregated	by	cut.	Notice	that	we	only
specified	the	column	name	and	did	not	have	to	identify	the	data	because	that	is	given	in	the	second
argument.	After	the	third	argument	specifying	the	function,	additional	named	arguments	to	that	function	can
be	passed,	such	as	aggregate(price	~	cut,	diamonds,	mean,	na.rm=TRUE).
To	group	the	data	by	more	than	one	variable,	add	the	additional	variable	to	the	right	side	of	the

formula	separating	it	with	a	plus	sign	(+).
Click	here	to	view	code	image

>	aggregate(price	~	cut	+	color,	diamonds,	mean)

cut	color	price

1	Fair	D	4291.061

2	Good	D	3405.382

3	Very	Good	D	3470.467

4	Premium	D	3631.293

5	Ideal	D	2629.095

6	Fair	E	3682.312

7	Good	E	3423.644

8	Very	Good	E	3214.652

9	Premium	E	3538.914

10	Ideal	E	2597.550

11	Fair	F	3827.003

12	Good	F	3495.750

13	Very	Good	F	3778.820

14	Premium	F	4324.890

15	Ideal	F	3374.939

16	Fair	G	4239.255

17	Good	G	4123.482

18	Very	Good	G	3872.754

19	Premium	G	4500.742

20	Ideal	G	3720.706

21	Fair	H	5135.683

22	Good	H	4276.255

23	Very	Good	H	4535.390

24	Premium	H	5216.707

25	Ideal	H	3889.335

26	Fair	I	4685.446

27	Good	I	5078.533

28	Very	Good	I	5255.880

29	Premium	I	5946.181

30	Ideal	I	4451.970

31	Fair	J	4975.655

32	Good	J	4574.173

33	Very	Good	J	5103.513

34	Premium	J	6294.592

35	Ideal	J	4918.186

To	aggregate	two	variables	(for	now	we	still	just	group	by	cut),	they	must	be	combined	using	cbind
on	the	left	side	of	the	formula.
Click	here	to	view	code	image

>	aggregate(cbind(price,	carat)	~	cut,	diamonds,	mean)

cut	price	carat

1	Fair	4358.758	1.0461366

2	Good	3928.864	0.8491847

3	Very	Good	3981.760	0.8063814

4	Premium	4584.258	0.8919549

5	Ideal	3457.542	0.7028370

This	finds	the	mean	of	both	price	and	carat	for	each	value	of	cut.	It	is	important	to	note	that	only
one	function	can	be	supplied,	and	hence	applied	to	the	variables.	To	apply	more	than	one	function,	it	is
easier	to	use	the	plyr	and	dplyr	packages,	which	are	explained	in	Section	11.3	and	Chapter	12.
Of	course,	multiple	variables	can	be	supplied	to	both	the	left	and	right	sides	at	the	same	time.

Click	here	to	view	code	image

>	aggregate(cbind(price,	carat)	~	cut	+	color,	diamonds,	mean)

cut	color	price	carat

1	Fair	D	4291.061	0.9201227

2	Good	D	3405.382	0.7445166

3	Very	Good	D	3470.467	0.6964243

4	Premium	D	3631.293	0.7215471

5	Ideal	D	2629.095	0.5657657

6	Fair	E	3682.312	0.8566071

7	Good	E	3423.644	0.7451340

8	Very	Good	E	3214.652	0.6763167

9	Premium	E	3538.914	0.7177450

10	Ideal	E	2597.550	0.5784012

11	Fair	F	3827.003	0.9047115

12	Good	F	3495.750	0.7759296

13	Very	Good	F	3778.820	0.7409612

14	Premium	F	4324.890	0.8270356

15	Ideal	F	3374.939	0.6558285

16	Fair	G	4239.255	1.0238217

17	Good	G	4123.482	0.8508955

18	Very	Good	G	3872.754	0.7667986

19	Premium	G	4500.742	0.8414877

20	Ideal	G	3720.706	0.7007146

21	Fair	H	5135.683	1.2191749

22	Good	H	4276.255	0.9147293

23	Very	Good	H	4535.390	0.9159485

24	Premium	H	5216.707	1.0164492

25	Ideal	H	3889.335	0.7995249

26	Fair	I	4685.446	1.1980571

27	Good	I	5078.533	1.0572222

28	Very	Good	I	5255.880	1.0469518

29	Premium	I	5946.181	1.1449370

30	Ideal	I	4451.970	0.9130291

31	Fair	J	4975.655	1.3411765

32	Good	J	4574.173	1.0995440

33	Very	Good	J	5103.513	1.1332153

34	Premium	J	6294.592	1.2930941

35	Ideal	J	4918.186	1.0635937

Unfortunately,	aggregate	can	be	quite	slow.	Fortunately,	there	are	other	options,	such	as	plyr,	dplyr
and	data.table,	that	are	considerably	faster.

11.3	plyr
One	of	the	best	things	to	ever	happen	to	R	was	the	development	of	the	plyr4	package	by	Hadley	Wickham.
It	epitomizes	the	“split-apply-combine”	method	of	data	manipulation.	The	core	of	plyr	consists	of
functions	such	as	ddply,	llply	and	ldply.	All	of	the	manipulation	functions	consist	of	five	letters,	with	the
last	three	always	being	ply.	The	first	letter	indicates	the	type	of	input	and	the	second	letter	indicates	the
type	of	output.	For	instance,	ddply	takes	in	a	data.frame	and	outputs	a	data.frame,	llply	takes	in	a
list	and	outputs	a	list	and	ldply	takes	in	a	list	and	outputs	a	data.frame.	A	full	enumeration	is
listed	in	Table	11.1.

4.	A	play	on	the	word	pliers	because	it	is	one	of	the	most	versatile	and	essential	tools.

Table	11.1	plyr	functions	and	their	corresponding	inputs	and	outputs

11.3.1	ddply
ddply	takes	a	data.frame,	splits	it	according	to	some	variable(s),	performs	a	desired	action	on	it	and
returns	a	data.frame.	To	learn	about	ddply	we	look	at	the	baseball	data	that	come	with	plyr.
Click	here	to	view	code	image

>	library(plyr)

>	head(baseball)

id	year	stint	team	lg	g	ab	r	h	X2b	X3b	hr	rbi	sb	cs	bb

4	ansonca01	1871	1	RC1	25	120	29	39	11	3	0	16	6	2	2

44	forceda01	1871	1	WS3	32	162	45	45	9	4	0	29	8	0	4

68	mathebo01	1871	1	FW1	19	89	15	24	3	1	0	10	2	1	2

99	startjo01	1871	1	NY2	33	161	35	58	5	1	1	34	4	2	3

102	suttoez01	1871	1	CL1	29	128	35	45	3	7	3	23	3	1	1

106	whitede01	1871	1	CL1	29	146	40	47	6	5	1	21	2	2	4

so	ibb	hbp	sh	sf	gidp

4	1	NA	NA	NA	NA	NA

44	0	NA	NA	NA	NA	NA

68	0	NA	NA	NA	NA	NA

99	0	NA	NA	NA	NA	NA

102	0	NA	NA	NA	NA	NA

106	1	NA	NA	NA	NA	NA

A	common	statistic	in	baseball	is	On	Base	Percentage	(OBP),	which	is	calculated	as	

where
H	=	Hits
BB	=	Bases	on	Balls	(Walks)	HBP	=	Times	Hit	by	Pitch
AB	=	At	Bats
SF	=	Sacrifice	Flies

Before	1954	sacrifice	flies	were	counted	as	part	of	sacrifice	hits,	which	includes	bunts,	so	for	players
before	1954	sacrifice	flies	should	be	assumed	to	be	0.	That	will	be	the	first	change	we	make	to	the	data.
There	are	many	instances	of	hbp	(hit	by	pitch)	that	are	NA,	so	we	set	those	to	0	as	well.	We	also	exclude
players	with	less	than	50	at	bats	in	a	season.
Click	here	to	view	code	image

>	#	subsetting	with	[is	faster	than	using	ifelse

>	baseball$sf[baseball$year	<	1954]	<-	0

>	#	check	that	it	worked

>	any(is.na(baseball$sf))

[1]	FALSE

>	#	set	NA	hbp's	to	0

>	baseball$hbp[is.na(baseball$hbp)]	<-	0

>	#	check	that	it	worked

>	any(is.na(baseball$hbp))

[1]	FALSE

>	#	only	keep	players	with	at	least	50	at	bats	in	a	season

>	baseball	<-	baseball[baseball$ab	>=	50,]

Calculating	the	OBP	for	a	given	player	in	a	given	year	is	easy	enough	with	just	vector	operations.
Click	here	to	view	code	image

>	#	calculate	OBP

>	baseball$OBP	<-	with(baseball,	(h	+	bb	+	hbp)	/	(ab	+	bb	+	hbp	+	sf))

>	tail(baseball)

id	year	stint	team	lg	g	ab	r	h	X2b	X3b	hr	rbi	sb

89499	claytro01	2007	1	TOR	AL	69	189	23	48	14	0	1	12	2

89502	cirilje01	2007	1	MIN	AL	50	153	18	40	9	2	2	21	2

89521	bondsba01	2007	1	SFN	NL	126	340	75	94	14	0	28	66	5

89523	biggicr01	2007	1	HOU	NL	141	517	68	130	31	3	10	50	4

89530	ausmubr01	2007	1	HOU	NL	117	349	38	82	16	3	3	25	6

89533	aloumo01	2007	1	NYN	NL	87	328	51	112	19	1	13	49	3

cs	bb	so	ibb	hbp	sh	sf	gidp	OBP

89499	1	14	50	0	1	3	3	8	0.3043478

89502	0	15	13	0	1	3	2	9	0.3274854

89521	0	132	54	43	3	0	2	13	0.4800839

89523	3	23	112	0	3	7	5	5	0.2846715

89530	1	37	74	3	6	4	1	11	0.3180662

89533	0	27	30	5	2	0	3	13	0.3916667

Here	we	used	a	new	function,	with.	This	allows	us	to	specify	the	columns	of	a	data.frame	without
having	to	specify	the	data.frame	name	each	time.
To	calculate	the	OBP	for	a	player’s	entire	career	we	cannot	just	average	his	individual	season	OBPs;

we	need	to	calculate	and	sum	the	numerator,	and	then	divide	by	the	sum	of	the	denominator.	This	requires
the	use	of	ddply.
First	we	make	a	function	to	do	that	calculation;	then	we	will	use	ddply	to	run	that	calculation	for	each

player.
Click	here	to	view	code	image

>	#	this	function	assumes	that	the	column	names	for	the	data	are	as	below

>	obp	<-	function(data)

+	{

+	c(OBP=with(data,	sum(h	+	bb	+	hbp)	/	sum(ab	+	bb	+	hbp	+	sf)))

+	}

>

>	#	use	ddply	to	calculate	career	OBP	for	each	player

>	careerOBP	<-	ddply(baseball,	.variables="id",	.fun=obp)

>	#	sort	the	results	by	OBP

>	careerOBP	<-	careerOBP[order(careerOBP$OBP,	decreasing=TRUE),]

>	#	see	the	results

>	head(careerOBP,	10)

id	OBP

1089	willite01	0.4816861

875	ruthba01	0.4742209

658	mcgrajo01	0.4657478

356	gehrilo01	0.4477848

85	bondsba01	0.4444622

476	hornsro01	0.4339068

184	cobbty01	0.4329655

327	foxxji01	0.4290509

953	speaktr01	0.4283386

191	collied01	0.4251246

This	nicely	returns	the	top	ten	players	by	career	on	base	percentage.	Notice	that	Billy	Hamilton	and
Bill	Joyce	are	absent	from	our	results	because	they	are	mysteriously	missing	from	the	baseball	data.

11.3.2	llply
In	Section	11.1.2	we	use	lapply	to	sum	each	element	of	a	list.

Click	here	to	view	code	image

>	theList	<-	list(A=matrix(1:9,	3),	B=1:5,	C=matrix(1:4,	2),	D=2)

>	lapply(theList,	sum)

$A

[1]	45

$B

[1]	15

$C

[1]	10

$D

[1]	2

This	can	be	done	with	llply,	yielding	identical	results.
Click	here	to	view	code	image

>	llply(theList,	sum)

$A

[1]	45

$B

[1]	15

$C

[1]	10

$D

[1]	2

>	identical(lapply(theList,	sum),	llply(theList,	sum))

[1]	TRUE

To	get	the	result	as	a	vector,	laply	can	be	used	similarly	to	sapply.
>	sapply(theList,	sum)

A	B	C	D

45	15	10	2

>	laply(theList,	sum)

[1]	45	15	10	2

Notice,	however,	that	while	the	results	are	the	same,	laply	did	not	include	names	for	the	vector.
These	little	nuances	can	be	maddening	but	help	dictate	when	to	use	which	function.

11.3.3	plyr	Helper	Functions
plyr	has	a	great	number	of	useful	helper	functions	such	as	each,	which	lets	us	supply	multiple	functions	to
a	function	like	aggregate.	One	drawback,	however,	is	that	when	using	each,	additional	arguments	can	no
longer	be	supplied	to	the	functions.
Click	here	to	view	code	image

>	aggregate(price	~	cut,	diamonds,	each(mean,	median))

cut	price.mean	price.median

1	Fair	4358.758	3282.000

2	Good	3928.864	3050.500

3	Very	Good	3981.760	2648.000

4	Premium	4584.258	3185.000

5	Ideal	3457.542	1810.000

Another	great	function	is	idata.frame,	which	creates	a	reference	to	a	data.frame	so	that	subsetting
is	much	faster	and	more	memory	efficient.	To	illustrate	this,	we	do	a	simple	operation	on	the	baseball
data	with	the	regular	data.frame	and	an	idata.frame.
Click	here	to	view	code	image

>	system.time(dlply(baseball,	"id",	nrow))

user	system	elapsed

0.27	0.00	0.31

>	iBaseball	<-	idata.frame(baseball)

>	system.time(dlply(iBaseball,	"id",	nrow))

user	system	elapsed

0.18	0.00	0.19

The	speed	gain	depends	on	the	size	of	the	data	and	the	complexity	of	the	calculation.	In	this	case,	there
was	actually	a	decrease	in	performance.	It	is	a	bit	of	a	moot	point,	as	in	most	situations	where	speed	is	a
concern	dplyr	should	be	used	over	plyr	and	idata.frame.

11.3.4	Speed	versus	Convenience
A	criticism	often	leveled	at	plyr	is	that	it	can	run	slowly.	The	typical	response	to	this	is	that	using	plyr	is
a	question	of	speed	versus	convenience.	Most	of	the	functionality	in	plyr	can	be	accomplished	using	base
functions	or	other	packages,	but	few	of	those	offer	the	ease	of	use	of	plyr.	Over	the	years,	Hadley
Wickham	has	taken	great	steps	to	speed	up	plyr,	including	optimized	R	code,	C++	code	and
parallelization.	The	next	evolution	of	this	process	was	the	introduction	of	the	dplyr	package,	detailed	in
Chapter	14.

11.4	data.table
For	speed	junkies	there	is	a	package	called	data.table,	written	by	Matt	Dowle	that	extends	and	enhances
the	functionality	of	data.frames.	The	syntax	is	a	little	different	from	regular	data.frames,	so	it
will	take	getting	used	to,	which	is	probably	the	primary	reason	it	has	not	seen	near-universal	adoption.
The	secret	to	the	speed	is	that	data.tables	have	an	index	like	databases.	This	enables	faster	value

accessing,	group	by	operations	and	joins.
Creating	data.tables	is	just	like	creating	data.frames,	and	the	two	are	very	similar.

Click	here	to	view	code	image

>	library(data.table)

>	#	create	a	regular	data.frame

>	theDF	<-	data.frame(A=1:10,

+	B=letters[1:10],

+	C=LETTERS[11:20],

+	D=rep(c("One",	"Two",	"Three"),	length.out=10))

>	#	create	a	data.table

>	theDT	<-	data.table(A=1:10,

+	B=letters[1:10],

+	C=LETTERS[11:20],

+	D=rep(c("One",	"Two",	"Three"),	length.out=10))

>	#	print	them	and	compare

>	theDF

A	B	C	D

1	1	a	K	One

2	2	b	L	Two

3	3	c	M	Three

4	4	d	N	One

5	5	e	O	Two

6	6	f	P	Three

7	7	g	Q	One

8	8	h	R	Two

9	9	i	S	Three

10	10	j	T	One

>	theDT

A	B	C	D

1:	1	a	K	One

2:	2	b	L	Two

3:	3	c	M	Three

4:	4	d	N	One

5:	5	e	O	Two

6:	6	f	P	Three

7:	7	g	Q	One

8:	8	h	R	Two

9:	9	i	S	Three

10:	10	j	T	One

>	#	notice	by	default	data.frame	turns	character	data	into	factors

>	#	while	data.table	does	not

>	class(theDF$B)

[1]	"factor"

>	class(theDT$B)

[1]	"character"

The	data	is	identical—except	that	data.frame	turned	B	into	a	factor	while	data.table	did	not—and
only	the	way	it	was	printed	looks	different.
It	is	also	possible	to	create	a	data.table	out	of	an	existing	data.frame.

Click	here	to	view	code	image

>	diamondsDT	<-	data.table(diamonds)

>	diamondsDT

carat	cut	color	clarity	depth	table	price	x	y	z

1:	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2:	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3:	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4:	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5:	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

53936:	0.72	Ideal	D	SI1	60.8	57	2757	5.75	5.76	3.50

53937:	0.72	Good	D	SI1	63.1	55	2757	5.69	5.75	3.61

53938:	0.70	Very	Good	D	SI1	62.8	60	2757	5.66	5.68	3.56

53939:	0.86	Premium	H	SI2	61.0	58	2757	6.15	6.12	3.74

53940:	0.75	Ideal	D	SI2	62.2	55	2757	5.83	5.87	3.64

Notice	that	printing	the	diamonds	data	would	try	to	print	out	all	the	data	but	data.table
intelligently	just	prints	the	first	five	and	last	five	rows.
Accessing	rows	can	be	done	similarly	to	accessing	rows	in	a	data.frame.
>	theDT[1:2,]

A	B	C	D

1:	1	a	K	One

2:	2	b	L	Two

>	theDT[theDT$A	>=	7,]

A	B	C	D

1:	7	g	Q	One

2:	8	h	R	Two

3:	9	i	S	Three

4:	10	j	T	One

>	theDT[A	>=	7,]

A	B	C	D

1:	7	g	Q	One

2:	8	h	R	Two

3:	9	i	S	Three

4:	10	j	T	One

While	the	second	line	in	the	preceding	code	is	valid	syntax,	it	is	not	necessarily	efficient	syntax.	That
line	creates	a	vector	of	length	nrow(theDT)	=	10	consisting	of	TRUE	or	FALSE	entries,	which	is	a

vector	scan.	After	we	create	a	key	for	the	data.table	we	can	use	different	syntax	to	pick	rows	through
a	binary	search,	which	will	be	much	faster	and	is	covered	in	Section	11.4.1.	The	third	line	computes	the
same	result	as	the	second	and	is	nicely	without	the	dollar	sign	notation.	This	is	because	the	data.table
function	knows	to	find	the	column	A	within	the	theDT	data.table.
Accessing	individual	columns	must	be	done	a	little	differently	than	accessing	columns	in

data.frames.	In	Section	5.1	we	show	that	multiple	columns	in	a	data.frame	should	be	specified	as
a	character	vector.	With	data.tables	the	columns	should	be	specified	as	a	list	of	the	actual
names,	not	as	characters.
Click	here	to	view	code	image

>	theDT[,	list(A,	C)]

A	C

1:	1	K

2:	2	L

3:	3	M

4:	4	N

5:	5	O

6:	6	P

7:	7	Q

8:	8	R

9:	9	S

10:	10	T

>	#	just	one	column

>	theDT[,	B]

[1]	"a"	"b"	"c"	"d"	"e"	"f"	"g"	"h"	"i"	"j"

>	#	one	column	while	maintaining	data.table	structure

>	theDT[,	list(B)]

B

1:	a

2:	b

3:	c

4:	d

5:	e

6:	f

7:	g

8:	h

9:	i

10:	j

If	we	must	specify	the	column	names	as	characters	(perhaps	because	they	were	passed	as
arguments	to	a	function),	the	with	argument	should	be	set	to	FALSE.
Click	here	to	view	code	image

>	theDT[,	"B",	with=FALSE]

B

1:	a

2:	b

3:	c

4:	d

5:	e

6:	f

7:	g

8:	h

9:	i

10:	j

>	theDT[,	c("A",	"C"),	with=FALSE]

A	C

1:	1	K

2:	2	L

3:	3	M

4:	4	N

5:	5	O

6:	6	P

7:	7	Q

8:	8	R

9:	9	S

10:	10	T

>	theCols	<-	c("A",	"C")

>	theDT[,	theCols,	with=FALSE]

A	C

1:	1	K

2:	2	L

3:	3	M

4:	4	N

5:	5	O

6:	6	P

7:	7	Q

8:	8	R

9:	9	S

10:	10	T

This	time	we	used	a	vector	to	hold	the	column	names	instead	of	a	list.	These	nuances	are
important	to	proper	functions	of	data.tables	but	can	lead	to	a	great	deal	of	frustration.

11.4.1	Keys
Now	that	we	have	a	few	data.tables	in	memory,	we	might	be	interested	in	seeing	some	information
about	them.
Click	here	to	view	code	image

>	#	show	tables

>	tables()

NAME	NROW	NCOL	MB

[1,]	diamondsDT	53,940	10	4

[2,]	theDT	10	4	1

[3,]	tomato3	16	11	1

COLS

[1,]	carat,cut,color,clarity,depth,table,price,x,y,z

[2,]	A,B,C,D

[3,]	Round,Tomato,Price,Source,Sweet,Acid,Color,Texture,Overall,Avg	of	Totals,Total	o

KEY

[1,]

[2,]

[3,]

Total:	6MB

This	shows,	for	each	data.table	in	memory,	the	name,	the	number	of	rows,	the	size	in	megabytes,
the	column	names	and	the	key.	We	have	not	assigned	keys	for	any	of	the	tables	so	that	column	is	blank.	The
key	is	used	to	index	the	data.table	and	will	provide	the	extra	speed.

We	start	by	adding	a	key	to	theDT.	We	will	use	the	D	column	to	index	the	data.table.	This	is	done
using	setkey,	which	takes	the	name	of	the	data.table	as	its	first	argument	and	the	name	of	the	desired
column	(without	quotes,	as	is	consistent	with	column	selection)	as	the	second	argument.
Click	here	to	view	code	image

>	#	set	the	key

>	setkey(theDT,	D)

>	#	show	the	data.table	again

>	theDT

A	B	C	D

1:	1	a	K	One

2:	4	d	N	One

3:	7	g	Q	One

4:	10	j	T	One

5:	3	c	M	Three

6:	6	f	P	Three

7:	9	i	S	Three

8:	2	b	L	Two

9:	5	e	O	Two

10:	8	h	R	Two

The	data	have	been	reordered	according	to	column	D,	which	is	sorted	alphabetically.	We	can	confirm
the	key	was	set	with	key.

>	key(theDT)

[1]	"D"

Or	tables.
Click	here	to	view	code	image

>	tables()

NAME	NROW	NCOL	MB

[1,]	diamondsDT	53,940	10	4

[2,]	theDT	10	4	1

[3,]	tomato3	16	11	1

COLS

[1,]	carat,cut,color,clarity,depth,table,price,x,y,z

[2,]	A,B,C,D

[3,]	Round,Tomato,Price,Source,Sweet,Acid,Color,Texture,Overall,Avg	of	Totals,Total	o

KEY

[1,]

[2,]	D

[3,]

Total:	6MB

This	adds	some	new	functionality	to	selecting	rows	from	data.tables.	In	addition	to	selecting	rows
by	the	row	number	or	by	some	expression	that	evaluates	to	TRUE	or	FALSE,	a	value	of	the	key	column
can	be	specified.

>	theDT["One",]

A	B	C	D

1:	1	a	K	One

2:	4	d	N	One

3:	7	g	Q	One

4:	10	j	T	One

>	theDT[c("One",	"Two"),]

A	B	C	D

1:	1	a	K	One

2:	4	d	N	One

3:	7	g	Q	One

4:	10	j	T	One

5:	2	b	L	Two

6:	5	e	O	Two

7:	8	h	R	Two

More	than	one	column	can	be	set	as	the	key.
Click	here	to	view	code	image

>	#	set	the	key

>	setkey(diamondsDT,	cut,	color)	To	access	rows	according	to	both	keys,	there	is	a	special

function	named	J.	It	takes	multiple	arguments,	each	of	which	is	a	vector	of	values	to

select.

Click	here	to	view	code	image

>	#	access	some	rows

>	diamondsDT[J("Ideal",	"E"),]

carat	cut	color	clarity	depth	table	price	x	y	z

1:	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2:	0.26	Ideal	E	VVS2	62.9	58	554	4.02	4.06	2.54

3:	0.70	Ideal	E	SI1	62.5	57	2757	5.70	5.72	3.57

4:	0.59	Ideal	E	VVS2	62.0	55	2761	5.38	5.43	3.35

5:	0.74	Ideal	E	SI2	62.2	56	2761	5.80	5.84	3.62

3899:	0.70	Ideal	E	SI1	61.7	55	2745	5.71	5.74	3.53

3900:	0.51	Ideal	E	VVS1	61.9	54	2745	5.17	5.11	3.18

3901:	0.56	Ideal	E	VVS1	62.1	56	2750	5.28	5.29	3.28

3902:	0.77	Ideal	E	SI2	62.1	56	2753	5.84	5.86	3.63

3903:	0.71	Ideal	E	SI1	61.9	56	2756	5.71	5.73	3.54

>	diamondsDT[J("Ideal",	c("E",	"D")),]

carat	cut	color	clarity	depth	table	price	x	y	z

1:	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2:	0.26	Ideal	E	VVS2	62.9	58	554	4.02	4.06	2.54

3:	0.70	Ideal	E	SI1	62.5	57	2757	5.70	5.72	3.57

4:	0.59	Ideal	E	VVS2	62.0	55	2761	5.38	5.43	3.35

5:	0.74	Ideal	E	SI2	62.2	56	2761	5.80	5.84	3.62

6733:	0.51	Ideal	D	VVS2	61.7	56	2742	5.16	5.14	3.18

6734:	0.51	Ideal	D	VVS2	61.3	57	2742	5.17	5.14	3.16

6735:	0.81	Ideal	D	SI1	61.5	57	2748	6.00	6.03	3.70

6736:	0.72	Ideal	D	SI1	60.8	57	2757	5.75	5.76	3.50

6737:	0.75	Ideal	D	SI2	62.2	55	2757	5.83	5.87	3.64

11.4.2	data.table	Aggregation
The	primary	benefit	of	indexing	is	faster	aggregation.	While	aggregate	and	the	various	d*ply	functions

will	work	because	data.tables	are	just	enhanced	data.frames,	they	will	be	slower	than	using	the
built-in	aggregation	functionality	of	data.table.
In	Section	11.2	we	calculate	the	mean	price	of	diamonds	for	each	type	of	cut.

Click	here	to	view	code	image

>	aggregate(price	~	cut,	diamonds,	mean)

cut	price

1	Fair	4358.758

2	Good	3928.864

3	Very	Good	3981.760

4	Premium	4584.258

5	Ideal	3457.542

To	get	the	same	result	using	data.table,	we	do	this:	Click	here	to	view	code	image
>	diamondsDT[,	mean(price),	by=cut]

cut	V1

1:	Fair	4358.758

2:	Good	3928.864

3:	Very	Good	3981.760

4:	Premium	4584.258

5:	Ideal	3457.542

The	only	difference	between	this	and	the	previous	result	is	that	the	columns	have	different	names.	To
specify	the	name	of	the	resulting	column,	pass	the	aggregation	function	as	a	named	list.
Click	here	to	view	code	image

>	diamondsDT[,	list(price=mean(price)),	by=cut]

cut	price

1:	Fair	4358.758

2:	Good	3928.864

3:	Very	Good	3981.760

4:	Premium	4584.258

5:	Ideal	3457.542

To	aggregate	on	multiple	columns,	specify	them	as	a	list	().
Click	here	to	view	code	image

>	diamondsDT[,	mean(price),	by=list(cut,	color)]

cut	color	V1

1:	Fair	D	4291.061

2:	Fair	E	3682.312

3:	Fair	F	3827.003

4:	Fair	G	4239.255

5:	Fair	H	5135.683

6:	Fair	I	4685.446

7:	Fair	J	4975.655

8:	Good	D	3405.382

9:	Good	E	3423.644

10:	Good	F	3495.750

11:	Good	G	4123.482

12:	Good	H	4276.255

13:	Good	I	5078.533

14:	Good	J	4574.173

15:	Very	Good	D	3470.467

16:	Very	Good	E	3214.652

17:	Very	Good	F	3778.820

18:	Very	Good	G	3872.754

19:	Very	Good	H	4535.390

20:	Very	Good	I	5255.880

21:	Very	Good	J	5103.513

22:	Premium	D	3631.293

23:	Premium	E	3538.914

24:	Premium	F	4324.890

25:	Premium	G	4500.742

26:	Premium	H	5216.707

27:	Premium	I	5946.181

28:	Premium	J	6294.592

29:	Ideal	D	2629.095

30:	Ideal	E	2597.550

31:	Ideal	F	3374.939

32:	Ideal	G	3720.706

33:	Ideal	H	3889.335

34:	Ideal	I	4451.970

35:	Ideal	J	4918.186

cut	color	V1

To	aggregate	multiple	arguments,	pass	them	as	a	list.	Unlike	with	aggregate,	a	different	metric	can
be	measured	for	each	column.
Click	here	to	view	code	image

>	diamondsDT[,	list(price=mean(price),	carat=mean(carat)),	by=cut]

cut	price	carat

1:	Fair	4358.758	1.0461366

2:	Good	3928.864	0.8491847

3:	Very	Good	3981.760	0.8063814

4:	Premium	4584.258	0.8919549

5:	Ideal	3457.542	0.7028370

>	diamondsDT[,	list(price=mean(price),	carat=mean(carat),

+	caratSum=sum(carat)),	by=cut]

cut	price	carat	caratSum

1:	Fair	4358.758	1.0461366	1684.28

2:	Good	3928.864	0.8491847	4166.10

3:	Very	Good	3981.760	0.8063814	9742.70

4:	Premium	4584.258	0.8919549	12300.95

5:	Ideal	3457.542	0.7028370	15146.84

Finally,	both	multiple	metrics	can	be	calculated	and	multiple	grouping	variables	can	be	specified	at	the
same	time.
Click	here	to	view	code	image

>	diamondsDT[,	list(price=mean(price),	carat=mean(carat)),

+	by=list(cut,	color)]

cut	color	price	carat

1:	Fair	D	4291.061	0.9201227

2:	Fair	E	3682.312	0.8566071

3:	Fair	F	3827.003	0.9047115

4:	Fair	G	4239.255	1.0238217

5:	Fair	H	5135.683	1.2191749

6:	Fair	I	4685.446	1.1980571

7:	Fair	J	4975.655	1.3411765

8:	Good	D	3405.382	0.7445166

9:	Good	E	3423.644	0.7451340

10:	Good	F	3495.750	0.7759296

11:	Good	G	4123.482	0.8508955

12:	Good	H	4276.255	0.9147293

13:	Good	I	5078.533	1.0572222

14:	Good	J	4574.173	1.0995440

15:	Very	Good	D	3470.467	0.6964243

16:	Very	Good	E	3214.652	0.6763167

17:	Very	Good	F	3778.820	0.7409612

18:	Very	Good	G	3872.754	0.7667986

19:	Very	Good	H	4535.390	0.9159485

20:	Very	Good	I	5255.880	1.0469518

21:	Very	Good	J	5103.513	1.1332153

22:	Premium	D	3631.293	0.7215471

23:	Premium	E	3538.914	0.7177450

24:	Premium	F	4324.890	0.8270356

25:	Premium	G	4500.742	0.8414877

26:	Premium	H	5216.707	1.0164492

27:	Premium	I	5946.181	1.1449370

28:	Premium	J	6294.592	1.2930941

29:	Ideal	D	2629.095	0.5657657

30:	Ideal	E	2597.550	0.5784012

31:	Ideal	F	3374.939	0.6558285

32:	Ideal	G	3720.706	0.7007146

33:	Ideal	H	3889.335	0.7995249

34:	Ideal	I	4451.970	0.9130291

35:	Ideal	J	4918.186	1.0635938

cut	color	price	carat

11.5	Conclusion
Aggregating	data	is	a	very	important	step	in	the	analysis	process.	Sometimes	it	is	the	end	goal,	and	other
times	it	is	in	preparation	for	applying	more	advanced	methods.	No	matter	the	reason	for	aggregation,	there
are	plenty	of	functions	to	make	it	possible.	These	include	aggregate,	apply	and	lapply	in	base;	ddply,
llply	and	the	rest	in	plyr;	and	the	group	by	functionality	in	data.table.

12.	Faster	Group	Manipulation	with	dplyr

Not	to	be	outdone	by	Matt	Dowle,	Hadley	Wickham	has	written	a	sequel	to	his	famous	plyr	package	that
focuses	on	speed	called	dplyr.	The	d	in	the	name	reinforces	that	the	package	is	meant	to	work	with
data.frames,	while	list	and	vector	functionality	has	been	moved	to	the	purrr	package,	which	is
detailed	in	Chapter	13.	More	and	more	dplyr	is	becoming	the	de	facto	choice	for	data	munging,	having
nearly	replaced	plyr.	Fortunately	for	R	users,	there	is	an	arms	race	between	Hadley	Wickham	and	Matt
Dowle	to	write	the	fastest	code,	and	dplyr	offers	a	great	mix	of	speed	and	ease	of	use.
Writing	code	with	dplyr	involves	using	the	“grammar	of	data”	to	perform	data	munging.	Each	step	is

done	by	a	single	function	that	represents	a	verb.	These	verbs	will	be	somewhat	familiar	to	SQL	users.
Selecting	columns	is	done	with	select,	filtering	rows	with	filter,	grouping	data	with	group_by	and
changing	or	adding	columns	with	mutate.	These	are	just	some	of	the	many	functions	in	dplyr.
When	working	with	both	dplyr	and	plyr	it	is	important	to	load	plyr	first	and	then	dplyr,	because	they

have	a	number	of	functions	with	the	same	names,	and	in	R,	functions	from	the	last	package	loaded	take
precedence.	This	sometimes	creates	a	need	to	explicitly	specify	both	the	package	and	function	using	the
double	colon	operator	(::),	such	as	plyr::summarize	or	dplyr::summarize.

12.1	Pipes
Not	only	is	dplyr	incredibly	fast;	it	popularized	the	new	piping	paradigm	made	possible	by	the	magrittr
package.	That	is,	rather	than	nesting	functions	within	each	other,	storing	temporary	steps	to	variables,	we
pipe	the	result	of	one	function	into	another	using	the	pipe	(%¿%)	operator.
With	pipes	we	pipe	objects	into	the	first	arguments	of	functions.	These	operations	can	be	chained

together,	piping	the	result	of	one	function	into	the	first	argument	of	the	next.	As	an	example,	we	pipe	the
diamonds	data	into	the	head	function	and	that	into	the	dim	function.
Click	here	to	view	code	image

>	library(magrittr)

>	data(diamonds,	package='ggplot2')

>	dim(head(diamonds,	n=4))

[1]	4	10

>	diamonds	%>%	head(4)	%>%	dim

[1]	4	10

12.2	tbl
Just	as	data.table	introduced	the	data.table	object	to	extend	data.frames,	dplyr	brought	us	tbl
objects	which	are	also	an	extension	of	data.frames.	While	they	have	beneficial	underlying	properties,
the	most	outwardly	noticeable	feature	of	tbls	is	that	when	they	are	printed	to	the	screen,	only	a	subset	of
the	rows	are	displayed	by	default	and	only	as	many	columns	as	will	fit	on	the	screen	are	printed.1	Another
feature	is	that	the	data	type	stored	in	each	column	is	displayed	under	the	column	names.

1.	The	number	of	displayed	columns	varies	depending	on	console	width.

The	diamonds	data—with	more	recent	versions	of	ggplot2—are	stored	in	a	tbl,	specifically	a
tbl_df,	which	itself	is	an	extension	of	tbl.	Without	dplyr	or	similar	tbl-based	package	loaded	they
will	print	as	a	normal	data.frame.

Click	here	to	view	code	image

>	class(diamonds)

[1]	"tbl_df"	"tbl"	"data.frame"

>	head(diamonds)

#	A	tibble:	6	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

After	dplyr	is	loaded,	they	print	like	tbls.
Click	here	to	view	code	image

>	library(dplyr)

>	head(diamonds)

#	A	tibble:	6	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

Since	tbls	are	printed	with	only	a	subset	of	the	rows,	we	do	not	need	to	use	head.
Click	here	to	view	code	image

>	diamonds

#	A	tibble:	53,940	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

7	0.24	Very	Good	I	VVS1	62.3	57	336	3.95	3.98	2.47

8	0.26	Very	Good	H	SI1	61.9	55	337	4.07	4.11	2.53

9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49

10	0.23	Very	Good	H	VS1	59.4	61	338	4.00	4.05	2.39

#	...	with	53,930	more	rows

The	tbl	object	was	originally	introduced	in	dplyr	and	then	further	expanded	in	the	tibble	package.
After	their	inclusion	in	this	new	package	they	began	to	be	refereed	to	as	tibbles,	though	their	class	is
still	tbl.

12.3	select
The	select	function	takes	a	data.frame	(or	tbl)	as	its	first	argument	then	the	desired	columns	as
subsequent	arguments.	The	function,	like	all	dplyr	functions,	can	be	used	in	the	traditional,	nested	manner
or	with	pipes.
Click	here	to	view	code	image

>	select(diamonds,	carat,	price)

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

>	diamonds	%>%	select(carat,	price)

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

>	#	the	columns	can	be	specified	as	a	vector	of	column	names	as	well

>	diamonds	%>%	select(c(carat,	price))

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

The	regular	select	function	is	designed	to	take	unquoted	column	names	to	make	interactive	use	easier.
The	names	can	be	passed	either	as	individual	arguments	or	as	a	vector.	If	quoted	column	names	are

necessary,	they	can	be	used	with	the	standard	evaluation	version	of	select,	which	has	an	underscore	(_)	at
the	end	of	the	function.
Click	here	to	view	code	image

>	diamonds	%>%	select_('carat',	'price')

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

If	the	column	names	are	stored	in	a	variable,	they	should	be	passed	to	the	.dots	argument.
Click	here	to	view	code	image

>	theCols	<-	c('carat',	'price')

>	diamonds	%>%	select_(.dots=theCols)

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

Starting	with	dplyr	version	0.6.0	select_	is	deprecated,	though	it	remains	for	backward	comparability.
An	alternative	method,	that	uses	the	regular	select,	is	to	use	the	one_of	function.
Click	here	to	view	code	image

>	diamonds	%>%	select(one_of	('carat',	'price'))

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

>	#	as	a	variable

>	theCols	<-	c('carat',	'price')

>	diamonds	%>%	select(one_of(theCols))

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

It	is	possible	to	use	traditional	R	square	bracket	syntax,	though	the	dplyr	printing	rules	still	apply.
Click	here	to	view	code	image

>	diamonds[,	c('carat',	'price')]

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

As	with	the	square	bracket	syntax,	column	names	can	be	specified	by	position	using	their	indices.
Click	here	to	view	code	image

>	select(diamonds,	1,	7)

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

>	diamonds	%>%	select(1,	7)

#	A	tibble:	53,940	×	2

carat	price

<dbl>	<int>

1	0.23	326

2	0.21	326

3	0.23	327

4	0.29	334

5	0.31	335

6	0.24	336

7	0.24	336

8	0.26	337

9	0.22	337

10	0.23	338

#	...	with	53,930	more	rows

Searching	for	a	partial	match	is	done	with	dplyr	functions	starts_with,	ends_with	and	contains.
Click	here	to	view	code	image

>	diamonds	%>%	select(starts_with('c'))

#	A	tibble:	53,940	×	4

carat	cut	color	clarity

<dbl>	<ord>	<ord>	<ord>

1	0.23	Ideal	E	SI2

2	0.21	Premium	E	SI1

3	0.23	Good	E	VS1

4	0.29	Premium	I	VS2

5	0.31	Good	J	SI2

6	0.24	Very	Good	J	VVS2

7	0.24	Very	Good	I	VVS1

8	0.26	Very	Good	H	SI1

9	0.22	Fair	E	VS2

10	0.23	Very	Good	H	VS1

#	...	with	53,930	more	rows

>	diamonds	%>%	select(ends_with('e'))

#	A	tibble:	53,940	×	2

table	price

<dbl>	<int>

1	55	326

2	61	326

3	65	327

4	58	334

5	58	335

6	57	336

7	57	336

8	55	337

9	61	337

10	61	338

#	...	with	53,930	more	rows

>	diamonds	%>%	select(contains('l'))

#	A	tibble:	53,940	×	3

color	clarity	table

<ord>	<ord>	<dbl>

1	E	SI2	55

2	E	SI1	61

3	E	VS1	65

4	I	VS2	58

5	J	SI2	58

6	J	VVS2	57

7	I	VVS1	57

8	H	SI1	55

9	E	VS2	61

10	H	VS1	61

#	...	with	53,930	more	rows

Regular	expression	searches	are	done	with	matches.	The	following	code	searches	for	columns	that
contain	the	letter	“r”,	followed	by	any	number	of	wildcard	matches	and	then	the	letter	“t”.	Regular
expressions	are	further	explained	in	Section	16.4.
Click	here	to	view	code	image

>	diamonds	%>%	select(matches('r.+t'))

#	A	tibble:	53,940	×	2

carat	clarity

<dbl>	<ord>

1	0.23	SI2

2	0.21	SI1

3	0.23	VS1

4	0.29	VS2

5	0.31	SI2

6	0.24	VVS2

7	0.24	VVS1

8	0.26	SI1

9	0.22	VS2

10	0.23	VS1

#	...	with	53,930	more	rows

Columns	can	be	designated	not	to	be	selected	by	preceding	the	column	names	or	numbers	with	the
minus	sign	(-).
Click	here	to	view	code	image

>	#	by	name

>	diamonds	%>%	select(-carat,	-price)

#	A	tibble:	53,940	×	8

cut	color	clarity	depth	table	x	y	z

<ord>	<ord>	<ord>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>

1	Ideal	E	SI2	61.5	55	3.95	3.98	2.43

2	Premium	E	SI1	59.8	61	3.89	3.84	2.31

3	Good	E	VS1	56.9	65	4.05	4.07	2.31

4	Premium	I	VS2	62.4	58	4.20	4.23	2.63

5	Good	J	SI2	63.3	58	4.34	4.35	2.75

6	Very	Good	J	VVS2	62.8	57	3.94	3.96	2.48

7	Very	Good	I	VVS1	62.3	57	3.95	3.98	2.47

8	Very	Good	H	SI1	61.9	55	4.07	4.11	2.53

9	Fair	E	VS2	65.1	61	3.87	3.78	2.49

10	Very	Good	H	VS1	59.4	61	4.00	4.05	2.39

#	...	with	53,930	more	rows

>	diamonds	%>%	select(-c(carat,	price))

#	A	tibble:	53,940	×	8

cut	color	clarity	depth	table	x	y	z

<ord>	<ord>	<ord>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>

1	Ideal	E	SI2	61.5	55	3.95	3.98	2.43

2	Premium	E	SI1	59.8	61	3.89	3.84	2.31

3	Good	E	VS1	56.9	65	4.05	4.07	2.31

4	Premium	I	VS2	62.4	58	4.20	4.23	2.63

5	Good	J	SI2	63.3	58	4.34	4.35	2.75

6	Very	Good	J	VVS2	62.8	57	3.94	3.96	2.48

7	Very	Good	I	VVS1	62.3	57	3.95	3.98	2.47

8	Very	Good	H	SI1	61.9	55	4.07	4.11	2.53

9	Fair	E	VS2	65.1	61	3.87	3.78	2.49

10	Very	Good	H	VS1	59.4	61	4.00	4.05	2.39

#	...	with	53,930	more	rows

>	#	by	number

>	diamonds	%>%	select(-1,	-7)

#	A	tibble:	53,940	×	8

cut	color	clarity	depth	table	x	y	z

<ord>	<ord>	<ord>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>

1	Ideal	E	SI2	61.5	55	3.95	3.98	2.43

2	Premium	E	SI1	59.8	61	3.89	3.84	2.31

3	Good	E	VS1	56.9	65	4.05	4.07	2.31

4	Premium	I	VS2	62.4	58	4.20	4.23	2.63

5	Good	J	SI2	63.3	58	4.34	4.35	2.75

6	Very	Good	J	VVS2	62.8	57	3.94	3.96	2.48

7	Very	Good	I	VVS1	62.3	57	3.95	3.98	2.47

8	Very	Good	H	SI1	61.9	55	4.07	4.11	2.53

9	Fair	E	VS2	65.1	61	3.87	3.78	2.49

10	Very	Good	H	VS1	59.4	61	4.00	4.05	2.39

#	...	with	53,930	more	rows

>	diamonds	%>%	select(-c(1,	7))

#	A	tibble:	53,940	×	8

cut	color	clarity	depth	table	x	y	z

<ord>	<ord>	<ord>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>

1	Ideal	E	SI2	61.5	55	3.95	3.98	2.43

2	Premium	E	SI1	59.8	61	3.89	3.84	2.31

3	Good	E	VS1	56.9	65	4.05	4.07	2.31

4	Premium	I	VS2	62.4	58	4.20	4.23	2.63

5	Good	J	SI2	63.3	58	4.34	4.35	2.75

6	Very	Good	J	VVS2	62.8	57	3.94	3.96	2.48

7	Very	Good	I	VVS1	62.3	57	3.95	3.98	2.47

8	Very	Good	H	SI1	61.9	55	4.07	4.11	2.53

9	Fair	E	VS2	65.1	61	3.87	3.78	2.49

10	Very	Good	H	VS1	59.4	61	4.00	4.05	2.39

#	...	with	53,930	more	rows

Specifying	columns	not	to	select	using	quoted	names	requires	putting	the	minus	sign	inside	the	quotes
surrounding	the	names	of	undesired	columns	that	are	given	to	the	.dots	argument.
Click	here	to	view	code	image

>	diamonds	%>%	select_(.dots=c('-carat',	'-price'))

#	A	tibble:	53,940	×	8

cut	color	clarity	depth	table	x	y	z

<ord>	<ord>	<ord>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>

1	Ideal	E	SI2	61.5	55	3.95	3.98	2.43

2	Premium	E	SI1	59.8	61	3.89	3.84	2.31

3	Good	E	VS1	56.9	65	4.05	4.07	2.31

4	Premium	I	VS2	62.4	58	4.20	4.23	2.63

5	Good	J	SI2	63.3	58	4.34	4.35	2.75

6	Very	Good	J	VVS2	62.8	57	3.94	3.96	2.48

7	Very	Good	I	VVS1	62.3	57	3.95	3.98	2.47

8	Very	Good	H	SI1	61.9	55	4.07	4.11	2.53

9	Fair	E	VS2	65.1	61	3.87	3.78	2.49

10	Very	Good	H	VS1	59.4	61	4.00	4.05	2.39

#	...	with	53,930	more	rows

When	using	one_of	the	minus	sign	goes	before	the	one_of	function.

Click	here	to	view	code	image

>	diamonds	%>%	select(-one_of('carat',	'price'))

#	A	tibble:	53,940	×	8

cut	color	clarity	depth	table	x	y	z

<ord>	<ord>	<ord>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>

1	Ideal	E	SI2	61.5	55	3.95	3.98	2.43

2	Premium	E	SI1	59.8	61	3.89	3.84	2.31

3	Good	E	VS1	56.9	65	4.05	4.07	2.31

4	Premium	I	VS2	62.4	58	4.20	4.23	2.63

5	Good	J	SI2	63.3	58	4.34	4.35	2.75

6	Very	Good	J	VVS2	62.8	57	3.94	3.96	2.48

7	Very	Good	I	VVS1	62.3	57	3.95	3.98	2.47

8	Very	Good	H	SI1	61.9	55	4.07	4.11	2.53

9	Fair	E	VS2	65.1	61	3.87	3.78	2.49

10	Very	Good	H	VS1	59.4	61	4.00	4.05	2.39

#	...	with	53,930	more	rows

12.4	filter
Specifying	rows	based	on	a	logical	expression	is	done	with	filter.
Click	here	to	view	code	image

>	diamonds	%>%	filter(cut	==	'Ideal')

#	A	tibble:	21,551	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46

3	0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

4	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

5	0.33	Ideal	I	SI2	61.8	55	403	4.49	4.51	2.78

6	0.33	Ideal	I	SI2	61.2	56	403	4.49	4.50	2.75

7	0.33	Ideal	J	SI1	61.1	56	403	4.49	4.55	2.76

8	0.23	Ideal	G	VS1	61.9	54	404	3.93	3.95	2.44

9	0.32	Ideal	I	SI1	60.9	55	404	4.45	4.48	2.72

10	0.30	Ideal	I	SI2	61.0	59	405	4.30	4.33	2.63

#	...	with	21,541	more	rows

The	base	R	equivalent	is	more	verbose	and	uses	square	brackets.
Click	here	to	view	code	image

>	diamonds[diamonds$cut	==	'Ideal',]

#	A	tibble:	21,551	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46

3	0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

4	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

5	0.33	Ideal	I	SI2	61.8	55	403	4.49	4.51	2.78

6	0.33	Ideal	I	SI2	61.2	56	403	4.49	4.50	2.75

7	0.33	Ideal	J	SI1	61.1	56	403	4.49	4.55	2.76

8	0.23	Ideal	G	VS1	61.9	54	404	3.93	3.95	2.44

9	0.32	Ideal	I	SI1	60.9	55	404	4.45	4.48	2.72

10	0.30	Ideal	I	SI2	61.0	59	405	4.30	4.33	2.63

#	...	with	21,541	more	rows

To	filter	on	a	column	being	equal	to	one	of	many	possible	values	the	%in%	operator	is	used.

Click	here	to	view	code	image

>	diamonds	%>%	filter(cut	%in%	c('Ideal',	'Good'))

#	A	tibble:	26,457	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

3	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

4	0.30	Good	J	SI1	64.0	55	339	4.25	4.28	2.73

5	0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46

6	0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

7	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

8	0.30	Good	J	SI1	63.4	54	351	4.23	4.29	2.70

9	0.30	Good	J	SI1	63.8	56	351	4.23	4.26	2.71

10	0.30	Good	I	SI2	63.3	56	351	4.26	4.30	2.71

#	...	with	26,447	more	rows

All	the	standard	equality	operators	can	all	be	used	with	filter.
Click	here	to	view	code	image

>	diamonds	%>%	filter(price	>=	1000)

#	A	tibble:	39,441	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.70	Ideal	E	SI1	62.5	57	2757	5.70	5.72	3.57

2	0.86	Fair	E	SI2	55.1	69	2757	6.45	6.33	3.52

3	0.70	Ideal	G	VS2	61.6	56	2757	5.70	5.67	3.50

4	0.71	Very	Good	E	VS2	62.4	57	2759	5.68	5.73	3.56

5	0.78	Very	Good	G	SI2	63.8	56	2759	5.81	5.85	3.72

6	0.70	Good	E	VS2	57.5	58	2759	5.85	5.90	3.38

7	0.70	Good	F	VS1	59.4	62	2759	5.71	5.76	3.40

8	0.96	Fair	F	SI2	66.3	62	2759	6.27	5.95	4.07

9	0.73	Very	Good	E	SI1	61.6	59	2760	5.77	5.78	3.56

10	0.80	Premium	H	SI1	61.5	58	2760	5.97	5.93	3.66

#	...	with	39,431	more	rows

>	diamonds	%>%	filter(price	!=	1000)

#	A	tibble:	53,915	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

7	0.24	Very	Good	I	VVS1	62.3	57	336	3.95	3.98	2.47

8	0.26	Very	Good	H	SI1	61.9	55	337	4.07	4.11	2.53

9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49

10	0.23	Very	Good	H	VS1	59.4	61	338	4.00	4.05	2.39

#	...	with	53,905	more	rows

Compound	filtering	is	accomplished	by	either	separating	the	expressions	with	a	comma	(,)	or	an
ampersand	(&).
Click	here	to	view	code	image

>	diamonds	%>%	filter(carat	>	2,	price	<	14000)

#	A	tibble:	644	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	2.06	Premium	J	I1	61.2	58	5203	8.10	8.07	4.95

2	2.14	Fair	J	I1	69.4	57	5405	7.74	7.70	5.36

3	2.15	Fair	J	I1	65.5	57	5430	8.01	7.95	5.23

4	2.22	Fair	J	I1	66.7	56	5607	8.04	8.02	5.36

5	2.01	Fair	I	I1	67.4	58	5696	7.71	7.64	5.17

6	2.01	Fair	I	I1	55.9	64	5696	8.48	8.39	4.71

7	2.27	Fair	J	I1	67.6	55	5733	8.05	8.00	5.43

8	2.03	Fair	H	I1	64.4	59	6002	7.91	7.85	5.07

9	2.03	Fair	H	I1	66.6	57	6002	7.81	7.75	5.19

10	2.06	Good	H	I1	64.3	58	6091	8.03	7.99	5.15

#	...	with	634	more	rows

>	diamonds	%>%	filter(carat	>	2	&	price	<	14000)

#	A	tibble:	644	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	2.06	Premium	J	I1	61.2	58	5203	8.10	8.07	4.95

2	2.14	Fair	J	I1	69.4	57	5405	7.74	7.70	5.36

3	2.15	Fair	J	I1	65.5	57	5430	8.01	7.95	5.23

4	2.22	Fair	J	I1	66.7	56	5607	8.04	8.02	5.36

5	2.01	Fair	I	I1	67.4	58	5696	7.71	7.64	5.17

6	2.01	Fair	I	I1	55.9	64	5696	8.48	8.39	4.71

7	2.27	Fair	J	I1	67.6	55	5733	8.05	8.00	5.43

8	2.03	Fair	H	I1	64.4	59	6002	7.91	7.85	5.07

9	2.03	Fair	H	I1	66.6	57	6002	7.81	7.75	5.19

10	2.06	Good	H	I1	64.3	58	6091	8.03	7.99	5.15

#	...	with	634	more	rows

A	logical	or	statement	is	expressed	with	a	vertical	pipe	(|).
Click	here	to	view	code	image

>	diamonds	%>%	filter(carat	<	1	|	carat	>	5)

#	A	tibble:	34,881	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

7	0.24	Very	Good	I	VVS1	62.3	57	336	3.95	3.98	2.47

8	0.26	Very	Good	H	SI1	61.9	55	337	4.07	4.11	2.53

9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49

10	0.23	Very	Good	H	VS1	59.4	61	338	4.00	4.05	2.39

#	...	with	34,871	more	rows

When	filtering	based	on	the	value	of	a	variable,	filter_	is	used	with	a	quoted	expression.	Quoted
expressions	can	be	text	or	expressions	preceded	with	a	tilde	(~).	Switching	between	unquoted
expressions	(considered	non-standard	evaluation)	and	quoted	expressions	(standard	evaluation)	can	be
difficult	but	is	necessary	to	make	dplyr	easy	to	use	interactively	and	practical	inside	of	functions.
Click	here	to	view	code	image

>	diamonds	%>%	filter_("cut	==	'Ideal'")

#	A	tibble:	21,551	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46

3	0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

4	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

5	0.33	Ideal	I	SI2	61.8	55	403	4.49	4.51	2.78

6	0.33	Ideal	I	SI2	61.2	56	403	4.49	4.50	2.75

7	0.33	Ideal	J	SI1	61.1	56	403	4.49	4.55	2.76

8	0.23	Ideal	G	VS1	61.9	54	404	3.93	3.95	2.44

9	0.32	Ideal	I	SI1	60.9	55	404	4.45	4.48	2.72

10	0.30	Ideal	I	SI2	61.0	59	405	4.30	4.33	2.63

#	...	with	21,541	more	rows

>	diamonds	%>%	filter_	(~cut	==	'Ideal')

#	A	tibble:	21,551	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46

3	0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

4	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

5	0.33	Ideal	I	SI2	61.8	55	403	4.49	4.51	2.78

6	0.33	Ideal	I	SI2	61.2	56	403	4.49	4.50	2.75

7	0.33	Ideal	J	SI1	61.1	56	403	4.49	4.55	2.76

8	0.23	Ideal	G	VS1	61.9	54	404	3.93	3.95	2.44

9	0.32	Ideal	I	SI1	60.9	55	404	4.45	4.48	2.72

10	0.30	Ideal	I	SI2	61.0	59	405	4.30	4.33	2.63

#	...	with	21,541	more	rows

>	#	store	value	as	a	variable	first

>	theCut	<-	'Ideal'

>	diamonds	%>%	filter_(~cut	==	theCut)

#	A	tibble:	21,551	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46

3	0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

4	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

5	0.33	Ideal	I	SI2	61.8	55	403	4.49	4.51	2.78

6	0.33	Ideal	I	SI2	61.2	56	403	4.49	4.50	2.75

7	0.33	Ideal	J	SI1	61.1	56	403	4.49	4.55	2.76

8	0.23	Ideal	G	VS1	61.9	54	404	3.93	3.95	2.44

9	0.32	Ideal	I	SI1	60.9	55	404	4.45	4.48	2.72

10	0.30	Ideal	I	SI2	61.0	59	405	4.30	4.33	2.63

#	...	with	21,541	more	rows

The	tricky	part	is	specifying	both	the	value	and	column	as	variables,	something	that	might	be	done
while	using	filter_	inside	of	a	function.	The	easiest,	though	perhaps	not	intended,	way	to	do	this	is	to
construct	the	entire	expression	as	a	string	using	sprintf.
Click	here	to	view	code	image

>	theCol	<-	'cut'

>	theCut	<-	'Ideal'

>	diamonds	%>%	filter_(sprintf("%s	==	'%s'",	theCol,	theCut))

#	A	tibble:	21,551	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46

3	0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

4	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

5	0.33	Ideal	I	SI2	61.8	55	403	4.49	4.51	2.78

6	0.33	Ideal	I	SI2	61.2	56	403	4.49	4.50	2.75

7	0.33	Ideal	J	SI1	61.1	56	403	4.49	4.55	2.76

8	0.23	Ideal	G	VS1	61.9	54	404	3.93	3.95	2.44

9	0.32	Ideal	I	SI1	60.9	55	404	4.45	4.48	2.72

10	0.30	Ideal	I	SI2	61.0	59	405	4.30	4.33	2.63

#	...	with	21,541	more	rows

The	intended	way	of	working	with	standard	evaluation,	prior	to	dplyr	version	0.6.0,	is	to	use	interp
from	the	lazyeval	package	to	construct	a	formula	out	of	variables.	Since	part	of	the	expression	is	a
column	name,	that	part	must	be	wrapped	in	as.name.
Click	here	to	view	code	image

>	library(lazyeval)

>	#	build	a	formula	expression	using	variables

>	interp(~	a	==	b,	a=as.name(theCol),	b=theCut)

~cut	==	"Ideal"

>	#	use	that	as	an	argument	to	filter_

>	diamonds	%>%	filter_(interp(~	a	==	b,	a=as.name(theCol),	b=theCut))

#	A	tibble:	21,551	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46

3	0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

4	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

5	0.33	Ideal	I	SI2	61.8	55	403	4.49	4.51	2.78

6	0.33	Ideal	I	SI2	61.2	56	403	4.49	4.50	2.75

7	0.33	Ideal	J	SI1	61.1	56	403	4.49	4.55	2.76

8	0.23	Ideal	G	VS1	61.9	54	404	3.93	3.95	2.44

9	0.32	Ideal	I	SI1	60.9	55	404	4.45	4.48	2.72

10	0.30	Ideal	I	SI2	61.0	59	405	4.30	4.33	2.63

#	...	with	21,541	more	rows

After	dplyr	version	0.6.0	the	regular	filter	function	can	be	used	in	conjunction	with	UQE	from	the
rlang	package	to	specify	rows	using	variables	for	the	column	of	interest	and	the	values.	The	trick	is	to
store	the	column	name	as	a	character	and	convert	it	to	a	name	object	with	as.name.	Then	this	is	unquoted
with	UQE.
Click	here	to	view	code	image

>	diamonds	%>%	filter(UQE(as.name(theCol))	==	theCut)

#	A	tibble:	21,551	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.23	Ideal	J	VS1	62.8	56	340	3.93	3.90	2.46

3	0.31	Ideal	J	SI2	62.2	54	344	4.35	4.37	2.71

4	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

5	0.33	Ideal	I	SI2	61.8	55	403	4.49	4.51	2.78

6	0.33	Ideal	I	SI2	61.2	56	403	4.49	4.50	2.75

7	0.33	Ideal	J	SI1	61.1	56	403	4.49	4.55	2.76

8	0.23	Ideal	G	VS1	61.9	54	404	3.93	3.95	2.44

9	0.32	Ideal	I	SI1	60.9	55	404	4.45	4.48	2.72

10	0.30	Ideal	I	SI2	61.0	59	405	4.30	4.33	2.63

#	...	with	21,541	more	rows

12.5	slice
While	filter	is	used	for	specifying	rows	based	on	a	logical	expression,	slice	is	used	for	specifying	rows
by	row	number.	The	desired	indices	are	passed	as	a	vector	to	slice.
Click	here	to	view	code	image

>	diamonds	%>%	slice(1:5)

#	A	tibble:	5	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

>	diamonds	%>%	slice(c(1:5,	8,	15:20))

#	A	tibble:	12	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.26	Very	Good	H	SI1	61.9	55	337	4.07	4.11	2.53

7	0.20	Premium	E	SI2	60.2	62	345	3.79	3.75	2.27

8	0.32	Premium	E	I1	60.9	58	345	4.38	4.42	2.68

9	0.30	Ideal	I	SI2	62.0	54	348	4.31	4.34	2.68

10	0.30	Good	J	SI1	63.4	54	351	4.23	4.29	2.70

11	0.30	Good	J	SI1	63.8	56	351	4.23	4.26	2.71

12	0.30	Very	Good	J	SI1	62.7	59	351	4.21	4.27	2.66

Note	that	the	row	numbers	displayed	on	the	left	of	the	results	are	not	the	row	numbers	indicated	by
slice	but	rather	the	row	numbers	of	the	returned	results.
Negative	indices	are	used	to	indicate	rows	that	should	not	be	returned.

Click	here	to	view	code	image

>	diamonds	%>%	slice(-1)

#	A	tibble:	53,939	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

2	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

3	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

4	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

5	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

6	0.24	Very	Good	I	VVS1	62.3	57	336	3.95	3.98	2.47

7	0.26	Very	Good	H	SI1	61.9	55	337	4.07	4.11	2.53

8	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49

9	0.23	Very	Good	H	VS1	59.4	61	338	4.00	4.05	2.39

10	0.30	Good	J	SI1	64.0	55	339	4.25	4.28	2.73

#	...	with	53,929	more	rows

12.6	mutate
Creating	new	columns	or	modifying	existing	columns	is	done	with	the	mutate	function.	Creating	a	new
column	that	is	the	ratio	of	price	and	carat	is	as	simple	as	providing	that	ratio	as	an	argument	to
mutate.
Click	here	to	view	code	image

>	diamonds	%>%	mutate(price/carat)

#	A	tibble:	53,940	×	11

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

7	0.24	Very	Good	I	VVS1	62.3	57	336	3.95	3.98	2.47

8	0.26	Very	Good	H	SI1	61.9	55	337	4.07	4.11	2.53

9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49

10	0.23	Very	Good	H	VS1	59.4	61	338	4.00	4.05	2.39

#	...	with	53,930	more	rows,	and	1	more	variables:

#	`price/carat`	<dbl>

Depending	on	the	size	of	the	terminal,	not	all	columns	will	be	printed	to	the	screen.	To	ensure	this	new
column	can	fit	on	the	screen,	we	select	a	few	columns	of	interest	using	select	and	then	pipe	that	result	into
mutate.
Click	here	to	view	code	image

>	diamonds	%>%	select(carat,	price)	%>%	mutate(price/carat)

#	A	tibble:	53,940	×	3

carat	price	`price/carat`

<dbl>	<int>	<dbl>

1	0.23	326	1417.391

2	0.21	326	1552.381

3	0.23	327	1421.739

4	0.29	334	1151.724

5	0.31	335	1080.645

6	0.24	336	1400.000

7	0.24	336	1400.000

8	0.26	337	1296.154

9	0.22	337	1531.818

10	0.23	338	1469.565

#	...	with	53,930	more	rows

The	resulting	column	is	unnamed,	which	is	easily	remedied	by	assigning	the	expression
(price/carat)	to	a	name.
Click	here	to	view	code	image

>	diamonds	%>%	select(carat,	price)	%>%	mutate(Ratio=price/carat)

#	A	tibble:	53,940	×	3

carat	price	Ratio

<dbl>	<int>	<dbl>

1	0.23	326	1417.391

2	0.21	326	1552.381

3	0.23	327	1421.739

4	0.29	334	1151.724

5	0.31	335	1080.645

6	0.24	336	1400.000

7	0.24	336	1400.000

8	0.26	337	1296.154

9	0.22	337	1531.818

10	0.23	338	1469.565

#	...	with	53,930	more	rows

Columns	created	with	mutate	can	be	used	immediately	in	the	same	mutate	call.
Click	here	to	view	code	image

>	diamonds	%>%

+	select(carat,	price)	%>%

+	mutate(Ratio=price/carat,	Double=Ratio*2)

#	A	tibble:	53,940	×	4

carat	price	Ratio	Double

<dbl>	<int>	<dbl>	<dbl>

1	0.23	326	1417.391	2834.783

2	0.21	326	1552.381	3104.762

3	0.23	327	1421.739	2843.478

4	0.29	334	1151.724	2303.448

5	0.31	335	1080.645	2161.290

6	0.24	336	1400.000	2800.000

7	0.24	336	1400.000	2800.000

8	0.26	337	1296.154	2592.308

9	0.22	337	1531.818	3063.636

10	0.23	338	1469.565	2939.130

#	...	with	53,930	more	rows

Notice	this	did	not	change	the	diamonds	data.	In	order	to	save	the	changes,	the	new	result	needs	to	be
explicitly	assigned	to	the	object	diamonds.
A	nice	feature	of	the	magrittr	package	is	the	assignment	pipe	(%<>%),	which	both	pipes	the	left-hand-

side	into	the	function	on	the	right-hand	side	and	assigns	the	result	back	to	the	object	on	the	left-hand	side.
Click	here	to	view	code	image

>	library(magrittr)

>	diamonds2	<-	diamonds

>	diamonds2

#	A	tibble:	53,940	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

7	0.24	Very	Good	I	VVS1	62.3	57	336	3.95	3.98	2.47

8	0.26	Very	Good	H	SI1	61.9	55	337	4.07	4.11	2.53

9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49

10	0.23	Very	Good	H	VS1	59.4	61	338	4.00	4.05	2.39

#	...	with	53,930	more	rows

>	diamonds2	%<>%

+	select(carat,	price)	%>%

+	mutate(Ratio=price/carat,	Double=Ratio*2)

>	diamonds2

#	A	tibble:	53,940	×	4

carat	price	Ratio	Double

<dbl>	<int>	<dbl>	<dbl>

1	0.23	326	1417.391	2834.783

2	0.21	326	1552.381	3104.762

3	0.23	327	1421.739	2843.478

4	0.29	334	1151.724	2303.448

5	0.31	335	1080.645	2161.290

6	0.24	336	1400.000	2800.000

7	0.24	336	1400.000	2800.000

8	0.26	337	1296.154	2592.308

9	0.22	337	1531.818	3063.636

10	0.23	338	1469.565	2939.130

#	...	with	53,930	more	rows

This	new	pipe	does	not	preclude	the	traditional	assignment	operator.
Click	here	to	view	code	image

>	diamonds2	<-	diamonds2	%>%

+	mutate(Quadruple=Double*2)

>	diamonds2

#	A	tibble:	53,940	×	5

carat	price	Ratio	Double	Quadruple

<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	326	1417.391	2834.783	5669.565

2	0.21	326	1552.381	3104.762	6209.524

3	0.23	327	1421.739	2843.478	5686.957

4	0.29	334	1151.724	2303.448	4606.897

5	0.31	335	1080.645	2161.290	4322.581

6	0.24	336	1400.000	2800.000	5600.000

7	0.24	336	1400.000	2800.000	5600.000

8	0.26	337	1296.154	2592.308	5184.615

9	0.22	337	1531.818	3063.636	6127.273

10	0.23	338	1469.565	2939.130	5878.261

#	...	with	53,930	more	rows

12.7	summarize
While	mutate	applies	vectorized	functions	over	columns,	summarize	applies	functions	that	return	a
result	of	length	one	such	as	mean,	max,	median	or	other	similar	functions.	The	summarize	function	(or
spelled	the	British	way,	summarise),	gives	named	access	to	columns	in	a	data.frame	for	applying
functions.	This	behavior	is	similar	to	the	with	function	in	base	R.	For	instance,	we	calculate	the	mean	of	a
column	from	the	diamonds	data.
Click	here	to	view	code	image

>	summarize(diamonds,	mean(price))

#	A	tibble:	1	×	1

`mean(price)`

<dbl>

1	3932.8

>	#	with	pipe	semantics

>	diamonds	%>%	summarize(mean(price))

#	A	tibble:	1	×	1

`mean(price)`

<dbl>

1	3932.8

This	may	seem	like	more	typing	than	required	by	base	R,	but	ultimately	will	result	in	less	typing	and

easier	to	understand	code	when	more	complicated	expressions	are	involved.
Another	nice	feature	of	summarize	is	the	capability	to	name	the	resulting	calculation	and	to	perform

multiple	calculations	in	the	same	call.
Click	here	to	view	code	image

>	diamonds	%>%

+	summarize(AvgPrice=mean(price),

+	MedianPrice=median(price),

+	AvgCarat=mean(carat))

#	A	tibble:	1	×	3

AvgPrice	MedianPrice	AvgCarat

<dbl>	<dbl>	<dbl>

1	3932.8	2401	0.7979397

12.8	group_by
The	summarize	function	is	moderately	useful	by	itself	but	really	shines	when	used	with	group_by	to	first
partition	the	data	and	then	apply	a	function	to	each	partition	independently.	To	split	the	data	according	to	a
variable	and	then	apply	a	summary	function	to	each	partition,	the	data	is	first	passed	to	group_by	and	the
resulting	grouped	data.frame	or	tbl	is	passed	to	summarize,	which	allows	functions	to	be	applied
to	individual	columns.	This	usage	illustrates	the	power	and	ease	of	pipes.
Click	here	to	view	code	image

>	diamonds	%>%

+	group_by(cut)	%>%

+	summarize(AvgPrice=mean(price))

#	A	tibble:	5	×	2

cut	AvgPrice

<ord>	<dbl>

1	Fair	4358.758

2	Good	3928.864

3	Very	Good	3981.760

4	Premium	4584.258

5	Ideal	3457.542

This	is	a	more	eloquent,	and	faster,	way	to	aggregate	data	than	the	aggregate	function,	and	it	more
easily	enables	multiple	calculations	and	grouping	variables.
Click	here	to	view	code	image

>	diamonds	%>%

+	group_by(cut)	%>%

+	summarize(AvgPrice=mean(price),	SumCarat=sum(carat))

#	A	tibble:	5	×	3

cut	AvgPrice	SumCarat

<ord>	<dbl>	<dbl>

1	Fair	4358.758	1684.28

2	Good	3928.864	4166.10

3	Very	Good	3981.760	9742.70

4	Premium	4584.258	12300.95

5	Ideal	3457.542	15146.84

>	diamonds	%>%

+	group_by(cut,	color)	%>%

+	summarize(AvgPrice=mean(price),	SumCarat=sum(carat))

Source:	local	data	frame	[35	x	4]

Groups:	cut	[?]

cut	color	AvgPrice	SumCarat

<ord>	<ord>	<dbl>	<dbl>

1	Fair	D	4291.061	149.98

2	Fair	E	3682.312	191.88

3	Fair	F	3827.003	282.27

4	Fair	G	4239.255	321.48

5	Fair	H	5135.683	369.41

6	Fair	I	4685.446	209.66

7	Fair	J	4975.655	159.60

8	Good	D	3405.382	492.87

9	Good	E	3423.644	695.21

10	Good	F	3495.750	705.32

#	...	with	25	more	rows

When	run	on	a	grouped	data.frame,	the	summarize	function	drops	the	innermost	level	of	grouping.
That	is	why	the	first	statement	in	the	previous	code	returned	a	data.frame	with	no	groups	and	the
second	statement	returned	a	data.frame	with	one	group.

12.9	arrange
Sorting	is	performed	with	the	arrange	function,	which	is	much	easier	to	understand	and	use	than	the	order
and	sort	functions	from	base	R.
Click	here	to	view	code	image

>	diamonds	%>%

+	group_by(cut)	%>%

+	summarize(AvgPrice=mean(price),	SumCarat=sum(carat))	%>%

+	arrange(AvgPrice)

#	A	tibble:	5	×	3

cut	AvgPrice	SumCarat

<ord>	<dbl>	<dbl>

1	Ideal	3457.542	15146.84

2	Good	3928.864	4166.10

3	Very	Good	3981.760	9742.70

4	Fair	4358.758	1684.28

5	Premium	4584.258	12300.95

>	diamonds	%>%

+	group_by(cut)	%>%

+	summarize(AvgPrice=mean(price),	SumCarat=sum(carat))	%>%

+	arrange(desc(AvgPrice))

#	A	tibble:	5	×	3

cut	AvgPrice	SumCarat

<ord>	<dbl>	<dbl>

1	Premium	4584.258	12300.95

2	Fair	4358.758	1684.28

3	Very	Good	3981.760	9742.70

4	Good	3928.864	4166.10

5	Ideal	3457.542	15146.84

12.10	do
For	general	purpose	calculations	not	covered	by	the	specialized	manipulation	functions	in	dplyr,	such	as
filter,	mutate	and	summarize,	there	is	do,	which	enables	any	arbitrary	function	on	the	data.	For	a	simple
example	we	create	a	function	that	sorts	the	diamonds	data	and	returns	the	first	N	rows.

Click	here	to	view	code	image

>	topN	<-	function(x,	N=5)

+	{

+	x	%>%	arrange(desc(price))	%>%	head(N)

+	}

By	combining	do	with	group_by	we	return	the	top	N	rows,	sorted	by	price,	for	each	cut	of	diamonds.
When	using	pipes,	the	left-hand	side	becomes	the	first	argument	of	the	function	on	the	right-hand	side.	For
do	the	first	argument	is	supposed	to	be	a	function,	not	what	is	on	the	left-hand	side	of	the	pipe,	in	this	case
the	grouped	diamonds	data.	Since	the	left-hand	side	is	not	going	to	its	default	location,	we	specify
where	it	goes	by	using	a	period	(.).
Click	here	to	view	code	image

>	diamonds	%>%	group_by(cut)	%>%	do(topN(.,	N=3))

Source:	local	data	frame	[15	x	10]

Groups:	cut	[5]

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	2.01	Fair	G	SI1	70.6	64	18574	7.43	6.64	4.69

2	2.02	Fair	H	VS2	64.5	57	18565	8.00	7.95	5.14

3	4.50	Fair	J	I1	65.8	58	18531	10.23	10.16	6.72

4	2.80	Good	G	SI2	63.8	58	18788	8.90	8.85	0.00

5	2.07	Good	I	VS2	61.8	61	18707	8.12	8.16	5.03

6	2.67	Good	F	SI2	63.8	58	18686	8.69	8.64	5.54

7	2.00	Very	Good	G	SI1	63.5	56	18818	7.90	7.97	5.04

8	2.00	Very	Good	H	SI1	62.8	57	18803	7.95	8.00	5.01

9	2.03	Very	Good	H	SI1	63.0	60	18781	8.00	7.93	5.02

10	2.29	Premium	I	VS2	60.8	60	18823	8.50	8.47	5.16

11	2.29	Premium	I	SI1	61.8	59	18797	8.52	8.45	5.24

12	2.04	Premium	H	SI1	58.1	60	18795	8.37	8.28	4.84

13	1.51	Ideal	G	IF	61.7	55	18806	7.37	7.41	4.56

14	2.07	Ideal	G	SI2	62.5	55	18804	8.20	8.13	5.11

15	2.15	Ideal	G	SI2	62.6	54	18791	8.29	8.35	5.21

When	using	do	with	a	single,	unnamed	argument,	such	as	the	previous	example,	the	result	is	a
data.frame.	If	we	had	named	the	argument,	then	the	expression	would	result	in	a	data.frame
where	the	calculated	column	is	actually	a	list.
Click	here	to	view	code	image

>	diamonds	%>%

+	#	group	the	data	according	to	cut

+	#	this	essentially	creates	a	separate	dataset	for	each

+	group_by(cut)	%>%

+	#	apply	the	topN	function,	with	the	second	argument	set	to	3

+	#	this	is	done	independently	to	each	group	of	data

+	do(Top=topN(.,	3))

Source:	local	data	frame	[5	x	2]

Groups:	<by	row>

#	A	tibble:	5	×	2

cut	Top

*	<ord>	<list>

1	Fair	<tibble	[3	×	10]>

2	Good	<tibble	[3	×	10]>

3	Very	Good	<tibble	[3	×	10]>

4	Premium	<tibble	[3	×	10]>

5	Ideal	<tibble	[3	×	10]>

>	topByCut	<-	diamonds	%>%	group_by(cut)	%>%	do(Top=topN(.,	3))

>	class(topByCut)

[1]	"rowwise_df"	"tbl_df"	"tbl"	"data.frame"

>	class(topByCut$Top)

[1]	"list"

>	class(topByCut$Top[[1]])

[1]	"tbl_df"	"tbl"	"data.frame"

>	topByCut$Top[[1]]

#	A	tibble:	3	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	2.01	Fair	G	SI1	70.6	64	18574	7.43	6.64	4.69

2	2.02	Fair	H	VS2	64.5	57	18565	8.00	7.95	5.14

3	4.50	Fair	J	I1	65.8	58	18531	10.23	10.16	6.72

In	this	example,	the	calculated	column	was	a	list	where	each	entry	was	a	data.frame	of	the	top
three	rows,	by	price,	for	each	cut	of	diamond.	It	may	seem	odd	to	store	lists	in	columns	of
data.frames,	but	that	is	a	built-in	use	for	data.frames.
Using	do	with	named	arguments	is	equivalent	to	ldply	from	plyr.

12.11	dplyr	with	Databases
An	important	feature	of	dplyr	is	its	capability	to	work	with	data	stored	in	a	database	in	much	the	same
way	it	works	with	data	in	data.frames.	As	of	writing,	dplyr	works	with	PostgreSQL,	MySQL,
SQLite,	MonetDB,	Google	Big	Query	and	Spark	DataFrames.	For	more	standard	computations,	the	R
code	is	translated	into	equivalent	SQL	code.	For	arbitrary	R	code	that	cannot	be	easily	translated	into
SQL,	dplyr	(experimentally)	chunks	the	data	into	memory	and	runs	the	computations	independently.	This
enables	data	munging	and	analysis	on	data	that	would	otherwise	not	fit	in	memory.	While	database
operations	will	be	slower	than	the	equivalent	data.frame	operations,	this	is	of	little	concern	as	the
data	would	not	have	fit	into	memory	anyway.
To	illustrate,	we	look	at	a	SQLite	database	with	two	tables	holding	the	diamonds	data	and	an

additional,	related,	dataset.	We	download	this	database	using	download.file.
Click	here	to	view	code	image

>	download.file("http://www.jaredlander.com/data/diamonds.db",

+	destfile="data/diamonds.db",	mode='wb')	The	first	step	is	to	create	a	connection	to	the

database.	Starting	with	dplyr	version	0.6.0,	in	order	to	work	with	databases	dbplyr	must

also	be	installed,	though	not	necessarily	loaded.

Click	here	to	view	code	image

>	diaDBSource	<-	src_sqlite("data/diamonds.db")

>	diaDBSource

src:	sqlite	3.11.1	[data/diamonds.db]

tbls:	DiamondColors,	diamonds,	sqlite_stat1

With	versions	of	dplyr	beyond	0.6.0	this	can	also	be	performed	using	DBI	directly.
Click	here	to	view	code	image

>	diaDBSource2	<-	DBI::dbConnect(RSQLite::SQLite(),	"data/diamonds.db")

>	diaDBSource2

<SQLiteConnection>

Path:	C:\Users\jared\Documents\Consulting\book\book\

FasterGroupManipulation\data\diamonds.db

Extensions:	TRUE

Now	that	we	have	a	connection	to	the	database	we	need	to	point	to	a	specific	table.	In	this	example,	the
database	has	two	data	tables	called	diamonds	and	DiamondColors	and	a	metadata	table	called
sqlite_stat1.	Each	table	in	the	database	needs	to	be	pointed	to	individually.	For	our	purposes	we
are	only	concerned	with	the	diamonds	table.
Click	here	to	view	code	image

>	diaTab	<-	tbl(diaDBSource,	"diamonds")

>	diaTab

Source:	query	[??	x	10]

Database:	sqlite	3.11.1	[data/diamonds.db]

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<chr>	<chr>	<chr>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

7	0.24	Very	Good	I	VVS1	62.3	57	336	3.95	3.98	2.47

8	0.26	Very	Good	H	SI1	61.9	55	337	4.07	4.11	2.53

9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49

10	0.23	Very	Good	H	VS1	59.4	61	338	4.00	4.05	2.39

#	...	with	more	rows

This	looks	like	a	regular	data.frame	but	is	actually	a	table	in	the	database,	and	just	the	first	few
rows	are	queried	and	displayed.	Most	calculations	on	this	tbl	are	actually	performed	by	the	database
itself.
Click	here	to	view	code	image

>	diaTab	%>%	group_by(cut)	%>%	dplyr::summarize(Price=mean(price))

Source:	query	[??	x	2]

Database:	sqlite	3.11.1	[data/diamonds.db]

cut	Price

<chr>	<dbl>

1	Fair	4358.758

2	Good	3928.864

3	Ideal	3457.542

4	Premium	4584.258

5	Very	Good	3981.760

>	diaTab	%>%	group_by(cut)	%>%

+	dplyr::summarize(Price=mean(price),	Carat=mean(Carat))

Source:	query	[??	x	3]

Database:	sqlite	3.11.1	[data/diamonds.db]

cut	Price	Carat

<chr>	<dbl>	<dbl>

1	Fair	4358.758	1.0461366

2	Good	3928.864	0.8491847

3	Ideal	3457.542	0.7028370

4	Premium	4584.258	0.8919549

5	Very	Good	3981.760	0.8063814

12.12	Conclusion
This	next	generation	package	from	Hadley	Wickham	makes	data	manipulation	both	easier	to	code	and
faster	to	execute.	Its	syntax	is	built	around	the	verbs	of	data	manipulation	such	as	select,	filter,	arrange
and	group_by	and	is	designed	for	writing	for	highly	readable	and	fast	code.

13.	Iterating	with	purrr

R	has	numerous	ways	to	iterate	over	the	elements	of	a	list	(or	vector),	and	Hadley	Wickham	aimed
to	improve	on	and	standardize	that	experience	with	the	purrr	package.	R	has	its	roots	in	functional
programming,	and	purrr	is	designed	to	utilize	that	computing	paradigm.	For	our	purposes,	functional
programming	is	when	a	function	depends	only	on	its	input	arguments.	This	enables	us	to	iterate	over	a
list	and	apply	a	function	to	each	element	independently.	This	is	mainly	aimed	at	operating	on	lists,
though	it	can	also	be	used	to	apply	non-vectorized	functions	to	vectors.
The	name	purrr	has	many	meanings.	It	is	primarily	meant	to	convey	that	this	package	enforces	pure

programming.	It	is	also	a	pun	on	a	cat	purring	and	has	five	letters,	so	it	is	the	same	length	as	many	of
Hadley	Wickham’s	other	packages	such	as	dplyr,	readr	and	tidyr.

13.1	map
The	foundation	of	purrr	is	the	map	function,	which	applies	a	function	to	each	element	of	a	list,
independently,	and	returns	the	results	in	a	list	of	the	same	length.	This	works	the	same	as	lapply,
detailed	in	Section	11.1.2,	though	it	is	designed	with	pipes	in	mind.
Returning	to	the	example	in	Section	11.1.2,	we	build	a	list	with	four	elements	and	then	apply	the	sum

function	to	each	element	with	lapply.
Click	here	to	view	code	image

>	theList	<-	list(A=matrix(1:9,	3),	B=1:5,	C=matrix(1:4,	2),	D=2)

>	lapply(theList,	sum)

$A

[1]	45

$B

[1]	15

$C

[1]	10

$D

[1]	2

Identical	results	are	achieved	using	map.
Click	here	to	view	code	image

>	library(purrr)

>	theList	%>%	map(sum)

$A

[1]	45

$B

[1]	15

$C

[1]	10

$D

[1]	2

>	identical(lapply(theList,	sum),	theList	%>%	map(sum))

[1]	TRUE

If	elements	of	theList	had	missing	values	(NA),	the	sum	function	would	need	to	have	the	na.rm
argument	set	to	TRUE.	This	can	be	accomplished	by	wrapping	sum	in	an	anonymous	function	defined
directly	inside	the	map	call	or	by	passing	na.rm=TRUE	as	an	additional	argument	to	sum	through	map.
To	illustrate	we	first	set	elements	of	theList	to	NA.

Click	here	to	view	code	image

>	theList2	<-	theList

>	theList2[[1]][2,	1]	<-	NA

>	theList2[[2]][4]	<-	NA	Applying	sum	through	map	now	results	in	two	elements	with	NA	as

the	sum.

>	theList2	%>%	map(sum)

$A

[1]	NA

$B

[1]	NA

$C

[1]	10

$D

[1]	2

We	first	solve	this	by	using	an	anonymous	function,	which	is	simply	a	wrapper	around	sum.
Click	here	to	view	code	image

>	theList2	%>%	map(function(x)	sum(x,	na.rm=TRUE))

$A

[1]	43

$B

[1]	11

$C

[1]	10

$D

[1]	2

We	then	solve	it	by	passing	na.rm=TRUE	as	an	additional	argument	to	sum	through	the	dot-dot-
dot	argument	(...)	of	map.
Click	here	to	view	code	image

>	theList2	%>%	map(sum,	na.rm=TRUE)

$A

[1]	43

$B

[1]	11

$C

[1]	10

$D

[1]	2

Writing	the	anonymous	function	may	seem	like	a	lot	of	work	for	such	a	simple	operation,	though	it	is
very	common	in	functional	programming	and	is	helpful	when	function	arguments	are	not	in	an	order
conducive	to	being	used	with	map.

13.2	map	with	Specified	Types
Using	map	always	results	in	a	list	as	the	returned	result,	which	is	highly	generalized	but	not	always
desired.	In	base	R	sapply	attempts	to	simplify	the	results	to	a	vector	when	possible	and	reverts	to	a
list	if	necessary.	It	is	nice	to	have	the	simplification,	but	this	removes	certainty	about	the	type	of
results.	To	eliminate	this	uncertainty	while	returning	simplified	results	in	a	vector,	purrr	offers	a
number	of	map	functions	that	specify	the	type	of	expected	result.	If	the	specified	type	cannot	be	returned,
then	the	functions	return	an	error.	An	error	may	seem	undesired,	but	an	early	error	is	preferred	over	an
unexpected	result	that	causes	an	error	further	down	in	the	code.	All	of	these	functions	take	the	form	of
map_*,	where	*	specifies	the	type	of	return	value.	The	possible	return	values,	and	their	corresponding
functions,	are	laid	out	in	Table	13.1.

Table	13.1	purrr	functions	and	their	corresponding	outputs

It	is	important	to	note	that	each	of	these	map_*	functions	expects	a	vector	of	length	one	for	each
element.	A	result	greater	than	length	one	for	even	a	single	element	will	result	in	an	error.

13.2.1	map_int
map_int	can	be	used	when	the	result	will	be	an	integer.	To	illustrate	this	we	apply	the	NROW
function	to	each	element	of	theList,	which	will	return	the	length	if	the	element	is	one-dimensional	or
the	number	of	rows	if	the	element	is	two-dimensional.
Click	here	to	view	code	image

>	theList	%>%	map_int(NROW)

A	B	C	D

3	5	2	1

Applying	a	function	that	returns	a	numeric,	such	as	mean,	will	result	in	an	error.
Click	here	to	view	code	image

>	theList	%>%	map_int(mean)

Error:	Can't	coerce	element	1	from	a	double	to	a	integer

13.2.2	map_dbl
In	order	to	apply	a	function	that	returns	a	numeric	we	use	map_dbl.1

1.	The	function	refers	to	a	double,	which	is	the	underlying	type	of	a	numeric.

Click	here	to	view	code	image

>	theList	%>%	map_dbl(mean)

A	B	C	D

5.0	3.0	2.5	2.0

13.2.3	map_chr
Applying	a	function	that	returns	character	data	necessitates	map_chr.
Click	here	to	view	code	image

>	theList	%>%	map_chr(class)

A	B	C	D

"matrix"	"integer"	"matrix"	"numeric"

If	one	of	the	elements	of	theList	had	multiple	classes,	map_chr	would	have	returned	an	error.	This
is	because	the	result	of	the	function	must	be	a	vector	of	length	one	for	each	element	of	the	input	list.
This	can	be	seen	if	we	add	another	element	that	is	an	ordered	factor.
Click	here	to	view	code	image

>	theList3	<-	theList

>	theList3[['E']]	<-	factor(c('A',	'B',	'C'),	ordered=TRUE)

>

>	class(theList3$E)

[1]	"ordered"	"factor"

The	class	for	this	new	element	has	a	length	of	two,	which	will	cause	an	error	with	map_chr.
Click	here	to	view	code	image

>	theList3	%>%	map_chr(class)

Error:	Result	5	is	not	a	length	1	atomic	vector

The	simplest	solution	is	to	return	a	list	using	map.	It	will	no	longer	be	a	simple	vector,	but	there
will	be	no	error.	Any	operation	that	works	with	a	map_*	works	with	map.

>	theList3	%>%	map(class)

$A

[1]	"matrix"

$B

[1]	"integer"

$C

[1]	"matrix"

$D

[1]	"numeric"

$E

[1]	"ordered"	"factor"

13.2.4	map_lgl
The	results	of	logical	operations	can	be	stored	in	a	logical	vector	using	map_lgl.
Click	here	to	view	code	image

>	theList	%>%	map_lgl(function(x)	NROW(x)	<	3)

A	B	C	D

FALSE	FALSE	TRUE	TRUE

13.2.5	map_df
A	popular	function	in	plyr	is	ldply,	which	iterates	over	a	list,	applies	a	function	and	combines	the
results	into	a	data.frame.	The	equivalent	in	purrr	is	map_df.
As	a	contrived	example	we	create	a	function	that	builds	a	data.frame	with	two	columns,	the	length

of	which	is	decided	by	an	argument	to	the	function.	We	also	create	a	list	of	numbers	to	provide	those
lengths.
Click	here	to	view	code	image

>	buildDF	<-	function(x)

+	{

+	data.frame(A=1:x,	B=x:1)

+	}

>

>	listOfLengths	<-	list(3,	4,	1,	5)	We	iterate	over	that	list,	building	a	data.frame	for

each	element.	Using	map	would	result	in	a	list	of	length	four,	with	each	element	being	a

data.frame.

Click	here	to	view	code	image

>	listOfLengths	%>%	map(buildDF)

[[1]]

A	B

1	1	3

2	2	2

3	3	1

[[2]]

A	B

1	1	4

2	2	3

3	3	2

4	4	1

[[3]]

A	B

1	1	1

[[4]]

A	B

1	1	5

2	2	4

3	3	3

4	4	2

5	5	1

This	result	would	be	more	convenient	as	a	data.frame,	which	is	accomplished	with	map_df.
Click	here	to	view	code	image

>	listOfLengths	%>%	map_df(buildDF)

A	B

1	1	3

2	2	2

3	3	1

4	1	4

5	2	3

6	3	2

7	4	1

8	1	1

9	1	5

10	2	4

11	3	3

12	4	2

13	5	1

13.2.6	map_if
There	are	times	when	elements	of	a	list	should	only	be	modified	if	a	logical	condition	holds	true.	This	is
accomplished	with	map_if,	where	only	the	elements	meeting	the	criteria	are	modified,	and	the	rest	are
returned	unmodified.	We	illustrate	by	multiplying	the	matrix	elements	of	theList	by	two.
Click	here	to	view	code	image

>	theList	%>%	map_if(is.matrix,	function(x)	x*2)

$A

[,1]	[,2]	[,3]

[1,]	2	8	14

[2,]	4	10	16

[3,]	6	12	18

$B

[1]	1	2	3	4	5

$C

[,1]	[,2]

[1,]	2	6

[2,]	4	8

$D

[1]	2

This	was	easily	accomplished	using	an	anonymous	function,	though	purrr	provides	yet	another	way	to
specify	a	function	inline.	We	could	have	supplied	a	formula	rather	than	a	function,	and	map_if	(or	any
of	the	map	functions)	would	create	an	anonymous	function	for	us.	Up	to	two	arguments	can	be	supplied
and	must	be	of	the	form	.x	and	.y.
Click	here	to	view	code	image

>	theList	%>%	map_if(is.matrix,	~	.x*2)

$A

[,1]	[,2]	[,3]

[1,]	2	8	14

[2,]	4	10	16

[3,]	6	12	18

$B

[1]	1	2	3	4	5

$C

[,1]	[,2]

[1,]	2	6

[2,]	4	8

$D

[1]	2

13.3	Iterating	over	a	data.frame
Iterating	over	a	data.frame	is	just	as	simple,	because	data.frames	are	technically	lists.	To	see
this	we	calculate	the	means	of	the	numeric	columns	in	the	diamonds	data.
Click	here	to	view	code	image

>	data(diamonds,	package='ggplot2')

>	diamonds	%>%	map_dbl(mean)

carat	cut	color	clarity	depth

0.7979397	NA	NA	NA	61.7494049

table	price	x	y	z

57.4571839	3932.7997219	5.7311572	5.7345260	3.5387338

This	returns	the	means	of	the	numeric	columns	and	NAs	for	the	non-numeric	columns.	It	also
displays	a	warning	telling	us	that	it	cannot	calculate	the	means	of	the	non-numeric	columns.
This	operation	can	be	similarly	calculated	using	summarize_each	in	dplyr.	Numerically,	they	are	the

same,	but	map_dbl	returns	a	numeric	vector	and	mutate_each	returns	a	single-row	data.frame.
Click	here	to	view	code	image

>	library(dplyr)

>	diamonds	%>%	summarize_each(funs(mean))

Warning	in	mean.default(structure(c(5L,	4L,	2L,	4L,	2L,	3L,	3L,	3L,	1L,	:

argument	is	not	numeric	or	logical:	returning	NA

Warning	in	mean.default(structure(c(2L,	2L,	2L,	6L,	7L,	7L,	6L,	5L,	2L,	:

argument	is	not	numeric	or	logical:	returning	NA

Warning	in	mean.default(structure(c(2L,	3L,	5L,	4L,	2L,	6L,	7L,	3L,	4L,	:

argument	is	not	numeric	or	logical:	returning	NA

#	A	tibble:	1	×	10

carat	cut	color	clarity	depth	table	price	x

<dbl>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>

1	0.7979397	NA	NA	NA	61.7494	57.45718	3932.8	5.731157

#	...	with	2	more	variables:	y	<dbl>,	z	<dbl>	A	warning	was	generated	for	each	non-numeric

column	informing	that	mean	cannot	be	used	on	non-numeric	data.	Even	with	the	warning	the

function	still	completes,	returning	NA	for	each	non-numeric	column.

13.4	map	with	Multiple	Inputs
In	Section	11.1.3	we	learned	how	to	use	mapply	to	apply	a	function	that	took	two	arguments	to
corresponding	elements	of	two	lists.	The	purrr	analog	is	pmap,	with	map2	as	a	special	case	when	the
function	takes	exactly	two	arguments.
Click	here	to	view	code	image

>	##	build	two	lists

>	firstList	<-	list(A=matrix(1:16,	4),	B=matrix(1:16,	2),	C=1:5)

>	secondList	<-	list(A=matrix(1:16,	4),	B=matrix(1:16,	8),	C=15:1)

>

>	##	adds	the	number	of	rows	(or	length)	of	corresponding	elements

>	simpleFunc	<-	function(x,	y)

+	{

+	NROW(x)	+	NROW(y)

+	}

>

>	#	apply	the	function	to	the	two	lists

>	map2(firstList,	secondList,	simpleFunc)

$A

[1]	8

$B

[1]	10

$C

[1]	20

>	#	apply	the	function	to	the	two	lists	and	return	an	integer

>	map2_int(firstList,	secondList,	simpleFunc)

A	B	C

8	10	20

The	more	general	pmap	requires	that	the	lists	being	iterated	over	are	stored	in	a	list.
Click	here	to	view	code	image

>	#	use	the	more	general	pmap

>	pmap(list(firstList,	secondList),	simpleFunc)

$A

[1]	8

$B

[1]	10

$C

[1]	20

>	pmap_int(list(firstList,	secondList),	simpleFunc)

A	B	C

8	10	20

13.5	Conclusion
Iterating	over	lists	is	easier	than	ever	with	purrr.	Most	of	what	can	be	done	in	purrr	can	already	be
accomplished	using	base	R	functions	such	as	lapply,	but	it	is	quicker	with	purrr,	both	in	terms	of
computation	and	programming	time.	In	addition	to	the	speed	improvements,	purrr	ensures	the	results
returned	are	as	the	programmer	expected	and	was	designed	to	work	with	pipes,	which	further	enhances
the	user	experience.

14.	Data	Reshaping

As	noted	in	Chapter	11,	manipulating	the	data	takes	a	great	deal	of	effort	before	serious	analysis	can
begin.	In	this	chapter	we	will	consider	when	the	data	need	to	be	rearranged	from	column-oriented	to	row-
oriented	(or	the	opposite)	and	when	the	data	are	in	multiple,	separate	sets	and	need	to	be	combined	into
one.
There	are	base	functions	to	accomplish	these	tasks,	but	we	will	focus	on	those	in	plyr,	reshape2	and

data.table.
While	the	tools	covered	in	this	chapter	still	form	the	backbone	of	data	reshaping,	newer	packages	like

tidyr	and	dplyr	are	starting	to	supercede	them.	Chapter	15	is	an	analog	to	this	chapter	using	these	new
packages.

14.1	cbind	and	rbind
The	simplest	case	is	when	we	have	a	two	datasets	with	either	identical	columns	(both	the	number	of	and
names)	or	the	same	number	of	rows.	In	this	case,	either	rbind	or	cbind	work	greatly.
As	a	first	trivial	example,	we	create	two	simple	data.frames	by	combining	a	few	vectors	with

cbind,	and	then	stack	them	using	rbind.
Click	here	to	view	code	image

>	#	make	three	vectors	and	combine	them	as	columns	in	a	data.frame

>	sport	<-	c("Hockey",	"Baseball",	"Football")

>	league	<-	c("NHL",	"MLB",	"NFL")

>	trophy	<-	c("Stanley	Cup",	"Commissioner's	Trophy",

+	"Vince	Lombardi	Trophy")

>	trophies1	<-	cbind(sport,	league,	trophy)

>

>	#	make	another	data.frame	using	data.frame()

>	trophies2	<-	data.frame(sport=c("Basketball",	"Golf"),

+	league=c("NBA",	"PGA"),

+	trophy=c("Larry	O'Brien	Championship	Trophy",

+	"Wanamaker	Trophy"),

+	stringsAsFactors=FALSE)

>

>	#	combine	them	into	one	data.frame	with	rbind

>	trophies	<-	rbind(trophies1,	trophies2)

Both	cbind	and	rbind	can	take	multiple	arguments	to	combine	an	arbitrary	number	of	objects.	Note	that
it	is	possible	to	assign	new	column	names	to	vectors	in	cbind.
Click	here	to	view	code	image

>	cbind(Sport=sport,	Association=league,	Prize=trophy)

Sport	Association	Prize

[1,]	"Hockey"	"NHL"	"Stanley	Cup"

[2,]	"Baseball"	"MLB"	"Commissioner's	Trophy"

[3,]	"Football"	"NFL"	"Vince	Lombardi	Trophy"

14.2	Joins
Data	do	not	always	come	so	nicely	aligned	for	combing	using	cbind	and	need	to	be	joined	together	using	a
common	key.	This	concept	should	be	familiar	to	SQL	users.	Joins	in	R	are	not	as	flexible	as	SQL	joins,
but	are	still	an	essential	operation	in	the	data	analysis	process.

The	three	most	commonly	used	functions	for	joins	are	merge	in	base	R,	join	in	plyr	and	the	merging
functionality	in	data.table.	Each	has	pros	and	cons	with	some	pros	outweighing	their	respective	cons.
To	illustrate	these	functions	we	have	prepared	data	originally	made	available	as	part	of	the	USAID

Open	Government	initiative.1	The	data	have	been	chopped	into	eight	separate	files	so	that	they	can	be
joined	together.	They	are	all	available	in	a	zip	file	at
http://jaredlander.com/data/US_Foreign_Aid.zip.	These	should	be	downloaded	and
unzipped	to	a	folder	on	our	computer.	This	can	be	done	a	number	of	ways	(including	using	a	mouse!)	but
we	show	how	to	download	and	unzip	using	R.
Click	here	to	view	code	image

>	download.file(url="http://jaredlander.com/data/US_Foreign_Aid.zip",

+	destfile="data/ForeignAid.zip")

>	unzip("data/ForeignAid.zip",	exdir="data")	To	load	all	of	these	files	programatically,

we	utilize	a	for	loop	as	seen	in	Section	10.1.	We	get	a	list	of	the	files	using	dir,	and

then	loop	through	that	list,	assigning	each	dataset	to	a	name	specified	using	assign.	The

function	str_sub	extracts	individual	characters	from	a	character	vector	and	is	explained

in	Section	16.3.

Click	here	to	view	code	image

>	library(stringr)

>	#	first	get	a	list	of	the	files

>	theFiles	<-	dir("data/",	pattern="\\.csv")

>	##	loop	through	those	files

>	for(a	in	theFiles)

+	{

+	#	build	a	good	name	to	assign	to	the	data

+	nameToUse	<-	str_sub(string=a,	start=12,	end=18)

+	#	read	in	the	csv	using	read.table

+	#	file.path	is	a	convenient	way	to	specify	a	folder	and	file	name

+	temp	<-	read.table(file=file.path("data",	a),

+	header=TRUE,	sep=",",	stringsAsFactors=FALSE)

+	#	assign	them	into	the	workspace

+	assign(x=nameToUse,	value=temp)

+	}

1.	More	information	about	the	data	is	available	at	http://gbk.eads.usaidallnet.gov/.

14.2.1	merge
R	comes	with	a	built-in	function,	called	merge,	to	merge	two	data.frames.
Click	here	to	view	code	image

>	Aid90s00s	<-	merge(x=Aid_90s,	y=Aid_00s,

+	by.x=c("Country.Name",	"Program.Name"),

+	by.y=c("Country.Name",	"Program.Name"))

>	head(Aid90s00s)

Country.Name	Program.Name

1	Afghanistan	Child	Survival	and	Health

2	Afghanistan	Department	of	Defense	Security	Assistance

3	Afghanistan	Development	Assistance

4	Afghanistan	Economic	Support	Fund/Security	Support	Assistance

5	Afghanistan	Food	For	Education

6	Afghanistan	Global	Health	and	Child	Survival

FY1990	FY1991	FY1992	FY1993	FY1994	FY1995	FY1996	FY1997	FY1998

1	NA	NA	NA	NA	NA	NA	NA	NA	NA

2	NA	NA	NA	NA	NA	NA	NA	NA	NA

3	NA	NA	NA	NA	NA	NA	NA	NA	NA

4	NA	NA	NA	14178135	2769948	NA	NA	NA	NA

../../../../../jaredlander.com/data/US_Foreign_Aid.zip
../../../../../gbk.eads.usaidallnet.gov/default.htm

5	NA	NA	NA	NA	NA	NA	NA	NA	NA

6	NA	NA	NA	NA	NA	NA	NA	NA	NA

FY1999	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005

1	NA	NA	NA	2586555	56501189	40215304	39817970

2	NA	NA	NA	2964313	NA	45635526	151334908

3	NA	NA	4110478	8762080	54538965	180539337	193598227

4	NA	NA	61144	31827014	341306822	1025522037	1157530168

5	NA	NA	NA	NA	3957312	2610006	3254408

6	NA	NA	NA	NA	NA	NA	NA

FY2006	FY2007	FY2008	FY2009

1	40856382	72527069	28397435	NA

2	230501318	214505892	495539084	552524990

3	212648440	173134034	150529862	3675202

4	1357750249	1266653993	1400237791	1418688520

5	386891	NA	NA	NA

6	NA	NA	63064912	1764252

The	by.x	specifies	the	key	column(s)	in	the	left	data.frame	and	by.y	does	the	same	for	the	right
data.frame.	The	ability	to	specify	different	column	names	for	each	data.frame	is	the	most	useful
feature	of	merge.	The	biggest	drawback,	however,	is	that	merge	can	be	much	slower	than	the
alternatives.

14.2.2	plyr	join
Returning	to	Hadley	Wickham’s	plyr	package,	we	see	it	includes	a	join	function,	which	works	similarly	to
merge	but	is	much	faster.	The	biggest	drawback,	though,	is	that	the	key	column(s)	in	each	table	must	have
the	same	name.	We	use	the	same	data	used	previously	to	illustrate.
Click	here	to	view	code	image

>	library(plyr)

>	Aid90s00sJoin	<-	join(x=Aid_90s,	y=Aid_00s,

+	by=c("Country.Name",	"Program.Name"))

>	head(Aid90s00sJoin)

Country.Name	Program.Name

1	Afghanistan	Child	Survival	and	Health

2	Afghanistan	Department	of	Defense	Security	Assistance

3	Afghanistan	Development	Assistance

4	Afghanistan	Economic	Support	Fund/Security	Support	Assistance

5	Afghanistan	Food	For	Education

6	Afghanistan	Global	Health	and	Child	Survival

FY1990	FY1991	FY1992	FY1993	FY1994	FY1995	FY1996	FY1997	FY1998

1	NA	NA	NA	NA	NA	NA	NA	NA	NA

2	NA	NA	NA	NA	NA	NA	NA	NA	NA

3	NA	NA	NA	NA	NA	NA	NA	NA	NA

4	NA	NA	NA	14178135	2769948	NA	NA	NA	NA

5	NA	NA	NA	NA	NA	NA	NA	NA	NA

6	NA	NA	NA	NA	NA	NA	NA	NA	NA

FY1999	FY2000	FY2001	FY2002	FY2003	FY2004	FY2005

1	NA	NA	NA	2586555	56501189	40215304	39817970

2	NA	NA	NA	2964313	NA	45635526	151334908

3	NA	NA	4110478	8762080	54538965	180539337	193598227

4	NA	NA	61144	31827014	341306822	1025522037	1157530168

5	NA	NA	NA	NA	3957312	2610006	3254408

6	NA	NA	NA	NA	NA	NA	NA

FY2006	FY2007	FY2008	FY2009

1	40856382	72527069	28397435	NA

2	230501318	214505892	495539084	552524990

3	212648440	173134034	150529862	3675202

4	1357750249	1266653993	1400237791	1418688520

5	386891	NA	NA	NA

6	NA	NA	63064912	1764252

join	has	an	argument	for	specifying	a	left,	right,	inner	or	full	(outer)	join.
We	have	eight	data.frames	containing	foreign	assistance	data	that	we	would	like	to	combine	into

one	data.frame	without	hand	coding	each	join.	The	best	way	to	do	this	is	put	all	the	data.frames
into	a	list,	and	then	successively	join	them	together	using	Reduce.
Click	here	to	view	code	image

>	#	first	figure	out	the	names	of	the	data.frames

>	frameNames	<-	str_sub(string=theFiles,	start=12,	end=18)

>	#	build	an	empty	list

>	frameList	<-	vector("list",	length(frameNames))

>	names(frameList)	<-	frameNames

>	#	add	each	data.frame	into	the	list

>	for(a	in	frameNames)

+	{

+	frameList[[a]]	<-	eval(parse(text=a))

+	}

A	lot	happened	in	that	section	of	code,	so	let’s	go	over	it	carefully.	First	we	reconstructed	the	names	of
the	data.frames	using	str_sub	from	Hadley	Wickham’s	stringr	package,	which	is	shown	in	more
detail	in	Chapter	16.	Then	we	built	an	empty	list	with	as	many	elements	as	there	are	data.frames,
in	this	case	eight,	using	vector	and	assigning	its	mode	to	“list”.	We	then	set	appropriate	names	to	the
list.
Now	that	the	list	is	built	and	named,	we	looped	through	it,	assigning	to	each	element	the	appropriate

data.frame.	The	problem	is	that	we	have	the	names	of	the	data.frames	as	characters	but	the	<-
operator	requires	a	variable,	not	a	character.	So	we	parse	and	evaluate	the	character,	which	realizes	the
actual	variable.	Inspecting,	we	see	that	the	list	does	indeed	contain	the	appropriate	data.frames.
Click	here	to	view	code	image

>	head(frameList[[1]])

Country.Name	Program.Name

1	Afghanistan	Child	Survival	and	Health

2	Afghanistan	Department	of	Defense	Security	Assistance

3	Afghanistan	Development	Assistance

4	Afghanistan	Economic	Support	Fund/Security	Support	Assistance

5	Afghanistan	Food	For	Education

6	Afghanistan	Global	Health	and	Child	Survival

FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	FY2006

1	NA	NA	2586555	56501189	40215304	39817970	40856382

2	NA	NA	2964313	NA	45635526	151334908	230501318

3	NA	4110478	8762080	54538965	180539337	193598227	212648440

4	NA	61144	31827014	341306822	1025522037	1157530168	1357750249

5	NA	NA	NA	3957312	2610006	3254408	386891

6	NA	NA	NA	NA	NA	NA	NA

FY2007	FY2008	FY2009

1	72527069	28397435	NA

2	214505892	495539084	552524990

3	173134034	150529862	3675202

4	1266653993	1400237791	1418688520

5	NA	NA	NA

6	NA	63064912	1764252

>	head(frameList[["Aid_00s"]])

Country.Name	Program.Name

1	Afghanistan	Child	Survival	and	Health

2	Afghanistan	Department	of	Defense	Security	Assistance

3	Afghanistan	Development	Assistance

4	Afghanistan	Economic	Support	Fund/Security	Support	Assistance

5	Afghanistan	Food	For	Education

6	Afghanistan	Global	Health	and	Child	Survival

FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	FY2006

1	NA	NA	2586555	56501189	40215304	39817970	40856382

2	NA	NA	2964313	NA	45635526	151334908	230501318

3	NA	4110478	8762080	54538965	180539337	193598227	212648440

4	NA	61144	31827014	341306822	1025522037	1157530168	1357750249

5	NA	NA	NA	3957312	2610006	3254408	386891

6	NA	NA	NA	NA	NA	NA	NA

FY2007	FY2008	FY2009

1	72527069	28397435	NA

2	214505892	495539084	552524990

3	173134034	150529862	3675202

4	1266653993	1400237791	1418688520

5	NA	NA	NA

6	NA	63064912	1764252

>	head(frameList[[5]])

Country.Name	Program.Name

1	Afghanistan	Child	Survival	and	Health

2	Afghanistan	Department	of	Defense	Security	Assistance

3	Afghanistan	Development	Assistance

4	Afghanistan	Economic	Support	Fund/Security	Support	Assistance

5	Afghanistan	Food	For	Education

6	Afghanistan	Global	Health	and	Child	Survival

FY1960	FY1961	FY1962	FY1963	FY1964	FY1965	FY1966	FY1967	FY1968

1	NA	NA	NA	NA	NA	NA	NA	NA	NA

2	NA	NA	NA	NA	NA	NA	NA	NA	NA

3	NA	NA	NA	NA	NA	NA	NA	NA	NA

4	NA	NA	181177853	NA	NA	NA	NA	NA	NA

5	NA	NA	NA	NA	NA	NA	NA	NA	NA

6	NA	NA	NA	NA	NA	NA	NA	NA	NA

FY1969

1	NA

2	NA

3	NA

4	NA

5	NA

6	NA

>	head(frameList[["Aid_60s"]])

Country.Name	Program.Name

1	Afghanistan	Child	Survival	and	Health

2	Afghanistan	Department	of	Defense	Security	Assistance

3	Afghanistan	Development	Assistance

4	Afghanistan	Economic	Support	Fund/Security	Support	Assistance

5	Afghanistan	Food	For	Education

6	Afghanistan	Global	Health	and	Child	Survival

FY1960	FY1961	FY1962	FY1963	FY1964	FY1965	FY1966	FY1967	FY1968

1	NA	NA	NA	NA	NA	NA	NA	NA	NA

2	NA	NA	NA	NA	NA	NA	NA	NA	NA

3	NA	NA	NA	NA	NA	NA	NA	NA	NA

4	NA	NA	181177853	NA	NA	NA	NA	NA	NA

5	NA	NA	NA	NA	NA	NA	NA	NA	NA

6	NA	NA	NA	NA	NA	NA	NA	NA	NA

FY1969

1	NA

2	NA

3	NA

4	NA

5	NA

6	NA

Having	all	the	data.frames	in	a	list	allows	us	to	iterate	through	the	list,	joining	all	the
elements	together	(or	applying	any	function	to	the	elements	iteratively).	Rather	than	using	a	loop,	we	use
the	Reduce	function	to	speed	up	the	operation.
Click	here	to	view	code	image

>	allAid	<-	Reduce(function(...){

+	join(...,	by=c("Country.Name",	"Program.Name"))},

+	frameList)

>	dim(allAid)

[1]	2453	67

>	library(useful)

>	corner(allAid,	c=15)

Country.Name	Program.Name

1	Afghanistan	Child	Survival	and	Health

2	Afghanistan	Department	of	Defense	Security	Assistance

3	Afghanistan	Development	Assistance

4	Afghanistan	Economic	Support	Fund/Security	Support	Assistance

5	Afghanistan	Food	For	Education

FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	FY2006

1	NA	NA	2586555	56501189	40215304	39817970	40856382

2	NA	NA	2964313	NA	45635526	151334908	230501318

3	NA	4110478	8762080	54538965	180539337	193598227	212648440

4	NA	61144	31827014	341306822	1025522037	1157530168	1357750249

5	NA	NA	NA	3957312	2610006	3254408	386891

FY2007	FY2008	FY2009	FY2010	FY1946	FY1947

1	72527069	28397435	NA	NA	NA	NA

2	214505892	495539084	552524990	316514796	NA	NA

3	173134034	150529862	3675202	NA	NA	NA

4	1266653993	1400237791	1418688520	2797488331	NA	NA

5	NA	NA	NA	NA	NA	NA

>	bottomleft(allAid,	c=15)

Country.Name	Program.Name	FY2000	FY2001	FY2002

2449	Zimbabwe	Other	State	Assistance	1341952	322842	NA

2450	Zimbabwe	Other	USAID	Assistance	3033599	8464897	6624408

2451	Zimbabwe	Peace	Corps	2140530	1150732	407834

2452	Zimbabwe	Title	I	NA	NA	NA

2453	Zimbabwe	Title	II	NA	NA	31019776

FY2003	FY2004	FY2005	FY2006	FY2007	FY2008	FY2009

2449	NA	318655	44553	883546	1164632	2455592	2193057

2450	11580999	12805688	10091759	4567577	10627613	11466426	41940500

2451	NA	NA	NA	NA	NA	NA	NA

2452	NA	NA	NA	NA	NA	NA	NA

2453	NA	NA	NA	277468	100053600	180000717	174572685

FY2010	FY1946	FY1947

2449	1605765	NA	NA

2450	30011970	NA	NA

2451	NA	NA	NA

2452	NA	NA	NA

2453	79545100	NA	NA

Reduce	can	be	a	difficult	function	to	grasp,	so	we	illustrate	it	with	a	simple	example.	Let’s	say	we
have	a	vector	of	the	first	ten	integers,	1:10,	and	want	to	sum	them	(forget	for	a	moment	that

sum(1:10)	will	work	perfectly).	We	can	call	Reduce(sum,	1:10),	which	will	first	add	1	and	2.	It
will	then	add	3	to	that	result,	then	4	to	that	result	and	so	on,	resulting	in	55.
Likewise,	we	passed	a	list	to	a	function	that	joins	its	inputs,	which	in	this	case	was	simply	...,

meaning	that	anything	could	be	passed.	Using	...	is	an	advanced	trick	of	R	programming	that	can	be
difficult	to	get	right.	Reduce	passed	the	first	two	data.frames	in	the	list,	which	were	then	joined.
That	result	was	then	joined	to	the	next	data.frame	and	so	on	until	they	were	all	joined	together.

14.2.3	data.table	merge
Like	many	other	operations	in	data.table,	joining	data	requires	a	different	syntax,	and	possibly	a	different
way	of	thinking.	To	start,	we	convert	two	of	our	foreign	aid	datasets’	data.frames	into
data.tables.
Click	here	to	view	code	image

>	library(data.table)

>	dt90	<-	data.table(Aid_90s,	key=c("Country.Name",	"Program.Name"))

>	dt00	<-	data.table(Aid_00s,	key=c("Country.Name",	"Program.Name"))	Then,	doing	the	join

is	a	simple	operation.	Note	that	the	join	requires	specifying	the	keys	for	the

data.tables,	which	we	did	during	their	creation.

>	dt0090	<-	dt90[dt00]

In	this	case	dt90	is	the	left	side,	dt00	is	the	right	side	and	a	left	join	was	performed.

14.3	reshape2
The	next	most	common	munging	need	is	either	melting	data	(going	from	column	orientation	to	row
orientation)	or	casting	data	(going	from	row	orientation	to	column	orientation).	As	with	most	other
procedures	in	R,	there	are	multiple	functions	available	to	accomplish	these	tasks,	but	we	will	focus	on
Hadley	Wickham’s	reshape2	package.	We	talk	about	Wickham	a	lot,	but	that	is	because	his	products	have
become	so	fundamental	to	the	R	developer’s	toolbox.

14.3.1	melt
Looking	at	the	Aid_00s	data.frame,	we	see	that	each	year	is	stored	in	its	own	column.	That	is,	the
dollar	amount	for	a	given	country	and	program	is	found	in	a	different	column	for	each	year.	This	is	called
a	cross	table,	which	while	nice	for	human	consumption,	is	not	ideal	for	graphing	with	ggplot2	or	for	some
analysis	algorithms.
Click	here	to	view	code	image

>	head(Aid_00s)

Country.Name	Program.Name

1	Afghanistan	Child	Survival	and	Health

2	Afghanistan	Department	of	Defense	Security	Assistance

3	Afghanistan	Development	Assistance

4	Afghanistan	Economic	Support	Fund/Security	Support	Assistance

5	Afghanistan	Food	For	Education

6	Afghanistan	Global	Health	and	Child	Survival

FY2000	FY2001	FY2002	FY2003	FY2004	FY2005	FY2006

1	NA	NA	2586555	56501189	40215304	39817970	40856382

2	NA	NA	2964313	NA	45635526	151334908	230501318

3	NA	4110478	8762080	54538965	180539337	193598227	212648440

4	NA	61144	31827014	341306822	1025522037	1157530168	1357750249

5	NA	NA	NA	3957312	2610006	3254408	386891

6	NA	NA	NA	NA	NA	NA	NA

FY2007	FY2008	FY2009

1	72527069	28397435	NA

2	214505892	495539084	552524990

3	173134034	150529862	3675202

4	1266653993	1400237791	1418688520

5	NA	NA	NA

6	NA	63064912	1764252

We	want	it	set	up	so	that	each	row	represents	a	single	country-program-year	entry	with	the	dollar
amount	stored	in	one	column.	To	achieve	this	we	melt	the	data	using	melt	from	reshape2.
Click	here	to	view	code	image

>	library(reshape2)

>	melt00	<-	melt(Aid_00s,	id.vars=c("Country.Name",	"Program.Name"),

+	variable.name="Year",	value.name="Dollars")

>	tail(melt00,	10)

Country.Name

24521	Zimbabwe

24522	Zimbabwe

24523	Zimbabwe

24524	Zimbabwe

24525	Zimbabwe

24526	Zimbabwe

24527	Zimbabwe

24528	Zimbabwe

24529	Zimbabwe

24530	Zimbabwe

Program.Name	Year

24521	Migration	and	Refugee	Assistance	FY2009

24522	Narcotics	Control	FY2009

24523	Nonproliferation,	Anti-Terrorism,	Demining	and	Related	FY2009

24524	Other	Active	Grant	Programs	FY2009

24525	Other	Food	Aid	Programs	FY2009

24526	Other	State	Assistance	FY2009

24527	Other	USAID	Assistance	FY2009

24528	Peace	Corps	FY2009

24529	Title	I	FY2009

24530	Title	II	FY2009

Dollars

24521	3627384

24522	NA

24523	NA

24524	7951032

24525	NA

24526	2193057

24527	41940500

24528	NA

24529	NA

24530	174572685

The	id.vars	argument	specifies	which	columns	uniquely	identify	a	row.
After	some	manipulation	of	the	Year	column	and	aggregating,	this	is	now	prime	for	plotting,	as	shown

in	Figure	14.1.	The	plot	uses	faceting,	enabling	us	to	quickly	see	and	understand	the	funding	for	each
program	over	time.
Click	here	to	view	code	image

>	library(scales)

>	#	strip	the	"FY"	out	of	the	year	column	and	convert	it	to	numeric

>	melt00$Year	<-	as.numeric(str_sub(melt00$Year,	start=3,	6))

>	#	aggregate	the	data	so	we	have	yearly	numbers	by	program

>	meltAgg	<-	aggregate(Dollars	~	Program.Name	+	Year,	data=melt00,

+	sum,	na.rm=TRUE)

>	#	just	keep	the	first	10	characters	of	program	name

>	#	then	it	will	fit	in	the	plot

>	meltAgg$Program.Name	<-	str_sub(meltAgg$Program.Name,	start=1,

+	end=10)

>

>	ggplot(meltAgg,	aes(x=Year,	y=Dollars))	+

+	geom_line(aes(group=Program.Name))	+

+	facet_wrap(~	Program.Name)	+

+	scale_x_continuous(breaks=seq(from=2000,	to=2009,	by=2))	+

+	theme(axis.text.x=element_text(angle=90,	vjust=1,	hjust=0))	+

+	scale_y_continuous(labels=multiple_format(extra=dollar,

+	multiple="B"))

Figure	14.1	Plot	of	foreign	assistance	by	year	for	each	of	the	programs.

14.3.2	dcast
Now	that	we	have	the	foreign	aid	data	melted,	we	cast	it	back	into	the	wide	format	for	illustration
purposes.	The	function	for	this	is	dcast,	and	it	has	trickier	arguments	than	melt.	The	first	is	the	data	to	be
used,	in	our	case	melt00.	The	second	argument	is	a	formula	where	the	left	side	specifies	the	columns
that	should	remain	columns	and	the	right	side	specifies	the	columns	that	should	become	column	names.
The	third	argument	is	the	column	(as	a	character)	that	holds	the	values	to	be	populated	into	the	new
columns,	representing	the	unique	values	of	the	right	side	of	the	formula	argument.
Click	here	to	view	code	image

>	cast00	<-	dcast(melt00,	Country.Name	+	Program.Name	~	Year,

+	value.var="Dollars")

>	head(cast00)

Country.Name	Program.Name	2000

1	Afghanistan	Child	Survival	and	Health	NA

2	Afghanistan	Department	of	Defense	Security	Assistance	NA

3	Afghanistan	Development	Assistance	NA

4	Afghanistan	Economic	Support	Fund/Security	Support	Assistance	NA

5	Afghanistan	Food	For	Education	NA

6	Afghanistan	Global	Health	and	Child	Survival	NA

2001	2002	2003	2004	2005	2006

1	NA	2586555	56501189	40215304	39817970	40856382

2	NA	2964313	NA	45635526	151334908	230501318

3	4110478	8762080	54538965	180539337	193598227	212648440

4	61144	31827014	341306822	1025522037	1157530168	1357750249

5	NA	NA	3957312	2610006	3254408	386891

6	NA	NA	NA	NA	NA	NA

2007	2008	2009

1	72527069	28397435	NA

2	214505892	495539084	552524990

3	173134034	150529862	3675202

4	1266653993	1400237791	1418688520

5	NA	NA	NA

6	NA	63064912	1764252

14.4	Conclusion
Getting	the	data	just	right	to	analyze	can	be	a	time-consuming	part	of	our	work	flow,	although	it	is	often
inescapable.	In	this	chapter	we	examined	combining	multiple	datasets	into	one	and	changing	the
orientation	from	column	based	(wide)	to	row	based	(long).	We	used	plyr,	reshape2	and	data.table	along
with	base	functions	to	accomplish	this.	This	chapter	combined	with	Chapter	11	covers	most	of	the	basics
of	data	munging	with	an	eye	to	both	convenience	and	speed.

15.	Reshaping	Data	in	the	Tidyverse

Chapter	14	covered	numerous	ways	to	reshape	data	such	as	binding	rows	and	columns,	joins,	and
converting	between	wide	and	long	data	formats.	All	the	described	functions	from	base	R	and	packages
such	as	plyr,	data.table	and	reshape2	are	still	great	options,	but	the	newer	packages	dplyr	and	tidyr	are
designed	to	work	with	pipes	and	may	be	easier	to	use	for	some	people.	In	some	cases,	these	packages
will	see	speed	improvements	but	not	always.	These,	and	other	packages	written	mainly	by	Hadley
Wickham,	make	up	the	Tidyverse.

15.1	Binding	Rows	and	Columns
The	dplyr	analogs	to	rbind	and	cbind	are	bind_rows	and	bind_cols,	respectively.	These	functions	do	not
behave	exactly	like	their	base	R	counterparts;	they	only	work	with	data.frames	(and	tibbles),
whereas	cbind	and	rbind	work	with	data.frames	and	matrices	and	can	also	bind	vectors	into
matrices	and	data.frames.	So	bind_rows	and	bind_cols	may	be	more	limited,	but	they	work	well
when	given	data.frames.
We	return	to	the	example	in	Section	14.1	and	adapt	it	for	use	with	tibble	and	dplyr.

Click	here	to	view	code	image

>	#	load	dplyr

>	library(dplyr)

>	library(tibble)

>

>	#	create	a	two-column	tibble

>	sportLeague	<-	tibble(sport=c("Hockey",	"Baseball",	"Football"),

+	league=c("NHL",	"MLB",	"NFL"))

>	#	create	a	one-column	tibble

>	trophy	<-	tibble(trophy=c("Stanley	Cup",	"Commissioner's	Trophy",

+	"Vince	Lombardi	Trophy"))

>

>	#	combine	them	into	one	tibble

>	trophies1	<-	bind_cols(sportLeague,	trophy)

>

>	#	make	another	tibble	using	tribble	as	a	shortcut	to	build	it	row-wise

>	trophies2	<-	tribble(

+	~sport,	~league,	~trophy,

+	"Basketball",	"NBA",	"Larry	O'Brien	Championship	Trophy",

+	"Golf",	"PGA",	"Wanamaker	Trophy"

+)

>

>	#	combine	them	into	one	tibble

>	trophies	<-	bind_rows(trophies1,	trophies2)

>

>	trophies

#	A	tibble:	5	×	3

sport	league	trophy

<chr>	<chr>	<chr>

1	Hockey	NHL	Stanley	Cup

2	Baseball	MLB	Commissioner's	Trophy

3	Football	NFL	Vince	Lombardi	Trophy

4	Basketball	NBA	Larry	O'Brien	Championship	Trophy

5	Golf	PGA	Wanamaker	Trophy	Both	bind_cols	and	bind_rows	can	bind	multiple	tibbles	(or

data.frames)	together.

15.2	Joins	with	dplyr
Joins	are	an	important	part	of	the	data	manipulation	process.	In	Section	14.2	we	used	functions	from	base
R,	plyr	and	data.table	to	perform	joins.	Another	option	is	to	use	the	join	functions	in	dplyr:	left_join,
right_join,	inner_join,	full_join,	semi_join	and	anti_join.	As	our	motivating	example	we	look	at	the
diamonds	data,	which	has	a	column	about	the	color	of	the	diamonds.	This	column	indicates	the	color	as
a	single	letter,	one	of	D,	E,	F,	G,	H,	I	and	J,	that	depends	on	prior	knowledge	of	these	codes.	Fortunately,
we	have	more	data	that	details	the	color	specification	that	we	can	join	to	the	diamonds	data.
First,	we	read	the	data	using	read_csv	from	the	readr	package.	This	package	was	introduced	in

Section	6.1.1	and	enables	fast	reading	of	data	stored	in	plain	text	files.	The	result	is	a	tibble	object.
Click	here	to	view	code	image

>	library(readr)

>	colorsURL	<-	'http://www.jaredlander.com/data/DiamondColors.csv'

>	diamondColors	<-	read_csv(colorsURL)

>	diamondColors

#	A	tibble:	10	×	3

Color	Description	Details

<chr>	<chr>	<chr>

1	D	Absolutely	Colorless	No	color

2	E	Colorless	Minute	traces	of	color

3	F	Colorless	Minute	traces	of	color

4	G	Near	Colorless	Color	is	dificult	to	detect

5	H	Near	Colorless	Color	is	dificult	to	detect

6	I	Near	Colorless	Slightly	detectable	color

7	J	Near	Colorless	Slightly	detectable	color

8	K	Faint	Color	Noticeable	color

9	L	Faint	Color	Noticeable	color

10	M	Faint	Color	Noticeable	color	Looking	at	the	diamonds	data,	we	see	the	following

values	for	color.

Click	here	to	view	code	image

>	#	load	the	diamonds	data	without	loading	the	ggplot2	package

>	data(diamonds,	package='ggplot2')

>	unique(diamonds$color)

[1]	E	I	J	H	F	G	D

Levels:	D	<	E	<	F	<	G	<	H	<	I	<	J

We	perform	a	left	join	that	will	result	in	a	combined	tibble	(which	we	refer	to	interchangeably	with
data.frame)	that	has	all	the	information	from	each	of	the	datasets.	We	use	the	diamonds	data	as	the
left-hand	table	and	the	Diamond	Colors	data	as	the	right-hand	table.	Since	the	key	column	is	not	the
same	in	both	data.frames	(color	with	a	lower-case	‘c’	in	diamonds	and	Color	with	an	upper-
case	‘C’	in	diamondColors),	we	specify	it	using	the	by	argument.	The	input	to	this	argument	should
be	a	named	vector,	where	the	names	of	the	vector	are	the	keys	in	the	left-hand	table	and	the	values	of
the	vector	are	the	keys	in	the	right-hand	table.	In	this	case	there	is	only	one	key	per	table,	but	there	can
be	multiple	keys,	and	each	would	be	specified	in	the	vector	of	keys.
Click	here	to	view	code	image

>	library(dplyr)

>	left_join(diamonds,	diamondColors,	by=c('color'='Color'))

Warning	in	left_join_impl(x,	y,	by$x,	by$y,	suffix$x,	suffix$y):	joining	character

vector	and	factor,	coercing	into	character	vector

#	A	tibble:	53,940	×	12

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<chr>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

7	0.24	Very	Good	I	VVS1	62.3	57	336	3.95	3.98	2.47

8	0.26	Very	Good	H	SI1	61.9	55	337	4.07	4.11	2.53

9	0.22	Fair	E	VS2	65.1	61	337	3.87	3.78	2.49

10	0.23	Very	Good	H	VS1	59.4	61	338	4.00	4.05	2.39

#	...	with	53,930	more	rows,	and	2	more	variables:	Description	<chr>,

#	Details	<chr>

There	is	a	warning	message	saying	the	the	key	columns	in	the	two	data.frames	are	of	different
types	(factor	and	character).	Given	the	underlying	structure	of	factors,	this	would	be	akin	to
joining	a	character	column	on	an	integer	column,	so	left_join	automatically	coerced	the	factor
into	a	character.
Due	to	space	limitations	in	the	layout	of	this	book,	several	columns	were	not	displayed.	In	interactive

usage	the	number	of	columns	displayed	is	determined	by	the	width	of	the	console,	so	this	can	vary.	To
fully	see	the	results	of	the	join,	we	execute	it	again	and	then	use	select	to	choose	just	some	columns	to	be
displayed.
Click	here	to	view	code	image

>	left_join(diamonds,	diamondColors,	by=c('color'='Color'))	%>%

+	select(carat,	color,	price,	Description,	Details)

Warning	in	left_join_impl(x,	y,	by$x,	by$y,	suffix$x,	suffix$y):	joining

character	vector	and	factor,	coercing	into	character	vector

#	A	tibble:	53,940	×	5

carat	color	price	Description	Details

<dbl>	<chr>	<int>	<chr>	<chr>

1	0.23	E	326	Colorless	Minute	traces	of	color

2	0.21	E	326	Colorless	Minute	traces	of	color

3	0.23	E	327	Colorless	Minute	traces	of	color

4	0.29	I	334	Near	Colorless	Slightly	detectable	color

5	0.31	J	335	Near	Colorless	Slightly	detectable	color

6	0.24	J	336	Near	Colorless	Slightly	detectable	color

7	0.24	I	336	Near	Colorless	Slightly	detectable	color

8	0.26	H	337	Near	Colorless	Color	is	dificult	to	detect

9	0.22	E	337	Colorless	Minute	traces	of	color

10	0.23	H	338	Near	Colorless	Color	is	dificult	to	detect

#	...	with	53,930	more	rows

This	was	a	left	join,	so	all	of	the	rows	of	the	left-hand	table	(diamonds)	are	kept	and	only	the	rows
of	the	right-hand	table	(diamondColors)	that	have	matches	are	kept.	We	can	see	that
diamondColors	has	more	unique	values	for	Color	and	Description	than	the	joined	results.
Click	here	to	view	code	image

>	left_join(diamonds,	diamondColors,	by=c('color'='Color'))	%>%

+	distinct(color,	Description)

Warning	in	left_join_impl(x,	y,	by$x,	by$y,	suffix$x,	suffix$y):	joining

character	vector	and	factor,	coercing	into	character	vector

#	A	tibble:	7	×	2

color	Description

<chr>	<chr>

1	E	Colorless

2	I	Near	Colorless

3	J	Near	Colorless

4	H	Near	Colorless

5	F	Colorless

6	G	Near	Colorless

7	D	Absolutely	Colorless

>	diamondColors	%>%	distinct(Color,	Description)

#	A	tibble:	10	×	2

Color	Description

<chr>	<chr>

1	D	Absolutely	Colorless

2	E	Colorless

3	F	Colorless

4	G	Near	Colorless

5	H	Near	Colorless

6	I	Near	Colorless

7	J	Near	Colorless

8	K	Faint	Color

9	L	Faint	Color

10	M	Faint	Color

A	right	join	keeps	all	the	rows	of	the	right-hand	table	and	the	matching	rows	of	the	left-hand	table.
Since	diamondColors	has	more	unique	values	of	Color	than	diamonds,	the	resulting	join	will	also
have	more	rows	than	diamonds	by	itself.
Click	here	to	view	code	image

>	right_join(diamonds,	diamondColors,	by=c('color'='Color'))	%>%	nrow

Warning	in	right_join_impl(x,	y,	by$x,	by$y,	suffix$x,	suffix$y):

joining	factor	and	character	vector,	coercing	into	character	vector

[1]	53943

>	diamonds	%>%	nrow

[1]	53940

An	inner	join	returns	rows	from	both	tables	that	have	matching	keys.	If	a	row	in	either	table	is	not
matched	by	a	row	in	the	other	table,	then	that	row	is	not	returned.	For	the	data	we	are	using,	an	inner	join
will	be	equivalent	to	a	left	join.
Click	here	to	view	code	image

>	all.equal(

+	left_join(diamonds,	diamondColors,	by=c('color'='Color')),

+	inner_join(diamonds,	diamondColors,	by=c('color'='Color'))

+)

Warning	in	left_join_impl(x,	y,	by$x,	by$y,	suffix$x,	suffix$y):	joining

character	vector	and	factor,	coercing	into	character	vector

Warning	in	inner_join_impl(x,	y,	by$x,	by$y,	suffix$x,	suffix$y):	joining

factor	and	character	vector,	coercing	into	character	vector

[1]	TRUE

A	full	join	(also	known	as	an	outer	join)	returns	all	rows	of	both	tables,	even	those	that	do	not	have	a
match	with	rows	in	the	other	table.	For	the	data	we	are	using,	a	full	join	will	be	equivalent	to	a	right	join.

Click	here	to	view	code	image

>	all.equal(

+	right_join(diamonds,	diamondColors,	by=c('color'='Color')),

+	full_join(diamonds,	diamondColors,	by=c('color'='Color'))

+)

Warning	in	right_join_impl(x,	y,	by$x,	by$y,	suffix$x,	suffix$y):	joining

factor	and	character	vector,	coercing	into	character	vector

Warning	in	full_join_impl(x,	y,	by$x,	by$y,	suffix$x,	suffix$y):	joining

character	vector	and	factor,	coercing	into	character	vector

[1]	TRUE

A	semi-join	does	not	join	two	tables	together	but	rather	returns	the	first	rows	in	the	left-hand	table	that
have	matches	in	the	right-hand	table.	This	is	a	form	of	row	filtering.	If	a	row	in	the	left-hand	table	is
matched	by	multiple	rows	in	the	right-hand	table,	only	the	first	matched	rows	are	returned.	Using
diamondColors	as	the	left-hand	table,	only	the	colors	E,	I,	J,	H,	F,	G,	D	are	found	in	diamonds,	so
those	are	returned,	along	with	the	rest	of	the	data.frame.
Click	here	to	view	code	image

>	semi_join(diamondColors,	diamonds,	by=c('Color'='color'))

#	A	tibble:	7	×	3

Color	Description	Details

<chr>	<chr>	<chr>

1	E	Colorless	Minute	traces	of	color

2	I	Near	Colorless	Slightly	detectable	color

3	J	Near	Colorless	Slightly	detectable	color

4	H	Near	Colorless	Color	is	dificult	to	detect

5	F	Colorless	Minute	traces	of	color

6	G	Near	Colorless	Color	is	dificult	to	detect

7	D	Absolutely	Colorless	No	color	An	anti-join	is	the	opposite	of	a	semi-join	and	returns

the	rows	of	the	left-hand	table	that	are	not	matched	to	any	rows	in	the	right-hand	table.

Within	diamondColors,	the	colors	K,	L,	M	are	not	matched	in	diamonds,	so	those	rows	are

returned.

Click	here	to	view	code	image

>	anti_join(diamondColors,	diamonds,	by=c('Color'='color'))

#	A	tibble:	3	×	3

Color	Description	Details

<chr>	<chr>	<chr>

1	K	Faint	Color	Noticeable	color

2	L	Faint	Color	Noticeable	color

3	M	Faint	Color	Noticeable	color	The	same	results	for	both	semi_join	and	anti_join	could

have	been	achieved	using	filter	and	unique.	This	alternative	coding	is	easy	when	the	data

are	in	data.frames,	but	semi_join	and	anti_join	are	better	options	when	using	dplyr	to

operate	on	databases.

Click	here	to	view	code	image

>	diamondColors	%>%	filter(Color	%in%	unique(diamonds$color))

#	A	tibble:	7	×	3

Color	Description	Details

<chr>	<chr>	<chr>

1	D	Absolutely	Colorless	No	color

2	E	Colorless	Minute	traces	of	color

3	F	Colorless	Minute	traces	of	color

4	G	Near	Colorless	Color	is	dificult	to	detect

5	H	Near	Colorless	Color	is	dificult	to	detect

6	I	Near	Colorless	Slightly	detectable	color

7	J	Near	Colorless	Slightly	detectable	color

>	diamondColors	%>%	filter(!Color	%in%	unique(diamonds$color))

#	A	tibble:	3	×	3

Color	Description	Details

<chr>	<chr>	<chr>

1	K	Faint	Color	Noticeable	color

2	L	Faint	Color	Noticeable	color

3	M	Faint	Color	Noticeable	color

15.3	Converting	Data	Formats
Converting	data	between	long	and	wide	formats	is	handled	well	using	base	functions	and	melt	and	dcast
in	Hadley	Wickham’s	reshape2	package,	as	seen	in	Section	14.3.	Much	as	dplyr	is	the	next	generation	of
plyr,	tidyr	is	the	next	generation	of	reshape2.	Hadley	Wickham	wrote	tidyr	to	be	easier	to	use	than
reshape2	(and	to	work	with	pipes)	rather	than	to	be	computationally	faster,	so	speed	gains	should	be
minimal.
For	an	example	we	look	at	data	from	an	experiment	conducted	at	Columbia	University	about	emotion

reactivity	and	regulation.	The	dataset	has	been	annonymized	and	random	noise	has	been	added	so	that	no
personal	information	is	shared.	The	file	is	tab	separated	and	saved	as	text,	so	we	use	read_tsv	from	the
readr	package	to	read	the	data	into	memory	as	a	tibble.	By	default,	data	reading	functions	in	readr
display	a	message	that	indicates	the	types	of	data	stored	in	each	column.
Click	here	to	view	code	image

>	library(readr)

>	emotion	<-	read_tsv('http://www.jaredlander.com/data/reaction.txt')	Parsed	with	column

specification:

cols(

ID	=	col_integer(),

Test	=	col_integer(),

Age	=	col_double(),

Gender	=	col_character(),

BMI	=	col_double(),

React	=	col_double(),

Regulate	=	col_double()

)

>	emotion

#	A	tibble:	99	×	7

ID	Test	Age	Gender	BMI	React	Regulate

<int>	<int>	<dbl>	<chr>	<dbl>	<dbl>	<dbl>

1	1	1	9.69	F	14.71	4.17	3.15

2	1	2	12.28	F	14.55	3.89	2.55

3	2	1	15.72	F	19.48	4.39	4.41

4	2	2	17.62	F	19.97	2.03	2.20

5	3	1	9.52	F	20.94	3.38	2.65

6	3	2	11.84	F	23.97	4.00	3.63

7	4	1	16.29	M	25.13	3.15	3.59

8	4	2	18.85	M	27.96	3.02	3.54

9	5	1	15.78	M	28.35	3.08	2.64

10	5	2	18.25	M	19.57	3.17	2.29

#	...	with	89	more	rows

We	see	that	the	tibble	is	in	wide	format,	so	we	use	gather1	(the	corollary	to	melt	from	reshape2)	to
make	it	long.	We	put	the	Age,	React	and	Regulate	columns	into	one	column	that	we	call

Measurement	and	the	column	names.	Another	column,	Type,	holds	the	original	column	names.	The
first	argument	to	gather	is	the	tibble	(or	data.frame)	of	interest.	The	key	is	the	name	of	the	newly
created	column	that	holds	the	original	column	names	or	keys.	The	Value	argument	is	the	name	of	the
newly	created	column	that	holds	the	actual	data	from	the	columns	being	gathered.	Both	of	these	arguments
are	specified	without	quotes.	Following	arguments	provide	the	names,	unquoted,	of	columns	that	are	to	be
gathered	and	pivoted	into	the	value	column.

1.	It	gathers	data	from	multiple	columns	and	stores	them	in	a	single	column.

Click	here	to	view	code	image

>	library(tidyr)

>	emotion	%>%

+	gather(key=Type,	value=Measurement,	Age,	BMI,	React,	Regulate)

#	A	tibble:	396	×	5

ID	Test	Gender	Type	Measurement

<int>	<int>	<chr>	<chr>	<dbl>

1	1	1	F	Age	9.69

2	1	2	F	Age	12.28

3	2	1	F	Age	15.72

4	2	2	F	Age	17.62

5	3	1	F	Age	9.52

6	3	2	F	Age	11.84

7	4	1	M	Age	16.29

8	4	2	M	Age	18.85

9	5	1	M	Age	15.78

10	5	2	M	Age	18.25

#	...	with	386	more	rows

The	data	are	sorted	by	the	newly	created	Type	column,	so	it	is	hard	to	see	what	happened	to	the	data.
To	make	it	easier	we	sort	the	data	by	ID.
Click	here	to	view	code	image

>	library(tidyr)

>	emotionLong	<-	emotion	%>%

+	gather(key=Type,	value=Measurement,	Age,	BMI,	React,	Regulate)	%>%

+	arrange(ID)

>

>	head(emotionLong,	20)

#	A	tibble:	20	×	5

ID	Test	Gender	Type	Measurement

<int>	<int>	<chr>	<chr>	<dbl>

1	1	1	F	Age	9.69

2	1	2	F	Age	12.28

3	1	1	F	BMI	14.71

4	1	2	F	BMI	14.55

5	1	1	F	React	4.17

6	1	2	F	React	3.89

7	1	1	F	Regulate	3.15

8	1	2	F	Regulate	2.55

9	2	1	F	Age	15.72

10	2	2	F	Age	17.62

11	2	1	F	BMI	19.48

12	2	2	F	BMI	19.97

13	2	1	F	React	4.39

14	2	2	F	React	2.03

15	2	1	F	Regulate	4.41

16	2	2	F	Regulate	2.20

17	3	1	F	Age	9.52

18	3	2	F	Age	11.84

19	3	1	F	BMI	20.94

20	3	2	F	BMI	23.97

In	the	original	data	each	ID	was	contained	in	two	rows,	each	of	which	had	Age,	BMI,	React	and
Regulate	columns.	The	transformed	data	has	four	rows	for	each	original	row	with	a	column
(Type)	specifying	Age,	BMI,	React	and	Regulate	columns	and	another	(Measurement)
holding	the	actual	values.	The	remaining	columns—ID,	Test	and	Gender—were	not	pivoted.
While	we	specified	the	columns	we	wanted	to	gather,	we	could	also	specify	the	columns	we	do	not

want	to	pivot	by	preceding	them	with	a	minus	sign	(-).
Click	here	to	view	code	image

>	emotion	%>%

+	gather(key=Type,	value=Measurement,	-ID,	-Test,	-Gender)

#	A	tibble:	396	×	5

ID	Test	Gender	Type	Measurement

<int>	<int>	<chr>	<chr>	<dbl>

1	1	1	F	Age	9.69

2	1	2	F	Age	12.28

3	2	1	F	Age	15.72

4	2	2	F	Age	17.62

5	3	1	F	Age	9.52

6	3	2	F	Age	11.84

7	4	1	M	Age	16.29

8	4	2	M	Age	18.85

9	5	1	M	Age	15.78

10	5	2	M	Age	18.25

#	...	with	386	more	rows

>	identical(

+	emotion	%>%

+	gather(key=Type,	value=Measurement,	-ID,	-Test,	-Gender),

+	emotion	%>%

+	gather(key=Type,	value=Measurement,	Age,	BMI,	React,	Regulate)

+)

[1]	TRUE

The	opposite	of	gather	is	spread2	(the	corollary	to	dcast	from	reshape2),	which	makes	the	data	wide.
The	key	argument	specifies	the	column	that	will	become	the	new	column	names	and	value	specifies	the
column	that	holds	the	values	that	will	populate	the	new	columns.

2.	It	spreads	data	from	one	column	into	multiple	columns.

Click	here	to	view	code	image

>	emotionLong	%>%

+	spread(key=Type,	value=Measurement)

#	A	tibble:	99	×	7

ID	Test	Gender	Age	BMI	React	Regulate

*	<int>	<int>	<chr>	<dbl>	<dbl>	<dbl>	<dbl>

1	1	1	F	9.69	14.71	4.17	3.15

2	1	2	F	12.28	14.55	3.89	2.55

3	2	1	F	15.72	19.48	4.39	4.41

4	2	2	F	17.62	19.97	2.03	2.20

5	3	1	F	9.52	20.94	3.38	2.65

6	3	2	F	11.84	23.97	4.00	3.63

7	4	1	M	16.29	25.13	3.15	3.59

8	4	2	M	18.85	27.96	3.02	3.54

9	5	1	M	15.78	28.35	3.08	2.64

10	5	2	M	18.25	19.57	3.17	2.29

#	...	with	89	more	rows

15.4	Conclusion
Over	the	past	few	years	many	advancements	in	data	reshaping	have	made	munging	easier.	In	particular,
bind_rows,	bind_cols,	left_join	and	inner_join	from	dplyr	and	gather	and	spread	from	tidyr	have
improved	the	state	of	data	manipulation.	While	their	functionality	already	exists	in	base	R	and	other
packages,	these	are	meant	to	be	easier	to	use,	and	dplyr	is	meant	to	be	faster	too.

16.	Manipulating	Strings

Strings	(character	data)	often	need	to	be	constructed	or	deconstructed	to	identify	observations,
preprocess	text,	combine	information	or	satisfy	any	number	of	other	needs.	R	offers	functions	for	building
strings,	like	paste	and	sprintf.	It	also	provides	a	number	of	functions	for	using	regular	expressions	and
examining	text	data,	although	for	those	purposes	it	is	better	to	use	Hadley	Wickham’s	stringr	package.

16.1	paste
The	first	function	new	R	users	reach	for	when	putting	together	strings	is	paste.	This	function	takes	a	series
of	strings,	or	expressions	that	evaluate	to	strings,	and	puts	them	together	into	one	string.	We	start	by
putting	together	three	simple	strings.
Click	here	to	view	code	image

>	paste("Hello",	"Jared",	"and	others")

[1]	"Hello	Jared	and	others"

Notice	that	spaces	were	put	between	the	two	words.	This	is	because	paste	has	a	third	argument,	sep,
that	determines	what	to	put	in	between	entries.	This	can	be	any	valid	text,	including	empty	text	("").
Click	here	to	view	code	image

>	paste("Hello",	"Jared",	"and	others",	sep="/")

[1]	"Hello/Jared/and	others"

Like	many	functions	in	R,	paste	is	vectorized.	This	means	each	element	can	be	a	vector	of	data	to	be
put	together.
Click	here	to	view	code	image

>	paste(c("Hello",	"Hey",	"Howdy"),	c("Jared",	"Bob",	"David"))

[1]	"Hello	Jared"	"Hey	Bob"	"Howdy	David"

In	this	case	each	vector	had	the	same	number	of	entries	so	they	paired	one-to-one.	When	the
vectors	do	not	have	the	same	length,	they	are	recycled.
Click	here	to	view	code	image

>	paste("Hello",	c("Jared",	"Bob",	"David"))

[1]	"Hello	Jared"	"Hello	Bob"	"Hello	David"

>	paste("Hello",	c("Jared",	"Bob",	"David"),	c("Goodbye",	"Seeya"))

[1]	"Hello	Jared	Goodbye"	"Hello	Bob	Seeya"	"Hello	David	Goodbye"

paste	also	has	the	ability	to	collapse	a	vector	of	text	into	one	vector	containing	all	the	elements
with	any	arbitrary	separator,	using	the	collapse	argument.
Click	here	to	view	code	image

>	vectorOfText	<-	c("Hello",	"Everyone",	"out	there",	".")

>	paste(vectorOfText,	collapse="	")

[1]	"Hello	Everyone	out	there	."

>	paste(vectorOfText,	collapse="*")

[1]	"Hello*Everyone*out	there*."

16.2	sprintf
While	paste	is	convenient	for	putting	together	short	bits	of	text,	it	can	become	unwieldy	when	piecing
together	long	pieces	of	text,	such	as	when	inserting	a	number	of	variables	into	a	long	piece	of	text.	For
instance,	we	might	have	a	lengthy	sentence	that	has	a	few	spots	that	require	the	insertion	of	special
variables.	An	example	is	“Hello	Jared,	your	party	of	eight	will	be	seated	in	25	minutes”	where	“Jared,”
“eight”	and	“25”	could	be	replaced	with	other	information.
Reforming	this	with	paste	can	make	reading	the	line	in	code	difficult.
To	start,	we	make	some	variables	to	hold	the	information.
>	person	<-	"Jared"

>	partySize	<-	"eight"

>	waitTime	<-	25

Now	we	build	the	paste	expression.
Click	here	to	view	code	image

>	paste("Hello	",	person,	",	your	party	of	",	partySize,

+	"	will	be	seated	in	",	waitTime,	"	minutes.",	sep="")

[1]	"Hello	Jared,	your	party	of	eight	will	be	seated	in	25	minutes."

Making	even	a	small	change	to	this	sentence	would	require	putting	the	commas	in	just	the	right	places.
A	good	alternative	is	the	sprintf	function.	With	this	function	we	build	one	long	string	with	special

markers	indicating	where	to	insert	values.
Click	here	to	view	code	image

>	sprintf("Hello	%s,	your	party	of	%s	will	be	seated	in	%s	minutes",

+	person,	partySize,	waitTime)

[1]	"Hello	Jared,	your	party	of	eight	will	be	seated	in	25	minutes"

Here,	each	%s	was	replaced	with	its	corresponding	variable.	While	the	long	sentence	is	easier	to	read
in	code,	we	must	maintain	the	order	of	%s’s	and	variables.
sprintf	is	also	vectorized.	Note	that	the	vector	lengths	must	be	multiples	of	each	other.

Click	here	to	view	code	image

>	sprintf("Hello	%s,	your	party	of	%s	will	be	seated	in	%s	minutes",

+	c("Jared",	"Bob"),	c("eight",	16,	"four",	10),	waitTime)

[1]	"Hello	Jared,	your	party	of	eight	will	be	seated	in	25	minutes"

[2]	"Hello	Bob,	your	party	of	16	will	be	seated	in	25	minutes"

[3]	"Hello	Jared,	your	party	of	four	will	be	seated	in	25	minutes"

[4]	"Hello	Bob,	your	party	of	10	will	be	seated	in	25	minutes"

16.3	Extracting	Text
Often	text	needs	to	be	ripped	apart	to	be	made	useful,	and	while	R	has	a	number	of	functions	for	doing	so,
the	stringr	package	is	much	easier	to	use.
First	we	need	some	data,	so	we	use	the	XML	package	to	download	a	table	of	United	States	Presidents

from	Wikipedia.

>	library(XML)	Then	we	use	readHTMLTable	to	parse	the	table.

Click	here	to	view	code	image

>	load("data/presidents.rdata")	>	theURL	<-

"http://www.loc.gov/rr/print/list/057_chron.html"

>	presidents	<-	readHTMLTable(theURL,	which=3,	as.data.frame=TRUE,

+	skip.rows=1,	header=TRUE,

+	stringsAsFactors=FALSE)	Now	we	take	a	look	at	the	data.

Click	here	to	view	code	image

>	head(presidents)

YEAR	PRESIDENT

1	1789-1797	George	Washington

2	1797-1801	John	Adams

3	1801-1805	Thomas	Jefferson

4	1805-1809	Thomas	Jefferson

5	1809-1812	James	Madison

6	1812-1813	James	Madison

FIRST	LADY	VICE	PRESIDENT

1	Martha	Washington	John	Adams

2	Abigail	Adams	Thomas	Jefferson

3	Martha	Wayles	Skelton	Jefferson\n	(no	image)	Aaron	Burr

4	Martha	Wayles	Skelton	Jefferson\n	(no	image)	George	Clinton

5	Dolley	Madison	George	Clinton

6	Dolley	Madison	office	vacant	Examining	it	more	closely,	we	see	that	the	last	few	rows

contain	information	we	do	not	want,	so	we	keep	only	the	first	64	rows.

Click	here	to	view	code	image

>	tail(presidents$YEAR)

[1]	"2001-2009"

[2]	"2009-"

[3]	"Presidents:	Introduction	(Rights/Ordering\n	Info.)	|

Adams\n	-	Cleveland	|

Clinton	-	Harding	Harrison\n	-	Jefferson	|

Johnson	-	McKinley	|

Monroe\n	-	Roosevelt	|

Taft	-	Truman	|

Tyler\n	-	WilsonList	of	names,	Alphabetically"

[4]	"First	Ladies:	Introduction\n	(Rights/Ordering	Info.)	|

Adams\n	-	Coolidge	|

Eisenhower	-	HooverJackson\n	-	Pierce	|

\n	Polk	-	Wilson	|

List\n	of	names,	Alphabetically"

[5]	"Vice	Presidents:	Introduction	(Rights/Ordering	Info.)	|

Adams	-	Coolidge	|	Curtis	-	Hobart	Humphrey	-	Rockefeller	|

Roosevelt	-	WilsonList	of	names,	Alphabetically"

[6]	"Top\n	of	Page"

>	presidents	<-	presidents[1:64,]

To	start,	we	create	two	new	columns,	one	for	the	beginning	of	the	term	and	one	for	the	end	of	the	term.
To	do	this	we	need	to	split	the	Year	column	on	the	hyphen	(“-”).	The	stringr	package	has	the	str_split
function	that	splits	a	string	based	on	some	value.	It	returns	a	list	with	an	element	for	each	element	of	the
input	vector.	Each	of	these	elements	has	as	many	elements	as	necessary	for	the	split,	in	this	case	either
two	(a	start	and	stop	year)	or	one	(when	the	president	served	less	than	one	year).
Click	here	to	view	code	image

>	library(stringr)

>	#	split	the	string

>	yearList	<-	str_split(string=presidents$YEAR,	pattern="-")

>	head(yearList)

[[1]]

[1]	"1789"	"1797"

[[2]]

[1]	"1797"	"1801"

[[3]]

[1]	"1801"	"1805"

[[4]]

[1]	"1805"	"1809"

[[5]]

[1]	"1809"	"1812"

[[6]]

[1]	"1812"	"1813"

>	#	combine	them	into	one	matrix

>	yearMatrix	<-	data.frame(Reduce(rbind,	yearList))

>	head(yearMatrix)

X1	X2

1	1789	1797

2	1797	1801

3	1801	1805

4	1805	1809

5	1809	1812

6	1812	1813

>	#	give	the	columns	good	names

>	names(yearMatrix)	<-	c("Start",	"Stop")

>	#	bind	the	new	columns	onto	the	data.frame

>	presidents	<-	cbind(presidents,	yearMatrix)

>	#	convert	the	start	and	stop	columns	into	numeric

>	presidents$Start	<-	as.numeric(as.character(presidents$Start))

>	presidents$Stop	<-	as.numeric(as.character(presidents$Stop))

>	#	view	the	changes

>	head(presidents)

YEAR	PRESIDENT

1	1789-1797	George	Washington

2	1797-1801	John	Adams

3	1801-1805	Thomas	Jefferson

4	1805-1809	Thomas	Jefferson

5	1809-1812	James	Madison

6	1812-1813	James	Madison

FIRST	LADY	VICE	PRESIDENT

1	Martha	Washington	John	Adams

2	Abigail	Adams	Thomas	Jefferson

3	Martha	Wayles	Skelton	Jefferson\n	(no	image)	Aaron	Burr

4	Martha	Wayles	Skelton	Jefferson\n	(no	image)	George	Clinton

5	Dolley	Madison	George	Clinton

6	Dolley	Madison	office	vacant

Start	Stop

1	1789	1797

2	1797	1801

3	1801	1805

4	1805	1809

5	1809	1812

6	1812	1813

>	tail(presidents)

YEAR	PRESIDENT	FIRST	LADY	VICE	PRESIDENT

59	1977-1981	Jimmy	Carter	Rosalynn	Carter	Walter	F.	Mondale

60	1981-1989	Ronald	Reagan	Nancy	Reagan	George	Bush

61	1989-1993	George	Bush	Barbara	Bush	Dan	Quayle

62	1993-2001	Bill	Clinton	Hillary	Rodham	Clinton	Albert	Gore

63	2001-2009	George	W.	Bush	Laura	Bush	Richard	Cheney

64	2009-	Barack	Obama	Michelle	Obama	Joseph	R.	Biden

Start	Stop

59	1977	1981

60	1981	1989

61	1989	1993

62	1993	2001

63	2001	2009

64	2009	NA

In	the	preceding	example	there	was	a	quirk	of	R	that	can	be	frustrating	at	first	pass.	In	order	to	convert
the	factor	presidents$Start	into	a	numeric,	we	first	had	to	convert	it	into	a	character.
That	is	because	factors	are	simply	labels	on	top	of	integers,	as	seen	in	Section	4.4.2.	So	when
applying	as.numeric	to	a	factor,	it	is	converted	to	the	underlying	integers.
Just	like	in	Excel,	it	is	possible	to	select	specified	characters	from	text	using	str_sub.

Click	here	to	view	code	image

>	#	get	the	first	3	characters

>	str_sub(string=presidents$PRESIDENT,	start=1,	end=3)

[1]	"Geo"	"Joh"	"Tho"	"Tho"	"Jam"	"Jam"	"Jam"	"Jam"	"Jam"	"Joh"	"And"

[12]	"And"	"Mar"	"Wil"	"Joh"	"Jam"	"Zac"	"Mil"	"Fra"	"Fra"	"Jam"	"Abr"

[23]	"Abr"	"And"	"Uly"	"Uly"	"Uly"	"Rut"	"Jam"	"Che"	"Gro"	"Gro"	"Ben"

[34]	"Gro"	"Wil"	"Wil"	"Wil"	"The"	"The"	"Wil"	"Wil"	"Woo"	"War"	"Cal"

[45]	"Cal"	"Her"	"Fra"	"Fra"	"Fra"	"Har"	"Har"	"Dwi"	"Joh"	"Lyn"	"Lyn"

[56]	"Ric"	"Ric"	"Ger"	"Jim"	"Ron"	"Geo"	"Bil"	"Geo"	"Bar"

>	#	get	the	4rd	through	8th	characters

>	str_sub(string=presidents$PRESIDENT,	start=4,	end=8)

[1]	"rge	W"	"n	Ada"	"mas	J"	"mas	J"	"es	Ma"	"es	Ma"	"es	Ma"	"es	Ma"

[9]	"es	Mo"	"n	Qui"	"rew	J"	"rew	J"	"tin	V"	"liam	"	"n	Tyl"	"es	K."

[17]	"hary	"	"lard	"	"nklin"	"nklin"	"es	Bu"	"aham	"	"aham	"	"rew	J"

[25]	"sses	"	"sses	"	"sses	"	"herfo"	"es	A."	"ster	"	"ver	C"	"ver	C"

[33]	"jamin"	"ver	C"	"liam	"	"liam	"	"liam	"	"odore"	"odore"	"liam	"

[41]	"liam	"	"drow	"	"ren	G"	"vin	C"	"vin	C"	"bert	"	"nklin"	"nklin"

[49]	"nklin"	"ry	S."	"ry	S."	"ght	D"	"n	F.	"	"don	B"	"don	B"	"hard	"

[57]	"hard	"	"ald	R"	"my	Ca"	"ald	R"	"rge	B"	"l	Cli"	"rge	W"	"ack	O"

This	is	good	for	finding	a	president	whose	term	started	in	a	year	ending	in	1,	which	means	he	got
elected	in	a	year	ending	in	0,	a	preponderance	of	which	ones	died	in	office.
Click	here	to	view	code	image

>	presidents[str_sub(string=presidents$Start,	start=4,	end=4)	==	1,

+	c("YEAR",	"PRESIDENT",	"Start",	"Stop")]

YEAR	PRESIDENT	Start	Stop

3	1801-1805	Thomas	Jefferson	1801	1805

14	1841	William	Henry	Harrison	1841	1841

15	1841-1845	John	Tyler	1841	1845

22	1861-1865	Abraham	Lincoln	1861	1865

29	1881	James	A.	Garfield	1881	1881

30	1881-1885	Chester	A.	Arthur	1881	1885

37	1901	William	McKinley	1901	1901

38	1901-1905	Theodore	Roosevelt	1901	1905

43	1921-1923	Warren	G.	Harding	1921	1923

48	1941-1945	Franklin	D.	Roosevelt	1941	1945

53	1961-1963	John	F.	Kennedy	1961	1963

60	1981-1989	Ronald	Reagan	1981	1989

63	2001-2009	George	W.	Bush	2001	2009

16.4	Regular	Expressions
Sifting	through	text	often	requires	searching	for	patterns,	and	usually	these	patterns	have	to	be	general	and
flexible.	This	is	where	regular	expressions	are	very	useful.	We	will	not	make	an	exhaustive	lesson	of
regular	expressions	but	will	illustrate	how	to	use	them	within	R.
Let’s	say	we	want	to	find	any	president	with	“John”	in	his	name,	either	first	or	last.	Since	we	do	not

know	where	in	the	name	“John”	would	occur,	we	cannot	simply	use	str_sub.	Instead	we	use	str_detect.
Click	here	to	view	code	image

>	#	returns	TRUE/FALSE	if	John	was	found	in	the	name

>	johnPos	<-	str_detect(string=presidents$PRESIDENT,	pattern="John")

>	presidents[johnPos,	c("YEAR",	"PRESIDENT",	"Start",	"Stop")]

YEAR	PRESIDENT	Start	Stop

2	1797-1801	John	Adams	1797	1801

10	1825-1829	John	Quincy	Adams	1825	1829

15	1841-1845	John	Tyler	1841	1845

24	1865-1869	Andrew	Johnson	1865	1869

53	1961-1963	John	F.	Kennedy	1961	1963

54	1963-1965	Lyndon	B.	Johnson	1963	1965

55	1963-1969	Lyndon	B.	Johnson	1963	1969

This	found	John	Adams,	John	Quincy	Adams,	John	Tyler,	Andrew	Johnson,	John	F.	Kennedy	and
Lyndon	B.	Johnson.	Note	that	regular	expressions	are	case	sensitive,	so	to	ignore	case	we	have	to	put	the
pattern	in	ignore.case.
Click	here	to	view	code	image

>	badSearch	<-	str_detect(presidents$PRESIDENT,	"john")

>	goodSearch	<-	str_detect(presidents$PRESIDENT,	ignore.case("John"))

>	sum(badSearch)

[1]	0

>	sum(goodSearch)

[1]	7

To	show	off	some	more	interesting	regular	expressions	we	will	make	use	of	yet	another	table	from
Wikipedia,	the	list	of	United	States	Wars.	Because	we	only	care	about	one	column,	which	has	some
encoding	issues,	we	put	an	RData	file	of	just	that	one	column	at
http://www.jaredlander.com/data/warTimes.rdata.	We	load	that	file	using	load,	and
we	then	see	a	new	object	in	our	session	named	warTimes.
For	some	odd	reason,	loading	RData	files	from	a	URL	is	not	as	straightforward	as	reading	in	a	CSV

file	from	a	URL.	A	connection	must	first	be	made	using	url;	then	that	connection	is	loaded	with	load,	and
then	the	connection	must	be	closed	with	close.
Click	here	to	view	code	image

../../../../../www.jaredlander.com/data/warTimes.rdata

>	con	<-	url("http://www.jaredlander.com/data/warTimes.rdata")

>	load(con)

>	close(con)	This	vector	holds	the	starting	and	stopping	dates	of	the	wars.	Sometimes	it

has	just	years;	sometimes	it	also	includes	months	and	possibly	days.	There	are	instances

where	it	has	only	one	year.	Because	of	this,	it	is	a	good	dataset	to	comb	through	with

various	text	functions.	The	first	few	entries	follow.

Click	here	to	view	code	image

>	head(warTimes,	10)

[1]	"September	1,	1774	ACAEA	September	3,	1783"

[2]	"September	1,	1774	ACAEA	March	17,	1776"

[3]	"1775ACAEA1783"

[4]	"June	1775	ACAEA	October	1776"

[5]	"July	1776	ACAEA	March	1777"

[6]	"June	14,	1777	ACAEA	October	17,	1777"

[7]	"1777ACAEA1778"

[8]	"1775ACAEA1782"

[9]	"1776ACAEA1794"

[10]	"1778ACAEA1782"

We	want	to	create	a	new	column	that	contains	information	for	the	start	of	the	war.	To	get	at	this
information	we	need	to	split	the	Time	column.	Thanks	to	Wikipedia’s	encoding,	the	separator	is
generally	“ACAEA”,	which	was	originally	“Ã¢Â€Â’’”	and	converted	to	these	characters	to	make	life
easier.	There	are	two	instances	where	the	“-”	appears,	once	as	a	separator	and	once	to	make	a	hyphenated
word.	This	is	seen	in	the	following	code.
Click	here	to	view	code	image

>	warTimes[str_detect(string=warTimes,	pattern="-")]

[1]	"6	June	1944	ACAEA	mid-July	1944"

[2]	"25	August-17	December	1944"

So	when	we	are	splitting	our	string,	we	need	to	search	for	either	“ACAEA”	or	“-”.	In	str_split	the
pattern	argument	can	take	a	regular	expression.	In	this	case	it	will	be	“(ACAEA)|-”,	which	tells	the
engine	to	search	for	either	“(ACAEA)”	or	(denoted	by	the	vertical	pipe)	“-”	in	the	string.	To	avoid	the
instance	seen	before,	where	the	hyphen	is	used	in	“mid-July,”	we	set	the	argument	n	to	2	so	it	returns	at
most	only	two	pieces	for	each	element	of	the	input	vector.	The	parentheses	are	not	matched	but	rather
act	to	group	the	characters	“ACAEA”	in	the	search.1	This	grouping	capability	will	prove	important	for
advanced	replacement	of	text,	which	will	be	demonstrated	later	in	this	section.

1.	To	match	parentheses,	they	should	be	prefixed	with	a	backslash	(\).

Click	here	to	view	code	image

>	theTimes	<-	str_split(string=warTimes,	pattern="(ACAEA)|-",	n=2)

>	head(theTimes)

[[1]]

[1]	"September	1,	1774	"	"	September	3,	1783"

[[2]]

[1]	"September	1,	1774	"	"	March	17,	1776"

[[3]]

[1]	"1775"	"1783"

[[4]]

[1]	"June	1775	"	"	October	1776"

[[5]]

[1]	"July	1776	"	"	March	1777"

[[6]]

[1]	"June	14,	1777	"	"	October	17,	1777"

Seeing	that	this	worked	for	the	first	few	entries,	we	also	check	on	the	two	instances	where	a	hyphen
was	the	separator.
Click	here	to	view	code	image

>	which(str_detect(string=warTimes,	pattern="-"))

[1]	147	150

>	theTimes[[147]]

[1]	"6	June	1944	"	"	mid-July	1944"

>	theTimes[[150]]

[1]	"25	August"	"17	December	1944"

This	looks	correct,	as	the	first	entry	shows	“mid-July”	still	intact	while	the	second	entry	shows	the	two
dates	split	apart.
For	our	purposes	we	only	care	about	the	start	date	of	the	wars,	so	we	need	to	build	a	function	that

extracts	the	first	(in	some	cases	only)	element	of	each	vector	in	the	list.
Click	here	to	view	code	image

>	theStart	<-	sapply(theTimes,	FUN=function(x)	x[1])

>	head(theStart)

[1]	"September	1,	1774	"	"September	1,	1774	"	"1775"

[4]	"June	1775	"	"July	1776	"	"June	14,	1777	"

The	original	text	sometimes	had	spaces	around	the	separators	and	sometimes	did	not,	meaning	that
some	of	our	text	has	trailing	white	spaces.	The	easiest	way	to	get	rid	of	them	is	with	the	str_trim	function.
Click	here	to	view	code	image

>	theStart	<-	str_trim(theStart)

>	head(theStart)

[1]	"September	1,	1774"	"September	1,	1774"	"1775"

[4]	"June	1775"	"July	1776"	"June	14,	1777"

To	extract	the	word	“January”	wherever	it	might	occur,	use	str_extract.	In	places	where	it	is	not	found
will	be	NA.
Click	here	to	view	code	image

>	#	pull	out	"January"	anywhere	it's	found,	otherwise	return	NA

>	str_extract(string=theStart,	pattern="January")

[1]	NA	NA	NA	NA	NA	NA

[7]	NA	NA	NA	NA	NA	NA

[13]	"January"	NA	NA	NA	NA	NA

[19]	NA	NA	NA	NA	NA	NA

[25]	NA	NA	NA	NA	NA	NA

[31]	NA	NA	NA	NA	NA	NA

[37]	NA	NA	NA	NA	NA	NA

[43]	NA	NA	NA	NA	NA	NA

[49]	NA	NA	NA	NA	NA	NA

[55]	NA	NA	NA	NA	NA	NA

[61]	NA	NA	NA	NA	NA	NA

[67]	NA	NA	NA	NA	NA	NA

[73]	NA	NA	NA	NA	NA	NA

[79]	NA	NA	NA	NA	NA	NA

[85]	NA	NA	NA	NA	NA	NA

[91]	NA	NA	NA	NA	NA	NA

[97]	NA	NA	"January"	NA	NA	NA

[103]	NA	NA	NA	NA	NA	NA

[109]	NA	NA	NA	NA	NA	NA

[115]	NA	NA	NA	NA	NA	NA

[121]	NA	NA	NA	NA	NA	NA

[127]	NA	NA	NA	NA	"January"	NA

[133]	NA	NA	"January"	NA	NA	NA

[139]	NA	NA	NA	NA	NA	NA

[145]	"January"	"January"	NA	NA	NA	NA

[151]	NA	NA	NA	NA	NA	NA

[157]	NA	NA	NA	NA	NA	NA

[163]	NA	NA	NA	NA	NA	NA

[169]	"January"	NA	NA	NA	NA	NA

[175]	NA	NA	NA	NA	NA	NA

[181]	"January"	NA	NA	NA	NA	"January"

[187]	NA	NA

Contrarily,	to	find	elements	that	contain	“January”	and	return	the	entire	entry—not	just	“January”—use
str_detect	and	subset	theStart	with	the	results.
Click	here	to	view	code	image

>	#	just	return	elements	where	"January"	was	detected

>	theStart[str_detect(string=theStart,	pattern="January")]

[1]	"January"	"January	21"	"January	1942"

[4]	"January"	"January	22,	1944"	"22	January	1944"

[7]	"January	4,	1989"	"15	January	2002"	"January	14,	2010"

To	extract	the	year,	we	search	for	an	occurrence	of	four	numbers	together.	Because	we	do	not	know
specific	numbers,	we	have	to	use	a	pattern.	In	a	regular	expression	search,	“[0-9]”	searches	for	any
number.	We	use	“[0-9][0-9][0-9][0-9]”	to	search	for	four	consecutive	numbers.
Click	here	to	view	code	image

>	#	get	incidents	of	4	numeric	digits	in	a	row

>	head(str_extract(string=theStart,	"[0-9][0-9][0-9][0-9]"),	20)

[1]	"1774"	"1774"	"1775"	"1775"	"1776"	"1777"	"1777"	"1775"	"1776"

[10]	"1778"	"1775"	"1779"	NA	"1785"	"1798"	"1801"	NA	"1812"

[19]	"1812"	"1813"

Writing	“[0-9]”	repeatedly	is	inefficient,	especially	when	searching	for	many	occurences	of	a	number.
Putting	“4”	after	“[0-9]”	causes	the	engine	to	search	for	any	set	of	four	numbers.
Click	here	to	view	code	image

>	#	a	smarter	way	to	search	for	four	numbers

>	head(str_extract(string=theStart,	"[0-9]{4}"),	20)

[1]	"1774"	"1774"	"1775"	"1775"	"1776"	"1777"	"1777"	"1775"	"1776"

[10]	"1778"	"1775"	"1779"	NA	"1785"	"1798"	"1801"	NA	"1812"

[19]	"1812"	"1813"

Even	writing	“[0-9]”	can	be	inefficient,	so	there	is	a	shortcut	to	denote	any	integer.	In	most	other

languages	the	shortcut	is	“\d”	but	in	R	there	needs	to	be	two	backslashes	(“\\d”).
Click	here	to	view	code	image

>	#	"\\d"	is	a	shortcut	for	"[0-9]"

>	head(str_extract(string=theStart,	"\\d{4}"),	20)

[1]	"1774"	"1774"	"1775"	"1775"	"1776"	"1777"	"1777"	"1775"	"1776"

[10]	"1778"	"1775"	"1779"	NA	"1785"	"1798"	"1801"	NA	"1812"

[19]	"1812"	"1813"

The	curly	braces	offer	even	more	functionality,	for	instance,	searching	for	a	number	one	to	three	times.
Click	here	to	view	code	image

>	#	this	looks	for	any	digit	that	occurs	either	once,	twice	or	thrice

>	str_extract(string=theStart,	"\\d{1,3}")

[1]	"1"	"1"	"177"	"177"	"177"	"14"	"177"	"177"	"177"	"177"

[11]	"177"	"177"	NA	"178"	"179"	"180"	NA	"18"	"181"	"181"

[21]	"181"	"181"	"181"	"181"	"181"	"181"	"181"	"181"	"181"	"181"

[31]	"22"	"181"	"181"	"5"	"182"	"182"	"182"	NA	"6"	"183"

[41]	"23"	"183"	"19"	"11"	"25"	"184"	"184"	"184"	"184"	"184"

[51]	"185"	"184"	"28"	"185"	"13"	"4"	"185"	"185"	"185"	"185"

[61]	"185"	"185"	"6"	"185"	"6"	"186"	"12"	"186"	"186"	"186"

[71]	"186"	"186"	"17"	"31"	"186"	"20"	"186"	"186"	"186"	"186"

[81]	"186"	"17"	"1"	"6"	"12"	"27"	"187"	"187"	"187"	"187"

[91]	"187"	"187"	NA	"30"	"188"	"189"	"22"	"189"	"21"	"189"

[101]	"25"	"189"	"189"	"189"	"189"	"189"	"189"	"2"	"189"	"28"

[111]	"191"	"21"	"28"	"191"	"191"	"191"	"191"	"191"	"191"	"191"

[121]	"191"	"191"	"191"	"7"	"194"	"194"	NA	NA	"3"	"7"

[131]	"194"	"194"	NA	"20"	NA	"1"	"16"	"194"	"8"	"194"

[141]	"17"	"9"	"194"	"3"	"22"	"22"	"6"	"6"	"15"	"25"

[151]	"25"	"16"	"8"	"6"	"194"	"195"	"195"	"195"	"195"	"197"

[161]	"28"	"25"	"15"	"24"	"19"	"198"	"15"	"198"	"4"	"20"

[171]	"2"	"199"	"199"	"199"	"19"	"20"	"24"	"7"	"7"	"7"

[181]	"15"	"7"	"6"	"20"	"16"	"14"	"200"	"19"

Regular	expressions	can	search	for	text	with	anchors	indicating	the	beginning	of	a	line	(“ ”̂)	and	the	end
of	a	line	(“$”).
Click	here	to	view	code	image

>	#	extract	4	digits	at	the	beginning	of	the	text

>	head(str_extract(string=theStart,	pattern="^\\d{4}"),	30)

[1]	NA	NA	"1775"	NA	NA	NA	"1777"	"1775"	"1776"

[10]	"1778"	"1775"	"1779"	NA	"1785"	"1798"	"1801"	NA	NA

[19]	"1812"	"1813"	"1812"	"1812"	"1813"	"1813"	"1813"	"1814"	"1813"

[28]	"1814"	"1813"	"1815"

>	#	extract	4	digits	at	the	end	of	the	text

>	head(str_extract(string=theStart,	pattern="\\d{4}$"),	30)

[1]	"1774"	"1774"	"1775"	"1775"	"1776"	"1777"	"1777"	"1775"	"1776"

[10]	"1778"	"1775"	"1779"	NA	"1785"	"1798"	"1801"	NA	"1812"

[19]	"1812"	"1813"	"1812"	"1812"	"1813"	"1813"	"1813"	"1814"	"1813"

[28]	"1814"	"1813"	"1815"

>	#	extract	4	digits	at	the	beginning	AND	the	end	of	the	text

>	head(str_extract(string=theStart,	pattern="^\\d{4}$"),	30)

[1]	NA	NA	"1775"	NA	NA	NA	"1777"	"1775"	"1776"

[10]	"1778"	"1775"	"1779"	NA	"1785"	"1798"	"1801"	NA	NA

[19]	"1812"	"1813"	"1812"	"1812"	"1813"	"1813"	"1813"	"1814"	"1813"

[28]	"1814"	"1813"	"1815"

Replacing	text	selectively	is	another	powerful	feature	of	regular	expressions.	We	start	by	simply
replacing	numbers	with	a	fixed	value.
Click	here	to	view	code	image

>	#	replace	the	first	digit	seen	with	"x"

>	head(str_replace(string=theStart,	pattern="\\d",	replacement="x"),	30)

[1]	"September	x,	1774"	"September	x,	1774"	"x775"

[4]	"June	x775"	"July	x776"	"June	x4,	1777"

[7]	"x777"	"x775"	"x776"

[10]	"x778"	"x775"	"x779"

[13]	"January"	"x785"	"x798"

[16]	"x801"	"August"	"June	x8,	1812"

[19]	"x812"	"x813"	"x812"

[22]	"x812"	"x813"	"x813"

[25]	"x813"	"x814"	"x813"

[28]	"x814"	"x813"	"x815"

>	#	replace	all	digits	seen	with	"x"

>	#	this	means	"7"	->	"x"	and	"382"	->	"xxx"

>	head(str_replace_all(string=theStart,	pattern="\\d",	replacement="x"),

+	30)

[1]	"September	x,	xxxx"	"September	x,	xxxx"	"xxxx"

[4]	"June	xxxx"	"July	xxxx"	"June	xx,	xxxx"

[7]	"xxxx"	"xxxx"	"xxxx"

[10]	"xxxx"	"xxxx"	"xxxx"

[13]	"January"	"xxxx"	"xxxx"

[16]	"xxxx"	"August"	"June	xx,	xxxx"

[19]	"xxxx"	"xxxx"	"xxxx"

[22]	"xxxx"	"xxxx"	"xxxx"

[25]	"xxxx"	"xxxx"	"xxxx"

[28]	"xxxx"	"xxxx"	"xxxx"

>	#	replace	any	strings	of	digits	from	1	to	4	in	length	with	"x"

>	#	this	means	"7"	->	"x"	and	"382"	->	"x"

>	head(str_replace_all(string=theStart,	pattern="\\d{1,4}",

+	replacement="x"),	30)

[1]	"September	x,	x"	"September	x,	x"	"x"

[4]	"June	x"	"July	x"	"June	x,	x"

[7]	"x"	"x"	"x"

[10]	"x"	"x"	"x"

[13]	"January"	"x"	"x"

[16]	"x"	"August"	"June	x,	x"

[19]	"x"	"x"	"x"

[22]	"x"	"x"	"x"

[25]	"x"	"x"	"x"

[28]	"x"	"x"	"x"

Not	only	can	regular	expressions	substitute	fixed	values	into	a	string,	they	can	also	substitute	part	of	the
search	pattern.	To	see	this,	we	create	a	vector	of	some	HTML	commands.
Click	here	to	view	code	image

>	#	create	a	vector	of	HTML	commands

>	commands	<-	c("The	Link	is	here",

+	"This	is	bold	text")	Now	we	would	like	to	extract	the	text	between	the	HTML	tags.

The	pattern	is	a	set	of	opening	and	closing	angle	brackets	with	something	in	between	(“<

.+?>”),	some	text	(“.+?”)	and	another	set	of	opening	and	closing	brackets	(“<	.+?>”).	The

“.”	indicates	a	search	for	anything,	while	the	“+”	means	to	search	for	it	one	or	more

times	with	the	“?”,	meaning	it	is	not	a	greedy	search.	Because	we	do	not	know	what	the

text	between	the	tags	will	be,	and	that	is	what	we	want	to	substitute	back	into	the	text,

we	group	it	inside	parentheses	and	use	a	back	reference	to	reinsert	it	using	“\\1”,	which

indicates	use	of	the	first	grouping.	Subsequent	groupings	are	referenced	using	subsequent

numerals,	up	to	nine.	In	other	languages	a	“$”	is	used	instead	of	“\\.”

Click	here	to	view	code	image

>	#	get	the	text	between	the	HTML	tags

>	#	the	content	in	(.+?)	is	substituted	using\\1

>	str_replace(string=commands,	pattern="<.+?>(.+?)<.+>",

+	replacement="\\1")

[1]	"The	Link	is	here"	"This	is	bold	text"

Since	R	has	its	own	regular	expression	peculiarities,	there	is	a	handy	help	file	that	can	be	accessed
with	?regex.

16.5	Conclusion
R	has	many	facilities	for	dealing	with	text,	whether	creating,	extracting	or	manipulating	it.	For	creating
text,	it	is	best	to	use	sprintf	and	if	necessary	paste.	For	all	other	text	needs,	it	is	best	to	use	Hadley
Wickham’s	stringr	package.	This	includes	pulling	out	text	specified	by	character	position	(str_sub),
regular	expressions	(str_detect,	str_extract	and	str_replace)	and	splitting	strings	(str_split).

17.	Probability	Distributions

Being	a	statistical	programming	language,	R	easily	handles	all	the	basic	necessities	of	statistics,	including
drawing	random	numbers	and	calculating	distribution	values	(the	focus	of	this	chapter),	means,	variances,
maxmima	and	minima,	correlation	and	t-tests	(the	focus	of	Chapter	18).
Probability	distributions	lie	at	the	heart	of	statistics,	so	naturally	R	provides	numerous	functions	for

making	use	of	them.	These	include	functions	for	generating	random	numbers	and	calculating	the
distribution	and	quantile.

17.1	Normal	Distribution
Perhaps	the	most	famous,	and	most	used,	statistical	distribution	is	the	normal	distribution,	sometimes
referred	to	as	the	Gaussian	distribution,	which	is	defined	as

where	μ	is	the	mean	and	σ	the	standard	deviation.	This	is	the	famous	bell	curve	that	describes	so	many
phenomena	in	life.	To	draw	random	numbers	from	the	normal	distribution	use	the	rnorm	function,	which
optionally	allows	the	specification	of	the	mean	and	standard	deviation.
Click	here	to	view	code	image

>	#	10	draws	from	the	standard	0-1	normal	distribution

>	rnorm(n=10)

[1]	0.4385627	1.1969098	1.0130680	0.0053413	-0.6086422	-1.5829601

[7]	0.9106169	-1.9663997	1.0108341	0.1931879

>	#	10	draws	from	the	100-20	distribution

>	rnorm(n=10,	mean=100,	sd=20)

[1]	114.99418	121.15465	95.35524	95.73121	86.45346	106.73548

[7]	104.05061	113.61679	101.40346	61.48190

The	density	(the	probability	of	a	particular	value)	for	the	normal	distribution	is	calculated	using
dnorm.
Click	here	to	view	code	image

>	randNorm10	<-	rnorm(10)

>	randNorm10

[1]	1.9125749	-0.5822831	0.5553026	-2.3583206	0.7638454	1.1312883

[7]	-0.1721544	1.8832073	0.5361347	-1.2932703

>	dnorm(randNorm10)

[1]	0.06406161	0.33673288	0.34194033	0.02472905	0.29799802	0.21037889

[7]	0.39307411	0.06773357	0.34553589	0.17287050

>	dnorm(c(-1,	0,	1))

[1]	0.2419707	0.3989423	0.2419707

dnorm	returns	the	probability	of	a	specific	number	occuring.	While	it	is	technically	mathematically
impossible	to	find	the	exact	probability	of	a	number	from	a	continuous	distribution,	this	is	an	estimate	of

the	probability.	Like	with	rnorm,	a	mean	and	standard	deviation	can	be	specified	for	dnorm.
To	see	this	visually	we	generate	a	number	of	normal	random	variables,	calculate	their	distributions	and

then	plot	them.	This	should	result	in	a	nicely	shaped	bell	curve,	as	seen	in	Figure	17.1.

Figure	17.1	Plot	of	random	normal	variables	and	their	densities,	which	results	in	a	bell	curve.
Click	here	to	view	code	image

>	#	generate	the	normal	variables

>	randNorm	<-	rnorm(30000)

>	#	calcualte	their	distributions

>	randDensity	<-	dnorm(randNorm)

>	#	load	ggplot2

>	library(ggplot2)

>	#	plot	them

>	ggplot(data.frame(x=randNorm,	y=randDensity))	+	aes(x=x,	y=y)	+

+	geom_point()	+	labs(x="Random	Normal	Variables",	y="Density")	Similarly,	pnorm

calculates	the	distribution	of	the	normal	distribution,	that	is,	the	cumulative

probability	that	a	given	number,	or	smaller	number,	occurs.	This	is	defined	as	

Click	here	to	view	code	image

>	pnorm(randNorm10)

[1]	0.972098753	0.280188016	0.710656152	0.009178915	0.777520317

[6]	0.871033114	0.431658071	0.970163858	0.704067283	0.097958799

>	pnorm(c(-3,	0,	3))

[1]	0.001349898	0.500000000	0.998650102

>	pnorm(-1)

[1]	0.1586553

By	default	this	is	left-tailed.	To	find	the	probability	that	the	variable	falls	between	two	points,	we	must
calculate	the	two	probabilities	and	subtract	them	from	each	other.

>	pnorm(1)	-	pnorm(0)

[1]	0.3413447

>	pnorm(1)	-	pnorm(-1)

[1]	0.6826895

This	probability	is	represented	by	the	area	under	the	curve	and	illustrated	in	Figure	17.2,	which	is
drawn	by	the	following	code.

Figure	17.2	Area	under	a	normal	curve.	The	plot	on	the	left	shows	the	area	to	the	left	of	–1,	while	the
plot	on	the	right	shows	the	area	between	–1	and	1.

Click	here	to	view	code	image

>	#	a	few	things	happen	with	this	first	line	of	code

>	#	the	idea	is	to	build	a	ggplot2	object	that	we	can	build	upon	later

>	#	that	is	why	it	is	saved	to	p

>	#	we	take	randNorm	and	randDensity	and	put	them	into	a	data.frame

>	#	we	declare	the	x	and	y	aes	outside	of	any	other	function

>	#	this	just	gives	more	flexibility

>	#	we	add	lines	with	geom_line()

>	#	x-	and	y-axis	labels	with	labs(x="x",	y="Density")

>	p	<-	ggplot(data.frame(x=randNorm,	y=randDensity))	+	aes(x=x,	y=y)	+

+	geom_line()	+	labs(x="x",	y="Density")

>

>	#	plotting	p	will	print	a	nice	distribution

>	#	to	create	a	shaded	area	under	the	curve	we	first	calculate	that	area

>	#	generate	a	sequence	of	numbers	going	from	the	far	left	to	-1

>	neg1Seq	<-	seq(from=min(randNorm),	to=-1,	by=.1)

>

>	#	build	a	data.frame	of	that	sequence	as	x

>	#	the	distribution	values	for	that	sequence	as	y

>	lessThanNeg1	<-	data.frame(x=neg1Seq,	y=dnorm(neg1Seq))

>

>	head(lessThanNeg1)

x	y

1	-4.164144	6.847894e-05

2	-4.064144	1.033313e-04

3	-3.964144	1.543704e-04

4	-3.864144	2.283248e-04

5	-3.764144	3.343484e-04

6	-3.664144	4.847329e-04

>	#	combine	this	with	endpoints	at	the	far	left	and	far	right

>	#	the	height	is	0

>	lessThanNeg1	<-	rbind(c(min(randNorm),	0),

+	lessThanNeg1,

+	c(max(lessThanNeg1$x),	0))

>

>	#	use	that	shaded	region	as	a	polygon

>	p	+	geom_polygon(data=lessThanNeg1,	aes(x=x,	y=y))

>

>	#	create	a	similar	sequence	going	from	-1	to	1

>	neg1Pos1Seq	<-	seq(from=-1,	to=1,	by=.1)

>

>	#	build	a	data.frame	of	that	sequence	as	x

>	#	the	distribution	values	for	that	sequence	as	y

>	neg1To1	<-	data.frame(x=neg1Pos1Seq,	y=dnorm(neg1Pos1Seq))

>

>	head(neg1To1)

x	y

1	-1.0	0.2419707

2	-0.9	0.2660852

3	-0.8	0.2896916

4	-0.7	0.3122539

5	-0.6	0.3332246

6	-0.5	0.3520653

>	#	combine	this	with	endpoints	at	the	far	left	and	far	right

>	#	the	height	is	0

>	neg1To1	<-	rbind(c(min(neg1To1$x),	0),

+	neg1To1,

+	c(max(neg1To1$x),	0))

>

>	#	use	that	shaded	region	as	a	polygon

>	p	+	geom_polygon(data=neg1To1,	aes(x=x,	y=y))	The	distribution	has	a	non-decreasing

shape,	as	shown	in	Figure	17.3.	The	information	displayed	here	is	the	same	as	in	Figure

17.2	but	it	is	shown	differently.	Instead	of	the	cumulative	probability	being	shown	as	a

shaded	region,	it	is	displayed	as	a	single	point	along	the	y-axis.

Figure	17.3	Normal	distribution	function.
Click	here	to	view	code	image

>	randProb	<-	pnorm(randNorm)

>	ggplot(data.frame(x=randNorm,	y=randProb))	+	aes(x=x,	y=y)	+

+	geom_point()	+	labs(x="Random	Normal	Variables",	y="Probability")	The	opposite	of	pnorm

is	qnorm.	Given	a	cumulative	probability	it	returns	the	quantile.

Click	here	to	view	code	image

>	randNorm10

[1]	1.9125749	-0.5822831	0.5553026	-2.3583206	0.7638454	1.1312883

[7]	-0.1721544	1.8832073	0.5361347	-1.2932703

>	qnorm(pnorm(randNorm10))

[1]	1.9125749	-0.5822831	0.5553026	-2.3583206	0.7638454	1.1312883

[7]	-0.1721544	1.8832073	0.5361347	-1.2932703

>	all.equal(randNorm10,	qnorm(pnorm(randNorm10)))

[1]	TRUE

17.2	Binomial	Distribution
Like	the	normal	distribution,	the	binomial	distribution	is	well	represented	in	R.	Its	probability	mass
function	is

where

and	n	is	the	number	of	trials	and	p	is	the	probability	of	success	of	a	trial.	The	mean	is	np	and	the	variance
is	np(1	−	p).	When	n	=	1	this	reduces	to	the	Bernoulli	distribution.
Generating	random	numbers	from	the	binomial	distribution	is	not	simply	generating	random	numbers

but	rather	generating	the	number	of	successes	of	independent	trials.	To	simulate	the	number	of	successes
out	of	ten	trials	with	probability	0.4	of	success,	we	run	rbinom	with	n=1	(only	one	run	of	the	trials),
size=10	(trial	size	of	10)	and	prob=0.4	(probability	of	success	is	0.4).
Click	here	to	view	code	image

>	rbinom(n=1,	size=10,	prob=.4)

[1]	1

That	is	to	say	that	ten	trials	were	conducted,	each	with	0.4	probability	of	success,	and	the	number
generated	is	the	number	that	succeeded.	As	this	is	random,	different	numbers	will	be	generated	each	time.
By	setting	n	to	anything	greater	than	1,	R	will	generate	the	number	of	successes	for	each	of	the	n	sets	of

size	trials.
Click	here	to	view	code	image

>	rbinom(n=1,	size=10,	prob=.4)

[1]	3

>	rbinom(n=5,	size=10,	prob=.4)

[1]	4	3	5	2	5

>	rbinom(n=10,	size=10,	prob=.4)

[1]	5	2	7	4	7	3	2	3	3	3

Setting	size	to	1	turns	the	numbers	into	a	Bernoulli	random	variable,	which	can	take	on	only	the	value
1	(success)	or	0	(failure).
Click	here	to	view	code	image

>	rbinom(n=1,	size=1,	prob=.4)

[1]	0

>	rbinom(n=5,	size=1,	prob=.4)

[1]	1	1	0	0	0

>	rbinom(n=10,	size=1,	prob=.4)

[1]	0	0	0	0	0	0	0	1	0	0

To	visualize	the	binomial	distribution,	we	randomly	generate	10,000	experiments,	each	with	10	trials
and	0.3	probability	of	success.	This	is	seen	in	Figure	17.4,	which	shows	that	the	most	common	number	of
successes	is	3,	as	expected.

Figure	17.4	Ten	thousand	runs	of	binomial	experiments	with	ten	trials	each	and	probability	of	success
of	0.3.

Click	here	to	view	code	image

>	binomData	<-	data.frame(Successes=rbinom(n=10000,	size=10,	prob=.3))

>	ggplot(binomData,	aes(x=Successes))	+	geom_histogram(binwidth=1)	To	see	how	the	binomial

distribution	is	well	approximated	by	the	normal	distribution	as	the	number	of	trials	grows

large,	we	run	similar	experiments	with	differing	numbers	of	trials	and	graph	the	results,

as	shown	in	Figure	17.5.

Figure	17.5	Random	binomial	histograms	faceted	by	trial	size.	Notice	that	while	not	perfect,	as	the
number	of	trials	increases	the	distribution	appears	more	normal.	Also	note	the	differing	scales	in	each

pane.
Click	here	to	view	code	image

>	#	create	a	data.frame	with	Successes	being	the	10,000	random	draws

>	#	Size	equals	5	for	all	10,000	rows

>	binom5	<-	data.frame(Successes=rbinom(n=10000,	size=5,	prob=.3),	Size=5)

>	dim(binom5)

[1]	10000	2

>	head(binom5)

Successes	Size

1	2	5

2	1	5

3	2	5

4	1	5

5	2	5

6	2	5

>	#	similar	as	before,	still	10,000	rows

>	#	numbers	are	drawn	from	a	distribution	with	a	different	size

>	#	Size	now	equals	10	for	all	10,000	rows

>	binom10	<-	data.frame(Successes=rbinom(n=10000,	size=10,	prob=.3),	Size=10)

>	dim(binom10)

[1]	10000	2

>	head(binom10)

Successes	Size

1	2	10

2	2	10

3	1	10

4	2	10

5	4	10

6	1	10

>	binom100	<-	data.frame(Successes=rbinom(n=10000,	size=100,	prob=.3),	Size=100)

>

>	binom1000	<-	data.frame(Successes=rbinom(n=10000,	size=1000,	prob=.3),	Size=1000)

>

>	#	combine	them	all	into	one	data.frame

>	binomAll	<-	rbind(binom5,	binom10,	binom100,	binom1000)

>	dim(binomAll)

[1]	40000	2

>	head(binomAll,	10)

Successes	Size

1	2	5

2	1	5

3	2	5

4	1	5

5	2	5

6	2	5

7	1	5

8	1	5

9	2	5

10	1	5

>	tail(binomAll,	10)

Successes	Size

39991	288	1000

39992	289	1000

39993	297	1000

39994	327	1000

39995	336	1000

39996	290	1000

39997	310	1000

39998	328	1000

39999	281	1000

40000	307	1000

>	#	build	the	plot

>	#	histograms	only	need	an	x	aesthetic

>	#	it	is	faceted	(broken	up)	based	on	the	values	of	Size

>	#	these	are	5,	10,	100,	1000

>	ggplot(binomAll,	aes(x=Successes))	+	geom_histogram()	+

+	facet_wrap(~	Size,	scales="free")	The	cumulative	distribution	function	is	

where	n	and	p	are	the	number	of	trials	and	the	probability	of	success,	respectively,	as	before.
Similar	to	the	normal	distribution	functions,	dbinom	and	pbinom	provide	the	density	(probability	of	an

exact	value)	and	distribution	(cumulative	probability),	respectively,	for	the	binomial	distribution.
Click	here	to	view	code	image

>	#	probability	of	3	successes	out	of	10

>	dbinom(x=3,	size=10,	prob=.3)

[1]	0.2668279

>	#	probability	of	3	or	fewer	successes	out	of	10

>	pbinom(q=3,	size=10,	prob=.3)

[1]	0.6496107

>	#	both	functions	can	be	vectorized

>	dbinom(x=1:10,	size=10,	prob=.3)

[1]	0.1210608210	0.2334744405	0.2668279320	0.2001209490	0.1029193452

[6]	0.0367569090	0.0090016920	0.0014467005	0.0001377810	0.0000059049

>	pbinom(q=1:10,	size=10,	prob=.3)

[1]	0.1493083	0.3827828	0.6496107	0.8497317	0.9526510	0.9894079

[7]	0.9984096	0.9998563	0.9999941	1.0000000

Given	a	certain	probability,	qbinom	returns	the	quantile,	which	for	this	distribution	is	the	number	of
successes.
Click	here	to	view	code	image

>	qbinom(p=.3,	size=10,	prob=.3)

[1]	2

>	qbinom(p=c(.3,	.35,	.4,	.5,	.6),	size=10,	prob=.3)

[1]	2	2	3	3	3

17.3	Poisson	Distribution
Another	popular	distribution	is	the	Poisson	distribution,	which	is	for	count	data.	Its	probability	mass
function	is

and	the	cumulative	distribution	is	
where	λ	is	both	the	mean	and	variance.
To	generate	random	counts,	the	density,	the	distribution	and	quantiles	use	rpois,	dpois,	ppois	and	qpois,

respectively.
As	λ	grows	large	the	Poisson	distribution	begins	to	resemble	the	normal	distribution.	To	see	this	we

will	simulate	10,000	draws	from	the	Poisson	distribution	and	plot	their	histograms	to	see	the	shape.
Click	here	to	view	code	image

>	#	generate	10,000	random	counts	from	5	different	Poisson	distributions

>	pois1	<-	rpois(n=10000,	lambda=1)

>	pois2	<-	rpois(n=10000,	lambda=2)

>	pois5	<-	rpois(n=10000,	lambda=5)

>	pois10	<-	rpois(n=10000,	lambda=10)

>	pois20	<-	rpois(n=10000,	lambda=20)

>	pois	<-	data.frame(Lambda.1=pois1,	Lambda.2=pois2,

+	Lambda.5=pois5,	Lambda.10=pois10,	Lambda.20=pois20)

>	#	load	reshape2	package	to	melt	the	data	to	make	it	easier	to	plot

>	library(reshape2)

>	#	melt	the	data	into	a	long	format

>	pois	<-	melt(data=pois,	variable.name="Lambda",	value.name="x")

>	#	load	the	stringr	package	to	help	clean	up	the	new	column	name

>	library(stringr)

>	#	clean	up	the	Lambda	to	just	show	the	value	for	that	lambda

>	pois$Lambda	<-	as.factor(as.numeric(str_extract(string=pois$Lambda,

+	pattern="\\d+")))

>	head(pois)

Lambda	x

1	1	1

2	1	1

3	1	1

4	1	2

5	1	2

6	1	0

>	tail(pois)

Lambda	x

49995	20	22

49996	20	15

49997	20	24

49998	20	23

49999	20	20

50000	20	23

Now	we	will	plot	a	separate	histogram	for	each	value	of	λ,	as	shown	in	Figure	17.6.
Click	here	to	view	code	image

>	library(ggplot2)

>	ggplot(pois,	aes(x=x))	+	geom_histogram(binwidth=1)	+

+	facet_wrap(~	Lambda)	+	ggtitle("Probability	Mass	Function")

Figure	17.6	Histograms	for	10,000	draws	from	the	Poisson	distribution	at	varying	levels	of	λ.	Notice
how	the	histograms	become	more	like	the	normal	distribution.

Another,	perhaps	more	compelling,	way	to	visualize	this	convergence	to	normality	is	within	overlaid
density	plots,	as	seen	in	Figure	17.7.
Click	here	to	view	code	image

>	ggplot(pois,	aes(x=x))	+

+	geom_density(aes(group=Lambda,	color=Lambda,	fill=Lambda),

+	adjust=4,	alpha=1/2)	+

+	scale_color_discrete()	+	scale_fill_discrete()	+

+	ggtitle("Probability	Mass	Function")

Figure	17.7	Density	plots	for	10,000	draws	from	the	Poisson	distribution	at	varying	levels	of	λ.	Notice
how	the	density	plots	become	more	like	the	normal	distribution.

17.4	Other	Distributions
R	supports	many	distributions,	some	of	which	are	very	common,	while	others	are	quite	obscure.	They	are
listed	in	Table	17.1;	the	mathematical	formulas,	means	and	variances	are	in	Table	17.2.

Table	17.1	Statistical	distributions	and	their	functions

Table	17.2	Formulas,	means	and	variances	for	various	statistical	distributions.	The	B	in	the	F
distribution	is	the	Beta	function,	 .

17.5	Conclusion
R	facilitates	the	use	of	many	different	probability	distributions	through	the	various	random	number,
density,	distribution	and	quantile	functions	outlined	in	Table	17.1.	We	focused	on	three	distributions—
normal,	Bernoulli	and	Poisson—in	detail	as	they	are	the	most	commonly	used.	The	formulas	for	every
distribution	available	in	the	base	packages	of	R,	along	with	their	means	and	variances,	are	listed	in	Table
17.2.

18.	Basic	Statistics

Some	of	the	most	common	tools	used	in	statistics	are	means,	variances,	correlations	and	t-tests.	These	are
all	well	represented	in	R	with	easy-to-use	functions	such	as	mean,	var,	cor	and	t.test.

18.1	Summary	Statistics
The	first	thing	many	people	think	of	in	relation	to	statistics	is	the	average,	or	mean,	as	it	is	properly
called.	We	start	by	looking	at	some	simple	numbers	and	later	in	the	chapter	play	with	bigger	datasets.
First	we	generate	a	random	sampling	of	100	numbers	between	1	and	100.
Click	here	to	view	code	image

>	x	<-	sample(x=1:100,	size=100,	replace=TRUE)

>	x

[1]	53	89	28	97	35	51	21	55	47	3	46	35	86	66	51	20	41	15	10	22	31

[22]	86	19	13	10	59	60	58	90	11	54	79	45	49	23	91	80	30	83	69	20	76

[43]	2	42	35	51	76	77	90	84	12	36	79	38	68	87	72	17	20	57	61	83	23

[64]	61	64	41	31	74	35	20	85	89	64	73	11	36	12	81	10	64	39	4	69	42

[85]	41	85	84	66	76	23	47	56	50	82	21	67	89	57	6	13

sample	uniformly	draws	size	entries	from	x.	Setting	replace=TRUE	means	that	the	same	number
can	be	drawn	multiple	times.
Now	that	we	have	a	vector	of	data	we	can	calculate	the	mean.
>	mean(x)

[1]	49.85

This	is	the	simple	arithmetic	mean.

Simple	enough.	Because	this	is	statistics,	we	need	to	consider	cases	where	some	data	is	missing.	To
create	this	we	take	x	and	randomly	set	20	percent	of	the	elements	to	NA.
Click	here	to	view	code	image

>	#	copy	x

>	y	<-	x

>	#	choose	a	random	20	elements,	using	sample,	to	set	to	NA

>	y[sample(x=1:100,	size=20,	replace=FALSE)]	<-	NA

>	y

[1]	53	89	28	97	35	51	21	55	47	NA	46	35	86	NA	NA	NA	41	15	10	22	31

[22]	NA	19	13	NA	59	60	NA	90	11	NA	79	45	NA	23	91	80	30	83	69	20	76

[43]	2	42	35	51	76	77	NA	84	NA	36	79	38	NA	87	72	17	20	57	61	83	NA

[64]	61	64	41	31	74	NA	20	NA	89	64	73	NA	36	12	NA	10	64	39	4	NA	42

[85]	41	85	84	66	76	23	47	56	50	82	21	67	NA	NA	6	13

Using	mean	on	y	will	return	NA.	This	is	because,	by	default,	if	mean	encounters	even	one	element	that
is	NA	it	will	return	NA.	This	is	to	avoid	providing	misleading	information.

>	mean(y)

[1]	NA

To	have	the	NAs	removed	before	calculating	the	mean,	set	na.rm	to	TRUE.
>	mean(y,	na.rm=TRUE)

[1]	49.6

To	calculate	the	weighted	mean	of	a	set	of	numbers,	the	function	weighted.mean	takes	a	vector	of
numbers	and	a	vector	of	weights.	It	also	has	an	optional	argument,	na.rm,	to	remove	NAs	before
calculating;	otherwise,	a	vector	with	NA	values	will	return	NA.
Click	here	to	view	code	image

>	grades	<-	c(95,	72,	87,	66)

>	weights	<-	c(1/2,	1/4,	1/8,	1/8)

>	mean(grades)

[1]	80

>	weighted.mean(x=grades,	w=weights)

[1]	84.625

The	formula	for	weighted.mean	is	in	Equation	18.2,	which	is	the	same	as	the	expected	value	of	a
random	variable.

Another	vitally	important	metric	is	the	variance,	which	is	calculated	with	var.
>	var(x)

[1]	724.5328

This	calculates	variance	as

which	can	be	verified	in	R.
Click	here	to	view	code	image

>	var(x)

[1]	724.5328

>	sum((x	-	mean(x))^2)	/	(length(x)	-	1)

[1]	724.5328

Standard	deviation	is	the	square	root	of	variance	and	is	calculated	with	sd.	Like	mean	and	var,	sd	has
the	na.rm	argument	to	remove	NAs	before	computation;	otherwise,	any	NAs	will	cause	the	answer	to	be
NA.

>	sqrt(var(x))

[1]	26.91715

>	sd(x)

[1]	26.91715

>	sd(y)

[1]	NA

>	sd(y,	na.rm=TRUE)

[1]	26.48506

Other	commonly	used	functions	for	summary	statistics	are	min,	max	and	median.	Of	course,	all	of	these
also	have	na.rm	arguments.

>	min(x)

[1]	2

>	max(x)

[1]	97

>	median(x)

[1]	51

>	min(y)

[1]	NA

>	min(y,	na.rm=TRUE)

[1]	2

The	median,	as	calculated	before,	is	the	middle	of	an	ordered	set	of	numbers.	For	instance,	the	median
of	5,	2,	1,	8	and	6	is	5.	In	the	case	when	there	are	an	even	amount	of	numbers,	the	median	is	the	mean	of
the	middle	two	numbers.	For	5,	1,	7,	4,	3,	8,	6	and	2,	the	median	is	4.5.
A	helpful	function	that	computes	the	mean,	minimum,	maximum	and	median	is	summary.	There	is	no

need	to	specify	na.rm	because	if	there	are	NAs,	they	are	automatically	removed	and	their	count	is
included	in	the	results.
Click	here	to	view	code	image

>	summary(x)

Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.

2.00	23.00	51.00	49.85	74.50	97.00

>	summary(y)

Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.	NA's

2.00	26.75	48.50	49.60	74.50	97.00	20

This	summary	also	displayed	the	first	and	third	quantiles.	These	can	be	computed	using	quantile.
Click	here	to	view	code	image

>	#	calculate	the	25th	and	75th	quantile

>	quantile(x,	probs=c(.25,	.75))

25%	75%

23.0	74.5

>	#	try	the	same	on	y

>	quantile(y,	probs=c(.25,	.75))

Error	in	quantile.default(y,	probs	=	c(0.25,	0.75)):	missing	values	and	NaN's

not	allowed	if	'na.rm'	is	FALSE

>	#	this	time	use	na.rm=TRUE

>	quantile(y,	probs=c(.25,	.75),	na.rm=TRUE)

25%	75%

26.75	74.50

>	#	compute	other	quantiles

>	quantile(x,	probs=c(.1,	.25,	.5,	.75,	.99))

10%	25%	50%	75%	99%

12.00	23.00	51.00	74.50	91.06

Quantiles	are	numbers	in	a	set	where	a	certain	percentage	of	the	numbers	are	smaller	than	that	quantile.
For	instance,	of	the	numbers	one	through	200,	the	75th	quantile—the	number	that	is	larger	than	75	percent
of	the	numbers—is	150.25.

18.2	Correlation	and	Covariance
When	dealing	with	more	than	one	variable,	we	need	to	test	their	relationship	with	each	other.	Two	simple,
straightforward	methods	are	correlation	and	covariance.	To	examine	these	concepts	we	look	at	the
economics	data	from	ggplot2.
Click	here	to	view	code	image

>	library(ggplot2)

>	head(economics)

#	A	tibble:	6	×	8

date	pce	pop	psavert	uempmed	unemploy	year	month

<date>	<dbl>	<int>	<dbl>	<dbl>	<int>	<dbl>	<ord>

1	1967-07-01	507.4	198712	12.5	4.5	2944	1967	Jul

2	1967-08-01	510.5	198911	12.5	4.7	2945	1967	Aug

3	1967-09-01	516.3	199113	11.7	4.6	2958	1967	Sep

4	1967-10-01	512.9	199311	12.5	4.9	3143	1967	Oct

5	1967-11-01	518.1	199498	12.5	4.7	3066	1967	Nov

6	1967-12-01	525.8	199657	12.1	4.8	3018	1967	Dec	In	the	economics	dataset,	pce	is	personal

consumption	expenditures	and	psavert	is	the	personal	savings	rate.	We	calculate	their

correlation	using	cor.

Click	here	to	view	code	image

>	cor(economics$pce,	economics$psavert)

[1]	-0.837069

This	very	low	correlation	makes	sense	because	spending	and	saving	are	opposites	of	each	other.

Correlation	is	defined	as	
where	 	and	 	are	the	means	of	x	and	y,	and	sx	and	sy	are	the	standard	deviations	of	x	and	y.	It	can	range
between	-1	and	1,	with	higher	positive	numbers	meaning	a	closer	relationship	between	the	two	variables,
lower	negative	numbers	meaning	an	inverse	relationship	and	numbers	near	zero	meaning	no	relationship.
This	can	be	easily	checked	by	computing	Equation	18.4.
Click	here	to	view	code	image

>	#	use	cor	to	calculate	correlation

>	cor(economics$pce,	economics$psavert)

[1]	-0.837069

>	##	calculate	each	part	of	correlation

>	xPart	<-	economics$pce	-	mean(economics$pce)

>	yPart	<-	economics$psavert	-	mean(economics$psavert)

>	nMinusOne	<-	(nrow(economics)	-	1)

>	xSD	<-	sd(economics$pce)

>	ySD	<-	sd(economics$psavert)

>	#	use	correlation	formula

>	sum(xPart	*	yPart)	/	(nMinusOne	*	xSD	*	ySD)

[1]	-0.837069

To	compare	multiple	variables	at	once,	use	cor	on	a	matrix	(only	for	numeric	variables).
Click	here	to	view	code	image

>	cor(economics[,	c(2,	4:6)])

pce	psavert	uempmed	unemploy

pce	1.0000000	-0.8370690	0.7273492	0.6139997

psavert	-0.8370690	1.0000000	-0.3874159	-0.3540073

uempmed	0.7273492	-0.3874159	1.0000000	0.8694063

unemploy	0.6139997	-0.3540073	0.8694063	1.0000000

Because	this	is	just	a	table	of	numbers,	it	would	be	helpful	to	also	visualize	the	information	using	a
plot.	For	this	we	use	the	ggpairs	function	from	the	GGally	package	(a	collection	of	helpful	plots	built	on
ggplot2)	shown	in	Figure	18.1.	This	shows	a	scatterplot	of	every	variable	in	the	data	against	every	other
variable.	Loading	GGally	also	loads	the	reshape	package,	which	causes	namespace	issues	with	the
newer	reshape2	package.	So	rather	than	load	GGally,	we	call	its	function	using	the	::	operator,	which
allows	access	to	functions	within	a	package	without	loading	it.

Figure	18.1	Pairs	plot	of	economics	data	showing	the	relationship	between	each	pair	of	variables	as	a
scatterplot	with	the	correlations	printed	as	numbers.

Click	here	to	view	code	image

>	GGally::ggpairs(economics[,	c(2,	4:6)])	This	is	similar	to	a	small	multiples	plot	except

that	each	pane	has	different	x-	and	y-axes.	While	this	shows	the	original	data,	it	does

not	actually	show	the	correlation.	To	show	that	we	build	a	heatmap	of	the	correlation

numbers,	as	shown	in	Figure	18.2.	High	positive	correlation	indicates	a	positive

relationship	between	the	variables,	high	negative	correlation	indicates	a	negative

relationship	between	the	variables	and	near	zero	correlation	indicates	no	strong

relationship.

Figure	18.2	Heatmap	of	the	correlation	of	the	economics	data.	The	diagonal	has	elements	with
correlation	1	because	every	element	is	perfectly	correlated	with	itself.	Red	indicates	highly	negative

correlation,	blue	indicates	highly	positive	correlation	and	white	is	no	correlation.
Click	here	to	view	code	image

>	#	load	the	reshape	package	for	melting	the	data

>	library(reshape2)

>	#	load	the	scales	package	for	some	extra	plotting	features

>	library(scales)

>	#	build	the	correlation	matrix

>	econCor	<-	cor(economics[,	c(2,	4:6)])

>	#	melt	it	into	the	long	format

>	econMelt	<-	melt(econCor,	varnames=c("x",	"y"),	value.name="Correlation")

>	#	order	it	according	to	the	correlation

>	econMelt	<-	econMelt[order(econMelt$Correlation),]

>	#	display	the	melted	data

>	econMelt

x	y	Correlation

2	psavert	pce	-0.8370690

5	pce	psavert	-0.8370690

7	uempmed	psavert	-0.3874159

10	psavert	uempmed	-0.3874159

8	unemploy	psavert	-0.3540073

14	psavert	unemploy	-0.3540073

4	unemploy	pce	0.6139997

13	pce	unemploy	0.6139997

3	uempmed	pce	0.7273492

9	pce	uempmed	0.7273492

12	unemploy	uempmed	0.8694063

15	uempmed	unemploy	0.8694063

1	pce	pce	1.0000000

6	psavert	psavert	1.0000000

11	uempmed	uempmed	1.0000000

16	unemploy	unemploy	1.0000000

>	##	plot	it	with	ggplot

>	#	initialize	the	plot	with	x	and	y	on	the	x	and	y	axes

>	ggplot(econMelt,	aes(x=x,	y=y))	+

+	#	draw	tiles	filling	the	color	based	on	Correlation

+	geom_tile(aes(fill=Correlation))	+

+	#	make	the	fill	(color)	scale	a	three	color	gradient	with	muted

+	#	red	for	the	low	point,	white	for	the	middle	and	steel	blue

+	#	for	the	high	point

+	#	the	guide	should	be	a	colorbar	with	no	ticks,	whose	height	is

+	#	10	lines

+	#	limits	indicates	the	scale	should	be	filled	from	-1	to	1

+	scale_fill_gradient2(low=muted("red"),	mid="white",

+	high="steelblue",

+	guide=guide_colorbar(ticks=FALSE,	barheight=10),

+	limits=c(-1,	1))	+

+	#	use	the	minimal	theme	so	there	are	no	extras	in	the	plot

+	theme_minimal()	+

+	#	make	the	x	and	y	labels	blank

+	labs(x=NULL,	y=NULL)	Missing	data	is	just	as	much	a	problem	with	cor	as	it	is	with	mean

and	var,	but	is	dealt	with	differently	because	multiple	columns	are	being	considered

simultaneously.	Instead	of	specifying	na.rm=TRUE	to	remove	NA	entries,	one	of	“all.obs”,

“complete.obs”,	“pairwise.complete.obs”,	“everything”	or	“na.or.complete”	is	used.	To

illustrate	this	we	first	make	a	five-column	matrix	where	only	the	fourth	and	fifth	columns

have	no	NA	values;	the	other	columns	have	one	or	two	NAs.

Click	here	to	view	code	image

>	m	<-	c(9,	9,	NA,	3,	NA,	5,	8,	1,	10,	4)

>	n	<-	c(2,	NA,	1,	6,	6,	4,	1,	1,	6,	7)

>	p	<-	c(8,	4,	3,	9,	10,	NA,	3,	NA,	9,	9)

>	q	<-	c(10,	10,	7,	8,	4,	2,	8,	5,	5,	2)

>	r	<-	c(1,	9,	7,	6,	5,	6,	2,	7,	9,	10)

>	#	combine	them	together

>	theMat	<-	cbind(m,	n,	p,	q,	r)	The	first	option	for	use	is	“everything”,	which	means

that	the	entirety	of	all	columns	must	be	free	of	NAs;	otherwise	the	result	is	NA.	Running

this	should	generate	a	matrix	of	all	NAs	except	ones	on	the	diagonal—because	a	vector	is

always	perfectly	correlated	with	itself—and	between	q	and	r.	With	the	second	option

—“all.obs”—even	a	single	NA	in	any	column	will	cause	an	error.

Click	here	to	view	code	image

>	cor(theMat,	use="everything")

m	n	p	q	r

m	1	NA	NA	NA	NA

n	NA	1	NA	NA	NA

p	NA	NA	1	NA	NA

q	NA	NA	NA	1.0000000	-0.4242958

r	NA	NA	NA	-0.4242958	1.0000000

>	cor(theMat,	use="all.obs")

Error	in	cor(theMat,	use	=	"all.obs"):	missing	observations	in	cov/cor

The	third	and	fourth	options—“complete.obs”	and	“na.or.complete”—work	similarly	to
each	other	in	that	they	keep	only	rows	where	every	entry	is	not	NA.	That	means	our	matrix	will	be
reduced	to	rows	1,	4,	7,	9	and	10,	and	then	have	its	correlation	computed.	The	difference	is	that
“complete.obs”	will	return	an	error	if	not	a	single	complete	row	can	be	found,	while
“na.or.complete”	will	return	NA	in	that	case.
Click	here	to	view	code	image

>	cor(theMat,	use="complete.obs")

m	n	p	q	r

m	1.0000000	-0.5228840	-0.2893527	0.2974398	-0.3459470

n	-0.5228840	1.0000000	0.8090195	-0.7448453	0.9350718

p	-0.2893527	0.8090195	1.0000000	-0.3613720	0.6221470

q	0.2974398	-0.7448453	-0.3613720	1.0000000	-0.9059384

r	-0.3459470	0.9350718	0.6221470	-0.9059384	1.0000000

>	cor(theMat,	use="na.or.complete")

m	n	p	q	r

m	1.0000000	-0.5228840	-0.2893527	0.2974398	-0.3459470

n	-0.5228840	1.0000000	0.8090195	-0.7448453	0.9350718

p	-0.2893527	0.8090195	1.0000000	-0.3613720	0.6221470

q	0.2974398	-0.7448453	-0.3613720	1.0000000	-0.9059384

r	-0.3459470	0.9350718	0.6221470	-0.9059384	1.0000000

>	#	calculate	the	correlation	just	on	complete	rows

>	cor(theMat[c(1,	4,	7,	9,	10),])

m	n	p	q	r

m	1.0000000	-0.5228840	-0.2893527	0.2974398	-0.3459470

n	-0.5228840	1.0000000	0.8090195	-0.7448453	0.9350718

p	-0.2893527	0.8090195	1.0000000	-0.3613720	0.6221470

q	0.2974398	-0.7448453	-0.3613720	1.0000000	-0.9059384

r	-0.3459470	0.9350718	0.6221470	-0.9059384	1.0000000

>	#	compare	"complete.obs"	and	computing	on	select	rows

>	#	should	give	the	same	result

>	identical(cor(theMat,	use="complete.obs"),

+	cor(theMat[c(1,	4,	7,	9,	10),]))

[1]	TRUE

The	final	option	is	“pairwise.complete”,	which	is	much	more	inclusive.	It	compares	two
columns	at	a	time	and	keeps	rows—for	those	two	columns—where	neither	entry	is	NA.	This	is	essentially
the	same	as	computing	the	correlation	between	every	combination	of	two	columns	with	use	set	to
“complete.obs”.
Click	here	to	view	code	image

>	#	the	entire	correlation	matrix

>	cor(theMat,	use="pairwise.complete.obs")

m	n	p	q	r

m	1.00000000	-0.02511812	-0.3965859	0.4622943	-0.2001722

n	-0.02511812	1.00000000	0.8717389	-0.5070416	0.5332259

p	-0.39658588	0.87173889	1.0000000	-0.5197292	0.1312506

q	0.46229434	-0.50704163	-0.5197292	1.0000000	-0.4242958

r	-0.20017222	0.53322585	0.1312506	-0.4242958	1.0000000

>	#	compare	the	entries	for	m	vs	n	to	this	matrix

>	cor(theMat[,	c("m",	"n")],	use="complete.obs")

m	n

m	1.00000000	-0.02511812

n	-0.02511812	1.00000000

>	#	compare	the	entries	for	m	vs	p	to	this	matrix

>	cor(theMat[,	c("m",	"p")],	use="complete.obs")

m	p

m	1.0000000	-0.3965859

p	-0.3965859	1.0000000

To	see	ggpairs	in	all	its	glory,	look	at	tips	data	from	the	reshape2	package	in	Figure	18.3.	This
shows	every	pair	of	variables	in	relation	to	each	other	building	either	histograms,	boxplots	or	scatterplots
depending	on	the	combination	of	continuous	and	discrete	variables.	While	a	data	dump	like	this	looks
really	nice,	it	is	not	always	the	most	informative	form	of	exploratory	data	analysis.

Figure	18.3	ggpairs	plot	of	tips	data	using	both	continuous	and	categorial	variables.
Click	here	to	view	code	image

>	data(tips,	package="reshape2")

>	head(tips)

total_bill	tip	sex	smoker	day	time	size

1	16.99	1.01	Female	No	Sun	Dinner	2

2	10.34	1.66	Male	No	Sun	Dinner	3

3	21.01	3.50	Male	No	Sun	Dinner	3

4	23.68	3.31	Male	No	Sun	Dinner	2

5	24.59	3.61	Female	No	Sun	Dinner	4

6	25.29	4.71	Male	No	Sun	Dinner	4

>	GGally::ggpairs(tips)	No	discussion	of	correlation	would	be	complete	without	the	old

refrain,	“Correlation	does	not	mean	causation.”	In	other	words,	just	because	two	variables

are	correlated	does	not	mean	they	have	an	effect	on	each	other.	This	is	exemplified	in

xkcd1	comic	number	552.	There	is	even	an	R	package,	RXKCD,	for	downloading	individual

comics.	Running	the	following	code	should	generate	a	pleasant	surprise.

1.	xkcd	is	a	Web	comic	by	Randall	Munroe,	beloved	by	statisticians,	physicists,	mathematicians	and	the	like.	It	can	be	found	at
http://xkcd.com.

>	library(RXKCD)

>	getXKCD(which="552")	Similar	to	correlation	is	covariance,	which	is	like	a	variance

between	variables,	its	formula	is	in	Equation	18.5.	Notice	the	similarity	to	correlation

in	Equation	18.4	and	variance	in	Equation	18.3.

The	cov	function	works	similarly	to	the	cor	function,	with	the	same	arguments	for	dealing	with	missing
data.	In	fact,	?cor	and	?cov	pull	up	the	same	help	menu.
Click	here	to	view	code	image

>	cov(economics$pce,	economics$psavert)

[1]	-9361.028

>	cov(economics[,	c(2,	4:6)])

pce	psavert	uempmed	unemploy

pce	12811296.900	-9361.028324	10695.023873	5806187.162

psavert	-9361.028	9.761835	-4.972622	-2922.162

uempmed	10695.024	-4.972622	16.876582	9436.074

unemploy	5806187.162	-2922.161618	9436.074287	6979955.661

>	#	check	that	cov	and	cor*sd*sd	are	the	same

>	identical(cov(economics$pce,	economics$psavert),

+	cor(economics$pce,	economics$psavert)	*

+	sd(economics$pce)	*	sd(economics$psavert))

[1]	TRUE

18.3	T-Tests
In	traditional	statistics	classes,	the	t-test—invented	by	William	Gosset	while	working	at	the	Guinness
brewery—is	taught	for	conducting	tests	on	the	mean	of	data	or	for	comparing	two	sets	of	data.	To
illustrate	this	we	continue	to	use	the	tips	data	from	Section	18.2.
Click	here	to	view	code	image

>	head(tips)

total_bill	tip	sex	smoker	day	time	size

1	16.99	1.01	Female	No	Sun	Dinner	2

2	10.34	1.66	Male	No	Sun	Dinner	3

3	21.01	3.50	Male	No	Sun	Dinner	3

4	23.68	3.31	Male	No	Sun	Dinner	2

5	24.59	3.61	Female	No	Sun	Dinner	4

6	25.29	4.71	Male	No	Sun	Dinner	4

>	#	sex	of	the	bill	payer

>	unique(tips$sex)

../../../../../xkcd.com/default.htm

[1]	Female	Male

Levels:	Female	Male

>	#	day	of	the	week

>	unique(tips$day)

[1]	Sun	Sat	Thur	Fri

Levels:	Fri	Sat	Sun	Thur

18.3.1	One-Sample	T-Test
First	we	conduct	a	one-sample	t-test	on	whether	the	average	tip	is	equal	to	$2.50.	This	test	essentially
calculates	the	mean	of	data	and	builds	a	confidence	interval.	If	the	value	we	are	testing	falls	within	that
confidence	interval,	then	we	can	conclude	that	it	is	the	true	value	for	the	mean	of	the	data;	otherwise,	we
conclude	that	it	is	not	the	true	mean.
Click	here	to	view	code	image

>	t.test(tips$tip,	alternative="two.sided",	mu=2.50)

One	Sample	t-test

data:	tips$tip

t	=	5.6253,	df	=	243,	p-value	=	5.08e-08

alternative	hypothesis:	true	mean	is	not	equal	to	2.5

95	percent	confidence	interval:

2.823799	3.172758

sample	estimates:

mean	of	x

2.998279

The	output	very	nicely	displays	the	setup	and	results	of	the	hypothesis	test	of	whether	the	mean	is	equal
to	$2.50.	It	prints	the	t-statistic,	the	degrees	of	freedom	and	p-value.	It	also	provides	the	95	percent
confidence	interval	and	mean	for	the	variable	of	interest.	The	p-value	indicates	that	the	null	hypothesis2
should	be	rejected,	and	we	conclude	that	the	mean	is	not	equal	to	$2.50.

2.	The	null	hypothesis	is	what	is	considered	to	be	true;	in	this	case	that	the	mean	is	equal	to	$2.50.

We	encountered	a	few	new	concepts	here.	The	t-statistic	is	the	ratio	where	the	numerator	is	the
difference	between	the	estimated	mean	and	the	hypothesized	mean	and	the	denominator	is	the	standard
error	of	the	estimated	mean.	It	is	defined	in	Equation	18.6.

Here,	 	is	the	estimated	mean,	μ0	is	the	hypothesized	mean	and	 	is	the	standard	error	of	 .3

3.	s 	is	the	standard	deviation	of	the	data	and	n	is	the	number	of	observations.

If	the	hypothesized	mean	is	correct,	then	we	expect	the	t-statistic	to	fall	somewhere	in	the	middle—
about	two	standard	deviations	from	the	mean—of	the	t	distribution.	In	Figure	18.4	we	see	that	the	thick
black	line,	which	represents	the	estimated	mean,	falls	so	far	outside	the	distribution	that	we	must	conclude
that	the	mean	is	not	equal	to	$2.50.

Figure	18.4	t-distribution	and	t-statistic	for	tip	data.	The	dashed	lines	are	two	standard	deviations	from
the	mean	in	either	direction.	The	thick	black	line,	the	t-statistic,	is	so	far	outside	the	distribution	that	we

must	reject	the	null	hypothesis	and	conclude	that	the	true	mean	is	not	$2.50.
Click	here	to	view	code	image

>	##	build	a	t	distribution

>	randT	<-	rt(30000,	df=NROW(tips)-1)

>

>	#	get	t-statistic	and	other	information

>	tipTTest	<-	t.test(tips$tip,	alternative="two.sided",	mu=2.50)

>

>	#	plot	it

>	ggplot(data.frame(x=randT))	+

+	geom_density(aes(x=x),	fill="grey",	color="grey")	+

+	geom_vline(xintercept=tipTTest$statistic)	+

+	geom_vline(xintercept=mean(randT)	+	c(-2,	2)*sd(randT),	linetype=2)	The	p-value	is	an

often	misunderstood	concept.	Despite	all	the	misinterpretations,	a	p-value	is	the

probability,	if	the	null	hypothesis	were	correct,	of	getting	as	extreme,	or	more	extreme,

a	result.	It	is	a	measure	of	how	extreme	the	statistic—in	this	case,	the	estimated	mean—

is.	If	the	statistic	is	too	extreme,	we	conclude	that	the	null	hypothesis	should	be

rejected.	The	main	problem	with	p-values,	however,	is	determining	what	should	be

considered	too	extreme.	Ronald	A.	Fisher,	the	father	of	modern	statistics,	decided	we

should	consider	a	p-value	that	is	smaller	than	0.10,	0.05	or	0.01	to	be	too	extreme.	While

those	p-values	have	been	the	standard	for	decades,	they	were	arbitrarily	chosen,	leading

some	modern	data	scientists	to	question	their	usefulness.	In	this	example,	the	p-value	is

5.0799885	×	10−8;	this	is	smaller	than	0.01,	so	we	reject	the	null	hypothesis.

Degrees	of	freedom	is	another	difficult	concept	to	grasp	but	is	pervasive	throughout	statistics.	It
represents	the	effective	number	of	observations.	Generally,	the	degrees	of	freedom	for	some	statistic	or
distribution	is	the	number	of	observations	minus	the	number	of	parameters	being	estimated.	In	the	case	of
the	t	distribution,	one	parameter,	the	standard	error,	is	being	estimated.	In	this	example,	there	are
nrow(tips)-1=243	degrees	of	freedom.
Next	we	conduct	a	one-sided	t-test	to	see	if	the	mean	is	greater	than	$2.50.

Click	here	to	view	code	image

>	t.test(tips$tip,	alternative="greater",	mu=2.50)

One	Sample	t-test

data:	tips$tip

t	=	5.6253,	df	=	243,	p-value	=	2.54e-08

alternative	hypothesis:	true	mean	is	greater	than	2.5

95	percent	confidence	interval:

2.852023	Inf

sample	estimates:

mean	of	x

2.998279

Once	again,	the	p-value	indicates	that	we	should	reject	the	null	hypothesis	and	conclude	that	the	mean
is	greater	than	$2.50,	which	coincides	nicely	with	the	confidence	interval.

18.3.2	Two-Sample	T-Test
More	often	than	not	the	t-test	is	used	for	comparing	two	samples.	Continuing	with	the	tips	data,	we
compare	how	female	and	male	diners	tip.	Before	running	the	t-test,	however,	we	first	need	to	check	the
variance	of	each	sample.	A	traditional	t-test	requires	both	groups	to	have	the	same	variance,	whereas	the
Welch	two-sample	t-test	can	handle	groups	with	differing	variances.	We	explore	this	both	numerically	and
visually	in	Figure	18.5.

Figure	18.5	Histogram	of	tip	amount	by	sex.	Note	that	neither	distribution	appears	to	be	normal.
Click	here	to	view	code	image

>	#	first	just	compute	the	variance	for	each	group

>	#	using	the	the	formula	interface

>	#	calculate	the	variance	of	tip	for	each	level	of	sex

>	aggregate(tip	~	sex,	data=tips,	var)

sex	tip

1	Female	1.344428

2	Male	2.217424

>	#	now	test	for	normality	of	tip	distribution

>	shapiro.test(tips$tip)

Shapiro-Wilk	normality	test

data:	tips$tip

W	=	0.89781,	p-value	=	8.2e-12

>	shapiro.test(tips$tip[tips$sex	==	"Female"])

Shapiro-Wilk	normality	test

data:	tips$tip[tips$sex	==	"Female"]

W	=	0.95678,	p-value	=	0.005448

>	shapiro.test(tips$tip[tips$sex	==	"Male"])

Shapiro-Wilk	normality	test

data:	tips$tip[tips$sex	==	"Male"]

W	=	0.87587,	p-value	=	3.708e-10

>	#	all	the	tests	fail	so	inspect	visually

>	ggplot(tips,	aes(x=tip,	fill=sex))	+

+	geom_histogram(binwidth=.5,	alpha=1/2)	Since	the	data	do	not	appear	to	be	normally

distributed,	neither	the	standard	F-test	(via	the	var.test	function)	nor	the	Bartlett	test

(via	the	bartlett.test	function)	will	suffice.	So	we	use	the	nonparametric	Ansari-Bradley

test	to	examine	the	equality	of	variances.

Click	here	to	view	code	image

>	ansari.test(tip	~	sex,	tips)

Ansari-Bradley	test

data:	tip	by	sex

AB	=	5582.5,	p-value	=	0.376

alternative	hypothesis:	true	ratio	of	scales	is	not	equal	to	1

This	test	indicates	that	the	variances	are	equal,	meaning	we	can	use	the	standard	two-sample	t-test.
Click	here	to	view	code	image

>	#	setting	var.equal=TRUE	runs	a	standard	two	sample	t-test

>	#	var.equal=FALSE	(the	default)	would	run	the	Welch	test

>	t.test(tip	~	sex,	data=tips,	var.equal=TRUE)

Two	Sample	t-test

data:	tip	by	sex

t	=	-1.3879,	df	=	242,	p-value	=	0.1665

alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0

95	percent	confidence	interval:

-0.6197558	0.1074167

sample	estimates:

mean	in	group	Female	mean	in	group	Male

2.833448	3.089618

According	to	this	test,	the	results	were	not	significant,	and	we	should	conclude	that	female	and	male
diners	tip	roughly	equally.	While	all	this	statistical	rigor	is	nice,	a	simple	rule	of	thumb	would	be	to	see	if
the	two	means	are	within	two	standard	deviations	of	each	other.
Click	here	to	view	code	image

>	library(plyr)

>	tipSummary	<-	ddply(tips,	"sex",	summarize,

+	tip.mean=mean(tip),	tip.sd=sd(tip),

+	Lower=tip.mean	-	2*tip.sd/sqrt(NROW(tip)),

+	Upper=tip.mean	+	2*tip.sd/sqrt(NROW(tip)))

>	tipSummary

sex	tip.mean	tip.sd	Lower	Upper

1	Female	2.833448	1.159495	2.584827	3.082070

2	Male	3.089618	1.489102	2.851931	3.327304

A	lot	happened	in	that	code.	First,	ddply	was	used	to	split	the	data	according	to	the	levels	of	sex.	It
then	applied	the	summarize	function	to	each	subset	of	the	data.	This	function	applied	the	indicated
functions	to	the	data,	creating	a	new	data.frame.
As	usual,	we	prefer	visualizing	the	results	rather	than	comparing	numerical	values.	This	requires

reshaping	the	data	a	bit.	The	results,	in	Figure	18.6,	clearly	show	the	confidence	intervals	overlapping,
suggesting	that	the	means	for	the	two	sexes	are	roughly	equivalent.

Figure	18.6	Plot	showing	the	mean	and	two	standard	errors	of	tips	broken	down	by	the	sex	of	the	diner.
Click	here	to	view	code	image

>	ggplot(tipSummary,	aes(x=tip.mean,	y=sex))	+	geom_point()	+

+	geom_errorbarh(aes(xmin=Lower,	xmax=Upper),	height=.2)

18.3.3	Paired	Two-Sample	T-Test
For	testing	paired	data	(for	example,	measurements	on	twins,	before	and	after	treatment	effects,	father	and
son	comparisons)	a	paired	t-test	should	be	used.	This	is	simple	enough	to	do	by	setting	the	paired
argument	in	t.test	to	TRUE.	To	illustrate,	we	use	data	collected	by	Karl	Pearson	on	the	heights	of	fathers
and	sons	that	is	located	in	the	UsingR	package.	Heights	are	generally	normally	distributed,	so	we	will
forgo	the	tests	of	normality	and	equal	variance.
Click	here	to	view	code	image

>	data(father.son,	package='UsingR')

>	head(father.son)

fheight	sheight

1	65.04851	59.77827

2	63.25094	63.21404

3	64.95532	63.34242

4	65.75250	62.79238

5	61.13723	64.28113

6	63.02254	64.24221

>	t.test(father.son$fheight,	father.son$sheight,	paired=TRUE)

Paired	t-test

data:	father.son$fheight	and	father.son$sheight

t	=	-11.789,	df	=	1077,	p-value	<	2.2e-16

alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0

95	percent	confidence	interval:

-1.1629160	-0.8310296

sample	estimates:

mean	of	the	differences

-0.9969728

This	test	shows	that	we	should	reject	the	null	hypothesis	and	conclude	that	fathers	and	sons	(at	least	for
this	dataset)	have	different	heights.	We	visualize	this	data	using	a	density	plot	of	the	differences,	as	shown
in	Figure	18.7.	In	it	we	see	a	distribution	with	a	mean	not	at	zero	and	a	confidence	interval	that	barely
excludes	zero,	which	agrees	with	the	test.

Figure	18.7	Density	plot	showing	the	difference	of	heights	of	fathers	and	sons.
Click	here	to	view	code	image

>	heightDiff	<-	father.son$fheight	-	father.son$sheight

>	ggplot(father.son,	aes(x=fheight	-	sheight))	+

+	geom_density()	+

+	geom_vline(xintercept=mean(heightDiff))	+

+	geom_vline(xintercept=mean(heightDiff)	+

+	2*c(-1,	1)*sd(heightDiff)/sqrt(nrow(father.son)),

+	linetype=2)

18.4	ANOVA

After	comparing	two	groups,	the	natural	next	step	is	comparing	multiple	groups.	Every	year,	far	too	many
students	in	introductory	statistics	classes	are	forced	to	learn	the	ANOVA	(analysis	of	variance)	test	and
memorize	its	formula,	which	is

where	ni	is	the	number	of	observations	in	group	i,	 i	is	the	mean	of	group	i,	 	is	the	overall	mean,	Yij	is
observation	j	in	group	i,	N	is	the	total	number	of	observations	and	K	is	the	number	of	groups.
Not	only	is	this	a	laborious	formula	that	often	turns	off	a	lot	of	students	from	statistics;	it	is	also	a	bit	of

an	old-fashioned	way	of	comparing	groups.	Even	so,	there	is	an	R	function—albeit	rarely	used—to
conduct	the	ANOVA	test.	This	also	uses	the	formula	interface	where	the	left	side	is	the	variable	of
interest	and	the	right	side	contains	the	variables	that	control	grouping.	To	see	this,	we	compare	tips	by	day
of	the	week,	with	levels	Fri,	Sat,	Sun,	Thur.
Click	here	to	view	code	image

>	tipAnova	<-	aov(tip	~	day	-	1,	tips)	In	the	formula	the	right	side	was	day	-	1.	This

might	seem	odd	at	first	but	will	make	more	sense	when	comparing	it	to	a	call	without	-1.

Click	here	to	view	code	image

>	tipIntercept	<-	aov(tip	~	day,	tips)

>	tipAnova$coefficients

dayFri	daySat	daySun	dayThur

2.734737	2.993103	3.255132	2.771452

>	tipIntercept$coefficients

(Intercept)	daySat	daySun	dayThur

2.73473684	0.25836661	0.52039474	0.03671477

Here	we	see	that	just	using	tip	~	day	includes	only	Saturday,	Sunday	and	Thursday,	along	with	an
intercept,	while	tip	~	day	-	1	compares	Friday,	Saturday,	Sunday	and	Thursday	with	no	intercept.
The	importance	of	the	intercept	is	made	clear	in	Chapter	19,	but	for	now	it	suffices	that	having	no
intercept	makes	the	analysis	more	straightforward.
The	ANOVA	tests	whether	any	group	is	different	from	any	other	group	but	it	does	not	specify	which

group	is	different.	So	printing	a	summary	of	the	test	just	returns	a	single	p-value.
Click	here	to	view	code	image

>	summary(tipAnova)

Df	Sum	Sq	Mean	Sq	F	value	Pr(>F)

day	4	2203.0	550.8	290.1	<2e-16	***

Residuals	240	455.7	1.9

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Since	the	test	had	a	significant	p-value,	we	would	like	to	see	which	group	differed	from	the	others.	The
simplest	way	is	to	make	a	plot	of	the	group	means	and	confidence	intervals	and	see	which	overlap.	Figure
18.8	shows	that	tips	on	Sunday	differ	(just	barely,	at	the	90	percent	confidence	level)	from	both	Thursday
and	Friday.

Figure	18.8	Means	and	confidence	intervals	of	tips	by	day.	This	shows	that	Sunday	tips	differ	from
Thursday	and	Friday	tips.

Click	here	to	view	code	image

>	tipsByDay	<-	ddply(tips,	"day",	plyr::summarize,

+	tip.mean=mean(tip),	tip.sd=sd(tip),

+	Length=NROW(tip),

+	tfrac=qt(p=.90,	df=Length-1),

+	Lower=tip.mean	-	tfrac*tip.sd/sqrt(Length),

+	Upper=tip.mean	+	tfrac*tip.sd/sqrt(Length)

+)

>

>	ggplot(tipsByDay,	aes(x=tip.mean,	y=day))	+	geom_point()	+

+	geom_errorbarh(aes(xmin=Lower,	xmax=Upper),	height=.3)	The	use	of	NROW	instead	of	nrow

is	to	guarantee	computation.	Where	nrow	works	only	on	data.frames	and	matrices,	NROW

returns	the	length	of	objects	that	have	only	one	dimension.

>	nrow(tips)

[1]	244

>	NROW(tips)

[1]	244

>	nrow(tips$tip)

NULL

>	NROW(tips$tip)

[1]	244

To	confirm	the	results	from	the	ANOVA,	individual	t-tests	could	be	run	on	each	pair	of	groups,	just	like
in	Section	18.3.2.	Traditional	texts	encourage	adjusting	the	p-value	to	accommodate	the	multiple
comparisons.	However,	some	professors,	including	Andrew	Gelman,	suggest	not	worrying	about
adjustments	for	multiple	comparisons.
An	alternative	to	the	ANOVA	is	to	fit	a	linear	regression	with	one	categorical	variable	and	no	intercept.

This	is	discussed	in	Section	19.1.1.

18.5	Conclusion
Whether	computing	simple	numerical	summaries	or	conducting	hypothesis	tests,	R	has	functions	for	all	of
them.	Means,	variances	and	standard	deviations	are	computed	with	mean,	var	and	sd,	respectively.
Correlation	and	covariance	are	computed	with	cor	and	cov.	For	t-tests	t.test	is	used,	while	aov	is	used
for	ANOVA.

19.	Linear	Models

The	workhorse	of	statistical	analysis	is	the	linear	model,	particularly	regression.	Originally	invented	by
Francis	Galton	to	study	the	relationships	between	parents	and	children,	which	he	described	as	regressing
to	the	mean,	it	has	become	one	of	the	most	widely	used	modelling	techniques	and	has	spawned	other
models	such	as	generalized	linear	models,	regression	trees,	penalized	regression	and	many	others.	In	this
chapter	we	focus	on	simple	and	multiple	regression.

19.1	Simple	Linear	Regression
In	its	simplest	form	regression	is	used	to	determine	the	relationship	between	two	variables.	That	is,	given
one	variable,	it	tells	us	what	we	can	expect	from	the	other	variable.	This	powerful	tool,	which	is
frequently	taught	and	can	accomplish	a	great	deal	of	analysis	with	minimal	effort,	is	called	simple	linear
regression.
Before	we	go	any	further,	we	clarify	some	terminology.	The	outcome	variable	(what	we	are	trying	to

predict)	is	called	the	response,	and	the	input	variable	(what	we	are	using	to	predict)	is	the	predictor.
Fields	outside	of	statistics	use	other	terms,	such	as	measured	variable,	outcome	variable	and	experimental
variable	for	response,	and	covariate,	feature	and	explanatory	variable	for	predictor.	Worst	of	all	are	the
terms	dependent	(response)	and	independent	(predictor)	variables.	These	very	names	are	misnomers.
According	to	probability	theory,	if	variable	y	is	dependent	on	variable	x,	then	variable	x	cannot	be
independent	of	variable	y.	So	we	stick	with	the	terms	response	and	predictor	exclusively.
The	general	idea	behind	simple	linear	regression	is	using	the	predictor	to	come	up	with	some	average

value	of	the	response.	The	relationship	is	defined	as	

where

and	
which	is	to	say	that	there	are	normally	distributed	errors.
Equation	19.1	is	essentially	describing	a	straight	line	that	goes	through	the	data	where	a	is	the	y-

intercept	and	b	is	the	slope.	This	is	illustrated	using	fathers’	and	sons’	height	data,	which	are	plotted	in
Figure	19.1.	In	this	case	we	are	using	the	fathers’	heights	as	the	predictor	and	the	sons’	heights	as	the
response.	The	blue	line	running	through	the	points	is	the	regression	line	and	the	gray	band	around	it
represents	the	uncertainty	in	the	fit.
Click	here	to	view	code	image

>	data(father.son,	package='UsingR')

>	library(ggplot2)

>	head(father.son)

fheight	sheight

1	65.04851	59.77827

2	63.25094	63.21404

3	64.95532	63.34242

4	65.75250	62.79238

5	61.13723	64.28113

6	63.02254	64.24221

>	ggplot(father.son,	aes(x=fheight,	y=sheight))	+	geom_point()	+

+	geom_smooth(method="lm")	+	labs(x="Fathers",	y="Sons")

Figure	19.1	Using	fathers’	heights	to	predict	sons’	heights	using	simple	linear	regression.	The	fathers’
heights	are	the	predictors	and	the	sons’	heights	are	the	responses.	The	blue	line	running	through	the

points	is	the	regression	line	and	the	gray	band	around	it	represents	the	uncertainty	in	the	fit.

While	that	code	generated	a	nice	graph	showing	the	results	of	the	regression	(generated	with
geom_smooth(method=“lm”)),	it	did	not	actually	make	those	results	available	to	us.	To	actually
calculate	a	regression,	use	the	lm	function.
Click	here	to	view	code	image

>	heightsLM	<-	lm(sheight	~	fheight,	data=father.son)

>	heightsLM

Call:

lm(formula	=	sheight	~	fheight,	data	=	father.son)

Coefficients:

(Intercept)	fheight

33.8866	0.5141

Here	we	once	again	see	the	formula	notation	that	specifies	to	regress	sheight	(the	response)	on
fheight	(the	predictor),	using	the	father.son	data,	and	adds	the	intercept	term	automatically.	The
results	show	coefficients	for	(Intercept)	and	fheight	which	is	the	slope	for	the	fheight,
predictor.	The	interpretation	of	this	is	that,	for	every	extra	inch	of	height	in	a	father,	we	expect	an	extra
half	inch	in	height	for	his	son.	The	intercept	in	this	case	does	not	make	much	sense	because	it	represents
the	height	of	a	son	whose	father	had	zero	height,	which	obviously	cannot	exist	in	reality.
While	the	point	estimates	for	the	coefficients	are	nice,	they	are	not	very	helpful	without	the	standard

errors,	which	give	the	sense	of	uncertainty	about	the	estimate	and	are	similar	to	standard	deviations.	To
quickly	see	a	full	report	on	the	model,	use	summary.
Click	here	to	view	code	image

>	summary(heightsLM)

Call:

lm(formula	=	sheight	~	fheight,	data	=	father.son)

Residuals:

Min	1Q	Median	3Q	Max

-8.8772	-1.5144	-0.0079	1.6285	8.9685

Coefficients:

Estimate	Std.	Error	t	value	Pr(>|t|)

(Intercept)	33.88660	1.83235	18.49	<2e-16	***

fheight	0.51409	0.02705	19.01	<2e-16	***

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	2.437	on	1076	degrees	of	freedom

Multiple	R-squared:	0.2513,Adjusted	R-squared:	0.2506

F-statistic:	361.2	on	1	and	1076	DF,	p-value:	<	2.2e-16

This	prints	out	a	lot	more	information	about	the	model,	including	the	standard	errors,	t-test	values	and
p-values	for	the	coefficients,	the	degrees	of	freedom,	residual	summary	statistics	(seen	in	more	detail	in
Section	21.1)	and	the	results	of	an	F-test.	This	is	all	diagnostic	information	to	check	the	fit	of	the	model,
and	is	covered	in	more	detail	in	Section	19.2	about	multiple	regression.

19.1.1	ANOVA	Alternative
An	alternative	to	running	an	ANOVA	test	(discussed	in	Section	18.4)	is	to	fit	a	regression	with	just	one
categorical	variable	and	no	intercept	term.	To	see	this	we	use	the	tips	data	in	the	reshape2	package	on
which	we	will	fit	a	regression.
Click	here	to	view	code	image

>	data(tips,	package="reshape2")

>	head(tips)

total_bill	tip	sex	smoker	day	time	size

1	16.99	1.01	Female	No	Sun	Dinner	2

2	10.34	1.66	Male	No	Sun	Dinner	3

3	21.01	3.50	Male	No	Sun	Dinner	3

4	23.68	3.31	Male	No	Sun	Dinner	2

5	24.59	3.61	Female	No	Sun	Dinner	4

6	25.29	4.71	Male	No	Sun	Dinner	4

>	tipsAnova	<-	aov(tip	~	day	-	1,	data=tips)

>	#	putting	-1	in	the	formula	indicates	that	the	intercept	should	not	be

>	#	included	in	the	model;

>	#	the	categorical	variable	day	is	automatically	setup	to	have	a

>	#	coefficient	for	each	level

>	tipsLM	<-	lm(tip	~	day	-	1,	data=tips)

>	summary(tipsAnova)

Df	Sum	Sq	Mean	Sq	F	value	Pr(>F)

day	4	2203.0	550.8	290.1	<2e-16	***

Residuals	240	455.7	1.9

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

>	summary(tipsLM)

Call:

lm(formula	=	tip	~	day	-	1,	data	=	tips)

Residuals:

Min	1Q	Median	3Q	Max

-2.2451	-0.9931	-0.2347	0.5382	7.0069

Coefficients:

Estimate	Std.	Error	t	value	Pr(>|t|)

dayFri	2.7347	0.3161	8.651	7.46e-16	***

daySat	2.9931	0.1477	20.261	<	2e-16	***

daySun	3.2551	0.1581	20.594	<	2e-16	***

dayThur	2.7715	0.1750	15.837	<	2e-16	***

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	1.378	on	240	degrees	of	freedom

Multiple	R-squared:	0.8286,Adjusted	R-squared:	0.8257

F-statistic:	290.1	on	4	and	240	DF,	p-value:	<	2.2e-16

Notice	that	the	F-value	or	F-statistic	is	the	same	for	both,	as	are	the	degrees	of	freedom.	This	is
because	the	ANOVA	and	regression	were	derived	along	the	same	lines	and	can	accomplish	the	same
analysis.	Visualizing	the	coefficients	and	standard	errors	should	show	the	same	results	as	computing	them
using	the	ANOVA	formula.	This	is	seen	in	Figure	19.2.	The	point	estimates	for	the	mean	are	identical	and
the	confidence	intervals	are	similar,	the	difference	due	to	slightly	different	calculations.
Click	here	to	view	code	image

>	#	first	calculate	the	means	and	CI	manually

>	library(dplyr)

>	tipsByDay	<-	tips	%>%

+	group_by(day)	%>%

+	dplyr::summarize(

+	tip.mean=mean(tip),	tip.sd=sd(tip),

+	Length=NROW(tip),

+	tfrac=qt(p=.90,	df=Length-1),

+	Lower=tip.mean	-	tfrac*tip.sd/sqrt(Length),

+	Upper=tip.mean	+	tfrac*tip.sd/sqrt(Length)

+)

>

>	#	now	extract	them	from	the	summary	for	tipsLM

>	tipsInfo	<-	summary(tipsLM)

>	tipsCoef	<-	as.data.frame(tipsInfo$coefficients[,	1:2])

>	tipsCoef	<-	within(tipsCoef,	{

+	Lower	<-	Estimate	-	qt(p=0.90,	df=tipsInfo$df[2])	*	`Std.	Error`

+	Upper	<-	Estimate	+	qt(p=0.90,	df=tipsInfo$df[2])	*	`Std.	Error`

+	day	<-	rownames(tipsCoef)

+	})

>

>	#	plot	them	both

>	ggplot(tipsByDay,	aes(x=tip.mean,	y=day))	+	geom_point()	+

+	geom_errorbarh(aes(xmin=Lower,	xmax=Upper),	height=.3)	+

+	ggtitle("Tips	by	day	calculated	manually")

>

>	ggplot(tipsCoef,	aes(x=Estimate,	y=day))	+	geom_point()	+

+	geom_errorbarh(aes(xmin=Lower,	xmax=Upper),	height=.3)	+

+	ggtitle("Tips	by	day	calculated	from	regression	model")

Figure	19.2	Regression	coefficients	and	confidence	intervals	as	taken	from	a	regression	model	and
calcualted	manually.	The	point	estimates	for	the	mean	are	identical	and	the	confidence	intervals	are
very	similar,	the	difference	due	to	slightly	different	calculations.	The	y-axis	labels	are	also	different

because	when	dealing	with	factors	lm	tacks	on	the	name	of	the	variable	to	the	level	value.

A	new	function	and	a	new	feature	were	used	here.	First,	we	introduced	within,	which	is	similar	to	with
in	that	it	lets	us	refer	to	columns	in	a	data.frame	by	name	but	different	in	that	we	can	create	new
columns	within	that	data.frame,	hence	the	name.	This	function	has	largely	been	superceded	by	mutate
in	dplyr	but	is	still	good	to	know.	Second,	one	of	the	columns	was	named	Std.	Error	with	a	space.	In
order	to	refer	to	a	variable	with	spaces	in	its	name,	even	as	a	column	in	a	data.frame,	we	must
enclose	the	name	in	back	ticks	(`).

19.2	Multiple	Regression
The	logical	extension	of	simple	linear	regression	is	multiple	regression,	which	allows	for	multiple
predictors.	The	idea	is	still	the	same;	we	are	still	making	predictions	or	inferences1	on	the	response,	but
we	now	have	more	information	in	the	form	of	multiple	predictors.	The	math	requires	some	matrix	algebra
but	fortunately	the	lm	function	is	used	with	very	little	extra	effort.

1.	Prediction	is	the	use	of	known	predictors	to	predict	an	unknown	response,	while	inference	is	figuring	out	how	predictors	affect	a
response.

In	this	case	the	relationship	between	the	response	and	the	p	predictors	(p	−	1	predictors	and	the
intercept)	is	modeled	as	

where	Y	is	the	nx1	response	vector	
X	is	the	nxp	matrix	(n	rows	and	p	−	1	predictors	plus	the	intercept)	

β	is	the	px1	vector	of	coefficients	(one	for	each	predictor	and	intercept)	

and	ε	is	the	nx1	vector	of	normally	distributed	errors	
with

which	seems	more	complicated	than	simple	regression	but	the	algebra	actually	gets	easier.
The	solution	for	the	coefficients	is	simply	written	as	in	Equation	19.11.

To	see	this	in	action	we	use	New	York	City	condo	evaluations	for	fiscal	year	2011-2012,	obtained
through	NYC	Open	Data.	NYC	Open	Data	is	an	initiative	by	New	York	City	to	make	government	more
transparent	and	work	better.	It	provides	data	on	all	manner	of	city	services	to	the	public	for	analysis,
scrutiny	and	app	building	(through	http://nycbigapps.com/).	It	has	been	surprisingly	popular,
spawning	hundreds	of	mobile	apps	and	being	copied	in	other	cities	such	as	Chicago	and	Washington,	DC.
Its	Web	site	is	at	https://data.cityofnewyork.us/.
The	original	data	were	separated	by	borough	with	one	file	each	for	Manhattan,2	Brooklyn,3	Queens,4

the	Bronx5	and	Staten	Island,6	and	contained	extra	information	we	will	not	be	using.	So	we	combined	the
five	files	into	one,	cleaned	up	the	column	names	and	posted	it	at
http://www.jaredlander.com/data/housing.csv.	To	access	the	data,	either	download	it
from	that	URL	and	use	read.table	on	the	now	local	file,	or	read	it	directly	from	the	URL.

2.	https://data.cityofnewyork.us/Finances/DOF-Condominium-Comparable-Rental-Income-Manhattan/dvzp-h4k9
3.	https://data.cityofnewyork.us/Finances/DOF-Condominium-Comparable-Rental-Income-Brooklyn-/bss9-579f

../../../../../nycbigapps.com/default.htm
../../../../../https@data.cityofnewyork.us/default.htm
../../../../../www.jaredlander.com/data/housing.csv
../../../../../https@data.cityofnewyork.us/Finances/DOF-Condominium-Comparable-Rental-Income-Manhattan/dvzp-h4k9
../../../../../https@data.cityofnewyork.us/Finances/DOF-Condominium-Comparable-Rental-Income-Brooklyn-/bss9-579f

4.	https://data.cityofnewyork.us/Finances/DOF-Condominium-Comparable-Rental-Income-Queens-FY/jcih-dj9q
5.	https://data.cityofnewyork.us/Property/DOF-Condominium-Comparable-Rental-Income-Bronx-FY-/3qfc-4tta
6.	https://data.cityofnewyork.us/Finances/DOF-Condominium-Comparable-Rental-Income-Staten-Is/tkdy-59zg

Click	here	to	view	code	image

>	housing	<-	read.table("http://www.jaredlander.com/data/housing.csv",

+	sep	=	",",	header	=	TRUE,

+	stringsAsFactors	=	FALSE)	A	few	reminders	about	what	that	code	does:	sep	specifies	that

commas	were	used	to	separate	columns;	header	means	the	first	row	contains	the	column

names;	and	stringsAsFactors	leaves	character	columns	as	they	are	and	does	not	convert	them

to	factors,	which	speeds	up	loading	time	and	also	makes	them	easier	to	work	with.	Looking

at	the	data,	we	see	that	we	have	a	lot	of	columns	and	some	bad	names,	so	we	should	rename

those.7

7.	A	copy	of	this	file	that	already	has	the	fixed	names	is	available	at	http://www.jaredlander.com/data/housing1.csv.

Click	here	to	view	code	image

>	names(housing)	<-	c("Neighborhood",	"Class",	"Units",	"YearBuilt",

+	"SqFt",	"Income",	"IncomePerSqFt",	"Expense",

+	"ExpensePerSqFt",	"NetIncome",	"Value",

+	"ValuePerSqFt",	"Boro")

>	head(housing)

Neighborhood	Class	Units	YearBuilt	SqFt	Income

1	FINANCIAL	R9-CONDOMINIUM	42	1920	36500	1332615

2	FINANCIAL	R4-CONDOMINIUM	78	1985	126420	6633257

3	FINANCIAL	RR-CONDOMINIUM	500	NA	554174	17310000

4	FINANCIAL	R4-CONDOMINIUM	282	1930	249076	11776313

5	TRIBECA	R4-CONDOMINIUM	239	1985	219495	10004582

6	TRIBECA	R4-CONDOMINIUM	133	1986	139719	5127687

IncomePerSqFt	Expense	ExpensePerSqFt	NetIncome	Value

1	36.51	342005	9.37	990610	7300000

2	52.47	1762295	13.94	4870962	30690000

3	31.24	3543000	6.39	13767000	90970000

4	47.28	2784670	11.18	8991643	67556006

5	45.58	2783197	12.68	7221385	54320996

6	36.70	1497788	10.72	3629899	26737996

ValuePerSqFt	Boro

1	200.00	Manhattan

2	242.76	Manhattan

3	164.15	Manhattan

4	271.23	Manhattan

5	247.48	Manhattan

6	191.37	Manhattan

For	these	data	the	response	is	the	value	per	square	foot	and	the	predictors	are	everything	else.
However,	we	ignore	the	income	and	expense	variables,	as	they	are	actually	just	estimates	based	on	an
arcane	requirement	that	condos	be	compared	to	rentals	for	valuation	purposes.	The	first	step	is	to
visualize	the	data	in	some	exploratory	data	analysis.	The	natural	place	to	start	is	with	a	histogram	of
ValuePerSqFt,	which	is	shown	in	Figure	19.3.
Click	here	to	view	code	image

>	ggplot(housing,	aes(x=ValuePerSqFt))	+

+	geom_histogram(binwidth=10)	+	labs(x="Value	per	Square	Foot")

../../../../../https@data.cityofnewyork.us/Finances/DOF-Condominium-Comparable-Rental-Income-Queens-FY/jcih-dj9q
../../../../../https@data.cityofnewyork.us/Property/DOF-Condominium-Comparable-Rental-Income-Bronx-FY-/3qfc-4tta
../../../../../https@data.cityofnewyork.us/Finances/DOF-Condominium-Comparable-Rental-Income-Staten-Is/tkdy-59zg
../../../../../www.jaredlander.com/data/housing1.csv

Figure	19.3	Histogram	of	value	per	square	foot	for	NYC	condos.	It	appears	to	be	bimodal.

The	bimodal	nature	of	the	histogram	means	there	is	something	left	to	be	explored.	Mapping	color	to
Boro	in	Figure	19.4a	and	faceting	on	Boro	in	Figure	19.4b	reveal	that	Brooklyn	and	Queens	make	up
one	mode	and	Manhattan	makes	up	the	other,	while	there	is	not	much	data	on	the	Bronx	and	Staten	Island.
Click	here	to	view	code	image

>	ggplot(housing,	aes(x=ValuePerSqFt,	fill=Boro))	+

+	geom_histogram(binwidth=10)	+	labs

(x="Value	per	Square	Foot")

>	ggplot(housing,	aes(x=ValuePerSqFt,	fill=Boro))	+

+	geom_histogram(binwidth=10)	+	labs

(x="Value	per	Square	Foot")	+

+	facet_wrap(~Boro)

Figure	19.4	Histograms	of	value	per	square	foot.	These	illustrate	structure	in	the	data,	revealing	that
Brooklyn	and	Queens	make	up	one	mode	and	Manhattan	makes	up	the	other,	while	there	is	not	much

data	on	the	Bronx	and	Staten	Island.

Next	we	should	look	at	histograms	for	square	footage	and	the	number	of	units.
Click	here	to	view	code	image

>	ggplot(housing,	aes(x=SqFt))	+	geom_histogram()

>	ggplot(housing,	aes(x=Units))	+	geom_histogram()

>	ggplot(housing[housing$Units	<	1000,],	aes(x=SqFt))	+

+	geom_histogram()

>	ggplot(housing[housing$Units	<	1000,],	aes(x=Units))	+

+	geom_histogram()	Figure	19.5	shows	that	there	are	quite	a	few	buildings	with	an

incredible	number	of	units.	Plotting	scatterplots	in	Figure	19.6	of	the	value	per	square

foot	versus	both	number	of	units	and	square	footage,	with	and	without	those	outlying

buildings,	gives	us	an	idea	whether	we	can	remove	them	from	the	analysis.

Click	here	to	view	code	image

>	ggplot(housing,	aes(x=SqFt,	y=ValuePerSqFt))	+	geom_point()

>	ggplot(housing,	aes(x=Units,	y=ValuePerSqFt))	+	geom_point()

>	ggplot(housing[housing$Units	<	1000,],	aes(x=SqFt,	y=ValuePerSqFt))	+

+	geom_point()

>	ggplot(housing[housing$Units	<	1000,],	aes(x=Units,	y=ValuePerSqFt))	+

+	geom_point()

Figure	19.5	Histograms	for	total	square	feet	and	number	of	units.	The	distributions	are	highly	right
skewed	in	the	top	two	graphs,	so	they	were	repeated	after	removing	buildings	with	more	than	1,000

units.

Figure	19.6	Scatterplots	of	value	per	square	foot	versus	square	footage	and	value	versus	number	of
units,	both	with	and	without	the	buildings	that	have	over	1,000	units.

Click	here	to	view	code	image

>	#	how	many	need	to	be	removed?

>	sum(housing$Units	>=	1000)

[1]	6

>	#	remove	them

>	housing	<-	housing[housing$Units	<	1000,]

Even	after	we	remove	the	outliers,	it	still	seems	like	a	log	transformation	of	some	data	could	be

helpful.	Figures	19.7	and	19.8	show	that	taking	the	log	of	square	footage	and	number	of	units	might	prove
helpful.	It	also	shows	what	happens	when	taking	the	log	of	value.
Click	here	to	view	code	image

>	#	plot	ValuePerSqFt	against	SqFt

>	ggplot(housing,	aes(x=SqFt,	y=ValuePerSqFt))	+	geom_point()

>	ggplot(housing,	aes(x=log(SqFt),	y=ValuePerSqFt))	+	geom_point()

>	ggplot(housing,	aes(x=SqFt,	y=log(ValuePerSqFt)))	+	geom_point()

>	ggplot(housing,	aes(x=log(SqFt),	y=log(ValuePerSqFt)))	+

+	geom_point()

Figure	19.7	Scatterplots	of	value	versus	sqaure	footage.	The	plots	indicate	that	taking	the	log	of	SqFt
might	be	useful	in	modelling.

Click	here	to	view	code	image

>	#	plot	ValuePerSqFt	against	Units

>	ggplot(housing,	aes(x=Units,	y=ValuePerSqFt))	+	geom_point()

>	ggplot(housing,	aes(x=log(Units),	y=ValuePerSqFt))	+	geom_point()

>	ggplot(housing,	aes(x=Units,	y=log(ValuePerSqFt)))	+	geom_point()

>	ggplot(housing,	aes(x=log(Units),	y=log(ValuePerSqFt)))	+

+	geom_point()

Figure	19.8	Scatterplots	of	value	versus	number	of	units.	It	is	not	yet	certain	whether	taking	logs	will
be	useful	in	modelling.

Now	that	we	have	viewed	our	data	a	few	different	ways,	it	is	time	to	start	modelling.	We	already	saw
from	Figure	19.4	that	accounting	for	the	different	boroughs	will	be	important	and	the	various	scatterplots
indicated	that	Units	and	SqFt	will	be	important	as	well.
Fitting	the	model	uses	the	formula	interface	in	lm.	Now	that	there	are	multiple	predictors,	we

separate	them	on	the	right	side	of	the	formula	using	plus	signs	(+).
Click	here	to	view	code	image

>	house1	<-	lm(ValuePerSqFt	~	Units	+	SqFt	+	Boro,	data=housing)

>	summary(house1)

Call:

lm(formula	=	ValuePerSqFt	~	Units	+	SqFt	+	Boro,	data	=	housing)

Residuals:

Min	1Q	Median	3Q	Max

-168.458	-22.680	1.493	26.290	261.761

Coefficients:

Estimate	Std.	Error	t	value	Pr(>|t|)

(Intercept)	4.430e+01	5.342e+00	8.293	<	2e-16	***

Units	-1.532e-01	2.421e-02	-6.330	2.88e-10	***

SqFt	2.070e-04	2.129e-05	9.723	<	2e-16	***

BoroBrooklyn	3.258e+01	5.561e+00	5.858	5.28e-09	***

BoroManhattan	1.274e+02	5.459e+00	23.343	<	2e-16	***

BoroQueens	3.011e+01	5.711e+00	5.272	1.46e-07	***

BoroStaten	Island	-7.114e+00	1.001e+01	-0.711	0.477

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	43.2	on	2613	degrees	of	freedom

Multiple	R-squared:	0.6034,Adjusted	R-squared:	0.6025

F-statistic:	662.6	on	6	and	2613	DF,	p-value:	<	2.2e-16

The	first	thing	to	notice	is	that	in	some	versions	of	R	there	is	a	message	warning	us	that	Boro	was
converted	to	a	factor.	This	is	because	Boro	was	stored	as	a	character,	and	for	modelling
purposes	character	data	must	be	represented	using	indicator	variables,	which	is	how	factors	are
treated	inside	modelling	functions,	as	seen	in	Section	5.1.
The	summary	function	prints	out	information	about	the	model,	including	how	the	function	was	called,

quantiles	for	the	residuals,	coefficient	estimates,	standard	errors	and	p-values	for	each	variable,	and	the
degrees	of	freedom,	p-value	and	F-statistic	for	the	model.	There	is	no	coefficient	for	the	Bronx	because
that	is	the	baseline	level	of	Boro,	and	all	the	other	Boro	coefficients	are	relative	to	that	baseline.
The	coefficients	represent	the	effect	of	the	predictors	on	the	response	and	the	standard	errors	are	the

uncertainty	in	the	estimation	of	the	coefficients.	The	t	value	(t-statistic)	and	p-value	for	the	coefficients
are	numerical	measures	of	statistical	significance,	though	these	should	be	viewed	with	caution,	as	most
modern	data	scientists	do	not	like	to	look	at	the	statistical	significance	of	individual	coefficients	but	rather
judge	the	model	as	a	whole	as	covered	in	Chapter	21.
The	model	p-value	and	F-statistic	are	measures	of	its	goodness	of	fit.	The	degrees	of	freedom	for	a

regression	are	calculated	as	the	number	of	observations	minus	the	number	of	coefficients.	In	this	example,
there	are	nrow(housing)	−	length(coef(house1))	=	2613	degrees	of	freedom.
A	quick	way	to	grab	the	coefficients	from	a	model	is	to	either	use	the	coef	function	or	get	them	from	the

model	using	the	$	operator	on	the	model	object.
Click	here	to	view	code	image

>	house1$coefficients

(Intercept)	Units	SqFt

4.430325e+01	-1.532405e-01	2.069727e-04

BoroBrooklyn	BoroManhattan	BoroQueens

3.257554e+01	1.274259e+02	3.011000e+01

BoroStaten	Island

-7.113688e+00

>	coef(house1)

(Intercept)	Units	SqFt

4.430325e+01	-1.532405e-01	2.069727e-04

BoroBrooklyn	BoroManhattan	BoroQueens

3.257554e+01	1.274259e+02	3.011000e+01

BoroStaten	Island

-7.113688e+00

>	#	works	the	same	as	coef

>	coefficients(house1)

(Intercept)	Units	SqFt

4.430325e+01	-1.532405e-01	2.069727e-04

BoroBrooklyn	BoroManhattan	BoroQueens

3.257554e+01	1.274259e+02	3.011000e+01

BoroStaten	Island

-7.113688e+00

As	a	repeated	theme,	we	prefer	visualizations	over	tables	of	information,	and	a	great	way	of
visualizing	regression	results	is	a	coefficient	plot,	like	the	one	shown	in	Figure	19.2.	Rather	than	build	it
from	scratch,	we	use	the	convenient	coefplot	package	that	we	wrote.	Figure	19.9	shows	the	result,	where
each	coefficient	is	plotted	as	a	point	with	a	thick	line	representing	the	one	standard	error	confidence
interval	and	a	thin	line	representing	the	two	standard	error	confidence	interval.	There	is	a	vertical	line
indicating	0.	In	general,	a	good	rule	of	thumb	is	that	if	the	two	standard	error	confidence	interval	does	not
contain	0,	it	is	statistically	significant.

>	library(coefplot)

>	coefplot(house1)

Figure	19.9	Coefficient	plot	for	condo	value	regression.

Figure	19.9	shows	that,	as	expected,	being	located	in	Manhattan	has	the	largest	effect	on	value	per
square	foot.	Surprisingly,	the	number	of	units	or	square	feet	in	a	building	has	little	effect	on	value.	This	is
a	model	with	purely	additive	terms.	Interactions	between	variables	can	be	equally	powerful.	To	enter
them	in	a	formula,	separate	the	desired	variables	with	a	*	instead	of	+.	Doing	so	results	in	the
individual	variables	plus	the	interaction	term	being	included	in	the	model.	To	include	just	the	interaction
term,	and	not	the	individual	variables,	use	:	instead.	The	results	of	interacting	Units	and	SqFt	are
shown	in	Figure	19.10.
Click	here	to	view	code	image

>	house2	<-	lm(ValuePerSqFt	~	Units	*	SqFt	+	Boro,	data=housing)

>	house3	<-	lm(ValuePerSqFt	~	Units	:	SqFt	+	Boro,	data=housing)

>	house2$coefficients

(Intercept)	Units	SqFt

4.093685e+01	-1.024579e-01	2.362293e-04

BoroBrooklyn	BoroManhattan	BoroQueens

3.394544e+01	1.272102e+02	3.040115e+01

BoroStaten	Island	Units:SqFt

-8.419682e+00	-1.809587e-07

>	house3$coefficients

(Intercept)	BoroBrooklyn	BoroManhattan

4.804972e+01	3.141208e+01	1.302084e+02

BoroQueens	BoroStaten	Island	Units:SqFt

2.841669e+01	-7.199902e+00	1.088059e-07

>	coefplot(house2)

>	coefplot(house3)

Figure	19.10	Coefficient	plots	for	models	with	interaction	terms.	The	figure	on	the	left	includes
individual	variables	and	the	interaction	term,	while	the	figure	on	the	right	only	includes	the	interaction

term.

If	three	variables	all	interact	together,	the	resulting	coefficients	will	be	the	three	individual	terms,	three
two-way	interactions	and	one	three-way	interaction.
Click	here	to	view	code	image

>	house4	<-	lm(ValuePerSqFt	~	SqFt*Units*Income,	housing)

>	house4$coefficients

(Intercept)	SqFt	Units

1.116433e+02	-1.694688e-03	7.142611e-03

Income	SqFt:Units	SqFt:Income

7.250830e-05	3.158094e-06	-5.129522e-11

Units:Income	SqFt:Units:Income

-1.279236e-07	9.107312e-14

Interacting	(from	now	on,	unless	otherwise	specified,	interacting	will	refer	to	the	*	operator)	a

continuous	variable	like	SqFt	with	a	factor	like	Boro	results	in	individual	terms	for	the	continuous
variable	and	each	non-baseline	level	of	the	factor	plus	an	interaction	term	between	the	continuous
variable	and	each	non-baseline	level	of	the	factor.	Interacting	two	(or	more)	factors	yields	terms
for	all	the	individual	non-baseline	levels	in	both	factors	and	an	interaction	term	for	every
combination	of	non-baseline	levels	of	the	factors.
Click	here	to	view	code	image

>	house5	<-	lm(ValuePerSqFt	~	Class*Boro,	housing)

>	house5$coefficients

(Intercept)

47.041481

ClassR4-CONDOMINIUM

4.023852

ClassR9-CONDOMINIUM

-2.838624

ClassRR-CONDOMINIUM

3.688519

BoroBrooklyn

27.627141

BoroManhattan

89.598397

BoroQueens

19.144780

BoroStaten	Island

-9.203410

ClassR4-CONDOMINIUM:BoroBrooklyn

4.117977

ClassR9-CONDOMINIUM:BoroBrooklyn

2.660419

ClassRR-CONDOMINIUM:BoroBrooklyn

-25.607141

ClassR4-CONDOMINIUM:BoroManhattan

47.198900

ClassR9-CONDOMINIUM:BoroManhattan

33.479718

ClassRR-CONDOMINIUM:BoroManhattan

10.619231

ClassR4-CONDOMINIUM:BoroQueens

13.588293

ClassR9-CONDOMINIUM:BoroQueens

-9.830637

ClassRR-CONDOMINIUM:BoroQueens

34.675220

ClassR4-CONDOMINIUM:BoroStaten	Island

NA

ClassR9-CONDOMINIUM:BoroStaten	Island

NA

ClassRR-CONDOMINIUM:BoroStaten	Island

NA

Neither	SqFt	nor	Units	appear	to	be	significant	in	any	model	when	viewed	in	a	coefficient	plot.
However,	zooming	in	on	the	plot	shows	that	the	coefficients	for	Units	and	SqFt	are	non-zero	as	seen	in
Figure	19.11.
Click	here	to	view	code	image

>	coefplot(house1,	sort='mag')	+	scale_x_continuous(limits=c(-.25,	.1))

>	coefplot(house1,	sort='mag')	+	scale_x_continuous(limits=c(-.0005,	.0005))

Figure	19.11	Coefficient	plots	for	model	house1	zoomed	in	to	show	the	coefficients	for	Units	and
SqFt.

This	is	likely	a	scaling	issue,	as	the	indicator	variables	for	Boro	are	on	the	scale	of	0	and	1	while	the
range	for	Units	is	between	1	and	818	and	SqFt	is	between	478	and	925,645.	This	can	be	resolved	by
standardizing,	or	scaling,	the	variables.	This	subtracts	the	mean	and	divides	by	the	standard	deviation.
While	the	results	of	the	model	will	mathematically	be	the	same,	the	coefficients	will	have	different	values
and	different	interpretations.	Whereas	before	a	coefficient	was	the	change	in	the	response	corresponding
to	a	one-unit	increase	in	the	predictor,	the	coefficientis	now	the	change	in	the	response	corresponding	to	a
one-standard-deviation	increase	in	the	predictor.	Standardizing	can	be	performed	within	the	formula
interface	with	the	scale	function.
Click	here	to	view	code	image

>	house1.b	<-	lm(ValuePerSqFt	~	scale(Units)	+	scale(SqFt)	+	Boro,

+	data=housing)

>	coefplot(house1.b,	sort='mag')	The	coefficient	plot	in	Figure	19.12	shows	that	for	each

change	in	the	standard	deviation	of	SqFt	there	is	a	change	of	21.95	in	ValuePerSqFt.	We

also	see	that	Units	has	a	negative	impact.	This	implies	that	having	fewer,	but	larger,

units	is	beneficial	to	the	value	of	a	building.

Figure	19.12	Coefficient	plot	for	a	model	with	standardized	values	for	Units	and	SqFt.	This	shows
that	having	fewer,	but	larger,	units	is	beneficial	to	the	value	of	a	building.

Another	good	test	is	to	include	the	ratio	of	Units	and	SqFt	as	a	single	variable.	To	simply	divide
one	variable	by	another	in	a	formula,	the	division	must	be	wrapped	in	the	I	function.
Click	here	to	view	code	image

>	house6	<-	lm(ValuePerSqFt	~	I(SqFt/Units)	+	Boro,	housing)

>	house6$coefficients

(Intercept)	I(SqFt/Units)	BoroBrooklyn

43.754838763	0.004017039	30.774343209

BoroManhattan	BoroQueens	BoroStaten	Island

130.769502685	29.767922792	-6.134446417

The	I	function	is	used	to	preserve	a	mathematical	relationship	in	a	formula	and	prevent	it	from	being
interpreted	according	to	formula	rules.	For	instance,	using	(Units	+	SqFt)^2	in	a	formula	is
the	same	as	using	Units	*	SqFt,	whereas	I(Units	+	SqFt)^2	will	include	the	square	of	the
sum	of	the	two	variables	as	a	term	in	the	formula.

Click	here	to	view	code	image

>	house7	<-	lm(ValuePerSqFt	~	(Units	+	SqFt)^2,	housing)

>	house7$coefficients

(Intercept)	Units	SqFt	Units:SqFt

1.070301e+02	-1.125194e-01	4.964623e-04	-5.159669e-07

>	house8	<-	lm(ValuePerSqFt	~	Units	*	SqFt,	housing)

>	identical(house7$coefficients,	house8$coefficients)

[1]	TRUE

>	house9	<-	lm(ValuePerSqFt	~	I(Units	+	SqFt)^2,	housing)

>	house9$coefficients

(Intercept)	I(Units	+	SqFt)

1.147034e+02	2.107231e-04

We	have	fit	numerous	models	from	which	we	need	to	pick	the	“best”	one.	Model	selection	is	discussed
in	Section	21.2.	In	the	meantime,	visualizing	the	coefficients	from	multiple	models	is	a	handy	tool.	Figure
19.13	shows	a	coefficient	plot	for	models	house1,	house2	and	house3.
Click	here	to	view	code	image

>	#	also	from	the	coefplot	package

>	multiplot(house1,	house2,	house3)

Figure	19.13	Coefficient	plot	for	multiple	condo	models.	The	coefficients	are	plotted	in	the	same	spot
on	the	y-axis	for	each	model.	If	a	model	does	not	contain	a	particular	coefficient,	it	is	simply	not

plotted.

Regression	is	often	used	for	prediction,	which	in	R	is	enabled	by	the	predict	function.	For	this
example,	new	data	are	available	at	http://www.jaredlander.com/data/housingNew.csv.
Click	here	to	view	code	image

>	housingNew	<-	read.table("http://www.jaredlander.com/data/housingNew.csv",

+	sep=",",	header=TRUE,	stringsAsFactors=FALSE)	Making	the	prediction	can	be	as	simple	as

calling	predict,	although	caution	must	be	used	when	dealing	with	factor	predictors	to

ensure	that	they	have	the	same	levels	as	those	used	in	building	the	model.

Click	here	to	view	code	image

>	#	make	prediction	with	new	data	and	95%	confidence	bounds

>	housePredict	<-	predict(house1,	newdata=housingNew,	se.fit=TRUE,

../../../../../www.jaredlander.com/data/housingNew.csv

+	interval="prediction",	level=.95)

>	#	view	predictions	with	upper	and	lower	bounds	based	on	standard	errors

>	head(housePredict$fit)

fit	lwr	upr

1	74.00645	-10.813887	158.8268

2	82.04988	-2.728506	166.8283

3	166.65975	81.808078	251.5114

4	169.00970	84.222648	253.7968

5	80.00129	-4.777303	164.7799

6	47.87795	-37.480170	133.2361

>	#	view	the	standard	errors	for	the	prediction

>	head(housePredict$se.fit)

1	2	3	4	5	6

2.118509	1.624063	2.423006	1.737799	1.626923	5.318813

19.3	Conclusion
Perhaps	one	of	the	most	versatile	tools	in	statistical	analysis,	regression	is	well	handled	using	R’s	lm
function.	It	takes	the	formula	interface,	where	a	response	is	modeled	on	a	set	of	predictors.	Other
useful	arguments	to	the	function	are	weights,	which	specifies	the	weights	attributed	to	observations
(both	probability	and	count	weights),	and	subset,	which	will	fit	the	model	only	on	a	subset	of	the	data.

20.	Generalized	Linear	Models

Not	all	data	can	be	appropriately	modeled	with	linear	regression,	because	they	are	binomial
(TRUE/FALSE),	count	data	or	some	other	form.	To	model	these	types	of	data,	generalized	linear	models
were	developed.	They	are	still	modeled	using	a	linear	predictor,	Xβ,	but	they	are	transformed	using	some
link	function.	To	the	R	user,	fitting	a	generalized	linear	model	requires	barely	any	more	effort	than	running
a	linear	regression.

20.1	Logistic	Regression
A	very	powerful	and	common	model—especially	in	fields	such	as	marketing	and	medicine—is	logistic
regression.	The	examples	in	this	section	will	use	the	a	subset	of	data	from	the	2010	American	Community
Survey	(ACS)	for	New	York	State.1	ACS	data	contain	a	lot	of	information,	so	we	have	made	a	subset	of	it
with	22,745	rows	and	18	columns	available	at	http://jaredlander.com/data/acs_ny.csv.

1.	The	ACS	is	a	large-scale	survey	very	similar	to	the	decennial	census,	except	that	is	conducted	on	a	more	frequent	basis.

Click	here	to	view	code	image

>	acs	<-	read.table("http://jaredlander.com/data/acs_ny.csv",

+	sep=","	,	header=TRUE,	stringsAsFactors=FALSE)	Logistic	regression	models	are	formulated

as	

where	yi	is	the	ith	response	and	Xiβ	is	the	linear	predictor.	The	inverse	logit	function	

transforms	the	continuous	output	from	the	linear	predictor	to	fall	between	0	and	1.	This	is	the	inverse	of
the	link	function.
We	now	formulate	a	question	that	asks	whether	a	household	has	an	income	greater	than	$150,000.	To

do	this	we	need	to	create	a	new	binary	variable	with	TRUE	for	income	above	that	mark	and	FALSE	for
income	below.
Click	here	to	view	code	image

>	acs$Income	<-	with(acs,	FamilyIncome	>=	150000)

>	library(ggplot2)

>	library(useful)

>	ggplot(acs,	aes(x=FamilyIncome))	+

+	geom_density(fill="grey",	color="grey")	+

+	geom_vline(xintercept=150000)	+

+	scale_x_continuous(label=multiple.dollar,	limits=c(0,	1000000))

../../../../../jaredlander.com/data/acs_ny.csv

Figure	20.1	Density	plot	of	family	income,	with	a	vertical	line	indicating	the	$150,000	mark.
Click	here	to	view	code	image

>	head(acs)

Acres	FamilyIncome	FamilyType	NumBedrooms	NumChildren	NumPeople

1	1-10	150	Married	4	1	3

2	1-10	180	Female	Head	3	2	4

3	1-10	280	Female	Head	4	0	2

4	1-10	330	Female	Head	2	1	2

5	1-10	330	Male	Head	3	1	2

6	1-10	480	Male	Head	0	3	4

NumRooms	NumUnits	NumVehicles	NumWorkers	OwnRent

1	9	Single	detached	1	0	Mortgage

2	6	Single	detached	2	0	Rented

3	8	Single	detached	3	1	Mortgage

4	4	Single	detached	1	0	Rented

5	5	Single	attached	1	0	Mortgage

6	1	Single	detached	0	0	Rented

YearBuilt	HouseCosts	ElectricBill	FoodStamp	HeatingFuel	Insurance

1	1950-1959	1800	90	No	Gas	2500

2	Before	1939	850	90	No	Oil	0

3	2000-2004	2600	260	No	Oil	6600

4	1950-1959	1800	140	No	Oil	0

5	Before	1939	860	150	No	Gas	660

6	Before	1939	700	140	No	Gas	0

Language	Income

1	English	FALSE

2	English	FALSE

3	Other	European	FALSE

4	English	FALSE

5	Spanish	FALSE

6	English	FALSE

Running	a	logistic	regression	is	done	very	similarly	to	running	a	linear	regression.	It	still	uses	the
formula	interface	but	the	function	is	glm	rather	than	lm	(glm	can	actually	fit	linear	regressions	as	well),
and	a	few	more	options	need	to	be	set.
Click	here	to	view	code	image

>	income1	<-	glm(Income	~	HouseCosts	+	NumWorkers	+	OwnRent	+

+	NumBedrooms	+	FamilyType,

+	data=acs,	family=binomial(link="logit"))

>	summary(income1)

Call:

glm(formula	=	Income	~	HouseCosts	+	NumWorkers	+	OwnRent	+	NumBedrooms	+

FamilyType,	family	=	binomial(link	=	"logit"),	data	=	acs)

Deviance	Residuals:

Min	1Q	Median	3Q	Max

-2.8452	-0.6246	-0.4231	-0.1743	2.9503

Coefficients:

Estimate	Std.	Error	z	value	Pr(>|z|)

(Intercept)	-5.738e+00	1.185e-01	-48.421	<2e-16	***

HouseCosts	7.398e-04	1.724e-05	42.908	<2e-16	***

NumWorkers	5.611e-01	2.588e-02	21.684	<2e-16	***

OwnRentOutright	1.772e+00	2.075e-01	8.541	<2e-16	***

OwnRentRented	-8.886e-01	1.002e-01	-8.872	<2e-16	***

NumBedrooms	2.339e-01	1.683e-02	13.895	<2e-16	***

FamilyTypeMale	Head	3.336e-01	1.472e-01	2.266	0.0235	*

FamilyTypeMarried	1.405e+00	8.704e-02	16.143	<2e-16	***

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

(Dispersion	parameter	for	binomial	family	taken	to	be	1)

Null	deviance:	22808	on	22744	degrees	of	freedom

Residual	deviance:	18073	on	22737	degrees	of	freedom

AIC:	18089

Number	of	Fisher	Scoring	iterations:	6

>	library(coefplot)

>	coefplot(income1)

Figure	20.2	Coefficient	plot	for	logistic	regression	on	family	income	greater	than	$150,000,	based	on
the	American	Community	Survey.

The	output	from	summary	and	coefplot	for	glm	is	similar	to	that	of	lm.	There	are	coefficient	estimates,
standard	errors,	p-values—both	overall	and	for	the	coefficients—and	a	measure	of	correctness,	which	in
this	case	is	the	deviance	and	AIC.	A	general	rule	of	thumb	is	that	adding	a	variable	(or	a	level	of	a
factor)	to	a	model	should	result	in	a	drop	in	deviance	of	two;	otherwise,	the	variable	is	not	useful	in
the	model.	Interactions	and	all	the	other	formula	concepts	work	the	same.
Interpreting	the	coefficients	from	a	logistic	regression	necessitates	taking	the	inverse	logit.

Click	here	to	view	code	image

>	invlogit	<-	function(x)

+	{

+	1	/	(1	+	exp(-x))

+	}

>	invlogit(income1$coefficients)

(Intercept)	HouseCosts	NumWorkers

0.003211572	0.500184950	0.636702036

OwnRentOutright	OwnRentRented	NumBedrooms

0.854753527	0.291408659	0.558200010

FamilyTypeMale	Head	FamilyTypeMarried

0.582624773	0.802983719

20.2	Poisson	Regression
Another	popular	member	of	the	generalized	linear	models	is	Poisson	regression,	which,	much	like	the
Poisson	distribution,	is	used	for	count	data.	Like	all	other	generalized	linear	models,	it	is	called	using
glm.	To	illustrate	we	continue	using	the	ACS	data	with	the	number	of	children	(NumChildren)	as	the
response.
The	formulation	for	Poisson	regression	is	

where	yi	is	the	ith	response	and	
is	the	mean	of	the	distribution	for	the	ith	observation.
Before	fitting	a	model,	we	look	at	the	histogram	of	the	number	of	children	in	each	household.

Click	here	to	view	code	image

>	ggplot(acs,	aes(x=NumChildren))	+	geom_histogram(binwidth=1)	While	Figure	20.3	does	not

show	data	that	have	a	perfect	Poisson	distribution,	it	is	close	enough	to	fit	a	good

model.	The	coeficient	plot	is	shown	in	Figure	20.4.

Figure	20.3	Histogram	of	the	number	of	children	per	household	from	the	American	Community	Survey.
The	distribution	is	not	perfectly	Poisson	but	it	is	sufficiently	so	for	modelling	with	Poisson	regression.

Click	here	to	view	code	image

>	children1	<-	glm(NumChildren	~	FamilyIncome	+	FamilyType	+	OwnRent,

+	data=acs,	family=poisson(link="log"))

>	summary(children1)

Call:

glm(formula	=	NumChildren	~	FamilyIncome	+	FamilyType	+	OwnRent,

family	=	poisson(link	=	"log"),	data	=	acs)

Deviance	Residuals:

Min	1Q	Median	3Q	Max

-1.9950	-1.3235	-1.2045	0.9464	6.3781

Coefficients:

Estimate	Std.	Error	z	value	Pr(>|z|)

(Intercept)	-3.257e-01	2.103e-02	-15.491	<	2e-16	***

FamilyIncome	5.420e-07	6.572e-08	8.247	<	2e-16	***

FamilyTypeMale	Head	-6.298e-02	3.847e-02	-1.637	0.102

FamilyTypeMarried	1.440e-01	2.147e-02	6.707	1.98e-11	***

OwnRentOutright	-1.974e+00	2.292e-01	-8.611	<	2e-16	***

OwnRentRented	4.086e-01	2.067e-02	19.773	<	2e-16	***

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

(Dispersion	parameter	for	poisson	family	taken	to	be	1)

Null	deviance:	35240	on	22744	degrees	of	freedom

Residual	deviance:	34643	on	22739	degrees	of	freedom

AIC:	61370

Number	of	Fisher	Scoring	iterations:	5

>	coefplot(children1)	The	output	here	is	similar	to	that	for	logistic	regression,	and	the

same	rule	of	thumb	for	deviance	applies.

A	particular	concern	with	Poisson	regression	is	overdispersion,	which	means	that	the	variability	seen
in	the	data	is	greater	than	is	theorized	by	the	Poisson	distribution	where	the	mean	and	variance	are	the
same.

Figure	20.4	Coefficient	plot	for	a	logistic	regression	on	ACS	data.

Overdispersion	is	defined	as	
where

are	the	studentized	residuals.

Calculating	overdispersion	in	R	is	as	follows.
Click	here	to	view	code	image

>	#	the	standardized	residuals

>	z	<-	(acs$NumChildren	-	children1$fitted.values)	/

+	sqrt(children1$fitted.values)

>	#	Overdispersion	Factor

>	sum(z^2)	/	children1$df.residual

[1]	1.469747

>	#	Overdispersion	p-value

>	pchisq(sum(z^2),	children1$df.residual)

[1]	1

Generally	an	overdispersion	ratio	of	2	or	greater	indicates	overdispersion.	While	this	overdispersion
ratio	is	less	than	2,	the	p-value	is	1,	meaning	that	there	is	a	statistically	significant	overdispersion.	So	we
refit	the	model	to	account	for	the	overdispersion	using	the	quasipoisson	family,	which	actually	uses	the
negative	binomial	distribution.
Click	here	to	view	code	image

>	children2	<-	glm(NumChildren	~	FamilyIncome	+	FamilyType	+	OwnRent,

+	data=acs,	family=quasipoisson(link="log"))

>	multiplot(children1,	children2)

Figure	20.5	Coefficient	plot	for	Poisson	models.	The	first	model,	children1,	does	not	account	for
overdispersion	while	children2	does.	Because	the	overdispersion	was	not	too	big,	the	coefficient

estimates	in	the	second	model	have	just	a	bit	more	uncertainty.

Figure	20.5	shows	a	coefficient	plot	for	a	model	with	that	accounts	for	overdispersion	and	one	that
does	not.	Since	the	overdispersion	was	not	very	large,	the	second	model	adds	just	a	little	uncertainty	to
the	coefficient	estimates.

20.3	Other	Generalized	Linear	Models
Other	common	generalized	linear	models	supported	by	the	glm	function	are	gamma,	inverse	gaussian	and
quasibinomial.	Different	link	functions	can	be	supplied,	such	as	the	following:	logit,	probit,	cauchit,	log
and	cloglog	for	binomial;	inverse,	identity	and	log	for	gamma;	log,	identity	and	sqrt	for	Poisson;	and
1/mu^2,	inverse,	identity	and	log	for	inverse	gaussian.
Multinomial	regression,	for	classifying	multiple	categories,	requires	either	running	multiple	logistic

regressions	(a	tactic	well	supported	in	statistical	literature)	or	using	the	polr	function	or	the	multinom
function	from	the	nnet	package.

20.4	Survival	Analysis
While	not	technically	part	of	the	family	of	generalized	linear	models,	survival	analysis	is	another
important	extension	to	regression.	It	has	many	applications,	such	as	clinical	medical	trials,	server	failure
times,	number	of	accidents	and	time	to	death	after	a	treatment	or	disease.
Data	used	for	survival	analysis	are	different	from	most	other	data	in	that	they	are	censored,	meaning

there	is	unknown	information,	typically	about	what	happens	to	a	subject	after	a	given	amount	of	time.	For
an	example,	we	look	at	the	bladder	data	from	the	survival	package.
Click	here	to	view	code	image

>	library(survival)

>	head(bladder)

id	rx	number	size	stop	event	enum

1	1	1	1	3	1	0	1

2	1	1	1	3	1	0	2

3	1	1	1	3	1	0	3

4	1	1	1	3	1	0	4

5	2	1	2	1	4	0	1

6	2	1	2	1	4	0	2

The	columns	of	note	are	stop	(when	an	event	occurs	or	the	patient	leaves	the	study)	and	event
(whether	an	event	occurred	at	the	time).	Even	if	event	is	0,	we	do	not	know	if	an	event	could	have
occurred	later;	this	is	why	it	is	called	censored.	Making	use	of	that	structure	requires	the	Surv	function.
Click	here	to	view	code	image

>	#	first	look	at	a	piece	of	the	data

>	bladder[100:105,]

id	rx	number	size	stop	event	enum

100	25	1	2	1	12	1	4

101	26	1	1	3	12	1	1

102	26	1	1	3	15	1	2

103	26	1	1	3	24	1	3

104	26	1	1	3	31	0	4

105	27	1	1	2	32	0	1

>	#	now	look	at	the	response	variable	built	by	build.y

>	survObject	<-	with(bladder[100:105,],	Surv(stop,	event))

>	#	nicely	printed	form

>	survObject

[1]	12	12	15	24	31+	32+

>	#	see	its	matrix	form

>	survObject[,	1:2]

time	status

[1,]	12	1

[2,]	12	1

[3,]	15	1

[4,]	24	1

[5,]	31	0

[6,]	32	0

This	shows	that	for	the	first	three	rows	where	an	event	occurred,	the	time	is	known	to	be	12,	whereas
the	bottom	two	rows	had	no	event,	so	the	time	is	censored	because	an	event	could	have	occurred
afterward.
Perhaps	the	most	common	modelling	technique	in	survival	analysis	is	using	a	Cox	proportional	hazards

model,	which	in	R	is	done	with	coxph.	The	model	is	fitted	using	the	familiar	formula	interface
supplied	to	coxph.	The	survfit	function	builds	the	survival	curve	that	can	then	be	plotted	as	shown	in
Figure	20.6.	The	survival	curve	shows	the	percentage	of	participants	surviving	at	a	given	time.	The
summary	is	similar	to	other	summaries	but	tailored	to	survival	analysis.
Click	here	to	view	code	image

>	cox1	<-	coxph(Surv(stop,	event)	~	rx	+	number	+	size	+	enum,

+	data=bladder)

>	summary(cox1)

Call:

coxph(formula	=	Surv(stop,	event)	~	rx	+	number	+	size	+	enum,

data	=	bladder)

n=	340,	number	of	events=	112

coef	exp(coef)	se(coef)	z	Pr(>|z|)

rx	-0.59739	0.55024	0.20088	-2.974	0.00294	**

number	0.21754	1.24301	0.04653	4.675	2.93e-06	***

size	-0.05677	0.94481	0.07091	-0.801	0.42333

enum	-0.60385	0.54670	0.09401	-6.423	1.34e-10	***

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

exp(coef)	exp(-coef)	lower	.95	upper	.95

rx	0.5502	1.8174	0.3712	0.8157

number	1.2430	0.8045	1.1347	1.3617

size	0.9448	1.0584	0.8222	1.0857

enum	0.5467	1.8291	0.4547	0.6573

Concordance=	0.753	(se	=	0.029)

Rsquare=	0.179	(max	possible=	0.971)

Likelihood	ratio	test=	67.21	on	4	df,	p=8.804e-14

Wald	test	=	64.73	on	4	df,	p=2.932e-13

Score	(logrank)	test	=	69.42	on	4	df,	p=2.998e-14

>	plot(survfit(cox1),	xlab="Days",	ylab="Survival	Rate",	conf.int=TRUE)

Figure	20.6	Survival	curve	for	Cox	proportional	hazards	model	fitted	on	bladder	data.

In	this	data,	the	rx	variable	indicates	placebo	versus	treatment,	which	is	a	natural	stratification	of	the
patients.	Passing	rx	to	strata	in	the	formula	splits	the	data	into	two	for	analysis	and	will	result	in	two
survival	curves	like	those	in	Figure	20.7.
Click	here	to	view	code	image

>	cox2	<-	coxph(Surv(stop,	event)	~	strata(rx)	+	number

+	+	size	+	enum,	data=bladder)

>	summary(cox2)

Call:

coxph(formula	=	Surv(stop,	event)	~	strata(rx)	+	number	+	size	+

enum,	data	=	bladder)

n=	340,	number	of	events=	112

coef	exp(coef)	se(coef)	z	Pr(>|z|)

number	0.21371	1.23826	0.04648	4.598	4.27e-06	***

size	-0.05485	0.94662	0.07097	-0.773	0.44

enum	-0.60695	0.54501	0.09408	-6.451	1.11e-10	***

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

exp(coef)	exp(-coef)	lower	.95	upper	.95

number	1.2383	0.8076	1.1304	1.3564

size	0.9466	1.0564	0.8237	1.0879

enum	0.5450	1.8348	0.4532	0.6554

Concordance=	0.74	(se	=	0.04)

Rsquare=	0.166	(max	possible=	0.954)

Likelihood	ratio	test=	61.84	on	3	df,	p=2.379e-13

Wald	test	=	60.04	on	3	df,	p=5.751e-13

Score	(logrank)	test	=	65.05	on	3	df,	p=4.896e-14

>	plot(survfit(cox2),	xlab="Days",	ylab="Survival	Rate",

+	conf.int=TRUE,	col=1:2)

>	legend("bottomleft",	legend=c(1,	2),	lty=1,	col=1:2,

+	text.col=1:2,	title="rx")

Figure	20.7	Survival	curve	for	Cox	proportional	hazards	model	fitted	on	bladder	data	stratified	on	rx.

As	an	aside,	this	was	a	relatively	simple	legend	to	produce	but	it	took	a	lot	more	effort	than	it	would
with	ggplot2.
Testing	the	assumption	of	proportional	hazards	is	done	with	cox.zph.

Click	here	to	view	code	image

>	cox.zph(cox1)

rho	chisq	p

rx	0.0299	0.0957	7.57e-01

number	0.0900	0.6945	4.05e-01

size	-0.1383	2.3825	1.23e-01

enum	0.4934	27.2087	1.83e-07

GLOBAL	NA	32.2101	1.73e-06

>	cox.zph(cox2)

rho	chisq	p

number	0.0966	0.785	3.76e-01

size	-0.1331	2.197	1.38e-01

enum	0.4972	27.237	1.80e-07

GLOBAL	NA	32.101	4.98e-07

An	Andersen-Gill	analysis	is	similar	to	survival	analysis,	except	it	takes	intervalized	data	and	can
handle	multiple	events,	such	as	counting	the	number	of	emergency	room	visits	as	opposed	to	whether	or
not	there	is	an	emergency	room	visit.	It	is	also	performed	using	coxph,	except	an	additional	variable	is
passed	to	Surv,	and	the	data	must	be	clustered	on	an	identification	column	(id)	to	keep	track	of	multiple
events.	The	corresponding	survival	curves	are	seen	in	Figure	20.8.
Click	here	to	view	code	image

>	head(bladder2)

id	rx	number	size	start	stop	event	enum

1	1	1	1	3	0	1	0	1

2	2	1	2	1	0	4	0	1

3	3	1	1	1	0	7	0	1

4	4	1	5	1	0	10	0	1

5	5	1	4	1	0	6	1	1

6	5	1	4	1	6	10	0	2

>	ag1	<-	coxph(Surv(start,	stop,	event)	~	rx	+	number	+	size	+	enum	+

+	cluster(id),	data=bladder2)

>	ag2	<-	coxph(Surv(start,	stop,	event)	~	strata(rx)	+	number	+	size	+

+	enum	+	cluster(id),	data=bladder2)

>	plot(survfit(ag1),	conf.int=TRUE)

>	plot(survfit(ag2),	conf.int=TRUE,	col=1:2)

>	legend("topright",	legend=c(1,	2),	lty=1,	col=1:2,

+	text.col=1:2,	title="rx")

Figure	20.8	Andersen-Gill	survival	curves	for	bladder2	data.

20.5	Conclusion
Generalized	linear	models	extend	regression	beyond	linear	relationships	between	the	predictors	and
response.	The	most	prominent	types	are	logistic	for	binary	data,	Poisson	for	count	data	and	survival
analysis.	Their	uses	go	far	beyond	that,	but	those	are	by	far	the	most	common.

21.	Model	Diagnostics

Building	a	model	can	be	a	never	ending	process	in	which	we	constantly	improve	the	model	by	adding
interactions,	taking	away	variables,	doing	transformations	and	so	on.	However,	at	some	point	we	need	to
confirm	that	we	have	the	best	model	at	the	time,	or	even	a	good	model.	That	leads	to	the	question:	How
do	we	judge	the	quality	of	a	model?	In	almost	all	cases	the	answer	has	to	be:	in	relation	to	other	models.
This	could	be	an	analysis	of	residuals,	the	results	of	an	ANOVA	test,	a	Wald	test,	drop-in	deviance,	the
AIC	or	BIC	score,	cross-validation	error	or	bootstrapping.

21.1	Residuals
One	of	the	first-taught	ways	of	assessing	model	quality	is	an	analysis	of	the	residuals,	which	is	the
difference	between	the	actual	response	and	the	fitted	values,	values	predicted	by	the	model.	This	is	a
direct	result	of	the	formulation	in	Equation	19.1	where	the	errors,	akin	to	residuals,	are	normally
distributed.	The	basic	idea	is	that	if	the	model	is	appropriately	fitted	to	the	data,	the	residuals	should	be
normally	distributed	as	well.	To	see	this,	we	start	with	the	housing	data	to	which	we	fit	a	regression	and
visualize	with	a	coefficient	plot,	as	shown	in	Figure	21.1.
Click	here	to	view	code	image

>	#	read	in	the	data

>	housing	<-	read.table("data/housing.csv",	sep=",",	header=TRUE,

+	stringsAsFactors=FALSE)

>	#	give	the	data	good	names

>	names(housing)	<-	c("Neighborhood",	"Class",	"Units",	"YearBuilt",

+	"SqFt",	"Income",	"IncomePerSqFt",	"Expense",

+	"ExpensePerSqFt",	"NetIncome",	"Value",

+	"ValuePerSqFt",	"Boro")

>	#	eliminate	some	outliers

>	housing	<-	housing[housing$Units	<	1000,]

>	head(housing)

Neighborhood	Class	Units	YearBuilt	SqFt	Income

1	FINANCIAL	R9-CONDOMINIUM	42	1920	36500	1332615

2	FINANCIAL	R4-CONDOMINIUM	78	1985	126420	6633257

3	FINANCIAL	RR-CONDOMINIUM	500	NA	554174	17310000

4	FINANCIAL	R4-CONDOMINIUM	282	1930	249076	11776313

5	TRIBECA	R4-CONDOMINIUM	239	1985	219495	10004582

6	TRIBECA	R4-CONDOMINIUM	133	1986	139719	5127687

IncomePerSqFt	Expense	ExpensePerSqFt	NetIncome	Value

1	36.51	342005	9.37	990610	7300000

2	52.47	1762295	13.94	4870962	30690000

3	31.24	3543000	6.39	13767000	90970000

4	47.28	2784670	11.18	8991643	67556006

5	45.58	2783197	12.68	7221385	54320996

6	36.70	1497788	10.72	3629899	26737996

ValuePerSqFt	Boro

1	200.00	Manhattan

2	242.76	Manhattan

3	164.15	Manhattan

4	271.23	Manhattan

5	247.48	Manhattan

6	191.37	Manhattan

>	#	fit	a	model

>	house1	<-	lm(ValuePerSqFt	~	Units	+	SqFt	+	Boro,	data=housing)

>	summary(house1)

Call:

lm(formula	=	ValuePerSqFt	~	Units	+	SqFt	+	Boro,	data	=	housing)

Residuals:

Min	1Q	Median	3Q	Max

-168.458	-22.680	1.493	26.290	261.761

Coefficients:

Estimate	Std.	Error	t	value	Pr(>|t|)

(Intercept)	4.430e+01	5.342e+00	8.293	<	2e-16	***

Units	-1.532e-01	2.421e-02	-6.330	2.88e-10	***

SqFt	2.070e-04	2.129e-05	9.723	<	2e-16	***

BoroBrooklyn	3.258e+01	5.561e+00	5.858	5.28e-09	***

BoroManhattan	1.274e+02	5.459e+00	23.343	<	2e-16	***

BoroQueens	3.011e+01	5.711e+00	5.272	1.46e-07	***

BoroStaten	Island	-7.114e+00	1.001e+01	-0.711	0.477

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	43.2	on	2613	degrees	of	freedom

Multiple	R-squared:	0.6034,Adjusted	R-squared:	0.6025

F-statistic:	662.6	on	6	and	2613	DF,	p-value:	<	2.2e-16

>	#	visualize	the	model

>	library(coefplot)

>	coefplot(house1)

Figure	21.1	Coefficient	plot	for	condo	value	data	regression	in	house1.

For	linear	regression,	three	important	residual	plots	are:	fitted	values	against	residuals,	Q-Q	plots	and
the	histogram	of	the	residuals.	The	first	is	easy	enough	with	ggplot2.	Fortunately,	ggplot2	has	a	handy
trick	for	dealing	with	lm	models.	We	can	use	the	model	as	the	data	source	and	ggplot2	“fortifies”	it,
creating	new	columns,	for	easy	plotting.
Click	here	to	view	code	image

>	library(ggplot2)

>	#	see	what	a	fortified	lm	model	looks	like

>	head(fortify(house1))

ValuePerSqFt	Units	SqFt	Boro	.hat	.sigma

1	200.00	42	36500	Manhattan	0.0009594821	43.20952

2	242.76	78	126420	Manhattan	0.0009232393	43.19848

3	164.15	500	554174	Manhattan	0.0089836758	43.20347

4	271.23	282	249076	Manhattan	0.0035168641	43.17583

5	247.48	239	219495	Manhattan	0.0023865978	43.19289

6	191.37	133	139719	Manhattan	0.0008934957	43.21225

.cooksd	.fitted	.resid	.stdresid

1	5.424169e-05	172.8475	27.15248	0.6287655

2	2.285253e-04	185.9418	56.81815	1.3157048

3	1.459368e-03	209.8077	-45.65775	-1.0615607

4	2.252653e-03	180.0672	91.16278	2.1137487

5	8.225193e-04	180.5341	66.94589	1.5513636

6	8.446170e-06	180.2661	11.10385	0.2571216

>	#	save	a	plot	to	an	object

>	#	notice	we	are	using	the	created	columns	for	the	x-	and	y-axes

>	#	they	are	.fitted	and	.resid

>	h1	<-	ggplot(aes(x=.fitted,	y=.resid),	data	=	house1)	+

+	geom_point()	+

+	geom_hline(yintercept	=	0)	+

+	geom_smooth(se	=	FALSE)	+

+	labs(x="Fitted	Values",	y="Residuals")

>

>	#	print	the	plot

>	h1

The	plot	of	residuals	versus	fitted	values	shown	in	Figure	21.2	is	at	first	glance	disconcerting,	because
the	pattern	in	the	residuals	shows	that	they	are	not	as	randomly	dispersed	as	desired.	However,	further
investigation	reveals	that	this	is	due	to	the	structure	that	Boro	gives	the	data,	as	seen	in	Figure	21.3.

>	h1	+	geom_point(aes(color=Boro))

Figure	21.2	Plot	of	residuals	versus	fitted	values	for	house1.	This	clearly	shows	a	pattern	in	the	data
that	does	not	appear	to	be	random.

Figure	21.3	Plot	of	residuals	versus	fitted	values	for	house1	colored	by	Boro.	The	pattern	in	the
residuals	is	revealed	to	be	the	result	of	the	effect	of	Boro	on	the	model.	Notice	that	the	points	sit
above	the	x-axis	and	the	smoothing	curve	because	geom_point	was	added	after	the	other	geoms,

meaning	it	gets	layered	on	top.

This	plot	could	have	been	easily,	although	less	attractively,	plotted	using	the	built-in	plotting	function,
as	shown	in	Figure	21.4.
Click	here	to	view	code	image

>	#	basic	plot

>	plot(house1,	which=1)

>	#	same	plot	but	colored	by	Boro

>	plot(house1,	which=1,	col=as.numeric(factor(house1$model$Boro)))

>	#	corresponding	legend

>	legend("topright",	legend=levels(factor(house1$model$Boro)),	pch=1,

+	col=as.numeric(factor(levels(factor(house1$model$Boro)))),

+	text.col=as.numeric(factor(levels(factor(house1$model$Boro)))),

+	title="Boro")

Figure	21.4	Base	graphics	plots	for	residuals	versus	fitted	values.

Next	up	is	the	Q-Q	plot.	If	the	model	is	a	good	fit,	the	standardized	residuals	should	all	fall	along	a
straight	line	when	plotted	against	the	theoretical	quantiles	of	the	normal	distribution.	Both	the	base
graphics	and	ggplot2	versions	are	shown	in	Figure	21.5.
Click	here	to	view	code	image

>	plot(house1,	which=2)

>	ggplot(house1,	aes(sample=.stdresid))	+	stat_qq()	+	geom_abline()

Figure	21.5	Q-Q	plot	for	house1.	The	tails	drift	away	from	the	ideal	theoretical	line,	indicating	that
we	do	not	have	the	best	fit.

Another	diagnostic	is	a	histogram	of	the	residuals.	This	time	we	will	not	be	showing	the	base	graphics
alternative	because	a	histogram	is	a	standard	plot	that	we	have	shown	repeatedly.	The	histogram	in	Figure
21.6	is	not	normally	distributed,	meaning	that	our	model	is	not	an	entirely	correct	specification.
Click	here	to	view	code	image

>	ggplot(house1,	aes(x=.resid))	+	geom_histogram()

Figure	21.6	Histogram	of	residuals	from	house1.	This	does	not	look	normally	distributed,	meaning
our	model	is	incomplete.

21.2	Comparing	Models
All	of	this	measuring	of	model	fit	only	really	makes	sense	when	comparing	multiple	models,	because	all
of	these	measures	are	relative.	So	we	will	fit	a	number	of	models	in	order	to	compare	them	to	each	other.
Click	here	to	view	code	image

>	house2	<-	lm(ValuePerSqFt	~	Units	*	SqFt	+	Boro,	data=housing)

>	house3	<-	lm(ValuePerSqFt	~	Units	+	SqFt	*	Boro	+	Class,

+	data=housing)

>	house4	<-	lm(ValuePerSqFt	~	Units	+	SqFt	*	Boro	+	SqFt*Class,

+	data=housing)

>	house5	<-	lm(ValuePerSqFt	~	Boro	+	Class,	data=housing)	As	usual,	our	first	step	is	to

visualize	the	models	together	using	multiplot	from	the	coefplot	package.	The	result	is	in

Figure	21.7	and	shows	that	Boro	is	the	only	variable	with	a	significant	effect	on

ValuePerSqFt	as	do	certain	condominium	types.

Click	here	to	view	code	image

>	multiplot(house1,	house2,	house3,	house4,	house5,	pointSize=2)

Figure	21.7	Coefficient	plot	of	various	models	based	on	housing	data.	This	shows	that	only	Boro	and
some	condominium	types	matter.

While	we	do	not	promote	using	ANOVA	for	a	multisample	test,	we	do	believe	it	serves	a	useful

purpose	in	testing	the	relative	merits	of	different	models.	Simply	passing	multiple	model	objects	to	anova
will	return	a	table	of	results	including	the	residual	sum	of	squares	(RSS),	which	is	a	measure	of	error,	the
lower	the	better.
Click	here	to	view	code	image

>	anova(house1,	house2,	house3,	house4,	house5)

Analysis	of	Variance	Table

Model	1:	ValuePerSqFt	~	Units	+	SqFt	+	Boro

Model	2:	ValuePerSqFt	~	Units	*	SqFt	+	Boro

Model	3:	ValuePerSqFt	~	Units	+	SqFt	*	Boro	+	Class

Model	4:	ValuePerSqFt	~	Units	+	SqFt	*	Boro	+	SqFt	*	Class

Model	5:	ValuePerSqFt	~	Boro	+	Class

Res.Df	RSS	Df	Sum	of	Sq	F	Pr(>F)

1	2613	4877506

2	2612	4847886	1	29620	17.0360	3.783e-05	***

3	2606	4576769	6	271117	25.9888	<	2.2e-16	***

4	2603	4525783	3	50986	9.7749	2.066e-06	***

5	2612	4895630	-9	-369847	23.6353	<	2.2e-16	***

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

This	shows	that	the	fourth	model,	house4,	has	the	lowest	RSS,	meaning	it	is	the	best	model	of	the
bunch.	The	problem	with	RSS	is	that	it	always	improves	when	an	additional	variable	is	added	to	the
model.	This	can	lead	to	excessive	model	complexity	and	overfitting.	Another	metric,	which	penalizes
model	complexity,	is	the	Akaike	Information	Criterion	(AIC).	As	with	RSS,	the	model	with	the	lowest
AIC—even	negative	values—is	considered	optimal.	The	BIC	(Bayesian	Information	Criterion)	is	a
similar	measure	where,	once	again,	lower	is	better.
The	formula	for	AIC	is

where	ln(L)	is	the	maximized	log-likelihood	and	p	is	the	number	of	coefficients	in	the	model.	As	the
model	improves	the	log-likelihood	gets	bigger,	and	because	that	term	is	negated	the	AIC	gets	lower.
However,	adding	coefficients	increases	the	AIC;	this	penalizes	model	complexity.	The	formula	for	BIC	is
similar,	except	that	instead	of	multiplying	the	number	of	coefficients	by	2	it	multiplies	it	by	the	natural	log
of	the	number	of	rows.	This	is	seen	in	Equation	21.2.

The	AIC	and	BIC	for	our	models	are	calculated	using	the	AIC	and	BIC	functions,	respectively.
Click	here	to	view	code	image

>	AIC(house1,	house2,	house3,	house4,	house5)

df	AIC

house1	8	27177.78

house2	9	27163.82

house3	15	27025.04

house4	18	27001.69

house5	9	27189.50

>	BIC(house1,	house2,	house3,	house4,	house5)

df	BIC

house1	8	27224.75

house2	9	27216.66

house3	15	27113.11

house4	18	27107.37

house5	9	27242.34

When	called	on	glm	models,	anova	returns	the	deviance	of	the	model,	which	is	another	measure	of
error.	The	general	rule	of	thumb—according	to	Andrew	Gelman—is	that	for	every	added	variable	in	the
model,	the	deviance	should	drop	by	two.	For	categorical	(factor)	variables,	the	deviance	should	drop
by	two	for	each	level.
To	illustrate	we	make	a	binary	variable	out	of	ValuePerSqFt	and	fit	a	few	logistic	regression

models.
Click	here	to	view	code	image

>	#	create	the	binary	variable	based	on	whether	ValuePerSqFt	is	above	150

>	housing$HighValue	<-	housing$ValuePerSqFt	>=	150

>

>	#	fit	a	few	models

>	high1	<-	glm(HighValue	~	Units	+	SqFt	+	Boro,

+	data=housing,	family=binomial(link="logit"))

>	high2	<-	glm(HighValue	~	Units	*	SqFt	+	Boro,

+	data=housing,	family=binomial(link="logit"))

>	high3	<-	glm(HighValue	~	Units	+	SqFt	*	Boro	+	Class,

+	data=housing,	family=binomial(link="logit"))

>	high4	<-	glm(HighValue	~	Units	+	SqFt	*	Boro	+	SqFt*Class,

+	data=housing,	family=binomial(link="logit"))

>	high5	<-	glm(HighValue	~	Boro	+	Class,

+	data=housing,	family=binomial(link="logit"))

>

>	#	test	the	models	using	ANOVA	(deviance),	AIC	and	BIC

>	anova(high1,	high2,	high3,	high4,	high5)

Analysis	of	Deviance	Table

Model	1:	HighValue	~	Units	+	SqFt	+	Boro

Model	2:	HighValue	~	Units	*	SqFt	+	Boro

Model	3:	HighValue	~	Units	+	SqFt	*	Boro	+	Class

Model	4:	HighValue	~	Units	+	SqFt	*	Boro	+	SqFt	*	Class

Model	5:	HighValue	~	Boro	+	Class

Resid.	Df	Resid.	Dev	Df	Deviance

1	2613	1687.5

2	2612	1678.8	1	8.648

3	2606	1627.5	6	51.331

4	2603	1606.1	3	21.420

5	2612	1662.3	-9	-56.205

>	AIC(high1,	high2,	high3,	high4,	high5)

df	AIC

high1	7	1701.484

high2	8	1694.835

high3	14	1655.504

high4	17	1640.084

high5	8	1678.290

>	BIC(high1,	high2,	high3,	high4,	high5)

df	BIC

high1	7	1742.580

high2	8	1741.803

high3	14	1737.697

high4	17	1739.890

high5	8	1725.257

Here,	once	again,	the	fourth	model	is	the	best.	Notice	that	the	fourth	model	added	three	variables	(the

three	indicator	variables	for	Class	interacted	with	SqFt)	and	its	deviance	dropped	by	21,	which	is
greater	than	two	for	each	additional	variable.

21.3	Cross-Validation
Residual	diagnostics	and	model	tests	such	as	ANOVA	and	AIC	are	a	bit	old	fashioned	and	came	along
before	modern	computing	horsepower.	The	preferred	method	to	assess	model	quality—at	least	by	most
data	scientists—is	cross-validation,	sometimes	called	k-fold	cross-validation.	The	data	is	broken	into	k
(usually	five	or	ten)	non-overlapping	sections.	Then	a	model	is	fitted	on	k	−	1	sections	of	the	data,	which
is	then	used	to	make	predictions	based	on	the	kth	section.	This	is	repeated	k	times	until	every	section	has
been	held	out	for	testing	once	and	included	in	model	fitting	k	−	1	times.	Cross-validation	provides	a
measure	of	the	predictive	accuracy	of	a	model,	which	is	largely	considered	a	good	means	of	assessing
model	quality.
There	are	a	number	of	packages	and	functions	that	assist	in	performing	cross-validation.	Each	has	its

own	limitations	or	quirks,	so	rather	than	going	through	a	number	of	incomplete	functions,	we	show	one
that	works	well	for	generalized	linear	models	(including	linear	regression),	and	then	build	a	generic
framework	that	can	be	used	generally	for	an	arbitrary	model	type.
The	boot	package	by	Brian	Ripley	has	cv.glm	for	performing	cross-validation	on.	As	the	name	implies,

it	works	only	for	generalized	linear	models,	which	will	suffice	for	a	number	of	situations.
Click	here	to	view	code	image

>	library(boot)

>	#	refit	house1	using	glm	instead	of	lm

>	houseG1	<-	glm(ValuePerSqFt	~	Units	+	SqFt	+	Boro,

+	data=housing,	family=gaussian(link="identity"))

>

>	#	ensure	it	gives	the	same	results	as	lm

>	identical(coef(house1),	coef(houseG1))

[1]	TRUE

>	#	run	the	cross-validation	with	5	folds

>	houseCV1	<-	cv.glm(housing,	houseG1,	K=5)

>	#	check	the	error

>	houseCV1$delta

[1]	1870.317	1869.352

The	results	from	cv.glm	include	delta,	which	has	two	numbers,	the	raw	cross-validation	error	based
on	the	cost	function	(in	this	case	the	mean	squared	error,	which	is	a	measure	of	correctness	for	an
estimator	and	is	defined	in	Equation	21.3)	for	all	the	folds	and	the	adjusted	cross-validation	error.	This
second	number	compensates	for	not	using	leave-one-out	cross-validation,	which	is	like	k-fold	cross-
validation	except	that	each	fold	is	the	all	but	one	data	point	with	one	point	held	out.	This	is	very	accurate
but	highly	computationally	intensive.

While	we	got	a	nice	number	for	the	error,	it	helps	us	only	if	we	can	compare	it	to	other	models,	so	we
run	the	same	process	for	the	other	models	we	built,	rebuilding	them	with	glm	first.
Click	here	to	view	code	image

>	#	refit	the	models	using	glm

>	houseG2	<-	glm(ValuePerSqFt	~	Units	*	SqFt	+	Boro,	data=housing)

>	houseG3	<-	glm(ValuePerSqFt	~	Units	+	SqFt	*	Boro	+	Class,

+	data=housing)

>	houseG4	<-	glm(ValuePerSqFt	~	Units	+	SqFt	*	Boro	+	SqFt*Class,

+	data=housing)

>	houseG5	<-	glm(ValuePerSqFt	~	Boro	+	Class,	data=housing)

>

>	#	run	cross-validation

>	houseCV2	<-	cv.glm(housing,	houseG2,	K=5)

>	houseCV3	<-	cv.glm(housing,	houseG3,	K=5)

>	houseCV4	<-	cv.glm(housing,	houseG4,	K=5)

>	houseCV5	<-	cv.glm(housing,	houseG5,	K=5)

>

>	##	check	the	error	results

>	#	build	a	data.frame	of	the	results

>	cvResults	<-	as.data.frame(rbind(houseCV1$delta,	houseCV2$delta,

+	houseCV3$delta,	houseCV4$delta,

+	houseCV5$delta))

>	##	do	some	cleaning	up	to	make	the	results	more	presentable

>	#	give	better	column	names

>	names(cvResults)	<-	c("Error",	"Adjusted.Error")

>	#	Add	model	name

>	cvResults$Model	<-	sprintf("houseG%s",	1:5)

>

>	#	check	the	results

>	cvResults

Error	Adjusted.Error	Model

1	1870.317	1869.352	houseG1

2	1866.730	1864.849	houseG2

3	1770.464	1767.784	houseG3

4	1758.651	1755.117	houseG4

5	1885.419	1883.539	houseG5

Once	again,	the	fourth	model,	houseG4,	is	the	superior	model.	Figure	21.8	shows	how	much	ANOVA,
AIC	and	cross-validation	agree	on	the	relative	merits	of	the	different	models.	The	scales	are	all	different
but	the	shapes	of	the	plots	are	identical.
Click	here	to	view	code	image

>	#	visualize	the	results

>	#	test	with	ANOVA

>	cvANOVA	<-anova(houseG1,	houseG2,	houseG3,	houseG4,	houseG5)

>	cvResults$ANOVA	<-	cvANOVA$`Resid.	Dev`

>	#	measure	with	AIC

>	cvResults$AIC	<-	AIC(houseG1,	houseG2,	houseG3,	houseG4,	houseG5)$AIC

>

>	#	make	the	data.frame	suitable	for	plotting

>	library(reshape2)

>	cvMelt	<-	melt(cvResults,	id.vars="Model",	variable.name="Measure",

+	value.name="Value")

>	cvMelt

Model	Measure	Value

1	houseG1	Error	1870.317

2	houseG2	Error	1866.730

3	houseG3	Error	1770.464

4	houseG4	Error	1758.651

5	houseG5	Error	1885.419

6	houseG1	Adjusted.Error	1869.352

7	houseG2	Adjusted.Error	1864.849

8	houseG3	Adjusted.Error	1767.784

9	houseG4	Adjusted.Error	1755.117

10	houseG5	Adjusted.Error	1883.539

11	houseG1	ANOVA	4877506.411

12	houseG2	ANOVA	4847886.327

13	houseG3	ANOVA	4576768.981

14	houseG4	ANOVA	4525782.873

15	houseG5	ANOVA	4895630.307

16	houseG1	AIC	27177.781

17	houseG2	AIC	27163.822

18	houseG3	AIC	27025.042

19	houseG4	AIC	27001.691

20	houseG5	AIC	27189.499

>	ggplot(cvMelt,	aes(x=Model,	y=Value))	+

+	geom_line(aes(group=Measure,	color=Measure))	+

+	facet_wrap(~Measure,	scales="free_y")	+

+	theme(axis.text.x=element_text(angle=90,	vjust=.5))	+

+	guides(color=FALSE)

Figure	21.8	Plots	for	cross-validation	error	(raw	and	adjusted),	ANOVA	and	AIC	for	housing	models.
The	scales	are	different,	as	they	should	be,	but	the	shapes	are	identical,	indicating	that	houseG4	truly

is	the	best	model.

We	now	present	a	general	framework	(loosely	borrowed	from	cv.glm)	for	running	our	own	cross-
validation	on	models	other	than	glm.	This	is	not	universal	and	will	not	work	for	all	models,	but	gives	a
general	idea	for	how	it	should	be	done.	In	practice	it	should	be	abstracted	into	smaller	parts	and	made
more	robust.
Click	here	to	view	code	image

>	cv.work	<-	function(fun,	k	=	5,	data,

+	cost	=	function(y,	yhat)	mean((y	-	yhat)^2),

+	response="y",	...)

+	{

+	#	generate	folds

+	folds	<-	data.frame(Fold=sample(rep(x=1:k,	length.out=nrow(data))),

+	Row=1:nrow(data))

+	#	start	the	error	at	0

+	error	<-	0

+	##	loop	through	each	of	the	folds

+	##	for	each	fold:

+	##	fit	the	model	on	the	training	data

+	##	predict	on	the	test	data

+	##	compute	the	error	and	accumulate	it

+	for(f	in	1:max(folds$Fold))

+	{

+	#	rows	that	are	in	test	set

+	theRows	<-	folds$Row[folds$Fold	==	f]

+	##	call	fun	on	data[-theRows,]

+	##	predict	on	data[theRows,]

+	mod	<-	fun(data=data[-theRows,],	...)

+	pred	<-	predict(mod,	data[theRows,])

+	#	add	new	error	weighted	by	the	number	of	rows	in	this	fold

+	error	<-	error	+

+	cost(data[theRows,	response],	pred)	*

+	(length(theRows)/nrow(data))

+	}

+	return(error)

+	}

Applying	that	function	to	the	various	housing	models	we	get	their	cross-validation	errors.
Click	here	to	view	code	image

>	cv1	<-	cv.work(fun=lm,	k=5,	data=housing,	response="ValuePerSqFt",

+	formula=ValuePerSqFt	~	Units	+	SqFt	+	Boro)

>	cv2	<-	cv.work(fun=lm,	k=5,	data=housing,	response="ValuePerSqFt",

+	formula=ValuePerSqFt	~	Units	*	SqFt	+	Boro)

>	cv3	<-	cv.work(fun=lm,	k=5,	data=housing,	response="ValuePerSqFt",

+	formula=ValuePerSqFt	~	Units	+	SqFt	*	Boro	+	Class)

>	cv4	<-	cv.work(fun=lm,	k=5,	data=housing,	response="ValuePerSqFt",

+	formula=ValuePerSqFt	~	Units	+	SqFt	*	Boro	+	SqFt*Class)

>	cv5	<-	cv.work(fun=lm,	k=5,	data=housing,	response="ValuePerSqFt",

+	formula=ValuePerSqFt	~	Boro	+	Class)

>	cvResults	<-	data.frame(Model=sprintf("house%s",	1:5),

+	Error=c(cv1,	cv2,	cv3,	cv4,	cv5))

>	cvResults

Model	Error

1	house1	1867.451

2	house2	1868.941

3	house3	1769.159

4	house4	1751.637

5	house5	1871.996

This	gives	very	similar	results	to	cv.glm	and	again	shows	that	the	fourth	parameterization	is	still	the
best.	These	measures	do	not	always	agree	so	nicely	but	it	is	great	when	they	do.

21.4	Bootstrap
Sometimes,	for	one	reason	or	another,	there	is	not	a	good	analytic	solution	to	a	problem	and	another	tactic
is	needed.	This	is	especially	true	for	measuring	uncertainty	for	confidence	intervals.	To	overcome	this,
Bradley	Efron	introduced	the	bootstrap	in	1979.	Since	then	the	bootstrap	has	grown	to	revolutionize
modern	statistics	and	is	indispensable.
The	idea	is	that	we	start	with	n	rows	of	data.	Some	statistic	(whether	a	mean,	regression	or	some

arbitrary	function)	is	applied	to	the	data.	Then	the	data	is	sampled,	creating	a	new	dataset.	This	new	set
still	has	n	rows	except	that	there	are	repeats	and	other	rows	are	entirely	missing.	The	statistic	is	applied
to	this	new	dataset.	The	process	is	repeated	R	times	(typically	around	1,200),	which	generates	an	entire
distribution	for	the	statistic.	This	distribution	can	then	be	used	to	find	the	mean	and	confidence	interval
(typically	95%)	for	the	statistic.
The	boot	package	is	a	very	robust	set	of	tools	for	making	the	bootstrap	easy	to	compute.	Some	care	is

needed	when	setting	up	the	function	call,	but	that	can	be	handled	easily	enough.
Starting	with	a	simple	example,	we	analyze	the	batting	average	of	Major	League	Baseball	as	a	whole

since	1990.	The	baseball	data	has	information	such	as	at	bats	(ab)	and	hits	(h).
Click	here	to	view	code	image

>	library(plyr)

>	baseball	<-	baseball[baseball$year	>=	1990,]

>	head(baseball)

id	year	stint	team	lg	g	ab	r	h	X2b	X3b	hr	rbi	sb

67412	alomasa02	1990	1	CLE	AL	132	445	60	129	26	2	9	66	4

67414	anderbr01	1990	1	BAL	AL	89	234	24	54	5	2	3	24	15

67422	baergca01	1990	1	CLE	AL	108	312	46	81	17	2	7	47	0

67424	baineha01	1990	1	TEX	AL	103	321	41	93	10	1	13	44	0

67425	baineha01	1990	2	OAK	AL	32	94	11	25	5	0	3	21	0

67442	bergmda01	1990	1	DET	AL	100	205	21	57	10	1	2	26	3

cs	bb	so	ibb	hbp	sh	sf	gidp	OBP

67412	1	25	46	2	2	5	6	10	0.3263598

67414	2	31	46	2	5	4	5	4	0.3272727

67422	2	16	57	2	4	1	5	4	0.2997033

67424	1	47	63	9	0	0	3	13	0.3773585

67425	2	20	17	1	0	0	4	4	0.3813559

67442	2	33	17	3	0	1	2	7	0.3750000

The	proper	way	to	compute	the	batting	average	is	to	divide	total	hits	by	total	at	bats.	This	means	we
cannot	simply	run	mean(h/ab)	and	sd(h/ab)	to	get	the	mean	and	standard	deviation.	Rather,	the
batting	average	is	calculated	as	sum(h)/sum(ab)	and	its	standard	deviation	is	not	easily	calculated.
This	problem	is	a	great	candidate	for	using	the	bootstrap.
We	calculate	the	overall	batting	average	with	the	original	data.	Then	we	sample	n	rows	with

replacement	and	calculate	the	batting	average	again.	We	do	this	repeatedly	until	a	distribution	is	formed.
Rather	that	doing	this	manually,	though,	we	use	boot.

The	first	argument	to	boot	is	the	data.	The	second	argument	is	the	function	that	is	to	be	computed	on	the
data.	This	function	must	take	at	least	two	arguments	(unless	sim=“parametric”	in	which	case	only
the	first	argument	is	necessary).	The	first	is	the	original	data	and	the	second	is	a	vector	of	indices,
frequencies	or	weights.	Additional	named	arguments	can	be	passed	into	the	function	from	boot.
Click	here	to	view	code	image

>	##	build	a	function	for	calculating	batting	average

>	#	data	is	the	data

>	#	boot	will	pass	varying	sets	of	indices

>	#	some	rows	will	be	represented	multiple	times	in	a	single	pass

>	#	other	rows	will	not	be	represented	at	all

>	#	on	average	about	63%	of	the	rows	will	be	present

>	#	this	function	is	called	repeatedly	by	boot

>	bat.avg	<-	function(data,	indices=1:NROW(data),	hits="h",	at.bats="ab")

+	{

+	sum(data[indices,	hits],	na.rm=TRUE)	/

+	sum(data[indices,	at.bats],	na.rm=TRUE)

+	}

>

>	#	test	it	on	the	original	data

>	bat.avg(baseball)

[1]	0.2745988

>	#	bootstrap	it

>	#	using	the	baseball	data,	call	bat.avg	1,200	times

>	#	pass	indices	to	the	function

>	avgBoot	<-	boot(data=baseball,	statistic=bat.avg,	R=1200,	stype="i")

>

>	#	print	original	measure	and	estimates	of	bias	and	standard	error

>	avgBoot

ORDINARY	NONPARAMETRIC	BOOTSTRAP

Call:

boot(data	=	baseball,	statistic	=	bat.avg,	R	=	1200,	stype	=	"i")

Bootstrap	Statistics	:

original	bias	std.	error

t1*	0.2745988	-2.740059e-05	0.0006569477

>	#	print	the	confidence	interval

>	boot.ci(avgBoot,	conf=.95,	type="norm")

BOOTSTRAP	CONFIDENCE	INTERVAL	CALCULATIONS

Based	on	1200	bootstrap	replicates

CALL	:

boot.ci(boot.out	=	avgBoot,	conf	=	0.95,	type	=	"norm")

Intervals	:

Level	Normal

95%	(0.2733,	0.2759)

Calculations	and	Intervals	on	Original	Scale

Visualizing	the	distribution	is	as	simple	as	plotting	a	histogram	of	the	replicate	results.	Figure	21.9
shows	the	histogram	for	the	batting	average	with	vertical	lines	two	standard	errors	on	either	side	of	the
original	estimate.	These	mark	the	(roughly)	95%	confidence	interval.
Click	here	to	view	code	image

>	ggplot()	+

+	geom_histogram(aes(x=avgBoot$t),	fill="grey",	color="grey")	+

+	geom_vline(xintercept=avgBoot$t0	+	c(-1,	1)*2*sqrt(var(avgBoot$t)),

+	linetype=2)

Figure	21.9	Histogram	of	the	batting	average	bootstrap.	The	vertical	lines	are	two	standard	errors
from	the	original	estimate	in	each	direction.	They	make	up	the	bootstrapped	95%	confidence	interval.

The	bootstrap	is	an	incredibly	powerful	tool	that	holds	a	great	deal	of	promise.	The	boot	package
offers	far	more	than	what	we	have	shown	here,	including	the	ability	to	bootstrap	time	series	and	censored
data.	The	beautiful	thing	about	the	bootstrap	is	its	near	universal	applicability.	It	can	be	used	in	just	about
any	situation	where	an	analytical	solution	is	impractical	or	impossible.	There	are	some	instances	where

the	bootstrap	is	inappropriate,	such	as	for	measuring	uncertainty	of	biased	estimators	like	those	from	the
lasso,	although	such	limitations	are	rare.

21.5	Stepwise	Variable	Selection
A	common,	though	becoming	increasingly	discouraged,	way	to	select	variables	for	a	model	is	stepwise
selection.	This	is	the	process	of	iteratively	adding	and	removing	variables	from	a	model	and	testing	the
model	at	each	step,	usually	using	AIC.
The	step	function	iterates	through	possible	models.	The	scope	argument	specifies	a	lower	and	upper

bound	on	possible	models.	The	direction	argument	specifies	whether	variables	are	just	added	into
the	model,	just	subtracted	from	the	model	or	added	and	subtracted	as	necessary.	When	run,	step	prints	out
all	the	iterations	it	has	taken	to	arrive	at	what	it	considers	the	optimal	model.
Click	here	to	view	code	image

>	#	the	lowest	model	is	the	null	model,	basically	the	straight	average

>	nullModel	<-	lm(ValuePerSqFt	~	1,	data=housing)

>	#	the	largest	model	we	will	accept

>	fullModel	<-	lm(ValuePerSqFt	~	Units	+	SqFt*Boro	+	Boro*Class,	data=housing)

>	#	try	different	models

>	#	start	with	nullModel

>	#	do	not	go	above	fullModel

>	#	work	in	both	directions

>	houseStep	<-	step(nullModel,

+	scope=list(lower=nullModel,	upper=fullModel),

+	direction="both")

Start:	AIC=22151.56

ValuePerSqFt	~	1

Df	Sum	of	Sq	RSS	AIC

+	Boro	4	7160206	5137931	19873

+	SqFt	1	1310379	10987758	21858

+	Class	3	1264662	11033475	21873

+	Units	1	778093	11520044	21982

<none>	12298137	22152

Step:	AIC=19872.83

ValuePerSqFt	~	Boro

Df	Sum	of	Sq	RSS	AIC

+	Class	3	242301	4895630	19752

+	SqFt	1	185635	4952296	19778

+	Units	1	83948	5053983	19832

<none>	5137931	19873

-	Boro	4	7160206	12298137	22152

Step:	AIC=19752.26

ValuePerSqFt	~	Boro	+	Class

Df	Sum	of	Sq	RSS	AIC

+	SqFt	1	182170	4713460	19655

+	Units	1	100323	4795308	19700

+	Boro:Class	9	111838	4783792	19710

<none>	4895630	19752

-	Class	3	242301	5137931	19873

-	Boro	4	6137845	11033475	21873

Step:	AIC=19654.91

ValuePerSqFt	~	Boro	+	Class	+	SqFt

Df	Sum	of	Sq	RSS	AIC

+	SqFt:Boro	4	113219	4600241	19599

+	Boro:Class	9	94590	4618870	19620

+	Units	1	37078	4676382	19636

<none>	4713460	19655

-	SqFt	1	182170	4895630	19752

-	Class	3	238836	4952296	19778

-	Boro	4	5480928	10194388	21668

Step:	AIC=19599.21

ValuePerSqFt	~	Boro	+	Class	+	SqFt	+	Boro:SqFt

Df	Sum	of	Sq	RSS	AIC

+	Boro:Class	9	68660	4531581	19578

+	Units	1	23472	4576769	19588

<none>	4600241	19599

-	Boro:SqFt	4	113219	4713460	19655

-	Class	3	258642	4858883	19737

Step:	AIC=19577.81

ValuePerSqFt	~	Boro	+	Class	+	SqFt	+	Boro:SqFt	+	Boro:Class

Df	Sum	of	Sq	RSS	AIC

+	Units	1	20131	4511450	19568

<none>	4531581	19578

-	Boro:Class	9	68660	4600241	19599

-	Boro:SqFt	4	87289	4618870	19620

Step:	AIC=19568.14

ValuePerSqFt	~	Boro	+	Class	+	SqFt	+	Units	+	Boro:SqFt	+	Boro:Class

Df	Sum	of	Sq	RSS	AIC

<none>	4511450	19568

-	Units	1	20131	4531581	19578

-	Boro:Class	9	65319	4576769	19588

-	Boro:SqFt	4	75955	4587405	19604

>	#	reveal	the	chosen	model

>	houseStep

Call:

lm(formula	=	ValuePerSqFt	~	Boro	+	Class	+	SqFt	+	Units	+	Boro:SqFt	+

Boro:Class,	data	=	housing)

Coefficients:

(Intercept)

4.848e+01

BoroBrooklyn

2.655e+01

BoroManhattan

8.672e+01

BoroQueens

1.999e+01

BoroStaten	Island

-1.132e+01

ClassR4-CONDOMINIUM

6.586e+00

ClassR9-CONDOMINIUM

4.553e+00

ClassRR-CONDOMINIUM

8.130e+00

SqFt

1.373e-05

Units

-8.296e-02

BoroBrooklyn:SqFt

3.798e-05

BoroManhattan:SqFt

1.594e-04

BoroQueens:SqFt

2.753e-06

BoroStaten	Island:SqFt

4.362e-05

BoroBrooklyn:ClassR4-CONDOMINIUM

1.933e+00

BoroManhattan:ClassR4-CONDOMINIUM

3.436e+01

BoroQueens:ClassR4-CONDOMINIUM

1.274e+01

BoroStaten	Island:ClassR4-CONDOMINIUM

NA

BoroBrooklyn:ClassR9-CONDOMINIUM

-3.440e+00

BoroManhattan:ClassR9-CONDOMINIUM

1.497e+01

BoroQueens:ClassR9-CONDOMINIUM

-9.967e+00

BoroStaten	Island:ClassR9-CONDOMINIUM

NA

BoroBrooklyn:ClassRR-CONDOMINIUM

-2.901e+01

BoroManhattan:ClassRR-CONDOMINIUM

-6.850e+00

BoroQueens:ClassRR-CONDOMINIUM

2.989e+01

BoroStaten	Island:ClassRR-CONDOMINIUM

NA

Ultimately,	step	decided	that	fullModel	was	optimal	with	the	lowest	AIC.	While	this	works,	it	is	a
bit	of	a	brute	force	method	and	has	its	own	theoretical	problems.	Lasso	regression	arguably	does	a	better
job	of	variable	selection	and	is	discussed	in	Section	22.1.

21.6	Conclusion
Determining	the	quality	of	a	model	is	an	important	step	in	the	model	building	process.	This	can	take	the
form	of	traditional	tests	of	fit	such	as	ANOVA	or	more	modern	techniques	like	cross-validation.	The
bootstrap	is	another	means	of	determining	model	uncertainty,	especially	for	models	where	confidence
intervals	are	impractical	to	calculate.	These	can	all	be	shaped	by	helping	select	which	variables	are
included	in	a	model	and	which	are	excluded.

22.	Regularization	and	Shrinkage

In	today’s	era	of	high	dimensional	(many	variables)	data,	methods	are	needed	to	prevent	overfitting.
Traditionally,	this	has	been	done	with	variable	selection,	as	described	in	Chapter	21,	although	with	a
large	number	of	variables	that	can	become	computationally	prohibitive.	These	methods	can	take	a	number
of	forms;	we	focus	on	regularization	and	shrinkage.	For	these	we	will	use	glmnet	from	the	glmnet
package	and	bayesglm	from	the	arm	package.

22.1	Elastic	Net
One	of	the	most	exciting	algorithms	to	be	developed	in	the	past	five	years	is	the	Elastic	Net,	which	is	a
dynamic	blending	of	lasso	and	ridge	regression.	The	lasso	uses	an	L1	penalty	to	perform	variable
selection	and	dimension	reduction,	while	the	ridge	uses	an	L2	penalty	to	shrink	the	coefficients	for	more
stable	predictions.	The	formula	for	the	Elastic	Net	is

where

where	λ	is	a	complexity	parameter	controlling	the	amount	of	shrinkage	(0	is	no	penalty	and	∞	is	complete
penalty)	and	α	regulates	how	much	of	the	solution	is	ridge	versus	lasso	with	α	=	0	being	complete	ridge
and	α	=	1	being	complete	lasso.	Γ	is	a	vector	of	penalty	factors—one	value	per	variable—that	multiplies
λ	for	fine	tuning	of	the	penalty	applied	to	each	variable;	again	0	is	no	penalty	and	∞	is	complete	penalty.
A	fairly	new	package	(this	is	a	relatively	new	algorithm)	is	glmnet,	which	fits	generalized	linear

models	with	the	Elastic	Net.	It	is	written	by	Trevor	Hastie,	Robert	Tibshirani	and	Jerome	Friedman	from
Stanford	University,	who	also	published	the	landmark	papers	on	the	Elastic	Net.
Because	it	is	designed	for	speed	and	larger,	sparser	data,	glmnet	requires	a	little	more	effort	to	use

than	most	other	modelling	functions	in	R.	Where	functions	like	lm	and	glm	take	a	formula	to	specify	the
model,	glmnet	requires	a	matrix	of	predictors	(including	an	intercept)	and	a	response	matrix.
Even	though	it	is	not	incredibly	high	dimensional,	we	will	look	at	the	American	Community	Survey

(ACS)	data	for	New	York	State.	We	will	throw	every	possible	predictor	into	the	model	and	see	which	are
selected.
Click	here	to	view	code	image

>	acs	<-	read.table("http://jaredlander.com/data/acs_ny.csv",	sep=",",

+	header=TRUE,	stringsAsFactors=FALSE)	Because	glmnet	requires	a	predictor	matrix,	it	will

be	good	to	have	a	convenient	way	of	building	that	matrix.	This	can	be	done	simply	enough

using	model.matrix,	which	at	its	most	basic	takes	in	a	formula	and	a	data.frame	and

returns	a	design	matrix.	As	an	example	we	create	some	fake	data	and	run	model.matrix	on

it.

Click	here	to	view	code	image

>	#	build	a	data.frame	where	the	first	three	columns	are	numeric

>	testFrame	<-

+	data.frame(First=sample(1:10,	20,	replace=TRUE),

+	Second=sample(1:20,	20,	replace=TRUE),

+	Third=sample(1:10,	20,	replace=TRUE),

+	Fourth=factor(rep(c("Alice",	"Bob",	"Charlie",	"David"),	5)),

+	Fifth=ordered(rep(c("Edward",	"Frank",	"Georgia",

+	"Hank",	"Isaac"),	4)),

+	Sixth=rep(c("a",	"b"),	10),	stringsAsFactors=F)

>	head(testFrame)

First	Second	Third	Fourth	Fifth	Sixth

1	3	11	2	Alice	Edward	a

2	4	1	10	Bob	Frank	b

3	5	19	2	Charlie	Georgia	a

4	1	1	2	David	Hank	b

5	7	19	4	Alice	Isaac	a

6	6	10	8	Bob	Edward	b

>	head(model.matrix(First	~	Second	+	Fourth	+	Fifth,	testFrame))

(Intercept)	Second	FourthBob	FourthCharlie	FourthDavid	Fifth.L

1	1	11	0	0	0	-0.6324555

2	1	1	1	0	0	-0.3162278

3	1	19	0	1	0	0.0000000

4	1	1	0	0	1	0.3162278

5	1	19	0	0	0	0.6324555

6	1	10	1	0	0	-0.6324555

Fifth.Q	Fifth.C	Fifth^4

1	0.5345225	-3.162278e-01	0.1195229

2	-0.2672612	6.324555e-01	-0.4780914

3	-0.5345225	-4.095972e-16	0.7171372

4	-0.2672612	-6.324555e-01	-0.4780914

5	0.5345225	3.162278e-01	0.1195229

6	0.5345225	-3.162278e-01	0.1195229

This	works	very	well	and	is	simple,	but	first	there	are	a	few	things	to	notice.	As	expected,	Fourth
gets	converted	into	indicator	variables	with	one	less	column	than	levels	in	Fourth.	Initially,	the
parameterization	of	Fifth	might	seem	odd,	as	there	is	one	less	column	than	there	are	levels,	but	their
values	are	not	just	1s	and	0s.	This	is	because	Fifth	is	an	ordered	factor	where	one	level	is
greater	or	less	than	another	level.
Not	creating	an	indicator	variable	for	the	base	level	of	a	factor	is	essential	for	most	linear

models	to	avoid	multicollinearity.1	However,	it	is	generally	considered	undesirable	for	the	predictor
matrix	to	be	designed	this	way	for	the	Elastic	Net.	It	is	possible	to	have	model.matrix	return	indicator
variables	for	all	levels	of	a	factor,	although	doing	so	can	take	some	creative	coding.2	To	make	the
process	easier	we	incorporated	a	solution	in	the	build.x	function	in	the	useful	package.

1.	This	is	a	characteristic	of	a	matrix	in	linear	algebra	where	the	columns	are	not	linearly	independent.	While	this	is	an	important	concept,
we	do	not	need	to	concern	ourselves	with	it	much	in	the	context	of	this	book.

2.	The	difficulty	is	evidenced	in	this	Stack	Overflow	question	asked	by	us:	http://stackoverflow.com/questions/4560459/all-levels-of-a-
factor-in-a-model-matrix-in-r/15400119

Click	here	to	view	code	image

>	library(useful)

>	#	always	use	all	levels

>	head(build.x(First	~	Second	+	Fourth	+	Fifth,	testFrame,

+	contrasts=FALSE))

(Intercept)	Second	FourthAlice	FourthBob	FourthCharlie	FourthDavid

1	1	11	1	0	0	0

2	1	1	0	1	0	0

3	1	19	0	0	1	0

4	1	1	0	0	0	1

5	1	19	1	0	0	0

../../../../../stackoverflow.com/questions/4560459/all-levels-of-a-factor-in-a-model-matrix-in-r/15400119

6	1	10	0	1	0	0

FifthEdward	FifthFrank	FifthGeorgia	FifthHank	FifthIsaac

1	1	0	0	0	0

2	0	1	0	0	0

3	0	0	1	0	0

4	0	0	0	1	0

5	0	0	0	0	1

6	1	0	0	0	0

>	#	just	use	all	levels	for	Fourth

>	head(build.x(First	~	Second	+	Fourth	+	Fifth,	testFrame,

+	contrasts=c(Fourth=FALSE,	Fifth=TRUE)))

(Intercept)	Second	FourthAlice	FourthBob	FourthCharlie	FourthDavid

1	1	11	1	0	0	0

2	1	1	0	1	0	0

3	1	19	0	0	1	0

4	1	1	0	0	0	1

5	1	19	1	0	0	0

6	1	10	0	1	0	0

Fifth.L	Fifth.Q	Fifth.C	Fifth^4

1	-0.6324555	0.5345225	-3.162278e-01	0.1195229

2	-0.3162278	-0.2672612	6.324555e-01	-0.4780914

3	0.0000000	-0.5345225	-4.095972e-16	0.7171372

4	0.3162278	-0.2672612	-6.324555e-01	-0.4780914

5	0.6324555	0.5345225	3.162278e-01	0.1195229

6	-0.6324555	0.5345225	-3.162278e-01	0.1195229

Using	build.x	appropriately	on	acs	builds	a	nice	predictor	matrix	for	use	in	glmnet.	We	control	the
desired	matrix	by	using	a	formula	for	our	model	specification	just	like	we	would	in	lm,	interactions
and	all.
Click	here	to	view	code	image

>	#	make	a	binary	Income	variable	for	building	a	logistic	regression

>	acs$Income	<-	with(acs,	FamilyIncome	>=	150000)

>

>	head(acs)

Acres	FamilyIncome	FamilyType	NumBedrooms	NumChildren	NumPeople

1	1-10	150	Married	4	1	3

2	1-10	180	Female	Head	3	2	4

3	1-10	280	Female	Head	4	0	2

4	1-10	330	Female	Head	2	1	2

5	1-10	330	Male	Head	3	1	2

6	1-10	480	Male	Head	0	3	4

NumRooms	NumUnits	NumVehicles	NumWorkers	OwnRent

1	9	Single	detached	1	0	Mortgage

2	6	Single	detached	2	0	Rented

3	8	Single	detached	3	1	Mortgage

4	4	Single	detached	1	0	Rented

5	5	Single	attached	1	0	Mortgage

6	1	Single	detached	0	0	Rented

YearBuilt	HouseCosts	ElectricBill	FoodStamp	HeatingFuel	Insurance

1	1950-1959	1800	90	No	Gas	2500

2	Before	1939	850	90	No	Oil	0

3	2000-2004	2600	260	No	Oil	6600

4	1950-1959	1800	140	No	Oil	0

5	Before	1939	860	150	No	Gas	660

6	Before	1939	700	140	No	Gas	0

Language	Income

1	English	FALSE

2	English	FALSE

3	Other	European	FALSE

4	English	FALSE

5	Spanish	FALSE

6	English	FALSE

>	#	build	predictor	matrix

>	#	do	not	include	the	intercept	as	glmnet	will	add	that	automatically

>	acsX	<-	build.x(Income	~	NumBedrooms	+	NumChildren	+	NumPeople	+

+	NumRooms	+	NumUnits	+	NumVehicles	+	NumWorkers	+

+	OwnRent	+	YearBuilt	+	ElectricBill	+	FoodStamp	+

+	HeatingFuel	+	Insurance	+	Language	-	1,

+	data=acs,	contrasts=FALSE)

>

>	#	check	class	and	dimensions

>	class(acsX)

[1]	"matrix"

>	dim(acsX)

[1]	22745	44

>	#	view	the	top	left	and	top	right	of	the	data

>	topleft(acsX,	c=6)

NumBedrooms	NumChildren	NumPeople	NumRooms	NumUnitsMobile	home

1	4	1	3	9	0

2	3	2	4	6	0

3	4	0	2	8	0

4	2	1	2	4	0

5	3	1	2	5	0

NumUnitsSingle	attached

1	0

2	0

3	0

4	0

5	1

>	topright(acsX,	c=6)

Insurance	LanguageAsian	Pacific	LanguageEnglish	LanguageOther

1	2500	0	1	0

2	0	0	1	0

3	6600	0	0	0

4	0	0	1	0

5	660	0	0	0

LanguageOther	European	LanguageSpanish

1	0	0

2	0	0

3	1	0

4	0	0

5	0	1

>	#	build	response	predictor

>	acsY	<-	build.y(Income	~	NumBedrooms	+	NumChildren	+	NumPeople	+

+	NumRooms	+	NumUnits	+	NumVehicles	+	NumWorkers	+

+	OwnRent	+	YearBuilt	+	ElectricBill	+	FoodStamp	+

+	HeatingFuel	+	Insurance	+	Language	-	1,	data=acs)

>

>	head(acsY)

[1]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE

>	tail(acsY)

[1]	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE

Now	that	the	data	is	properly	stored	we	can	run	glmnet.	As	seen	in	Equation	22.1,	λ	controls	the
amount	of	shrinkage.	By	default	glmnet	fits	the	regularization	path	on	100	different	values	of	λ.	The
decision	of	which	is	best	then	falls	upon	the	user	with	cross-validation	being	a	good	measure.	Fortunately
the	glmnet	package	has	a	function,	cv.glmnet,	that	computes	the	cross-validation	automatically.	By
default	α	=	1,	meaning	only	the	lasso	is	calculated.	Selecting	the	best	α	requires	an	additional	layer	of
cross-validation.
Click	here	to	view	code	image

>	library(glmnet)

>	set.seed(1863561)

>	#	run	the	cross-validated	glmnet

>	acsCV1	<-	cv.glmnet(x=acsX,	y=acsY,	family="binomial",	nfold=5)	The	most	important

information	returned	from	cv.glmnet	are	the	cross-validation	and	which	value	of	λ

minimizes	the	cross-validation	error.	Additionally,	it	also	returns	the	largest	value	of	λ

with	a	cross-validation	error	that	is	within	one	standard	error	of	the	minimum.	Theory

suggests	that	the	simpler	model,	even	though	it	is	slightly	less	accurate,	should	be

preferred	due	to	its	parsimony.	The	cross-validation	errors	for	differing	values	of	λ	are

seen	in	Figure	22.1.	The	top	row	of	numbers	indicates	how	many	variables	(factor	levels

are	counted	as	individual	variables)	are	in	the	model	for	a	given	value	of	log(λ).	The

dots	represent	the	cross-validation	error	at	that	point	and	the	vertical	lines	are	the

confidence	interval	for	the	error.	The	leftmost	vertical	line	indicates	the	value	of	λ

where	the	error	is	minimized	and	the	rightmost	vertical	line	is	the	next	largest	value	of

λ	error	that	is	within	one	standard	error	of	the	minimum.

>	acsCV1$lambda.min

[1]	0.0005258299

>	acsCV1$lambda.1se

[1]	0.006482677

>	plot(acsCV1)

Figure	22.1	Cross-validation	curve	for	the	glmnet	fitted	on	the	American	Community	Survey	data.
The	top	row	of	numbers	indicates	how	many	variables	(factor	levels	are	counted	as	individual

variables)	are	in	the	model	for	a	given	value	of	log(λ).	The	dots	represent	the	cross-validation	error	at
that	point	and	the	vertical	lines	are	the	confidence	interval	for	the	error.	The	leftmost	vertical	line

indicates	the	value	of	λ	where	the	error	is	minimized	and	the	rightmost	vertical	line	is	the	next	largest
value	of	λ	error	that	is	within	one	standard	error	of	the	minimum.

Extracting	the	coefficients	is	done	as	with	any	other	model,	by	using	coef,	except	that	a	specific	level
of	λ	should	be	specified;	otherwise,	the	entire	path	is	returned.	Dots	represent	variables	that	were	not
selected.
Click	here	to	view	code	image

>	coef(acsCV1,	s="lambda.1se")

45	x	1	sparse	Matrix	of	class	"dgCMatrix"

1

(Intercept)	-5.0552170103

NumBedrooms	0.0542621380

NumChildren	.

NumPeople	.

NumRooms	0.1102021934

NumUnitsMobile	home	-0.8960712560

NumUnitsSingle	attached	.

NumUnitsSingle	detached	.

NumVehicles	0.1283171343

NumWorkers	0.4806697219

OwnRentMortgage	.

OwnRentOutright	0.2574766773

OwnRentRented	-0.1790627645

YearBuilt15	.

YearBuilt1940-1949	-0.0253908040

YearBuilt1950-1959	.

YearBuilt1960-1969	.

YearBuilt1970-1979	-0.0063336086

YearBuilt1980-1989	0.0147761442

YearBuilt1990-1999	.

YearBuilt2000-2004	.

YearBuilt2005	.

YearBuilt2006	.

YearBuilt2007	.

YearBuilt2008	.

YearBuilt2009	.

YearBuilt2010	.

YearBuiltBefore	1939	-0.1829643904

ElectricBill	0.0018200312

FoodStampNo	0.7071289660

FoodStampYes	.

HeatingFuelCoal	-0.2635263281

HeatingFuelElectricity	.

HeatingFuelGas	.

HeatingFuelNone	.

HeatingFuelOil	.

HeatingFuelOther	.

HeatingFuelSolar	.

HeatingFuelWood	-0.7454315355

Insurance	0.0004973315

LanguageAsian	Pacific	0.3606176925

LanguageEnglish	.

LanguageOther	.

LanguageOther	European	0.0389641675

LanguageSpanish	.

It	might	seem	weird	that	some	levels	of	a	factor	were	selected	and	others	were	not,	but	it
ultimately	makes	sense	because	the	lasso	eliminates	variables	that	are	highly	correlated	with	each	other.
Another	thing	to	notice	is	that	there	are	no	standard	errors	and	hence	no	confidence	intervals	for	the

coefficients.	The	same	is	true	of	any	predictions	made	from	a	glmnet	model.	This	is	due	to	the	theoretical
properties	of	the	lasso	and	ridge,	and	is	an	open	problem.	Recent	advancements	have	led	to	the	ability	to
perform	significance	tests	on	lasso	regressions,	although	the	existing	R	package	requires	that	the	model	be
fitted	using	the	lars	package,	not	glmnet,	at	least	until	the	research	extends	the	testing	ability	to	cover	the
Elastic	Net	as	well.
Visualizing	where	variables	enter	the	model	along	the	λ	path	can	be	illuminating	and	is	seen	in	Figure

22.2.	Each	line	represents	a	coefficient’s	value	at	different	values	of	λ.	The	leftmost	vertical	line
indicates	the	value	of	λ	where	the	error	is	minimized	and	the	rightmost	vertical	line	is	the	next	largest
value	of	λ	error	that	is	within	one	standard	error	of	the	minimum.
Click	here	to	view	code	image

>	#	plot	the	path

>	plot(acsCV1$glmnet.fit,	xvar="lambda")

>	#	add	in	vertical	lines	for	the	optimal	values	of	lambda

>	abline(v=log(c(acsCV1$lambda.min,	acsCV1$lambda.1se)),	lty=2)

Figure	22.2	Coefficient	profile	plot	of	the	glmnet	model	fitted	on	the	ACS	data.	Each	line	represents
a	coefficient’s	value	at	different	values	of	λ.	The	leftmost	vertical	line	indicates	the	value	of	λ	where
the	error	is	minimized	and	the	rightmost	vertical	line	is	the	next	largest	value	of	λ	error	that	is	within

one	standard	error	of	the	minimum.

Setting	α	to	0	causes	the	results	to	be	from	the	ridge.	In	this	case,	every	variable	is	kept	in	the	model
but	is	just	shrunk	closer	to	0.	Notice	in	Figure	22.4	that	for	every	value	of	λ	there	are	still	all	the
variables,	just	at	different	sizes.	Figure	22.3	shows	the	cross-validation	curve.
Click	here	to	view	code	image

>	#	fit	the	ridge	model

>	set.seed(71623)

>	acsCV2	<-	cv.glmnet(x=acsX,	y=acsY,	family="binomial",

+	nfold=5,	alpha=0)

>	#	look	at	the	lambda	values

>	acsCV2$lambda.min

[1]	0.01396651

>	acsCV2$lambda.1se

[1]	0.04681018

>	#	look	at	the	coefficients

>	coef(acsCV2,	s="lambda.1se")

45	x	1	sparse	Matrix	of	class	"dgCMatrix"

1

(Intercept)	-4.8197810188

NumBedrooms	0.1027963294

NumChildren	0.0308893447

NumPeople	-0.0203037177

NumRooms	0.0918136969

NumUnitsMobile	home	-0.8470874369

NumUnitsSingle	attached	0.1714879712

NumUnitsSingle	detached	0.0841095530

NumVehicles	0.1583881396

NumWorkers	0.3811651456

OwnRentMortgage	0.1985621193

OwnRentOutright	0.6480126218

OwnRentRented	-0.2548147427

YearBuilt15	-0.6828640400

YearBuilt1940-1949	-0.1082928305

YearBuilt1950-1959	0.0602009151

YearBuilt1960-1969	0.0081133932

YearBuilt1970-1979	-0.0816541923

YearBuilt1980-1989	0.1593567244

YearBuilt1990-1999	0.1218212609

YearBuilt2000-2004	0.1768690849

YearBuilt2005	0.2923210334

YearBuilt2006	0.2309044444

YearBuilt2007	0.3765019705

YearBuilt2008	-0.0648999685

YearBuilt2009	0.2382560699

YearBuilt2010	0.3804282473

YearBuiltBefore	1939	-0.1648659906

ElectricBill	0.0018576432

FoodStampNo	0.3886474609

FoodStampYes	-0.3886013004

HeatingFuelCoal	-0.7005075763

HeatingFuelElectricity	-0.1370927269

HeatingFuelGas	0.0873505398

HeatingFuelNone	-0.5983944720

HeatingFuelOil	0.1241958119

HeatingFuelOther	-0.1872564710

HeatingFuelSolar	-0.0870480957

HeatingFuelWood	-0.6699727752

Insurance	0.0003881588

LanguageAsian	Pacific	0.3982023046

LanguageEnglish	-0.0851389569

LanguageOther	0.1804675114

LanguageOther	European	0.0964194255

LanguageSpanish	-0.1274688978

>	#	plot	the	cross-validation	error	path

>	plot(acsCV2)

Figure	22.3	Cross-validation	curve	for	ridge	regression	fitted	on	ACS	data.
Click	here	to	view	code	image

>	#	plot	the	coefficient	path

>	plot(acsCV2$glmnet.fit,	xvar="lambda")

>	abline(v=log(c(acsCV2$lambda.min,	acsCV2$lambda.1se)),	lty=2)

Figure	22.4	Coefficient	profile	plot	for	ridge	regression	fitted	on	ACS	data.

Finding	the	optimal	value	of	α	requires	an	additional	layer	of	cross-validation,	and	unfortunately
glmnet	does	not	do	that	automatically.	This	will	require	us	to	run	cv.glmnet	at	various	levels	of	α,	which
will	take	a	fairly	large	chunk	of	time	if	performed	sequentially,	making	this	a	good	time	to	use
parallelization.	The	most	straightforward	way	to	run	code	in	parallel	is	to	the	use	the	parallel,	doParallel
and	foreach	packages.
Click	here	to	view	code	image

>	library(parallel)

>	library(doParallel)

Loading	required	package:	iterators	First,	we	build	some	helper	objects	to	speed	along	the

process.	When	a	two-layered	cross-validation	is	run,	an	observation	should	fall	in	the

same	fold	each	time,	so	we	build	a	vector	specifying	fold	membership.	We	also	specify	the

sequence	of	α	values	that	foreach	will	loop	over.	It	is	generally	considered	better	to

lean	toward	the	lasso	rather	than	the	ridge,	so	we	consider	only	α	values	greater	than

0.5.

Click	here	to	view	code	image

>	#	set	the	seed	for	repeatability	of	random	results

>	set.seed(2834673)

>

>	#	create	folds

>	#	we	want	observations	to	be	in	the	same	fold	each	time	it	is	run

>	theFolds	<-	sample(rep(x=1:5,	length.out=nrow(acsX)))

>

>	#	make	sequence	of	alpha	values

>	alphas	<-	seq(from=.5,	to=1,	by=.05)	Before	running	a	parallel	job,	a	cluster	(even	on	a

single	machine)	must	be	started	and	registered	with	makeCluster	and	registerDoParallel.

After	the	job	is	done	the	cluster	should	be	stopped	with	stopCluster.	Setting

.errorhandling	to	"remove"	means	that	if	an	error	occurs,	that	iteration	will	be	skipped.

Setting	.inorder	to	FALSE	means	that	the	order	of	combining	the	results	does	not	matter

and	they	can	be	combined	whenever	returned,	which	yields	significant	speed	improvements.

Because	we	are	using	the	default	combination	function,	list,	which	takes	multiple

arguments	at	once,	we	can	speed	up	the	process	by	setting	.multicombine	to	TRUE.	We

specify	in	.packages	that	glmnet	should	be	loaded	on	each	of	the	workers,	again	leading	to

performance	improvements.	The	operator	%dopar%	tells	foreach	to	work	in	parallel.	Parallel

computing	can	be	dependent	on	the	environment,	so	we	explicitly	load	some	variables	into

the	foreach	environment	using	.export,	namely,	acsX,	acsY,	alphas	and	theFolds.

Click	here	to	view	code	image

>	#	set	the	seed	for	repeatability	of	random	results

>	set.seed(5127151)

>

>	#	start	a	cluster	with	two	workers

>	cl	<-	makeCluster(2)

>	#	register	the	workers

>	registerDoParallel(cl)

>

>	#	keep	track	of	timing

>	before	<-	Sys.time()

>

>	#	build	foreach	loop	to	run	in	parallel

>	##	several	arguments

>	acsDouble	<-	foreach(i=1:length(alphas),	.errorhandling="remove",

+	.inorder=FALSE,	.multicombine=TRUE,

+	.export=c("acsX",	"acsY",	"alphas",	"theFolds"),

+	.packages="glmnet")	%dopar%

+	{

+	print(alphas[i])

+	cv.glmnet(x=acsX,	y=acsY,	family="binomial",	nfolds=5,

+	foldid=theFolds,	alpha=alphas[i])

+	}

>

>	#	stop	timing

>	after	<-	Sys.time()

>

>	#	make	sure	to	stop	the	cluster	when	done

>	stopCluster(cl)

>

>	#	time	difference

>	#	this	will	depend	on	speed,	memory	&	number	of	cores	of	the	machine

>	after	-	before

Time	difference	of	1.182743	mins	The	results	in	acsDouble	should	be	a	list	with	11

instances	of	cv.glmnet	objects.	We	can	use	sapply	to	check	the	class	of	each	element	of

the	list.

Click	here	to	view	code	image

>	sapply(acsDouble,	class)

[1]	"cv.glmnet"	"cv.glmnet"	"cv.glmnet"	"cv.glmnet"	"cv.glmnet"

[6]	"cv.glmnet"	"cv.glmnet"	"cv.glmnet"	"cv.glmnet"	"cv.glmnet"

[11]	"cv.glmnet"

The	goal	is	to	find	the	best	combination	of	λ	and	α,	so	we	need	to	build	some	code	to	extract	the	cross-

validation	error	(including	the	confidence	interval)	and	λ	from	each	element	of	the	list.
Click	here	to	view	code	image

>	#	function	for	extracting	info	from	cv.glmnet	object

>	extractGlmnetInfo	<-	function(object)

+	{

+	#	find	lambdas

+	lambdaMin	<-	object$lambda.min

+	lambda1se	<-	object$lambda.1se

+	#	figure	out	where	those	lambdas	fall	in	the	path

+	whichMin	<-	which(object$lambda	==	lambdaMin)

+	which1se	<-	which(object$lambda	==	lambda1se)

+	#	build	a	one	line	data.frame	with	each	of	the	selected	lambdas	and

+	#	its	corresponding	error	figures

+	data.frame(lambda.min=lambdaMin,	error.min=object$cvm[whichMin],

+	lambda.1se=lambda1se,	error.1se=object$cvm[which1se])

+	}

>

>	#	apply	that	function	to	each	element	of	the	list

>	#	combine	it	all	into	a	data.frame

>	alphaInfo	<-	Reduce(rbind,	lapply(acsDouble,	extractGlmnetInfo))

>

>	#	could	also	be	done	with	ldply	from	plyr

>	alphaInfo2	<-	plyr::ldply(acsDouble,	extractGlmnetInfo)

>	identical(alphaInfo,	alphaInfo2)

[1]	TRUE

>	#	make	a	column	listing	the	alphas

>	alphaInfo$Alpha	<-	alphas

>	alphaInfo

lambda.min	error.min	lambda.1se	error.1se	Alpha

1	0.0009582333	0.8220268	0.008142621	0.8275240	0.50

2	0.0009560545	0.8220229	0.007402382	0.8273831	0.55

3	0.0008763832	0.8220198	0.006785517	0.8272666	0.60

4	0.0008089692	0.8220180	0.006263554	0.8271680	0.65

5	0.0008244253	0.8220170	0.005816158	0.8270837	0.70

6	0.0007694636	0.8220153	0.005428414	0.8270087	0.75

7	0.0007213721	0.8220140	0.005585323	0.8276055	0.80

8	0.0006789385	0.8220131	0.005256774	0.8275457	0.85

9	0.0006412197	0.8220125	0.004964731	0.8274930	0.90

10	0.0006074713	0.8220120	0.004703430	0.8274462	0.95

11	0.0005770977	0.8220121	0.004468258	0.8274054	1.00

Now	that	we	have	this	nice	unintelligible	set	of	numbers,	we	should	plot	it	to	easily	pick	out	the	best
combination	of	α	and	λ,	which	is	where	the	plot	shows	minimum	error.	Figure	22.5	indicates	that	by	using
the	one	standard	error	methodology,	the	optimal	α	and	λ	are	0.75	and	0.0054284,	respectively.
Click	here	to	view	code	image

>	##	prepare	the	data.frame	for	plotting	multiple	pieces	of	information

>	library(reshape2)

>	library(stringr)

>

>	#	melt	the	data	into	long	format

>	alphaMelt	<-	melt(alphaInfo,	id.vars="Alpha",	value.name="Value",

+	variable.name="Measure")

>	alphaMelt$Type	<-	str_extract(string=alphaMelt$Measure,

+	pattern="(min)|(1se)")

>

>	#	some	housekeeping

>	alphaMelt$Measure	<-	str_replace(string=alphaMelt$Measure,

+	pattern="\\.(min|1se)",

+	replacement="")

>	alphaCast	<-	dcast(alphaMelt,	Alpha	+	Type	~	Measure,

+	value.var="Value")

>

>	ggplot(alphaCast,	aes(x=Alpha,	y=error))	+

+	geom_line(aes(group=Type))	+

+	facet_wrap(~Type,	scales="free_y",	ncol=1)	+

+	geom_point(aes(size=lambda))

Figure	22.5	Plot	of	α	versus	error	for	glmnet	cross-validation	on	the	ACS	data.	The	lower	the	error
the	better.	The	size	of	the	dot	represents	the	value	of	lambda.	The	top	pane	shows	the	error	using	the
one	standard	error	methodology	(0.0054)	and	the	bottom	pane	shows	the	error	by	selecting	the	λ	(6e-
04)	that	minimizes	the	error.	In	the	top	pane	the	error	is	minimized	for	an	α	of	0.75	and	in	the	bottom

pane	the	optimal	α	is	0.95.

Now	that	we	have	found	the	optimal	value	of	α	(0.75),	we	refit	the	model	and	check	the	results.
Click	here	to	view	code	image

>	set.seed(5127151)

>	acsCV3	<-	cv.glmnet(x=acsX,	y=acsY,	family="binomial",	nfold=5,

+	alpha=alphaInfo$Alpha[which.min(

+	alphaInfo$error.1se

+)])	After	fitting	the	model	we	check	the	diagnostic	plots	shown	in	Figures	22.6	and

22.7.

Click	here	to	view	code	image

>	plot(acsCV3)

>	plot(acsCV3$glmnet.fit,	xvar	=	"lambda")

>	abline(v	=	log(c(acsCV3$lambda.min,	acsCV3$lambda.1se)),	lty	=	2)

Figure	22.6	Cross-validation	curve	for	glmnet	with	α	=	0.75.

Figure	22.7	Coefficient	path	for	glmnet	with	α=	0.75.

Viewing	the	coefficient	plot	for	a	glmnet	object	is	not	yet	implemented	in	coefplot,	so	we	build	it
manually.	Figure	22.8	shows	that	the	number	of	workers	in	the	family	and	not	being	on	foodstamps	are	the
strongest	indicators	of	having	high	income,	and	using	coal	heat	and	living	in	a	mobile	home	are	the
strongest	indicators	of	having	low	income.	There	are	no	standard	errors	because	glmnet	does	not
calculate	them.
Click	here	to	view	code	image

>	theCoef	<-	as.matrix(coef(acsCV3,	s="lambda.1se"))

>	coefDF	<-	data.frame(Value=theCoef,	Coefficient=rownames(theCoef))

>	coefDF	<-	coefDF[nonzeroCoef(coef(acsCV3,	s="lambda.1se")),]

>	ggplot(coefDF,	aes(x=X1,	y=reorder(Coefficient,	X1)))	+

+	geom_vline(xintercept=0,	color="grey",	linetype=2)	+

+	geom_point(color="blue")	+

+	labs(x="Value",	y="Coefficient",	title="Coefficient	Plot")

Figure	22.8	Coefficient	plot	for	glmnet	on	ACS	data.	This	shows	that	the	number	of	workers	in	the
family	and	not	being	on	foodstamps	are	the	strongest	indicators	of	having	high	income,	and	using	coal
heat	and	living	in	a	mobile	home	are	the	strongest	indicators	of	having	low	income.	There	are	no

standard	errors	because	glmnet	does	not	calculate	them.

22.2	Bayesian	Shrinkage
For	Bayesians,	shrinkage	can	come	in	the	form	of	weakly	informative	priors.3	This	can	be	particularly
useful	when	a	model	is	built	on	data	that	does	not	have	a	large	enough	number	of	rows	for	some
combinations	of	the	variables.	To	illustrate	this,	we	blatantly	steal	an	example	from	Andrew	Gelman’s
and	Jennifer	Hill’s	book,	Data	Analysis	Using	Regression	and	Multilevel/Hierarchical	Models,
examining	voter	preference.	The	data	have	been	cleaned	up	and	posted	at
http://jaredlander.com/data/ideo.rdata.

3.	From	a	Bayesian	point	of	view,	the	penalty	terms	in	the	Elastic	Net	could	be	considered	log-priors	as	well.

Click	here	to	view	code	image

>	download.data('http://jaredlander.com/data/ideo.rdata',

'data/ideo.rdata')

>	load("data/ideo.rdata")

>	head(ideo)

Year	Vote	Age	Gender	Race

1	1948	democrat	NA	male	white

2	1948	republican	NA	female	white

3	1948	democrat	NA	female	white

4	1948	republican	NA	female	white

5	1948	democrat	NA	male	white

6	1948	republican	NA	female	white

Education	Income

1	grade	school	of	less	(0-8	grades)	34	to	67	percentile

2	high	school	(12	grades	or	fewer,	incl	96	to	100	percentile

3	high	school	(12	grades	or	fewer,	incl	68	to	95	percentile

4	some	college(13	grades	or	more,but	no	96	to	100	percentile

5	some	college(13	grades	or	more,but	no	68	to	95	percentile

6	high	school	(12	grades	or	fewer,	incl	96	to	100	percentile

Religion

1	protestant

2	protestant

3	catholic	(roman	catholic)

4	protestant

5	catholic	(roman	catholic)

6	protestant

To	show	the	need	for	shrinkage,	we	fit	a	separate	model	for	each	election	year	and	then	display	the
resulting	coefficients	for	the	black	level	of	Race.	We	do	this	using	dplyr,	which	returns	a	two-
column	data.frame	where	the	second	column	is	a	list-column.
Click	here	to	view	code	image

>	##	fit	a	bunch	of	models

>	library(dplyr)

>	results	<-	ideo	%>%

+	#	group	the	data	by	year

+	group_by(Year)	%>%

+	#	fit	a	model	to	each	grouping	of	data

+	do(Model=glm(Vote	~	Race	+	Income	+	Gender	+	Education,

+	data=.,

+	family=binomial(link="logit")))

>	#	Model	is	a	list-column	so	we	treat	it	as	a	column

>	#	give	the	list	good	names

>	names(results$Model)	<-	as.character(results$Year)

>

>	results

Source:	local	data	frame	[14	x	2]

../../../../../jaredlander.com/data/ideo.rdata

Groups:	<by	row>

#	A	tibble:	14	×	2

Year	Model

*	<dbl>	<list>

1	1948	<S3:	glm>

2	1952	<S3:	glm>

3	1956	<S3:	glm>

4	1960	<S3:	glm>

5	1964	<S3:	glm>

6	1968	<S3:	glm>

7	1972	<S3:	glm>

8	1976	<S3:	glm>

9	1980	<S3:	glm>

10	1984	<S3:	glm>

11	1988	<S3:	glm>

12	1992	<S3:	glm>

13	1996	<S3:	glm>

14	2000	<S3:	glm>

Now	that	we	have	all	of	these	models,	we	can	plot	the	coefficients	with	multiplot.	Figure	22.9	shows
the	coefficient	for	the	black	level	of	Race	for	each	model.	The	result	for	the	model	from	1964	is
clearly	far	different	from	the	other	models.	Figure	22.9	shows	standard	errors,	which	threw	off	the	scale
so	much	that	we	had	to	restrict	the	plot	window	to	still	see	variation	in	the	other	points.	Fitting	a	series	of
models	like	this	and	then	plotting	the	coefficients	over	time	has	been	termed	the	“secret	weapon”	by
Gelman	due	to	its	usefulness	and	simplicity.
Click	here	to	view	code	image

>	library(coefplot)

>	#	get	the	coefficient	information

>	voteInfo	<-	multiplot(results$Model,

+	coefficients="Raceblack",	plot=FALSE)

>	head(voteInfo)

Value	Coefficient	HighInner	LowInner	HighOuter

1	0.07119541	Raceblack	0.6297813	-0.4873905	1.1883673

2	-1.68490828	Raceblack	-1.3175506	-2.0522659	-0.9501930

3	-0.89178359	Raceblack	-0.5857195	-1.1978476	-0.2796555

4	-1.07674848	Raceblack	-0.7099648	-1.4435322	-0.3431811

5	-16.85751152	Raceblack	382.1171424	-415.8321655	781.0917963

6	-3.65505395	Raceblack	-3.0580572	-4.2520507	-2.4610605

LowOuter	Model

1	-1.045976	1948

2	-2.419624	1952

3	-1.503912	1956

4	-1.810316	1960

5	-814.806819	1964

6	-4.849047	1968

>	#	plot	it	restricting	the	window	to	(-20,	10)

>	multiplot(results$Model,

+	coefficients="Raceblack",	secret.weapon=TRUE)	+

+	coord_flip(xlim=c(-20,	10))

Figure	22.9	Plot	showing	the	coefficient	for	the	black	level	of	Race	for	each	of	the	models.	The
coefficient	for	1964	has	a	standard	error	that	is	orders	of	magnitude	bigger	than	for	the	other	years.	It	is

so	out	of	proportion	that	the	plot	had	to	be	truncated	to	still	see	variation	in	the	other	data	points.

By	comparing	the	model	for	1964	to	the	other	models,	we	can	see	that	something	is	clearly	wrong	with
the	estimate.	To	fix	this	we	put	a	prior	on	the	coefficients	in	the	model.	The	simplest	way	to	do	this	is	to
use	Gelman’s	bayesglm	function	in	the	arm	package.	By	default	it	sets	a	Cauchy	prior	with	scale	2.5.
Because	the	arm	package	namespace	interferes	with	the	coefplot	namespace,	we	do	not	load	the
package	but	rather	just	call	the	function	using	the	::	operator.
Click	here	to	view	code	image

>	resultsB	<-	ideo	%>%

+	#	group	the	data	by	year

+	group_by(Year)	%>%

+	#	fit	a	model	to	each	grouping	of	data

+	do(Model=arm::bayesglm(Vote	~	Race	+	Income	+	Gender	+	Education,

+	data=.,

+	family=binomial(link="logit"),

+	prior.scale=2.5,	prior.df=1))

>	#	give	the	list	good	names

>	names(resultsB$Model)	<-	as.character(resultsB$Year)

>

>	#	build	the	coefficient	plot

>	multiplot(resultsB$Model,	coefficients="Raceblack",	secret.weapon=TRUE)	Simply	adding

Cauchy	priors	dramatically	shrinks	both	the	estimate	and	the	standard	error	of	the

coefficient,	as	seen	in	Figure	22.10.	Remember,	the	models	were	fitted	independently,

meaning	that	it	was	simply	the	prior	that	did	the	fix	and	not	information	from	the	other

years.	It	turns	out	that	the	survey	conducted	in	1964	underrepresented	black	respondents,

which	led	to	a	highly	inaccurate	measure.

Figure	22.10	Coefficient	plot	(the	secret	weapon)	for	the	black	level	of	Race	for	each	of	the
models	with	a	Cauchy	prior.	A	simple	change	like	adding	a	prior	dramatically	changed	the	point

estimate	and	standard	error.

The	default	prior	is	a	Cauchy	with	scale	2.5,	which	is	the	same	as	a	t	distribution	with	1	degree	of
freedom.	These	arguments,	prior.scale	and	prior.df,	can	be	changed	to	represent	a	t	distribution
with	any	degrees	of	freedom.	Setting	both	to	infinity	(Inf)	makes	them	normal	priors,	which	is	identical
to	running	an	ordinary	glm.

22.3	Conclusion
Regularization	and	shrinkage	play	important	roles	in	modern	statistics.	They	help	fit	models	to	poorly
designed	data,	and	prevent	overfitting	of	complex	models.	The	former	is	done	using	Bayesian	methods,	in
this	case	the	simple	bayesglm;	the	latter	is	done	with	the	lasso,	ridge	or	Elastic	Net	using	glmnet.	Both
are	useful	tools	to	have.

23.	Nonlinear	Models

A	key	tenet	of	linear	models	is	a	linear	relationship,	which	is	actually	reflected	in	the	coefficients,	not	the
predictors.	While	this	is	a	nice	simplifying	assumption,	in	reality	nonlinearity	often	holds.	Fortunately,
modern	computing	makes	fitting	nonlinear	models	not	much	more	difficult	than	fitting	linear	models.
Typical	implementations	are	nonlinear	least	squares,	splines,	decision	trees	and	random	forests	and
generalized	additive	models	(GAMs).

23.1	Nonlinear	Least	Squares
The	nonlinear	least	squares	model	uses	squared	error	loss	to	find	the	optimal	parameters	of	a	generic
(nonlinear)	function	of	the	predictors.

A	common	application	for	a	nonlinear	model	is	using	the	location	of	WiFi-connected	devices	to
determine	the	location	of	the	WiFi	hotspot.	In	a	problem	like	this,	the	locations	of	the	devices	in	a	two-
dimensional	grid	are	known,	and	they	report	their	distance	to	the	hotspot	but	with	some	random	noise	due
to	the	fluctuation	of	the	signal	strength.	A	sample	dataset	is	available	at
http://jaredlander.com/data/wifi.rdata.
Click	here	to	view	code	image

>	load("data/wifi.rdata")

>	head(wifi)

Distance	x	y

1	21.87559	28.60461	68.429628

2	67.68198	90.29680	29.155945

3	79.25427	83.48934	0.371902

4	44.73767	61.39133	80.258138

5	39.71233	19.55080	83.805855

6	56.65595	71.93928	65.551340

This	dataset	is	easy	to	plot	with	ggplot2.	The	x-	and	y-axes	are	the	devices’	positions	in	the	grid,	and
the	color	represents	how	far	the	device	is	from	the	hotspot,	blue	being	closer	and	red	being	farther.
Click	here	to	view	code	image

>	library(ggplot2)

>	ggplot(wifi,	aes(x=x,	y=y,	color=Distance))	+	geom_point()	+

+	scale_color_gradient2(low="blue",	mid="white",	high="red",

+	midpoint=mean(wifi$Distance))

../../../../../jaredlander.com/data/wifi.rdata

Figure	23.1	Plot	of	WiFi	device	position	colored	by	distance	from	the	hotspot.	Blue	points	are	closer
and	red	points	are	farther.

The	distance	between	a	device	i	and	the	hotspot	is	

where	βx	and	βy	are	the	unknown	x-	and	y-coordinates	of	the	hotspot.
A	standard	function	in	R	for	computing	nonlinear	least	squares	is	nls.	Since	these	problems	are	usually

intractable,	numerical	methods	are	used,	which	can	be	sensitive	to	starting	values,	so	best	guesses	need	to
be	specified.	The	function	takes	a	formula—just	likelm—except	the	equation	and	coefficients	are
explicitly	specified.	The	starting	values	for	the	coefficients	are	given	in	a	named	list.
Click	here	to	view	code	image

>	#	specify	the	square	root	model

>	#	starting	values	are	at	the	center	of	the	grid

>	wifiMod1	<-	nls(Distance	~	sqrt((betaX	-	x)^2	+	(betaY	-	y)^2),

+	data=wifi,	start=list(betaX=50,	betaY=50))

>	summary(wifiMod1)

Formula:	Distance	~	sqrt((betaX	-	x)^2	+	(betaY	-	y)^2)

Parameters:

Estimate	Std.	Error	t	value	Pr(>|t|)

betaX	17.851	1.289	13.85	<2e-16	***

betaY	52.906	1.476	35.85	<2e-16	***

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	13.73	on	198	degrees	of	freedom

Number	of	iterations	to	convergence:	6

Achieved	convergence	tolerance:	3.846e-06

This	estimates	that	the	hotspot	is	located	at	(17.8506668,	52.9056438).	Plotting	this	in	Figure	23.2,	we
see	that	the	hotspot	is	located	amidst	the	“close”	blue	points,	indicating	a	good	fit.
Click	here	to	view	code	image

>	ggplot(wifi,	aes(x=x,	y=y,	color=Distance))	+	geom_point()	+

+	scale_color_gradient2(low="blue",	mid="white",	high="red",

+	midpoint=mean(wifi$Distance))	+

+	geom_point(data=as.data.frame(t(coef(wifiMod1))),

+	aes(x=betaX,	y=betaY),	size=5,	color="green")

Figure	23.2	Plot	of	WiFi	devices.	The	hotspot	is	the	large	green	dot.	Its	position	in	the	middle	of	the
blue	dots	indicates	a	good	fit.

23.2	Splines
A	smoothing	spline	can	be	used	to	fit	a	smooth	to	data	that	exhibit	nonlinear	behavior	and	even	make
predictions	on	new	data.	A	spline	is	a	function	f	that	is	a	linear	combination	of	N	functions	(one	for	each
unique	data	point)	that	are	transformations	of	the	variable	x.

The	goal	is	to	find	the	function	f	that	minimizes	

where	λ	is	the	smoothing	parameter.	Small	λs	make	for	a	rough	smooth	and	large	λs	make	for	a	smooth

smooth.
This	is	accomplished	in	R	using	smooth.spline.	It	returns	a	list	of	items	where	x	holds	the	unique

values	of	the	data,	y	are	the	corresponding	fitted	values	and	df	is	the	degrees	of	freedom	used.	We
demonstrate	with	the	diamonds	data.
Click	here	to	view	code	image

>	data(diamonds)

>	#	fit	with	a	few	different	degrees	of	freedom

>	#	the	degrees	of	freedom	must	be	greater	than	1

>	#	but	less	than	the	number	of	unique	x	values	in	the	data

>	diaSpline1	<-	smooth.spline(x=diamonds$carat,	y=diamonds$price)

>	diaSpline2	<-	smooth.spline(x=diamonds$carat,	y=diamonds$price,

+	df=2)

>	diaSpline3	<-	smooth.spline(x=diamonds$carat,	y=diamonds$price,

+	df=10)

>	diaSpline4	<-	smooth.spline(x=diamonds$carat,	y=diamonds$price,

+	df=20)

>	diaSpline5	<-	smooth.spline(x=diamonds$carat,	y=diamonds$price,

+	df=50)

>	diaSpline6	<-	smooth.spline(x=diamonds$carat,	y=diamonds$price,

+	df=100)	To	plot	these	we	extract	the	information	from	the	objects,	build	a	data.frame,

and	then	add	a	new	layer	on	top	of	the	standard	scatterplot	of	the	diamonds	data.	Figure

23.3	shows	this.	Fewer	degrees	of	freedom	leads	to	straighter	fits	while	higher	degrees	of

freedom	leads	to	more	interpolating	lines.

Click	here	to	view	code	image

>	get.spline.info	<-	function(object)

+	{

+	data.frame(x=object$x,	y=object$y,	df=object$df)

+	}

>

>	library(plyr)

>	#	combine	results	into	one	data.frame

>	splineDF	<-	ldply(list(diaSpline1,	diaSpline2,	diaSpline3,	diaSpline4,

+	diaSpline5,	diaSpline6),	get.spline.info)

>	head(splineDF)

x	y	df

1	0.20	361.9112	101.9053

2	0.21	397.1761	101.9053

3	0.22	437.9095	101.9053

4	0.23	479.9756	101.9053

5	0.24	517.0467	101.9053

6	0.25	542.2470	101.9053

>	g	<-	ggplot(diamonds,	aes(x=carat,	y=price))	+	geom_point()

>	g	+	geom_line(data=splineDF,

+	aes(x=x,	y=y,	color=factor(round(df,	0)),	group=df))	+

+	scale_color_discrete("Degrees	of	\nFreedom")

Figure	23.3	Diamonds	data	with	a	number	of	different	smoothing	splines.

Making	predictions	on	new	data	is	done,	as	usual,	with	predict.
Another	type	of	spline	is	the	basis	spline,	which	creates	new	predictors	based	on	transformations	of	the

original	predictors.	The	best	basis	spline	is	the	natural	cubic	spline	because	it	creates	smooth	transitions
at	interior	breakpoints	and	forces	linear	behavior	beyond	the	endpoints	of	the	input	data.	A	natural	cubic
spline	with	K	breakpoints	(knots)	is	made	of	K	basis	functions	

where

and	ξ	is	the	location	of	a	knot	and	t+	denotes	the	positive	part	of	t.

While	the	math	may	seem	complicated,	natural	cubic	splines	are	easily	fitted	using	ns	from	the	splines
package.	It	takes	a	predictor	variable	and	the	number	of	new	variables	to	return.

Click	here	to	view	code	image

>	library(splines)

>	head(ns(diamonds$carat,	df=1))

1

[1,]	0.00500073

[2,]	0.00166691

[3,]	0.00500073

[4,]	0.01500219

[5,]	0.01833601

[6,]	0.00666764

>	head(ns(diamonds$carat,	df=2))

1	2

[1,]	0.013777685	-0.007265289

[2,]	0.004593275	-0.002422504

[3,]	0.013777685	-0.007265289

[4,]	0.041275287	-0.021735857

[5,]	0.050408348	-0.026525299

[6,]	0.018367750	-0.009684459

>	head(ns(diamonds$carat,	df=3))

1	2	3

[1,]	-0.03025012	0.06432178	-0.03404826

[2,]	-0.01010308	0.02146773	-0.01136379

[3,]	-0.03025012	0.06432178	-0.03404826

[4,]	-0.08915435	0.19076693	-0.10098109

[5,]	-0.10788271	0.23166685	-0.12263116

[6,]	-0.04026453	0.08566738	-0.04534740

>	head(ns(diamonds$carat,	df=4))

1	2	3	4

[1,]	3.214286e-04	-0.04811737	0.10035562	-0.05223825

[2,]	1.190476e-05	-0.01611797	0.03361632	-0.01749835

[3,]	3.214286e-04	-0.04811737	0.10035562	-0.05223825

[4,]	8.678571e-03	-0.13796549	0.28774667	-0.14978118

[5,]	1.584524e-02	-0.16428790	0.34264579	-0.17835789

[6,]	7.619048e-04	-0.06388053	0.13323194	-0.06935141

These	new	predictors	can	then	be	used	in	any	model	just	like	any	other	predictor.	More	knots	means	a
more	interpolating	fit.	Plotting	the	result	of	a	natural	cubic	spline	overlaid	on	data	is	easy	with	ggplot2.
Figure	23.4a	shows	this	for	the	diamonds	data	and	six	knots,	and	Figure	23.4b	shows	it	with	three
knots.	Notice	that	having	six	knots	fits	the	data	more	smoothly.
Click	here	to	view	code	image

>	g	+	stat_smooth(method="lm",	formula=y	~	ns(x,	6),	color="blue")

>	g	+	stat_smooth(method="lm",	formula=y	~	ns(x,	3),	color="red")

Figure	23.4	Scatterplot	of	price	versus	carat	with	a	regression	fitted	on	a	natural	cubic	spline.

23.3	Generalized	Additive	Models
Another	method	for	fitting	nonlinear	models	is	generalized	additive	models	(GAMs),	which	fit	a	separate
smoothing	function	on	each	predictor	independently.	As	the	name	implies,	these	are	general	and	work	in	a
number	of	regression	contexts,	meaning	the	response	can	be	continuous,	binary,	count	and	other	types.
Like	many	of	the	best	modern	techniques	in	machine	learning,	this	is	the	brainchild	of	Trevor	Hastie	and
Robert	Tibshirani	based	on	work	from	John	Chambers,	the	creator	of	S,	the	precursor	of	R.
They	are	specified	as	

where	X1,	X2,...,	Xp	are	ordinary	predictors	and	the	fj’s	are	any	smoothing	functions.
The	mgcv	package	fits	GAMs	with	a	syntax	very	similar	to	glm.	To	illustrate	we	use	data	on	credit

scores	from	the	University	of	California–Irvine	Machine	Learning	Repository	at
http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).
The	data	is	stored	in	a	space-separated	text	file	with	no	headers	where	categorical	data	have	been	labeled
with	non-obvious	codes.	This	arcane	file	format	goes	back	to	a	time	when	data	storage	was	more	limited
but	has,	for	some	reason,	persisted.
The	first	step	is	reading	the	data	like	any	other	file	except	that	the	column	names	need	to	be	specified.

Click	here	to	view	code	image

>	#	make	vector	of	column	names

>	creditNames	<-	c("Checking",	"Duration",	"CreditHistory",	"Purpose",

+	"CreditAmount",	"Savings",	"Employment",

+	"InstallmentRate",	"GenderMarital",	"OtherDebtors",

+	"YearsAtResidence",	"RealEstate",	"Age",

+	"OtherInstallment",	"Housing",	"ExistingCredits",

+	"Job",	"NumLiable",	"Phone",	"Foreign",	"Credit")

>

>	#	use	read.table	to	read	the	file

../../../../../archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)

>	#	specify	that	headers	are	not	included

>	#	the	col.names	are	from	creditNames

>	theURL	<-	"http://archive.ics.uci.edu/ml/machine-learning-

databases/statlog/german/german.data"

>	credit	<-	read.table(theURL,	sep="	",	header=FALSE,

+	col.names=creditNames,	stringsAsFactors=FALSE)

>

>	head(credit)

Checking	Duration	CreditHistory	Purpose	CreditAmount	Savings

1	A11	6	A34	A43	1169	A65

2	A12	48	A32	A43	5951	A61

3	A14	12	A34	A46	2096	A61

4	A11	42	A32	A42	7882	A61

5	A11	24	A33	A40	4870	A61

6	A14	36	A32	A46	9055	A65

Employment	InstallmentRate	GenderMarital	OtherDebtors

1	A75	4	A93	A101

2	A73	2	A92	A101

3	A74	2	A93	A101

4	A74	2	A93	A103

5	A73	3	A93	A101

6	A73	2	A93	A101

YearsAtResidence	RealEstate	Age	OtherInstallment	Housing

1	4	A121	67	A143	A152

2	2	A121	22	A143	A152

3	3	A121	49	A143	A152

4	4	A122	45	A143	A153

5	4	A124	53	A143	A153

6	4	A124	35	A143	A153

ExistingCredits	Job	NumLiable	Phone	Foreign	Credit

1	2	A173	1	A192	A201	1

2	1	A173	1	A191	A201	2

3	1	A172	2	A191	A201	1

4	1	A173	2	A191	A201	1

5	2	A173	2	A191	A201	2

6	1	A172	2	A192	A201	1

Now	comes	the	unpleasant	task	of	translating	the	codes	to	meaningful	data.	To	save	time	and	effort	we
decode	only	the	variables	we	care	about	for	a	simple	model.	The	simplest	way	of	decoding	is	to	create
named	vectors	where	the	name	is	the	code	and	the	value	is	the	new	data.
Click	here	to	view	code	image

>	#	before

>	head(credit[,	c("CreditHistory",	"Purpose",	"Employment",	"Credit")])

CreditHistory	Purpose	Employment	Credit

1	A34	A43	A75	1

2	A32	A43	A73	2

3	A34	A46	A74	1

4	A32	A42	A74	1

5	A33	A40	A73	2

6	A32	A46	A73	1

>	creditHistory	<-	c(A30="All	Paid",	A31="All	Paid	This	Bank",

+	A32="Up	To	Date",	A33="Late	Payment",

+	A34="Critical	Account")

>

>	purpose	<-	c(A40="car	(new)",	A41="car	(used)",

+	A42="furniture/equipment",	A43="radio/television",

+	A44="domestic	appliances",	A45="repairs",	A46="education",

+	A47="(vacation	-	does	not	exist?)",	A48="retraining",

+	A49="business",	A410="others")

>

>	employment	<-	c(A71="unemployed",	A72="<	1	year",	A73="1	-	4	years",

+	A74="4	-	7	years",	A75=">=	7	years")

>

>	credit$CreditHistory	<-	creditHistory[credit$CreditHistory]

>	credit$Purpose	<-	purpose[credit$Purpose]

>	credit$Employment	<-	employment[credit$Employment]

>

>	#	code	credit	as	good/bad

>	credit$Credit	<-	ifelse(credit$Credit	==	1,	"Good",	"Bad")

>	#	make	good	the	base	levels

>	credit$Credit	<-	factor(credit$Credit,	levels=c("Good",	"Bad"))

>

>	#	after

>	head(credit[,	c("CreditHistory",	"Purpose",	"Employment",	"Credit")])

CreditHistory	Purpose	Employment	Credit

1	Critical	Account	radio/television	>=	7	years	Good

2	Up	To	Date	radio/television	1	-	4	years	Bad

3	Critical	Account	education	4	-	7	years	Good

4	Up	To	Date	furniture/equipment	4	-	7	years	Good

5	Late	Payment	car	(new)	1	-	4	years	Bad

6	Up	To	Date	education	1	-	4	years	Good	Viewing	the	data	will	help	give	a	sense	of	the

relationship	between	the	variables.	Figures	23.5	and	23.6	show	that	there	is	not	a	clear

linear	relationship,	so	a	GAM	may	be	appropriate.

Click	here	to	view	code	image

>	library(useful)

>	ggplot(credit,	aes(x=CreditAmount,	y=Credit))	+

+	geom_jitter(position	=	position_jitter(height	=	.2))	+

+	facet_grid(CreditHistory	~	Employment)	+

+	xlab("Credit	Amount")	+

+	theme(axis.text.x=element_text(angle=90,	hjust=1,	vjust=.5))	+

+	scale_x_continuous(labels=multiple)	Click	here	to	view	code	image

>	ggplot(credit,	aes(x=CreditAmount,	y=Age))	+

+	geom_point(aes(color=Credit))	+

+	facet_grid(CreditHistory	~	Employment)	+

+	xlab("Credit	Amount")	+

+	theme(axis.text.x=element_text(angle=90,	hjust=1,	vjust=.5))	+

+	scale_x_continuous(labels=multiple)	Using	gam	is	very	similar	to	using	other	modelling

functions	like	lm	and	glm	that	take	a	formula	argument.	The	difference	is	that	continuous

variables,	such	as	CreditAmount	and	Age,	can	be	transformed	using	a	nonparametric

smoothing	function	such	as	a	spline	or	tensor	product.1

1.	Tensor	products	are	a	way	of	representing	transformation	functions	of	predictors,	possibly	measured	on	different	units.

Figure	23.5	Plot	of	good	credit	versus	bad	based	on	credit	amount,	credit	history	and	employment
status.

Figure	23.6	Plot	of	age	versus	credit	amount	faceted	by	credit	history	and	employment	status,	color
coded	by	credit.

Click	here	to	view	code	image

>	library(mgcv)

>	#	fit	a	logistic	GAM

>	#	apply	a	tensor	product	on	CreditAmount	and	a	spline	on	Age

>	creditGam	<-	gam(Credit	~	te(CreditAmount)	+	s(Age)	+	CreditHistory	+

+	Employment,

+	data=credit,	family=binomial(link="logit"))

>	summary(creditGam)

Family:	binomial

Link	function:	logit

Formula:

Credit	~	te(CreditAmount)	+	s(Age)	+	CreditHistory	+	Employment

Parametric	coefficients:

Estimate	Std.	Error	z	value	Pr(>|z|)

(Intercept)	0.662840	0.372377	1.780	0.07507

CreditHistoryAll	Paid	This	Bank	0.008412	0.453267	0.019	0.98519

CreditHistoryCritical	Account	-1.809046	0.376326	-4.807	1.53e-06

CreditHistoryLate	Payment	-1.136008	0.412776	-2.752	0.00592

CreditHistoryUp	To	Date	-1.104274	0.355208	-3.109	0.00188

Employment>=	7	years	-0.388518	0.240343	-1.617	0.10598

Employment1	-	4	years	-0.380981	0.204292	-1.865	0.06220

Employment4	-	7	years	-0.820943	0.252069	-3.257	0.00113

Employmentunemployed	-0.092727	0.334975	-0.277	0.78192

(Intercept)	.

CreditHistoryAll	Paid	This	Bank

CreditHistoryCritical	Account	***

CreditHistoryLate	Payment	**

CreditHistoryUp	To	Date	**

Employment>=	7	years

Employment1	-	4	years	.

Employment4	-	7	years	**

Employmentunemployed

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Approximate	significance	of	smooth	terms:

edf	Ref.df	Chi.sq	p-value

te(CreditAmount)	2.415	2.783	20.896	7.26e-05	***

s(Age)	1.932	2.435	7.383	0.0495	*

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

R-sq.(adj)	=	0.0922	Deviance	explained	=	8.57%

UBRE	=	0.1437	Scale	est.	=	1	n	=	1000

The	smoother	is	fitted	automatically	in	the	fitting	process	and	can	be	viewed	after	the	fact.	Figure	23.7
shows	CreditAmount	and	Age	with	their	applied	smoothers,	a	tensor	product	and	a	spline,
respectively.	The	gray,	shaded	area	represents	the	confidence	interval	for	the	smooths.
Click	here	to	view	code	image

>	plot(creditGam,	select=1,	se=TRUE,	shade=TRUE)

>	plot(creditGam,	select=2,	se=TRUE,	shade=TRUE)

Figure	23.7	The	smoother	result	for	fitting	a	GAM	on	credit	data.	The	shaded	region	represents	two
pointwise	standard	deviations.

23.4	Decision	Trees
A	relatively	modern	technique	for	fitting	nonlinear	models	is	the	decision	tree.	Decision	trees	work	for
both	regression	and	classification	by	performing	binary	splits	on	the	recursive	predictors.
For	regression	trees,	the	predictors	are	partitioned	into	M	regions	R1,	R2,...,	RM	and	the	response	y	is

modeled	as	the	average	for	a	region	with	
where

is	the	average	y	value	for	the	region.
The	method	for	classification	trees	is	similar.	The	predictors	are	partitioned	into	M	regions	and	the

proportion	of	each	class	in	each	of	the	regions,	 mk,	is	calculated	as	

where	Nm	is	the	number	of	items	in	region	m	and	the	summation	counts	the	number	of	observations	of
class	k	in	region	m.
Trees	can	be	calculated	with	the	rpart	function	in	rpart.	Like	other	modelling	functions,	it	uses	the

formula	interface	but	does	not	work	with	interactions.
Click	here	to	view	code	image

>	library(rpart)

>	creditTree	<-	rpart(Credit	~	CreditAmount	+	Age	+

+	CreditHistory	+	Employment,	data=credit)	Printing	the	object	displays	the	tree	in	text

form.

Click	here	to	view	code	image

>	creditTree

n=	1000

node),	split,	n,	loss,	yval,	(yprob)

*	denotes	terminal	node

1)	root	1000	300	Good	(0.7000000	0.3000000)

2)	CreditHistory=Critical	Account,Late	Payment,Up	To

Date	911	247	Good	(0.7288694	0.2711306)

4)	CreditAmount<	7760.5	846	211	Good	(0.7505910	0.2494090)	*

5)	CreditAmount>=7760.5	65	29	Bad	(0.4461538	0.5538462)

10)	Age>=29.5	40	17	Good	(0.5750000	0.4250000)

20)	Age<	38.5	19	4	Good	(0.7894737	0.2105263)	*

21)	Age>=38.5	21	8	Bad	(0.3809524	0.6190476)	*

11)	Age<	29.5	25	6	Bad	(0.2400000	0.7600000)	*

3)	CreditHistory=All	Paid,All	Paid	This	Bank	89	36

Bad	(0.4044944	0.5955056)	*

The	printed	tree	has	one	line	per	node.	The	first	node	is	the	root	for	all	the	data	and	shows	that	there
are	1,000	observations	of	which	300	are	considered	“Bad.”	The	next	level	of	indentation	is	the	first	split,
which	is	on	CreditHistory.	One	direction—where	CreditHistory	equals	either	“Critical
Account,”	“Late	Payment”	or	“Up	To	Date”—contains	911	observations,	of	which	247	are	considered
“Bad.”	This	has	a	73%	probability	of	having	good	credit.	The	other	direction—where
CreditHistory	equals	either	“All	Paid”	or	“All	Paid	This	Bank”—has	a	60%	probability	of	having
bad	credit.	The	next	level	of	indentation	represents	the	next	split.
Continuing	to	read	the	results	this	way	could	be	laborious;	plotting	will	be	easier.	Figure	23.8	shows

the	splits.	Nodes	split	to	the	left	meet	the	criteria	while	nodes	to	the	right	do	not.	Each	terminal	node	is
labelled	by	the	predicted	class,	either	“Good”	or	“Bad.”	The	percentage	is	read	from	left	to	right,	with
the	probability	of	being	“Good”	on	the	left.
Click	here	to	view	code	image

>	library(rpart.plot)

>	rpart.plot(creditTree,	extra=4)	While	trees	are	easy	to	interpret	and	fit	data	nicely,

they	tend	to	be	unstable	with	high	variance	due	to	overfitting.	A	slight	change	in	the

training	data	can	cause	a	significant	difference	in	the	model.

Figure	23.8	Display	of	decision	tree	based	on	credit	data.	Nodes	split	to	the	left	meet	the	criteria
while	nodes	to	the	right	do	not.	Each	terminal	node	is	labelled	by	the	predicted	class,	either	“Good”	or

“Bad.”	The	percentage	is	read	from	left	to	right,	with	the	probability	of	being	“Good”	on	the	left.

23.5	Boosted	Trees
Boosting	is	a	popular	way	to	improve	predictions,	particularly	for	decision	trees.	The	main	idea	is	that
the	model,	or	rather	models,	learn	slowly	through	sequential	fitting.	First,	a	model	is	fit	on	the	data	with
all	observations	having	equal	weight.	Then	the	observations	for	which	the	model	performed	poorly	are
upweighted	and	the	observations	for	which	the	model	performed	well	are	downweighted	and	a	new
model	is	fit.	This	process	is	repeated	a	set	number	of	times	and	the	final	model	is	the	accumulation	of
these	little	models.
The	two	most	common	functions	for	fitting	boosted	trees	are	gbm	from	the	gbm	package	and	xgboost

from	the	xgboost	package.	In	recent	years	xgboost	has	proven	to	be	the	more	popular	of	the	two.	To	see	it
in	action	we	look	at	the	credit	data.	Unlike	with	rpart	we	cannot	use	the	formula	interface	and	must
build	a	predictor	matrix	and	response	vector.	Unlike	with	glm,	the	response	must	be	0	and	1	and	not
a	logical	vector.
Click	here	to	view	code	image

>	library(useful)

>	#	the	formula	that	describes	the	model

>	#	we	do	not	need	an	intercept	since	it	is	a	tree

>	creditFormula	<-	Credit	~	CreditHistory	+	Purpose	+	Employment	+

+	Duration	+	Age	+	CreditAmount	-	1

>	#	we	use	all	levels	of	the	categorical	variables	since	it	is	a	tree

>	creditX	<-	build.x(creditFormula,	data=credit,	contrasts=FALSE)

>	creditY	<-	build.y(creditFormula,	data=credit)

>	#	convert	the	logical	vector	to	[0,1]

>	creditY	<-	as.integer(relevel(creditY,	ref='Bad'))	-	1

The	predictor	matrix	and	response	vector	are	supplied	to	the	data	and	label	arguments,
respectively.	The	nrounds	argument	determines	the	number	of	passes	on	the	data.	Too	many	passes	can
lead	to	overfitting,	so	thought	must	go	into	this	number.	The	learning	rate	is	controlled	by	eta,	with	a
lower	number	leading	to	less	overfitting.	The	maximum	depth	of	the	trees	is	indicated	by	max.depth.
Parallel	processing	is	automatically	enabled	if	OpenMP	is	present,	and	the	number	of	parallel	threads	is
controlled	by	the	nthread	argument.	We	specify	the	type	of	model	with	the	objective	argument.
Click	here	to	view	code	image

>	library(xgboost)

>	creditBoost	<-	xgboost(data=creditX,	label=creditY,	max.depth=3,

+	eta=.3,	nthread=4,	nrounds=3,

+	objective="binary:logistic")

[1]	train-error:0.261000

[2]	train-error:0.262000

[3]	train-error:0.255000

By	default	xgboost	prints	the	evaluation	metric	result	for	each	round.	As	the	number	of	rounds
increases	the	metric	gets	better	as	well.
Click	here	to	view	code	image

>	creditBoost20	<-	xgboost(data=creditX,	label=creditY,	max.depth=3,

+	eta=.3,	nthread=4,	nrounds=20,

+	objective="binary:logistic")

[1]	train-error:0.261000

[2]	train-error:0.262000

[3]	train-error:0.255000

[4]	train-error:0.258000

[5]	train-error:0.260000

[6]	train-error:0.257000

[7]	train-error:0.256000

[8]	train-error:0.248000

[9]	train-error:0.246000

[10]	train-error:0.227000

[11]	train-error:0.230000

[12]	train-error:0.230000

[13]	train-error:0.227000

[14]	train-error:0.223000

[15]	train-error:0.223000

[16]	train-error:0.218000

[17]	train-error:0.217000

[18]	train-error:0.216000

[19]	train-error:0.211000

[20]	train-error:0.211000

The	model	generated	by	xgboost	is	saved	to	disk	as	a	binary	file,	with	xgboost.model	as	the	default
name.	The	file	name	can	be	set	with	the	save_name	argument.
Visualizing	the	boosted	tree	is	achieved	using	the	htmlwidgets-based	DiagrammeR	package	through

the	xgb.plot.multi.trees.	This	function	attempts	to	amalgamate	the	numerous	trees	into	one	cohesive
visualization.	The	feature_names	argument	provides	labels	for	the	nodes.	Figure	23.9	shows	that	for
each	node	one	or	more	questions	are	asked,	depending	on	how	each	tree	was	fit.
Click	here	to	view	code	image

>	xgb.plot.multi.trees(creditBoost,	feature_names=colnames(creditX))	The	plot	can	be	a	bit

hard	to	make	sense	of,	so	another	good	visualization	is	a	variable	importance	plot,	which

shows	how	much	each	feature	contributes	to	the	model.	Figure	23.10	shows	that	Duration	and

CreditAmount	are	the	most	important	variables	to	the	model.

Click	here	to	view	code	image

>	xgb.plot.importance(xgb.importance(creditBoost,

+	feature_names=colnames(creditX)))	Boosted	trees	provide	a	fast	way	to	get	better	results

than	a	regular	decision	tree,	and	xgboost	is	a	fast	implementation.

Figure	23.9	Projection	of	boosted	trees	onto	one	tree.

Figure	23.10	Variable	importance	plot	for	a	boosted	tree	fit	to	the	credit	data.	It	shows	that
Duration	and	CreditAmount	are	the	most	important	variables	to	the	model.

23.6	Random	Forests
Random	forests	are	a	type	of	ensemble	method.	An	ensemble	method	is	a	process	in	which	numerous
models	are	fitted,	and	the	results	are	combined	for	stronger	predictions.	While	this	provides	great
predictions,	inference	and	explainability	are	often	limited.	Random	forests	are	composed	of	a	number	of
decision	trees	where	the	included	predictors	and	observations	are	chosen	at	random.	The	name	comes
from	randomly	building	trees	to	make	a	forest.
In	the	case	of	the	credit	data	we	will	use	CreditHistory,	Purpose,	Employment,	Duration,

Age	and	CreditAmount.	Some	trees	will	have	just	CreditHistory	and	Employment,	another
will	have	Purpose,	Employment	and	Age,	while	another	will	have	CreditHistory,	Purpose,
Employment	and	Age.	All	of	these	different	trees	cover	all	the	bases	and	make	for	a	random	forest	that
should	have	strong	predictive	power.
Fitting	the	random	forest	is	done	with	randomForest	from	the	randomForest	package.	Normally,

randomForest	can	be	used	with	a	formula,	but	categorical	variables	must	be	stored	as	factors.	To

avoid	having	to	convert	the	variables,	we	provide	individual	predictor	and	response	matrices.	This
requirement	for	factor	variables	is	due	to	the	author’s	(Andy	Liaw)	frustration	with	the	formula
interface.	He	even	warned	users	“I	will	take	the	formula	interface	away.”	We	have	seen,	for	this	function,
that	using	matrices	is	generally	faster	than	formulas.
Click	here	to	view	code	image

>	library(randomForest)

>	creditFormula	<-	Credit	~	CreditHistory	+	Purpose	+	Employment	+

+	Duration	+	Age	+	CreditAmount	-	1

>	#	we	use	all	levels	of	the	categorical	variables	since	it	is	a	tree

>	creditX	<-	build.x(creditFormula,	data=credit,	contrasts=FALSE)

>	creditY	<-	build.y(creditFormula,	data=credit)

>

>	#	fit	the	random	forest

>	creditForest	<-	randomForest(x=creditX,	y=creditY)

>

>	creditForest

Call:

randomForest(x	=	creditX,	y	=	creditY)

Type	of	random	forest:	classification

Number	of	trees:	500

No.	of	variables	tried	at	each	split:	4

OOB	estimate	of	error	rate:	27.4%

Confusion	matrix:

Good	Bad	class.error

Good	644	56	0.0800000

Bad	218	82	0.7266667

The	displayed	information	shows	that	500	trees	were	built	and	four	variables	were	assessed	at	each
split;	the	confusion	matrix	shows	that	this	is	not	exactly	the	best	fit,	and	that	there	is	room	for
improvement.
Due	to	the	similarity	between	boosted	trees	and	random	forests,	it	is	possible	to	use	xgboost	to	build	a

random	forest	by	tweaking	a	few	arguments.	We	fit	1000	trees	in	parallel
(num_parallel_tree=1000)	and	set	the	row	(subsample=0.5)	and	column
(colsample_bytree=0.5)	sampling	to	be	done	at	random.
Click	here	to	view	code	image

>	#	build	the	response	matrix

>	creditY2	<-	as.integer(relevel(creditY,	ref='Bad'))	-	1

>	#	Fit	the	random	forest

>	boostedForest	<-	xgboost(data=creditX,	label=creditY2,	max_depth=4,

+	num_parallel_tree=1000,

+	subsample=0.5,	colsample_bytree=0.5,

+	nrounds=3,	objective="binary:logistic")

[1]	train-error:0.282000

[2]	train-error:0.283000

[3]	train-error:0.279000

In	this	case	the	error	rate	for	the	boosted-derived	random	forest	is	about	the	same	as	for	the	one	fit	by
randomForest.	Increasing	the	nrounds	argument	will	improve	the	error	rate,	although	it	could	also	lead
to	overfitting.	A	nice	benefit	of	using	xgboost	is	that	we	can	visualize	the	resulting	random	forest	as	a
single	tree	as	shown	in	Figure	23.11.
Click	here	to	view	code	image

>	xgb.plot.multi.trees(boostedForest,	feature_names=colnames(creditX))

Figure	23.11	Projection	of	boosted	random	forest	trees	onto	one	tree.

23.7	Conclusion
With	modern	computing	power,	the	previously	necessary	simplifying	assumptions	of	linearity	and
normality	are	starting	to	give	way	to	nonparametric	techniques.	Popular	implementations	are	nonlinear
least	squares,	splines,	generalized	additive	models,	decision	trees	and	random	forests.	As	with	every
other	method,	these	all	haves	their	benefits	and	costs.

24.	Time	Series	and	Autocorrelation

A	big	part	of	statistics,	particularly	for	financial	and	econometric	data,	is	analyzing	time	series,	data	that
are	autocorrelated	over	time.	That	is,	one	observation	depends	on	previous	observations	and	the	order
matters.	Special	care	needs	to	be	taken	to	account	for	this	dependency.	R	has	a	number	of	built-in
functions	and	packages	to	make	working	with	time	series	easier.

24.1	Autoregressive	Moving	Average
One	of	the	most	common	ways	of	fitting	time	series	models	is	to	use	either	autoregressive	(AR),	moving
average	(MA)	or	both	(ARMA).	These	models	are	well	represented	in	R	and	are	fairly	easy	to	work	with.
The	formula	for	an	ARMA(p,	q)	is

where

is	white	noise,	which	is	essentially	random	data.
AR	models	can	be	thought	of	as	linear	regressions	of	the	current	value	of	the	time	series	against

previous	values.	MA	models	are,	similarly,	linear	regressions	of	the	current	value	of	the	time	series
against	current	and	previous	residuals.
For	an	illustration,	we	will	make	use	of	the	World	Bank	API	to	download	gross	domestic	product

(GDP)	for	a	number	of	countries	from	1960	through	2011.
Click	here	to	view	code	image

>	#	load	the	World	Bank	API	package

>library(WDI)

>	#	pull	the	data

>	gdp	<-	WDI(country=c("US",	"CA",	"GB",	"DE",	"CN",	"JP",	"SG",	"IL"),

+	indicator=c("NY.GDP.PCAP.CD",	"NY.GDP.MKTP.CD"),

+	start=1960,	end=2011)

>	#	give	it	good	names

>	names(gdp)	<-	c("iso2c",	"Country",	"Year",	"PerCapGDP",	"GDP")	After	downloading,	we

can	inspect	the	data,	which	are	stored	in	long	country-year	format	with	a	plot	of	per

capita	GDP	shown	in	Figure	24.1a.	Figure	24.1b	shows	absolute	GDP,	illustrating	that	while

China’s	GDP	has	jumped	significantly	in	the	past	ten	years,	its	per	capita	GDP	has	only

marginally	increased.

Figure	24.1	GDP	for	a	number	of	nations	from	1960	to	2011.
Click	here	to	view	code	image

>	head(gdp)

iso2c	Country	Year	PerCapGDP	GDP

1	CA	Canada	1960	2294.569	41093453545

2	CA	Canada	1961	2231.294	40767969454

3	CA	Canada	1962	2255.230	41978852041

4	CA	Canada	1963	2354.839	44657169109

5	CA	Canada	1964	2529.518	48882938810

6	CA	Canada	1965	2739.586	53909570342

>	library(ggplot2)

>	library(scales)

>	#	per	capita	GDP

>	ggplot(gdp,	aes(Year,	PerCapGDP,	color=Country,	linetype=Country))	+

+	geom_line()	+	scale_y_continuous(label=dollar)

>

>	library(useful)

>	#	absolute	GDP

>	ggplot(gdp,	aes(Year,	GDP,	color=Country,	linetype=Country))	+

+	geom_line()	+

+	scale_y_continuous(label=multiple_format(extra=dollar,

+	multiple="M"))	First	we	will	only	look	at	only	one	time	series,	so	we	extract	the	data

for	the	United	States.

Click	here	to	view	code	image

>	#	get	US	data

>	us	<-	gdp$PerCapGDP[gdp$Country	==	"United	States"]

>	#	convert	it	to	a	time	series

>	us	<-	ts(us,	start=min(gdp$Year),	end=max(gdp$Year))

>	us

Time	Series:

Start	=	1960

End	=	2011

Frequency	=	1

[1]	2881.100	2934.553	3107.937	3232.208	3423.396	3664.802

[7]	3972.123	4152.020	4491.424	4802.642	4997.757	5360.178

[13]	5836.224	6461.736	6948.198	7516.680	8297.292	9142.795

[19]	10225.307	11301.682	12179.558	13526.187	13932.678	15000.086

[25]	16539.383	17588.810	18427.288	19393.782	20703.152	22039.227

[31]	23037.941	23443.263	24411.143	25326.736	26577.761	27559.167

[37]	28772.356	30281.636	31687.052	33332.139	35081.923	35912.333

[43]	36819.445	38224.739	40292.304	42516.393	44622.642	46349.115

[49]	46759.560	45305.052	46611.975	48111.967

>	plot(us,	ylab="Per	Capita	GDP",	xlab="Year")

Figure	24.2	Time	series	plot	of	US	per	capita	GDP.

Another	way	to	assess	a	time	series	is	to	view	its	autocovariance	function	(ACF)	and	partial
autocovariance	function	(PACF).	In	R	this	is	done	with	the	appropriately	named	acf	and	pacf	functions.
The	ACF	shows	the	correlation	of	a	time	series	with	lags	of	itself.	That	is,	how	much	the	time	series	is

correlated	with	itself	at	one	lag,	at	two	lags,	at	three	lags	and	so	on.
The	PACF	is	a	little	more	complicated.	The	autocorrelation	at	lag	one	can	have	lingering	effects	on	the

autocorrelation	at	lag	two	and	onward.	The	partial	autocorrelation	is	the	amount	of	correlation	between	a
time	series	and	lags	of	itself	that	is	not	explained	by	a	previous	lag.	So,	the	partial	autocorrelation	at	lag

two	is	the	correlation	between	the	time	series	and	its	second	lag	that	is	not	explained	by	the	first	lag.
The	ACF	and	PACF	for	the	US	per	capita	GDP	data	are	shown	in	Figure	24.3.	Vertical	lines	that	extend

beyond	the	horizontal	line	indicate	autocorrelations	and	partial	autocorrelations	that	are	significant	at
those	lags.

Figure	24.3	ACF	and	PACF	of	US	per	capita	GDP.	These	plots	are	indicative	of	a	time	series	that	is
not	stationary.

>	acf(us)

>	pacf(us)	This	time	series	needs	a	number	of	transformations	before	it	can	be	properly

modeled.	Its	upward	trend	shows	that	it	is	not	stationary1	(the	data	are	in	current	US

dollars,	so	inflation	is	not	the	cause).	That	can	be	fixed	by	diffing	the	series	or

applying	some	other	transformation.	Diffing	is	the	process	of	subtracting	one	observation

from	another	and	can	be	done	on	any	number	of	observations.	For	instance,	we	start	with	a

series	x	=	[1	4	8	2	6	6	5	3].	Diffing	it	yields	x(1)	=	[3	4	−6	4	0	−1	−2],	which	is	the

difference	between	successive	elements.	Diffing	twice	iteratively	diffs	the	diffs,	so	x(2)

=	[1	−10	10	−4	−1	−1].	Observe	that	for	each	level	of	diffing	the	there	is	one	less

element	in	the	series.	Doing	this	in	R	involves	the	diff	function.	The	differences

argument	controls	how	many	diffs	are	iteratively	calculated.	The	lag	determines	which

elements	get	subtracted	from	each	other.	A	lag	of	1	subtracts	successive	elements,	while	a

lag	of	2	subtracts	elements	that	are	two	indices	away	from	each	other.

1.	Being	stationary	requires	that	the	mean	and	variance	of	a	time	series	are	constant	for	the	whole	series.

Click	here	to	view	code	image

>	x	<-	c(1	,	4	,	8	,	2	,	6	,	6	,	5	,	3)

>	#	one	diff

>	diff(x,	differences=1)

[1]	3	4	-6	4	0	-1	-2

>	#	two	iterative	diffs

>	diff(x,	differences=2)

[1]	1	-10	10	-4	-1	-1

>	#	equivalent	to	one	diff

>	diff(x,	lag=1)

[1]	3	4	-6	4	0	-1	-2

>	#	diff	elements	that	are	two	indices	apart

>	diff(x,	lag=2)

[1]	7	-2	-2	4	-1	-3

Figuring	out	the	correct	number	of	diffs	can	be	a	tiresome	process.	Fortunately,	the	forecast	package
has	a	number	of	functions	to	make	working	with	time	series	data	easier,	including	determining	the	optimal
number	of	diffs.	The	result	is	shown	in	Figure	24.4.

Figure	24.4	Plot	of	the	US	per	capita	GDP	diffed	twice.
>	library(forecast)

>	ndiffs(x=us)

[1]	2

>	plot(diff(us,	2))	While	R	offers	individual	ar	and	ma	functions,	a	better	option	is	the

arima	function,	which	can	fit	both	AR	and	MA	models	and	the	combined	ARMA	model.	It	is

even	more	robust	in	that	it	can	diff	the	series	and	fit	seasonal	effects.	Traditionally,

the	right	order	of	each	component	of	the	model	is	determined	by	analyzing	the	ACF	and

PACF.	This	can	be	highly	subjective,	so	fortunately	forecast	contains	auto.arima,	which

will	figure	out	the	best	specification.

Click	here	to	view	code	image

>	usBest	<-	auto.arima(x=us)

>	usBest

Series:

ARIMA(2,2,1)

Coefficients:

ar1	ar2	ma1

0.4181	-0.2567	-0.8102

s.e.	0.1632	0.1486	0.1111

sigma^2	estimated	as	286942:	log	likelihood=-384.05

AIC=776.1	AICc=776.99	BIC=783.75

The	function	determined	that	an	ARMA(2,1)	(an	AR(2)	component	and	an	MA(1)	component)	with	two
diffs	is	the	optimal	model	based	on	minimum	AICC	(that	is,	AIC	that	is	“corrected”	to	give	a	greater
penalty	to	model	complexity).	The	two	diffs	actually	make	this	an	ARIMA	model	rather	than	an	ARMA
model	where	the	I	stands	for	integrated.	If	this	model	is	a	good	fit,	then	the	residuals	should	resemble
white	noise.	Figure	24.5	shows	the	ACF	and	PACF	of	the	residuals	for	the	ideal	model.	They	resemble
the	pattern	for	white	noise,	confirming	our	model	selection.

Figure	24.5	ACF	and	PACF	plots	for	the	residuals	of	ideal	model	chosen	by	auto.arima.
>	acf(usBest$residuals)

>	pacf(usBest$residuals)	The	coefficients	for	an	ARIMA	model	are	the	AR	and	MA	components.

Click	here	to	view	code	image

>	coef(usBest)

ar1	ar2	ma1

0.4181109	-0.2567494	-0.8102419

Making	predictions	based	on	an	ARIMA	model	is	much	the	same	as	with	any	other	model	type,	using
the	predict	function.

Click	here	to	view	code	image

>	#	predict	5	years	into	the	future	and	include	the	standard	error

>	predict(usBest,	n.ahead=5,	se.fit=TRUE)

$pred

Time	Series:

Start	=	2012

End	=	2016

Frequency	=	1

[1]	49292.41	50289.69	51292.41	52344.45	53415.70

$se

Time	Series:

Start	=	2012

End	=	2016

Frequency	=	1

[1]	535.6701	1014.2773	1397.6158	1731.1312	2063.2010

Visualizing	this	is	easy	enough	but	using	the	forecast	function	makes	it	even	easier,	as	seen	in	Figure
24.6.

Figure	24.6	Five	year	prediction	of	US	GDP.	The	think	line	is	the	point	estimate	and	the	shaded
regions	represent	the	confidence	intervals.

Click	here	to	view	code	image

>	#	make	a	prediction	for	5	years	out

>	theForecast	<-	forecast(object=usBest,	h=5)

>	#	plot	it

>	plot(theForecast)

24.2	VAR
When	dealing	with	multiple	time	series	where	each	depends	on	its	own	past,	others’	pasts	and	others’
presents,	things	get	more	complicated.	The	first	thing	we	will	do	is	convert	all	of	the	GDP	data	into	a
multivariate	time	series.	To	do	this	we	first	cast	the	data.frame	to	wide	format	and	then	call	ts	to
convert	it.	The	result	is	shown	in	Figure	24.7.

Figure	24.7	Time	series	plot	of	GDP	data	for	all	countries	in	the	data.	This	is	the	same	information	as
in	Figure	24.1a,	but	this	was	built	using	base	graphics.

Click	here	to	view	code	image

>	#	load	reshape2

>	library(reshape2)

>	#	cast	the	data.frame	to	wide	format

>	gdpCast	<-	dcast(Year	~	Country,

+	data=gdp[,	c("Country",	"Year",	"PerCapGDP")],

+	value.var="PerCapGDP")

>	head(gdpCast)

Year	Canada	China	Germany	Israel	Japan	Singapore

1	1960	2294.569	92.01123	NA	1365.683	478.9953	394.6489

2	1961	2231.294	75.87257	NA	1595.860	563.5868	437.9432

3	1962	2255.230	69.78987	NA	1132.383	633.6403	429.5377

4	1963	2354.839	73.68877	NA	1257.743	717.8669	472.1830

5	1964	2529.518	83.93044	NA	1375.943	835.6573	464.3773

6	1965	2739.586	97.47010	NA	1429.319	919.7767	516.2622

United	Kingdom	United	States

1	1380.306	2881.100

2	1452.545	2934.553

3	1513.651	3107.937

4	1592.614	3232.208

5	1729.400	3423.396

6	1850.955	3664.802

>	#	remove	first	10	rows	since	Germany	did	not	have

>

>	#	convert	to	time	series

>	gdpTS	<-	ts(data=gdpCast[,	-1],	start=min	(gdpCast$Year),

+	end=max(gdpCast$Year))

>

>	#	build	a	plot	and	legend	using	base	graphics

>	plot(gdpTS,	plot.type="single",	col=1:8)

>	legend("topleft",	legend=colnames(gdpTS),	ncol=2,	lty=1,

+	col=1:8,	cex=.	9)	Before	proceeding	we	have	to	deal	with	the	NAs	for	Germany.	For	some

reason	the	World	Bank	does	not	have	data	on	Germany’s	GDP	before	1970.	There	are	other

resources,	such	as	the	St.	Louis	Federal	Reserve	Economic	Data	(FRED),	but	their	data	do

not	agree	well	with	the	World	Bank	data,	so	we	remove	Germany	from	our	data.

Click	here	to	view	code	image

>	gdpTS	<-	gdpTS[,	which(colnames(gdpTS)	!=	"Germany")]

The	most	common	way	of	fitting	a	model	to	multiple	time	series	is	to	use	a	vector	autoregressive
(VAR)	model.	The	equation	for	a	VAR	is	

where

is	white	noise.
While	ar	can	compute	a	VAR,	it	it	often	has	problems	with	singular	matrices	when	the	AR	order	is

high,	so	it	is	better	to	use	VAR	from	the	vars	package.	To	check	whether	the	data	should	be	diffed,	we	use
the	ndiffs	function	on	gdpTS	and	then	apply	that	number	of	diffs.	The	diffed	data	is	shown	in	Figure	24.8,
which	exhibits	greater	stationarity	than	Figure	24.7.

Figure	24.8	Differenced	GDP	data.
Click	here	to	view	code	image

>	numDiffs	<-	ndiffs(gdpTS)

>	numDiffs

[1]	1

>	gdpDiffed	<-	diff(gdpTS,	differences=numDiffs)

>	plot(gdpDiffed,	plot.type="single",	col=1:7)

>	legend("bottomleft",	legend=colnames(gdpDiffed),	ncol=2,	lty=1,

+	col=1:7,	cex=.9)	Now	that	the	data	is	prepared,	we	can	fit	a	VAR	using	VAR.	This

essentially	fits	a	separate	regression	using	lm	of	each	time	series	on	the	lags	of	itself

and	the	other	series.	This	is	evidenced	in	the	coefficient	plot	for	the	Canada	and	Japan

models,	shown	in	Figure	24.9.

Figure	24.9	Coefficient	plots	for	VAR	model	of	GDP	data	for	Canada	and	Japan.
Click	here	to	view	code	image

>	library(vars)

>	#	fit	the	model

>	gdpVar	<-	VAR(gdpDiffed,	lag.max=12)

>	#	chosen	order

>	gdpVar$p

AIC(n)

6

>	#	names	of	each	of	the	models

>	names(gdpVar$varresult)

[1]	"Canada"	"China"	"Israel"

[4]	"Japan"	"Singapore"	"United.Kingdom"

[7]	"United.States"

>	#	each	model	is	actually	an	lm	object

>	class(gdpVar$varresult$Canada)

[1]	"lm"

>	class(gdpVar$varresult$Japan)

[1]	"lm"

>	#	each	model	has	its	own	coefficients

>	head(coef(gdpVar$varresult$Canada))

Canada.l1	China.l1	Israel.l1

-1.07854513	-7.28241774	1.06538174

Japan.l1	Singapore.l1	United.Kingdom.l1

-0.45533608	-0.03827402	0.60149182

>	head(coef(gdpVar$varresult$Japan))

Canada.l1	China.l1	Israel.l1

1.8045012	-19.7904918	-0.1507690

Japan.l1	Singapore.l1	United.Kingdom.l1

1.3344763	1.5738029	0.5707742

>	library(coefplot)

>	coefplot(gdpVar$varresult$Canada)

>	coefplot(gdpVar$varresult$Japan)	Predictions	for	this	model	are	done	just	like	with	any

other	model,	using	the	predict	function.

Click	here	to	view	code	image

>	predict(gdpVar,	n.ahead=5)

$Canada

fcst	lower	upper	CI

[1,]	-12459.46	-13284.63	-11634.30	825.1656

[2,]	15067.05	14106.02	16028.08	961.0344

[3,]	20632.99	19176.30	22089.69	1456.6943

[4,]	-103830.42	-105902.11	-101758.73	2071.6904

[5,]	124483.19	119267.39	129699.00	5215.8046

$China

fcst	lower	upper	CI

[1,]	-470.5917	-523.6101	-417.5733	53.01843

[2,]	899.5380	826.2362	972.8399	73.30188

[3,]	1730.8087	1596.4256	1865.1918	134.38308

[4,]	-3361.7713	-3530.6042	-3192.9384	168.83288

[5,]	2742.1265	2518.9867	2965.2662	223.13974

$Israel

fcst	lower	upper	CI

[1,]	-6686.711	-7817.289	-5556.133	1130.578

[2,]	-39569.216	-40879.912	-38258.520	1310.696

[3,]	62192.139	60146.978	64237.300	2045.161

[4,]	-96325.105	-101259.427	-91390.783	4934.322

[5,]	-12922.005	-24003.839	-1840.171	11081.834

$Japan

fcst	lower	upper	CI

[1,]	-14590.8574	-15826.761	-13354.954	1235.903

[2,]	-52051.5807	-53900.387	-50202.775	1848.806

[3,]	-248.4379	-3247.875	2750.999	2999.437

[4,]	-51465.6686	-55434.880	-47496.457	3969.212

[5,]	-111005.8032	-118885.682	-103125.924	7879.879

$Singapore

fcst	lower	upper	CI

[1,]	-35923.80	-36071.93	-35775.67	148.1312

[2,]	54502.69	53055.85	55949.53	1446.8376

[3,]	-43551.08	-47987.48	-39114.68	4436.3991

[4,]	-99075.95	-107789.86	-90362.04	8713.9078

[5,]	145133.22	135155.64	155110.81	9977.5872

$United.Kingdom

fcst	lower	upper	CI

[1,]	-19224.96	-20259.35	-18190.56	1034.396

[2,]	31194.77	30136.87	32252.67	1057.903

[3,]	27813.08	24593.47	31032.68	3219.604

[4,]	-66506.90	-70690.12	-62323.67	4183.226

[5,]	93857.98	88550.03	99165.94	5307.958

$United.States

fcst	lower	upper	CI

[1,]	-657.2679	-1033.322	-281.2137	376.0542

[2,]	11088.0517	10614.924	11561.1792	473.1275

[3,]	2340.6277	1426.120	3255.1350	914.5074

[4,]	-5790.0143	-7013.843	-4566.1855	1223.8288

[5,]	24306.5309	23013.525	25599.5373	1293.0064

24.3	GARCH
A	problem	with	ARMA	models	is	that	they	do	not	handle	extreme	events	or	high	volatility	well.	To
overcome	this,	a	good	tool	to	use	is	generalized	autoregressive	conditional	heteroskedasticity	or	the
GARCH	family	of	models,	which	in	addition	to	modelling	the	mean	of	the	process	also	model	the
variance.
The	model	for	the	variance	in	a	GARCH(m,	s)	is	

where

and

is	generalized	white	noise.
For	this	example	we	download	AT&T	ticker	data	using	the	quantmod	package.

Click	here	to	view	code	image

>	library(quantmod)

>	load("data/att.rdata")

>	library(quantmod)

>	att	<-	getSymbols("T",	auto.assign=FALSE)	This	loads	the	data	into	an	xts	object	from

the	xts	package,	which	is	a	more	robust	time	series	object	that,	among	many	other

improvements,	can	handle	irregularly	spaced	events.	These	objects	even	have	improved

plotting	over	ts,	as	seen	in	Figure	24.10.

Figure	24.10	Time	series	plot	of	AT&T	ticker	data.
Click	here	to	view	code	image

>	library(xts)

>	#	show	data

>	head(att)

T.Open	T.High	T.Low	T.Close	T.Volume	T.Adjusted

2007-01-03	35.67	35.78	34.78	34.95	33694300	25.06

2007-01-04	34.95	35.24	34.07	34.50	44285400	24.74

2007-01-05	34.40	34.54	33.95	33.96	36561800	24.35

2007-01-08	33.40	34.01	33.21	33.81	40237400	24.50

2007-01-09	33.85	34.41	33.66	33.94	40082600	24.59

2007-01-10	34.20	35.00	31.94	34.03	29964300	24.66

>	plot(att)	For	those	used	to	financial	terminal	charts,	the	chartSeries	function	should

be	comforting.	It	created	the	chart	shown	in	Figure	24.11.

Figure	24.11	Series	chart	for	AT&T.
>	chartSeries(att)

>	addBBands()

>	addMACD(32,	50,	12)	We	are	only	interested	in	the	closing	price,	so	we	create	a	variable

holding	just	that.

>	attClose	<-	att$T.Close

>	class(attClose)

[1]	"xts"	"zoo"

>	head(attClose)

T.Close

2007-01-03	34.95

2007-01-04	34.50

2007-01-05	33.96

2007-01-08	33.81

2007-01-09	33.94

2007-01-10	34.03

The	package	most	widely	considered	to	be	the	best	for	fitting	GARCH	models	is	rugarch.	There	are
other	packages	for	fitting	GARCH	models,	such	as	tseries,	fGarch	and	bayesGARCH,	but	we	will	focus
on	rugarch.
Generally,	a	GARCH(1,1)	will	be	sufficient	so	we	will	fit	that	model	to	the	data.	The	first	step	is

setting	up	the	model	specification	using	ugarchspec.	We	specify	the	volatility	to	be	modeled	as	a
GARCH(1,	1)	and	the	mean	to	be	modeled	as	an	ARMA(1,	1).	We	also	specify	that	the	innovation
distribution	should	be	the	t	distribution.
Click	here	to	view	code	image

>	library(rugarch)

>	attSpec	<-	ugarchspec(variance.model=list(model="sGARCH",

+	garchOrder=c(1,	1)),

+	mean.model=list(armaOrder=c(1,	1)),

+	distribution.model="std")	The	next	step	is	to	fit	the	model	using	ugarchfit.

Click	here	to	view	code	image

>	attGarch	<-	ugarchfit(spec=attSpec,	data=attClose)	Printing	the	model	spits	out	a	lot	of

information,	including	the	coefficients,	standard	errors,	AIC	and	BIC.	Most	of	this,	such

as	the	statistics	on	residuals,	tests,	AIC	and	BIC	are	diagnostic	measures	on	the	quality

of	the	fit.	The	optimal	parameters,	seen	near	the	top,	are	the	crux	of	the	model.

Click	here	to	view	code	image

>	attGarch

*	GARCH	Model	Fit	*

Conditional	Variance	Dynamics

GARCH	Model	:	sGARCH(1,1)

Mean	Model	:	ARFIMA(1,0,1)

Distribution	:	std

Optimal	Parameters

Estimate	Std.	Error	t	value	Pr(>|t|)

mu	34.966061	0.381089	91.75300	0.000000

ar1	0.996957	0.001288	774.08104	0.000000

ma1	-0.010240	0.026747	-0.38283	0.701846

omega	0.001334	0.000703	1.89752	0.057760

alpha1	0.069911	0.015443	4.52716	0.000006

beta1	0.925054	0.015970	57.92518	0.000000

shape	7.586620	1.405315	5.39852	0.000000

Robust	Standard	Errors:

Estimate	Std.	Error	t	value	Pr(>|t|)

mu	34.966061	0.043419	805.30860	0.000000

ar1	0.996957	0.001203	828.40704	0.000000

ma1	-0.010240	0.028700	-0.35678	0.721255

omega	0.001334	0.000829	1.60983	0.107435

alpha1	0.069911	0.019342	3.61450	0.000301

beta1	0.925054	0.020446	45.24344	0.000000

shape	7.586620	1.329563	5.70610	0.000000

LogLikelihood	:	-776.0465

Information	Criteria

Akaike	0.99751

Bayes	1.02140

Shibata	0.99747

Hannan-Quinn	1.00639

Weighted	Ljung-Box	Test	on	Standardized	Residuals

statistic	p-value

Lag[1]	0.5461	0.4599

Lag[2*(p+q)+(p+q)-1][5]	2.6519	0.6922

Lag[4*(p+q)+(p+q)-1][9]	4.5680	0.5549

d.o.f=2

H0	:	No	serial	correlation

Weighted	Ljung-Box	Test	on	Standardized	Squared	Residuals

statistic	p-value

Lag[1]	0.004473	0.9467

Lag[2*(p+q)+(p+q)-1][5]	3.119353	0.3857

Lag[4*(p+q)+(p+q)-1][9]	4.604070	0.4898

d.o.f=2

Weighted	ARCH	LM	Tests

Statistic	Shape	Scale	P-Value

ARCH	Lag[3]	1.751	0.500	2.000	0.1857

ARCH	Lag[5]	2.344	1.440	1.667	0.4001

ARCH	Lag[7]	2.967	2.315	1.543	0.5198

Nyblom	stability	test

Joint	Statistic:	1.5862

Individual	Statistics:

mu	0.27197

ar1	0.09594

ma1	0.25152

omega	0.13852

alpha1	0.62839

beta1	0.53037

shape	0.46974

Asymptotic	Critical	Values	(10%	5%	1%)

Joint	Statistic:	1.69	1.9	2.35

Individual	Statistic:	0.35	0.47	0.75

Sign	Bias	Test

t-value	prob	sig

Sign	Bias	0.8341	0.4043

Negative	Sign	Bias	0.8170	0.4141

Positive	Sign	Bias	0.4020	0.6877

Joint	Effect	3.0122	0.3897

Adjusted	Pearson	Goodness-of-Fit	Test:

group	statistic	p-value(g-1)

1	20	15.99	0.6581

2	30	23.71	0.7432

3	40	31.78	0.7873

4	50	46.62	0.5700

Elapsed	time	:	0.3694999

Figure	24.12	shows	a	time	series	plot	and	the	ACF	of	the	residuals	from	the	model.

Figure	24.12	Residual	plots	from	GARCH	model	on	AT&T	data.
Click	here	to	view	code	image

>	#	attGarch	is	an	S4	object	so	its	slots	are	accessed	by	@

>	#	the	slot	fit	is	a	list,	its	elements	are	ac-

cessed	by	the	dollar	sign

>	plot(attGarch@fit$residuals,	type="l")

>	plot(attGarch,	which=10)	To	judge	the	quality	of	this	model,	we	build	a	few	models	with

different	mean	specifications—all	GARCH(1,	1)—and	compare	their	AICs.

Click	here	to	view	code	image

>	#	ARMA(1,1)

>	attSpec1	<-	ugarchspec(variance.model=list(model="sGARCH",

+	garchOrder=c(1,	1)),

+	mean.model=list(armaOrder=c(1,	1)),

+	distribution.model="std")

>	#	ARMA(0,0)

>	attSpec2	<-	ugarchspec(variance.model=list(model="sGARCH",

+	garchOrder=c(1,	1)),

+	mean.model=list(armaOrder=c(0,	0)),

+	distribution.model="std")

>	#	ARMA(0,2)

>	attSpec3	<-	ugarchspec(variance.model=list(model="sGARCH",

+	garchOrder=c(1,	1)),

+	mean.model=list(armaOrder=c(0,	2)),

+	distribution.model="std")

>	#	ARMA(1,2)

>	attSpec4	<-	ugarchspec(variance.model=list(model="sGARCH",

+	garchOrder=c(1,	1)),

+	mean.model=list(armaOrder=c(1,	2)),

+	distribution.model="std")

>

>	attGarch1	<-	ugarchfit(spec=attSpec1,	data=attClose)

>	attGarch2	<-	ugarchfit(spec=attSpec2,	data=attClose)

>	attGarch3	<-	ugarchfit(spec=attSpec3,	data=attClose)

>	attGarch4	<-	ugarchfit(spec=attSpec4,	data=attClose)

>

>	infocriteria(attGarch1)

Akaike	0.9975114

Bayes	1.0214043

Shibata	0.9974719

Hannan-Quinn	1.0063921

>	infocriteria(attGarch2)

Akaike	5.111944

Bayes	5.129011

Shibata	5.111924

Hannan-Quinn	5.118288

>	infocriteria(attGarch3)

Akaike	3.413075

Bayes	3.436968

Shibata	3.413035

Hannan-Quinn	3.421956

>	infocriteria(attGarch4)

Akaike	0.9971012

Bayes	1.0244073

Shibata	0.9970496

Hannan-Quinn	1.0072505

This	shows	that	the	first	and	fourth	models	were	the	best,	according	to	AIC	and	BIC	and	the	other
criteria.
Predicting	with	objects	from	rugarch	is	done	through	the	ugarchboot	function,	which	can	then	be

plotted	as	seen	in	Figure	24.13.

Figure	24.13	Predictions	for	GARCH	model	on	AT&T	data.
Click	here	to	view	code	image

>	attPred	<-	ugarchboot(attGarch,	n.ahead=50,

+	method=c("Partial",	"Full")	[1])

>	plot(attPred,	which=2)	Because	this	is	stock	data,	it	is	worth	computing	the	model	on

the	log	returns	instead	of	the	actual	closing	prices.

Click	here	to	view	code	image

>	#	diff	the	logs,	drop	the	first	one	which	is	now	NA

>	attLog	<-	diff(log(attClose))[-1]

>	#	build	the	specification

>	attLogSpec	<-	ugarchspec(variance.model=list(model="sGARCH",

+	garchOrder=c(1,	1)),

+	mean.model=list(armaOrder=c(1,	1)),

+	distribution.model="std")

>	#	fit	the	model

>	attLogGarch	<-	ugarchfit(spec=attLogSpec,	data=attLog)

>	infocriteria(attLogGarch)

Akaike	-5.869386

Bayes	-5.845481

Shibata	-5.869426

Hannan-Quinn	-5.860500

This	led	to	a	significant	drop	in	AIC.
It	is	important	to	remember	that	the	purpose	of	GARCH	models	is	not	to	fit	the	signal	better	but	to

capture	the	volatility	better.

24.4	Conclusion
Time	series	play	a	crucial	role	in	many	fields,	particularly	finance	and	some	physical	sciences.	The	basic
building	block	in	R	for	time	series	is	the	ts	object,	which	has	been	greatly	extended	by	the	xts	object.
The	most	common	types	of	models	are	ARMA,	VAR	and	GARCH,	which	are	fitted	by	the	arima,	VAR
and	ugarchfit	functions,	respectively.

25.	Clustering

Clustering,	which	plays	a	big	role	in	modern	machine	learning,	is	the	partitioning	of	data	into	groups.	This
can	be	done	in	a	number	of	ways,	the	two	most	popular	being	K-means	and	hierarchical	clustering.	In
terms	of	a	data.frame,	a	clustering	algorithm	finds	out	which	rows	are	similar	to	each	other.	Rows
that	are	grouped	together	are	supposed	to	have	high	similarity	to	each	other	and	low	similarity	with	rows
outside	the	grouping.

25.1	K-means
One	of	the	more	popular	algorithms	for	clustering	is	K-means.	It	divides	the	observations	into	discrete
groups	based	on	some	distance	metric.	For	this	example,	we	use	the	wine	dataset	from	the	University	of
California–Irvine	Machine	Learning	Repository,	available	at
http://archive.ics.uci.edu/ml/datasets/Wine.
Click	here	to	view	code	image

>	wineUrl	<-	'http://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data'

>	wine	<-	read.table(wineUrl,	header=FALSE,	sep=',',

+	stringsAsFactors=FALSE,

+	col.names=c('Cultivar',	'Alcohol',	'Malic.acid',

+	'Ash',	'Alcalinity.of.ash',

+	'Magnesium',	'Total.phenols',

+	'Flavanoids',	'Nonflavanoid.phenols',

+	'Proanthocyanin',	'Color.intensity',

+	'Hue',	'OD280.OD315.of.diluted.wines',

+	'Proline'

+))

>	head(wine)

Cultivar	Alcohol	Malic.acid	Ash	Alcalinity.of.ash	Magnesium

1	1	14.23	1.71	2.43	15.6	127

2	1	13.20	1.78	2.14	11.2	100

3	1	13.16	2.36	2.67	18.6	101

4	1	14.37	1.95	2.50	16.8	113

5	1	13.24	2.59	2.87	21.0	118

6	1	14.20	1.76	2.45	15.2	112

Total.phenols	Flavanoids	Nonflavanoid.phenols	Proanthocyanins

1	2.80	3.06	0.28	2.29

2	2.65	2.76	0.26	1.28

3	2.80	3.24	0.30	2.81

4	3.85	3.49	0.24	2.18

5	2.80	2.69	0.39	1.82

6	3.27	3.39	0.34	1.97

Color.intensity	Hue	OD280.OD315.of.diluted.wines	Proline

1	5.64	1.04	3.92	1065

2	4.38	1.05	3.40	1050

3	5.68	1.03	3.17	1185

4	7.80	0.86	3.45	1480

5	4.32	1.04	2.93	735

6	6.75	1.05	2.85	1450

Because	the	first	column	is	the	cultivar,	and	that	might	be	too	correlated	with	group	membership,	we
exclude	that	from	the	analysis.
Click	here	to	view	code	image

>	wineTrain	<-	wine[,	which(names(wine)	!=	"Cultivar")]

../../../../../archive.ics.uci.edu/ml/datasets/Wine

For	K-means	we	need	to	specify	the	number	of	clusters,	and	then	the	algorithm	assigns	observations
into	that	many	clusters.	There	are	heuristic	rules	for	determining	the	number	of	clusters,	which	we	will	get
to	later.	For	now	we	will	choose	three.	In	R,	K-means	is	done	with	the	aptly	named	kmeans	function.	Its
first	two	arguments	are	the	data	to	be	clustered,	which	must	be	all	numeric	(K-means	does	not	work
with	categorical	data),	and	the	number	of	centers	(clusters).	Because	there	is	a	random	component	to	the
clustering,	we	set	the	seed	to	generate	reproducible	results.
Click	here	to	view	code	image

>	set.seed(278613)

>	wineK3	<-	kmeans(x=wineTrain,	centers=3)	Printing	the	K-means	objects	displays	the	size

of	the	clusters,	the	cluster	mean	for	each	column,	the	cluster	membership	for	each	row	and

similarity	measures.

Click	here	to	view	code	image

>	wineK3

K-means	clustering	with	3	clusters	of	sizes	62,	47,	69

Cluster	means:

Alcohol	Malic.acid	Ash	Alcalinity.of.ash	Magnesium

1	12.92984	2.504032	2.408065	19.89032	103.59677

2	13.80447	1.883404	2.426170	17.02340	105.51064

3	12.51667	2.494203	2.288551	20.82319	92.34783

Total.phenols	Flavanoids	Nonflavanoid.phenols	Proanthocyanins

1	2.111129	1.584032	0.3883871	1.503387

2	2.867234	3.014255	0.2853191	1.910426

3	2.070725	1.758406	0.3901449	1.451884

Color.intensity	Hue	OD280.OD315.of.diluted.wines	Proline

1	5.650323	0.8839677	2.365484	728.3387

2	5.702553	1.0782979	3.114043	1195.1489

3	4.086957	0.9411594	2.490725	458.2319

Clustering	vector:

[1]	2	2	2	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	2	2	1	1	2	2	1	2	2	2

[33]	2	2	2	1	1	2	2	1	1	2	2	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	1	3	1	3

[65]	3	1	3	3	1	1	1	3	3	2	1	3	3	3	1	3	3	1	1	3	3	3	3	3	1	1	3	3	3	3	3	1

[97]	1	3	1	3	1	3	3	3	1	3	3	3	3	1	3	3	1	3	3	3	3	3	3	3	1	3	3	3	3	3	3	3

[129]	3	3	1	3	3	1	1	1	1	3	3	3	1	1	3	3	1	1	3	1	1	3	3	3	3	1	1	1	3	1	1	1

[161]	3	1	3	1	1	3	1	1	1	1	3	3	1	1	1	1	1	3

Within	cluster	sum	of	squares	by	cluster:

[1]	566572.5	1360950.5	443166.7

(between_SS	/	total_SS	=	86.5	%)

Available	components:

[1]	"cluster"	"centers"	"totss"	"withinss"

[5]	"tot.withinss"	"betweenss"	"size"	"iter"

[9]	"ifault"

Plotting	the	result	of	K-means	clustering	can	be	difficult	because	of	the	high	dimensional	nature	of	the
data.	To	overcome	this,	the	plot.kmeans	function	in	useful	performs	multidimensional	scaling	to	project
the	data	into	two	dimensions	and	then	color	codes	the	points	according	to	cluster	membership.	This	is
shown	in	Figure	25.1.
Click	here	to	view	code	image

>	library(useful)

>	plot(wineK3,	data=wineTrain)	If	we	pass	the	original	wine	data	and	specify	that	Cultivar

is	the	true	membership	column,	the	shape	of	the	points	will	be	coded	by	Cultivar,	so	we

can	see	how	that	compares	to	the	colors	in	Figure	25.2.	A	strong	correlation	between	the

color	and	shape	would	indicate	a	good	clustering.

Click	here	to	view	code	image

>	plot(wineK3,	data=wine,	class="Cultivar")	K-means	can	be	subject	to	random	starting

conditions,	so	it	is	considered	good	practice	to	run	it	with	a	number	of	random	starts.

This	is	accomplished	with	the	nstart	argument.

Figure	25.1	Plot	of	wine	data	scaled	into	two	dimensions	and	color	coded	by	results	of	K-means
clustering.

Click	here	to	view	code	image

>	set.seed(278613)

>	wineK3N25	<-	kmeans(wineTrain,	centers=3,	nstart=25)

>	#	see	the	cluster	sizes	with	1	start

>	wineK3$size

[1]	62	47	69

>	#	see	the	cluster	sizes	with	25	starts

>	wineK3N25$size

[1]	62	47	69

Figure	25.2	Plot	of	wine	data	scaled	into	two	dimensions	and	color	coded	by	results	of	K-means
clustering.	The	shapes	indicate	the	cultivar.	A	strong	correlation	between	the	color	and	shape	would

indicate	a	good	clustering.

For	our	data	the	results	did	not	change.	For	other	datasets	the	number	of	starts	can	have	a	significant
impact.
Choosing	the	right	number	of	clusters	is	important	in	getting	a	good	partitioning	of	the	data.	According

to	David	Madigan,	the	former	chair	of	Department	of	Statistics	and	current	Dean	of	Faculty	of	Arts	and
Sciences	and	Professor	of	Statistics	at	Columbia	University,	a	good	metric	for	determining	the	optimal
number	of	clusters	is	Hartigan’s	rule	(J.	A.	Hartigan	is	one	of	the	authors	of	the	most	popular	K-means
algorithm).	It	essentially	compares	the	ratio	of	the	within-cluster	sum	of	squares	for	a	clustering	with	k
clusters	and	one	with	k	+	1	clusters,	accounting	for	the	number	of	rows	and	clusters.	If	that	number	is
greater	than	10,	then	it	is	worth	using	k	+	1	clusters.	Fitting	this	repeatedly	can	be	a	chore	and

computationally	inefficient	if	not	done	right.	The	useful	package	has	the	FitKMeans	function	for	doing
just	that.	The	results	are	plotted	in	Figure	25.3.
Click	here	to	view	code	image

>	wineBest	<-	FitKMeans(wineTrain,	max.clusters=20,	nstart=25,

+	seed=278613)

>	wineBest

Clusters	Hartigan	AddCluster

1	2	505.429310	TRUE

2	3	160.411331	TRUE

3	4	135.707228	TRUE

4	5	78.445289	TRUE

5	6	71.489710	TRUE

6	7	97.582072	TRUE

7	8	46.772501	TRUE

8	9	33.198650	TRUE

9	10	33.277952	TRUE

10	11	33.465424	TRUE

11	12	17.940296	TRUE

12	13	33.268151	TRUE

13	14	6.434996	FALSE

14	15	7.833562	FALSE

15	16	46.783444	TRUE

16	17	12.229408	TRUE

17	18	10.261821	TRUE

18	19	-13.576343	FALSE

19	20	56.373939	TRUE

>	PlotHartigan(wineBest)	According	to	this	metric	we	should	use	13	clusters.	Again,	this

is	just	a	rule	of	thumb	and	should	not	be	strictly	adhered	to.	Because	we	know	there	are

three	cultivars	it	would	seem	natural	to	choose	three	clusters	because	there	are	three

cultivars.	Then	again,	the	results	of	the	clustering	with	three	clusters	did	only	a	fairly

good	job	of	aligning	the	clusters	with	the	cultivars,	so	it	might	not	be	that	good	of	a

fit.	Figure	25.4	shows	the	cluster	assignment	going	down	the	left	side	and	the	cultivar

across	the	top.	Cultivar	1	is	mostly	alone	in	its	own	cluster,	and	cultivar	2	is	just	a

little	worse,	while	cultivar	3	is	not	clustered	well	at	all.	If	this	were	truly	a	good

fit,	the	diagonals	would	be	the	largest	segments.

Figure	25.3	Plot	of	Hartigan’s	rule	for	a	series	of	different	cluster	sizes.
Click	here	to	view	code	image

>	table(wine$Cultivar,	wineK3N25$cluster)

1	2	3

1	13	46	0

2	20	1	50

3	29	0	19

>	plot(table(wine$Cultivar,	wineK3N25$cluster),

+	main="Confusion	Matrix	for	Wine	Clustering",

+	xlab="Cultivar",	ylab="Cluster")

Figure	25.4	Confusion	matrix	for	clustering	of	wine	data	by	cultivars.

An	alternative	to	Hartigan’s	rule	is	the	Gap	statistic,	which	compares	the	within-cluster	dissimilarity
for	a	clustering	of	the	data	with	that	of	a	bootstrapped	sample	of	data.	It	is	measuring	the	gap	between
reality	and	expectation.	This	can	be	calculated	(for	numeric	data	only)	using	clusGap	in	cluster.	It	takes	a
bit	of	time	to	run	because	it	is	doing	a	lot	of	simulations.
Click	here	to	view	code	image

>	library(cluster)

>	theGap	<-	clusGap(wineTrain,	FUNcluster=pam,	K.max=20)

>	gapDF	<-	as.data.frame(theGap$Tab)

>	gapDF

logW	E.logW	gap	SE.sim

1	9.655294	9.947093	0.2917988	0.03367473

2	8.987942	9.258169	0.2702262	0.03498740

3	8.617563	8.862178	0.2446152	0.03117947

4	8.370194	8.594228	0.2240346	0.03193258

5	8.193144	8.388382	0.1952376	0.03243527

6	7.979259	8.232036	0.2527773	0.03456908

7	7.819287	8.098214	0.2789276	0.03089973

8	7.685612	7.987350	0.3017378	0.02825189

9	7.591487	7.894791	0.3033035	0.02505585

10	7.496676	7.818529	0.3218525	0.02707628

11	7.398811	7.750513	0.3517019	0.02492806

12	7.340516	7.691724	0.3512081	0.02529801

13	7.269456	7.638362	0.3689066	0.02329920

14	7.224292	7.591250	0.3669578	0.02248816

15	7.157981	7.545987	0.3880061	0.02352986

16	7.104300	7.506623	0.4023225	0.02451914

17	7.054116	7.469984	0.4158683	0.02541277

18	7.006179	7.433963	0.4277835	0.02542758

19	6.971455	7.401962	0.4305071	0.02616872

20	6.932463	7.369970	0.4375070	0.02761156

Figure	25.5	shows	the	Gap	statistic	for	a	number	of	different	clusters.	The	optimal	number	of	clusters	is
the	smallest	number	producing	a	gap	within	one	standard	error	of	the	number	of	clusters	that	minimizes
the	gap.
Click	here	to	view	code	image

>	#	logW	curves

>	ggplot(gapDF,	aes(x=1:nrow(gapDF)))	+

+	geom_line(aes(y=logW),	color="blue")	+

+	geom_point(aes(y=logW),	color="blue")	+

+	geom_line(aes(y=E.logW),	color="green")	+

+	geom_point(aes(y=E.logW),	color="green")	+

+	labs(x="Number	of	Clusters")

>

>	#	gap	curve

>	ggplot(gapDF,aes(x=1:nrow(gapDF)))	+

+	geom_line(aes(y=gap),	color="red")	+

+	geom_point(aes(y=gap),	color="red")	+

+	geom_errorbar(aes(ymin=gap-SE.sim,	ymax=gap+SE.sim),	color="red")	+

+	labs(x="Number	of	Clusters",	y="Gap")	For	this	data	the	minimum	gap	of	0.1952376	is	for

the	clustering	with	five	clusters.	In	this	case	there	are	no	clusterings	with	fewer

clusters	that	are	within	one	standard	error	of	the	minimum.	So,	according	to	the	Gap

statistic,	five	clusters	is	optimal	for	this	dataset.

Figure	25.5	Gap	curves	for	wine	data.	The	blue	curve	is	the	observed	within-cluster	dissimilarity,	and
the	green	curve	is	the	expected	within-cluster	dissimilarity.	The	red	curve	represents	the	Gap	statistic

(expected-observed)	and	the	error	bars	are	the	standard	error	of	the	gap.

25.2	PAM
Two	problems	with	K-means	clustering	are	that	it	does	not	work	with	categorical	data	and	it	is
susceptible	to	outliers.	An	alternative	is	K-medoids.	Instead	of	the	center	of	a	cluster	being	the	mean	of
the	cluster,	the	center	is	one	of	the	actual	observations	in	the	cluster.	This	is	akin	to	the	median,	which	is
likewise	robust	against	outliers.
The	most	common	K-medoids	algorithm	is	Partitioning	Around	Medoids	(PAM).	The	cluster	package

contains	the	pam	function	for	performing	Partitioning	Around	Medoids.	For	this	example,	we	look	at
some	data	from	the	World	Bank,	including	both	numerical	measures	such	as	GDP	and	categorical
information	such	as	region	and	income	level.
Now	we	use	the	country	codes	to	download	a	number	of	indicators	from	the	World	Bank	using	WDI.

Click	here	to	view	code	image

>	indicators	<-	c("BX.KLT.DINV.WD.GD.ZS",	"NY.GDP.DEFL.KD.ZG",

+	"NY.GDP.MKTP.CD",	"NY.GDP.MKTP.KD.ZG",

+	"NY.GDP.PCAP.CD",	"NY.GDP.PCAP.KD.ZG",

+	"TG.VAL.TOTL.GD.ZS")

>	library(WDI)

>

>	#	pull	info	on	these	indicators	for	all	countries	in	our	list

>	#	not	all	countries	have	information	for	every	indicator

>	#	some	countries	do	not	have	any	data

>	wbInfo	<-	WDI(country="all",	indicator=indicators,	start=2011,

+	end=2011,	extra=TRUE)

>	#	get	rid	of	aggregated	info

>	wbInfo	<-	wbInfo[wbInfo$region	!=	"Aggregates",]

>	#	get	rid	of	countries	where	all	the	indicators	are	NA

>	wbInfo	<-	wbInfo[which(rowSums(!is.na(wbInfo[,	indicators]))	>	0),]

>	#	get	rid	of	any	rows	where	the	iso	is	missing

>	wbInfo	<-	wbInfo[!is.na(wbInfo$iso2c),]

The	data	have	a	few	missing	values,	but	fortunately	pam	handles	missing	values	well.	Before	we	run
the	clustering	algorithm	we	clean	up	the	data	some	more,	using	the	country	names	as	the	row	names	of	the
data.frame	and	ensuring	the	categorical	variables	are	factors	with	the	proper	levels.
Click	here	to	view	code	image

>	#	set	rownames	so	we	know	the	country	without	using	that	for	clustering

>	rownames(wbInfo)	<-	wbInfo$iso2c

>	#	refactorize	region,	income	and	lending

>	#	this	accounts	for	any	changes	in	the	levels

>	wbInfo$region	<-	factor(wbInfo$region)

>	wbInfo$income	<-	factor(wbInfo$income)

>	wbInfo$lending	<-	factor(wbInfo$lending)	Now	we	fit	the	clustering	using	pam	from	the

cluster	package.	Figure	25.6	shows	a	silhouette	plot	of	the	results.	As	with	K-means,	the

number	of	clusters	need	to	be	specified	when	using	PAM.	We	could	use	methods	like	the	Gap

statistic,	though	we	will	choose	12	clusters,	as	this	is	slightly	less	than	the	square

root	of	the	number	of	rows	of	data,	which	is	a	simple	heuristic	for	the	number	of

clusters.	Each	line	represents	an	observation,	and	each	grouping	of	lines	is	a	cluster.

Observations	that	fit	the	cluster	well	have	large	positive	lines,	and	observations	that	do

not	fit	well	have	small	or	negative	lines.	A	bigger	average	width	for	a	cluster	means	a

better	clustering.

Click	here	to	view	code	image

>	#	find	which	columns	to	keep

>	#	not	those	in	this	vector

>	keep.cols	<-	which(!names(wbInfo)	%in%	c("iso2c",	"country",	"year",

+	"capital",	"iso3c"))

>	#	fit	the	clustering

>	wbPam	<-	pam(x=wbInfo[,	keep.cols],	k=12,

+	keep.diss=TRUE,	keep.data=TRUE)

>

>	#	show	the	medoid	observations

>	wbPam$medoids

BX.KLT.DINV.WD.GD.ZS	NY.GDP.DEFL.KD.ZG	NY.GDP.MKTP.CD

PT	5.507851973	0.6601427	2.373736e+11

HT	2.463873387	6.7745103	7.346157e+09

BY	7.259657119	58.3675854	5.513208e+10

BE	19.857364384	2.0299163	5.136611e+11

MX	1.765034004	5.5580395	1.153343e+12

GB	1.157530889	2.6028860	2.445408e+12

IN	1.741905033	7.9938177	1.847977e+12

CN	3.008038634	7.7539567	7.318499e+12

DE	1.084936891	0.8084950	3.600833e+12

NL	1.660830419	1.2428287	8.360736e+11

JP	0.001347863	-2.1202280	5.867154e+12

US	1.717849686	2.2283033	1.499130e+13

NY.GDP.MKTP.KD.ZG	NY.GDP.PCAP.CD	NY.GDP.PCAP.KD.ZG

PT	-1.6688187	22315.8420	-1.66562016

HT	5.5903433	725.6333	4.22882080

BY	5.3000000	5819.9177	5.48896865

BE	1.7839242	46662.5283	0.74634396

MX	3.9106137	10047.1252	2.67022734

GB	0.7583280	39038.4583	0.09938161

IN	6.8559233	1488.5129	5.40325582

CN	9.3000000	5444.7853	8.78729922

DE	3.0288866	44059.8259	3.09309213

NL	0.9925175	50076.2824	0.50493944

JP	-0.7000000	45902.6716	-0.98497734

US	1.7000000	48111.9669	0.96816270

TG.VAL.TOTL.GD.ZS	region	longitude	latitude	income	lending

PT	58.63188	2	-9.135520	38.7072	2	4

HT	49.82197	3	-72.328800	18.5392	3	3

BY	156.27254	2	27.576600	53.9678	6	2

BE	182.42266	2	4.367610	50.8371	2	4

MX	61.62462	3	-99.127600	19.4270	6	2

GB	45.37562	2	-0.126236	51.5002	2	4

IN	40.45037	6	77.225000	28.6353	4	1

CN	49.76509	1	116.286000	40.0495	6	2

DE	75.75581	2	13.411500	52.5235	2	4

NL	150.41895	2	4.890950	52.3738	2	4

JP	28.58185	1	139.770000	35.6700	2	4

US	24.98827	5	-77.032000	38.8895	2	4

>	#	make	a	silhouette	plot

>	plot(wbPam,	which.plots=2,	main="")	Because	we	are	dealing	with	country	level

information,	it	would	be	informative	to	view	the	clustering	on	a	world	map.	As	we	are

working	with	World	Bank	data,	we	will	use	the	World	Bank	shapefile	of	the	world.	It	can	be

downloaded	in	a	browser	as	we	would	any	other	file	or	by	using	R.	While	this	may	be	slower

than	using	a	browser,	it	can	be	nice	if	we	have	to	programmatically	download	many	files.

Figure	25.6	Silhouette	plot	for	country	clustering.	Each	line	represents	an	observation,	and	each
grouping	of	lines	is	a	cluster.	Observations	that	fit	the	cluster	well	have	large	positive	lines	and
observations	that	do	not	fit	well	have	small	or	negative	lines.	A	bigger	average	width	for	a	cluster

means	a	better	clustering.
Click	here	to	view	code	image

>	download.file(url="http://jaredlander.com/data/worldmap.zip",

+	destfile="data/worldmap.zip",	method="curl")	The	file	needs	to	be	unzipped,	which	can	be

done	through	the	operating	system	or	in	R.

Click	here	to	view	code	image

>	unzip(zipfile="data/worldmap.zip",	exdir="data")	Of	the	four	files,	we	only	need	to

worry	about	the	one	ending	in	.shp	because	R	will	handle	the	rest.	We	read	it	in	using

readShapeSpatial	from	maptools.

Click	here	to	view	code	image

name	CntryName	FipsCntry

0	Fips	Cntry:	Aruba	AA

1	Fips	Cntry:	Antigua	&	Barbuda	AC

2	Fips	Cntry:	United	Arab	Emirates	AE

3	Fips	Cntry:	Afghanistan	AF

4	Fips	Cntry:	Algeria	AG

5	Fips	Cntry:	Azerbaijan	AJ

>	library(maptools)

>	world	<-	readShapeSpatial(

+	"data/world_country_admin_boundary_shapefile_with_fips_codes.shp"

+)

>	head(world@data)	There	are	some	blatant	discrepancies	between	the	two-digit	code	in	the

World	Bank	shapefile	and	the	two-digit	code	in	the	World	Bank	data	pulled	using	WDI.

Notably,	Austria	should	be	“AT,”	Australia	“AU,”	Myanmar	(Burma)	“MM,”	Vietnam	“VN”	and	so

on.

Click	here	to	view	code	image

>	library(dplyr)

>	world@data$FipsCntry	<-	as.character(

+	recode(world@data$FipsCntry,

+	AU="AT",	AS="AU",	VM="VN",	BM="MM",	SP="ES",

+	PO="PT",	IC="IL",	SF="ZA",	TU="TR",	IZ="IQ",

+	UK="GB",	EI="IE",	SU="SD",	MA="MG",	MO="MA",

+	JA="JP",	SW="SE",	SN="SG")

+)

In	order	to	use	ggplot2	we	need	to	convert	this	shapefile	object	into	a	data.frame,	which	requires	a
few	steps.	First	we	create	a	new	column,	called	id,	from	the	row	names	of	the	data.	Then	we	use	the	tidy
function	from	the	broom	package,	written	by	David	Robinson,	to	convert	it	into	a	data.frame.	The
broom	package	is	a	great	general	purpose	tool	for	converting	R	objects,	such	as	lm	models	and	kmeans
clusterings,	into	nice,	rectangular	data.frames.
Click	here	to	view	code	image

>	#	make	an	id	column	using	the	rownames

>	world@data$id	<-	rownames(world@data)

>	#	convert	into	a	data.frame

>	library(broom)

>	world.df	<-	tidy(world,	region="id")

>	head(world.df)

long	lat	order	hole	piece	group	id

1	-69.88223	12.41111	1	FALSE	1	0.1	0

2	-69.94695	12.43667	2	FALSE	1	0.1	0

3	-70.05904	12.54021	3	FALSE	1	0.1	0

4	-70.05966	12.62778	4	FALSE	1	0.1	0

5	-70.03320	12.61833	5	FALSE	1	0.1	0

6	-69.93224	12.52806	6	FALSE	1	0.1	0

Before	we	can	join	this	to	the	clustering,	we	need	to	join	FipsCntry	back	into	world.df.
Click	here	to	view	code	image

>	world.df	<-	left_join(world.df,

+	world@data[,	c("id",	"CntryName",	"FipsCntry")],

+	by="id")

>	head(world.df)

long	lat	order	hole	piece	group	id	CntryName	FipsCntry

1	-69.88223	12.41111	1	FALSE	1	0.1	0	Aruba	AA

2	-69.94695	12.43667	2	FALSE	1	0.1	0	Aruba	AA

3	-70.05904	12.54021	3	FALSE	1	0.1	0	Aruba	AA

4	-70.05966	12.62778	4	FALSE	1	0.1	0	Aruba	AA

5	-70.03320	12.61833	5	FALSE	1	0.1	0	Aruba	AA

6	-69.93224	12.52806	6	FALSE	1	0.1	0	Aruba	AA	Now	we	can	take	the	steps	of	joining	in	data

from	the	clustering	and	the	original	World	Bank	data.

Click	here	to	view	code	image

>	clusterMembership	<-	data.frame(FipsCntry=names(wbPam$clustering),

+	Cluster=wbPam$clustering,

+	stringsAsFactors=FALSE)

>	head(clusterMembership)

FipsCntry	Cluster

AE	AE	1

AF	AF	2

AG	AG	2

AL	AL	2

AM	AM	2

AO	AO	3

>	world.df	<-	left_join(world.df,	clusterMembership,	by="FipsCntry")

>	world.df$Cluster	<-	as.character(world.df$Cluster)

>	world.df$Cluster	<-	factor(world.df$Cluster,	levels=1:12)	Building	the	plot	itself

requires	a	number	of	ggplot2	commands	to	format	it	correctly.	Figure	25.7	shows	the	map,

color	coded	by	cluster	membership;	the	gray	countries	either	do	not	have	World	Bank

information	or	were	not	properly	matched	up	between	the	two	datasets.

Click	here	to	view	code	image

>	ggplot()	+

+	geom_polygon(data=world.df,	aes(x=long,	y=lat,	group=group,

+	fill=Cluster,	color=Cluster))	+

+	labs(x=NULL,	y=NULL)	+	coord_equal()	+

+	theme(panel.grid.major=element_blank(),

+	panel.grid.minor=element_blank(),

+	axis.text.x=element_blank(),	axis.text.y=element_blank(),

+	axis.ticks=element_blank(),	panel.background=element_blank())	Much	like	with	K-means,

the	number	of	clusters	in	a	K-medoids	clustering	must	be	specified.	Something	similar	to

Hartigan’s	Rule	can	be	built	using	the	dissimilarity	information	returned	by	pam.

Click	here	to	view	code	image

>	wbPam$clusinfo

size	max_diss	av_diss	diameter	separation

[1,]	27	122871463849	46185193372	200539326122	1.967640e+10

[2,]	96	22901202940	7270137217	31951289020	3.373324e+09

[3,]	30	84897264072	21252371506	106408660458	3.373324e+09

[4,]	9	145646809734	59174398936	251071168505	4.799168e+10

[5,]	4	323538875043	146668424920	360634547126	2.591686e+11

[6,]	4	327624060484	152576296819	579061061914	3.362014e+11

[7,]	3	111926243631	40573057031	121719171093	2.591686e+11

[8,]	1	0	0	0	1.451345e+12

[9,]	1	0	0	0	8.278012e+11

[10,]	3	61090193130	23949621648	71848864944	1.156755e+11

[11,]	1	0	0	0	1.451345e+12

[12,]	1	0	0	0	7.672801e+12

Figure	25.7	Map	of	PAM	clustering	of	World	Bank	data.	Gray	countries	either	do	not	have	World	Bank
information	or	were	not	properly	matched	up	between	the	two	datasets.

25.3	Hierarchical	Clustering
Hierarchical	clustering	builds	clusters	within	clusters,	and	does	not	require	a	pre-specified	number	of
clusters	like	K-means	and	K-medoids	do.	A	hierarchical	clustering	can	be	thought	of	as	a	tree	and
displayed	as	a	dendrogram;	at	the	top	there	is	just	one	cluster	consisting	of	all	the	observations,	and	at	the
bottom	each	observation	is	an	entire	cluster.	In	between	are	varying	levels	of	clustering.
Using	the	wine	data,	we	can	build	the	clustering	with	hclust.	The	result	is	visualized	as	a	dendrogram

in	Figure	25.8.	While	the	text	is	hard	to	see,	it	labels	the	observations	at	the	end	nodes.
Click	here	to	view	code	image

>	wineH	<-	hclust(d=dist(wineTrain))

>	plot(wineH)

Figure	25.8	Hierarchical	clustering	of	wine	data.

Hierarchical	clustering	also	works	on	categorical	data	like	the	country	information	data.	However,	its
dissimilarity	matrix	must	be	calculated	differently.	The	dendrogram	is	shown	in	Figure	25.9.
Click	here	to	view	code	image

>	#	calculate	distance

>	keep.cols	<-	which(!names(wbInfo)	%in%	c("iso2c",	"country",	"year",

+	"capital",	"iso3c"))

>	wbDaisy	<-	daisy(x=wbInfo[,	keep.cols])

>

>	wbH	<-	hclust(wbDaisy)

>	plot(wbH)

Figure	25.9	Hierarchical	clustering	of	country	information	data.

There	are	a	number	of	different	ways	to	compute	the	distance	between	clusters	and	they	can	have	a
significant	impact	on	the	results	of	a	hierarchical	clustering.	Figure	25.10	shows	the	resulting	tree	from
four	different	linkage	methods:	single,	complete,	average	and	centroid.	Average	linkage	is	generally
considered	the	most	appropriate.
Click	here	to	view	code	image

>	wineH1	<-	hclust(dist(wineTrain),	method="single")

>	wineH2	<-	hclust(dist(wineTrain),	method="complete")

>	wineH3	<-	hclust(dist(wineTrain),	method="average")

>	wineH4	<-	hclust(dist(wineTrain),	method="centroid")

>

>	plot(wineH1,	labels=FALSE,	main="Single")

>	plot(wineH2,	labels=FALSE,	main="Complete")

>	plot(wineH3,	labels=FALSE,	main="Average")

>	plot(wineH4,	labels=FALSE,	main="Centroid")

Figure	25.10	Wine	hierarchical	clusters	with	different	linkage	methods.	Clockwise	from	top	left:
single,	complete,	centroid,	average.

Cutting	the	resulting	tree	produced	by	hierarchical	clustering	splits	the	observations	into	defined
groups.	There	are	two	ways	to	cut	it:	either	specifying	the	number	of	clusters,	which	determines	where	the
cuts	take	place,	or	specifying	where	to	make	the	cut,	which	determines	the	number	of	clusters.	Figure
25.11	demonstrates	cutting	the	tree	by	specifying	the	number	of	clusters.
Click	here	to	view	code	image

>	#	plot	the	tree

>	plot(wineH)

>	#	split	into	3	clusters

>	rect.hclust(wineH,	k=3,	border="red")

>	#	split	into	13	clusters

>	rect.hclust(wineH,	k=13,	border="blue")

Figure	25.11	Hierarchical	clustering	of	wine	data	split	into	three	groups	(red)	and	13	groups	(blue).

Figure	25.12	demonstrates	cutting	the	tree	by	specifying	the	height	of	the	cuts.
Click	here	to	view	code	image

>	#	plot	the	tree

>	plot(wineH)

>	#	split	into	3	clusters

>	rect.hclust(wineH,	h=200,	border="red")

>	#	split	into	13	clusters

>	rect.hclust(wineH,	h=800,	border="blue")

Figure	25.12	Hierarchical	clustering	of	wine	data	split	by	the	height	of	cuts.

25.4	Conclusion
Clustering	is	a	popular	technique	for	segmenting	data.	The	primary	options	for	clustering	in	R	are	kmeans
for	K-means,	pam	in	cluster	for	K-medoids	and	hclust	for	hierarchical	clustering.	Speed	can	sometimes
be	a	problem	with	clustering,	especially	hierarchical	clustering,	so	it	is	worth	considering	replacement
packages	like	fastcluster,	which	has	a	drop-in	replacement	function,	hclust,	which	operates	just	like	the
standard	hclust,	only	faster.

26.	Model	Fitting	with	Caret

Fitting	models	often	involves	brute-force	iteration	over	many	different	values	for	numerous	parameters
and	deciding	upon	the	setting	that	creates	the	“best”	model.	While	this	could	be	coded	from	scratch,	caret
performs	parameter	tuning	automatically.	Additionally,	it	provides	a	standardized	interface	for	all	the
models	it	supports,	which	makes	the	modelling	process	that	much	easier	when	trying	multiple	models.

26.1	Caret	Basics
The	first	question	a	lot	of	people	have	about	caret	is	in	regard	to	its	spelling	since	it	is	spelled	like
neither	the	vegetable	nor	the	unit	of	weight.	That	is	because	caret	is	short	for	Classification	And
REgression	Training.	It	is	written,	with	great	effort,	primarily	by	Max	Kuhn.
While	caret	can	do	many	things—including	preprocessing	the	data,	splitting	the	data	and	visualization

—we	focus	on	its	capability	to	choose	parameter	values	based	on	some	measure	of	model	performance.
As	discussed	in	Section	21.3,	cross-validation	is	a	popular	method	of	determing	the	quality	of	a	model.
Here	we	use	caret	to	fit	many	iterations	of	a	model,	each	with	different	parameter	settings,	and	assess	the
quality	of	the	models	with	cross-validation.	The	parameter	values	that	result	in	the	best	cross-validation
score	is	regarded	as	the	best	model.
There	are	a	large	number	of	models	that	can	be	tuned	using	caret.	More	accurately,	any	model	function

in	R	can	be	tuned	with	caret,	and	hundreds	of	those	have	already	been	built	into	caret.	All	of	these
functions	can	be	accessed	using	the	formula	interface.	This	is	helpful	when	using	a	function	like	glmnet
that	requires	matrices	as	inputs.

26.2	Caret	Options
Model	training	is	performed	with	the	train	function	in	caret.	Data	is	provided	either	as	a	predictor
variable	and	a	response	variable	or	as	a	formula	and	data.frame.	Max	Kuhn	has	spent	a	great	deal
of	time	researching	the	best	way	to	provide	data	to	various	models.1	Some	models	do	better	when
categorical	data	are	treated	as	a	matrix	of	indicator	variables,	while	others	do	better	when	the
categorical	data	are	represented	as	a	factor	vector.	When	fitting	models	with	train,	using	the
formula	method	will	turn	categorical	data	into	a	matrix	of	indicator	variables,	and	not	using	the
formula	interface	will	use	factor	variables.

1.	His	video	at	the	2016	New	York	R	Conference	can	be	seen	athttps://youtu.be/ul2zLF61CyY.

After	the	data,	the	method	argument	specifies,	as	a	character	vector,	the	type	of	model	or
models	to	be	trained.	An	extensive	list	of	available	models	is	found	at
https://topepo.github.io/caret/available-models.html.	The	metric	argument
specifies	the	statistic	that	is	used	to	determine	the	optimal	model,	such	as	“RMSE”	for	regression	and
“Accuracy”	for	classification.
Computational	controls	are	set	with	the	trainControl	function	which	is	passed	to	the	trControl

argument	of	train.	In	addition	to	the	train	arguments,	model	function	specific	arguments	can	be	given	to
train	and	are	passed	on	to	the	modelling	function.	However,	tunable	parameters	for	models	cannot	be
passed	directly	to	train.	They	must	be	included	in	a	data.frame	that	is	passed	to	the	tuneGrid
argument.

../../../../../https@youtu.be/ul2zLF61CyY
../../../../../https@topepo.github.io/caret/available-models.html

26.2.1	caret	Training	Controls
The	trainControl	function	sets	options	controling	the	computation	of	model	fitting	and	assessment.	While
there	are	reasonable	default	settings,	it	is	best	to	explicitely	set	them.	There	are	many	arguments,	though
the	ones	discussed	here	are	usually	sufficient	for	control	over	the	modelling	process.
Model	quality	is	assessed	via	repeated	model	fitting	(achieved	through	resampling	of	some	form)	and

comparing	using	some	type	of	model	quality	metric.	The	method	argument	takes	a	character
specifying	the	type	of	resampling	with	the	most	common	being	“boot”	for	the	bootstrap	and	“repeatedcv”
for	repeated	cross-validation.	When	using	the	bootstrap	the	number	argument	specifies	the	number	of
iterations.	When	using	cross-validation	the	number	argument	indicates	the	number	of	folds,	and	the
repeats	argument	specifies	the	number	of	times	to	run	the	k-fold	cross-validation.
Performance	is	judged	by	a	function	supplied	to	the	summaryFunction	argument,	such	as

twoClassSummary	assessing	binary	classification	with	Area	Under	the	Curve	(AUC)	or	postResample
for	assessing	regression	with	root	mean	squared	error	(RMSE).	Running	train	in	parallel	is	quite	simple.
If	the	allowParallel	argument	is	set	to	TRUE	and	a	parallel	backend	is	loaded,	then	train	will
atuomatically	work	in	parallel.	An	example	set	of	controls	is	shown	in	the	following	code:	Click	here	to
view	code	image

>	library(caret)

>	ctrl	<-	trainControl(method	=	"repeatedcv",

+	repeats=3,

+	number=5,

+	summaryFunction=defaultSummary,

+	allowParallel=TRUE)

26.2.2	Caret	Search	Grid
The	biggest	benefit	of	using	caret	is	to	select	optimal	model	parameters.	In	the	case	of	xgboost	this	could
be	the	maximum	tree	depth	and	amount	of	shrinkage.	For	glmnet	this	could	be	the	size	of	the	penalty	term
or	the	the	mixture	between	ridge	and	lasso.	The	train	function	iterates	over	a	set	of	possible	parameters,
stored	in	a	data.frame,	which	are	supplied	to	the	tuneGrid	argument,	fits	a	model	to	each	set	of
parameters	and	then	assesses	the	quality	of	the	model.	This	is	called	a	grid	search.
Each	column	of	the	data.frame	represents	a	tuning	parameter	and	each	row	is	a	set	of	parameters.

As	an	example,	generalized	additive	models	(GAMs),	as	fit	by	the	mgcv	package,	have	two	tuning
parameters:	select	for	adding	an	extra	penalty	to	each	term	and	method	for	setting	the	parameter
estimation	method.	An	example	tuning	grid	for	the	gam	function	follows:	Click	here	to	view	code	image

>	gamGrid	<-	data.frame(select=c(TRUE,	TRUE,	FALSE,	FALSE),

+	method	=	c('GCV.Cp',	'REML',	'GCV.Cp',	'REML'),

+	stringsAsFactors=FALSE)

>	gamGrid

select	method

1	TRUE	GCV.Cp

2	TRUE	REML

3	FALSE	GCV.Cp

4	FALSE	REML

This	grid	will	cause	train	to	fit	four	models.	The	first	has	select=TRUE	and	method=’GCV.Cp’.
The	second	model	has	select=TRUE	and	method=’REML’	and	so	on	with	the	other	combinations.

26.3	Tuning	a	Boosted	Tree
The	first	model	we	tune	with	caret	is	a	boosted	tree	as	covered	in	Section	23.5.	For	the	examples	in	this
chapter	we	return	to	the	American	Community	Survey	(ACS)	data.
Click	here	to	view	code	image

>	acs	<-	tibble::as_tibble(

+	read.table(

+	"http://jaredlander.com/data/acs_ny.csv",

+	sep=",",	header=TRUE,	stringsAsFactors=FALSE

+)

+)

We	create	a	new	variable	called	Income	that	is	a	factor	with	levels	“Below”	and	“Above”
$150,000.	Since	train	is	going	to	load	plyr,	it	is	important	we	load	it	before	dplyr,	so	we	do	that	here
even	though	we	will	not	use	the	package.
Click	here	to	view	code	image

>	library(plyr)

>	library(dplyr)

>	acs	<-	acs	%>%

+	mutate(Income=factor(FamilyIncome	>=	150000,

+	levels=c(FALSE,	TRUE),

+	labels=c('Below',	'Above')))	Under	direct	usage	xgboost	requires	a	matrix	of	predictors

and	a	response	vector,	but	caret	enables	the	formula	interface—even	for	models	that

ordinarily	do	not—so	we	take	advantage	of	that	capability.

Click	here	to	view	code	image

>	acsFormula	<-	Income	~	NumChildren	+

+	NumRooms	+	NumVehicles	+	NumWorkers	+	OwnRent	+

+	ElectricBill	+	FoodStamp	+	HeatingFuel	To	evaluate	the	best	fitting	set	of	parameters	we

use	five-fold	repeated	cross-validation	with	two	repeats.	We	set	summaryFunction	to

twoClassSummary	and	classProb	to	TRUE	so	that	AUC	will	be	used	to	evaluate	the	models.

Even	though	it	is	easy	for	caret	to	fit	the	models	in	parallel,	xgboost	has	its	own

parallelism,	so	we	set	allowParallel	to	FALSE.

Click	here	to	view	code	image

>	ctrl	<-	trainControl(method="repeatedcv",

+	repeats=2,

+	number=5,

+	summaryFunction=twoClassSummary,

+	classProbs=TRUE,

+	allowParallel=FALSE)	As	of	early	2017	there	are	seven	tuning	parameters	for	xgboost.	The

nrounds	argument	determines	the	number	of	boosting	iterations	and	max_depth	sets	the

maximum	complexity	of	the	trees.	The	learning	rate	is	determined	by	eta,	which	controls

the	amount	of	shrinkage.	Leaf	splitting	is	determined	by	gamma	and	min_child_weight.	The

sampling	rate	for	columns	and	rows	are	set	by	colsample_bytree	and	subsample,

respectively.	We	use	expand.grid	to	get	every	combination	of	the	values	set	in	the

following	code:	Click	here	to	view	code	image

>	boostGrid	<-	expand.grid(nrounds=100,	#the	maximum	number	of	iterations

+	max_depth=c(2,	6,	10),

+	eta=c(0.01,	0.1),	#	shrinkage

+	gamma=c(0),

+	colsample_bytree=1,

+	min_child_weight=1,

+	subsample=0.7)	With	the	computation	controls	and	tuning	grid	set	we	can	train	the	model.

We	provide	the	train	function	the	formula	and	data	and	specify	“xgbTree”	as	the	method.	We

also	supply	the	controls	and	tuning	grid.	The	nthread	argument	is	passed	through	to

xgboost	to	dictate	the	number	of	processor	threads	to	run	in	parallel.	Even	with

parallelization	it	can	take	a	bit	of	time	to	fit	all	of	these	models,	so	we	must	have	some

patience.	There	are	a	number	of	stochastic	pieces	to	this	process,	so	we	set	the	random

seed	for	reproducibility.

Click	here	to	view	code	image

>	set.seed(73615)

>	boostTuned	<-	train(acsFormula,	data=acs,

+	method="xgbTree",

+	metric="ROC",

+	trControl=ctrl,

+	tuneGrid=boostGrid,	nthread=4)	The	returned	object	has	many	slots,	including	the	search

grid	appended	with	the	resulting	quality	metrics.

Click	here	to	view	code	image

>	boostTuned$results	%>%	arrange(ROC)

eta	max_depth	gamma	colsample_bytree	min_child_weight	subsample

1	0.01	2	0	1	1	0.7

2	0.10	10	0	1	1	0.7

3	0.01	10	0	1	1	0.7

4	0.01	6	0	1	1	0.7

5	0.10	6	0	1	1	0.7

6	0.10	2	0	1	1	0.7

nrounds	ROC	Sens	Spec	ROCSD	SensSD

1	100	0.7261711	1.0000000	0.0000000	0.010465376	0.000000000

2	100	0.7377721	0.9522002	0.1818182	0.009782476	0.003538260

3	100	0.7486185	0.9679318	0.1521358	0.009455179	0.004366311

4	100	0.7504831	0.9807206	0.1059146	0.009736577	0.004450671

5	100	0.7560484	0.9666667	0.1599124	0.009505135	0.004260313

6	100	0.7602718	0.9766227	0.1292442	0.008331900	0.002959298

SpecSD

1	0.00000000

2	0.01345420

3	0.01342891

4	0.01177458

5	0.01555843

6	0.01080588

This	is	easier	to	see	in	graphical	form,	so	we	plot	it.	Figure	26.1	shows	that	a	max_depth	of	2	and	an
eta	of	0.1	results	in	the	best	receiver	operating	characteristic	(ROC).

Figure	26.1	Plot	showing	that	for	the	American	Community	Survey	data,	max_depth=2	and
eta=0.1	leads	to	the	best	ROC.

For	most	models,	caret	provides	the	best	model	in	the	finalModel	slot.	It	is	not	always	best
practice	to	access	this	model	directly,	though	in	this	case	we	are	able	to	plot	the	model	as	shown	in
Figure	26.2.

Figure	26.2	Visualization	of	boosted	tree	decided	by	caret	to	be	best,	given	the	parameter	grid.
Click	here	to	view	code	image

>	xgb.plot.multi.trees(boostTuned$finalModel,

+	feature_names=boostTuned$coefnames)	Most	interaction	with	the	model	is	best	done	with

the	interface	provided	by	caret.	For	instance,	prediction	is	handled	by	caret-specific

predict	functions.	This	case	illustrates	why	it	is	good	to	use	the	predict	function	from

caret	rather	than	from	xgboost	because	caret	will	handle	the	categorical	variables	as	is

appropriate,	whereas	xgboost	expects	us	to	process	the	data	first.	To	see	this	we	read

another	set	of	ACS	data	and	make	predictions	using	caret.

Click	here	to	view	code	image

>	acsNew	<-	read.table('http://www.jaredlander.com/data/acsNew.csv',

+	header=TRUE,	sep=',',	stringsAsFactors=FALSE)	With	two-class	classification	caret	can

predict	the	dominant	class	or	show	the	probability	of	each	class.	In	this	case	they	are

all	predicted	to	be	“Below.”

Click	here	to	view	code	image

>	predict(boostTuned,	newdata=acsNew,	type='raw')	%>%	head

[1]	Above	Below	Below	Below	Below	Below

Levels:	Below	Above

>	predict(boostTuned,	newdata=acsNew,	type='prob')	%>%	head

Below	Above

1	0.4974915	0.50250852

2	0.5924829	0.40751714

3	0.5721835	0.42781645

4	0.9204149	0.07958508

5	0.8550579	0.14494210

6	0.7603117	0.23968834

26.4	Conclusion
While	R	has	always	been	great	for	statistical	modelling,	caret	created	a	uniform	interface	to	hundreds	of
models,	enabling	a	consistent	experience	regardless	of	the	underlying	function.	Of	even	bigger	benefit,
caret	also	provides	cross-validation	and	parameter	tuning	to	determine	the	“best”	model.	Further,	caret
provides	mechanisms	for	creatnig	test	and	train	datasets	and	numerous	model	validation	metrics.	All	of
this	makes	caret	a	great	choice	for	fitting	models.

27.	Reproducibility	and	Reports	with	knitr

Successfully	delivering	the	results	of	an	analysis	can	be	just	as	important	as	the	analysis	itself,	so	it	is
important	to	communicate	them	in	an	effective	way.	This	can	be	a	written	report,	a	Web	site	of	results,	a
slideshow	or	a	dashboard.	In	this	chapter	we	focus	on	reports,	which	are	made	remarkably	easy	using
knitr,	a	package	written	by	Yihui	Xie.	Chapter	28	covers	writing	Web	pages	and	slideshows	with
RMarkdown	and	Chapter	29	goes	over	building	Shiny	dashboards.	knitr	was	initially	created	as	a
replacement	for	Sweave	for	the	creation	of	PDF	documents	using	LaTeX	interweaved	with	R	code	and
the	generated	results.	It	has	since	added	the	capability	to	work	with	Markdown	for	generating	a	broad
range	of	documents.
The	combination	of	knitr	and	RStudio	is	so	powerful	that	it	was	possible	to	write	this	entire	book

inside	the	RStudio	IDE	using	knitr	to	insert	and	run	R	code	and	graphics.

27.1	Installing	a	LATEX	Program
LaTeX	(pronounced	“lay-tech”)	is	a	markup	language	based	on	the	TeX	typesetting	system	created	by
Donald	Knuth.	It	is	regularly	used	for	writing	scientific	papers	and	books,	including	this	one.	Like	any
other	program,	LaTeX	must	be	installed	before	it	can	be	used.
Each	of	the	operating	systems	uses	a	different	LaTeX	distribution.	Table	27.1	lists	OS-specific

distributions	and	download	locations.

Table	27.1	LATEX	distributions	and	their	locations

27.2	LATEX	Primer
This	is	not	intended	to	be	anywhere	near	a	comprehensive	lesson	in	LaTeX,	but	it	should	be	enough	to	get
started	with	making	documents.	LaTeX	documents	should	be	saved	with	a	.tex	extension	to	identify
them	as	such.	While	RStudio	is	intended	for	working	with	R,	it	is	a	suitable	text	editor	for	LaTeX	and	is
the	environment	we	will	be	using.
The	very	first	line	in	a	LaTeX	file	declares	the	type	of	document,	the	most	common	being	“article”	and

“book.”	This	is	done	with	\documentclass{...},	replacing	...	with	the	desired	document	class.
Other	popular	document	classes	are	“report,”	“beamer,”	“memoir”	and	“letter.”
Immediately	following	the	declaration	of	the	documentclass	is	the	preamble.	This	is	where

commands	that	affect	the	document	go,	such	as	what	packages	to	load	(LaTeX	packages)	using
\usepackage{...}	and	making	an	index	with	\makeindex.
In	order	to	include	images,	it	is	advisable	to	use	the	graphicx	package.	This	enables	us	to	specify

the	type	of	image	file	that	will	be	used	by	entering	\DeclareGraphics
Extensions{.png,.jpg},	which	means	LaTeX	will	first	search	for	files	ending	in	.png	and	then
search	for	files	ending	in	.jpg.	This	will	be	explained	more	when	dealing	with	images	later.
This	is	also	where	the	title,	author	and	date	are	declared	with	\title,	\author	and	\date,

respectively.	New	shortcuts	can	be	created	here	such	as	\newcommand	{\dataframe}
{\texttt{data.frame}},	so	that	every	time	\dataframe{}	is	typed	it	will	be	printed	as
data.frame,	which	appears	in	a	typewriter	font	because	of	the	\texttt{...}.
The	actual	document	starts	with	\begin{document}	and	ends	with	\end{document}.	That	is

where	all	the	content	goes.	So	far	our	LaTeX	document	looks	like	the	following	example.

Click	here	to	view	code	image

\documentclass{article}

%	this	is	a	comment

%	all	content	following	a	%	on	a	line	will	be	commented	out	as	if

it	never	existed	to	latex

\usepackage{graphicx}	%	use	graphics

\DeclareGraphicsExtensions{.png,.jpg}	%	search	for	png	then	jpg

%	define	shortcut	for	dataframe

\newcommand{\dataframe}{\texttt{data.frame}}

\title{A	Simple	Article}

\author{Jared	P.	Lander\\	Lander	Analytics}

%	the	\\	puts	what	follows	on	the	next	line

\date{December	22nd,	2016}

\begin{document}

\maketitle

Some	Content

\end{document}

Content	can	be	split	into	sections	using	\section{Section	Name}.	All	text	following	this
command	will	be	part	of	that	section	until	another	\section{...}	is	reached.	Sections	(and
subsections	and	chapters)	are	automatically	numbered	by	LaTeX.	If	given	a	label	using	\label{...}
they	can	be	referred	to	using	\ref{...}.	The	table	of	contents	is	automatically	numbered	and	is	created
using	\tableofcontents.	We	can	now	further	build	out	our	document	with	some	sections	and	a	table
of	contents.	Normally,	LaTeX	must	be	run	twice	for	cross	references	and	the	table	of	contents	but
RStudio,	and	most	other	LaTeX	editors,	will	do	that	automatically.

Click	here	to	view	code	image

\documentclass{article}

%	this	is	a	comment

%	all	content	following	a	%	on	a	line	will	be	commented	out	as	if

it	never	existed	to	latex

\usepackage{graphicx}	%	use	graphics

\DeclareGraphicsExtensions{.png,.jpg}	%	search	for	png	then	jpg

%	define	shortcut	for	dataframe

\newcommand{\dataframe}{\texttt{data.frame}}

\title{A	Simple	Article}

\author{Jared	P.	Lander\\	Lander	Analytics}

%	the	\\	puts	what	follows	on	the	next	line

\date{December	22nd,	2016}

\begin{document}

\maketitle	%	create	the	title	page

\tableofcontents	%	build	table	of	contents

\section{Getting	Started}

\label{sec:GettingStarted}

This	is	the	first	section	of	our	article.	The	only	thing	it	will

talk	about	is	building	\dataframe{}s	and	not	much	else.

A	new	paragraph	is	started	simply	by	leaving	a	blank	line.	That

is	all	that	is	required.	Indenting	will	happen	automatically.

\section{More	Information}

\label{sec:MoreInfo}

Here	is	another	section.	In	Section	\ref{sec:GettingStarted}	we

learned	some	basics	and	now	we	will	see	just	a	little	more.	Suppose

this	section	is	getting	too	long	so	it	should	be	broken	up	into

subsections.

\subsection{First	Subsection}

\label{FirstSub}

Content	for	a	subsection.

\subsection{Second	Subsection}

\label{SecondSub}

More	content	that	is	nested	in	Section	\ref{sec:MoreInfo}

\section{Last	Section}

\label{sec:LastBit}

This	section	was	just	created	to	show	how	to	stop	a	preceding

subsection,	section	or	chapter.	Note	that	chapters	are	only

available	in	books,	not	articles.

\makeindex	%	create	the	index

\end{document}

While	there	is	certainly	a	lot	more	to	be	learned	about	LaTeX,	this	should	provide	enough	of	a	start	for
using	it	with	knitr.	A	great	reference	is	the	“Not	So	Short	Introduction	to	LaTeX,”	which	can	be	found	at
http://tobi.oetiker.ch/lshort/lshort.pdf.

27.3	Using	knitr	with	LATEX
Writing	a	LaTeX	document	with	R	code	is	fairly	straightforward.	Regular	text	is	written	using	normal
LaTeX	conventions,	and	the	R	code	is	delineated	by	special	commands.	All	R	code	is	preceded	by
<<label-name,option1=’value1’,option2=’value2’>>=	and	is	followed	by	@.	While
editing,	RStudio	nicely	colors	the	background	of	the	editor	according	to	what	is	being	written,	LaTeX	or
R	code.	This	is	seen	in	Figure	27.1,	and	is	called	a	“chunk.”

../../../../../tobi.oetiker.ch/lshort/lshort.pdf

Figure	27.1	Screenshot	of	LaTeX	and	R	code	in	RStudio	text	editor.	Notice	that	the	code	section	is
gray.

These	documents	are	saved	as	.Rnw	files.	During	the	knitting	process	an	.Rnw	file	is	converted	to	a
.tex	file,	which	is	then	compiled	to	a	PDF.	If	using	the	consolethis	occurs	when	the	knit	function	is	called,
pass	the	.Rnw	file	as	the	first	argument.	In	RStudio	this	is	done	by	clicking	the	
button	in	the	toolbar	or	pressing	Ctrl+Shift+K	on	the	keyboard.
Chunks	are	the	workforce	of	knitr	and	are	essential	to	understand.	A	typical	use	is	to	show	both	the

code	and	results.	It	is	possible	to	do	one	or	the	other,	or	neither	as	well,	but	for	now	we	will	focus	on
getting	code	printed	and	evaluated.	Suppose	we	want	to	illustrate	loading	ggplot2,	viewing	the	head	of
the	diamonds	data,	and	then	fit	a	regression.	The	first	step	is	to	build	a	chunk.

Click	here	to	view	code	image

<<load-and-model-diamonds>>=

#	load	ggplot

library(ggplot2)

#	load	and	view	the	diamonds	data

data(diamonds)

head(diamonds)

#	fit	the	model

mod1	<-	lm(price	~	carat	+	cut,	data=diamonds)

#	view	a	summary

summary(mod1)

@

This	will	then	print	both	the	code	and	the	result	in	the	final	document	as	shown	next.
Click	here	to	view	code	image

>	#	load	ggplot

>	library(ggplot2)

>

>	#	load	and	view	the	diamonds	data

>	data(diamonds)

>	head(diamonds)

#	A	tibble:	6	×	10

carat	cut	color	clarity	depth	table	price	x	y	z

<dbl>	<ord>	<ord>	<ord>	<dbl>	<dbl>	<int>	<dbl>	<dbl>	<dbl>

1	0.23	Ideal	E	SI2	61.5	55	326	3.95	3.98	2.43

2	0.21	Premium	E	SI1	59.8	61	326	3.89	3.84	2.31

3	0.23	Good	E	VS1	56.9	65	327	4.05	4.07	2.31

4	0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63

5	0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.75

6	0.24	Very	Good	J	VVS2	62.8	57	336	3.94	3.96	2.48

>	#	fit	the	model

>	mod1	<-	lm(price	~	carat	+	cut,	data=diamonds)

>	#	view	a	summary

>	summary(mod1)

Call:

lm(formula	=	price	~	carat	+	cut,	data	=	diamonds)

Residuals:

Min	1Q	Median	3Q	Max

-17540.7	-791.6	-37.6	522.1	12721.4

Coefficients:

Estimate	Std.	Error	t	value	Pr(>|t|)

(Intercept)	-2701.38	15.43	-175.061	<	2e-16	***

carat	7871.08	13.98	563.040	<	2e-16	***

cut.L	1239.80	26.10	47.502	<	2e-16	***

cut.Q	-528.60	23.13	-22.851	<	2e-16	***

cut.C	367.91	20.21	18.201	<	2e-16	***

cut^4	74.59	16.24	4.593	4.37e-06	***

Signif.	codes:	0	'***'	0.001	'**'	0.01	'*'	0.05	'.'	0.1	'	'	1

Residual	standard	error:	1511	on	53934	degrees	of	freedom

Multiple	R-squared:	0.8565,Adjusted	R-squared:	0.8565

F-statistic:	6.437e+04	on	5	and	53934	DF,	p-value:	<	2.2e-16

So	far,	the	only	thing	supplied	to	the	chunk	was	the	label,	in	this	case	“diamonds-model.”	It	is	best	to
avoid	periods	and	spaces	in	chunk	labels.	Options	can	be	passed	to	the	chunk	to	control	display	and
evaluation	and	are	entered	after	the	label,	separated	by	commas.	Some	common	knitr	chunk	options	are
listed	in	Table	27.2.	These	options	can	be	strings,	numbers,	TRUE/FALSE	or	any	R	object	that	evaluates
to	one	of	these.

Table	27.2	Common	knitr	chunk	options

Displaying	images	is	made	incredibly	easy	with	knitr.	Simply	running	a	command	that	generates	a	plot
inserts	the	image	immediately	following	that	line	of	code,	with	further	code	and	results	printed	after	that.
The	following	chunk	will	print	the	following:	1.	The	expression	1	+	1
2.	The	result	of	that	expression,	2
3.	The	code	plot(1:10)
4.	The	image	resulting	from	that	code	5.	The	expression	2	+	2
6.	The	result	of	that	expression,	4

<<inline-plot-knitr>>=

1	+	1

plot(1:10)

2	+	2

@

>	1	+	1

[1]	2

>	plot(1:10)	>	2	+	2

[1]	4

Adding	the	fig.cap	option	will	put	the	image	in	a	figure	environment,	which	gets	placed	in	a
convenient	spot	with	a	caption.	Running	the	same	chunk	with	fig.cap	set	to	“Simple	plot	of
the	numbers	1	through	10.”	will	display	the	following:	1.	The	expression	1	+	1

2.	The	result	of	that	expression,	2
3.	The	code	plot(1:10)
4.	The	expression	2	+	2
5.	The	result	of	that	expression,	4
The	image,	along	with	the	caption,	will	be	placed	where	there	is	room,	which	very	well	could	be	in

between	lines	of	code.	Setting	out.width	to	’.75\\linewidth’	(including	the	quote	marks)	will
make	the	image’s	width	75%	of	the	width	of	the	line.	While	\linewidth	is	a	LaTeX	command,	because
it	is	in	an	R	string	the	backslash	(\)	needs	to	be	escaped	with	another	backslash.	The	resulting	plot	is
shown	in	Figure	27.2.

Figure	27.2	Simple	plot	of	the	numbers	1	through	10.

Click	here	to	view	code	image

<<figure-plot,fig.cap="Simple	plot	of	the	numbers	1	through	10.",

fig.scap="Simple	plot	of	the	numbers	1	through	10",

out.width='.75\\linewidth'>>=

1	+	1

plot(1:10)

2	+	2

@

>	1	+	1

[1]	2

>	plot(1:10)

>	2	+	2

[1]	4

This	just	scratches	the	surface	of	what	is	possible	with	LaTeX	and	knitr.	More	information	can	be
found	on	Yihui’s	site	at	http://yihui.name/knitr/.	When	using	knitr	it	is	considered	good	form
to	use	a	formal	citation	of	the	form	Yihui	Xie	(2013).	knitr:	A	general-purpose

../../../../../yihui.name/knitr/default.htm

package	for	dynamic	report	generation	in	R.	R	package	version	1.2.	Proper
citations	can	be	found,	for	some	packages,	using	the	citation	function.
Click	here	to	view	code	image

>	citation(package="knitr")

To	cite	the	'knitr'	package	in	publications	use:

Yihui	Xie	(2016).	knitr:	A	General-Purpose	Package	for

Dynamic	Report	Generation	in	R.	R	package	version	1.15.1.

Yihui	Xie	(2015)	Dynamic	Documents	with	R	and	knitr.	2nd

edition.	Chapman	and	Hall/CRC.	ISBN	978-1498716963

Yihui	Xie	(2014)	knitr:	A	Comprehensive	Tool	for

Reproducible	Research	in	R.	In	Victoria	Stodden,	Friedrich

Leisch	and	Roger	D.	Peng,	editors,	Implementing	Reproducible

Computational	Research.	Chapman	and	Hall/CRC.

ISBN	978-1466561595

27.4	Conclusion
Writing	reproducible,	and	maintainable,	documents	from	within	R	has	never	been	easier,	thanks	to	Yihui’s
knitr	package.	It	enables	seamless	integration	of	R	code,	with	results	including	images	and	either	LaTeX
text.
On	top	of	that,	the	RStudio	IDE	is	a	fantastic	text	editor.	This	entire	book	was	written	using	knitr	from

within	RStudio,	without	ever	having	to	use	Microsoft	Word	or	a	LaTeX	editor.

28.	Rich	Documents	with	RMarkdown

RMarkdown	has	quickly	become	the	preferred	means	of	communicating	results	from	R,	eclipsing	LaTeX
due	to	RMarkdown’s	simplicity	to	write	and	that	it	compiles	to	many	different	formats,	including	HTML,
PDF,	Microsoft	Word,	slideshows	and	Shiny	apps.	The	RMarkdown	format	is	extendable	and	templated,
enabling	customized	documents.	The	workflow	for	writing	RMarkdown	is	similar	to	that	for	LaTeX	as
detailed	in	Chapter	27:	Normal	text	(flavored	with	Markdown)	is	written	and	R	code	is	put	in	chunks.	The
style	of	the	chunk	delineation	is	different,	but	the	idea	is	the	same.	The	files	are	typically	saved	as	.Rmd
files.

28.1	Document	Compilation
RMarkdown	depends	on	knitr	for	evaluating	R	code	and	pandoc	for	converting	between	formats,	both	of
which	are	installed	with	RMarkdown.	Upon	compilation	knitr	is	used	to	process	the	code	chunks	into
plain	text	in	a	temporary	Markdown	document.	Pandoc	is	then	run	on	this	intermediate	document	to
produce	the	output	document.
Compiling	the	document	in	the	console	is	done	with	the	render	function	from	the	rmarkdown	package

and	in	RStudio	with	the	 	button	or	Ctrl+Shift+K.
Each	output	type	corresponds	to	an	R	function.	The	most	notable	document	types	in	the	rmarkdown

package	are	generated	by	html_document,	pdf_document,	word_document	and	ioslides_presentation.
Other	packages,	such	as	rticles,	tufte	and	resumer	provide	additional	functions	for	other	document	types.

28.2	Document	Header
The	first	part	of	an	RMarkdown	document	is	the	yaml1	header	providing	details	about	the	document.	The
yaml	header	is	delineated	by	three	dashes	before	and	after.	Each	line	is	a	key-value	pair	specifying
arguments	for	the	document,	such	as	title,	author,	date	and	output	type.	An	example	yaml
header	follows.

1.	This	was	originally	an	acronym	for	“Yet	another	markup	language”	but	has	since	become	a	recursive	acronym	for	“YAML	Ain’t
Markup	Language.”

title:	"Play	Time"

author:	"Jared	P.	Lander"

date:	"December	22,	2016"

output:	html_document

Different	yaml	tags	are	possible	depending	on	the	output	type.	One	frustration	of	yaml	in	general	is
knowing	what	tags	should	be	used,	requiring	users	to	scour	documentation	of	varying	quality.	Thanks	to
the	design	of	the	rmarkdown	package,	yaml	tags	are	the	same	as	the	function	arguments	that	have	to	be
documented	in	order	to	be	accepted	by	CRAN.	The	tags	for	the	document	type,	such	as
html_document,	are	the	function	names	themselves.	Functions	that	are	included	in	the	rmarkdown
package	can	just	be	referenced	by	name.	For	functions	in	other	packages,	such	as	jss_article	in	rticles,
the	function	name	must	be	preceded	by	the	package	name	as	follows.

title:	"Play	Time"

author:	"Jared	P.	Lander"

date:	"December	22,	2016"

output:	rticles::jss_article

Document	specific	arguments	are	included	as	sub-tags	to	the	output	tag.	It	is	important	to	properly
indent	yaml	sections,	with	at	least	two	spaces	(tabs	will	not	work)	indicating	an	indent.	The	following
block	specifies	the	generarion	of	an	HTML	document	with	numbered	sections	and	a	table	of	contents.

title:	"Play	Time"

author:	"Jared	P.	Lander"

date:	"December	22,	2016"

output:

html_document:

number_sections:	yes

toc:	yes

28.3	Markdown	Primer
Markdown	syntax	is	designed	for	simplicity.	It	does	not	offer	the	control	and	flexibility	of	LaTeX	or
HTML	but	is	much	faster	to	write.	In	addition	to	being	faster	to	write,	Markdown	is	faster	to	learn,	which
is	always	nice.	The	following	guidelines	should	be	enough	to	get	started	with	the	basics	of	Markdown.
Line	breaks	are	created	by	leaving	a	blank	line	between	blocks	of	text	or	by	ending	a	line	with	two	or

more	spaces.	Italics	can	be	generated	by	putting	an	underscore	(_)	on	both	sides	of	a	word,	and	bold	is
generated	by	putting	two	underscores	on	each	side.	Three	underscores	will	make	the	text	both	italic	and
bold.	Block	quotes	are	indicated	using	right-angle	brackets	(>)	at	the	start	of	each	line.
Unordered	lists	are	created	by	putting	each	element	on	its	own	line	starting	with	a	dash	(-)	or	an

asterisk	(*).	Ordered	lists	start	each	line	with	a	number	(any	number	or	letter)	and	a	period.	Lists	can	be
nested	by	indenting	certain	items	in	the	list.
Headings	(called	headers	in	Markdown	but	not	to	be	confused	with	HTML	headers)	are	made	by

starting	a	line	with	a	pound	symbol	(#).	The	number	of	pounds	indicate	the	heading	level,	ranging	from
one	to	six.	These	are	equivalent	to	the	heading	tags	in	HTML.	When	rendering	to	PDF	the	heading	level
dictates	the	section	type	such	as	a	level-one	heading	for	a	section	and	a	level-two	heading	for	a
subsection.
Links	are	created	by	putting	the	text	to	be	displayed	in	square	brackets	([])	and	the	linked	URL	in

parentheses.	Inserting	images	is	also	done	with	square	brackets	and	parentheses	and	preceded	by	an
exclamation	mark	(!).	A	sample	Markdown	document	is	shown	next.
Equations	are	started	and	ended	with	two	dollar	signs	($).	These	should	either	be	on	their	own	lines	or

with	at	least	a	space	between	them	and	the	equation.	Equations	are	written	using	standard	LaTeX	math
syntax.	Inline	equations	are	immediately	preceded	and	followed	with	a	single	dollar	sign	with	no	spaces.
Click	here	to	view	code	image

#	Title	-	Also	a	Heading	1

this	will	be	italicized

__this	will	be	bolded__

##	Heading	2

Build	an	unordered	list

-	Item	1

-	Item	2

-	Item	3

Build	an	ordered	list	mixed	with	an	unordered	list

1.	An	item

1.	Another	item

-	Sublist	item

-	Another	sublist	item

-	one	more	item

1.	Another	ordered	item

The	following	is	a	link

[My	Website](http://www.jaredlander.com)

##	Another	Heading	2

This	inserts	an	image

![Alt	text	goes	in	here](location-of-image.png)

####	Heading	4

A	regular	equation

$$

\boldsymbol{\hat{\beta}}	=	(X^TX)^{-1}X^TY

$$

An	inline	equation:	$\bar{x}=\frac{1}{n}\sum_{i=1}^n$	with	no	spaces

###	Heading	3

>	This	is	the	start	of	a	block	quote

>

>	This	is	the	following	line	in	the	block	quote

RStudio	provides	a	handy	quick	reference	guide	to	Markdown,	accessed	through	the	Help	menu.

28.4	Markdown	Code	Chunks
Markdown	documents	that	have	chunks	of	R	code	are	called	RMarkdown	and	are	saved	with	a	.Rmd
extension.	Code	chunks	in	RMarkdown	behave	similarly	to	chunks	in	knitr	documents	but	are	demarcated
differently	and	have	some	added	flexibility.	The	opening	of	a	chunk	is	denoted	with	three	back	ticks	(`),
an	opening	curly	brace	({),	the	letter	r,	a	chunk	label	followed	by	comma-separated	options,	then	a
closing	curly	brace	(}).	The	chunk	is	closed	with	three	back	ticks.	All	code	and	comments	inside	the
chunk	are	treated	as	R	code.

```{r	simple-math-ex}

#	this	is	a	comment

1	+	1

```


This	renders	as	the	following	code	and	result.
#	this	is	a	comment

1	+	1

##	[1]	2

All	of	the	standard	chunk	options	can	be	used	with	the	most	common	listed	in	Table	27.2.
Images	are	automatically	generated	when	plotting	code	is	executed	in	a	code	chunk.	A	caption	is	added

if	the	fig.cap	argument	is	supplied.	A	nice,	default	feature	is	that	documents	are	self-contained	so	that
even	when	the	final	output	is	HTML	the	images	will	be	embedded	(base	64	encoded)	into	the	file	so	that
only	one	file	is	needed,	as	opposed	to	separate	files	for	each	image.
The	following	chunk	first	displays	the	expression	1	+	1,	prints	the	result,	2,	displays	the	code

plot(1:10)	followed	by	the	actual	graph	and	finally	displays	2	+	2	and	the	result,	4.

```{r	code-and-plot}

1	+	1

plot(1:10)

2	+	2

```

1	+	1

##	[1]	2

plot(1:10)	2	+	2

##	[1]	4

When	working	with	LaTeX	documents	knitr	puts	a	prompt	(>)	in	front	of	code,	a	plus	sign	(+)	in	front
of	continued	lines	and	prints	results	directly.	For	RMarkdown	documents,	by	default,	there	is	no	prompt	in
front	of	code	and	results	are	commented.	This	is	because	the	output	is	usually	intended	for	digital
consumption,	and	this	enables	easy	copy-and-pasting	of	code	into	the	R	console.	This	book	includes	the
prompt	and	does	not	comment	results	so	that	the	experience	is	similar	to	working	with	R,	even	at	the
expense	of	easy	copy-and-pasting.

28.5	htmlwidgets
The	htmlwidgets	package	enables	the	simple	creation	of	R	packages	that	provide	R	bindings	for	arbitrary
JavaScript	libraries.	This	provides	R	users	access	to	a	wide	array	of	useful	JavaScript	libraries	for
visualizing	data,	all	within	R	and	without	having	to	learn	JavaScript.	Popular	packages	include	DT	for
tabular	displays	of	data,	leaflet	for	generating	rich	maps,	threejs	for	3D	scatterplots	and	globes,
d3heatmap	for	interactive	heatmaps	and	dygraphs	for	time	series	charting.

Table	28.1	Tabular	data	printed	using	kable.

These	htmlwidgets-based	packages	generate	HTML	and	JavaScript	output,	meaning	they	only	have	full
functionality	with	HTML-based	output	types.	Including	the	tag	always_allow_html:	yes	in	the
yaml	header	will	enable	output	types	such	as	PDF	to	be	rendered	as	an	image.	This	depends	on	the
webshot	package	and	will	only	work	after	installing	PhantomJS	using
webshot::install_phantomjs.
The	functions	in	htmlwidgets	packages	can	greatly	enhance	RMarkdown	documents	with	their	full

power	of	JavaScript,	particularly	their	interactivity.	They	can	also	be	used	in	the	console	and	in	Shiny
apps.	If	the	functions	are	executed	in	the	console	within	RStudio	the	resulting	widget	is	displayed	in	the
Viewer	pane.	If	they	are	executed	from	the	console	in	the	terminal	then	a	browser	is	launched	displaying
the	widget.	The	widgets	thrive	in	Shiny,	where	their	interactivity	is	coupled	with	Shiny’s	reactivity	for	a
rich	user	experience.

28.5.1	datatables
While	visualizing	data	with	graphs	is	usually	the	preferred	method,	sometimes	data	must	be	presented	in
tabular	form.	For	static	tables	kable	from	the	knitr	package	prints	nice	looking	tables	that	are	adapted	to
the	type	of	output	document.	The	following	code	generates	Table	28.1	in	PDF	form.	The	design	is	similar,
but	aesthetically	a	little	different,	when	the	final	document	is	HTML.
Click	here	to	view	code	image

>	knitr::kable(head(iris),	caption='Tabular	data	printed	using	kable.')	The	DT	package

provides	an	interactive	tabular	experience	through	the	DataTables	JavaScript	library.

Since	DT	is	based	on	htmlwidgets,	its	full	interactivity	is	only	experienced	in	HTML-based

output,	but	screenshots	of	the	resulting	DataTable	are	automatically	captured	in	PDF-based

outputs.	The	following	code	generates	Figure	28.1,	showing	a	DataTable	of	the	first	100

rows	of	the	diamonds	data.

Figure	28.1	A	JavaScript	DataTable	generated	by	the	DT	package.
Click	here	to	view	code	image

>	library(DT)

>	data(diamonds,	package='ggplot2')

>	datatable(head(diamonds,	100))	The	DataTable	library	has	many	extensions,	plugins	and

options,	most	of	which	are	implemented	by	the	DT	package.	To	make	our	table	look	nicer	we

turn	off	rownames;	make	each	column	searchable	with	the	filter	argument;	enable	the

Scroller	extension	for	better	vertical	scrolling;	allow	horizontal	scrolling	with	scrollX;

and	set	the	displayed	dom	elements	to	be	the	table	itself	(t),	table	information	(i)	and

the	Scroller	capability	(S).	Some	of	these	are	listed	as	arguments	to	the	datatable

function,	and	others	are	specified	in	a	list	provided	to	the	options	argument.	This	is

seen	in	the	following	code	which	results	in	Figure	28.2.	Deciphering	what	argument	goes	in

which	part	of	the	function	unfortunately	requires	scouring	the	DT	documentation	and

vignettes	and	the	DataTables	documentation.

Figure	28.2	A	DataTable	with	numerous	options	set.
Click	here	to	view	code	image

>	datatable(head(diamonds,	100),

+	rownames=FALSE,	extensions='Scroller',	filter='top',

+	options	=	list(

+	dom	=	"tiS",	scrollX=TRUE,

+	scrollY	=	400,

+	scrollCollapse	=	TRUE

+))	A	datatables	object	can	be	passed,	via	a	pipe,	to	formatting	functions	to	customize

the	output.	The	following	code	builds	a	datatables	object,	formats	the	price	column	as

currency	rounded	to	the	nearest	whole	number	and	color	codes	the	rows	depending	on	the

value	of	the	cut	column.	The	result	is	seen	in	Figure	28.3.

Figure	28.3	A	DataTable	with	numerous	options	and	formatting.
Click	here	to	view	code	image

>	datatable(head(diamonds,	100),

+	rownames=FALSE,	extensions='Scroller',	filter='top',

+	options	=	list(

+	dom	=	"tiS",	scrollX=TRUE,

+	scrollY	=	400,

+	scrollCollapse	=	TRUE

+))	%>%

+	formatCurrency('price',	digits=0)	%>%

+	formatStyle(columns='cut',	valueColumns='cut',	target='row',

+	backgroundColor=styleEqual(levels=c('Good',	'Ideal'),

+	values=c('red',	'green')

+)

+)

28.5.2	leaflet
As	shown	in	Figure	25.7,	R	can	make	detailed	and	attractive	static	maps.	This	capability	has	been
extended	to	interactive	maps	thanks	to	the	leaflet	package.	This	package	creates	maps	based	on	the
OpenStreetMap	(or	other	map	provider)	that	are	scrollable	and	zoomable.	It	can	also	use	shapefiles,
GeoJSON,	TopoJSON	and	raster	images	to	build	up	the	map.	To	see	this	in	action	we	plot	our	favorite
pizza	places	on	a	map.
First	we	read	the	JSON	file	holding	the	list	of	favorite	pizza	places.

Click	here	to	view	code	image

>	library(jsonlite)

>	pizza	<-	fromJSON('http://www.jaredlander.com/data/PizzaFavorites.json')

>	pizza

Name	Details

1	Di	Fara	Pizza	1424	Avenue	J,	Brooklyn,	NY,	11230

2	Fiore's	Pizza	165	Bleecker	St,	New	York,	NY,	10012

3	Juliana's	19	Old	Fulton	St,	Brooklyn,	NY,	11201

4	Keste	Pizza	&	Vino	271	Bleecker	St,	New	York,	NY,	10014

5	L	&	B	Spumoni	Gardens	2725	86th	St,	Brooklyn,	NY,	11223

6	New	York	Pizza	Suprema	413	8th	Ave,	New	York,	NY,	10001

7	Paulie	Gee's	60	Greenpoint	Ave,	Brooklyn,	NY,	11222

8	Ribalta	48	E	12th	St,	New	York,	NY,	10003

9	Totonno's	1524	Neptune	Ave,	Brooklyn,	NY,	11224

>	class(pizza$Details)

[1]	"list"

>	class(pizza$Details[[1]])

[1]	"data.frame"

>	dim(pizza$Details[[1]])

[1]	1	4

We	see	that	the	Details	column	is	a	list-column	where	each	element	is	a	data.frame	with	four
columns.	We	want	to	un-nest	this	structure	so	that	pizza	is	a	data.frame	where	each	row	has	a	column
for	every	column	in	the	nested	data.frames.	In	order	to	get	longitude	and	latitude	coordinates	for	the
pizza	places	we	need	to	create	a	character	column	that	is	the	combination	of	all	the	address	columns.
Click	here	to	view	code	image

>	library(dplyr)

>	library(tidyr)

>	pizza	<-	pizza	%>%

+	#	unnest	the	data.frame

+	unnest()	%>%

+	#	Rename	the	Address	column	Street

+	rename(Street=Address)	%>%

+	#	create	new	column	to	hod	entire	address

+	unite(col=Address,

+	Street,	City,	State,	Zip,

+	sep=',	',	remove=FALSE)

>	pizza

Name	Address

1	Di	Fara	Pizza	1424	Avenue	J,	Brooklyn,	NY,	11230

2	Fiore's	Pizza	165	Bleecker	St,	New	York,	NY,	10012

3	Juliana's	19	Old	Fulton	St,	Brooklyn,	NY,	11201

4	Keste	Pizza	&	Vino	271	Bleecker	St,	New	York,	NY,	10014

5	L	&	B	Spumoni	Gardens	2725	86th	St,	Brooklyn,	NY,	11223

6	New	York	Pizza	Suprema	413	8th	Ave,	New	York,	NY,	10001

7	Paulie	Gee's	60	Greenpoint	Ave,	Brooklyn,	NY,	11222

8	Ribalta	48	E	12th	St,	New	York,	NY,	10003

9	Totonno's	1524	Neptune	Ave,	Brooklyn,	NY,	11224

Street	City	State	Zip

1	1424	Avenue	J	Brooklyn	NY	11230

2	165	Bleecker	St	New	York	NY	10012

3	19	Old	Fulton	St	Brooklyn	NY	11201

4	271	Bleecker	St	New	York	NY	10014

5	2725	86th	St	Brooklyn	NY	11223

6	413	8th	Ave	New	York	NY	10001

7	60	Greenpoint	Ave	Brooklyn	NY	11222

8	48	E	12th	St	New	York	NY	10003

9	1524	Neptune	Ave	Brooklyn	NY	11224

The	RDSTK	provides	the	street2coordinates	function	to	geocode	addresses.	We	build	a	helper

function	to	geocode	an	address	and	extract	just	the	latitude	and	longitude	columns.
Click	here	to	view	code	image

>	getCoords	<-	function(address)

+	{

+	RDSTK::street2coordinates(address)	%>%

+	dplyr::select_('latitude',	'longitude')

+	}

We	then	apply	this	function	to	each	address	and	bind	the	results	back	to	the	pizza	data.frame.
Click	here	to	view	code	image

>	library(dplyr)

>	library(purrr)

>	pizza	<-	bind_cols(pizza,	pizza$Address	%>%	map_df(getCoords))

>	pizza

Name	Address

1	Di	Fara	Pizza	1424	Avenue	J,	Brooklyn,	NY,	11230

2	Fiore's	Pizza	165	Bleecker	St,	New	York,	NY,	10012

3	Juliana's	19	Old	Fulton	St,	Brooklyn,	NY,	11201

4	Keste	Pizza	&	Vino	271	Bleecker	St,	New	York,	NY,	10014

5	L	&	B	Spumoni	Gardens	2725	86th	St,	Brooklyn,	NY,	11223

6	New	York	Pizza	Suprema	413	8th	Ave,	New	York,	NY,	10001

7	Paulie	Gee's	60	Greenpoint	Ave,	Brooklyn,	NY,	11222

8	Ribalta	48	E	12th	St,	New	York,	NY,	10003

9	Totonno's	1524	Neptune	Ave,	Brooklyn,	NY,	11224

Street	City	State	Zip	latitude	longitude

1	1424	Avenue	J	Brooklyn	NY	11230	40.62503	-73.96214

2	165	Bleecker	St	New	York	NY	10012	40.72875	-74.00005

3	19	Old	Fulton	St	Brooklyn	NY	11201	40.70282	-73.99418

4	271	Bleecker	St	New	York	NY	10014	40.73147	-74.00314

5	2725	86th	St	Brooklyn	NY	11223	40.59431	-73.98152

6	413	8th	Ave	New	York	NY	10001	40.75010	-73.99515

7	60	Greenpoint	Ave	Brooklyn	NY	11222	40.72993	-73.95823

8	48	E	12th	St	New	York	NY	10003	40.73344	-73.99177

9	1524	Neptune	Ave	Brooklyn	NY	11224	40.57906	-73.98327

Now	that	we	have	data	with	coordinates	we	can	build	a	map	with	markers	showing	our	points	of
interest.	The	leaflet	function	initializes	the	map.	Running	just	that	renders	a	blank	map.	Passing	that
object,	via	pipe,	into	addTiles	draws	a	map,	based	on	OpenStreetMap	tiles,	at	minimum	zoom	and
centered	on	the	Prime	Meridian	since	we	did	not	provide	any	data.	Passing	that	to	the	addMarkers
function	adds	markers	at	the	specified	longitude	and	latitude	of	our	favorite	pizza	places.	The	columns
holding	the	information	are	specified	using	the	formula	interface.	Clicking	on	the	markers	reveals	a	popup
displaying	the	name	and	street	address	of	a	pizza	place.	In	an	HTML-based	document	this	map	can	be
zoomed	and	dragged	just	like	any	other	interactive	map.	In	a	PDF	document	it	appears	as	an	image	as	in
Figure	28.4.

Figure	28.4	A	leaflet	map	of	pizza	places	in	New	York.
Click	here	to	view	code	image

>	library(leaflet)

>	leaflet()	%>%

+	addTiles()	%>%

+	addMarkers(lng=~longitude,	lat=~latitude,

+	popup=~sprintf('%s
%s',	Name,	Street),

+	data=pizza

+)

28.5.3	dygraphs
Plotting	time	series	can	be	done	with	ggplot2,	quantmod	and	many	other	packages,	but	dygraphs	creates
interactive	plots.	To	illustrate,	we	look	at	the	GDP	data	from	the	World	Bank	as	seen	in	Section	24.1,	this
time	with	fewer	countries	and	starting	with	1970.	We	use	the	WDI	package	to	access	data	through	the
World	Bank’s	API.
Click	here	to	view	code	image

>	library(WDI)

>	gdp	<-	WDI(country=c("US",	"CA",	"SG",	"IL"),

+	indicator=c("NY.GDP.PCAP.CD"),

+	start=1970,	end=2011)

>	#	give	it	good	names

>	names(gdp)	<-	c("iso2c",	"Country",	"PerCapGDP",	"Year")	This	gives	us	GDP	data	in	the

long	format.	We	convert	it	to	wide	format	using	spread	from	the	tidyr	package.

Click	here	to	view	code	image

>	head(gdp,	15)

iso2c	Country	PerCapGDP	Year

1	CA	Canada	4047.268	1970

2	CA	Canada	4503.181	1971

3	CA	Canada	5048.482	1972

4	CA	Canada	5764.261	1973

5	CA	Canada	6915.889	1974

6	CA	Canada	7354.268	1975

7	CA	Canada	8624.614	1976

8	CA	Canada	8731.679	1977

9	CA	Canada	8931.293	1978

10	CA	Canada	9831.079	1979

11	CA	Canada	10933.732	1980

12	CA	Canada	12075.025	1981

13	CA	Canada	12217.373	1982

14	CA	Canada	13113.169	1983

15	CA	Canada	13506.372	1984

>	gdpWide	<-	gdp	%>%

+	dplyr::select(Country,	Year,	PerCapGDP)	%>%

+	tidyr::spread(key=Country,	value=PerCapGDP)

>

>	head(gdpWide)

Year	Canada	Israel	Singapore	United	States

1	1970	4047.268	1806.423	925.0584	4997.757

2	1971	4503.181	1815.936	1070.7664	5360.178

3	1972	5048.482	2278.840	1263.8942	5836.224

4	1973	5764.261	2819.451	1684.3411	6461.736

5	1974	6915.889	3721.525	2339.3890	6948.198

6	1975	7354.268	3570.763	2488.3415	7516.680

With	the	time	element	in	the	first	column	and	each	time	series	represented	as	a	single	column,	we	use
dygraphs	to	make	an	interactive	JavaScript	plot,	shown	in	Figure	28.5.

Figure	28.5	Interactive	time	series	graph	of	per	capita	GDP.

Click	here	to	view	code	image

>	library(dygraphs)

>	dygraph(gdpWide,	main='Yearly	Per	Capita	GDP',

+	xlab='Year',	ylab='Per	Capita	GDP')	%>%

+	dyOptions(drawPoints	=	TRUE,	pointSize	=	1)	%>%

+	dyLegend(width=400)	Hovering	over	lines	of	the	graph	will	highlight	synchronized	points

on	each	line	and	display	the	values	in	the	legend.	Drawing	a	rectangle	in	the	graph	will

zoom	into	the	data.	We	add	a	range	selection	that	can	be	dragged	to	show	different	part	of

the	graph	with	dyRangeSelector	as	shown	in	Figure	28.6.

Figure	28.6	Interactive	time	series	graph	of	per	capita	GDP	with	range	selector.
Click	here	to	view	code	image

>	dygraph(gdpWide,	main='Yearly	Per	Capita	GDP',

+	xlab='Year',	ylab='Per	Capita	GDP')	%>%

+	dyOptions(drawPoints	=	TRUE,	pointSize	=	1)	%>%

+	dyLegend(width=400)	%>%

+	dyRangeSelector(dateWindow=c("1990",	"2000"))

28.5.4	threejs
The	threejs,	by	Bryan	Lewis,	has	functions	for	building	3D	scatterplots	and	globes	that	can	be	spun
around	to	view	different	angles.	To	see	this	we	draw	arcs	between	origin	and	destination	cities	of	flights
that	were	in	the	air	in	the	afternoon	of	January	2,	2017.	The	dataset	contains	the	airport	codes	and
coordinates	of	the	airports	on	both	ends	of	the	route.
Click	here	to	view	code	image

>	library(readr)

>	flights	<-	read_tsv('http://www.jaredlander.com/data/Flights_Jan_2.tsv')

Parsed	with	column	specification:

cols(

From	=	col_character(),

To	=	col_character(),

From_Lat	=	col_double(),

From_Long	=	col_double(),

To_Lat	=	col_double(),

To_Long	=	col_double()

)

Data	reading	functions	in	readr	print	out	a	message	about	the	columns	to	make	sure	we	are	aware	of	the
datatypes.	Since	read_tsv	returns	a	tbl	we	can	see	the	datatypes	when	we	check	the	first	few	rows	of
the	data.
Click	here	to	view	code	image

>	flights

#	A	tibble:	151	×	6

From	To	From_Lat	From_Long	To_Lat	To_Long

<chr>	<chr>	<dbl>	<dbl>	<dbl>	<dbl>

1	JFK	SDQ	40.63975	-73.77893	18.42966	-69.66893

2	RSW	EWR	26.53617	-81.75517	40.69250	-74.16867

3	BOS	SAN	42.36435	-71.00518	32.73356	-117.18967

4	RNO	LGB	39.49911	-119.76811	33.81772	-118.15161

5	ALB	FLL	42.74827	-73.80169	26.07258	-80.15275

6	JFK	SAN	40.63975	-73.77893	32.73356	-117.18967

7	FLL	JFK	26.07258	-80.15275	40.63975	-73.77893

8	ALB	MCO	42.74827	-73.80169	28.42939	-81.30899

9	LAX	JFK	33.94254	-118.40807	40.63975	-73.77893

10	SJU	BDL	18.43942	-66.00183	41.93889	-72.68322

#	...	with	141	more	rows

The	dataset	is	already	in	proper	form	to	draw	arcs	between	destinations	and	origins.	It	is	also	prepared
to	plot	points	for	the	airports,	but	airports	are	in	the	dataset	multiple	times,	so	the	plot	will	simply	overlay
the	points.	It	will	be	more	useful	to	have	counts	for	the	number	of	times	an	airport	appears	so	that	we	can
draw	one	point	with	a	height	determined	by	the	number	of	flights	originating	from	each	airport.
Click	here	to	view	code	image

>	airports	<-	flights	%>%

+	count(From_Lat,	From_Long)	%>%

+	arrange(desc(n))

>	airports

Source:	local	data	frame	[49	x	3]

Groups:	From_Lat	[49]

From_Lat	From_Long	n

<dbl>	<dbl>	<int>

1	40.63975	-73.77893	25

2	26.07258	-80.15275	16

3	42.36435	-71.00518	15

4	28.42939	-81.30899	11

5	18.43942	-66.00183	7

6	40.69250	-74.16867	5

7	26.53617	-81.75517	4

8	26.68316	-80.09559	4

9	33.94254	-118.40807	4

10	12.50139	-70.01522	3

#	...	with	39	more	rows

The	first	argument	to	globejs	is	the	image	to	use	as	a	surface	map	for	the	globe.	The	default	image	is
nice,	but	NASA	has	a	high-resolution	“blue	marble”	image	we	use.
Click	here	to	view	code	image

>	earth	<-	"http://eoimages.gsfc.nasa.gov/images/imagerecords/

73000/73909/world.topo.bathy.200412.3x5400x2700.jpg"

Now	that	the	data	are	prepared	and	we	have	a	nice	image	for	the	surface	map,	we	can	draw	the	globe.
The	first	argument,	img,	is	the	image	to	use,	which	we	saved	to	the	earth	object.	The	next	two
arguments,	lat	and	long,	are	the	coordinates	of	points	to	draw.	The	value	argument	controls	how	tall
to	draw	the	points.	The	arcs	argument	takes	a	four-column	data.frame	where	the	first	two	columns
are	the	origin	latitude	and	longitude	and	the	second	two	columns	are	the	destination	latitude	and	longitude.
The	rest	of	the	arguments	customize	the	look	and	feel	of	the	globe.	The	following	code	generates	Figure
28.7.

Figure	28.7	Globe,	drawn	with	threejs,	showing	flight	paths.
Click	here	to	view	code	image

>	library(threejs)

>	globejs(img=earth,	lat=airports$From_Lat,	long=airports$From_Long,

+	value=airports$n*5,	color='red',

+	arcs=flights	%>%

+	dplyr::select(From_Lat,	From_Long,	To_Lat,	To_Long),

+	arcsHeight=.4,	arcsLwd=4,	arcsColor="#3e4ca2",	arcsOpacity=.85,

+	atmosphere=TRUE,	fov=30,	rotationlat=.5,	rotationlong=-.05)

28.5.5	d3heatmap
Heatmaps	display	the	intensity	of	numeric	data	and	are	particularly	helpful	with	correlation	matrices.	We
revisit	the	economics	data	from	Section	18.2	to	build	an	interactive	heatmap.	We	first	build	a
correlation	matrix	of	the	numeric	columns,	then	call	d3heatmap,	written	by	Tal	Galili,	which	builds
the	heatmap	and	clusters	the	variables,	displaying	a	dendrogram	for	the	clustering.	The	result	is	seen	in
Figure	28.8.	Hovering	over	individual	cells	shows	more	information	about	the	data,	and	dragging	a	box
zooms	in	on	the	plot.

Figure	28.8	Correlation	heatmap	of	the	economics	data	built	with	d3heatmap.
Click	here	to	view	code	image

>	library(d3heatmap)

>	data(economics,	package='ggplot2')

>	econCor	<-	economics	%>%	select_if(is.numeric)	%>%	cor

>	d3heatmap(econCor,	xaxis_font_size='12pt',	yaxis_font_size='12pt',

+	width=600,	height=600)

28.6	RMarkdown	Slideshows
Creating	reproducible	presentations	without	leaving	the	friendly	confines	of	the	R	environment	has	long
been	possible	using	LaTeX’s	Beamer	mode,	which	creates	a	PDF	where	each	page	is	a	slide.	However,
writing	all	that	LaTeX	code	can	be	unnecessarily	time	consuming.	A	simpler	option	is	to	write	an
RMarkdown	document	and	compile	it	into	an	HTML5	slideshow	such	as	ioslides	or	revealjs.	RMarkdown
also	has	built-in	support	for	generating	a	Beamer	slideshow,	thus	avoiding	LaTeX	while	achieving	the
same	output.
Setting	the	yaml	output	tag	to	ioslides_presentation	will	make	the	document	render	as	an	ioslides

presentation.	The	function	for	rendering	revealjs	slideshows	is	in	the	revealjs	package,	not	the

rmarkdown	package,	so	the	output	tag	is	set	to	revealjs::revealjs_presentation.	A
similar	pattern	works	for	other	output	types.
Slides	are	indicated	by	the	level-two	header	(##)2.	Text	written	on	the	same	line	as	the	slide	indicator

is	printed	as	the	slide	title.	The	class	and	ID	of	the	slide	can	be	provided,	using	standard	CSS	notation,
inside	curly	braces	after	the	(optional)	title	text.	For	example,	{.vcenter	.flexbox	#SlideID}
sets	the	class	of	a	slide	to	both	vcenter	and	flexbox	and	sets	the	ID	to	SlideID.

2.	Like	many	aspects	of	RMarkdown	this	is	customizable.

Aside	from	these	caveats,	and	a	few	others,	regular	Markdown	should	be	used.	Code	for	an	example
slideshow	follows.
Click	here	to	view	code	image

title:	"Slide	Test"

author:	"Jared	P.	Lander"

date:	"December	22,	2016"

output:	ioslides_presentation

##	First	Slide

A	list	of	things	to	cover

-	First	Item

-	Second	Item

-	Third	Item

##	Some	R	Code

The	code	below	will	generate	some	results	and	a	plot.

```{r	figure-plot,fig.cap="Simple	plot	of	the	numbers	1	through	10.",

fig.scap="Simple	plot	of	the	numbers	1	through	10",	out.width='50%',

fig.show='hold'}

1	+	1

plot(1:10)

2	+	2

```

##	Another	Slide

Some	more	information	goes	here

##	Some	Links

[My	Website](http://www.jaredlander.com)

[R	Bloggers](http://www.r-bloggers.com)

28.7	Conclusion
RMarkdown	has	revolutionized	writing	documents	that	interweave	text	with	R	code	and	results.	It	is
faster	and	easier	to	write	than	LaTeX	and	enables	a	wide	range	of	document	types	to	be	created	with	a
simple	change	of	one	yaml	tag.	RMarkdown	documents	and	presentations	are	a	great	way	to	share	code
and	workflow,	deliver	scientific	findings	and	present	compelling	results.

29.	Interactive	Dashboards	with	Shiny

Displaying	data	and	analysis	is	an	important	part	of	the	data	science	process.	R	has	long	had	great
visualization	capabilities	thanks	to	built	in	graphics	and	ggplot2.	With	Shiny	from	RStudio,	we	can	now
build	dashboards,	all	with	R	code.	There	are	many	other	dashboard	tools	that	integrate	with	R	such	as
SiSense,	PowerBI,	Qlik	and	Tableau,	but	they	are	limited	by	the	types	of	data	and	objects	that	can	be
passed	back	and	forth	to	R.	Shiny	is	built	with	R	natively,	so	the	dashboard	can	be	backed	by	any	data
munging,	modelling,	processing	and	visualization	that	can	be	done	in	R.
Shiny	enables	R	programmers	to	develop	Web-based	dashboards	without	having	to	learn	HTML	and

JavaScript,	though	knowing	those	tools	helps.	Using	Shiny	can	be	simple	but	the	code	takes	some
getting	used	to	and	can	feel	awkward	at	first.	The	most	important	thing	to	think	of	at	first	is	inputs	and
outputs:	Users	provide	inputs	through	a	UI	and	the	app	produces	an	output	that	is	sent	back	to	the	UI.	To
see	this	we	first	explore	building	Shiny	documents	using	RMarkdown	and	then	look	at	building	it	the	more
traditional	way	by	separating	out	the	UI	components	and	the	back	end	server	components.
Note	that	due	to	the	limitations	of	the	paper,	ePub	and	PDF	formats	of	this	book,	the	results	presented	in

this	chapter	may	appear	different	than	those	rendered	on	a	computer,	though	the	ideas	will	be	the	same.

29.1	Shiny	in	RMarkdown
The	simplest	way	to	build	a	Shiny	app	is	by	using	an	RMarkdown	document,	which	is	covered	in	Chapter
28.	Code	chunks	are	created	the	same	way	as	with	RMarkdown,	but	the	results	of	the	chunks	are	now
interactive.
Just	like	with	a	regular	RMarkdown	document	the	top	of	the	document	contains	a	yaml	header

providing	details	about	the	document.	The	yaml	header	is	immediately	preceded	and	followed	by	three
dashes.	At	a	minimum	the	header	should	contain	the	title	of	the	document	and	a	tag	indicating	that	the
runtime	is	Shiny.	Other	recommended	tags	are	for	the	author,	output	and	date.
Click	here	to	view	code	image

title:	"Simple	Shiny	Document"

author:	"Jared	P.	Lander"

date:	"November	3,	2016"

output:	html_document

runtime:	shiny

That	last	tag,	runtime:	shiny,	tells	the	RMarkdown	processor	that	this	document	should	be
rendered	as	in	interactive	Shiny	HTML	document	rather	than	an	ordinary	HTML	document.	If	nothing	else
is	added	to	the	document	and	we	build	it,	we	simply	see	the	title,	author	and	date	as	in	Figure	29.1.

Figure	29.1	Shiny	document	resulting	from	only	specifying	header	information.

Building	the	document	can	be	done	in	the	console	with	the	run	function	from	the	rmarkdown	package.

Click	here	to	view	code	image

>	rmarkdown::run('ShinyDocument.Rmd')	Inside	RStudio	the	document	can	be	built	by	clicking

the	Run	Document	button	as	seen	in	Figure	29.2	or	by	typing	ctrl+shift+K.	Using	the

RStudio	button	or	shortcut	keys	runs	the	Shiny	app	in	a	separate	process	so	the	console

can	still	be	used.

Figure	29.2	RStudio	Run	Shiny	Document	Button.

The	first	UI	element	we	add	is	a	dropdown	selector.	This	is	placed	in	a	code	chunk,	just	like	any	other
RMarkdown	code	chunk.	The	code	in	these	chunks	can	be	either	displayed	or	hidden	with	the	echo
chunk	argument.	The	selectInput	function	builds	an	HTML	select	object.	The	first	argument,	inputId,
specifies	the	HTML	ID	for	the	object	and	will	be	used	by	other	functions	in	the	Shiny	app	to	access
information	in	the	select	object.	The	label	argument	specifies	what	is	displayed	to	the	user.	Possible
selection	options	are	listed,	in	a	list	(optionally	named)	or	vector.	The	list	names	represent	what
the	user	sees	and	the	values	are	the	actual	value	that	will	be	selected.	The	result	of	the	following	code
chunk	is	seen	in	Figure	29.3.
Click	here	to	view	code	image

```{r	build-selector,echo=FALSE}

selectInput(inputId='ExampleDropDown',

label='Please	make	a	selection',

choices=list('Value	1'=1,

'Value	2'=2,

'Value	3'=3))

```

Figure	29.3	Shiny	dropdown	select.

Including	selectInput	in	an	RMarkdown	document	merely	generates	HTML	code	as	can	be	seen	by
running	the	command	in	the	console.
Click	here	to	view	code	image

>	selectInput(inputId='ExampleDropDown',	label='Please	make	a	selection',

+	choices=list('Value	1'=1,

+	'Value	2'=2,

+	'Value	3'=3))

<div	class="form-group	shiny-input-container">

<label	class="control-label"	for="ExampleDropDown">

Please	make	a	selection

</label>

<div>

<select	id="ExampleDropDown">

<option	value="1"	selected>Value	1</option>

<option	value="2">Value	2</option>

<option	value="3">Value	3</option>

</select>

<script	type="application/json"

data-for="ExampleDropDown"

data-nonempty="">{}

</script>

</div>

</div>

Now	that	we	have	the	capability	to	control	an	input	we	should	do	something	with	the	value	selected.	As
a	simple	example	we	simply	print	out	the	choice	with	renderPrint.	The	primary	argument	to	renderPrint
is	the	item	to	be	printed.	This	could	be	a	simple	string	of	text,	but	that	would	defeat	the	purpose	of	using
Shiny.	It	is	really	useful	when	used	to	print	the	result	of	an	expression	or	an	input.	To	print	the	input	we
identified	as	ExampleDropDown,	we	need	to	access	it	first.	All	the	inputs	are	stored	in	a	list	called
input.1	The	names	of	the	individual	inputs	in	this	list	are	the	inputIds	supplied	in	the	input
functions,	such	as	selectInput	and	are	accessed	with	the	$	operator	just	like	ordinary	lists.

1.	When	building	a	full	Shiny	app	the	name	of	this	inputlist	can	be	changed,	though	this	is	not	standard	practice.

The	following	chunk	creates	both	the	dropdown	select	and	prints	the	selected	value	as	seen	in	Figure
29.4.	Changing	the	selection	alters	what	is	printed	on	the	fly.

Figure	29.4	Shiny	dropdown	select	input.
Click	here	to	view	code	image

```{r	select-print-drop-down,echo=FALSE}

selectInput(inputId='ExampleDropDown',	label='Please	make	a	selection',

choices=list('Value	1'=1,

'Value	2'=2,

'Value	3'=3))

renderPrint(input$ExampleDropDown)

```

Other	common	inputs	are	sliderInput,	textInput,	dateInput,	checkboxInput,	radioButtons	and
dateInput	as	coded	in	the	following	chunk	and	displayed	in	Figure	29.5.

Figure	29.5	Common	Shiny	inputs.
Click	here	to	view	code	image

```{r	common-inputs,echo=FALSE}

sliderInput(inputId='SliderSample',	label='This	is	a	slider',

min=0,	max=10,	value=5)

textInput(inputId='TextSample',	label='Space	to	enter	text')

checkboxInput(inputId='CheckSample',	label='Single	check	box')

checkboxGroupInput(inputId='CheckGroupSample',

label='Multiple	check	boxes',

choices=list('A',	'B',	'C'))

radioButtons(inputId='RadioSample',	label='Radio	button',

choices=list('A',	'B',	'C'))

dateInput(inputId='DateChoice',	label='Date	Selector')

```

All	of	the	values	set	through	these	inputs	can	be	used	in	other	R	code	by	accessing	their	corresponding
elements	in	the	input	list	and	displayed	with	the	appropriate	render	functions	such	as	renderPrint,
renderText,	renderDataTable	and	renderPlot.
For	instance,	we	can	render	data	with	renderDataTable,	which	uses	the	DataTables	JavaScript

library,	via	the	htmlwidgets	package,	to	display	the	data.	The	following	code	chunk	results	in	Figure
29.6.

Figure	29.6	Tabular	data	displayed	with	DataTables.
Click	here	to	view	code	image

```{r	shiny-datatable-diamonds,echo=FALSE}

data(diamonds,	package='ggplot2')

renderDataTable(diamonds)

```

While	building	Shiny	apps	with	RMarkdown	is	simple,	it	can	result	in	complex	layouts,	especially
when	using	flexdashboard,	which	enables	great	flexibility.

29.2	Reactive	Expressions	in	Shiny
Shiny	is	powered	by	reactive	expressions.	Fully	understanding	reactive	expressions	can	take	quite	some
time,	but	the	main	point	to	know	is	that,	in	simplistic	terms,	they	listen	for	and	react	to	changes	in
variables.	For	our	purposes	we	consider	user	inputs	and	programmatic	outputs	such	as	rendered	text	and
plots.
The	elements	of	the	input	list	are	by	their	very	nature	reactive.	This	is	seen	by	calling

renderText	with	the	value	set	in	a	textInput	as	its	first	argument.	As	the	input	changes	so	does	the
printed	output	as	seen	in	the	following	code	chunk	and	Figure	29.7.

Figure	29.7	Shiny	text	input	and	rendered	text	output.
Click	here	to	view	code	image

```{r	text-input-output,echo=FALSE}

textInput(inputId='TextInput',	label='Enter	Text')

renderText(input$TextInput)

```

Using	the	element	of	the	input	list	is	the	easiest	way	to	make	use	of	a	reactive	expression.
Sometimes,	however,	we	need	to	store	an	element	of	input	in	a	variable	and	act	on	it	later.	Trying	to
code	this	as	regular	R	code	results	in	the	error	seen	in	Figure	29.8.

Figure	29.8	Error	resulting	from	improper	use	of	reactive	expressions.
Click	here	to	view	code	image

```{r	render-date,echo=FALSE}

library(lubridate)

dateInput(inputId='DateChoice',	label='Choose	a	date')

theDate	<-	input$DateChoice

renderText(sprintf('%s	%s,	%s',

month(theDate,	label=TRUE,	abbr=FALSE),

day(theDate),

year(theDate)))

```

This	error	occurred	because	we	saved	a	reactive	expression,	input$DateChoice	to	a	static
variable,	theDate,	and	then	tried	using	that	static	variable	in	a	reactive	context,	renderText.	To	fix
this,	we	pass	input$DateChoice	into	reactive	and	save	it	to	theDate.	This	makes	theDate	a
reactive	expression,	allowing	it	to	change	as	inputs	change.	To	access	the	content	in	theDate	we	treat	it
like	a	function	and	call	it	with	trailing	parentheses	as	in	the	following	chunk	with	the	results	in	Figure
29.9.	If	the	first	argument	to	reactive	is	multiple	lines	of	code,	they	should	all	be	enclosed	inside	curly
braces	({	and	}).

Figure	29.9	Using	reactive	expressions	to	store	adaptable	variables.
Click	here	to	view	code	image

```{r	render-date-reactive,echo=FALSE}

library(lubridate)

dateInput(inputId='DateChoice',	label='Choose	a	date')

theDate	<-	reactive(input$DateChoice)

renderText(sprintf('%s	%s,	%s',

month(theDate(),	label=TRUE,	abbr=FALSE),

day(theDate()),

year(theDate())))

```

Reactive	expressions	form	the	backbone	of	Shiny	and	enable	complex	interactivity.	Using	them
properly	takes	some	time	to	get	acquainted	with	as	it	is	quite	different	from	traditional	R	programming.	In
addition	to	reactive,	observe	and	isolate	also	help	with	reactive	programming.	Objects	created	by
reactive	are	used	for	their	values,	which	update	given	any	change	in	inputs.	Objects	created	by	observe
only	update	when	specifically	invoked.	These	objects	also	do	not	hold	a	result	and	so	are	only	used	for
side	effects	such	as	creating	plots	or	changing	other	objects.	The	isolate	function	allows	access	to	the
value	in	a	reactive	expression	without	it	reacting	or	being	evaluated.

29.3	Server	and	UI
So	far	we	have	used	a	single	RMarkdown	document	to	build	a	simple	Shiny	app.	However,	the	more
robust	method	is	to	define	discrete	UI	and	server	components,	where	the	UI	piece	controls	what	the	user
sees	in	the	browser	and	the	server	piece	controls	calculations	and	interactions.	The	most	traditional	way
to	build	an	app	is	to	have	a	directory	for	the	app	and	within	that	directory	there	is	a	ui.r	file	and	a
server.r	file.
Before	we	create	a	UI	file	we	write	a	server	in	the	server.r	file.	At	first	it	will	do	nothing,	only

existing	so	that	we	can	run	the	app	and	see	the	bare	bones	UI.	At	a	minimum,	the	server	file	needs	to
instate	a	server	with	the	shinyServer	function.	The	sole	argument	to	shinyServer	is	a	function	with	at	at
least	two	arguments—input	and	output—and	an	optional	third	argument—session.2	The	function
can	be	defined	inline,	as	is	done	here,	or	as	its	own	piece	of	code.	The	input	argument	is	the	same
input	as	in	Section	29.1.	Code	in	the	shinyServer	function	will	access	input	elements	through	this
list.	The	output	argument	is	a	list	that	stores	rendered	R	objects	that	can	be	accessed	by	the	UI.
For	the	most	part,	the	session	argument	can	be	ignored	and	is	most	useful	when	working	with	modules.
This	blank	shinyServer	function	has	no	effect	other	than	enabling	the	app	to	be	built	and	ran.

2.	These	arguments	can	have	other	names,	but	there	is	not	much	good	reason	for	using	different	names.

Click	here	to	view	code	image

library(shiny)

shinyServer(function(input,	output,	session)

{

})

Then	we	look	at	a	the	UI	setup	in	the	ui.r	file.	There	are	numerous	ways	to	lay	out	a	Shiny	app,	and
shinydashboard	is	easy	to	code	yet	results	in	an	attractive	app.	The	shinydashboard	package
provides	the	dashboardPage	function	which	holds	all	the	pieces	together.	The	main	components	of	a
dashboard	are	the	header,	sidebar,	and	body	as	illustrated	in	Figure	29.10.

Figure	29.10	Locations	of	the	header,	sidebar	and	body	in	shinydashboard.

The	app	in	Figure	29.10	was	generated	by	putting	an	empty	header,	sidebar	and	body	as	arguments	to
dashboardPage.	The	title	argument	specifies	the	title	displayed	in	the	browser	taskbar.
Click	here	to	view	code	image

library(shiny)

library(shinydashboard)

dashboardPage(

header=dashboardHeader(),

sidebar=dashboardSidebar(),

body=dashboardBody(),

title='Example	Dashboard'

)

Like	all	UI	objects,	these	functions	only	generate	HTML	code,	which	can	be	seen	by	running	the	code	in
the	console.
Click	here	to	view	code	image

>	library(shiny)

>	library(shinydashboard)

>

>	dashboardPage(

+	header=dashboardHeader(),

+	sidebar=dashboardSidebar(),

+	body=dashboardBody(),

+	title='Example	Dashboard'

+)	

<body	class="skin-blue"	style="min-height:	611px;">

<div	class="wrapper">

<header	class="main-header">

<nav	class="navbar	navbar-static-top"	role="navigation">

<i	class="fa	fa-bars"></i>

<a	href="#"	class="sidebar-toggle"	data-toggle="offcanvas"

role="button">

Toggle	navigation

<div	class="navbar-custom-menu">

<ul	class="nav	navbar-nav">

</div>

</nav>

</header>

<aside	class="main-sidebar">

<section	class="sidebar"></section>

</aside>

<div	class="content-wrapper">

<section	class="content"></section>

</div>

</div>

</body>

As	we	add	more	objects	to	the	app,	the	UI	code	can	get	quite	complicated,	so	rather	than	put	all	the
code	for	the	header,	sidebar	and	body	in	one	place,	we	save	each	to	an	object	and	then	use	that	object
inside	the	dashboardPage	call.
We	keep	the	header	simple,	providing	just	the	name	of	the	dashboard	that	is	to	be	displayed.	We	store	it

in	the	dashHeader	object,	which	we	will	supply	to	the	header	argument	of	dashboardPage.
Click	here	to	view	code	image

>	dashHeader	<-	dashboardHeader(title='Simple	Dashboard')	The	sidebar	can	be	used	for	many

things,	and	a	common	use	is	for	navigation.	We	create	clickable	links	using	menuItems

inside	of	a	sidebarMenu.	These	menuItems	point	to	tabItems	in	the	body.	We	create	a

sidebarMenu	with	two	menuItems,	where	one	points	to	the	home	tab	and	the	other	points	to	a

tab	demonstrating	some	graphs.	Each	menuItem	function	takes	at	minimum	two	arguments,	text

and	tabName,	which	specify	the	text	to	display	and	the	linked	tab,	respectively.	An

optional	argument,	icon,	specifies	a	pictograph	to	be	displayed	to	the	right	of	the	text.

The	pictographs	are	generated	using	the	icon	function,	which	can	draw	from	Font	Awesome3

and	Glyphicons.4

3.	http://fontawesome.io/icons/
4.	http://getbootstrap.com/components/#glyphicons

Click	here	to	view	code	image

>	dashSidebar	<-	dashboardSidebar(

+	sidebarMenu(

+	menuItem('Home',

+	tabName='HomeTab',

+	icon=icon('dashboard')

+),

../../../../../fontawesome.io/icons/default.htm
../../../../../getbootstrap.com/components/#glyphicons

+	menuItem('Graphs',

+	tabName='GraphsTab',

+	icon=icon('bar-chart-o')

+)

+)

+)

Putting	this	code	together	generates	the	dashboard	seen	in	Figure	29.11.

Figure	29.11	Shiny	dashboard	with	a	simple	header	and	a	sidebar	with	links	to	Home	and	Graphs	tabs.
Click	here	to	view	code	image

library(shiny)

library(shinydashboard)

dashHeader	<-	dashboardHeader(title='Simple	Dashboard')

dashSidebar	<-	dashboardSidebar(

sidebarMenu(

menuItem('Home',

tabName='HomeTab',

icon=icon('dashboard')

),

menuItem('Graphs',

tabName='GraphsTab',

icon=icon('bar-chart-o')

)

)

)

dashboardPage(

header=dashHeader,

sidebar=dashSidebar,

body=dashboardBody(),

title='Example	Dashboard'

)

The	links	in	the	sidebar	point	to	tabs	in	the	body.	These	tabs	are	built	using	the	tabItem	function,	which
are	inputs	to	the	tabItems	function.	Each	tabItem	has	a	tabName	that	is	pointed	to	by	the	corresponding
menuItem	function.	After	the	tabName,	other	UI	objects	are	specified.	For	example,	we	use	h1	to	create
first-level	header	text,	p	for	a	paragraph	and	em	for	emphasized	text.
A	great	number	of	HTML	tags	are	available	in	Shiny,	through	the	htmltools	package.	They	can	be

displayed	with	the	following	code.
Click	here	to	view	code	image

>	names(htmltools::tags)

[1]	"a"	"abbr"	"address"	"area"

[5]	"article"	"aside"	"audio"	"b"

[9]	"base"	"bdi"	"bdo"	"blockquote"

[13]	"body"	"br"	"button"	"canvas"

[17]	"caption"	"cite"	"code"	"col"

[21]	"colgroup"	"command"	"data"	"datalist"

[25]	"dd"	"del"	"details"	"dfn"

[29]	"div"	"dl"	"dt"	"em"

[33]	"embed"	"eventsource"	"fieldset"	"figcaption"

[37]	"figure"	"footer"	"form"	"h1"

[41]	"h2"	"h3"	"h4"	"h5"

[45]	"h6"	"head"	"header"	"hgroup"

[49]	"hr"	"html"	"i"	"iframe"

[53]	"img"	"input"	"ins"	"kbd"

[57]	"keygen"	"label"	"legend"	"li"

[61]	"link"	"mark"	"map"	"menu"

[65]	"meta"	"meter"	"nav"	"noscript"

[69]	"object"	"ol"	"optgroup"	"option"

[73]	"output"	"p"	"param"	"pre"

[77]	"progress"	"q"	"ruby"	"rp"

[81]	"rt"	"s"	"samp"	"script"

[85]	"section"	"select"	"small"	"source"

[89]	"span"	"strong"	"style"	"sub"

[93]	"summary"	"sup"	"table"	"tbody"

[97]	"td"	"textarea"	"tfoot"	"th"

[101]	"thead"	"time"	"title"	"tr"

[105]	"track"	"u"	"ul"	"var"

[109]	"video"	"wbr"

On	the	Graphs	page	we	build	a	dropdown	selector.	We	hard	code	it	with	the	some	names	of	columns
from	the	diamonds	data.	This	could	be	done	programmatically,	but	for	now	hard	coding	will	suffice.
We	also	use	plotOutput	to	indicate	where	a	plot	will	be	displayed.	It	will	be	blank	until	we	build	the
plot	on	the	server	side.
Click	here	to	view	code	image

>	dashBody	<-	dashboardBody(

+	tabItems(

+	tabItem(tabName='HomeTab',

+	h1('Landing	Page!'),

+	p('This	is	the	landing	page	for	the	dashboard.'),

+	em('This	text	is	emphasized')

+),

+	tabItem(tabName='GraphsTab',

+	h1('Graphs!'),

+	selectInput(inputId='VarToPlot',

+	label='Choose	a	Variable',

+	choices=c('carat',	'depth',

+	'table',	'price'),

+	selected='price'),

+	plotOutput(outputId='HistPlot')

+)

+)

+)

Notice	that	in	UI	functions	individual	items	are	separated	by	commas.	This	is	because	they	are	all
arguments	to	functions,	which	may	be	arguments	to	other	functions.	This	creates	deeply	nested	code,
which	is	why	we	break	them	into	discrete	portions	and	save	them	to	objects	that	are	then	inserted	into	the
appropriate	functions.
All	of	this	UI	code	forms	the	two	pages	of	the	dashboard	as	seen	in	Figures	29.12	and	29.13.

Figure	29.12	Shiny	dashboard	home	page.

Figure	29.13	Shiny	dashboard	graphs	page.
Click	here	to	view	code	image

library(shiny)

library(shinydashboard)

dashHeader	<-	dashboardHeader(title='Simple	Dashboard')

dashSidebar	<-	dashboardSidebar(

sidebarMenu(

menuItem('Home',	tabName='HomeTab',

icon=icon('dashboard')

),

menuItem('Graphs',	tabName='GraphsTab',

icon=icon('bar-chart-o')

)

)

)

dashBody	<-	dashboardBody(

tabItems(

tabItem(tabName='HomeTab',

h1('Landing	Page!'),

p('This	is	the	landing	page	for	the	dashboard.'),

em('This	text	is	emphasized')

),

tabItem(tabName='GraphsTab',

h1('Graphs!'),

selectInput(inputId='VarToPlot',

label='Choose	a	Variable',

choices=c('carat',	'depth',

'table',	'price'),

selected='price'),

plotOutput(outputId='HistPlot')

)

)

)

dashboardPage(

header=dashHeader,

sidebar=dashSidebar,

body=dashBody,

title='Example	Dashboard'

)

Now	that	we	have	a	placeholder	for	a	graph	and	a	dropdown	selector	to	choose	a	variable	to	plot,	we
need	to	create	the	plot	on	the	server	side.	The	plot	itself	is	built	using	standard	ggplot2	code.	The
variable	to	plot	is	specified	using	input$VarToPlot,	which	is	set	by	the	dropdown	selector	with	ID
“VarToPlot”	and	contains	the	selected	value	as	a	character,	so	we	use	the	aes_string	function	to
set	the	aesthetic.
We	want	to	render	this	plot	to	the	screen,	so	we	provide	the	plot	as	an	argument	to	renderPlot.	We

wrap	the	code	in	curly	braces	({	and	})	to	enable	a	multiline	expression.	The	call	to	renderPlot	is	saved
to	the	Histplot	element	of	the	output	list,	which	matches	the	outputID	specified	in	the
plotOutput	function	in	the	UI.	This	ID	matching	is	what	enables	the	UI	and	server	to	communicate,	so	it	is
essential	to	coordinate	IDs.
Click	here	to	view	code	image

>	output$HistPlot	<-	renderPlot({

+	ggplot(diamonds,	aes_string(x=input$VarToPlot))	+

+	geom_histogram(bins=30)

+	})	The	server	file	now	looks	like	the	following	code.	This,	combined	with	the	UI	file,

produce	the	dashboard	page	seen	in	Figure	29.14.	Changing	the	value	in	the	dropdown

selector	changes	the	plotted	variable.

Figure	29.14	Shiny	dashboard	graphs	page	with	histogram	based	on	the	dropdown	selection.
Click	here	to	view	code	image

library(shiny)

library(ggplot2)

data(diamonds,	package='ggplot2')

shinyServer(function(input,	output,	session)

{

output$HistPlot	<-	renderPlot({

ggplot(diamonds,	aes_string(x=input$VarToPlot))	+

geom_histogram(bins=30)

})

})

A	frequent	point	of	confusion	when	building	Shiny	apps	is	where	to	separate	objects	with	commas.
Items	input	into	the	UI	functions	are	function	arguments,	so	they	need	to	be	separated	by	commas.	Objects
built	in	the	server	are	normal	expressions	inside	a	function,	so	they	are	coded	like	regular	R	code	and	do
not	have	comma	separation.

29.4	Conclusion
Shiny	is	a	powerful	tool	for	building	Web-based	dashboards,	all	with	R	code.	At	first	glance,	the	best	part
of	Shiny	is	that	everything	can	be	done	in	R	preventing	the	need	to	learn	new	tools,	but	that	is	only	half	the
power	of	Shiny.	Since	everything	is	written	in	R,	the	dashboards	can	make	use	of	the	entire	R	ecosystem
and	compute	statistics	and	models	not	possible	in	most	dashboard	tools.	This	capability	brings	machine
learning,	data	science	and	even	AI	to	accessible	dashboards	that	everyone	can	understand.	This	is	a
powerful	advance	in	data	visualization	and	presentation.
We	have	just	scratched	the	surface	of	Shiny	apps,	and	there	is	a	lot	more	to	learn,	including	in-depth

understanding	of	reactivity,	modules,	how	to	separate	code	into	multiple	files	and	much	more.	Shiny	is
constantly	evolving	and	growing,	but	the	most	important	thing	to	understand	is	the	relationship	between
inputs	and	outputs	and	between	the	UI	and	server.

30.	Building	R	Packages

As	of	early	February	2017,	there	were	over	10,000	packages	on	CRAN	and	nearly	1,300	more	on
Bioconductor,	with	more	being	added	daily.	In	the	past,	building	a	package	had	the	potential	to	be
mystifying	and	complicated	but	that	is	no	longer	the	case,	especially	when	using	Hadley	Wickham’s
devtools	package.
All	packages	submitted	to	CRAN	(or	Bioconductor)	must	follow	specific	guidelines,	including	the

folder	structure	of	the	package,	inclusion	of	DESCRIPTION	and	NAMESPACE	files	and	proper	help
files.

30.1	Folder	Structure
An	R	package	is	essentially	a	folder	of	folders,	each	containing	specific	files.	At	the	very	minimum	there
must	be	two	folders,	one	called	R	where	the	included	functions	go,	and	the	other	called	man	where	the
documentation	files	are	placed.	It	used	to	be	that	the	documentation	had	to	be	be	written	manually,	but
thanks	to	roxygen2	that	is	no	longer	necessary,	as	is	seen	in	Section	30.3.	Starting	with	R	3.0.0,	CRAN	is
very	strict	in	requiring	that	all	files	must	end	with	a	blank	line	and	that	code	examples	must	be	shorter
than	105	characters.
In	addition	to	the	R	and	man	folders,	other	common	folders	are	src	for	compiled	code	such	as	C++

and	FORTRAN,	data	for	data	that	is	included	in	the	package	and	inst	for	files	that	should	be	available
to	the	end	user.	No	files	from	the	other	folders	are	available	in	a	human-readable	form	(except	the
INDEX,	LICENSE	and	NEWS	files	in	the	root	folder)	when	a	package	is	installed.	Table	30.1	lists	the
most	common	folders	used	in	an	R	package.

Table	30.1	Folders	used	in	R	packages.	While	there	are	other	possible	folders,	these	are	the	most
common.

30.2	Package	Files
The	root	folder	of	the	package	must	contain	at	least	a	DESCRIPTION	file	and	a	NAMESPACE	file,	which
are	described	in	Sections	30.2.1	and	30.2.2.	Other	files	like	NEWS,	LICENSE	and	README	are
recommended	but	not	necessary.	Table	30.2	lists	commonly	used	files.

Table	30.2	Files	used	in	R	packages.	While	there	are	other	possible	files	these	are	the	most
common.

30.2.1	DESCRIPTION	File
The	DESCRIPTION	file	contains	information	about	the	package	such	as	its	name,	version,	author	and
other	packages	it	depends	on.	The	information	is	entered,	each	on	one	line,	as	Item1:	Value1.	Table
30.3	lists	a	number	of	fields	that	are	used	in	DESCRIPTION	files.
The	Package	field	specifies	the	name	of	the	package.	This	is	the	name	that	appears	on	CRAN	and

how	users	access	the	package.
Type	is	a	bit	archaic;	it	can	be	either	Package	or	one	other	type,	Frontend,	which	is	used	for

building	a	graphical	front	end	to	R	and	will	not	be	helpful	for	building	an	R	package	of	functions.

Table	30.3	Fields	in	the	DESCRIPTION	file

Title	is	a	short	description	of	the	package.	It	should	actually	be	relatively	brief	and	cannot	end	in	a
period.	Description	is	a	complete	description	of	the	package,	which	can	be	several	sentences	long
but	no	longer	than	a	paragraph.
Version	is	the	package	version	and	usually	consists	of	three	period-separated	integers;	for	example,

1.15.2.	Date	is	the	release	date	of	the	current	version.
The	Author	and	Maintainer	fields	are	similar	but	both	are	necessary.	Author	can	be	multiple

people,	separated	by	commas,	and	Maintainer	is	the	person	in	charge,	or	rather	the	person	who	gets
complained	to,	and	should	be	a	name	followed	by	an	email	address	inside	angle	brackets	(<>).	An
example	is	Maintainer:	Jared	P.	Lander	<packages@jaredlander.com>.	CRAN	is
actually	very	strict	about	the	Maintainer	field	and	can	reject	a	package	for	not	having	the	proper
format.
License	information	goes	in	the	appropriately	named	License	field.	It	should	be	an	abbreviation	of

one	of	the	standard	specifications	such	as	GPL-2	or	BSD	and	the	string	’file	LICENSE’	referring	to
the	LICENSE	file	in	the	package’s	root	folder.
Things	get	tricky	with	the	Depends,	Imports	and	Suggests	fields.	Often	a	package	requires

functions	from	other	packages.	In	that	case	the	other	package,	for	example,	ggplot2,	should	be	listed	in
either	the	Depends	or	Imports	field	as	a	comma-separated	list.	If	ggplot2	is	listed	in	Depends,	then
when	the	package	is	loaded	so	will	ggplot2,	and	its	functions	will	be	available	to	functions	in	the
package	and	to	the	end	user.	If	ggplot2	is	listed	in	Imports,	then	when	the	package	is	loaded	ggplot2
will	not	be	loaded,	and	its	functions	will	be	available	to	functions	in	the	package	but	not	the	end	user.
Packages	should	be	listed	in	one	or	the	other,	not	both.	Packages	listed	in	either	of	these	fields	will	be
automatically	installed	from	CRAN	when	the	package	is	installed.	If	the	package	depends	on	a	specific
version	of	another	package,	then	that	package	name	should	be	followed	by	the	version	number	in
parentheses;	for	example,	Depends:	ggplot2	(>=	0.9.1).	Packages	that	are	needed	for	the
examples	in	the	documentation,	vignettes	or	testing	but	are	not	necessary	for	the	package’s	functionality
should	be	listed	in	Suggests.
The	Collate	field	specifies	the	R	code	files	contained	in	the	R	folder.
A	relatively	new	feature	is	byte-compilation,	which	can	significantly	speed	up	R	code.	Setting

ByteCompile	to	TRUE	will	ensure	the	package	is	byte-compiled	when	installed	by	the	end	user.
The	DESCRIPTION	file	from	coefplot	is	shown	next.

Click	here	to	view	code	image

Package:	coefplot

Type:	Package

Title:	Plots	Coefficients	from	Fitted	Models

Version:	1.2.4

Date:	2016-01-09

Author:	Jared	P.	Lander

Maintainer:	Jared	P.	Lander	<packages@jaredlander.com>

Description:	Plots	the	coefficients	from	model	objects.	This	very

quickly	shows	the	user	the	point	estimates	and

confidence	intervals	for	fitted	models.

License:	BSD_3_clause	+	file	LICENSE

LazyLoad:	yes

Depends:

ggplot2	(>=	2.0.0)

Imports:

plyr,

reshape2,

useful,

stats,

dplyr

Enhances:

glmnet,

maxLik,

mfx

ByteCompile:	TRUE

Packaged:	2016-01-09	05:16:05	UTC;	Jared

Suggests:

testthat,

sandwich,	lattice,	nnet

RoxygenNote:	5.0.1

ByteCompile:	TRUE

30.2.2	NAMESPACE	File
The	NAMESPACE	file	specifies	which	functions	are	exposed	to	the	end	user	(not	all	functions	in	a
package	should	be)	and	which	other	packages	are	imported	into	the	NAMESPACE.	Functions	that	are
exported	are	listed	as	export(multiplot)	and	imported	packages	are	listed	as	import(plyr).
Building	this	file	by	hand	can	be	quite	tedious,	so	fortunately	roxygen2	and	devtools	can,	and	should,
build	this	file	automatically.
R	has	three	object-oriented	systems:	S3,	S4	and	Reference	Classes.	S3	is	the	oldest	and

simplest	of	the	systems	and	is	what	we	will	focus	on	in	this	book.	It	consists	of	a	number	of	generic
functions	such	as	print,	summary,	coef	and	coefplot.	The	generic	functions	exist	only	to	dispatch	object-
specific	functions.	Typing	print	into	the	console	shows	this.
Click	here	to	view	code	image

>	print

standardGeneric	for	"print"	defined	from	package	"base"

function	(x,	...)

standardGeneric("print")

<environment:	0x00000000095e1cb8>

Methods	may	be	defined	for	arguments:	x

Use	showMethods("print")	for	currently	available	ones.

It	is	a	single-line	function	containing	the	command	UseMethod(“print”)	that	tells	R	to	call
another	function	depending	on	the	class	of	the	object	passed.	These	can	be	seen	with
methods(print).	To	save	space	we	show	only	20	of	the	results.	Functions	not	exposed	to	the	end
user	are	marked	with	an	asterisk	(*).	All	of	the	names	are	print	and	the	object	class	separated	by	a
period.
Click	here	to	view	code	image

>	head(methods(print),	n=20)

[1]	"print,ANY-method"	"print,bayesglm-method"

[3]	"print,bayespolr-method"	"print,diagonalMatrix-method"

[5]	"print,modelMatrix-method"	"print,sparseMatrix-method"

[7]	"print.aareg"	"print.abbrev"

[9]	"print.acf"	"print.AES"

[11]	"print.agnes"	"print.anova"

[13]	"print.Anova"	"print.anova.gam"

[15]	"print.anova.lme"	"print.anova.loglm"

[17]	"print.Anova.mlm"	"print.anova.rq"

[19]	"print.aov"	"print.aovlist"

When	print	is	called	on	an	object,	it	then	calls	one	of	these	functions	depending	on	the	type	of	object.
For	instance,	a	data.frame	is	sent	to	print.data.frame	and	an	lm	object	is	sent	to	print.lm.

These	different	object-specific	functions	that	get	called	by	generic	S3	functions	must	be	declared	in	the
NAMESPACE	in	addition	to	the	functions	that	are	exported.	This	is	indicated	as
S3Method(coefplot,	lm)	to	say	that	coefplot.lm	is	registered	with	the	coefplot	generic	function.
The	NAMESPACE	file	from	coefplot	is	shown	next.

Click	here	to	view	code	image

#	Generated	by	roxygen2:	do	not	edit	by	hand

S3method(buildModelCI,default)

S3method(coefplot,data.frame)

S3method(coefplot,default)

S3method(coefplot,glm)

S3method(coefplot,lm)

S3method(coefplot,logitmfx)

S3method(coefplot,rxGlm)

S3method(coefplot,rxLinMod)

S3method(coefplot,rxLogit)

S3method(extract.coef,maxLik)

export(buildModelCI)

export(buildModelCI.default)

export(coefplot)

export(coefplot.data.frame)

export(coefplot.default)

export(coefplot.glm)

export(coefplot.lm)

export(coefplot.logitmfx)

export(coefplot.rxGlm)

export(coefplot.rxLinMod)

export(coefplot.rxLogit)

export(extract.coef)

export(extract.coef.maxLik)

export(invlogit)

export(multiplot)

export(plotcoef)

export(position_dodgev)

import(ggplot2)

import(plyr)

import(reshape2)

import(useful)

Even	with	a	small	package	like	coefplot,	building	the	NAMESPACE	file	by	hand	can	be	tedious	and
error	prone,	so	it	is	best	to	let	devtools	and	roxygen2	build	it.

30.2.3	Other	Package	Files
The	NEWS	file,	which	can	be	either	plain	text	or	Markdown,	is	for	detailing	what	is	new	or	changed	in
each	version.	The	four	most	recent	entries	in	the	coefplot	NEWS	file	are	shown	next.	Notice	how	it	is
good	practice	to	thank	people	who	helped	with	or	inspired	the	update.	This	file	will	be	available	to	the
end	user’s	installation.
Click	here	to	view	code	image

#	Version	1.2.4

Patched	to	accommodate	changes	to	ggplot2.

#	Version	1.2.3

Can	run	coefplot	on	a	data.frame	that	is	properly	setup	like	on

resulting	from	coefplot(...,	plot=FALSE).

#	Version	1.2.2

Support	for	glmnet	models.	Added	tests.

#	Version	1.2.1

In	mulitplot	there	is	now	an	option	to	reverse	the	order	of	the

legend	so	it	matches	the	ordering	in	the	plot.

The	LICENSE	file	is	for	specifying	more	detailed	information	about	the	package’s	license	and	will	be
available	to	the	end	user’s	installation.	CRAN	has	a	strict	policy	about	what	can	be	written	inside	the
license	file.	It	must	be	excatly	three	lines	with	the	first	indicating	the	years	of	the	copyright,	the	second
specifies	the	copyright	holder	and	the	third	lists	the	organization.	The	LICENSE	file	from	coefplot	is
shown	here.
Click	here	to	view	code	image

YEAR:	2011-2017

COPYRIGHT	HOLDER:	Jared	Lander

ORGANIZATION:	Lander	Analytics

The	README	file	is	purely	informational	and	is	not	included	in	the	end	user’s	installation.	Its	biggest
benefit	may	be	for	packages	hosted	on	GitHub,	where	the	README	will	be	the	information	displayed	on
the	project’s	home	page.	It	is	possible—even	advisable—to	write	the	README	in	RMarkdown	and
render	it	to	Markdown	before	pushing	to	GitHub.	This	way	code	examples,	and	results,	can	be	included	in
the	online	README.
It	is	best	to	create	the	RMarkdown	README	using	the	use_readme_rmd	function	from	devtools,	which

will	not	only	create	the	README.Rmd	file	but	also	create	a	Git	hook	requiring	that	if	the	README.Rmd
has	been	modified,	then	the	README.md	Markdown	file	must	be	built.
The	README	file	for	coefplot	is	shown	in	the	following	listing.	While	it	does	not	have	code	examples,

it	shows	the	general	structure	of	the	file	and	the	necessary	yaml	header.	It	also	includes	badges	to
indicate	its	build,	CRAN	and	test	statuses.

Click	here	to	view	code	image

output:

md_document:

variant:	markdown_github

[![Travis-CI	Build	Status](https://travis-ci.org/jaredlander/

coefplot.svg?branch=master)](https://travis-ci.org/

jaredlander/coefplot)

[![CRAN_Status_Badge](http://www.r-pkg.org/badges/version/coefplot)](

http://cran.r-project.org/package=coefplot)

[![Downloads	from	the	RStudio	CRAN	mirror](http://cranlogs.r-pkg.org/

badges/coefplot)](http://cran.rstudio.com/package=coefplot)

<!--	README.md	is	generated	from	README.Rmd.	Please	edit	that	file	-->

```{r,	echo	=	FALSE}

knitr::opts_chunk$set(

collapse	=	TRUE,



comment	=	"#>",

fig.path	=	"README-"

)

```

Coefplot	is	a	package	for	plotting	the	coefficients	and	standard

errors	from	a	variety	of	models.	Currently	lm,	glm,	glmnet,

maxLik,	rxLinMod,	rxGLM	and	rxLogit	are	supported.

The	package	is	designed	for	S3	dispatch	from	the	functions	coefplot

and	getModelInfo	to	make	for	easy	additions	of	new	models.

If	interested	in	helping	please	contact	the	package	author.

30.3	Package	Documentation
A	very	strict	requirement	for	R	packages	to	be	accepted	by	CRAN	is	proper	documentation.	Each
exported	function	in	a	package	needs	its	own	.Rd	file	that	is	written	in	a	LaTeX-like	syntax.	This	can	be
difficult	to	write	for	even	simple	functions	like	the	following	one.

>	simpleEx	<-	function(x,	y)

+	{

+	return(x	*	y)

+	}

Even	though	it	has	only	two	arguments	and	simply	returns	the	product	of	the	two,	it	has	a	lot	of
necessary	documentation,	shown	here.

Click	here	to	view	code	image

\name{simpleEx}

\alias{simpleEx}

\title{within.distance}

\usage{simpleEx(x,	y)}

\arguments{

\item{x}{A	numeric}

\item{y}{A	second	numeric}

}

\value{x	times	y}

\description{Compute	distance	threshold}

\details{This	is	a	simple	example	of	a	function}

\author{Jared	P.	Lander}

\examples{

simpleEx(3,	5)

}

Rather	than	taking	this	two-step	approach,	it	is	better	to	write	function	documentation	along	with	the
function.	That	is,	the	documentation	is	written	in	a	specially	commented	out	block	right	above	the
function,	as	shown	here.
Click	here	to	view	code	image

>	#'	@title	simpleEx

>	#'	@description	Simple	Example

>	#'	@details	This	is	a	simple	example	of	a	function

>	#'	@aliases	simpleEx

>	#'	@author	Jared	P.	Lander

>	#'	@export	simpleEx

>	#'	@param	x	A	numeric

>	#'	@param	y	A	second	numeric

>	#'	@return	x	times	y

>	#'	@examples

>	#'	simpleEx(5,	3)

>	simpleEx	<-	function(x,	y)

+	{

+	return(x	*	y)

+	}

Running	document	from	devtools	will	automatically	generate	the	appropriate	.Rd	file	based	on	the
block	of	code	above	the	function.	The	code	is	indicated	by	#’	at	the	beginning	of	the	line.	Table	30.4	lists
a	number	of	commonly	used	roxygen2	tags.
Every	argument	must	be	documented	with	a	@param	tag,	including	the	dots	(...),	which	are	written	as	\

dots.	There	must	be	an	exact	correspondence	between	@param	tags	and	arguments;	one	more	or	less
will	cause	an	error.

Table	30.4	Tags	used	in	roxygen2	documentation	of	functions

It	is	considered	good	form	to	show	examples	of	a	function’s	usage.	This	is	done	on	the	lines	following
the	@examples	tag.	In	order	to	be	accepted	by	CRAN	all	of	the	examples	must	work	without	error.	In
order	to	show,	but	not	run,	the	examples	wrap	them	in	\dontrun{...}.
Knowing	the	type	of	object	is	important	when	using	a	function,	so	@return	should	be	used	to

describe	the	returned	object.	If	the	object	is	a	list,	the	@return	tag	should	be	an	itemized	list	of	the	form
Click	here	to	view	code	image

\item{name	a}{description	a}\item{name	b}{description	b}}

Help	pages	are	typically	arrived	at	by	typing	?FunctionName	into	the	console.	The	@aliases	tag
uses	a	space-separated	list	to	specify	the	names	that	will	lead	to	a	particular	help	file.	For	instance,	using
@aliases	coefplot	plotcoef	will	result	in	both	?coefplot	and	?plotcoef,	leading	to	the

same	help	file.
In	order	for	a	function	to	be	exposed	to	the	end	user,	it	must	be	listed	as	an	export	in	the	NAMESPACE

file.	Using	@export	FunctionName	automatically	adds	export(FunctionName)	to	the
NAMESPACE	file.	Similarly,	to	use	a	function	from	another	package,	that	package	must	be	imported	and
@import	PackageName	adds	import(PackageName)	to	the	NAMESPACE	file.
When	building	functions	that	get	called	by	generic	functions,	such	as	coefplot.lm	or	print.anova,	the

@S3method	tag	should	be	used.	@S3method	GenericFunction	Class	adds
S3method(GenericFunction,class)	to	the	NAMESPACE	file.	When	using	@S3method	it	is	a
good	idea	to	also	use	@method	with	the	same	arguments.	This	is	shown	in	the	following	function.
Click	here	to	view	code	image

>	#'	@title	print.myClass

>	#'	@aliases	print.myClass

>	#'	@method	print	myClass

>	#'	@S3method	print	myClass

>	#'	@export	print.myClass

>	#'	@param	x	Simple	object

>	#'	@param	\dots	Further	arguments	to	be	passed	on

>	#'	@return	The	top	5	rows	of	x

>	print.myClass	<-	function(x,	...)

+	{

+	class(x)	<-	"list"

+	x	<-	as.data.frame(x)

+	print.data.frame(head(x,	5))

+	}

30.4	Tests
Testing	code	is	a	very	important	part	of	the	pacage	building	process.	It	not	only	confirms	that	the	code	is
behaving	as	designed	but	also	warns	when	changes	to	code	break	functionality.	Knowing	when	code
changes	break	existing	code	can	save	hours	of	frustration	and	prevent	production	outages.
There	are	two	main	packages	for	writing	tests:	RUnit	and	testthat.	They	both	have	their	benefits,

though	testthat	has	become	more	popular	due	to	its	integration	with	devtools.
When	using	testthat	the	tests	folder	contains	a	file	called	“testthat.R”	and	a	folder	called

testthat,	which	holds	the	tests.	Running	use_testthat	from	devtools	will	set	up	that	structure
automatically	and	add	testthat	to	the	Suggests	field	of	the	DESCRIPTION	file.
The	“testthat.R”	file	is	very	simple.	It	loads	the	testthat	package	and	the	package	we	are	testing.	It	also

calls	the	test_check	function	to	run	the	tests.	The	following	is	a	sample	file:

library(testthat)

library(ExamplePackage)

test_check("ExamplePackage")

The	code	that	runs	the	actual	tests	go	inside	the	testthat	folder.	A	good	rule	of	thumb	is	to	test	one
function	per	file.	Each	file	must	be	of	the	form	test-<file-name>.R.	These	files	can	be
automatically	generated	with	use_test	and	specifying	the	name	of	the	function	to	be	tested.

>	use_test('simpleEx')	This	generates	the	file	test-simeEx.R	with	the	following	contents.

Click	here	to	view	code	image

context("simpleEx")

##	TODO:	Rename	context

##	TODO:	Add	more	tests

test_that("multiplication	works",	{

expect_equal(2	*	2,	4)

})

The	first	line	is	there	to	give	us	information	about	what	we	are	testing.	This	will	be	useful	when
looking	through	the	results	of	numerous	tests	so	it	should	be	long	enough	to	make	sense	but	not	so	long	as
to	be	a	burden.	The	following	lines	are	simply	instructions	telling	us	to	flesh	out	the	testing.	Then	there	is
an	example	test.
For	any	given	function	there	should	be	multiple	tests,	each	one	testing	a	certain	aspect	of	the	function.

Within	a	single	test	there	should	be	multiple	expectations	about	that	aspect.	If	any	expectation	fails	the
entire	test	fails.	For	our	example	function	some	good	tests	are	to	check	that	it	returns	the	proper	data
types,	that	the	result	is	the	correct	length	and	that	it	should	cause	an	error	when	necessary.
The	first	argument	to	test_that	is	a	brief	description	of	what	is	being	tested.	The	second	argument	is

the	collection	of	expectations.	Since	we	have	multiple	expectations,	each	of	which	is	an	expression,	we
encapsulate	them	in	curly	braces	({	and	}).	When	executed	interactively,	the	expectations	and	tests	should
return	no	result	if	there	is	not	an	error.	However,	if	an	expectation	fails	then	an	error	is	returned.
Click	here	to	view	code	image

>	library(testthat)

>

>	test_that('Correct	Answer',	{

+	expect_equal(simpleEx(2,	3),	6)

+	expect_equal(simpleEx(5,	4),	20)

+	expect_equal(simpleEx(c(1,	2,	3),	3),	c(3,	6,	9))

+	expect_equal(simpleEx(c(1,	2,	3),	c(2,	4,	6)),	c(2,	8,	18))

+	})

>

>	test_that('Correct	Type',	{

+	expect_is(simpleEx(2,	3),	'numeric')

+	expect_is(simpleEx(2L,	3L),	'integer')

+	expect_is(simpleEx(c(1,	2,	3),	c(2,	4,	6)),	'numeric')

+	})

>

>	test_that('Correct	length',	{

+	expect_length(simpleEx(2,	3),	1)

+	expect_length(simpleEx(c(1,	2,	3),	3),	3)

+	expect_length(simpleEx(c(1,	2,	3),c(2,	4,	6)),	3)

+	})

Sometimes	an	error,	or	warning,	should	result	from	running	a	function.	In	this	case	we	use
expect_error	or	expect_warning,	both	of	which	will	return	no	result	if	they	capture	an	error	or	warning.
Click	here	to	view	code	image

>	test_that('Appropriate	error	or	warning',	{

+	expect_error(simpleEx(3,	'A'))

+	expect_equal(simpleEx(1:3,	1:2),	c(1,	4,	3))

+	expect_warning(simpleEx(1:3,	1:2))

+	})

There	are	many	expectations	such	as	expect_gte	for	testing	if	a	result	is	greater	than	or	equal	to	a
value,	expect_false	for	expecting	a	FALSE	result	and	expect_named	to	see	if	the	result	has	names.	The

full	set	of	expectations	can	be	printed	using	apropos.
Click	here	to	view	code	image

>	apropos('expect_')

[1]	"expect_cpp_tests_pass"	"expect_equal"

[3]	"expect_equal_to_reference"	"expect_equivalent"

[5]	"expect_error"	"expect_failure"

[7]	"expect_false"	"expect_gt"

[9]	"expect_gte"	"expect_identical"

[11]	"expect_is"	"expect_length"

[13]	"expect_less_than"	"expect_lt"

[15]	"expect_lte"	"expect_match"

[17]	"expect_message"	"expect_more_than"

[19]	"expect_named"	"expect_null"

[21]	"expect_output"	"expect_output_file"

[23]	"expect_s3_class"	"expect_s4_class"

[25]	"expect_silent"	"expect_success"

[27]	"expect_that"	"expect_true"

[29]	"expect_type"	"expect_warning"

Rather	than	check	one	test	at	a	time,	we	are	more	likely	to	check	all	the	tests	for	a	package	at	once,
perhaps	after	making	a	change	to	ensure	that	the	new	code	did	not	break	the	old	code.	This	can	be	done
with	the	test	function	in	devtools.

>	devtools::test()	Tests	are	also	checked	when	checking	the	package	with	check	or	at	the

command	line	using	R	CMD	check.	The	tests	are	checked	again	by	CRAN	before	the	package	is

accepted.

30.5	Checking,	Building	and	Installing
Building	a	package	used	to	require	going	to	the	command	prompt	and	using	commands	like	R	CMD
check,	R	CMD	build	and	R	CMD	INSTALL	(in	Windows	it	is	Rcmd	instead	of	R	CMD),	which
required	being	in	the	proper	directory,	knowing	the	correct	options	and	other	bothersome	time	wasters.
Thanks	to	Hadley	Wickham,	this	has	all	been	made	much	easier	and	can	be	done	from	within	the	R
console.
The	first	step	is	to	make	sure	a	package	is	properly	documented	by	calling	document.	The	first

argument	is	the	path	to	the	root	folder	of	the	package	as	a	string.	(If	the	current	working	directory	is	the
same	as	the	root	folder,	then	no	arguments	are	even	needed.	This	is	true	of	all	the	devtools	functions.)
This	builds	all	the	necessary	.Rd	files,	the	NAMESPACE	file	and	the	Collate	field	of	the
DESCRIPTION	file.

>	devtools::document()	After	the	package	is	properly	documented	(and	with	tests	written),

it	is	time	to	check	it.	This	is	done	using	check	with	the	path	to	the	package	as	the	first

argument.	This	will	make	note	of	any	errors	or	warnings	that	would	prevent	CRAN	from

accepting	the	package.	If	tests	exist	those	will	be	checked	as	well.	CRAN	can	be	very

strict,	so	it	is	essential	to	address	all	the	issues.	If	submitting	to	CRAN,	then	the

package	should	be	against	the	current	version	of	R	on	multiple	operating	systems	and	on	R

devel.

>	devtools::check()	Building	the	package	is	equally	simple	using	the	build	function,	which

also	takes	the	path	to	the	package	as	the	first	argument.	By	default	it	builds	a	.tar.gz,

which	is	a	collection	of	all	the	files	in	the	package,	that	still	needs	to	be	built	into	a

binary	that	can	be	installed	in	R.	It	is	portable	in	that	it	can	be	built	on	any	operating

system.	The	binary	argument,	if	set	to	TRUE,	will	build	a	binary	that	is	operating	system

specific.	This	can	be	problematic	if	compiled	source	code	is	involved.

Click	here	to	view	code	image

>	devtools::build()

>	devtools::build(binary=TRUE)	Other	functions	to	help	with	the	development	process	are

install,	which	rebuilds	and	loads	the	package,	and	load_all,	which	simulates	the	loading

of	the	package	and	NAMESPACE.

Another	great	function,	not	necessarily	for	the	development	process	so	much	as	for	getting	other
people’s	latest	work,	is	install_github,	which	can	install	an	R	package	directly	from	a	GitHub	repository.
There	are	analogous	functions	for	installing	from	BitBucket	(install_bitbucket)	and	Git	(install_git)	in
general.
For	instance,	to	get	the	latest	version	of	coefplot	the	following	code	should	be	run.	By	the	time	of

publication	this	may	no	longer	be	the	the	latest	version.
Click	here	to	view	code	image

>	devtools::install_github(repo="jaredlander/coefplot",

+	ref="survival")	Sometimes	an	older	version	of	a	package	on	CRAN	is	needed,	which	under

normal	circumstances	that	is	hard	to	do	without	downloading	source	packages	manually	and

building	them.	However,	install_version	was	recently	added	to	devtools,	allowing	a

specific	version	of	a	package	to	be	downloaded	from	CRAN,	built	and	installed.

30.6	Submitting	to	CRAN
The	best	way	to	get	a	package	out	to	the	R	masses	is	to	have	it	on	CRAN.	Assuming	the	package	passed
the	checks	and	tests	using	check	and	test	from	devtools,	it	is	ready	to	be	uploaded	to	CRAN	using	the
new	Web	uploader	(as	opposed	to	using	FTP)	at
http://xmpalantir.wu.ac.at/cransubmit/.	The	.tar.gz	file	is	the	one	to	upload.	After
submission,	CRAN	will	send	an	email	requiring	confirmation	that	the	package	was	indeed	uploaded	by
the	maintainer.
Alternatively,	the	release	function	from	devtools	will	once	again	document,	test,	check	and	build	the

package	and	then	upload	it	to	CRAN.	This	process	helps	prevent	little	mistakes	from	slipping	through.
Any	notes	intended	to	be	seen	by	the	CRAN	maintainers	should	be	stored	in	cran-comments.md	file
in	the	root	of	the	package.	These	notes	should	include	information	about	where	the	package	was	tested
and	R	CMD	check.	It	would	also	be	nice	to	include	the	words	“thank	you”	somewhere,	because	the
CRAN	team	puts	in	an	incredible	amount	of	effort	despite	not	getting	paid.

30.7	C++	Code
Sometimes	R	code	is	just	not	fast	enough	(even	when	byte-compiled)	for	a	given	problem	and	a	compiled
language	must	be	used.	R’s	foundation	in	C	and	links	to	FORTRAN	libraries	(digging	deep	enough	into
certain	functions,	such	as	lm,	reveals	that	the	underpinnings	are	written	in	FORTRAN)	makes
incorporating	those	languages	fairly	natural.	.Fortran	is	used	for	calling	a	function	written	in	FORTRAN
and	.Call	is	used	for	calling	C	and	C++	functions.1	Even	with	those	convenient	functions,	knowledge	of
either	FORTRAN	or	C/C++	is	still	necessary,	as	is	knowledge	of	how	R	objects	are	represented	in	the
underlying	language.

1.	There	is	also	a	.C	function,	although	despite	much	debate	it	is	generally	frowned	upon.

Thanks	to	Dirk	Eddelbuettel	and	Romain	François,	integrating	C++	code	has	become	much	easier	using
the	Rcpp	package.	It	handles	a	lot	of	the	scaffolding	necessary	to	make	C++	functions	callable	from	R.
Not	only	did	they	make	developing	R	packages	with	C++	easier,	but	they	also	made	running	ad	hoc	C++
possible.
A	number	of	tools	are	necessary	for	working	with	C++	code.	First,	a	proper	C++	compiler	must	be

available.	To	maintain	compatibility	it	is	best	to	use	gcc.

../../../../../xmpalantir.wu.ac.at/cransubmit/default.htm

Linux	users	should	already	have	gcc	installed	and	should	not	have	a	problem,	but	they	might	need	to
install	g++.
Mac	users	need	to	install	Xcode	and	might	have	to	manually	select	g++.	The	compiler	offered	on	Mac

generally	lags	behind	the	most	recent	version	available,	which	has	been	known	to	cause	some	issues.
Installing	gcc	via	Homebrew	might	offer	a	more	recent	version.
Windows	users	should	actually	have	an	easy	time	getting	started,	thanks	to	RTools	developed	by	Brian

Ripley	and	Duncan	Murdoch.	It	provides	all	necessary	development	tools,	including	gcc	and	make.	The
proper	version,	depending	on	the	installed	version	of	R,	can	be	downloaded	from	http://cran.r-
project.org/bin/windows/Rtools/	and	installed	like	any	other	program.	It	installs	gcc	and
makes	the	Windows	command	prompt	act	more	like	a	Bash	terminal.	If	building	packages	from	within	R
using	devtools	and	RStudio	(which	is	the	best	way	now),	then	the	location	of	gcc	will	be	determined	from
the	operating	system’s	registry.	If	building	packages	from	the	command	prompt,	then	the	location	of	gcc
must	be	put	at	the	very	beginning	of	the	system	PATH	like	c:\Rtools\bin;c:\Rtools\gcc-
4.6.3\bin;C:\Users\Jared\Documents\R\R-3.4.0\bin\x64.
A	LaTeX	distribution	is	needed	for	building	package	help	documents	and	vignettes.	Table	27.1	lists	the

primary	distributions	for	the	different	operating	systems.

30.7.1	sourceCpp
To	start,	we	build	a	simple	C++	function	for	adding	two	vectors.	Doing	so	does	not	make	sense	from	a
practical	point	of	view	because	R	already	does	this	natively	and	quickly,	but	it	will	be	good	for
illustrative	purposes.	The	function	will	have	arguments	for	two	vectors	and	return	the	element-wise
sum.	The	//	[[Rcpp::export]]	tag	tells	Rcpp	that	the	function	should	be	exported	for	use	in	R.
Click	here	to	view	code	image

#include	<Rcpp.h>

using	namespace	Rcpp;

//	[[Rcpp::export]]

NumericVector	vector_add(NumericVector	x,	NumericVector	y)

{

//	declare	the	result	vector

NumericVector	result(x.size());

//	loop	through	the	vectors	and	add	them	element	by	element

for(int	i=0;	i<x.size();	++i)

{

result[i]	=	x[i]	+	y[i];

}

return	result;

}

This	function	should	be	saved	in	a	.cpp	file	(for	example,	vector	add.cpp)	or	as	a	character
variable	so	it	can	be	sourced	using	sourceCpp,	which	will	automatically	compile	the	code	and	create	a
new	R	function	with	the	same	name	that	when	called,	executes	the	C++	function.

>	library(Rcpp)

>	sourceCpp("vector_add.cpp")	Printing	the	function	shows	that	it	points	to	a	temporary

location	where	the	compiled	function	is	currently	stored.

Click	here	to	view	code	image

../../../../../cran.r-project.org/bin/windows/Rtools/default.htm

>	vector_add

function	(x,	y)

.Primitive(".Call")(<pointer:	0x0000000032681a40>,	x,	y)	The	function	can	now	be	called

just	like	any	other	R	function.

Click	here	to	view	code	image

>	vector_add(x=1:10,	y=21:30)

[1]	22	24	26	28	30	32	34	36	38	40

>	vector_add(1,	2)

[1]	3

>	vector_add(c(1,	5,	3,	1),	2:5)

[1]	3	8	7	6

JJ	Allaire	(the	founder	of	RStudio)	is	responsible	for	sourceCpp,	the	//	[[Rcpp::export]]
shortcut	and	a	lot	of	the	magic	that	simplifies	using	C++	with	R	in	general.	Rcpp	maintainer	Dirk
Eddelbuettel	cannot	stress	enough	how	helpful	Allaire’s	contributions	have	been.
Another	nice	feature	of	Rcpp	is	the	syntactical	sugar	that	allows	C++	code	to	be	written	like	R.	Using

sugar	we	can	rewrite	vector_add	with	just	one	line	of	code.
Click	here	to	view	code	image

#include	<Rcpp.h>

using	namespace	Rcpp;

//	[[Rcpp::export]]

NumericVector	vector_add(NumericVector	x,	NumericVector	y)

{

return	x	+	y;

}

The	syntactic	sugar	allowed	two	vectors	to	be	added	just	as	if	they	were	being	added	in	R.
Because	C++	is	a	strongly	typed	language,	it	is	important	that	function	arguments	and	return	types	be

explicitly	declared	using	the	correct	type.	Typical	types	are	NumericVector,	IntegerVector,
LogicalVector,	CharacterVector,	DataFrame	and	List.

30.7.2	Compiling	Packages
While	sourceCpp	makes	ad	hoc	C++	compilation	easy,	a	different	tactic	is	needed	for	building	R
packages	using	C++	code.	The	C++	code	is	put	in	a	.cpp	file	inside	the	src	folder.	Any	functions
preceded	by	//	[[Rcpp::export]]	will	be	converted	into	end	user	facing	R	functions	when	the
package	is	built	using	build	from	devtools.	Any	roxygen2	documentation	written	above	an	exported	C++
function	will	be	used	to	document	the	resulting	R	function.
The	vector_add	function	should	be	rewritten	using	roxygen2	and	saved	in	the	appropriate	file.

Click	here	to	view	code	image

#	include	<Rcpp.h>

using	namespace	Rcpp;

//'	@title	vector_add

//'	@description	Add	two	vectors

//'	@details	Adding	two	vectors	with	a	for	loop

//'	@author	Jared	P.	Lander

//'	@export	vector_add

//'	@aliases	vector_add

//'	@param	x	Numeric	Vector

//'	@param	y	Numeric	Vector

//'	@return	a	numeric	vector	resulting	from	adding	x	and	y

//'	@useDynLib	ThisPackage

//	[[Rcpp::export]]

NumericVector	vector_add(NumericVector	x,	NumericVector	y)

{

NumericVector	result(x.size());

for(int	i=0;	i<x.size();	++i)

{

result[i]	=	x[i]	+	y[i];

}

return	result;

}

The	magic	is	that	Rcpp	compiles	the	code,	and	then	creates	a	new	.R	file	in	the	R	folder	with	the
corresponding	R	code.	In	this	case	it	builds	the	following.
Click	here	to	view	code	image

>	#	This	file	was	generated	by	Rcpp::compileAttributes

>	#	Generator	token:	10BE3573-1514-4C36-9D1C-5A225CD40393

>

>	#'	@title	vector_add

>	#'	@description	Add	two	vectors

>	#'	@details	Adding	two	vectors	with	a	for	loop

>	#'	@author	Jared	P.	Lander

>	#'	@export	vector_add

>	#'	@aliases	vector_add

>	#'	@param	x	Numeric	Vector

>	#'	@param	y	Numeric	Vector

>	#'	@useDynLib	RcppTest

>	#'	@return	a	numeric	vector	resulting	from	adding	x	and	y

>	vector_add	<-	function(x,	y)	{

+	.Call('RcppTest_vector_add',	PACKAGE	=	'RcppTest',	x,	y)

+	}

It	is	simply	a	wrapper	function	that	uses	.Call	to	call	the	compiled	C++	function.	Any	functions	that	are
not	preceded	by	//	[[Rcpp::export]]	are	available	to	be	called	from	within	other	C++	functions,
but	not	from	R,	using	.Call.	Specifying	a	name	attribute	in	the	export	statement,	like	//
[[Rcpp::export(name=“NewName”]],	causes	the	resulting	R	function	to	be	called	that	name.
Functions	that	do	not	need	an	R	wrapper	function	automatically	built,	but	need	to	be	callable	using	.Call,
should	be	placed	in	a	separate	.cpp	file	where	//	[[Rcpp::interfaces(cpp)]]	is	declared
and	each	function	that	is	to	be	user	accessible	is	preceded	by	//	[[Rcpp::export]].
In	order	to	expose	its	C++	functions,	a	package’s	NAMESPACE	must	contain

useDynLib(PackageName).	This	can	be	accomplished	by	putting	the	@useDynLib
PackageName	tag	in	any	of	the	roxygen2	blocks.	Further,	if	a	package	uses	Rcpp	the	DESCRIPTION
file	must	list	Rcpp	in	both	the	LinkingTo	and	Depends	fields.	The	LinkingTo	field	also	allows
easy	linking	to	other	C++	libraries	such	as	RcppArmadillo,	bigmemory	and	BH	(Boost).
The	src	folder	of	the	package	must	also	contain	Makevars	and	Makevars.win	files	to	help	with

compilation.	The	following	examples	were	automatically	generated	using	Rcpp.package.skeleton	and
should	be	sufficient	for	most	packages.
First	the	Makevars	file:	Click	here	to	view	code	image

##	Use	the	R_HOME	indirection	to	support	installations	of	multiple	R	version

PKG_LIBS	=	`$(R_HOME)/bin/Rscript	-e	"Rcpp:::LdFlags()"`

##	As	an	alternative,	one	can	also	add	this	code	in	a	file	'configure'

##

##	PKG_LIBS=`${R_HOME}/bin/Rscript	-e	"Rcpp:::LdFlags()"`

##

##	sed	-e	"s|@PKG_LIBS@|${PKG_LIBS}|"	\

##	src/Makevars.in	>	src/Makevars

##

##	which	together	with	the	following	file	'src/Makevars.in'

##

##	PKG_LIBS	=	@PKG_LIBS@

##

##	can	be	used	to	create	src/Makevars	dynamically.	This	scheme	is	more

##	powerful	and	can	be	expanded	to	also	check	for	and	link	with	other

##	libraries.	It	should	be	complemented	by	a	file	'cleanup'

##

##	rm	src/Makevars

##

##	which	removes	the	autogenerated	file	src/Makevars.

##

##	Of	course,	autoconf	can	also	be	used	to	write	configure	files.	This	is

##	done	by	a	number	of	packages,	but	recommended	only	for	more	advanced

##	users	comfortable	with	autoconf	and	its	related	tools.

Now	the	Makevars.win	file:	Click	here	to	view	code	image

##	Use	the	R_HOME	indirection	to	support	installations	of	multiple	R	version

PKG_LIBS	=	$(shell	"${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe"	-e	"Rcpp:::LdFlags()")

This	just	barely	scratches	the	surface	of	Rcpp,	but	should	be	enough	to	start	a	basic	package	that	relies
on	C++	code.	Packages	containing	C++	code	are	built	the	same	as	any	other	package,	preferably	using
build	in	devtools.

30.8	Conclusion
Package	building	is	a	great	way	to	make	code	portable	between	projects	and	to	share	it	with	other	people.
A	package	purely	built	with	R	code	only	requires	working	functions	that	can	pass	the	CRAN	check	using
check	and	proper	help	files	that	can	be	easily	built	by	including	roxygen2	documentation	above	functions
and	calling	document.	Building	the	package	is	as	simple	as	using	build.	Packages	with	C++	should	utilize
Rcpp.

A.	Real-Life	Resources

One	of	the	greatest	aspects	of	R	is	the	surrounding	community,	both	online	and	in	person.	This	includes
Web	resources	like	Twitter	and	Stack	Overflow,	meetups	and	textbooks.

A.1	Meetups
Meetup.com	is	a	fantastic	resource	for	finding	like-minded	people	and	learning	experiences	for	just	about
anything	including	programming,	statistics,	video	games,	cupcakes	and	beer.	They	are	so	pervasive	that	as
of	early	2017,	there	were	over	260,000	meetup	groups	in	184	countries.	Data	meetups	draw	particularly
large	crowds	and	usually	take	the	format	of	socializing,	a	talk	for	45	to	90	minutes,	and	then	more
socializing.	Meetups	are	not	only	great	for	learning,	but	also	for	hiring	or	getting	hired.
R	meetups	are	very	common,	although	some	are	starting	to	rebrand	from	R	meetups	to	statistical

programming	meetups.	Some	popular	meetups	take	place	in	New	York,	Chicago,	Boston,	Amsterdam,
Washington,	DC,	San	Francisco,	Tel	Aviv,	London,	Cleveland,	Singapore	and	Melbourne.	The	talks
generally	show	cool	features	in	R,	new	packages	or	software	or	just	an	interesting	analysis	performed	in
R.	The	focus	is	usually	on	programming	more	than	statistics.	The	New	York	Open	Statistical	Programming
Meetup	is	the	world’s	largest	R	and	open	stats	meetup	with	over	8,000	members	as	of	mid	2017.	Table
A.1	lists	a	number	of	popular	meetups	but	it	is	an	incredibly	short	list	compared	to	how	many	meetups
exist	for	R.
Machine	Learning	meetups	are	also	good	for	finding	presentations	on	R,	although	they	will	not

necessarily	be	as	focused	on	R.	They	are	located	in	many	of	the	same	cities	as	R	meetups	and	draw
similar	speakers	and	audiences.	These	meetups	tend	more	toward	the	academic	than	focusing	on
programming.
The	third	core	meetup	type	is	Predictive	Analytics.	While	they	may	seem	similar	to	Machine	Learning

meetups,	they	cover	different	material.	The	focus	is	somewhere	in	between	that	of	R	and	Machine
Learning	meetups.	And	yes,	there	is	significant	overlap	in	the	audiences	for	these	meetups.
Other	meetup	groups	that	might	be	of	interest	are	data	science,	big	data	and	data	visualization.

Table	A.1	R	and	related	meetups

A.2	Stack	Overflow
Sometimes	when	confronted	with	a	burning	question	that	cannot	be	solved	alone,	a	good	place	to	turn	for
help	is	Stack	Overflow	(http://stackoverflow.com/).	Previously	the	R	mailing	list	was	the
best,	or	only,	online	resource	for	help,	but	that	has	since	been	superseded	by	Stack	Overflow.
The	site	is	a	forum	for	asking	programming	questions	where	both	questions	and	answers	are	voted	on

by	users	and	people	can	build	reputations	as	experts.	This	is	a	very	quick	way	to	get	answers	for	even
difficult	questions.
Common	search	tags	related	to	R	are	r,	statistics,	rcpp,	ggplot2,	shiny	and	other

statistics-related	terms.
Many	R	packages	these	days	are	hosted	on	GitHub,	so	if	a	bug	is	found	and	confirmed,	the	best	way	to

address	it	is	not	on	Stack	Overflow	but	on	the	GitHub	issues	list	for	the	package.

../../../../../stackoverflow.com/default.htm

A.3	Twitter
Sometimes	just	a	quick	answer	is	needed	that	would	fit	in	140	characters.	In	this	case,	Twitter	is	a	terrific
resource	for	R	questions	ranging	from	simple	package	recommendations	to	code	snippets.
To	reach	the	widest	audience,	it	is	important	to	use	hash	tags	such	#rstats,	#ggplot2,	#knitr,

#rcpp,	#nycdatamafia	and	#statistics.
Great	people	to	follow	are	@drewconway,	@mikedewar,	@harlanharris,	@xieyihui,

@hadleywickham,	@jeffreyhorner,	@revodavid,	@eddelbuettel,

@johnmyleswhite,	@Rbloggers,	@statalgo,	@drob,	@hspter,	@JennyBryan,

@ramnath_vaidya,	@timelyportfolio,	@ProbablePattern,	@CJBayesian,

@RLangTip,	@cmastication,	@pauldix,	@nyhackr,	@rstatsnyc	and

@jaredlander.

A.4	Conferences
There	are	a	number	of	conferences	where	R	is	either	the	focus	or	receives	a	lot	of	attention.	There	are
usually	presentations	about	or	involving	R,	and	sometimes	classes	that	teach	something	specific	about	R.
The	main	one	is	the	appropriately	named	useR!	conference,	which	is	a	yearly	event	at	rotating	locations

around	the	world.	It	alternates	each	year	between	Europe	and	the	United	States.	It	is	organized	by	a	local
committee,	so	each	year	it	has	a	different	focus	and	theme.	The	Web	site	is	at	http://www.r-
project.org/conferences.html.	It	is	supported	by	the	R	Project.
The	New	York	R	Conference	is	a	yearly	conference	organized	by	Lander	Analytics	and	Work-Bench	in

New	York	City.	It	is	two	days	of	twenty-minute	talks	with	no	questions.	The	environment	is	meant	to	be
open	and	convivial	and	emulate	the	New	York	Open	Statistical	Programming	Meetup.	The	Web	site	is
http://www.rstats.nyc.
R	in	Finance	is	a	yearly	conference	that	takes	place	in	Chicago	and	is	coorganized	by	Dirk

Eddelbuettel.	It	is	very	quantitatively	focused	and	heavy	in	advanced	math.	The	Web	site	is	at
http://www.rinfinance.com/.
Other	statistics	conferences	that	are	worth	attending	are	the	Joint	Statistical	Meetings	organized	by	the

American	Statistical	Association	(http://www.amstat.org/meetings/jsm.cfm)	and	Strata	New	York
(http://strataconf.com/strata2013/public/content/home).
Data	Gotham	is	a	new	data	science	conference	organized	by	some	of	the	leaders	of	the	data	science

community	like	Drew	Conway	and	Mike	Dewar.	It	went	dormant	for	a	few	years	but	is	being	revitalized
by	Lander	Analytics.	The	Web	site	is	at	http://www.datagotham.com/.

A.5	Web	Sites
Being	that	R	is	an	open	source	project	with	a	strong	community,	it	is	only	appropriate	that	there	is	a	large
ecosystem	of	Web	sites	devoted	to	it.	Most	of	them	are	maintained	by	people	who	love	R	and	want	to
share	their	knowledge.	Some	are	exclusively	focused	on	R	and	some	only	partially.
Besides	http://www.jaredlander.com/,	some	of	our	favorites	are	R-Bloggers

(http://www.r-bloggers.com/),	htmlwidgets	(http://www.htmlwidgets.org/),	Rcpp
Gallery	(http://gallery.rcpp.org/),	Revolution	Analytics
(http://blog.revolutionanalytics.com/),	Andrew	Gelman’s	site
(http://andrewgelman.com/),	John	Myles	White’s	site
(http://www.johnmyleswhite.com/)	and	RStudio	(https://blog.rstudio.org/).

../../../../../www.r-project.org/conferences.html
../../../../../www.rstats.nyc/default.htm
../../../../../www.rinfinance.com/default.htm
../../../../../www.amstat.org/meetings/jsm.cfm
../../../../../strataconf.com/strata2013/public/content/home
../../../../../www.datagotham.com/default.htm
../../../../../www.jaredlander.com/default.htm
../../../../../www.r-bloggers.com/default.htm
../../../../../www.htmlwidgets.org/default.htm
../../../../../gallery.rcpp.org/default.htm
../../../../../blog.revolutionanalytics.com/default.htm
../../../../../andrewgelman.com/default.htm
../../../../../www.johnmyleswhite.com/default.htm
../../../../../https@blog.rstudio.org/default.htm

A.6	Documents
Over	the	years,	a	number	of	very	good	documents	have	been	written	about	R	and	made	freely	available.
An	Introduction	to	R,	by	William	N.	Venables,	David	M.	Smith	and	The	R	Development	Core	Team,

was	has	been	around	since	S,	the	precursor	of	R,	and	can	be	found	at	http://cran.r-
project.org/doc/manuals/R-intro.pdf.
The	R	Inferno	is	a	legendary	document	by	Patrick	Burns	that	delves	into	the	nuances	and	idiosyncrasies

of	the	language.	It	is	available	as	both	a	printed	book	and	a	free	PDF.	Its	Web	site	is
http://www.burns-stat.com/documents/books/the-r-inferno/.
Writing	R	Extensions	is	a	comprehensive	treatise	on	building	R	packages	that	expands	greatly	on

Chapter	30.	It	is	available	at	http://cran.r-project.org/doc/manuals/R-exts.html.

A.7	Books
For	a	serious	dose	of	statistics	knowledge,	textbooks	offer	a	huge	amount	of	material.	Some	are	old
fashioned	and	obtuse,	while	others	are	modern	and	packed	with	great	techniques	and	tricks.
Our	favorite	statistics	book—which	happens	to	include	a	good	dose	of	R	code—is	Data	Analysis

Using	Regression	and	Multilevel/Hierarchical	Models	by	Andrew	Gelman	and	Jennifer	Hill.	The	first
half	of	the	book	is	a	good	general	text	on	statistics	with	R	used	for	examples.	The	second	half	of	the	book
focuses	on	Bayesian	models	using	BUGS;	the	next	edition	is	rumored	to	use	STAN.
For	advanced	machine	learning	techniques,	but	not	R	code,	Hastie,	Tibshirani	and	Friedman’s	landmark

The	Elements	of	Statistical	Learning:	Data	Mining,	Inference,	and	Prediction	details	a	number	of
modern	algorithms	and	models.	It	delves	deep	into	the	underlying	math	and	explains	how	the	algorithms,
including	the	Elastic	Net,	work.
Other	books,	not	necessarily	textbooks,	have	recently	came	out	that	are	focused	primarily	on	R.

Machine	Learning	for	Hackers	by	Drew	Conway	and	John	Myles	White	uses	R	as	a	tool	in	learning
some	basic	machine	learning	algorithms.	Dynamic	Documents	with	R	and	knitr	by	Yihui	Xie	is	an	in-
depth	look	at	knitr	and	expands	greatly	on	Chapter	27.	Integrating	C++	into	R,	discussed	in	Section	30.7
receives	full	treatment	in	Seamless	R	and	C++	Integration	with	Rcpp	by	Dirk	Eddelbuettel.	David
Robinson	and	Julia	Silge	wrote	Text	Mining	with	R	which	covers	modern	techniques	for	analyzing	text
data	in	R.

A.8	Conclusion
Making	use	of	R’s	fantastic	community	is	an	integral	part	of	learning	R.	Person-to-person	opportunities
exist	in	the	form	of	meetups	and	conferences.	The	best	online	resources	are	Stack	Overflow	and	Twitter.
And	naturally	there	are	a	number	of	books	and	documents	available	both	online	and	in	bookstores.

../../../../../cran.r-project.org/doc/manuals/R-intro.pdf
../../../../../www.burns-stat.com/documents/books/the-r-inferno/default.htm
../../../../../cran.r-project.org/doc/manuals/R-exts.html

B.	Glossary

ACF
See	autocovariance	function

AIC
See	Akaike	Information	Criterion

AICC
See	Akaike	Information	Criterion	Corrected

Akaike	Information	Criterion
Measure	of	model	fit	quality	that	penalizes	model	complexity	Akaike	Information	Criterion	Corrected
Version	of	AIC	with	greater	penalty	for	model	complexity	Analysis	of	Variance
See	ANOVA

Andersen-Gill
Survival	analysis	for	modelling	time	to	multiple	events	ANOVA
Test	for	comparing	the	means	of	multiple	groups.	The	test	can	only	detect	if	there	is	a	difference
between	any	two	groups;	it	cannot	tell	which	ones	are	different	from	the	others	Ansari-Bradley	test
Nonparametric	test	for	the	equality	of	variances	between	two	groups	AR
See	autoregressive

ARIMA
Like	an	ARMA	model	but	it	includes	a	parameter	for	the	number	of	differences	of	the	time	series	data
ARMA
See	Autoregressive	Moving	Average

array

Object	that	holds	data	in	multiple	dimensions

autocorrelation
When	observations	in	a	single	variable	are	correlated	with	previous	observations	autocovariance
function
The	correlation	of	a	time	series	with	lags	of	itself	Autoregressive
Time	series	model	that	is	a	linear	regression	of	the	current	value	of	a	time	series	against	previous
values	Autoregressive	Moving	Average	Combination	of	AR	and	MA	models

average
While	generally	held	to	be	the	arithmetic	mean,	average	is	actually	a	generic	term	that	can	mean	any
number	of	measures	of	centrality,	such	as	the	mean,	median	or	mode	Bartlett	test
Parametric	test	for	the	equality	of	variances	between	two	groups	BASH

A	command	line	processor	in	the	same	vein	as	DOS;	mainly	used	on	Linux	and	MAC	OS	X,	though
there	is	an	emulator	for	Windows	basis	functions
Functions	whose	linear	combination	make	up	other	functions	basis	splines
Basis	functions	used	to	compose	splines

Bayesian
Type	of	statistics	where	prior	information	is	used	to	inform	the	model	Bayesian	Information	Criterion
Similar	to	AIC	but	with	an	even	greater	penalty	for	model	complexity	Beamer
LaTeX	document	class	for	producing	slide	shows

Bernoulli	distribution
Probability	distribution	for	modelling	the	success	or	failure	of	an	event	Beta	distribution
Probability	distribution	for	modelling	a	set	of	possible	values	on	a	finite	interval	BIC
See	Bayesian	Information	Criterion

Binomial	distribution
Probability	distribution	for	modelling	the	number	of	successful	independent	trials	with	identical
probabilities	of	success	Bioconductor
Repository	of	R	packages	for	the	analysis	of	genomic	data	BitBucket
Online	Git	repository

Boost
Fast	C++	library

boosted	tree
An	extension	of	decision	trees	which	fits	successive	trees	on	data	that	are	iteratively	reweighted	to
make	the	model	stronger	Bootstrap
A	process	in	which	data	are	resampled	repeatedly	and	a	statistic	is	calculated	for	each	resampling	to
form	an	empirical	distribution	for	that	statistic	Boxplot
A	graphical	display	of	one	variable	where	the	middle	50	percent	of	the	data	are	in	a	box,	there	are
lines	reaching	out	to	1.5	times	the	interquartile	range	and	dots	representing	outliers	BUGS
Probabilistic	programming	language	specializing	in	Bayesian	computations	byte-compilation
The	process	of	turning	human	readable	code	into	machine	code	that	runs	faster	C
A	fast,	low-level	programming	language;	R	is	written	primarily	in	C

C++
A	fast,	low-level	programming	language	that	is	similar	to	C

Cauchy	distribution
Probability	distribution	for	the	ratio	of	two	Normal	random	variables	censored	data
Data	with	unknown	information	such	as	the	occurrence	of	an	event	after	a	cutoff	time	character
Data	type	for	storing	text

chi-squared	distribution
The	sum	of	k	squared	standard	normal	distributions	chunk
Piece	of	R	code	inside	a	LaTeX	or	Markdown	document	class
Type	of	an	R	object

classification
Determining	the	class	membership	of	data

clustering
Partitioning	data	into	groups

coefficient
A	multiplier	associated	with	a	variable	in	an	equation;	in	statistics	this	is	typically	what	is	being
estimated	by	a	regression	coefficient	plot
A	visual	display	of	the	coefficients	and	standard	errors	from	a	regression	Comprehensive	R	Archive
Network
See	CRAN

confidence	interval
A	range	within	which	an	estimate	should	fall	a	certain	percentage	of	time	correlation
The	strength	of	the	association	between	two	variables	covariance
A	measure	of	the	association	between	two	variables;	the	strength	of	the	relationship	is	not	necessarily
indicated	Cox	proportional	hazards
Model	for	survival	analysis	where	predictors	have	a	multiplicative	effect	on	the	survival	rate	CRAN
The	central	repository	for	all	things	R

cross-validation
A	modern	form	of	model	assessment	where	the	data	are	split	into	k	discrete	folds	and	a	model	is
repeatedly	fitted	on	all	but	one	and	used	to	make	predictions	on	the	holdout	fold	Data	Gotham
Data	science	conference	in	New	York

data	munging
The	process	of	cleaning,	correcting,	aggregating,	joining	and	manipulating	data	to	prepare	it	for
analysis	data	science
The	confluence	of	statistics,	machine	learning,	computer	engineering,	visualization	and	social	skills
data.frame

The	main	data	type	in	R,	similar	to	a	spreadsheet	with	tabular	rows	and	columns

data.table

A	high	speed	extension	of	data.frames

database

Store	of	data,	usually	in	relational	tables

Date
Data	type	for	storing	dates

DB2
Enterprise	level	database	from	IBM

Debian
Linux	distribution

decision	tree
Modern	technique	for	performing	nonlinear	regression	or	classification	by	iteratively	splitting
predictors	degrees	of	freedom
For	some	statistic	or	distribution,	this	is	the	number	of	observations	minus	the	number	of	parameters
being	estimated	density	plot
Display	showing	the	probability	of	observations	falling	within	a	sliding	window	along	a	variable	of
interest	deviance
A	measure	of	error	for	generalized	linear	models	drop-in	deviance
The	amount	by	which	deviance	drops	when	adding	a	variable	to	a	model;	a	general	rule	of	thumb	is	that
deviance	should	drop	by	two	for	each	term	added	DSN
Data	source	connection	used	to	describe	communication	to	a	data	source—often	a	database	dzslides
HTML5	slide	show	format

EDA
See	exploratory	data	analysis

Elastic	Net
New	algorithm	that	is	a	dynamic	blending	of	lasso	and	ridge	regressions	and	is	great	for	predictions
and	dealing	with	high	dimensional	datasets	Emacs
Text	editor	popular	among	programmers

ensemble
Method	of	combining	multiple	models	to	get	an	average	prediction	Excel
The	most	commonly	used	data	analysis	tool	in	the	world	expected	value
Weighted	mean

exploratory	data	analysis
Visually	and	numerically	exploring	data	to	get	a	sense	for	it	before	performing	rigorous	analysis
exponential	distribution
Probability	distribution	often	used	to	model	the	amount	of	time	until	an	event	occurs	F-test
Statistical	test	often	used	for	comparing	models,	as	with	the	ANOVA	F	distribution
The	ratio	of	two	chi-squared	distributions,	often	used	as	the	null	distribution	in	analysis	of	variance

factor

Special	data	type	for	handling	character	data	as	an	integer	value	with	character	labels;	important	for
including	categorical	data	in	models	fitted	values
Values	predicted	by	a	model,	mostly	used	to	denote	predictions	made	on	the	same	data	used	to	fit	the
model	formula
Novel	interface	in	R	that	allows	the	specification	of	a	model	using	convenient	mathematical	notation
FORTRAN
High-speed,	low-level	language;	much	of	R	is	written	in	FORTRAN

FRED
Federal	Reserve	Economic	Data

ftp
File	transfer	protocol

g++
Open	source	compiler	for	C++

GAM
See	Generalized	Additive	Models

gamma	distribution
Probability	distribution	for	the	time	one	has	to	wait	for	n	events	to	occur	gamma	regression
GLM	for	response	data	that	are	continuous,	positive	and	skewed,	such	as	auto	insurance	claims	gap
statistic
Measure	of	clustering	quality	that	compares	the	within-cluster	dissimilarity	for	a	clustering	of	the	data
with	that	of	a	bootstrapped	sample	of	data	GARCH
See	generalized	autoregressive	conditional	heteroskedasticity	Gaussian	distribution
See	normal	distribution

gcc
Family	of	open	source	compilers

Generalized	Additive	Models
Models	that	are	formed	by	adding	a	series	of	smoother	functions	fitted	on	individual	variables
Generalized	Autoregressive	Conditional	Heteroskedasticity	Time	series	method	that	is	more	robust	for
extreme	values	of	data	Generalized	Linear	Models
Family	of	regression	models	for	non-normal	response	data	such	as	binary	and	count	data	geometric
distribution
Probability	distribution	for	the	number	of	Bernoulli	trials	required	before	the	first	success	occurs	Git
Popular	version	control	standard

GitHub

Online	Git	repository

GLM
See	Generalized	Linear	Models

Hadoop
Framework	for	distributing	data	and	computations	across	a	grid	of	computers	Hartigan’s	rule
Measure	of	clustering	quality	that	compares	the	within-cluster	sum	of	squares	for	a	clustering	of	k
clusters	and	one	with	k	+	1	clusters	heatmap
Visual	display	where	the	relationship	between	two	variables	is	visualized	as	a	mix	of	colors
hierarchical	clustering
Form	of	clustering	where	each	observation	belongs	to	a	cluster,	which	in	turn	belongs	to	a	larger
cluster	and	so	on	until	the	whole	dataset	is	represented	histogram
Display	of	the	counts	of	observations	falling	in	discrete	buckets	of	a	variable	of	interest	HTML
Hypertext	Markup	Language;	used	for	creating	Web	pages	htmlwidgets
A	collection	of	R	packages	that	generates	HTML	and	JavaScript	code	for	interactive	data	display
hypergeometric	distribution
Probability	distribution	for	drawing	k	successes	out	of	a	possible	N	items,	of	which	K	are	considered
successes	hypothesis	test
Test	for	the	significance	of	a	statistic	that	is	being	estimated	IDE
See	Integrated	Development	Environment

indicator	variables
Binary	variables	representing	one	level	of	a	categorical	variable;	also	called	dummy	variables
inference
Drawing	conclusions	on	how	predictors	affect	a	response	integer
Data	type	that	is	only	whole	numbers,	be	they	positive,	negative	or	zero	Integrated	Development
Software	with	features	to	make	programming	easier	Environment	Intel	Matrix	Kernel	Library
Optimized	matrix	algebra	library

interaction
The	combined	effect	of	two	or	more	variables	in	a	regression	intercept
Constant	term	in	a	regression;	literally	the	point	where	the	best	fit	line	passes	through	the	y-axis;	it	is
generalized	for	higher	dimensions	interquartile	range
The	third	quartile	minus	the	first	quartile

inverse	link	function
Function	that	transforms	linear	predictors	to	the	original	scale	of	the	response	data	inverse	logit
Transformation	needed	to	interpret	logistic	regression	on	the	0/1	scale;	scales	any	number	to	be
between	0	and	1

IQR

See	interquartile	range

Java
Low-level	programming	language

JavaScript
A	Web-based	scripting	language	that	much	of	the	modern	Web	is	built	upon	Joint	Statistical	Meetings
Conference	for	statisticians

JSM
See	Joint	Statistical	Meetings

K-means
Clustering	that	divides	the	data	into	k	discrete	groups	as	defined	by	some	distance	measurement	K-
medoids
Similar	to	K-means	except	it	handles	categorical	data	and	is	more	robust	to	outliers	knitr
Modern	package	for	interweaving	R	code	with	LaTeX	or	Markdown	lasso	regression
Modern	regression	using	an	L1	penalty	to	perform	variable	selection	and	dimension	reduction	LaTeX
High-quality	typesetting	program	especially	well	suited	for	mathematical	and	scientific	documents	and
books	level
A	unique	value	in	a	factor	variable	linear	model
Model	that	is	linear	in	terms	of	its	coefficients	link	function
Function	that	transforms	response	data	so	it	can	be	modeled	with	a	GLM

Linux
Open	source	operating	system

list

Robust	data	type	that	can	hold	any	arbitrary	data	types	log
The	inverse	of	an	exponent;	typically	the	natural	log	in	statistics	log-normal	distribution
Probability	distribution	whose	log	is	normally	distributed	logical
Data	type	that	takes	on	the	values	TRUE	or	FALSE

logistic	distribution
Probability	distribution	used	primarily	for	logistic	regression	logistic	regression
Regression	for	modelling	a	binary	response

logit
The	opposite	of	the	inverse	logit;	transforms	number	between	0	and	1	to	the	real	numbers	loop
Code	that	iterates	through	some	index

MA

See	moving	average

Mac	OS	X
Apple’s	proprietary	operating	system

machine	learning
Modern,	computationally	heavy	statistics

Map	Reduce
Paradigm	where	data	is	split	into	discrete	sets,	computed	on,	and	then	recombined	in	some	fashion
Markdown
Simplified	formatting	syntax	used	to	produce	an	elegant	HTML	document	in	a	simple	fashion	Matlab
Expensive	commercial	software	for	mathematical	programming	matrix
Two-dimensional	data	type

matrix	algebra
Algebra	performed	on	matrices	that	greatly	simplifies	the	math	maximum
Largest	value	in	a	set	of	data

mean
Mathematical	average;	typically	either	arithmetic	(traditional	average)	or	weighted	mean	squared	error
Quality	measure	for	an	estimator;	the	average	of	the	squares	of	the	differences	between	an	estimator
and	the	true	value	median
Middle	number	of	an	ordered	set	of	numbers;	when	there	are	an	even	amount	of	numbers,	the	median	is
the	mean	of	the	middle	two	numbers	Meetup
A	Web	site	that	facilitates	real	life	social	interaction	for	any	number	of	interests;	particularly	popular	in
the	data	field	memory
Also	referred	to	as	RAM,	this	is	where	the	data	that	R	analyzes	is	stored	while	being	processed;	this	is
typically	the	limiting	factor	on	the	size	of	data	that	R	can	handle	Microsoft	Access
Lightweight	database	from	Microsoft

Microsoft	R
Commercial	distribution	of	R	developed	by	Microsoft	designed	to	be	faster,	be	more	stable	and	scale
better	Microsoft	SQL	Server
Enterprise	level	database	from	Microsoft

minimum
Smallest	value	in	a	set	of	data

Minitab
GUI	based	statistical	package

missing	data

A	big	problem	in	statistics,	this	is	data	that	are	not	available	to	compute	for	any	one	of	a	number	of
reasons	MKL
See	Intel	Matrix	Kernel	Library

model	complexity
Primarily	how	many	variables	are	included	in	the	model;	overly	complex	models	can	be	problematic
model	selection
Process	of	fitting	the	optimal	model

Moving	Average
Time	series	model	that	is	a	linear	regression	of	the	current	value	of	a	time	series	against	current	and
previous	residuals	multicolinearity
When	one	column	in	a	matrix	is	a	linear	combination	of	any	other	columns	multidimensional	scaling
Projecting	multiple	dimensions	into	a	smaller	dimensionality	multinomial	distribution
Probability	distribution	for	discrete	data	that	can	take	on	any	of	k	classes	multinomial	regression
Regression	for	discrete	response	that	can	take	on	any	of	k	classes	multiple	comparisons
Doing	repeated	tests	on	multiple	groups

multiple	imputation
Advanced	process	to	fill	in	missing	data	using	repeated	regressions	multiple	regression
Regression	with	more	than	one	predictor

MySQL
Open	source	database

NA

Value	that	indicates	missing	data

namespace
Convention	where	functions	belong	to	specific	packages;	helps	solve	conflicts	when	multiple	functions
have	the	same	name	natural	cubic	spline
Smoothing	function	with	smooth	transitions	at	interior	breakpoints	and	linear	behavior	beyond	the
endpoints	of	the	input	data	negative	binomial	distribution
Probability	distribution	for	the	number	of	trials	required	to	obtain	r	successes;	this	is	often	used	as	the
approximate	distribution	for	pseudo-Poisson	regression	nonlinear	least	squares
Least	squares	regression	(squared	error	loss)	with	nonlinear	parameters	nonlinear	model
Model	where	the	variables	do	not	necessarily	have	a	linear	relationship,	such	as	decision	trees	and
GAMs	nonparametric	model
Model	where	the	response	does	not	necessarily	follow	the	regular	GLM	distributions,	such	as	normal,
logistic	or	Poisson	normal	distribution
The	most	common	probability	distribution	that	is	used	for	a	wide	array	of	phenomena;	the	familiar	bell
curve	NULL

A	data	concept	that	represents	nothingness

null	hypothesis
The	assumed	true	value	in	hypothesis	tests

numeric

Data	type	for	storing	numeric	values

NYC	Data	Mafia
Informal	term	for	the	growing	prevalence	of	data	scientists	in	New	York	City	NYC	Open	Data
Initiative	to	make	New	York	City	government	data	transparent	and	available	Octave
Open-source	version	of	Matlab

ODBC
See	Open	Database	Connectivity

Open	Database	Connectivity
Industry	standard	for	communicating	data	to	and	from	a	database	ordered	factor
Character	data	where	one	level	can	be	said	to	be	greater	or	less	than	another	level	overdispersion
When	data	show	more	variability	than	indicated	by	the	theoretical	probability	distribution	p-value
The	probability,	if	the	null	hypothesis	was	correct,	of	getting	an	as	extreme,	or	more	extreme,	result
PACF
See	partial	autocovariance	function

paired	t-test
Two	sample	t-test	where	every	member	of	one	sample	is	paired	with	a	member	of	a	second	sample
PAM
See	partitioning	around	medoids

pandoc
Software	for	easy	conversion	of	documents	between	various	formats	such	as	Markdown,	HTML,
LaTeX	and	Microsoft	Word	parallel
In	the	computational	context,	the	running	of	multiple	instructions	simultaneously	to	speed	computation
parallelization
The	process	of	writing	code	to	run	in	parallel

partial	autocovariance
The	amount	of	correlation	between	a	time	series	and	function
lags	of	itself	that	is	not	explained	by	previous	lags	partitioning	around	medoids
Most	common	algorithm	for	K-medoids	clustering

PDF
Common	document	format,	most	often	opened	with	Adobe	Acrobat	Reader	penalized	regression

Form	of	regression	where	a	penalty	term	prevents	the	coefficients	from	growing	too	large	Perl
Scripting	language	commonly	used	for	text	parsing	Poisson	distribution
Probability	distribution	for	count	data

Poisson	regression
GLM	for	response	data	that	are	counts,	such	as	the	number	of	accidents,	number	of	touchdowns	or
number	of	ratings	for	a	pizzeria	POSIXct
Date-time	data	type

prediction
Finding	the	expected	value	of	response	data	for	given	values	of	predictors	predictor
Data	that	are	used	as	an	input	into	a	model	and	explain	and/or	predict	the	response	prior
Bayesian	statistics	use	prior	information,	in	the	form	of	distributions	for	the	coefficients	of	predictors,
to	improve	the	model	fit	Python
Scripted	language	that	is	popular	for	data	munging	Q-Q	plot
Visuals	means	of	comparing	two	distributions	by	seeing	if	the	quantiles	of	the	two	fall	on	a	diagonal
line	quantile
Numbers	in	a	set	where	a	certain	percentage	of	the	numbers	are	smaller	than	that	quantile	quartile
The	25th	quantile

Quasi-Poisson	distribution
Distribution	(actually	the	negative	binomial)	used	for	estimating	count	data	that	are	overdispersed

R-Bloggers
Popular	site	from	Tal	Galili	that	aggregates	blogs	about	R

R	Console
Where	R	commands	are	entered	and	results	are	shown	R	Core	Team
Group	of	20	prime	contributors	to	R	who	are	responsible	for	its	maintenance	and	direction	R
Enthusiasts
Popular	R	blog	by	Romain	François

R	in	Finance
Conference	in	Chicago	about	using	R	for	finance	RAM
See	memory

Random	Forest
Ensemble	method	that	builds	multiple	decision	trees,	each	with	a	random	subset	of	predictors,	and
combines	the	results	to	make	predictions	Rcmdr
GUI	interface	to	R

Rcpp	Gallery

Online	collection	of	Rcpp	examples

Rdata
File	format	for	storing	R	objects	on	disk	regression
Method	that	analyzes	the	relationship	between	predictors	and	a	response;	the	bedrock	of	statistics
regression	tree
See	decision	tree

regular	expressions
String	pattern	matching	paradigm

regularization
Method	to	prevent	overfitting	of	a	model,	usually	by	introducing	a	penalty	term	residual	sum	of	squares
Summation	of	the	squared	residuals

residuals
Difference	between	fitted	values	from	a	model	and	the	actual	response	values	response
Data	that	are	the	outcome	of	a	model	and	are	predicted	and/or	explained	by	the	predictors	ridge
regression
Modern	regression	using	an	L2	penalty	to	shrink	coefficients	for	more	stable	predictions	RSS
See	residual	sum	of	squares

RStudio
Powerful	and	popular	open-source	IDE	for	R

RTools
Set	of	tools	needed	in	Windows	for	integrating	C++,	and	other	compiled	code,	into	R

S
Statistical	language	developed	at	Bell	Labs,	which	was	the	precursor	to	R

S3
Basic	object	type	in	R

S4
Advanced	object	type	in	R

s5
HTML5	slide	show	format

SAS
Expensive	commercial	scripting	software	for	statistical	analysis	scatterplot
Two-dimensional	display	of	data	where	each	point	represents	a	unique	combination	of	two	variables

shapefile
Common	file	format	for	map	data

Shiny
A	framework	that	allows	Web	development	and	backend	computations	shrinkage
Reducing	the	size	of	coefficients	to	prevent	overfitting	simple	regression
Regression	with	one	predictor,	not	including	the	intercept	slideous
HTML5	slide	show	format

slidy
HTML5	slide	show	format

slope
Ratio	of	a	line’s	rise	and	run;	in	regression	this	is	represented	by	the	coefficients

smoothing	spline
Spline	used	for	fitting	a	smooth	trend	to	data

spline
Function	f	that	is	a	linear	combination	of	N	functions	(one	for	each	unique	data	point)	that	are
transformations	of	the	variable	x

SPSS
Expensive	point-and-click	commercial	software	for	statistical	analysis	SQL
Database	language	for	accessing	or	inserting	data	Stack	Overflow
Online	resource	for	programming	questions

STAN
Next	generation	probabilistic	programming	language	specializing	in	Bayesian	computations	standard
deviation
How	far,	on	average,	each	point	is	from	the	mean	standard	error
Measure	of	the	uncertainty	for	a	parameter	estimate	Stata
Commercial	scripting	language	for	statistical	analysis	stationarity
When	the	mean	and	variance	of	a	time	series	are	constant	for	the	whole	series	stepwise	selection
Process	of	choosing	model	variables	by	systematically	fitting	different	models	and	adding	or
eliminating	variables	at	each	step	Strata
Large	data	conference

survival	analysis
Analysis	of	time	to	event,	such	as	death	or	failure	SUSE
Linux	distribution

SVN
Older	version	control	standard

Sweave
Framework	for	interweaving	R	code	with	LaTeX;	has	been	superseded	by	knitr	Systat
Commercial	statistical	package

t-statistic
Ratio	where	the	numerator	is	the	difference	between	the	estimated	mean	and	the	hypothesized	mean	and
the	denominator	is	the	standard	error	of	the	estimated	mean	t-test
Test	for	the	value	of	the	mean	of	a	group	or	the	difference	between	the	means	of	two	groups	t
distribution
Probability	distribution	used	for	testing	a	mean	with	a	student	t-test	tensor	product
A	way	of	representing	transformation	functions	of	predictors,	possibly	measured	on	different	units	text
editor
Program	for	editing	code	that	preserves	the	structure	of	the	text	TextPad
Popular	text	editor

time	series
Data	where	the	order	and	time	of	the	data	are	important	to	their	analysis	ts
Data	type	for	storing	time	series	data

two	sample	t-test
Test	for	the	difference	of	means	between	two	samples	Ubuntu
Linux	distribution

UltraEdit
Popular	text	editor

uniform	distribution
Probability	distribution	where	every	value	is	equally	likely	to	be	drawn	USAID	Open	Government
Initiative	to	make	US	Aid	data	transparent	and	available	useR!
Conference	for	R	users

VAR
See	Vector	Autoregressive	Model

variable
R	object;	can	be	data,	functions,	any	object	variance
Measure	of	the	variability,	or	spread,	of	the	data	vector
A	collection	of	data	elements,	all	of	the	same	type	Vector	Autoregressive	Model
Multivariate	times	series	model

version	control
Means	of	saving	snapshots	of	code	at	different	time	periods	for	easy	maintenance	and	collaboration
vim
Text	editor	popular	among	programmers

violin	plot
Similar	to	a	boxplot	except	that	the	box	is	curved,	giving	a	sense	of	the	density	of	the	data	Visual	Basic
Programming	language	for	building	macros,	mostly	associated	with	Excel	Visual	Studio
IDE	produced	by	Microsoft

Wald	test
Test	for	comparing	models

Weibull	distribution
Probability	distribution	for	the	lifetime	of	an	object	weighted	mean
Mean	where	each	value	carries	a	weight	allowing	the	numbers	to	have	different	effects	on	the	mean
weights
Importance	given	to	observations	in	data	so	that	one	observation	can	be	valued	more	or	less	than
another	Welch	t-test
Test	for	the	difference	in	means	between	two	samples,	where	the	variances	of	each	sample	can	be
different	white	noise
Essentially	random	data

Windows
Microsoft’s	operating	system

Windows	Live	Writer
Desktop	blog	publishing	application	from	Microsoft	Xcode
Apple’s	IDE

xkcd
Web	comic	by	Randall	Munroe,	beloved	by	statisticians,	physicists	and	mathematicians	XML
Extensible	Markup	Language;	often	used	to	descriptively	store	and	transport	data	xts
Advanced	data	type	for	storing	time	series	data

List	of	Figures

Figure	1.1	Location	of	R	installer	in	Windows
Figure	1.2	Language	selection	for	Windows
Figure	1.3	Suggestion	to	close	other	programs	during	installation	for	Windows
Figure	1.4	License	agreement	for	Windows
Figure	1.5	Installation	destination	in	Windows
Figure	1.6	Installation	destination	folder	selection	in	Windows
Figure	1.7	Installation	destination	without	spaces	in	Windows
Figure	1.8	Installation	components	for	Windows
Figure	1.9	Startup	options	for	Windows
Figure	1.10	Start	Menu	location	in	Windows
Figure	1.11	Multiple	versions	of	R	are	installed	on	Windows
Figure	1.12	Additional	installation	tasks	for	Windows
Figure	1.13	Installation	progress	bar	for	Windows
Figure	1.14	Installation	complete	for	Windows
Figure	1.15	Installation	introduction	for	Mac
Figure	1.16	Version	selection	for	Mac
Figure	1.17	License	agreement	for	Mac
Figure	1.18	License	confirmation	for	Mac
Figure	1.19	Installation	location	for	Mac
Figure	1.20	Password	prompt	for	Mac
Figure	1.21	Installation	progress	bar	for	Mac
Figure	1.22	Installation	completion	on	Mac
Figure	2.1	The	standard	R	interface	in	Windows
Figure	2.2	The	standard	R	interface	on	Mac	OS	X
Figure	2.3	General	layout	of	RStudio
Figure	2.4	Object	Name	Autocomplete	in	RStudio
Figure	2.5	Project	menu	in	RStudio
Figure	2.6	Project	creation	options
Figure	2.7	Project	folder	location
Figure	2.8	Project	location	for	existing	folder
Figure	2.9	Repository	selection	for	new	projects
Figure	2.10	Git	repository	input
Figure	2.11	Tools	Menu	in	RStudio
Figure	2.12	General	options	in	RStudio
Figure	2.13	Code	editing	options	in	RStudio

Figure	2.14	Code	display	options	in	RStudio
Figure	2.15	Code	saving	options	in	RStudio
Figure	2.16	Code	completion	options	in	RStudio
Figure	2.17	Code	diagnostics	options	in	RStudio
Figure	2.18	Appearance	options	in	RStudio
Figure	2.19	Pane	layout	options	in	RStudio
Figure	2.20	Package	options	in	RStudio
Figure	2.21	RMarkdown	options	in	RStudio
Figure	2.22	Sweave	and	knitr	options	in	RStudio
Figure	2.23	Spell	check	options	in	RStudio
Figure	2.24	Git/SVN	options	in	RStudio
Figure	2.25	Publishing	options	in	RStudio
Figure	2.26	Git	pane	in	RStudio
Figure	2.27	Git	commit	and	differences	viewer	in	RStudio
Figure	3.1	RStudio’s	package	pane
Figure	3.2	RStudio’s	package	installation	dialog
Figure	3.3	RStudio’s	archive	package	installation
Figure	7.1	Histogram	of	diamond	carats
Figure	7.2	Diamond	price	versus	carat
Figure	7.3	Boxplot	of	diamond	carat
Figure	7.4	ggplot2	histogram	of	diamond	carats
Figure	7.5	ggplot2	density	plot	of	diamond	carats
Figure	7.6	Simple	ggplot2	scatterplot
Figure	7.7	Colored	diamond	scatterplot
Figure	7.8	Scatterplot	faceted	by	color
Figure	7.9	Scatterplot	faceted	by	cut	and	clarity
Figure	7.10	Histogram	faceted	by	color
Figure	7.11	ggplot2	boxplot
Figure	7.12	ggplot2	diamond	carats	boxplot	by	cut
Figure	7.13	ggplot2	diamond	carats	violin	plot	by	cut
Figure	7.14	Violin	plots	with	points
Figure	7.15	Line	plot	using	ggplot2
Figure	7.16	Plot	of	multiple	lines
Figure	7.17	Various	themes	from	the	ggthemes	package
Figure	14.1	Foreign	assistance	by	year
Figure	17.1	Random	normal	variables	and	their	densities
Figure	17.2	Area	under	normal	curve
Figure	17.3	Normal	distribution	function

Figure	17.4	Ten	thousand	runs	of	binomial	experiments	with	ten	trials
Figure	17.5	Random	binomial	histograms
Figure	17.6	Histograms	for	the	Poisson	distribution
Figure	17.7	Density	plots	for	the	Poisson	distribution
Figure	18.1	Pairs	plot	of	economics	data
Figure	18.2	Heatmap	of	the	correlation	of	the	economics	data
Figure	18.3	ggpairs	plot	of	tips	data
Figure	18.4	t	distribution	and	t-statistic	for	tip	data
Figure	18.5	Histogram	of	tip	amount	by	sex
Figure	18.6	Mean	and	two	standard	errors	of	tips
Figure	18.7	Density	plots	showing	difference	heights	of	fathers	and	sons
Figure	18.8	Means	and	confidence	intervals	of	tip	by	day
Figure	19.1	Regressing	sons’	heights	on	fathers’	heights
Figure	19.2	Coefficients	and	confidence	intervals	for	regression	and	ANOVA
Figure	19.3	Histogram	of	value	per	square	foot
Figure	19.4	Histograms	of	value	per	square	foot	by	boro
Figure	19.5	Histograms	for	total	square	feet	and	number	of	units
Figure	19.6	Scatterplots	of	value	per	square	foot	versus	square	footage	and	number	of	units
Figure	19.7	Scatterplots	of	value	versus	sqaure	footage
Figure	19.8	Scatterplots	of	value	versus	number	of	units
Figure	19.9	Coefficient	plot	for	condo	value	regression
Figure	19.10	Coefficient	plots	for	models	with	interaction	terms
Figure	19.11	Zoomed	in	coefficient	plots	for	model	house1
Figure	19.12	Coefficient	plot	for	a	model	with	standardized	values	for	Units	and	SqFt
Figure	19.13	Coefficient	plot	for	multiple	condo	models
Figure	20.1	Density	plot	of	family	income
Figure	20.2	Coefficient	plot	for	logistic	regression	on	family	income
Figure	20.3	Histogram	of	the	number	of	children	per	household
Figure	20.4	Coefficient	plot	for	a	logistic	regression	on	ACS	data
Figure	20.5	Coefficient	plot	for	Poisson	models
Figure	20.6	Survival	curve	for	bladder	data
Figure	20.7	Survival	curve	for	bladder	data	stratified	on	rx
Figure	20.8	Andersen-Gill	survival	curves	for	bladder2	data
Figure	21.1	Coefficient	plot	for	condo	value	data	regression
Figure	21.2	Plot	of	Residuals	versus	fitted	value	for	house1
Figure	21.3	Plot	of	Residuals	versus	fitted	value	for	house1	by	Boro
Figure	21.4	Base	graphics	plots	for	residuals	versus	fitted	values
Figure	21.5	Q-Q	plot	for	house1

Figure	21.6	Histogram	of	residuals	from	house1
Figure	21.7	Coefficient	plot	of	various	models	based	on	housing	data
Figure	21.8	Model	quality	plots	for	housing	data
Figure	21.9	Histogram	of	the	batting	average	bootstrap
Figure	22.1	Cross-validation	curve	for	the	glmnet	fit	on	the	ACS	data
Figure	22.2	Coefficient	profile	plot	for	the	ACS	data
Figure	22.3	Cross-validation	curve	for	ridge	regression	fitted	on	ACS	data
Figure	22.4	Coefficient	profile	plot	for	ridge	regression	fitted	on	ACS	data
Figure	22.5	Plot	of	α	versus	error	for	glmnet	cross-validation	on	the	ACS	data
Figure	22.6	Cross-validation	curve	for	glmnet	with	α	=	0.75
Figure	22.7	Coefficient	path	for	glmnet	with	α	=	0.75
Figure	22.8	Coefficient	plot	for	glmnet	on	ACS	data
Figure	22.9	Plot	showing	the	coefficient	for	the	black	level	of	Race	over	time
Figure	22.10	Plot	showing	the	coefficient	for	the	black	level	of	Race	over	time	with
Cauchy	priors
Figure	23.1	Plot	of	WiFi	device	position	colored	by	distance	from	the	hotspot
Figure	23.2	Plot	of	WiFi	devices	along	with	the	hotspot	location
Figure	23.3	Diamonds	data	with	smoothing	splines
Figure	23.4	Scatterplot	of	price	versus	carat	with	a	natural	cubic	spline
Figure	23.5	Plot	of	good	credit	versus	bad	based	on	credit	amount
Figure	23.6	Plot	of	age	versus	credit	amount	color	coded	by	credit
Figure	23.7	The	smoother	result	for	fitting	a	GAM	on	credit	data
Figure	23.8	Credit	data	decision	tree
Figure	23.9	Projection	of	boosted	trees	onto	one	tree
Figure	23.10	Variable	importance	plot	for	a	boosted	tree	fit	to	the	credit	data
Figure	23.11	Projection	of	boosted	random	forest	trees	onto	one	tree
Figure	24.1	GDP	for	a	number	of	nations	from	1960	to	2011
Figure	24.2	Time	series	plot	of	US	per	capita	GDP
Figure	24.3	ACF	and	PACF	of	US	per	capita	GDP
Figure	24.4	US	per	capita	GDP	diffed	twice
Figure	24.5	ACF	and	PACF	time	series	residuals
Figure	24.6	Five	year	prediction	of	US	GDP
Figure	24.7	Time	series	plot	of	GDP	data	for	all	countries	in	the	data
Figure	24.8	Differenced	GDP	data
Figure	24.9	Coefficient	plots	for	VAR	model	of	GDP	data
Figure	24.10	Time	series	plot	of	AT&T	ticker	data
Figure	24.11	Series	chart	for	AT&T
Figure	24.12	Residual	plots	from	GARCH	model	on	AT&T	data

Figure	24.13	Predictions	for	GARCH	model	on	AT&T	data
Figure	25.1	Clustered	wine	data
Figure	25.2	Clustered	wine	data	with	shapes	coded	to	Cultivar
Figure	25.3	Plot	of	Hartigan’s	rule
Figure	25.4	Confusion	matrix	for	clustering	of	wine
Figure	25.5	Gap	curves	for	wine	data
Figure	25.6	Silhouette	plot	for	country	clustering
Figure	25.7	Map	of	PAM	clustering	of	World	Bank	data
Figure	25.8	Hierarchical	clustering	of	wine	data
Figure	25.9	Hierarchical	clustering	of	country	information	data
Figure	25.10	Wine	hierarchical	clusters	with	different	linkage	methods
Figure	25.11	Hierarchical	clustering	of	wine	data	split	into	three	and	13	groups
Figure	25.12	Hierarchical	clustering	of	wine	data	split	by	the	height	of	cuts
Figure	26.1	Plot	showing	the	ROC	for	various	values	of	max_depth	and	eta
Figure	26.2	Visualization	of	boosted	tree
Figure	27.1	Screenshot	of	LaTeX	and	R	code	in	RStudio	text	editor
Figure	27.2	Simple	plot	of	the	numbers	1	through	10
Figure	28.1	A	JavaScript	DataTable	generated	by	the	DT	package
Figure	28.2	A	DataTable	with	numerous	options	set
Figure	28.3	A	DataTable	with	numerous	options	and	formatting
Figure	28.4	A	leaflet	map	of	pizza	places	in	New	York
Figure	28.5	Interactive	time	series	graph	of	per	capita	GDP
Figure	28.6	Interactive	time	series	graph	of	per	capita	GDP	with	range	selector
Figure	28.7	Globe,	drawn	with	threejs,	showing	flight	paths
Figure	28.8	Correlation	heatmap	of	the	economics	data
Figure	29.1	Header	only	Shiny	document
Figure	29.2	RStudio	Run	Shiny	Document	Button
Figure	29.3	Shiny	dropdown	select
Figure	29.4	Shiny	dropdown	select	input
Figure	29.5	Common	Shiny	inputs
Figure	29.6	Tabular	data	displayed	with	DataTables
Figure	29.7	Shiny	text	input	and	rendered	text	output
Figure	29.8	Error	resulting	from	improper	use	of	reactive	expressions
Figure	29.9	Using	reactive	expressions	to	store	adaptable	variables
Figure	29.10	Shiny	dashboard	header,	sidebar	and	body
Figure	29.11	Shiny	dashboard	with	simple	a	simple	header	and	sidebar
Figure	29.12	Shiny	dashboard	home	page
Figure	29.13	Shiny	dashboard	graphs	page

Figure	29.14	Shiny	dashboard	graphs	page

List	of	Tables

Table	6.1	Functions,	and	their	default	arguments,	for	reading	plain	text	data
Table	6.2	Functions	to	read	from	statistical	tools
Table	6.3	Functions	to	read	from	statistical	tools
Table	11.1	plyr	functions
Table	13.1	purrr	functions
Table	17.1	Statistical	distributions	and	their	functions
Table	17.2	Formulas	for	statistical	distributions
Table	27.1	LaTeX	distributions
Table	27.2	Common	knitr	chunk	options
Table	28.1	Tabular	data	printed	using	kable
Table	30.1	R	package	folders
Table	30.2	R	package	files
Table	30.3	Fields	in	the	DESCRIPTION	file
Table	30.4	Tags	used	in	function	documentation
Table	A.1	R	and	related	meetups

General	Index

Symbols
#	89
32-bit	xviii,	1,	2,	6
64-bit	xviii,	1,	2

A
ACF	370,	372,	373,	385
AI	463
AIC	xix,	292,	303,	311–313,	315,	321,	324,	372,	382,	385,	386,	388
AICC	372
Akaike	Information	Criterion	311
American	Community	Survey	289,	326
American	Statistical	Association	487
An	Introduction	to	R	488
analysis	of	variance	260
ANOVA	260–263,	268,	269,	303,	310,	311,	313,	315,	324
Ansari-Bradley	test	257	API	90,	367,	439
apt-get	1,	13,	14
AR	367,	372,	373,	376
Area	Under	the	Curve	410
ARIMA	372,	373
ARMA	367,	372,	379,	382,	388
array	57,	73,	74,	136
AT&T	380
AUC	410,	412
autocorrelation	367,	370
autocovariance	function	370
autoregressive	367
average	see	mean

B
Bartlett	test	257
baseball	137
Bash	423,	479
basis	functions	352
basis	spline	351
Bayesian	xix,	488
Bayesian	Information	Criterion	311
Beamer	444,	445

Bell	Labs	xvii
Bernoulli	Distribution	230,	231,	240
Beta	Distribution	239,	240
BIC	303,	311–313,	382,	386
binary	file	85
Binomial	Distribution	xix,	230,	231,	234,	235,	239
Bioconductor	465
BitBucket	35,	478
body	455–457,	459
Boost	483
boosted	tree	xvii,	xix,	361–366,	411,	413–415
boosting	361,	366
bootstrap	xix,	303,	318,	320,	321,	324,	395,	410
boxplot	95,	96,	103–105,	107,	110,	251
BUGS	488
byte-compilation	468,	479

C
C	466,	479
C++	xvii,	1,	4,	15,	35,	40,	140,	423,	465,	466,	479–484,	488
Cauchy	Distribution	239,	240,	345,	346
censored	data	297,	321
character	xviii,	36,	42–44,	47,	50,	51,	58,	61,	64,	76,	80,	82,	89,	115,	125,	129,	143,	166,	182,	183,
190,	203,	211,	216,	272,	279,	410,	436,	462,	480
checkbox	451
Chi-Squared	Distribution	239
chunk	420–424,	427,	430,	431,	449
class	60,	153,	183,	337
classification	359,	360,	410,	415
clustering	389,	391,	393–395,	397,	398,	400–403,	407,	444
coefficient	267–269,	271,	279,	280,	282–286,	292,	296,	311,	325,	330,	332,	342,	343,	345–348,	373,
382
coefficient	plot	280,	282,	284,	286,	292,	294,	296,	303,	304,	310,	341,	345,	377,	378
ColdFusion	17
Columbia	University	xvii,	95,	207,	393
command	line	477
command	prompt	479,	480
Comprehensive	R	Archive	Network	see	CRAN
confidence	interval	253,	255,	258,	259,	261,	269,	280,	318,	320,	324,	330,	332,	337,	359
correlation	241,	244–252,	263,	370,	390,	444
covariance	244,	252,	263
Cox	proportional	hazards	298

CRAN	1,	2,	4,	13,	27,	33,	37,	428,	465–467,	471,	472,	474,	477–479,	484
CRAN	Task	Views	37
cran-comments.md	479
cross-validation	xix,	303,	313–315,	317,	324,	330,	332,	336,	337,	409,	410,	412,	415
leave-one-out	314
CSS	445

D
dashboard	xviii,	xix,	447,	455,	457,	460,	462,	463
Data	Analysis	Using	Regression	and	Multilevel/Hierarchical	Models	342,	488
Data	Gotham	487
data	munging	129,	197,	200	data	science	463
data.frame	xviii,	57–60,	63,	64,	66,	70,	72,	74,	75,	77–80,	82–84,	90–92,	95,	125,	129,	136,	138,
140–143,	147,	151–153,	171–173,	175–177,	182,	184–187,	189,	191–193,	195–197,	201–203,	206,	208,
258,	262,	269,	326,	342,	350,	374,	389,	397,	400,	401,	409–411,	418,	436,	437,	443,	469
data.table	79,	141–148,	152,	196
database	81,	82,	90,	92,	141,	176,	177,	206
DataTables	433,	434,	451
datatables	434
Date	xviii,	42,	44,	106
date	107
date	selector	451,	453,	454	dates	44,	45,	106
Debian	1,	13,	14
decision	tree	xix,	347,	359–361,	364,	366,	412
degrees	of	freedom	253,	255,	268,	269,	279,	346,	350
dendrogram	403,	404,	444
density	plot	98,	105,	236,	237,	259
DESCRIPTION	465,	466,	468,	478,	483
deviance	292,	294,	312,	313
div	89
double	42
drop-in	deviance	test	303
dropdown	selector	448–450,	459,	462
DSN	82
Dynamic	Documents	with	R	and	knitr	488

E
EDA	93
Elastic	Net	xix,	325,	327,	330,	332,	336,	337,	339,	346,	488
Emacs	23
ensemble	364
environment	336

Excel	xvii,	16,	79,	81,	92,	108,	121,	216
expected	value	242
exploratory	data	analysis	93,	251,	273
Exponential	Distribution	239,	240

F
F	Distribution	239
F-test	257,	268,	269,	279
float	42
factor	43,	44,	51,	52,	63,	76,	89,	108,	142,	203,	216,	272,	279,	282,	286,	292,	312,	327,	330,	332,
365,	397,	410,	411
factor,	ordered	51,	327
FALSE	36,	42,	45,	76,	78,	82,	117,	118,	121–123,	143,	146,	217,	248,	289,	336,	412,	422,	423,	477
fitted	values	303,	305–307
flexdashboard	452
Font	Awesome	457
formula	94,	95,	132–134,	186,	200,	260,	261,	267,	278,	280,	284–287,	291,	292,	298,	299,	326,	328,
357,	360,	361,	364,	365,	409,	410,	412,	438
FORTRAN	4,	35,	465,	466,	479
FRED	376
FTP	479
functional	programming	179

G
g++	479
GAM	347,	353,	354,	356,	411
Gamma	Distribution	239,	240
gamma	regression	297
Gap	statistic	395–398
GARCH	380,	382,	385,	386,	388
Gaussian	Distribution	see	Normal	Distribution
GDP	367,	368,	376
generalized	additive	models	xix,	347,	353,	366,	411
generalized	autoregressive	conditional	heteroskedasticity	380
generalized	linear	models	265,	289,	292–297,	302,	313–315,	325,	343,	345
geocode	437
GeoJSON	435
Geometric	Distribution	239,	240
Git	xviii,	17,	19–21,	29–31,	471,	478
GitHub	35,	471,	478,	487
glm	312,	315
glmnet	341

Glyphicons	457
Google	Big	Query	176
gross	domestic	product	see	GDP	Guinness	252

H
Hadoop	14,	129
Hartigan’s	Rule	393,	395,	402
header	427,	447,	455–457,	459,	471
heatmap	247,	248,	432,	444
hierarchical	clustering	xix,	389,	403–405,	407
histogram	94,	97,	98,	102,	103,	110,	236,	251,	273–275,	293,	305,	309,	320
Homebrew	479
HTML	28,	88–90,	92,	223,	427–429,	431–433,	438,	447–449,	456,	459
HTML	table	88–90
HTML5	see	HML445
htmlwidgets	488
Hypergeometric	Distribution	239,	240
hypothesis	test	253,	263

I
idata.frame	140
IDE	15,	17,	31,	417,	426
INDEX	465
indicator	variables	63,	279,	284,	313,	326,	327
Inf	346
inference	270,	364
integer	42,	43,	51,	182,	203
Integrated	Development	Environment	14,	15
Intel	2
Intel	Matrix	Kernel	Library	14
interaction	328
intercept	263,	266–268,	270,	271,	326
Interquartile	Range	96
inverse	gaussian	regression	297
inverse	logit	292
ioslides	445
IQR	96

J
JavaScript	xviii,	432,	433,	440
JavaScript	447,	451
join	190,	192,	195,	196,	201–205

anti	206
full	205
inner	205
left	203–205
outer	205
right	205
semi	205,	206

Joint	Statistical	Meetings	487
JSON	90,	91,	435

K
K-means	xix,	389–393,	397,	398,	402,	403,	407
K-medoids	397,	402,	403,	407

L
lag	370,	371,	377,	378
Lander	Analytics	487
lasso	321,	324,	325,	330,	332,	336,	337,	346,	411
LaTeX	xvii,	xix,	28,	417–421,	424–427,	429,	432,	444–446,	472,	480,	492,	493,	497,	498,	501,	504
level	51,	63,	279,	282,	286,	292,	312,	327,	342,	343
levels	44,	51,	257,	258,	260,	326,	327,	330,	332,	397,	411
LICENSE	465,	466,	471
linear	model	xix,	265,	347
see	regression	327

link	function	289,	297
1/mu^2	297
cauchit	297
cloglog	297
identity	297
inverse	297
log	297
logit	297
probit	297
sqrt	297

Linux	1,	13,	15,	17,	85,	417,	479
list	xviii,	57,	64,	66–70,	74,	89,	92,	125,	130,	131,	136,	139,	143,	144,	148,	149,	151,	175,	176,	179,
181–184,	186–188,	192,	193,	195,	196,	214,	219,	337,	348,	434,	436,	449–453,	455,	462
list-column	175,	342
lm	469
log	276,	311
log-likelihood	311
Log-normal	Distribution	239,	240

logical	42,	45,	46,	50,	117,	122,	123,	129,	182,	184,	361
Logistic	Distribution	239,	240
logistic	regression	xix,	289,	291,	292,	294,	297,	302,	312,	313,	343,	345
logit	289
loop	125–128,	131,	190,	195

M
MA	367,	372,	373
Mac	OS	X	1,	2,	15,	17,	18,	85,	417,	479
machine	learning	389,	463
Machine	Learning	for	Hackers	488
Map	Reduce	129
Markdown	28,	417,	427,	429,	430,	445,	470,	471,	493,	497,	498,	501
matrix	xviii,	47,	57,	70,	72–74,	129,	136,	185,	201,	245,	249,	262,	326,	328,	361,	362,	365,	376,	404,
409,	410,	412
matrix	algebra	128,	270
maximum	225,	243,	244
mean	xix,	53,	225,	226,	230,	235,	238,	240–245,	252–255,	258–261,	263,	265,	269,	284,	293,	294,	318,
380,	382,	390,	397
mean	squared	error	314
median	243,	244,	397
meetup	485,	489
memory	2,	41	merge	191
Microsoft	14,	17,	84
Microsoft	Access	81
Microsoft	R	Open	14,	17
Microsoft	R	Server	14,	17,	84
Microsoft	SQL	Server	14,	81
Microsoft	Visual	Studio	31
Microsoft	Word	426,	427
minimum	225,	243,	244
Minitab	84
missing	data	241–244,	248–252
MKL	14
model	complexity	311
model	selection	286
MonetDB	176
moving	average	367
multicollinearity	327
multidimensional	scaling	391
Multinomial	Distribution	239,	240
multinomial	regression	297

multiple	comparisons	263
multiple	imputation	54
MySQL	81,	176

N
NA	53–55,	122,	130,	137,	186,	187,	220,	241–244,	248–250,	376
name	166
NAMESPACE	465,	466,	468–470,	474,	478,	483
namespace	246,	345
NASA	443
natural	cubic	spline	351–353
Negative	Binomial	Distribution	239,	240,	296
New	York	Open	Statistical	Programming	Meetup	485,	487
New	York	R	Conference	487
NEWS	465,	466,	470,	471
nonlinear	least	squares	xix,	347,	348,	366
nonlinear	model	xix,	347,	353,	359
nonparametric	257,	357,	366
Normal	Distribution	xix,	225–227,	229–231,	234–237,	239,	240,	257,	259,	266,	271,	303,	308,	309,	346,
366
Notepad++	17
NULL	53,	54,	121,	248
null	hypothesis	253,	255,	259
numeric	xviii,	42–44,	50,	64,	70,	125,	129,	182,	186,	187,	216,	245,	390,	444
NYC	Open	Data	271

O
Octave	84
ODBC	81,	84
open-source	81
OpenMP	362
OpenStreetMap	435,	438
ordered	factor	183
ordered	list	89
overdispersion	294,	296
overfitting	311

P
p-value	253,	255,	261,	262,	268,	279,	292,	296
PACF	370,	372,	373	PAM	397,	398
pandoc	427
parallel	336,	337,	362,	365,	413

parallelization	140
partial	autocorrelation	370
partial	autocovariance	function	370
Partitioning	Around	Medoids	397
PDF	28,	417,	420,	427,	429,	432,	433,	438,	444,	488
penalized	regression	265	Perl	74,	423
PhantomJS	432
pipe	xviii,	54,	55,	89,	90,	151,	153,	168,	170,	172,	174,	179,	188,	201,	207–209,	343,	434,	435,	437,
438,	440,	441,	443,	444
Poisson	Distribution	xix,	235–237,	239,	240,	293,	294
Poisson	regression	xix,	293–297,	302
POSIXct	42,	44
PostgreSQL	81,	176
PowerBI	447
prediction	270,	286,	287,	325
predictor	265–267,	270,	271,	273,	278,	279,	284,	286,	287,	302,	326–328,	351–354,	359–362,	364,	365,
409,	412
prior	342,	345,	346
Python	xvii,	423

Q
Q-Q	plot	305,	308
Qlik	447
quantile	225,	229,	244,	279
quasipoisson	296

R
R	Console	16,	17,	23,	27,	88,	420,	427,	432,	448,	449,	469,	474,	478
R	Core	Team	488
R	in	Finance	487
R-Bloggers	488
radio	buttons	451
RAM	2
random	forest	xix,	347,	364–366
Rcmdr	16
Rcpp	Gallery	488
RData	8,	23,	85,	87,	92,	217,	218
RDS	87,	92
reactive	expression	452–454
README	465,	466,	471
receiver	operating	characteristic	413
Red	Hat	1,	14

Reference	Classes	469
regression	16,	263,	265–269,	279,	280,	286,	287,	289,	291,	297,	303,	305,	313,	318,	324,	332,	353,	359,
367,	377,	410,	421
multiple	265,	268,	270,	279,	282–286,	304,	310
simple	265–267,	270,	271

regression	tree	265,	359
Regular	Expressions	xix,	158,	159,	211,	217–224,	236
regularization	325,	330,	346
resampling	410
residual	sum	of	squares	310
residuals	xix,	268,	279,	303,	305–309,	313,	367,	372,	373,	382,	385
studentized	295

response	265–267,	270,	273,	279,	284,	287,	289,	293,	302,	303,	326,	353,	359,	361,	362,	365,	409,	412
revealjs	445
Revolution	Analytics	14,	488
ridge	325,	332,	336,	337,	346,	411
RMarkdown	xvii,	xix,	27,	417,	427,	430,	432,	445–449,	452,	454,	471
RMSE	410
ROC	413
root	mean	squared	error	410
RSS	310,	311
RStudio	xviii,	6,	8,	13–15,	17–19,	22,	23,	26,	28,	30,	31,	33–36,	417–420,	426,	427,	430,	432,	447,	448,
480,	481,	488
RStudio	Connect	29
RTools	479

S
S	xvii,	353,	488
S3	469
S4	469
SAS	xvii,	84,	423
scatterplot	94,	95,	98–102,	110,	246,	251,	432,	441
Scroller	434
Seamless	R	and	C++	Integration	with	Rcpp	489
secret	weapon	343
server	447,	454,	455,	459,	462–464
shapefile	400,	435
Shiny	xviii,	xix,	417,	427,	432,	447,	448,	450,	452,	454,	455,	459,	463,	464
ShinyApps.io	29
shinydashboard	455
shrinkage	325,	330,	342,	346
sidebar	455–457,	459

Simple	129
SiSense	447
small	multiples	100,	247
smoothing	spline	350
span	89,	90
Spark	176
spline	xix,	347,	351,	357,	359,	366
SPSS	xvii,	84
SQL	41,	42,	82,	108,	132,	133,	151,	176,	190
SQLite	81,	82,	176
Stack	Overflow	485–487,	489
STAN	488
standard	deviation	xix,	225,	226,	243,	245,	254,	258,	261,	263,	267,	269,	284,	318
standard	error	254,	255,	267–269,	279,	280,	287,	292,	320,	330,	332,	338,	341,	343,	346,	382,	396,	397
Stanford	University	325
Stata	84
stationarity	370,	376
stepwise	selection	xix
Strata	487
Sublime	Text	17
sum	130
survival	analysis	297–299,	301,	302
Andersen-Gill	301
survival	curve	298
SUSE	1
SuSe	14
SVN	19,	20,	29,	30
Sweave	28
Systat	84

T
t	Distribution	239,	254,	255,	346,	382
t-statistic	253–255,	279
t-test	xix,	225,	241,	252,	253,	255,	262,	263,	268
paired	259
Two	Sample	255,	257,	258
Welch	256,	258
tab	457,	459
Tableau	447
tbl	78,	152,	153,	172,	177,	442
tbl_df	78,	152
tensor	product	357,	359

terminal	432
tests	475–479
TeX	417
text	editor	17,	23,	31
Text	Mining	with	R	489
The	Elements	of	Statistical	Learning:	Data	Mining,	Inference,	and	Prediction	488
The	R	Inferno	488
tibble	77,	80,	84,	153,	201–203,	207,	208
Tidyverse	xvii,	201
time	series	xix,	321,	367,	368,	370,	371,	374,	376,	377,	380,	385,	388
TopoJSON	435
treatment	299
TRUE	36,	42,	45,	51–53,	55,	75–78,	117–119,	121–123,	143,	146,	180,	217,	242–244,	259,	289,	315,
320,	336,	345,	359,	397,	400,	410,	412,	422,	423,	468,	478
ts	380,	388
tuning	grid	411–413
tuning	parameters	409,	411,	412
Twitter	485,	487,	489

U
Ubuntu	1,	13
UI	447,	448,	454–457,	459,	460,	462–464
ul	89
Uniform	Distribution	239,	240
University	of	Auckland	xvii
University	of	California-Irvine	Machine	Learning	Repository	354,	389
University	of	Rochester	108
USAID	Open	Government	190
useR	487

V
VAR	376,	377,	388
variable	40–42,	46
variable	selection	321,	324,	325
stepwise	321,	324

variance	225,	230,	235,	238,	240–243,	252,	255–257,	259,	263,	294,	361,	380
vector	xviii,	36,	44,	47–55,	57,	58,	60,	61,	63,	70,	73,	74,	115,	122,	125,	126,	130,	131,	136,	139,
140,	143,	144,	146,	151,	154,	167,	179,	181–184,	187,	189,	190,	196,	201,	203,	211–214,	218,	219,	223,
241,	242,	249,	319,	336,	355,	361,	362,	410,	412,	449,	480,	481
vector	autoregressive	376	vector	scan	143
version	control	19,	20,	29,	30
vim	23

violin	plot	105
Visual	Basic	42
Visual	Studio	14

W
Wald	test	303
warning	203
warning	187
Weibull	Distribution	239,	240
weighted	mean	242
weights	242
white	noise	367,	372,	373,	376,	380
Wikipedia	213,	217,	218
Windows	1,	2,	15,	17,	22,	85,	417,	477,	479
Windows	Live	Writer	17
Work-Bench	487
World	Bank	367,	376,	397,	400,	401,	439
Writing	R	Extensions	488

X
Xcode	479
xkcd	252
xml_document	89
xts	380,	388

Y
yaml	427,	428,	432,	445–448,	471
yum	1

Z
zypper	1

Index	of	Functions

Symbols
.C	479
.Call	479,	483
.Fortran	479
%>%	54,	55,	151,	152,	154–174,	180–187,	269,	412,	413,	415
%dopar%	336,	337
%in%e	162
`::`	176,	261,	269,	411,	432,	433,	435,	437,	440,	459,	477,	478
`:`	37,	48–51,	58,	61,	67,	70,	73,	74,	76,	87,	125–128,	130–132,	139,	142,	179,	188,	214,	235,	241,
242,	246,	252,	269,	298,	301,	317,	337,	375,	377,	402,	423–425,	446
`?`	52
`[[`	63,	68–70,	92,	176,	180,	183,	193,	195,	219,	345,	436
`[`	50,	59–63,	69,	73,	74,	108,	122,	126,	130,	137,	142–144,	146–150,	156,	161,	162,	180,	196,	214,
217–219,	221,	242,	246,	248,	250–252,	257,	269,	275,	276,	298,	304,	317,	320,	339,	342,	356,	369,	376,
387,	388,	390,	397,	400,	401,	404
`$`	60,	69,	76,	92,	94–96,	108,	137,	138,	142,	143,	162,	183,	199,	203,	207,	214,	216,	217,	229,	245,
248,	252,	253,	255,	257,	259,	261,	262,	269,	275,	276,	280,	282,	283,	285–287,	291,	295,	304,	313–315,
317,	320,	330,	332,	336,	338,	339,	341,	343,	345,	348–351,	353,	356,	369,	373,	378,	381,	382,	385,	395,
397,	398,	400–403,	413,	415,	436,	437,	443,	450,	453,	454,	462,	463

A
a_ply	136
aaply	136
abline	332,	336,	341
acf	370,	373
addBBands	382
addMACD	382
addMarkers	438
addTiles	438
adply	136
aes	97–100,	103–106,	108,	109,	199,	226,	229,	231,	234,	236,	237,	248,	255,	257,	259,	261,	266,	269,
273–278,	291,	293,	306–309,	315,	320,	339,	342,	348,	349,	351,	353,	357,	368,	397,	402
aes_string	462,	463
aggregate	132–135,	140,	147,	149,	150,	172,	199,	257
AIC	311–313
all	50
all.equal	205,	229
alply	136
anova	310–313

ansari.test	257
anti_join	202,	206
any	50,	137
aov	261,	263,	269
apply	xviii,	129–132,	150
apropos	52,	53,	477
ar	372,	376
arima	372,	388
arrange	173,	174,	178,	209,	413,	443
array	74
as.character	216,	343,	400,	402
as.data.frame	269,	349,	396
as.Date	45,	52
as.factor	51,	236
as.integer	362,	365
as.matrix	342
as.name	166,	167
as.numeric	42,	45,	51,	117,	199,	216,	236,	308
as.POSIXct	45
as_tibble	411
assign	41,	190,	191
auto.arima	372

B
bartlett.test	257
bayesglm	325,	345,	346
BIC	311–313
bind_cols	201,	202,	210,	437
bind_rows	201,	202,	210
binomial	292,	343,	345,	358
boot	319,	320
boot.ci	320
bottomleft	196
boxplot	95,	96
break	127,	128
build	478,	482,	484
build.x	327,	328,	330,	362,	365
build.y	330,	362,	365
buildModelCI	470
buildModelCI.default	470
by	132

C
c	47–54,	58,	59,	61,	62,	64,	67,	73,	76,	87,	122,	123,	126,	131,	144,	146,	147,	154–156,	158,	160,	162,
167,	183,	189,	191,	192,	196,	202–206,	211–213,	217,	223,	229,	242,	244,	246,	248–252,	255,	259,	273,
291,	301,	304,	317,	320,	332,	336,	341,	345,	355,	356,	367,	382,	386,	387,	397,	400,	401,	404,	412,	439,
441,	460,	461,	477
cbind	xviii,	134,	189,	190,	201,	216,	249
chartSeries	381,	382
check	477–479,	484
checkboxGroupInput	451
checkboxInput	450,	451
citation	426
class	42,	43,	45,	46,	60,	63,	82,	89,	92,	142,	152,	176,	183,	330,	337,	378,	382,	436
close	218
clusGap	395,	396
coef	280,	330,	332,	342,	349,	373,	469
coefficients	280
coefplot	37,	280,	282,	284,	292,	294,	304,	378,	469,	470
coefplot.data.frame	470
coefplot.default	470
coefplot.glm	470
coefplot.lm	469,	470,	474
coefplot.logitmfx	470
coefplot.rxGlm	470
coefplot.rxLinMod	470
coefplot.rxLogit	470
colnames	73,	363,	364,	366,	375,	377
colSums	130
contains	157,	158
context	476
coord_equal	402
coord_flip	345
cor	241,	245,	246,	248–252,	263,	444
corner	196
count	443
cov	252,	263
cox.zph	301
coxph	298,	299,	301
cv.glm	313–315,	317
cv.glmnet	330,	336,	337,	339

D

d*ply	147
d3heatmap	444
d_ply	136
daisy	404
daply	136
dashboardBody	456–458,	460,	461
dashboardHeader	456–458,	461
dashboardPage	455–458,	461
dashboardSidebar	456–458,	461
data	87,	88,	94,	133,	186,	203,	251,	259,	266,	269,	350,	421,	422,	433,	444,	452,	463
data.frame	57,	58,	76,	87,	142,	189,	216,	229,	231,	234,	236,	255,	317,	326,	338,	342,	351,	402,	411
data.table	142,	143,	196
datatable	433–435
dateInput	450,	451,	453,	454
dbConnect	82,	84,	176
dbDisconnect	84
dbDriver	81,	82
dbeta	239
dbGetQuery	82,	83
dbinom	235,	239
dbListFields	82
dbListTables	82
dcast	200,	207,	210,	339,	375
dcauchy	239
dchisq	239
ddply	136,	138,	150,	258,	261
defaultSummary	410
desc	174,	443
detach	36,	37
dexp	239
df	239
dgamma	239
dgeom	239
dhyper	239
diff	371,	377,	388
dim	58,	70,	72,	151,	152,	196,	234,	330,	436
dir	190
dist	403,	405
distinct	205
dlnorm	239

dlogis	239
dlply	136,	140
dmultinom	239
dnbinom	239
dnorm	225,	226,	229,	239
do	174–176,	343
do.call	115,	116
document	473,	478,	484
dollar	368
download.data	342
download.file	79,	81,	176,	190,	400
dpois	235,	239
dt	239
dunif	239
dweibull	239
dygraph	440,	441
dyLegend	440,	441
dyOptions	440,	441
dyRangeSelector	440,	441

E
each	140
eapply	132
element_blank	402
element_text	199,	315
else	117–120,	123
else	if	119
em	459–461
ends_with	157,	158
eval	193
excel_sheets	79
expand.grid	412
expect_equal	476,	477
expect_error	477
expect_false	477
expect_gte	477
expect_is	477
expect_length	477
expect_named	477
expect_warning	477
extract.coef	470

extract.coef.maxLik	470
extract2	90

F
facet_grid	100,	102,	357
facet_wrap	100,	101,	103,	199,	234,	236,	274,	315,	339
factor	44,	52,	64,	183,	308,	326,	351,	398,	402,	412
file.path	191
filter	151,	161–164,	166,	167,	174,	178,	206,	207
filter_	164–166
FitKMeans	393
for	xviii,	121,	125–128,	190,	191,	317,	345
foreach	336
forecast	374
formatCurrency	435
formatStyle	435
fread	76,	78,	79
fromJSON	91,	92,	435
full_join	202,	205
function	119–121,	132,	181,	184,	186,	188,	317,	320,	338,	351,	437,	455,	463,	472,	473,	483

G
gam	357,	358,	411
gather	208–210
gaussian	314,	315
gbm	361
gc	41
geom_abline	308
geom_boxplot	103–105
geom_density	98,	237,	255,	259,	291
geom_errorbar	397
geom_errorbarh	259,	261,	269
geom_histogram	97,	98,	103,	231,	234,	236,	257,	273–275,	293,	309,	320,	462,	463
geom_hline	306
geom_jitter	357
geom_line	97,	106–108,	199,	229,	315,	339,	368,	397
geom_point	97,	99–102,	105,	109,	226,	229,	259,	261,	266,	269,	276–278,	306,	307,	339,	342,	348,
349,	353,	357,	397
geom_polygon	229
geom_smooth	266,	267,	306
geom_tile	248

geom_violin	105
geom_vline	255,	259,	291,	320,	342
getSymbols	380
getXKCD	252
ggpairs	246,	251
ggplot	97–99,	103–106,	108,	109,	199,	226,	229,	231,	234,	236,	237,	248,	255,	257,	259,	261,	266,
269,	273–278,	291,	293,	308,	309,	315,	320,	339,	342,	345,	348,	349,	351,	353,	357,	368,	397,	402,	463
ggplot2	462
ggtitle	236,	237,	269
glm	291–294,	296,	297,	313–315,	325,	343,	346,	354,	357,	361
glmnet	325,	326,	328,	330,	332,	336,	341,	346,	409
globejs	443
group_by	151,	172–178,	269,	343
guide_colorbar	248
guides	315

H
h1	459–461
hclust	403–405,	407
head	59,	60,	75–78,	81,	83,	85,	88,	94,	133,	137,	151–153,	174,	191,	192,	195,	197,	198,	200,	209,
213,	216,	218–220,	222,	223,	229,	234,	245,	251,	253,	259,	266,	269,	273,	287,	291,	297,	304,	306,	318,
326,	328,	330,	342,	345,	347,	351,	353,	355,	356,	368,	375,	378,	382,	390,	400,	401,	415,	421,	422,
433–435,	440
hist	94
html_attr	90
html_document	427,	428
html_nodes	89,	90
html_table	90
html_text	90

I
I	285,	286
icon	457,	458,	461
idata.frame	140
identical	87,	126,	139,	180,	209,	250,	252
if	xviii,	117–123,	127,	128
ifelse	xviii,	117,	121–123
ignore.case	217
infocriteria	386,	388
inner_join	202,	205,	210
install	478

install.packages	35,	36
install_bitbucket	478
install_git	478
install_github	35,	478
install_phantomjs	432
install_version	478
interp	166
invlogit	470
ioslides_presentation	427,	445
is.integer	42,	43
is.logical	45,	46
is.matrix	186
is.na	53,	55,	122,	123,	137
is.null	54,	121
is.numeric	42,	43,	123
isolate	454

J
J	146,	147
join	xx,	190,	192,	196
jss_article	428

K
kable	433
key	145,	146
kmeans	390,	393,	407
knit	420

L
l_ply	136
labs	108,	229,	266,	273,	274,	306,	342,	397,	402
laply	136,	139,	140
lapply	129–132,	139,	150,	179,	180,	188,	338
ldply	136,	176,	184,	338,	351
leaflet	438
left_join	202–205,	210,	401,	402
legend	301,	308,	375,	377
length	49,	52,	70,	126,	193,	243,	317
levels	308
library	35,	36,	77–79,	81,	88,	89,	92,	94,	108,	109,	133,	137,	142,	152,	153,	166,	170,	180,	187,	191,
192,	196,	198,	199,	202,	203,	207–209,	213,	216,	226,	229,	236,	245,	248,	252,	258,	266,	269,	280,	291,

292,	297,	304,	306,	314,	315,	318,	328,	330,	336,	339,	343,	345,	348,	351,	353,	357,	358,	360–362,	365,
367,	368,	371,	375,	378,	380–382,	391,	396,	397,	400,	401,	410,	412,	421,	422,	433,	435,	437–441,	443,
444,	453–458,	461,	463,	475,	477,	480
limits	291
list	64,	66,	67,	115,	131,	132,	139,	143,	148–150,	179,	188,	336,	349,	351,	382,	386,	434,	435,
449–451
llply	136,	139,	150
lm	267,	269,	270,	278,	279,	282–287,	291,	292,	304,	305,	310,	324,	325,	328,	348,	357,	377,	421,	422,
479
load	85,	87,	217,	218,	342,	347
load_all	478
log	277,	278,	332,	336,	388
ls	111

M
ma	372
makeCluster	336,	337
map	179–186
map2	187,	188
map2_int	188
map_*	182,	183
map_chr	182,	183
map_dbl	182,	186,	187
map_df	182,	184,	185,	437
map_if	185,	186
map_int	182
map_lgl	182,	184
mapply	129,	131,	132,	187
matches	158,	159
matrix	72,	130–132,	139,	179,	188
max	53,	171,	229,	243,	317
mean	52–55,	116,	133–135,	140,	147–150,	171–174,	177,	182,	186,	187,	241–243,	245,	248,	255,	258,
261,	263,	269,	317,	348,	349
median	140,	171,	172,	243
melt	197,	198,	200,	207,	208,	236,	248,	315,	339
menuItem	457–459,	461
merge	xviii,	190–192
min	53,	229,	243
model.matrix	63,	64,	326,	327
month	108
multinom	297

multiple.dollar	291
multiple_format	199,	368
multiplot	286,	296,	310,	343,	345,	470
mutate	151,	168–171,	174,	269,	412
mutate_each	187
muted	248

N
names	51,	58,	59,	66,	67,	70,	126,	193,	216,	259,	273,	304,	343,	345,	367,	378,	390,	400,	402,	404,	459
nchar	44,	50,	52,	126,	131
ncol	58,	70,	72
ndiffs	371,	376,	377
next	127
nls	348,	349
nonzeroCoef	342
NROW	132,	182,	184,	188,	261,	262,	269,	320
nrow	58,	70,	72,	140,	205,	245,	258,	259,	262,	317,	336,	397
ns	352,	353

O
observe	454
one_of	155,	156,	160,	161
order	173,	248
ordered	326

P
p	459–461
pacf	370,	373
pam	397,	398,	400,	402,	407
parse	193
paste	211,	212,	224
pbeta	239
pbinom	235,	239
pcauchy	239
pchisq	239,	295
pdf_document	427
pexp	239
pf	239
pgamma	239
pgeom	239
phyper	239

pipe	54,	55,	152,	154–174,	180–187,	269,	412,	413,	415
plnorm	239
plogis	239
plot	95,	299,	301,	308,	330,	332,	336,	341,	359,	369,	371,	374,	375,	377,	381,	385,	387,	391,	392,
395,	403–406,	414,	423–425,	446
plot.kmeans	391
plotcoef	470
PlotHartigan	393
plotOutput	459–462
pmap	187,	188
pmap_int	188
pmultinom	239
pnbinom	239
pnorm	226,	227,	229,	239
poisson	294
polr	297
position_dodgev	470
postResample	410
ppois	235,	239
predict	286,	287,	317,	351,	373,	374,	378,	379,	415
print	111–115,	118–120,	125–128,	469
print.anova	474
print.data.frame	469
print.lm	469
pt	239
punif	239
purrr	180
pweibull	239

Q
qbeta	239
qbinom	235,	239
qcauchy	239
qchisq	239
qexp	239
qf	239
qgamma	239
qgeom	239
qhyper	239
qlnorm	239
qlogis	239

qmultinom	239
qnbinom	239
qnorm	229,	239
qpois	235,	239
qt	239,	261,	269
quantile	244
quasipoisson	296
qunif	239
qweibull	239

R
radioButtons	450,	451
randomForest	364–366
rapply	132
rbeta	239
rbind	xviii,	189,	190,	201,	216,	229,	234,	338
rbinom	230,	231,	234,	239
rcauchy	239
rchisq	239
Rcpp.package.skeleton	483
reactive	453,	454
read.csv	75–77,	79
read.csv2	77
read.delim	77
read.delim2	77
read.dta	84
read.mtp	84
read.octave	84
read.spss	84
read.ssd	84
read.systat	84
read.table	75–79,	84,	92,	191,	272,	286,	289,	304,	326,	355,	389,	411,	415
read_csv	78,	202,	203
read_csv2	78
read_delim	76–79
read_excel	79–81,	92
read_html	89
read_sas	84
read_spss	84
read_stata	84
read_tsv	78,	207,	441,	442

readHTMLTable	88,	213
readRDS	87
readShapeSpatial	400
recode	400
rect.hclust	406
Reduce	192,	195,	196,	216,	338
registerDoParallel	336,	337
release	479
relevel	362,	365
remove	41
remove.packages	36
rename	437
render	427
renderDataTable	451,	452
renderPlot	451,	462,	463
renderPrint	450,	451
renderText	451–454
reorder	342
rep	126,	142,	326
require	36
return	114,	115,	472,	473
revealjs_presentation	445
rexp	239
rf	239
rgamma	239
rgeom	239
rhyper	239
right_join	202,	205
rlnorm	239
rlogis	239
rm	41,	85,	87
rmultinom	239
rnbinom	239
rnorm	225,	226,	239
round	351
rownames	59,	73,	269,	342,	398,	401
rowSums	130,	397
rpart	360,	361
rpart.plot	361
rpois	235,	236,	239

rt	239,	255
run	448
runif	239
rweibull	239
RxSasData	84

S
s	358
sample	241,	242,	326,	336
sapply	131,	132,	139,	181,	219,	337
save	85,	87
saveRDS	87
scale	284
scale_color_discrete	108,	237,	351
scale_color_gradient2	348,	349
scale_colour_economist	109
scale_colour_excel	109
scale_fill_discrete	237
scale_fill_gradient2	248
scale_x_continuous	199,	284,	291,	357
scale_y_continuous	108,	199,	368
sd	53,	243,	245,	252,	255,	258,	259,	261,	263,	269
select	151,	153–161,	168–170,	178,	203,	204,	440,	443
select_	155,	160,	437
select_if	444
selectInput	448–450,	460,	461
semi_join	202,	206
seq	199,	229,	336
set.seed	339,	390,	393,	413
setkey	145,	146
shapiro.test	257
shinyServer	455,	463
sidebarMenu	457,	458,	461
slice	167,	168
sliderInput	450,	451
smooth.spline	350
sort	173
sourceCpp	480,	481
spread	210,	439,	440
sprintf	112–114,	165,	166,	211–213,	224,	317,	438,	453,	454
SQLite	176

sqrt	xx,	48,	243,	258,	259,	261,	269,	295,	320
src_sqlite	176
starts_with	157,	158
stat_qq	308
stat_smooth	353
step	321,	324
stopCluster	336,	337
str_detect	217,	218,	220,	221,	224
str_extract	220–222,	224,	236,	339
str_replace	223,	224,	339
str_replace_all	223
str_split	214,	216,	218,	219,	224
str_sub	190,	191,	193,	199,	216,	217,	224
str_trim	219,	220
strata	299,	301
street2coordinates	437
styleEqual	435
sum	53,	55,	116,	130,	131,	138,	139,	149,	179–181,	199,	217,	243,	245,	276,	295,	320
summarise	171
summarize	151,	171–174,	177,	258,	261,	269
summarize_each	187
summary	244,	261,	267,	269,	279,	284,	292,	294,	299,	301,	349,	358,	421,	422,	469
Surv	297–299,	301
survfit	298,	299,	301
Sweave	417
switch	117,	120,	121,	123
Sys.time	337
system.time	140

T
t	72,	349
t.test	241,	253,	255,	258,	259,	263
tabItem	457,	459–461
tabItems	459–461
table	395
tables	145,	146
tail	60,	138,	214,	216,	234,	330
tapply	129,	132
tbl	177
te	358
test	477,	479

test_check	475
test_that	476,	477
textInput	450–453
theme	199,	315,	357,	402
theme_economist	109
theme_excel	109
theme_minimal	248
theme_tufte	109
theme_wsj	109
tibble	202
tidy	400,	401
topleft	330
topright	330
train	409–413
trainControl	410,	412
tribble	202
ts	369,	374,	375
twoClassSummary	410,	412

U
ugarchboot	387
ugarchfit	382,	386,	388
ugarchspec	382,	386,	388
unique	203,	206,	207,	253
unite	437
unnest	437
unzip	190,	400
UQE	166,	167
url	218
use_readme_rmd	471
use_test	475,	476
use_testthat	475

V
vapply	132
VAR	376–378,	388
var	53,	241–243,	248,	263,	320
var.test	257
vector	67,	68,	193,	345

W

WDI	367,	397,	400,	439
weighted.mean	242
which	108,	376,	390,	397,	400,	404
which.min	339
while	xviii,	125,	127,	128
with	138,	171,	269,	291,	298,	330
within	269
word_document	427

X
xgb.importance	364
xgb.plot.importance	364
xgb.plot.multi.trees	363,	366,	415
xgboost	361–363,	365,	366,	412,	413
xlab	357

Y
year	108

Index	of	Packages

A
Amelia	54
arm	37,	325,	345

B
bayesGARCH	382
BH	483
bigmemory	483
boot	313,	318,	320
broom	400,	401

C
caret	xvii,	xix,	409–415
chron	45
cluster	395–398,	400,	404,	407
coefplot	33,	35–37,	280,	282,	284,	286,	292,	294,	296,	304,	310,	341,	345,	378,	468–471,	478

D
d3heatmap	432,	444
data.table	76,	78,	79,	135,	140,	142–150,	152,	189,	190,	196,	200–202
DBI	81–83,	176
dbplyr	176
devtools	xix,	35,	465,	469–471,	473,	475–480,	482,	484
DiagrammeR	363
doParallel	336,	337
dplyr	xvii–xix,	33,	35,	55,	78,	79,	92,	132,	134,	135,	140,	151–177,	179,	187,	189,	201–207,	209,	210,
269,	342,	343,	400–402,	411–413,	437,	440,	443,	444,	468
DT	432–435,	452
dygraphs	xix,	432,	439–441

F
fastcluster	407
fGarch	382
foreach	336,	337
forecast	371,	372,	374,	377
foreign	84

G

gbm	361
GGally	246,	251
ggplot2	xviii,	33,	35,	87,	88,	93–100,	103,	106–110,	132,	152,	186,	197,	199,	203,	226,	229,	231,
234,	236,	237,	244–246,	248,	255,	257,	259,	261,	266,	269,	273–278,	284,	291,	293,	301,	305,	306,	308,
309,	315,	320,	339,	342,	347–351,	353,	357,	368,	397,	400,	402,	421,	422,	433,	439,	444,	447,	452,	462,
463,	467,	468,	470
ggthemes	108,	109
glmnet	33,	325,	330,	332,	336,	337,	339,	341,	342,	411,	468

H
haven	84
htmltools	459
htmlwidgets	xviii,	xix,	363,	432,	433,	451

J
jsonlite	xviii,	90,	92,	435

K
knitr	xvii,	xix,	28,	33,	417,	420–423,	425–427,	430,	432,	433,	488

L
lars	332
lattice	93,	96,	468
lazyeval	166
leaflet	xix,	432,	435,	438
lubridate	45,	107,	108,	453,	454

M
magrittr	54,	55,	90,	151,	152,	170,	171
maptools	400
maxLik	468
mfx	468
mgcv	354,	358,	359,	411
mi	54
mice	54

N
nnet	297,	468

P
parallel	336,	337
plyr	xviii–xx,	35,	132,	134–140,	150,	151,	176,	184,	189,	190,	192,	196,	200–202,	207,	258,	261,	318,

338,	351,	411,	468–470
purrr	xvii,	92,	132,	151,	179–188,	437

Q
quantmod	380,	382,	439

R
randomForest	364,	365
Rcpp	xix,	33,	479–484
RcppArmadillo	483
RDSTK	437
readr	xviii,	76–78,	179,	202,	203,	207,	441,	442
readxl	xviii,	79–81
reshape	246
reshape2	xviii,	xix,	35,	189,	197,	198,	200,	201,	207,	208,	210,	236,	246,	248,	251,	268,	315,	339,
375,	468,	470
resumer	33,	427
revealjs	445
RevoScaleR	84
rjson	90
rlang	166,	167
rmarkdown	427,	428,	445,	448
RMySQL	81
RMySQLRODBC	81,	92
RMySQLroxygen2	465,	469,	470,	473,	482–484
rpart	360
rpart.plot	361
RPostgreSQL	81
RSQLite	81,	176
rticles	427,	428
rugarch	382,	386–388
RUnit	475
rvest	89,	90,	92
RXKCD	252

S
sandwich	468
scales	108,	199,	248,	368
shiny	449–458,	460,	461,	463
shinydashboard	455–458,	460,	461
sp	33

splines	352,	353
stats	468
stringr	35,	191,	193,	199,	211,	213,	214,	216–224,	236,	339
survival	33,	297–299,	301
Sweave	28

T
testthat	468,	475–477
threejs	432,	441,	443
tibble	153,	201,	202,	411
tidyr	xvii,	xix,	33,	92,	179,	189,	201,	207–210,	437,	439,	440
tseries	382
tufte	427

U
useful	33,	35,	196,	199,	291,	327,	328,	330,	357,	362,	365,	368,	391–393,	468,	470
UsingR	259,	266

V
vars	376,	378

W
WDI	367,	397,	439
webshot	432

X
xgboost	361–366,	411,	413,	415
XML	88,	92,	213
xts	380,	381

Index	of	People

A
Allaire,	JJ	17,	481
Arnold,	Jeffrey	108

B
Burns,	Patrick	488

C
Chambers,	John	xvii,	353
Conway,	Drew	487,	488

D
Dewar,	Mike	487
Dowle,	Matt	76,	140,	151

E
Eddelbuettel,	Dirk	33,	479,	481,	487,	489
Efron,	Bradley	318

F
Fisher,	Ronald	A.	255
Friedman,	Jerome	33,	325,	488

G
Galili,	Tal	444
Galton,	Francis	265
Gelman,	Andrew	33,	37,	54,	95,	263,	312,	342,	343,	345,	488
Gentleman,	Robert	xvii
Gosset,	William	252

H
Hartigan,	J.A.	393
Hastie,	Trevor	33,	325,	353,	488
Hill,	Jennifer	54,	342,	488

I
Ihaka,	Ross	xvii

K

Knuth,	Donald	417
Kuhn,	Max	409

L
Lewis,	Bryan	441
Liaw,	Andy	365

M
Madigan,	David	393
Murdoch,	Duncan	479

P
Pearson,	Karl	259

R
Reich,	Josh	129
Ripley,	Brian	313,	479
Robinson,	David	400,	489
Romain,	François	479,	502

S
Silge,	Julia	489
Smith,	David	M.	488

T
Tibshirani,	Robert	33,	325,	353,	488
Tufte,	Edward	100,	108
Tukey,	John	95

V
Venables,	William	N.	488

W
White,	John	Myles	488
Wickham,	Hadley	33,	55,	76,	79,	81,	84,	89,	95,	107,	129,	136,	140,	151,	178,	179,	192,	193,	197,
201,	207,	211,	224,	465,	478

X
Xie,	Yihui	33,	417,	425,	426,	488

Data	Index

A
American	Community	Survey	79,	289,	291–294,	296,	326,	328,	330,	332,	336,	337,	339,	341,
342,	411–415
AT&T	380–382,	385–388

B
baseball	136–138,	140,	318,	320
bladder	297,	299,	301

C
Country	Information	397,	398,	400–404
credit	354–357,	360–366

D
Diamond	Colors	202–207
diamonds	81,	88,	93–99,	103–105,	109,	132–135,	140,	142,	146–177,	186,	187,	202–207,	350,	351,
353,	421,	422,	433–435,	452,	459,	462,	463

E
economics	106,	107,	244–246,	444
emotion	207–210

F
father	and	son	heights	259,	266,	267
Favorite	Pizza	Places	91,	92,	435–438
Flight	Routes	441–443
Football	Pool	88
Foreign	Assistance	190–193,	195–200

G
GDP	367–370,	372–379,	439–441

I
iris	433

N
NYC	Condo	Values	271–280,	282–287,	303,	304,	306–315,	324

R

Ribalta	Menu	89,	90

T
tips	251–253,	255,	257–262,	268,	269
tomato	75–80,	85

U
United	States	Presidents	213,	214,	216,	217
United	States	Wars	217–223

V
Voter	Preference	342,	343,	345

W
WiFi	347–349
wine	79,	81,	389–393,	395,	397,	403,	405,	406

Code	Snippets

	About This E-Book
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Foreword
	Preface
	Acknowledgments
	Acknowledgments for the Second Edition
	Acknowledgments for the First Edition

	About the Author
	1. Getting R
	1.1 Downloading R
	1.2 R Version
	1.3 32-bit vs. 64-bit
	1.4 Installing
	1.4.1 Installing on Windows
	1.4.2 Installing on Mac OS X
	1.4.3 Installing on Linux

	1.5 Microsoft R Open
	1.6 Conclusion

	2. The R Environment
	2.1 Command Line Interface
	2.2 RStudio
	2.2.1 RStudio Projects
	2.2.2 RStudio Tools
	2.2.3 Git Integration

	2.3 Microsoft Visual Studio
	2.4 Conclusion

	3. R Packages
	3.1 Installing Packages
	3.1.1 Uninstalling Packages

	3.2 Loading Packages
	3.2.1 Unloading Packages

	3.3 Building a Package
	3.4 Conclusion

	4. Basics of R
	4.1 Basic Math
	4.2 Variables
	4.2.1 Variable Assignment
	4.2.2 Removing Variables

	4.3 Data Types
	4.3.1 Numeric Data
	4.3.2 Character Data
	4.3.3 Dates
	4.3.4 Logical

	4.4 Vectors
	4.4.1 Vector Operations
	4.4.2 Factor Vectors

	4.5 Calling Functions
	4.6 Function Documentation
	4.7 Missing Data
	4.7.1 NA
	4.7.2 NULL

	4.8 Pipes
	4.9 Conclusion

	5. Advanced Data Structures
	5.1 data.frames
	5.2 Lists
	5.3 Matrices
	5.4 Arrays
	5.5 Conclusion

	6. Reading Data into R
	6.1 Reading CSVs
	6.1.1 read_delim
	6.1.2 fread

	6.2 Excel Data
	6.3 Reading from Databases
	6.4 Data from Other Statistical Tools
	6.5 R Binary Files
	6.6 Data Included with R
	6.7 Extract Data from Web Sites
	6.7.1 Simple HTML Tables
	6.7.2 Scraping Web Data

	6.8 Reading JSON Data
	6.9 Conclusion

	7. Statistical Graphics
	7.1 Base Graphics
	7.1.1 Base Histograms
	7.1.2 Base Scatterplot
	7.1.3 Boxplots

	7.2 ggplot2
	7.2.1 ggplot2 Histograms and Densities
	7.2.2 ggplot2 Scatterplots
	7.2.3 ggplot2 Boxplots and Violins Plots
	7.2.4 ggplot2 Line Graphs
	7.2.5 Themes

	7.3 Conclusion

	8. Writing R functions
	8.1 Hello, World!
	8.2 Function Arguments
	8.2.1 Default Arguments
	8.2.2 Extra Arguments

	8.3 Return Values
	8.4 do.call
	8.5 Conclusion

	9. Control Statements
	9.1 if and else
	9.2 switch
	9.3 ifelse
	9.4 Compound Tests
	9.5 Conclusion

	10. Loops, the Un-R Way to Iterate
	10.1 for Loops
	10.2 while Loops
	10.3 Controlling Loops
	10.4 Conclusion

	11. Group Manipulation
	11.1 Apply Family
	11.1.1 apply
	11.1.2 lapply and sapply
	11.1.3 mapply
	11.1.4 Other apply Functions

	11.2 aggregate
	11.3 plyr
	11.3.1 ddply
	11.3.2 llply
	11.3.3 plyr Helper Functions
	11.3.4 Speed versus Convenience

	11.4 data.table
	11.4.1 Keys
	11.4.2 data.table Aggregation

	11.5 Conclusion

	12. Faster Group Manipulation with dplyr
	12.1 Pipes
	12.2 tbl
	12.3 select
	12.4 filter
	12.5 slice
	12.6 mutate
	12.7 summarize
	12.8 group_by
	12.9 arrange
	12.10 do
	12.11 dplyr with Databases
	12.12 Conclusion

	13. Iterating with purrr
	13.1 map
	13.2 map with Specified Types
	13.2.1 map_int
	13.2.2 map_dbl
	13.2.3 map_chr
	13.2.4 map_lgl
	13.2.5 map_df
	13.2.6 map_if

	13.3 Iterating over a data.frame
	13.4 map with Multiple Inputs
	13.5 Conclusion

	14. Data Reshaping
	14.1 cbind and rbind
	14.2 Joins
	14.2.1 merge
	14.2.2 plyr join
	14.2.3 data.table merge

	14.3 reshape2
	14.3.1 melt
	14.3.2 dcast

	14.4 Conclusion

	15. Reshaping Data in the Tidyverse
	15.1 Binding Rows and Columns
	15.2 Joins with dplyr
	15.3 Converting Data Formats
	15.4 Conclusion

	16. Manipulating Strings
	16.1 paste
	16.2 sprintf
	16.3 Extracting Text
	16.4 Regular Expressions
	16.5 Conclusion

	17. Probability Distributions
	17.1 Normal Distribution
	17.2 Binomial Distribution
	17.3 Poisson Distribution
	17.4 Other Distributions
	17.5 Conclusion

	18. Basic Statistics
	18.1 Summary Statistics
	18.2 Correlation and Covariance
	18.3 T-Tests
	18.3.1 One-Sample T-Test
	18.3.2 Two-Sample T-Test
	18.3.3 Paired Two-Sample T-Test

	18.4 ANOVA
	18.5 Conclusion

	19. Linear Models
	19.1 Simple Linear Regression
	19.1.1 ANOVA Alternative

	19.2 Multiple Regression
	19.3 Conclusion

	20. Generalized Linear Models
	20.1 Logistic Regression
	20.2 Poisson Regression
	20.3 Other Generalized Linear Models
	20.4 Survival Analysis
	20.5 Conclusion

	21. Model Diagnostics
	21.1 Residuals
	21.2 Comparing Models
	21.3 Cross-Validation
	21.4 Bootstrap
	21.5 Stepwise Variable Selection
	21.6 Conclusion

	22. Regularization and Shrinkage
	22.1 Elastic Net
	22.2 Bayesian Shrinkage
	22.3 Conclusion

	23. Nonlinear Models
	23.1 Nonlinear Least Squares
	23.2 Splines
	23.3 Generalized Additive Models
	23.4 Decision Trees
	23.5 Boosted Trees
	23.6 Random Forests
	23.7 Conclusion

	24. Time Series and Autocorrelation
	24.1 Autoregressive Moving Average
	24.2 VAR
	24.3 GARCH
	24.4 Conclusion

	25. Clustering
	25.1 K-means
	25.2 PAM
	25.3 Hierarchical Clustering
	25.4 Conclusion

	26. Model Fitting with Caret
	26.1 Caret Basics
	26.2 Caret Options
	26.2.1 caret Training Controls
	26.2.2 Caret Search Grid

	26.3 Tuning a Boosted Tree
	26.4 Conclusion

	27. Reproducibility and Reports with knitr
	27.1 Installing a LATEX Program
	27.2 LATEX Primer
	27.3 Using knitr with LATEX
	27.4 Conclusion

	28. Rich Documents with RMarkdown
	28.1 Document Compilation
	28.2 Document Header
	28.3 Markdown Primer
	28.4 Markdown Code Chunks
	28.5 htmlwidgets
	28.5.1 datatables
	28.5.2 leaflet
	28.5.3 dygraphs
	28.5.4 threejs
	28.5.5 d3heatmap

	28.6 RMarkdown Slideshows
	28.7 Conclusion

	29. Interactive Dashboards with Shiny
	29.1 Shiny in RMarkdown
	29.2 Reactive Expressions in Shiny
	29.3 Server and UI
	29.4 Conclusion

	30. Building R Packages
	30.1 Folder Structure
	30.2 Package Files
	30.2.1 DESCRIPTION File
	30.2.2 NAMESPACE File
	30.2.3 Other Package Files

	30.3 Package Documentation
	30.4 Tests
	30.5 Checking, Building and Installing
	30.6 Submitting to CRAN
	30.7 C++ Code
	30.7.1 sourceCpp
	30.7.2 Compiling Packages

	30.8 Conclusion

	A. Real-Life Resources
	A.1 Meetups
	A.2 Stack Overflow
	A.3 Twitter
	A.4 Conferences
	A.5 Web Sites
	A.6 Documents
	A.7 Books
	A.8 Conclusion

	B. Glossary
	List of Figures
	List of Tables
	General Index
	Index of Functions
	Index of Packages
	Index of People
	Data Index
	Code Snippets

