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Preface

The study of data structures is both exciting and challenging. It is exciting
because it presents a wide range of programming techniques that make it
possible to solve larger and more complex problems. It is challenging because
the complex nature of data structures brings with it many concepts that
change the way we approach the design of programs. 

Because the study of data structures encompasses an abundant amount
of material, you may find that it is not possible to cover all of it in one term.
In fact, data structures is such a pervasive subject that you will find aspects of
it taught in lower-division, upper-division, and graduate programs. 

Features of This Book
Our primary focus in this text is to present data structures as an introductory
subject, taught in a lower-division course. With this focus in mind, we present
the material in a simple, straightforward manner with many examples and fig-
ures. We also de-emphasize the mathematical aspect of data structures, leaving
the formal mathematical proofs of the algorithms for later courses. 

Pseudocode
Pseudocode is an English-like presentation of the steps needed to solve a
problem. It is written with a relaxed syntax that allows students to solve a
problem at a level that hides the detail while they concentrate on the problem
requirements. In other words, it allows students to concentrate on the big
picture.

In addition to being an excellent design tool, pseudocode is also language
independent. Consequently, we can and do use the same pseudocode design
to implement an algorithm in different languages. The pseudocode syntax
you will find in this text has evolved over the years. During our evolution of
pseudocode, our students have implemented the same basic pseudocode
algorithms in Pascal, C, C++, and Java. In this text, we use C for all of our
code implementations.

Abstract Data Types 
The second major feature of this text is its use of abstract data types (ADTs).
Not every data structure should be implemented as an ADT. However, where
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appropriate, we develop C implementations for the student’s study and use.
Specifically, students will find ADT implementations for Stacks (Chapter 3),
Queues (Chapter 4), General Lists (Chapter 5), Binary Search Trees (Chap-
ter 7), AVL Trees (Chapter 8), Heaps (Chapter 9), B-Trees (Chapter 10), and
Graphs (Chapter 11). 

Visual Approach
As we discuss the various data structures, we first present the general princi-
ples using figures and diagrams to help the student visualize the concept. If
the data structure is large and complex enough to require several algorithms,
we use a structure chart to present a design solution. Once the design and
structure are fully understood, we present a pseudocode algorithm, followed
as appropriate, by its C implementation.

A brief scan of the book demonstrates our visual approach. There are
over 300 figures, 30 tables, 120 algorithms, 170 programs, and numerous
code fragments. Although this amount of visual detail tends to create a large
book, these materials make it much easier for students to understand and fol-
low the concepts. 

Practice Sets
End of chapter materials reenforce what the student has learned. The impor-
tant topics in the chapter are summarized in bulleted lists. Following the
summary are three practice sets.

Exercises
Questions covering the material in the chapter.

Problems 
Short assignments that ask the student to develop a pseudocode algorithm or
write a short program to be run on a computer. These problems can usually
be developed in 2 to 3 hours.

Projects
Longer, major assignments that may take an average student 6 to 9 hours or
more to develop. 

Glossary
We include a comprehensive glossary. It contains definitions of all key words
and other technical terms that we use in the text.

Teaching Tools
The following supplemental materials are available for download on the
Course Technology Web site (http://www.course.com). Follow the links to
Computer Science and then CS2 Data Structures — C.

http://www.course.com
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Instructor Materials
The following instructor materials are available:

• Complete solutions to exercises and problems.
• Classroom-ready Microsoft PowerPoint presentations for each chapter,

including:

• Objectives
• Figures
• Tables

• Source code and any input files needed to run programs within the chapters,
including the programs developed as problem solutions.

Student Materials
The following student materials are available:

• Solutions to all odd-numbered exercises.
• Source code and any input files needed to run programs within the chapters.

What’s New in This Edition
The basic data structures found in the first edition are carried forward into
this edition. You will find, however, that we have significantly changed the
organization of the text as well as the presentation of several important con-
cepts. The use of Abstract Data Types has also been extended. The most
important changes follow.

1. The book has been organized into four Parts: 

I. Introduction
This part covers basic concepts and recursion.

II. Linear Lists
This part covers stacks, queues, and general linear lists.

III. Non-Linear Lists
This part covers introduction to trees, binary search trees, 
AVL search trees, heaps, multiway trees, and graphs.

IV. Sorting and Searching
This part covers sorting and searching.

2. To help students understand and write ADTs using generic code, we added
two sections to Chapter 1: Section 1.4, “ADT Implementations,” and Sec-
tion 1.5, “Generic Code for ADTs.” Section 1.4 discusses arrays and
linked lists as ADT data structure implementations. Section 1.5 discusses
the two primary tools of ADTs, pointer to void and pointer to function. 

3. The ADT concept has been extended to Binary Search Trees (Chapter 7)
and Heaps (Chapter 9).
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4. The level of the pseudocode has been raised to make it simpler and more
conceptual, that is, less code oriented. We have also added end construct
statements, such as end if and end loop.

5. All C programs have been revised to make them C-99 compliant.

6. The efficiency of algorithms has been expanded to include a mathematical
discussion of the efficiency of quick sort in Chapter 12.

7. Appendix C, “Integer and Float Libraries,” and Appendix D, “Selected C
Libraries,” have been revised to reflect the C-99 standard.

8. Appendix E, “Mathematical Series And Recursive Relations,” has been
added to provide a mathematical background for iterative and recursive
algorithms.

9. The array implementations of stacks and queues have been removed from
the chapters and placed in Appendix F, “Array Implementations of Stacks
and Queues.”

10. Ancillary Materials, which are found at the Course Technology web site,
have been revised to make them easier to use.
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Part I

Introduction
There are several concepts that are essential to an understanding of this
text. We discuss these concepts in the first two chapters. Chapter 1 “Basic
Concepts,” covers general materials that we use throughout the book.
Chapter 2 “Recursion,” discusses the concept of recursion. Figure I-1
shows the organization of Part I.



2 Part I Introduction

FIGURE I-1 Part I Contents

Chapters Covered
This part includes two chapters.

Chapter 1: Basic Concepts 
The first chapter covers concepts that we use throughout the text. You may
find that some of them are a review of material from your programming course.
The major concepts are outlined below.

Pseudocode
In all of our texts, we use the basic tenet, “Design comes before code.”
Throughout the text, therefore, we separate algorithm design from the code
that implements it in a specific language. Although the underlying language
in this book is C, pseudocode allows us to separate the algorithm from the
implementation. 

Abstract Data Type
An abstract data type (ADT) implements a set of algorithms generically so
that they can be applied to any data type or construct. The beauty of an ADT
implementation is that the algorithms can handle any data type whether it is
a simple integer or a complex record.

ADT Implementations
In general, there are two basic data structures that can be used to implement
an abstract data type: arrays and linked lists. We discuss basic linked list con-
cepts in Chapter 1 and expand on them as necessary in subsequent chapters.

Generic Code

Implementations

Abstract Data Type

Pseudocode

Algorithm Efficiency

Recursive Algorithms

Recursion versus Repetition

Part I

Recursion
Chapter 2

Basic Concepts
Chapter 1
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Generic Code for ADTs
To implement the ADT concept, we need to use generic code. Each language
provides a different set of tools to implement generic code. The C language
uses two tools: pointer to void and pointer to function.

Algorithm Efficiency
While many authors argue that today’s computers and compilers make algo-
rithm efficiency an academic discussion, we believe that an understanding of
algorithm efficiency provides the framework for writing better algorithms.
Although we discuss the efficiency of specific algorithms when we develop
them, in this chapter we discuss the basic concepts and tools for discussing
algorithm efficiency. 

Chapter 2: Recursion
In Chapter 2 we discuss recursion, a concept that is often skipped in an
introductory programming course. We need to understand recursion to dis-
cuss data structures because many of the abstract data types are recursive by
nature and algorithms that handle them can be better understood using
recursion. We use recursive algorithms extensively, especially in Part III,
“Non-Linear Lists.” 

Recursion versus Repetition
The first part of the chapter compares and contrasts recursion and repetition
and when each should be used. 

Recursive Algorithms
Although recursive algorithms are generally elegant, they can be difficult to
understand. In the second part of the chapter, we introduce several algo-
rithms to make the recursive concept clear and to provide a sense of design
for creating recursive algorithms. 
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Chapter 1
Basic Concepts

This text assumes that the student has a solid foundation in structured pro-
gramming principles and has written programs of moderate complexity.
Although the text uses C for all of its implementation examples, the design
and logic of the data structure algorithms are based on pseudocode. This
approach creates a language-independent environment for the algorithms.

In this chapter we establish a background for the tools used in the rest of
the text, most specifically pseudocode, the abstract data type, algorithm effi-
ciency analysis, and the concepts necessary to create generic code.

1.1 Pseudocode
Although several tools are used to define algorithms, one of the most common
is pseudocode. Pseudocode is an English-like representation of the algorithm
logic. It is part English, part structured code. The English part provides a
relaxed syntax that describes what must be done without showing unnecessary
details such as error messages. The code part consists of an extended version of
the basic algorithmic constructs—sequence, selection, and iteration.

In this text we use pseudocode to represent both data structures and
code. Data items do not need to be declared. The first time we use a data
name in an algorithm, it is automatically declared. Its type is determined by
context. The following statement declares a numeric data item named count
and sets its value to zero.

One of the most common tools for defining algorithms is pseudocode, which is part English, part
structured code.

set count to 0
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The structure of the data, on the other hand, must be declared. We use a
simple syntactical statement that begins with a structure name and concludes
with the keyword end and the name of the structure. Within the structure we
list the structural elements by indenting the data items as shown below.

This data definition describes a node in a self-referential list that consists
of a nested structure (data) and a pointer to the next node (link). An ele-
ment’s type is implied by its name and usage in the algorithm.

As mentioned, pseudocode is used to describe an algorithm. To facilitate
a discussion of the algorithm statements, we number them using the hierar-
chical system shown in Algorithm 1-1. The following sections describe the
components of an algorithm. Colored comments provide documentation or
clarification when required.

ALGORITHM 1-1 Example of Pseudocode

Algorithm Header
Each algorithm begins with a header that names it, lists its parameters, and
describes any preconditions and postconditions. This information is impor-
tant because it serves to document the algorithm. Therefore, the header
information must be complete enough to communicate to the programmer
everything he or she must know to write the algorithm. In Algorithm 1-1
there is only one parameter, the page number. 

node
data 
link 

end node

Algorithm sample (pageNumber)
This algorithm reads a file and prints a report.

Pre    pageNumber passed by reference 
Post   Report Printed 
       pageNumber contains number of pages in report 
Return Number of lines printed 

1 loop (not end of file)
1 read file 
2 if (full page) 

1 increment page number
2 write page heading 

3 end if
4 write report line 
5 increment line count

2 end loop
3 return line count
end sample
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Purpose, Conditions, and Return
The purpose is a short statement about what the algorithm does. It needs to
describe only the general algorithm processing. It should not attempt to
describe all of the processing. For example, in Algorithm 1-1 the purpose
does not need to state that the file will be opened or how the report will be
printed. Similarly, in the search example the purpose does not need to state
which of the possible array searches will be used. 

The precondition lists any precursor requirements for the parameters.
For example, in Algorithm 1-1 the algorithm that calls sample must pass the
page number by reference. Sometimes there are no preconditions, in which
case we still list the precondition with a statement that nothing is required, as
shown below. 

If there are several input parameters, the precondition should be shown for
each. For example, a simple array search algorithm has the following header:

In search the precondition specifies that the two input parameters, list
and argument, must be initialized. If a binary search were being used, the
precondition would also state that the array data must be sorted.

The postcondition identifies any action taken and the status of any out-
put parameters. In Algorithm 1-1 the postcondition contains two parts. First,
it states that the report has been printed. Second, the reference parameter,
pageNumber, contains the updated number of pages in the report. In the
search algorithm shown above, there is only one postcondition, which may be
one of two different values.

If a value is returned, it is identified by a return condition. Often there is
none, and no return condition is needed. In Algorithm 1-1 we return the
number of lines printed. The search algorithm returns true if the argument
was found, false if it was not found.

Statement Numbers
Statements are numbered using an abbreviated decimal notation in which
only the last of the number sequence is shown on each statement. The
expanded number of the statement in Algorithm 1-1 that reads the file is 1.1.

Pre    nothing

Algorithm search  (list, argument, location)
Search array for specific item and return index location.

Pre    list contains data array to be searched
       argument contains data to be located in list
Post   location contains matching index  
       -or- undetermined if not found
Return true if found, false if not found
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The statement that writes the page heading is 1.2.2. This technique allows
us to identify an individual statement while providing statements that are
easily read.

Variables
To ensure that the meaning is understood, we use intelligent data names—that is,
names that describe the meaning of the data. However, it is not necessary to
define the variables used in an algorithm, especially when the name indicates
the context of the data. 

The selection of the name for an algorithm or variable goes a long way
toward making the algorithm and its coded implementation more readable. In
general, you should follow these rules:

1. Do not use single-character names.

2. Do not use generic names in application programs. Examples of generic
names are count, sum, total, row, column, and file. In a program of any
size there are several counts, sums, and totals. Rather, add an intelligent
qualifier to the generic name so that the reader knows exactly to which
piece of data the name refers. For example, studentCount and
numberOfStudents are both better than count.

3. Abbreviations are not excluded as intelligent data names. For example,
stuCnt is a good abbreviation for student count, and numOfStu is a good
abbreviation for number of students. Note, however, that noStu would
not be a good abbreviation for number of students because it is too
easily read as no students.

Statement Constructs
When he first proposed the structured programming model, Edsger Dijkstra
stated that any algorithm could be written using only three programming
constructs: sequence, selection, and loop. Our pseudocode contains only these
three basic constructs. The implementation of these constructs relies on the
richness of the implementation language. For example, the loop can be
implemented as a while, do…while, or for statement in the C language.

Sequence
A sequence is one or more statements that do not alter the execution path within
an algorithm. Although it is obvious that statements such as assign and add
are sequence statements, it is not so obvious that a call to other algorithms is
also considered a sequence statement. The reason calls are considered
sequential statements lies in the structured programming concept that each
algorithm has only one entry and one exit. Furthermore, when an algorithm
completes, it returns to the statement immediately after the call that invoked
it. Therefore, we can consider an algorithm call a sequence statement. In
Algorithm 1-1 statements 1.2.1 and 1.2.2 are sequence statements.
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Selection
A selection statement evaluates a condition and executes zero or more alternatives.
The results of the evaluation determine which alternates are taken. 

The typical selection statement is the two-way selection as implemented
in an if statement. Whereas most languages provide for multiway selections,
such as the switch in C, we provide none in the pseudocode. The parts of the
selection are identified by indentation, as shown in the short pseudocode
statement below.

Statement 1.2 in Algorithm 1-1 is an example of a selection statement.
The end of the selection is indicated by the end if in statement 1.3. 

Loop
A loop statement iterates a block of code. The loop that we use in our
pseudocode closely resembles the while loop. It is a pretest loop; that is, the
condition is evaluated before the body of the loop is executed. If the
condition is true, the body is executed. If the condition is false, the loop
terminates.

In Algorithm 1-1 statement 1 is an example of a loop. The end of the loop
is indicated by end loop in statement 2. 

Algorithm Analysis
For selected algorithms, we follow the algorithm with an analysis section that
explains some of its salient points. Not every line of code is explained. Rather,
the analysis examines only those points that either need to be emphasized or
that may require some clarification. The algorithm analysis also often intro-
duces style or efficiency considerations.

Pseudocode Example
As another example of pseudocode, consider the logic required to calculate
the deviation from a mean. In this problem we must first read a series of
numbers and calculate their average. Then we subtract the mean from each
number and print the number and its deviation. At the end of the calculation,
we also print the totals and the average.

The obvious solution is to place the data in an array as they are read.
Algorithm 1-2 contains the code for this simple problem as it would be imple-
mented in a callable algorithm.

1 if (condition)
1   action1

2 else
1   action2

3 end if
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ALGORITHM 1-2 Print Deviation from Mean for Series

Algorithm 1-2 Analysis There are two points worth mentioning in Algorithm 1-2. First, there are no parameters.
Second, as previously explained, we do not declare variables. A variable’s type and
purpose should be easily determined by its name and usage.

1.2 The Abstract Data Type
In the history of programming concepts, we started with nonstructured, linear
programs, known as spaghetti code, in which the logic flow wound through the
program like spaghetti on a plate. Next came the concept of modular programming,
in which programs were organized in functions, each of which still used a lin-
ear coding technique. In the 1970s, the basic principles of structured programming
were formulated by computer scientists such as Edsger Dijkstra and Niklaus
Wirth. They are still valid today.

Atomic and Composite Data
Atomic data are data that consist of a single piece of information; that is, they
cannot be divided into other meaningful pieces of data. For example, the inte-
ger 4562 may be considered a single integer value. Of course, we can decom-
pose it into digits, but the decomposed digits do not have the same
characteristics of the original integer; they are four single-digit integers rang-
ing from 0 to 9. In some languages atomic data are known as scalar data
because of their numeric properties. 

The opposite of atomic data is composite data. Composite data can be bro-
ken out into subfields that have meaning. As an example of a composite
data item, consider your telephone number. A telephone number actually
has three different parts. First, there is the area code. Then, what you con-
sider to be your phone number is actually two different data items, a prefix
consisting of a three-digit exchange and the number within the exchange,

Algorithm deviation
Pre    nothing
Post   average and numbers with their deviation printed

1 loop (not end of file)
1 read number into array
2 add number to total
3 increment count

2 end loop
3 set average to total / count
4 print average
5 loop (not end of array)

1 set devFromAve to array element - average
2 print array element and devFromAve

6 end loop
end deviation
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consisting of four digits. In the past, these prefixes were names such as
DAvenport and CYpress.

Data Type
A data type consists of two parts: a set of data and the operations that can be
performed on the data. Thus we see that the integer type consists of values
(whole numbers in some defined range) and operations (add, subtract, multi-
ply, divide, and any other operations appropriate for the data).    

Table 1-1 shows three data types found in all systems. 

TABLE 1-1 Three Data Types

Data Structure
A data structure is an aggregation of atomic and composite data into a set with
defined relationships. In this definition structure means a set of rules that
holds the data together. In other words, if we take a combination of data and fit
them into a structure such that we can define its relating rules, we have made
a data structure. Data structures can be nested. We can have a data structure
that consists of other data structures. For example, we can define the two
structures array and record as shown in Table 1-2. 

TABLE 1-2 Data Structure Examples

Data Type
1. A set of values
2. A set of operations on values

Type Values Operations

integer -∞, … , -2, -1, 0, 1, 2,… , ∞ *, +, -, %, /, ++, - - , …

floating point -∞, … , 0.0, … , ∞ *, +, -, /, …

character \0, …, 'A', 'B', … , 'a', 'b', … , ~ <, >, …

Array Record

Homogeneous sequence of data or 
data types known as elements

Heterogeneous combination of data 
into a single structure with an identi-
fied key

Position association among 
the elements

No association
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Most of the programming languages support several data structures. In addi-
tion, modern programming languages allow programmers to create new data
structures for an application.   

Abstract Data Type
Generally speaking, programmers’ capabilities are determined by the tools in
their tool kits. These tools are acquired by education and experience. A
knowledge of data structures is one of those tools.

When we first started programming, there were no abstract data types.
If we wanted to read a file, we wrote the code to read the physical file
device. It did not take long to realize that we were writing the same code
over and over again. So we created what is known today as an abstract data type
(ADT). We wrote the code to read a file and placed it in a library for all pro-
grammers to use.

This concept is found in modern languages today. The code to read the
keyboard is an ADT. It has a data structure, a character, and a set of opera-
tions that can be used to read that data structure. Using the ADT we can not
only read characters but we can also convert them into different data struc-
tures such as integers and strings.

With an ADT users are not concerned with how the task is done but
rather with what it can do. In other words, the ADT consists of a set of defini-
tions that allow programmers to use the functions while hiding the implemen-
tation. This generalization of operations with unspecified implementations is
known as abstraction. We abstract the essence of the process and leave the
implementation details hidden. 

Consider the concept of a list. At least four data structures can support a
list. We can use a matrix, a linear list, a tree, or a graph. If we place our list in
an ADT, users should not be aware of the structure we use. As long as they can
insert and retrieve data, it should make no difference how we store the data.
Figure 1-1 shows four logical structures that might be used to hold a list.

Data Structure
1. A combination of elements in which each is either a data type or

another data structure
2. A set of associations or relationships (structure) involving the combined

elements

The concept of abstraction means:
1. We know what a data type can do.
2. How it is done is hidden. 
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FIGURE 1-1 Some Data Structures

As another example, consider the system analyst who needs to simulate
the waiting line of a bank to determine how many tellers are needed to serve
customers efficiently. This analysis requires the simulation of a queue. How-
ever, queues are not generally available in programming languages. Even if a
queue type were available, our analyst would still need some basic queue
operations, such as enqueuing (insertion) and dequeuing (deleting), for the
simulation.

There are two potential solutions to this problem: (1) we can write a pro-
gram that simulates the queue our analyst needs (in this case, our solution is
good only for the one application at hand) or (2) we can write a queue ADT
that can be used to solve any queue problem. If we choose the latter course,
our analyst still needs to write a program to simulate the banking application,
but doing so is much easier and faster because he or she can concentrate on
the application rather than the queue.

We are now ready to define ADT. An abstract data type is a data declara-
tion packaged together with the operations that are meaningful for the data
type. In other words, we encapsulate the data and the operations on the data,
and then we hide them from the user.

We cannot overemphasize the importance of hiding the implementation.
The user should not have to know the data structure to use the ADT.
Referring to our queue example, the application program should have no
knowledge of the data structure. All references to and manipulation of the
data in the queue must be handled through defined interfaces to the

Abstract Data Type
1. Declaration of data
2. Declaration of operations
3. Encapsulation of data and operations

(a) Matrix

(b) Linear list

(d) Graph(c) Tree
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structure. Allowing the application program to directly reference the data
structure is a common fault in many implementations. This keeps the ADT
from being fully portable to other applications. 

1.3 Model for an Abstract Data Type
The ADT model is shown in Figure 1-2. The colored area with an irregular out-
line represents the ADT. Inside the ADT are two different aspects of the model:
data structures and functions (public and private). Both are entirely contained
in the model and are not within the application program scope. However, the
data structures are available to all of the ADT’s functions as needed, and a
function may call on other functions to accomplish its task. In other words, the
data structures and the functions are within scope of each other.

FIGURE 1-2 Abstract Data Type Model

ADT Operations
Data are entered, accessed, modified, and deleted through the external inter-
face drawn as a passageway partially in and partially out of the ADT. Only the
public functions are accessible through this interface. For each ADT opera-
tion there is an algorithm that performs its specific task. Only the operation
name and its parameters are available to the application, and they provide the
only interface to the ADT. 

Public
functions

Private
functions

Data structures

Dynamic memory

Array

Record

Linked list

Application

program

Interface

ADT
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ADT Data Structure
When a list is controlled entirely by the program, it is often implemented
using simple structures similar to those used in your programming class.
Because the abstract data type must hide the implementation from the user,
however, all data about the structure must be maintained inside the ADT.
Just encapsulating the structure in an ADT is not sufficient. It is also neces-
sary for multiple versions of the structure to be able to coexist. Consequently,
we must hide the implementation from the user while being able to store dif-
ferent data. 

In this text, we develop ADTs for stacks, queues, lists, binary search
trees, AVL trees, B-trees, heaps, and graphs. If you would like a preview, look
at the stack ADT in Chapter 3.

1.4 ADT Implementations
There are two basic structures we can use to implement an ADT list: arrays
and linked lists.

Array Implementations
In an array, the sequentiality of a list is maintained by the order structure of
elements in the array (indexes). Although searching an array for an individual
element can be very efficient, addition and deletion of elements are complex
and inefficient processes. For this reason arrays are seldom used, especially
when the list changes frequently. In addition, array implementations of non-
linear lists can become excessively large, especially when there are several
successors for each element. Appendix F provides array implementations for
two ADTs. 

Linked List Implementations
A linked list is an ordered collection of data in which each element contains the
location of the next element or elements. In a linked list, each element con-
tains two parts: data and one or more links. The data part holds the application
data—the data to be processed. Links are used to chain the data together.
They contain pointers that identify the next element or elements in the list. 

We can use a linked list to create linear and non-linear structures. In lin-
ear linked lists, each element has only zero or one successor. In non-linear
linked lists, each element can have zero, one, or more successors. 

The major advantage of the linked list over the array is that data are eas-
ily inserted and deleted. It is not necessary to shift elements of a linked list to
make room for a new element or to delete an element. On the other hand,
because the elements are no longer physically sequenced, we are limited to
sequential searches:1 we cannot use a binary search.2

1. Sequential and binary searches are discussed in Chapter 13.
2. When we examine trees, you will see several data structures that allow for easy updates and efficient

searches.
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Figure 1-3(a) shows a linked list implementation of a linear list. The
link in each element, except the last, points to its unique successor; the link
in the last element contains a null pointer, indicating the end of the list.
Figure 1-3(b) shows a linked list implementation of a non-linear list. An
element in a non-linear list can have two or more links. Here each element
contains two links, each to one successor. Figure 1-3(c) contains an exam-
ple of an empty list, linear or non-linear. We define an empty list as a null list
pointer.

FIGURE 1-3 Linked Lists

In this section, we discuss only the basic concepts for linked lists. We
expand on these concepts in future chapters.

Nodes
In linked list implementation, the elements in a list are called nodes. A node is a
structure that has two parts: the data and one or more links. Figure 1-4 shows
two different nodes: one for a linear list and the other for a non-linear list.

The nodes in a linked list are called self-referential structures. In a self-
referential structure, each instance of the structure contains one or more
pointers to other instances of the same structural type. In Figure 1-4, the
colored boxes with arrows are the pointers that make the linked list a self-
referential structure.

The data part in a node can be a single field, multiple fields, or a struc-
ture that contains several fields, but it always acts as a single field. Figure 1-5
shows three designs for a node of a linear list. The upper-left node contains a

list

(c) Empty list

(a) Linear list
data link data linkdata link data linklist

(b) Non-linear list 

data linklink

data linklink data linklink

list
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FIGURE 1-4 Nodes

single field, a number, and a link. The upper-right node is more typical. It
contains three data fields: a name, an id, and grade points (grdPts)—and a
link. The third example is the one we recommend. The fields are defined in
their own structure, which is then put into the definition of a node structure.

FIGURE 1-5 Linked List Node Structures

Pointers to Linked Lists
A linked list must always have a head pointer. Depending on how we use the
list, we may have several other pointers as well. For example, if we are going
to search a linked list, we will need an additional pointer to the location
where we found the data we were looking for. Furthermore, in many struc-
tures, programming is more efficient if there is a pointer to the last node in
the list as well as a head pointer. 

1.5 Generic Code for ADTs
In data structures we need to create generic code for abstract data types.
Generic code allows us to write one set of code and apply it to any data type. For

data

(a) Node in a linear list

(b) Node in a non-linear list

data

Node with
three data fields

Node with
one data field

grdPtsname idnumber

phonename address

Structure
in a node
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example, we can write generic functions to implement a stack structure. We
can then use the generic functions to implement an integer stack, a float
stack, a double stack, and so on. Although some high-level languages such as
C++ and Java provide special tools to handle generic code, C has limited
capability through two features: pointer to void and pointer to function. 

Pointer to void
The first feature is pointer to void. Because C is strongly typed, operations such as
assign and compare must use compatible types or be cast to compatible types.
The one exception is the pointer to void, which can be assigned without a
cast. In other words, a pointer to void is a generic pointer that can be used to
represent any data type during compilation or run time. Figure 1-6 shows the
idea of a pointer to void. Note that a pointer to void is not a null pointer; it is
pointing to a generic data type (void).

FIGURE 1-6 Pointer to void

Example Let us write a simple program to demonstrate the concept. It contains three
variables: an integer, a floating-point number, and a void pointer. At different
times in the program the pointer can be set to the address of the integer value
or of the floating-point value. Figure 1-7 shows the situation.

FIGURE 1-7 Pointers for Program 1-1

Program 1-1 uses a pointer to void that we can use to print either an
integer or a floating-point number.

void

void*

i

f

p

p

p

void* p;
int   i;
float f;

p = &i;
...
p = &f;

p = &i

p = &f



Chapter 1 Basic Concepts 19

PROGRAM 1-1 Demonstrate Pointer to void

Program 1-1 Analysis The program is trivial, but it demonstrates the point. The pointer p is declared as a void
pointer, but it can accept the address of an integer or floating-point number. However,
we must remember a very import point about pointers to void: a pointer to void cannot
be dereferenced unless it is cast. In other words, we cannot use *p without casting.
That is why we need to cast the pointer in the print function before we use it for printing.

Example As another example, let us look at a system function, malloc. This function
returns a pointer to void. The designers of the malloc function needed to
dynamically allocate any type of data. However, instead of using several mal-
loc functions, each returning a pointer to a specific data type (int*, float*,
double*, and so on), they designed a generic function that returns a pointer
to void (void*). While it is not required, we recommend that the returned
pointer be cast to the appropriate type. The following shows the use of malloc
to create a pointer to an integer.       

1
2
3
4
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6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

/* Demonstrate pointer to void.
   Written by:
   Date:

*/
#include <stdio.h>

int main ()
{
// Local Definitions 

void* p;
int   i = 7 ;
float f = 23.5;

// Statements 
p = &i;
printf ("i contains: %d\n", *((int*)p) );

p = &f;
printf ("f contains: %f\n", *((float*)p));

return 0;
} // main

Results:
i contains 7
f contains 23.500000

A pointer to void cannot be dereferenced.

intPtr = (int*)malloc (sizeof (int));
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Example Now let’s look at an example that is similar to what we use to implement our
ADTs. We need to have a generic function to create a node structure. The
structure has two fields: data and link. The link field is a pointer to the node
structure. The data field, however, can be any type: integer, floating point,
string, or even another structure. To make the function generic so that we
can store any type of data in the node, we use a void pointer to data stored in
dynamic memory. We declare the node structure as shown in Figure 1-8.

FIGURE 1-8 Pointer to Node

Now let’s write the program that calls a function that accepts a pointer to
data of any type and creates a node that stores the data pointer and a link
pointer. Because we don’t know where the link pointer will be pointing, we
make it null. The pointer design is shown in Figure 1-9. 

FIGURE 1-9 Pointers for Programs 1-2 and 1-3

Typically, ADTs are stored in their own header files. We begin, therefore,
by writing the code for creating the node and placing the code in a header
file. This code is shown in Program 1-2.

PROGRAM 1-2 Create Node Header File

continued

1 /* Header file for create node structure.

typedef struct node
{
         void* dataPtr;
  struct node* link;
} NODE;

To next node

void

NODE
dataPtr link

main

createNode

Dynamic memory

newData

node

nodeData

nodePtritemPtr

7

dataPtr link
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PROGRAM 1-2 Create Node Header File (continued)

Now that we’ve created the data structure and the create node function,
we can write Program 1-3 to demonstrate the use of void pointers in a node.

PROGRAM 1-3 Demonstrate Node Creation Function

continued

2
3
4
5
6
7
8
9
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15
16
17
18
19
20
21
22
23
24

   Written by:
   Date:

*/
typedef struct node
{
         void* dataPtr;
  struct node* link;
} NODE;

/* =================== createNode ====================
Creates a node in dynamic memory and stores data 
pointer in it.
   Pre  itemPtr is pointer to data to be stored.
   Post node created and its address returned.

*/
NODE* createNode (void* itemPtr)
{

NODE* nodePtr;
nodePtr = (NODE*) malloc (sizeof (NODE));
nodePtr->dataPtr = itemPtr;
nodePtr->link    = NULL;
return nodePtr;

} // createNode 

1
2
3
4
5
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14
15
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17
18

/* Demonstrate simple generic node creation function.
   Written by:
   Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "P1-02.h"                      // Header file 

int main (void)
{
// Local Definitions

int*  newData;
int*  nodeData;
NODE* node;

// Statements 
newData  = (int*)malloc (sizeof (int));
*newData = 7;
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PROGRAM 1-3 Demonstrate Node Creation Function (continued)

Program 1-3 Analysis There are several important concepts in this program. First, the data to be stored in the
node is represented by a void pointer. Because there are usually many instances of these
nodes in a program, the data are stored in dynamic memory. The allocation and storage
of the data are the responsibility of the programmer. We show these two steps in state-
ments 17 and 18.

The createNode function allocates a node structure in dynamic memory, stores
the data void pointer in the node, and then returns the node’s address. In statement 22,
we store the void pointer from the node into an integer pointer. Because C is strongly
typed, this assignment must be cast to an integer pointer. So, while we can store an
address in a void pointer without knowing its type, the reverse is not true. To use a void
pointer, even in an assignment, it must be cast.

Example ADT structures generally contain several instances of a node. To better dem-
onstrate the ADT concept, therefore, let’s modify Program 1-3 to contain two
different nodes. In this simple example, we point the first node to the second
node. The pointer structure for the program is shown in Figure 1-10.

FIGURE 1-10 Structure for Two Linked Nodes

The pointer values in Figure 1-10 represent the settings at the end of
Program 1-4.

19
20
21
22
23
24
25

node = createNode (newData);

nodeData = (int*)node->dataPtr;
printf ("Data from node: %d\n", *nodeData);
return 0;

} // main 

Results:
Data from node: 7

Any reference to a void pointer must cast the pointer to the correct type. 

main

createNode

Dynamic memory

node

nodePtr

757

dataPtr linkdataPtr link
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PROGRAM 1-4 Create List with Two Linked Nodes

Program 1-4 Analysis This program demonstrates an important point. In a generic structure such as shown in
the program, the nodes and the data must both be in dynamic memory. When study-
ing the program, follow the code through Figure 1-10.

Pointer to Function
The second tool that is required to create C generic code is pointer to func-
tion. In this section we discuss how to use it.

Functions in your program occupy memory. The name of the function is
a pointer constant to its first byte of memory. For example, imagine that you
have four functions stored in memory: main, fun, pun, and sun. This

1
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/* Create a list with two linked nodes.
   Written by:
   Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "P1-02.h"                      // Header file 

int main (void)
{
// Local Definitions 

int*  newData;
int*  nodeData;
NODE* node;

// Statements 
newData  = (int*)malloc (sizeof (int));
*newData = 7;
node = createNode (newData);

newData    = (int*)malloc (sizeof (int));
*newData   = 75;
node->link = createNode (newData);

nodeData = (int*)node->dataPtr;
printf ("Data from node 1: %d\n", *nodeData);

nodeData = (int*)node->link->dataPtr;
printf ("Data from node 2: %d\n", *nodeData);
return 0;

} // main 

Results:
Data from node 1: 7
Data from node 2: 75
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relationship is shown graphically in Figure 1-11. The name of each function
is a pointer to its code in memory.

FIGURE 1-11 Functions in Memory

Defining Pointers to Functions
Just as with all other pointer types, we can define pointers to function vari-
ables and store the address of fun, pun, and sun in them. To declare a pointer to
function, we code it as if it were a prototype definition, with the function
pointer in parentheses. This format is shown in Figure 1-12. The parentheses
are important: without them C interprets the function return type as a
pointer.

Using Pointers to Functions
Now that you’ve seen how to create and use pointers to functions, let’s write a
generic function that returns the larger of any two pieces of data. The func-
tion uses two pointers to void as described in the previous section. While our
function needs to determine which of the two values represented by the void
pointers is larger, it cannot directly compare them because it doesn’t know
what type casts to use with the void pointers. Only the application program
knows the data types.

The solution is to write simple compare functions for each program that
uses our generic function. Then, when we call the generic compare function,
we use a pointer to function to pass it the specific compare function that it
must use. 

Example As we saw in our discussion of pointers to void, we place our generic func-
tion, which we call larger, in a header file so that it can be easily used. The
program interfaces and pointers are shown in Figure 1-13.

fun

pun

sun

main
    int    main (void);

    void   fun  (void);

    int    pun  (int, int);

    double sun  (float);

f1

f3

f2

Pointers to
function

Memory
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FIGURE 1-12 Pointers to Functions

FIGURE 1-13 Design of Larger Function

The code is shown in Program 1-5.

PROGRAM 1-5 Larger Compare Function

continued

1
2
3
4
5
6
7

/* Generic function to determine the larger of two
values referenced as void pointers.
   Pre  dataPtr1 and dataPtr2 are pointers to values
           of an unknown type.
        ptrToCmpFun is address of a function that
           knows the data types
   Post data compared and larger value returned

// Local Definitions 

…

void   (*f1) (void);

int    (*f2) (int, int);

double (*f3) (float);

…

// Statements 

…

f1  =  fun;

f2  =  pun; 

f3  =  sun;

…

f1: Pointer to a function
 with no parameters;
 it returns void.

main

compare

larger

dataPtr1

dataPtr2

i lrgj

ptr2ptr1
compare

7 88
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PROGRAM 1-5 Larger Compare Function (continued)

Program 1-6 contains an example of how to use our generic compare
program and pass it a specific compare function.

PROGRAM 1-6 Compare Two Integers

continued

8
9
10
11
12
13
14
15
16

*/
void* larger (void* dataPtr1,    void* dataPtr2, 
              int (*ptrToCmpFun)(void*, void*))
{

if ((*ptrToCmpFun) (dataPtr1, dataPtr2) > 0)
      return dataPtr1;
else
      return dataPtr2;

} // larger 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

/* Demonstrate generic compare functions and pointer to 
function.
   Written by:
   Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "P1-05.h"                      // Header file 

int   compare (void* ptr1, void* ptr2);

int main (void)
{
// Local Definitions 

int i = 7 ;
int j = 8 ;
int lrg;

// Statements 
lrg = (*(int*) larger (&i, &j, compare));

printf ("Larger value is: %d\n", lrg);
return 0;

} // main 
/* ==================== compare ==================== 

Integer specific compare function.
   Pre  ptr1 and ptr2 are pointers to integer values
   Post returns +1 if ptr1 >= ptr2
        returns -1 if ptr1 <  ptr2

*/
int compare (void* ptr1, void* ptr2)
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PROGRAM 1-6 Compare Two Integers (continued)

Example Now, let’s write a program that compares two floating-point numbers. We can
use our larger function, but we need to write a new compare function. We
repeat Program 1-6, changing only the compare function and the data-specific
statements in main. The result is shown in Program 1-7.

PROGRAM 1-7 Compare Two Floating-Point Values

continued

33
34
35
36
37
38

{
  if (*(int*)ptr1 >=  *(int*)ptr2)
     return 1;
  else
     return -1;
} // compare 

Results:
Larger value is: 8

1
2
3
4
5
6
7
8
9
10
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12
13
14
15
16
17
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19
20
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22
23
24
25
26
27
28
29

/* Demonstrate generic compare functions and pointer to 
function.
   Written by:
   Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "P1-05.h"                      // Header file 

int   compare (void* ptr1, void* ptr2);

int main (void)
{
// Local Definitions 

float f1 = 73.4;
float f2 = 81.7;
float lrg;

// Statements 
lrg = (*(float*) larger (&f1, &f2, compare));

printf ("Larger value is: %5.1f\n", lrg);
return 0;

} // main 
/* ==================== compare ==================== 

Float specific compare function.
   Pre  ptr1 and ptr2 are pointers to integer values
   Post returns +1 if ptr1 >= ptr2
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PROGRAM 1-7 Compare Two Floating-Point Values (continued)

1.6 Algorithm Efficiency
There is seldom a single algorithm for any problem. When comparing two
different algorithms that solve the same problem, you often find that one
algorithm is an order of magnitude more efficient than the other. In this case,
it only makes sense that you be able to recognize and choose the more effi-
cient algorithm.

Although computer scientists have studied algorithms and algorithm effi-
ciency extensively, the field has not been given an official name. Brassard and
Bratley coined the term algorithmics, which they define as “the systematic study
of the fundamental techniques used to design and analyze efficient algo-
rithms.”3 We use the term in this book.

If a function is linear—that is, if it contains no loops or recursions—its
efficiency is a function of the number of instructions it contains. In this case,
its efficiency depends on the speed of the computer and is generally not a fac-
tor in the overall efficiency of a program. On the other hand, functions that
use loops or recursion vary widely in efficiency. The study of algorithm effi-
ciency therefore focuses on loops. Our analysis concentrates on loops
because recursion can always be converted to a loop. 

As we study specific examples, we generally discuss the algorithm’s efficiency
as a function of the number of elements to be processed. The general format is

The basic concepts are discussed in this section.

30
31
32
33
34
35
36
37
38

        returns -1 if ptr1 <  ptr2
*/
int compare (void* ptr1, void* ptr2)
{
  if (*(float*)ptr1 >=  *(float*)ptr2)
     return 1;
  else
     return -1;
} // compare 

Results:
Larger value is: 81.7

3. Gilles Brassard and Paul Bratley, Algorithmics Theory and Practice (Englewood Cliffs, N.J.: 
Prentice Hall, 1988), xiii. 

f (n) = efficiency
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Linear Loops
Let us start with a simple loop. We want to know how many times the body of
the loop is repeated in the following code:4 

Assuming i is an integer, the answer is 1000 times. The number of itera-
tions is directly proportional to the loop factor, 1000. The higher the factor,
the higher the number of loops. Because the efficiency is directly propor-
tional to the number of iterations, it is

However, the answer is not always as straightforward as it is in the above
example. For instance, consider the following loop. How many times is the
body repeated in this loop? Here the answer is 500 times. Why?

In this example the number of iterations is half the loop factor. Once
again, however, the higher the factor, the higher the number of loops. The
efficiency of this loop is proportional to half the factor, which makes it

If you were to plot either of these loop examples, you would get a straight
line. For that reason they are known as linear loops. 

Logarithmic Loops
In a linear loop, the loop update either adds or subtracts. In a logarithmic loop, the
controlling variable is multiplied or divided in each iteration. How many times
is the body of the loops repeated in the following program segments?

To help you understand this problem, Table 1-3 analyzes the values of i
for each iteration. As you can see, the number of iterations is 10 in both
cases. The reason is that in each iteration the value of i doubles for the mul-
tiply loop and is cut in half for the divide loop. Thus, the number of iterations 

for (i = 0; i < 1000; i++)
     application code

4. For algorithm efficiency analysis, we use C code so that we can clearly see the looping constructs.

f (n) = n

for (i = 0; i < 1000; i += 2)
     application code

f (n) = n / 2

Multiply Loops
for (i = 0; i < 1000; i *= 2)
     application code

Divide Loops
for (i = 0; i < 1000; i /= 2)
     application code
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TABLE 1-3 Analysis of Multiply and Divide Loops

is a function of the multiplier or divisor, in this case 2. That is, the loop con-
tinues while the condition shown below is true.

Generalizing the analysis, we can say that the iterations in loops that
multiply or divide are determined by the following formula:

Nested Loops
Loops that contain loops are known as nested loops. When we analyze nested
loops, we must determine how many iterations each loop completes. The
total is then the product of the number of iterations in the inner loop and the
number of iterations in the outer loop.

We now look at three nested loops: linear logarithmic, quadratic, and
dependent quadratic.

Multiply Divide

Iteration Value of i Iteration Value of i

1

2

3

4

5

6

7

8

9

10

(exit)

1

2

4

8

16

32

64

128

256

512

1024

1

2

3

4

5

6

7

8

9

10

(exit)

1000

500

250

125

62

31

15

7

3

1

0

multiply  2Iterations < 1000
divide    1000 / 2Iterations >= 1

f (n) = logn

Iterations = outer loop iterations x inner loop iterations
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Linear Logarithmic
The inner loop in the following code is a loop that multiplies. To see the mul-
tiply loop, look at the update expression in the inner loop.

The number of iterations in the inner loop is therefore log10. However,
because the inner loop is controlled by an outer loop, the above formula must
be multiplied by the number of times the outer loop executes, which is 10.
This gives us

which is generalized as

Quadratic
In a quadratic loop, the number of times the inner loop executes is the same as
the outer loop. Consider the following example.

The outer loop ( for i) is executed 10 times. For each of its iterations, the
inner loop ( for j) is also executed 10 times. The answer, therefore, is 100,
which is 10 × 10, the square of the loops. This formula generalizes to

Dependent Quadratic
In a dependent quadratic loop, the number of iterations of the inner loop depends on
the outer loop. Consider the nested loop shown in the following example.

for (i = 0; i < 10; i++)
     for (j = 0; j < 10; j *= 2)
          application code

 10log10

 f (n) = n logn

for (i = 0; i < 10; i++) 
    for (j = 0; j < 10; j++)
         application code

for (i = 0; i < 10; i++) 
    for (j = 0; j < i; j++)
         application code

f n( ) n
2

=
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The outer loop is the same as the previous loop. However, the inner loop
depends on the outer loop for one of its factors. It is executed only once the
first iteration, twice the second iteration, three times the third iteration, and
so forth. The number of iterations in the body of the inner loop is calculated
as shown below.

If we compute the average of this loop, it is 5.5 (55/10), which is the
same as the number of iterations (10) plus 1 divided by 2. Mathematically,
this calculation is generalized to 

Multiplying the inner loop by the number of times the outer loop is exe-
cuted gives us the following formula for a dependent quadratic loop:

Big-O Notation
With the speed of computers today, we are not concerned with an exact mea-
surement of an algorithm’s efficiency as much as we are with its general
order of magnitude. If the analysis of two algorithms shows that one executes
15 iterations while the other executes 25 iterations, they are both so fast that
we can’t see the difference. On the other hand, if one iterates 15 times and
the other 1500 times, we should be concerned.

We have shown that the number of statements executed in the function for
n elements of data is a function of the number of elements, expressed as f (n).
Although the equation derived for a function may be complex, a dominant fac-
tor in the equation usually determines the order of magnitude of the result.
Therefore, we don’t need to determine the complete measure of efficiency, only
the factor that determines the magnitude. This factor is the big-O, as in “on the
order of,” and is expressed as O(n)—that is, on the order of n.

This simplification of efficiency is known as big-O analysis. For example,
if an algorithm is quadratic, we would say its efficiency is

or on the order of n squared.
The big-O notation can be derived from f (n) using the following steps:

1. In each term, set the coefficient of the term to 1.

1 + 2 + 3 + … + 9 + 10 = 55

O(n2 )

n 1+( )
2

-----------------

f n( ) n n 1+
2

------------ 
 =
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2. Keep the largest term in the function and discard the others. Terms are
ranked from lowest to highest as shown below.

For example, to calculate the big-O notation for 

we first remove all coefficients. This gives us 

which after removing the smaller factors gives us

which in big-O notation is stated as

To consider another example, let’s look at the polynomial expression

We first eliminate all of the coefficients as shown below.

The largest term in this expression is the first one, so we can say that the
order of a polynomial expression is

Standard Measures of Efficiency
Computer scientists have defined seven categories of algorithm efficiency. We
list them in Table 1-4 in order of decreasing efficiency and show the first five
of them graphically in Figure 1-14.

logn   n   nlogn    n2    n3 ... nk  2n  n!

n2 + n

n2

f n( ) =n
n 1+( )

2
-----------------

1
2
---  n

2 1
2
---n+=

O f n( )( ) O n
2( )=

f n( ) ajn
k

aj 1– n
k 1– … a2n

2
a1n a0+ + + + +=

f n( ) n
k

n
k 1– … n

2
n 1+ + + + +=

O f n( )( ) O n
k( )=
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TABLE 1-4 Measures of Efficiency for n = 10,000

Any measure of efficiency presumes that a sufficiently large sample is
being considered. If you are dealing with only 10 elements and the time
required is a fraction of a second, there is no meaningful difference between
two algorithms. On the other hand, as the number of elements being pro-
cessed grows, the difference between algorithms can be staggering.

Returning for a moment to the question of why we should be concerned
about efficiency, consider the situation in which you can solve a problem in
three ways: one is linear, another is linear logarithmic, and a third is
quadratic. The magnitude of their efficiency for a problem containing 10,000

FIGURE 1-14 Plot of Effeciency Measures

Efficiency Big-O Iterations Estimated Time

Logarithmic

Linear

Linear logarithmic 

Quadratic

Polynomial

Exponential

Factorial

O(logn)

O(n)

O(n(logn))

O(n2)

O(nk)

O(cn)

O(n!)

14

10,000

140,000

10,0002

10,000k

210,000

10,000!

microseconds

seconds

seconds

minutes

hours

intractable

intractable

n

n

n2n3 nlogn

logn

O(n)
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elements shows that the linear solution requires a fraction of a second
whereas the quadratic solution requires minutes (see Table 1-4). 

Looking at the problem from the other end, if we are using a computer
that executes a million instructions per second and the loop contains 10
instructions, we spend 0.00001 second for each iteration of the loop. Table 1-4
also contains an estimate of the time needed to solve the problem given differ-
ent efficiencies.

Big-O Analysis Examples
To demonstrate the concepts we have been discussing, we examine two more
algorithms: add and multiply two matrices.

Add Square Matrices
To add two square matrices, we add their corresponding elements; that is, we
add the first element of the first matrix to the first element of the second
matrix, the second element of the first matrix to the second element of the
second matrix, and so forth. Of course, the two matrices must be the same
size. This concept is shown in Figure 1-15.

FIGURE 1-15 Add Matrices

The pseudocode to add two matrices is shown in Algorithm 1-3.

ALGORITHM 1-3 Add Two Matrices

Algorithm addMatrix (matrix1, matrix2, size, matrix3)
Add matrix1 to matrix2 and place results in matrix3

Pre  matrix1 and matrix2 have data
     size is number of columns or rows in matrix
Post matrices added--result in matrix3

1 loop (not end of row)
1 loop (not end of column)

1 add matrix1 and matrix2 cells
2 store sum in matrix3

2 end loop
2 end loop
end addMatrix

4 2 1

0 –3 4

5 6 2

10 3 8

3 –1 3

9 12 4

–1

6 1 7

3 2

4 6 2

+ =
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Algorithm 1-3 Analysis In this algorithm, we see that for each element in a row, we add all of the elements in
a column. This is the classic quadratic loop. The efficiency of the algorithm is therefore
O (size2) or O (n2).

Multiply Square Matrices
When two square matrices are multiplied, we must multiply each element
in a row of the first matrix by its corresponding element in a column of the
second matrix. The value in the resulting matrix is then the sum of the
products. For example, given the matrix in our addition example above, the
first element in the resulting matrix—that is, the element at [0, 0]—is the
sum of the products obtained by multiplying each element in the first row
(row 0) by its corresponding element in the first column (column 0). The
value of the element at index location [0, 1] is the sum of the products of
each element in the first row (again row 0) multiplied by its corresponding
element in the second column (column 1). The value of the element at
index location [1, 2] is the sum of the products of each element in the
second row multiplied by the corresponding elements in the third column.
Once again the square matrices must be the same size. Figure 1-16 graphi-
cally shows how two matrices are multiplied.

Generalizing this concept, we see that

The pseudocode used for multiplying matrices is provided in
Algorithm 1-4.

ALGORITHM 1-4 Multiply Two Matrices

continued

 matrix3 [row, col] = 
matrix1[row, 0] x matrix2[0, col]

+ matrix1[row, 1] x matrix2[1, col]
+ matrix1[row, 2] x matrix2[2, col]
...
+ matrix1[row, s-1] x matrix2[s-1, col]

 where s = size of matrix

Algorithm multiMatrix (matrix1, matrix2, size, matrix3)
Multiply matrix1 by matrix2 and place product in matrix3

Pre  matrix1 and matrix2 have data
     size is number of columns and rows in matrix
Post matrices multiplied--result in matrix3

1 loop (not end of row)
1 loop (not end of column)

1 loop (size of row times)
1 calculate sum of 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒ(all row cells) * (all column cells)
2 store sum in matrix3
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ALGORITHM 1-4 Multiply Two Matrices (continued)

Algorithm 1-4 Analysis In this algorithm we see three nested loops. Because each loop starts at the first ele-
ment, we have a cubic loop. Loops with three nested loops have a big-O efficiency of
O (size3) or O (n3). 

It is also possible to multiply two matrices if the number of rows in the first matrix is
the same as the number of columns in the second. We leave the solution to this prob-
lem as an exercise (Exercise 21).

FIGURE 1-16 Multiply Matrices

2 end loop
2 end loop
3 return
end multiMatrix

6 1 7

3 2 –1

4 6 2

144 12

0 –3 4

5 6 2

r0, c1

(b) 4 x 1 + 2 x 2 + 1 x 6 =  14

11

6 71

3 2 –1

4 6 2

4 12

0 –3 4

5 6 2

r1, c2

(c) 0 x 7 + (–3) x (–1) + 4 x 2  =  11

34

  

6 1 7

3 2 –1

4 6 2

4 12

0 –3 4

5 6 2

r0, c0

(a) 4 x 6 + 2 x 3 + 1 x 4 =  34
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1.7 Key Terms

1.8 Summary
❏ One of the most common tools used to define algorithms is pseudocode.

❏ Pseudocode is an English-like representation of the code required for an
algorithm. It is part English, part structured code.

❏ Atomic data are data that are single, nondecomposable entities.

❏ Atomic data types are defined by a set of values and a set of operations that
act on the values.

❏ A data structure is an aggregation of atomic and composite data with a
defined relationship.

❏ An abstract data type (ADT) is a data declaration packaged together with
the operations that are meaningful for the data type.

❏ There are two basic structures used to implement an ADT list: arrays and
linked lists.

❏ In an array, the sequentiality of a list is preserved by the ordered structure
of elements. Although searching an array is very efficient, adding and
deleting is not.

❏ Although adding and deleting in a linked list is efficient, searching is not
because we must use a sequential search.

❏ In a linked list, each element contains the location of the next element or
elements.

abstract data type (ADT)
algorithmics
atomic data
big-O notation
composite data
construct
data
data structure
data type
dependent quadratic loop
empty list
encapsulation
generic code
intelligent data names
linear loop
link

linked list
logarithmic loop
loop
modular programming
nested loop
node
pointer to void
pointer to function
pseudocode
quadratic loop
return condition
self-referential 
selection statement 
sequence
spaghetti code
structured programming
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❏ Abstract data types require generic algorithms, which allow an algorithm
to be used with multiple data types.

❏ The C language has two features that allow the creation of generic code:
pointer to void and pointer to function.

❏ A void pointer is a generic pointer that can be used to represent any
data type.

❏ A pointer to void cannot be dereferenced, which means that nonassign-
ment references to a void pointer must be cast to the correct type.

❏ The name of a function is a pointer constant to the first byte of a function. 

❏ We can use pointer to function as a place holder for the name of a func-
tion in a parameter list of a generic function.

❏ Algorithm efficiency is generally defined as a function of the number of
elements being processed and the type of loop being used. 

❏ The efficiency of a logarithmic loop is f (n) = logn.

❏ The efficiency of a linear loop is f (n) = n.

❏ The efficiency of a linear logarithmic loop is f (n) = n (logn).

❏ The efficiency of a quadratic loop is f (n) = n2.

❏ The efficiency of a dependent quadratic loop is f (n) = n(n + 1)/2.

❏ The efficiency of a cubic loop is f (n) = n3.

❏ The simplification of efficiency is known as big-O notation.

❏ The seven standard measures of efficiencies are O (logn), O (n), O (n(logn)),
O (n2), O (nk), O (cn), and O (n!).

1.9 Practice Sets

Exercises
1. Structure charts and pseudocode are two different design tools. How do

they differ and how are they similar?

2. Using different syntactical constructs, write at least two pseudocode state-
ments to add 1 to a number. For example, any of the following statements
could be used to get data from a file:

3. Explain how an algorithm in an application program differs from an
algorithm in an abstract data type.

4. Identify the atomic data types for your primary programming language.

read student file
read student file into student
read (studentFile into student)
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5. Identify the composite data types for your primary programming language.

6. Reorder the following efficiencies from smallest to largest:

a. 2n

b. n!
c. n5

d. 10,000
e. nlog(n)

7. Reorder the following efficiencies from smallest to largest:

a. nlog(n)
b. n + n2 + n3

c. 24
d. n0.5

8. Determine the big-O notation for the following:

a. 5n5/2 + n2/5

b. 6log(n) + 9n 
c. 3n4 + nlog(n)
d. 5n2+ n3/2

9. Calculate the run-time efficiency of the following program segment:

   for (i = 1; i <= n; i++)
        printf("%d ", i); 

10. Calculate the run-time efficiency of the following program segment:

   for (i = 1; i <= n; i++)
       for (j = 1; j <= n; j++)
           for (k = 1; k <= n; k++)
               print ("%d %d %d\n", i, j, k);

11. If the algorithm doIt has an efficiency factor of 5n, calculate the run-time
efficiency of the following program segment:

   for (i = 1, i <= n; i++)
        doIt (...)

12. If the efficiency of the algorithm doIt can be expressed as O(n) = n2, cal-
culate the efficiency of the following program segment: 

   for (i = 1; i <= n;; i++)
       for (j = 1; j < n, j++)
            doIt (...)

13. If the efficiency of the algorithm doIt can be expressed as O(n) = n2, cal-
culate the efficiency of the following program segment: 

   for (i = 1; i < n; i *= 2) 
       doIt (...)

14. Given that the efficiency of an algorithm is 5n2, if a step in this algorithm
takes 1 nanosecond (10–9 seconds), how long does it take the algorithm to
process an input of size 1000?
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15. Given that the efficiency of an algorithm is n3, if a step in this algorithm
takes 1 nanosecond (10–9 seconds), how long does it take the algorithm to
process an input of size 1000?

16. Given that the efficiency of an algorithm is 5nlog(n), if a step in this algo-
rithm takes 1 nanosecond (10– 9 seconds), how long does it take the algo-
rithm to process an input of size 1000?

17. An algorithm processes a given input of size n. If n is 4096, the run time
is 512 milliseconds. If n is 16,384, the run time is 2048 milliseconds.
What is the efficiency? What is the big-O notation?

18. An algorithm processes a given input of size n. If n is 4096, the run time
is 512 milliseconds. If n is 16,384, the run time is 8192 milliseconds.
What is the efficiency? What is the big-O notation?

19. An algorithm processes a given input of size n. If n is 4096, the run time
is 512 milliseconds. If n is 16,384, the run time is 1024 milliseconds.
What is the efficiency? What is the big-O notation?

20. Three students wrote algorithms for the same problem. They tested the
three algorithms with two sets of data as shown below:

a. Case 1: n = 10

•Run time for student 1: 1

•Run time for student 2: 1/100

•Run time for student 3: 1/1000

b. Case 2: n = 100

•Run time for student 1: 10

•Run time for student 2: 1

•Run time for student 3: 1

What is the efficiency for each algorithm? Which is the best? Which is
the worst? What is the minimum number of test cases (n) in which the
best algorithm has the best run time?

21. We can multiply two matrices if the number of columns in the first matrix
is the same as the number of rows in the second. Write an algorithm that
multiplies an m × n matrix by a n × k matrix.

22. Write a compare function (see Program 1-6) to compare two strings.

Problems
23. Write a pseudocode algorithm for dialing a phone number.

24. Write a pseudocode algorithm for giving all employees in a company a
cost-of-living wage increase of 3.2%. Assume that the payroll file includes
all current employees.



42 Section 1.9 Practice Sets

25. Write a language-specific implementation for the pseudocode algorithm in
Problem 24. 

26. Write a pseudocode definition for a textbook data structure.

27. Write a pseudocode definition for a student data structure.

Projects 
28. Your college bookstore has hired you as a summer intern to design a new

textbook inventory system. It is to include the following major processes:

a. Ordering textbooks
b. Receiving textbooks
c. Determining retail price
d. Pricing used textbooks
e. Determining quantity on hand 
f. Recording textbook sales
g. Recording textbook returns

Write the abstract data type algorithm headers for the inventory system.
Each header should include name, parameters, purpose, preconditions,
postconditions, and return value types. You may add additional algorithms
as required by your analysis.

29. Write the pseudocode for an algorithm that converts a numeric score to a
letter grade. The grading scale is the typical absolute scale in which 90%
or more is an A, 80% to 89% is a B, 70% to 79% is a C, and 60% to 69% is
a D. Anything below 60% is an F.

30. Write the pseudocode for an algorithm that receives an integer and then
prints the number of digits in the integer and the sum of the digits. For
example, given 12,345 it would print that there are 5 digits with a sum of 15.

31. Write the pseudocode for a program that builds a frequency array for data
values in the range 1 to 20 and then prints their histogram. The data are to
be read from a file. The design for the program is shown in Figure 1-17.
 

FIGURE 1-17 Design for Frequency Histogram Program

Frequency
histogram

makemakegetData printData make
Histogram

make
Frequency
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Each of the subalgorithms is described below.

a. The getData algorithm reads the file and stores the data in an array.
b. The printData algorithm prints the data in the array.
c. The makeFrequency algorithm examines the data in the array, one ele-

ment at a time, and adds 1 to the corresponding element in a frequency
array based on the data value. 

d. The makeHistogram algorithm prints out a vertical histogram using
asterisks for each occurrence of an element. For example, if there were
five value 1s and eight value 2s in the data, it would print 

  1: *****
 2: ********

32. Rewrite Program 1-4 to create a list of nodes. Each node consists of two
fields. The first field is a pointer to a structure that contains a student id
(integer) and a grade-point average (float). The second field is a link. The
data are to be read from a text file. 

Then write a program to read a file of at least 10 students and test the
function you wrote. You will also need to use the generic compare code in
Program 1-6 in your program.
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Chapter 2
Recursion

In general, there are two approaches to writing repetitive algorithms. One
uses iteration; the other uses recursion. Recursion is a repetitive process in
which an algorithm calls itself. Note, however, that some older languages do
not support recursion.

In this chapter we study recursion. We begin by studying a classic recur-
sive case—factorial. Once we explain how recursion works, we develop some
principles for developing recursive algorithms and then use them to develop
another recursive case study, Fibonacci numbers. We conclude the theory of
recursion with a discussion of a classic recursive algorithm, the Towers of
Hanoi. In the final section, we develop C implementations for Fibonacci
numbers, prefix to postfix conversion, and the Towers of Hanoi.

2.1 Factorial—A Case Study
To begin with a simple example, let’s consider the calculation of factorial. The
factorial of a positive number is the product of the integral values from 1 to
the number. This definition is shown in Figure 2-1.

FIGURE 2-1 Iterative Factorial Algorithm Definition

Factorial (n) =  
1 if  n  = 0

n x (n – 1) x (n – 2) x … x 3 x 2 x 1 if  n  > 0
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Note that this definition is iterative. A repetitive algorithm is defined
iteratively whenever the definition involves only the algorithm parameter(s)
and not the algorithm itself. We can calculate the value of factorial(4) using
Figure 2-1, as follows:

Recursion Defined
A repetitive algorithm uses recursion whenever the algorithm appears within the
definition itself. For example, the factorial algorithm can be defined recur-
sively as shown in Figure 2-2.

FIGURE 2-2 Recursive Factorial Algorithm Definition

The decomposition of factorial(3) using Figure 2-2 is shown in Figure 2-3.
If you study Figure 2-3 carefully, you will note that the recursive solution for a
problem involves a two-way journey: first we decompose the problem from the
top to the bottom, then we solve it from the bottom to the top.

FIGURE 2-3 Factorial (3) Recursively 

Judging by this example, the recursive calculation appears to be much
longer and more difficult. So why would we want to use the recursive
method? Although the recursive calculation looks more difficult when using

factorial(4) = 4 × 3 × 2 × 1 = 24

n x (Factorial (n – 1) ) if n > 0

1 if n = 0
Factorial (n) = 

Factorial(3)  =  3 * Factorial (2)

Factorial(2)  =  2 * Factorial (1)

Factorial(1)  =  1 * Factorial (0) Factorial(1)  =   1   *   1   =   1

Factorial(2)  =   2   *   1   =   2

Factorial(3)  =   3   *   2   =   6

Factorial (0)  =  1
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paper and pencil, it is often a much easier and more elegant solution when
we use computers. Also, it offers a conceptual simplicity to the creator and
the reader.

Iterative Solution
Let’s write an algorithm to solve the factorial problem iteratively. This solu-
tion usually involves using a loop such as the one shown in Algorithm 2-1.

ALGORITHM 2-1 Iterative Factorial Algorithm

Recursive Solution
Now let’s write the same algorithm recursively. The recursive solution does
not need a loop; recursion is itself repetition. In the recursive version, we let
the factorial algorithm call itself, each time with a different set of parameters.
The algorithm for recursive factorial is shown in Algorithm 2-2.

ALGORITHM 2-2 Recursive Factorial

Recursion is a repetitive process in which an algorithm calls itself.

Algorithm iterativeFactorial (n)
Calculates the factorial of a number using a loop. 

Pre  n  is the number to be raised factorially
Post n! is returned

1 set i to 1
2 set factN to 1
3 loop (i <= n)

1 set factN to factN * i 
2 increment i

4 end loop
5 return factN 
end iterativeFactorial 

Algorithm recursiveFactorial (n)
Calculates factorial of a number using recursion. 

Pre    n  is the number being raised factorially
Post   n! is returned

1 if (n equals 0)
1 return 1 

2 else
1 return (n * recursiveFactorial (n - 1)) 

3 end if
end recursiveFactorial 
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Algorithm 2-2 Analysis If you compare the iterative and recursive versions of factorial, you should be immedi-
ately struck by how much simpler the code is in the recursive version. First, there is no
loop. The recursive version consists of a simple selection statement that returns either
the value 1 or the product of two values, one of which is a call to factorial itself.

Figure 2-4 traces the recursion and the parameters for each individual call.

FIGURE 2-4 Calling a Recursive Algorithm

2.2 Designing Recursive Algorithms
Now that we have seen how recursion works, let’s turn our attention to the
steps for designing a recursive algorithm. We first look at the basic design
methodology, then we discuss the limitations of recursion, and finally we
design and implement another recursive algorithm.

The Design Methodology
If we were to examine all hypothetically possible recursive algorithms, we
would see that they all have two elements: each call either solves one part of

Algorithm recursiveFactorial (n) 
1 if (n equals 0)

1 return 1
2 else

3 end if
end recursiveFactorial

Algorithm recursiveFactorial (n) 
1 if (n equals 0)

1 return 1
2 else

3 end if
end recursiveFactorial

Algorithm recursiveFactorial (n) 
1 if (n equals 0)

1 return 1
2 else

3 end if
end recursiveFactorial

Algorithm recursiveFactorial (n) 
1 if (n equals 0)

2 else

3 end if
end recursiveFactorial

1 return (n x recursiveFactorial (n - 1))

program factorial
 1 factN = recursiveFactorial(3)
 2 print  (factN)
end factorial

6

1

1

0

1

3

2

2

1 return (n x recursiveFactorial (n - 1))

1 return (n x recursiveFactorial (n - 1))

1 return (n x recursiveFactorial (n - 1))

1 return 1
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the problem or it reduces the size of the problem. In Algorithm 2-2
statement 1.1 solves a small piece of the problem—factorial(0) is 1. State-
ment 2.1, on the other hand, reduces the size of the problem by recursively
calling factorial with n - 1. Once the solution to factorial (n - 1) is known, state-
ment 2.1 provides a part of the solution to the general problem by returning a
value to the calling algorithm.

As we see in statement 2.1, the general part of the solution is the recur-
sive call: statement 2.1 calls itself to solve the problem. We also see this in
Figure 2-4. At each recursive call, the size of the problem is reduced, from
the factorial of 3, to 2, to 1, and finally to factorial 0. 

The statement that “solves” the problem is known as the base case. Every
recursive algorithm must have a base case. The rest of the algorithm is known
as the general case. In our factorial example, the base case is factorial (0); the
general case is n × factorial (n - 1). The general case contains the logic needed
to reduce the size of the problem.

In the factorial problem, once the base case has been reached, the
solution begins. We now know one part of the answer and can return that
part to the next, more general statement. Thus, in Algorithm 2-2, we know
that factorial(0) is 1, and we return that value. This allows us to solve the
next general case

We can now return the value of factorial(1) to the more general case,
factorial(2), which we know to be

As we solve each general case in turn, we are able to solve the next-higher
general case until we finally solve the most general case, the original problem.

Returning to the purpose of this section, we are now ready to state the
rules for designing a recursive algorithm:

1. First, determine the base case.

2. Then determine the general case.

3. Combine the base case and the general cases into an algorithm.

In combining the base and the general case into an algorithm, we must pay
careful attention to the logic. Each call must reduce the size of the problem
and move it toward the base case. The base case, when reached, must termi-
nate without a call to the recursive algorithm; that is, it must execute a return.

Every recursive call must either solve a part of the problem or reduce the size of the problem.

factorial(1) ➫ 1 × factorial(0) ➫ 1 × 1 ➫ 1

factorial(2) ➫ 2 × factorial(1) ➫ 2 × 1 ➫ 2



50 Section 2.2 Designing Recursive Algorithms

Limitations of Recursion
We have introduced only a brief explanation of recursion in this section.
Recursion works best when the algorithm uses a data structure that naturally
supports recursion. For example, in Chapter 6 we will study trees. Trees are a
naturally recursive structure and recursion works well with them. 

In other cases the algorithm is naturally suited to recursion. For example,
the binary search algorithm (see Chapter 13) lends itself to a natural recur-
sive algorithm, as does the Towers of Hanoi algorithm, which we discuss later
in this chapter. On the other hand, not all looping algorithms can or should
be implemented with recursion, as we discuss below.

Recursive solutions may involve extensive overhead (both time and
memory) because they use calls. Each call takes time to execute. A recursive
algorithm therefore generally runs more slowly than its nonrecursive
implementation.1

For reasons we will explain in Chapter 3, each time we make a call we
use up some of our memory allocation. If the recursion is deep—that is, if
there are many recursive calls—we may run out of memory. 

Because of the time and memory overhead, algorithms such as factorial
are better developed iteratively if large numbers are involved. As a general
rule, recursive algorithms should be used only when their efficiency is
logarithmic. 

Design Implementation—Reverse Keyboard Input
Having studied the design methodology for recursive algorithms and their
limitations, we are now ready to put the concepts into practice. Assume that
we are reading data from the keyboard and need to print the data in reverse.
The easiest way to print the list in reverse is to write a recursive algorithm. 

It should be obvious that to print the list in reverse, we must first read all
of the data. The base case, therefore, is that we have read the last piece of
data. Similarly, the general case is to read the next piece of data. The ques-
tion is, when do we print? If we print before we read all of the data, we print
the list in sequence. If we print the list after we read the last piece of data—
that is, if we print it as we back out of the recursion—we print it in reverse
sequence. The code is shown in Algorithm 2-3.

You should not use recursion if the answer to any of the following questions is no:
1. Is the algorithm or data structure naturally suited to recursion?
2. Is the recursive solution shorter and more understandable?
3. Does the recursive solution run within acceptable time and space limits?

1. Most of today’s compilers optimize code when possible. When the recursion occurs at the end of a
function (known as tail recursion), an optimized compiler turns the recursive code into a simple loop,
thus eliminating the function call inefficiency.
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ALGORITHM 2-3 Print Reverse

Algorithm 2-3 Analysis As you study Algorithm 2-3, remember that statement 5 cannot be executed until we
reach the end of the input. It is not executed immediately after statement 4 because
statement 4 is a recursive call. We get to statement 5 only after we return from
statement 1.1 or after we return from the end statement at the end of the algorithm.
Figure 2-5 traces the execution of Algorithm 2-3.  

This algorithm also demonstrates the use of local variables in recursion. Although
there is only one variable, data, in the pseudocode, when we implement the algo-
rithm in a recursive language, the computer creates a separate set of local variables
for each call. These variables are kept in memory until we return from the call that
created them, at which time they are recycled.

Now that we’ve designed the algorithm, we need to analyze it to determine
whether it is really a good solution; that is, is the recursive algorithm a good
candidate for recursion? To analyze this algorithm, we turn to the three
questions we developed in the preceeding  “Limitations of Recursion” section. 

1. Is the algorithm or data structure naturally suited to recursion? A list, such
as data read from the keyboard, is not a naturally recursive structure.
Furthermore, the algorithm is not naturally suited to recursion because it
is not a logarithmic algorithm.

2. Is the recursive solution shorter and more understandable? The answer to
this question is yes. 

3. Does the recursive solution run within acceptable time and space limits?
The number of iterations in the traversal of a list can become quite large
because the algorithm has a linear efficiency—that is, it is O(n).

We thus see that the answer to two of the three questions is no. There-
fore, although we can successfully write the algorithm recursively, we should
not. It is not a good candidate for recursion and is better implemented as an
iterative loop.

Algorithm printReverse (data)
Print keyboard data in reverse.

Pre  nothing
Post data printed in reverse

1 if (end of input)
1 return

2 end if
3 read data
4 printReverse (data)
Have reached end of input: print nodes
5 print data
6 return
end printReverse
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FIGURE 2-5 Print Keyboard Input in Reverse

2.3 Recursive Examples
In this section we discuss four recursive examples: greatest common divisor,
Fibonacci numbers, prefix to postfix conversion, and the Towers of Hanoi.
For each example, we start with a design and then implement it in C. 

Greatest Common Divisor
A common mathematics function is to determine the greatest common divisor (GCD)
for two numbers. For example, the greatest common divisor for 10 and 25 is 5. 

Recursive calls (reads)

Recursive returns (prints)

data

6

data

20

data

14

data

5

if (end of input)
    return
read data
...
return

if (end of input)
  return

printReverse (data)
print data

read data

return

if (end of input)
  return

printReverse (data)
print data

read data

return

if (end of input)
  return

printReverse (data)
print data

read data

return

if (end of input)
  return

printReverse (data)
print data

read data

return

printReverse (data)

print  5 

print  14 

print  20 

print  6 
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GCD Design
We use the Euclidean algorithm to determine the greatest common divisor
between two nonnegative integers. Given two integers, a and b, the greatest
common divisor is recursively found using the formula in Figure 2-6.

FIGURE 2-6 Greatest Common Divisor Recursive Definition

The pseudocode design for the Euclidean algorithm is shown in
Algorithm 2-4.

ALGORITHM 2-4 Euclidean Algorithm for Greatest Common Divisor

GCD C Implementation
Our implementation of the GCD algorithm uses a driver that asks the user
for two numbers. After editing the numbers, it calls a recursive implementa-
tion that returns the greatest common divisor.

PROGRAM 2-1 GCD Driver 

continued

Algorithm gcd (a, b)
Calculates greatest common divisor using the Euclidean algo-
rithm.

Pre  a and b are positive integers greater than 0
Post greatest common divisor returned

1 if (b equals 0)
1 return a

2 end if
3 if (a equals 0)

2 return b
4 end if
5 return gcd (b, a mod b)
end gcd

1
2
3
4
5
6

/* This program determines the greatest common divisor
of two numbers.
   Written by:
   Date:

*/
#include <stdio.h>

gcd (a, b) = 
gcd (b, a mod b) otherwise

a if b = 0
b if a = 0
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PROGRAM 2-1 GCD Driver (continued )

Fibonacci Numbers
Fibonacci numbers are named after Leonardo Fibonacci, an Italian mathematician
who lived in the early thirteenth century. In this series each number is the sum
of the previous two numbers. The first few numbers in the Fibonacci series are

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#include <ctype.h>

// Prototype Statements 
int gcd (int a, int b);

int main (void)
{
// Local Declarations 

int  gcdResult;

// Statements 
printf("Test GCD Algorithm\n");

gcdResult = gcd (10, 25);
printf("GCD of 10 & 25 is %d", gcdResult);
printf("\nEnd of Test\n");
return 0;

} // main 
/* ================= gcd =================

Calculates greatest common divisor using the  
Euclidean algorithm.
   Pre  a and b are positive integers greater than 0
   Post greatest common divisor returned

*/
int gcd (int a, int b)
{

// Statements 
if (b == 0)
   return a;
if (a == 0)
   return b;
return gcd (b, a % b);

} // gcd 

Results:
Test GCD Algorithm
GCD of 10 & 25 is 5
End of Test

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
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Design
To start a Fibonacci series, we need to know the first two numbers. As you
can see from the previous example, they are 0 and 1. Because we are discuss-
ing recursion, you should recognize these two numbers as the base cases.

We can generalize the definition of the Fibonacci series as shown in
Figure 2-7.

FIGURE 2-7 Fibonacci Numbers Recursive Definition

The generalization of Fibonacci(4) is shown in Figure 2-8. Figure 2-8(a) shows
the components of Fibonacci(4) using a general notation. Figure 2-8(b) shows the
components as they would be called to generate the numbers in the series.

FIGURE 2-8 Fibonacci Numbers

Fibonacci (n) = 

Fibonacci (n - 1) + Fibonacci (n - 2) otherwise

1 if n = 1
0 if n = 0

(a) Fib(n)

•
•   •

•       •

•
•   •

•       •

(b) Fib(4)

Fib (n–2) Fib (n–3) Fib (n–3) Fib (n–4)+ +
1 0

+Fib(1) Fib(0)+Fib(2) Fib(1)
1

+ Fib (n–4)

•
•   •

•       •

Fib (n–3)

•
•   •

•       •

+ Fib(0)
0

Fib(1)
1

Fibn

Fib (n–2)Fib (n–1) + + Fib(2)Fib(3)

Fib(4)
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Fibonacci C Implementation
In our Fibonacci program, we begin by asking the user how many numbers
are needed. We then use a for loop that calls the Fibonacci function the pre-
scribed number of times, printing the next number in the series in each loop. 

In the C implementation of a Fibonacci series (Program 2-2), it is inter-
esting to note that the bulk of the code in the algorithm is the mainline code
to read the number of numbers to be generated and to print the results.
There are actually only three statements in the recursive algorithm.

PROGRAM 2-2 Recursive Fibonacci Series

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

/* This program prints out a Fibonacci series.
   Written by:
   Date:

*/
#include <stdio.h>

// Prototype Statements 
long fib (long num);

int main (void)
{
// Local Declarations 

int seriesSize = 10;

// Statements 
printf("Print a Fibonacci series.\n");

for (int looper = 0; looper < seriesSize; looper++)
    {
     if (looper % 5)
        printf(", %8ld", fib(looper));
     else
        printf("\n%8ld", fib(looper));
    } // for
printf("\n");
return 0;

} // main 

/* ================= fib =================
Calculates the nth Fibonacci number 
   Pre  num identifies Fibonacci number 
   Post returns nth Fibonacci number 

*/
long fib (long num)
{
// Statements 

if (num == 0 || num == 1)
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PROGRAM 2-2 Recursive Fibonacci Series (continued)

Program 2-2 Analysis If you have difficulty following the code, refer to Figure 2-8 and trace the first four
Fibonacci numbers. The first 10 numbers are displayed at the end of the algorithm.
Unless you have a very fast computer, we recommend that you don’t try to calculate
more than 30 to 35 numbers.

How many calls does it take to determine Fibonacci(5)? The answer is 15. As you
can see from Table 2-1, the number of calls goes up quickly as we increase the size of
the Fibonacci number we are calculating.

TABLE 2-1 Fibonacci Calls

Table 2-1 leads us to the obvious conclusion that a recursive solution to calculate
Fibonacci numbers is not efficient for large numbers. 

Prefix to Postfix Conversion
An arithmetic expression can be represented in three different formats: infix,
postfix, and prefix. In an infix notation, the operator comes between the two
operands, the basic format of the algebraic notation we learned in grammar

38
39
40
41

   // Base Case 
   return num;
return (fib (num - 1) + fib (num - 2));

} // fib 

Results:
Print a Fibonacci series.

       0,        1,        1,        2,        3
       5,        8,       13,       21,       34

fib(n) Calls fib(n) Calls

  1

  2

  3

  4

  5

  6

  7

  8

  9

10

1

3

5

9

15

25

41

67

109

177

11

12

13

14

15

20

25

30

35

40

287

465

753

1219

1973

21,891

242,785

2,692,573

29,860,703

331,160,281
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school. In postfix notation,2 the operator comes after its two operands, and in
prefix notation it comes before the two operands. These formats are shown
below.

Although some high-level languages use the infix and postfix notations,
these expressions cannot be directly evaluated. Rather, they must be analyzed
to determine the order in which the expressions are to be evaluated. One
method to analyze them is to use recursion.

Design
In this section we use recursion to convert prefix expressions to the postfix
format.3 

Before looking at the algorithms, we review the basic concept. Given the
following prefix expression

we convert it by moving the operator (*) after the operands (A and B). The
postfix format of the expression is shown below.

To keep the algorithm as simple as possible, we assume that each oper-
and is only one character and that there are only four operators: add (+), sub-
tract (–), multiply (*), and divide (/).

 As stated, to convert a prefix expression we must find its operator and
move it after the two operands. By definition, the operator is always the first
character in the prefix string. Following the operator are its two operands. As

2. Postfix notation is also known as reverse Polish notation (RPN) in honor of its originator, the Polish
logician Jan Lukasiewicz.

Prefix:   + A B 
Infix:    A + B 
Postfix:  A B + 

In prefix notation the operator comes before the operands.

In infix notation the operator comes between the operands.

In postfix notation the operator comes after the operands.

3. We will return to this problem when we study stacks in Chapter 3.

*AB

AB*
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the expression grows in complexity, however, we can have multiple operators
and operands in an expression. Consider the following prefix expression,
which we will use for our discussions.

This expression consists of several binary expressions combined into one
complex expression. To parse it we begin at the left and work right until we
isolate one binary expression, in this case *AB. Once we have a simple prefix
expression, we can convert it to postfix and put it in the output. Figure 2-9
contains a decomposition of the complete process. The step that isolates *AB
is on the left.

FIGURE 2-9 Decomposition of  –+*ABC/EF 

The first step in designing a recursive algorithm is determining the base
case. The question, therefore, is “What is the base case?” Obviously, it is not
finding an operator. Not so obviously, the base case turns out to be finding an
operand—in our example, any of the alphabetic characters. 

Because the operand can contain another expression, the general case is
to find the operator and the left and right operands in the binary expression.
We then concatenate them into one postfix expression.

To find the left and right operands in the prefix expression, we need a
second algorithm that determines the length of a prefix expression. The
length of an expression is the length of the first subexpression plus the length
of the second expression plus 1 for the operator. We also use recursion for
this algorithm. Because each operand is one character long, our base case is
finding one operand. 

–+*ABC/EF

−+∗ABC/EF

/EF+∗ABC −

C∗AB +

A B∗

E F/
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We are now ready to design the algorithms. Algorithm 2-5 contains the
pseudocode to build the postfix expression.

ALGORITHM 2-5 Convert Prefix Expression to Postfix

Algorithm 2-5 Analysis The algorithm is rather straightforward. The most difficult part is finding the prefix
expression. We find it by determining its length and then storing it in a temporary
string. The notation in statement 5 indicates that the substring starting at the first loca-
tion and through the second location is to be assigned to temp. Once we have iden-
tified a prefix expression, we recursively call Algorithm 2-5 to convert it to postfix. 

Now let’s look at the algorithm that determines the length of the prefix
expression. As stated earlier, this algorithm needs to return the length of the
expression. Once again the base case is finding an operand. From the defi-
nition of the problem, we know that each operand is one character long.
The minimum length of a prefix expression is therefore three: one for the
operator and one for each operand. As we recursively decompose the
expression, we continue to add the size of its combined expressions until we
have the total length. 

The code is shown in Algorithm 2-6.

Algorithm preToPostFix (preFixIn, postFix)
Convert a preFix string to a postFix string.
   Pre  preFix is a valid preFixIn expression
        postFix is reference for converted expression
   Post postFix contains converted expression
1 if (length of preFixIn is 1)

   Base case: one character string is an operand
1 set postFix to preFixIn
2 return

2 end if
If not an operand, must be an operator

3 set operator to first character of preFixIn
Find first expression

4 set lengthOfExpr to findExprLen (preFixIn less first char)
5 set temp to substring(preFixIn[2, lengthOfExpr])
6 preToPostFix (temp, postFix1) 

Find second postFix expression
7 set temp to prefixIn[lengthOfExpr + 1, end of string]
8 preToPostFix (temp, postFix2)

Concatenate postfix expressions and operator
9 set postFix to postFix1 + postFix2 + operator
10 return
end preToPostFix
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ALGORITHM 2-6 Find Length of Prefix Expression

Algorithm 2-6 Analysis We examine the first character of a string containing a prefix expression or a substring.
If it is an operator, we recursively add the length of its two operands. The algorithm
returns either 1 (the base case) or the length of an expression in the prefix expression
(+*ABC in Figure 2-10).

Prefix to Postfix C Implementation
With the design complete, we are ready to write Program 2-3. The mainline is
simply a test driver that calls preToPostFix and prints the results. The two
functions parallel the pseudocode developed in the previous section. The
results are shown at the end.

PROGRAM 2-3 Prefix to Postfix

continued

Algorithm findExprLen (exprIn)
Recursively determine the length of a prefix expression.
   Pre  exprIn is a valid prefix expression
   Post length of expression returned
1 if (first character is operator)

General Case: First character is operator
Find length of first prefix expression
1 set len1 to findExprLen (exprIn + 1)
2 set len2 to findExprLen (exprIn + 1 + len2)

2 else
Base case--first char is operand
1 set len1 and len2 to 0

3 end if
4 return len1 + len2 + 1 
end findExprLen

1
2
3
4
5
6
7
8
9
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11
12
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14
15

/* Convert prefix to postfix expression.
   Written by:
   Date:

*/
#include <stdio.h>
#include <string.h>

#define OPERATORS "+-*/"

// Prototype Declarations 
void preToPostFix  (char* preFixIn, char* exprOut);
int  findExprLen   (char* exprIn);

int main (void)
{
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PROGRAM 2-3 Prefix to Postfix (continued)

continued

16
17
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19
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28
29
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31
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34
35
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37
38
39
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41
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44
45
46
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49
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52
53
54
55
56
57
58
59
60
61
62

// Local Definitions 
char  preFixExpr[256]  = "-+*ABC/EF";
char  postFixExpr[256] = "";

// Statements 
printf("Begin prefix to postfix conversion\n\n");

preToPostFix (preFixExpr, postFixExpr);
printf("Prefix expr:  %-s\n", preFixExpr);
printf("Postfix expr: %-s\n", postFixExpr);

printf("\nEnd prefix to postfix conversion\n");
return 0;

} // main 

/* =================== preToPostFix ===================
Convert prefix expression to postfix format.
   Pre  preFixIn is string prefix expression
        expression can contain no errors/spaces
        postFix is string variable for postfix
   Post expression has been converted

*/
void preToPostFix (char* preFixIn, char* postFix)
{
// Local Definitions 

char  operator [2];
char  postFix1[256];
char  postFix2[256];
char  temp    [256];
int   lenPreFix;

// Statements 
if (strlen(preFixIn) == 1)
   {
    *postFix       = *preFixIn;
    *(postFix + 1) = '\0';
    return;
   } // if only operand 
   
*operator       = *preFixIn;
*(operator + 1) = '\0';

// Find first expression 
lenPreFix = findExprLen (preFixIn + 1);
strncpy (temp, preFixIn + 1, lenPreFix);
*(temp + lenPreFix) = '\0';
preToPostFix (temp, postFix1);
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PROGRAM 2-3 Prefix to Postfix (continued)

63
64
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67
68
69
70
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72
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75
76
77
78
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100
101

// Find second expression 
strcpy (temp, preFixIn + 1 + lenPreFix);
preToPostFix (temp, postFix2);

// Concatenate to postFix 
strcpy (postFix, postFix1);
strcat (postFix, postFix2);
strcat (postFix, operator);

return;
} // preToPostFix 

/* ==================== findExprLen ====================
Determine size of first substring in an expression.
   Pre  exprIn contains prefix expression 
   Post size of expression is returned 

*/
int findExprLen (char* exprIn)
{
// Local Definitions 

int  len1;
int  len2;

// Statements 
if (strcspn (exprIn, OPERATORS) == 0)
      // General Case: First character is operator
      // Find length of first expression 
    {
      len1 = findExprLen(exprIn + 1);

      // Find length of second expression 
      len2 = findExprLen(exprIn + 1 + len1);
    } // if
else
      // Base case--first char is operand 
      len1 = len2 = 0;
return len1 + len2 + 1;

} // findExprLen 

Results:
Begin prefix to postfix conversion

Prefix expr:  -+*ABC/EF
Postfix expr: AB*C+EF/-

End prefix to postfix conversion
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Program 2-3 Analysis The program design is quite complex and requires careful study. The recursive call
sequences are shown in Figure 2-10. It determines the first expression on the left
(+*ABC) in Figure 2-9. Each call shows the part of the expression that is passed in the
parameter list. Note that the minus operator in the original infix expression is removed
before the call. 

 

FIGURE 2-10 Recursive Call for Find Expression Length

Because the first character is an operator (+), we call recursively after stripping off
the plus operator, leaving *ABC/EF. Once again the first character is an operator (*),
so we call recursively again, this time with ABC/EF. Because the first character is now
an operand (A), we exit the function, returning 1. We are now at the second recursive
call (statement 95). We again call recursively, this time with the expression BC/EF,
which returns with a length of 1. 

We now return from the call having parsed the expression *ABC/EF. The return
value is 3, representing 1 for the first operand (A) and 1 for the second operand (B)
and 1 for the operator (*). 

The second recursive call in the decomposition of +*ABC/EF passes the expres-
sion after *AB, which is C/EF. Because the first character is an operand, which is a
base case, the function terminates and returns 1. This completes the isolation of the first
expression, +*ABC, by returning its length, 5. As shown in Figure 2-9, we are not
done. The decomposition of the expression continues until the complete prefix expres-
sion has been converted.

lenPreFix = findExprLen (preFixIn + 1);

preToPostFix (-+*ABC/EF)

findExprLen  (+*ABC/EF)

len2 = findExprLen(exprIn + 1 + len1);

return len1 + len2 + 1; 

len1 = findExprLen(exprIn + 1);

len2 = ...

findExprLen  (*ABC/EF)

return ...

len1 = ... findExprLen (ABC/EF)

len2 = ...
return ...

len1 = ...
1

3

5

1

findExprLen (BC/EF)

len2 = ...
return ...

len1 = ...
1

len2 = ...

findExprLen  (C/EF)

return ...

len1 = ...

(+*ABC)
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The Towers of Hanoi
The Towers of Hanoi is a classic recursion problem that is relatively easy to
follow, is efficient, and uses no complex data structures.

According to the legend, the monks in a remote mountain monastery
knew how to predict when the world would end. They had a set of three dia-
mond needles. Stacked on the first diamond needle were 64 gold disks of
decreasing size. The monks moved one disk to another needle each hour, sub-
ject to the following rules:

1. Only one disk could be moved at a time. A larger disk must never be
stacked above a smaller one.

2. One and only one auxiliary needle could be used for the intermediate stor-
age of disks.

The legend said that when all 64 disks had been transferred to the desti-
nation needle, the stars would be extinguished and the world would end.
Today we know that we need to have 264 – 1 moves to move all of the disks.
Figure 2-11 shows the Towers of Hanoi with only three disks. 

FIGURE 2-11 Towers of Hanoi—Start Position

This problem is interesting for two reasons. First, the recursive solution is
much easier to code than the iterative solution would be, as is often the case
with good recursive solutions. Second, its solution pattern is different from
the simple examples we have been discussing. As you study the towers solu-
tion, note that after each base case, we return to a decomposition of the gen-
eral case for several steps. In other words, the problem is divided into several
subproblems, each of which terminates with the base case, moving one disk. 

Recursive Towers of Hanoi Design
To solve this problem, we must study the moves to see if we can find a pat-
tern. We will use only three disks because we do not want the world to end.
First, imagine that we have only one disk to move. This is a very simple case,
as shown on the following page.

          Auxiliary DestinationSource
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Now imagine that we have to move two disks. Figure 2-12 traces the
steps for two disks.

FIGURE 2-12 Towers Solution for Two Disks 

First we move the top disk to the auxiliary needle. Then we move the
second disk to the destination needle. Finally, we move the first disk to the
top of the second disk on the destination needle. This gives us the second
case, as shown below. 

We are now ready to study the case for three disks. Its solution is shown
in Figure 2-13. The first three steps move the top two disks from the source
to the auxiliary needle. (To see how to do this, refer to Case 2.) In step 4 we
move the bottom disk to the destination needle. We now have one disk in
place. This is an example of Case 1. We then need three more steps to move
the two disks on the auxiliary needle to the destination needle.

These steps are summarized in Case 3 below.

Case 1: Move one disk from source to destination needle.

           

Case 2: 1. Move one disk to auxiliary needle. 

 2. Move one disk to destination needle. 

 3. Move one disk from auxiliary to destination needle.

Case 3: 1. Move two disks from source to auxiliary needle.

2. Move one disk from source to destination needle.

3. Move two disks from auxiliary to destination needle.

Step 1

Step 3Step 2

Start
A B CA B C

A B C A B C
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FIGURE 2-13 Towers Solution for Three Disks

We are now ready to generalize the problem.

1. Move n –1 disks from source to auxiliary. General case

2. Move one disk from source to destination. Base case

3. Move n –1 disks from auxiliary to destination. General case

Towers (3, A, C, B)

Step 4 Towers (2, B, C, A)

Step 6

Step 7

Towers
(1, A, C, B)

Step 5

Towers
(1, B, A, C)

Towers (2, A, B, C)

Step 2

Step 1

Towers
(1, A, C, B)

Step 3

Towers
(1, C, B, A)

C A

A

Step  3
B

Step 7
B

C

C

A

A

Step 2 
B

Step  6
B

C

C

A

A

A

A

Start
B

Step 1 
B

Step  5
B

Step 4 
B

C

C

C
Move one disk from source to destination.
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Our solution requires an algorithm with four parameters: the number of
disks to be moved, the source needle, the destination needle, and the auxil-
iary needle. Using pseudocode the three moves in the generalization shown
above are then 

Study the second call above carefully. After we complete the move of the
first disk, the remaining disks are on the auxiliary needle. We need to move
them from the auxiliary needle to the destination needle. In this case the
original source needle becomes the auxiliary needle. (Remember that the
positions of the parameters in the called algorithm are source, destination,
and auxiliary. The calling algorithm must remember which of the three nee-
dles is the source and which is the destination for each call.)

We can now put these three calls together. In place of physical moves, we
use print statements to show the moves that need to be made. The complete
pseudocode is shown in Algorithm 2-7.

ALGORITHM 2-7 Towers of Hanoi

Algorithm 2-7 Analysis Each time we enter the algorithm, we print the current parameters; this helps us keep
track of which tower is currently the source, which is the destination, and which is the
auxiliary. Because the towers are constantly changing their role among the three, print-
ing the call parameters helps us keep them straight.

Two statements print the move instructions. The first is at statement 2.1. It prints the
instructions when there is only one disk left on a tower. The second move instruction is
printed at statement 3.2. It is printed whenever we return from the recursion and pro-
vides the instructions to move a disk when there are more than one on a tower.

It is important to study the parameters in the two calls. Note how they are moving
the towers’ roles from destination to auxiliary in statement 3.1 and from auxiliary to
source in statement 3.3.

1. Call Towers (n - 1, source, auxiliary, destination)
2. Move one disk from source to destination
3. Call Towers (n - 1, auxiliary, destination, source)

Algorithm towers (numDisks, source, dest, auxiliary)
Recursively move disks from source to destination.

Pre  numDisks is number of disks to be moved
     source, destination, and auxiliary towers given
Post steps for moves printed 

1 print("Towers: ", numDisks, source, dest, auxiliary) 
2 if (numDisks is 1)

1 print ("Move from ", source, " to ", dest)
3 else

1 towers (numDisks - 1, source, auxiliary, dest, step)
2 print ("Move from " source " to " dest)
3 towers (numDisks - 1, auxiliary, dest, source, step) 

4 end if
end towers
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The output from the algorithm is shown in Figure 2-14. You will undoubtedly need
to trace the program with the output to follow the recursion.

FIGURE 2-14 Tracing Algorithm 2-7, Towers of Hanoi

Towers of Hanoi C Implementation
Once again we see the elegance of recursion. With only 56 lines of code; we
solve a relatively difficult problem. Furthermore, the recursive portion of the
algorithm that does all of the work is only seven statements long—including
three print statements! As is often the case with recursive algorithms, the
analysis and design of the algorithm takes longer than the time to write it.
The code is shown in Program 2-4. The output is shown in Figure 2-14.

PROGRAM 2-4 Towers of Hanoi

continued

            

1
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/* Test Towers of Hanoi 
   Written by:
   Date:

*/
#include <stdio.h>

// Prototype Statements 
void towers (int  n,     char source, 
             char dest,  char auxiliary);

int main (void)
{
// Local Declarations 

int numDisks;
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PROGRAM 2-4 Towers of Hanoi (continued)

16
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// Statements 
printf("Please enter number of disks: ");
scanf ("%d", &numDisks);

printf("Start Towers of Hanoi.\n\n");

towers (numDisks, 'A', 'C', 'B');

printf("\nI Hope you didn't select 64 "
         "and end the world!\n");
return 0;

} // main 

/* ===================== towers =====================
Move one disk from source to destination through
the use of recursion.
   Pre  The tower consists of n disks
        Source, destination, & auxiliary towers 

    Post Steps for moves printed 
*/
void towers (int   n,    char  source,
             char  dest, char  auxiliary)
{
// Local Declarations 

static int step = 0;

// Statements 
printf("Towers (%d, %c, %c, %c)\n",
                n, source, dest, auxiliary);
if (n == 1)
   printf("\t\t\tStep %3d: Move from %c to %c\n", 
          ++step, source, dest);
else
   {
    towers (n - 1, source, auxiliary, dest);
    printf("\t\t\tStep %3d: Move from %c to %c\n", 
           ++step, source, dest);
    towers (n - 1, auxiliary, dest, source);
   } // if … else 
return;

} // towers 
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2.4 Key Terms

2.5 Summary
❏ There are two approaches to writing repetitive algorithms: iteration and

recursion.

❏ Recursion is a repetitive process in which an algorithm calls itself.

❏ A repetitive algorithm uses recursion whenever the algorithm appears
within the definition itself.

❏ When a program calls a subroutine, the current module suspends process-
ing and the called subroutine takes over the control of the program. When
the subroutine completes its processing and returns to the module that
called it, the module wakes up and continues its processing.

❏ In a recursive algorithm, each call either solves part of the problem or
reduces the size of the problem.

❏ The statement that solves the problem is known as the base case; every
recursive algorithm must have a base case.

❏ The rest of the recursive algorithm is known as the general case.

❏ The general rule for designing a recursive algorithm is as follows:

1. Determine the base case.

2. Determine the general case.

3. Combine the base case and the general case into an algorithm.

❏ You should not use recursion if the answer to any of the following ques-
tions is no:

1. Is the algorithm or data structure naturally suited to recursion?

2. Is the recursive solution shorter and more understandable?

3. Does the recursive solution run within acceptable time and space limits?

base case
factorial
Fibonacci numbers
general case
greatest common divisor (GCD)

infix
postfix
prefix
recursion
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2.6 Practice Sets

Exercises
1. Consider the following algorithm:

What would be returned if fun1 is called as 
a. fun1 (4)?
b. fun1 (10)?
c. fun1 (12)?

2. Consider the following algorithm:

What would be returned if fun2 is called as 
a. fun2 (2, 7)?
b. fun2 (5, 3)?
c. fun2 (15, 3)?

3. Consider the following algorithm:

algorithm fun1 (x)
1 if (x < 5) 

1 return (3 * x)
2 else 

1 return (2 * fun1 (x - 5) + 7)
3 end if
end fun1

algorithm fun2 (x, y)
1 if (x < y) 

1 return -3 
2 else 

1 return (fun2 (x - y, y + 3) + y)
3 end if
end fun2

algorithm fun3 (x, y)
1 if (x > y) 

1 return -1
2 elseif (x equal y)

1 return 1
3 else 

1 return (x * fun3 (x + 1, y))
4 end if
end fun3
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What would be returned if fun3 is called as
a. fun3 (10,4)?
b. fun3 (4,3)?
c. fun3 (4,7)?
d. fun3 (0,0)?

4. One of the methods to calculate the square root of a number is Newton’s
method. The formula for Newton’s method is shown in Figure 2-15. Write
the pseudocode for a recursive algorithm to compute a square root using
Newton’s method. Verify your algorithm by using it to manually calculate
the following test cases: squareRoot (5, 2, 0.01) and squareRoot (4, 2,
0.01). Note: in the formula, tol is an abbreviation for tolerance.

FIGURE 2-15 Newton’s Method for Exercise 4

5. The combination of n objects, such as balls in a basket, taken k at a time
can be calculated recursively using the formula shown in Figure 2-16. This
is a useful formula. For example, several state lotteries require players to
choose six numbers out of a series of possible numbers. This formula can
be used to calculate the number of possible combinations, k, of n objects.
For example, for 49 numbers, there are C(49, 6), or 13,983,816, differ-
ent combinations of six numbers. Write a recursive algorithm to calculate
the combination of n objects taken k at a time.

FIGURE 2-16 Selection Algorithm for Exercise 5

6. Ackerman’s number, used in mathematical logic, can be calculated using
the formula shown in Figure 2-17. Write a recursive algorithm that calcu-
lates Ackerman’s number. Verify your algorithm by using it to manually cal-
culate the following test cases: Ackerman(2, 3), Ackerman(2, 5),
Ackerman(0, 3), and Ackerman(3, 0). 

squareRoot (num, ans, tol) = 

ans if | ans2 – num | ≤ tol  

squareRoot(num, (ans2 + num)/(2 × ans), tol) 

 

 otherwise

C(n, k) = C(n – 1, k) + C(n – 1, k – 1)

1 if k = 0 or n = k

if n > k > 0
C(n, k) =
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FIGURE 2-17 Ackerman Formula for Problem 6 

Problems
7. Write a recursive algorithm that calculates and returns the length of a list.

8. Write a recursive algorithm that converts a string of numerals to an inte-
ger. For example, “43567” will be converted to 43567.

9. Write a recursive algorithm to add the first n elements of the series
1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/n

10. Write a recursive algorithm to determine whether a string is a palindrome.
A string is a palindrome if it can be read forward and backward with the
same meaning. Capitalization and spacing are ignored. For example, anna
and go dog are palindromes. Test your algorithm with the following two
palindromes and at least one case that is not a palindrome.

Madam, I’m Adam

Able was I ere I saw Elba

11. Write a recursive algorithm to check whether a specified character is in 
a string.

12. Write a recursive algorithm to count all occurrences of a specified charac-
ter in a string.

13. Write a recursive algorithm that removes all occurrences of a specified
character from a string.

14. Write a recursive algorithm that finds all occurrences of a substring in
a string.

15. Write a recursive algorithm that changes an integer to a binary number.

16. Write a recursive C function to calculate the square root of a number
using Newton’s method. (See Exercise 4.) Test your function by printing
the square root of 125, 763, and 997.

17. Write a recursive algorithm that reads a string of characters from the key-
board and prints them reversed.

18. The combination of n objects, such as balls in a basket, taken k at a time
can be calculated recursively using the combination formula. (See
Exercise 5.) Write a C function to calculate the number of combinations
present in a number. Test your function by computing and printing
C(10, 3).

if m = 0n  + 1
if n  = 0 and m > 0Ackerman (m – 1, 1)

Ackerman (m –1, Ackerman (m, n  – 1))  otherwise
Ackerman (m,  n ) =
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19. Ackerman’s number, used in mathematical logic, can be calculated using
the formula shown in Exercise 6. Write a recursive C function that calcu-
lates Ackerman’s number. Verify your algorithm by using it to calculate the
following test cases: Ackerman(5,2), Ackerman(2,5), Ackerman(0,3),
and Ackerman(3,0).

20. Write the C function for the recursive algorithm that prints the elements
of a list in reverse order. (See Algorithm 2-3, “Print Reverse.”)

Projects
21. If a recursion call is the last executable statement in the algorithm, called

tail recursion, it can easily be removed using iteration. Tail recursion is so
named because the return point of each call is at the end of the algorithm.
Thus, there are no executable statements to be executed after each call. To
change a tail recursion to an iteration, we use the following steps:

a. Use a variable to replace the procedure call.
b. Use a loop with the limit condition as the base case (or its

complement).
c. Enclose all executable statements inside the loop.
d. Change the recursive call to an appropriate assignment statement.
e. Use appropriate statements to reassign values to parameters.
f. Return the value of the variable defined in step a.

Write the iterative version of the recursion factorial algorithm
(Algorithm 2-2) and test it by printing the value of factorial(5) and
factorial(20).

22. Write the iterative version of the Fibonacci series algorithm using the
hints given in Project 21. Note that step c in Project 21 will be different
because factorial uses two recursive calls in the last statement.
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Part II

Linear Lists
A linear list is a list in which each element has a unique successor. The sequen-
tial property of a linear list, as shown in Figure II-1, is basic to its definition
and use.

FIGURE II-1 Linear List

Linear lists can be divided into two categories: restricted lists and general
lists. In a restricted list, addition and deletion of data are restricted to the ends of
the list. We describe two restricted list structures: the last in–first out (LIFO)
list, commonly called a stack, and the first in–first out (FIFO) list, commonly
called a queue. We discuss stacks in Chapter 3 and queues in Chapter 4.

In a linear list, each element has a unique successor. 

Element  1 Element  2 Element  3 Element  N
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In a general list, data can be inserted or deleted anywhere in the list: at the
beginning, in the middle, or at the end. We discuss general lists in Chapter 5.
Figure II-2 shows the linear list categories as represented in this book.

FIGURE II-2 Linear List Categories

Chapters Covered
This part includes three chapters: 

Chapter 3: Stacks
In this chapter, we discuss the stack, a restricted linear list in which data can
be inserted and deleted only at one end.

Chapter 4: Queues
In this chapter, we discuss the queue, a restricted linear list in which data
can be inserted only at one end and deleted only at the other.

Chapter 5: General Linear Lists
In this chapter, we discuss general linear lists in which data can be inserted
and deleted anywhere: beginning, middle, or end. 

Linear
list

General 
Chapter 5

Restricted

Queue
Chapter 4

Stack
Chapter 3
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Chapter 3
Stacks

A stack is a linear list in which all additions and deletions are restricted1 to one
end, called the top. If you insert a data series into a stack and then remove it,
the order of the data is reversed. Data input as {5, 10, 15, 20} is removed as
{20, 15, 10, 5}. This reversing attribute is why stacks are known as the last in–
first out (LIFO) data structure. 

We use many different types of stacks in our daily lives. We often talk of a
stack of coins or a stack of dishes. Any situation in which you can only add or
remove an object at the top is a stack. If you want to remove any object other
than the one at the top, you must first remove all objects above it. A graphic
representation of a stack is shown in Figure 3-1.

FIGURE 3-1 Stack

1. The stack is one of three data structures known collectively as restrictive data structures because the
operations are restricted to the ends of the structure. The other two are the queue, which we study in
Chapter 4, and the deque or double-ended queue. The deque, which is not covered in this text, allows
insertions and deletions at both ends.

Top

Computer stackStack of booksStack of coins

Top Top
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Although nothing prevents us from designing a data structure that allows
us to perform other operations, such as moving the item at the top of the
stack to the bottom, the result would not be a stack.

3.1 Basic Stack Operations
The three basic stack operations are push, pop, and stack top. Push is used to
insert data into the stack. Pop removes data from a stack and returns the data
to the calling module. Stack top returns the data at the top of the stack with-
out deleting the data from the stack.

Push
Push adds an item at the top of the stack. After the push, the new item
becomes the top. The only potential problem with this simple operation is
that we must ensure that there is room for the new item. If there is not
enough room, the stack is in an overflow state and the item cannot be added.
Figure 3-2 shows the push stack operation.

FIGURE 3-2 Push Stack Operation

Pop
When we pop a stack, we remove the item at the top of the stack and return it to
the user. Because we have removed the top item, the next older item in the
stack becomes the top. When the last item in the stack is deleted, the stack
must be set to its empty state. If pop is called when the stack is empty, it is in
an underflow state. The pop stack operation is shown in Figure 3-3.

A stack is a last in–first out (LIFO) data structure in which all insertions and deletions are restricted to
one end, called the top.
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FIGURE 3-3 Pop Stack Operation

Stack Top
The third stack operation is stack top. Stack top copies the item at the top of the
stack; that is, it returns the data in the top element to the user but does not
delete it. You might think of this operation as reading the stack top. Stack top
can also result in underflow if the stack is empty. The stack top operation is
shown in Figure 3-4.

FIGURE 3-4 Stack Top Operation

Figure 3-5 traces these three operations in an example. We start with an
empty stack and push green and blue into the stack. At this point the stack con-
tains two entries. We then pop blue from the top of the stack, leaving green as
the only entry. After pushing red, the stack again contains two entries. At this
point we retrieve the top entry, red, using stack top. Note that stack top does not
remove red from the stack; it is still the top element. We then pop red, leaving
green as the only entry. When green is popped, the stack is again empty. Note
also how this example demonstrates the last in–first out operation of a stack.
Although green was pushed first, it is the last to be popped.

The three basic stack operations are push, pop, and stack top.

Top

Stack

Data

Top

Stack

Pop

Operation

Top

Stack

Data

Top

Stack

Stack top

Operation



82 Section 3.1 Basic Stack Operations

FIGURE 3-5 Stack Example
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3.2 Stack Linked List Implementation
Several data structures can be used to implement a stack. In this section we
implement the stack as a linked list. We introduced the concept of a linked
list in Chapter 1, “Linked List Implementations.”

Data Structure
To implement the linked list stack, we need two different structures, a head
and a data node. The head structure contains metadata—that is, data about
data—and a pointer to the top of the stack. The data structure contains data
and a link pointer to the next node in the stack. The conceptual and physical
implementations of the stack are shown in Figure 3-6.

FIGURE 3-6 Conceptual and Physical Stack Implementations

Stack Head
Generally, the head for a stack requires only two attributes: a top pointer and a
count of the number of elements in the stack. These two elements are placed
in a structure. Other stack attributes can be placed here also. For example, it
is possible to record the time the stack was created and the total number of
items that have ever been placed in the stack. These two metadata items
allow the user to determine the average number of items processed through
the stack in a given period. Of course, we would do this only if such a statistic
were required for some reason. A basic head structure is shown in Figure 3-7.

Stack Data Node
The rest of the data structure is a typical linked list data node. Although the
application determines the data that are stored in the stack, the stack data
node looks like any linked list node. In addition to the data, it contains a
link pointer to other data nodes, making it a self-referential data structure. In a self-
referential structure, each instance of the structure contains a pointer to
another instance of the same structure. The stack data node is also shown
in Figure 3-7.
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FIGURE 3-7 Stack Data Structure

Stack Algorithms
The eight stack operations defined in this section should be sufficient to solve
any basic stack problem. If an application requires additional stack opera-
tions, they can be easily added. For each operation we give its name, a brief
description, and then develop its algorithm.

Although the implementation of a stack depends somewhat on the imple-
mentation language, it is usually implemented with a stack head structure in
C. We use the design shown in Figure 3-8, which demonstrates the four most
common stack operations: create stack, push stack, pop stack, and destroy
stack. Operations such as stacktop are not shown in the figure because they
do not change the stack structure.

Create Stack
Create stack allocates memory for the stack structure and initializes its metadata.
The pseudocode is shown in Algorithm 3-1.

ALGORITHM 3-1 Create Stack

Algorithm createStack
Creates and initializes metadata structure.

Pre    Nothing 
Post   Structure created and initialized 
Return stack head

1 allocate memory for stack head 
2 set count to 0
3 set top to null
4 return stack head 
end createStack

linkdata

Stack node structure

Stack head structure

topcount

stack
    count
    top
end stack

node
    data
    link
end node
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FIGURE 3-8 Stack Operations

Push Stack
Push stack inserts an element into the stack. The first thing we need to do when
we push data into a stack is find memory for the node. We must therefore
allocate a node from dynamic memory. Once the memory is allocated, we
simply assign the data to the stack node and then set the link pointer to point
to the node currently indicated as the stack top. We also need to update the
stack top pointer and add 1 to the stack count field. Figure 3-9 traces a push
stack operation in which a new pointer (pNew) is used to identify the data to
be inserted into the stack.

To develop the insertion algorithm using a linked list, we need to analyze
three different stack conditions: (1) insertion into an empty stack, (2) insertion
into a stack with data, and (3) insertion into a stack when the available mem-
ory is exhausted. The first two of these situations are shown in Figure 3-8. The
third is an error condition.
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FIGURE 3-9 Push Stack Example

When we insert into a stack that contains data, the new node’s link
pointer is set to point to the node currently at the top, and the stack’s top
pointer is set to point to the new node. When we insert into an empty stack,
the new node’s link pointer is set to null and the stack’s top pointer is set to
point to the new node. However, because the stack’s top pointer is null, we
can use it to set the new node’s link pointer to null. Thus the logic for insert-
ing into a stack with data and the logic for inserting into an empty stack are
identical.

ALGORITHM 3-2 Push Stack Design

Pop Stack
Pop stack sends the data in the node at the top of the stack back to the calling
algorithm. It then adjusts the pointers to logically delete the node. After the
node has been logically deleted, it is physically deleted by recycling the mem-
ory, that is, returning it to dynamic memory. After the count is adjusted by
subtracting 1, the algorithm returns the status to the caller: if the pop was
successful, it returns true; if the stack is empty when pop is called, it returns
false. The operations for pop stack are traced in Figure 3-10.

Algorithm pushStack (stack, data) 
Insert (push) one item into the stack.

Pre  stack passed by reference
     data contain data to be pushed into stack
Post data have been pushed in stack

1 allocate new node
2 store data in new node
3 make current top node the second node
4 make new node the top
5 increment stack count
end pushStack
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FIGURE 3-10 Pop Stack Example

The pop stack code is shown in Algorithm 3-3.

ALGORITHM 3-3 Pop Stack

Algorithm 3-3 Analysis It is interesting to follow the logic when the last node is being deleted. In this case, the
result is an empty stack. No special logic is required; however, the empty stack is cre-
ated automatically because the last node has a null link pointer, which when moved to
top indicates that the stack is empty. A count of zero, which automatically occurs when
we decrement the count, is also an indication of an empty stack.

Stack Top
The stack top algorithm (Algorithm 3-4) sends the data at the top of the
stack back to the calling module without deleting the top node. This is

Algorithm popStack (stack, dataOut)
This algorithm pops the item on the top of the stack and 
returns it to the user.

Pre  ƒƒstack passed by reference
     ƒƒdataOut is reference variable to receive data
PostƒƒƒData have been returned to calling algorithm
Return true if successful; false if underflow

1 if (stack empty) 
1 set success to false

2 else
1 set dataOut to data in top node
2 make second node the top node
3 decrement stack count
4 set success to true

3 end if
4 return success
end popStack
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included in case the application needs to know what will be deleted with the
next pop stack.

ALGORITHM 3-4 Stack Top Pseudocode

Algorithm 3-4 Analysis The logic for the stack top is virtually identical to that for the pop stack except for the
delete logic. As with the pop, there is only one potential problem with the algorithm:
the stack may be empty. If the algorithm is successful, it returns true; if the stack is
empty, it returns false.

Empty Stack
Empty stack is provided to implement the structured programming concept of
data hiding. If the entire program has access to the stack head structure, it is
not needed. However, if the stack is implemented as a separately compiled
program to be linked with other programs, the calling program may not have
access to the stack head node. In these cases it is necessary to provide a way
to determine whether the stack is empty. The pseudocode for empty stack is
shown in Algorithm 3-5.

ALGORITHM 3-5 Empty Stack

Algorithm stackTop  (stack, dataOut)
This algorithm retrieves the data from the top of the stack 
without changing the stack.

Pre    stack is metadata structure to a valid stack 
       dataOut is reference variable to receive data
Post   Data have been returned to calling algorithm
Return true if data returned, false if underflow

1 if (stack empty) 
1 set success to false

2 else
1 set dataOut to data in top node 
2 set success to true 

3 end if
4 return success
end stackTop

Algorithm emptyStack (stack)
Determines if stack is empty and returns a Boolean.

Pre    stack is metadata structure to a valid stack 
Post   returns stack status
Return true if stack empty, false if stack contains data 

1 if (stack count is 0)
1 return true

2 else
1 return false

3 end if
end emptyStack
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Full Stack
Full stack is another structured programming implementation of data hiding.
Depending on the language, it may also be one of the most difficult algo-
rithms to implement. ANSI C, for instance, provides no direct way to imple-
ment it. The pseudocode for full stack is shown in Algorithm 3-6.

ALGORITHM 3-6 Full Stack

Stack Count
Stack count returns the number of elements currently in the stack. It is another
implementation of the data-hiding principle of structured programming. The
pseudocode is shown in Algorithm 3-7.

ALGORITHM 3-7 Stack Count

Destroy Stack
Destroy stack deletes all data in a stack. Figure 3-8 graphically shows the results
of destroy stack, and Algorithm 3-8 contains the pseudocode.

ALGORITHM 3-8 Destroy Stack

continued

Algorithm fullStack  (stack)
Determines if stack is full and returns a Boolean.

Pre    stack is metadata structure to a valid stack 
Post   returns stack status
Return true if stack full, false if memory available 

1 if (memory not available)
1 return true

2 else
1 return false

3 end if
end fullStack

Algorithm stackCount (stack)
Returns the number of elements currently in stack.

Pre    stack is metadata structure to a valid stack 
Post   returns stack count
Return integer count of number of elements in stack

1 return (stack count)
end stackCount

Algorithm destroyStack (stack)
This algorithm releases all nodes back to the dynamic memory.

Pre    stack passed by reference
Post   stack empty and all nodes deleted

1 if (stack not empty)
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ALGORITHM 3-8 Destroy Stack (continued)

Algorithm 3-8 Analysis It is only necessary to destroy a stack when you no longer need it and the program is
not complete. If the program is complete, the stack is automatically cleared when the
program terminates. 

3.3 C Language Implementations 
As previously stated, there are two approaches to implementing stacks. We
can write unique C programs, which are easy to write but not reusable, or we
can create an abstract data type (ADT). In this section we develop simple, but
not very reusable, programs. In the next section, we develop the stack ADT.

To demonstrate the push and pop stack algorithms, we write a program
that inserts data into a stack. To keep it simple, the data is random uppercase
characters. After the characters have been inserted, they are popped and
printed. When the stack is empty, the program terminates. While we are not
using a stack header, we are using the basic push and pop algorithms dis-
cussed in Section 3.2, “Stack Linked List Implementation.” The design for
this program is shown in Figure 3-11.

FIGURE 3-11 Design for Basic Stack Program 

The node declaration, prototype statements, and test driver are contained
in Program 3-1.

1 loop (stack not empty)
1 delete top node

2 end loop
2 end if
3 delete stack head
end destroyStack
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Data

push

print

pop
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PROGRAM 3-1 Simple Stack Application Program

Program 3-1 Analysis To verify that the program works correctly, we print the characters as they are gener-
ated. This allows us to verify that the stack output was in fact correct. Note that this sim-
ple program verifies the LIFO operation of a stack.
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/* This program is a test driver to demonstrate the 
basic operation of the stack push and pop functions. 
   Written by: 
   Date:       

*/
#include <stdio.h>
#include <stdlib.h>
#includeƒ<stdbool.h>

// Structure Declarations 
typedef struct node
   {
    char         data;
    struct node* link;
   } STACK_NODE;

// Prototype Declarations 
void insertData (STACK_NODE** pStackTop);
void print      (STACK_NODE** pStackTop);

bool push       (STACK_NODE** pList, char  dataIn);
bool pop        (STACK_NODE** pList, char* dataOut);

int main (void)
{
// Local Definitions 
STACK_NODE* pStackTop;

// Statements 
printf("Beginning Simple Stack Program\n\n");

pStackTop = NULL;
insertData  (&pStackTop);
print       (&pStackTop);

printf("\n\nEnd Simple Stack Program\n");
return 0;

} // main 

Results:
Beginning Simple Stack Program

Creating characters: QMZRHLAJOE
Stack contained:     EOJALHRZMQ

End Simple Stack Program
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Insert Data
The insert data function loops while creating characters and inserting them
into the stack. To create random characters, we use the random number gen-
erator and scale the return value to the uppercase alphabetic range. This
code is developed in Program 3-2.

PROGRAM 3-2 Insert Data

Program 3-2 Analysis The insert logic is straightforward. The generation of the uppercase characters requires
a little explanation. Because there are 26 alphabetic characters, we scale the random
number to the range 0 to 25. To map the resulting random number to the uppercase
characters, we then add the value of the character 'A' to the random number.

Also note that even in this small example, we test for overflow. Although the proba-
bility of an overflow occurring is small, we always test for it. Remember Murphy’s Law.2
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/* ================== insertData ==================
This program creates random character data and 
inserts them into a linked list stack.
   Pre  pStackTop is a pointer to first node 
   Post Stack has been created 

*/
void insertData (STACK_NODE** pStackTop)
{
// Local Definitions 

char  charIn;
bool  success;

// Statements 
printf("Creating characters: ");
for (int nodeCount = 0; nodeCount < 10; nodeCount++)
    {
     // Generate uppercase character 
     charIn  = rand() % 26 + 'A';
     printf("%c", charIn);
     success = push(pStackTop, charIn);
     if (!success)
        {
         printf("Error 100: Out of Memory\n");
         exit (100);
        } // if 
    } // for 
printf("\n");
return;

} // insertData 

2. Murphy’s Law: If something can go wrong, it will.
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Push Stack
The insert data function calls the push function. With the exception of test-
ing for overflow technique and the error-handling code, and maintaining the
header metadata, it is a direct implementation of Algorithm 3-2. The code is
developed in Program 3-3.

PROGRAM 3-3 Push Stack

Print Stack
Once the stack has been built, we print it to verify the output. The print func-
tion calls the pop function until the stack is empty. The print code is found in
Program 3-4.

PROGRAM 3-4 Print Stack

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/* =================== push ====================
Inserts node into linked list stack. 
   Pre  ƒƒƒpStackTop is pointer to valid stack
   Post ƒƒƒcharIn inserted
   Return  true  if successful
           false if underflow

*/
bool push (STACK_NODE** pStackTop, char charIn)
{
// Local Definitions 

STACK_NODE* pNew;
bool        success;

// Statements 
pNew = (STACK_NODE*)malloc(sizeof (STACK_NODE));
if (!pNew)
    success = false;
else
   {
    pNew->data =  charIn;
    pNew->link = *pStackTop;
    *pStackTop =  pNew;
    success = true;
   } // else 
return success;

} // push 
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/* ===================== print ==================== 
This function prints a singly linked stack.
   Pre     pStackTop is pointer to valid stack
   Post    data in stack printed

*/
void print (STACK_NODE** pStackTop)
{
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PROGRAM 3-4 Print Stack (continued)

Pop Character
The pop character function copies the character at the top of the stack to the
output location specified in the second parameter. With the exception of the
code to maintain the header metadata, it is an exact implementation of Algo-
rithm 3-3. The implementation is shown in Program 3-5.

PROGRAM 3-5 Pop Stack

8
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// Local Definitions 
char printData;

// Statements 
printf("Stack contained:     ");
while (pop(pStackTop, &printData))
    printf("%c", printData);
return;

} // print 
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/* =================== pop ====================
Delete node from linked list stack. 
   Pre  pStackTop is pointer to valid stack
   Post charOut contains deleted data
   Return  true  if successful
           false if underflow

*/
bool pop (STACK_NODE** pStackTop, char* charOut)
{
// Local Definitions 

STACK_NODE*ƒpDlt;
bool        success;

// Statements 
if (*pStackTop)
   {
    success    = true;
    *charOut   = (*pStackTop)->data;
    pDlt       = *pStackTop;
    *pStackTop = (*pStackTop)->link;
    free (pDlt);
   } // else 
else
   success = false;
return success;

} // pop 
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3.4 Stack ADT
Each of the algorithms in the previous section used several stack operations.
While we could write them each time we needed them, this would certainly
be an inefficient use of our time. What we need, therefore, is a stack abstract
data type that we can put in a library and call whenever we need it. We
develop a stack abstract data type in this section.3

Data Structure
The stack ADT implementation in C is straightforward. Rather than store
data in each node, we store a pointer to the data. It is the application pro-
gram’s responsibility to allocate memory for the data and pass the address to
the stack ADT. Within the ADT, the stack node looks like any linked list node
except that it contains a pointer to the data rather than the actual data.
Because the data pointer type is unknown, it is stored as a pointer to void. 

The head node and the data nodes are encapsulated in the ADT. The call-
ing function’s only view of the stack is a pointer to the stack structure in the
ADT, which is declared as a type definition. We name this stack type STACK.
This design is very similar to C’s FILE structure. 

To create a stack, the programmer defines a pointer to a stack as shown
in the following example and then calls the create stack function. The
address of the stack structure is returned by create stack and assigned to the
pointer in the calling function.

The stack ADT structure is found in Figure 3-12.

ADT Implementation
It takes more than a data structure to make an abstract data type: there must
also be operations that support the stack. We develop the C functions in the
sections that follow.

Stack Structure
The stack abstract data type structure is shown in Program 3-6. The node
structure consists only of a data pointer and a link node pointer. The stack
head structure also contains only two elements, a pointer to the top of the
stack and a count of the number of entries currently in the stack. 

3. The array implementation for a stack can be found in Appendix F.

STACK* stack;
…
stack = createStack (); 
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FIGURE 3-12 Stack ADT Structural Concepts

The type definition for the stack, as shown in Program 3-6, is included in
a header file so that any function that needs to define a stack can do so easily.

PROGRAM 3-6 Stack ADT Definitions

Create Stack 
Create stack allocates a stack head node, initializes the top pointer to null,
and zeros the count field. The address of the node in the dynamic memory is
then returned to the caller. The call to create a stack must assign the return
pointer value to a stack pointer as shown below.

Figure 3-8 graphically shows the results of creating a stack. The code for
the create stack function is shown in Program 3-7.
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// Stack ADT Type Defintions 
typedef struct node 
   {
    void*        dataPtr;
    struct node* link;
   } STACK_NODE;

typedef struct
   {
    int         count; 
    STACK_NODE* top; 
   } STACK;

stack = createStack ( );

dataPtr link
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•••

dataPtr link
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count top
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PROGRAM 3-7 ADT Create Stack

Push Stack 
The first thing that we need to do when we push data into a stack is to find a
place for the data. This requires that we allocate memory from the heap using
malloc. Once the memory is allocated, we simply assign the data pointer to the
node and then set the link to point to the node currently indicated as the stack
top. We also need to add one to the stack count field. Figure 3-8 shows several
pushes into the stack. Program 3-8 is an implementation of push stack.

PROGRAM 3-8 Push Stack

continued
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/* =============== createStack ==============
This algorithm creates an empty stack.
   Pre  Nothing
   Post Returns pointer to a null stack 
           -or- NULL if overflow 

*/
STACK* createStack (void)
{
// Local Definitions 

STACK* stack;

// Statements 
stack = (STACK*) malloc( sizeof (STACK));
if (stack)
   {
    stack->count = 0;
    stack->top   = NULL;
   } // if 
return stack;

} // createStack 
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/* ================= pushStack ================ 
This function pushes an item onto the stack.
   Pre     stack is a pointer to the stack 
           dataPtr pointer to data to be inserted 
   Post    Data inserted into stack
   Return  true  if successful
           false if underflow

*/
bool pushStack (STACK* stack, void* dataInPtr)
{
// Local Definitions 

STACK_NODE* newPtr;

// Statements 
newPtr = (STACK_NODE* ) malloc(sizeof( STACK_NODE));
if (!newPtr)
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PROGRAM 3-8 Push Stack (continued)

Program 3-8 Analysis The ADT implementation of push differs from a traditional implementation only in its gen-
erality. Because it is an abstract data type, we need to handle any type of data pointer;
therefore, we use a void pointer in the stack node. Recall that a void pointer can be
used to store any type of pointer, and, conversely, it can be assigned to any pointer
type. About the only thing we can’t do with a void pointer is dereference it. In the stack,
however, there is no need to refer to the actual data, so we never need to dereference
it. As you study the rest of the stack algorithms, note the use of void pointers.

The last point also addresses generic code. Because we are writing an ADT, we
cannot assume that heap overflow is an error. That decision belongs to the application.
All we can do is report status: either the push was successful or it wasn’t. If the alloca-
tion is successful, which is the normal case, we report that the push was successful by
returning true. If the heap is full, we report that the push failed by returning false. It is
then the calling function’s responsibility to detect and respond to an overflow. 

Pop Stack 
Pop stack returns the data in the node at the top of the stack. It then deletes
and recycles the node. After the count is adjusted by subtracting 1, the func-
tion returns to the caller. Note the way underflow is reported. In statement 15
we set the data pointer to NULL. If the stack is empty, when we return the
data pointer in statement 24 we return NULL. Refer to Figure 3-8 for a
graphic example of a stack pop in a linked list environment. The code is devel-
oped in Program 3-9.

PROGRAM 3-9 ADT Pop Stack

continued

17
18
19
20
21
22
23
24
25
26

    return false;

newPtr->dataPtr = dataInPtr; 

newPtr->link    = stack->top; 
stack->top      = newPtr; 

(stack->count)++; 
return true;

} // pushStack 

1
2
3
4
5
6
7
8
9
10

/* =================== popStack ==================
This function pops item on the top of the stack.
   Pre  stack is pointer to a stack
   Post Returns pointer to user data if successful
                NULL if underflow

*/
void* popStack (STACK* stack) 
{
// Local Definitions 

void*       dataOutPtr; 
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PROGRAM 3-9 ADT Pop Stack (continued)

Program 3-9 Analysis The code for the pop is rather straightforward. Two local pointers are required, one
for the data pointer to be returned to the caller, and one that is used to free the
deleted node.

It is interesting to follow the logic when the last node is being deleted. In this case
the result is an empty stack. No special logic is required: the empty stack is created auto-
matically because the last node has a null pointer, which when assigned to top indicates
that the stack is empty.

Because a null pointer is false and a pointer with an address is true, we don’t need
a separate success flag. Rather, we just return the pointer with the address allocated by
the new function. If memory was allocated successfully, it contains an address, which is
true. If the allocation failed, it contains a null pointer, which is false.

Study the code that updates the stack top carefully. Note that it takes two levels of
indirection to access the link field of the top node. If these references are confusing, trace
them using Figure 3-8.

Finally, when we delete a node from the stack, the pop stack releases its memory. 

Stack Top
The stack top function returns the data at the top of the stack without delet-
ing the top node. It allows the user to see what will be deleted when the stack
is popped. The code is developed in Program 3-10.

PROGRAM 3-10 Retrieve Stack Top

continued

11
12
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14
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STACK_NODE* temp;

// Statements 
if (stack->count == 0)
    dataOutPtr = NULL;
else
   {
    temp       = stack->top;
    dataOutPtr = stack->top->dataPtr;
    stack->top = stack->top->link;
    free (temp);
    (stack->count)--;
   } // else 
return dataOutPtr;

} // popStack 

1
2
3
4
5
6
7

/* ================== stackTop =================
Retrieves data from the top of stack without 
 changing the stack.
   Pre  stack is a pointer to the stack
   Post Returns data pointer if successful
                null pointer if stack empty

*/
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PROGRAM 3-10 Retrieve Stack Top (continued)

Program 3-10 Analysis The logic is virtually identical to the pop stack except for the delete and recycle. The
code, however, is significantly different. As with the pop, there is only one potential
problem with the retrieve function—the stack may be empty. If the stack is empty, we
return a null pointer.

Empty Stack 
Because the calling function has no access to the data structure, it cannot
determine if there are data in the stack without actually trying to retrieve
them. We therefore provide empty stack, a function that simply reports that
the stack has data or that it is empty. (See Program 3-11.)

PROGRAM 3-11 Empty Stack

Full Stack
Full stack is one of the most complex of the supporting functions. There is no
straightforward way to tell if the next memory allocation is going to succeed
or fail. All we can do is try it. But by trying to make an allocation, we use up
part of the heap. Therefore, after allocating space for a node, we immediately
free it so that it will be there when the program requests memory. This logic
is shown in Program 3-12.

PROGRAM 3-12 Full Stack

continued

8
9
10
11
12
13
14
15

void* stackTop (STACK* stack) 
{
// Statements 

if (stack->count == 0)
    return NULL;
else
    return stack->top->dataPtr;

} // stackTop 

  1
  2
  3
  4
  5
  6
  7
  8
  9
10

/* ================= emptyStack ================
This function determines if a stack is empty.
   Pre  stack is pointer to a stack
   Post returns 1 if empty; 0 if data in stack 

*/
bool emptyStack (STACK* stack) 
{
// Statements 

return (stack->count == 0);
} // emptyStack 

1
2

/* ================== fullStack =================
This function determines if a stack is full.
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PROGRAM 3-12 Full Stack (continued)

Stack Count
Stack count returns the number of items in the stack. Because this count is
stored in the stack head node, we do not need to traverse the stack to deter-
mine how many items are currently in it. We simply return the head count.

PROGRAM 3-13 Stack Count

Destroy Stack 
Destroy stack deletes the nodes in a stack and returns a null pointer. It is the
user’s responsibility to set the stack pointer in the calling area to NULL by
assigning the return value to the local stack pointer. Because the stack is
implemented as a dynamic data structure in the heap, the memory is also
released for reuse. Figure 3-8 graphically shows the results of destroying a

3
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15
16
17
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Full is defined as heap full.
   Pre    stack is pointer to a stack head node
   Return true if heap full 
          false if heap has room

*/
bool fullStack (STACK* stack) 
{
// Local Definitions 
STACK_NODE* temp;

// Statements 
if ((temp = 
   (STACK_NODE*)malloc (sizeof(*(stack->top)))))
   {
    free (temp);
    return false;
   } // if 

// malloc failed 
return true;

} // fullStack 

  1
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/* ================== stackCount =================
Returns number of elements in stack.
   Pre  stack is a pointer to the stack 
   Post count returned 

*/
int stackCount (STACK* stack) 
{
// Statements 

return stack->count;
} // stackCount 
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stack. Note that the two stack nodes and the stack head are all freed. The
code for destroyStack is identical to its implementation in Program 3-14.

PROGRAM 3-14 Destroy Stack

Program 3-14 Analysis Note that we guard against a call to destroy a stack that does not exist. Only if there is
a stack do we execute the while loop. In the loop we walk through the stack, first recy-
cling the user’s data nodes and then recycling the stack nodes. When the last node
has been freed, the stack top becomes NULL and the loop terminates. After all data
nodes have been deleted, we also free the head node and return a null stack pointer. 

3.5 Stack Applications
Stack applications can be classified into four broad categories: reversing data,
parsing data, postponing data usage, and backtracking steps. For each of
these applications we provide one or two examples. For reversing data we
reverse a list. We also use reversing data to convert a decimal number to its
binary equivalent. For parsing we show how to match the parentheses in a

1
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/* ================== destroyStack =================
This function releases all nodes to the heap.
   Pre  A stack 
   Post returns null pointer 

*/
STACK* destroyStack (STACK* stack) 
{
// Local Definitions 

STACK_NODE* temp;

// Statements 
if (stack)
   {
    // Delete all nodes in stack 
    while (stack->top != NULL) 
       {
        // Delete data entry 
        free (stack->top->dataPtr);

 
        temp = stack->top;
        stack->top = stack->top->link; 
        free (temp); 
       } // while 

    // Stack now empty. Destroy stack head node. 
    free (stack);
   } // if stack 
return NULL;

} // destroyStack 
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source program. We use postponement to convert infix to postfix notation and
also to evaluate a postfix expression. Finally, we use backtracking to choose
between two or more paths. Each of these applications uses the stack ADT
described in the previous section. You should make sure that you fully under-
stand these algorithms before studying the following applications.

Reversing Data
Reversing data requires that a given set of data be reordered so that the first
and last elements are exchanged, with all of the positions between the first
and last being relatively exchanged also. For example, {1 2 3 4} becomes {4 3
2 1}. We examine two different reversing applications: reverse a list and con-
vert decimal to binary.

Reverse a List
One of the applications of a stack is to reverse a list of items. For example,
Program 3-15 reads a list of integers and prints them in reverse.

PROGRAM 3-15 Reverse a Number Series

continued

Four common stack applications are: reversing data, parsing, postponing, and backtracking. 
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/* This program reverses a list of integers read
from the keyboard by pushing them into a stack
and retrieving them one by one.
   Written by:
   Date:

*/
#include <stdio.h>
#include <stdbool.h>
#include "stacksADT.h"

int main (void)
{
// Local Definitions 

bool done = false;
int* dataPtr;

STACK* stack;

// Statements 
// Create a stack and allocate memory for data 
stack = createStack ();

// Fill stack 
while (!done)
   {
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PROGRAM 3-15 Reverse a Number Series (continued)

Program 3-15 Analysis This program is very simple. After creating a stack, it reads a series of numbers and
pushes them into the stack. When the user keys end of file, the program then pops the
stack and prints the numbers in reverse order. 

The important point to note in this simple program is that we never referenced the
stack structure directly. All stack references were through the stack ADT interface. This is
an important concept in the structured programming principles of encapsulation and func-
tion reusability. 

Figure 3-13 follows the program as it executes. As you study Program 3-15, use
Figure 3-13 to trace its operations. Make sure that you have the same results at each
different point in the figure.
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    dataPtr = (int*) malloc (sizeof(int));
    printf ("Enter a number: <EOF> to stop: ");
    if ((scanf ("%d" , dataPtr)) == EOF 
           || fullStack (stack))
       done = true;
    else
       pushStack (stack, dataPtr);
   } // while 

// Now print numbers in reverse 
printf ("\n\nThe list of numbers reversed:\n");
while (!emptyStack (stack))
   {
    dataPtr = (int*)popStack (stack);
    printf ("%3d\n", *dataPtr);
    free (dataPtr);
   } // while 

// Destroying Stack 
destroyStack (stack);
return 0;

} // main 

Results:
Enter a number: <EOF> to stop: 3
Enter a number: <EOF> to stop: 5
Enter a number: <EOF> to stop: 7
Enter a number: <EOF> to stop: 16
Enter a number: <EOF> to stop: 91
Enter a number: <EOF> to stop:

The list of numbers reversed:
 91
 16
  7
  5
  3
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FIGURE 3-13 Program 3-15 Step-by-Step Execution
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Convert Decimal to Binary
The idea of reversing a series can be used in solving classical problems such
as transforming a decimal number to a binary number. The following simple
code segment transforms a decimal number into a binary number:

This code has a problem, however. It creates the binary number back-
ward. Thus, 19 becomes 11001 rather than 10011.

We can solve this problem by using a stack. Instead of printing the
binary digit as soon as it is produced, we push it into the stack. Then, after
the number has been completely converted, we simply pop the stack and
print the results one digit at a time in a line. This program is shown in
Program 3-16.

PROGRAM 3-16 Convert Decimal to Binary

continued

1ƒƒread (number)
2ƒƒloop (number > 0) 
ƒƒƒ1ƒƒset digit to number modulo 2 
ƒƒƒ2ƒƒprint (digit) 
ƒƒƒ3ƒƒset number to quotient of number / 2 
3ƒƒend loop
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/* This program reads an integer from the keyboard
and prints its binary equivalent. It uses a stack
to reverse the order of 0s and 1s produced.
   Written by:
   Date:

*/
#include <stdio.h>
#include "stacksADT.h"

int main (void)
{
// Local Definitions 

unsigned int    num;
         int*   digit;
         STACK* stack;

// Statements 
// Create Stack 
stack = createStack ();

// prompt and read a number 
printf ("Enter an integer:      ");
scanf ("%d", &num);

// create 0s and 1s and push them into the stack 
while (num > 0)
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PROGRAM 3-16 Convert Decimal to Binary (continued)

Parsing
Another application of stacks is parsing. Parsing is any logic that breaks data
into independent pieces for further processing. For example, to translate a
source program to machine language, a compiler must parse the program into
individual parts such as keywords, names, and tokens.

One common programming problem is unmatched parentheses in an
algebraic expression. When parentheses are unmatched, two types of errors
can occur: the opening parenthesis can be missing or the closing parenthesis
can be missing. These two errors are shown in Figure 3-14.

FIGURE 3-14 Unmatched Parentheses Examples
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   {
    digit  = (int*) malloc (sizeof(int));
    *digit = num % 2;
    pushStack (stack, digit);
    num = num /2;
   } // while 

// Binary number created. Now print it 
printf ("The binary number is : ");
while (!emptyStack (stack))
   {
    digit = (int*)popStack (stack);
    printf ("%1d", *digit);
   } // while 
printf ("\n");

// Destroying Stack 
destroyStack (stack);
return 0;

} // main 

Results:
Enter an integer:      45
The binary number is : 101101

( A + B )  / C )

?

(b) Closing parenthesis not matched

( ( A + B )  / C

?

(a) Opening parenthesis not matched
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In Algorithm 3-9, we parse a source program to ensure that all of the
parentheses are properly paired.

ALGORITHM 3-9 Parse Parentheses

The implementation is shown in Program 3-17.

PROGRAM 3-17 Verify Parentheses Paired in Source Program

continued

Algorithm parseParens
This algorithm reads a source program and parses it to make 
sure all opening-closing parentheses are paired. 
1 loop (more data)

1 read (character)
2 if (opening parenthesis)

1 pushStack (stack, character)
3 else

1 if (closing parenthesis)
1 if (emptyStack (stack))

1 print (Error: Closing parenthesis not matched) 
2 else

1 popStack(stack)
3 end if

2 end if
4 end if

2 end loop
3 if (not emptyStack (stack))

1 print (Error: Opening parenthesis not matched) 
end parseParens

1
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/* This program reads a source program and parses it to 
make sure all opening-closing parentheses are paired.
   Written by:
   Date:

*/
#include <stdio.h>
#include "stacksADT.h"

// Error Messages 
const char closMiss[] = "Close paren missing at line";
const char openMiss[] = "Open paren missing at line";

int main (void)
{
// Local Definitions 

STACK* stack;
char   token;
char*  dataPtr;
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PROGRAM 3-17 Verify Parentheses Paired in Source Program (continued)

continued
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char   fileID[25];
FILE*  fpIn;
int    lineCount = 1;

// Statements 
// Create Stack 
stack = createStack ();
printf ("Enter file ID for file to be parsed: ");
scanf  ("%s", fileID);

fpIn = fopen (fileID, "r");
if (!fpIn)
    printf("Error opening %s\n", fileID), exit(100);

// read characters from the source code and parse 
while ((token = fgetc (fpIn)) != EOF )
   {
    if (token == '\n')
       lineCount++;
    if (token == '(' )
       {
        dataPtr = (char*) malloc (sizeof (char));
        pushStack (stack, dataPtr);
       } // if 
    else
       {
        if (token == ')')
           {
            if (emptyStack (stack))
               {
                printf ("%s %d\n", 
                        openMiss, lineCount);
                return 1;
               } // if true 
            else
               popStack (stack);
           } // token == 
       } // else 
   } // while 

if (!emptyStack (stack))
   {
    printf ("%s %d\n", closMiss, lineCount);
    return 1;
   } // if 

// Now destroy the stack 
destroyStack (stack);
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PROGRAM 3-17 Verify Parentheses Paired in Source Program (continued)

Program 3-17 Analysis Whenever we find an opening parenthesis in a program, we push it into the stack.
When we find a closing parenthesis, we pop its matching opening parenthesis from
the stack. Note that there are two different pairing errors in the program: (1) a closing
parenthesis without a matching opening parenthesis (see statement 49) and (2) an
opening parenthesis without a matching closing parenthesis (see statement 61). 

To test the program, we ran it three times against three different files. While this
testing demonstrates all three situations, it does not fully test the program. Additional
test situations, such as missing first opening parenthesis, must also be run.

Finally, note how we placed the error messages at the beginning of the program.
This is a common documentation technique that not only provides good documentation
but makes the program easier to read.

Postponement
When we used a stack to reverse a list, the entire list was read before we
began outputting the results. Often the logic of an application requires that
the usage of data be deferred until some later point. A stack can be useful
when the application requires that the use of data be postponed for a while.
We develop two stack postponement applications in this section: infix to post-
fix transformation and postfix expression evaluation.

Infix to Postfix Transformation
One of the disadvantages of the infix notation4 is that we need to use paren-
theses to control the evaluation of the operators. We thus have an evaluation
method that includes parentheses and two operator priority classes. In the
postfix and prefix notations, we do not need parentheses; each provides only
one evaluation rule. 

Although some high-level languages use infix notation, such expressions
cannot be directly evaluated. Rather, they must be analyzed to determine the

67
68
69
70

printf ("Parsing is OK: %d Lines parsed.\n", 
ƒƒƒƒƒƒƒƒƒƒƒƒlineCount);

return 0;
} // main 

Results:
Run 1:

Enter file ID for file to be parsed: no-errors.txt
Parsing is OK: 65 Lines parsed.

Run 2:
Enter file ID for file to be parsed: close-match.txt
Close paren missing at line 46

Run 3:
Enter file ID for file to be parsed: open-match.txt
Open paren missing at line 23

4. For a discussion of arithmetic notations, see “Prefix to Postfix Conversion” in Chapter 2.
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order in which the expressions are to be evaluated. A common evaluation
technique is to convert the expressions to postfix notation before generating
the code to evaluate them. We demonstrate this concept here. We first exam-
ine a manual method for converting infix to postfix expressions and then
develop an algorithm that can be implemented on a computer. 

Manual Transformation
The rules for manually converting infix to postfix expressions are as follows:

1. Fully parenthesize the expression using any explicit parentheses and the
arithmetic precedence—multiply and divide before add and subtract.

2. Change all infix notations in each parenthesis to postfix notation, starting
from the innermost expressions. Conversion to postfix notation is done by
moving the operator to the location of the expression’s closing parenthesis.

3. Remove all parentheses.

For example, for the following infix expression:

Let’s look at a more complex example. This example is not only
longer but it already has one set of parentheses to override the default
evaluation order.

A + B * C

Step 1 results in

( A + ( B * C ) )

Step 2 moves the multiply operator after C

( A + ( B C * ) )

and then moves the addition operator to between the last two closing parentheses. This change is
made because the closing parenthesis for the plus sign is the last parenthesis. We now have

( A (B C * ) +)

Finally, step 3 removes the parentheses.

A B C * +

( A + B ) * C  + D + E * F - G

Step 1 adds parentheses.

( ( ( ( ( A + B ) * C ) + D ) + ( E * F ) ) - G ) 

Step 2 then moves the operators.

( ( ( ( ( A B + ) C * ) D + ) ( E F * ) + ) G - ) 

Step 3 removes the parentheses.

A B + C * D + E F * + G - 
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Algorithmic Transformation
This manual operation would be difficult to implement in a computer. Let’s
look at another technique that is easily implemented with a stack.

We start with a very simple example, transforming a multiplication opera-
tion. The multiplication of two variables is shown below, first in infix notation
and then in postfix notation.

We can obviously read the operands and output them in order. The
problem becomes how to handle the multiply operator; we need to post-
pone putting it in the output until we have read the right operand, B. In
this simple case, we push the operator into a stack and, after the whole
infix expression has been read, pop the stack and put the operator in the
postfix expression.

Now let’s look at a more complex expression. Again, the infix expression is
given on the left and the equivalent postfix expression on the right.

Here again we can read the infix operators and copy them to the post-
fix expression. If we were to simply put the operators into the stack as we
did earlier and then pop them to the postfix expression after all of the
operands had been read, we would get the wrong answer. Somehow we
must pair the two operators with their correct operands. One possible rule
might be to postpone an operator only until we get another operator.
Then, before we push the second operator, we could pop the first one and
place it in the output expression. This logic works in this case, but it won’t
for others. Consider the following example.

As we discussed previously, infix expressions use a precedence rule to
determine how to group the operands and operators in an expression. We can
use the same rule when we convert infix to postfix. When we need to push an
operator into the stack, if its priority is higher than the operator at the top of
the stack, we go ahead and push it into the stack. Conversely, if the operator
at the top of the stack has a higher priority than the current operator, it is
popped and placed in the output expression. Using this rule with the above
expression, we would take the following actions:

1. Copy operand A to output expression.

2. Push operator + into stack.

3. Copy operand B to output expression.

4. Push operator * into stack. (Priority of * is higher than +.)

5. Copy operand C to output expression.

A * B   converts to   A B *

A * B + C   converts to   A B * C +

A + B * C   converts to   A B C * +
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6. Pop operator * and copy to output expression.

7. Pop operator + and copy to output expression.

We need to cover one more rule to complete the logic. When a current
operator with a lower or equal priority forces the top operator to be popped
from the stack, we must check the new top operator. If it is also greater than
the current operator, it is popped to the output expression. Consequently, we
may pop several operators to the output expression before pushing the new
operator into the stack.

Let’s work on one more example before we formally develop the
algorithm.

The transformation of this expression is shown in Figure 3-15. Because it
uses all of the basic arithmetic operators, it is a complete test.

FIGURE 3-15 Infix Transformations

We begin by copying the first operand, A, to the postfix expression. See
Figure 3-15(b). The add operator is then pushed into the stack and the sec-
ond operand is copied to the postfix expression. See Figure 3-15(d). At this
point we are ready to insert the multiply operator into the stack. As we see in

A + B * C - D / E   converts to   A B C * + D E / -

Stack
Infix Postfix

(a) A + B * C – D / E

+
(c)  B * C – D / E A

(b) + B * C – D / E A

(k) A B C * +DE / – 

/
–

(j) A B C * +DE

/
–

(i) E A B C *+D

–
(h) / E A B C * +D

–
(g) D / E A B C *+

*+
(f)  – D / E A B C

*+
(e)  C – D / E A B

+
(d)  * C – D / E A B
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Figure 3-15(e), its priority is higher than that of the add operator at the top of
the stack, so we simply push it into the stack. After copying the next operand,
C, to the postfix expression, we need to push the minus operator into the
stack. Because its priority is lower than that of the multiply operator, how-
ever, we must first pop the multiply and copy it to the postfix expression. The
plus sign is now popped and appended to the postfix expression because the
minus and plus have the same priority. The minus is then pushed into the
stack. The result is shown in Figure 3-15(g). After copying the operand D to
the postfix expression, we push the divide operator into the stack because it is
of higher priority than the minus at the top of the stack in Figure 3-15(i).
After copying E to the postfix expression, we are left with an empty infix
expression and two operators in the stack. See Figure 3-15(j). All that is left
at this point is to pop the stack and copy each operator to the postfix expres-
sion. The final expression is shown in Figure 3-15(k).

We are now ready to develop the algorithm. We assume only the operators
shown below. They have been adapted from the standard algebraic notation.

The design is shown in Algorithm 3-10.

ALGORITHM 3-10 Convert Infix to Postfix

continued

Priority 2:    *  / 
Priority 1:    +  - 
Priority 0:    (

Algorithm inToPostFix (formula)
Convert infix formula to postfix.

Pre    formula is infix notation that has been edited
       to ensure that there are no syntactical errors
Post   postfix formula has been formatted as a string
Return postfix formula

1 createStack (stack)
2 loop (for each character in formula)

1 if (character is open parenthesis)
1 pushStack (stack, character)

2 elseif (character is close parenthesis)
1 popStack (stack, character)
2 loop (character not open parenthesis)

1 concatenate character to postFixExpr
2 popStack (stack, character)

3 end loop
3 elseif (character is operator)

         Test priority of token to token at top of stack
1 stackTop (stack, topToken)
2 loop (not emptyStack (stack)   
     AND priority(character) <= priority(topToken))

1 popStack (stack, tokenOut)
2 concatenate tokenOut to postFixExpr
3 stackTop (stack, topToken)
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ALGORITHM 3-10 Convert Infix to Postfix (continued)

The code follows in Program 3-18.

PROGRAM 3-18 Convert Infix to Postfix

continued

3 end loop
4 pushStack (stack, token)

4 else 
     ƒ   Character is operand

1 Concatenate token to postFixExpr
5 end if

3 end loop
Input formula empty. Pop stack to postFix

4 loop (not emptyStack (stack))
1 popStack (stack, character)
2 concatenate token to postFixExpr

5 end loop
6 return postFix
end inToPostFix
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/* This program converts an infix formula to a postfix
formula. The infix formula has been edited to ensure 
that there are no syntactical errors.
    Written by:
    Date:

*/
#include <stdio.h>
#include <string.h>
#include "stacksADT.h"

// Prototype Declarations 
int  priority (char token);
bool isOperator (char token);

int main (void)
{
// Local Definitions 

char   postfix [80] = {0};
char   temp [2] = {0};
char   token;
char*  dataPtr;
STACK* stack;

// Statements 
// Create Stack 
stack = createStack ();

// read infix formula and parse char by char 
printf("Enter an infix formula: ");
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PROGRAM 3-18 Convert Infix to Postfix (continued)

continued
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while ((token = getchar ())!= '\n')
   {
    if (token == '(')
       {
        dataPtr  = (char*) malloc (sizeof(char));
        *dataPtr = token;
        pushStack (stack, dataPtr);
       } // if 
    else if (token == ')')
       {
        dataPtr = (char*)popStack (stack);
        while (*dataPtr != '(')
           {
            temp [0]= *dataPtr;
            strcat (postfix , temp);
            dataPtr = (char*)popStack (stack);
           } // while 
       } // else if 
    else if (isOperator (token))
       {
        // test priority of token at stack top 
        dataPtr = (char*)stackTop (stack);
        while (!emptyStack (stack) 
             && priority (token) <= priority (*dataPtr))
            {
             dataPtr  = (char*)popStack (stack);
             temp [0] = *dataPtr;
             strcat (postfix , temp);
             dataPtr  = (char*)stackTop (stack);
            } // while 
        dataPtr  = (char*) malloc (sizeof (char));
        *dataPtr = token;
        pushStack (stack , dataPtr);
       } // else if 
    else                  // character is operand 
       {
        temp[0]= token;
        strcat (postfix , temp);
       } // else 
   } // while get token 

// Infix formula empty. Pop stack to postfix 
while (!emptyStack (stack))
   {
    dataPtr = (char*)popStack (stack);
    temp[0] = *dataPtr;
    strcat (postfix , temp);
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PROGRAM 3-18 Convert Infix to Postfix (continued)

Program 3-18 Analysis An infix expression can contain only three objects: a parenthetical set of operators, a
variable identifier or a constant, and an operator. If we have an opening parenthesis,

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
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109
110
111
112
113
114
115
116

   } // while 

// Print the postfix 
printf ("The postfix formula is: ");
puts (postfix);

// Now destroy the stack 
destroyStack (stack);
return 0;

} // main 
/* =================== priority ====================

Determine priority of operator.
   Pre  token is a valid operator
   Post token priority returned

*/
int priority (char token)
{
// Statements 

if (token == '*' || token == '/')
    return 2;
if (token == '+' || token == '-')
    return 1;
return 0;

} // priority 
/* =================== isOperator ====================

Determine if token is an operator.
   Pre  token is a valid operator
   Post return true if operator; false if not

*/
bool isOperator (char token)
{
// Statements 

if (token == '*' 
   || token == '/' 
   || token == '+' 
   || token == '-')

       return true;
return false;

} // isOperator 

Results:
Run 1

Enter an infix formula: 2+4
The postfix formula is: 24+

Run 2
Enter an infix formula: (a+b)*(c-d)/e
The postfix formula is: ab+cd-*e/
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we put it in the stack. It is eventually paired with a closing parenthesis that signals the
end of an expression or a subexpression. Variables and constants go immediately to
the output string; thus only operators require more analysis.

Given an operator to be processed, the question is: Should it be pushed into the
stack or placed in the output formula? If the stack is empty, the operator is pushed into
the stack and we continue.

Infix operators have two priorities. The multiply and divide operators have a higher
priority (2) than the add and subtract operators (1). Because the opening parenthesis is
also pushed into the operator stack, we give it a priority of 0. We check the priority of
the new current token against the priority of the token at the top of the stack at state-
ment 54.

If the new operator’s priority is lower than or equal to that of the operator at the top
of the stack, the token at the top of the stack is moved to the output string and we loop
to recheck the operator at the top of the stack. If the new operator has a higher priority
than the operator at the top of the stack, it goes into the stack and we move to the next
token in the input formula.

Evaluating Postfix Expressions
Now let’s see how we can use stack postponement to evaluate the postfix expres-
sions we developed earlier. For example, given the expression shown below,

and assuming that A is 2, B is 4, and C is 6, what is the expression value?
The first thing you should notice is that the operands come before the

operators. This means that we will have to postpone the use of the operands
this time, not the operators. We therefore put them into the stack. When we
find an operator, we pop the two operands at the top of the stack and perform
the operation. We then push the value back into the stack to be used later.
Figure 3-16 traces the operation of our expression. (Note that we push the
operand values into the stack, not the operand names. We therefore use the
values in the figure.)

FIGURE 3-16 Evaluation of Postfix Expression

A B C + * 

Postfix

(f)

(a) 2 4 6 +*

(b) 4 6 + *

(c) 6 + *

(d) + *

(e)  *

Stack

10
2

20

6
4
2

4
2

2

4 + 6 = 10

2 * 10 = 20
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When the expression has been completely evaluated, its value is in the
stack. See Algorithm 3-11. The implementation is shown in Program 3-19.

ALGORITHM 3-11 Evaluation of Postfix Expressions

PROGRAM 3-19 Evaluate Postfix Expression

continued

Algorithm postFixEvaluate (expr)
This algorithm evaluates a postfix expression and returns its 
value.

Pre    a valid expression
Post   postfix value computed
Return value of expression

1 createStack (stack)
2 loop (for each character)

1 if (character is operand)
1 pushStack (stack, character)

2 else
1 popStack (stack, oper2)
2 popStack (stack, oper1)
3 operator = character 
4 set value to calculate (oper1, operator, oper2)
5 pushStack (stack, value)

3 end if
3 end loop
4 popStack (stack, result)
5 return (result)
end postFixEvaluate

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

/* This program evaluates a postfix expression and 
returns its value. The postfix expression must be 
valid with each operand being only one digit.
   Written by:
   Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "stacksADT.h"

// Prototype Declarations 
bool isOperator (char token);
int  calc       (int operand1, int oper, int operand2);

int main (void)
{
// Local Definitions 

char   token;
int    operand1;
int    operand2;
int    value;
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PROGRAM 3-19 Evaluate Postfix Expression (continued)

continued

22
23
24
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65
66
67
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69

int*   dataPtr;
STACK* stack;

// Statements 
// Create Stack 
stack = createStack ();

// read postfix expression, char by char 
printf("Input formula: ");
while ((token = getchar ())!= '\n')
   {
    if (!isOperator (token))
       {
        dataPtr  = (int*) malloc (sizeof (int));
        *dataPtr = atoi (&token); 
        pushStack (stack, dataPtr);
       } // while 

    else
       // character is operand 
       {
        dataPtr  = (int*)popStack (stack);
        operand2 = *dataPtr;
        dataPtr  = (int*)popStack (stack);
        operand1 = *dataPtr;
        value    = calc(operand1, token, operand2);
        dataPtr  = (int*) malloc (sizeof (int));
        *dataPtr = value;
        pushStack (stack, dataPtr);
       } // else 
   } // while 

// The final result is in stack. Pop it print it 
dataPtr = (int*)popStack (stack);
value = *dataPtr;
printf ("The result is: %d\n", value);

// Now destroy the stack 
destroyStack (stack);
return 0;

} // main 
/* ==================== isOperator ==================

Validate operator.
   Pre  token is operator to be validated
   Post return true if valid, false if not

*/
bool isOperator (char token)
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PROGRAM 3-19 Evaluate Postfix Expression (continued)

Program 3-19 Analysis We have omitted all of the error handling in this algorithm. We assume that the expres-
sion is valid and that there is sufficient memory to evaluate it. An implementation obvi-
ously needs to guard against these problems.

Given these assumptions, the algorithm is relatively simple. We create a stack and
then push operands into the stack until we find an operator. As we find each operator,
we pop the two top operands and perform the operation. The result is then pushed into
the stack and the next element of the expression is examined. At the end, we pop the
value from the stack and return it.
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{
// Statements 

if (token == '*' 
    || token == '/' 
    || token == '+' 
    || token == '-')
   return true;
return false;

} // isOperator 
/* ==================== calc ==================

Given two values and operator, determine value of
formula.
   Pre  operand1 and operand2 are values
        oper is the operator to be used
   Post return result of calculation

*/
int calc (int operand1, int oper, int operand2)
{
// Local Declaration 

int result;

// Statements
switch (oper)
   {
    case '+' : result  = operand1 + operand2;
               break;
    case '-' : result  = operand1 - operand2;
               break;
    case '*' : result  = operand1 * operand2;
               break;
    case '/' : result  = operand1 / operand2;
               break;
   } // switch 
return result;

} // calc 

Results:
Input formula: 52/4+5*2+
The result is 32
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Backtracking
Backtracking is another stack use found in applications such as computer gam-
ing, decision analysis, and expert systems. We examine two backtracking
applications in this section: goal seeking and the eight queens problem.

Goal Seeking
Figure 3-17 is an example of a goal-seeking application. One way to portray
the problem is to lay out the steps in the form of a graph that contains several
alternate paths. Only one of the paths in the figure leads to a desired goal.
Whereas we can immediately see the correct path when we look at the figure,
the computer needs an algorithm to determine the correct path.

FIGURE 3-17 Backtracking Example

We start at node 1 and move right until we hit a branching node, 3. At
this point we take the upper path. We continue until we get to node 5, at
which time we again take the upper path. When we arrive at node 7, we can
go no further. However, we have not yet reached our goal. We must therefore
backtrack to node 5 and take the next path. At node 8 we again backtrack to
node 5 and take the third path. Once again, at node 11, we must backtrack,
this time way back to node 3. As we follow the path from node 12 we finally
arrive at node 16, our goal. Note that we did not examine the path that con-
tains nodes 17 and 18. 

By now you should have begun to formulate an algorithm in your head.
Every time we get to a decision point, we need to remember where it is so
that we can get back to it if necessary. When we backtrack we want to go
back to the nearest point before we continue; that is, we don’t want to start
at the beginning again. For this problem we use the LIFO data structure,
the stack.

The question now is what to put into the stack. If we only needed to
locate the node that contains the goal, we would just put the branch point
nodes into the stack. However, when we are finished we want to print out the
path that leads to our goal. Therefore, we must also put the nodes in the valid
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path into the stack. Because we are putting two things into the stack, we
need to be able to tell them apart. We do that with a flag. If the node is in the
path, we push a path token. If we are storing a backtracking point, we set the
flag to a backtracking token.

Figure 3-18 contains our stack tracing of the path to our goal in Figure 3-17.
We use B to indicate that we have stored a backtracking node. If there is no
token, the stack contains a path node.

We start by pushing 1, 2, and 3 into the stack. Because 3 is not our goal,
we follow the upper path. However, we need to remember that we made a deci-
sion here. Therefore, we push the branch point, 12, into a stack with a back-
tracking token, as shown in Figure 3-18(a). At 5 we must make another
decision. Again, we follow the upper path. This time we have two continue
points, 8 and 9, that we need to remember. So, we push both into the stack
with backtracking tokens. This point is shown in Figure 3-18(b). At 7 we have
reached the end of the path without finding our goal. See Figure 3-15(c). To
continue we pop the stack until we are at a backtracking point. We then push
the backtracking point into the stack as a path node and move on toward 8. In
our diagram we immediately hit another dead end, as shown in Figure 3-18(d).
After backtracking to 9, we continue until we get to the dead end at node 11.
See Figure 3-18(e). Once again we backtrack, this time to node 12. Following
the path to 13, we push a decision node into the stack (B17) and continue on
until we find our goal, at node 16.

We now know the path to our goal, we only need to print it out. The print
loop simply pops the stack and prints the path. We ignore any backtracking
points left in the stack, such as B17 in Figure 3-18(f).

FIGURE 3-18 Backtracking Stack Operation
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We present the solution in algorithmic form. Until we study the creation
and storage of graphs in Chapter 12, we cannot develop the C code. The
pseudocode solution is found in Algorithm 3-12.

ALGORITHM 3-12 Print Path to Goal

Algorithm 3-12 Analysis This algorithm demonstrates one of the values of pseudocode and why it is popular
when discussing algorithms with users. You will not have enough data structure knowl-
edge until Chapter 11 (graphs) to solve this problem on a computer. Yet even though
we don’t have a data structure to solve it, we can still develop and understand the
algorithm. 

Algorithm seekGoal (map)
This algorithm determines the path to a desired goal.

Pre  a graph containing the path
Post path printed 

1 createStack (stack)
2 set pMap to starting point
3 loop (pMap not null AND goalNotFound)

1 if (pMap is goal)
1 set goalNotFound to false

2 else
1 pushStack (stack, pMap)
2 if (pMap is a branch point)

1 loop (more branch points)
1 create branchPoint node
2 pushStack (stack, branchPoint)

2 end loop
3 end if
4 advance to next node

3 end if
4 end loop
5 if (emptyStack (stack))

1 print (There is no path to your goal)
6 else

1 print (The path to your goal is:)
2 loop (not emptyStack (stack))

1 popStack (stack, pMap)
2 if (pMap not branchPoint)

1 print(map point)
3 end if

3 end loop
4 print (End of Path)

7 end if
8 return
end seekGoal
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Eight Queens Problem
A classic chess problem requires that you place eight queens on the chess-
board in such a way that no queen can capture another queen. There are
actually several different solutions to this problem. The computer solution to
the problem requires that we place a queen on the board and then analyze all
of the attack positions to see if there is a queen that could capture the new
queen. If there is, then we try another position.5

To demonstrate a sample solution, let’s analyze how we would place four
queens on a 4 × 4 chessboard. The queen’s capture rules and one solution are
shown in Figure 3-19.

FIGURE 3-19 Four Queens Solution

We can solve this problem using a stack and backtracking logic. Because
only one queen can be placed in any row, we begin by placing the first queen
in row 1, column 1. This location is then pushed into a stack, giving the posi-
tion shown in Figure 3-20, step 1. 

After placing a queen in the first row, we look for a position in the second
row. Position 2,1 is not possible because the queen in the first row is guarding
this location on the vertical. Likewise, position 2,2 is guarded on the diago-
nal. We therefore place a queen in the third column in row 2 and push this
location into the stack. This position is shown in Figure 3-20, step 2. 

We now try to locate a position in row 3, but none are possible. The
first column is guarded by the queen in row 1, and the other three positions
are guarded by the queen in row 2. At this point we must backtrack to the
second row by popping the stack and continue looking for a position for the
second-row queen. Because column 4 is not guarded, we place a queen
there and push its location into the stack (step 3 in Figure 3-20). 

5. A queen can attack another queen if it is in the same row, in the same column, or in the same diagonal.
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FIGURE 3-20 Four Queens Step-by-Step Solution

Looking again at row 3, we see that the first column is still guarded by
the queen in row 1 but that we can place a queen in the second column. We
do so and push this location into the stack (step 4 in Figure 3-20).

When we try to place a queen in row 4, however, we find that all posi-
tions are guarded. Column 1 is guarded by the queen in row 1 and the
queen in row 3. Column 2 is guarded by the queen in row 2 and the queen
in row 3. Column 3 is guarded by the queen in row 3, and column 4 is
guarded by both the queen in row 1 and the queen in row 2. We therefore
backtrack to the queen in row 3 and try to find another place for her.
Because the queen in row 2 is guarding both column 3 and column 4, there
is no position for a queen in row 3. Once again we backtrack by popping the
stack and find that the queen in row 2 has nowhere else to go, so we back-
track to the queen in row 1 and move her to column 2. This position is
shown in Figure 3-20, step 5.

Analyzing row 2, we see that the only possible position for a queen is col-
umn 4 because the queen in row 1 is guarding the first three positions. We
therefore place the queen in this location and push the location into the
stack (step 6 in Figure 3-20).
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Column 1 in the third row is unguarded, so we place a queen there (step
7 in Figure 3-20). Moving to row 4, we find that the first two positions are
guarded, the first by the queen in row 3 and the second by all three queens.
The third column is unguarded, however, so we can place the fourth queen in
this column for a solution to the problem.

Generalizing the solution, we see that we place a queen in a posi-
tion in a row and then examine all positions in the next row to see if a
queen can be placed there. If we can’t place a queen in the next row, we
backtrack to the last-positioned queen and try to position her in the
next column. If there is no room in the next column, we fall back again.
Given that there is a solution,6 this trial-and-error method works well. A
pseudocode solution using our stack abstract data type is shown in
Algorithm 3-13.

ALGORITHM 3-13 Eight Queens Problem

6. There are no solutions for boards less than 4 x 4 positions. All boards from 4 x 4 to 8 x 8 have at least
one solution.

Algorithm queens8 (boardSize)
Position chess queens on a game board so that no queen can 
capture any other queen.

Pre  boardSize is number of rows & columns on board
Post queens’ positions printed

1 createStack (stack)
2 set row to 1
3 set col to 0
4 loop (row <= boardSize)

1 loop (col <= boardSize AND row <= boardSize)
1 increment col
2 if (not guarded (row, col))

1 place queen at row-col intersection on board
2 pushStack (row-col into stack)
3 increment row
4 set col to 0

3 end if
      At end of row. Back up to previous position.

4 loop (col >= boardSize)
1 popStack (row-col from stack)
2 remove queen from row-col intersection on board

5 end loop
2 end loop

5 end loop
6 printBoard (stack)
7 return
end queens8
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We now develop a C program to implement the eight queens problem. The
program begins by requesting the board size from the user and then creating a
stack to store the queens’ positions. After creating the stack, the main line calls
a function that fills the board with the maximum number of queens for the
board size. It then prints the results. The design is shown in Figure 3-21.

FIGURE 3-21 Design for Eight Queens

As shown in the design, only one other function, guarded, is needed. It
is called as each position surrounding the potential placement of a new
queen is examined.

When designing a program, it is often necessary to resolve differences
between the technical and user perspectives of the problem. In the eight
queens program, this difference is seen in the terminology used to place the
queens on the board. Users number the rows and columns starting at 1; C
numbers them starting with 0. To resolve this difference, we added a dummy
row and column to the board array, creating a 9 × 9 board. We then ignore
row 0 and column 0 in the processing. 

The global declarations and main line code are shown in Program 3-20.

PROGRAM 3-20 Eight Queens Mainline

continued

1
2
3
4
5
6
7
8
9
10
11
12

/* This program tests the eight queens algorithm. Eight 
queens is a classic chess problem in which eight 
queens are placed on a chess board in positions 
such that no queen can capture another queen.
   Written by:
   Date:

*/
#include <stdio.h>
#include <stdlib.h>
#include "P4StkADT.h" 

// Structure Declarations 

getSize printBoard

guarded

fillBoard

EightQueens
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PROGRAM 3-20 Eight Queens Mainline (continued)

The function to read the board size from the keyboard is shown in
Program 3-21.

PROGRAM 3-21 Eight Queens: Get Board Size

continued

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

typedef struct
   {
    int  row;
    int  col;
   } POSITION;

// Prototype Declarations 
int  getSize   (void);

void fillBoard  (STACK* stack, int boardSize);
void printBoard (STACK* stack, int boardSize);

bool guarded (int board[][9], int row, 
              int col,        int boardSize);

int main (void) 
{
// Local Definitions 

int  boardSize;

STACK* stack ;

// Statements 
boardSize = getSize ();
stack     = createStack ();

fillBoard    (stack, boardSize);
printBoard   (stack, boardSize);
destroyStack (stack);

printf("\nWe hope you enjoyed Eight Queens.\n");
return 0;

} // main 

1
2
3
4
5
6
7

/* ===================== getSize ======================
Prompt user for a valid board size.
   Pre  nothing 
   Post valid board size returned 

*/
int getSize (void)
{
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PROGRAM 3-21 Eight Queens: Get Board Size (continued)

The longest function in the program is fillBoard. It loops using a trial-
and-error concept to place the maximum number of queens on the board.
Each possible position in a row is tested by calling guarded. If the position is
good, its location is placed in the stack and the next row is analyzed. If it is
not good, the stack is popped and we back up to try another position in the
previous row. When all of the rows have a queen, the problem is solved. The
code is shown in Program 3-22. 

PROGRAM 3-22 Eight Queens: Fill Board 

continued

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// Local Definitions 
int boardSize;

// Statements 
printf("Welcome to Eight Queens. You may select\n"
       "a board size from 4 x 4 to 8 x 8. I will\n" 
       "then position a queen in each row of the\n"
       "board so no queen may capture another\n"
       "queen. Note: There are no solutions for \n"
       "boards less than 4 x 4.\n");
printf("\nPlease enter the board size: ");
scanf ("%d", &boardSize);
while (boardSize < 4 || boardSize > 8)
   {
    printf("Board size must be greater than 3 \n"
           "and less than 9. You entered %d.\n"
           "Please re-enter. Thank you.\a\a\n\n"
           "Your board size: ", boardSize);
    scanf ("%d", &boardSize);
   } // while 
return boardSize;

} // getSize 

1
2
3
4
5
6
7
8
9
10
11
12
13

/* =================== fillBoard ====================
Position chess queens on game board so that no queen 
can capture any other queen.
   Pre  boardSize number of rows & columns on board
   Post Queens’ positions filled

*/
void fillBoard (STACK* stack, int boardSize)
{
// Local Definitions 

int  row;
int  col;
int  board[9][9] = {0};  // 0 no queen: 1 queen 
                         // row 0 & col 0 !used 
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PROGRAM 3-22 Eight Queens: Fill Board (continued)

Program 3-22 Analysis In this backtracking problem, we need to back up to the row and column that contains
the last queen we placed on the board. In statements 30 and 31,  we  save  the row
and column in a structure and then pass the position to pushStack in statement 33. 

Examine the while in statement 38 carefully. It is used to backtrack when no posi-
tions in a row are found. We must backtrack when the column becomes greater than or
equal to the board size, indicating that we have examined all of the positions in the row
and found none that satisfies the requirements. (If we had found an unguarded position,
we would have advanced the row in statement 35.)

The logic for guarded is shown in Program 3-23. It uses a brute force,
trial-and-error method to determine whether the new queen is safe. Note that
we only need to test for queens attacking from above. There can be no
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POSITION* pPos;

// Statements 
row = 1;
col = 0;

while (row <= boardSize)
  {
   while (col <= boardSize && row <= boardSize)
     {
      col++;
      if (!guarded(board, row, col, boardSize))
         {
          board[row][col] = 1;

          pPos = (POSITION*)malloc(sizeof(POSITION));
          pPos->row = row;
          pPos->col = col;
            
          pushStack(stack, pPos);
          
          row++;
          col = 0;
         } // if 
       while (col >= boardSize)
         {
          pPos = popStack(stack);
          row  = pPos->row;
          col  = pPos->col;
          board[row][col] = 0;
          free (pPos);
         } // while col 
      } // while col 
  } // while row 
return;

} // fillBoard 
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queens below the current row. If the queen is not safe, we return true—her
current position is guarded. If she is safe, we return false.

PROGRAM 3-23 Eight Queens: Guarded

The printBoard function simply prints out the positioning of the
queens on the board. A sample output is shown at the end of Program 3-24. 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/* ===================== guarded ==================
Checks rows, columns, diagonals for guarding queens

   Pre  board contains current positions for queens
        chkRow & chkCol are position for new queen
        boardSize is number of rows & cols in board
   Post returns true if guarded; false if not

*/
bool guarded (int board[][9], int chkRow,
              int chkCol,     int boardSize)
{
// Local Definitions 

int row;
int col;

// Statements 

// Check current col for a queen 
col = chkCol;
for (row = 1; row <= chkRow; row++)
    if (board[row][col] == 1)
       return true;
       
// Check diagonal right-up 
for (row = chkRow - 1, col = chkCol + 1;
     row > 0 && col <= boardSize;
     row--, col++)
    if (board[row][col] == 1)
       return true;
       
// Check diagonal left-up 
for (row = chkRow - 1, col = chkCol - 1;
     row > 0 && col > 0;
     row--, col--)
    if (board[row][col] == 1)
       return true;
       
return false;

} // guarded 
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PROGRAM 3-24  Eight Queens: Print Board

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

/* =================== printBoard ====================
Print positions of chess queens on a game board
Pre  stack contains positions of queen
     boardSize is the number of rows and columns
Post Queens’ positions printed

*/
void printBoard (STACK* stack, int boardSize)
{
// Local Definitions 

int col;

POSITION* pPos;
STACK*    pOutStack;

// Statements 
if (emptyStack(stack))
    {
     printf("There are no positions on this board\n");
     return;
    } // if 
    
printf("\nPlace queens in following positions:\n");

// Reverse stack for printing 
pOutStack = createStack ();
while (!emptyStack (stack))
   {
    pPos = popStack (stack);
    pushStack (pOutStack, pPos);
   } // while 

// Now print board 
while (!emptyStack (pOutStack))
   {
    pPos = popStack (pOutStack);
    printf("Row %d-Col %d: \t|", 
            pPos->row, pPos->col);
    for (col = 1; col <= boardSize; col++)
       {
        if (pPos->col == col)
            printf(" Q |");
        else
            printf("   |");
       } // for 
    printf("\n");
   } // while 
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PROGRAM 3-24 Eight Queens: Print Board (continued)

3.6 How Recursion Works
In Chapter 2 we discussed recursion but did not explain how it physically
works. Now that we’ve discussed stacks, we can discuss the physical opera-
tion of recursion. 

To understand how recursion works, we need to first explore how any call
works. When a program calls a subroutine—for example, a function in C—
the current module suspends processing and the called subroutine takes over
control of the program. When the subroutine completes its processing and
returns to the module that called it, the module wakes up and continues its
processing. One important point in this interaction is that, unless changed
through call by reference, all local data in the calling module are unchanged.
Every local variable must be in the same state when processing resumes as it
was when processing suspended. Similarly, the parameter list must not be
changed. The value of the parameters must be the same before and after a
call, unless they are reference parameters.

Let’s look at an example of a simple call and see how it works. Figure 3-22
contains an algorithm called testPower that prints the value of a number x
raised to a power y. To illustrate the function call, we use a separate algo-
rithm, power, to determine the actual value of xy.

47
48
49

destroyStack(pOutStack);
return;

} // printBoard 

Results:
Welcome to Eight Queens. You may select
a board size from 4 x 4 to 8 x 8. I will
then position a queen in each row of the
board so no queen may capture another 
queen. Note: There are no solutions for  
boards less than 4 x 4.

Please enter the board size: 4

Place queens in following positions:
Row 1-Col 2:    | Q |   |   |
Row 2-Col 4:    |   |   | Q |
Row 3-Col 1:  Q |   |   |   |
Row 4-Col 3:    |   | Q |   |

We hope you enjoyed Eight Queens.
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FIGURE 3-22 Call and Return

Our little program contains three local variables: the base number, base;
the exponent, exp; and the answer, result. The base and exponent values
must not be changed by the call to power.7 When power terminates, it
returns the value of xy, which is stored in the local variable, result. 

When power begins to execute, it must know the values of the parame-
ters so that it can process them. It must also know where it needs to return
when its processing is done. Finally, because power returns a value, it must
know where the value is to be placed when it terminates. The physical imple-
mentation is determined by the compiler writer, but these data are conceptu-
ally placed in a stackframe. When power is called, the stackframe is created and
pushed into a system stack. When it concludes, the stackframe is popped, the
local variables are replaced, the return value is stored, and processing
resumes in the calling algorithm.

Now that you understand how a call works, you are ready to see how
recursion works. Algorithm 3-14 contains a recursive version of the power
algorithm discussed earlier.

7. In this discussion, we assume a recursive compiler. Languages such as COBOL and FORTRAN
operate under a different, nonrecursive design in which there are no local variables.

A stackframe contains four different elements:
1. The parameters to be processed by the called algorithm
2. The local variables in the calling algorithm
3. The return statement in the calling algorithm
4. The expression that is to receive the return value (if any)

program testPower

1 read  (base, exp)
2 result = power  (base, exp)
3 print ("base**exp is", result)

end testPower

algorithm power (base, exp)
1 set num to 1
2 loop while exp greater 0
  1 set num to num * base
  2 decrement exp
3 end loop
4 return num
end power
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ALGORITHM 3-14 Recursive Power Algorithm

In Figure 2-4, we traced the calls for the recursive factorial algorithm.
This example is logically correct, but it oversimplifies the calls. Figure 3-23
traces the execution of Algorithm 3-14 in its recursive version and shows the
contents of the system stack for each call.

FIGURE 3-23 Stackframes for Power (5, 2)

Algorithm power (base, exp)
This algorithm computes the value of a number, base, raised 
to the power of an exponent, exp.

Pre    base is the number to be raised
       exp is the exponent
Post   value of base raised to power exp computed
Return value of base raised to power exp returned

1 if (exp is 0)
1 return (1)

2 else
1 return (base * power (base, exp - 1))

3 end if
end power

Calls

Stackframes

Returns

Stackframes

1. Parameters 5, 2
2. Local  Var none
3. Return to testPower
4. Return value unknown

1. Parameters 5, 2
2. Local  Var none
3. Return to testPower
4. Return value 5  *  5

1. Parameters  5, 1
2. Local Var none
3. Return power 2.1
4. Return value unknown

1. Parameters 5, 2
2. Local  Var none
3. Return to testPower
4. Return value unknown

1. Parameters  5, 1
2. Local Var none
3. Return power 2.1
4. Return value 5  *  1

1. Parameters 5, 2
2. Local  Var none
3. Return to testPower
4. Return value unknown

1. Parameters  5, 1
2. Local Var none
3. Return power 2.1
4. Return value unknown

1. Parameters  5, 0
2. Local Var none
3. Return power 2.1
4. Return value unknown

1. Parameters 5, 2
2. Local  Var none
3. Return to testPower
4. Return value unknown

1. Parameters  5, 1
2. Local Var none
3. Return power 2.1
4. Return value unknown

1. Parameters  5, 0
2. Local Var none
3. Return power 2.1
4. Return value 1

1. Parameters 5, 2
2. Local  Var none
3. Return to testPower
4. Return value unknown
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Referring to Figure 3-23, power is called initially by testPower with the
base and exponent set to 5 and 2, respectively. The first stackframe was cre-
ated by the original call and contains a return location in the calling algo-
rithm, testPower. In the second call, the base is unchanged but the
exponent becomes 1. This call creates the second stackframe in Figure 3-23.
Note that the parameters are changed and the return address is now power 2.1.
In the third iteration, the exponent becomes 0. This call is shown in the third
stackframe.

At this point we have reached the base case and begin backing out of the
recursion. As each return statement is executed, we return to statement 2.1 in
power, first with the value of 1 (the base case), then with a value of 5 (5 × 1),
and finally with a value of 25 (5 × 5). When we return the third time, we
return to the original calling algorithm, testPower. 
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3.7 Key Terms

3.8 Summary
❏ A stack is a linear list in which all additions are restricted to one end,

called the top. A stack is also called a LIFO list.

❏ We have defined eight operations for a stack: create stack, push stack, pop
stack, stack top, empty stack, full stack, stack count, and destroy stack.

❏ Create stack initializes the stack metadata.

❏ Push stack adds an item to the top of the stack. After the push, the new
item becomes the top.

❏ Each push must ensure that there is room for the new item. If there is no
room, the stack is in an overflow state.

❏ Pop stack removes the item at the top of the stack. After the pop the next
item, if any, becomes the top. Each pop must ensure that there is at least
one item in the stack. If there is not at least one item, the stack is in an
underflow state.

❏ The stack top operation only retrieves the item at the top of the stack.
Each top execution must ensure that there is at least one item in the stack.
If there is not at least one item, the stack is in an underflow state.

❏ Empty stack determines whether the stack is empty and returns a Boolean
true if it is.

❏ Full stack determines whether there is room for at least one more item and
returns a Boolean false if there is.

❏ Stack count returns the number of elements currently in the stack.

backtracking
create stack
data node
destroy stack
empty stack
full stack
head
last in–first out (LIFO)
metadata
overflow 
parsing

pop
pop stack 
push
push stack
self-referential data structure
stack 
stack count
stackframe
stack top
top
underflow
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❏ Destroy stack releases all allocated data memory to dynamic memory. 

❏ One of the applications of a stack is reversing data. The nature of a stack
(last in–first out) allows us to push items into a stack and pop them in
reverse order.

❏ Stacks are commonly used to parse data, postpone the use of data, and
backtrack steps in a path. 

❏ When a module calls a subroutine recursively, in each call all of the infor-
mation needed by the subroutine is pushed in the stackframe. The infor-
mation is popped in the reverse order when subroutines are terminated
one after another, until finally control is returned to the initial calling
module. 

❏ A stack is used to facilitate recursive calls. When a program calls a subrou-
tine, the system creates a stackframe to store: 

1. The value of the parameters

2. The value of the local variables

3. The return address in the calling module

4. The return value

3.9 Practice Sets

Exercises
1. Imagine we have two empty stacks of integers, s1 and s2. Draw a picture

of each stack after the following operations:

1 pushStack  (s1, 3)
2 pushStack  (s1, 5)
3 pushStack  (s1, 7)
4 pushStack  (s1, 9)
5 pushStack  (s1, 11)
6 pushStack  (s1, 13)
7 loop not emptyStack (s1)

1 popStack  (s1, x)
2 pushStack (s2, x)

8 end loop
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2. Imagine we have two empty stacks of integers, s1 and s2. Draw a picture
of each stack after the following operations:

3. Using manual transformation, write the following infix expressions in their
postfix and prefix forms:

a. D – B + C
b. A * B + C * D
c. (A + B) * C – D * F + C
d. (A – 2 * (B + C) – D * E) * F

4. Using manual transformation, change the following postfix or prefix
expressions to infix:

a. A B * C – D +
b. A B C + * D –
c. + – * A B C D
d. – * A + B C D

5. If the values of A, B, C, and D are 2, 3, 4, and 5, respectively, manually
calculate the value of the following postfix expressions:

a. A B * C – D +
b. A B C + * D –

6. If the values of A, B, C, and D are 2, 3, 4, and 5, respectively, manually
calculate the value of the following prefix expressions:

a. + – * A B C D
b. – * A + B C D

7. Change the following infix expressions to postfix expressions using the
algorithmic method (a stack):

a. D – B + C
b. A * B + C * D 
c. (A + B) * C – D * F + C 
d. (A – 2 * (B + C) – D * E) * F

1 pushStack (s1, 3)
2 pushStack (s1, 5)
3 pushStack (s1, 7)
4 pushStack (s1, 9)
5 pushStack (s1, 11)
6 pushStack (s1, 13)
7 loop not emptyStack (s1)

1 popStack  (s1, x)
2 popStack  (s1, x)
3 pushStack (s2, x)

8 end loop
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8. Determine the value of the following postfix expressions when the vari-
ables have the following values: A is 2, B is 3, C is 4, and D is 5.

a. A B C D * – +
b. D C * B A + –

Problems
9. Write a program to implement Algorithm 3-15, “Reverse a Number

Series.” Test your program with the number series 1, 3, 5, 7, 9, 2, 4, 6, 8.

10. Write the pseudocode for an algorithm that prints a decimal number as an
octal number.

11. Write a program that changes a decimal number to a hexadecimal number.
(Hint: If the remainder is 10, 11, 12, 13, 14, or 15, print A, B, C, D, E, or
F, respectively.)

12. Write a program to implement Algorithm 3-9, “Parse Parentheses,” match-
ing braces rather than parentheses. In your implementation, push the line
number into the stack rather than the opening brace. When an error
occurs, print the line number for the unmatched opening brace or
unmatched closing brace. Test your program by running the source code
through itself (there should be no errors) and then test it with the follow-
ing small program:

13. Write a program that implements the infix-to-postfix notation (see Algo-
rithm 3-10, “Convert Infix to Postfix”). The program should read an infix
string consisting of single alphabetic characters for variables, parentheses,
and the +, -, *, and / operators; call the conversion algorithm; and then
print the resulting postfix expression. After transforming an algorithm, it
should loop and convert another infix string. To test your program, trans-
form the expressions in Exercise 3 with your program.

Test brace errors.
} line 2 closing brace is not paired 
No braces.
   {opening brace is paired on same line}
No braces.
   {opening brace paired later
    No braces.
   } Closing brace paired two lines up.
{{{ Line 9. Three braces--only two paired.
  } First closing brace
 } Second closing brace.
End of program. One opening brace left.
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14. Change Problem 13 to allow multicharacter variable identifiers and
numeric constants as shown in the following expression:

15. Write a program to implement the postfix evaluation (see Algorithm 3-11,
“Evaluation of Postfix Expressions”). The program should read a postfix
string consisting of only multidigit numeric data and the +, -, *, and /
operators; call the evaluation algorithm; and then print the result. After
each evaluation it should loop and process another evaluation. Evaluate
the following expressions with your program:

16. One of the applications of a stack is to backtrack—that is, to retrace its
steps. As an example, imagine we want to read a list of items, and each
time we read a negative number we must backtrack and print the five
numbers that come before the negative number and then discard the neg-
ative number.

Use a stack to solve this problem. Read the numbers and push them
into the stack (without printing them) until a negative number is read. At
this time, stop reading and pop five items from the stack and print them. If
there are fewer than five items in the stack, print an error message and
stop the program.

After printing the five items, resume reading data and placing them in
the stack. When the end of the file is detected, print a message and the
items remaining in the stack.

Test your program with the following data:
1 2 3 4 5 -1 1 2 3 4 5 6 7 8 9 10 -2 11 12 -3 1 2 3 4 5

17. Write the pseudocode for an algorithm called copyStack that copies the
contents of one stack into another. The algorithm passes two stacks, the
source stack and the destination stack. The order of the stacks must be
identical. (Hint: Use a temporary stack to preserve the order.)

18. Write a new ADT function, catStack, that concatenates the contents of
one stack on top of another. Test your function by writing a program that
uses the ADT to create two stacks and prints them. It should then concat-
enate the stacks and print the resulting stack.

19. A palindrome is a string that can be read backward and forward with the
same result. For example, the following is a palindrome:

Able was I ere I saw Elba.

num + 18 * factor

25 7 * 14 - 6 +
1 24 3 + * 41 -
2 37 4 + * 15 -
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Write a function to test if a string is a palindrome using a stack. You can
push characters in the stack one by one. When you reach the end of the
string, you can pop the characters and form a new string. If the two strings
are exactly the same, the string is a palindrome. Note that palindromes
ignore spacing, punctuation, and capitalization. Test your program with
the following test cases:

Go dog
Madam, I’m Adam

Madam, I’m not a palindrome 

20. Write a program that reads a text file, one line at a time, and prints the line
as it was read and then prints the line with its text reversed. Print a blank
line after each reversed line.

21. Write the pseudocode for an algorithm that reverses the contents of a
stack (the top and bottom elements exchange positions, the second and
the element just before the bottom exchange positions, and so forth until
the entire stack is reversed). (Hint: Use temporary stacks.)

22. Write a function to check whether the contents of two stacks are identical.
Neither stack should be changed. You need to write a function that prints
the contents of a stack to verify that your function works.

Projects
23. Given a square matrix, write a program that determines the number of

white blocks and total number of squares in each of the white blocks. By
definition the outside boundaries of the matrix must be shaded. A block of
white squares consists of all of the white squares whose side boundaries
are adjacent to another white square. White squares that touch only at a
diagonal point are not adjacent. 

In Figure 3-24, we have numbered the white blocks. Block 1 contains
three squares, and block 4 contains nine squares. Note that block 3 con-
tains only one square. It touches block 1 only on the diagonal.

FIGURE 3-24 Project 23: Find White Blocks
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Obtain the square definition from a text file. The file should contain a
square matrix composed of zeros for shaded squares and nonzero values
for white squares. The input for Figure 3-24 is shown below. The matrix
should be allocated from dynamic memory.

At the end of the program, print a report showing the number of white
blocks and the number of squares in each.

24. Write a program that simulates a mouse in a maze. The program must
print the path taken by the mouse from the starting point to the final
point, including all spots that have been visited and backtracked. Thus, if a
spot is visited two times, it must be printed two times; if it is visited three
times, it must be printed three times.

The maze is shown in Figure 3-25. The entrance spot, where the mouse
starts its journey, is chosen by the user who runs the program. It can be
changed each time. 

FIGURE 3-25 Mouse Maze for Project 24

A two-dimensional array can be used as a supporting data structure to
store the maze. Each element of the array can be black or white. A black
element is a square that the mouse cannot enter. A white element is a
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square that can be used by the mouse. In the array a black element can be
represented by a 1 and a white element by a 0.

When the mouse is traversing the maze, it visits the elements one by
one. In other words, the mouse does not consider the maze as an array of
elements; at each moment of its journey, it is only in one element. Let’s
call this element the currentSpot. It can be represented by a structure of
two integer fields. The first field is the row and the second is the column
coordinate of the spot in the maze. For example, the exit in Figure 3-25 is
at (5,12)—that is, row 5, column 12.

The program begins by creating the maze. It then initializes the exit spot
and prompts the user for the coordinates of the entrance spot. The pro-
gram must be robust. If the user enters coordinates of a black spot, the
program must request new coordinates until a white spot is entered. The
mouse starts from the entrance spot and tries to reach the exit spot and its
reward. Note, however, that some start positions do not lead to the exit.

As the mouse progresses through its journey, print its path. As it enters
a spot, the program determines the class of that spot. The class of a spot
can be one of the following: 

a. Continuing—A spot is a continuing spot if one and only one of the
neighbors (excluding the last spot) is a white spot. In other words, the
mouse has only one choice.

b. Intersection—A spot is an intersection spot if two or more of the neigh-
bors (excluding the last spot) is a white spot. In other words, the mouse
has two or more choices.

c. Dead end—A spot is a dead-end spot if none of the neighbors (exclud-
ing the last spot) is a white spot. In other words, the mouse has no spot
to choose. It must backtrack.

d. Exit—A spot is an exit spot if the mouse can get out of the maze. When
the mouse finds an exit, it is free and receives a piece of cheese for a
reward.

To solve this problem, you need two stacks. The first stack, the visited
stack, contains the path the mouse is following. Whenever the mouse
arrives at a spot, it first checks to see whether it is an exit. If not, its loca-
tion is placed in the stack. This stack is used if the mouse hits a dead end
and must backtrack. Whenever the mouse backtracks to the last decision
point, also print the backtrack path.

When the mouse enters an intersection, the alternatives are placed in a
second stack. This decision point is also marked by a special decision
token that is placed in the visited stack. The decision token has coordi-
nates of (–1,–1). To select a path, an alternative is then popped from the
alternatives stack and the mouse continues on its path.

While backtracking, if the mouse hits a decision token, the token is dis-
carded and the next alternative is selected from the alternatives stack. At
this point print an asterisk (*) next to the location to show that the next
alternative path is being selected.
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If the mouse arrives at a dead end and both stacks are empty, the mouse
is locked in a portion of the maze with no exit. In this case, print a trapped
message and terminate the search for an exit.

After each trial, regardless of the outcome, the user should be given the
opportunity to stop or continue.

25. Write a program that implements the stack ADT described in Section 3.4,
“Stack ADT.” To test your implementation, write a menu-driven user inter-
face to test each of the operations in the ADT. For the test, use integer
data as described below. Error conditions should be printed as a part of the
test results. A suggested menu is shown below.

Test your program with the following test case. You may include addi-
tional test cases. The menu operation is shown at the end of the test.

a. Print stack status: Empty [E]
b. Pop and print data (should return error) [B]
c. Push data into stack: 1 [A]
d. Push data into stack: 2 [A]
e. Print stack status: Empty [E]
f. Print stack status: Full [F]
g. Print data at top of stack [C]
h. Print entire stack (top to base) [D]
i. Print number of elements in stack [G]
j. Pop and print data [B]
k. Pop and print data [B]
l. Pop and print data (should return empty) [B]
m. Push data into stack: 3 [A]
n. Print data at top of stack [C]
o. Destroy stack and quit [H]

26. Write a program to find all solutions to the eight queens problem. Your
program will need to be able to handle a search for a configuration that
has no solution.

27. Modify the user interface in Project 25 to manipulate two different stacks
with two different types of data. The first stack is to contain integer data.
The second stack is to contain alphabetic data. In addition to the test data
in Project 25, create a set of alphabetic test data that tests the alphabetic
stack with a similar set of operations.

A. Push data into stack
B. Pop and print data
C. Print data at top of stack
D. Print entire stack (top to base)
E. Print stack status: Empty
F. Print stack status: Full
G. Print number of elements in stack
H. Destroy stack and quit
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Chapter 4
Queues

A queue is a linear list in which data can only be inserted at one end, called the
rear, and deleted from the other end, called the front. These restrictions ensure
that the data are processed through the queue in the order in which they are
received. In other words, a queue is a first in–first out (FIFO) structure.

A queue is the same as a line. In fact, if you were in England, you would
not get into a line, you would get into a queue. A line of people waiting for
the bus at a bus station is a queue, a list of calls put on hold to be answered
by a telephone operator is a queue, and a list of waiting jobs to be processed
by a computer is a queue.

Figure 4-1 shows two representations of a queue: one a queue of people
and the other a computer queue. Both people and data enter the queue at the
rear and progress through the queue until they arrive at the front. Once they
are at the front of the queue, they leave the queue and are served.

FIGURE 4-1 Queue Concept

(b) Computer queue

(a) Queue (line) of people
Insert

(enqueue)
Remove

(dequeue)

front rear

Banks'R'Us
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4.1 Queue Operations
There are four basic queue operations. Data can be inserted at the rear,
deleted from the front, retrieved from the front, and retrieved from the rear.
Although there are many similarities between stacks and queues, one signifi-
cant structural difference is that the queue implementation needs to keep
track of the front and the rear of the queue, whereas the stack only needs to
worry about one end: the top.

Enqueue
The queue insert operation is known as enqueue. After the data have been
inserted into the queue, the new element becomes the rear. As we saw with
stacks, the only potential problem with enqueue is running out of room for
the data. If there is not enough room for another element in the queue, the
queue is in an overflow state.

Figure 4-2 shows the enqueue operation.

FIGURE 4-2 Enqueue

Dequeue
The queue delete operation is known as dequeue. The data at the front of the
queue are returned to the user and removed from the queue. If there are no data
in the queue when a dequeue is attempted, the queue is in an underflow state.

A queue is a linear list in which data can be inserted at one end, called the rear, and deleted from the
other end, called the front. It is a first in–first out (FIFO) restricted data structure.

Enqueue inserts an element at the rear of the queue.
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The dequeue operation is shown in Figure 4-3.

FIGURE 4-3 Dequeue

Queue Front
Data at the front of the queue can be retrieved with queue front. It returns the
data at the front of the queue without changing the contents of the queue. If
there are no data in the queue when a queue front is attempted, then the
queue is in an underflow state.

The queue front operation is shown in Figure 4-4.

FIGURE 4-4 Queue Front

Dequeue deletes an element at the front of the queue.

Queue front retrieves the element at the front of the queue.
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Queue Rear
A parallel operation to queue front retrieves the data at the rear of the queue.
It is known as queue rear. As with queue front, if there are no data in the queue
when a queue rear is attempted, the queue is in an underflow state.

The queue rear operation is shown in Figure 4-5.

FIGURE 4-5 Queue Rear

Queue Example
Figure 4-6 traces these four operations in an example. We start with an empty
queue and enqueue green and blue. At this point the queue contains two
entries. We then dequeue, which removes the entry at the front of the queue,
leaving blue as the only entry. After enqueuing red a queue front operation
returns blue to the caller but leaves it at the front of the queue. The next
operation, queue rear, returns red but leaves it in the queue. A dequeue then
removes blue, leaving red as the only entry in the queue. Finally, we
dequeue red, which results in an empty queue.

Queue rear retrieves the element at the rear of the queue.
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FIGURE 4-6 Queue Example

4.2 Queue Linked List Design
As with a stack, we implement our queue using a linked list. As we have
emphasized, the actual implementation may be different. For example, in
Appendix F we provide an array implementation for the queue ADT.
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Data Structure
We need two different structures to implement the queue: a queue head
structure and a data node structure. After it is created, the queue will have
one head node and zero or more data nodes, depending on its current state.
Figure 4-7 shows the conceptual and physical implementations for our queue
structure.

FIGURE 4-7 Conceptual and Physical Queue Implementations

Queue Head
The queue requires two pointers and a count. These fields are stored in the
queue head structure. Other queue attributes, such as the maximum number of
items that were ever present in the queue and the total number of items that
have been processed through the queue, can be stored in the head node if
such data are relevant to an application. The queue head structure is shown
in Figure 4-8.

FIGURE 4-8 Queue Data Structure
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(b) Physical queue
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Queue Data Node
The queue data node contains the user data and a link field pointing to the next
node, if any. These nodes are stored in dynamic memory and are inserted
and deleted as requested by the using program. Its structure is also shown in
Figure 4-8.

Queue Algorithms
The queue operations parallel those for a stack, with the addition of an algo-
rithm to look at the data at the rear of the queue. We define these operations
here and in the sections that follow. The four basic queue operations are
shown in Figure 4-9.

FIGURE 4-9 Basic Queue Functions
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Create Queue
The create queue operation is rather simple. All we have to do is set the metadata
pointers to null and the count to 0. The pseudocode for create queue is
shown in Algorithm 4-1.

ALGORITHM 4-1 Create Queue

Enqueue
The enqueue is a little more complex than inserting data into a stack. To
develop the insertion algorithm, we need to analyze two different queue con-
ditions: insertion into an empty queue and insertion into a queue with data.
These operations are shown in Figure 4-10.

FIGURE 4-10 Enqueue Example

When we insert data into an empty queue, the queue’s front and rear
pointers must both be set to point to the new node. When we insert data into
a queue with data already in it, we must point both the link field in the last

Algorithm createQueue 
Creates and initializes queue structure.

Pre    queue is a metadata structure
Post   metadata elements have been initialized
Return queue head

1 allocate queue head
2 set queue front to null 
3 set queue rear  to null 
4 set queue count to 0
5 return queue head
end createQueue

(a) Case 1: insert into empty queue

(b) Case 2: insert into queue with data
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node and the rear pointer to the new node. If the insert was successful, we
return a Boolean true; if there is no memory left for the new node, we return
a Boolean false. The pseudocode is shown in Algorithm 4-2.

ALGORITHM 4-2 Insert Data into Queue

Dequeue
Although dequeue is also a little more complex than deleting data from a
stack, it starts out much the same. We must first ensure that the queue con-
tains data. If the queue is empty, we have underflow and we return false, indi-
cating that the dequeue was not successful. 

Given that there are data to be dequeued, we pass the data back through
the parameter list and then set the front pointer to the next item in the
queue. If we have just dequeued the last item, the queue front pointer auto-
matically becomes a null pointer by assigning it the null pointer from the link
field of the last node. However, if the queue is now empty, we must also set
the rear pointer to null. These cases are shown in Figure 4-11.

The pseudocode is shown in Algorithm 4-3.

ALGORITHM 4-3 Delete Data from Queue

continued

Algorithm enqueue (queue, dataIn)
This algorithm inserts data into a queue. 

Pre    queue is a metadata structure 
Post   dataIn has been inserted 
Return true if successful, false if overflow 

1 if (queue full) 
1 return false

2 end if
3 allocate (new node)
4 move dataIn to new node data
5 set new node next to null pointer
6 if (empty queue)
Inserting into null queue
1 set queue front to address of new data

7 else
Point old rear to new node
1 set next pointer of rear node to address of new node

8 end if
9 set queue rear to address of new node

10 increment queue count 
11 return true
end enqueue 

Algorithm dequeue (queue, item)
This algorithm deletes a node from a queue.

Pre    queue is a metadata structure
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ALGORITHM 4-3 Delete Data from Queue (continued)

FIGURE 4-11 Dequeue Examples

Retrieving Queue Data
The only difference between the two retrieve queue operations—queue
front and queue rear—is which pointer is used, front or rear. Let’s look at
queue front. Its logic is identical to that of dequeue except that the data are
not deleted from the queue. It first checks for an empty queue and returns
false if the queue is empty. If there are data in the queue, it passes the data
back through dataOut and returns true. The pseudocode is shown in
Algorithm 4-4.

      item is a reference to calling algorithm variable
Post   data at queue front returned to user through item 
       and front element deleted 
Return true if successful, false if underflow 

1 if (queue empty)
1 return false

2 end if
3 move front data to item 
4 if (only 1 node in queue)
Deleting only item in queue
1 set queue rear to null 

5 end if
6 set queue front to queue front next
7 decrement queue count 
8 return true
end dequeue
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ALGORITHM 4-4 Retrieve Data at Front of Queue

To implement queue rear, copy Algorithm 4-4 and move the data at the
rear in statement 3.

Empty Queue
Empty queue returns true if the queue is empty and false if the queue contains
data. There are several ways to test for an empty queue. Checking the queue
count is the easiest. The pseudocode is shown in Algorithm 4-5.

ALGORITHM 4-5 Queue Empty

Full Queue
Like the stack, full queue is another structured programming implementation of
data hiding. Depending on the language, it may be one of the most difficult
algorithms to implement—ANSI C provides no direct way to implement it.
The pseudocode is shown in Algorithm 4-6.

ALGORITHM 4-6 Full Queue

continued

Algorithm queueFront (queue, dataOut) 
Retrieves data at the front of the queue without changing 
queue contents. 

Pre    queue is a metadata structure
       ƒdataOut is a reference to calling algorithm variable
Post   data passed back to caller
Return true if successful, false if underflow 

1 if (queue empty)
1 return false

2 end if
3 move data at front of queue to dataOut 
4 return true
end queueFront

Algorithm emptyQueue (queue)
This algorithm checks to see if a queue is empty. 

Pre    queue is a metadata structure
Return true if empty, false if queue has data 

1 if (queue count equal 0) 
1 return true

2 else
1 return false

end emptyQueue

Algorithm fullQueue (queue)
This algorithm checks to see if a queue is full. The queue
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ALGORITHM 4-6 Full Queue (continued)

Queue Count
Queue count returns the number of elements currently in the queue by simply
returning the count found in the queue head node. The code is shown in
Algorithm 4-7.

ALGORITHM 4-7 Queue Count

Destroy Queue
Destroy queue deletes all data in the queue. Algorithm 4-8 contains the code to
destroy a queue.

ALGORITHM 4-8  Destroy Queue

is full if memory cannot be allocated for another node. 
Pre    queue is a metadata structure
Return true if full, false if room for another node

1 if (memory not available)
1 return true

2 else
1 return false

3 end if
end fullQueue

Algorithm queueCount (queue)
This algorithm returns the number of elements in the queue.

Pre    queue is a metadata structure
Return queue count 

1 return queue count 
end queueCount

Algorithm destroyQueue (queue)
This algorithm deletes all data from a queue.

Pre     queue is a metadata structure
Post    all data have been deleted 

1 if (queue not empty)
1 loop (queue not empty)

1 delete front node
2 end loop

2 end if
3 delete head structure
end destroyQueue
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4.3 Queue ADT 
The queue abstract data type (ADT) follows the basic design of the stack
abstract data type. We begin by developing the queue data structure and
then we develop each of the queue algorithms in Section 4.2.

Queue Structure
The queue data structure is shown in Program 4-1. The node structure is identical
to the structure we used for a stack. Each node contains a void pointer to the
data and a link pointer to the next element in the queue. As with the stack,
the using program is responsible for allocating memory to store the data. 

Program 4-1 also contains the prototype statements for the queue
functions. In a production environment, it would be a queue header file,
such as queues.h.

PROGRAM 4-1 Queue ADT Data Structures

Queue ADT Algorithms
This section contains the C code for each of the queue algorithms. As you
study them, trace them through Figure 4-6, “Queue Example.”

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

//Queue ADT Type Defintions 
typedef struct node 
  {
   void*        dataPtr;
   struct node* next;
  } QUEUE_NODE;
typedef struct
  {
   QUEUE_NODE* front; 
   QUEUE_NODE* rear; 
   int         count; 
  } QUEUE;

//Prototype Declarations 
QUEUE* createQueue  (void);
QUEUE* destroyQueue (QUEUE* queue);

bool  dequeue    (QUEUE* queue, void** itemPtr);
bool  enqueue    (QUEUE* queue, void*  itemPtr);
bool  queueFront (QUEUE* queue, void** itemPtr);
bool  queueRear  (QUEUE* queue, void** itemPtr);
int   queueCount (QUEUE* queue);

bool  emptyQueue (QUEUE* queue);
bool  fullQueue  (QUEUE* queue); 

//End of Queue ADT Definitions
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Create Queue
Create queue allocates a node for the queue header. It then initializes the
front and rear pointers to null and sets the count to zero. If overflow occurs,
the return value is null; if the allocation is successful, it returns the address
of the queue head. The pseudocode design is shown in Algorithm 4-1. The
code for create queue is developed in Program 4-2.

PROGRAM 4-2 Create Queue

Enqueue
The logic for enqueue, as shown in Algorithm 4-2, is straightforward. If
memory is available, it creates a new node, inserts it at the rear of the queue,
and returns true. If memory is not available, it returns false. The code is
shown in Program 4-3.

PROGRAM 4-3 Enqueue

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

/*================= createQueue ================
Allocates memory for a queue head node from dynamic 
memory and returns its address to the caller.
   Pre    nothing
   Post   head has been allocated and initialized 
   Return head if successful; null if overflow 

*/
QUEUE* createQueue (void)
{
//Local Definitions 

QUEUE* queue;

//Statements 
queue = (QUEUE*) malloc (sizeof (QUEUE));
if (queue)
   {
    queue->front  = NULL;
    queue->rear   = NULL;
    queue->count  = 0;
   } // if 
return queue;

} // createQueue 

1
2
3
4
5
6

/*================= enqueue ================
This algorithm inserts data into a queue.
   Pre    queue has been created 
   Post   data have been inserted 
   Return true if successful, false if overflow 

*/
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PROGRAM 4-3 Enqueue (continued)

Program 4-3 Analysis Because we must maintain both a front and a rear pointer, we need to check to see if
we are inserting into a null queue. If we are, we must set both pointers to the data just
inserted. If there are already data in the queue, we need to set the next field of the
node at the rear of the queue and the rear pointer to the new node. In this case the
front pointer is unchanged. Because the rear pointer is updated in either case, we
changed it after the if statement (see statement 27). 

Dequeue
Dequeue follows the basic design developed in Algorithm 4-3. It begins by
checking to make sure there are data in the queue. If there are, it passes the
address of the data being deleted back to the calling function through a refer-
ence parameter, adjusts the pointers, and subtracts one from the queue
count. If the delete is successful, it returns true; if it is empty, it returns false.
The code is shown in Program 4-4.

PROGRAM 4-4 Dequeue

continued

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

bool enqueue (QUEUE* queue, void* itemPtr)
{
//Local Definitions 

QUEUE_NODE* newPtr;

//Statements 
if (!(newPtr = 
   (QUEUE_NODE*)malloc(sizeof(QUEUE_NODE))))
   return false;

newPtr->dataPtr = itemPtr; 
newPtr->next    = NULL; 
 
if (queue->count == 0)
   // Inserting into null queue 
   queue->front  = newPtr;
else
   queue->rear->next = newPtr; 

(queue->count)++;
queue->rear = newPtr;
return true;

} // enqueue 

1
2
3
4

/*================= dequeue ================
This algorithm deletes a node from the queue.
   Pre    queue has been created 
   Post   Data pointer to queue front returned and
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PROGRAM 4-4 Dequeue (continued)

Program 4-4 Analysis The logic for dequeue is rather basic. The major concern is that we may have deleted
the last element in the queue, in which case we must set it to a null state. This requires
that the queue rear be set to a null pointer. Note that we always set the queue front to
the next pointer in the node being deleted. If the last node is being deleted, the
deleted node’s next pointer is guaranteed to be null (because it is the last node in the
queue). In this case queue front is automatically set to null. If it is not the last node in the
queue, queue front points to the new node at the front of the queue.

Although the code for dequeue is simple enough, the call to it is a little
tricky. Because the dequeue data parameter is a void pointer to a pointer, the
call must cast the data pointer to void. The call is shown below.

Because dequeue returns a Boolean success flag, the call should be an
expression in a selection statement to test for success or failure.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

          front element deleted and recycled.
   Return true if successful; false if underflow 

*/
bool dequeue (QUEUE* queue, void** itemPtr) 
{
//Local Definitions 

QUEUE_NODE* deleteLoc;

//Statements 
if (!queue->count)
    return false;
 
*itemPtr  = queue->front->dataPtr;
deleteLoc = queue->front;
if (queue->count == 1)
   // Deleting only item in queue 
   queue->rear  = queue->front = NULL;
else
   queue->front = queue->front->next;
(queue->count)--;
free (deleteLoc);

return true;
} // dequeue 

dequeue(queue, (void*)&dataPtr)

if (dequeue(queue, (void*)&dataPtr))
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Queue Front
Queue front also passes the address of the data at the front of the queue back
to the calling function. It differs from dequeue only in that the queue is not
changed. The code is shown in Program 4-5; the pseudocode design is shown
in Algorithm 4-4.

PROGRAM 4-5 Queue Front

Queue Rear
The code for queue rear, shown in Program 4-6, is identical to queue front
except that the address of the data at the rear of the queue is sent back to the
calling function.

PROGRAM 4-6 Queue Rear

continued

1
2
3
4
5
6
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8
9
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/*================== queueFront =================
This algorithm retrieves data at front of the 
queue without changing the queue contents. 
   Pre    queue is pointer to an initialized queue 
   Post   itemPtr passed back to caller
   Return true if successful; false if underflow 

*/
bool queueFront (QUEUE* queue, void** itemPtr)
{
//Statements 

if (!queue->count) 
    return false;
else
   {    
    *itemPtr = queue->front->dataPtr;
     return true;
   } // else 

} // queueFront 

1
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3
4
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/*================== queueRear =================
Retrieves data at the rear of the queue
without changing the queue contents. 
   Pre    queue is pointer to initialized queue 
   Post   Data passed back to caller 
   Return true if successful; false if underflow 

*/
bool queueRear (QUEUE* queue, void** itemPtr)
{
//Statements 

if (!queue->count) 
    return true;
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PROGRAM 4-6 Queue Rear (continued)

Queue Empty
Queue empty is one of the simplest functions in the library. It simply uses the
count in the queue header to determine if the queue is empty or contains
data, as shown in Program 4-7.

PROGRAM 4-7 Empty Queue

Full Queue
As mentioned in the discussion of Algorithm 4-6, full queue is one of the
more difficult algorithms to implement because C provides no way to test the
amount of space left in dynamic memory. The only way we can tell if there is
any room left is to allocate a node and test for success. If the node was allo-
cated successfully, we free it and return false for not full. If there was no
memory left, we return true—the queue is full. The code for full queue is
shown in Program 4-8.

PROGRAM 4-8 Full Queue

continued

13
14
15
16
17
18

else 
   { 
    *itemPtr = queue->rear->dataPtr;
    return false;
   } // else 

} // queueRear 

1
2
3
4
5
6
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/*================== emptyQueue =================
This algorithm checks to see if queue is empty.
Pre    queue is a pointer to a queue head node
Return true if empty; false if queue has data 

*/
bool emptyQueue (QUEUE* queue) 
{
//Statements 

return (queue->count == 0);
} // emptyQueue 

1
2
3
4
5
6
7
8

/*================== fullQueue =================
This algorithm checks to see if queue is full. It
is full if memory cannot be allocated for next node.
   Pre    queue is a pointer to a queue head node
   Return true if full; false if room for a node 

*/
bool fullQueue (QUEUE* queue) 
{
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PROGRAM 4-8 Full Queue (continued)

Queue Count
Queue count simply returns the count found in the queue head node. Its
code is shown in Program 4-9.

PROGRAM 4-9 Queue Count

Destroy Queue
The design of destroy queue in Algorithm 4-8 is relatively simple; the implemen-
tation in Program 4-10 is relatively complex. While it is apparent that we
must delete all elements in the queue and free each of their nodes, it is easy
to forget to recycle the data space. We begin by checking to make sure that
the queue exists. If it doesn’t, we simply return a null pointer. If the queue is
valid, we cycle through it, deleting all of the elements.

PROGRAM 4-10 Destroy Queue 

continued

9
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//Local Definitions 
QUEUE_NODE* temp;

//Statements 
temp = (QUEUE_NODE*)malloc(sizeof(*(queue->rear)));
if (temp)
   {
    free (temp);
    return true;
   } // if 
// Heap full 
return false;

} // fullQueue 

1
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4
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/*================== queueCount =================
Returns the number of elements in the queue.
   Pre    queue is pointer to the queue head node
   Return queue count 

*/
int queueCount(QUEUE* queue) 
{
//Statements 

return queue->count;
} // queueCount 

1
2
3
4

/*================== destroyQueue =================
Deletes all data from a queue and recycles its
memory, then deletes & recycles queue head pointer.
   Pre    Queue is a valid queue 
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PROGRAM 4-10 Destroy Queue (continued) 

Program 4-10 Analysis In the normal course of events, the queue being destroyed is empty. If it is, the queue
front is null and all we need to do is free the queue header and return. If there are data
in the queue, however, we first free the data space using the data pointer stored in the
queue node, then we delete the queue node itself. Eventually, we get to the end of the
queue, at which time we free the queue head node and return. 

4.4 Queuing Theory
Queuing theory is a field of applied mathematics that is used to predict the
performance of queues. In this section we review a few basic queuing theory
concepts. We leave the mathematics of queuing theory to advanced courses
on the subject.

Queues can be divided into single-server and multiserver types. A single-
server queue can provide service to only one customer at a time. An example of
a single-server queue is the hot-food vendor found on street corners in most
large cities. Multiserver queues, on the other hand, can provide service to many
customers at a time. An example of a multiserver queue is a bank in which
there is one line with many bank tellers providing service. Note that grocery
stores are examples of multiple single-server queues, or multiqueues.
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   Post   All data have been deleted and recycled 
   Return null pointer

*/
QUEUE* destroyQueue (QUEUE* queue) 
{
//Local Definitions 

QUEUE_NODE* deletePtr;

//Statements 
if (queue)
   {
    while (queue->front != NULL) 
       {
        free (queue->front->dataPtr);
        deletePtr    = queue->front;
      queue->front = queue->front->next; 
        free (deletePtr); 
       } // while 
    free (queue);
   } // if 
return NULL;

} // destroyQueue

Queuing theory is a field of applied mathematics that is used to predict the performance of queues.
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The two common elements to all queues are one or more customers who
need a service and the a server who provides the service. A customer is any per-
son or thing needing service. Besides the examples cited, customers can be as
diverse as jobs waiting to be run in a computer and packages being sent by
express delivery. The service is any activity needed to accomplish the required
result. The hot-food vendor provides food as a service; the package handler
provides transportation and delivery of packages.

The two factors that most dramatically affect the queue are the arrival
rate and the service time. The rate at which customers arrive in the queue for
service is known as the arrival rate. Depending on the service being provided,
the arrival rate may be random or regular. The hot-food vendor’s customers
more than likely arrive randomly, although the rate may vary widely during
the day. Jobs to be processed in the computer, however, may arrive at some
regular rate created by a job-scheduling system.

 Service time is the average time required to complete the processing of a
customer request. If you have ever observed different bank customers while
you stood in line, you noted the wide range in time required to process each
customer. Obviously, the faster customers arrive and the higher the service
time, the longer the queue.

In an ideal situation, customers would arrive at a rate that matches the
service time. However, as we all know, things are seldom ideal. Sometimes
the server will be idle because there are no customers to be served. At other
times there will be many customers waiting to be served. If we can predict the
patterns, we may be able to minimize idle servers and waiting customers.
Doing so is especially important when customers who have to wait for a long
time are apt to switch to an alternative server, such as the hot-food vendor a
block down the street.

Queuing theory attempts to predict such patterns. Specifically, it
attempts to predict queue time (which is defined as the average length of time
customers wait in the queue), the average size of the queue, and the maxi-
mum queue size. To make these predictions, it needs two factors: the arrival
rate and the average service time, which is defined as the average of the total
service time between idle periods.

Given queue time and service time, we know response time,—a measure
of the average time from the point at which customers enter the queue until
the moment they leave the server. Response time is an important statistic,
especially in online computer systems. A queuing theory model is shown in
Figure 4-12.

Once a model of a queue has been built, it can be used to study proposed
changes to the system. For example, in the banking queue, if we were able to
use automation to reduce the average service time by 15%, how many fewer
tellers would we need? Or, given a model of a growing system that is currently
under capacity, how long will it be before we need to add another server?

 The two factors that most affect the performance of queues are the arrival rate and the service time.
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FIGURE 4-12 Queuing Theory Model

4.5 Queue Applications 
Queues are one of the more common data-processing structures. They are
found in virtually every operating system and every network and in count-
less other areas. For example, queues are used in business online applica-
tions such as processing customer requests, jobs, and orders. In a computer
system, a queue is needed to process jobs and for system services such as
print spools.

Queues can become quite complex. In this section we demonstrate two
queue implementations: The first is an application that is useful in many
problems—categorizing data. For this application we show both the design
and the implementation. The second is a queue simulation that can be used
to study the performance of any queue application. Only the design is devel-
oped; the implementation is left as a project at the end of the chapter. 

Categorizing Data
It is often necessary to rearrange data without destroying their basic
sequence. As a simple example, consider a list of numbers. We need to group
the numbers while maintaining their original order in each group. This is an
excellent multiple-queue application.

To demonstrate, consider the following list of numbers:

We want to categorize them into four different groups:

• Group 1: less than 10
• Group 2: between 10 and 19 
• Group 3: between 20 and 29
• Group 4: 30 and greater

3 22 12 6 10 34 65 29 9 30 81 4 5 19 20 57 44 99

ServerQueue

Service
time

Queue
time

Response
time
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In other words, we want the list rearranged as shown below.

This is not sorting. The result is not a sorted list but rather a list catego-
rized according to the specified rules. The numbers in each group have kept
their original order.

Categorizing Data Design
The solution is simple. We build a queue for each of the four categories. We
then store the numbers in the appropriate queue as we read them. After all
the data have been processed, we print each queue to demonstrate that we
categorized the data correctly. This design is shown in Algorithm 4-9.

ALGORITHM 4-9 Category Queues

Algorithm 4-9 Analysis The mainline for the category queue simply creates the queues and then calls algo-
rithms to fill and print them. Note that when we complete, we do not destroy the
queues. We leave this process for the operating system. If we had more work to do,
however, we would delete them to release their memory.

The pseudocode to fill the queue is shown in Algorithm 4-10. We demon-
strate the logic for printing the queues when we write the C implementation
in the next section.

ALGORITHM 4-10 Fill Category Queues

continued

| 3 6 9 4 5 | 12 10 19 | 22 29 20| 34 65 30 81 57 44 99 |

Algorithm categorize 
Group a list of numbers into four groups using four queues.
   Written by: 
   Date: 

1 createQueue (q0to9)
2 createQueue (q10to19)
3 createQueue (q20to29)
4 createQueue (qOver29)
5 fillQueues  (q0to9, q10to19, q20to29, qOver29) 
6 printQueues (q0to9, q10to19, q20to29, qOver29) 
end categorize

Algorithm fillQueues (q0to9, q10to19, q20to29, qOver29)
This algorithm reads data from the keyboard and places them in 
one of four queues.

Pre  all four queues have been created
Post queues filled with data

1 loop (not end of data) 
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ALGORITHM 4-10 Fill Category Queues (continued)

Algorithm 4-10 Analysis What sounded like a long and difficult program is really a short and simple algorithm,
thanks to code reusability. The most difficult decision in this algorithm is determining
how to write the categorizing code. We simply used a multiway selection imple-
mented with an elseif construct. Once we made that decision, the algorithm practically
wrote itself. 

Categorizing Data—C Implementation
Rather than read the data from a file, however, we simply generate 25 random
numbers in the range 0 to 50. The C functions use the abstract data type cre-
ated in Section 4.3. To help you follow the program, we include Figure 4-13,
which shows the structures after they have been created.

Mainline Logic
The mainline logic for the categorizing program begins by creating the
queues. Once the queues have been created, it calls a function to create and
enqueue the data and another function to print it. The code is shown in
Program 4-11.

1 read (number)
2 if (number < 10)

1 enqueue (q0to9, number) 
3 elseif (number < 20)

1 enqueue (q10to19, number) 
4 elseif (number < 30)

1 enqueue (q20to29, number) 
5 else

1 enqueue (qOver29, number) 
6 end if 

2 end loop
end fillQueues
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FIGURE 4-13 Structures for Categorizing Data

PROGRAM 4-11 Categorizing Data Mainline

continued

1
2
3

/*Groups numbers into four groups using four queues.
   Written by:
   Date:

main heap

6

14 14

24 23 23

31 43 41

7 8 3

19

...

q0to9

6

...

q10to19

6

...

q20to29

7

...

qover29

dataPtr

category

i

item

fillQueues heap

0q0to9

0q10to19

0q19to29

0qover29

(a) Before calling fillQueues

(b) After calling fillQueues

The four variables in main still 
are pointing to the corresponding
head nodes, but we are not showing
the arrows for simplicity.
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PROGRAM 4-11 Categorizing Data Mainline (continued)

Fill Queues
Fill queues uses a random-number generator to create 25 random numbers
between 0 and 50. As each number is generated, it is displayed so that we can
verify the accuracy of the program, and then each number is inserted into the
appropriate queue. The code is in Program 4-12.

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

*/
#include <stdio.h> 
#include <stdlib.h>
#include <stdbool.h>
#include "queues.h" 

//Prototype Statements 
void fillQueues  (QUEUE*, QUEUE*, QUEUE*, QUEUE*);
void printQueues (QUEUE*, QUEUE*, QUEUE*, QUEUE*);

void printOneQueue (QUEUE* pQueue);

int main (void)
{
//Local Definitions 

QUEUE* q0to9;
QUEUE* q10to19;
QUEUE* q20to29;
QUEUE* qOver29;

//Statements 
printf("Welcome to a demonstration of categorizing\n"
       "data. We generate 25 random numbers and then\n"
       "group them into categories using queues.\n\n");
       
q0to9   = createQueue ();
q10to19 = createQueue ();
q20to29 = createQueue ();
qOver29 = createQueue ();

fillQueues  (q0to9, q10to19, q20to29, qOver29);
printQueues (q0to9, q10to19, q20to29, qOver29);

return 0;
} // main 
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PROGRAM 4-12 Categorizing Data: Fill Queues

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

/*================= fillQueues ================
This function generates data using rand() and
places them in one of four queues.

Pre:  All four queues have been created 
   Post: Queues filled with data 

*/
void fillQueues (QUEUE* q0to9,   QUEUE* q10to19,
                 QUEUE* q20to29, QUEUE* qOver29)
{
//Local Definitions 

int  category;
int  item;
int* dataPtr;

//Statements 
printf("Categorizing data:\n");
srand(79);

for (int i = 1; i <= 25; i++)
    {
    if (!(dataPtr = (int*) malloc (sizeof (int))))
        printf("Overflow in fillQueues\a\n"), 
               exit(100);

     *dataPtr = item = rand() % 51;
     category = item / 10;
     printf("%3d", item);
     if (!(i % 11))
        // Start new line when line full 
        printf("\n");

     switch (category)
        {
         case 0 : enqueue (q0to9, dataPtr);
                  break;
         case 1 : enqueue (q10to19, dataPtr); 
                  break;
         case 2 : enqueue (q20to29, dataPtr);
                  break;
         default: enqueue (qOver29, dataPtr);
                  break;
        } // switch 
    } // for 
printf("\nEnd of data categorization\n\n");
return;

} // fillQueues 
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Print Queues
Print queues is a simple driver that calls a function to print one queue for
each queue. Its code is shown in Program 4-13.

PROGRAM 4-13 Print Queues

Print One Queue
Print one queue uses a straightforward approach. Each call prints a queue by
dequeuing a node and printing it. The loop continues as long as there are
data in the queue. Because we don’t have access to the data structure, how-
ever, we use empty queue to test for more data to be printed. We could also
have used queue count and tested for greater than zero. The code is shown in
Program 4-14. It also contains the results from a sample run.

PROGRAM 4-14 Print One Queue

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

/*================= printQueues ================= 
This function prints the data in each of the queues.
   Pre  Queues have been filled 
   Post Data printed and dequeued 

*/
void printQueues (QUEUE* q0to9,   QUEUE* q10to19,
                  QUEUE* q20to29, QUEUE* qOver29) 
{
//Statements 

printf("Data   0.. 9:");
printOneQueue (q0to9);

printf("Data  10..19:");
printOneQueue (q10to19);

printf("Data  20..29:");
printOneQueue (q20to29);

printf("Data over 29:");
printOneQueue (qOver29);

return;
} // printQueues 

1
2
3
4
5
6
7

/*================= printOneQueue =================
This function prints the data in one queue,
ten entries to a line.
   Pre  Queue has been filled 
   Post Data deleted and printed. Queue is empty 

*/
void printOneQueue (QUEUE* pQueue)
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PROGRAM 4-14 Print One Queue (continued)

Queue Simulation
An important application of queues is queue simulation, a modeling activity used
to generate statistics about the performance of queues. Let’s build a model of
a single-server queue—for example, a saltwater taffy store on a beach board-
walk. The store has one window, and a clerk can service only one customer at
a time. The store also ships boxes of taffy anywhere in the country. Because
there are many flavors of saltwater taffy and because it takes longer to serve a

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

{
//Local Definitions 

int  lineCount;
int* dataPtr; 

//Statements 
lineCount = 0;
while (!emptyQueue (pQueue))
    {
     dequeue (pQueue, (void*)&dataPtr);
     if (lineCount++ >= 10)
        {
         lineCount = 1;
         printf ("\n             ");
        } // if 
     printf("%3d ", *dataPtr); 
    } // while !emptyQueue 
printf("\n");

return; 
} // printOne Queue 

Results:
Welcome to a demonstration of categorizing 
data. We generate 25 random numbers and then
group them into categories using queues.

Categorizing data:
 24  7 31 23 26 14 19  8  9  6 43
 16 22  0 39 46 22 38 41 23 19 18
 14  3 41
End of data categorization

Data   0.. 9:  7   8   9   6   0   3 
Data  10..19: 14  19  16  19  18  14 
Data  20..29: 24  23  26  22  22  23 
Data over 29: 31  43  39  46  38  41  41 
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customer who requests that the taffy be mailed, the time to serve customers
varies between 1 and 10 minutes.

We want to study the store’s activity over a hypothetical day. The store is
open 8 hours per day, 7 days a week. To simulate a day, we build a model that
runs for 480 minutes (8 hours times 60 minutes per hour).

The simulation uses a digital clock that lets events start and stop in 1- minute
intervals. In other words, customers arrive on the minute, wait an integral number
of minutes in the queue, and require an integral number of minutes to be served.
In each minute of operation, the simulation needs to check three events: the
arrival of customers, the start of customer processing, and the completion of cus-
tomer processing.

Events
The arrival of a new customer is determined in a module we name new
customer. To determine the arrival rate, the store owner used a stopwatch
and studied customer patterns over several days. The owner found that, on
average, a customer arrives every 4 minutes. We simulate an arrival rate
using a random-number generator that returns a value between 1 and 4. If
the number is 4, a customer has arrived. If the number is 1, 2, or 3, no cus-
tomer has arrived.

We start processing a customer when the server is idle. In each minute of
the simulation, therefore, the simulator needs to determine whether the clerk
(the server) is busy or idle. In the simulation this is done with a module called
server free. If the clerk is idle, the next waiting customer in line (the queue)
can be served. If the clerk is busy, the waiting customers remain in the queue.

Finally, at the end of each minute, the simulation determines whether it
has completed the processing for the current customer. The processing time
for the current customer is determined by a random-number generator when
the customer processing is started. Then, for each customer, we loop the
required number of minutes to complete the transaction. When the customer
has been completely served, we gather statistics about the sale and set the
server to an idle state.

Data Structures
Four data structures are required for the queue simulation: a queue head, a
queue node, a current customer status, and a simulation statistics structure.
These structures are described below and shown in Figure 4-14.

Queue Head
We use the standard head node structure for the queue. It contains two node
pointers—front and rear—and a count of the number of elements currently
in the queue.
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FIGURE 4-14 Queue Data Structures

Queue Node
The queue node contains only two elements: the customer data and a next
node pointer. The customer data consist of a sequential customer number and
the arrival time. The customer number is like the number you take when you
go into a busy store with many customers waiting for service. The arrival time
is the time the customer arrived at the store and got in line (was enqueued).
The next node pointer is used to point to the next customer in line.

Customer Status
While we are processing the customer’s order, we use a customer status
structure to keep track of four pieces of data. First we store the customer’s
number and arrival time. Because we need to know what time we started pro-
cessing the order, we store the start time. Finally, as we start the processing,
we use a random-number generator to calculate and store the time it will take
to fill the customer’s order.

Simulation Statistics
At the conclusion of the simulation, we need to report the total number of cus-
tomers processed in the simulation, the total and average service times, the
total and average wait times, and the greatest number of customers in the
queue at one time. We use a simulation statistics structure to store these data.

Output
At the conclusion of the simulation, we print the statistics gathered during
the simulation along with the average queue wait time and average queue ser-
vice time. To verify that the queue is working properly, we also print the fol-
lowing statistics each time a customer is completely served: arrival time, start
time, wait time, service time, and the number of elements in the queue. 

head

front count rear

node

custStatus

simStats

custNum arriveTime startTime svcTime

numCust totSvcTime totWaitTime maxQueueSize

nextcustNum arriveTime
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Simulation Algorithm
We are now ready to write the simulation algorithm. The design consists of a
driver module that calls three processing modules, as shown in Figure 4-15.
It parallels the requirements discussed earlier. New customer determines
whether a customer has arrived and needs to be enqueued. Server free deter-
mines whether the server is idle, and if so, it starts serving the next customer,
if one exists. Service complete determines whether the current customer has
been completely served, and if so, collects the necessary statistical data and
prints the data about the customer. At the end of the simulation, we print the
statistics using the print stats module.

FIGURE 4-15 Design for Queue Simulation

Simulator
The pseudocode for the simulation driver is shown in Algorithm 4-11.

ALGORITHM 4-11 Queue Simulation: Driver

Algorithm taffySimulation
This program simulates a queue for a saltwater taffy store.

   Written by: 
   Date: 

1 createQueue (queue)
2 loop (clock <= endTime OR moreCusts)
1 newCustomer  (queue, clock, custNum)
2 serverFree   (queue, clock, custStatus, moreCusts)
3 svcComplete  (queue, clock, custStatus,   

runStats,     moreCusts) 
4 if (queue not empty)

1 set moreCusts true
5 end if
6 increment clock 

3 end loop
4 printStats (runStats)
end taffySimulation

New
customer

Service
complete

Print
stats

Server
free

Simulator

Create
queue
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Algorithm 4-11 Analysis The driver creates the queue and then loops until the simulation is complete. Each loop
tests to see whether a new customer needs to be enqueued, checks to see whether the
server is idle so that a new customer can be started, and checks to see whether the
current customer’s service is complete.

To determine whether the simulation is complete, we need to test two conditions.
We can only stop the simulation when we have run for the allocated time and there
are no more customers. If there is more time left in the simulation, we are not finished.
Even when we reach the end of the processing time, however, we are not finished if a
customer is being served or if customers are waiting in the queue. We use a more cus-
tomers flag to determine whether either of these conditions is true. 

The server free logic sets the more customers flag to true when it starts a call (state-
ment 2.2). The service complete logic sets it to false when it completes a call (state-
ment 2.3). In the driver loop, we need to set it to true if there are calls waiting in the
queue (statement 2.4). This test ensures that calls waiting in the queue are handled
after the clock time has been exhausted.

At the end of the simulation, the driver calls a print algorithm that calculates the
averages and prints all of the statistics.

New Customer
The pseudocode for new customer is shown in Algorithm 4-12.

ALGORITHM 4-12 Queue Simulation: New Customer

Algorithm 4-12 Analysis It is important to note that we could not simply add a customer every fourth call. For
the simulation study to work, the customers must arrive in a random fashion, not
exactly every 4 minutes. By randomly determining when a customer has arrived (using
a random-number generator), we may go several minutes without any customers and
then have several customers arrive in succession. This random distribution is essential
to queuing theory.

Server Free
The pseudocode to determine whether we can start serving a new customer is
shown in Algorithm 4-13.

Algorithm  newCustomer (queue, clock, custNum)
This algorithm determines if a new customer has arrived.

Pre    queue is a structure to a valid queue
       clock is the current clock minute
       custNum is the number of the last customer  
Post   if new customer has arrived, placed in queue

1 randomly determine if customer has arrived
2 if (new customer)
1 increment custNum 
2 store custNum in custData
3 store arrival time in custData 
4 enqueue (queue, custData) 

3 end if
end newCustomer
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ALGORITHM 4-13 Queue Simulation: Server Free

Algorithm 4-13 Analysis The question in this algorithm is, “How can we tell if the server is free?” The customer
status record holds the answer. It represents either the current customer or, if there is no
current customer, the previous customer. If there is a current customer, we cannot start a
new customer. We can tell if the record represents the new customer by comparing the
clock time with the end time for the customer. The end time is the start time plus the
required service time. If the clock time is greater than the calculated end time, then, if
the queue is not empty, we start a new customer.

One question remains to be answered: “How do we start the first call?” When we
create the customer status structure, we initialize everything to 0. Now, using the for-
mula in statement 1, we see that a 0 start time plus a 0 service time minus 1 must be
less than the clock time, so we can start the first customer. 

Service Complete
The logic for service complete is shown in Algorithm 4-14.

ALGORITHM 4-14 Queue Simulation: Service Complete

continued

Algorithm serverFree (queue, clock, status, moreCusts)
This algorithm determines if the server is idle and if so 
starts serving a new customer.

Pre   queue is a structure for a valid queue 
      clock is the current clock minute
      status holds data about current/previous customer
Post  moreCusts is set true if a call is started

1 if (clock > status startTime + status svcTime - 1)
   Server is idle.
1 if (not emptyQueue (queue))

1 dequeue (queue, custData)
2 set status custNum    to custData number 
3 set status arriveTime to custData arriveTime 
4 set status startTime  to clock 
5 set status svcTime    to random service time 
6 set moreCusts true

2 end if
2 end if
end serverFree 

Algorithm svcComplete (queue, clock, status,
                   stats, moreCusts) 

This algorithm determines if the current customer’s 
processing is complete.

Pre    queue is a structure for a valid queue 
       clock is the current clock minute
       status holds data about current/previous customer 
       stats contains data for complete simulation
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ALGORITHM 4-14 Queue Simulation: Service Complete (continued)

Algorithm 4-14 Analysis The question in this algorithm is similar to the server free question. To help analyze the
logic, let’s look at a few hypothetical service times for the simulation. They are shown
in Table 4-1.

 

TABLE 4-1 Hypothetical Simulation Service Times

Because we test for a new customer in server free before we test for the
customer being complete, it is possible to start and finish serving a customer
who needs only 1 minute in the same loop. This is shown in minute 3 above.
The correct calculation for the end of service time is therefore 

This calculation is borne out in each of the examples in Table 4-1. We
therefore test for the clock time equal to the end of service time, and if they

Post   if service complete, data for current customer 
       printed and simulation statistics updated

moreCusts set to false if call completed
1 if (clock equal status startTime + status svcTime - 1)
Current call complete
1 set waitTime to status startTime - status arriveTime
2 increment stats numCust 
3 set stats totSvcTime  to stats totSvcTime + status svcTime 
4 set stats totWaitTime to stats totWaitTime + waitTime 
5 set queueSize to queueCount (queue)
6 if (stats maxQueueSize < queueSize)

1 set stats maxQueueSize to queueSize
7 end if
8 print (status custNum   status arriveTime 

   ƒƒƒ status startTime status svcTime
   ƒƒƒ waitTime         queueCount (queue))

9 set   ƒmoreCusts to false
2 end if
end svcComplete

Start time Service time Time completed Minutes served

1 2 2 1 and 2

3 1 3 3

4 3 6 4, 5, and 6

7 2 8 7 and 8

start time + service time – 1
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are equal, we print the necessary data for the current customer and accumu-
late the statistics needed for the end of the simulation.

Print Stats
The last algorithm in the simulation prints the statistics for the entire simula-
tion. The code is shown in Algorithm 4-15.

ALGORITHM 4-15 Queue Simulation: Print Statistics

Algorithm printStats (stats)
This algorithm prints the statistics for the simulation.
Pre    stats contains the run statistics
Post   statistics printed

1 print (Simulation Statistics:)
2 print ("Total customers: "    stats numCust)
3 print ("Total service time: " stats totSvcTime)
4 set avrgSvcTime to stats totSvcTime / stats numCust
5 print ("Average service time: " avrgSvcTime)
6 set avrgWaitTime to stats totWaitTime / stats numCust
7 print ("Average wait time: " avrgWaitTime)
8 print ("Maximum queue size: " stats maxQueueSize)
end printStats
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4.6 Key Terms

4.7 Summary 
❏ A queue is a linear list in which data can only be inserted at one end,

called the rear, and deleted from the other end, called the front.

❏ A queue is a first in–first out (FIFO) structure.

❏ There are four basic queue operations: enqueue, dequeue, queue front,
and queue rear.

1. The enqueue operation inserts an element at the rear of the queue. 

2. The dequeue operation deletes the element at the front of the queue. 

3. The queue front operation examines the element at the front of the
queue without deleting it.

4. The queue rear operation examines the element at the rear of the
queue without deleting it.

❏ Queues can be implemented using linked lists or arrays.

❏ To implement the queue using a linked list, we use two types of structures:
a head and a node.

❏ Queuing theory is a field of applied mathematics that is used to predict the
performance of queues.

❏ Queue applications can be divided into single servers and multiservers. 

1. A single-server queue application provides services to only one cus-
tomer at a time.

2. A multiserver queue application provides service to several customers at
a time.

arrival rate
create queue 
customer
dequeue
destroy queue
empty queue
enqueue
first in–first out (FIFO)
front
full queue 
multiserver queues

queue count
queue data node
queue data structure
queue front
queue head
queue rear
queue simulation
rear
service
service time
single-server queue
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❏ The two features that most affect the performance of queues are the
arrival rate and the service time.

1. The rate at which the customers arrive in the queue for service is
known as the arrival rate.

2. Service time is the average time required to complete the processing of
a customer request.

❏ The queue time is the average length of time customers wait in the queue.

❏ The response time is a measure of average time from the point at which
customers enter the queue until the moment they leave the server. It is
queue time plus service time.

❏ One application of queues is queue simulation, which is a modeling activ-
ity used to generate statistics about the performance of a queue.

❏ Another application of queues is categorization. Queues are used to cate-
gorize data into different groups without losing the original ordering of
the data.

4.8 Practice Sets

Exercises
1. Imagine you have a stack of integers, S, and a queue of integers, Q. Draw a

picture of S and Q after the following operations:

1 pushStack (S, 3)
2 pushStack (S, 12)
3 enqueue (Q, 5)
4 enqueue (Q, 8)
5 popStack (S, x)
6 pushStack (S, 2)
7 enqueue (Q, x)
8 dequeue (Q, y)
9 pushStack (S, x)
10 pushStack (S, y)
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2. What would be the value of queues Q1 and Q2, and stack S after the fol-
lowing algorithm segment:

3. What would be the contents of queue Q after the following code is exe-
cuted and the following data are entered?

The data are: 5, 7, 12, 4, 0, 4, 6, 8, 67, 34, 23, 5, 0, 44, 33, 22, 6, 0.

1 S  = createStack 
2 Q1 = createQueue
3 Q2 = createQueue 
4 enqueue (Q1, 5)
5 enqueue (Q1, 6)
6 enqueue (Q1, 9)
7 enqueue (Q1, 0)
8 enqueue (Q1, 7)
9 enqueue (Q1, 5)
10 enqueue (Q1, 0)
11 enqueue (Q1, 2)
12 enqueue (Q1, 6)
13 loop (not emptyQueue (Q1))

1 dequeue (Q1, x)
2 if (x == 0) 

1 z = 0 
2 loop (not emptyStack (S)) 

1 popStack (S, y) 
2 z = z + y 

3 end loop
4 enqueue (Q2, z) 

3 else 
1 pushStack (S, x)

4 end if
14 end loop

1 Q = createQueue 
2 loop (not end of file)

1 read number
2 if (number not 0)

1 enqueue (Q, number)
3 else 

1 x = queuerear (Q)
2 enqueue (Q, x)

4 end if
3 end loop
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4. What would be the contents of queue Q1 and queue Q2 after the following
code is executed and the following data are entered?

The data are 5, 7, 12, 4, 0, 4, 6.

5. What would be the contents of queue Q1 after the following code is exe-
cuted and the following data are entered?

The data are 5, 7, 12, 4, 0, 4, 6, 8, 67, 34, 23, 5, 0, 44, 33, 22, 6, 0.

6. Imagine that the contents of queue Q1 and queue Q2 are as shown. What
would be the contents of Q3 after the following code is executed? The
queue contents are shown front (left) to rear (right).

Q1: 42 30 41 31 19 20 25 14 10 11 12 15

Q2: 4 5 4 10 13

1 Q1 = createQueue 
2 Q2 = createQueue 
3 loop (not end of file)

1 read number
2 enqueue (Q1, number)
3 enqueue (Q2, number)
4 loop (not empty Q1)

1 dequeue (Q1, x)
2 enqueue (Q2, x)

5 end loop
4 end loop

1 Q1 = createQueue 
2 S1 = createStack 
3 loop (not end of file)

1 read number
2 if (number not 0)

1 pushStack (S1, number)
3 else

1 popStack (S1, x)
2 popStack (S1, x)
3 loop (not empty S1)

1 popStack (S1, x)
2 enqueue (Q1, x)

4 end loop
4 end if

4 end loop



Chapter 4 Queues 187

Problems
7. Using only the algorithms in the queue ADT, write an application algo-

rithm called copyQueue that copies the contents of one queue to another.

8. It doesn’t take much analysis to determine that the solution for Problem 7
is not very efficient. It would be much more efficient to write a new ADT
method that copies a queue using its knowledge of the ADT. Rewrite Prob-
lem 7 as a new ADT algorithm.

9. Using only the algorithms in the queue ADT, write an algorithm called
catQueue that concatenates two queues together. The second queue
should be put at the end of the first queue.

10. Write a C function to implement Problem 9. 

11. Write an algorithm called stackToQueue that creates a queue from a
stack. After the queue has been created, the top of the stack should be the
front of the queue and the base of the stack should be the rear of the
queue. At the end of the algorithm, the stack should be empty.

12. Write an algorithm called queueToStack that creates a stack from a
queue. At the end of the algorithm, the queue should be unchanged; the
front of the queue should be the top of the stack, and the rear of the queue
should be the base of the stack.

13. Write an algorithm that compresses a string by deleting all space charac-
ters in the string. One way to do so is to use a queue of characters. Insert
nonspace characters from the string into the queue. When you reach the
end of the string, dequeue the characters from the queue and place them
back into the string.

14. Given a queue of integers, write an algorithm that, using only the queue
ADT, calculates and prints the sum and the average of the integers in the
queue without changing the contents of the queue.

15. Given a queue of integers, write an algorithm that deletes all negative inte-
gers without changing the order of the remaining elements in the queue. 

1 Q3 = createQueue
2 count = 0
3 loop (not empty Q1 and not empty Q2)

1 count = count + 1
2 dequeue (Q1, x)
3 dequeue (Q2, y)
4 if (y equal count)

1 enqueue (Q3, x)
5 end if

1 end loop
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16. Write an algorithm that reverses the contents of a queue.

17. Using only the algorithms in the queue ADT, write an algorithm that
checks the contents of two queues and returns true if they are identical
and false if they are not.

18. Implement Problem 17 as a C function.

Projects
19. Using the linked list abstract data type described in Section 4.3 “Queue

ADT,” write a menu-driven user interface to test each of the operations in
the ADT. Any errors discovered during the processing should be printed as
a part of the test result. A suggested menu is shown below.

Test your program with the following test cases. You may include addi-
tional test cases after you have executed the tests shown below. 

a. Print queue status, Empty (F).
b. Dequeue and print data (B). Should return error.
c. Enqueue data into queue: 5 (A).
d. Enqueue data into queue: 8 (A).
e. Print queue status, Empty (F).
f. Print queue status, Full (G). 
g. Print data at the front (C). 
h. Print data at the rear (D). 
i. Print entire queue (E). 
j. Print number of elements in queue (H). 
k. Dequeue and print data (B). 
l. Dequeue and print data (B). 
m.Dequeue and print data (B). Should return error.
n. Enqueue data into queue: 14 (A). 
o. Print data at the front (C). 
p. Print data at the rear (D). 
q. Enqueue data into queue: 32 (A). 
r. Print data at the front (C). 
s. Print data at the rear (D). 
t. Destroy queue and quit (I). 

A. Enqueue data into queue
B. Dequeue and print data
C. Print data at the front
D. Print data at the rear
E. Print entire queue
F. Print queue status: Empty
G. Print queue status: Full
H. Print number of elements and quit
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20. One way to evaluate a prefix expression is to use a queue. To evaluate the
expression, scan it repeatedly until you know the final expression value. In
each scan read the tokens and store them in a queue. In each scan replace
an operator that is followed by two operands with their calculated values.
For example, the following expression is a prefix expression that is evalu-
ated to 159:

We scan the expression and store it in a queue. During the scan when an
operator is followed by two operands, such as + 2 8, we put the result, 10, in
the queue.

After the first scan, we have 

After the second scan, we have 

 After the third scan, we have 

After the fourth scan, we have 

Write a C program to evaluate a prefix expression.

21. Write the C implementations for the saltwater taffy store described in
“Queue Simulation,” starting on page 175.

22. Using the C ADT, write a program that simulates the operation of a tele-
phone system that might be found in a small business, such as your local
pizza parlor. Only one person can answer the phone (a single-server
queue), but there can be an unlimited number of calls waiting to be
answered.

Queue analysis considers two primary elements, the length of time a
requester waits for service (the queue wait time—in this case, the cus-
tomer calling for pizza) and the service time (the time it takes the cus-
tomer to place the order). Your program should simulate the operation of
the telephone and gather statistics during the process.

- + * 9 + 2 8 * + 4 8 6 3

- + * 9 10 * 12 6 3

- + 90 72 3

- 162 3

159
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The program requires two inputs to run the simulation: (1) the length
of time in hours that the service is provided and (2) the maximum time it
takes for the operator to take an order (the maximum service time).

Four elements are required to run the simulation: a timing loop, a call
simulator, a call processor, and a start call function.

a. Timing loop: This is simply the simulation loop. Every iteration of the loop
is considered 1 minute in real time. The loop continues until the service
has been in operation the requested amount of time (see input above).
When the operating period is complete, however, any waiting calls must
be answered before ending the simulation. The timing loop has the fol-
lowing subfunctions:

■ Determine whether a call was received (call simulator)

■ Process active call

■ Start new call

This sequence allows a call to be completed and another call to be
started in the same minute.

b. Call simulator: The call simulator uses a random-number generator to deter-
mine whether a call has been received. Scale the random number to an
appropriate range, such as 1 to 10.

The random number should be compared with a defined constant. If
the value is less than the constant, a call was received; if it is not, no
call was received. For the simulation set the call level to 50%; that is, on
the average, a call is received every 2 minutes. If a call is received, place
it in a queue.

c. Process active call: If a call is active, test whether it has been completed. If
completed, print the statistics for the current call and gather the neces-
sary statistics for the end-of-job report.

d. Start new call: If there are no active calls, start a new call if there is one
waiting in the queue. Note that starting a call must calculate the time
the call has been waiting.

During the processing, print the data shown in Table 4-2 after each call
is completed. (Note: you will not get the same results.)

TABLE 4-2 Sample Output for Project 22

Clock 
time

Call
number

Arrival 
time

Wait  
time

Start  
time

Service 
time

Queue 
size

4 1 2 0 2 3 2

6 2 3 2 5 2 4
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At the end of the simulation, print out the following statistics gathered
during the processing. Be sure to use an appropriate format for each statis-
tic, such as a float for averages.

a. Total calls: calls received during operating period
b. Total idle time: total time during which no calls were being serviced
c. Total wait time: sum of wait times for all calls
d. Total service time: sum of service time for all calls
e. Maximum queue size: greatest number of calls waiting during simulation
f. Average wait time: total wait time/number of calls
g. Average service time: total service time/number of calls

Run the simulator twice. Both runs should simulate 2 hours. In the first
simulation, use a maximum service time of 2 minutes. In the second run,
use a maximum service time of 5 minutes.

23. Repeat the queue simulation in Project 22, using multiple queue servers
such as you might find in a bank. There should be only one queue. The
number of servers, to be read from the keyboard, may range from 2 to 5.

To simulate multiple servers, you need to provide a separate customer
status structure for each server. In the processing loop, each server should
be tested for completion. Similarly, in start new call, a call should be
started for each idle server.

You also need to modify the call simulator to handle up to 3 customers
arriving at the same time. To determine the number of customers, gener-
ate a random number in the range of 0 to 3. If the number is 0, no cus-
tomer arrived. If the number is not 0, enqueue the number of customers
indicated by the random number.

24. Write a stack and queue test driver. A test driver is a program created to
test functions that are to be placed in a library. Its primary purpose is to
completely test functions; therefore, it has no application use.

The functions to be tested are create stack, create queue, push stack,
pop stack, enqueue, and dequeue. You may include other stack and queue
functions as required. All data should be integers. You need two stacks and
two queues in the program, as described below. 

a. Input stack: used to store all user input
b. Input queue: used to store all user input
c. Output stack: used to store data deleted from input queue
d. Output queue: used to store data deleted from input stack

Use a menu-driven user interface that prompts the user to select either
insert or delete. If an insert is requested, the system should prompt the
user for the integer to be inserted. The data are then inserted into the
input stack and input queue. If a delete is requested, the data are deleted
from both structures: the data popped from the input stack are enqueued
in the output queue, and the data dequeued from the input queue are
pushed into the output stack. 
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Processing continues until the input structures are empty. At this point
print the contents of the output stack while deleting all of its data. Label
this output “Output Stack,” then print all of the data in the output queue
while deleting all of its data. Label this output “Output Queue.” Your out-
put should be formatted as shown below.

Test your program with the following operations:

In addition to the computer output from your test, write a short report
(less than one page) describing what structural concepts were demon-
strated by your output.

25. Queues are commonly used in network systems. For example, e-mail is placed
in queues while it is waiting to be sent and after it arrives at the recipient’s
mailbox. A problem occurs, however, if the outgoing mail processor cannot
send one or more of the messages in the queue. For example, a message might
not be sent because the recipient’s system is not available.

Write an e-mail simulator that processes mail at an average of 40 mes-
sages per minute. As messages are received, they are placed in a queue.
For the simulation assume that the messages arrive at an average rate of
30 messages per minute. Remember, the messages must arrive randomly,
so you need to use a random-number generator to determine when mes-
sages are received (see “Queue Simulation,” starting on page 175). 

Each minute, you can dequeue up to 40 messages and send them.
Assume that 25% of the messages in the queue cannot be sent in any pro-
cessing cycle. Again, you need to use a random number to determine
whether a given message can be sent. If it can’t be sent, put it back at the
end of the queue (enqueue it). 

Run the simulation for 24 hours, tracking the number of times each
message had to be requeued. At the end of the simulation, print the statis-
tics that show:

a. The total messages processed
b. The average arrival rate
c. The average number of messages sent per minute
d. The average number of messages in the queue in a minute
e. The number of messages sent on the first attempt, the number sent on

the second attempt, and so forth
f. The average number of times messages had to be requeued (do not

include the messages sent the first time in this average)

Output Stack: 18  9 13  7  5  1
Output Queue:  7 13  9 18  5  1

1 input 1   5 delete     9 input 6    13 input 8
2 input 2   6 input 0   10 delete     14 delete
3 delete    7 input 5   11 input 7    15 delete
4 input 3   8 delete    12 delete     16 delete
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Chapter 5
General Linear Lists

A general linear list is a list in which operations, such as retrievals, insertions,
changes, and deletions, can be done anywhere in the list, that is, at the begin-
ning, in the middle, or at the end of the list. We use many different types of
general lists in our daily lives. We use lists of employees, student lists, and
lists of our favorite songs. When we process our song list, we need to be able
to search for a song, add a new song, or delete one we gave away. This chap-
ter describes how we can maintain and process general lists. For simplicity,
from now on we refer to general linear lists as lists. 

5.1 Basic Operations
The four basic list operations are insertion, deletion, retrieval, and traversal.
Insertion is used to add a new element to the list. Deletion is used to remove
an element from the list. Retrieval is used to get the information related to an
element without changing the structure of the list. Traversal is used to
traverse the list while applying a process to each element. 

Insertion 
List insertion can be ordered or random. Ordered lists are maintained in sequence
according to the data or, when available, a key that identifies the data. A key
is one or more fields within a structure that identifies the data. Examples
of keys are Social Security number and the universal product code on
retail merchandise.

In random lists there is no sequential relationship between two elements.
Although there are no restrictions on inserting data into a random list, com-
puter algorithms generally insert data at the end of the list. Thus, random
lists are sometimes called chronological lists. Applications that use random lists
are found either in data-gathering applications, in which case the lists are
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chronological lists, or in situations in which the applications require ran-
domness, such as simulation studies or games.

Data must be inserted into ordered lists so that the ordering of the list is
maintained. Maintaining the order may require inserting the data at the
beginning or at the end of the list, but most of the time data are inserted
somewhere in the middle of the list. To determine where the data are to be
placed, computer scientists use a search algorithm. Insertions are graphically
shown in Figure 5-1. The inserted data are identified by the shaded element;
in this example it is the third element of the revised list.

FIGURE 5-1 Insertion

Deletion
Deletion from a list requires that the list be searched to locate the data being
deleted. Once located, the data are removed from the list. Figure 5-2 depicts
a deletion from a list.

Retrieval
List retrieval requires that data be located in a list and presented to the calling
module without changing the contents of the list. As with both insertion and
deletion, a search algorithm can be used to locate the data to be retrieved
from a list. Retrieving data from a list is shown in Figure 5-3.

Traversal
List traversal processes each element in a list in sequence. It requires a looping
algorithm rather than a search. Each execution of the loop processes one ele-
ment in the list. The loop terminates when all elements have been processed.

list

list

10 20 25 30

10 20 30

Insertion

data

25

Inserted data
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FIGURE 5-2 Deletion

FIGURE 5-3 Retrieval

5.2 Implementation
Several data structures can be used to implement a list; we use a linked list. A
linked list is a good structure for a list because data are easily inserted and
deleted at the beginning, in the middle, or at the end of the list. Figure 5-4
shows the conceptual view of a list and its implementation as a linked list.

Data Structure
To implement a list, we need two different structures, a head node and data
node, as shown in Figure 5-5.

data
list

list

blue green red yellow

blue green yellow

redDeletion

Delete element 
identified by search

cat dog goldfish zebra

cat dog goldfish zebra

Retrieval

Retrieved element
identified by search

dog

list

list
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FIGURE 5-4 Linked List Implementation of a List 

FIGURE 5-5 Head Node and Data Node

Head Node
Although only a single pointer is needed to identify the list, we often find it
convenient to create a head node structure that stores the head pointer and
other data about the list. When a node contains data about a list, the data are
known as metadata; that is, they are data about the data in the list. For example,
the head structure in Figure 5-4 contains one piece of metadata: count, an inte-
ger that contains the number of nodes currently in the list. Other metadata,
such as the greatest number of nodes during the processing of the list, are often
included when they serve a useful purpose.

Data Node 
The data type for the list depends entirely on the application. A typical data
type is shown below. The data types must be tailored to the particular appli-
cation being created. We include a key field for applications that require
searching by key.

List

10 20 30 40

(a) Conceptual view of a list

(b) Linked list implementation

10 20 30

List

count head
5 40

(b) Data node structure 

linkdata

(a) Head structure

headcount
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Algorithms
We define 10 operations for a list, which should be sufficient to solve any
problem. If an application requires additional list operations, they can be eas-
ily added. For each operation we define its name and provide a brief descrip-
tion and its calling parameters. We then develop algorithms for each
operation.

Create List
Create list allocates the head structure and initializes the metadata for the list.
At this time there are only two metadata entries; later we will add more to
expand the capabilities of the list. Figure 5-6 shows the header before and
after it is initialized by create list.

FIGURE 5-6 Create List

The pseudocode for create list is shown in Algorithm 5-1.

ALGORITHM 5-1 Create List

data
key 
field1 
field2 

...
fieldN 

end data

Algorithm createList (list)
Initializes metadata for list. 

Pre   list is metadata structure passed by reference
Post  metadata initialized

1 allocate (list)
2 set list head  to null
3 set list count to 0
end createList

allocate (list)
set list head to null
set list count to 0  

head

0

count
list
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Insert Node
Insert node adds data to a list. We need only its logical predecessor to insert a
node into the list. Given the predecessor, there are three steps to the insertion:

1. Allocate memory for the new node and move data to the node.

2. Point the new node to its successor.

3. Point the new node’s predecessor to the new node.

These steps appear to be simple, but a little analysis is needed to fully
understand how to implement them. To insert a node into a list, we need to
know the location of the node that precedes the new node. This node is iden-
tified by a predecessor pointer that can be in one of two states: it can contain
the address of a node or it can be null. When the predecessor pointer is null,
it means that there is no predecessor to the data being added. The logical
conclusion is that we are either adding to an empty list or are at the begin-
ning of the list. If the predecessor is not null, we are adding somewhere after
the first node—that is, in the middle of the list or at the end of the list. Let’s
discuss each of these situations in turn.

Insert into Empty List
When the head pointer of the list is null, the list is empty. This situation is
shown in Figure 5-7. All that is necessary to add a node to an empty list is to
assign the list head pointer the address of the new node and make sure that
its link field is a null pointer. Although we could use a constant to set the link
field of the new node, we use the null pointer contained in the list head. Why
we use the list head null pointer will become apparent in the next section.

FIGURE 5-7 Add Node to Empty List

 set pNew link to list head
set list head to pNew

(a) Before add

(b) After add

75

pNew

head

0

count
list

head

1

count
list

75

pNew
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The pseudocode statements to insert a node into an empty list are
shown here.

Note the order of the statements. We must first point the new node to its
successor; then we can change the head pointer. If we reverse these state-
ments, we end up with the new node pointing to itself, which puts our pro-
gram into a never-ending loop when we process the list.

Insert at Beginning
We add at the beginning of the list anytime we need to insert a node before
the first node of the list. We determine that we are adding at the beginning of
the list by testing the predecessor pointer. If it is a null pointer, there is no
predecessor, so we are at the beginning of the list.

To insert a node at the beginning of the list, we simply point the new
node to the first node of the list and then set the head pointer to point to the
new first node. We know the address of the new node. The question at this
point is how we can find the address of the first node currently in the list so
that we can point the new node to it. The answer is simple: the first node’s
address is stored in the head pointer. The pseudocode statements to insert at
the beginning of the list are shown here.

If we compare these two statements with the statements to insert into an
empty list, we will see that they are the same. They are the same because, log-
ically, inserting into an empty list is the same as inserting at the beginning of
a list. We can therefore use the same logic to cover both situations. Adding at
the beginning of the list is shown in Figure 5-8.

Insert in Middle
When we add a node anywhere in the middle of the list, the predecessor
pointer (pPre) contains an address. This case is shown in Figure 5-9.

To insert a node between two nodes, we point the new node to its succes-
sor and then point its predecessor to the new node. The address of the new
node’s successor can be found in the predecessor’s link field. The pseudocode
statements to insert a node in the middle of the list are shown here: 

set pNew link to list head                 (Null pointer)
set list head to pNew                      (First node) 

set pNew link to list head        (To current first node)
set list head to pNew             (To new first node)

set pNew link to pPre link           (New to successor)
set pPre link to pNew                (Predecessor to new)
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FIGURE 5-8 Add Node at Beginning

FIGURE 5-9 Add Node in Middle
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(b) After add
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Insert at End
When we are adding at the end of the list, we only need to point the prede-
cessor to the new node. There is no successor to point to. It is necessary,
however, to set the new node’s link field to a null pointer. The statements to
insert a node at the end of a list are shown here:

Rather than have special logic in the algorithm for inserting at the end,
we can take advantage of the existing linked list structure. We know that the
last node in the list has a null link pointer. If we use this pointer rather than a
null pointer constant, the code becomes exactly the same as the code for
inserting in the middle of the list. The revised code follows. Compare it with
the code for inserting in the middle of the list.

Figure 5-10 shows the logic for inserting at the end of a list.

FIGURE 5-10 Add Node at End

Insert Node Algorithm
Now let’s write the algorithm that puts it all together and inserts a node into
the list. We are given a pointer to the list, the predecessor, and the data to be

set pNew link to null pointer
set pPre link to pNew                (Predecessor to new)

set pNew link to pPre link           (New to null)
set pPre link to pNew                (Predecessor to new)

 set pNew link to pPre link
set pPre link to pNew 

(a) Before add

(b) After add
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inserted. We allocate memory for the new node and adjust the link pointers
appropriately. When the algorithm is complete, it returns a Boolean—true if
it was successful and false if there was no memory for the insert. The
pseudocode is shown in Algorithm 5-2.

ALGORITHM 5-2 Insert List Node

Algorithm 5-2 Analysis We have discussed all of the logic in this algorithm except for the memory allocation.
When memory is exhausted, the insert is in an overflow state. The action taken depends
on the application. Although the application generally needs to abort the program,
that decision should not be made in the insert algorithm. We therefore return a Bool-
ean indicating whether we were successful and let the calling module decide whether
it needs to abort or whether some other action is appropriate. 

Delete Node 
The delete node algorithm logically removes a node from the list by changing
various link pointers and then physically deleting the node from dynamic
memory. To logically delete a node, we must first locate the node itself. A
delete node is located by knowing its address and its predecessor’s address.
We will discuss location concepts shortly. Once we locate the node to be
deleted, we can simply change its predecessor’s link field to point to the
deleted node’s successor. We then recycle the node back to dynamic memory.
We need to be concerned, however, about deleting the only node in a list.
Deleting the only node results in an empty list, and so we must be careful
that in this case the head is set to a null pointer.

The delete situations parallel those for add. We can delete the only node,
the first node, a node in the middle of the list, or the last node of a list. As we

Algorithm insertNode (list, pPre, dataIn)
Inserts data into a new node in the list.

Pre    list is metadata structure to a valid list
pPre is pointer to data’s logical predecessor
dataIn contains data to be inserted

Post   data have been inserted in sequence
Return true if successful, false if memory overflow

1 allocate (pNew) 
2 set pNew data to dataIn 
3 if (pPre null) 
Adding before first node or to empty list.
1 set pNew link to list head 
2 set list head to pNew 

4 else
Adding in middle or at end.
1 set pNew link to pPre link 
2 set pPre link to pNew 

5 end if
6 return true
end insertNode 
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explain below, these four situations reduce to only two combinations: delete
the first node and delete any other node. In all cases the node to be deleted is
identified by a pointer (pLoc). 

Delete First Node
When we delete the first node, we must reset the head pointer to point to the
first node’s successor and then recycle the memory for the deleted note. We
can tell we are deleting the first node by testing the predecessor. If the prede-
cessor is a null pointer, we are deleting the first node. This situation is dia-
grammed in Figure 5-11.

FIGURE 5-11 Delete First Node

The statements to delete the first node are shown in the next example.
Recycle is the pseudocode command to return a node’s space to dynamic
memory.

If we examine this logic carefully, we note that it also applies when we
are deleting the only node in the list. If the first node is the only node, then
its link field is a null pointer. Because we move its link field (a null pointer) to
the head pointer, the result is by definition an empty list.

set list head to pLoc link 
recycle (pLoc) 

(a) Before delete

(b) After delete
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set list head to pLoc link
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General Delete Case
We call deleting any node other than the first node a general case because the
same logic applies to deleting any node either in the middle or at the end of
the list. For both of these cases, we simply point the predecessor node to the
successor of the node being deleted. The logic is shown in Figure 5-12.

FIGURE 5-12 Delete General Case

We delete the last node automatically. When the node being deleted is
the last node of the list, its null pointer is moved to the predecessor’s link
field, making the predecessor the new logical end of the list. After the point-
ers have been adjusted, the current node is recycled.

The delete general case pseudocode is shown here:

Delete Node Algorithm
The logic to delete a node is shown in Algorithm 5-3. The algorithm is given a
pointer to the list, to the node to be deleted, and to the delete node’s prede-
cessor. It copies the deleted node’s data to a data out area in the calling pro-
gram and then adjusts the pointers before releasing the node’s memory.

set pPre link to pLoc link 
recycle (pLoc) 

(a) Before delete

(b) After delete

13439 75

pPre pLoc

3

count
list

head

pPre pLoc

(Recycled) 134392

count
list

head

set pPre link to pLoc link
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ALGORITHM 5-3 List Delete Node

Algorithm 5-3 Analysis We need to discuss two points in this algorithm. The first, and most important, is that
the node to be deleted must be identified before it is called. The algorithm assumes
that the predecessor and current pointers are properly set. If they aren’t, the algorithm
will most likely fail. Even if it doesn’t fail, the data will be wrong. (It’s better that the
algorithm fail than that it report invalid results.)

Second, when we discussed the individual logic cases earlier, we placed the recy-
cle statement after each delete statement. In the implementation we moved it to the end
of the algorithm. When the same statements appear in both the true and false blocks of
a selection statement, they should be moved out of the selection logic. Moving com-
mon statements is similar to factoring common expressions in algebra. The result is a
program that is smaller and easier to maintain.

List Search 
A list search is used by several algorithms to locate data in a list. To insert
data, we need to know the logical predecessor to the new data. To delete data,
we need to find the node to be deleted and identify its logical predecessor. To
retrieve data from a list, we need to search the list and find the data. In addi-
tion, many user applications require that lists be searched to locate data.

We must use a sequential search because there is no physical relation-
ship among the nodes. The classic sequential search1 returns the location of
an element when it is found and the address of the last element when it is not
found. Because our list is ordered, we need to return the location of the ele-
ment when it is found and the location where it should be placed when it is
not found. Knuth2 calls this search “sequential search in ordered table.” We
simply call it an ordered list search.

Algorithm deleteNode (list, pPre, pLoc, dataOut)
Deletes data from list & returns it to calling module. 

Pre  list is metadata structure to a valid list
     Pre is a pointer to predecessor node
     pLoc is a pointer to node to be deleted
     dataOut is variable to receive deleted data
Post data have been deleted and returned to caller

1 move pLoc data to dataOut
2 if (pPre null) 
Deleting first node
1 set list head to pLoc link 

3 else
Deleting other nodes
1 set pPre link to pLoc link 

4 end if
5 recycle (pLoc)
end deleteNode

1. See Chapter 13.
2. Donald E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, Second Edition

(Reading, MA: Addison-Wesley, 1998), 398.
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To search a list on a key, we need a key field. For simple lists the key and
the data can be the same field. For more complex structures, we need a sepa-
rate key field. We reproduce the data node structure from “Data Node” in
Section 5-2 for your convenience:

Given a target key, the ordered list search attempts to locate the
requested node in the list. If a node in the list matches the target value, the
search returns true; if there are no key matches, it returns false. The prede-
cessor and current pointers are set according to the rules in Table 5-1.

TABLE 5-1 List Search Results

Each of these conditions is also shown in Figure 5-13.
We start at the beginning and search the list sequentially until the target

value is no longer greater than the current node’s key. At this point the target
value is either less than or equal to the current node’s key while the predeces-
sor is pointing to the node immediately before the current node. We then test
the current node and set the return value to true if the target value is equal to
the list value or false if it is less (it cannot be greater) and terminate the
search. The pseudocode for this search is shown in Algorithm 5-4.

In the previous discussion we assumed that the list was sequentially
ordered on a key. It is often necessary, however, to search the list on a list
attribute rather than on the key. For example, given a list of information
about the employees in a company, we might want to find employees who
have an engineering degree or employees who speak Japanese. 

data
key 
field1 
field2  

    ...
fieldN 

end data

Condition pPre pLoc Return

Target < first node

Target = first node

First < target < last

Target = middle node

Target = last node

Target > last node

Null

Null

Largest node < target

Node’s predecessor

Last’s predecessor

Last node

First node

First node

First node > target

Equal node

Last node

Null

False

True

False

True

True

False
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FIGURE 5-13 Ordered List Search

ALGORITHM 5-4 Search List

continued

Algorithm searchList (list, pPre, pLoc, target)
Searches list and passes back address of node containing 
target and its logical predecessor.

Pre   list is metadata structure to a valid list 
      pPre is pointer variable for predecessor
      pLoc is pointer variable for current node
      target is the key being sought
Post  pLoc points to first node with equal/greater key 
      -or- null if target > key of last node
      pPre points to largest node smaller than key
      -or- null if target < key of first node
Return true if found, false if not found

1 set pPre to null
2 set pLoc to list head
3 loop (pLoc not null AND target > pLoc key)
1 set pPre to pLoc
2 set pLoc to pLoc link

4 end loop
5 if (pLoc null)
Set return value
1 set found to false

5 10

pPre pLoc

Target

Located first

95 100

Located last

pPre pLoc

Target

•••

Target

15 20

Located middle

pPre pLoc

•••

5 10

pPre pLoc

Target < 5

Less than first

95 100

Greater than last

pPre pLoc

Target > 100

•••15 20

pPre pLoc

Target > 15
Target < 20

•••

(a) Successful searches (return true)

(b) Unsuccessful searches (return false)
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ALGORITHM 5-4 Search List (continued)

Algorithm 5-4 Analysis Examine the loop statement carefully. Note that there are two tests. The first test protects
us from running off the end of the list; the second test stops the loop when we find the tar-
get or, if the target doesn’t exist, when we find a node larger than the target. It is impor-
tant that the null pointer test be done first. If the loop is at the end of the list, the current
pointer is no longer valid. Testing the key first would give unpredictable results.3

We could make the search slightly more efficient if we had a rear pointer. A rear
pointer is a metadata field that contains the address of the last node in the list. With a
rear pointer, we could test the last node to make sure that the target wasn’t larger than
its key value. If the target were larger, we would simply skip the loop, setting the prede-
cessor pointer to the last node and the current pointer to a null pointer. Once we know
that the target is not greater than the last node, we don’t need to worry about running
off the end of the list.

To search a list on any field other than the key, we use a simple sequential
search. The problem with nonkey searches, however, is that multiple elements
often satisfy the search criteria. Although we might have only one employee
who speaks Japanese, we might just as well have zero or many who do. One
simple solution is to return a list of all elements that satisfy the criteria.

Retrieve Node
Now that we know how to locate a node in the list, we are ready to study
retrieve node. Retrieve node uses search node to locate the data in the list. If
the data are found, it moves the data to the output area in the calling module
and returns true. If they are not found, it returns false. The pseudocode is
shown in Algorithm 5-5.

Empty List
Processing logic often depends on there being data in a list. We provide empty
list, a simple module that returns a Boolean indicating that there are data in
the list or that it is empty (Algorithm 5-6).

6 else
1 if (target equal pLoc key)

1 set found to true
2 else

1 set found to false
3 end if

7 end if
8 return found
end searchList 

3. Note that some languages, such as Pascal, test both expressions in the condition before evaluating the
results. In these situations the loop limit test condition must be broken up into two separate expressions.
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ALGORITHM 5-5 Retrieve List Node

ALGORITHM 5-6 Empty List

Algorithm 5-6 Analysis One of the questions often raised by students studying program design is “Why write a
module when it contains only one statement—isn’t it more efficient to simply code the
statement inline?” Although it is definitely more efficient to write the code inline, it is not
a better design for a generalized module. Remember that we are implementing gener-
alized code in which the user does not necessarily know the data structure. For exam-
ple, virtually all systems have an algorithm that tests for end of file. This test is quite
simple, most likely only one line of code. It is necessary, however, because the pro-
grammer doesn’t know the file structure and therefore cannot check the end-of-file status
without support. 

Full List
At first glance, full list appears to be as simple as empty list. As we saw with
stacks, however, it turns out to be a relatively complex algorithm to
implement. Very few languages provide the programmer with the capability to
test how much memory is left in dynamic memory—C does not. The
pseudocode is shown in Algorithm 5-7.

Algorithm retrieveNode (list, key, dataOut)
Retrieves data from a list.

Pre    list is metadata structure to a valid list
       key is target of data to be retrieved
       dataOut is variable to receive retrieved data 
Post   data placed in dataOut
        -or- error returned if not found
Return true if successful, false if data not found

1 set found to searchList (list, pPre, pLoc, key)
2 if (found)
1 move pLoc data to dataOut

3 end if
4 return found 
end retrieveNode

Algorithm emtpyList (list)
Returns Boolean indicating whether the list is empty.

Pre    list is metadata structure to a valid list
Return true if list empty, false if list contains data

1 if (list count equal 0)
1 return true

2 else
1 return false

end emptyList
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ALGORITHM 5-7 Full List

List Count
List count is another simple, one-line module. It is necessary because the
calling module has no direct access to the list structure. Its implementation is
shown in Algorithm 5-8.

ALGORITHM 5-8 List Count

Traverse List
Algorithms that traverse a list start at the first node and examine each node in
succession until the last node has been processed. Traversal logic is used by
several different types of algorithms, such as changing a value in each node,
printing the list, summing a field in the list, or calculating the average of a field.
Any application that requires that the entire list be processed uses a traversal.

To traverse the list, we need a walking pointer, a pointer that moves from
node to node as each element is processed. Assuming a list with a head
structure, the following pseudocode uses a walking pointer to traverse the
list. Each loop modifies the pointer to move to the next node in sequence as
we traverse the list.

Algorithm fullList (list) 
Returns Boolean indicating whether or not the list is full. 

Pre    list is metadata structure to a valid list
Return false if room for new node; true if memory full 

1 if (memory full)
1 return true

2 else
2 return false

3 end if
4 return true
end fullList

Algorithm listCount (list)
Returns integer representing number of nodes in list. 

Pre    list is metadata structure to a valid list
Return count for number of nodes in list

1 return (list count)
end listCount

set pWalker to list head
loop (more nodes)

process (pWalker data)
set pWalker to next link

end loop
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We begin by setting the walking pointer to the first node in the list. Then,
using a loop, we continue until all of the data have been processed. Each
loop calls a process module and passes it the data and then advances the
walking pointer to the next node. When the last node has been processed,
the loop terminates.

We have two possible approaches in designing the traverse list imple-
mentation. In one approach the user controls the loop, calling traverse to
get the next element in the list. In the other approach, the traverse module
controls the loop, calling a user-supplied algorithm to process the data. We
implement the first option because it provides the programmer with more
flexibility. For example, if the application needs to process only half the list,
the loop can simply terminate. The second design would loop through the
second half of the data unnecessarily. Figure 5-14 is a graphic representa-
tion of a list traversal.  

FIGURE 5-14 List Traversal

Because we need to remember where we are in the list from one call to
the next, we need to add a current position pointer to the head structure. It
keeps track of the node processed after the last call. The head structure is
shown in Figure 5-14. The figure also shows how the position pointer is mod-
ified to move from one node to the next as the traversal algorithm is called.

Each call also needs to know whether we are starting from the beginning
of the list or continuing from the last node processed. This information is
communicated through the parameter list. The basic logic to traverse a list is
shown in Algorithm 5-9. We name it getNext because it is called to get the
next node in the traversal.

ALGORITHM 5-9 Traverse List

continued

Algorithm getNext (list, fromWhere, dataOut) 
Traverses a list. Each call returns the location of an
element in the list.

Pre    list is metadata structure to a valid list
       fromWhere is 0 to start at the first element
       dataOut is reference to data variable
Post   dataOut contains data and true returned
       -or- if end of list, returns false

5 10 15 20 95 100•••

head

N

count pos
list
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ALGORITHM 5-9 Traverse List (continued)

Algorithm 5-9 Analysis There are two major blocks of code in this algorithm. Statement 2 handles the process-
ing when we start from the beginning of the list; statement 3 handles the processing
when we continue from the current location. When we are starting at the beginning,
we set the head structure’s position pointer to the first node in the list and pass the first
node’s data back to the calling module.

When we are continuing the list traversal, we must ensure that there are more data
in the list. If we are at the end of the list, we set success to false and terminate. If there
are more data, we set the current position to the next node and pass its data back to
the calling module.

One final word of caution: This design supports only one traversal of any given list
at a time. If an application needs more than one traversal at a time, a different design
is needed.

Destroy List
When a list is no longer needed but the application is not done, the list
should be destroyed. Destroy list deletes any nodes still in the list and recycles
their memory. It then sets the metadata to a null list condition. The code for
destroy list is shown in Algorithm 5-10.

ALGORITHM 5-10 Destroy List

continued

Return true if next element located
       false if end of list 

1 if (empty list) 
1 return false

2 if (fromWhere is beginning)
Start from first
1 set list pos to list head
2 move current list data to dataOut
3 return true

3 else 
Continue from pos 
1 if (end of list)

End of List 
1 return false 

2 else
1 set list pos to next node
2 move current list data to dataOut
3 return true

3 end if
4 end if
end getNext

Algorithm destroyList (pList)
Deletes all data in list.
ƒƒPre    list is metadata structure to a valid list
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ALGORITHM 5-10 Destroy List (continued)

5.3 List ADT
In this section we create a list ADT based on the linked list implementation.
Recall that an ADT consists of a data type and the operations that manipulate
the data. When we implement an ADT in C, the application data are con-
trolled by the programmer. This requires that the application program allo-
cate memory for the data and pass the data node’s address to the ADT.
Because C is strongly typed, the data node pointer must be passed as a void
pointer. Using void pointers allows us to store the data node pointers in the
ADT’s data structure without knowing any of the details about the data.

But, being able to store the data node pointer does not solve all of our
problems. Lists and many other data structures require that we be able to
sequence the data. In a list, the data are generally stored in key sequence.
The ADT does not have the necessary information to do this sequencing. Fur-
thermore, each type of data requires different functions to compare two keys.
The solution to this problem is found in pointers to functions. The applica-
tion programmer writes a function to compare two keys in the data structure,
for example to compare two integers, and passes the address of the compare
function to the ADT. The ADT then stores the compare function address as
metadata in the list head structure and uses it whenever data need to be com-
pared. Before you continue you may want to review Chapter 1, “Generic
Code for ADTs” and your C text for a discussion of void pointers and for
pointers to functions.

For the list, we use a simple head structure that contains a count, several
pointers, and the address of the compare function needed to compare the
data in the list. The head structure is shown in Figure 5-15.

The data nodes contain the pointer to a data structure created by the pro-
grammer and a self-referential pointer to the next node in the list. These data
structures are shown in Program 5-1. We will explain each of the structure
variables as we use them.

ƒƒPost   All data deleted
1 loop (not at end of list)
1 set list head to successor node
2 release memory to heap

2 end loop
  No data left in list. Reset metadata.
3 set list pos to null
4 set list count to 0
end destroyList
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FIGURE 5-15 ADT Structure

PROGRAM 5-1 List ADT Type Definitions

ADT Functions
The prototype declarations for the ADT functions are graphically described in
Figure 5-16. They include all of the basic algorithms described in Section 5.2,
“Algorithms.”

Program 5-2 contains the prototype statements for the ADT. We discuss
each function in the following sections. Note that the last three functions
have identifiers that start with an underscore. These are internal functions
that are not used in application code; they are for internal ADT use only. For
this reason we have also declared them as static functions.4 The code is
shown in Program 5-2. 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

//List ADT Type Defintions 
typedef struct node 
   {
    void*        dataPtr;
    struct node* link;
   } NODE; 

typedef struct
   {
    int   count; 
    NODE* pos;
    NODE* head; 
    NODE* rear;
    int    (*compare) (void* argu1, void* argu2); 
   } LIST;

4. Static functions are not exported to the linker. They prevent internal functions from being used out-
side the ADT.

list
count compare

Compare
function

head

NODE

pos

NODE

rear

NODE

NODE
dataPtr

To data

link

To next NODE
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FIGURE 5-16 List ADT Functions

PROGRAM 5-2 List ADT Prototype Declarations

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//Prototype Declarations 
LIST* createList   (int (*compare)
                    (void* argu1, void* argu2));
LIST* destroyList  (LIST* list);

int   addNode   (LIST* pList, void* dataInPtr);

bool  removeNode   (LIST*  pList,
                    void*  keyPtr,
                   void** dataOutPtr);

bool  searchList   (LIST*  pList,
                    void*  pArgu,
                    void** pDataOut);

User program

ADT

Public functions

create List traverse

comparemain ...

retrieve Node destroy List

list Count empty List full List

remove Nodeadd Node search List

Private functions

_delete_insert _search
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PROGRAM 5-2 List ADT Prototype Declarations (continued)

Create List
The create list function creates the abstract data type in a null list state. Its
only parameter is the compare function required to compare two keys in the
data structure. It allocates memory for the head structure, initializes the
pointers (and the list count, stores the address of the compare function for
later use), and returns the address of the structure to the calling function. If
the memory allocation fails, it returns a null pointer. The code is shown in
Program 5-3.

PROGRAM 5-3 Create List

continued

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

bool  retrieveNode (LIST*  pList,
                    void*  pArgu,
                    void** dataOutPtr);

bool  traverse     (LIST*  pList,
                    int    fromWhere,
                    void** dataOutPtr);

int   listCount    (LIST*  pList);
bool  emptyList    (LIST*  pList);
bool  fullList     (LIST*  pList); 

static int _insert   (LIST* pList,
                      NODE* pPre,
                      void* dataInPtr);

static void _delete  (LIST*  pList,
                      NODE*  pPre,
                      NODE*  pLoc,
                      void** dataOutPtr);
static bool _search  (LIST*  pList,
                      NODE** pPre,
                      NODE** pLoc,
                      void*  pArgu);

//End of List ADT Definitions 

1
2
3
4
5
6
7

/*=============== createList ==============
Allocates dynamic memory for a list head
node and returns its address to caller
   Pre    compare is address of compare function 
          used to compare two nodes.
   Post   head has allocated or error returned
   Return head node pointer or null if overflow 
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PROGRAM 5-3 Create List (continued)

Program 5-3 Analysis With the exception of the compare function pointer, this algorithm is basic and straight-
forward. The pointer to the compare function passed to create list is simply the address
of the function. When you examine the data structure in Program 5-1, however, note
that the compare function is fully declared to receive two void pointers as its parame-
ters and to return an integer. Should any of these types be declared incorrectly, the
compiler returns an error message. This assures us that the programmer has correctly
written the compare function to agree with our requirements.

Add Node
Add node is actually a higher-level, user-interface function that receives the
data to be inserted into the list and searches the list for the insertion point. It
then calls the low-level delete function, which parallels Algorithm 5-2,
“Insert List Node.”

In this ADT we have chosen to prevent duplicate keys from being
inserted into the list. This leads to three possible return values: -1 indicates
dynamic memory overflow, 0 indicates success, and +1 indicates a duplicate
key. It is the using programmer’s responsibility to correctly interpret these
return values. If an application requires duplicate key insertions, the inser-
tion and several of the other algorithms would need to be rewritten to handle
duplicate data. The code is shown in Program 5-4.

Internal Insert Function
Internal insert function (_insert) is responsible for physically placing the
new data into the list. Its code is shown in Program 5-5.

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

*/
LIST* createList 
     (int (*compare) (void* argu1, void* argu2))
{
//Local Definitions 

LIST* list;

//Statements 
list = (LIST*) malloc (sizeof (LIST));
if (list)
   {
    list->head    = NULL;
    list->pos     = NULL;
    list->rear    = NULL;
    list->count   = 0;
    list->compare = compare;
   } // if 

return list;
} // createList 
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PROGRAM 5-4 Add Node

Program 5-4 Analysis Add node begins by searching the structure to find the insertion position, as identified
by the predecessor (pPre) and the current location (pLoc) pointers returned by the
search. If the key of the new data matches a node in the list, the insertion is rejected
and +1 is returned. Assuming that the new data contains a unique key, the node is
inserted. 

PROGRAM 5-5 Internal Insert Function

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/*================== addNode =================
Inserts data into list.
   Pre     pList is pointer to valid list
           dataInPtr pointer to insertion data
   Post    data inserted or error
   Return  -1 if overflow
           0 if successful
           1 if dupe key

*/
int addNode (LIST* pList, void* dataInPtr)
{
//Local Definitions 

bool found;
bool success;

NODE* pPre;
NODE* pLoc;

//Statements 
found = _search (pList, &pPre, &pLoc, dataInPtr);
if (found)
   // Duplicate keys not allowed 
   return (+1);

success = _insert (pList, pPre, dataInPtr);
if (!success)
   // Overflow 
   return (-1);
return (0);

} // addNode 

1
2
3
4
5
6
7
8

/*=================== _insert ================== 
Inserts data pointer into a new node.
   Pre    pList pointer to a valid list 
          pPre  pointer to data's predecessor 
          dataInPtr data pointer to be inserted 
   Post   data have been inserted in sequence 
   Return boolean, true  if successful, 
                   false if memory overflow 
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PROGRAM 5-5 Internal Insert Function (continued)

Remove Node
Remove node is also a high-level, user-interface function. It calls search list
and delete node to complete the deletion. There are two possible completion
states in remove node: either we were successful (true) or we were unsuc-
cessful because the data to be deleted could not be found (false). The code is
shown in Program 5-6.

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

*/
static bool _insert (LIST* pList, NODE* pPre,
                     void* dataInPtr)
{
//Local Definitions 

NODE* pNew;

//Statements 
if (!(pNew = (NODE*) malloc(sizeof(NODE))))
   return false;

pNew->dataPtr   = dataInPtr; 
pNew->link      = NULL; 

 
if (pPre == NULL)
   {
    // Adding before first node or to empty list. 
    pNew->link       = pList->head;
    pList->head      = pNew;
    if (pList->count == 0)
     // Adding to empty list. Set rear 
       pList->rear = pNew;
   } // if pPre 
else
   {
    // Adding in middle or at end 
    pNew->link  = pPre->link;
    pPre->link  = pNew;

 
   // Now check for add at end of list 
   ƒif (pNew->link     == NULL)
    ƒ    pList->rear   =  pNew;
   } // if else 

(pList->count)++;
return true;

} // _insert 
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PROGRAM 5-6 Remove Node

Program 5-6 Analysis While remove node is rather easy to follow, dataOutPtr must be cast as a void
pointer in the calling function or you get a compile error. A typical call is shown here:

Internal Delete Function
Internal delete function (_delete) is called by remove node to physically
delete the identified node from dynamic memory. When the data are deleted,
a pointer to the data is returned to the calling function and placed in the vari-
able location (dataOutPtr) specified by the last parameter in the call. The
code is shown in Program 5-7.

PROGRAM 5-7 Internal Delete Function

continued

1
2
3
4
5
6
7
8
9
10
11
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13
14
15
16
17
18
19
20
21
22
23
24

/*================= removeNode ================ 
Removes data from list. 
   Pre pList pointer to a valid list
          keyPtr pointer to key to be deleted
          dataOutPtr pointer to data pointer
   Post   Node deleted or error returned.
   Return false not found; true deleted

*/
bool removeNode  ƒ(LIST*  pList, void*  keyPtr,
                  ƒvoid** dataOutPtr)
{
//Local Definitions 

bool found;

NODE* pPre;
NODE* pLoc;

//Statements 
found = _search (pList, &pPre, &pLoc, keyPtr);
if (found)
   _delete (pList, pPre, pLoc, dataOutPtr);

return found;
} // removeNode 

removeNode (pList, &partNum, (void*)&partPtr);

1
2
3
4
5
6
7

/*================= _delete ================ 
Deletes data from a list and returns 
pointer to data to calling module.
   Pre    pList pointer to valid list.
          pPre  pointer to predecessor node
          pLoc  pointer to target node
          dataOutPtr pointer to data pointer
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PROGRAM 5-7 Internal Delete Function (continued)

Search List
Search list is a high-level, user-interface function that locates a given node in the
list and passes back its address and the address of its predecessor to the call-
ing function. Because it is an application interface, it needs only three
parameters: the list to be searched, the search argument, and the address of
the pointer to receive the data pointer. To accomplish its function, it calls the
internal ADT search function. Once the search is complete, it sets the output
parameter to the address of the located data and returns the found Boolean.
The code is shown in Program 5-8.

PROGRAM 5-8 Search User Interface

continued
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   Post   Data have been deleted and returned 
          Data memory has been freed

*/
void _delete (LIST* pList, NODE*  pPre,
              NODE* pLoc,  void** dataOutPtr)
{
//Statements 

*dataOutPtr = pLoc->dataPtr;
if (pPre == NULL)
   // Deleting first node 
   pList->head = pLoc->link;
else
   // Deleting any other node 
   pPre->link = pLoc->link;
 
// Test for deleting last node 
if (pLoc->link == NULL)
    pList->rear = pPre;

(pList->count)--;
free (pLoc);

return;
} // _delete 
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/*================== searchList ================= 
Interface to search function. 
   Pre    pList pointer to initialized list.
          pArgu pointer to key being sought
   Post   pDataOut contains pointer to found data
     -or- NULL if not found
   Return boolean true successful; false not found 

*/
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PROGRAM 5-8 Search User Interface (continued)

Internal Search Function
The actual search work is done with an internal search function (_search)
available only within the ADT. It uses the compare function created by the
using programmer to determine if the search argument is equal or not equal
to the key in a node. The search logic is shown in Program 5-9.

PROGRAM 5-9 Internal Search Function

continued
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bool searchList (LIST*  pList, void* pArgu,
                 void** pDataOut)
{
//Local Definitions 

bool  found;

NODE* pPre;
NODE* pLoc;

//Statements 
found = _search (pList, &pPre, &pLoc, pArgu);
if (found)
    *pDataOut = pLoc->dataPtr;
else
    *pDataOut = NULL;
return found;

} // searchList 
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/*================== _search =================
Searches list and passes back address of node 
containing target and its logical predecessor.
   Pre     pList pointer to initialized list 
          pPre  pointer variable to predecessor
          pLoc  pointer variable to receive node
          pArgu pointer to key being sought
   Post   pLoc points to first equal/greater key 
     -or- null if target > key of last node
          pPre points to largest node < key
     -or- null if target < key of first node
   Return boolean true found; false not found 

*/
bool _search (LIST*  pList, NODE** pPre,
             NODE** pLoc,  void*  pArgu)
{
//Macro Definition 
#define COMPARE \

( ((* pList->compare) (pArgu, (*pLoc)->dataPtr)) )
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PROGRAM 5-9 Internal Search Function (continued)

Program 5-9 Analysis You need to study several aspects of this function carefully. First, study the two macros
we define at the beginning of the function. The compare code is quite long and tends
to confuse the logic flow in the code when it is coded in line. By coding it as a macro,
the function logic is much easier to follow. We need two different macros because we
use two different pointers to nodes in the list.

Now let’s study the compare closely (shown again here):

The first expression in the compare is the address of the compare function written by
the application program and stored in the ADT head when it was created. This is the
equivalent of the function name. We get the address through the list header, pList-
>compare. The second parenthetical expression is the parameter list for the function.
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#define COMPARE_LAST \
((* pList->compare) (pArgu, pList->rear->dataPtr))

//Local Definitions 
int result;

//Statements 
*pPre  = NULL;
*pLoc  = pList->head;
if (pList->count == 0)
    return false;

// Test for argument > last node in list 
if ( COMPARE_LAST > 0) 
   {
    *pPre = pList->rear;
    *pLoc = NULL;
    return false;
   } // if 

while ( (result = COMPARE) > 0 )
   {
    // Have not found search argument location 
    *pPre = *pLoc;
    *pLoc = (*pLoc)->link;
   } // while 

if (result == 0)
   // argument found--success 
   return true;
else
   return false;

} // _search 

(* pList->compare) (pArgu, (*pLoc)->dataPtr)
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In this case it contains a void pointer to the search argument (pArgu) and a void
pointer to the data node (dataPtr). Because the compare function knows the data
structure for the node, it can cast the pointers appropriately. The compare function
returns -1 when a search argument is less than the list key, 0 for equal, or +1 for
greater. This is the same design that C uses for string compares, so you are already
familiar with it.

In the first function statement, we use the compare to determine if the search argu-
ment is greater than the last key in the list, identified by rear in Program 5-1. If it is,
there is no need to search the list. If the search argument is less than or equal to the last
entry, the compare in the while loop searches from the beginning of the list until the
search argument is not greater than the list argument. At that point we have either
found a matching key or the smallest key greater than the search argument. 

Retrieve Node
Retrieve node searches the list and returns the address of the data whose key
matches the search argument. Its code is shown in Program 5-10.

PROGRAM 5-10 Retrieve Node
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/*================== retrieveNode ================ 
This algorithm retrieves data in the list without
changing the list contents. 
   Pre     pList pointer to initialized list.
          pArgu pointer to key to be retrieved
   Post   Data (pointer) passed back to caller
   Return boolean true success; false underflow

*/
static bool retrieveNode (LIST*  pList,
                        ƒƒvoid*  pArgu, 
                     ƒ    void** dataOutPtr)
{
//Local Definitions 

bool  found;

NODE* pPre;
NODE* pLoc;

//Statements 
found = _search (pList, &pPre, &pLoc, pArgu);
if (found)
   {
    *dataOutPtr = pLoc->dataPtr;
    return true;
   } // if 

*dataOutPtr = NULL;
return false;

} // retrieveNode 
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Empty List
Because the application programmer does not have access to the list struc-
ture, we provide three status functions that can be used to determine the list
status. The first, empty list, is shown in Program 5-11.

PROGRAM 5-11 Empty List

Full List
The second status function, full list, determines if there is enough room in
dynamic memory for another node. It is available for those applications that
need to know if there is room available before an insert. The code is shown in
Program 5-12.

PROGRAM 5-12 Full List

continued
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/*================= emptyList ================
Returns boolean indicating whether or not the
list is empty
   Pre    pList is a pointer to a valid list 
   Return boolean true empty; false list has data 

*/
bool emptyList (LIST* pList) 
{
//Statements 

return (pList->count == 0);
} // emptyList 
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/*================== fullList =================
Returns boolean indicating no room for more data.
This list is full if memory cannot be allocated for
another node. 
   Pre    pList pointer to valid list 
   Return boolean true if full
                  false if room for node 

*/
bool fullList (LIST* pList) 
{
//Local Definitions 
NODE* temp;

//Statements 
if ((temp = (NODE*)malloc(sizeof(*(pList->head)))))
   {
    free (temp);
    return false;
   } // if 
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PROGRAM 5-12 Full List (continued)

Program 5-12 Analysis This is one of the more difficult functions to write. Because C does not provide a facility
to determine free space in dynamic memory, we can only allocate a node;  if it works,
we know there is room for at least one more node. But, as the allocation process may
use the last available space, we must free the node before we return. Of course, if the
allocation fails, we know there is no more room in dynamic memory.

List Count
List count is the last of the status functions. It returns an integer count for
the number of nodes currently in the list. Its code is shown in Program 5-13.

PROGRAM 5-13 List Count

Traverse
At one time or another, every list needs to be traversed. Because the program-
mer doesn’t have access to the list structure, we need to provide a function to
traverse the list. This algorithm is shown in Program 5-14.

PROGRAM 5-14 Traverse List

continued
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// Dynamic memory full 
return true;

} // fullList 
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/*================== listCount ==================
Returns number of nodes in list.
   Pre    pList is a pointer to a valid list
   Return count for number of nodes in list

*/
int listCount(LIST* pList) 
{
//Statements 

return pList->count; 

} // listCount 
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/*================== traverse =================
Traverses a list. Each call either starts at the
beginning of list or returns the location of the 
next element in the list.
   Pre    pList       pointer to a valid list
          fromWhere   0 to start at first element
          dataPtrOut  address of pointer to data
   Post   if more data, address of next node 
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PROGRAM 5-14 Traverse List (continued)

Program 5-14 Analysis The traverse function needs to know if the traversal is just starting or if we are in the
middle of a traversal. This logic is controlled through the fromWhere flag, a tech-
nique similar to the position flag in C’s seek function. Each time the function is called, it
stores the address of the current node being returned in the position pointer in the head
node. Then the next time, if we are not starting from the beginning of the list, we can
use the position pointer to locate the next node. If a node is available, we return true;
if we are at the end of the list, we return false.

Destroy List
Destroy list is needed only for those situations in which a list needs to be
deleted so that it can be built again. If the program is complete, it is not nec-
essary to destroy the list before returning to the operating system. When
called, destroy list deletes not only the nodes in the ADT but also all of the
nodes allocated by the application programmer. At the end it deletes the list
head node and returns a null pointer. The code is shown in Program 5-15. 
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   Return true node located; false if end of list
*/
bool traverse (LIST*  pList,
               int    fromWhere,
               void** dataPtrOut)
{
//Statements 

if (pList->count == 0)
    return false;

if (fromWhere == 0)
   {
    // Start from first node 
    pList->pos  = pList->head;
    *dataPtrOut = pList->pos->dataPtr;
    return true;
   } // if fromwhere 
else
   {
    // Start from current position 
    if (pList->pos->link == NULL)
        return false;
    else
       {
        pList->pos  = pList->pos->link;
        *dataPtrOut = pList->pos->dataPtr;
        return true;
       } // if else 
   } // if fromwhere else 

} // traverse 



228 Section 5.4 Application

PROGRAM 5-15 Destroy List

5.4 Application
To demonstrate how easily we can implement a list once we have an abstract
data type, we implement a list of award-winning pictures and their directors.
The program has three major functions: print instructions, build the list, and
process user inquiries. In addition, the process function calls three functions:
get the user’s choice, print the entire list, and search for a requested year.
One other function is required: a compare function to compare two years
(keys). The complete design is shown in Figure 5-17.

Data Structure
The application data structure contains three fields: the year the movie was
made, the name of the movie, and the name of the director. It is shown in
Program 5-16.
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/*================== destroyList =================
Deletes all data in list and recycles memory
   Pre    List is a pointer to a valid list.
   Post   All data and head structure deleted
   Return null head pointer

*/
LIST* destroyList (LIST* pList) 
{
//Local Definitions 

NODE* deletePtr;

//Statements 
if (pList)
   {
    while (pList->count > 0) 
       {
       ƒ// First delete data 
        free (pList->head->dataPtr);

 
        // Now delete node 
        deletePtr    = pList->head;
        pList->head  = pList->head->link; 
        pList->count--;
        free (deletePtr); 
       } // while 
    free (pList);
   } // if 
return NULL;

} // destroyList 
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FIGURE 5-17 Academy Awards List Design 

PROGRAM 5-16 Data Structure for Academy Awards

Application Functions
In this section we describe the functions and their interface with the abstract
data type.

Mainline
Mainline defines the list variable and then calls the three functions that do
the job. It has no interface with the abstract data type. Its code is shown in
Program 5-17. 

Print Instructions
Print instructions is a simple function that explains how the program works.
Its code is shown in Program 5-18.
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/*Data Structure for Academy Awards
   Written by:
   Date:

*/

const short STR_MAX = 41;

typedef struct
{
 short   year; 
 char    picture [STR_MAX];
 char    director[STR_MAX];
} PICTURE; 

printList searchgetChoice

buildList processprintInstr

Academy
Awards

cmpYear
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PROGRAM 5-17 Mainline for Academy Awards 

PROGRAM 5-18 Print Instructions for User 

continued
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/*This program maintains and displays a list of
Academy Awards Motion Pictures.
   Written by:
   Date:

*/
#include <stdio.h> 
#include <stdlib.h> 
#include <cType.h> 
#include <stdbool.h> 
#include "P5-16.h"          // Data Structure
#include "linkListADT.h"

//Prototype Declarations 
void  printInstr (void);
LIST* buildList  (void);
void  process    (LIST* list);
char  getChoice  (void);
void  printList  (LIST* list);
void  search     (LIST* list);

int   cmpYear    (void* pYear1, void* pYear2);

int main (void)
{
// Local Definitions 

LIST* list;

// Statements 
printInstr ();
list = buildList ();
process (list);

printf("End Best Pictures\n"
       "Hope you found your favorite!\n");
return 0;

} // main 
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/*================== printInstr =================
Print instructions to user.
   Pre    nothing
   Post   instructions printed

*/
void printInstr (void)
{
//Statements 

printf("This program prints the Academy Awards \n"
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PROGRAM 5-18 Print Instructions for User (continued)

Build List
Build list is one of the two major processing modules in the program. The
data for the list are contained in a text file. This module reads the text file
and inserts the data into the list. Program 5-19 contains the code for build
list; Figure 5-18 diagrams its status after the second insert. As you study the
figure, pay close attention to the pointers. First note how the list pointer in
the program references the list header structure in the ADT. Then note how
the header structure references the nodes in the list. Also note that each
node references a different picture structure. Finally, note how the ADT
can reference both nodes and pictures, but the application can reference
only pictures.

PROGRAM 5-19 Build List

continued
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  "Best Picture of the Year and its director.\n"
  "Your job is to enter the year; we will do\n"
  "the rest. Enjoy.\n");
return;

} // printInstr 
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/*==================== buildList ====================
Reads a text data file and loads the list
Pre    file exists in format: yy \t 'pic' \t 'dir'
Post   list contains data
       -or- program aborted if problems

*/
LIST* buildList (void)
{
//Local Definitions 

FILE* fpData;
LIST* list;

short  yearIn;
int    addResult;

PICTURE* pPic;

//Statements 
list   = createList (cmpYear);
if (!list)
    printf("\aCannot create list\n"),
           exit (100);
fpData = fopen("pictures.dat", "r");
if (!fpData)
    printf("\aError opening input file\n"),
           exit (110);
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PROGRAM 5-19 Build List (continued)

Program 5-19 Analysis Program 5-19 contains the first module that interfaces with the abstract data type. It
has some interesting design aspects. 

When we create the list, we pass the address of the function that compares two
years. Remember, the ADT doesn’t have visibility to the data types, so we must write
and pass a function for any function that processes data. 

Because the picture and director data both contain embedded spaces, we format
the file with the year as a short integer and the picture title and the director as delimited
strings. The delimiter for the picture title and the director is a double quote. This format-
ting allows us to use the scanf edit set format operator. 

The loop is controlled by reading the year from the file. If there is no year, we are
at the end of the file. If there is a year, we continue by reading the picture and the
director in turn. 
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while (fscanf(fpData, " %hd", &yearIn) == 1)
   {
    pPic = (PICTURE*) malloc(sizeof(PICTURE));
    if (!(pPic))
        printf("\aOut of Memory in build list\n"),
               exit (100);
    pPic->year = yearIn;
    
    // Skip tabs and quote
    while ((fgetc(fpData)) != '\t')
       ;
    while ((fgetc(fpData)) != '"')
       ;
    fscanf(fpData, " %40[^\"], %*c", pPic->picture);
    while ((fgetc(fpData)) != '\t')
       ;
    while ((fgetc(fpData)) != '"')
       ;
    fscanf(fpData, " %40[^\"], %*c", pPic->director);
    
    // Insert into list 
    addResult = addNode (list, pPic);
    if (addResult != 0)
        if (addResult == -1)
            printf("Memory overflow adding movie\a\n"),
                    exit (120);
        else
            printf("Duplicate year %hd not added\n\a",
                    pPic->year);
    while (fgetc(fpData) != '\n')

            ;
   } // while 
return list;

} // buildList 
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After reading the data into the picture variable structure, we insert it into the list.
There are three possible results from add node. If the add is successful, add node
returns 0. After calling add node, therefore, we check the results. If the return value is
not 0, we check for memory overflow, in which case we exit the program; if there is a
duplicate add, we just print an error message and continue. 

FIGURE 5-18 Build List Status after Second Insert

Process User Requests
After the list has been built, we are ready to process the user requests. The
user has three options, as shown in a menu displayed by get choice: print the
entire list, search for a particular year, or quit the program. The code for pro-
cessing the list is shown in Program 5-20.

buildList

list

pPic

1983 Terms ... Brooks

main Dynamic memory

1888 Rain ... Levi...

buildList

After second insertion

After list created

After first insertion

list

list

pPic

LIST

NODE

NODE

PICTURE

PICTURE

1983 Terms ... Brooks

LIST

LIST

headcompare pos rear

0
count

headcompare pos rear

2
count

to compYr

headcompare pos rear

1
count

to compYr

to compYr
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PROGRAM 5-20 Process User Choices

Program 5-20 Analysis There are no calls to the abstract data type in this function. The function simply calls
an application function to get the user’s choice and then calls print list or search as
appropriate.

Get User Choice
Get user choice is a simple function similar to many you have written. It
reads the user’s choice and ensures that it is valid. If the choice is not valid,
the function loops until the user enters a correct choice. The code is shown
in Program 5-21.

PROGRAM 5-21 Get User’s Choice

continued
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/*=================== process ===================
Process user choices
Pre    list has been created
Post   all of user's choice executed

*/
void process (LIST* list)
{
//Local Definitions 

char choice;

//Statements 
do
   {
    choice = getChoice ();

    switch (choice)
       {
        case 'P': printList (list);
                  break;
        case 'S': search (list);
        case 'Q': break;
       } // switch 
   } while (choice != 'Q');
return;

} // process 
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/*================== getChoice ==================
Prints the menu of choices.
   Pre    nothing
   Post   menu printed and choice returned

*/
char getChoice (void)
{
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PROGRAM 5-21 Get User’s Choice (continued)

Print List
Print list traverses the list, printing one movie with each call to the abstract
data type traverse function. We begin by checking to make sure that there are
data in the list and printing an appropriate message if the list is empty. Once
we have verified that the list contains data, we call get next to read the first
movie. We then use a do…while loop to process the rest of the data. The code
is shown in Program 5-22.

PROGRAM 5-22 Print List

continued

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

//Local Definitions 
char choice;
bool valid;

//Statements 
printf("======== MENU ======= \n"
       "Here are your choices:\n"
       "  S: Search for a year\n"
       "  P: Print all years  \n"
       "  Q: Quit             \n\n"
       "Enter your choice: ");
do
   {
    scanf(" %c", &choice);
    choice = toupper(choice);
    switch (choice)
       {
        case 'S':
        case 'P':
        case 'Q': valid = true;
                  break;
        default:  valid = false;
                  printf("\aInvalid choice\n"
                         "Please try again: ");
                  break;
       } // switch 
   } while (!valid);
return choice;

} // getChoice 
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/*================== printList ==================
Prints the entire list
   Pre    list has been created
   Post   list printed

*/
void printList (LIST* list)



236 Section 5.4 Application

PROGRAM 5-22 Print List (continued)

Program 5-22 Analysis The interesting logic in this function relates to the traversing of the list. The traverse func-
tion in the abstract data type needs a “where from” flag to tell it to either start at the
beginning of the list or continue from its last location. Therefore, before the loop we tell
traverse that we want the first movie’s data returned. Once we have a movie, we
obtain the rest of the list using a loop. Because traverse returns a success flag, we
can use it in the do...while expression. When all of the movies have been displayed,
we display an end-of-list message and terminate.

Search List
The last function in our application allows the user to search for and display
a movie for any year. The code is shown in Program 5-23.

PROGRAM 5-23 Search List

continued
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{
//Local Definitions 

PICTURE* pPic;

//Statements 

// Get first node 
if (listCount (list) == 0)
   printf("Sorry, nothing in list\n\a");
else
   {
    printf("\nBest Pictures List\n");
    traverse (list, 0, (void**)&pPic);
    do
      {
       printf("%hd %-40s %s\n",
              pPic->year,      pPic->picture, 
              pPic->director);
      } while (traverse (list, 1, (void**)&pPic));
   } // else 
printf("End of Best Pictures List\n\n");

} // printList 
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/*==================== search ====================
Searches for year and prints year, picture, and
director.
   Pre    list has been created
          user has selected search option
   Post     year printed or error message

*/
void search (LIST* list)
{
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PROGRAM 5-23 Search List (continued)

Compare Year
As we discussed in the analysis for build list, we must write a compare func-
tion that compares two years. Our design is similar to the compare string
function found in C. If the first year is less than the second, we return –1; if
the two years are equal, we return 0; if the first year is greater than the sec-
ond, we return +1. The code is shown in Program 5-24.

PROGRAM 5-24 Compare Year Function

continued
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//Local Definitions 
short    year;
bool     found;

PICTURE  pSrchArgu;
PICTURE* pPic;

//Statements 
printf("Enter a four digit year: ");
scanf ("%hd", &year);
pSrchArgu.year = year;

found = searchList (list, &pSrchArgu, 
                    (void**)&pPic);

if (found)
    printf("%hd %-40s %s\n",
            pPic->year, pPic->picture, pPic->director);
else
    printf("Sorry, but %d is not available.\n", year);
return;

} // search 
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/*==================== cmpYear ====================
Compares two years in PICTURE structures
   Pre  year1 is a pointer to the first structure
        year2 is a pointer to the second structure
   Post two years compared and result returned
Return -1 if year1 less; 0 if equal; +1 greater

*/
int cmpYear (void* pYear1, void* pYear2)
{
//Local Definitions 

int   result;
short year1;
short year2;
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PROGRAM 5-24 Compare Year Function (continued)

Program 5-24 Analysis Compare year receives two picture structures and compares the key in the first to the
key in the second. For simplicity we assign the years in the picture structure to local
variables and then make the comparison. This step is unnecessary, but the resulting
code is a little easier to understand.

Note that because the abstract data type passes a void pointer to the compare
function, we must cast the structure as a picture type. If we did not do this, we get a
compile error.

Testing Insert and Delete Logic 
Testing list algorithms requires careful planning. We discuss testing insert
logic and delete logic.

Testing Insert Logic
Because the list is ordered, we need at least four test cases to validate the
insert logic:

1. Insert a node into a null list—This test is always done automatically
because the list starts out in a null state.

2. Insert a node before the first data node—This test is not automatic; there-
fore, we need to arrange the input so that this case is tested.

3. Insert between two data nodes—Again, this test is not automatic. We need
to make sure that the test cases include the insertion of at least one node
between two existing nodes.

4. Insert after the last node—Because this case is the same as the insert into a
null list, it is automatic. Nevertheless, we recommend a test case in which
the new data are inserted after the last node in the list.

Testing Delete Logic
Testing the delete logic is similar to testing the insert logic:

1. Delete to a null list—To fully test the delete logic, one test case should
delete all of the data from the list and then insert new data.

15
16
17
18
19
20
21
22
23
24
25
26

//Statements 
year1 = ((PICTURE*)pYear1)->year;
year2 = ((PICTURE*)pYear2)->year;

if (year1 < year2)
    result = -1;
else if (year1 > year2)
    result = +1;
else
    result = 0;
return result;

} // cmpYear 
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2. Delete the first data node in the list—When dealing with lists, the most
common locations for errors are the first and last elements in the list.
Make sure that one of the test cases deletes the first data node in the list.

3. Delete a node between two data nodes—Because this is the most common
case, it is usually tested. We need to analyze the test data, however, to
ensure that at least one of the delete cases deletes a node between two
data nodes.

4. Delete the node at the end of the list—This test is not automatic. Make sure
that one of the delete cases deletes the node at the end of the list.

5. Try to delete a node that doesn’t exist—This test is not obvious. Some pro-
grams erroneously delete a node in the list even when the target node does
not exist. It is thus very important that we also test the not-found conditions.

6. Try to delete a node whose key is less than the first data node’s key—A subtle
error in the program could result in the first node being deleted when the
target does not exist. Make sure this case is tested.

7. Try to delete a node whose key is greater than the last data node’s key.

8. Try to delete from an empty list—This is the opposite of the previous condi-
tion. It needs to be included in the test cases.

5.5 Complex Implementations 
The implementation we have used to this point is known as a singly linked list
because it contains only one link to a single successor. In this section we
introduce three other useful implementations: the circularly linked list, the
doubly linked list, and the multilinked list. They are not fully developed. To
be included in the list ADT, they would need additional structures, such as a
pointer to a compare function and a position pointer as well as additional
functions.

Circularly Linked Lists
In a circularly linked list implementation, the last node’s link points to the first node
of the list, as shown in Figure 5-19. Circularly linked lists are primarily used
in lists that allow access to nodes in the middle of the list without starting at
the beginning. We will see one of these structures when we discuss the multi-
linked list.

Insertion into and deletion from a circularly linked list follow the same
logic patterns used in a singly linked list except that the last node points to
the first node. Therefore, when inserting or deleting the last node, in addition
to updating the rear pointer in the header we must also point the link field to
the first node.
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FIGURE 5-19 Circularly Linked List

Given that we can directly access a node in the middle of the list through
its data structure, we are then faced with a problem when searching the list.
If the search target lies before the current node, how do we find it? In a singly
linked list implementation, when we arrive at the end of the list the search is
complete. In a circular list implementation, however, we automatically con-
tinue the search from the beginning of the list.

The ability to continue the search presents another problem. What if the
target does not exist? In the singly linked list implementation, if we didn’t find
the data we were looking for, we stopped when we hit the end of the list or
when the target was less than the current node’s data. With a circular list
implementation, we save the starting node’s address and stop when we have
circled around to it, as shown in the code below:

Doubly Linked Lists
One of the most powerful implementations is the doubly linked list. A doubly
linked list is a linked list structure in which each node has a pointer to both its
successor and its predecessor. Figure 5-20 is a presentation of a doubly
linked list.

FIGURE 5-20 Doubly Linked List

There are three pieces of metadata in the head structure: a count, a posi-
tion pointer for traversals, and a rear pointer. Although a rear pointer is not
required in all doubly linked lists, it makes some of the list algorithms, such
as insert and search, more efficient.

loop (target not equal to pLoc key
  AND pLoc link not equal to startAddress)

9510

rearcount
N •••list 5

link link link link

B F
10countlist

•••
 B: Backward pointer F: Forward pointer

B F
5

B F
95•••rearhead
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Each node contains two pointers: a backward pointer to its predecessor and a
forward pointer to its successor. In Figure 5-20 these pointers are designated B
and F, respectively.

Another variation on the doubly linked list is the doubly linked circularly
linked list. In this variation the last forward pointer points to the first node of
the list and the backward pointer of the first node points to the last node. If
there is only one node in the list, both the forward and the backward pointers
point to the node itself. 

Insertion
Inserting follows the basic pattern of inserting a node into a singly linked list,
but we also need to connect both the forward and the backward pointers.

A null doubly linked list’s head and rear pointers are null. To insert a
node into a null list, we simply set the head and rear pointers to point to the
new node and set the forward and backward pointers of the new node to null.
The results of inserting a node into a null list are shown in Figure 5-21(a).

FIGURE 5-21 Doubly Linked List Insert 

Figure 5-21(b) shows the case for inserting between two nodes. The new
node needs to be set to point to both its predecessor and its successor, and
they need to be set to point to the new node. Because the insert is in the mid-
dle of the list, the head structure is unchanged. 

(a) Insert into null list or before first node 

(b) Insert between two nodes

Before

pNew

pPre

list 2
count

40
FB

30
FB

20
FB

pSucc

After

list 3
count

40
F

30
FB

20
FB B

headrear head rear

AfterBefore

list 0
headcount rear

pNew 20
FB

pPre

list 1
count

20
FB

head rear



242 Section 5.5 Complex Implementations

Inserting at the end of the list requires that the new node’s backward
pointer be set to point to its predecessor. Because there is no successor, the
forward pointer is set to null. The rear pointer in the head structure must also
be set to point to the new rear node.

 Algorithm 5-11 contains the code to insert a node into a doubly linked list.

ALGORITHM 5-11 Doubly Linked List Insert 

Algorithm insertDbl (list, dataIn)
This algorithm inserts data into a doubly linked list.
Pre    list is metadata structure to a valid list
       dataIn contains the data to be inserted
Post   The data have been inserted in sequence
Return 0: failed--dynamic memory overflow
       1: successful
       2: failed--duplicate key presented

1 if (full list)
1 return 0

2 end if
Locate insertion point in list.

3 set found to searchList 
      (list, predecessor, successor, dataIn key)
4 if (not found)
1 allocate new node
2 move dataIn to new node 
3 if (predecessor is null)

Inserting before first node or into empty list
1 set new node back pointer to null
2 set new node fore pointer to list head
3 set list head to new node

4 else
  Inserting into middle or end of list
1 set new node fore pointer to predecessor fore pointer
2 set new node back pointer to predecessor

5 end if
Test for insert into null list or at end of list

6 if (predecessor fore null)
  Inserting at end of list--set rear pointer
1 set list rear to new node

7 else
  Inserting in middle of list--point successor to new
1 set successor back to new node

8 end if
9 set predecessor fore to new node 
10 return 1

5 end if
Duplicate data. Key already exists.

6 return 2
end insertDbl
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Algorithm 5-11 Analysis We must look at several points in this algorithm. First, rather than returning a simple
success or failure, we have three different conditions and thus return three different val-
ues. If dynamic memory is full, we return a 0, indicating memory overflow. If we are
successful, we return a 1. Finally, if the insert matches data already in the list, we return
a 2.

The search algorithm provides the location of the target’s logical predecessor and
either: (1) the location of the node with a key that matches the target, (2) the location
of the first node with a key greater than the target, or (3) null if the target is greater than
the last node. We named the last parameter in the search successor because that was
what we expected. (It could be confusing to the reader to use a pointer name that indi-
cated we were looking for something other than the location of the successor.)

Finally, notice the comments. Although it is a short algorithm, the different conditions
that can occur may be confusing. The comments should clarify the logic for the reader. 

Deletion
Deleting requires that the deleted node’s predecessor, if present, be pointed to
the deleted node’s successor and that the successor, if present, be set to point
to the predecessor. This rather straightforward logic is shown in Figure 5-22.
Once we locate the node to be deleted, we simply change its predecessor’s and
successor’s pointers and recycle the node.

FIGURE 5-22 Doubly Linked List Delete

The pseudocode is shown in Algorithm 5-12.

25
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F

(a) Before delete 

25
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244 Section 5.5 Complex Implementations

ALGORITHM 5-12 Doubly Linked List Delete

Algorithm 5-12 Analysis Two points in this algorithm require further comment. First, the search was done in the
calling algorithm. When we enter the doubly linked list delete algorithm, we already
know the location of the node to be deleted.

Second, because it should never be called with a null delete pointer, we abort the
program if we detect one. This is a logic error. Whenever a logic error is detected in a
program, the program should be aborted and fixed.

Multilinked Lists 
A multilinked list is a list with two or more logical key sequences. For example,
consider the list of the first 10 presidents of the United States, shown in
Table 5-2.

The data in Table 5-2 are listed chronologically by the date the president
first assumed office (year). Two additional sequences could be of interest.
The data could be ordered by the president’s name or by his wife’s name. Bet-
ter yet, why not be able to traverse the list in any of these sequences? This is
the power of the multilinked list: the same set of data can be processed in
multiple sequences. It is important to understand that in a multilinked list
the data are not replicated. The data exist only once, but multiple paths con-
nect the one set of data.

Algorithm deleteDbl (list, deleteNode)
This algorithm deletes a node from a doubly linked list.

Pre    list is metadata structure to a valid list
       deleteNode is a pointer to the node to be deleted
Post   node deleted

1 if (deleteNode null)
1 abort ("Impossible condition in delete double")

2 end if
3 if (deleteNode back not null)
Point predecessor to successor
1 set predecessor      to deleteNode back
2 set predecessor fore to deleteNode fore

4 else
Update head pointer
1 set list head to deleteNode fore

5 end if
6 if (deleteNode fore not null)
Point successor to predecessor
1 set successor      to deleteNode fore
2 set successor back to deleteNode back

7 else 
Point rear to predecessor
1 set list rear to deleteNode back

8 end if
9 recycle (deleteNode)
end deleteDbl 
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TABLE 5-2 First 10 Presidents of the United States

To process the data in multiple sequences, we create a separate set of
links for each sequence. Each link structure can be singly linked, doubly
linked, or circularly linked. To demonstrate the concept, let’s create a singly
linked multilinked list of the presidents and their first ladies. Figure 5-23
diagrams the data for the first three presidents.

FIGURE 5-23 Multilinked List Implementation of Presidents List

Because there are two logical lists in the one physical list, we need two
different link fields. Each node therefore contains two link fields: one for the
president and one for the spouse. The president links are represented by solid
lines. The spouse links are represented by dashed lines. If we follow the pres-
ident links, we traverse the list through Adams, Jefferson, and Washington. If
we follow the spouse links, we traverse the list through Custis (Mrs. Wash-
ington), Skelton (Mrs. Jefferson), and Smith (Mrs. Adams). Of course, in a
real application there would be many more data fields. We use just three to
represent the structure. 

President Year First lady

Washington, George

Adams, John

Jefferson, Thomas

Madison, James

Monroe, James

Adams, John Quincy

Jackson, Andrew

Van Buren, Martin

Harrison, William H.

Tyler, John

1789

1797

1801

1809

1817

1825

1829

1837

1841

1841

Custis, Martha Dandridge

Smith, Abigail

Skelton, Martha Wayles

Todd, Dorothy Payne

Kortright, Elizabeth

Johnson, Louisa Catherine

Robards, Rachel Donelson

Hoes, Hannah

Symmes, Anna

Christian, Letitia

Washington Custis1789

Adams, J 1797 Smith

Jefferson 1801 Skelton

pres
rear

pres
head

spouse
rear

spouse
headcount

3

to
Washington

to Smith
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With minor adjustments the basic algorithms needed to maintain a
multilinked list are the same as the algorithms for the singly linked or
doubly linked lists.

Insert
Let’s look first at the design to build a multilinked list. Using the president
list as defined in Table 5-2, we see that there are two logical lists. Therefore
when we add a node to the list, we need to insert it into each of the lists. We
need to be careful, however, to make sure that we store the data only once.
The design for the add node algorithm is shown in Figure 5-24.

FIGURE 5-24 Multilinked List Add Node

This design assumes that the list is built from a file. The buildMulti-
linked module loops, reading the data for one president and inserting a node
into the list. It then loops again, reading the data for the next president, and
so on until the entire file has been read and the list built.

Each insert begins by allocating space for the data in buildNode and then
building the president links in the insert president module and the spouse
links in the insert spouse module. Because they are different logical lists with
different keys, we use separate algorithms for each insertion and search.

There are three conditional calls in this design. We call insert as long as
we successfully read data. If there is an error or when we get to the end of the
file, we don’t call it. Similarly, we call the inserts as long as the memory allo-
cation in the build node module is successful. If it fails, then we cannot
insert the data.

insertgetData

search
Spouse

insert
Pres

insert
Spouse

search
Pres

build
Node

build
Multilinked
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If you compare the insert design for the singly linked and doubly linked
lists with the logic for the multilinked list, you will see one major difference:
in the multilinked list insert, the memory allocation is separate from the
searching and pointer connections because the memory is allocated only
once. Another minor variation is the count increment, which should also be
coded in the build node module. We add to the count only once because we
are inserting only one physical node, even though we inserted it into two
logical lists.

Delete
The major algorithm variation for the delete is that we need to reconnect the
pointers for each logical list. Thus, if we delete a president’s record, we need
to adjust the spouse’s as well as the president’s successor pointer.

Assuming that we follow the president’s pointers to delete a president,
the delete logic follows the same pattern that the other linked list deletions
use. But how do we delete the spouse? One alternative is to use the spouse’s
name from the president search and then search the spouse list to find the
pointers that need to be updated. When the lists are long, doing so can be
very inefficient.

The standard solution uses a doubly linked list for the spouse links. Hav-
ing arrived in the middle of the spouse list through our search of the presi-
dent list, we can easily set the spouse predecessor’s pointers by following the
backward pointer to the predecessor. This application is one of the more
common uses of doubly linked lists. 
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5.6 Key Terms     

5.7 Summary
❏ In a general linear list, data can be inserted and deleted anywhere, and

there are no restrictions on the operations that can be used to process the
list. In this chapter we refer to general linear lists simply as lists.

❏ Lists can be further divided into random lists and ordered lists. In a ran-
dom list, there is no ordering of the data. In an ordered list, the data are
arranged according to a key, which is one or more fields used to identify
the data or control their use.

❏ Four common operations are associated with lists: insertion, deletion,
retrieval, and traversal.

❏ Lists are usually implemented using linked lists.

❏ A head node is a data structure that contains metadata about the list, such
as a count, a head pointer to the first node, and a rear pointer to the last
node. It may contain any other data required by the use of the structure.

❏ When we want to insert into a list, we must consider four cases: adding to
the empty list, adding at the beginning, adding to the middle, and adding
at the end.

❏ When we want to delete a node from a list, we must consider two cases:
delete the first node or delete any other node.

❏ To search a list for an item, we use the ordered list search.

❏ Traversing a list means going through the list, node by node, and process-
ing each node. Three examples of list traversals are counting the number
of nodes, printing the contents of nodes, and summing the values of one or
more fields.

❏ A list can be implemented using a circularly linked list in which the last
node’s link points to the first node of the list.

chronological list
circularly linked list
create list
delete node
deletion
destroy list
doubly linked list
empty list
full list
insertion
key

metadata
multilinked list
ordered list
overflow
random list
rear pointer
retrieval
search list
singly linked list
traversal
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❏ A list can be implemented using a doubly linked list in which each node
has a pointer to both its successor and its predecessor.

❏ A list can be implemented using a multilinked list to create two or more
logical lists.

5.8 Practice Sets

Exercises
1. Imagine we have the list shown in Figure 5-25 implemented as a linked list.

FIGURE 5-25 Linked List Implementation for Exercise 1

Show what happens if we use the following statement in a search of
this list:

What is the problem with using this kind of statement? Does it justify
the two walking pointers (pPre and pLoc) we introduced in the text?

2. Imagine we have the list shown in Figure 5-26 implemented as a linked
list. As discussed in “List Search,” in Section 5.2, the search needs to be
able to pass back both the location of the predecessor (pPre) and the loca-
tion of the current (pLoc) node based on search criteria.

FIGURE 5-26 Linked List Implementation for Exercise 2

pHead = pHead->link

pHead

pHead

pPre pLoc
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The following code to set pPre and pLoc contains a common error.
What is it and how should it be corrected?

(Hint: What are the contents of these pointers at the beginning of the
search?) 

3. Imagine we implement a list using a dummy node at the beginning of the
list. The dummy node does not carry any data. It is not the first data node,
it is an empty node. Figure 5-27 shows a list with a dummy node.

FIGURE 5-27 Linked List Implementation for Exercise 3

Write the code to delete the first node (the node after the dummy node)
in the list.

4. Write the code to delete a node in the middle of a list implemented as a
linked list with the dummy node (see Exercise 3). Compare your answer
with the answer to Exercise 3. Are they the same? What do you conclude?
Does the dummy node simplify the operation on a list? How?

5. Figure 5-28 shows an empty list with a dummy node. Write the code to
add a node to this empty list.

FIGURE 5-28 List for Exercise 5 

6. Write the statements to add a node in the middle of a list with the dummy
node (see Exercise 3). Compare your answer with the answer to Exercise 5.
Are they the same? What do you conclude? Does the dummy node simplify
the operation on a list? How?

7. Imagine we have the two lists shown in Figure 5-29. What would happen
if we applied the following statement to these two lists?

pLoc = pLoc->link
pPre = pPre->link

listl = list2

Dummylist

pCurpPre

Dummylist
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FIGURE 5-29 Linked Lists for Exercise 7

8. What would happen if we applied the following statements to the two lists
in Exercise 7?

9. Imagine we have the list shown in Figure 5-30.

FIGURE 5-30 List Implementation for Exercise 9

What would happen if we applied the following statements to this list?

Problems
10. Write an algorithm that reads a list of integers from the keyboard, creates

a list of them using linked list implementation, and prints the result.

11. Write an algorithm that accepts a list implemented using a linked list,
traverses it, and returns the data in the node with the smallest key value.

12. Write an algorithm that traverses a list implemented using a linked list and
deletes all nodes whose keys are negative.

13. Write an algorithm that traverses a list implemented using a linked list and
deletes the node following a node with a negative key.

 1 set temp to listl 
 2 loop (temp link not null)
   1 set temp to temp link 
 3 end loop
 4 set temp link to list2

 1 set temp to pList
 2 loop (temp link not null) 
   1 set temp to temp link 
 3 end loop
 4 set temp link to pList

list1

list2

DummypList
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14. Write an algorithm that traverses a list implemented using a linked list and
deletes the node immediately preceding a node with a negative key.

15. Write a program that creates a two-dimensional array using a linked list
implementation. The nodes in the first column contain only two pointers,
as shown in Figure 5-31. The left pointer points to the next row. The right
pointer points to the data in the row.

FIGURE 5-31 List for Problem 15

16. We can simplify most of the algorithms in the text using a linked list imple-
mentation with a dummy node at the beginning, as shown in Figure 5-32.

FIGURE 5-32 Implementation for Problem 16

Write an algorithm insertNode (see “Internal Insert Function,”  in
Section 5.4) using a linked list implementation with a dummy node. 

17. Write an algorithm deleteNode (Algorithm 5-3, “List Delete Node”) using
a linked list implementation with a dummy node.

18. Write an algorithm searchList (Algorithm 5-4, “Search List”) using a
linked list implementation with a dummy node.

19. Write an algorithm that returns a pointer to the last node in a linked list
implementation of a list.

20. Write an algorithm that appends two lists together. Use linked list
implementation.

21. Write an algorithm that appends a list to itself. Use linked list
implementation.

52

90 36 90

0 98 89

Table

7 100

•
•
•

DummypList



Chapter 5 General Linear Lists 253

22. Write an algorithm that swaps (exchanges) two nodes in a list. The nodes
are identified by number and are passed as parameters. For example, to
exchange nodes 5 and 8, you would call swap (5, 8). If the exchange is
successful, the algorithm is to return true. If it encounters an error, such
as an invalid node number, it returns false. Use linked list implementation.

23. Write a new ADT algorithm to merge two lists. Use linked list
implementation. 

Projects
24. Write a program that reads a file and builds a list. After the list is built, dis-

play it on the monitor. You may use any appropriate data structure, but it
should have a key field and data. Two possibilities are a list of your favorite
CDs or your friends’ telephone numbers. Use a linked list implementation. 

25. Modify the program you wrote in Project 24. After you create the file, the
program should present the user with a menu to insert new data, remove
existing data, or print a list of all data.

26. Write a program to read a list of students from a file and create a list. The
program should use a linked list for implementation. Each node in the
linked list should have the student’s name, a pointer to the next student,
and a pointer to a linked list of scores. There may be up to four scores for
each student. The structure is shown in Figure 5-33. 

FIGURE 5-33 Data Structure for Project 26

The program should initialize the student list by reading the students’
names from the text file and creating null score lists. It should then loop
through the list, prompting the user to enter the scores for each student.
The scores’ prompt should include the name of the student.

After all scores have been entered, the program should print the scores
for each student along with the score total and the average score. The
average should include only those scores present.

Sarah Trapp 83 98

Steve Abrew

Albert Einstein 52 6367

Students

*
*
*

• • •
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The data for each student are shown in Table 5-3.

  

TABLE 5-3 Data for Project 26

27. Modify Project 26 to insert the data into the student list in key (student
name) sequence. Because the data are entered in a first name–last name
format, you need to write a special compare algorithm that reformats the
name into a last name–first name format and then does a string compare.
All other algorithms should work as previously described.

28. Write a function that merges two ordered lists into one list. When two lists
are merged,5 the data in the resulting list are also ordered. The two original
lists should be left unchanged; that is, the merged list should be a new list.
Use linked list implementation. 

29. Write a program that adds and subtracts polynomials. Each polynomial
should be represented as a list with linked list implementation. The first
node in the list represents the first term in the polynomial, the second
node represents the second term, and so forth.

 Student name Score 1 Score 2 Score 3 Score 4

Albert Einstein 52 67 63

Steve Abrew 90 86 90 93

David Nagasake 100 85 93 89

Mike Black 81 87 81 85

Andrew Dijkstra 90 82 95 87

Joanne Nguyen 84 80 95 91

Chris Walljasper 86 100 96 89

Fred Albert 70 68

Dennis Dudley 74 79 77 81

Leo Rice 95

Fred Flintstone 73 81 78 74

Frances Dupre 82 76 79

Dave Light 89 76 91 83

Hua Tran 91 81 87 94

Sarah Trapp 83 98 94 93

5. For more information about merge concepts, see Chapter 12, “Advanced Sort Concepts.”
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Each node contains three fields. The first field is the term’s coefficient.
The second field is the term’s power, and the third field is a pointer to the
next term. For example, consider the polynomials shown in Figure 5-34.
The first term in the first polynomial has a coefficient of 5 and an expo-
nent of 4, which is then interpreted as 5x4.

FIGURE 5-34 Example of Polynomials for Project 29

The rules for the addition of polynomials are as follows:

a. If the powers are equal, the coefficients are algebraically added.
b. If the powers are unequal, the term with the higher power is inserted in

the new polynomial.
c. If the exponent is 0, it represents x0, which is 1. The value of the term is

therefore the value of the coefficient.
d. If the result of adding the coefficients results in 0, the term is dropped

(0 times anything is 0).

A polynomial is represented by a series of lines, each of which has two
integers. The first integer represents the coefficient; the second integer
represents the exponent. Thus, the first polynomial in Figure 5-35 is

To add two polynomials, the program reads the coefficients and expo-
nents for each polynomial and places them into a linked list. The input can
be read from separate files or entered from the keyboard with appropriate
user prompts. After the polynomials have been stored, they are added and
the results are placed in a third linked list.

5   4
6   3
7   0

22738

45 0736

32 13227

45 0713

result

poly2

poly1
5x4 + 6x3 + 7

2x3 – 7x2 + 3

5x4 + 8x3 – 7x2 + 3x + 7
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The polynomials are added using an operational merge process. An
operational merge combines the two lists while performing one or more
operations—in our case, addition. To add we take one term from each of
the polynomials and compare the exponents. If the two exponents are
equal, the coefficients are added to create a new coefficient. If the new
coefficient is 0, the term is dropped; if it is not 0, it is appended to the
linked list for the resulting polynomial. If one of the exponents is larger
than the other, the corresponding term is immediately placed into the new
linked list, and the term with the smaller exponent is held to be compared
with the next term from the other list. If one list ends before the other, the
rest of the longer list is simply appended to the list for the new polynomial.

Print the two input polynomials and their sum by traversing the
linked lists and displaying them as sets of numbers. Be sure to label each
polynomial.

Test your program with the two polynomials shown in Table 5-4. 

TABLE 5-4 Text Data for Project 29

30. In older personal computers, the largest integer is 32,767 and the largest
long integer is 2,147,483,647. Some applications, such as cryptography
and security algorithms, may require an unbounded integer. One way to
store and manipulate integers of unlimited size is by using a linked list.
Each digit is stored in a node of the list. For example, Figure 5-35 shows
how we could store a five-digit number in a list.

Although the list in Figure 5-35 is represented as moving from right to
left, there is no physical direction in a list. We represent it in this way to
clarify the problem.

Polynomial 1 Polynomial 2

Coefficient Exponent Coefficient Exponent

7 9 –7 9

2 6  2 8

3 5 –5 7

4 4  2 4

2 3  2 3

6 2  9 2

6 0 –7 1
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FIGURE 5-35 Integer Stored in a List for Project 30

To add two numbers, we simply add the corresponding digit in the same
location in their respective lists with the carry from the previous addition.
With each addition, if the sum is greater than 10, we need to subtract 10
and set the carry to 1. Otherwise, the carry is set to 0.

Write an algorithm to add two integer lists. Design your solution so that
the same logic adds the first numbers (units position) as well as the rest of
the number. In other words, do not have special one-time logic for adding
the units position.

31. Once you have written the function for adding two numbers, multiplica-
tion is relatively easy. You can use the basic definition of multiplication,
repetitive addition. In other words, if we need to multiply two numbers,
such as 45 × 6, we simply add 45 six times. Write an algorithm that multi-
plies two numbers using the algorithm developed in Project 30.

32. We have shown the list as being implemented as a linked list in dynamic
memory, but it is possible to implement it in an array. In this case the array
structure has two basic fields: the data and the next index location. The
next index field allows the array structure to take on the attributes of a list.
A list array is shown in Figure 5-36.

FIGURE 5-36 Linked List Array for Project 32
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Note that there are actually two lists in the array. The data list starts at
element 2 and progresses through 6 and 0 and to the end of the data at
element 9. The second list links all of the empty or available elements
together. It starts at element 4, progresses through 1, 3, 7, and 8, and
ends at 5.

Write a program that implements a list using an array. Your program
should be menu driven and prompt the user to insert data, delete data,
print the contents of the list, or search the list for a given piece of data.

To insert new data, you must delete an element from the available list
and then insert it into the data list. Conversely, when you delete a node
from the data list, you must insert it into the available list.

33. Rework the list ADT to be implemented as a doubly linked list. Include a
backward traversal as an additional algorithm.

34. Write a program to process stock data. The stock data should be read from
a text file containing the following data: stock code, stock name, amount
invested (xxx.xx), shares held, and current price. Use the Internet or your
local paper to gather data on at least 20 stocks. (You may use mutual funds
in place of stocks.)

As each stock is read, insert it into a doubly linked multilinked list.
The first logical list should be ordered on the stock code. The second
logical list should be ordered on the gain or loss for the stock. Gain or
loss is calculated as the current value of the stock (shares held times
current price) minus the amount invested. Include at least one loss in
your test data.

After building the lists, display a menu that allows the user to display
each logical list forward or backward (a total of four options). Each display
should contain an appropriate heading and column captions. 

Run your program and submit a list of your input data and a printout of
each display option.

35. Modify Project 34 to include the following additional processes: search for
a stock using the stock code and print the data for the stock, insert data for
a new stock, modify data for an existing stock, and write the data back to a
file when the program terminates. 

36. You have been assigned to a programming team writing a system that will
maintain a doubly linked, multilinked list containing census data about
cities in the United States. The first logical list maintains data in sequence
by the 2000 population data. The second logical list maintains the same
data using the 1990 census data. Your assignment is to write the insert
routine(s). To completely test your program, you also need to write rou-
tines to print the contents of the lists.
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The structure for the data is shown here:

The input is a file containing the census data in Table 5-5.

TABLE 5-5 Twenty Largest Metropolitan Areas in the United States 

Logical definition:
Metropolitan area               50 characters
Population - 2000               ƒƒƒinteger
Population - 1900              ƒƒƒƒinteger

Census population

Metropolitan area 2000 1990

New York–No. NJ 21,199,865 19,549,649

Los Angeles area 16,373,645 14,531,529

Chicago area 9,157,540 8,239,820

Washington–Baltimore 7,608,070 6,727,050

San Francisco area 7,039,362 6,253,311

Philadelphia–Atlantic City area 6,188,463 5,892,937

Boston area 5,819,100 5,455,403

Detroit area 5,456,428 5,187,171

Dallas–Fort Worth 5,221,801 4,037,282

Houston–Galveston area 4,669,571 3,731,131

Atlanta area 4,112,198 2,959,950

Miami–Fort Lauderdale 3,876,380 3,192,582

Seattle area 3,554,760 2,970,328

Phoenix area 3,251,876 2,238,480

Minneapolis–St. Paul 2,968,806 2,538,834

Cleveland area 2,945,831 2,859,644

San Diego area 2,813,833 2,498,016

St. Louis area 2,603,607 2,492,525

Denver area 2,581,506 1,980,140

San Juan, PR, area 2,450,292 2,270,808
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To verify your program, print the list in sequence, both forward and
backward, for both census years. To conserve paper print the data two-up,
as shown in Table 5-6.

TABLE 5-6 Example of PrintOut

37. Modify Project 36 to include the ability to delete an element from the list. 

38. Write a program that builds two linked lists (do not use the ADT) and then
append the second one to the end of the first one. A pictorial representa-
tion of the data is shown in Figure 5-37.

39. Write a program that builds an array of linked lists (do not use the ADT).
The data for each linked list are to be read from a set of existing files and
inserted into the list. The program is to accept a variable number of files
that are determined at run time by asking the user for the number of files
and their names. The data structure is shown in Figure 5-38.

After the program builds the lists, print them to verify that they are
complete. Test the program with the following four files: 

a. 150 110 130 100 140 
b. 200 280 240 220 260
c. 390 300 330 360
d. 480 440 400

Census Data for 1990 Population Census Data for 2000 Population

Metropolitan area

01 San Juan, PR, area

02 Denver area

 ...

19 Los Angeles area

20 New York--No. NJ

20 New York--No. NJ

19 Los angeles Area

 ...

02 Denver area

01 San Juan, PR, area

2450292

2581506

16373645

21199865

21199865

16373645

2581506

2450292

Metropolitan area

01 San Juan, PR, area

02 Denver area

...

19 Los Angeles

20 New York--No. NJ

20 New York--No. NJ

19 Los Angeles

 ...

02 Denver area

01 San Juan, PR, area

2270808

1980140

14531529

19549649

19549649

14531529

1980140

2270808
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FIGURE 5-37 Append Linked Lists

FIGURE 5-38 Structure for Array of Linked Lists
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Part III

Non-Linear Lists
A non-linear list is a list in which each element can have more than one succes-
sor. Non-linear lists can be divided into two categories: trees and graphs. In a tree
each element, except the root, can have only one predecessor; in a graph each
element can have more than one predecessor. Figure III-1 shows how the discus-
sion of non-linear lists is organized in this book.

FIGURE III-1 Grouping of the Topic of Non-Linear Lists

Non-Linear
List

Two-way Tree
Chapters 7, 8, 9

Multiway Tree
Chapter 10

Tree
Chapter 6

Graph
Chapter 11
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In computer science two types of trees has been defined: two-way trees,
better known as binary trees, and multiway trees. In a binary tree, each ele-
ment can have up to two successors; in a multiway tree, there is no limitation
on the number of successors.

Implementation
A non-linear list, like a linear list, can be implemented as an abstract data
type (ADT). We use both arrays and linked lists to implement the different
lists discussed in this part. We use an array to implement a heap because it is
more convenient, as you will see. We use linked lists for the other structures
because it is more efficient. 

Chapters Covered
This part includes six chapters. The first five chapters discuss trees, or non-
linear lists where each element has only one predecessor. The last chapter
discusses graphs, or non-linear lists with one or more predecessors. 

Chapter 6: Introduction to Trees
In this chapter we discuss general concepts that are related to all trees.

Chapter 7: Binary Search Trees
In this chapter we discuss the binary search tree (BST). The BSTs are simple
structures that are easy to implement but are inefficient when the tree is
unbalanced.

Chapter 8: AVL Trees
In this chapter we discuss AVL trees: a balanced variation on the binary tree.
AVL trees are more efficient than BSTs but are also more complex. 

Chapter 9: Heaps
Heaps are binary trees that may be stored in an array or in a linked-list structure.
We discuss heap creation and two applications in Chapter 9: selection algo-
rithms and priority queues. In Chapter 12 we discuss a third application, sorting.

Chapter 10: Multiway Trees
Multiway trees, or trees with an unlimited number of successors, are used for
dictionary searching, spell checking, and other applications.

Chapter 11: Graphs 
Graphs can be used to solve complex routing problems, such as designing
and routing airlines among the airports they serve. Similarly, graphs can be
used to route messages over a computer network from one node to another.

In a non-linear list, each element can have more than one successor. 

In a tree, an element can have only one predecessor.

In a graph, an element can have one or more predecessors.



265

Chapter 6
Introduction to Trees

The study of trees in mathematics can be traced to Gustav Kirchhoff in the
middle nineteenth century and several years later to Arthur Cayley, who used
trees to study the structure of algebraic formulas. Cayley’s work undoubtedly
laid the framework for Grace Hopper’s use of trees in 1951 to represent arith-
metic expressions. Hopper’s work bears a strong resemblance to today’s
binary tree formats.1 

Trees are used extensively in computer science to represent algebraic for-
mulas; as an efficient method for searching large, dynamic lists; and for such
diverse applications as artificial intelligence systems and encoding algo-
rithms. In this chapter we discuss the basic concepts behind the computer
science application of trees. Then, in the following four chapters, we
develop the application of trees for specific problems.

6.1 Basic Tree Concepts
A tree consists of a finite set of elements, called nodes, and a finite set of
directed lines, called branches, that connect the nodes. The number of
branches associated with a node is the degree of the node. When the branch is
directed toward the node, it is an indegree branch; when the branch is directed
away from the node, it is an outdegree branch. The sum of the indegree and
outdegree branches is the degree of the node.

1. Donald E. Knuth, The Art of Computer Programming Vol. 1, Fundamental Algorithms, 2nd ed.
(Reading, MA: Addison-Wesley, 1972), 405, 458.

A tree consists of a finite set of elements, called nodes, and a finite set of directed lines, called
branches, that connect the nodes.
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If the tree is not empty, the first node is called the root. The indegree of
the root is, by definition, zero. With the exception of the root, all of the nodes
in a tree must have an indegree of exactly one; that is, they may have only one
predecessor. All nodes in the tree can have zero, one, or more branches leav-
ing them; that is, they may have an outdegree of zero, one, or more (zero or
more successors). Figure 6-1 is a representation of a tree.

FIGURE 6-1 Tree

Terminology
In addition to root, many different terms are used to describe the attributes of
a tree. A leaf is any node with an outdegree of zero, that is, a node with no suc-
cessors. A node that is not a root or a leaf is known as an internal node because it
is found in the middle portion of a tree.

A node is a parent if it has successor nodes—that is, if it has an outdegree
greater than zero. Conversely, a node with a predecessor is a child. A child node
has an indegree of one. Two or more nodes with the same parent are siblings.
Fortunately, we don’t have to worry about aunts, uncles, nieces, nephews, and
cousins. Although some literature uses the term grandparent, we do not. We
prefer the more general term ancestor. An ancestor is any node in the path from
the root to the node. A descendent is any node in the path below the parent
node; that is, all nodes in the paths from a given node to a leaf are descen-
dents of that node. Figure 6-2 shows the usage of these terms.

Several terms drawn from mathematics or created by computer scien-
tists are used to describe attributes of trees and their nodes. A path is a
sequence of nodes in which each node is adjacent to the next one. Every
node in the tree can be reached by following a unique path starting from the
root. In Figure 6-2 the path from the root to the leaf I is designated as AFI.
It includes two distinct branches, AF and FI. 

The level of a node is its distance from the root. Because the root has a
zero distance from itself, the root is at level 0. The children of the root are at
level 1, their children are at level 2, and so forth. Note the relationship
between levels and siblings in Figure 6-2. Siblings are always at the same
level, but all nodes in a level are not necessarily siblings. For example, at level
2, C and D are siblings, as are G, H, and I. However, D and G are not siblings
because they have different parents.

E

A

C D G H I

B F

Root
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FIGURE 6-2 Tree Nomenclature

The height of the tree is the level of the leaf in the longest path from the
root plus 1. By definition the height of an empty tree is -1. Figure 6-2 contains
nodes at three levels: 0, 1, and 2. Its height is 3. Because the tree is drawn
upside down, some texts refer to the depth of a tree rather than its height.

A tree may be divided into subtrees. A subtree is any connected structure
below the root. The first node in a subtree is known as the root of the subtree
and is used to name the subtree. Subtrees can also be further subdivided into
subtrees. In Figure 6-3, BCD is a subtree, as are E and FGHI. Note that by this
definition, a single node is a subtree. Thus, the subtree B can be divided into
two subtrees, C and D, and the subtree F contains the subtrees G, H, and I.

FIGURE 6-3 Subtrees

The concept of subtrees leads us to a recursive definition of a tree: A tree
is a set of nodes that either: (1) is empty or (2) has a designated node, called

The level of a node is its distance from the root. The height of a tree is the level of the leaf in the long-
est path from the root plus 1.
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the root, from which hierarchically descend zero or more subtrees, which are
also trees.

User Representation
There are three different user representations for trees. The first is the orga-
nization chart format, which is basically the notation we use to represent
trees in our figures. The term we use for this notation is general tree. The gen-
eral tree representation of a computer’s components is shown in Figure 6-4;
it is discussed in Section 6.3.

FIGURE 6-4 Computer Parts List as a General Tree

The second representational notation is the indented list. You will find it
most often used in bill-of-materials systems in which a parts list represents
the assembly structure of an item. The graphical representation of a computer
system’s components in Figure 6-4 clearly shows the relationship among the
various components of a computer, but graphical representations are not eas-
ily generated from a database system. The bill-of-materials format was there-
fore created to show the same information using a textual parts list format. In
a bill of materials, each assembly component is shown indented below its
assembly. Some bills of materials even show the level number of each compo-
nent. Because a bill of materials shows which components are assembled into
each assembly, it is sometimes called a goezinta (goes into) list. Table 6-1 shows
the computer bill of materials in an indented parts list format.

There is another common bill of materials with which you should be
familiar. When you write a structured program, the entire program can be
considered an assembly of related functions. Your structure chart is a general
tree representing the relationship among the functions. 

A tree is a set of nodes that either: 
1. Is empty, or 
2. Has a designated node, called the root, from which hierarchically

descend zero or more subtrees, which are also trees

…
… … …

…

Computer

Case 3.5" Disk CD-ROMCPU

Controller ALU ROM
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TABLE 6-1 Computer Bill of Materials

The third user format is the parenthetical listing. This format is used
with algebraic expressions. When a tree is represented in parenthetical nota-
tion, each open parenthesis indicates the start of a new level; each closing
parenthesis completes the current level and moves up one level in the tree.
Consider the tree shown in Figure 6-1. Its parenthetical notation is 

To convert a general tree to its parenthetical notation, we use the code in
Algorithm 6-1.

ALGORITHM 6-1 Convert General Tree to Parenthetical Notation

continued

Part number Description

301

      301-1

      …

      301-2

            301-2-1

            301-2-2

            …

            301-2-9

      301-3

      …

      301-9

            …

Computer

        Case

             …

        CPU

                Controller

                ALU

                …

                ROM

        3.5" Disk

        …

        CD-ROM

                …

A (B (C D) E F (G H I))

Algorithm ConvertToParen (root, output)
Convert a general tree to parenthetical notation.

Pre  root is a pointer to a tree node
Post output contains parenthetical notation 

1 Place root in output
2 if (root is a parent)

1 Place an open parenthesis in the output
2 ConvertToParen (root’s first child)
3 loop (more siblings)

1 ConvertToParen (root’s next child)
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ALGORITHM 6-1 Convert General Tree to Parenthetical Notation (continued)

Using this algorithm with Figure 6-1, we start by placing the root (A) in
the output. Because A is a parent, we insert an opening parenthesis in the out-
put and then process the subtree B by first placing its root (B) in the output.
Again, because B is a parent, we place an open parenthesis in the output and
recursively call ConvertToParen to insert C. This time, however, the root has
no children. The algorithm therefore terminates and returns to statement 2.4.
After placing D in the output, we return to the loop statement to discover that
there are no more siblings. We now place a closing parenthesis in the output
and return to statement 2.4 to continue placing B’s siblings in the output.

After I’s children have been completely processed, we add a closing
parenthesis (2.5), which takes us up one level to complete the processing of
B’s siblings and the addition of a closing parenthesis. Note that when the pro-
cessing is done correctly, the parentheses are balanced. If they are not bal-
anced, you have made a mistake in the conversion. 

6.2 Binary Trees
A binary tree is a tree in which no node can have more than two subtrees; the
maximum outdegree for a node is two. In other words, a node can have zero,
one, or two subtrees. These subtrees are designated as the left subtree and the
right subtree. Figure 6-5 shows a binary tree with its two subtrees. Note that
each subtree is itself a binary tree.

FIGURE 6-5 Binary Tree

4 end loop
5 Place close parenthesis in the output

3 end if
4 return 
end ConvertToParen

A

B

C D

Left subtree

E

F

Right subtree
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To better understand the structure of binary trees, study Figure 6-6.

FIGURE 6-6 Collection of Binary Trees

Figure 6-6 contains eight binary trees, the first of which is a null tree. A
null tree is a tree with no nodes, as shown in Figure 6-6(a). As you study this fig-
ure, note that symmetry is not a tree requirement.

Properties
We now define several properties for binary trees that distinguish them from
general trees.

Height of Binary Trees
The height of binary trees can be mathematically predicted.

Maximum Height
Given that we need to store N nodes in a binary tree, the maximum height,
Hmax, is 

A node in a binary tree can have no more than two subtrees.
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Example Given three nodes to be stored in a binary tree, what is the maximum height?
In this example N is 3. Therefore, the maximum height is 3. There are four
different trees that can be drawn to satisfy a maximum height of 3. A tree
with a maximum height is rare. It occurs when all of the nodes in the entire
tree have only one successor, as shown in Figure 6-6(g) and Figure 6-6(h). 

Minimum Height
The minimum height of the tree, Hmin, is determined by the following formula: 

Example Given three nodes to be stored in a binary tree, what is the minimum height?
Again, N is 3. Therefore, the minimum height is 2. 

Minimum Nodes.  We can turn the calculation around and determine the minimum
number of nodes in a tree of a specified height. Given a height of the binary
tree, H, the minimum number of nodes in the tree are given as  

Example Given a tree of height 3, what is the minimum number of nodes that can be
stored? Using the formula for Nmin, the answer is H, or 3 nodes. This case is
seen in Figure 6-6(g) and 6-6(h). 

Maximum Nodes
The formula for the maximum number of nodes is derived from the fact that
each node can have only two descendents. Given a height of the binary tree,
H, the maximum number of nodes in the tree is given as 

Example Given a tree of height 3, what is the maximum number of nodes that can be
stored? Nmax is 7. 

Balance
The distance of a node from the root determines how efficiently it can be
located. The children of any node in a tree can be accessed by following only
one branch path, the one that leads to the desired node. The nodes at level 1,
which are children of the root, can be accessed by following only one branch.
Similarly, the nodes at level 2 of a tree can all be accessed by following only
two branches from the root. It stands to reason, therefore, that the shorter
the tree, the easier it is to locate any desired node in the tree.

Hmin N2log 1+=

Nmin H =

Nmax 2
H

1–=
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This concept leads us to a very important characteristic of a binary tree—,
its balance. To determine whether a tree is balanced, we calculate its balance
factor. The balance factor of a binary tree is the difference in height between its
left and right subtrees. If we define the height of the left subtree as HL and the
height of the right subtree as HR, the balance factor of the tree, B, is deter-
mined by the following formula: 

Using this formula, the balances of the eight trees in Figure 6-6 are (a) 0
by definition, (b) 0, (c) 1, (d) –1, (e) 0, (f) 1, (g) –2, and (h) 2.

In a balanced binary tree, the height of its subtrees differs by no more than one
(its balance factor is –1, 0, or +1), and its subtrees are also balanced. As we
shall see, this definition was created by Adelson-Veskii and Landis in their
definition of an AVL tree.

Complete and Nearly Complete Binary Trees
A complete tree has the maximum number of entries for its height (see formula
Nmax in “Height of Binary Trees”). The maximum number is reached when the
last level is full (see Figure 6-7). A tree is considered nearly complete if it has the
minimum height for its nodes (see formula Hmin) and all nodes in the last
level are found on the left. Complete and nearly complete trees are shown in
Figure 6-7.

FIGURE 6-7 Complete and Nearly Complete Trees

Binary Tree Traversals
A binary tree traversal requires that each node of the tree be processed once and
only once in a predetermined sequence. The two general approaches to the
traversal sequence are depth first and breadth first. In the depth-first traversal, the

B = HL – HR

(a) Complete trees (at levels 0, 1, and 2)

(b) Nearly complete trees (at level 2)
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processing proceeds along a path from the root through one child to the most
distant descendent of that first child before processing a second child. In
other words, in the depth-first traversal, we process all of the descendents of
a child before going on to the next child.

In a breadth-first traversal, the processing proceeds horizontally from the root
to all of its children, then to its children’s children, and so forth until all
nodes have been processed. In other words, in the breadth-first traversal,
each level is completely processed before the next level is started.

Depth-first Traversals
Given that a binary tree consists of a root, a left subtree, and a right subtree,
we can define six different depth-first traversal sequences. Computer scien-
tists have assigned three of these sequences standard names in the literature;
the other three are unnamed but are easily derived. The standard traversals
are shown in Figure 6-8.

FIGURE 6-8 Binary Tree Traversals

The traditional designation of the traversals uses a designation of node
(N) for the root, left (L) for the left subtree, and right (R) for the right
subtree. To demonstrate the different traversal sequences for a binary tree,
we use Figure 6-9.

FIGURE 6-9 Binary Tree for Traversals
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Preorder Traversal (NLR)
In the preorder traversal, the root node is processed first, followed by the left sub-
tree and then the right subtree. It draws its name from the Latin prefix pre,
which means to go before. Thus, the root goes before the subtrees.

 

Given the recursive characteristics of trees, it is only natural to imple-
ment tree traversals recursively. First we process the root, then the left sub-
tree, and then the right subtree. The left subtree is in turn processed
recursively, as is the right subtree. The code for the preorder traversal is
shown in Algorithm 6-2.

ALGORITHM 6-2 Preorder Traversal of a Binary Tree

Figure 6-9 contains a binary tree with each node named. The processing
sequence for a preorder traversal processes this tree as follows: First we pro-
cess the root A. After the root, we process the left subtree. To process the left
subtree, we first process its root, B, then its left subtree and right subtree in
order. When B’s left and right subtrees have been processed in order, we are
then ready to process A’s right subtree, E. To process the subtree E, we first
process the root and then the left subtree and the right subtree. Because
there is no left subtree, we continue immediately with the right subtree,
which completes the tree.

Figure 6-10 shows another way to visualize the traversal of the tree.
Imagine that we are walking around the tree, starting on the left of the root
and keeping as close to the nodes as possible. In the preorder traversal we
process the node when we meet it for the first time (on the left of the node).
This is shown as a black box on the left of the node. The path is shown as a
line following a route completely around the tree and back to the root.

Figure 6-11 shows the recursive algorithmic traversal of the tree. The first
call processes the root of the tree, A. It then recursively calls itself to process
the root of the subtree B, as  shown  in Figure 6-11(b). The third call, shown in
Figure 6-11(c), processes node C, which is also subtree C. At this point we call
preorder with a null pointer, which results in an immediate return to subtree C

In the preorder traversal, the root is processed first, before its subtrees.

Algorithm preOrder (root)
Traverse a binary tree in node-left-right sequence.

Pre  root is the entry node of a tree or subtree
Post each node has been processed in order

1 if (root is not null)
1 process (root)
2 preOrder (leftSubtree)
3 preOrder (rightSubtree)

2 end if
end preOrder
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to process its right subtree. Because C’s right subtree is also null, we return to
node B so that we can process its right tree, D, in Figure 6-11(d). After process-
ing node D, we make two more calls, one with D’s null left pointer and one with
its null right pointer. Because subtree B has now been completely processed,
we return to the tree root and process its right subtree, E, in Figure 6-11(e).
After a call to E’s null left subtree, we call E’s right subtree, F, in Figure 6-11(f).
Although the tree is completely processed at this point, we still have two more
calls to make: one to F’s null left subtree and one to its null right subtree. We
can now back out of the tree, returning first to E and then to A, which con-
cludes the traversal of the tree.

FIGURE 6-10 Preorder Traversal—A B C D E F

FIGURE 6-11 Algorithmic Traversal of Binary Tree
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Inorder Traversal (LNR)
The inorder traversal processes the left subtree first, then the root, and finally the
right subtree. The meaning of the prefix in is that the root is processed in
between the subtrees. Once again we implement the algorithm recursively, as
shown in Algorithm 6-3.

ALGORITHM 6-3 Inorder Traversal of a Binary Tree

Because the left subtree must be processed first, we trace from the root
to the far-left leaf node before processing any nodes. After processing the far-
left subtree, C, we process its parent node, B. We are now ready to process the
right subtree, D. Processing D completes the processing of the root’s left sub-
tree, and we are now ready to process the root, A, followed by its right sub-
tree. Because the right subtree, E, has no left child, we can process its root
immediately followed by its right subtree, F. The complete sequence for inor-
der processing is shown in Figure 6-12.

FIGURE 6-12 Inorder Traversal—C B D A E F

To walk around the tree in inorder sequence, we follow the same path
but process each node when we meet it for the second time (the bottom of
the node). This processing route is shown in Figure 6-12(b). 

Algorithm inOrder (root)
Traverse a binary tree in left-node-right sequence.

Pre  root is the entry node of a tree or subtree
Post each node has been processed in order

1 if (root is not null)
1 inOrder (leftSubTree)
2 process (root)
3 inOrder (rightSubTree)

2 end if
end inOrder

In the inorder traversal, the root is processed between its subtrees.

A

B

C D

E

F

FEADC B

(a) Processing order (b) “Walking” order

B

C

A

E

FD



278 Section 6.2 Binary Trees

Postorder Traversal (LRN)
The last of the standard traversals is the postorder traversal. It processes the root
node after (post) the left and right subtrees have been processed. It starts by
locating the far-left leaf and processing it. It then processes its right sibling,
including its subtrees (if any). Finally, it processes the root node.

The recursive postorder traversal logic is shown in Algorithm 6-4.

ALGORITHM 6-4 Postorder Traversal of a Binary Tree

In the tree walk for a postorder traversal, we move the processing block
to the right of the node so that we process it as we meet the node for the third
time. The postorder traversal is shown in Figure 6-13. Note that we took the
same path in all three walks; only the time of the processing changed.

FIGURE 6-13 Postorder Traversal—C D B F E A

Breadth-first Traversals 
In the breadth-first traversal of a binary tree, we process all of the children of
a node before proceeding with the next level. In other words, given a root at
level n, we process all nodes at level n before proceeding with the nodes at

In the postorder traversal, the root is processed after its subtrees.

Algorithm postOrder (root)
Traverse a binary tree in left-right-node sequence.

Pre  root is the entry node of a tree or subtree
Post each node has been processed in order

1 if (root is not null)
1 postOrder (left subtree)
2 postOrder (right subtree)
3 process (root)

2 end if
end postOrder
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level n + 1. To traverse a tree in depth-first order, we used a stack. (Remem-
ber that recursion uses a stack.) To traverse a tree in breadth-first order, we
use a queue. The pseudocode for a breadth-first traversal of our binary tree is
shown in Algorithm 6-5.

ALGORITHM 6-5 Breadth-first Tree Traversal

Like the depth-first traversals, we can trace the traversal with a walk.
This time, however, the walk proceeds in a horizontal fashion, first across the
root level, then across level 1, then across level 2, and so forth until the entire
tree is traversed. The breadth-first traversal is shown in Figure 6-14. 

FIGURE 6-14 Breadth-first Traversal

Algorithm breadthFirst (root)
Process tree using breadth-first traversal.

Pre    root is node to be processed
Post   tree has been processed

1 set currentNode to root
2 createQueue (bfQueue)
3 loop (currentNode not null)

1 process (currentNode)
2 if (left subtree not null)

1 enqueue (bfQueue, left subtree)
3 end if
4 if (right subtree not null)

1 enqueue (bfQueue, right subtree)
5 end if
6 if (not emptyQueue(bfQueue))

1 set currentNode to dequeue (bfQueue)
7 else

1 set currentNode to null
8 end if

4 end loop
5 destroyQueue (bfQueue)
end breadthFirst
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Expression Trees
One interesting application of binary trees is expression trees. An expression is
a sequence of tokens that follow prescribed rules. A token may be either an
operand or an operator. In this discussion we consider only binary arith-
metic operators in the form operand–operator–operand. The standard
arithmetic operators are +, -, *, and /. 

An expression tree is a binary tree with the following properties:

• Each leaf is an operand.
• The root and internal nodes are operators.
• Subtrees are subexpressions, with the root being an operator.

Figure 6-15 contains an infix expression and its expression tree.

FIGURE 6-15 Infix Expression and Its Expression Tree

For an expression tree, the three standard depth-first traversals represent
the three different expression formats: infix, postfix, and prefix. The inorder
traversal produces the infix expression, the postorder traversal produces the
postfix expression, and the preorder traversal produces the prefix expression.

Infix Traversal
To demonstrate the infix traversal of an expression tree, let’s write an algorithm
that traverses the tree and prints the expression. When we print the infix
expression tree, we must add an opening parenthesis at the beginning of each
expression and a closing parenthesis at the end of each expression. Because
the root of the tree and each of its subtrees represents a subexpression, we
print the opening parenthesis when we start a tree or a subtree and the closing
parenthesis when we have processed all of its children. Figure 6-16 shows the
placement of the parentheses as we walk through the tree using an inorder
traversal.

The pseudocode for the infix expression tree traversal is shown in
Algorithm 6-6.

a (b + c) + d

+

a +

b c

d
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FIGURE 6-16 Infix Traversal of an Expression Tree

ALGORITHM 6-6 Infix Expression Tree Traversal

Postfix Traversal
The postfix traversal of an expression uses the basic postorder traversal of any
binary tree. Note that it does not require parentheses. The pseudocode is
shown in Algorithm 6-7.

ALGORITHM 6-7 Postfix Traversal of an Expression Tree

continued

Algorithm infix (tree)
Print the infix expression for an expression tree.

Pre  tree is a pointer to an expression tree
Post the infix expression has been printed

1 if (tree not empty)
1 if (tree token is an operand)

1 print (tree-token)
2 else

1 print (open parenthesis)
2 infix (tree left subtree)
3 print (tree token)
4 infix (tree right subtree)
5 print (close parenthesis)

3 end if
2 end if
end infix

Algorithm postfix (tree)
Print the postfix expression for an expression tree.

Pre  tree is a pointer to an expression tree
Post the postfix expression has been printed

1 if (tree not empty)

d

+

+

cb

a

( )

( )

( )

( ( a  ( b + c ) ) + d )
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ALGORITHM 6-7 Postfix Traversal of an Expression Tree (continued)

Prefix Traversal
The final expression tree traversal is the prefix traversal. It uses the standard pre-
order tree traversal. Again, no parentheses are necessary. The pseudocode is
shown in Algorithm 6-8.     

ALGORITHM 6-8 Prefix Traversal of an Expression Tree

Huffman Code
The American Standard Code for Information Interchange (ASCII) is a fixed-
length code; that is, the character length does not vary. Each ASCII character
consists of 7 bits.2 Although the character E occurs more frequently than the
character Z, both are assigned the same number of bits. This consistency
means that every character uses the maximum number of bits.

Huffman code, on the other hand, makes character storage more efficient. In
Huffman code we assign shorter codes to characters that occur more fre-
quently and longer codes to those that occur less frequently. For example, E
and T, two characters that occur frequently in the English language, could be
assigned one bit each. A, O, R, and N, which also occur frequently but less
frequently than E and T, could be assigned two bits each. S, U, I, D, M, C,
and G are the next most frequent and could be assigned three bits each, and
so forth. In a given piece of text, only some of the characters require the max-
imum bit length. When used in a network transmission, the overall length of
the transmission is shorter if Huffman-encoded characters are transmitted

1 postfix (tree left subtree)
2 postfix (tree right subtree)
3 print   (tree token)

2 end if
end postfix

Algorithm prefix (tree)
Print the prefix expression for an expression tree.

Pre  tree is a pointer to an expression tree
Post the prefix expression has been printed

1 if (tree not empty)
1 print  (tree token) 
2 prefix (tree left subtree)
3 prefix (tree right subtree)

2 end if
end prefix

2. When ASCII code is stored in an 8-bit byte, only the first 128 values are considered ASCII. The sec-
ond 128 characters are used for special characters and graphics and are considered “extended ASCII.”
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rather than fixed-length encoding; Huffman code is therefore a popular data
compression algorithm.

Before we can assign bit patterns to each character, we assign each char-
acter a weight based on its frequency of use. In our example, we assume that
the frequency of the character E in a text is 15% and the frequency of the
character T is 12%. Table 6-2 shows the weighted values of the characters.

TABLE 6-2 Character Weights for a Sample of Huffman Code

Once we have established the weight of each character, we build a tree
based on those values. The process for building this tree is shown in Figures
6-17 through 6-20. It follows three basic steps:

1. First we organize the entire character set into a row, ordered according to
frequency from highest to lowest (or vice versa). Each character is now a
node at the leaf level of a tree.

2. Next we find the two nodes with the smallest combined frequency weights
and join them to form a third node, resulting in a simple two-level tree.
The weight of the new node is the combined weights of the original two
nodes. This node, one level up from the leaves, is eligible to be combined
with other nodes. Remember, the sum of the weights of the two nodes
chosen must be smaller than the combination of any other possible
choices.

3. We repeat step 2 until all of the nodes, on every level, are combined into a
single tree. 

Figure 6-17 shows the first part of this process. The first row of the figure
shows step 1, with the leaf-level nodes representing the original characters
arranged in descending order of value; then, as explained in step 2, we locate
the two nodes with the smallest values and combine them. This step is shown
in the second row. As you can see, this process results in the creation of a
new node (represented by a solid circle). The frequency value (weight) of this
new node is the sum of the weights of the two nodes. In the third row, we
combine two more nodes, and so on.

In the sixth row, the nodes with the lowest values are found one level up
from the characters rather than among the characters themselves. We com-
bine them into a node two levels up from the leaves.

Character Weight Character Weight Character Weight
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FIGURE 6-17 Huffman Tree, Part 1

Also in the sixth row, the lowest-value node is 08 (O) and the second-low-
est value is 10 (A). But there are three 10s—one at the leaf level (A), one a
level up from the leaves (S-U), and one two levels up from the leaves (M-C-
G-K). Which should we choose? We choose whichever of the 10s is adjacent
to the 8. This decision keeps the branch lines from crossing and allows us to
preserve the legibility of the tree.

If none of the higher values is adjacent to the lower value, we can rear-
range the nodes for clarity (see Figure 6-18). In the figure (third row), we have
moved the character T from the left side of the tree to the right to combine it
with a node on that side. We move the character E for the same reason.

Figure 6-19 shows the rest of the process. As you can see, the completed
tree results in a single node at the root level (with a value of 86).

Once the tree is complete, we use it to assign codes to each character.
First, we assign a bit value to each branch (see Figure 6-20). Starting from
the root (top node), we assign 0 to the left branch and 1 to the right branch
and repeat this pattern at each node. Which branch becomes 0 and which
becomes 1 is left to the designer—as long as the assignments are consistent
throughout the tree.
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FIGURE 6-18 Huffman Tree, Part 2

FIGURE 6-19 Huffman Tree, Part 3
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FIGURE 6-20 Huffman Code Assignment

A character’s code is found by starting at the root and following the
branches that lead to that character. The code itself is the bit value of each
branch on the path taken in sequence. In our example, for instance, A = 000,
G = 11010, and so on. The code for each character and the frequency of the
character are shown in Figure 6-20. If you examine the codes carefully, you
will note that the leading bits of each code are unique; that is, no code is the
prefix of any other code because each has been obtained by following a differ-
ent path from the root.

Example One common use of Huffman code is data compression for communications.
Because it is a variable-length encoding system in which no character is
longer than its ASCII equivalent, it saves transmission time. Assume that the
following bit string uses the previously developed Huffman code.

After receiving the first bit, we start from the root and follow the 000
path as we read the next two bits, arriving at the leaf A. Because we reached a
leaf, we have decoded the first character. We then start the next character
with 1 and, starting with the right branch, follow the path (11010) to the leaf
G. As each character is decoded, we start at the root again until all of the mes-
sage is received. The complete transmission is shown below. Because we have
no spaces in our code, the words are run together.

Huffman code is widely used for data compression; it reduces the number of bits sent or stored.
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6.3 General Trees
A general tree is a tree in which each node can have an unlimited outdegree.
Each node may have as many children as is necessary to satisfy its require-
ments. The bill of materials discussed earlier is an example of a general tree. 

Insertions into General Trees
To insert a node into a general tree, the user must supply the parent of the node.
Given the parent, three different rules may be used: (1) first in–first out (FIFO)
insertion, (2) last in–first out (LIFO) insertion, and (3) key-sequenced insertion.

FIFO Insertion
When using FIFO insertion, we insert the nodes at the end of the sibling list,
much as we insert a new node at the rear of a queue. When the list is then
processed, the siblings are processed in FIFO order. FIFO order is used when
the application requires that the data be processed in the order in which they
were input. Figure 6-21 shows two FIFO insertions into a general tree. Given
its parent as A, node N has been inserted into level 1 after node F; and, given
its parent as B, node M has been inserted at level 2 after node D.

FIGURE 6-21 FIFO Insertion into General Trees

LIFO Insertion
To process sibling lists in the opposite order in which they were created, we
use LIFO insertion. LIFO insertion places the new node at the beginning of the
sibling list. It is the equivalent of a stack. Figure 6-22 shows the insertion
points for a LIFO tree.

Key-sequenced Insertion
Perhaps the most common of the insertion rules, key-sequenced insertion places the
new node in key sequence among the sibling nodes. The logic for inserting in
key sequence is similar to that for insertion into a linked list. Starting at the
parent’s first child, we follow the sibling (right) pointers until we locate the
correct insertion point and then build the links with the predecessors and
successors (if any). Figure 6-23 shows the correct key-sequenced insertion
locations for several different values in a general tree.
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FIGURE 6-22 LIFO Insertion into General Trees

FIGURE 6-23 Key-sequenced Insertion into General Tree

General Tree Deletions
Although we cannot develop standard rules for general tree insertions, we
can develop standard deletion rules. The first rule is: a node may be deleted
only if it is a leaf. In the general tree, this means a node cannot be deleted if
it has any children. If the user tries to delete a node that has children, the
program provides an error message that the node cannot be deleted until its
children are deleted. It is then the user’s responsibility to first delete any chil-
dren. As an alternative, the application could be programmed to delete the
children first and then delete the requested node. If this alternative is used, it
should be with a different user option, such as purge node and children, and
not the simple delete node option.

Changing a General Tree to a Binary Tree
It is considerably easier to represent binary trees in programs than it is to rep-
resent general trees. We would therefore like to be able to represent general
trees using a binary tree format. The binary tree format can be adopted by
changing the meaning of the left and right pointers. In a general tree, we use
two relationships: parent to child and sibling to sibling. Using these two rela-
tionships, we can represent any general tree as a binary tree.
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Consider the tree shown in Figure 6-24. To change it to a binary tree, we
first identify the branch from the parent to its first child. These branches
from each parent become left pointers in the binary tree. They are shown in
Figure 6-24(b). Then we connect siblings, starting with the far-left child,
using a branch for each sibling to its right sibling. These branches, shown in
Figure 6-24(c), are the right pointers in the binary tree. The third and last
step in the conversion process is to remove all unneeded branches from the
parent to its children. The resulting binary tree is shown in Figure 6-24(d).
Although this is a valid tree structure, it does not have a traditional binary
tree format. We therefore redraw it as shown in Figure 6-24(e).     

FIGURE 6-24 Converting General Trees to Binary Trees

(e) The resulting binary tree
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6.4 Key Terms 

6.5 Summary
❏ A tree consists of a finite set of elements called nodes and a finite set of

directed lines called branches that connect the nodes.

❏ The number of branches associated with a node is the degree of the node.

❏ When the branch is directed toward the node, it is an indegree branch;
when the branch is directed away from the node, it is an outdegree branch.
The sum of indegree and outdegree branches is the degree of the node.

❏ If the tree is not empty, the first node is called the root, which has the
indegree of zero.

❏ All nodes in the tree, except the root, must have an indegree of one.

❏ A leaf is a node with an outdegree of zero.

❏ An internal node is a node that is neither the root nor a leaf.

❏ A node can be a parent, a child, or both. 

❏ Two or more nodes with the same parent are called siblings.

❏ A path is a sequence of nodes in which each node is adjacent to the next one.

ancestor
balance
balance factor
balanced binary tree
binary tree
binary tree traversal
branch
breadth-first traversal
child
complete tree
data compression 
degree
depth
depth-first traversal
descendent
expression
expression tree
FIFO insertion
general tree
goezinta
height
Huffman code
indegree
infix traversal

inorder traversal
internal node
key-sequenced insertion
leaf
left subtree
level
LIFO insertion
nearly complete tree
node
null tree
outdegree
parent
path
postfix traversal
postorder traversal
prefix traversal
preorder traversal
right subtree
root
sibling
subtree
token
tree
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❏ An ancestor is any node in the path from the root of a given node. A
descendent is any node in all of the paths from a given node to a leaf.

❏ The level of a node is its distance from the root.

❏ The height of a tree is the level of the leaf in the longest path from the root
plus 1; the height of an empty tree is –1.

❏ A subtree is any connected structure below the root.

❏ A tree can be defined recursively as a set of nodes that either: (1) is empty
or (2) has a designated node called the root from which hierarchically
descend zero or more subtrees, which are also trees.

❏ A binary tree is a tree in which no node can have more than two children. 

❏ The minimum and maximum height of a binary tree can be related to the
number of nodes:

❏ Given the height of a binary tree, the minimum and maximum number of
nodes in the tree can be calculated as

❏ The balance factor of a binary tree is the difference in height between its
left and right subtrees. 

❏ A binary tree is balanced if the heights of its subtrees differ by no more
than 1 and its subtrees are also balanced.

❏ A complete binary tree has the maximum number of entries for its height;
a tree is complete when the last level is full.

❏ A nearly complete binary tree is a tree that has the minimum height for its
nodes and all nodes in the last level are found on the left.

❏ A binary tree traversal visits each node of the tree once and only once in a
predetermined sequence.

❏ The two approaches to binary tree traversal are depth first and breadth first.

❏ Using the depth-first approach, we may traverse a binary tree in six differ-
ent sequences; however, only three of these sequences are given standard
names: preorder, inorder, and postorder.

❏ In the preorder traversal, we process the root first, followed by the left sub-
tree and then the right subtree.

❏ In the inorder traversal, we process the left subtree first, followed by the
root and then the right subtree.
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❏ In the postorder traversal, we process the left subtree first, followed by the
right subtree and then the root.

❏ In the breadth-first approach, we process all nodes in a level before pro-
ceeding to the next level.

❏ A general tree is a tree in which each node can have an unlimited outdegree.

❏ To change a general tree to a binary tree, we identify the first child of each
node, connect the siblings from left to right, and delete the connection
between each parent and all children except the first.

❏ The three approaches for inserting data into general trees are FIFO, LIFO,
and key sequenced.

❏ To delete a node in a general tree, we must ensure that it does not have a child.

❏ Huffman code is an encoding method that uses a variable-length code to
represent characters. 

❏ In Huffman code we assign shorter codes to characters that occur more
frequently and longer codes to those that occur less frequently. 

6.6 Practice Sets

Exercises
1. Show the tree representation of the following parenthetical notation: 

2. In Figure 6-25 find the: 

a. root
b. leaves
c. internal nodes
d. ancestors of H
e. descendents of F

3. In Figure 6-25 find the:

a. indegree of node F
b. outdegree of node B
c. siblings of H
d. parent of K
e. children of C

4. In Figure 6-25 find the:

a. height of the tree
b. height of subtree G
c. level of node G
d. level of node A
e. height of subtree E

a (b (c d) e f (g h))



Chapter 6 Introduction to Trees     293

 

FIGURE 6-25 Tree for Exercises 2, 3, 4, 5, 6, and 7

5. In Figure 6-25 show the subtrees of node F.

6. In Figure 6-25 show the indented list representation of the tree.

7. In Figure 6-25 show the parenthetical representation of the tree.

8. Find a binary tree whose preorder and inorder traversals create the
same result.

9. What are the maximum and minimum heights of a tree with 28 nodes?

10. In a binary tree, what is the maximum number of nodes that can be found
in level 3? In level 4? In level 12?

11. What is the balance factor of the tree in Figure 6-26?
 

FIGURE 6-26 Binary Tree for Exercises 11, 14, 15, and 30

12. Draw a complete tree to level 4.

13. How many different nearly complete trees can exist in a tree of height 4?

14. Show the depth-first traversals (preorder, inorder, and postorder) of the
binary tree in Figure 6-26.

15. Show the breadth-first traversal of the tree in Figure 6-26.

16. Find the root of each of the following binary trees:

a. tree with postorder traversal: FCBDG
b. tree with preorder traversal: IBCDFEN
c. tree with inorder traversal: CBIDFGE

A

B

C

D E

F

G

H J

K

I

L

A

B

C

D E

F

G

H

J

K

I
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17. A binary tree has 10 nodes. The preorder and inorder traversals of the tree
are shown below. Draw the tree.

Preorder: JCBADEFIGH

Inorder: ABCEDFJGIH

18. A binary tree has eight nodes. The postorder and inorder traversals of the
tree are given below. Draw the tree.

Postorder: FECHGDBA 

Inorder: FCEABHDG 

19. A binary tree has seven nodes. The preorder and postorder traversals of the
tree are given below. Can you draw the tree? If not, explain.

Preorder: GFDABEC

Postorder: ABDCEFG

20. A nearly complete binary tree has nine nodes. The breadth traversal of the
tree is given below. Draw the tree.

Breadth: JCBADEFIG

21. Draw all possible nonsimilar binary trees with three nodes (A, B, C).

22. Draw the corresponding binary tree of Figure 6-21(b).

23. What is the minimum number of levels a binary tree with 42 nodes can have?

24. What is the minimum number of levels a ternary tree, that is, a tree with an
outdegree of 3, with 42 nodes can have?

25. What is the maximum number of nodes at level five of a binary tree?

26. Find the infix, prefix, and postfix expressions in the expression tree of
Figure 6-27.
 

FIGURE 6-27 Expression Tree for Exercise 26

27. Draw the expression tree and find the prefix and postfix expressions for the
following infix expression: 

(C + D + A × B) × (E + F)

+

+

+

×

×

×

C

A B

D

F

G H
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28. Draw the expression tree and find the infix and postfix expressions for the
following prefix expression:  

29. Draw the expression tree and find the infix and prefix expressions for the
following postfix expression:  

30. Show the result of the recursive function in Algorithm 6-9 using the tree
in Figure 6-26.

ALGORITHM 6-9 Tree Traversal for Exercise 30

31. Supply the missing factor (the question mark) in the following recursive
definition (Figure 6-28) of the maximum number of nodes based on the
height of a binary tree.
 

FIGURE 6-28 Recursive Definition for Exercise 31

Problems
32. Write an algorithm that counts the number of nodes in a binary tree.

33. Write an algorithm that counts the number of leaves in a binary tree.

34. Write an algorithm to delete all the leaves from a binary tree, leaving the
root and intermediate nodes in place. (Hint : Use a preorder traversal.)

35. Write an algorithm that, given the number of nodes in a complete or
nearly complete binary tree, finds the height of the tree.

× - A B + × C D / E F

A B × C D / + E F - ×

Algorithm treeTraversal (tree)
1 if tree is null

1 print "Null"
2 else

1 treeTraversal (right subtree)
2 print "right is done"
3 treeTraversal (left subtree)
4 print (tree data)

3 end if
end treeTraversal

N(H) =
1 if  H = 1

N(H — 1) + ? if  H ≥ 2
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36. Write an algorithm that determines whether a binary tree is complete.

37. Write an algorithm that determines whether a binary tree is nearly complete.

38. Rewrite the binary tree preorder traversal algorithm using a stack instead
of recursion.

39. Rewrite the binary tree inorder traversal algorithm using a stack instead of
recursion.

40. Rewrite the binary tree postorder traversal algorithm using a stack instead
of recursion.

41. Write the FIFO insertion algorithm for general trees.

42. Write the LIFO insertion algorithm for general trees.

43. Write the key-sequenced insertion algorithm for general trees.

44. Write the deletion algorithm for a general tree.

45. Write an algorithm that creates a mirror image of a binary tree. All left
children become right children and vice versa.

Projects
46. Write a C function to compute the balance factor of a binary tree. If it is

called initially with the root pointer, it should determine the balance factor
of the entire tree. If it is called with a pointer to a subtree, it should deter-
mine the balance factor for the subtree. 

47. Write a pseudocode algorithm to build a Huffman tree. Use the alphabet
as shown in Table 6-3.

TABLE 6-3 Huffman Character Weights for Project 47

Character Weight Character Weight Character Weight

A

B

C

D

E

F

G

H

I

 7

 2

 2

 3

11

 2

 2

 6

 6

J

K

L

M

N

O

P

Q

R

 1

 1

 4

 3

 7

 9

 2

 1

 6

S

T

U

V

W

X

Y

Z

 6

 8

 4

 1

 2

 1

 2

 1
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48. Write the C implementation for the Huffman algorithm developed in
Project 47. After it has been built, print the code. Then write a C program
to read characters from the keyboard and convert them to your Huffman
code. Include a function in your program that converts Huffman code
back to text. Use it to verify that the code entered from the keyboard was
converted correctly. 
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Chapter 7
Binary Search Trees

We now turn our attention to search trees, with an in-depth discussion of two
standard tree structures: binary search trees in this chapter and AVL trees in
Chapter 8. Both are used when data need to be ordered. They differ primarily
in that AVL trees are balanced, whereas binary search trees are not. 

In the design of the linear list structure, we had two choices: an array or
a linked list. The array structure provides a very efficient search algorithm,
the binary search, but its insertion and deletion algorithms are very ineffi-
cient. On the other hand, the linked list structure provides efficient insertion
and deletion, but its search algorithm is very inefficient. What we need is a
structure that provides an efficient search algorithm and at the same time
efficient insert and delete algorithms. The binary search tree and the AVL
tree provide that structure.

7.1 Basic Concepts 
A binary search tree (BST) is a binary tree with the following properties:

• All items in the left subtree are less than the root.
• All items in the right subtree are greater than or equal to the root.
• Each subtree is itself a binary search tree.

Generally, the information represented by each node is a record rather
than a single data element. When the binary search tree definition is applied to
a record, the sequencing properties refer to the key of the record. Figure 7-1
reflects the properties of a binary tree in which K is the key.

In a binary search tree, the left subtree contains key values less than the root and the right subtree
contains key values greater than or equal to the root.
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FIGURE 7-1 Binary Search Tree

Figure 7-2 contains five binary search trees. As you study them, note that
the trees in Figures 7-2(a) and (b) are complete and balanced, the tree in Fig-
ure 7-2(d) is nearly complete and balanced, and the trees in Figures 7-2(c)
and (e) are neither complete nor balanced.

FIGURE 7-2 Valid Binary Search Trees

Now let’s look at some binary trees that do not have the properties of a
binary search tree. Examine the binary trees in Figure 7-3. The first tree,
Figure 7-3(a), breaks the first rule: all items in the left subtree must be less
than the root. The key in the left subtree (22) is greater than the key in the
root (17). The second tree, Figure 7-3(b), breaks the second rule: all items
in the right subtree must be greater than or equal to the root. The key in the
right subtree (11) is less than the key in the root (17). Figure 7-3(c) breaks
the third rule: each subtree must be a binary search tree. In this tree the left
subtree key (6) is less than the root (17), and the right subtree key (19) is
greater than the root. However, the left subtree is not a valid binary search
tree because it breaks the first rule: its left subtree (11) is greater than the
root (6). Figure 7-3(d) also breaks one of the three rules. Do you see which
one? (Hint: What is the largest key in the left subtree?)

K

All < K All    K ≥

17

19

22

196

17

(b)

(e)

17

17

6

3

(c)

(a)

6

3 14

17

19

(d)
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FIGURE 7-3 Invalid Binary Search Trees

7.2 BST Operations
We now examine several operations used on binary search trees. We start
with the traversal algorithms we studied in Chapter 6. We then look at some
simple search algorithms and conclude with the algorithms that build a
binary search tree.

Traversals
The binary tree traversal operations are identical to the ones in Chapter 6. Our
interest here is not in the operation itself but rather in the results it produces.
Let’s begin by traversing the tree in Figure 7-4.

FIGURE 7-4 Example of a Binary Search Tree

If we traverse the tree using a preorder traversal, we get the results
shown below.

23 18 12 20 44 35 52

6

11 15

17

19

1922

17

(c)

(a)

6

3 22

17

19

116

17

(b)

(d)

18

12 20

23

35

44

52
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Although this traversal is valid, it is not very useful. Let’s try a postorder
traversal and see if it is more useful. 

Again, this sequence holds little promise of being useful. Let’s try an
inorder traversal. 

This traversal has some very practical use: the inorder traversal of a
binary search tree produces a sequenced list. What happens if you traverse
the tree using a right-node-left sequence? Try it and see.1 

Searches
In this section we study three search algorithms: find the smallest node, find
the largest node, and find a requested node (BST search).

Find the Smallest Node
As we examine the binary search tree in Figure 7-4, we note that the node
with the smallest value (12) is the far-left leaf node in the tree. The find smallest
node operation, therefore, simply follows the left branches until we get to a
leaf. Algorithm 7-1 contains the pseudocode to find the smallest node in a
binary search tree.

ALGORITHM 7-1 Find Smallest Node in a BST

Algorithm 7-1 Analysis As is typical with trees, this algorithm is recursive. The first call starts with the root of the
tree, as shown in Figure 7-5. We then follow a path down the left subtrees. If the left

12 20 18 35 52 44 23

12 18 20 23 35 44 52

The inorder traversal of a binary search tree produces a sequenced list.

1. As you can see, the right-node-left traversal traverses the tree in a descending sequence. This is not a
standard traversal, but it can be very useful. 

Algorithm findSmallestBST (root)
This algorithm finds the smallest node in a BST.

Pre    root is a pointer to a nonempty BST or subtree
Return address of smallest node 

1 if (left subtree empty)
1 return (root)

2 end if 
3 return findSmallestBST (left subtree)
end findSmallestBST
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subtree is not null, we must keep looking farther to the left. We do so with a recursive
call to findSmallestBST with the left subtree. The base case in this algorithm
occurs when we find an empty left subtree. At this point we return the address of the
current node, which is the node containing 12 as the base case. Because the recursive
call is part of a return statement, as we move back up the tree we continue to return the
node address to the smallest node until we finally return it to the initiating module.

FIGURE 7-5 Find Smallest Node in a BST 

Find the Largest Node
The logic to the find largest node operation in a binary search tree is the reverse of
finding the smallest node. This time we start at the tree root and follow the
right branches to the far-right node in the tree, which by definition must be
the largest. The pseudocode is shown in Algorithm 7-2.

ALGORITHM 7-2 Find Largest Node in a BST

BST Search
We now examine the most important feature of binary search trees, the binary
tree search, which locates a specific node in the tree. To help us understand how
the BST search works, let’s revisit the binary search algorithm, as shown in
Figure 7-6. This figure traces each of the possible search paths from the mid-
dle element in the array. Starting with 23, the binary search examines either
18 or 44, depending on the search key. From 18 it examines either 12 or 20;
from 44 it examines either 35 or 52. As is clear in the figure, tracing all possi-
ble search paths follows the same paths we see in a binary search tree.

Algorithm findLargestBST (root)
This algorithm finds the largest node in a BST.

Pre    root is a pointer to a nonempty BST or subtree
Return address of largest node returned

1 if (right subtree empty)
1 return (root)

2 end if
3 return findLargestBST (right subtree)
end findLargestBST

~~18

12

23

Left Subtree
not Empty

Left Subtree
not Empty

Left Subtree
Empty—Return

~~
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FIGURE 7-6 BST and the Binary Search

Now let’s reverse the process. Find a given node in a binary search tree.
Assume we are looking for node 20. We begin by comparing the search argu-
ment, 20, with the value in the tree root. Because 20 is less than the root
value, 23, and because we know that all values less than the root lie in its left
subtree, we go left. We now compare the search argument with the value in
the subtree, 18. This time the search argument is greater than the root value,
18. Because we know that values greater than the tree root must lie in its
right subtree, we go right and find our desired value. This logic is shown in
Algorithm 7-3.

ALGORITHM 7-3 Search BST

Algorithm 7-3 Analysis We implement the BST search using recursion. In this algorithm there are two base
cases: either we find the search argument in the tree, in which case we return the

Algorithm searchBST (root, targetKey)
Search a binary search tree for a given value.

Pre    root is the root to a binary tree or subtree
       targetKey is the key value requested
Return the node address if the value is found
       null if the node is not in the tree

1 if (empty tree)
Not found

1 return null
2 end if
3 if (targetKey < root)

1 return searchBST (left subtree, targetKey)
4 else if (targetKey > root)

1 return searchBST (right subtree, targetKey)
5 else

Found target key
1 return root

6 end if
end searchBST

12 18 20 23 35 44 52

Sequenced array

18

12 20

23

44

5235

Search points in binary search
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address of its node (statement 5.1), or the search argument doesn’t exist, in which
case we return null (statement 1.1). 

Study the returns at statements 3.1 and 4.1 carefully. Note that they are returning the
value given by the recursive call, which as we saw earlier is either null or the address of
the node we are trying to locate. These statements are necessary to pass the located
address back through the recursion to the original requester. Figure 7-7 traces the path
through the binary search tree from Figure 7-4, as we search for node 20 using
Algorithm 7-3.

FIGURE 7-7 Searching a BST

Insertion
The insert node function adds data to a BST. To insert data all we need to do is
follow the branches to an empty subtree and then insert the new node. In
other words, all inserts take place at a leaf or at a leaflike node—a node that
has only one null subtree.

Figure 7-8 shows our binary search tree after we have inserted two
nodes. We first added node 19. To locate its insertion point, we searched the
tree through the path 23, 18, and 20 to a null left branch. After locating the
insertion point, we inserted the new node as the left subtree of 20. We then
added 38. This time we searched the tree through 23, 44, and 35 to a null
right subtree and inserted the new node.

All BST insertions take place at a leaf or a leaflike node.

18

20

23

target < root
go left

target > root
go right

target = root
return root

~~

~~

3 if (targetKey < root)
2 end if

1 if (empty tree)
  1 return null

6 end if
  1 return root
5 else
  1 return searchBST (right subtree, …)
4 elseif (targetKey > root)
  1 return searchBST (left subtree, …)

3 if (targetKey < root)
2 end if

1 if (empty tree)
  1 return null

6 end if
  1 return root
5 else
  1 return searchBST (right subtree, …)
4 elseif (targetKey > root)
  1 return searchBST (left subtree, …)

3 if (targetKey < root)
2 end if

1 if (empty tree)
  1 return null

6 end if
  1 return root
5 else
  1 return searchBST (right subtree, …)
4 elseif (targetKey > root)
  1 return searchBST (left subtree, …)

 

 

 

 

Target: 20
to 20

to 20

R
eturn pointer to 20
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FIGURE 7-8 BST Insertion

Insertions of both 19 and 38 were made at a leaf node. If we inserted a
duplicate of the root, 23, it would become the left subtree of 35. Remember
that in a binary search tree, nodes with equal values are found in the right
subtree. The path for its insertion would therefore be 23, 44, and 35. In this
case the insertion takes place at a leaflike node. Although 35 has a right sub-
tree, its left subtree is null. We would therefore place the new node, 23, as
the left subtree of 35.

We are now ready to develop the insert algorithm. We can write an elegant
algorithm that inserts the data into the tree using recursion. If the tree or sub-
tree is empty, we simply insert the data at the root. If we are not at an empty
tree, we determine which branch we need to follow and call recursively to deter-
mine whether we are at a leaf yet. The pseudocode is shown in Algorithm 7-4.

ALGORITHM 7-4 Add Node to BST

continued

Algorithm addBST (root, newNode)
Insert node containing new data into BST using recursion.

Pre    root is address of current node in a BST
ƒƒƒƒƒƒƒnewNode is address of node containing data 
Post   newNode inserted into the tree
Return address of potential new tree root

1 if (empty tree)
1 set root to newNode
2 return newNode

2 end if

19

18 44

2012 5235

23

19

18 44

2012 5235

23

18 44

2012 5235

23

(a) Before inserting 19

(c) Before inserting 38

19 38

18 44

2012 5235

23

(d) After inserting 38

(b) After inserting 19



Chapter 7 Binary Search Trees 307

ALGORITHM 7-4 Add Node to BST (continued)

Algorithm 7-4 Analysis The algorithm is quite elegant, but it is not easy to see how the new node is inserted at
the correct location. To help, let’s insert a node into a tree as shown in Figure 7-9.

FIGURE 7-9 Trace of Recursive BST Insert

To insert 19 into the tree, we start with root. Because the new node’s key is less than
the root key, we recursively call addBST using the left subtree (12). The new node’s
key is now greater than the root key, so we again call recursively with the right subtree,
which is null. At this point we discover that the subtree is null, so we insert the new
node, replacing the null subtree as 12’s right subtree.

Deletion
To delete a node from a binary search tree, we must first locate it. There are four
possible cases when we delete a node:

1. The node to be deleted has no children. In this case, all we need to do is
delete the node.

2. The node to be deleted has only a right subtree. We delete the node and
attach the right subtree to the deleted node’s parent.

3. The node to be deleted has only a left subtree. We delete the node and
attach the left subtree to the deleted node’s parent.

4. The node to be deleted has two subtrees. It is possible to delete a node
from the middle of a tree, but the result tends to create very unbalanced

Locate null subtree for insertion 
3 if (newNode < root)

1 return addBST (left subtree, newNode)
4 else

1 return addBST (right subtree, newNode)
5 end if
end addBST

23

2012

9

newNode

19

19

newNode < root
go left

23

2012

9

Subtree empty
Insert here

newNode > root
go right

23

2012

9

23

2012

9
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trees. Rather than simply delete the node, therefore, we try to maintain the
existing structure as much as possible by finding data to take the place of
the deleted data. This can be done in one of two ways: (1) we can find the
largest node in the deleted node’s left subtree and move its data to replace
the deleted node’s data or (2) we can find the smallest node on the deleted
node’s right subtree and move its data to replace the deleted node’s data.
Regardless of which logic we use, we will be moving data from a leaf or a
leaflike node that can then be deleted. Prove to yourself that either of
these moves preserves the integrity of the binary search tree.

The pseudocode for the binary search tree delete is shown in Algorithm 7-5.

ALGORITHM 7-5 Delete Node from BST

Algorithm 7-5 Analysis You need to study this algorithm carefully to fully understand it. First, note that it is a
recursive algorithm. There are two base cases: First, we do not find the node. In that

Algorithm deleteBST (root, dltKey)
This algorithm deletes a node from a BST.

Pre    root is reference to node to be deleted
       dltKey is key of node to be deleted
Post   node deleted
       if dltKey not found, root unchanged 
Return true if node deleted, false if not found

1 if (empty tree)
1 return false

2 end if
3 if (dltKey < root)

1 return deleteBST (left subtree, dltKey)
4 else if (dltKey > root)

1 return deleteBST (right subtree, dltKey)
5 else

Delete node found--test for leaf node
1 If (no left subtree)

1 make right subtree the root
2 return true

2 else if (no right subtree)
1 make left subtree the root 
2 return true

3 else
Node to be deleted not a leaf. Find largest node on
left subtree.

1 save root in deleteNode
2 set largest to largestBST (left subtree)
3 move data in largest to deleteNode
4 return deleteBST (left subtree of deleteNode,   
                     key of largest

4 end if
6 end if
end deleteBST
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case the root pointer is null. This case is handled in statement 1.1. The second case
occurs after we have deleted the node, at either statement 5.1.2 or statement 5.2.2.

The first two cases on page 313 have been combined in one case in the actual
implementation of the algorithm. If the left subtree is null, we can simply connect the right
subtree to the parent (root). If the right subtree is null, we are connecting a null subtree,
which is correct. If the right subtree is not null, its data are connected to the deleted
node’s parent, which is Case 2. On the other hand, if the left subtree is not null, we test
to see whether the right subtree is null. If the right subtree is null, we can move the left sub-
tree pointer to its parent. 

The most difficult logic in this algorithm occurs when the node is not a leaf. You need to
study this situation carefully to fully understand it. We begin by searching for the largest
node on the left subtree and move its data to replace the data to be deleted. We then call
the algorithm recursively, giving it a new delete target, the key of the leaf node that contains
the data we moved to the internal or root node. This guarantees that when we find the tar-
get key this time, at least one of its subtrees is null. We trace this logic in Figure 7-10. 

FIGURE 7-10 Delete BST Test Cases

7.3 Binary Search Tree ADT 

No programming language has intrinsic operations for a binary search tree. Its
operations must be simulated using C functions. The model for the BST
abstract data type is the ADT we developed for lists in Chapter 5. Both struc-
tures use dynamic memory to store nodes containing a pointer to the applica-
tion data. Both structures require pointers to identify each node’s successor.
Whereas the list contains only one pointer to each successor, the BST tree uses
two—one for the left subtree and one for the right subtree. Because there is
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order in the BST tree, just as there was in the list, we need an application-
dependent search function that must be written by the application programmer. 

A major difference between the two structures lies in the traversal of the
structure. In the list, we provided a function to retrieve the next node in the list.
Because we use recursion in the BST traversal, this design is not possible.
Because the ADT must process the data in a traversal, the design requires that
the application programmer develop the traversal-processing function and pass
its address to the ADT. Given that there may be more than one process required
for any application, the function must be passed when the traversal is initiated,
not when the tree is created as we do with the search algorithm. 

With the basic design understood, we are ready to describe the ADT. We
define nine public functions and five private functions; that is, functions that
are available only within the ADT. These functions make up the basic set
needed to build and maintain BST trees. The private functions begin with an
underscore character. The design is shown in Figure 7-11 and described in
the following sections.

FIGURE 7-11 BST ADT Design

User program

ADT

Public functions

compare processmain ...

Private functions

BST_Insert

_insert

BST_Delete

_delete

BST_Traverse

_traverse

BST_Retrieve

_retrieve

_destroy

BST_Count BST_Full BST_EmptyBST_Create

BST_Destroy
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Data Structure
The BST needs two separate data structures: one for the head and one for
the node.

Head Structure
As with the linear list, the BST data structure uses a simple head structure,
BST_TREE, that contains a count, a root pointer, and the address of the com-
pare function needed to search the list. The application program’s only view
of the tree is a pointer to the head structure, which is allocated from dynamic
memory when the tree is created. 

Node Structure
The BST nodes contain a data pointer and two self-referential pointers to the
left and right subtrees. These data structures are shown in Figure 7-12.

FIGURE 7-12 BST Tree Data Structure

Algorithms
A basic set of BST tree algorithms is covered in this section. Depending on
the application, other algorithms could be required. For example, some appli-
cations may need to include descending-key traversals. The ADT data struc-
tures and the prototype declarations are shown in Program 7-1.

PROGRAM 7-1 BST Declarations

continued
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/* Header file for binary search tree (BST). Contains
structural definitions and prototypes for BST.
   Written by:
   Date:

*/

typedef struct
  {
   int count;
   int  (*compare)
         (void* argu1,
          void* argu2);
   NODE* root;
  } BST_TREE;

typedef struct node
  {
   void*        dataPtr;
   struct node* left;
   struct node* right;
  } NODE;

count compare

BST_TREE

root

to
tree

to
compare

NODE

to
left

subtree

left

to
right

subtree

right

to
data

dataPtr
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PROGRAM 7-1 BST Declarations (continued)
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#include <stdbool.h>

// Structure Declarations 
typedef struct node

{
 void*        dataPtr;
 struct node* left;
 struct node* right;
} NODE;

typedef struct
{
 int   count;
 int  (*compare) (void* argu1, void* argu2);
 NODE*  root;
} BST_TREE;

// Prototype Declarations 
BST_TREE* BST_Create 
         (int (*compare) (void* argu1, void* argu2));
BST_TREE* BST_Destroy (BST_TREE* tree);

bool  BST_Insert   (BST_TREE* tree, void* dataPtr);
bool  BST_Delete   (BST_TREE* tree, void* dltKey);
void* BST_Retrieve (BST_TREE* tree, void* keyPtr);
void  BST_Traverse (BST_TREE* tree,
                    void (*process)(void* dataPtr));

bool BST_Empty (BST_TREE* tree);
bool BST_Full  (BST_TREE* tree);
int  BST_Count (BST_TREE* tree);

static NODE* _insert
               (BST_TREE* tree, NODE* root,
                NODE* newPtr); 
static NODE* _delete
               (BST_TREE* tree,    NODE* root,
                void*     dataPtr, bool* success);
static void* _retrieve
               (BST_TREE* tree,
                void* dataPtr, NODE* root);
static void _traverse 
               (NODE* root,
                void (*process) (void* dataPtr));
static void _destroy (NODE* root);
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Create a BST 
The abstract data type must be able to support multiple structures in one pro-
gram. This is accomplished by allocating the tree head structure in dynamic
memory. The create tree operation allocates the structure, sets its count to
zero and the root pointers to null, and stores the address of the compare
function. It then returns the tree pointer. The code is shown in Program 7-2.

PROGRAM 7-2 Create BST Application Interface

Insert a BST 
The BST add node function is the module called by the application program.
It receives a pointer to the tree structure and a pointer to the data to be
inserted into the tree. After creating a node, it calls a recursive insert func-
tion to make the physical insertion. The code is shown in Program 7-3.

PROGRAM 7-3 Insert BST Application Interface

continued
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/* ================= BST_Create ================
Allocates dynamic memory for an BST tree head
node and returns its address to caller
   Pre    compare is address of compare function 
          used when two nodes need to be compared 
   Post   head allocated or error returned 
   Return head node pointer; null if overflow 

*/
BST_TREE* BST_Create 
        (int  (*compare) (void* argu1, void* argu2))
{
// Local Definitions 

BST_TREE* tree;

// Statements 
tree = (BST_TREE*) malloc (sizeof (BST_TREE));
if (tree)
   {
    tree->root    = NULL;
    tree->count   = 0;
    tree->compare = compare;
   } // if 

return tree;
} // BST_Create 
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/* ================= BST_Insert ===================
This function inserts new data into the tree.
   Pre    tree is pointer to BST tree structure
   Post   data inserted or memory overflow 
   Return Success (true) or Overflow (false)
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PROGRAM 7-3 Insert BST Application Interface (continued)

Program 7-3 Analysis Because all additions take place at a leaf node, we store the data pointer in the newly
created node and initialize the subtree pointers to null. We then call the recursive insert
function. When it returns, we update the tree count and return success.

Note the name of the recursive insert module. Following the guide for system soft-
ware, we call it _insert so that the name is not duplicated by application program-
mers when they use the ADT in their programs. 

Internal Insert Function
The internal insert function, called initially by BST_Insert, requires three
parameters: a pointer to the tree structure, a pointer to the root of the tree or
the subtree, and a pointer to the node being inserted. The function is shown
in Program 7-4. It follows the design in Algorithm 7-4.

PROGRAM 7-4 Internal Insert Function

continued
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*/
bool BST_Insert (BST_TREE* tree, void* dataPtr)
{
// Local Definitions 

NODE* newPtr;

// Statements 
newPtr = (NODE*)malloc(sizeof(NODE));
if (!newPtr)
   return false;

newPtr->right   = NULL;
newPtr->left    = NULL;
newPtr->dataPtr = dataPtr;

   
if (tree->count == 0)
    tree->root  =  newPtr;
else
    _insert(tree, tree->root, newPtr);
    
(tree->count)++;
return true;

}  // BST_Insert

1
2
3
4
5
6
7

/* ==================== _insert ====================
This function uses recursion to insert the new data 
into a leaf node in the BST tree.
   Pre    Application has called BST_Insert, which  
          passes root and data pointer
   Post   Data have been inserted
   Return pointer to [potentially] new root
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PROGRAM 7-4 Internal Insert Function (continued)

Program 7-4 Analysis This algorithm must be carefully studied to fully understand its logic. It begins with a
recursive search to locate the correct insertion point in a leaf node. A leaf node is iden-
tified by a subtree pointer, either right or left, that is null. When we find a leaf pointer,
we return the new node so that it can be inserted into the parent pointer (statement 14). 

Because this is a recursive function, it must have a base case. Can you see it? The
base case occurs when we locate a leaf and return newPtr in statement 14. At this
point we begin to back out of the tree.

Delete a BST 
We use the same design for deletion that we used for insertion. The applica-
tion program interface sees only the BST head structure. It passes the tree
and a pointer to a variable containing the key to be deleted. If the deletion is
successful, the BST delete function returns true; if the node cannot be
found, it returns false. The code for the application interface is shown in
Program 7-5.

PROGRAM 7-5 Delete BST Application Interface

continued
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*/
NODE* _insert (BST_TREE* tree, NODE* root, NODE* newPtr)
{
// Statements 

if (!root)
   // if NULL tree 
   return newPtr;

 
// Locate null subtree for insertion 
if (tree->compare(newPtr->dataPtr, 
                  root->dataPtr) < 0)
   {
    root->left = _insert(tree, root->left, newPtr);
    return root; 
   } // new < node 
else 
   // new data >= root data 
   {
    root->right = _insert(tree, root->right, newPtr);
    return root;
     } // else new data >= root data 
return root;

} // _insert
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/* ================== BST_Delete ================== 
This function deletes a node from the tree and 
rebalances it if necessary. 
   Pre    tree initialized--null tree is OK
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PROGRAM 7-5 Delete BST Application Interface (continued)

Program 7-5 Analysis The application interface delete function simply accepts the parameters from the user
and reformats them for the recursive delete function. When the delete has been com-
pleted, it updates the tree count and, if the tree is empty, sets the root to null. It then
returns true if the delete function was successful or false if the key could not be located. 

Internal Delete Function
The real work is done by the internal delete function shown in Program 7-6.
It uses the design in Algorithm 7-5. 

PROGRAM 7-6 Internal Delete Function

continued
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          dltKey is pointer to data structure 
                 containing key to be deleted 
   Post   node deleted and its space recycled 
          -or- An error code is returned 
   Return Success (true) or Not found (false)

*/
bool BST_Delete (BST_TREE* tree, void* dltKey)
{
// Local Definitions 

bool  success;
NODE* newRoot;

// Statements 
newRoot = _delete (tree, tree->root, dltKey, 
                   &success);
if (success)
   {
    tree->root = newRoot;
    (tree->count)--;
    if (tree->count == 0)
        // Tree now empty 
        tree->root = NULL;
   } // if 
return success;

}  // BST_Delete
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/* ==================== _delete ==================== 
Deletes node from the tree and rebalances 
tree if necessary. 
   Pre    tree initialized--null tree is OK
          dataPtr contains key of node to be deleted
   Post   node is deleted and its space recycled
          -or- if key not found, tree is unchanged 
         success is true if deleted; false if not
  Return pointer to root
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PROGRAM 7-6 Internal Delete Function (continued)

continued
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*/
NODE*  _delete (BST_TREE* tree,    NODE* root, 
                void*     dataPtr, bool* success)
{
// Local Definitions 

NODE* dltPtr;
NODE* exchPtr;
NODE* newRoot;
void* holdPtr;

// Statements 
if (!root)
   {
    *success = false;
    return NULL;
   } // if 

if (tree->compare(dataPtr, root->dataPtr) < 0)
     root->left  = _delete (tree,    root->left, 
                            dataPtr, success);
else if (tree->compare(dataPtr, root->dataPtr) > 0)
     root->right = _delete (tree,    root->right, 
                            dataPtr, success);
else
    // Delete node found--test for leaf node 
    {
     dltPtr = root;
     if (!root->left)
         // No left subtree 
         {
          free (root->dataPtr);       // data memory
          newRoot = root->right;
          free (dltPtr);              // BST Node
          *success = true;
          return newRoot;             // base case 
         } // if true 
     else
         if (!root->right)
             // Only left subtree 
             {
              newRoot = root->left;
              free (dltPtr);
              *success = true;
              return newRoot;         // base case 
            } // if 
         else
             // Delete Node has two subtrees 
             {
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PROGRAM 7-6 Internal Delete Function (continued)

Program 7-6 Analysis As we saw with the recursive insert, the first part of the function searches for the node
to be deleted. If it reaches a leaf before finding the node to be deleted, the key cannot
be found, so it returns false. This is the first of three base cases. 

Once the node to be deleted is found, we determine if it is at a leaf or a leaflike
node. Remember that deletions can take place only at a leaf. If a node has two sub-
trees, we must search for a leaf node to take its place. We first check to see if there is
a left subtree. If there is none, we simply save the right subtree pointer as the pointer to
take the root’s place. If there is a left subtree, we check the right subtree pointer. If
there is none, we save the left subtree pointer as the pointer to take the root’s place.
Assuming for the moment that there is zero or one subtree, we free the deleted node’s
memory and return true. These are the second (statement 44) and third (statement 53)
base cases.

If the node to be deleted has two subtrees, we must find a node to take its place.
Our design searches the left subtree for its largest node. When we find it, we move
its data to replace the deleted data and then recursively call the delete function to
delete what we know to be a valid leaf node. This logic is shown at statements 57
through 70.

Retrieve a BST 
The retrieve function follows the left-right structure of the tree until the
desired node is found. When it is located, the address of the data is returned
to the calling function. If the data are not located, a null pointer is returned.

The design is similar to the insert and delete algorithms described above.
An application interface function provides a pointer to the tree and a pointer
to the key. We then call an ADT recursive function to locate the data. The
code for the ADT retrieve function is shown in Program 7-7.
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              exchPtr = root->left;
              // Find largest node on left subtree
              while (exchPtr->right)
                  exchPtr = exchPtr->right;

              // Exchange Data 
              holdPtr          = root->dataPtr;
              root->dataPtr    = exchPtr->dataPtr;
              exchPtr->dataPtr = holdPtr;
              root->left       = 
                 _delete (tree,   root->left, 
                          exchPtr->dataPtr, success);
             } // else 
    } // node found 
return root; 

} // _delete 
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PROGRAM 7-7 Retrieve BST Application Interface

Program 7-7 Analysis The retrieve data function is quite simple. It is needed only because the recursive function
needs an additional parameter, of which the using application is not aware. It simply
passes the pointer to the tree structure and the key, adding the pointer to the tree root.

Internal Retrieve Function
The code for the internal retrieve function is shown in Program 7-8.

PROGRAM 7-8 Internal Retrieve Function

continued
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/* =================== BST_Retrieve ===================
Retrieve node searches tree for the node containing 
the requested key and returns pointer to its data.
   Pre     Tree has been created (may be null) 
           data is pointer to data structure 
                containing key to be located 
   Post    Tree searched and data pointer returned 
   Return  Address of matching node returned 
           If not found, NULL returned 

*/
void* BST_Retrieve  (BST_TREE* tree, void* keyPtr)
{
// Statements 

if (tree->root)
    return _retrieve (tree, keyPtr, tree->root);
else
    return NULL;

} // BST_Retrieve 
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/* ==================== _retrieve ====================
Searches tree for node containing requested key 
and returns its data to the calling function.
   Pre     _retrieve passes tree, dataPtr, root 
           dataPtr is pointer to data structure 
              containing key to be located 
   Post    tree searched; data pointer returned 
   Return  Address of data in matching node 
           If not found, NULL returned 

*/
void* _retrieve (BST_TREE* tree, 

              void* dataPtr, NODE* root)
{
// Statements 

if (root)
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PROGRAM 7-8 Internal Retrieve Function (continued)

Program 7-8 Analysis The retrieve function uses the compare function stored in the tree structure when the tree
was created. If the data in the search argument, dataPtr, is less than the root data’s
key, it calls itself with the left subtree as the root. If the search argument is greater than the
root data’s key, it calls itself with the right subtree as the root. If the argument is not greater
and not less than the root, it must be equal, so it returns the root’s data pointer.

Carefully study the recursive call’s functions in statements 18 and 21. Note that they
return the address returned by the recursive call. In this fashion the address returned by
the base cases is passed back up the tree structure until it is finally returned to the original
application call by the interface function.

Traverse a BST 
The traverse function uses an inorder traversal of the tree, calling the appli-
cation-dependent process function when the node is to be processed.
Although the traversal is standard, the application-processing function is not.
Therefore, whenever the using application calls the traverse function, it must
also pass the address of the function that processes the data. The processing
function uses only one parameter: the address of the node to be processed. It
in turn calls the ADT internal function that actually traverses the tree. The
code is shown in Program 7-9.

PROGRAM 7-9 Traverse BST Application Interface

continued
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    {
     if (tree->compare(dataPtr, root->dataPtr) < 0)
         return _retrieve(tree, dataPtr, root->left);
    else if (tree->compare(dataPtr, 
             root->dataPtr) > 0)
         return _retrieve(tree, dataPtr, root->right);
     else
         // Found equal key 
         return root->dataPtr;
    }  // if root 
else
    // Data not in tree 
    return NULL;

} // _retrieve 
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/* =================== BST_Traverse =================== 
Process tree using inorder traversal. 
   Pre   Tree has been created (may be null) 
         process “visits” nodes during traversal 
   Post  Nodes processed in LNR (inorder) sequence 

*/
void BST_Traverse (BST_TREE* tree, 
                   void (*process) (void* dataPtr))
{
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PROGRAM 7-9 Traverse BST Application Interface (continued)

Internal Traverse Function
The code for the internal search function is shown in Program 7-10.

PROGRAM 7-10 Internal Traverse Function

Empty a BST 
The empty funtion simply checks the tree count. If it is zero, it returns true;
otherwise, it returns false. The code is seen in Program 7-11.

PROGRAM 7-11 Empty BST Application Interface
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// Statements 
_traverse (tree->root, process);
return;

}  // end BST_Traverse 
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/* =================== _traverse =================== 
Inorder tree traversal. To process a node, we use 
the function passed when traversal was called.
   Pre   Tree has been created (may be null) 
   Post  All nodes processed 

*/
void _traverse (NODE* root, 
                void (*process) (void* dataPtr)) 
{
// Statements 
if  (root)
    {
     _traverse (root->left, process);
     process   (root->dataPtr);
     _traverse (root->right, process);
    } // if 
return;
}  // _traverse
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/* =================== BST_Empty ==================
Returns true if tree is empty; false if any data.
   Pre      Tree has been created. (May be null)
   Returns  True if tree empty, false if any data 

*/
bool BST_Empty (BST_TREE* tree)
{
// Statements 

return (tree->count == 0);
} // BST_Empty 
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Full BST 
Because there is no way to test for available memory in C, we must actually
try to allocate a node. If we are successful, we delete it and return false—the
list is not full. If the allocation fails, we return true; there is not enough
memory for another node. The code is shown in Program 7-12.

PROGRAM 7-12 Full BST Application Interface

BST Count
The count function, shown in Program 7-13, simply returns the number of
nodes currently in the tree. 

PROGRAM 7-13 BST Count Application Interface
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/* ===================== BST_Full ==================== 
If there is no room for another node, returns true.
   Pre      tree has been created 
   Returns  true if no room for another insert
            false if room

*/
bool BST_Full (BST_TREE* tree)
{
// Local Definitions 

NODE* newPtr;

// Statements 
newPtr = (NODE*)malloc(sizeof (*(tree->root)));
if (newPtr)
   {
    free (newPtr);
    return false;
   } // if 
else
     return true;

} // BST_Full 
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/* =================== BST_Count ==================
Returns number of nodes in tree.
   Pre     tree has been created 
   Returns tree count 

*/
int BST_Count (BST_TREE* tree)
{
// Statements 

return (tree->count);
} // BST_Count 
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Destroy a BST 
The last function in the BST tree abstract data type is the destroy function. It
is used to physically delete and free all of the data nodes and the tree head
structure when the tree is no longer needed. Because we need to traverse the
tree to find all of the data and nodes that need to be deleted, we call a recur-
sive function to do the physical deletions.

The logic for the destroy function parallels the destroy functions we have
discussed previously. The code is shown in Program 7-14.

PROGRAM 7-14 Destroy BST Application Interface

Program 7-14 Analysis The logic is simple. We first make sure that we have a valid tree by testing the tree
pointer. If it is valid—that is, if it is not null—we call the recursive subfunction that does
the physical deletions. When we return we delete the tree structure itself and return a
null pointer.

Internal Destroy Function
The code for the internal deletion function is shown in Program 7-15.

PROGRAM 7-15 Internal Destroy Function

continued
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/* =============== BST_Destroy ============== 
Deletes all data in tree and recycles memory.
The nodes are deleted by calling a recursive
function to traverse the tree in inorder sequence.
   Pre      tree is a pointer to a valid tree 
   Post     All data and head structure deleted 
   Return   null head pointer

*/
BST_TREE* BST_Destroy (BST_TREE* tree) 
{
// Statements 

if (tree)
_destroy (tree->root);

// All nodes deleted. Free structure 
free (tree);
return NULL;

} // BST_Destroy
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/* =============== _destroy ============== 
Deletes all data in tree and recycles memory.
It also recycles memory for the key and data nodes.
The nodes are deleted by calling a recursive 
function to traverse the tree in inorder sequence.
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PROGRAM 7-15 Internal Destroy Function (continued)

Program 7-15 Analysis The logic in the recursive deletion function is a little more complex. The big question is:
When do we delete the data, and when do we delete the node? We have to make
sure that we do each only once and at the right time. 

The data are deleted as we return from the left subtree. This is done at statement 16.
This is the logical point at which we need to process a BST’s data. However, we are not
yet ready to delete the node because we have not processed the right subtree. We must
wait until we return from the right subtree traversal to delete it (see statement 18). 

7.4 BST Applications
Now that we’ve developed the BST ADT, let’s write two applications that use
it. The first is a BST that contains only integer data. The second is a simple
application that lists the students in a class by their student number. 

Integer Application
The BST tree integer application reads integers from the keyboard and inserts
them into the BST. Figure 7-13 traces the first two insertions, 18 and 33, into
a null BST. Use it to help follow the program.
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   Pre      root is pointer to valid tree/subtree 
   Post     All data and head structure deleted 
   Return   null head pointer 

*/
void _destroy (NODE* root)
{
// Statements 

if (root)
   {
    _destroy (root->left);
    free (root->dataPtr);
    _destroy (root->right);
    free (root);
   } // if 
return;

} // _destroy
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FIGURE 7-13 Insertions into a BST

The program is very simple. After creating a tree, we loop reading data
from the keyboard and calling BST_Insert to insert it into the tree. When
the tree is complete, we call the BST traverse function to print it. The code
is shown in Program 7-16. Besides main, it also contains the compare and
print functions.

(a) After tree creation

(b) After first insertion

(c) After second insertion

main heap

To compareInt

0

?dataIn

dataPtr

BSTRoot

main heap

dataIn

dataPtr

BSTRoot

18

1

18

33

main heap

dataIn

dataPtr

BSTRoot 2

To compareInt

To compareInt
18 33
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PROGRAM 7-16 BST Integer Application

continued
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/* This program builds and prints a BST.
   Written by: 
   Date:       

*/
#include <stdio.h>
#include <stdlib.h>
#include "P7-BST-ADT.h"

// Prototype Declarations 
int  compareInt (void* num1, void* num2);
void printBST   (void* num1);

int main (void)
{
// Local Definitions 

BST_TREE* BSTRoot;
int*      dataPtr;
int       dataIn = +1;

// Statements 
printf("Begin BST Demonstation\n");

BSTRoot = BST_Create (compareInt);

// Build Tree 
printf("Enter a list of positive integers;\n");
printf("Enter a negative number to stop.\n");

do 
   {
    printf("Enter a number: ");
    scanf ("%d", &dataIn);
    if (dataIn > -1)
       {
        dataPtr = (int*) malloc (sizeof (int));
        if (!dataPtr)
            {
             printf("Memory Overflow in add\n"), 
             exit(100);
            } // if overflow 
        *dataPtr = dataIn;
        BST_Insert (BSTRoot, dataPtr);
       } // valid data 
   } while (dataIn > -1);
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PROGRAM 7-16 BST Integer Application (continued)

continued
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printf("\nBST contains:\n");
BST_Traverse (BSTRoot, printBST);

printf("\nEnd BST Demonstration\n");
return 0;

} // main 

/* ==================== compareInt ====================  
Compare two integers and return low, equal, high.
    Pre  num1 and num2 are valid pointers to integers
    Post return low (-1), equal (0), or high (+1)

*/
int compareInt (void* num1, void* num2)
{
// Local Definitions 

int key1;
int key2;

// Statements 
key1 = *(int*)num1;
key2 = *(int*)num2;
if (key1 < key2)
    return -1;
if (key1 == key2)
    return 0;
return +1;

} // compareInt 

/* ==================== printBST ====================
Print one integer from BST.
    Pre  num1 is a pointer to an integer
    Post integer printed and line advanced

*/
void printBST (void* num1)
{
// Statements 

printf("%4d\n", *(int*)num1);
return;

} // printBST

Results:
Begin BST Demonstation
Enter a list of positive integers;
Enter a negative number to stop.
Enter a number: 18
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PROGRAM 7-16 BST Integer Application (continued)

Program 7-16 Analysis There are times when an application needs to use an ADT, but the ADT’s design
doesn’t quite fit the application. This is one of those cases. The ADT expects a key and
data. Our tree, however, needs only data. We solve the problem by sending the data
both as a key and as data. 

Student List Application
The second application creates a student list. It requires three pieces of data:
the student’s ID, the student’s name, and the student’s grade-point average.
Students are added and deleted from the keyboard. They can be retrieved
individually or as a list. The student structures and their relationships to the
ADT are shown in Figure 7-14.

FIGURE 7-14 Student Data in ADT

Enter a number: 33
Enter a number: 7
Enter a number: 24
Enter a number: 19
Enter a number: -1

BST contains:
   7
  18
  19
  24
  33

End BST Demonstration

To left subtree To right subtree

NODE

dataPtr

gpaid name
...

STUDENT
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Program Design
The program design is quite simple. We use a menu to insert, delete, print
one student’s data, or print a student list. To fully exercise the ADT, we also
add one nonapplication function, test utilities, which calls the three utility
functions. 

Because this is a simple example, we use a loop in main to control the
processing. In addition to the loop, main creates the file by calling the ADT
and deletes it at the end, again by calling the ADT. Figure 7-15 shows the
program design. We also show the two processing functions that are required
by the ADT: compare and process. Although they are not directly used in the
program, they are called by the ADT. We show their indirect usage with
dashed lines. As is customary, the ADT calls are not shown in the design.

FIGURE 7-15 Student List Design

The program’s data structure, its prototype declarations, its mainline, and
all of the code are shown in Program 7-17. Although the program is long, the
code is simple and straightforward.

PROGRAM 7-17 BST Student Application

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

/* This program builds and prints a student list.
   Written by: 
   Date:       

*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

#include "P7-BST-ADT.h"

// Structures 
typedef struct
   {
    int   id;
    char  name[40];
    float gpa;

testUtilitiesprintListfindStu

StudentList

getOption

compareStd

addStu deleteStu

processStd
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PROGRAM 7-17 BST Student Application (continued)

continued

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

   } STUDENT;

// Prototype Declarations 
char getOption    (void);
void addStu       (BST_TREE* list);
void deleteStu    (BST_TREE* list);
void findStu      (BST_TREE* list);
void printList    (BST_TREE* list);
void testUtilties (BST_TREE* tree);
int  compareStu   (void* stu1, void* stu2);
void processStu   (void* dataPtr);

int main (void)
{
// Local Definitions 

BST_TREE* list;
char      option = ' ';

// Statements 
printf("Begin Student List\n");
list = BST_Create (compareStu);

while ( (option = getOption ()) != 'Q')
   {
    switch (option)
       {
        case 'A': addStu (list);
                  break;
        case 'D': deleteStu (list);
                  break;
        case 'F': findStu (list);
                  break;
        case 'P': printList (list);
                  break;
        case 'U': testUtilties (list);
                  break;
      } // switch 
   } // while 
list = BST_Destroy (list);

printf("\nEnd Student List\n");
return 0;

} // main 

/* ==================== getOption ====================
Reads and validates processing option from keyboard.
    Pre  nothing
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PROGRAM 7-17 BST Student Application (continued)

continued

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

    Post valid option returned
*/
char getOption  (void)
{
// Local Definitions 

char option;
bool error;

// Statements 
printf("\n ======  MENU  ======\n");
printf(" A   Add Student\n");
printf(" D   Delete Student\n");
printf(" F   Find Student\n");
printf(" P   Print Class List\n");
printf(" U   Show Utilities\n");
printf(" Q   Quit\n");
    
do
   {
    printf("\nEnter Option: ");
    scanf(" %c", &option);
    option = toupper(option);
    if   (option == 'A' || option == 'D'
       || option == 'F' || option == 'P'
       || option == 'U' || option == 'Q')
          error = false;
    else       
         {
          printf("Invalid option. Please re-enter: ");
          error = true;
         } // if 
   } while (error == true);
return option;

} // getOption 

/* ====================== addStu ======================  
Adds a student to tree.
    Pre  nothing
    Post student added (abort on memory overflow)

*/
void addStu (BST_TREE* list)
{
// Local Definitions 

STUDENT* stuPtr;

// Statements 
stuPtr = (STUDENT*)malloc (sizeof (STUDENT));
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PROGRAM 7-17 BST Student Application (continued)

continued

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

if (!stuPtr)
    printf("Memory Overflow in add\n"), exit(101);

printf("Enter student id:   ");
scanf ("%d",  &(stuPtr->id));
printf("Enter student name: ");
scanf ("%39s", stuPtr->name);
printf("Enter student gpa:  ");
scanf ("%f",  &(stuPtr->gpa));

 
BST_Insert (list, stuPtr);

} // addStu 

/* ===================== deleteStu ====================  
Deletes a student from the tree.
    Pre  nothing
    Post student deleted or error message printed

*/
void deleteStu (BST_TREE* list)
{
// Local Definitions 

int  id;
int* idPtr = &id;

// Statements 
printf("Enter student id: ");
scanf ("%d", idPtr);

if (!BST_Delete (list, idPtr))
   printf("ERROR: No Student: %0d\n", *idPtr);

} // deleteStu 

/* ===================== findStu =====================
Finds a student and prints name and gpa.
    Pre  student id
    Post student data printed or error message

*/
void findStu (BST_TREE* list)
{
// Local Definitions 

int      id;
STUDENT* stuPtr;

// Statements 
printf("Enter student id: ");
scanf ("%d", &id);
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PROGRAM 7-17 BST Student Application (continued)

continued

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

stuPtr = (STUDENT*)BST_Retrieve (list, &id);
if (stuPtr)
   {
    printf("Student id:   %04d\n",  id);
    printf("Student name: %s\n",    stuPtr->name);
    printf("Student gpa:  %4.1f\n", stuPtr->gpa);
   } // if 
else
   printf("Student %d not in file\n", id);

} // findStu 

/* ==================== printList ====================
Prints a list of students.
    Pre  list has been created (may be null)
    Post students printed

*/
void printList  (BST_TREE* list)
{
// Statements 

printf("\nStudent List:\n");
BST_Traverse (list, processStu);
printf("End of Student List\n");
return;

} // printList 

/* =================== testUtilties ================== 
This function tests the ADT utilities by calling
each in turn and printing the results.
   Pre  tree has been created
   Post results printed

*/
void testUtilties (BST_TREE* tree)
{
// Statements 

printf("Tree contains %3d nodes: \n", 
       BST_Count(tree));
if (BST_Empty(tree))
    printf("The tree IS empty\n");
else
    printf("The tree IS NOT empty\n");
if (BST_Full(tree))
    printf("The tree IS full\a\n");
else
    printf("The tree IS NOT full\n");
return;

} // testUtilities 
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PROGRAM 7-17 BST Student Application (continued)

7.5 Threaded Trees
Binary tree traversal algorithms are written using either recursion or
programmer-written stacks. If the tree must be traversed frequently, using
stacks rather than recursion may be more efficient. A third alternative is a

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

/* ==================== compareStu ====================
Compare two student id's and return low, equal, high.
    Pre  stu1 and stu2 are valid pointers to students
    Post return low (-1), equal (0), or high (+1)

*/
int  compareStu (void* stu1, void* stu2)
{
// Local Definitions 

STUDENT s1;
STUDENT s2;

// Statements 
s1 =  *(STUDENT*)stu1;
s2 =  *(STUDENT*)stu2;

if ( s1.id < s2.id)
      return -1;
     
if ( s1.id == s2.id)
      return 0;

return +1;
} // compareStu 

/* =================== processStu =====================  
Print one student's data.
    Pre  stu is a pointer to a student
    Post data printed and line advanced

*/
void processStu (void* stuPtr)
{
// Local Definitions 

STUDENT aStu;

// Statements 
aStu = *(STUDENT*)stuPtr;
printf("%04d  %-40s %4.1f\n", 
       aStu.id, aStu.name, aStu.gpa);
return;

} // processStu 
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threaded tree. In a threaded tree, null pointers are replaced with pointers to their
successor nodes.

Using a stack for each call makes the binary tree traversal relatively inef-
ficient, particularly if the tree must be traversed frequently. The reason we
use recursion or a stack is that, at each step, we cannot access the next node
in the sequence directly and we must use backtracking. The traversal is more
efficient if the tree is a threaded tree.

For example, in the inorder traversal of a binary tree, we must traverse
the left subtree, the node, and the right subtree. Because an inorder traversal
is a depth-first traversal, we follow left pointers to the far-left leaf.

When we find the far-left leaf, we must begin backtracking to process
the right subtrees we passed on our way down. This is especially inefficient
when the parent node has no right subtree. Consider the tree shown in
Figure 7-16(a).

FIGURE 7-16 Threaded Binary Tree

 The inorder traversal of this tree is BCDAE. When we traverse the tree
in inorder sequence, we follow the left pointers to get the first node, B. How-
ever, after locating the far-left node, we must go back to C, which is why we
need recursion or a stack. Note that when we are processing B, we do not
need recursion or a stack because B’s right subtree is empty.

Similarly, when we finish processing node D using recursion or stacks, we
must return to node C before we go to A. But again, we do not need to pass
through C. The next node to be processed is the root, A.

From this small example, it should be clear that the nodes whose right
subtrees are empty create more work when we use recursion or stacks. This
leads to the threaded concept: when the right subtree pointer is empty, we
can use the pointer to point to the successor of the node. In other words,
we can use the right null pointer as a thread. The threaded tree is shown in
Figure 7-16(b).

To build a threaded tree, first build a standard binary search tree. Then
traverse the tree, changing the null right pointers to point to their successors.

The traversal for a threaded tree is straightforward. Once you locate the
far-left node, you loop, following the thread (the right pointer) to the next
node. No recursion or stack is needed. When you find a null thread (right
pointer), the traversal is complete.

E

A

B D

CE

DB

C

A

(a) Binary tree (b) Threaded binary tree
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7.6 Key Terms 

7.7 Summary
❏ A binary search tree is a binary tree with the following properties:

■ All items in the left subtree are less than the root.

■ All items in the right subtree are greater than or equal to the root.

■ Each subtree is itself a binary search tree.

❏ The inorder traversal of a binary search tree produces an ordered list.

❏ In a binary search tree, the node with the smallest value is the far-left node
in the tree. To find the smallest node, we simply follow the left branches
until we get to a null left pointer.

❏ In a binary search tree, the node with the largest value is the far-right
node. To find the largest node, we follow the right branches until we get to
a null right pointer.

❏ To search for a value in a binary search tree, we first compare the target
value with the root. If the target value is smaller than the root, we repeat
the procedure for the left subtree. If the target value is greater than the
root, we repeat the procedure for the right subtree. If the target value is
equal to the root, the search is complete.

❏ To insert a node in a binary search tree, we follow the left or right branch
down the tree, depending on the value of the new node, until we find a
null subtree.

❏ To delete a node from a subtree, we must consider four cases:

1. The node to be deleted has no children.

2. The node to be deleted has only a left subtree.

3. The node to be deleted has only a right subtree.

4. The node to be deleted has two subtrees.

❏ To facilitate the traversal of a BST, threaded BSTs were created. 

❏ In a threaded BST, null pointers are replaced with pointers to the succes-
sor node in a specific traversal order. 

binary search tree (BST)
binary tree search
binary tree traversal
delete a node

find largest node
find smallest node
insert node
threaded tree
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7.8 Practice Sets

Exercises
1. Draw all possible binary search trees for the data elements 5, 9, and 12.

2. Create a binary search tree using the following data entered as a sequen-
tial set:

3. Create a binary search tree using the following data entered as a sequen-
tial set:

4. Create a binary search tree using the following data entered as a sequen-
tial set:

5. Insert 44 and 50 into the tree created in Exercise 2.

6. Insert 44 and 50 into the tree created in Exercise 3.

7. Insert 44 and 50 into the tree created in Exercise 4.

8. Which one of the trees in Figure 7-17 is a valid binary search tree and
which one is not? Explain your answer.

FIGURE 7-17 Figure for Exercise 8

9. Traverse the binary search tree in Figure 7-18 using an inorder traversal. 

FIGURE 7-18 Figure for Exercise 9

14 23 7 10 33 56 80 66 70

7 10 14 23 33 56 66 70 80

80 70 66 56 33 23 14 10 7
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2018 2218
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3528

5432

4020
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10. The binary search tree in Figure 7-19 was created by starting with a null
tree and entering data from the keyboard. In what sequence were the
data entered? If there is more than one possible sequence, identify the
alternatives.

FIGURE 7-19 Figure for Exercise 10

11. The binary search tree in Figure 7-20 was created by starting with a null
tree and entering data from the keyboard. In what sequence were the
data entered? If there is more than one possible sequence, identify the
alternatives.

FIGURE 7-20 Figure for Exercise 11

12. Insert 44, 66, and 77 into the binary search tree in Figure 7-21.

FIGURE 7-21 Figure for Exercise 12
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13. Delete the node containing 60 from the binary search tree in Figure 7-22.

FIGURE 7-22 Figure for Exercises 13 and 14

14. Delete the node containing 85 from the binary search tree in Figure 7-22.

Problems
15. Develop a nonrecursive algorithm for Algorithm 7-1, “Find Smallest Node

in a BST.” 

16. Develop a nonrecursive algorithm for Algorithm 7-3, “Search BST.” 

17. Write the C code for Algorithm 7-1, “Find Smallest Node in a BST.” 

18. Write the C code for Algorithm 7-4, “Add Node to BST.” 

19. Write the C code for Algorithm 7-5, “Delete Node from BST.” 

Projects
20. When writing BST algorithms, you need to be able to print the tree in a

hierarchical order to verify that the algorithms are processing the data cor-
rectly. Write a print function that can be called to print the tree. The
printed output should contain the node level number and its data. Present
the tree using a bill-of-materials format, as shown in Figure 7-23, for several
popular breeds of dogs recognized by the American Kennel Club (AKC).

FIGURE 7-23 Top Popular Dog Breeds Recognized by the AKC

1. Labrador
2. German Shepherd

3. Cocker Spaniel
4. Beagle
4. Dachshund

5. Dalmatian
3. Golden Retriever

2. Rottweiler
3. Poodle
3. Shetland Sheepdog

50 65 8575

60 80

70

5545 90
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21. Rewrite the print algorithm in Project 20 to print the data hierarchically. A
vertical presentation of the data in Figure 7-23 is shown in Figure 7-24. If
you tilt the page sideways, the data are presented in the binary tree format.

FIGURE 7-24 AKC Data Presented Hierarchically

22. Write a program that reads a list of names and telephone numbers from a
text file and inserts them into a BST tree. Once the tree has been built,
present the user with a menu that allows him or her to search the list for a
specified name, insert a new name, delete an existing name, or print the
entire phone list. At the end of the job, write the data in the list back to the
file. Test your program with at least 10 names.

23. Create the ADT for a binary search tree using the array implementation. In
an array implementation, the pointers become indexes to the subtree ele-
ments. When you create the tree, you need to know the maximum number
of nodes to be stored in the tree. To test the ADT, use it to run the program
in Project 22.

24. Write a program that processes a threaded binary tree. The program
should first build the tree, then use an iterative traversal to process it using
the threads. 

25. Rework Project 24 using a preorder traversal.

26. Rework Project 24 using a postorder traversal.

3. Shetland Sheepdog
2. Rottweiler

3. Poodle
1. Labrador

3. Golden Retriever
2. German Shepherd

5. Dalmatian
4. Dachshund 

3. Cocker Spaniel
4. Beagle
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Chapter 8
AVL Search Trees

While the binary search tree is simple and easy to understand, it has one
major problem: it is not balanced. In this chapter we discuss the AVL tree,
which is balanced. We develop the AVL tree structure and algorithms and
give examples of its use. Then, at the end of the chapter, we discuss the AVL
tree as an abstract data type and write a program that uses it. 

8.1 AVL Tree Basic Concepts
In 1962, two Russian mathematicians, G. M. Adelson-Velskii and E. M. Lan-
dis, created the balanced binary tree structure that is named after them—the
AVL tree. An AVL tree is a search tree in which the heights of the subtrees
differ by no more than 1. It is thus a balanced binary tree. To understand the
significance of the trees being balanced, let’s look at two different trees con-
taining the same data. The first is a search tree in which each node is larger
than its predecessor. The second is an AVL tree. These trees are shown in
Figure 8-1. 

As you study the tree in Figure 8-1(a), you should quickly note that it is
the equivalent of a linear list in a binary tree’s clothing. It takes two tests to
locate 12. It takes three tests to locate 14. It takes eight tests to locate 52. In
other words, the search effort for this particular binary search tree is O(n).

Now consider the tree in Figure 8-1(b). Although we have labeled it an
AVL tree, it looks like a binary search tree because both trees are built on the
same structure. Locating nodes 8 and 14 requires four tests. Locating nodes
20 and 52 requires three tests. In other words, the maximum search effort for
this tree is either three or four. Its search effort is O(log n). In this sample of
two small trees, we see that the worst search effort was reduced from eight to
four by simply balancing the tree. For a tree with 1000 nodes, the worst case
for a completely unbalanced tree is 1000, whereas the worst case for a nearly
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complete tree is 10. We thus see that balancing a tree can lead to significant
performance improvements.

FIGURE 8-1 Two Binary Trees

We are now ready to define an AVL tree. An AVL tree is a binary tree that
either is empty or consists of two AVL subtrees, TL, and TR, whose heights dif-
fer by no more than 1, as shown below.

In this formula, HL is the height of the left subtree and HR is the height of
the right subtree (the bar symbols indicate absolute value). Because AVL
trees are balanced by working with their height, they are also known as height-
balanced trees.

Referring back to Figure 8-1(b), we see that the tree appears to be bal-
anced when we look at the root. The height of the left subtree (18) is 3; the
height of the right subtree (44) is 2. Therefore, if the subtrees 18 and 44 are
balanced, the tree is balanced, as shown in Figure 8-2(a).

Now examine the left subtree, 18, in Figure 8-2(b). It also appears to be
balanced because the heights of its subtrees differ by only 1. If its subtrees 12
and 20 are balanced, it is a balanced tree. Looking at Figure 8-2(c), we see
that the right subtree (44) is balanced because the heights of its subtrees dif-
fer by only 1. Prove to yourself that the remaining subtrees are also balanced,
which makes the tree balanced.

AVL Tree Balance Factor
In Chapter 6 we defined the balance factor as the height of the left subtree
minus the height of the right subtree. Because the balance factor for any

|HL – HR| <= 1

An AVL tree is a height-balanced binary search tree.

18

12

20

23

44

14

8

52

18 44

522012

8 14

23

(b) AVL tree(a) Unbalanced BST
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node in an AVL tree must be +1, 0, or –1, we use the descriptive identifiers
LH for left high (+1) to indicate that the left subtree is higher than the right
subtree, EH for even high (0) to indicate that the subtrees are the same
height, and RH for right high (–1) to indicate that the left subtree is shorter
than the right subtree. We find that this system allows us to more easily con-
centrate on the structure; and because most programming languages provide
methods for implementing identifiers for constant values, it should prove no
problem when implementing the algorithms. These balance factors are
shown in Figure 8-2.

FIGURE 8-2 AVL Tree

Balancing Trees
Whenever we insert a node into a tree or delete a node from a tree, the resulting
tree may be unbalanced. When we detect that a tree has become unbalanced,
we must rebalance it. AVL trees are balanced by rotating nodes either to the left
or to the right. In this section we discuss the basic balancing algorithms.

We consider four cases that require rebalancing. All unbalanced trees fall
into one of these four cases: 

1. Left of left—A subtree of a tree that is left high has also become left high.

2. Right of right—A subtree of a tree that is right high has also become
right high.

3. Right of left—A subtree of a tree that is left high has become right high.

4. Left of right—A subtree of a tree that is right high has become left high. 

(b) Subtree 18 appears balanced:
 HL − HR = 1

(c) Subtree 44 is balanced:
| HL − HR | = 1
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(a) Tree 23 appears balanced: HL − HR = 1 

HR = 2HL = 3
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These four cases, created by insertions, are shown in Figure 8-3. Similar
cases can be created for deletions.

FIGURE 8-3 Out-of-balance AVL Trees

Case 1: Left of Left
When the out-of-balance condition has been created by a left high subtree of
a left high tree, we must balance the tree by rotating the out-of-balance node
to the right. Let’s begin with a simple case. In Figure 8-4(a) node 20 (the
tree) is out of balance because the left subtree 18 is left high and it is on the
left branch of node 20, which is also left high. In this case we balance the
tree by rotating the root, 20, to the right so that it becomes the right subtree
of 18.
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FIGURE 8-4 Left of Left—Single Rotation Right

The tree in Figure 8-4(b) presents a more complex problem. The subtree
12 is balanced, but the whole tree (18) is not. Therefore, we must rotate 18 to
the right, making it the right subtree of the new root, 12. This creates a prob-
lem, however. What can we do with node 14, the current right subtree of 12?
If you study the tree carefully, you will note that the old root, 18, loses its left
subtree (12) in the rotation (12 becomes the root). We can therefore use 18’s
empty left subtree to attach 14, which also preserves the search tree relation-
ship that all nodes on the right of the root must be greater than or equal to
the root.

In both cases in Figure 8-4, after the rotation the rotated node is even
high. Other balance factors may also have changed along the way, depend-
ing on the complexity of the tree and how the out-of-balance condition was
created. We will see how the balance factors are changed when we study
the insert and delete algorithms.

Case 2: Right of Right
Case 2 is the mirror of Case 1. Figure 8-5(a) contains a simple left rotation.
The subtree 18 is balanced, but the root is not. We therefore rotate the root
to the left, making it the left subtree of the new root, 18. 

Now let’s look at the more complex case shown in Figure 8-5(b). In this
case we have a right high root with a right high subtree and thus a right of
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right, out-of-balance condition. To correct the imbalance, we rotate the root
to the left, making the right subtree, 20, the new root. In the process 20’s left
subtree is connected as the old root’s right subtree, preserving the order of
the search tree.

FIGURE 8-5 Right of Right—Single Rotation Left

Case 3: Right of Left
The first two cases required single rotations to balance the trees. We now
study two out-of-balance conditions in which we need to rotate two nodes,
one to the left and one to the right, to balance the tree.

Again, let’s start with a relatively simple case. In Figure 8-6(a) we see an
out-of-balance tree in which the root is left high and the left subtree is right
high—a right of left tree. To balance this tree, we first rotate the left subtree to
the left, then we rotate the root to the right, making the left node the new root. 

Now let’s examine the complex case. In Figure 8-6(b) we see an out-of-
balance tree in which a node (18) is left high and its left subtree (12) is right
high. To balance this tree, we first rotate the left subtree (12) of the node
that is out of balance (18) to the left, which aligns the subtree nodes in
search tree sequence. This rotation is shown in Figure 8-6(b2). We now
rotate the left subtree (18) to the right, which results in the new left sub-
tree’s (14) being balanced.

In this example the resulting tree is still left high, and the newly balanced
subtree, 14, is even high.
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FIGURE 8-6 Right of Left—Double Rotation Right

Case 4: Left of Right
Case 4 is also complicated. Figure 8-7(a) shows a simple case. To balance the
tree, we first rotate the right subtree (44) right and then rotate the root (12) left. 

Figure 8-7(b) shows the complex case. In this example the subtree 44 is
balanced, but the tree is not. Because the out-of-balance condition is created
by a left high subtree on a right high branch, we must double rotate. We
begin by rotating the right subtree (44) to the right, which creates the tree in
Figure 8-7(b2). We then rotate the root left, which gives us the balanced tree
in Figure 8-7(b3). Note that the root of the balanced tree has an even high
balance factor. 
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FIGURE 8-7 Left of Right—Double Rotation Right

8.2 AVL Tree Implementations
In this section we discuss the AVL tree insert and delete algorithms, includ-
ing the algorithms to maintain the tree balance.

Insert into AVL Tree 
The search and retrieval algorithms are the same as for any binary tree. Natu-
rally, we use an inorder traversal because AVL trees are search trees. The
insert and delete algorithms, however, must be rewritten.

As with the binary search tree, all inserts take place at a leaf node. To find
the appropriate leaf node, we follow the path from the root, going left when the
new data’s key is less than a node’s key and right otherwise. Once we have
found a leaf, we connect it to its parent node and begin to back out of the tree.
Here is where the AVL tree differs from the binary search tree. As we back out
of the tree, we constantly check the balance of each node. When we find that a
node is out of balance, we balance it and then continue up the tree.

Not all inserts create an out-of-balance condition. When we add a node on
the right branch of a left high node, automatic balancing occurs and the node
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is now even high, as shown in Figure 8-8. Conversely, when we add a node on
the left branch of a right high node, the node is automatically balanced.

FIGURE 8-8 Automatic AVL Tree Balancing

When the leaf is evenly balanced before the add, however, the subtree that
the leaf is on grows one level. Whether this addition creates an out-of-balance
condition depends on the balance of its ancestor’s nodes. As we back out of the
insertion, if the tree has grown, we need to rotate to rebalance.

The design of the AVL tree insert algorithm is shown in Figure 8-9.1 It
clearly shows that inserting on the right branch of a tree is a mirror of insert-
ing on the left. On the left in the structure chart is the design for inserting on
a left branch. On the right is the design for inserting on a right branch. Both
start with a recursive call to locate a leaf. Once we locate the leaf and begin
to back out of the recursion, we call either left balance or right balance if the
insert created a taller tree.

FIGURE 8-9 AVL Tree Insert Design

1. For an explanation of structure chart notations, refer to Appendix B.
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To balance a left subtree node, we rotate either singly to the right or dou-
bly, first to the left and then to the right. To balance a right subtree node, we
rotate either singly to the left or doubly, first to the right and then to the left.
Before you move on to the algorithms, compare this design with the balancing
figures in Section 8.1, “AVL Tree Basic Concepts” (Figures 8-3 through 8-7).

AVL Tree Insert Algorithm
The AVL tree insert pseudocode is shown in Algorithm 8-1. This algorithm
requires that the space be allocated for the new node before it is called. The
calling algorithm therefore manages memory.

ALGORITHM 8-1 AVL Tree Insert

Algorithm 8-1 Analysis As we discussed earlier, the algorithm begins much the same as the binary search tree
add node (Algorithm 7-4). If we are at a leaf, we set the root to point to the new node. 

When we return from the recursive call, there are two possibilities: either the tree
has grown taller or it hasn’t. If it is not taller, no balancing is required. If the tree is
taller, there are again two possibilities: we need to balance if the tree is left high and
we inserted on the left (statement 3.2) or if the tree is right high and we inserted on the
right (statement 4.2).

One final note: This algorithm does not check for duplicate insertions. If an appli-
cation does not allow duplicates, the algorithm must search before it inserts to ensure
that the insertion is not a duplicate.

Algorithm AVLInsert (root, newData)
Using recursion, insert a node into an AVL tree.

Pre    root is pointer to first node in AVL tree/subtree 
       newData is pointer to new node to be inserted
Post   new node has been inserted
Return root returned recursively up the tree

1 if (subtree empty)
Insert at root
1 insert newData at root
2 return root

2 end if
3 if (newData < root)

1 AVLInsert (left subtree, newData)
2 if (left subtree taller)

1 leftBalance (root)
3 end if

4 else
New data >= root data
1 AVLInsert (right subtree, newPtr)
2 if(right subtree taller)

1 rightBalance (root)
3 end if

5 end if
6 return root
end AVLInsert
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AVL Tree Left Balance Algorithm
Because the logic for balancing a left subtree and the logic for balancing a
right subtree are mirrors of each other, we show only the logic to balance a
left subtree. If you understand it, you should be able to construct the algo-
rithm for balancing a right subtree. The pseudocode for balancing a left high
node is shown in Algorithm 8-2.

ALGORITHM 8-2 AVL Tree Left Balance

Rotate Algorithms
To rotate a node, we simply exchange the root and the appropriate subtree
pointers. This process takes four steps: three for the exchange and one to reset
the root pointer. The steps to rotate a left high tree are shown in Figure 8-10.
Note that in this figure we are dealing with just a portion of a tree. Therefore,
we cannot determine the final balance factors.

The pseudocode for rotate right and rotate left shown in Algorithm 8-3.

ALGORITHM 8-3 Rotate AVL Tree Right and Left

Algorithm leftBalance (root)
This algorithm is entered when the root is left high (the 
left subtree is higher than the right subtree).

Pre    root is a pointer to the root of the [sub]tree
Post   root has been updated (if necessary)

1 if (left subtree high)
1 rotateRight (root)

2 else 
1 rotateLeft (left subtree) 
2 rotateRight (root)

3 end if
end leftBalance

Algorithm rotateRight (root) 
This algorithm exchanges pointers to rotate the tree right.

Pre    root points to tree to be rotated
Post   node rotated and root updated

1 exchange left subtree with right subtree of left subtree
2 make left subtree new root
end rotateRight 

Algorithm rotateLeft (root) 
This algorithm exchanges pointers to rotate the tree left.

Pre    root points to tree to be rotated
Post   node rotated and root updated

1 exchange right subtree with left subtree of right subtree
2 make right subtree new root
end rotateLeft



352 Section 8.2 AVL Tree Implementations

FIGURE 8-10 AVL Tree Rotate Right

AVL Tree Delete Algorithm
As we saw with the binary search tree, all deletions must take place at a leaf
node. AVL tree deletion (Algorithm 8-4) follows the basic logic of the binary
search tree deletion with the addition of the logic to balance the tree. As with
the insert logic, the balancing occurs as we back out of the tree.

ALGORITHM 8-4 AVL Tree Delete

continued

Algorithm AVLDelete (root, dltKey, success) 
This algorithm deletes a node from an AVL tree and 
rebalances if necessary.

Pre    root is a pointer to a [sub]tree
       dltKey is the key of node to be deleted 
       success is reference to boolean variable
Post   node deleted if found, tree unchanged if not 
       success set true (key found and deleted)
          or false (key not found)
Return pointer to root of [potential] new subtree

1 if Return (empty subtree)
Not found

1 set success to false
2 return null

2 end if
3 if (dltKey < root)

1 set left-subtree to AVLDelete(left subtree, dltKey, 
                              success) 
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ALGORITHM 8-4 AVL Tree Delete (continued)

Algorithm 8-4 Analysis Although the basic logic parallels that of the binary search tree delete algorithm, there are
significant differences. It begins much the same: if we find a null tree, the node we are try-
ing to delete does not exist. In this case we set success to false. We then return a null root.
Returning a null root is necessary because the tree’s or subtree’s root may have changed
during rotation. The original calling algorithm must therefore save the new root and then
test for success before automatically changing the tree’s root, just in case the delete key
was not found. This logic is shown below.

2 if (tree shorter)
1 set root to deleteRightBalance(root)

3 end if
4 elseif (dltKey > root)

1 set right subtree to AVLDelete(root->right, dltKey, 
                               success) 

2 if (tree shorter)
1 set root to deleteLeftBalance (root)

3 end if
5 else

Delete node found--test for leaf node
1 save root
2 if (no right subtree)

1 set success to true 
2 return left subtree 

3 elseif (no left subtree)
   Have right but no left subtree

1 set success to true 
2 return right subtree 

4 else
Deleted node has two subtrees

 Find substitute--largest node on left subtree
1 find largest node on left subtree 
2 save largest key
3 copy data in largest to root
4 set left subtree to AVLDelete(left subtree, 

                              largest key, success)
5 if (tree shorter)

1 set root to dltRightBal (root)
6 end if

5 end if
6 end if
7 return root
end AVLDelete

1 set newTree to AVLDelete (root, dltKey, success)
2 if (success is true)

1 set root to newTree
1 else

2 error (delete key "not found")
2 end if
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 Once we find the node to be deleted (statement 5), we need to determine
whether the deleted node is a leaf. If there is no right subtree, we set success to true
and return the left subtree (which, as we saw in the binary search tree delete algo-
rithm, may be null also). If there is a right subtree but not a left subtree, we set success
to true and return the right subtree. 

If there is a left subtree and a right subtree, we need to find a node to take the
deleted node’s place. After it is located, we copy its data to the root node. We then
continue the delete operation at the root node’s left subtree, this time looking to delete
the largest key’s node, which is now redundant. If after deleting the copied data from
its leaf the tree is shorter, call delete right to balance it. 

Delete Right Balance
Again, we show only one side of the balancing algorithm, delete right bal-
ance. We also exclude the logic for resetting the balance factors. We develop
this logic in the ADT implementation. The logic for delete left balance mir-
rors that for Algorithm 8-5.

ALGORITHM 8-5 AVL Tree Delete Right Balance

Algorithm 8-5 Analysis We begin by determining whether we need to balance the tree. Remember, we do not
necessarily need to rebalance the tree just because we deleted a node. For example, if
the root was left high, it is now even high and we can exit after setting the balance factor. 

If we have deleted on the left and the tree was already right high, it is now doubly
right high (the delete operation is right of right). We therefore need to rotate the right
subtree to the left.

If the right subtree is left high, we need to rotate twice, first to the right and then to
the left. This case is shown in Figure 8-7. If the right subtree is not left high, we need to

Algorithm deleteRightBalance (root)
The [sub]tree is shorter after a deletion on the left branch. 
If necessary, balance the tree by rotating.

Pre    tree is shorter
Post   balance restored
Return new root

1 if (tree not balanced)
No rotation required if tree left or even high

1 set rightOfRight to right subtree
2 if (rightOfRight left high)

Double rotation required
1 set leftOfRight to left subtree of rightOfRight

Rotate right then left
2 right subtree = rotateRight (rightOfRight)
3 root          = rotateLeft (root)

3 else
Single rotation required 

1 set root to rotateLeft (root) 
4 end if

2 end if
3 return root
end deleteRightBalance
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rotate only once. This situation is shown in Figure 8-5. Because we deleted on the left,
we need to rotate the root to the left. These rotations are shown in Figure 8-11.

FIGURE 8-11 AVL Tree Delete Balancing

Adjusting the Balance Factors
After an insertion or deletion, as we balance the tree we must adjust the bal-
ance factors. Although the adjustments to the balance factors must be ana-
lyzed individually for each case, there is a general pattern:

1. If the root was even balanced before an insert, it is now high on the side in
which the insert was made.

Duplicate Keys in AVL Trees
If duplicate keys are allowed in an AVL tree, it is possible for an equal key to be rotated to the left subtree. Consider the fol-
lowing example.

 

This example demonstrates that while insert operations always add duplicates on the right, delete operations can move them 
to the left. 

The problem then becomes, how do we determine which node to delete? The recursive inorder search always locates the first 
node on a right branch; it cannot locate a node in the left subtree. The solution is to write an iterative search that locates the 
node just before the node with the desired key. 
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2. If an insert was in the shorter subtree of a tree that was not even balanced,
the root is now even balanced.

3. If an insert was in the higher subtree of a tree that was not even balanced,
the root must be rotated.

We develop the code for adjusting the balance factors fully in the imple-
mentation of the AVL tree abstract data type. 

8.3 AVL Tree Abstract Data Type
With the basic design understood, we are ready to develop the ADT. We
define nine functions that provide the basic user interface. As with the BST,
there are several internal functions needed to implement the tree. The ADT
design is shown in Figure 8-12.

FIGURE 8-12 AVL Tree Design
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AVL Tree Data Structure
As with the other ADT structures, we implement the AVL tree ADT with a
head structure and a node structure. 

Head Structure 
The AVL tree head structure, AVL_TREE, contains a count, a root pointer, and the
address of the compare function needed to search the list. The application
program’s only view of the tree is a pointer to the head structure, which is
allocated from dynamic memory when the tree is created. 

The data structures are shown in Figure 8-13.

FIGURE 8-13 AVL Tree Data Structure

Node Structure
The AVL tree node structure follows the same design as the binary search
tree, with the addition of a balance factor. Each node must contain a void
pointer to the data to be stored, which includes a key and attributes, a left
and a right subtree pointer, and a balance factor. 

AVL Tree Algorithms
A basic set of AVL tree algorithms is covered in this section. Depending on
the application, other algorithms could be required. For example, some appli-
cations might need to include descending-key traversals. We begin with the
ADT data structures and the prototype declarations in Program 8-1.

typedef struct
{
  int   count;
  NODE* root;
  int   (*compare) (void* argu1, void* argu2);
} AVL_TREE;

typedef struct node
{
  struct node* left;
  void*        dataPtr;
  int          bal;
  struct node* right;
} NODE;

count root compare

dataPtr balleft right

NODE

AVL-TREE
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PROGRAM 8-1 AVL Tree Declarations

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#define LH +1                          // Left High 
#define EH  0                          // Even High 
#define RH -1                          // Right High 

// Structure Declarations 
typedef struct node

{
 void*        dataPtr;
 struct node* left;
 int          bal;
 struct node* right;
} NODE;

typedef struct
{
 int    count;
 int   (*compare) (void* argu1, void* argu2);
 NODE*   root;
} AVL_TREE;

// Prototype Declarations 
AVL_TREE* AVL_Create 
         (int (*compare)(void* argu1, void* argu2));
AVL_TREE* AVL_Destroy (AVL_TREE* tree);

bool  AVL_Insert   (AVL_TREE* tree,  
                    void* dataInPtr);
bool  AVL_Delete   (AVL_TREE* tree,  void* dltKey);
void* AVL_Retrieve (AVL_TREE* tree,  void* keyPtr);
void  AVL_Traverse (AVL_TREE* tree,
                    void (*process)(void* dataPtr));
int  AVL_Count     (AVL_TREE* tree);
bool AVL_Empty     (AVL_TREE* tree);
bool AVL_Full      (AVL_TREE* tree);

static NODE* _insert 
               (AVL_TREE* tree, NODE* root, 
                NODE* newPtr,   bool* taller);
static NODE* _delete    
               (AVL_TREE* tree,
                NODE* root,      void* dltKey, 
                bool* shorter,   bool* success);
static void* _retrieve 
               (AVL_TREE* tree, 
                void* keyPtr,    NODE* root); 
static void _traversal 
               (NODE* root,
                void (*process)(void* dataPtr));
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PROGRAM 8-1 AVL Tree Declarations (continued)

Create an AVL Tree 
The abstract data type must be able to support multiple structures in one pro-
gram. This is accomplished by allocating the tree head structure in dynamic
memory. The create tree function allocates the structure, sets its count to
zero and the root pointer to null, and stores the address of the compare func-
tion. It then returns the tree pointer. The code is shown in Program 8-2.

PROGRAM 8-2 Create AVL Tree Application Interface

49
50
51
52
53
54
55
56

static void _destroy     (NODE* root);

static NODE* rotateLeft  (NODE* root);
static NODE* rotateRight (NODE* root);
static NODE* insLeftBal  (NODE* root, bool* taller);
static NODE* insRightBal (NODE* root, bool* taller);
static NODE* dltLeftBal  (NODE* root, bool* shorter);
static NODE* dltRightBal (NODE* root, bool* shorter);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/* ================= AVL_Create ================
Allocates dynamic memory for an AVL tree head
node and returns its address to caller.
   Pre    compare is address of compare function 
          used when two nodes need to be compared 
   Post   head allocated or error returned 
   Return head node pointer; null if overflow 

*/
AVL_TREE* AVL_Create 
        (int  (*compare) (void* argu1, void* argu2))
{
// Local Definitions 

AVL_TREE* tree;

// Statements 
tree = (AVL_TREE*) malloc (sizeof (AVL_TREE));
if (tree)
   {
    tree->root    = NULL;
    tree->count   = 0;
    tree->compare = compare;
   } // if 

return tree;
} // AVL_Create 
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Insert an AVL Tree 
The AVL tree insert function is the module called by the application program.
It receives a pointer to the tree structure and a pointer to the data to be
inserted into the tree. After allocating a node, it calls a recursive insert func-
tion to make the physical insertion. The insert function that the application
called is shown in Program 8-3.

PROGRAM 8-3 Insert AVL Tree Application Interface

Program 8-3 Analysis Because all additions take place at a leaf node, we initialize the balance factor to
even height and the subtree pointers to null. We then call the recursive insert function.
When it returns, we update the tree count and return success.

Note the name of the recursive insert module. Following the guide for system 
software, we call it _insert so that the name will not be duplicated by application 
programmers. 

Internal Insert Function
The internal insert function, called initially by AVL_Insert, requires four
parameters: a pointer to the tree structure, a pointer to the root of the tree or
the subtree, a pointer to the node being inserted, and a Boolean to tell if the
tree has grown taller. The taller flag is used for rotation processing as we back

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/* ================= AVL_Insert ===================
This function inserts new data into the tree.
   Pre    tree is pointer to AVL tree structure
   Post   data inserted or memory overflow 
   Return Success (true) or Overflow (false)

*/
bool AVL_Insert (AVL_TREE* tree, void* dataInPtr)
{
// Local Definitions 

NODE* newPtr;
bool  forTaller;

// Statements 
newPtr = (NODE*)malloc(sizeof(NODE));
if (!newPtr)
   return false;

newPtr->bal     = EH;
newPtr->right   = NULL;
newPtr->left    = NULL;
newPtr->dataPtr = dataInPtr;

tree->root = _insert(tree,  tree->root, 
              newPtr,      &forTaller);
(tree->count)++;
return true;

} // AVL_Insert 
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out of the tree after the insertion. If the tree is taller, the function calls one of
two subfunctions: one to balance a left subtree or another to balance a right
subtree. The changes to the balance factors are also handled as we back out
of the tree. The function is shown in Program 8-4. Its design follows
Algorithm 8-1.

PROGRAM 8-4 Internal Insert Function

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/* ==================== _insert ====================
This function uses recursion to insert the new data 
into a leaf node in the AVL tree.
Pre    Application has called AVL_Insert, which passes 
       root and data pointers.
Post   Data have been inserted.
Return pointer to [potentially] new root.

*/
NODE* _insert (AVL_TREE* tree,   NODE* root, 
               NODE*     newPtr, bool* taller)
{
// Statements 

if (!root)
   {
    // Insert at root 
    root     = newPtr;
    *taller  = true;
    return   root;
   } // if NULL tree 

 
if (tree->compare(newPtr->dataPtr, 
                  root->dataPtr) < 0)
   {
    // newData < root -- go left 
    root->left = _insert(tree,   root->left, 
                         newPtr, taller);
    if (*taller)
       // Left subtree is taller 
       switch (root->bal)
          {
           case LH:  // Was left high--rotate 
                   root = insLeftBal (root, taller);
                   break;

           case EH:  // Was balanced--now LH 
                   root->bal = LH;
                   break;

           case RH:  // Was right high--now EH 
                   root->bal = EH;
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PROGRAM 8-4 Internal Insert Function (continued)

Program 8-4 Analysis This nontrivial algorithm must be carefully studied to fully understand its logic. It begins
with a recursive search to locate the correct insertion point in a leaf node. After com-
pleting the insertion (statement 16) and setting the taller flag, we begin to back out of
the tree, examining the balance as we go. If we are out of balance after inserting on
the left (statement 25), we call left balance. If we are out of balance after inserting on
the right (statement 49), we call right balance.

The adjustment of the balance factors takes place in three functions. The current
root’s balance factor is adjusted in the insert function. The subtree balance factors are
adjusted in left and right balance as the tree is rotated. All follow the general rules dis-
cussed in the “Adjusting the Balance Factors” section of this chapter. 

After each node has been adjusted as necessary, we return the root. This is neces-
sary because the root of a tree may change as we add data. This is one of the major
differences between the binary search tree and the AVL tree. In the binary search tree,
the first node inserted is always the root unless it is deleted.
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                   *taller   = false;
                   break;
          } // switch  
       return root; 
   } // new < node 
else 
    // new data >= root data
    {
     root->right = _insert (tree,   root->right, 
                            newPtr, taller);
     if (*taller)
        // Right subtree is taller 
        switch (root->bal)
            {
             case LH:  // Was left high--now EH 
                       root->bal = EH;
                       *taller   = false;
                       break;

             case EH:  // Was balanced--now RH 
                       root->bal = RH;
                       break;

             case RH:  // Was right high--rotate 
                       root = insRightBal
                                  (root, taller);
                       break;
            } // switch 
     return root;
     } // else new data >= root data 
return root;

} // _insert 
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Because this is a recursive function, it must have a base case. Can you see it? The
base case occurs when we locate a leaf and return the root in statement 18. 

Internal Left Balance Function
If the tree is taller after an insertion on the left subtree, we need to check to
see if a rotation is necessary. As we saw above, it is necessary only if the tree
was already left high. In this case we call the left balance function to restore
the balance by rotating the left subtree. This algorithm is shown in
Program 8-5. Its design is shown in Algorithm 8-2.

PROGRAM 8-5 Internal Insert Left Balance Function

continued
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/* ================== insLeftBalance ==================
Tree out-of-balance to the left. This function 
rotates the tree to the right.
   Pre  The tree is left high 
   Post Balance restored; return potentially new root

*/
NODE* insLeftBal (NODE* root, bool* taller) 

{
// Local Definitions 

NODE* rightTree;
NODE* leftTree;

// Statements 
leftTree = root->left;
switch (leftTree->bal)
   {
    case LH: // Left High--Rotate Right 
             root->bal     = EH;
             leftTree->bal = EH;
             
             // Rotate Right 
             root     = rotateRight (root);
             *taller  = false;
             break;
    case EH: // This is an error 
             printf ("\n\aError in insLeftBal\n");
             exit (100); 
    case RH: // Right High-Requires double 
             // rotation: first left, then right 
             rightTree = leftTree->right;
             switch (rightTree->bal)
                {
                 case LH: root->bal     = RH;
                          leftTree->bal = EH;
                          break;
                 case EH: root->bal     = EH;
                          leftTree->bal = LH;
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PROGRAM 8-5 Internal Insert Left Balance Function (continued)

Program 8-5 Analysis The function examines the left subtree’s balance factor to determine what action must
be taken. If the subtree is left high—that is, if it is left of left—a simple right rotation is
all that is required. If it is right high, it is right of left and a double rotation is required.
The third possible balance factor, even high, is not possible. Our action if it should
occur, therefore, is to abort the program because it must contain a logic error to arrive
at this impossible situation.

Internal Rotation Functions
The rotation of a subtree requires an exchange of pointers among four subtree
pointers. The logic is a relatively simple extension of the logic to exchange two
values. The code to rotate left and right is shown in Program 8-6. Its design is
shown in Algorithm 8-3. As you study the logic, you may find it helpful to
refer to Figure 8-10.

PROGRAM 8-6 Internal Insert Rotate Left and Right Function

continued
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                          break;
                 case RH: root->bal     = EH;
                          leftTree->bal = LH;
                          break;
                } // switch rightTree 
             
             rightTree->bal = EH;
             // Rotate Left 
             root->left = rotateLeft (leftTree);
             
             // Rotate Right 
             root     = rotateRight (root);
             *taller  = false;
   } // switch 
return root;

} // leftBalance
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/* ================== rotateLeft ===================
Exchanges pointers to rotate the tree to the left.
   Pre  root points to tree to be rotated 
   Post Node rotated and new root returned 

*/
NODE* rotateLeft (NODE* root) 
{
// Local Definitions 

NODE* tempPtr;

// Statements 
tempPtr        = root->right;
root->right    = tempPtr->left;
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PROGRAM 8-6 Internal Insert Rotate Left and Right Function (continued)

Delete an AVL Tree 
Deleting from an AVL tree encounters many of the same problems we saw
when we inserted data. Interestingly, however, only the rotation algorithms
can be reused; the balancing algorithms must be rewritten for deletion.

We use the same design for deletion that we used for insertion. The
application program interface sees only the AVL tree head structure. It passes
a void pointer to the delete key so that the search function can be called to
locate the delete node in the tree. If the deletion is successful, the AVL tree
delete function returns true; if the node cannot be found, it returns false.

The code for the application interface is shown in Program 8-7. 

PROGRAM 8-7 Delete AVL Tree Application Interface

continued
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tempPtr->left  = root;

return tempPtr;
} // rotateLeft

/* ================== rotateRight ================== 
Exchange pointers to rotate the tree to the right. 
   Pre  root points to tree to be rotated 
   Post Node rotated and new root returned 

*/
NODE* rotateRight (NODE* root) 
{
// Local Definitions 

NODE* tempPtr;

// Statements 
tempPtr         = root->left;
root->left      = tempPtr->right;
tempPtr->right  = root;

return tempPtr;
} // rotateRight
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/* ==================== AVL_Delete ==================== 
This function deletes a node from the tree and 
rebalances it if necessary. 
   Pre    tree initialized--null tree is OK
          dltKey is pointer to key to be deleted 
   Post   node deleted and its space recycled 
          -or- An error code is returned 
   Return Success (true) or Not found (false)

*/
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PROGRAM 8-7 Delete AVL Tree Application Interface (continued)

Program 8-7 Analysis The application interface delete function simply accepts the parameters from the user
and reformats them for the recursive delete function. When the deletion has been com-
pleted, the function updates the tree count and passes the status back to the calling
function.

Internal Delete Function
The real work is done by the recursive AVL tree delete function shown in
Program 8-8. Its design is shown in Algorithm 8-4.

PROGRAM 8-8 Internal Delete Function

continued
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bool AVL_Delete (AVL_TREE* tree, void* dltKey)
{
// Local Definitions 

bool  shorter;
bool  success;
NODE* newRoot;

// Statements 
newRoot = _delete (tree,    tree->root, dltKey, 
                  &shorter, &success);
if (success)
   {
    tree->root = newRoot;
    (tree->count)--;
    return true;
   } // if 
else
   return false;
}  // AVL_Delete
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/* ==================== _delete ==================== 
Deletes node from the tree and rebalances 
tree if necessary. 
   Pre    tree initialized--null tree is OK.
          dltKey contains key of node to be deleted
          shorter indicates tree is shorter
   Post   node is deleted and its space recycled
          -or- if key not found, tree is unchanged 
   Return true if deleted; false if not found
          pointer to root

*/

NODE* _delete (AVL_TREE* tree,   NODE* root, 
               void*     dltKey, bool* shorter,
               bool*     success)
{
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PROGRAM 8-8 Internal Delete Function (continued)

continued
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// Local Definitions 
NODE* dltPtr;
NODE* exchPtr;
NODE* newRoot;

// Statements 
if (!root)
   {
    *shorter = false;
    *success = false;
    return NULL;
   } // if 

if (tree->compare(dltKey, root->dataPtr) < 0)
    {
     root->left = _delete (tree,   
                           root->left, dltKey, 
                           shorter,    success);
     if (*shorter)
         root   = dltRightBal (root, shorter);
    } // if less 
else if (tree->compare(dltKey, root->dataPtr) > 0)
    {
     root->right = _delete (tree,    
                            root->right, dltKey,
                            shorter,     success);
     if (*shorter)
         root = dltLeftBal (root, shorter);
    } // if greater 
else
    // Found equal node 
    {
     dltPtr = root;
     if (!root->right)
         // Only left subtree 
         {
          newRoot  = root->left;
          *success = true;
          *shorter = true;
          free (dltPtr);
          return newRoot;              // base case 
         } // if true 
     else
         if (!root->left)
             // Only right subtree 
             {
              newRoot  = root->right;
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PROGRAM 8-8 Internal Delete Function (continued)

Program 8-8 Analysis Again we see a long, relatively complex implementation. Although this function is defi-
nitely longer than the structured programming guideline of one page, it does not
readily lend itself to decomposition. 

As we saw with the recursive insert, the first part of the function searches for the
node to be deleted. If it reaches a leaf before finding the node to be deleted, it sets
the success flag false and returns a null pointer. This is the first of three base cases. 

Once the node to be deleted is found, we determine if it is a leaf or a leaflike
node. Remember that delete operations can take place only at a leaf. If a node has
two subtrees, we must search for a leaf node to take its place. We first check to see if
there is a right subtree. If there is none, we simply save the left subtree pointer as the
pointer to take the root’s place. If there is a right subtree, we check the left subtree
pointer. If there is none, we save the right subtree pointer as the pointer to take the
root’s place. Assuming for the moment that there is zero or one subtree, we set success
and shorter true, free the deleted node’s memory, and return the new root pointer.
These are the second (statement 57) and the third (statement 67) base cases.

If the node to be deleted has two subtrees, we must find a node to take its place.
Our design searches the left subtree for its largest node. When we find it, we move its
data to replace the deleted data and then recursively call the delete function to delete
what we know to be a valid leaf node. This logic is shown in statements 72 through 80. 

As we back out of the tree, we must check to make sure that it is still balanced. If
we have deleted a node on the left and the tree is shorter, we call delete right balance
(statements 36 and 80). If we have deleted a node on the right and the tree is shorter,
we call delete left balance (statement 44). Of course, if the tree is not shorter, we don’t
need to balance it.
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              *success = true;
              *shorter = true;
              free (dltPtr);
              return newRoot;         // base case
            } // if 
         else
             // Delete Node has two subtrees 
             {
              exchPtr = root->left;
              while (exchPtr->right)
                  exchPtr = exchPtr->right;
              root->dataPtr = exchPtr->dataPtr;
              root->left = _delete (tree,  
                    root->left, exchPtr->dataPtr,
                    shorter,    success);
              if (*shorter)
                  root = dltRightBal (root, shorter); 
             } // else 
    } // equal node 
return root; 

} // _delete 
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Internal Delete Right Balance Function
Delete right balance is used when a deletion has occurred on a left subtree
and the tree needs to be rebalanced. We need to rebalance only if the root is
right high. In this case we have deleted a node on the left side of a right high
tree, making it out of balance on the right subtree by two levels. Conversely, if
the root is left or even high, no rotation is needed. The code is shown in
Program 8-9. Its design is shown in Algorithm 8-5.

PROGRAM 8-9 Internal Delete Right Balance Function

continued
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/* =================== dltRightBal ==================  
The tree is shorter after a delete on the left. This
function adjusts the balance factors and rotates 
the tree to the left if necessary.
   Pre     tree shorter 
   Post    Balance factors reset-balance restored 
   Returns potentially new root 

*/
NODE* dltRightBal (NODE* root, bool* shorter)
{
// Local Definitions 

NODE* rightTree;
NODE* leftTree;

// Statements 
switch (root->bal)
    {
     case LH:       // Deleted Left--Now balanced 
          root->bal  = EH;
          break;
          
     case EH:       // Now Right high 
          root->bal  = RH;
          *shorter   = false;
          break;
          
     case RH:       // Right High - Rotate Left
          rightTree = root->right;
          if (rightTree->bal == LH)
              // Double rotation required 
              {
               leftTree  = rightTree->left;
               
               switch (leftTree->bal)
                   {
                    case LH: rightTree->bal = RH;
                             root->bal      = EH;
                             break;
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PROGRAM 8-9 Internal Delete Right Balance Function (continued)

Program 8-9 Analysis As we said above, we need to rotate only if the right tree’s height is two larger than the
left tree’s height. Therefore, if the tree was left high or even high before the delete, no
rotation is necessary. If it was right high, it needs to be rotated. If its right subtree is left
high, a double rotation is necessary; otherwise, only a single rotation is necessary. In
either case we first adjust the balance factors and then rotate. As you study the logic,
you might find it helpful to refer back to Figure 8-11.

Retrieve an AVL Tree  
The retrieve function follows the left-right structure of the tree until the
desired node is found. When it is located, the address of the data is returned
to the calling function. If the data are not located, a null pointer is returned.

The design is similar to the insert and delete algorithms described above.
An application interface function provides a pointer to the tree and a pointer
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                    case EH: root->bal      = EH;
                             rightTree->bal = EH;
                             break;
                    case RH: root->bal      = LH;
                             rightTree->bal = EH;
                             break;
                   } // switch 
                   
               leftTree->bal = EH;
               
               // Rotate Right then Left 
               root->right = 
                      rotateRight (rightTree);
               root = rotateLeft  (root);
              } // if rightTree->bal == LH 
          else
              {
               // Single Rotation Only 
               switch (rightTree->bal)
                   {
                    case LH:
                    case RH: root->bal      = EH;
                             rightTree->bal = EH;
                             break;
                    case EH: root->bal      = RH;
                             rightTree->bal = LH;
                             *shorter       = false;
                             break;
                   } // switch rightTree->bal 
               root = rotateLeft (root);
              } // else 
    } // switch 
return root;

} // dltRightBal 
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to the key. We then call an ADT recursive function to locate the data. The
code for the ADT retrieve function is shown in Program 8-10. The code for
the recursive function is shown in Program 8-11.

PROGRAM 8-10 Retrieve AVL Tree Application Interface

Program 8-10 Analysis The retrieve data function is quite simple. It is needed only because the recursive function
needs an additional parameter, of which the using application is not aware. It simply
passes the pointer to the tree structure and the key, adding the pointer to the tree root.

PROGRAM 8-11 Internal Retrieve Function

continued
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/* ================== AVL_Retrieve =================
Retrieve node searches tree for node containing 
the requested key and returns pointer to its data.
   Pre     Tree has been created (may be null) 
           data is pointer to data structure 
                containing key to be located 
   Post    Tree searched and data pointer returned 
   Return  Address of matching node returned 
           If not found, NULL returned 

*/
void* AVL_Retrieve  (AVL_TREE* tree, void* keyPtr)
{
// Statements 

if (tree->root)
    return _retrieve (tree, keyPtr, tree->root);
else
    return NULL;

} // AVL_Retrieve 
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/* =================== _retrieve ===================
Searches tree for node containing requested key 
and returns its data to the calling function.
   Pre     AVL_Retrieve passes tree, keyPtr, root 
           keyPtr is pointer to data structure 
              containing key to be located 
   Post    tree searched; data pointer returned 
   Return  Address of matching node returned 
               if not found, NULL returned 

*/
void*  _retrieve (AVL_TREE* tree, 

               void*     keyPtr, NODE* root)
{
// Statements 

if (root)
    {
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PROGRAM 8-11 Internal Retrieve Function (continued)

Program 8-11 Analysis The retrieve function uses the compare function stored in the tree structure when the tree
was created. If the search argument, keyPtr, is less than the root data’s key, it calls
itself with the left subtree as the root. If the search argument is greater than the root
data’s key, it calls itself with the right subtree as the root. If the argument is not greater
or less than the root, it must be equal, so it returns the root’s data pointer.

Carefully study the recursive function calls in statements 18 and 20. Note that they
return the address returned by the recursive call. In this fashion the address returned by
the base cases is passed back up the tree structure until it is finally returned to the appli-
cation by the interface function.

Traverse an AVL Tree 
The traversal uses an inorder traversal of the tree, calling the application-
dependent process function when the node is to be processed. While the tra-
versal is standard, the application-processing function is not. Therefore,
whenever the using application calls the traversal, it must also pass the
address of the function that processes the data. The processing function uses
only one parameter: the address of the node to be processed. The application
interface for the traverse function is shown in Program 8-12.

PROGRAM 8-12 Traverse AVL Tree Application Interface 

continued
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     if (tree->compare(keyPtr, root->dataPtr) < 0)
         return _retrieve(tree, keyPtr, root->left);
     else if (tree->compare(keyPtr, root->dataPtr) > 0)
         return _retrieve(tree, keyPtr, root->right);
     else
         // Found equal key 
         return root->dataPtr;
    }  // if root 
else
    // Data not in tree 
    return NULL;

} // _retrieve 
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/* ================== AVL_Traverse ==================
Process tree using inorder traversal. 
   Pre   Tree has been created (may be null) 
         process “visits” nodes during traversal 
   Post  Nodes processed in LNR (inorder) sequence 

*/
void AVL_Traverse (AVL_TREE* tree,
                   void (*process) (void* dataPtr))
{
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PROGRAM 8-12 Traverse AVL Tree Application Interface (continued)

Internal Traverse Function
The traverse function in turn calls the ADT internal function that actually
traverses the tree. The code is shown in Program 8-13. 

PROGRAM 8-13 Internal Traverse Function

Empty an AVL Tree 
The empty function simply checks the tree count. If it is zero, it returns true;
otherwise, it returns false. The code is shown in Program 8-14.

PROGRAM 8-14 Empty AVL Tree Application Interface
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// Statements 
_traversal (tree->root, process);
return;

}  // end AVL_Traverse 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

/* =================== _traversal =================== 
Inorder tree traversal. To process a node, we use 
the function passed when traversal was called.
   Pre   Tree has been created (may be null) 
   Post  All nodes processed 

*/
void _traversal (NODE* root, 
                 void (*process) (void* dataPtr))
{
// Statements 
if  (root)
    {
     _traversal  (root->left, process);
     process     (root->dataPtr);
     _traversal  (root->right, process);
    } // if 
return;
}  // _traversal
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/* =================== AVL_Empty ==================
Returns true if tree is empty; false if any data.
   Pre      Tree has been created. May be null 
   Returns  True if tree empty, false if any data 

*/
bool AVL_Empty (AVL_TREE* tree)
{
// Statements 

return (tree->count == 0);
} // AVL_Empty
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Full AVL Tree  
Because there is no way to test for available memory in C, we must actually
try to allocate a node. If we are successful, we delete it and return false—the
list is not full. If the allocation fails, we return true—there is not enough
memory for another node. The code is shown in Program 8-15.

PROGRAM 8-15 Full AVL Tree Application Interface

AVL Tree Count
The count function, shown in Program 8-16, simply returns the number of
nodes currently in the tree.

PROGRAM 8-16 AVL Tree Count Application Interface 
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/* =============== AVL_Full ============== 
If there is no room for another node, returns true.
Pre      Tree has been created 
Returns  True if no room for another insert,
         false if room.

*/
bool AVL_Full (AVL_TREE* tree)
{
// Local Definitions 

NODE* newPtr;

// Statements 
newPtr = (NODE*)malloc(sizeof (*(tree->root)));
if (newPtr)
   {
    free (newPtr);
    return false;
   } // if 
else
     return true;

} // AVL_Full 
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/* =============== AVL_Count ==============
Returns number of nodes in tree.
   Pre     Tree has been created 
   Returns tree count 

*/
int AVL_Count (AVL_TREE* tree)
{
// Statements 

return (tree->count);
} // AVL_Count
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Destroy AVL Tree 
The last function in the AVL tree abstract data type is the destroy AVL tree
function. It is used to physically delete and free all of the data nodes and the
tree head structure when the tree is no longer needed. Because we need to
traverse the tree to find all of the data and nodes that need to be deleted, we
call a recursive function to do the physical deletions.

The logic for the destroy function parallels the destroy functions we have
seen previously. The code is shown in Program 8-17.

PROGRAM 8-17 Destroy AVL Tree Application Interface

Program 8-17 Analysis The logic is simple. We first make sure that we have a valid tree by testing the tree
pointer. If it is valid—that is, if it is not null—we call the recursive subfunction that does
the physical deletions. When we return we then delete the tree structure itself and
return a null pointer.

Internal Destroy Function
The code for the recursive deletion function is shown in Program 8-18.

PROGRAM 8-18 Internal Destroy Function

continued
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/* =============== AVL_Destroy ============== 
Deletes all data in tree and recycles memory.
The nodes are deleted by calling a recursive
function to traverse the tree in inorder sequence.
   Pre      tree is a pointer to a valid tree 
   Post     All data and head structure deleted 
   Return   null head pointer

*/
AVL_TREE* AVL_Destroy (AVL_TREE* tree) 
{
// Statements 

if (tree)
_destroy (tree->root);

// All nodes deleted. Free structure 
free (tree);
return NULL;

} // AVL_Destroy 
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/* ================== _destroy ================= 
Deletes all data in tree and recycles memory.
The nodes are deleted by calling a recursive 
function to traverse the tree in inorder sequence.
   Pre      root is pointer to valid tree/subtree 
   Post     All data and head structure deleted 
   Return   null head pointer 
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PROGRAM 8-18 Internal Destroy Function (continued)

Program 8-18 Analysis The logic in the recursive deletion function is a little more complex. The big question is:
When do we delete the data, and when do we delete the node?. We have to make
sure that we do each only once and at the right time. 

The data are deleted as we return from the left subtree. This is the logical point at
which we need to process an AVL tree’s data. This is done at statement 15. However,
we are not yet ready to delete the node because we have not processed the right sub-
tree. We must wait until we return from the right subtree traversal to delete it (see state-
ment 17). 

8.4 Application—Count Words
In this section we create an AVL tree application that uses a tree structure
containing all of the words in a document, with a count of the number of
times each word is used. This program uses the AVL tree abstract data type
found in Section 8.3, “AVL Tree Abstract Data Type.” 

Data Structure
The application data structure is shown in Figure 8-14. Each entry in the
AVL tree contains a word from the document and a pointer to an integer that
contains a count of the number of times the word appears in the document.
Had the AVL tree contained a function to write a node back to the tree—that
is, to update it—we could have simply stored the count in the node.

Program Design
As we process the file, we parse a word and then search the tree to see if we
can find it. If it’s already in the tree, we simply add to its counter. If it’s not in
the tree, we insert a new entry into the tree. Figure 8-15 shows the program
design. We have indicated the AVL tree ADT functions where they are used.
The code for each of the functions is shown in the following sections.
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*/
void _destroy (NODE* root)
{
// Statements 

if (root)
{
 _destroy (root->left);
 free (root->dataPtr);
 _destroy (root->right);
 free (root);
} // if 

return;
} // _destroy
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FIGURE 8-14 Count Words Data Structure

FIGURE 8-15 Count Words Design

Count Words Program
The program’s data structure, its prototype declarations, and its mainline are
shown in Program 8-19. As you study it, pay particular attention to the create
list function call (statement 35). Because we are using the AVL tree ADT, we
must write a compare function that compares two instances of the data
stored in the tree. This compare function is then passed to the AVL tree when
we create it.

PROGRAM 8-19 Count Words

continued

1
2
3
4
5
6
7
8

/* This program counts the words in a file.
   Written by: 
   Date:       

*/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>

key (string) count
is

of

LH

a

EH

shall

EH

for

EH

is

3

(+)

buildList printList

printWord
(AVL_Traverse)

Words

Insert Word
(AVL_Insert)

getWord

RetrieveWord
(AVL_Retrieve)
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PROGRAM 8-19 Count Words (continued)

Program 8-19 Analysis A good design keeps the code in the mainline function to a minimum. In this program
we start with a hello message; call AVL_Create, buildList, and printList;
and then conclude with a good-bye message. Like a good manager, main delegates
all of the processing to subordinate functions.

Build List
The build list function reads one word from the file, looks it up in the tree,
and, if the word is found, simply adds 1 to the word’s counter. If the word is
not yet in the tree, it creates a counter, sets it to 1, and adds the word to the
tree. The code is shown in Program 8-20.
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#include <stdbool.h>
#include "P8AVLADT.h"

// Structures 
typedef struct 
   {
    char word[51];                     // One word 
    int  count;
   } DATA;

// Prototype Declarations 
void  buildList    (AVL_TREE*      wordList);
void  insertWord   (AVL_TREE*      words);
void  deleteWord   (AVL_TREE*      words);
void  printList    (AVL_TREE*      wordList);
void  printWord    (void* aWord);
bool  getWord      (DATA* aWord,   FILE* fpWords);
int   compareWords (void* arguPtr, void* listPtr);

int main (void)
{
// Local Definitions 

AVL_TREE* wordList;

// Statements 
printf("Start count words in document\n");
wordList = AVL_Create (compareWords);

buildList (wordList);
printList (wordList);
   
printf("End count words\n");
return 0;

} // main 
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PROGRAM 8-20 Build List

continued

1
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43
44
45
46
47
48

/* =================== buildList ==================
Reads file and creates AVL tree containing list 
of all words used in the file with count of the
number of times each word is found in the file.
   Pre   wordList has been created
   Post  AVL tree (list) built or error returned

*/
void buildList (AVL_TREE* wordList)
{
// Local Definitions 

char  fileName[25];
FILE* fpWords;

bool  success;
DATA* aWord;
DATA  newWord;

// Statements 
printf("Enter name of file to be processed: ");
scanf ("%24s", fileName);

fpWords = fopen (fileName, "r");
if (!fpWords)
   {
    printf("%-s could not be opened\a\n",fileName);
    printf("Please verify name and try again.\n");
    exit (100);
   } // !fpWords 

while (getWord (&newWord, fpWords))
   {
    aWord = AVL_Retrieve(wordList, &(newWord));
    if (aWord)
       (aWord->count)++;
    else
       {
        aWord = (DATA*) malloc (sizeof (DATA));
        if (!aWord)
           {
            printf("Error 120 in buildList\n");
            exit (120);
           } // if 
        // Add word to list 
        *aWord       = newWord;
        aWord->count = 1;
        success      = AVL_Insert (wordList, aWord);
        if (!success)
           {
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PROGRAM 8-20 Build List (continued)

Program 8-20 Analysis As you study this function, pay close attention to four important points. First, we allow
the user to enter the name of the file. This program is designed to support any text file,
and by reading the filename from the keyboard we make it as flexible as possible.

One of the most difficult loops to write in any program is a read file loop. We use
a simple technique in this program: we call a read function that returns true if it was
able to parse a word and false if there was no word to parse. This makes the control
of the processing loop very simple. 

Note the “intelligent” data names we use for words. The first, aWord, is used to
retrieve a word from the list. The second, newWord, is used to create a new entry in
the tree. Good names make a program more readable.

Finally, note that we check for memory failures. When we allocate memory for the
new word’s counter, we test for an overflow. Again, when we insert the new word into
the tree, we test the return from the insert function. If either function fails, we print an
error message and exit the program.

Get Word
The get word function parses the file input and extracts one word from the
file. Its code is shown in Program 8-21.

PROGRAM 8-21 Get Word

continued

49
50
51
52
53
54
55
56
57

            printf("Error 121 in buildList\a\n");
            exit (121);
           } // if overflow test 
       } // else 
   } // while 

printf("End AVL Tree\n");
return;

} // buildList

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

/* =================== getWord ==================
Reads one word from file.
   Pre  nothing
   Post word read into reference parameter

*/
bool getWord (DATA* aWord, FILE* fpWords)
{
// Local Definitions 

char strIn[51];
int  ioResult;
int  lastChar;

// Statements 
ioResult = fscanf(fpWords, "%50s", strIn);
if (ioResult != 1)
    return false;
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PROGRAM 8-21 Get Word (continued)

Program 8-21 Analysis Parsing words simply means copying all of the characters between two or more
spaces to a string. Because we are processing a text document, however, we had to
remove any punctuation from the end of the word. We did this by simply testing the
last character to make sure it was alphabetic. If it wasn’t, we deleted it from the word
by moving a null character over it.

Depending on the application, it might be necessary to use a different set of edit-
ing criteria. For example, to parse the words in a program, we need to keep any num-
bers and the underscore character as a part of the word. We might also want to
eliminate the reserved words. To keep the rest of the program as simple as possible,
these changes would be programmed in getWord. 

Compare Words
As we pointed out in our description of Program 8-19, the AVL tree doesn’t
know how to compare the data. The application programmer must therefore
supply a compare function and pass it to the tree when it is created.
Program 8-22 contains the compare function for our count words applica-
tion. Note that the compare is made on the word, which is a string and there-
fore requires the string compare function.

PROGRAM 8-22 Compare Words Function

continued

17
18
19
20
21
22
23

// Copy and remove punctuation at end of word.
strcpy (aWord->word, strIn);
lastChar = strlen(aWord->word) - 1;
if (ispunct(aWord->word[lastChar]))
   aWord->word[lastChar] = '\0';
return true;

} // getWord 
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/* ================== compareWords ================= 
This function compares two integers identified
by pointers to integers.
   Pre    arguPtr and listPtr are pointers to DATA
   Return -1: arguPtr value <  listPtr value
          -0: arguPtr value == listPtr value
          +1: arguPtr value >  listPtr value

*/
int compareWords (void* arguPtr, void* listPtr)
{
// Local Declarations 

DATA arguValue;
DATA listValue;

// Statements 
arguValue = *(DATA*)arguPtr;
listValue = *(DATA*)listPtr;
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PROGRAM 8-22 Compare Words Function (continued)

Print Words
Because the implementation of the tree is hidden in the ADT, we cannot
directly traverse the tree to print the list. Rather, we must call on the tree tra-
versal function, AVL_Traverse. Now we have another problem: the traverse
function doesn’t know how to process the data as it traverses the tree. For
this reason we pass the process function to the traverse function when we
call it. Program 8-23 contains both the call to the traverse function and the
function that prints one word. The results of counting the words in the Gettys-
burg Address are shown at the end of the program. In the interest of space, we
show only the beginning and the end of the word list.

Figure 8-16 traces the first two insertions, “Four” and “score,” into a null
AVL tree. Use it to help follow the program.

PROGRAM 8-23 Print Words List

continued

19
20

return (strcmp(arguValue.word, listValue.word));
} // compare

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

/* =================== printList ==================
Prints the list with the count for each word.
   Pre  list has been built
   Post list printed 

*/
void printList (AVL_TREE* wordList) 
{
// Statements 

printf("\nWords found in list\n");
AVL_Traverse (wordList, printWord);
printf("\nEnd of word list\n");
return;

} // printList 

/* =================== printWord ==================
Prints one word from the list with its count.
   Pre  ADT calls function to print data
   Post data printed 

*/
void printWord (void* aWord)
{
// Statements 

printf("%-25s %3d\n", 
      ((DATA*)aWord)->word, ((DATA*)aWord)->count);
return;

} // printWord 

Results:
Start count words in document
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PROGRAM 8-23 Print Words List (continued)

FIGURE 8-16 Insertions into AVL Tree

Enter name of file to be processed: gtsybrg.txt
End AVL Tree

Words found in list
But                         1
Four                        1
God                         1
It                          3
...
years                       1

End of word list
End count words

(a) After tree creation

(b) After first insertion

(c) After second insertion

buildList

main

heap

heap

heap

main

main

aWord

wordList

buildList

buildList

aWord

wordList

To compareWords

0

2

aWord

wordList 11
Four

1

Four

1

1

score
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8.5 Key Terms 

8.6 Summary
❏ An AVL tree is a search tree in which the heights of the subtrees differ by

no more than 1, which means that the tree is balanced.

❏ We consider four different cases when we want to rebalance a tree after
deletion or insertion: left of left, right of right, right of left, and left of right. 

❏ We must balance a left of left, unbalanced AVL tree by rotating the out-of-
balance node to the right.

❏ We must balance a right of right, unbalanced tree by rotating the out-of-
balance node to the left.

❏ We must balance a right of left, unbalanced tree by double rotation: first
the left subtree to the left and then the out-of-balance node to the right.

❏ We must balance a left of right, unbalanced tree by double rotation: first
the right subtree to the right and then the out-of-balance node to the left.

❏ Inserting a new node into an AVL tree is the same as inserting a new node
into a binary search tree, except that when we back out of the tree we must
constantly check the balance of each node and rebalance if necessary.

❏ Deleting a node from an AVL tree is the same as deleting a node from a
binary search tree, except that when we back out of the tree we must con-
stantly check the balance of each node and rebalance if necessary.

8.7 Practice Sets

Exercises
1. Balance the AVL tree in Figure 8-17. Show the balance factors in the result.

2. Balance the AVL tree in Figure 8-18. Show the balance factors in the result.

3. Add 49 to the AVL tree in Figure 8-19. The result must be an AVL tree.
Show the balance factors in the resulting tree.

4. Add 68 to the AVL tree in Figure 8-19. The result must be an AVL tree.
Show the balance factors in the resulting tree.

AVL tree
AVL tree head structure
AVL tree node structure
height-balanced trees

left of left
left of right
right of left
right of right
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FIGURE 8-17 Figure for Exercise 1

FIGURE 8-18 Figure for Exercise 2 

FIGURE 8-19 Figure for Exercises 3 and 4

5. Insert 44, 66, and 77 into the AVL tree in Figure 8-20. The result must be
an AVL tree. Show the balance factors in the resulting tree.

FIGURE 8-20 Figure for Exercise 5

6. Create an AVL tree using the following data entered as a sequential set.
Show the balance factors in the resulting tree:

14 23 7 10 33 56 80 66 70

45

50 65

60 80

70

65

50 60

55 80

70

50 65

60 80

70

5540 7565

50 70

60



386 Section 8.7 Practice Sets

7. Create an AVL tree using the following data entered as a sequential set.
Show the balance factors in the resulting tree:

8. Create an AVL tree using the following data entered as a sequential set.
Show the balance factors in the resulting tree:

9. Insert 44 and 50 into the tree created in Exercise 6.

10. Insert 44 and 50 into the tree created in Exercise 7.

11. Insert 44 and 50 into the tree created in Exercise 8.

12. Delete the node containing 80 from the AVL tree in Figure 8-21.

FIGURE 8-21 Figure for Exercises 12 and 13

13. Delete the node containing 70 from the AVL tree in Figure 8-21.

Problems
14. Write an iterative version of Algorithm 8-1, “AVL Tree Insert.”

15. Write an iterative version of Algorithm 8-4, “AVL Tree Delete.”

Projects
16. Write the C code for Problem 14. 

17. Write the C code for Problem 15. 

18. Write a program that reads a list of names and telephone numbers from a
text file and inserts them into an AVL tree. Once the tree has been built,
present the user with a menu that allows him or her to search the list for a
specified name, insert a new name, delete an existing name, or print the
entire phone list. At the end of the job, write the data in the list back to the
file. Test your program with at least 10 names.

7 10 14 23 33 56 66 70 80

80 70 66 56 33 23 14 10 7

50 65 75

60 80

70

45
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19. When writing AVL tree algorithms, we need to be able to print the tree in
a hierarchical order to verify that the algorithms are processing the data
correctly. Write a print function that can be called to print the tree. The
printed output should contain the node level number in parentheses, its
data, and its balance factor. So that it can handle any size tree, print the
data with the root on the left of the page and the descendents on the
right. When viewed sideways, the left subtrees should be on the bottom
of the page and the right subtrees on the top of the page. For example,
Figure 8-21 would be printed as shown in Figure 8-22.

FIGURE 8-22 Output for Project 19

20. Modify the search for the AVL tree ADT to locate the immediate predeces-
sor for a node. Once located, it tests the next node and returns found or
not found and a pointer to the node (null if not found). 

21. Create the ADT for an AVL tree using the array implementation. In an
array implementation, the pointers become indexes to the subtree ele-
ments. When you create the tree, you need to know the maximum number
of nodes to be stored in the tree. To test the ADT, use it to run the program
in Project 18.

22. Build an index for the words in a document. Each word is to be identified
by its page number. The program is to keep track of page numbers by
counting pages identified by a form-feed character at the end of each page.
(Hint: See Section 8-4, “Application—Count Words.”) Print the index at
the end of the program. 

23. An index generally contains only keywords. Write a program that uses a
file of keywords to index a document. It begins by reading the keyword file
and inserting the words into an AVL tree. It then reads the document and
builds an AVL tree index of the keywords in the document. Print the key-
word index at the end of the document. 

(2) 80 RH
(3) 75 EH

(1) 70 LH
(3) 65 EH

(2) 60 LH
(3) 50 LH

(4) 45 EH
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Chapter 9
Heaps

A third type of tree is a heap.  A heap is a binary tree whose left and right sub-
trees have values less than their parents. The root of a heap is guaranteed to
hold the largest node in the tree; its subtrees contain data that have lesser
values. Unlike the binary search tree, however, the lesser-valued nodes of a
heap can be placed on either the right or the left subtree. Therefore, both the
left and the right branches of the tree have the same properties.

Heaps have another interesting facet: they are often implemented in an
array rather than a linked list. When we implement a heap in an array, we are
able to calculate the location of the left and right subtrees. Conversely, given
the address of a node, we can calculate the address of its parent. This makes
for very efficient processing.

9.1 Basic Concepts
In this section we define a heap and the two operations necessary for the
operation of the heap. 

Definition
A heap, as shown in Figure 9-1, is a binary tree structure with the following
properties:

1. The tree is complete or nearly complete.

2. The key value of each node is greater than or equal to the key value in
each of its descendents.
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FIGURE 9-1 Heap

Sometimes this structure is called a max-heap. The second property of a
heap—the key value is greater than the keys of the subtrees—can be reversed
to create a min-heap. That is, we can create a minimum heap in which the key
value in a node is less than the key values in all of its subtrees. Generally
speaking, whenever the term heap is used by itself, it refers to a max-heap.

To better understand the structure of a heap, let’s examine the heaps in
Figure 9-2. Study the two- and three-level heaps. Note that the left node of
two siblings can be either larger or smaller than the right node. Compare this
ordering with the binary search tree that we studied earlier. It is obviously dif-
ferent.1 Finally, in the three-level heap, note that the third level is being filled
from the left. This is the definition of a nearly complete tree and is a require-
ment for a heap.

FIGURE 9-2 Heap Trees

To complete our understanding of a heap, let’s look at some structures
that are not heaps. Figure 9-3 shows four examples of structures that are not
heaps. The first two structures are not heaps because they are not complete
or nearly complete trees. Although the third and fourth examples are nearly
complete, the keys of the nodes are not always greater than the keys of their
descendents.

A heap is a complete or nearly complete binary tree in which the key value in a node is greater than or
equal to the key values in all of its subtrees, and the subtrees are in turn heaps.

1. Another interesting difference is that in a complete binary search tree with no equal nodes, the root
always contains the median value of the keys, whereas in the heap it contains the largest value.

    all ≤ Kall ≤ K

K

(b) Two-level heap

24

12 8
6 10

44

18 2312

(c) Three-level heap(a) Root-only heap
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FIGURE 9-3 Invalid Heaps

Maintenance Operations
Two basic maintenance operations are performed on a heap: insert a node
and delete a node. Although the heap structure is a tree, it is meaningless to
traverse it, search it, or print it out. In these respects it is much like a
restricted data structure. To implement the insert and delete operations, we
need two basic algorithms: reheap up and reheap down. All of the other heap
algorithms build on these two. We therefore study them first.

Reheap Up
Imagine that we have a nearly complete binary tree with N elements whose
first N – 1  elements satisfy the order property of heaps, but the last element
does not. In other words, the structure would be a heap if the last element
were not there. The reheap up operation repairs the structure so that it is a heap
by floating the last element up the tree until that element is in its correct
location in the tree. We show this restructuring graphically in Figure 9-4.
Before we reheap up, the last node in the heap was out of order. After the
reheap, it is in its correct location and the heap has been extended one node.

Like the binary search tree, inserts into heaps take place at a leaf. Fur-
thermore, because the heap is a complete or nearly complete tree, the node
must be placed in the last leaf level at the first empty position. This creates
the situation we see in Figure 9-4. If the new node’s key is larger than that of
its parent, it is floated up the tree by exchanging the child and parent keys
and data. The data eventually rise to the correct place in the heap by repeat-
edly exchanging child/parent keys and data.

The reheap up operation reorders a “broken” heap by floating the last element up the tree until it is in
its correct location in the heap.

10

44

186

24

24

106

4418

24

12

8

24

12

8

(c) Root not largest
(rule 2) 

(a) Not nearly complete
(rule 1)

(b) Not nearly complete
(rule 1)

(d) Subtree 10 not a heap
(rule 2)
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FIGURE 9-4 Reheap Up Operation

Figure 9-5 traces the reheap up operation in a heap. At the beginning we
observe that 25 is greater than its parent’s key, 12. Because 25 is greater
than 12, we also know from the definition of a heap that it is greater than the
parent’s left subtree keys. We therefore exchange 25 and 12 and call reheap
up to test its current position in the heap. Once again, 25 is greater than its
parent’s key, 21. Therefore, we again exchange the nodes’ data. This time,
when reheap up is called, the value of the current node’s key is less than the
value of its parent key, indicating that we have located the correct position
and the operation stops.

Reheap Down
Now let’s examine the reverse situation. Imagine we have a nearly complete
binary tree that satisfies the heap order property except in the root position.
This situation occurs when the root is deleted from the tree, leaving two dis-
jointed heaps. To correct the situation, we move the data in the last tree node
to the root. Obviously, this action destroys the tree’s heap properties.

To restore the heap property, we need an operation that sinks the root
down until it is in a position where the heap-ordering property is satisfied.
We call this operation reheap down. The reheap down operation is shown in
Figure 9-6.

Reheap down reorders a “broken” heap by pushing the root down the tree until it is in its correct 
position in the heap.

Heap

Not a heap
reheapUp
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FIGURE 9-5 Reheap Up Example

FIGURE 9-6 Reheap Down Operation

Figure 9-7 is an example of the reheap down operation. When we start,
the root (10) is smaller than its subtrees. We examine them and select the
larger of the two to exchange with the root, in this case 32. Having made the

(b) Last element (25) moved up 

(a) Original tree: not a heap 

(c) Moved up again: tree is a heap

42

21 32

16 12

13 15 10

20 30

25

42

21 32

16

13 15 10

20 30

12

25

42

32

16

13 15 10

20 30

12

21

25

Heap

reheapDownNot a heap
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exchange in Figure 9-7(b), we check the subtrees to see if we are finished
and see that 10 is smaller than their keys. Once again we exchange 10 with
the larger of the subtrees, 30. At this point we have reached a leaf and are
finished.

FIGURE 9-7 Reheap Down Example

9.2 Heap Implementation
Although a heap can be built in a dynamic tree structure, it is most often
implemented in an array. This implementation is possible because the heap is,
by definition, complete or nearly complete. Therefore, the relationship
between a node and its children is fixed and can be calculated as shown below.

1. For a node located at index i, its children are found at:
a. Left child: 2i + 1 
b. Right child: 2i + 2 

2. The parent of a node located at index i is located at (i – 1) / 2. 
3. Given the index for a left child, j, its right sibling, if any, is found at j + 1.

Conversely, given the index for a right child, k, its left sibling, which must
exist, is found at k – 1. 

(b) Root moved down (right)

(a) Original tree: not a heap

(c) Moved down again: tree is a heap

21 32

16 12

13 15

20 30

10

32

21

16

13 15

20 3012

10

32

21
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2012
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4. Given the size, n, of a complete heap, the location of the first leaf is (n / 2).
Given the location of the first leaf element, the location of the last nonleaf
element is one less.

To demonstrate these relationships, let’s examine Figure 9-8.

FIGURE 9-8 Heaps in Arrays

In Figure 9-8 we have the following relationships: 

1. The index of 32 is 2, so the index of its left child, 23, is 2 / 2 + 1, or 5. The
index of its right child, 19, is 2 / 2 + 2, or 6 (Relationship 1).

2. The index of 8 is 4, so the index of its parent, 56, is (4 – 1) / 2, or 1
(Relationship 2).

3. In the first example, we found the address of the left and the right children.
To find the right child, we could also have used the location of the left
child (5) and added 1 (Relationship 3).

4. The total number of elements is 7, so the index of the first leaf element,
45, is (7 / 2), or 3 (Relationship 4).

5. The location of the last nonleaf element, 32, is 3 – 1, or 2 (Relationship 5).

Finally, these heap relationships are unique to C and other languages
that use base-zero index addressing for their arrays. They would need to be
modified slightly for other languages that use base-one index addressing.

Figure 9-8 shows a heap in its tree form and in its array form. Study both
of these representations carefully. In the logical form, note that each node’s

A heap can be implemented in an array because it must be a complete or nearly complete binary tree,
which allows a fixed relationship between each node and its children.

[0]

[1] [2]

[3] [4] [5] [6]

78

56 32

45 8 1923

(a) Heap in its logical form

(b) Heap in an array

78 56 32 45 8 23 19

[0] [1] [2] [3] [4] [5] [6]
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data are greater than the data in its descendents. In the array format, follow
the arrows to both successors for a node and confirm that the array properly
represents the logical (tree) format. In Figure 9-8 the tree is complete and
the array is full. Therefore, to add another node to the tree we would have to
add a new level to the tree and double the size of the array because the phys-
ical array should always represent the complete tree structure. 

Algorithms
There are two ways to build a heap. We can start with an empty array and
insert elements into the array one at a time, or, given an array of data that are
not a heap, we can rearrange the elements in the array to form a heap. After
looking at the two basic algorithms, reheap up and reheap down, we examine
both approaches. Then we look at the logic for deleting data from a heap.

Reheap Up
Reheap up uses recursion to move the new node up the tree. It begins by
determining the parent’s address using the relationships we discussed earlier
in this section. If the key of the new data is greater than the key of its parent,
it exchanges the nodes and recursively calls itself (Figure 9-5). The base case
is determined when either there is no parent, meaning we are at the heap’s
root, or the nodes are in the proper heap sequence. The logic is shown in
Algorithm 9-1.

ALGORITHM 9-1 Reheap Up

Reheap Down
The logic for reheap down is a little more complex. As we push nodes down
the heap, we need to determine whether the current entry is less than either
of its children (one or both). If it is, we need to exchange it with the larger
entry (see Figure 9-7). 

To determine whether the current entry is less than either of its children,
we first determine which of the two subtree keys is larger. Once we know

Algorithm reheapUp (heap, newNode) 
Reestablishes heap by moving data in child up to its 
correct location in the heap array.

Pre  heap is array containing an invalid heap 
     ¬newNode is index location to new data in heap
Post heap has been reordered

1 if (newNode not the root)
1 set parent to parent of newNode 
2 if (newNode key > parent key)

1 exchange newNode and parent)
2 reheapUp (heap, parent)

3 end if
2 end if
end reheapUp
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which one is larger, we compare the current node to it. If the current node is
smaller than the larger node, we exchange them and recursively call reheap
down. As you study Algorithm 9-2, you will see that most of the pseudocode
is used to determine which of the subtree keys is larger.

ALGORITHM 9-2 Reheap Down

Algorithm 9-2 Analysis In statement 8 we need to test only one subtree because we know from logic that if
the root is greater than the left subtree and the left subtree is greater than the right sub-
tree, the root is also greater than the right subtree. This argument is logically stated as
“If A > B and if B > C, then A > C.”

There are two base cases in this algorithm. First, if there are no leaves, we are fin-
ished. This case is shown in statement 1 (if there is not a left subtree, there cannot be a
right subtree because a heap is a complete tree). The second base case is shown in
statement 1.8. If the root is greater than the larger subtree, we have a valid heap. 

Build a Heap
Given a filled array of elements in random order, to build the heap we need
to rearrange the data so that each node in the heap is greater than its chil-
dren. We begin by dividing the array into two parts, the left being a heap and
the right being data to be inserted into the heap. At the beginning the root

Algorithm reheapDown (heap, root, last)
Reestablishes heap by moving data in root down to its 
correct location in the heap.

Pre    heap is an array of data
       root is root of heap or subheap
       last is an index to the last element in heap
Post   heap has been restored
Determine which child has larger key 

1 if (there is a left subtree)
1 set leftKey to left subtree key
2 if (there is a right subtree)

1 set rightKey to right subtree key
3 else

1 set rightKey to null key
4 end if
5 if (leftKey > rightKey)

1 set largeSubtree to left subtree
6 else

1 set largeSubtree to right subtree
7 end if

Test if root > larger subtree
8 if (root key < largeSubtree key)

1 exchange root and largeSubtree
2 reheapDown (heap, largeSubtree, last)

9 end if
2 end if
end reheapDown
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(the first node) is the only node in the heap and the rest of the array are data
to be inserted. This structure is shown in Figure 9-9, which is a worst-case
example—an ordered list. Note the “wall” between the first and second nodes.
The lines at the top of the figures point to the nodes’ children. Each iteration
of the insertion algorithm uses reheap up to insert the next element into the
heap and moves the wall separating the elements one position to the right.

FIGURE 9-9 Building a Heap

To insert a node into the heap, we follow the parent path up the heap,
swapping nodes that are out of order. If the nodes are in order, the insertion
terminates and the next node is selected and inserted into the heap. This pro-
cess is sometimes referred to as heapify.

The build heap algorithm is very simple. We walk through the array that
we need to convert to a heap, starting at the second element, calling reheap
up for each array element to be inserted into the heap. The pseudocode is
shown in Algorithm 9-3.

Insert a Node into a Heap
Once we have built the heap, we can insert a node so long as there is room in
the array. To insert a node, we need to locate the first empty leaf in the array.
We find it immediately after the last node in the tree, which is given as a
parameter. To insert a node, we move the new data to the first empty leaf and
reheap up. The concept is shown in Figure 9-10.
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ALGORITHM 9-3 Build Heap

FIGURE 9-10 Insert Node

The algorithm for insert heap is straightforward. It moves the data to be
inserted into the heap to the first leaf and calls reheap up. The pseudocode is
shown in Algorithm 9-4.

Algorithm buildHeap (heap, size)
Given an array, rearrange data so that they form a heap.

Pre    heap is array containing data in nonheap order
       size is number of elements in array
Post   array is now a heap

1 set walker to 1
2 loop (walker < size)

1 reheapUp(heap, walker)
2 increment walker 

3 end loop
end buildHeap

(a) Before reheap up 

(b) After reheap up
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ALGORITHM 9-4 Insert Heap

Delete a Node from a Heap
When deleting a node from a heap, the most common and meaningful logic is
to delete the root. In fact, the rationale for a heap is to determine and extract
the largest element, the root. After it has been deleted, the heap is thus left
without a root. To reestablish the heap, we move the data in the last heap
node to the root and reheap down. The concept is shown in Figure 9-11.

The logic to delete the root from a heap is shown in Algorithm 9-5.
Note that we return the data at the top of the heap to the calling algorithm
for processing.

ALGORITHM 9-5 Delete Heap Node

Algorithm insertHeap (heap, last, data)
Inserts data into heap.

Pre    heap is a valid heap structure
       last is reference parameter to last node in heap
       data contains data to be inserted
Post   data have been inserted into heap
Return true if successful; false if array full

1 if (heap full)
1 return false

2 end if
3 increment last
4 move data to last node
5 reheapUp (heap, last)
6 return true
end insertHeap

Algorithm deleteHeap (heap, last, dataOut)
Deletes root of heap and passes data back to caller.

Pre    heap is a valid heap structure
       last is reference parameter to last node in heap
       dataOut is reference parameter for output area
Post   root deleted and heap rebuilt
       root data placed in dataOut
Return true if successful; false if array empty

1 if (heap empty)
1 return false

2 end if
3 set dataOut to root data
4 move last data to root
5 decrement last 
6 reheapDown (heap, 0, last)
7 return true
end deleteHeap
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FIGURE 9-11 deleteHeap Node

9.3 Heap ADT
No programming language has intrinsic heap operators; therefore, to use a
heap, we must write the heap operations. In this section we create an
abstract data type for a heap.

We define nine functions that provide the basic user interface. As with
the BST and AVL trees, there are several internal functions needed to imple-
ment the tree. The ADT design is shown in Figure 9-12.

Heap Structure
Before developing the ADT, we need to determine the data structure we will
use. As we mentioned above, we use an array (see Figure 9-8). Therefore,
all that we need is the array itself and three pieces of metadata: the index
location of the last element in the heap, the maximum size of the heap, and
the number of elements in the heap. The data structure design is shown in
Figure 9-13.
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FIGURE 9-12 Heap ADT Design

FIGURE 9-13 Heap ADT Structure

Heap Algorithms
Program 9-1 contains the data structures for the heap functions.

PROGRAM 9-1 Heap Declaration

continued

1
2
3
4

/* Data Structures for heap ADT
   Created by:
   Date:

*/

User program

ADT

Public functions

Private functions

comparemain ...

heapCount

heapEmpty heapDestroyheapCreate

heapInsert

_reheapDown

heapDelete

_reheapUp

heapFull

typedef struct
{
   void** heapAry;
   int    last;
   int    size;
   int   (*compare)(void* argu1, void* argu2);
   int    maxSize;
} HEAP;

last size maxSizecompareheapAry

...
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PROGRAM 9-1 Heap Declaration (continued)

Create a Heap 
The create heap function receives a count for the maximum size of the heap
and returns the address of the heap structure. The code is shown in
Program 9-2.

PROGRAM 9-2 Create Heap Application Interface

continued

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

#include <stdbool.h>

typedef struct
{
   void** heapAry;
   int    last;
   int    size;
   int    (*compare) (void* argu1, void* argu2);
   int    maxSize;
} HEAP;

// Prototype Definitions 
HEAP* heapCreate (int maxSize,
            int (*compare) (void* arg1, void* arg2));
bool  heapInsert  (HEAP* heap, void*  dataPtr);
bool  heapDelete  (HEAP* heap, void** dataOutPtr);
int   heapCount   (HEAP* heap);
bool  heapFull    (HEAP* heap);
bool  heapEmpty   (HEAP* heap);
void  heapDestroy (HEAP* heap);

static void _reheapUp   (HEAP* heap, int childLoc);
static void _reheapDown (HEAP* heap, int root);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

/* ==================== heapCreate ====================
Allocates memory for heap and returns address of
heap head structure.
   Pre  Nothing
   Post heap created and address returned
             if memory overflow, NULL returned

*/
#include <math.h>

HEAP* heapCreate (int maxSize,
                 int  (*compare) (void* argu1, void* argu2))
{
// Local Definitions

HEAP* heap;
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PROGRAM 9-2  Create Heap Application Interface (continued)

Insert a Heap 
The insert heap function implements Algorithm 9-4. It inserts one entry into
the heap and reheaps up to reestablish the heap. Its code is seen in
Program 9-3.

PROGRAM 9-3 Insert Heap Application Interface

continued

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// Statements 
heap = (HEAP*)malloc(sizeof (HEAP));
if (!heap)
   return NULL;

heap->last    = -1;
heap->compare = compare;

// Force heap size to power of 2 -1
heap->maxSize = 
         (int) pow (2, ceil(log2(maxSize))) - 1;
heap->heapAry = (void*) 
                 calloc(heap->maxSize, sizeof(void*));
return heap;

} // createHeap 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/* ================== heapInsert =================== 
Inserts data into heap.
   Pre    Heap is a valid heap structure
          last is pointer to index for last element
          data is data to be inserted
   Post   data have been inserted into heap
   Return true if successful; false if array full

*/
bool heapInsert (HEAP* heap, void* dataPtr)
{
// Statements 

if (heap->size == 0)                 // Heap empty
   {
    heap->size                = 1;
    heap->last                = 0;
    heap->heapAry[heap->last] = dataPtr;
    return true;
   } // if
if (heap->last == heap->maxSize - 1)
  return false;
++(heap->last); 
++(heap->size);
heap->heapAry[heap->last] = dataPtr;
_reheapUp (heap, heap->last);
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PROGRAM 9-3 Insert Heap Application Interface (continued)

Internal Reheap Up Function
Program 9-4 parallels Algorithm 9-1.

PROGRAM 9-4 Internal Reheap Up Function

Delete a Heap
The delete heap function implements Algorithm 9-5. It deletes the element
at the top of the heap and returns it to the caller. It then calls reheap down to
reestablish the heap. The code is shown in Program 9-5.

25
26

return true;
} // heapInsert 

1
2
3
4
5
6
7
8
9
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14
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27
28
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32

/* ==================== reheapUp ====================
Reestablishes heap by moving data in child up to
correct location heap array.
   Pre  heap is array containing an invalid heap
        newNode is index to new data in heap
   Post newNode inserted into heap

*/
void  _reheapUp  (HEAP* heap, int childLoc)
{
// Local Definitions 

int    parent;
void** heapAry;
void*  hold;

// Statements 
// if not at root of heap -- index 0 
if (childLoc)
   {
    heapAry = heap->heapAry;
    parent = (childLoc - 1)/ 2;
    if (heap->compare(heapAry[childLoc], 
                      heapAry[parent]) > 0)
        // child is greater than parent -- swap 
        {
         hold             = heapAry[parent]; 
         heapAry[parent]  = heapAry[childLoc];
         heapAry[childLoc] = hold;
        _reheapUp (heap, parent);
        } // if heap[] 
   } // if newNode 
return;

} // reheapUp
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PROGRAM 9-5 Delete Heap Application Interface

Internal Reheap Down Function
Although reheap down is a rather long algorithm, it follows the pseudocode
closely. The major difference is that we chose to code the swap inline rather
than call a swap function. The logic, which parallels Algorithm 9-2, is shown
in Program 9-6.

PROGRAM 9-6 Internal Reheap Down Function

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

/*  ================== heapDelete ===================
Deletes root of heap and passes data back to caller.
   Pre    heap is a valid heap structure 
          last is reference to last node in heap 
          dataOut is reference to output area
   Post   last deleted and heap rebuilt
          deleted data passed back to user
   Return true if successful; false if array empty

*/
bool heapDelete (HEAP* heap, void** dataOutPtr)
{
// Statements 

if (heap->size == 0)
    // heap empty 
    return false;
*dataOutPtr = heap->heapAry[0];
heap->heapAry[0]  = heap->heapAry[heap->last];
(heap->last)--;
(heap->size)--;
_reheapDown (heap, 0);
return true;

} // heapDelete 

1
2
3
4
5
6
7
8
9
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11
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/* =================== reheapDown =================== 
Reestablishes heap by moving data in root down to its
correct location in the heap.
   Pre  heap is array of data
        root is root of heap or subheap
        last is an index to last element in heap
   Post heap has been restored

*/
void _reheapDown (HEAP* heap, int root)
{
// Local Definitions 

void* hold;
void* leftData;
void* rightData;
int   largeLoc;
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PROGRAM 9-6 Internal Reheap Down Function (continued)

9.4 Heap Applications
Three common applications of heaps are selection algorithms, priority
queues, and sorting. We discuss heap sorting in Chapter 12 and selection
algorithms and priority queues here. 
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int   last;

// Statements 
last = heap->last;
if ((root * 2 + 1) <= last)         // left subtree
    // There is at least one child 
   {
    leftData   = heap->heapAry[root * 2 + 1];
    if ((root * 2 + 2) <= last)  // right subtree 
       rightData = heap->heapAry[root * 2 + 2];
    else
       rightData = NULL;
       
    // Determine which child is larger 
    if ((!rightData) 
         || heap->compare (leftData, rightData) > 0)
       {
        largeLoc = root * 2 + 1;
       } // if no right key or leftKey greater
    else
       {
        largeLoc = root * 2 + 2;
       } // else 
    // Test if root > larger subtree 
    if (heap->compare (heap->heapAry[root], 
        heap->heapAry[largeLoc]) < 0)
        {
         // parent < children 
         hold = heap->heapAry[root];
         heap->heapAry[root] = 
               heap->heapAry[largeLoc]; 
         heap->heapAry[largeLoc] = hold;
         _reheapDown (heap, largeLoc);
        } // if root < 
} // if root 
return;

} // reheapDown 
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Selection Algorithms
There are two solutions to the problem of determining the kth element in an
unsorted list. We could first sort the list and select the element at location k,
or we could create a heap and delete k – 1 elements from it, leaving the
desired element at the root. Selecting the kth element is then easy; it is at the
root of the heap. Because we are studying heaps, let’s look at the second solu-
tion, using a heap. 

Creating the heap is simple enough. We have already discussed the heap
creation algorithms. Once we have a heap, however, how do we select the
desired element? Rather than simply discard the elements at the top of the
heap, a better solution is to place the deleted element at the end of the heap
and reduce the heap size by 1. After the kth element has been processed, the
temporarily removed elements can then be reinserted into the heap.

For example, if we want to know the fourth-largest element in a list, we
can create the heap shown in Figure 9-14. After deleting three times, we
have the fourth-largest element, 21, at the top of the heap. After selecting 21
we reheap to restore the heap so that it is complete and we are ready for
another selection.

FIGURE 9-14 Heap Selection

The heap selection logic is shown in Algorithm 9-6.
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ALGORITHM 9-6 Heap Selection

Priority Queues
The queue structure that we studied in Chapter 4 uses a linear list in which
each node travels serially through the queue. It is not possible for any ele-
ment to advance faster than the others. Although this system may be very
equitable, it is often not very realistic. Oftentimes, for various reasons, we
want to prioritize one element over the others. As a rather trivial example,
consider the first-class line at the airport. Most people wait in one long line
but if you have first-class tickets or belong to the airline’s executive club, the
line is very short if not empty. 

Design
The heap is an excellent structure to use for a priority queue. As an event enters
the queue, it is assigned a priority number that determines its position relative
to the other events already in the queue. It is assigned a priority number even
though the new event can enter the heap in only one place at any given time,
the first empty leaf. Once in line, however, the new event quickly rises to its
correct position relative to all other events in the heap. If it has the highest pri-
ority, it rises to the top of the heap and becomes the next event to be processed.
If it has a low priority, it remains relatively low in the heap, waiting its turn.

The key in a priority queue must be carefully constructed to ensure that the
queue works properly. One common technique is to use an encoded priority

Algorithm selectK (heap, k, heapLast)
Select the k-th largest element from a list

Pre    heap is an array implementation of a heap
       k is the ordinal of the element desired
       heapLast is reference parameter to last element 
Post   k-th largest value returned

1 if (k > heap size)
1 return false

2 end if
3 set origHeapSize to heapLast + 1
4 loop (k times)

1 set tempData to root data
2 deleteHeap (heap, heapLast, dataOut)
3 move tempData to heapLast + 1

5 end loop
Desired element is now at top of heap 

6 move root data to holdOut
Reconstruct heap

7 loop (while heapLast < origHeapSize)
1 increment heapLast
2 reheapUp (heap, heapLast)

8 end loop
9 return holdOut
end selectK
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number that consists of the priority plus a sequential number representing the
event’s place within the queue. For example, given a queue with five priority
classes, we can construct a key in which the first digit of the priority number
represented the queue priority, 1 through 5, and the rest of the number repre-
sented the serial placement within the priority. Because we are using a priority
heap, however, the serial number must be in descending order—that is, 999
down to 0 within each priority.

If we assume that there will be a maximum of 1000 events for any priority at
any one time, we could assign the lowest priority to the sequential numbers in
the range 1999 down to 1000, the second-lowest priority to the sequential num-
bers in the range 2999 to 2000, the third-lowest priority to the numbers in the
range 3999 to 3000, and so forth. This concept is shown in Figure 9-15.

FIGURE 9-15 Priority Queue Priority Numbers

Example Assume that we have a priority queue with three priorities: high (3), medium
(2), and low (1). Of the first five customers who arrive, the second and the fifth
are high-priority customers, the third is medium priority, and the first and the
fourth are low priority. They are assigned priority numbers as indicated in
Table 9-1.

TABLE 9-1 Priority Number Assignments
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Figure 9-16 traces the priority queue as it is built and processed, assum-
ing that all of the customers arrive before the first customer is served. As you
study the figure, note that the customers are served according to their priority
and within equal priorities, according to their arrival. Thus we see that cus-
tomer 2 (3998) is served first, followed by customer 5 (3995), customer 3
(2997), customer 1 (1999), and customer 4 (1996).

FIGURE 9-16 Priority Queue Example

Implementation
The design of the priority queue is shown in Figure 9-17.
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FIGURE 9-17 Priority Queue Design

As shown in the design, we call three functions from the head ADT: heap
create, heap insert, and heap delete. After creating the priority queue, we use
a menu function to determine the next action and then either insert a new
customer into the priority queue or delete the next customer from the queue.
When a customer is deleted, we display the customer ID to verify that the
customers are processed first in, first out within their priorities. The code is
shown in Program 9-7.

PROGRAM 9-7 Priority Queue Implementation

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

/* Implement priority queue using heap.
   Written by:
   Date:

*/
#include <stdio.h>
#include <ctype.h>
#include <stdbool.h>

#include "P9-heap.h"

// Constant Definitions
const int maxQueue = 20;

// Structure Declarations
typedef struct
   {
    int  id;
    int  priority;
    int  serial;
   } CUST;

heapCreate

Priority
queue

compare
Cust

menu getCust heapInsert heapDelete

processPQ

+
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PROGRAM 9-7  Priority Queue Implementation (continued)

continued
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// Prototype Declarations
int   compareCust (void* cust1, void* cust2);
void  processPQ   (HEAP* heap);
char  menu        (void);
CUST* getCust     (void);

int main (void)
{
// Local Definitions

HEAP* prQueue;

// Statements
printf("Begin Priority Queue Demonstration\n");

prQueue = heapCreate(maxQueue, compareCust);
processPQ (prQueue);

printf("End Priority Queue Demonstration\n");
return 0;

} // main

/* ==================== compare ====================
Compare priority of two customers to determine
who has higher priority.
   Pre  Given two customer structures
   Post if cust1 >  cust2 return +1
        if cust1 == cust2 return 0
        if cust1 <  cust2 return -1

*/
int compareCust (void* cust1, void* cust2)
{
// Local Definitions

CUST c1;
CUST c2;

// Statements
c1 = *(CUST*)cust1;
c2 = *(CUST*)cust2;

if (c1.serial < c2.serial)
    return -1;
else if (c1.serial == c2.serial)
    return 0;
return +1;

} // compareCust
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PROGRAM 9-7  Priority Queue Implementation (continued)

continued
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/* ==================== processPQ ====================
Compare priority of two customers to determine
who has higher priority.
   Pre  Given two customer structures
   Post if cust1 >  cust2 return +1
        if cust1 == cust2 return 0
        if cust1 <  cust2 return -1

*/
void processPQ (HEAP* prQueue)
{
// Local Definitions

CUST* cust;
bool  result;
char  option;
int   numCusts = 0;

// Statements
do
   {
    option = menu ();
    switch (option)
       {
        case 'e':
        cust = getCust ();
        numCusts++;
        cust->serial = 
           cust->priority * 1000 + (1000 - numCusts);
           result = heapInsert (prQueue, cust);
           if (!result)
               printf("Error inserting into heap\n"),
                   exit (101);
           break;
        case 'd':
           result = heapDelete (prQueue, (void**)&cust);
           if (!result)
              printf("Error: customer not found\n");
           else
             {
              printf("Customer %4d deleted\n",
                      cust->id);
              numCusts--;
             } // else
       } // switch
   } while (option != 'q');
return;

} // processPQ
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PROGRAM 9-7  Priority Queue Implementation (continued)

continued

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

/* ==================== menu ====================
Display menu and get action.
   Pre  nothing
   Post action read and validated

*/
char menu (void)
{
// Local Declarations 

char option;
bool valid;

 
// Statements 

printf( "\n============ Menu =============\n" );
printf( " e :     Enter Customer Flight   \n" );
printf( " d :     Delete Customer Flight  \n" );
printf( " q :     Quit.                   \n" );
printf( "===============================\n" );
printf( "Please enter your choice:  " );

do
   {
    scanf(" %c", &option);
    option = tolower (option);
    switch (option)
       {
        case 'e':
        case 'd':
        case 'q': valid = true;
                  break;
 
        default:  printf("Invalid choice. Re-Enter: ");
                  valid = false;
                  break;
       } // switch
   }  while (!valid);
return option;

} // menu

/* ==================== getCust ====================
Reads customer data from keyboard.
   Pre  nothing
   Post data read and returned in structure

*/
CUST* getCust (void)
{
// Local Definitions

CUST* cust;
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PROGRAM 9-7  Priority Queue Implementation (continued)

162
163
164
165
166
167
168
169
170
171
172
173
174

// Statements
cust = (CUST*)malloc(sizeof (CUST));
if (!cust)
   printf("Memory overflow in getCust\n"),
       exit (200);
   
printf("Enter customer id:       ");
scanf ("%d", &cust->id);
printf("Enter customer priority: ");
scanf ("%d", &cust->priority);
return cust;

} // getCust
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9.5 Key Terms

9.6 Summary
❏ A heap is a complete or nearly complete binary tree structure in which the

key value of each node is greater than or equal to the key value in each of
its descendents.

❏ A heap can be recursively defined as a complete or nearly complete binary
tree in which the key value in a node is greater than or equal to the key val-
ues in all of its subtrees and each subtree is itself a heap. 

❏ The only operations that generally apply to a heap are insert and delete. 

❏ To be able to insert or delete from a heap, we need two algorithms: reheap
up and reheap down.

❏ The reheap up algorithm repairs a nonheap structure that is a heap except
for the last element. It floats the last element up the tree until that ele-
ment is in its correct location. The reheap up algorithm is needed when we
insert an element into the heap and when we build a heap from an array.

❏ The reheap down algorithm repairs a nonheap structure that is made of
two heaps and a root. The algorithm floats the root element down the tree
until that element is in its correct location. We need a reheap down algo-
rithm when we delete an element from a heap.

❏ A heap can be implemented in an array because a heap is a complete or
nearly complete binary tree in which there is a fixed relationship between
each node and its children.

❏ Three common applications of heaps are selection, priority queue, and
sorting.

❏ A heap can be used to select the kth largest (or smallest) element in an
unsorted list.

❏ A heap can be used to implement a priority queue, in which every element
has a priority number that determines its relationship to other elements.

❏ A heap can also be used to implement a sorting algorithm called the
heap sort.

heap
heapify
max-heap
min-heap

priority queue
reheap down
reheap up
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9.7 Practice Sets

Exercises
1. Show which of the structures in Figure 9-18 are heaps and which are not. 

FIGURE 9-18 Heaps for Exercise 1

2. Make a heap out of the following data read from the keyboard:

3. Apply the reheap up algorithm to the nonheap structure shown in Figure 9-19.

FIGURE 9-19 Nonheap Structure for Exercise 3

4. Apply the reheap down algorithm to the partial heap structure shown in
Figure 9-20.

FIGURE 9-20 Partial Heap for Exercise 4
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5. Show the array implementation of the heap in Figure 9-21.

FIGURE 9-21 Heap for Exercises 5, 6, and 7

6. Apply the delete operation to the heap in Figure 9-21. Repair the heap
after the deletion.

7. Insert 38 into the heap in Figure 9-21. Repair the heap after the insertion.

8. Show the left and right children of 32 and 27 in the heap in Figure 9-22.
Also show the left children of 14 and 40.

FIGURE 9-22 Heap Array for Exercises 8 and 9

9. In the heap in Figure 9-22, show the parent of 11, the parent of 20, and
the parent of 25.

10. If a node is at index 25, what is the index of its right child? What is the
index of its left child? Assume the indexes start from 0.

11. If a node is at index 37, what is the index of its parent?

12. Which of the following sequences are heaps?

a. 42 35 37 20 14 18 7 10
b. 42 35 18 20 14 30 10
c. 20 20 20 20 20 20

13. Show which item would be deleted from the following heap after calling
the delete algorithm three times:

14. Show the resulting heap after 33, 22, and 8 are added to the following heap:

15. Draw a tree that is both a heap and a binary search tree.

50 30 40 20 10 25 35 10 5

50 30 40 20 10 25 35 10 5

25

32

2113

23

11

40

8 10

40 27 32 15 14 20 25 11

[0] [1] [2] [3] [4] [5] [6] [7]
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16. Create a priority queue using the following data. The first number is the
priority, and the letter is the data.

17. Show the contents of the priority queue in Exercise 16 after deleting three
items from the queue.

18. Show the contents of the original priority queue in Exercise 16 after the
following operations:

Insert 4-K, Insert 3-L, Delete, Insert 2-M, Delete

Problems
19. Rewrite Algorithm 9-1, “Reheap Up,” to build a minimum heap.

20. Rewrite Algorithm 9-2, “Reheap Down,” to recreate a minimum heap.

21. Rewrite Algorithm 9-4, “Insert Heap,” to build a minimum heap.

22. Rewrite Algorithm 9-5, “Delete Heap Node,” to recreate a minimum heap.

23. Write an algorithm to combine two heaps and produce a third heap.

24. Write the C code for Problem 19.

25. Write the C code for Problem 20.

26. Write the C code for Problem 21.

27. Write the C code for Problem 22.

28. Write the C code for Problem 23.

Projects
29. Our study of tree algorithmics has shown that most tree structures are

quite efficient. Let’s examine the efficiency of heaps. Modify the heap ADT
developed in Section 9.3 to determine the complexity of building a heap.
For this program measure efficiency as the number of data moves neces-
sary to build the heap.

To determine a pattern, run your program with arrays filled with ran-
dom numbers. Use five different array sizes: 100, 200, 500, 1000, and
2000. Then analyze the heuristics developed in these runs and determine
which big-O notation best applies. Prepare a short report of your findings
with appropriate tables and graphs.

30. Modify Project 29 to determine the efficiency of the reheap up and reheap
down algorithms only. Again, analyze the data and prepare a short report of
your conclusions regarding their efficiency.

3-A 5-B 3-C 2-D 1-E 2-F 3-G 2-H 2-I 2-J
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31. Algorithm 9-3, Build Heap, uses the reheap up algorithm to build a heap
from an array. Another, slightly faster way to build a heap from an array is to
use reheap down in a loop starting from the middle of the array  N / 2 – 1,
which is the root of the last nonempty subtree, and working up the tree to
the root. This concept is shown in Figure 9-23.

FIGURE 9-23 Build Heap from Last Subtree (Project 31)

Rewrite the build heap algorithm and then write the C code to imple-
ment it using the above approach.

32. Add code to Project 31 to determine the efficiency of building the heap
from the middle up.

33. An airline company uses the formula shown below to determine the prior-
ity of passengers on the waiting list for overbooked flights.

priority number = A / 1000 + B – C
where
   A is the customer’s total mileage in the past year
   B is the number of years in his or her frequent flier program
   C is a sequence number representing the customer’s arrival 
        position when he or she booked the flight
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Given a file of overbooked customers as shown in Table 9-2, write a pro-
gram that reads the file and determines each customer’s priority number.
The program then builds a priority queue using the priority number and
prints a list of waiting customers in priority sequence.

TABLE 9-2  Data for Project 33

Name Mileage Years Sequence

Bryan Devaux

Amanda Trapp

Baclan Nguyen

Sarah Gilley

Warren Rexroad

Jorge Gonzales

Paula Hung

Lou Mason

Steve Chu

Dave Lightfoot

Joanne Brown

53,000

89,000

93,000

17,000

72,000

65,000

34,000

21,000

42,000

63,000

33,000

5

3

3

1

7

2

3

6

4

3

2

1

2

3

4

5

6

7

8

9

10

11
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Chapter 10
Multiway Trees

We studied the general concepts of trees in Chapter 6. We also studied three
types of binary trees: binary search trees (Chapter 7), AVL trees (Chapter 8),
and heaps (Chapter 9). As binary trees grow in size, their heights can become
significant. For example, a tree with 1000 entries has a height of at least 10,
and a tree with 100,000 entries has a height of at least 17. If the trees are
unbalanced, their heights can be significantly larger.

In this chapter we explore trees whose outdegree is not restricted to 2 but
that retain the general properties of binary search trees. Whereas each node
in a binary tree has only one entry, multiway trees have multiple entries in
each node and thus may have multiple subtrees. You will find these structures
in applications such as internal search trees, spell checkers, and external file
indexes.

10.1 M-way Search Trees
An m-way tree is a search tree in which each node can have from 0 to m sub-
trees, where m is defined as the B-tree order. Given a nonempty multiway tree,
we can identify the following properties:

1. Each node has 0 to m subtrees.

2. A node with k < m subtrees contains k subtrees and k – 1 data entries.

3. The key values in the first subtree are all less than the key value in the first
entry; the key values in the other subtrees are all greater than or equal to
the key value in their parent entry.

4. The keys of the data entries are ordered key1 ≤ key2 ≤ … ≤ keyk.

5. All subtrees are themselves multiway trees. 

Figure 10-1 is a diagrammatic representation of an m-way tree of order 4.
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FIGURE 10-1 M-way Tree of Order 4

Study Figure 10-1 carefully. The first thing to note is that it has the same
structure as the binary search tree: subtrees to the left of an entry contain
data with keys that are less than the key of the entry, and subtrees to the right
of an entry contain data with keys that are greater than or equal to the entry’s
key. This ordering is easiest to see in the first and last subtrees.

Now study the second subtree. Note that its keys are greater than or
equal to k1 and less than k2. It serves as the right subtree for K1 and at the
same time the left subtree for k2. In other words, whether a subtree is a left or
a right subtree depends on which node entry you are viewing.

Also note that there is one more subtree than there are entries in the
node; there is a separate subtree at the beginning of each node. This first sub-
tree identifies all of the subtrees that contain keys less than the first entry in
the node. 

Because each node has a variable number of entries, we need some way to
keep track of how many entries are currently in the node. This is done with an
entry count, which is not shown in Figure 10-1. Figure 10-2 is a four-way tree.

FIGURE 10-2 Four-way Tree

Keys < k1 k1   Keys < k2 Keys   k3k2   Keys < k3

k1 k2 k3k: key

50 100 150

35 45 85 95 125 135 175

60 70 110 12090

75
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We are now ready to code the description of an m-way tree node. Let’s
first build a structure for the entries. Because the number of entries varies up
to a specified maximum, the best structure in which to store them is an array.
Each entry needs to hold the key of the data, the data itself (or a pointer to
the data if stored elsewhere), and a pointer to its right subtree. Figure 10-3(a)
depicts the structure.

FIGURE 10-3 M-way Node Structure

The node structure contains the first pointer to the subtree with entries
less than the key of the first entry, a count of the number of entries currently
in the node, and the array of entries. The array must have room for m − 1
entries. The node structure is shown in Figure 10-3(b).

Before leaving the discussion of m-way trees, there is one more thought
we would like to leave with you. The binary search tree is an m-way tree of
order 2. 

10.2 B-trees
The m-way tree has the potential to greatly reduce the height of a tree. How-
ever, it still has one major deficiency: it is not balanced. In 1970 two com-
puter scientists working for the Boeing Company in Seattle, Washington,

The binary search tree is an m -way tree of order 2.

entry
data
rightPtr

end entry
node

firstPtr
numEntries
entries   array of entry

end node

data

(a) Entry (b) Node

num
Entries …
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created a new tree structure they called the B-tree.1 A B-tree is an m-way
search tree with the following additional properties:

1. The root is either a leaf or it has 2 … m subtrees.

2. All internal nodes have at least m / 2 nonnull subtrees and at most m
nonnull subtrees.

3. All leaf nodes are at the same level; that is, the tree is perfectly balanced.

4. A leaf node has at least m / 2 – 1 and at most m – 1 entries.

From the definition of a B-tree, it should be apparent that a B-tree is a
perfectly balanced m-way tree in which each node, with the possible excep-
tion of the root, is at least half full. Table 10-1 defines the minimum and max-
imum numbers of subtrees in a nonroot node for B-trees of different orders.

TABLE 10-1 Entries in B-trees of Various Orders

Figure 10-4 contains a B-tree of order 5. Let’s examine its design. First, by
the m-way rules in Section 10.1, the tree is a valid m-way tree. Now let’s look
at the B-tree rules. The root is not a leaf—it has two subtrees (Rule 1). The
left internal node has the minimum number of subtrees (three), and the right
internal node has the maximum number of subtrees (five) (Rule 2). All leaf
nodes are at level 2 (Rule 3). The leaves all have between the minimum (two)
and the maximum (four) entries (Rule 4). Therefore, the tree is a valid B-tree.

1. R. Bayer and E. McCreight, “Organization and Maintenance of Large Ordered Indexes,” Acta Infor-
matica 1, no. 3 (1972): 173–189. This paper does not explain why they called it B-tree. Two possibil-
ities are B is for Bayer or that B is just a sequence similar to the C Language name.

Number of subtrees Number of entries

Order Minimum Maximum Minimum Maximum
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FIGURE 10-4 A B-tree of Order 5

B-tree Implementation
The four basic operations for B-trees are: insert, delete, traverse, and search.
In this section we discuss these four algorithms and any algorithms they call.

B-tree Insertion
Like the binary search tree, B-tree insertion takes place at a leaf node. The
first step, therefore, is to locate the leaf node for the data being inserted. If
the node is not full—that is, if it has fewer than m – 1 entries, the new data
are simply inserted in sequence in the node.

When the leaf node is full, we have a condition known as overflow. Over-
flow requires that the leaf node be split into two nodes, each containing half
of the data. To split the node, we allocate a new node from the available
memory and then copy the data from the end of the full node to the new
node. After the data have been split, the new entry is inserted into either the
original or the new node, depending on its key value. Then the median data
entry is inserted into the parent node.

To help us understand how to build a B-tree, let’s run through a simple
example. Given a B-tree structure with an order of 5, we begin by inserting 11,
21, 14, and 78. The first insertion creates a node that becomes the root. The
next three insertions simply place the data in the node in ascending key
sequence. At this point we have a tree that looks like the one in Figure 10-5(f).

When we try to insert 97, we discover that the node is full. We therefore
create a new right subtree and move the upper half of the data to it, leaving
the rest of the data in the original node. This situation is shown in Figure 10-
5(b). Note that the new value (97) has been placed in the new node because
it logically belongs to the upper half of the data.

A B-tree grows from the bottom up.

Four entries,
five subtrees

Maximum
entries

Minimum
entries

Root

42

979485 8763 65 7445 52 78 79

16 21

21 22 23 2417 19 2011 14

58 76 81 93
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FIGURE 10-5 B-tree Insert Overview

After creating the new node, we insert the median-valued data (21) into
the parent of the original node. Because the original node was a root, we cre-
ate a new root and insert 21 into it. This step completes the insertion of 97
into the B-tree, which has now grown by one level. The resulting B-tree is
shown in Figure 10-5(g).

The B-tree insert design is shown in Figure 10-6. The process of insert-
ing an entry into the parent provides an interesting contrast to the binary
search tree. Recall that the binary search tree grew in an unbalanced fashion
from the top down. B-trees grow in a balanced fashion from the bottom up.
When the root node of a B-tree overflows and the median entry is pushed up,
a new root node is created and the tree grows one level.

FIGURE 10-6 B-tree Insert Design
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The B-tree insert pseudocode is shown in Algorithm 10-1.

ALGORITHM 10-1 B-tree Insert

Algorithm 10-1 Analysis The B-tree insert algorithm has just three processes. First, if the tree is null, it creates a
root. Second, if the tree is not null, it calls the insert node algorithm. As we will see,
insert node is a recursive algorithm that not only inserts data into a leaf but also inserts
any overflow entries into their parent nodes. If the root overflows, however, there is no
parent in which to insert the median entry. The third process, therefore, creates a new
root when the tree overflows. Whenever there is an overflow, the insert node algorithm
passes the median entry back to the B-tree insert algorithm, through the parameter
upEntry. This median entry becomes the entry for the new root.

Insert Node
The insert node algorithm is the heart of the B-tree insert. Because it is com-
plex, you need to walk through an example to understand it. Let’s trace the
building of a B-tree of order 5. We have already shown an overview of the first
part of the process. Let’s pick it up where we are ready to insert 57 into the
tree. We begin by calling B-tree insert (Algorithm 10-1) and passing it the
root and the new data to be inserted (57), as shown in Figure 10-7.

Algorithm BTreeInsert (tree,  data)
Inserts data into B-Tree. Equal keys placed on right branch.

Pre    tree is reference to B-Tree; may be null
Post   data inserted

1 if (tree null)
Empty tree. Insert first node.
1 create new node 
2 set left subtree of node to null
3 move data to first entry in new node
4 set subtree of first entry to null
5 set tree root to address of new node
6 set number of entries to 1

2 end if
Insert data in existing tree

3 insertNode (tree, data, upEntry)
4 if (tree higher)

Tree has grown; create new root
1 create new node
2 move upEntry to first entry in new node
3 set left subtree of node to tree  
4 set tree root to new node
5 set number of entries to 1
6 end if

end BTreeInsert
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FIGURE 10-7 Build B-tree, First Overflow

We now trace Figure 10-7 through insert node, as shown in Algorithm 10-2.

7821 57

1

entryNdx

1411 958563 744542

7821

1411 958563 744542

57

2

entryNdx

7821

1411 958563 744542

Original  tree

7821

1411 958563 744542

5757

data upEntry

2

entryNdx

BTreeInsert

4 if (tree higher)
  Tree has grown. Create new root.
  1 create new node

  3 set left subtree of node to tree 
  4 set tree root to new node 

  2 move upEntry to first entry in new node

  5 set number of entries to 1
5 end if
6 return 

57

dataIn 3 insertNode (tree, data, upEntry)

insertNode
 1 if (root null)

 2 end if

 6 end if

 3 set entryNdx = searchNode (root, key)

 4 if (entryNdx equal 0)
   Determine subtree ... left or right

 8 if (taller)
   1 if (node full)

   3 end if
 9 end if

 7 set taller to insertNode (subTree, dataIn, …)

10 return taller

insertNode
 1 if (root null)

 2 end if

 6 end if

 3 set entryNdx = searchNode (root, key)

 4 if (entryNdx equal 0)
   Determine subtree ... left or right

 8 if (taller)
   1 if (node full)

   3 end if
 9 end if

 7 set taller to insertNode (subTree, dataIn, …)

10 return taller

insertNode
 1 if (root null)

   Leaf found -- build new entry

 2 end if

   1 move dataIn to upEntry
   2 set upEntry subtree to null

 8 if (taller)

 9 end if

 3 set entryNdx = searchNode (root, key)

10 return taller

   3 return taller true
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ALGORITHM 10-2 B-tree Insert Node

Algorithm 10-2 Analysis B-tree insert node (insertNode) is a recursive algorithm (see statement 7). Let’s fol-
low the code through Figure 10-7. The base case is a null subtree, indicating that the
leaf node was located in the previous call. In the first call, the root is not null, so
insertNode calls searchNode to determine the correct subtree branch, found at
21, and recursively calls itself using 21’s right subtree pointer.

Algorithm insertNode (root, dataIn, upEntry)
Recursively searches tree to locate leaf for data. If node
overflows, inserts median key’s data into parent.

Pre    root is reference to tree or subtree; may be null 
       dataIn contains data to be inserted
       upEntry is reference to entry structure
Post   data inserted
       upEntry is overflow entry to be inserted into 
          parent
Return boolean (taller)

1 if (root null)
Leaf found -- build new entry
1 move dataIn to upEntry
2 set upEntry subtree to null
3 return taller true

2 end if
Search for entry point (leaf)

3 set entryNdx to searchNode (root, key)
Determine subtree ... left or right

4 if (entryNdx equal 0)
1 if (data key < key in first entry)

1 set subtree to left subtree of node
2 else

1 set subtree to subtree of entry
3 end if

5 else
1 set subtree to entryNdx rightPtr

6 end if
7 set taller to insertNode (subTree, dataIn, upEntry) 

Data inserted -- back out
8 if (taller)

1 if (node full)
1 splitNode (root, entryNdx, newEntryLow, upEntry)
2 set taller to true

2 else
1 insertEntry (root, entryNdx, upEntry)
1 insert upEntry in root
2 set taller to false

3 end if
9 end if 
10 return taller
end insertNode
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The third call reaches the base case for this insertion. Because the root is null,
insertNode moves the new data and a null pointer to the new entry (statements 1.1
and 1.2) and returns true, indicating that the new entry is ready to be inserted. Note that
the new entry must be passed by reference.

We then return to insertNode in statement 7 and are ready to insert the new
entry into the leaf node as we back out of the recursion. If the node is full, we split it and
then insert the median entry into the current node’s parent (statement 8.1.1). The logic for
splitNode is shown in Algorithm 10-4 and will be discussed in detail shortly. For now
it is sufficient to understand that splitNode creates a new right subtree node and
moves data to it. On the other hand, if the node is not full, we simply insert it into the cur-
rent node. 

Because the node is full, we insert the median valued entry (57) upward into the par-
ent node containing 21 and 78. This step completes the insertion because there is room
for 57 in the parent node. We must still complete the recursion, however, by backing all
of the way out.

Search Node
Search node first checks to see if the target is less than the first entry’s key. If
it is, it returns entry 0. If the target is not less than the first node, it locates the
target’s node by starting at the end and working toward the beginning of the
entries. This design is more efficient than starting at the beginning (see Algo-
rithm 10-3 Analysis below). The pseudocode code is shown in Algorithm 10-3.

ALGORITHM 10-3 B-tree Search Node

Algorithm 10-3 Analysis This algorithm uses a very interesting search. It starts at the end of the entry array and
works toward the beginning. We use this search technique because each entry points
to a subtree with data whose keys are greater than or equal to the current entry’s key
and less than the next entry’s key. If we searched from the beginning, we would over-
shoot our target and have to back up. By searching from the end, when we find an
entry less than or equal to the target, we have also found the subtree pointer to the sub-
tree that contains the desired target.

Algorithm searchNode (nodePtr, target)
Search B-Tree node for data entry containing key <= target.

Pre    nodePtr is reference to nonnull node
       target is key to be located
Return index to entry with key <= target
       -or- 0 if key < first entry in node

1 if (target < key in first entry)
1 return 0

2 end if
3 set walker to number of entries – 1
4 loop (target < entry key[walker])

1 decrement walker 
5 end loop
6 return walker
end searchNode
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A close analysis of the algorithm reveals that there are two conditions when it returns
an index of 0. The first occurs when the target is less than the first entry (statement 1). The
second situation occurs when the target is greater than or equal to the first entry and less
than the second entry. In this case the data are found in the first entry’s right subtree.

Split Node
Split node takes a full node, an entry that needs to be inserted into the
node, and the index location for the new entry and splits the data between
the existing node, a median entry, and a new node. The code is shown in
Algorithm 10-4.

ALGORITHM 10-4 B-tree Split Node

Algorithm 10-4 Analysis We need to analyze three different insert positions: the new key is less than the
median key, the new key is the median key, and the new key is greater than the
median key. The first two reduce to the same case. Figure 10-8(a) shows the step-by-
step logic for splitting a node when the new entry is less than or equal to the median,
and Figure 10-8(b) shows the steps when the new entry is greater than the median.

In both cases we begin by allocating a new node and copying data from the end of
the original node to the beginning of the new node. Then we insert the new entry, found
in upEntry, into either the original node or the new node. Finally, we copy the median
entry to upEntry. Note that when we enter Algorithm 10-4, upEntry contains the
data being inserted into the overflow node; after the node has been split, upEntry
contains the data to be inserted into the parent when we return.

Algorithm splitNode (node, entryNdx, newEntryLow, upEntry)
Node has overflowed. Split node into two nodes.

Pre    node is reference to node that overflowed
       entryNdx contains index location of parent
       newEntryLow true if new data < entryNdx data
       upEntry is reference to entry being inserted 
Post   upEntry contains entry to be inserted into parent

1 create new node
Build right subtree node

2 move high entries to new node
3 if (entryNdx < minimum entries)

1 Insert upEntry in node
4 else

1 insert upEntry in new node 
5 end if

Build entry for parent
6 move median data to upEntry 
7 make new node firstPtr the right subtree of median data
8 make new node the right subtree of upEntry
end splitNode
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FIGURE 10-8 Split Node B-tree Order of 5

When the new key is less than or equal to the median key, the new data belong in
the left or original node. On the other hand, if the new key is greater than the median
key, the new data belong in the new node. At statement 3, therefore, we test the
location for the new entry (entryNdx) and call the insert entry algorithm, passing it
either the original node or the new node.

If you study Figure 10-8 carefully, you will note that regardless of which situation
occurred, the median value is always in the same place, identified by the minimum
number of entries. Also, the right pointer in the median entry is always the new
node’s pointer. It is thus easy to build the median entry.

The test cases in Figure 10-8 are found in a larger context in Figure 10-9.
Figure 10-8(a) is the last insertion in Figure 10-9(c), and Figure 10-8(b) is the
same as Figure 10-9(b). 
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Insertion Summary
We have now looked at all of the algorithms necessary to insert data into a
B-tree. As a summary we build a complete B-tree in Figure 10-9. You have
already seen some of the trees in previous figures. Study this figure carefully
to ensure that you can build a similar tree with different data.

FIGURE 10-9 Building a B-tree of Order 5

B-tree Deletion
There are three considerations when deleting a data entry from a B-tree node.
First, we must ensure that the data to be deleted are actually in the tree. Sec-
ond, if the node does not have enough entries after the deletion, we need to
correct the structural deficiency. A deletion that results in a node with fewer
than the minimum number of entries is an underflow. Finally, as we saw with the
binary search tree, we can delete only from a leaf node. Therefore, if the data
to be deleted are in an internal node, we must find a data entry to take their
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place. The design for the B-tree deletion is shown in Figure 10-10. We sug-
gest that you study this design before proceeding with its algorithms.

FIGURE 10-10 B-tree Delete Design

Note that there are two levels of recursion. The first, Algorithm 10-6,
traverses the tree, looking for the node to be deleted and, if it is found at a
leaf, simply deletes it. For the second, Algorithm 10-8 is called recursively
when the data to be deleted are not at a leaf. The algorithm could be written
with only one recursion, but it is more complex to follow.

Now study the node delete logic. It searches for the data to be deleted. If
they are not found, it prints an error message and terminates the recursion.
This is the first base case. The second base case occurs when the data have
been found and deleted. In either case the delete must determine whether it
has caused an underflow and set a return Boolean—true if underflow
occurred or false if the node is okay.

The underflow processing takes place as delete node backs out of the
recursion. After each return it checks the node to make sure it has not under-
flowed. If an underflow occurred, it corrects the underflow and continues.
With this understanding of the big picture, we are now ready to look at the
algorithms.
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Like the insert, the B-tree delete requires two algorithms: a user interface
and a recursive delete function. The high-level user interface calls the recur-
sive delete and then checks for root underflow. It is shown in Algorithm 10-5.

ALGORITHM 10-5 B-tree Delete

Algorithm 10-5 Analysis B-tree delete has two responsibilities. First, it starts the delete process by calling the
recursive algorithm, delete. Then, when the delete process is complete, it determines
whether the root has underflowed. If it has, the address of the new root is found in the
node’s first pointer. 

Delete Node
The heart of the delete process is shown in the recursive delete algorithm. If
delete reaches a null subtree, it has not found the data to be deleted and
returns underflow false. 

If the root is not null, delete searches the node to see if the data to be
deleted are in it. This is the same algorithm we used for the insert search
(see Algorithm 10-3, “B-tree Search Node”). The search returns either 0,
indicating that the delete key is less than the first entry in the node, or an
entry index for a node that is less than or equal to the delete key. When the
delete key is not in the current node, delete calls itself recursively with a new
subtree. If the delete key has been found, it is deleted by calling either
deleteEntry or deleteMid. After deleting the node, delete checks for
underflow and if necessary repairs the underflow by calling reFlow. The
pseudocode is shown in Algorithm 10-6.

Algorithm BTreeDelete (tree, dltKey)
Delete entry with key target from B-tree.

Pre    tree is a reference to a B-tree
       dltKey is the key of the entry to be deleted
Post   data deleted or false returned
Return success (found) or failure (not found)

1 if (tree empty)
1 return false

2 end if
3 delete (tree, dltKey, success)
4 if (success)

1 if (tree number of entries zero)
   Tree is shorter--delete root
1 set tree to left subtree

2 end if
5 end if
6 return success
end BTreeDelete
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ALGORITHM 10-6 B-tree Delete Node

continued

Algorithm delete (root, deleteKey, success)
Recursively locates node containing deleteKey; deletes data. 

Pre    root is a reference to a nonnull B-Tree
       deleteKey is key to entry to be deleted
       success is reference to boolean
Post   data deleted--success true; or success false 
       underflow--true or false
Return success true or false

1 if (root null)
   Leaf node found--deleteKey key does not exist
1 set success false
2 return false

2 end if
3 set entryNdx to searchNode (root, deleteKey)
4 if (deleteKey found)

   Found entry to be deleted 
1 set success to true
2 if (leaf node)

1 set underflow to deleteEntry (root, entryNdx)
3 else

   Entry is in internal node 
1 if (entryNdx > 0) 

1 set leftPtr to rightPtr of previous entry 
2 else

1 set leftPtr to root firstPtr
3 end if
4 set underflow to deleteMid (root, entryNdx, leftPtr)
5 if (underflow)

1 set underflow to reFlow (root, entryNdx)
6 end if

4 end if
5 else

1 if (deleteKey less key in first entry)
1 set subtree to root firstPtr

2 else
   deleteKey is in right subtree 
1 set subtree to entryNdx rightPtr

3 end if
4 set underflow to delete (subtree, deleteKey, success)
5 if (underflow)

1 set underflow to reFlow (root, entryNdx)
6 end if
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ALGORITHM 10-6 B-tree Delete Node (continued)

Algorithm 10-6 Analysis This delete algorithm calls four different algorithms, including itself. The recursive call is
found in statement 5.4. Note that after the recursive calls, we must test for underflow.
This logic is important. Although the underflow is detected when a node underflows, it
is handled after the logic flow returns to the parent. It is handled at this point because
to resolve an underflow we need the parent, the left subtree, and the right subtree. 

Delete Entry
Delete entry removes the entry from a node and compresses it; that is, it
moves the entries on the right of the deleted entry to the left. After deleting
the entry, it tests for underflow and returns a Boolean—true if underflow
occurred and false if the node is okay. The code is shown in Algorithm 10-7.

ALGORITHM 10-7 B-tree Delete Entry

Delete Mid
As we stated earlier, all deletions must take place at a leaf node. When the data
to be deleted are not in a leaf node, we must find substitute data. There are
two choices for substitute data: either the immediate predecessor or the imme-
diate successor. Either will do, but it is more efficient to use the immediate
predecessor because it is always the last entry in a node and no shifting is
required when it is deleted. We therefore use the immediate predecessor. 

The immediate predecessor is the largest node on the left subtree of the
entry to be deleted. The initial calling algorithm, delete, determines the left
subtree and passes it as a parameter along with the node containing the data to
be deleted and the index to its entry in the array. deleteMid recursively follows
the left subtree’s right pointer in the last entry until it comes to a leaf node.

6 end if
7 return underflow
end delete

Algorithm deleteEntry (node, entryNdx)
Deletes entry at entryNdx from leaf node.

Pre    node is reference to node with data to be deleted
       entryNdx is index of entry in node
Post   entry deleted
Return underflow <Boolean> 

1 shift entries after delete to left
2 if (number of entries less minimum entries)

1 return true
3 else

1 return false
4 end if
end deleteEntry
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Finding a leaf node is the recursion base case for deleteMid. At this
point it replaces the data to be deleted with the data in the leaf ’s last entry
and then calls itself to delete the predecessor entry in the leaf node. The
pseudocode for deleteMid is shown in Algorithm 10-8.

ALGORITHM 10-8 B-tree Delete Mid

Algorithm 10-8 Analysis This algorithm is rather simple. As we have seen in other algorithms, the base case is
handled first in statement 1. The recursive search for a leaf node is found in statement 2.
Note that both the base case and the general case determine whether underflow has
occurred and pass the underflow status to the return statement at the end of the code.

Figure 10-11 shows the interaction of the B-tree delete, delete, and
delete mid algorithms. You may want to study it before going on.

Reflow
When underflow has occurred, we need to bring the underflowed node up to
a minimum state by adding at least one entry to it. This process is known as
reflow. This is perhaps the most difficult logic in the B-tree delete. To under-
stand it we need to review two concepts: balance and combine. Balance shifts
data among nodes to reestablish the integrity of the tree. Because it does not
change the structure of the tree, it is less disruptive and thereforepreferred.
Combine joins the data from an underflowed entry, a minimal sibling, and a
parent in one node. Combine thus results in one node with the maximum
number of entries and an empty node that must be recycled.

Algorithm deleteMid (node, entryNdx, subtree)
Deletes entry from internal node in tree.

Pre    node is reference to node containing delete entry
       entryNdx is index to entry to be deleted in node
       subtree is reference to node’s subtree
Post   delete data replaced with immediate predecessor 
       and predecessor deleted from leaf node
Return underflow true or false 
Find entry to replace node being deleted 

1 if (no rightmost subtree) 
   Leaf located. Replace data and delete leaf entry.
1 move predecessor’s data to delete entry
2 set underflow if node entries less minimum

2 else
   Not located. Traverse right to locate predecessor.
1 set underflow to deleteMid   
                       (node, entryNdx, right subtree) 
2 if (underflow)

1 set underflow to reFlow (root, entryNdx)
3 end if

3 end if
4 return underflow
end deleteMid
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FIGURE 10-11 B-tree Deletions

When we enter reFlow, root contains the parent to the node that under-
flowed, identified by the entry index; that is, the entry index identifies the sub-
tree that is an underflow state. We begin by examining the left and right
subtrees of the root to determine whether one has more than the minimum
number of entries. If either one does, we can order the tree by balancing. If nei-
ther the left nor the right subtree has more than the minimum entries, we must
combine them with the parent. The pseudocode is shown in Algorithm 10-9.

deleteMid

1 if (no rightmost subtree)
Leaf located. Replace data and delete leaf entry.

  1 move predecessor's data to delete entry
  2 set underflow if node entries less minimum
2 else
Not located. Traverse right to locate predecessor.

  1 set underflow to deleteMid (node, entryNdx, ...)

3 end if

delete
1 if (root null)
  ...
3 set entryNdx to searchNode (root, deleteKey)
4 if (deleteKey found)
    Found entry to be deleted
    1 set success to true

      entry is a leaf node
      1 set underflow to deleteEntry (root, entryNdx)

    2 if (leaf node)

      Entry is in internal node
      1 if (entryNdx > 0)
        ...
      3 end if

        ...
  ...
6 end if
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1 if tree empty)
  1 return fa;se

3 if (success)
  1 if (tree->numEntries is zero)
    Tree is shorter--delete root
    1 dltPtr = root
    2 root   = root->firstPtr
    3 recycle (dltPtr)
4 return success

      4 set underflow to deleteMid (root, entryNdx, ...)

7 return underflow

1 if (root null)
...

3 set entryNdx to searchNode (root, deleteKey)
4 if (deleteKey found)

...
5 else

6 end if

  1 if (deleteKey less key in first entry)
    1 set subtree to root firstPtr
  2 else

  3 end if

    deleteKey is in right subtree
    1 set subtree to entryNdx rightPtr

    ...

7 return underflow
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2 delete (root, target, success)

    3 else
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  4 set underflow to delete(subtree, deleteKey, success)
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ALGORITHM 10-9 B-tree Underflow Reflow

Algorithm 10-9 Analysis The first part of the algorithm determines whether it is possible to correct the tree by bal-
ancing. We know that one of the subtrees is below the minimum. If we can find one
that is above the minimum, we can balance. We first check the right subtree, and if it
is above the minimum we call the borrow right algorithm. If it is not, we check the left
subtree. Again, if it is above the minimum, we call the borrow left algorithm to restore
order. If neither of the subtrees has an extra entry, we must combine them by calling a
separate combine algorithm.

Underflow can occur only when the nodes are combined. Because borrowing takes
place from a node with more than the minimum number of entries, it cannot underflow.
Therefore, when we borrow, either from the left or from the right, underflow is set to false.
On the other hand, when we combine nodes, we delete the parent entry from the root. We
must therefore check to make sure it has not underflowed. If it has, we return underflow true.

Balance
We balance a tree by rotating an entry from one sibling to another through
the parent. In reFlow we determine the direction of the rotation. The sim-
plest implementation, therefore, is to write separate algorithms, one for rotat-
ing from the left and one for rotating from the right. The rotations are
graphically shown in Figure 10-12.

Algorithm reflow (root, entryNdx)
An underflow has occurred in one of the subtrees to the 
root, identified by the entry index parameter. Correct 
underflow by either balancing or combining subtrees.

Pre    underflow has occurred in a subtree in root
       entryNdx identifies parent of underflow subtree 
Post   underflow corrected
Return underflow true if node has underflowed
Try to borrow first. Try right subtree first. 

1 if (rightTree entries greater minimum entries)
1 borrowRight (root, entryNdx, leftTree, rightTree)
2 set underflow to false

2 else
Can’t balance from right. Try left. 

1 if (leftTree entries greater minimum entries)
1 borrowLeft (root, entryNdx, leftTree, rightTree)
2 set underflow to false

2 else
Can’t borrow. Must combine entries. 

1 combine (root, entryNdx, leftTree, rightTree)
2 if (root numEntries less minimum entries)

1 set underflow to true
3 else

1 set underflow to false
4 end if

3 end if
3 end if
4 return underflow
end reflow
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FIGURE 10-12 Restoring Order by Borrowing

The pseudocode for borrow left is shown in Algorithm 10-10, and the
pseudocode for borrow right is shown in Algorithm 10-11.

ALGORITHM 10-10 B-tree Borrow Left

Algorithm borrowLeft (root, entryNdx, left, right)
It has been determined that the right subtree of root has
underflowed. Borrow a node from the left subtree and rotate 
through the parent.

Pre    root is parent of node that underflowed
       entryNdx is parent entry
       left a subtree that contains extra node(s)
       right a subtree that underflowed
Post   subtrees are balanced
Shift entries right to make room for new data in entry 0

1 shift all elements one to the right 
Move parent data down and reset right pointer

2 move root data to first entry in right
3 move right first pointer to right subtree of first entry

Moved entry’s rightPtr becomes right tree first pointer 
4 move left last right pointer to right first pointer

Move data from left to parent 
5 move left last entry data to root at entryNdx
end borrowLeft
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ALGORITHM 10-11 B-tree Borrow Right

Algorithm 10-10 and
Algorithm 10-11 Analysis The code for these two algorithms is rather straightforward. When we borrow from the

right, the parent node entry’s data, but not its subtree, moves down to become the last
entry in the left subtree. We must therefore find a new right subtree for it. We find it in
the first subtree in the right subtree (see Algorithm 10-10, statement 2). To replace the
moved first subtree, we use the right subtree of the first entry (see statement 4). 

Similarly, when we borrow from the left, the data in the last entry of the left subtree is
copied to the root entry’s data, but its pointer becomes the first pointer of the right sub-
tree. We suggest that you create several balancing situations and follow the algorithms
carefully until you are comfortable with the rotation and pointer manipulation.

Combine 
When we can’t balance, we must combine nodes. Figure 10-13 shows the logic
for combining when there is an underflow. As you study it, note that the two
subtrees and the parent entry are all combined into the left node. Then the
parent entry is deleted from its node, which may result in an underflow. What
is not apparent from the figure is that the right subtree node is then recycled.

Algorithm borrowRight (root, entryNdx, left, right)
It has been determined that the left subtree of root has
underflowed. Borrow a node from the right subtree and rotate 
through the parent.

Pre    root is parent of node that underflowed
       entryNdx is parent entry
       left a subtree that underflowed
       right a subtree that contains extra node(s)
Post   subtrees are balanced
Move parent and subtree pointer to left tree 

1 move root data to left last entry
2 move right first subtree to left last entry right subtree

Move right data to parent
3 move right first entry data to root at entryNdx

Set right tree first pointer and shift data 
4 set right firstPtr to right first entry right subtree
5 shift all entries one to the left
end borrowRight
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FIGURE 10-13 B-tree Combine

The pseudocode for combine is shown in Algorithm 10-12.

ALGORITHM 10-12 B-tree Combine

Algorithm 10-12 Analysis Once again the most difficult part of this algorithm is the subtree manipulation. Regard-
less of which subtree has underflowed, we combine all nodes into the left subtree so
we can recycle the right subtree.

Algorithm combine (root, entryNdx, left, right)
Underflow has occurred, and we are unable to borrow an entry.
The two subtrees must be combined with the parent.

Pre    root contains the parent of the underflowed entry
       entryNdx identifies the parent entry
       left and right are pointers to subtrees 
Post   parent and subtrees combined
       right tree node has been recycled
Move parent and set its rightPtr from right tree

1 move parent entry to first open entry in left subtree
2 move right subtree first subtree 

     to moved parent left subtree
Move data from right tree to left tree

3 move entries from right subtree to end of left subtree 
Now shift data in root to the left 

4 shift root data to left
end combine
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Study statement 2 carefully. We have just moved the parent data to the first empty
entry in the left subtree. Its right subtree then becomes the first subtree of the right subtree.
Remember that the first subtree identifies the subtree whose entries are greater than the
parent and less than the first entry. This subtree must therefore become the right subtree
when the parent is moved to the left subtree. 

Figure 10-14 is a summary of the B-tree deletions. It contains an exam-
ple of each of the major algorithms required to delete data from a B-tree.
Study it carefully until you understand the concepts.

FIGURE 10-14 B-tree Deletion Summary

Traverse B-tree
Now that we have a B-tree, let’s look at the logic to traverse it. Because a B-tree
is built on the same structure as the binary search tree, we can use the same
basic traversal design—the inorder traversal. The major difference, however, is
that with the exception of leaf nodes, we don’t process all of the data in a node

(c) Delete 45

(e) Delete 42

21

857414

21

85742114

42

85742114

21

2. Delete 21 from leaf

1. Copy 21 to the parent

852114 74

combinedeleteMid

3. Combine 14, 21, 74, and 85

4. Delete original root

(d) Delete 63
and 78

42

857863 742114

42

85742114

deleteEntry
63, 78

(b) Delete 97

42 74

85782114 45 632114

42 78

85 9745 63 74

78
74

borrowLeft

(a) Delete 11

7842

2114 85 9745 63 74

7821

11 14 85 9742 45 63 74

21
42

borrowRight

42

857863 742114

7442

2114 857845 63

combine
63, 74, 78, 85



Chapter 10 Multiway Trees 447

at the same time. Therefore, we must remember which entry was processed
whenever we return to a node and continue from that point. With recursion this
logic is relatively simple. Figure 10-15 shows the processing order of the entries
as we “walk around” the tree. In this figure each entry is processed as we walk
below it. Note that, as expected, the data are processed in sequential order.

FIGURE 10-15 Basic B-tree Traversal

The traversal logic is shown in Algorithm 10-13.

ALGORITHM 10-13 B-tree Traversal

Algorithm 10-13 Analysis In the inorder traversal, data are processed after the left subtree and before the right
subtree. The left subtrees are processed in the recursive call found in statement 3.1.1.
When we return from processing a subtree, therefore, we are ready to process the par-
ent entry. We do so by checking the scan count and, if it is less than the number of
entries in the node, we call an algorithm to process the data (statement 3.3.1). We

Algorithm BTreeTraversal (root)
Process tree using inorder traversal.

Pre   root is pointer to B-Tree; it may not be null
Post  every entry has been processed in order

1 set scanCount to 0
2 set nextSubTree to root left subtree
3 loop (scanCount <= number of entries)

   Test for subtree
1 if (nextSubTree not null)

1 BTreeTraversal (nextSubTree)
2 end if
   Subtree processed--get next entry
3 if (scanCount < number of entries)

1 process (entry[scanCount])
2 set nextSubTree to current entry right subtree

4 end if
5 increment scanCount

4 end loop
end BTreeTraversal

5821

42 4511 14 19 20 63 74 87

Start End
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then process the right subtree by setting the next subtree to the right subtree and con-
tinuing the loop in statement 3.

It is tempting to think that the loop can terminate when the scan count becomes
equal to the number of entries in the node. Although this is true when we are process-
ing a leaf node, it is not true for internal nodes. The loop cannot terminate because
when we have processed the data in the last entry of a node, we still need to process
its right subtree.

B-tree Search
We have seen an algorithm that searches a node, but we have not seen one
that traverses the entire tree looking for a target key. When we searched a
binary search tree, we simply returned the node that contained the target
data. Because there are multiple entries in a B-tree node, however, returning
the node is not sufficient; we must also return the entry that contains the tar-
get. Algorithm 10-14 therefore uses reference parameters for the located
node and its entry index.

ALGORITHM 10-14 B-tree Search

continued

Algorithm BTreeSearch (root, srchKey, node, foundLoc)
Recursively search a B-Tree for the srchKey key.

Pre    root is a reference to a tree or subtree
       srchKey is the data to be located
       node is a reference to a found subtree
       foundLoc is reference to index for found entry
Post   if found--
          node contains address of located node
          foundLoc contains index entry within node
       if not found--
          returns false
Return found -- true or false

1 if (empty tree)
1 return false

2 end if
3 if (srchKey < first entry)

1 return BTreeSearch (root first subtree, 
                       srchKey, node, foundLoc)

4 end if
Search from last (rightmost) entry down to first

5 set foundLoc to number of entries - 1
6 loop (srchKey < key of current entry)

1 decrement foundLoc 
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ALGORITHM 10-14 B-tree Search (continued)

Algorithm 10-14 Analysis The logic for Figure 10-15 is similar to the design we saw in Algorithm 10-3, “B-tree
Search Node.” Both algorithms search from the end of the node toward the beginning.
The major difference is that we must search the subtrees as well as the current node.
Thus we need two different recursive calls in the algorithm, the first when the target is
less than the first entry (statement 3.1) and the second when it is greater than the cur-
rent entry (statement 10).

There are two base cases: we reach a null subtree, which indicates that the target
doesn’t exist, or we find the target entry. The first base case is handled in statement 1. In
this case we simply return false.

The equal base case is shown in statement 8. Because we have set the entry num-
ber in the loop, we need only set the node address to the current root pointer and
return true.

One final point: study statement 6 carefully. What prevents the loop from running
off the beginning of the array? The answer to this question is found in statement 3. The
target’s key must be equal to or greater than the first entry’s; if it were less, we would
have followed the first pointer to the left subtree. Because we know that the target’s key
is equal to or greater than the first entry’s, it becomes a sentinel that stops the loop.
Therefore, we don’t need to test for the beginning of the loop, which makes the loop
very efficient—it need test only one condition. 

10.3 B-tree ADT
With an understanding of how a B-tree works, it should be no surprise that
the B-tree implementation is rather complex. In this section we develop code
for the key algorithms. Some are left for you to develop. Figure 10-16 pro-
vides a basic list of functions. One that is not provided is update—that is,
changing the contents of an entry. Under the current design, to change the
contents of an entry we would have to delete and reinsert it.

B-tree Data Structure
As with the other ADT structures, we implement the B-tree ADT with a head
structure and a node structure. 

Head Structure 
The B-tree head structure, BTREE, contains a count, a root pointer, and

the address of the compare function needed to search the list. The application 

7 end loop
8 if (srchKey equal to key of current entry)

1 set node to root
2 return true

9 end if
Not less than or equal so search right subtree

10 return BTreeSearch (current entry right subtree,
                   srchKey, node, foundLoc)

end BTreeSearch
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FIGURE 10-16 B-tree Function Family

program’s only view of the tree is a pointer to the head structure, which is
allocated from dynamic memory when the tree is created. The head data
structure is shown in Figure 10-17.

Node Structure
The B-tree node structure requires three separate structures: a tree head
structure, a node structure, and an entry structure. The tree head structure
contains the root pointer, any required metadata, and a pointer to the com-
pare function. The node structure stores a pointer to the node’s left subtree,
an array of entries, and a count of the current number of entries in the node.
Each data entry contains a data pointer to a structure with a key and
attributes and a pointer to the entry’s right subtree. The node structure is
shown in Figure 10-17.

User program

ADT

Public functions

compare processmain ...

Private functions

BTree_Traverse

_traverse

BTree_Search

_search

BTree_Count BTree_Full BTree_EmptyBTree_Create

_destroy

BTree_Destroy

– _borrowLeft

– _borrowRight

– _combine

– _reflow

– _searchNode

– _insertEntry

– _searchNode

– _splitNode

BTree_Insert

_insert

BTree_Delete

_delete
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FIGURE 10-17 B-tree Data Structure

Header File
The header file for the B-tree ADT contains the data structures and the pro-
totype declarations for the user interface. It is shown in Program 10-1.

PROGRAM 10-1 B-tree Declaration

continued

1
2
3
4
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12
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20
21
22
23

/* ==================== B-Tree.h ====================
This header file contains the functions for the AVL
Tree abstract data type.
   Written by:
   Date:

*/
#include <stdlib.h>
#include <stdbool.h>

// =============== CONSTANTS & MACROS ============== 
const int ORDER = 5;
const int MIN_ENTRIES = (((ORDER + 1) / 2) - 1);

// ================== STRUCTURES ================== 
struct node;

typedef struct
{
 void*        dataPtr;
 struct node* rightPtr;
} ENTRY;

typedef struct node

typedef struct
 {
  void*        dataPtr;
  struct node* rightPtr;
 } ENTRY;

typedef struct node
 {
  struct node* firstPtr;
  int          numEntries;
  ENTRY        entries[ORDER - 1];
 } NODE;
 
typedef struct
   {
    int   count; 
    NODE* root; 
    int  (*compare) (void* argu1, void* argu2); 
   } BTREE;

count root compare

dataPtr rightPtr

ENTRY

NODE

numEntriesfirstPtr entries

...
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PROGRAM 10-1 B-tree Declaration (continued)

continued
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{
 struct node* firstPtr;
 int          numEntries;
 ENTRY        entries[ORDER - 1];
} NODE;

typedef struct
   {
    int   count; 
    NODE* root; 
    int  (*compare) (void* argu1, void* argu2); 
   } BTREE;

// =========== Prototype Declarations =========== 

// User interfaces 
BTREE* BTree_Create   
       (int  (*compare) (void* argu1, void* argu2));
void   BTree_Traverse      
       (BTREE* tree, void (*process) (void* dataPtr));
BTREE* BTree_Destroy (BTREE* tree);
void   BTree_Insert  (BTREE* tree, void* dataInPtr);
bool   BTree_Delete  (BTREE* tree, void* dltKey);
void*  BTree_Search  (BTREE* tree, void* dataPtr);
bool   BTree_Empty   (BTREE* tree);
bool   BTree_Full    (BTREE* tree);
int    BTree_Count   (BTREE* tree);

// Internal BTree functions 
static void* _search 
                (BTREE* tree, void*  targetPtr,
                 NODE*  root);
static int   _searchNode 
                (BTREE* tree, NODE* nodePtr,
                 void*  target);
static bool  _delete 
                (BTREE* tree,      NODE* root,  
                 void*  dltKeyPtr, bool* success);
static bool _insert    
                (BTREE* tree,      NODE*  root,
                 void*  dataInPtr, ENTRY* upEntry);
static void _traverse 
                (NODE* root, 
                 void  (*process)(void* dataPtr));
static void _splitNode 
                (NODE*  root,    int    entryNdx, 
                 int compResult, ENTRY* upEntry);
static void _insertEntry 
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PROGRAM 10-1 B-tree Declaration (continued)

Algorithms
In this section we implement the basic algorithms for a B-tree.

B-tree Search
The search B-tree function is interesting in that it requires an ADT interface
function and an internal recursive search function. From the calling func-
tion’s point of view, all it needs to supply is the tree and the data to be
located. Whereas the pseudocode algorithm returned the key’s node address
and entry index, in the ADT we return the data pointer. (Remember that the
application does not have access to the node structure.) Internally, however,
we need to know which tree node we are processing at any given time in the
search. The code for the ADT interface is shown in Program 10-2. 

PROGRAM 10-2 B-tree Search Application Interface

continued

72
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                (NODE*  root, int entryNdx,
                 ENTRY  upEntry);
static bool _deleteEntry 
                (NODE*  node, int entryNdx);
static bool _deleteMid   
                (NODE*  root, int entryNdx,
                 NODE*  leftPtr);
static bool _reFlow      
                (NODE*  root, int entryNdx);
static void _borrowLeft  
                (NODE*  root,     int   entryNdx,
                 NODE*  leftTree, NODE* rightTree);
static void _borrowRight 
                (NODE*  root,     int   entryNdx,
                 NODE*  leftTree, NODE* rightTree);
static void _combine     
                (NODE*  root,       int   entryNdx,
                 NODE*  leftTree,   NODE* rightTree);
static void _destroy (NODE* root);

1
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/* ================== BTree_Search ==================
Search the tree for the node containing
requested key and returns pointer to its data.
   Pre    tree has been created (may be null)
          targetPtr is pointer to data structure
               containing key to be located
   Post   tree searched and data pointer returned
   Return pointer to data

*/
void* BTree_Search (BTREE* tree, void* targetPtr)
{
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PROGRAM 10-2 B-tree Search Application Interface (continued)

Internal Search Function
The internal search implementation is shown in Program 10-3. It parallels
Algorithm 10-14.

PROGRAM 10-3 Internal Search Function

continued

12
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// Statements 
if (tree->root)
    return _search 
             (tree, targetPtr, tree->root);
else
    return NULL;

} // BTree_Search 
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/* ================= _search ================= 
Search tree for node containing requested
key and returns its data to the calling function.
   Pre    BTree_Search passes tree, targetPtr, root
          targetPtr is pointer to data structure 
             containing key to be located 
   Post   tree searched and data pointer returned 
   Return address of matching node returned 
          If not found, NULL returned

*/
void* _search (BTREE* tree, void* targetPtr,
               NODE*  root)
{
// Local Definitions 

int   entryNo;

// Statements 
if (!root)
   return NULL;

if (tree->compare(targetPtr, 
                  root->entries[0].dataPtr) < 0)
    return _search (tree, 
                    targetPtr,
                    root->firstPtr);

entryNo = root->numEntries - 1;
while (tree->compare(targetPtr,
                  root->entries[entryNo].dataPtr) < 0)
   entryNo--;
if (tree->compare(targetPtr, 
                  root->entries[entryNo].dataPtr) == 0)
    return (root->entries[entryNo].dataPtr);
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PROGRAM 10-3 Internal Search Function (continued)

Program 10-3 Analysis First, note the name of the function. It begins with an underscore. It is reasonable to
assume that a programmer using the ADT may decide to use the same name as one of
our ADT functions. Therefore, to prevent duplicates, we prefix all of our internal names
with the underscore. 

We need to receive the B-tree structure because it contains the compare function
written by the user. We use the compare function first in statement 21 and again in state-
ments 28 and 31. Study these statements carefully. If you are not familiar with passing a
function, you may want to review the concept in Chapter 1.

The search begins by testing to see if the search argument found in the key pointer
is less than the first entry in the node. If it is, we follow the first pointer to the left. If it is
not, we must search the entry array for the matching entry or the correct right subtree to
continue the search. The entry array search we use is an adaptation of the ordered list
search (see Chapter 13). The major difference is that it starts from the last entry and
works forward. We search backward because each entry points to a subtree with
data whose keys are greater than or equal to the current entry’s key and less than the
next entry’s key. If we searched from the beginning, we would overshoot our target
and have to back up. By searching from the end, when we find an entry less than or
equal to the target, we have also found the subtree pointer to the subtree that contains
the desired target.

B-tree Traverse
The B-tree traversal is interesting for several reasons. First, once again we
require two functions: one for the ADT interface and one for the internal tra-
versal. Second, we must pass the name of the function that is to be used to
process each node. The user interface code, including receiving the process
function’s address as a parameter, is shown in Program 10-4. 

PROGRAM 10-4 B-tree Traverse Application Interface

continued

34
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return (_search (tree,
     targetPtr, root->entries[entryNo].rightPtr));

} // _search 

1
2
3
4
5
6
7
8
9

/* ================ BTree_Traverse ================
Process tree using inorder traversal. 
   Pre  Tree has been created (may be null)
        tree is pointer to B-Tree 
        process used to "visit" nodes in traversal
   Post Entries processed in LNR sequence

*/
void BTree_Traverse (BTREE* tree,
                     void (*process) (void* dataPtr))
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PROGRAM 10-4 B-tree Traverse Application Interface (continued)

Internal Traverse Function
Another interesting point in the traversal logic is that as we traverse the tree,
using a variation of the inorder traversal, we must deblock each entry. We
studied the deblocking logic in Algorithm 10-13, “B-tree Traversal.” The code
is shown in Program 10-5.

PROGRAM 10-5 Internal Traverse Function

continued

10
11
12
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{
// Statements 

if (tree->root)
    _traverse (tree->root, process);
return;

}  // end BTree_Traverse 
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/* =================== _traverse ===================
Traverse tree using inorder traversal. To "process" 
node, using function passed when traversal called
   Pre  tree validated in BTree_Traversal 
        root is pointer to B-Tree node 
        process is function to process an entry 
   Post All nodes processed 

*/
 void _traverse (NODE* root, 
                  void (*process) (void* dataPtr))
{
// Local Definitions 

int   scanCount;
NODE* ptr;

// Statements 

scanCount = 0;
ptr = root->firstPtr;

while (scanCount <= root->numEntries)
  {
   // Test for subtree 
   if (ptr)
       _traverse  (ptr, process);

   // Subtree processed -- get next entry 
   if (scanCount < root->numEntries)
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PROGRAM 10-5 Internal Traverse Function (continued)

B-tree Insert
The insertion logic requires several algorithms. We develop all but two of
them in this section. Insertion requires a search that returns the index entry
of the matching node. Because the logic is the same as we saw for
Program 10-3, “Internal Search Function,” we do not develop it here. The
second function we do not develop inserts an entry into the entry array. 

The implementation closely parallels the design shown in Algorithm 10-1,
“B-tree Insert.” The major difference is that the root is not returned—it is hid-
den in the ADT structure. The ADT interface function is shown in
Program 10-6.

PROGRAM 10-6 B-tree Insert Application Interface

continued
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      {
       process  (root->entries[scanCount].dataPtr);
       ptr     = root->entries[scanCount].rightPtr;
      } // if scanCount 
   scanCount++;
  } // if 
return;

}  // _traverse 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

/* ================== BTree_Insert ==================
This function inserts new data into the tree.
   Pre  tree is pointer to valid B-Tree structure 
   Post data inserted or abort if memory O/F 

*/
void BTree_Insert (BTREE* tree, void* dataInPtr)
{
// Local Definitions 

bool  taller;
NODE* newPtr;
ENTRY upEntry;

// Statements 
if (tree->root == NULL)
    // Empty Tree. Insert first node 
    if (newPtr = (NODE*)malloc(sizeof (NODE)))
       {
        newPtr->firstPtr            = NULL;
        newPtr->numEntries          = 1;
        newPtr->entries[0].dataPtr  = dataInPtr;
        newPtr->entries[0].rightPtr = NULL;
        tree->root                  = newPtr;
        (tree->count)++;
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PROGRAM 10-6 B-tree Insert Application Interface (continued)

Program 10-6 Analysis The insert ADT interface is more complex than those we have seen so far. It performs
four different processes. First, it handles the insert into a null tree. This code is shown in
statements 14 through 34. 

The second process involves inserting all nodes after the first. It consists of a single
call (statement 36) to the internal insert function. This code is identical in the pseudocode
and in the ADT. 

Once the new node has been inserted, the insert interface ADT must determine if a
new root needs to be created. The internal insert function returns a Boolean indicating
whether the height of the tree has grown. If it has, the new root is built in statements 38
through 52. Again, the code parallels the pseudocode.

Finally, if the insert was successful, the B-tree count must be updated. If other meta-
data, such as the maximum number of elements ever held in the B-tree, were necessary,
they would also be handled here. This logic is not required in the pseudocode. 
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        for (int i = 1; i < ORDER - 1; i++)
            {
             newPtr->entries[i].dataPtr  = NULL;
             newPtr->entries[i].rightPtr = NULL;
            } // for *
        return;
       } // if malloc
    else
       printf("Error 100 in BTree_Insert\a\n"), 
               exit (100);
   
taller = _insert (tree,       tree->root, 
                  dataInPtr, &upEntry);
if (taller)
   {
    // Tree has grown. Create new root 
    newPtr = (NODE*)malloc(sizeof(NODE));
    if (newPtr)
       {
        newPtr->entries[0]    = upEntry;
        newPtr->firstPtr      = tree->root;
        newPtr->numEntries    = 1;
        tree->root            = newPtr;
       } // if newPtr
    else
       printf("Overflow error 101\a\n"), 
               exit (100);
   } // if taller 

(tree->count)++;
return;

}  // BTree_Insert
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Internal Insert Function
The insert design is shown in Figure 10-6, “B-tree Insert Design.” You might
want to take a minute to review it before studying the functions in this sec-
tion. Although the functions are rather long, they closely follow the design in
Algorithm 10-2, “B-tree Insert Node,” and should be easy to follow. The code
for the internal insert function is shown in Program 10-7.

PROGRAM 10-7 Internal Insert Function

continued
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/* ==================== _insert ===================
This function uses recursion to insert the new data  
into a leaf node in the B-Tree.
   Pre    Application has called BTree_Insert,   
             which passes root and data pointers
   Post   Data have been inserted
   Return taller boolean

*/
bool _insert (BTREE* tree,      NODE*  root,
              void*  dataInPtr, ENTRY* upEntry)
{
// Local Declarations 

int  compResult;
int  entryNdx;
bool taller;

NODE* subtreePtr;

// Statements 
if (!root)
   {
    // Leaf found -- build new entry 
    (*upEntry).dataPtr  = dataInPtr;
    (*upEntry).rightPtr = NULL;
    return true;                   // tree taller 
   } // if NULL tree 

entryNdx   = _searchNode (tree, root, dataInPtr);
compResult = tree->compare(dataInPtr, 
                  root->entries[entryNdx].dataPtr);
if (entryNdx <= 0 && compResult < 0)
    // in node's first subtree 
    subtreePtr = root->firstPtr;
else
    // in entry's right subtree 
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PROGRAM 10-7 Internal Insert Function (continued)

Program 10-7 Analysis There are four major parts to the function. 
(1) If the root is null, which is a base case, we have found the leaf node for the new

data. At this point we build the new entry but do not insert it. 
(2) If we are not at a leaf, we search the node for the entry that contains the target.

If the entry is 0, the subtree may be either the node’s first pointer’s subtree or the entry’s
left subtree. After determining which, we recursively call insert node.

(3) After returning from the base case, we determine if the tree is taller or if there is
room in the current node for the new entry. If the tree is taller, we must split the node. 

(4) If the node is not taller, we insert the new entry either before or after the current
entry, depending on their relationship. 

Internal Split Node Function
The code for splitting a node is shown in Program 10-8. 

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

    subtreePtr = root->entries[entryNdx].rightPtr;
taller = _insert (tree,      subtreePtr, 
                  dataInPtr, upEntry);

// Entry inserted -- back out of tree 
if (taller)
   {
    if (root->numEntries >= ORDER - 1)
       {
        // Need to create new node 
        _splitNode (root,       entryNdx, 
                    compResult, upEntry);
        taller = true;
       } // node full 
    else
       {
        if (compResult >= 0)
           // New data >= current entry -- insert after
            _insertEntry(root, entryNdx + 1, *upEntry);
        else
           // Insert before current entry 
            _insertEntry(root, entryNdx, *upEntry);
        (root->numEntries)++;
        taller = false;
       } // else 
   } // if taller 
   
return taller;

} // _insert 
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PROGRAM 10-8 Internal Split Node Function

continued
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/* =================== _splitNode =================== 
Splits node when node is full.
   Pre  node has overflowed--Split node 
        entryNdx is index location for new data
        compResult new data < or > entryNdx key
        upEntry pointer to data to be inserted
   Post node split and upEntry contains entry to
           be inserted into parent
    or- Program aborted if memory overflow

*/
void _splitNode  (NODE* node,       int    entryNdx,
                  int   compResult, ENTRY* upEntry)
                  
{
// Local Definitions 

int   fromNdx;
int   toNdx;
NODE* rightPtr;

// Statements 
rightPtr  = (NODE*)malloc(sizeof (NODE));
if (!rightPtr)
   printf("Overflow Error 101 in _splitNode\a\n"), 
           exit (100);

// Build right subtree node 
if (entryNdx < MIN_ENTRIES)
    fromNdx  = MIN_ENTRIES;
else
    fromNdx  = MIN_ENTRIES + 1;
toNdx = 0;
rightPtr->numEntries = node->numEntries - fromNdx;
while (fromNdx < node->numEntries)
    rightPtr->entries[toNdx++]
                = node->entries[fromNdx++];
node->numEntries = node->numEntries 
                   - rightPtr->numEntries;

// Insert new entry 
if (entryNdx < MIN_ENTRIES)
   {
    if (compResult < 0)
        _insertEntry (node, entryNdx, *upEntry);
    else
        _insertEntry (node, entryNdx + 1, *upEntry);
   } // if 
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PROGRAM 10-8 Internal Split Node Function (continued)

Program 10-8 Analysis There are several interesting logical elements to this algorithm that take some thought
as you study them. For example, when we insert upEntry into the right node (state-
ments 49 to 53), we must add one to the node’s number of entries, but when we insert
it on the left (statements 42 to 45), we don’t. The reason is that the left node contains
the median entry to be inserted up into the parent, and therefore we don’t need to add
one. If we did, we would just have to subtract it after we deleted the median entry.

In a similar vein, when we insert an entry into the left node, we need to know if the
new data key is less than the entry key. If it is, we pass the entry index to insert entry; if it
is not, we pass the entry index plus one. To fully understand the reason for this difference,
you need to construct two examples and follow the insertion logic carefully.

B-tree Delete 
Deletion from a B-tree is potentially much more work than insertion. In this
section we describe five of the seven functions required by delete. As we have
seen several times, the delete requires both an ADT interface function and
an internal recursive function. The delete interface function, however, is
quite a bit simpler than the one we saw for the insert. Its code is shown in
Program 10-9. 

PROGRAM 10-9 B-tree Delete Application Interface

continued
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else
   {
    _insertEntry (rightPtr, 
                 entryNdx - MIN_ENTRIES, 
                 *upEntry);
    (rightPtr->numEntries)++;
    (node->numEntries)--;
   } // else 

upEntry->dataPtr=node->entries[MIN_ENTRIES].dataPtr;
upEntry->rightPtr  = rightPtr;
rightPtr->firstPtr 
              = node->entries[MIN_ENTRIES].rightPtr;

return;
} // _splitNode 
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/* ================= BTree_Delete ==================== 
Delete entry with key target from B-Tree
   Pre    tree must be initialized. Null tree OK
          dltKey is pointer to key to be deleted
   Post   Node entry deleted & data space freed 
          -or- An error code is returned 
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PROGRAM 10-9  B-tree Delete Application Interface (continued)

Program 10-9 Analysis Whereas the recursive delete function uses an underflow Boolean to determine when a
node is below the minimum, the root has no minimum. Therefore, in this function our
only concern is that all entries in the root may have been deleted. We handle this situ-
ation in statements 27 to 31.

Internal Delete Function
The internal delete function searches the B-tree for the entry to be deleted. If
it is found in a leaf node, the delete is simple. If it is found in an internal node,
however, a substitute in a leaf must be found. As we explained earlier, we
search the left subtree for the immediate predecessor of the entry to be
deleted. Once the substitution has been made, we can then delete the entry
we know to be in the leaf. The pseudocode design is shown in Algorithm 10-6.
The code is shown in Program 10-10.

7
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   Return Success (true) or Not found (false)
*/
bool BTree_Delete (BTREE* tree, void* dltKey)
{
// Local Definitions 

bool  success;
NODE* dltPtr;

// Statements 
if (!tree->root)
    return false;

_delete (tree, 
         tree->root, 
         dltKey, 
        &success);
    
if (success)
   {
    (tree->count)--;
    if (tree->root->numEntries == 0)
       {
        dltPtr     = tree->root;
        tree->root = tree->root->firstPtr;
        free (dltPtr);
       } // root empty 
   } // success 
return success;

}  // BTree_Delete 
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PROGRAM 10-10 Internal Delete Function

continued

1
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/* ==================== _delete ==================== 
Delete entry with key dltKey from B-Tree 
   Pre    tree must be initialized--Null tree OK 
          root is pointer to tree or subtree
          dltKey is key of entry to be deleted
          success indicates entry deleted or failed
   Post   node is deleted and its space recycled
          -or- if key not found, tree is unchanged.
          success is true / false
   Return underflow true / false

*/
bool _delete (BTREE* tree,        NODE* root, 
              void*  dltKeyPtr,   bool* success)
{
// Local Definitions 

NODE* leftPtr;
NODE* subTreePtr;
int   entryNdx;
int   underflow;

// Statements 
if (!root)
   {
    *success = false;
    return     false;
   } // null tree 

entryNdx  = _searchNode (tree, root, dltKeyPtr);
if (tree->compare(dltKeyPtr, 
    root->entries[entryNdx].dataPtr) == 0)
    {
     // found entry to be deleted 
     *success = true;
     if (root->entries[entryNdx].rightPtr == NULL)
         // entry is a leaf node 
         underflow = _deleteEntry (root, entryNdx);
     else
         // entry is in an internal node 
         {
          if (entryNdx > 0)
             leftPtr = 
                root->entries[entryNdx - 1].rightPtr;
          else
             leftPtr = root->firstPtr;
          underflow = _deleteMid 
               (root, entryNdx, leftPtr);
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PROGRAM 10-10 Internal Delete Function (continued)

Internal Delete Middle Function
Called by the internal delete function, delete middle (Program 10-11) locates
the predecessor node on the left subtree and substitutes it for the deleted
node in the root.

PROGRAM 10-11 Internal Delete Middle Function

continued

47
48
49
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          if (underflow)
             underflow = _reFlow (root, entryNdx);
         } // else internal node 
    } // else found entry 
else
    {
     if (tree->compare (dltKeyPtr, 
            root->entries[0].dataPtr) < 0)
         // delete key < first entry 
         subTreePtr = root->firstPtr;
     else
         // delete key in right subtree 
         subTreePtr = root->entries[entryNdx].rightPtr;
         
     underflow = _delete (tree,      subTreePtr, 
                          dltKeyPtr, success);   
     if (underflow)
         underflow = _reFlow (root, entryNdx);
    } // else not found *

return underflow;
} // _delete 
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/* =================== _deleteMid =================== 
Deletes entry from internal node in B-Tree 
   Pre    Tree initialized--null tree OK 
          node points to node data to be deleted 
          subtreePtr is pointer to root's subtree 
          entryNdx is entry to be deleted 
   Post   predecessor's data replaces delete data
          predecessor deleted from tree
   Return underflow true / false 

*/
bool _deleteMid   (NODE* root,
                   int   entryNdx, 
                   NODE* subtreePtr)
{
// Local Definitions 

int  dltNdx;
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PROGRAM 10-11 Internal Delete Middle Function (continued)

Program 10-11 Analysis Delete middle contains one of the more sophisticated pieces of logic in the B-tree ADT.
Study the logic in statements 34 through 38 carefully. We recursively call delete middle
until we find a leaf. When we return we know that we have deleted the substitute entry.
Now we must back out of the tree, testing at each node to see if we have under-
flowed. If we have, we must reflow the nodes and then proceed up the tree until we
reach the node that originally contained the data to be deleted. At that point we return
to delete, which also continues backing out of the tree until it reaches the root.

Internal Reflow Function
When an underflow occurs, we must reflow the nodes to make sure they are
valid. Reflow first tries to balance by borrowing from the right, then it tries to
borrow from the left; if both fail, it combines the siblings. The code is shown
in Program 10-12.

PROGRAM 10-12 Internal Reflow Function

continued

17
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int  rightNdx;
bool underflow;

// Statements 
if (subtreePtr->firstPtr == NULL)
    {
    // leaf located. Exchange data & delete leaf 
     dltNdx = subtreePtr->numEntries - 1;
     root->entries[entryNdx].dataPtr =
           subtreePtr->entries[dltNdx].dataPtr;
     --subtreePtr->numEntries;
     underflow  = subtreePtr->numEntries < MIN_ENTRIES;
    } // if leaf 
else
   {
    // Not located. Traverse right for predecessor 
    rightNdx  = subtreePtr->numEntries - 1;
    underflow = _deleteMid (root, entryNdx,
           subtreePtr->entries[rightNdx].rightPtr);
    if (underflow)
       underflow = _reFlow (subtreePtr, rightNdx);
   } // else traverse right 
return underflow;

} // _deleteMid 

1
2
3
4
5

/* ===================== _reFlow ===================== 
An underflow has occurred in a subtree to root. 
Correct by balancing or concatenating. 
   Pre    root is pointer to underflow tree/subtree
          entryNdx is parent of underflow subtree
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PROGRAM 10-12 Internal Reflow Function (continued)

Internal Borrow Left or Right
When we underflow we first try to balance the tree by borrowing a node from
the right sibling. If that doesn’t work, we try to borrow from the left. These
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   Post   Underflow corrected
   Return underflow true / false 

*/
bool _reFlow  (NODE* root, int entryNdx)
{
// Local Definitions 

NODE* leftTreePtr;
NODE* rightTreePtr;
bool  underflow;

// Statements 
if (entryNdx == 0)
   leftTreePtr = root->firstPtr;
else
   leftTreePtr = root->entries[entryNdx - 1].rightPtr;
rightTreePtr   = root->entries[entryNdx].rightPtr;

// Try to borrow first 
if (rightTreePtr->numEntries > MIN_ENTRIES)
       {
        _borrowRight (root,        entryNdx, 
                      leftTreePtr, rightTreePtr);
        underflow   = false;
       } // if borrow right 
else
   {
    // Can't borrow from right--try left 
    if (leftTreePtr->numEntries > MIN_ENTRIES)
       {
        _borrowLeft (root,        entryNdx,
                     leftTreePtr, rightTreePtr);
        underflow  = false;
       } // if borrow left *
   else
       {
        // Can't borrow. Must combine nodes. 
       _combine (root,        entryNdx, 
                 leftTreePtr, rightTreePtr);
        underflow = (root->numEntries < MIN_ENTRIES);
       } // else combine 
   } // else borrow right 
return underflow;

} // _reFlow 
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two functions are mirror logic; they are identical except for the direction. The
logic for borrow right is shown in Program 10-13.

PROGRAM 10-13 Internal Borrow Right Function
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/* ================= _borrowRight ================ 
Root left subtree underflow. Borrow from right 
and rotate. 
   Pre    root is parent node to underflow node
          entryNdx is parent entry
          leftTreePtr is underflowed subtree 
          rightTreePtr is subtree w/ extra entry
   Post   Underflow corrected

*/
void _borrowRight (NODE* root,
                   int   entryNdx, 
                   NODE* leftTreePtr, 
                   NODE* rightTreePtr)
{
// Local Definitions 

int toNdx;
int shifter;

// Statements 
// Move parent and subtree pointer to left tree 
toNdx = leftTreePtr->numEntries;
leftTreePtr->entries[toNdx].dataPtr
      = root->entries[entryNdx].dataPtr;
leftTreePtr->entries[toNdx].rightPtr 
      = rightTreePtr->firstPtr;
++leftTreePtr->numEntries;

// Move right data to parent 
root->entries[entryNdx].dataPtr
      = rightTreePtr->entries[0].dataPtr;

// Set right tree first pointer. Shift entries left 
rightTreePtr->firstPtr 
      = rightTreePtr->entries[0].rightPtr;
shifter = 0;
while (shifter < rightTreePtr->numEntries - 1)
   {
    rightTreePtr->entries[shifter] 
          = rightTreePtr->entries[shifter + 1];
    ++shifter;
   } // while 
--rightTreePtr->numEntries;
return;

} // _borrowRight 
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Internal Combine Nodes Function
If we can’t borrow a node from a sibling, we must combine two nodes. The
logic to combine nodes is shown in Program 10-14.

PROGRAM 10-14 Internal Combine Nodes Function
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/* ==================== _combine ==================== 
Underflow cannot be corrected by borrowing. 
Combine two subtrees.
   Pre  root contains parent to underflow node
        entryNdx is parent entry
        leftTreePtr & rightTreePtr are subtree ptrs
   Post Parent & subtrees combined-right node freed

*/
void _combine (NODE* root,        int   entryNdx, 
               NODE* leftTreePtr, NODE* rightTreePtr)
{
// Local Definitions 

int toNdx;
int fromNdx;
int shifter;

// Statements 
// Move parent & set its right pointer from right tree 
toNdx = leftTreePtr->numEntries;
leftTreePtr->entries[toNdx].dataPtr 
        = root->entries[entryNdx].dataPtr;
leftTreePtr->entries[toNdx].rightPtr 
        = rightTreePtr->firstPtr;
++leftTreePtr->numEntries;
--root->numEntries;

// move data from right tree to left tree 
fromNdx = 0;
toNdx++;
while (fromNdx < rightTreePtr->numEntries)
    leftTreePtr->entries[toNdx++] 
         = rightTreePtr->entries[fromNdx++];
leftTreePtr->numEntries += rightTreePtr->numEntries;
free (rightTreePtr);

// Now shift data in root to the left 
shifter = entryNdx;
while (shifter < root->numEntries)
   {
  root->entries[shifter] = 
       root->entries[shifter + 1];
    shifter++;
   } // while 
return;

} // _combine 
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10.4 Simplified B-trees
Computer scientists have assigned unique names to two specialized B-trees:
2-3 trees and 2-3-4 trees. We discuss them briefly. Both are well suited to
internal search trees.

2-3 Tree
The 2-3 tree is a B-tree of order 3. It gets its name because each nonroot node
has either two or three subtrees (the root may have zero, two, or three sub-
trees). Figure 10-18 contains two 2-3 trees. The first is complete; that is, it
has the maximum number of entries for its height. The second has more than
twice as many entries, but some of the entries are empty. Note also that sub-
tree 94 has only two descendents.

FIGURE 10-18 2-3 Trees

2-3-4 Tree
Figure 10-19 contains a B-tree of order 4. This type of tree is sometimes
called a 2-3-4 tree because each node can have two, three, or four children.

FIGURE 10-19 2-3-4 Tree

7233

68422317 9685

(a) Complete 2-3 tree
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10.5 B-tree Variations
There are two popular variations on the B-tree. Although their manipulation
is beyond the scope of this text, you should be aware of the variations.

B*tree
When we use a B-tree to store a large number of entries, the space require-
ments can become excessive because up to 50% of the entries can be empty.
The first variation, the B*tree, addresses the space usage for large trees. Rather
than each node containing a minimum of one-half the maximum entries, the
minimum is set at two-thirds.2

In a B*tree, when a node overflows, instead of being split immediately,
the data are redistributed among the node’s siblings, delaying the creation of
a new node. Splitting occurs only when all of the siblings are full. Further-
more, when the nodes are split, data from two full siblings are divided among
the two full nodes and a new node, with the result that all three nodes are
two-thirds full. Figure 10-20 shows how redistribution is handled when a
node in a B*tree of order 5 overflows.

FIGURE 10-20 B*tree Insertion

B+tree
In large file systems, data need to be processed both randomly and sequen-
tially. In these situations the most popular file organization methods use the
B-tree to process the data randomly. However, much processing time is taken
up moving up and down the tree structure when the data need to be pro-
cessed sequentially. This inefficiency has led to the second B-tree variation,
the B+tree.

2. Note that when the root in a root-only tree is split, its two subtrees are only half full.
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There are two differences between the B-tree and the B+tree:

1. Each data entry must be represented at the leaf level, even though there
may be internal nodes with the same keys. Because the internal nodes are
used only for searching, they generally do not contain data.

2. Each leaf node has one additional pointer, which is used to move to the
next leaf node in sequence. This structure is shown in Figure 10-21. 

FIGURE 10-21 B+tree

When we process the data randomly, we modify the tree search to find
the target data only at a leaf. The search time is thus increased slightly. How-
ever, to process the data sequentially, we simply locate the far-left entry and
then process the data as though we were processing a linked list in which
each node is an array. 

10.6 Lexical Search Tree
Instead of searching a tree using the entire value of a key, we can consider
the key to be a sequence of characters, such as a word or a nonnumeric iden-
tifier (e.g., a telephone number). When placed in a tree, each node has a
place for each of the possible values that the characters in the lexical tree can
assume. For example, if a key can contain the complete alphabet, each node
has 26 entries, one for each of the letters of the alphabet. This is known as a
lexical 26-ary tree. 

Each entry in the lexical search tree contains a pointer to the next level. In
addition, each node of a 26-ary tree contains 26 pointers, the first represent-
ing the letter A, the second the letter B, and so forth until the last pointer,
which represents Z. Because each letter in the first level must point to a com-
plete set of values, the second level contains 26 × 26 entries, one node of 26
entries for each of the 26 letters in the first level. Similarly, the third level has
26 × 26 × 26 entries. Finally, we store the actual key at a leaf.

If a key has three letters, there are at least three levels in the tree. If a
key has 10 letters, there are 10 levels in the tree. Because a lexical tree can

10 data8 data 32 data21 data 53 data 76 data 93 data78 data
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contain many different keys, the largest word determines the height of the
tree. Figure 10-22 illustrates a lexical tree.

FIGURE 10-22 Lexical Tree Structure

Tries
The problem with the lexical m-ary tree is that after a few levels it becomes
very large. To prevent this, we prune the tree; that is, we cut all of the branches
that are not needed. We identify a pruned branch with a null pointer. For
example, if no key starts with the letter X, then at level 0 the X pointer is null,
thus eliminating its subtree completely. Similarly, after the letter Q, the only
valid letter is U (we will not worry about the very few exceptions). All of the
pointers in the Q branch except U are therefore set to null, again eliminating
all but the U subtree from level 1 down. The resulting structure is called a trie
(short for reTRIEval and pronounced “try”).

As an example, let’s create a spell checker using a trie. A spell checker is
not a dictionary; it contains only words and not their definitions. Each word
in our spell checker is one entry in the trie, the correct spelling of a word. To
demonstrate the idea, let’s build a small spell checker trie that checks only
the spelling of a few words containing the letters A, B, C, E, and T.

Here we need a 5-ary trie because we have a total of five characters in
these words (A, B, C, E, and T). The trie must have four levels because each
word has at most three characters. Our trie is shown in Figure 10-23.

Although Figure 10-23 contains the complete spelling for each word, we
have eliminated the third and fourth levels of the trie for the letter A because
it can be fully identified by the first level under A. This is another form of
pruning. Similarly, we have eliminated the third and fourth levels for EAT
because it’s the only word starting with E.

To search our spell checker for the word CAB, we check the first level of
the trie at the letter C. Because it is not null, we follow the pointer to the sec-
ond level, this time checking for the letter A. Again, there is a valid pointer at
A, so we follow it to the node representing CA and check the B position. At
this point we check the entry pointer and find CAB.

A B C ZY
…

A B C ZY
…

A B C ZY
…

A B C ZY
… …

A B C ZY
…

A B C ZY
…

AAA AAZ

……

ZZZZZA
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FIGURE 10-23 Spell Checker Trie

Now let’s try to find CTA in our spell checker. We begin by checking the
C position in the first node and find a valid pointer to the C node. However,
when we check the T location in the second level, we find that the pointer is
null. We then check the entry pointer, which is null, indicating that there is
no valid word CTA in our spell checker.

Trie Structure
From the above discussion, we derive the structure for a trie. Each node
needs two pointer types: one to the subtrees of the trie and one to the data.
Each letter in the alphabet for the trie must be represented in each node.
This gives us the node structure shown below.

Trie Search
Let’s write an algorithm to search our trie in Figure 10-23. We need two
parameters: one for the dictionary trie and one for the word to be looked up.
We use the trie structure shown above for the dictionary and a simple string
for the word. The pseudocode is shown in Algorithm 10-15.

trie
   entryPtr 
   ltrPtrs 

end trie

TEA

A B C E TA B C E T A B C E T A B C E T A B C E T A B C E T

A B C E T A B C E T A B C E T A B C E T A B C E T

A B C E T A B C E T A B C E T A B C E T A B C E T

A B C E T

TABBEATE

CATCABBEEACTACE

EATA
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ALGORITHM 10-15 Trie Search

Algorithm 10-15 Analysis This algorithm’s simplicity demonstrates the power of trees. As we search down the
tree, we first compare the word associated with the trie node with our target word to
see if we have found it. If not, we test to see if the dictionary word length at the current
level, represented by the variable index ltrNdx, is greater than the word length. If it
is, we know that the word is not in the dictionary.

The implementation of the code in statements 3.5 and 3.6 varies depending on the
language. Most languages have a method of turning a letter into an index. Once the
next letter in the word has been converted to an index (chNdx), we can use it to pick up
the pointer to the next trie level. 

Algorithm searchTrie (dictionary, word)
Search the dictionary trie for word.

Pre    dictionary is a valid trie with alphabet ABCET
Return true if word in dictionary, false if not

1 set root   to dictionary
2 set ltrNdx to 0 
3 loop (root not null)

1 if (root entry equals word)
1 return true

2 end if
3 if (ltrNdx >= word length)

1 return false
4 end if
5 set chNdx to word[ltrNdx] 
6 set root  to chNdx subtree 
7 increment ltrNdx 

4 end loop
5 return false
end searchTrie
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10.7 Key Terms

10.8 Summary
❏ An m-way tree is a search tree in which:

1. Each node has 0 to m subtrees.

2. Given a node with k < m subtrees, the node contains k subtree point-
ers, some of which may be null, and k – 1 data entries.

3. The key values in the first subtree are all less than the key in the first
entry; the key values in the other subtrees are all greater than or equal
to the key in their parent entry.

4. The keys of the data entries are ordered key1 <= key2 <= … <= keyk.

5. All subtrees are multiway trees.

❏ A B-tree is an m-way tree in which:

1. The root is either a leaf or it has 2, 3, … m subtrees.

2. All internal nodes have at least m / 2 nonnull subtrees and at most m
nonnull subtrees.

3. All leaf nodes are at the same level; that is, the tree is perfectly balanced.

4. A leaf node has at least m / 2 – 1 and at most m – 1 entries.

❏ B-tree insertion takes place at a leaf node. An insert to a full node creates
a condition known as overflow. Overflow requires that the leaf node be
split into two nodes, each containing half of the data.

❏ Three points must be considered when we delete an entry from a B-tree.
First, we must ensure that the data to be deleted are actually in the tree.
Second, if the node does not have enough entries after the deletion, we
need to correct the structure deficiency (underflow). Third, we can delete
only from a leaf node.

❏ Because a B-tree is a search tree, we use the inorder traversal to traverse
the tree and visit each node in order.

❏ There are two special B-trees: 2-3 trees and 2-3-4 trees.

2-3 tree
2-3-4 tree
balance
B*tree
B+tree
B-tree
B-tree order
combine

lexical search tree
m-way tree
overflow
prune
reflow
trie
underflow
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❏ The 2-3 tree is a B-tree of order 3. Each node except the root can have two
or three subtrees.

❏ The 2-3-4 tree is a B-tree of order 4. Each node except the root can have
two, three, or four subtrees.

❏ There are two popular variations of the B-tree: B*tree and B+tree.

❏ In a B*tree, each node contains a minimum of two-thirds of the maximum
entries allowed for each node.

❏ In a B+tree, data entries are found only at the leaf level, and each leaf
node has an additional pointer that is used to connect to the next leaf.

❏ In the lexical m-ary tree, the key is represented as a sequence of charac-
ters. Each entry in the lexical tree contains a pointer to the next level.

❏ A trie is a lexical m-ary tree in which the pointers pointing to nonexisting
characters are replaced by null pointers.

10.9 Practice Sets

Exercises
1. Calculate the maximum number of data entries in a:

a. 3-way tree of height 3
b. 4-way tree of height 5
c. m-way tree of height h

2. Calculate the maximum number of data entries in a:

a. B-tree of order 5 with a height of 3
b. B-tree of order 5 with a height of 5
c. B-tree of order 5 with a height of h

3. Draw the B-tree of order 3 created by inserting the following data arriving
in sequence:

4. Draw the B-tree of order 4 created by inserting the following data arriving
in sequence:

5. Draw two B-trees of order 3 created by inserting data arriving in sequence
from the two sets shown below. Compare the two B-trees to determine
whether the order of data creates different B-trees.

92 24 6 7 11 8 22 4 5 16 19 20 78

92 24 6 7 11 8 22 4 5 16 19 20 78
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6. Draw two different B-trees of order 3 that can store seven entries.

7. Create a B*tree of order 5 for the following data arriving in sequence:

8. Create a B+tree of order 5 for the following data arriving in sequence:

9. Draw a trie made from all 3-bit binary numbers (000 to 111).

10. Using the B-tree of order 3 shown in Figure 10-24, add 50, 78, 101, and 232.

FIGURE 10-24 B-tree for Exercises 10 and 11

11. Using the B-tree of order 3 (without the updates in Exercise 10) shown in
Figure 10-24, delete 63, 90, 41, and 60.

Problems
12. Rewrite the B-tree insertion algorithm using a stack instead of recursion.

13. Rewrite the B-tree deletion algorithm using a stack instead of recursion.

14. Write the search algorithm for a B+tree.

15. Write an algorithm that traverses a trie and prints all of its words in lexi-
cal order.

16. Write the C code for a B-tree count algorithm.

17. Write the C code for _insertEntry.

18. Write the C code for _searchNode.

19. Write the C code for _borrowLeft.

20. Write the C code for _deleteEntry.

89 78 8 19 20 33 56 44
44 56 33 20 19 8 78 89

92 24 6 7 11 8 22 4 5 16 19 20 78

92 24 6 7 11 8 22 4 5 16 19 20 78

60 80

85 967040 47

14 27 41 43 51 73 7563 87 90 9982
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Projects
21. Using the B-tree ADT, create a B-tree of order 7 that has 100 entries. Use

a random-number generator to randomly create the keys between 1 and
1000. Then create a menu-driven user interface that allows the user to
delete, insert, and retrieve data or to print the tree.

22. Create an ADT for a B+tree. In the tree structure, provide an additional
metadata variable that identifies the address of the far-left node in the file.
Then modify the traversal function to use the address of the far-left node
and the next node pointers to traverse the tree.

23. The B-tree structure we studied can be used to create an indexed file. An
indexed file contains an index structure to search for data in the file. Each
entry in the index contains the data key from the file and the address of the
data record in the file. The index can be created when the file is opened or
it can be stored as a separate file on the disk.

Write a program that uses the B-tree ADT to create a file index in
dynamic memory. When the program starts, it reads the file and creates
the B-tree index. After the index has been created, provide a menu-driven
user interface that allows the user to retrieve a specified record, insert new
records, delete records, and traverse the file, printing all of the data. You
may use any appropriate application data, such as a collection of CDs or
library books, for the file.

24. In Project 23 we created a B-tree index by reading the file. Rather than
read the file each time the program starts, we could store the index as a
separate file on the disk. In this case, when the program starts, the index
is read and inserted into the B-tree. When the program is done, the
updated B-tree index is written back to the disk. Modify the program from
Project 23 to store the index on the disk.

25. The B-tree index project can be maintained on a disk rather than in
dynamic memory. The first record on the index file should contain meta-
data about the index, including the location of the root entry in the file and
the address of the compare function for the data. Modify the B-tree ADT to
maintain the B-tree on a disk. In this version of the ADT, the create B-tree
function is replaced by an open file function. The compare function must
be defined when the file is opened.

26. As a final variation on the B-tree index project, rework Project 25 as a B+tree.
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Chapter 11
Graphs

We have studied many different data structures. We started by looking at sev-
eral data structures that deal with linear lists in which each node has a single
successor. Then we looked at tree structures in which each node could have
multiple successors but just one predecessor. In this last chapter, we turn our
attention to a data structure—graphs—that differs from all of the others in
one major concept: each node may have multiple predecessors as well as mul-
tiple successors.

Graphs are very useful structures. They can be used to solve complex
routing problems, such as designing and routing airlines among the airports
they serve. Similarly, they can be used to route messages over a computer net-
work from one node to another.

11.1 Basic Concepts
A graph is a collection of nodes, called vertices, and a collection of segments,
called lines, connecting pairs of vertices. In other words, a graph consists of
two sets, a set of vertices and a set of lines. 

Graphs may be either directed or undirected. A directed graph, or digraph for
short, is a graph in which each line has a direction (arrow head) to its succes-
sor. The lines in a directed graph are known as arcs. In a directed graph, the
flow along the arcs between two vertices can follow only the indicated direc-
tion. An undirected graph is a graph in which there is no direction (arrow head) on
any of the lines, which are known as edges. In an undirected graph, the flow
between two vertices can go in either direction. Figure 11-1 contains an
example of both a directed graph (a) and an undirected graph (b).

A path is a sequence of vertices in which each vertex is adjacent to the
next one. In Figure 11-1, {A, B, C, E} is one path and {A, B, E, F} is another.
Note that both directed and undirected graphs have paths. In an undirected
graph, you may travel in either direction.
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FIGURE 11-1 Directed and Undirected Graphs

Two vertices in a graph are said to be adjacent vertices (or neighbors) if there
is a path of length 1 connecting them. In Figure 11-1(a), B is adjacent to A,
whereas E is not adjacent to D; on the other hand, D is adjacent to E. In Fig-
ure 11-1(b), E and D are adjacent, but D and F are not.

A cycle is a path consisting of at least three vertices that starts and ends
with the same vertex. In Figure 11-1(b), B, C, D, E, B is a cycle. Note, how-
ever, that the same vertices in Figure 11-1(a) do not constitute a cycle
because in a digraph a path can follow only the direction of the arc, whereas
in an undirected graph a path can move in either direction along the edge.
A loop is a special case of a cycle in which a single arc begins and ends with
the same vertex. In a loop the end points of the line are the same.

FIGURE 11-2 Cycles and Loops

Two vertices are said to be connected if there is a path between them. A
graph is said to be connected if, ignoring direction, there is a path from any
vertex to any other vertex. Furthermore, a directed graph is strongly connected

Graphs may be directed or undirected. In a directed graph, each line, called an arc, has a direction indi-
cating how it may be traversed. In an undirected graph, the line is known as an edge, and it may be
traversed in either direction.

A graph is a collection of nodes, called vertices, and line segments, called arcs or edges, that connect
pairs of nodes.
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if there is a path from each vertex to every other vertex in the digraph.
A directed graph is weakly connected if at least two vertices are not connected.
(A connected undirected graph would always be strongly connected, so the
concept is not normally used with undirected graphs.) A graph is a disjoint graph
if it is not connected. Figure 11-3 contains a weakly connected graph (a), a
strongly connected graph (b), and a disjoint graph (c).

FIGURE 11-3 Connected and Disjoint Graphs

The degree of a vertex is the number of lines incident to it. In Figure 11-3(a)
the degree of vertex B is 3 and the degree of vertex E is 4. The outdegree of a vertex
in a digraph is the number of arcs leaving the vertex; the indegree is the number of
arcs entering the vertex. Again, in Figure 11-3(a) the indegree of vertex B is 1
and its outdegree is 2; in Figure 11-3(b) the indegree of vertex E is 3 and its out-
degree is 1. 

One final point: a tree is a graph in which each vertex has only one pre-
decessor; however, a graph is not a tree. We will see later in the chapter
that some graphs have one or more trees in them that can be algorithmi-
cally determined.

11.2 Operations
In this section we define six primitive graph operations that provide the basic
modules needed to maintain a graph: insert a vertex, delete a vertex, add an
edge, delete an edge, find a vertex, and traverse a graph. As we will see, the
graph traversal involves two different traversal methods.

Insert Vertex
Insert vertex adds a new vertex to a graph. When a vertex is inserted, it is dis-
joint; that is, it is not connected to any other vertices in the list. Obviously,
inserting a vertex is just the first step in the insertion process. After a vertex is
inserted, it must be connected. Figure 11-4 shows a graph before and after a
new vertex is added.
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FIGURE 11-4 Insert Vertex

Delete Vertex
Delete vertex removes a vertex from the graph. When a vertex is deleted, all
connecting edges are also removed. Figure 11-5 shows an example of deleting
a vertex.

FIGURE 11-5 Delete Vertex

Add Edge
Add edge connects a vertex to a destination vertex. If a vertex requires multi-
ple edges, add an edge must be called once for each adjacent vertex. To add
an edge, two vertices must be specified. If the graph is a digraph, one of
the vertices must be specified as the source and one as the destination.
Figure 11-6 shows an example of adding an edge, {A, E}, to the graph.

FIGURE 11-6 Add Edge
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Delete Edge
Delete edge removes one edge from a graph. Figure 11-7 shows an example
that deletes the edge {A, E} from the graph.

FIGURE 11-7 Delete Edge

Find Vertex
Find vertex traverses a graph, looking for a specified vertex. If the vertex is found,
its data are returned. If it is not found, an error is indicated. In Figure 11-8
find vertex traverses the graph, looking for vertex C.

FIGURE 11-8 Find Vertex

Traverse Graph
There is always at least one application that requires that all vertices in a
given graph be visited; that is, there is at least one application that requires
that the graph be traversed. Because a vertex in a graph can have multiple
parents, the traversal of a graph presents some problems not found in the tra-
versal of linear lists and trees. Specifically, we must somehow ensure that we
process the data in each vertex only once. However, because there are multi-
ple paths to a vertex, we may arrive at it from more than one direction as we
traverse the graph. The traditional solution to this problem is to include a vis-
ited flag at each vertex. Before the traversal we set the visited flag in each ver-
tex to off. Then, as we traverse the graph, we set the visited flag to on to
indicate that the data have been processed.

There are two standard graph traversals: depth first and breadth first.
Both use the visited flag. 

Depth-first Traversal
In the depth-first traversal, we process all of a vertex’s descendents before we move
to an adjacent vertex. This concept is most easily seen when the graph is a
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tree. In Figure 11-9 we show the tree preorder traversal-processing sequence,
one of the standard depth-first traversals.

FIGURE 11-9 Depth-first Traversal of a Tree 

In a similar manner, the depth-first traversal of a graph starts by process-
ing the first vertex of the graph. After processing the first vertex, we select any
vertex adjacent to the first vertex and process it. As we process each vertex, we
select an adjacent vertex until we reach a vertex with no adjacent entries.
This is similar to reaching a leaf in a tree. We then back out of the structure,
processing adjacent vertices as we go. It should be obvious that this logic
requires a stack (or recursion) to complete the traversal.

The order in which the adjacent vertices are processed depends on how
the graph is physically stored. When we discuss the insertion logic later in the
chapter, you will see that we insert the arcs in ascending key sequence.
Because we are using a stack, however, the traversal processes adjacent verti-
ces in descending, or last in–first out (LIFO), order.

Let’s trace a depth-first traversal through the graph in Figure 11-10. The
number in the box next to a vertex indicates the processing order. The stacks
below the graph show the stack contents as we work our way down the graph
and then as we back out.

1. We begin by pushing the first vertex, A, into the stack.

2. We then loop, pop the stack, and, after processing the vertex, push all of
the adjacent vertices into the stack. To process X at step 2, therefore, we
pop X from the stack, process it, and then push G and H into the stack,
giving the stack contents for step 3 as shown in Figure 11-10(b)—H G.

3. When the stack is empty, the traversal is complete.

In the depth-first traversal, all of a node’s descendents are processed before moving to an 
adjacent node.

Depth-first traversal: A  B  E  F  C  D  G  H  I

C

A

B

E F G IH

D



Chapter 11 Graphs 487

FIGURE 11-10 Depth-first Traversal of a Graph

Breadth-first Traversal
In the breadth-first traversal of a graph, we process all adjacent vertices of a vertex
before going to the next level. We first saw the breadth-first traversal of a tree
in Chapter 6. Looking at the tree in Figure 11-11, we see that its breadth-first
traversal starts at level 0 and then processes all the vertices in level 1 before
going on to process the vertices in level 2.

FIGURE 11-11 Breadth-first Traversal of a Tree

The breadth-first traversal of a graph follows the same concept. We
begin by picking a starting vertex (A); after processing it we process all of its
adjacent vertices (BCD). After we process all of the first vertex’s adjacent ver-
tices, we pick its first adjacent vertex (B) and process all of its vertices, then
the second adjacent vertex (C) and all of its vertices, and so forth until we
are finished.

In Chapter 6 we saw that the breadth-first traversal uses a queue rather
than a stack. As we process each vertex, we place all of its adjacent vertices
in the queue. Then, to select the next vertex to be processed, we delete a ver-
tex from the queue and process it. Let’s trace this logic through the graph in
Figure 11-12.
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FIGURE 11-12 Breadth-first Traversal of a Graph

1. We begin by enqueuing vertex A in the queue.

2. We then loop, dequeuing the queue and processing the vertex from the
front of the queue. After processing the vertex, we place all of its adjacent
vertices into the queue. Thus, at step 2 in Figure 11-12(b), we dequeue
vertex X, process it, and then place vertices G and H in the queue. We are
then ready for step 3, in which we process vertex G.

3. When the queue is empty, the traversal is complete.

11.3 Graph Storage Structures
To represent a graph, we need to store two sets. The first set represents the
vertices of the graph, and the second set represents the edges or arcs. The
two most common structures used to store these sets are arrays and linked
lists. Although the arrays offer some simplicity and processing efficiencies,
the number of vertices must be known in advance. This is a major limitation.

Adjacency Matrix
The adjacency matrix uses a vector (one-dimensional array) for the vertices and a
matrix (two-dimensional array) to store the edges (see Figure 11-13). If two
vertices are adjacent—that is, if there is an edge between them—the matrix
intersect has a value of 1; if there is no edge between them, the intersect is
set to 0. 

If the graph is directed, the intersection in the adjacency matrix indicates
the direction. For example, in Figure 11-13(b) there is an arc from source
vertex B to destination vertex C. In the adjacency matrix, this arc is seen as a

In the breadth-first traversal, all adjacent vertices are processed before processing the descendents of 
a vertex.
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1 in the intersection from B (on the left) to C (on the top). Because there is
no arc from C to B, however, the intersection from C to B is 0. On the other
hand, in Figure 11-13(a) the edge from B to C is bidirectional; that is, you
can traverse it in either direction because the graph is nondirected. Thus, the
nondirected adjacency matrix uses a 1 in the intersection from B to C as well
as in the intersection from C to B. In other words, the matrix reflects the fact
that you can use the edge to go either way.

FIGURE 11-13 Adjacency Matrix

In addition to the limitation that the size of the graph must be known
before the program starts, there is another serious limitation in the adjacency
matrix: only one edge can be stored between any two vertices. Although this
limitation does not prevent many graphs from using the matrix format, some
network structures require multiple lines between vertices.

Adjacency List
The adjacency list uses a two-dimensional ragged array to store the edges. An
adjacency list is shown in Figure 11-14.

In the adjacency matrix representation, we use a vector to store the vertices and a matrix to store 
the edges.

(b) Adjacency matrix for directed graph
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FIGURE 11-14 Adjacency List

The vertex list is a singly linked list of the vertices in the list. Depending on
the application, it could also be implemented using doubly linked lists or cir-
cularly linked lists. The pointer at the left of the list links the vertex entries.
The pointer at the right in the vertex is a head pointer to a linked list of edges
from the vertex. Thus, in the nondirected graph on the left in Figure 11-14,
there is a path from vertex B to vertices A, C, and E. To find these edges in
the adjacency list, we start at B’s vertex list entry and traverse the linked list
to A, then to C, and finally to E.  

11.4 Graph Algorithms
In this section we develop a minimum set of algorithms that are needed to
create and maintain a directed graph. In addition to the operations described
in Section 11-2, “Operations,” we include several others, such as create
graph, that are required in programming graph applications. The nature of
the application determines which other operations are required. For example,
it may be necessary to write algorithms that return the vertex count or a ver-
tex’s indegree or outdegree.

Before we discuss the algorithms, we need to design the data structure we
use for storing the graph. The most flexible structure is the adjacency list
implemented as a singly linked list. In addition to the vertex and adjacency
structures shown in Figure 11-14, we include a head structure. The head
structure stores metadata about the list. For our algorithms we store only a
count of the number of vertices in the graph. Examples of other metadata that
can be stored include a rear pointer to the end of the vertex list and a count of
the total arcs in the graph. The graph data structure is shown in Figure 11-15.

Note that the graph data, if any, are stored in the vertex node. These data
pertain only to the vertex. Later we will see a structure that requires that we
store data about an arc. In that case we store the arc data in the arc vertex.
The pseudocode for the graph structure is shown in Algorithm 11-1.

In the adjacency list, we use a linked list to store the vertices and a two-dimensional linked list to store
the arcs.
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FIGURE 11-15 Graph Data Structure

ALGORITHM 11-1 Data Structure for Graph

In addition to the data and pointers, each vertex entry contains a count of
the number of arcs pointing to it—the indegree—and the number of arcs
leaving it—the outdegree. The indegree count serves a very useful purpose.
When we delete a vertex, we must ensure that there are no arcs pointing to it.
If there are, any reference to the deleted vertex using the arc pointer causes
the program to fail. Therefore, our delete algorithm does not allow a vertex to
be deleted if any arcs are pointing to it.

Finally, we have a field, processed, that is used only for traversals. It
indicates that the data in a vertex are waiting to be processed or have already
been processed during the current traversal.

Create Graph
Create graph initializes the metadata elements for a graph head structure.
The code is shown in Algorithm 11-2.

graphHead
count 
first 

end graphHead

graphVertex
nextVertex  
data 
inDegree 
outDegree 
processed 
firstArc 

end graphVertex

graphArc
destination 
nextArc 

end graphArc

count first

graphHead

datanextVertex inDegree outDegree firstArcprocessed

graphVertex

nextArcdestination

graphArc
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ALGORITHM 11-2 Create Graph

Insert Vertex
Insert vertex adds a disjoint—that is, an unconnected—vertex to the graph.
The arcs associated with the vertex must be inserted separately. The
pseudocode is shown in Algorithm 11-3.

ALGORITHM 11-3 Insert Vertex

Algorithm 11-3 Analysis This is the basic singly linked list insertion situation. After allocating memory for the new
vertex, we move in the data and set all of its metadata values to null.

Because the graph does not contain an integrated header structure, we must handle
insertions into an empty graph and insertions before the first vertex as special cases. The
insertion into a null list is handled in statement 5.1. Inserting before the first vertex is han-
dled in statement 6.2.1.

Algorithm createGraph
Initializes the metadata elements of a graph structure.

   Pre  graph is a reference to metadata structure
   Post metadata elements have been initialized

1 set count to 0
2 set first to null
3 return graph head 
end createGraph

Algorithm insertVertex (graph, dataIn)
Allocates memory for a new vertex and copies the data to it. 

Pre    graph is a reference to graph head structure 
       dataIn contains data to be inserted into vertex
Post   new vertex allocated and data copied

1 allocate memory for new vertex
2 store dataIn in new vertex 
3 initialize metadata elements in newNode 
4 increment graph count 

Now find insertion point 
5 if (empty graph)

1 set graph first to newNode
6 else

1 search for insertion point
2 if (inserting before first vertex)

1 set graph first to new vertex
3 else

1 insert new vertex in sequence
7 end if
end insertVertex



Chapter 11 Graphs 493

Delete Vertex
Like any other delete algorithm, the first thing we have to do to delete a ver-
tex is find it. Once we have found it, however, we also need to make sure that
it is disjoint; that is, we need to ensure that there are no arcs leaving or enter-
ing the vertex. If there are, we reject the deletion. The pseudocode for delete
vertex is shown in Algorithm 11-4.

ALGORITHM 11-4 Delete Vertex

Algorithm 11-4 Analysis This is a basic singly linked list delete situation. The only complexity is that we can’t
delete a vertex if its degree is greater than 0. This requirement is easily handled by test-
ing the indegree and the outdegree in the vertex, as shown in statement 6.

Insert Arc
Once we have a vertex, we can connect it to other vertices. Insert arc requires
two points in the graph: the source vertex (fromPtr) and the destination ver-
tex (toPtr). Each vertex is identified by its key value rather than by its physi-
cal address. This system of identification gives us more flexibility in working
with the graph and provides a degree of data structure hiding that makes it
easier to implement the algorithms. The insertion logic is shown in
Algorithm 11-5.

Algorithm deleteVertex (graph, key)
Deletes an existing vertex only if its degree is 0.

Pre    graph is reference pointer to graph head
       key is the key of the vertex to be deleted
Post   vertex deleted (if degree zero) 
Return +1 if successful
       -1 if degree not zero
       -2 if key not found

1 if (empty graph)
1 return -2

2 end if
Locate vertex to be deleted

3 search for vertex to be deleted
4 if (not found)
1 return -2

5 end if
Found vertex to be deleted. Test degree.

6 if (vertex inDegree > 0 OR outDegree > 0) 
1 return -1

7 end if
Okay to delete vertex

8 delete vertex
9 decrement graph count 
10 return 1
end deleteVertex
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ALGORITHM 11-5 Insert Arc

Algorithm 11-5 Analysis After allocating memory for the new arc, we locate the from vertex and the to vertex.
This logic involves simple linked list searches. If either search fails, we return the appro-
priate value, –2 for from vertex not found and –3 for to vertex not found.

After we locate both vertices, we update their degree counts and set the new arc’s
destination pointer to the destination vertex. We are then ready to insert the new arc into
the adjacency list. Our design for the adjacency list requires that the arc vertices be in
sequence by destination key. We therefore search the arc list for the insertion point. Note
that duplicate arcs are placed in the list in FIFO order. On the other hand, some

Algorithm insertArc (graph, fromKey, toKey)
Adds an arc between two vertices.

Pre    graph is reference to graph head structure
       fromKey is the key of the originating vertex
       toKey is the key of the destination vertex
Post   arc added to adjacency list
Return +1 if successful
       -2 if fromKey not found
       -3 if toKey not found

1 allocate memory for new arc
Locate source vertex

2 search and set fromVertex
3 if (from vertex not found)
1 return -2

4 end if
Now locate to vertex

5 search and set toVertex
6 if (to vertex not found)
1 return -3

7 end if
From and to vertices located. Insert new arc.

8 increment fromVertex outDegree 
9 increment toVertex   inDegree 
10 set arc destination to toVertex
11 if (fromVertex arc list empty)

Inserting first arc
1 set fromVertex firstArc to new arc
2 set new arc nextArc to null
3 return 1

12 end if
Find insertion point in adjacency (arc) list

13 find insertion point in arc list
14 if (insert at beginning of arc list)

Insertion before first arc
1 set fromVertix firstArc to new arc

15 else
1 insert in arc list

16 end if
17 return 1
end insertArc
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applications may not allow duplicate arcs. If they are not allowed, the logic needs to be
changed and an additional error code created.

Delete Arc 
The delete arc algorithm removes one arc from the adjacency list. To identify
an arc, we need two vertices. The vertices are identified by their key. The
algorithm therefore first searches the vertex list for the start vertex and then
searches its adjacency list for the destination vertex. After locating and delet-
ing the arc, the degree in the from and to vertices is adjusted and the memory
recycled. The pseudocode is shown in Algorithm 11-6.

ALGORITHM 11-6 Delete Arc

Algorithm 11-6 Analysis There are three processes in this algorithm: (1) locate the source vertex, (2) locate the
to vertex, and (3) delete the arc. The source vertex is located by searching the vertex
list. Once we have located it, we search the adjacency list for an arc that points to the

Algorithm  deleteArc (graph, fromKey, toKey)
Deletes an arc between two vertices.

Pre    graph is reference to a graph head structure
       fromKey is the key of the originating vertex
       toKey is the key of the destination vertex
Post   vertex deleted
Return +1 if successful
       -2 if fromKey not found
       -3 if toKey not found

1 if (empty graph)
1 return -2

2 end if
Locate source vertex

3 search and set fromVertex to vertex with key equal to 
   fromKey

4 if (fromVertex not found)
1 return -2

5 end if
Locate destination vertex in adjacency list

6 if (fromVertex arc list null)
1 return -3

7 end if
8 search and find arc with key equal to toKey
9 if (toKey not found)

1 return -3
10 end if

fromVertex, toVertex, and arc all located. Delete arc.
11 set toVertex to arc destination
12 delete arc
13 decrement fromVertex outDegree 
14 decrement toVertex   inDegree 
15 return 1
end deleteArc
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destination vertex. Once we find the correct arc, we adjust the degree fields in the
from and to vertex entries and then delete the arc.

Retrieve Vertex
Retrieve vertex returns the data stored in a vertex. Given the key of the vertex,
the data are placed in the output area specified in the call. The pseudocode is
shown in Algorithm 11-7.

ALGORITHM 11-7 Retrieve Vertex

Algorithm 11-7 Analysis Retrieve vertex is a typical linked list search algorithm. If the search is successful, the
data in the vertex are placed in the output area specified in the calling sequence and
success (+1) is returned. If the list is null or the data can’t be located, key not located
(–2) is returned.

Depth-first Traversal
The depth-first traversal was described in Section11.2, “Breadth-first Tra-
versal.” It visits all of the vertices in a graph by processing a vertex and all of
its descendents before processing an adjacent vertex.

There are two ways to write the depth-first traversal algorithm: we can
write it recursively or we can write it using a stack. We have decided to use
the stack in this implementation. When we reach a vertex, we push its
address into a stack. Then we pop the stack, process the vertex, and push all
of its adjacent vertices into the stack.

The problem is that a vertex may be reached by more than one path
through the graph. Consequently, we must ensure that each vertex is pro-
cessed only once. When we created the structure for the vertex in
Algorithm 11-1, we included a processed flag. When we begin the traversal,

Algorithm retrieveVertex (graph, key, dataOut)
Data contained in vertex identified by key passed to caller.

Pre    graph is reference to a graph head structure
       key is the key of the vertex data
       dataOut is reference to data variable
Post   vertex data copied to dataOut
Return +1 if successful
       -2 if key not found

1 if (empty graph)
1 return -2

2 end if
3 search for vertex
4 if (vertex found)

1 move locnPtr data to dataOut
2 return 1

5 else
1 return -2

6 end if
end retrieveVertex
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we set the processed flag to 0. When we push a vertex into the stack, we set
its processed flag to 1, indicating that it is in the stack, awaiting its turn. This
prevents us from pushing it more than once. Finally, when we process the
vertex, we set its flag to 2. Now, if we arrive at a vertex more than once, we
know that we either pushed it or processed it earlier and not push or process
it a second time. The traversal logic is shown in Algorithm 11-8.

ALGORITHM 11-8 Depth-first Traversal

Algorithm 11-8 Analysis Depth-first traversal begins by setting all vertices to not processed. We then loop
through the vertix list in statement 6. If we are guaranteed that the graph is strongly

Algorithm depthFirst (graph) 
Process the keys of the graph in depth-first order.

Pre  graph is a pointer to a graph head structure

1  if (empty graph)
1 return
Set processed flags to not processed

2 set walkPtr to graph first
3 loop (through all vertices)

1 set processed to 0
4 end loop

Process each vertex in list 
5 createStack (stack)
6 loop (through vertix list)

1 if (vertix not processed and not in stack)
Push and set flag to stack

1 pushStack (stack, walkPtr)
2 set walkPtr processed to 1
3 end if

Process vertex at stack top 
4 loop (not emptyStack(stack))

1 set vertex to popStack(stack)
2 process (vertix)
3 set vertex to processed 

Push non-processed vertices from adjacency list
4 loop (through arc list)

1 if (arc destination not in stack)
1 pushStack(stack, destination)
2 set destination to in stack 

2 end if
3 get next destination

5 end loop
5 end loop

2 end if
3 get next vertix

7 end loop
8 destroyStack(stack) 
end depthFirst

   Post vertices "processed"
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connected, this loop is not necessary. However, if there is not a path from the first vertex
to all other vertices, or if there are disjoint vertices, we need to ensure that all vertices
have been processed by looping through the vertex list. That is the primary purpose of
the loop in statement 6.

As a vertex is selected for processing, we first ensure that it has not been previously
put into the sack or processed as a descendent of an earlier vertex. If not, we push it into
the stack in statement 6.1.1. We then process the vertex at the top of the stack and push
the nonprocessed adjacent vertices into the stack. Note that because we are using a
stack to hold the vertices, we not only process them in depth-first order but also process
the adjacent vertices in descending order. (Remember that we build the adjacency list in
ascending key sequence, so adjacent vertices are pushed in ascending sequence and
popped in descending sequence.)

When the stack is empty, we have processed all of the vertices strongly connected
to the original vertex. We then advance to the next vertex and return to statement 6 to
ensure that any weakly connected or disjoint vertices are processed.

Breadth-first Traversal
The breadth-first traversal, described in Section 11.2, processes a vertex and
then processes all of its adjacent vertices. Whereas we used a stack for the
depth-first traversal, we use a queue to traverse a graph breadth first. The
pseudocode is shown in Algorithm 11-9.

ALGORITHM 11-9 Breadth-first Traversal

continued

Algorithm breadthFirst (graph)
Processes the keys of the graph in breadth-first order.

Pre  graph is pointer to graph head structure
Post vertices processed

1 if (empty graph)
1 return

2 end if
First set all processed flags to not processed

3 createQueue (queue)
4 loop (through all vertices)

1 set vertix to not processed
5 end loop

Process each vertex in vertex list 
6 loop (through all vertices)

1 if (vertix not processed)
1 if (vertix not in queue) 

Enqueue and set process flag to queued (1)
1 enqueue (queue, walkPtr)
2 set vertix to enqueued 

2 end if
Now process descendents of vertex at queue front

3 loop (not emptyQueue (queue))
1 set vertex to dequeue (queue)

Process vertex and flag as processed
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ALGORITHM 11-9 Breadth-first Traversal (continued)

Algorithm 11-9 Analysis The code in a breadth-first traversal begins as the depth-first algorithm does, by setting
all of the processed flags to not processed. Note, however, that three process states
are used in this algorithm: not processed, in queue, and processed. This prevents a
vertex from being placed in the queue more than once. When it is processed, we set
the flag to 2. After setting the processed flags to 0, we create a queue using the stan-
dard algorithms we developed in Chapter 4.

As we loop through the vertex list (statement 6), we first check whether the vertex has
been processed (statement 6.1). If it has, we advance to the next vertex (statement 6.3)
and loop back to check again. As we saw in the depth-first traversal, this loop allows us
to pick up disjoint vertices or other vertices in a weakly connected graph.

If the vertex has not been processed, we test to see if it has been placed in the
queue already (statement 6.1.1); if not, we enqueue it. We then process all descendents
of the vertex at the front of the queue with a loop (statement 6.1.3) that dequeues and
processes the vertex at the beginning of the queue, places all of its unprocessed adja-
cent vertices in the queue, and repeats the loop until the queue is empty.

After processing all of the descendents of the vertex at the front of the queue, we
advance to the next vertex and loop back to statement 6 to complete the processing of
the vertex list. 

Destroy Graph
When we discussed deleting a vertex from a graph, we saw that the vertex
must be disjoint before it could be deleted. This rule does not apply to
destroying the graph. The logic for destroy graph must therefore first delete
all arcs from the vertex before it can delete the vertex. We don’t need to worry
about arcs pointing to the vertex because they are deleted when their corre-
sponding vertex is deleted. The design for destroy graph is shown in
Algorithm 11-10.

2 process (vertex)
3 set vertix to processed 

Enqueue non-processed vertices from adjacency list 
4 loop (through adjacency list) 

1 if (destination not enqueued or processed)
1 enqueue (queue, destination)
2 set destination to enqueued

2 end if
3 get next destination 

5 end loop
4 end loop

2 end if
3 get next vertix 

7 end loop
8 destroyQueue (queue)
end breadthFirst
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ALGORITHM 11-10 Destroy Graph

11.5 Graph ADT
We are now ready to discuss the abstract data type for a graph. You will find
this one very simple, especially when compared with the ADT for B-trees. It
uses simple linked list concepts, with the stack and queue ADTs incorporated
for the graph traversals. The ADT design is shown in Figure 11-16.

FIGURE 11-16 Graph ADT Design

Algorithm destroyGraph (graph)
Traverses graph deleting all vertices and arcs.

Pre  Nothing
Post All vertices and arcs deleted

1 if (empty graph)
1 return

2 loop (more vertices)
1 loop (vertex outDegree > 0)

1 delete vertex firstArc
2 subtract 1 from vertex outDegree

2 end loop
3 end loop
end destroyGraph

User program

ADT

compare processmain ...

graphInsArcgraphIns/vrtx graphDltArcgraphDltVrtx

graphDpthFrst graphBrdthFrstgraphFrstArcgraphRetrVrtx

graphCountgraphFullgraphEmpty

graphDestorygraphCreate
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Data Structure
As we have seen in other designs, a graph needs three separate data struc-
tures: one for the head, one for vertices, and one for arcs.

Head Structure
The graph data structure uses a simple head structure, GRAPH, that contains a
count, a pointer to the first vertex, and the address of the compare function
needed to search the graph. The application program’s only view of the graph
is a pointer to the head structure, which is allocated from dynamic memory
when the graph is created. The head structure is shown in Figure 11-17.

FIGURE 11-17 Graph Data Structure

Vertex Structure
The graph vertex node stores data about the vertex. It contains a data pointer
and a pointer to the next vertex in sequence, a pointer to the first arc from the
vertex, and three metadata attributes—indegree, outdegree, and a processed
flag. The vertex structure is also shown in Figure 11-17.

Arc Structure
The arc node stores data about the path from one vertex to another. It con-
tains a pointer to the destination vertex and a pointer to the next arc in the
path from the related vertex. It may also contain arc metadata, such as the
weight of the arc. The arc structure is also shown in Figure 11-17.

typedef struct
   {
    int            count; 
    struct vertex* first; 
    int (*compare) 
          (void* argu1, 
           void* argu2); 
   } GRAPH;

typedef struct vertex
 {
  struct vertex*  pNextVertex;
  void*           dataPtr;
  int             inDegree;
  int             outDegree;
  short           processed;
  struct arc*     pArc;
 } VERTEX;

typedef struct arc
 {
  struct vertex*  destination;
  struct arc*     pNextArc;
 } ARC; 
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Algorithms
The graph data structure is an adjacency list as described in Section 11.3,
“Adjacency List.” The data structures and the prototype declarations are
declared in a graph header structure which we named graph.h. The header
file is shown in Program 11-1.

PROGRAM 11-1 Graph Declaration

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

/* ==================== graphs.h ==================== 
This header file contains the declarations and 
prototype functions for graphs as developed in 
this text. 
   Written by:
   Date:

*/
#include "queueADT.h"
#include "stackADT.h"
#include "stdbool.h"

// =================== STRUCTURES ================== 
typedef struct
   {
    int            count; 
    struct vertex* first; 
    int (*compare) (void* argu1, void* argu2); 
   } GRAPH;

typedef struct vertex
{
 struct vertex*  pNextVertex;
 void*           dataPtr;
 int             inDegree;
 int             outDegree;
 short           processed;
 struct arc*     pArc;
} VERTEX;

typedef struct arc
{
 struct vertex*  destination;
 struct arc*     pNextArc;
} ARC; 

// ============ Prototype Declarations ============= 

GRAPH* graphCreate
           (int  (*compare) (void* argu1, void* argu2));
GRAPH* graphDestroy (GRAPH* graph);
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PROGRAM 11-1 Graph Declaration (continued)

We discuss most of the ADT functions in the following sections. Several
of them,1 however, are very simple and parallel functions developed for other
ADTs. They are not developed here. 

Graph Insert Vertex
In the building of a graph, the first process is to insert the vertices. This is
done with insert vertex, as shown in Program 11-2.

PROGRAM 11-2 Graph Insert Vertex

continued

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

void graphInsVrtx   (GRAPH* graph, void*  dataInPtr);
int graphDltVrtx    (GRAPH* graph, void*  dltKey);
int graphInsArc     (GRAPH* graph, void*  pFromKey, 
                                   void*  pToKey);
int graphDltArc     (GRAPH* graph, void*  pFromKey,
                                   void*  pToKey);

int graphRetrVrtx   (GRAPH* graph, void*  pKey,
                                   void** pDataOut);
int graphFrstArc    (GRAPH* graph, void*  pKey,
                                   void** pDataOut);

void graphDpthFrst  (GRAPH* graph, 
                     void (*process) (void* dataPtr));
void graphBrdthFrst (GRAPH* graph, 
                     void (*process) (void* dataPtr));

bool graphEmpty (GRAPH* graph);
bool graphFull  (GRAPH* graph);
int  graphCount (GRAPH* graph);

1. Specifically: graphCreate, graphEmpty, graphFull, graphCount, graphRetrVrtx,
graphFrstArc, and graphDestroy are not included.

1
2
3
4
5
6
7
8
9
10
11

/*  ================= graphInsVrtx ================== 
This function inserts new data into the graph.
   Pre  graph is pointer to valid graph structure 
   Post data inserted or abort if memory O/F 

*/
void graphInsVrtx (GRAPH* graph, void* dataInPtr)
{
// Local Definitions 

VERTEX* newPtr;
VERTEX* locPtr;
VERTEX* predPtr;
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PROGRAM 11-2 Graph Insert Vertex (continued)

Program 11-2 Analysis Insert graph parallels the pseudocode found in Algorithm 11-3. The only significant
change is that we allocated memory for the new vertex in statement 15 rather than later.
This was done to facilitate the test for memory overflow at the beginning of the function.

Although it is not logically necessary to set the processed flag to 0 at this time (see
statement 21), it was done for consistency. The rest of the logic is the function inserting
the vertex into a singly linked list.
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// Statements 
newPtr = (VERTEX*)malloc(sizeof (VERTEX));
if (newPtr)
   {
    newPtr->pNextVertex  = NULL;
    newPtr->dataPtr      = dataInPtr;
    newPtr->inDegree     = 0;
    newPtr->outDegree    = 0;
    newPtr->processed    = 0;
    newPtr->pArc         = NULL;
    (graph->count)++;
   } // if malloc
 else
    printf("Overflow error 100\a\n"), 
       exit (100);
   
// Now find insertion point 
locPtr = graph->first;
if (!locPtr)
    // Empty graph. Insert at beginning 
    graph->first = newPtr;
else
   {
    predPtr = NULL;
    while (locPtr && (graph->compare
                     (dataInPtr, locPtr->dataPtr) > 0))
       {
        predPtr = locPtr;
        locPtr  = locPtr->pNextVertex;
       } // while 
    if (!predPtr)
        // Insert before first vertex 
        graph->first = newPtr;
    else
        predPtr->pNextVertex = newPtr;
    newPtr->pNextVertex = locPtr;
   } // else
return;

}  // graphInsVrtx 
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Graph Delete Vertex
Delete vertex deletes a vertex from a graph, provided that its degree is 0. If
another vertex points to it, or if it points to another vertex, it cannot be deleted.
Program 11-3 follows the design in Algorithm 11-4.

PROGRAM 11-3 Graph Delete Vertex

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

/* ================== graphDltVrtx ================= 
Deletes existing vertex only if its degree is zero.
   Pre    graph is pointer to graph head structure
          dltKey is key of vertex to be deleted
   Post   Vertex deleted if degree zero
          -or- An error code is returned 
   Return Success +1 if successful
                  -1 if degree not zero
                  -2 if dltKey not found

*/ 
int graphDltVrtx (GRAPH* graph, void* dltKey)
{
// Local Definitions 

VERTEX* predPtr;
VERTEX* walkPtr;

// Statements 
if (!graph->first)
    return -2;

// Locate vertex to be deleted 
predPtr = NULL;
walkPtr = graph->first;
while (walkPtr
  && (graph->compare(dltKey, walkPtr->dataPtr) > 0))
   {
    predPtr = walkPtr;
    walkPtr = walkPtr->pNextVertex;
   } // walkPtr && 
if (!walkPtr 
  || graph->compare(dltKey, walkPtr->dataPtr) != 0)
   return -2;
   
// Found vertex. Test degree 
if ((walkPtr->inDegree > 0) 
     || (walkPtr->outDegree > 0))
    return -1;

// OK to delete 
if (!predPtr)
    graph->first = walkPtr->pNextVertex;
else
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PROGRAM 11-3 Graph Delete Vertex (continued)

Graph Insert Arc
This rather lengthy function is really quite simple. To insert an arc, we need
to know the source vertex and the destination vertex. Much of the code
locates the source and destination vertices. Once we are sure that they both
exist, we simply insert a new arc in the source adjacency list in destination
vertex sequence. The code is shown in Program 11-4, which follows the
design in Algorithm 11-5.

PROGRAM 11-4 Graph Insert Arc

continued

43
44
45
46
47

    predPtr->pNextVertex = walkPtr->pNextVertex;
--graph->count;
free(walkPtr);
return 1;

}  // graphDltVrtx 
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/* =================== graphInsArc ================== 
Adds an arc vertex between two vertices.
   Pre    graph is a pointer to a graph
          fromKey is pointer to start vertex key
          toKey   is pointer to dest'n vertex key
   Post   Arc added to adjacency list
   Return success  +1 if successful
                   -1 if memory overflow

                      -2 if fromKey not found
                   -3 if toKey not found

*/
int graphInsArc (GRAPH* graph, void* pFromKey, 
                 void*  pToKey)
{
// Local Definitions 

ARC*    newPtr;
ARC*    arcPredPtr;
ARC*    arcWalkPtr;
VERTEX* vertFromPtr;
VERTEX* vertToPtr;

// Statements 
newPtr = (ARC*)malloc(sizeof(ARC));
if (!newPtr)
   return (-1);

// Locate source vertex 
vertFromPtr = graph->first;
while (vertFromPtr && (graph->compare(pFromKey,
                       vertFromPtr->dataPtr) > 0))
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PROGRAM 11-4 Graph Insert Arc (continued)
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   {
    vertFromPtr = vertFromPtr->pNextVertex;
   } // while vertFromPtr && 
if (!vertFromPtr || (graph->compare(pFromKey,
                     vertFromPtr->dataPtr) != 0))
   return (-2);

// Now locate to vertex 
vertToPtr   = graph->first;
while (vertToPtr 
     && graph->compare(pToKey, vertToPtr->dataPtr) > 0)
   {
    vertToPtr   = vertToPtr->pNextVertex;
   } // while vertToPtr && 
if (!vertToPtr ||
   (graph->compare(pToKey, vertToPtr->dataPtr) != 0))
   return (-3);
   
// From and to vertices located. Insert new arc 
++vertFromPtr->outDegree;
++vertToPtr  ->inDegree;
newPtr->destination = vertToPtr;
if (!vertFromPtr->pArc)
   {
    // Inserting first arc for this vertex 
    vertFromPtr->pArc = newPtr;
    newPtr-> pNextArc = NULL;
    return 1;
   } // if new arc 

// Find insertion point in adjacency (arc) list 
arcPredPtr = NULL;
arcWalkPtr = vertFromPtr->pArc;
while (arcWalkPtr
       && graph->compare(pToKey,
                 arcWalkPtr->destination->dataPtr) >= 0)
   {
    arcPredPtr = arcWalkPtr;
    arcWalkPtr = arcWalkPtr->pNextArc;
   } // arcWalkPtr && 

if (!arcPredPtr)
    // Insertion before first arc 
    vertFromPtr->pArc    = newPtr;
else
    arcPredPtr->pNextArc = newPtr;
newPtr->pNextArc = arcWalkPtr;

    return 1;
} // graphInsArc
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Graph Delete Arc
This is another lengthy function for a relatively simple process. As with the
insert arc function, we identify an arc by its source and destination vertices.
Once we locate the source vertex and verify that there is an arc to its destina-
tion, we use a simple linked list deletion algorithm to delete the arc. The
code, shown in Program 11-5, follows the design in Algorithm 11-6.

PROGRAM 11-5 Graph Delete Arc

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

/* =================== graphDltArc ================== 
Deletes an existing arc. 
   Pre    graph is pointer to graph head structure
          fromKey is key of start vertex; toKey is
          toKey is key of dest'n of delete vertex
   Post   Arc deleted 
   Return Success +1 if successful
                  -2 if fromKey not found
                  -3 if toKey not found

*/
int graphDltArc (GRAPH* graph, 
                 void* fromKey, void* toKey)
{
// Local Definitions 

VERTEX* fromVertexPtr;
VERTEX* toVertexPtr;
ARC*    preArcPtr;
ARC*    arcWalkPtr;

// Statements 
if (!graph->first)
    return -2;

// Locate source vertex 
fromVertexPtr = graph->first;
while (fromVertexPtr && (graph->compare(fromKey,
                    fromVertexPtr->dataPtr) > 0))
    fromVertexPtr = fromVertexPtr->pNextVertex;

if (!fromVertexPtr || graph->compare(fromKey,
                    fromVertexPtr->dataPtr) != 0)
   return -2;
   
// Locate destination vertex in adjacency list 
if (!fromVertexPtr->pArc)
    return -3;

preArcPtr = NULL;
arcWalkPtr = fromVertexPtr->pArc;
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PROGRAM 11-5 Graph Delete Arc (continued)

Graph Depth-first Traversal
As you study the depth-first traversal, you may want to refer back to Figure
11-10, “Depth-first Traversal of a Graph.” One of the interesting aspects of
this algorithm is its use of the stack ADT. Recall that we need to completely
process a vertex and all of its descendents from start to end before we process
any adjacent vertices. This requires that we place a vertex into a stack and
then pop the stack to process it. The design is shown in Algorithm 11-8, the
code in Program 11-6.

PROGRAM 11-6 Graph Depth-first Traversal

continued
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while (arcWalkPtr && (graph->compare(toKey,
          arcWalkPtr->destination->dataPtr) > 0))
   {
    preArcPtr  = arcWalkPtr;
    arcWalkPtr = arcWalkPtr->pNextArc;
   } // while arcWalkPtr && 
if (!arcWalkPtr || (graph->compare(toKey,
         arcWalkPtr->destination->dataPtr) != 0))
    return -3;
toVertexPtr = arcWalkPtr->destination;

// from, toVertex & arcPtr located. Delete arc 
--fromVertexPtr->outDegree;     
--toVertexPtr -> inDegree;
if (!preArcPtr)
    // Deleting first arc 
    fromVertexPtr->pArc  = arcWalkPtr->pNextArc;
else
    preArcPtr->pNextArc = arcWalkPtr->pNextArc;
free (arcWalkPtr);
return 1;

}  // graphDltArc 
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/* ================== graphDpthFrst =================
Process data in graph in depth-first order.
   Pre  graph is the a pointer to graph head
   Post vertices "processed".

   Processed Flag: 0 = not processed
                   1 = pushed into stack
                   2 = processed

*/
void graphDpthFrst (GRAPH* graph, 
                    void (*process) (void* dataPtr))
{
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PROGRAM 11-6 Graph Depth-first Traversal (continued)

continued
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 // Local Definitions 
bool    success;
VERTEX* walkPtr;
VERTEX* vertexPtr;
VERTEX* vertToPtr;
STACK * stack;
ARC*    arcWalkPtr;

// Statements 
if (!graph->first)
    return;

// Set processed flags to not processed 
walkPtr = graph->first;
while (walkPtr)
   {
    walkPtr->processed = 0;
    walkPtr            = walkPtr->pNextVertex;
   } // while 

// Process each vertex in list 
stack = createStack ();
walkPtr = graph->first;
while (walkPtr)
  {
   if (walkPtr->processed < 2)
     {
      if (walkPtr->processed < 1)
        {
         // Push & set flag to pushed 
         success = pushStack (stack, walkPtr);
         if (!success)
             printf("\aStack overflow 100\a\n"),
                   exit (100);             
         walkPtr->processed = 1;
        } // if processed < 1 
     } // if processed < 2 
   // Process descendents of vertex at stack top 
   while (!emptyStack (stack))
     {
      vertexPtr = popStack(stack);
      process (vertexPtr->dataPtr);
      vertexPtr->processed = 2;
        
      // Push all vertices from adjacency list 
      arcWalkPtr = vertexPtr->pArc;
      while (arcWalkPtr)
        {
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PROGRAM 11-6 Graph Depth-first Traversal (continued)

 Graph Breadth-first Traversal
Again, we suggest that you study Figure 11-12, “Breadth-first Traversal of a
Graph,” as you work with this function. Because we want to process all of the
adjacent vertices of a vertex before moving down the structure, we use a
queue. The design is shown in Algorithm 11-9, the code in Program 11-7.

PROGRAM 11-7 Graph Breadth-first Traversal

continued
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         vertToPtr = arcWalkPtr->destination;
         if (vertToPtr->processed == 0)
           {
            success = pushStack(stack, vertToPtr);
            if (!success)
              printf("\aStack overflow 101\a\n"),
                  exit (101);
            vertToPtr->processed = 1;
           } // if vertToPtr 
         arcWalkPtr = arcWalkPtr->pNextArc;
        } // while pWalkArc 
           
     } // while !emptyStack 
   walkPtr = walkPtr->pNextVertex;
  } // while walkPtr
destroyStack(stack); 
return;

} // graphDpthFrst
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/* ================== graphBrdthFrst ===================
 Process the data of the graph in breadth-first order. 
    Pre  graph is pointer to graph head structure
    Post graph has been processed
    Processed Flag: 0 = not processed
                    1 = enqueued
                    2 = processed

*/
void graphBrdthFrst (GRAPH* graph, 
                     void (*process) (void* dataPtr))
{
// Local Definitions 

bool    success;
VERTEX* walkPtr;
VERTEX* vertexPtr;
VERTEX* vertToPtr;
QUEUE*  queue;
ARC*    arcWalkPtr;
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PROGRAM 11-7 Graph Breadth-first Traversal (continued)

continued
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// Statements 
if (!graph->first)
    return;

 
// Set processed flags to not processed 
walkPtr = graph->first;
while (walkPtr)
   {
    walkPtr->processed = 0;
    walkPtr            = walkPtr->pNextVertex;
   } // while 

// Process each vertex in list 
queue = createQueue ();
walkPtr = graph->first;
while (walkPtr)
   {
    if (walkPtr->processed < 2)
       {
        if (walkPtr->processed < 1)
           {
            // Enqueue & set flag to queue 
            success = enqueue(queue, walkPtr);
            if (!success)
               printf("\aQueue overflow 100\a\n"),
               exit (100);
            walkPtr->processed = 1;
           } // if processed < 1 
       } // if processed < 2 
    // Process descendents of vertex at que front
    while (!emptyQueue (queue))
       {
        dequeue(queue, (void**)&vertexPtr);
        process (vertexPtr->dataPtr);
        vertexPtr->processed = 2;
        
        // Enqueue vertices from adjacency list 
        arcWalkPtr = vertexPtr->pArc;
        while (arcWalkPtr)
          {
           vertToPtr = arcWalkPtr->destination;
           if (vertToPtr->processed == 0)
             {
              success = enqueue(queue, vertToPtr);
              if (!success)
                printf("\aQueue overflow 101\a\n"),
                   exit (101);
              vertToPtr->processed = 1;



Chapter 11 Graphs 513

PROGRAM 11-7 Graph Breadth-first Traversal (continued)

11.6 Networks 
A network is a graph whose lines are weighted. It is also known as a weighted graph.
The meaning of the weights depends on the application. For example, an air-
line might use a graph to represent the routes between cities that it serves. In
this example the vertices represent the cities and the edge a route between
two cities. The edge’s weight could represent the miles between the two cit-
ies or the price of the flight. A network for a small hypothetical airline is
shown in Figure 11-18. In this case the weights represent the mileage
between the cities. 

FIGURE 11-18 City Network

Because the weight is an attribute of an edge, it is stored in the structure
that contains the edge. In an adjacency matrix, the weight is stored as the
intersection value. In an adjacency list, it is stored as the value in the adja-
cency linked list. The representation of the city network in these two formats
is shown in Figure 11-19.
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             } // if vertToPtr 
           arcWalkPtr = arcWalkPtr->pNextArc;
          } // while pWalkArc 
       } // while !emptyQueue 
    walkPtr = walkPtr->pNextVertex;
   } // while walkPtr 
destroyQueue(queue); 
return;

 } // graphBrdthFrst 

A network is a graph whose lines are weighted.
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FIGURE 11-19 Storing Weights in Graph Structures

We now turn our attention to two applications of networks: the minimum
spanning tree and the shortest path through a network.

Minimum Spanning Tree
We can derive one or more spanning trees from a connected network. A spanning
tree is a tree that contains all of the vertices in the graph.

One interesting algorithm derives the minimum spanning tree of a network such
that the sum of its weights is guaranteed to be minimal. If the weights in the
network are unique, there is only one minimum spanning tree. If there are
duplicate weights, there may be one or more minimum spanning trees.

There are many applications for minimum spanning trees, all with the
requirement to minimize some aspect of the graph, such as the distance
among all of the vertices in the graph. For example, given a network of com-
puters, we can create a tree that connects all of the computers. The mini-
mum spanning tree gives us the shortest length of cable that can be used to
connect all of the computers while ensuring that there is a path between any
two computers.

A spanning tree contains all of the vertices in a graph. A minimum spanning tree is a spanning
tree in which the total weight of the lines is guaranteed to be the minimum of all possible trees in
the graph. 
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To create a minimum spanning tree in a strongly connected network—
that is, in a network in which there is a path between any two vertices—the
edges for the minimum spanning tree are chosen so that the following prop-
erties exist:

1. Every vertex is included.

2. The total edge weight of the spanning tree is the minimum possible that
includes a path between any two vertices.

Minimum Spanning Tree Example
Before going into the formal algorithm definition, let’s manually determine
the minimum spanning tree shown in Figure 11-20.

FIGURE 11-20 Spanning Tree

We can start with any vertex. Because the vertex list is usually key
sequenced, let’s start with A. Then we add the vertex that gives the minimum-
weighted edge with A in Figure 11-20, AC. From the two vertices in the tree,
A and C, we now locate the edge with the minimum weight. The edge AB has
a weight of 6, the edge BC has a weight of 2, the edge CD has a weight of 3,
and the edge CE has a weight of 4. The minimum-weighted edge is therefore
BC. Note that in this analysis we do not consider any edge to a vertex that is
already in the list. Thus, we did not consider the edge AC.

To generalize the process, we use the following rule: from all of the verti-
ces currently in the tree, select the edge with the minimal value to a vertex
not currently in the tree and insert it into the tree. Using this rule, we add
CD (weight 3), DE (weight 2), and DF (weight 3) in turn. The steps are
graphically shown in Figure 11-21.

Figure 11-21(g) shows the minimum spanning tree within the original
network. If we sum the weights of the edges in the tree, the total is 13.
Because there are duplicate weights, a different spanning tree may have the
same weight, but none has a lesser weight.

Minimum Spanning Tree Data Structure
To develop the algorithm for the minimum spanning tree, we need to decide on
a storage structure. Because it is the most flexible, we use the adjacency list.

6

5

3

3

2

4

3 2

5

A

E

D

C

B

F



516 Section 11.6 Networks

FIGURE 11-21 Develop a Minimum Spanning Tree

We need to add some additional elements to determine the minimum
spanning tree. Each vertex node needs a Boolean flag indicating that the ver-
tex has been inserted into the spanning tree. In addition, each arc needs an
in-tree Boolean. We name both of these fields inTree. Finally, because the
structure represents a network, each edge must have a weight. The resulting
structure is shown in Algorithm 11-11.

ALGORITHM 11-11 Data Structure for Spanning Tree Graph

continued

graphHead
count 
first 

end graphHead

graphVertex
nextVertex 
data 
inDegree 
outDegree 

(a) Insert first vertex (b) Insert edge AC
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ALGORITHM 11-11 Data Structure for Spanning Tree Graph (continued)

Minimum Spanning Tree Pseudocode
The minimum spanning tree algorithm follows the concept outlined earlier. It
begins by inserting the first vertex into the tree. It then loops until all vertices
are in the tree, each time inserting the edge with the minimum weight into
the tree. When the algorithm concludes, the minimum spanning tree is iden-
tified by the in-tree flags in the edges. The pseudocode is shown in
Algorithm 11-12.

ALGORITHM 11-12 Minimum Spanning Tree of a Graph

continued

inTree 
firstEdge 

end graphVertex

graphEdge
destination 
weight 
nextEdge 
inTree 

end graphEdge

Algorithm spanningTree (graph)
Determine the minimum spanning tree of a network.

Pre  graph contains a network
Post spanning tree determined

1 if (empty graph)
1 return

2 end if
3 loop (through all vertices) 

Set inTree flags false. 
1 set vertex inTree flag to false
2 loop (through all edges) 

1 set edge inTree flag to false
2 get next edge

3 end loop
4 get next vertex 

4 end loop
Now derive spanning tree. 

5 set first vertex to in tree 
6 set treeComplete to false
7 loop (not treeComplete)

1 set treeComplete to true
2 set minEdge to maximum integer
3 set minEdgeLoc to null
4 loop (through all vertices) 

Walk through graph checking vertices in tree. 
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ALGORITHM 11-12 Minimum Spanning Tree of a Graph (continued)

Algorithm 11-12 Analysis This rather long algorithm is easily broken into two sections. The first section prepares
the graph for processing by setting all of the in-tree flags to false.

The second section loops (see statement 7) through the vertex graph, inserting edges
into the spanning tree. As we begin the loop, we set the tree completed flag to true. If
we find a vertex that is not yet in the tree, we set it to false (statement 7.4.1.1.1.1). On
the last pass through the graph, no new edges are added and the tree completed flag
remains true, thus terminating the vertex loop. Because we need to remember the edge
with the minimum weight, at the beginning of the loop we also set a minimum edge vari-
able to a value larger than any possible weight, positive infinity in the pseudocode. At
the same time, we set a pointer to the minimum edge to null.

Within the loop the edges from each vertex already in the tree are tested with an
inner loop that traverses the edges, looking for the minimum valued edge. Each edge
that is not in the tree is tested to determine whether its weight is less than the current mini-
mum we have located. If it is, we save the weight and the location of the edge. At the
end of the loop (statement 7.6), we set the flags for both the newly inserted vertex and its
associated edge.

Shortest Path Algorithm
Another common application used with graphs requires that we find the
shortest path between two vertices in a network. For example, if the network
represents the routes flown by an airline, when we travel we want to find the
least expensive route between home and our destination. When the weights
in the route graph are the flight fare, our minimum cost is the shortest path
between our origin and our destination. Edsger Dijkstra developed a classic

1 if (vertex in tree AND vertex outDegree > 0)
1 loop (through all edges) 

1 if (destination not in tree)
               set destination inTree flag to false)

1 set treeComplete to false
2 if (edge weight < minEdge)

1 set minEdge to edge weight
2 set minEdgeLoc to edge

3 end if
2 end if
3 get next edge 

2 end loop
2 end if
3 get next vertex 

5 end loop
6 if (minEdgeLoc not null)

Found edge to insert into tree. 
1 set minEdgeLoc  inTree flag to true
2 set destination inTree flag to true

7 end if
8 end loop
end spanningTree
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algorithm for just this problem in 1959.2 His algorithm is generally known
simply as Dijkstra’s shortest path algorithm.

Shortest Path Manual Example
Before we develop the formal algorithm, let’s walk through an example. We
use the same graph we used for the minimum spanning tree. In this example
we want to find the shortest path from vertex A to any other vertex in the
graph. The result is a tree with a root of vertex A. The result of our analysis is
shown in Figure 11-22.

The algorithm is similar to the minimum spanning tree algorithm. We
begin by inserting the starting point into the tree. We then examine the paths
to all vertices adjacent to the starting point and insert the path with the mini-
mum weight into the tree. We now have two vertices in the tree, as shown in
Figure 11-22(a2).

We then examine all of the paths from the two vertices in the tree, A and
C, to all of their adjacent vertices. Rather than determine the shortest path to
the next vertex as we did in the spanning tree, however, we determine the
total path length to the adjacent vertices. The total path length to each vertex
is shown in Figure 11-22 with the notation T:n next to the destination vertex.
If you examine Figure 11-22(b1), you see that there are four paths: AB with a
total weight of 6, CB with a total weight of 5, CD with a total weight of 6, and
CE with a total weight of 7. We select the minimum path length, CB (T:5),
and place it in the tree. The resulting tree is shown in Figure 11-22(b2).

In the third pass through the graph, we examine the paths from the verti-
ces in the tree (A, C, and B) to vertices not already in the tree (D and E).
There are no paths from A. From B we have one path, BD, with a total weight
of 10. From C we have two paths, CD with a total weight of 6 and CE with a
total weight of 7. We select the minimum path, CD, with a total weight of 6.

Let’s try to generalize the steps we have been following:

1. Insert the first vertex into the tree.

2. From every vertex already in the tree, examine the total path length to all
adjacent vertices not in the tree. Select the edge with the minimum total
path weight and insert it into the tree.

3. Repeat step 2 until all vertices are in the tree.

Following these steps, we next insert edge CE shown in Figure 11-22(d2),
and last we add edge DF as shown in Figure 11-22(e2).

2. E. W. Dijkstra, “A Note on Two Problems in Connection with Graphs,” Numerische Mathematik 1
(1959): 269–271.

The Dijkstra algorithm is used to find the shortest path between any two nodes in a graph.
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FIGURE 11-22 Determining Shortest Path

Shortest Path Pseudocode
We are now ready to develop the algorithm. To determine the minimum path,
we need to add one more field to the vertex structure, a total path length to the
vertex. We call it pathLength. The pseudocode is shown in Algorithm 11-13.

ALGORITHM 11-13 Shortest Path

continued

Algorithm shortestPath (graph)
Determine shortest path from a network vertex to other 
vertices.

Pre    graph is pointer to network
Post   minimum path tree determined

T:n Total path length from A to node
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ALGORITHM 11-13 Shortest Path (continued)

continued

1 if (empty graph)
1 return

2 end if
3 loop (through all vertices) 

Initialize inTree flags and path length. 
1 set vertex inTree flag to false 
2 set vertex pathLength to maximum integer
3 loop (through all edges) 

1 set edge inTree flag to false
2 get next edge 

4 end loop
5 get next vertex 

4 end loop
Now derive minimum path tree. 

5 set first vertex inTree flag to true
6 set vertex pathLength to 0
7 set treeComplete to false
8 loop (not treeComplete)

1 set treeComplete to true
2 set minEdgeLoc to null
3 set pathLoc    to null
4 set newPathLen to maximum integer
5 loop (through all vertices) 

Walk through graph checking vertices in tree. 
1 if (vertex in tree AND outDegree > 0)

1 set edgeLoc to firstEdge
2 set minPath to pathLength
3 set minEdge to maximum integer
4 loop (through all edges) 

Locate smallest path from this vertex. 
1 if (destination not in tree)

1 set treeComplete to false
2 if (edge weight < minEdge)

1 set minEdge to edge weight
2 set minEdgeLoc to edgeLoc

3 end if
2 end if
3 set edgeLoc to edgeLoc nextEdge

5 end loop
Test for shortest path. 

6 if (minPath + minEdge < newPathLen)
1 set newPathLen to minPath + minEdge
2 set pathLoc    to minEdgeLoc

7 end if
2 end if
3 get next vertex 

6 end loop
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ALGORITHM 11-13 Shortest path (continued)

Algorithm 11-13 Analysis As we saw in the minimum spanning tree, the shortest path algorithm begins with an
initialization loop that sets the in-tree flags to false and initializes the vertex path length
to a number greater than the maximum possible length (maximum integer).

Once we have initialized the vertices, we are ready to determine the shortest path to
all vertices. We start with the first vertex in the graph, as indicated by the graph’s first
pointer. If we need to determine the shortest path from another vertex, we have to pass
the starting point to the algorithm.

Each loop through the graph (statement 8) inserts the vertex with the shortest path to
any connected vertex, initially only A. For each vertex in the tree (statement 8.5), we test
all of its adjacent vertices and determine the minimum weight to a vertex not already in
the tree (statement 8.5.1.4). As we locate each path edge, we test to see whether it is
less than any previous path edge (statement 8.5.1.6); if it is, we save the new path
length and the pointer to the edge.

When we locate the shortest path edge, we insert it (statement 8.7) and loop back
to check the graph again (statement 8). 

7 if (pathLoc not null)
Found edge to insert into tree. 

1 set pathLoc             inTree flag to true
2 set pathLoc destination inTree flag to true
3 set pathLoc destination pathLength to newPathLen

8 end if
9 end loop
end shortestPath
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11.7 Key Terms 

11.8 Summary
❏ A graph is a collection of nodes, called vertices, and a collection of line

segments connecting pairs of nodes, called edges or arcs.

❏ Graphs may be directed or undirected. In a directed graph, or digraph,
each line has a direction. In an undirected graph, there is no direction on
the lines. A line in a directed graph is called an arc.

❏ In a graph two vertices are said to be adjacent if an edge directly con-
nects them.

❏ A path is a sequence of vertices in which each vertex is adjacent to the
next one.

❏ A cycle is a path of at least three vertices that starts and ends with the
same vertex.

❏ A loop is a special case of a cycle in which a single arc begins and ends
with the same node.

❏ A graph is said to be connected if, for any two vertices, there is a path from
one to the other. A graph is disjointed if it is not connected.

❏ The degree of a vertex is the number of vertices adjacent to it. The out-
degree of a vertex is the number of arcs leaving the node; the indegree of
a vertex is the number of arcs entering the node.

❏ Six operations have been defined for a graph: insert a vertex, delete a ver-
tex, add an edge, delete an edge, find a vertex, and traverse a graph.

■ Add a vertex operation inserts a new vertex into a graph without con-
necting it to any other vertex.

adjacency list
adjacency matrix
adjacent vertices
arc
breadth-first traversal
connected
cycle 
degree
depth-first traversal
digraph
directed graph (digraph)
disjoint graph
edge
graph 

indegree
line
loop
minimum spanning tree
network
outdegree
path
spanning tree
strongly connected
undirected graph
vertex (vertices)
vertex list
weakly connected
weighted graph
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■ Delete a vertex operation removes a vertex from a graph.

■ Add an edge operation inserts an edge between a source vertex and a
destination vertex in a graph.

■ Delete an edge operation removes an edge connecting the source vertex
to the destination vertex in a graph.

■ Find a vertex operation traverses a graph, looking for a specified vertex.

■ Traverse a graph visits all nodes in the graph and processes them one
by one.

❏ There are two standard graph traversals: depth first and breadth first.

■ In the depth-first traversal, all of a node’s descendents are processed
before moving to an adjacent node.

■ In the breadth-first traversal, all of the adjacent vertices are processed
before processing the descendents of a vertex.

❏ To represent a graph in a computer, we need to store two sets of informa-
tion: the first set represents the vertices, and the second set represents
the edges.

❏ The most common methods used to store a graph are the adjacency matrix
method and the adjacency list method.

■ In the adjacency matrix method, we use a vector to store the vertices
and a matrix to store the edges.

■ In the adjacency list method, we use a linked list to store the vertices
and a two-dimensional linked list to store the edges.

❏ A network is a graph whose lines are weighted.

❏ A spanning tree contains all of the vertices in the graph.

❏ A minimum spanning tree is a spanning tree in which the total weight of
the edges is the minimum.

❏ Another common algorithm used with graphs finds the shortest path
between two vertices.

11.9 Practice Sets

Exercises
1. In the graph in Figure 11-23, find:

a. all noncyclic paths from A to H
b. all noncyclic paths from C to E
c. all noncyclic paths from B to F
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2. In the graph in Figure 11-23, find all nodes adjacent to:

a. node A
b. node F
c. node G

FIGURE 11-23 Graph for Exercises 1 through 8

3. In the graph in Figure 11-23, find the degree, outdegree, and indegree of
vertices A, E, F, G, and H.

4. Give the depth-first traversal of the graph in Figure 11-23, starting from
vertex A.

5. Give the breadth-first traversal of the graph in Figure 11-23, starting from
vertex A.

6. Draw three spanning trees that can be found in the graph in Figure 11-23.

7. Give the adjacency matrix representation of the graph in Figure 11-23.

8. Give the adjacency list representation of the graph in Figure 11-23.

9. Find the minimum spanning tree of the graph in Figure 11-24.

FIGURE 11-24 Graph for Exercises 9 through 12

10. Find the shortest path between node A and all other nodes in the graph in
Figure 11-24.

11. Give the adjacency matrix representation of the graph in Figure 11-24.

12. Give the adjacency list representation of the graph in Figure 11-24.

13. Draw the directed graph for the adjacency matrix representation in
Figure 11-25.
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FIGURE 11-25 Adjacency Matrix for Exercise 13

14. A graph can be used to show relationships. For example, from the follow-
ing list of people belonging to the same club (vertices) and their friend-
ships (edges), find:

a. all friends of John
b. all friends of Susan
c. all friends of friends of Jean
d. all friends of friends of Jim

Problems
15. Write an algorithm that determines whether a node is disjoint.

16. Write an algorithm that disjoints a node.

17. Write an algorithm that finds the sum of the degrees for a node, using the
adjacency list representation.

18. Both the depth-first and breadth-first traversals process disjoint graphs.
Write an algorithm that traverses a graph and returns true if the graph is
connected and false if it is disjoint.

19. Write an algorithm that determines whether there is at least one arc point-
ing to a specified vertex. (Hint: This is a very simple algorithm.)

20. In a weakly connected graph, it may not be possible to start at one vertex
and reach another. Write an algorithm that, when given the graph, a
source vertex, and a destination vertex, determines whether there is at
least one path from the source to the destination.

21. Algorithm 11-8, “Depth-first Traversal,” uses a stack to traverse the graph.
Rewrite the algorithm to use recursion. (Hint: You need two algorithms,
one to interface with the using algorithm and one for the recursion.)

 People = {George, Jim, Jean, Frank, Fred, John, Susan}
 Friendship = {(George, Jean), (Frank, Fred),
               (George, John), (Jim, Fred),
               (Jim, Frank),   (Jim, Susan),
               (Susan, Frank)}

A B C D E F

A 0 3 4 0 2 1

B 0 0 2 0 0 3

C 0 0 0 2 6 1

D 2 6 1 0 1 2

E 0 0 0 0 0 3

F 0 0 0 0 0 0
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Projects
22. Write the C code for Algorithm 11-12, “Minimum Spanning Tree of a

Graph,” using the ADT given in the text.

23. Write the C code for Algorithm 11-13, “Shortest Path,” using the ADT
given in the text.

24. Write an algorithm that prints the minimum spanning tree of a graph. At
the end, print the weight of the spanning tree. A suggested report format is
shown in the following example.

25. Revise the graph ADT using an adjacency matrix as the data structure.

26. One of the tools used to manage large projects is known as the critical
path method (CPM). In CPM the manager builds a network of all phases
of a project and then evaluates the network to determine critical aspects of
the project.

In a CPM network, each vertex is an event, such as the start or comple-
tion of a task. The arcs connecting the vertices represent the duration of
the activity. Unlike the examples in the text, they also store the name of the
activity. To better understand the concept, let’s look at a possible CPM plan
to build a house. The network for this project is shown in Figure 11-26.

FIGURE 11-26 Project 26: Steps for Building a House

In the plan we see that it will take 10 days to prepare the building plan
(A) and 5 days to get it approved (B). Furthermore, we can’t start building
until we have selected the contractor (C).

We could construct the shortest path from the start to the end for our
plan, but it would be of little value. On the other hand, if we determined

Source Vertex To Vertex  Weight
A B     2
A C     4
B D     3
D E     1

Total weight of spanning tree: 10
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the maximum path—that is, the path with the greatest sum of the
weights—we would know which steps in our plan are critical. If a critical
step slips even one day, we slip our end date. We can slip noncritical dates,
however, without slipping our end date, so long as the slip does not change
the critical path for the project.

Modify Algorithm 11-12, “Minimum Spanning Tree of a Graph,” to
determine the maximum path through the graph. Then provide a menu
that allows the project manager to answer the following questions:

a. What is the shortest possible completion time (SPCT)? The SPCT is
the longest path through the graph from beginning to end.

b. What is the earliest start time (EST) for each activity? The EST is the
sum of the weights in the maximum spanning tree up to the activity.

c. What is the latest start time (LST) for each activity? The LST is the
SPCT for the whole project minus the SPCT for the rest of the project
(starting from the current activity).

d. What is the slack time for each activity? The slack time is LST – EST.
e. Is an activity a critical path item? (Critical path items have a slack time

of zero.)
f. What is the critical path for the project? (The critical path is the sub-

graph consisting of the maximum spanning tree.)

27. The graph is another structure that can be used to solve the maze prob-
lem (see Project 24 in Chapter 3). Every start point, dead end, goal, and
decision point can be represented by a node. The arcs between the nodes
represent one possible path through the maze. A graph maze is shown
in Figure 11-27.

FIGURE 11-27 Graph Maze for Project 27

Write a program that simulates a mouse’s movement through the maze,
using a graph and a depth-first traversal. When the program is complete,
print the path through the maze.
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28. A computer company in the Silicon Valley area (see Figure 11-28) needs to
route delivery vehicles between cities on the shortest route. Having studied
data structures, you recognize that this is an application for Dijkstra’s short-
est path algorithm. To demonstrate your proposal, you decide to implement
it on your computer. To do so you must complete the following tasks:

a. Convert the map in Figure 11-28 to a network and present it to
management.

b. Modify the graph ADT to store weights in the arc nodes.
c. Write an interactive program that when given the start and destination

displays the shortest route between them.

FIGURE 11-28 Map of Silicon Valley Area
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Part IV

Sorting and Searching
The last part of the book touches on two subjects that are not considered
abstract data types but are very closely related: sorting and searching.
Although sorting and searching are briefly discussed in an introductory pro-
gramming course, the discussion does not normally get into advanced con-
cepts. In this part we discuss advanced sorting and searching algorithms.
Figure IV-1 shows the chapters included in this part and the topics discussed
in each chapter.

Included in the two chapters we find discussions about the complexity of
sorting and searching. The ideas developed in Chapter 1 are applied to each
sorting and searching algorithm, and some informal but simple proofs are
given. Complexity analysis enables us to understand the difference between
the fast sorts developed in this part compared with slow sorts discussed in an
introductory programming course. 
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FIGURE IV-1

Implementation
The sorting and searching algorithms developed in this part of the book are
directly implemented as stand-alone functions in C. Although abstract data
types can be used to develop generic functions, we do not use them in this
section. Rather, we keep the algorithm simple to allow us to concentrate on
the algorithm logic. 

Chapters Covered
This part includes two chapters.

Chapter 12: Sorting
In this chapter we discuss sorting. The chapter begins with a general discus-
sion of sort concepts. We then introduce four sort categories: selection sort,
insertion sort, exchange sort, and external sort.

Chapter 13: Searching
In this chapter we discuss searching. We begin with a discussion of the basic
sequential search, including several variations, and the binary search. We
conclude with a discussion of hashed list searches and collison resolution.

Sorting and
Searching

Sorting
Chapter 12

Searching
Chapter 13

– Selection Sorts
– Insertion Sorts
– Exchange Sorts
– External Sorts

– List Searches
– Hashed List Searches
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Chapter 12
Sorting

One of the most common applications in computer science is sort, the process
through which data are arranged according to their values. We are sur-
rounded by data. If data were not ordered, we would spend hours trying to
find a single piece of information. Imagine the difficulty of finding someone’s
telephone number in a telephone book that had no internal order.

The history of sorting goes back to the roots of computing. Herman Hol-
lerith’s electric tabulating machine was used to tally the 1890 U.S. Census
and was one of the first modern sorting machines. Sorting was also on the
scene when general-purpose computers first came into use. According to
Knuth, “There is evidence that a sorting routine was the first program ever
written for a stored program computer.”1 Although computer scientists have
not developed a major new algorithm in more than 30 years (the newest algo-
rithm in this book is heap sort, which was developed in 1964), sorting is still
one of the most important concepts in computing today.

12.1 Sort Concepts
We discuss six internal sorts in this chapter: insertion sort, bubble sort, selec-
tion sort, shell sort, heap sort, and quick sort. The first three are useful only
for sorting very small lists, but they form the basis of the last three, which are
useful general-purpose sorting concepts. After discussing the internal sorts,
we will introduce the basic concepts used in external sorts.

1. Donald E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching, Second Edition
(Reading, MA: Addison-Wesley, 1998), 385.

Sorting is one of the most common data-processing applications. 
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Sorts are generally classified as either internal or external sorts. In an
internal sort, all of the data are held in primary memory during the sorting pro-
cess. An external sort uses primary memory for the data currently being sorted
and secondary storage for any data that does not fit in primary memory. For
example, a file of 20,000 records may be sorted using an array that holds
only 1000 records. During the sorting process, only 1000 records are there-
fore in memory at any one time; the other 19,000 are kept in a file in second-
ary storage.

Internal sorting algorithms have been grouped into several different clas-
sifications depending on their general approach to sorting. Knuth identified
five different classifications: insertion, selection, exchanging, merging, and
distribution sorts.2 In this text we cover the first three. Distribution sorts,
although interesting, have minimal use in computers. The different sorts are
shown in Figure 12-1.

FIGURE 12-1 Sort Classifications

Sort Order
Data may be sorted in either ascending sequence or descending sequence.
The sort order identifies the sequence of the sorted data, ascending or descend-
ing. If the order of the sort is not specified, it is assumed to be ascending.
Examples of common data sorted in ascending sequence are the dictionary
and the telephone book. Examples of common descending data are percent-
ages of games won in a sporting event such as baseball or grade-point aver-
ages for honor students. 

Sorting algorithms are classified as either internal or external.

2. See Knuth, Art of Computer Programming,  73–179.
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Sort Stability
Sort stability is an attribute of a sort, indicating that data with equal keys main-
tain their relative input order in the output. Stability is best seen in an
example. In Figure 12-2(a) the unsorted data contain three entries with
identical keys (212). If the data are sorted with a stable sort, the order in
Figure 12-2(b) is guaranteed. That is, 212 green is guaranteed to be the
first of the three in the output, 212 yellow is guaranteed to be the second,
and 212 blue is guaranteed to be the last. If the sort is not stable, records
with identical keys may occur in any order, including the stable order shown
in Figure 12-2(b). Figure 12-2(c) is one example of the six different
sequences that could occur in an unstable sort. Note that in this example
blue comes out first even though it was the last of the equal keys. Of the
sort algorithms we will discuss in this text, the straight insertion sort and the
bubble sort are stable; the others are unstable.

FIGURE 12-2 Sort Stability

Sort Efficiency
Sort efficiency is a measure of the relative efficiency of a sort. It is usually an esti-
mate of the number of comparisons and moves required to order an unor-
dered list. We discuss the sort efficiency of each of the internal sorts we cover
in this chapter. Generally speaking, however, the best possible sorting algo-
rithms are on the order of n log n; that is, they are O(n log n) sorts.3 Three of
the sorts we study are O(n2). The best, quick sort, is O(n log n). 

Passes
During the sorting process, the data are traversed many times. Each traversal
of the data is referred to as a sort pass. Depending on the algorithm, the sort

3. As a project, we discuss an interesting sort—the radix sort—which is O(n). However, its extensive
overhead limits its general use.

365 blue
212212 greengreen
876 white
212212 yellowyellow
119 purple
737 green
212212 blueblue
443 red
567 yellow

(a) Unsorted data
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212212 yellowyellow
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(b) Stable sort (c) Unstable sort
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pass may traverse the whole list or just a section of the list. Also, a character-
istic of a sort pass is the placement of one or more elements in a sorted list.

Sorts and ADTs
Sort algorithms can be easily adapted to an ADT implementation using the
techniques discussed in Section 1.5, “Generic Code for ADTs.” There is one
significant difference between the ADTs in previous chapters and sort ADTs:
in sort ADTs the data type is defined and filled in the application. It is then
passed to the ADT for sorting. 

To sort data of an unknown type and size, the ADT needs four parame-
ters, as shown in the following prototype statement:

The data to be sorted is received as a void pointer. To locate an element in the
array, we can treat the array as an array of characters and use pointer arith-
metic to move from one element to another. For example, to address the fifth
element of the array, we use the following statement:

The number of elements entry (numElem) is needed to identify the physi-
cal end of the list. And, finally, a compare function is needed, as we have seen
in all of the key-sequenced ADTs. 

All sort algorithms require that array elements be exchanged. Because we
don’t know the physical type, the exchanges must treat each element as an
array of characters and move them one at a time. The following code segment
shows how to exchange two elements:

In this chapter we implement the sort algorithms using integer data so
that we can concentrate on the sort design. We leave ADT implementations
for problems and projects at the end of the chapter.

bool sortADT (void* ary, 
              int   sizeofElem, 
              int   numElem,
              int  (*compare)(void* arg1, void* arg2));

(char*)ary + (walker * sizeofElem)

// Move smallest to hold area
for (int i = 0; i < sizeofElem; i++)
     *(holdData + i) = *(smallest + i);
// Move current to smallest location
movePtr = (char*)ary + (current * sizeofElem);
for (int i = 0; i < sizeofElem; i++)
     *(smallest + i) = *(movePtr + i);
// Move hold area current location
for (int i = 0; i < sizeofElem; i++)
     *(movePtr + i)  = *(holdData + i);
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12.2 Selection Sorts 
Selection sorts are among the most intuitive of all sorts. Given a list of data to be
sorted, we simply select the smallest item and place it in a sorted list. These
steps are then repeated until we have sorted all of the data. In this section we
study two selection sorts: the straight selection sort and the heap sort.

Straight Selection Sort
In the straight selection sort, the list at any moment is divided into two sublists,
sorted and unsorted, which are divided by an imaginary wall. We select the
smallest element from the unsorted sublist and exchange it with the element
at the beginning of the unsorted data. After each selection and exchange, the
wall between the two sublists moves one element, increasing the number of
sorted elements and decreasing the number of unsorted ones. Each time we
move one element from the unsorted sublist to the sorted sublist, we say that
we have completed one sort pass. If we have a list of n elements, therefore,
we need n – 1 passes to completely rearrange the data. The selection sort is
graphically presented in Figure 12-3.

FIGURE 12-3 Selection Sort Concept

Figure 12-4 traces our set of six integers as we sort them. It shows how
the wall between the sorted and unsorted sublists moves in each pass. As you
study the figure, you see that the array is sorted after five passes, one less than
the number of elements in the array. Thus, if we use a loop to control the sort-
ing, our loop has one less iteration than the number of elements in the array.

Selection Sort Algorithm
If you knew nothing about sorting and were asked to sort a list on paper, you
would undoubtedly scan the list to locate the smallest item and then copy it
to a second list. You would then repeat the process of locating the smallest
remaining item in the list and copying it to the new list until you had copied
all items to the sorted list. 

In each pass of the selection sort, the smallest element is selected from the unsorted sublist and
exchanged with the element at the beginning of the unsorted list.

Sorted Unsorted

0 k Last

Wall

j

minimum(a[k]. . .a[last])
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FIGURE 12-4 Selection Sort Example

With the exception of using two areas, this is exactly how the selection
sort works. Starting with the first item in the list, the algorithm scans the list
for the smallest element and exchanges it with the item at the beginning of
the list. Each selection and exchange is one sort pass. After advancing the
index (wall), the sort continues until the list is completely sorted. The
pseudocode is shown in Algorithm 12-1.

ALGORITHM 12-1 Selection Sort

continued

Algorithm selectionSort (list, last)
Sorts list array by selecting smallest element in 
unsorted portion of array and exchanging it with element 
at the beginning of the unsorted list.

Pre  list must contain at least one item
     last contains index to last element in the list
Post list has been rearranged smallest to largest

1 set current to 0
2 loop (until last element sorted)

1 set smallest to current

8 23 32 45 56 78

8 78 5623 32 45

8 78 45 5623 32

8 45 78 32 5623

8 78 45 23 32 56

Unsorted

23 78 45 8 32 56

Unsorted

Original list

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

Unsorted

UnsortedSorted

Sorted

Sorted
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ALGORITHM 12-1 Selection Sort (continued)

Heap Sort
In Chapter 9 we studied heaps. Recall that a heap is a tree structure in which
the root contains the largest (or smallest) element in the tree. (You may want
to review Chapter 9 before studying heap sort.) As a quick review, Figure 12-5
shows a heap in its tree form and in its array form.

FIGURE 12-5 Heap Representations

The heap sort algorithm is an improved version of the straight selection sort.
The straight selection sort algorithm scans the unsorted elements and selects
the smallest element. Finding the smallest element among the n elements
requires n – 1 comparisons. This part of the selection sort makes it very slow.

The heap sort also selects an element from the unsorted portion of the
list, but it is the largest element. Because the heap is a tree structure, how-
ever, we don’t need to scan the entire list to locate the largest key. Rather, we

2 set walker   to current + 1 
3 loop (walker <= last) 

1 if (walker key < smallest key)
1 set smallest to walker 

2 increment walker 
4 end loop

Smallest selected: exchange with current element. 
5 exchange (current, smallest)
6 increment current 

3 end loop
end selectionSort

78

56

45 8

32

23 19

[0]

[1] [2]

[3] [4] [5] [6]

(a) Heap in its tree form

(b) Heap in its array form

[0] [1] [2] [3] [4] [5] [6]

78 56 32 45 8 23 19
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reheap, which moves the largest element to the root by following tree
branches. This ability to follow branches makes the heap sort much faster
than the straight selection sort.

Heap sort begins by turning the array to be sorted into a heap. The array
is turned into a heap only once for each sort. We then exchange the root,
which is the largest element in the heap, with the last element in the
unsorted list. This exchange results in the largest element’s being added to
the beginning of the sorted list. We then reheap down to reconstruct the heap
and exchange again. The reheap and exchange process continues until the
entire list is sorted.

The heap sort process is shown in Figure 12-6. We first turn the unordered
list into a heap. You should verify for yourself that the array is actually a heap.

FIGURE 12-6 Heap Sort Process

Because the largest element (78) is at the top of the heap, we can
exchange it with the last element in the heap and move the heap wall one ele-
ment to the left. This exchange places the largest element in its correct loca-
tion at the end of the array, but it destroys the heap. We therefore rebuild the
heap. The smaller heap now has its largest element (56) at the top. We

The heap sort is an improved version of the selection sort in which the largest element (the root) is
selected and exchanged with the last element in the unsorted list. 

(b) Heap sort process

(a) Heap sort exchange process
Heap Sorted data

heap
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sortedheap
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After pass 1
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sortedheap
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sortedheap
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sortedheap

32 568 23 45 78

sorted

32 568 23 45 78



Chapter 12 Sorting 541

exchange 56 with the element at the end of the heap (23), which places 56 in
its correct location in the sorted array. The reheap and exchange processing
continues until we have sorted the entire array.

Heap Sort Algorithm
Algorithm 12-2 contains the pseudocode for heap sort. It uses two algorithms
defined in Chapter 9: Algorithm 9-1, “Reheap Up,” and Algorithm 9-2,
“Reheap Down.”

ALGORITHM 12-2 Heap Sort

Algorithm 12-2 Analysis Whereas the heap-array structure is relatively complex, the heap sort algorithm is simple.
The algorithm begins by using the reheap up algorithm to turn the array into a heap. It
then sorts the array by exchanging the element at the top of the heap with the element
at the end of the heap and rebuilding the heap using the reheap down algorithm.

Selection Sort Efficiency
In this section we examine the sort efficiency for the selection sorts. 

Straight Selection Sort
The code for the straight selection sort is found in Algorithm 12-1, “Selection
Sort.” It contains the two loops shown below.

Algorithm heapSort (heap, last)
Sort an array, using a heap.

Pre  heap array is filled
     last is index to last element in array
Post heap array has been sorted
Create heap 

1 set walker to 1
2 loop (heap built)

1 reheapUp (heap, walker)
2 increment walker 

3 end loop
Heap created. Now sort it. 

4 set sorted to last 
5 loop (until all data sorted)

1 exchange (heap, 0, sorted) 
2 decrement sorted 
3 reheapDown (heap, 0, sorted)

6 end loop
end heapSort

2 loop (until last element sorted)
...
3 loop (walker <= last)
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The outer loop executes n – 1 times. The inner loop also executes n – 1
times. This is a classic example of the quadratic loop. Its search effort there-
fore, using big-O notation, is O(n2).

Heap Sort
The heap sort pseudocode is shown in Algorithm 12-2. Ignoring the effort
required to build the heap initially, the sort contains two loops. The first is a
simple iterative loop; the second is a recursive loop:

The outer loop starts at the end of the array and moves through the heap
one element at a time until it reaches the first element. It therefore loops n
times. The inner loop follows a branch down a binary tree from the root to a
leaf or until the parent and child data are in heap order. The probability of
the data being in order before we reach the leaf is very small, so we ignore it.
The difficult part of this analysis is that for each of the outer loops, the heap
becomes smaller, shortening the path from the root to a leaf. Again, except
for the largest of heaps, this factor is rather minor and is eliminated in big-O
analysis; therefore, we ignore it also. 

Following the branches of a binary tree from a root to a leaf requires log
n loops. The sort effort, the outer loop times the inner loop, for the heap sort
is therefore 

When we include the processing to create the original heap, the big-O
notation is the same. Creating the heap requires n log n loops through the
data. When factored into the sort effort, it becomes a coefficient, which is
then dropped to determine the final sort effort.

Summary
Our analysis leads to the conclusion that the heap sort, O(n logn), is more
efficient than the straight selection sort, O(n2). Table 12-1 offers a compari-
son of these two sorts. Depending on the algorithm’s implementation, the run
time can be affected.

The straight selection sort efficiency is O(n 2). 

5 loop (until all data sorted)
...
3 reheapDown (heap, 0, sorted)

n(logn)

The heap sort efficiency is O(n log n).
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TABLE 12-1 Comparison of Selection Sorts

Selection Sort Implementation
We now turn our attention to implementing the selection sort algorithms in
C. We first implement the straight selection sort and then the heap sort.

Selection Sort C Code
The code for the selection sort is shown in Program 12-1. Its design is found
in Algorithm 12-1.

PROGRAM 12-1 Selection Sort

continued

Number of loops

n Straight selection Heap

25 625 116

100 10,000 664

500 250,000 4482

1000 1,000,000 9965

2000 4,000,000 10,965

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

/* ================== selectionSort ===================
Sorts list [1…last] by selecting smallest element in
unsorted portion of array and exchanging it with 
element at beginning of the unsorted list.
   Pre  list must contain at least one item 
        last contains index to last list element 
   Post list has been sorted smallest to largest 

*/
void selectionSort  (int list[ ], int last)
{
// Local Declarations 

int smallest;
int holdData;

// Statements 
for (int current = 0; current < last; current++)
    {
     smallest = current;
     for (int walker = current + 1;
              walker <= last;
              walker++)
         if (list[ walker ] < list[ smallest ])
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PROGRAM 12-1 Selection Sort (continued)

Heap Sort C Code
The heap sort program requires a driver function, which we call heap sort,
and two functions discussed earlier, reheap up and reheap down. We have
tailored them here for the sorting process.

Heap Sort Function
The heap sort function accepts an array of unsorted data and an index to the
last element in the array. It then creates a heap and sorts it using reheap up
and reheap down. The heap sort algorithms are shown in Program 12-2.

PROGRAM 12-2 Heap Sort

continued

23
24
25
26
27
28
29
30
31

            smallest = walker;

     // Smallest selected: exchange with current 
     holdData        = list[ current ];
     list[current]   = list[ smallest ];
     list[smallest]  = holdData;
    } // for current 
return;

} // selectionSort 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

/* ===================== heapSort =====================
Sort an array, [list0 .. last], using a heap.
   Pre  list must contain at least one item
        last contains index to last element in list
   Post list has been sorted smallest to largest

*/
void heapSort (int  list[ ], int  last)
{
// Local Definitions 

int sorted;
int holdData;

// Statements 
// Create Heap 
for (int walker = 1; walker <= last; walker++)

reheapUp (list, walker);

// Heap created. Now sort it. 
sorted = last;
while (sorted > 0)
   {
    holdData     = list[0];
    list[0]      = list[sorted];
    list[sorted] = holdData;
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PROGRAM 12-2 Heap Sort (continued)

continued

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

    sorted--;
    reheapDown (list, 0, sorted);
   } // while 
return;

} // heapSort 

/* ==================== reheapUp ==================== 
Reestablishes heap by moving data in child up to
correct location heap array.
   Pre  heap is array containing an invalid heap
        newNode is index location to new data in heap
   Post newNode has been inserted into heap

*/
void reheapUp (int* heap, int newNode) 
{
// Local Declarations 

int parent;
int hold;

// Statements 
// if not at root of heap 
if (newNode)
   {
    parent = (newNode - 1)/ 2;
    if ( heap[newNode] > heap[parent] )
       {
        // child is greater than parent 
        hold          = heap[parent]; 
        heap[parent]  = heap[newNode];
        heap[newNode] = hold;
        reheapUp (heap, parent);
       } // if heap[] 
   } // if newNode 
return;

} // reheapUp 

/* ==================== reheapDown ==================== 
Reestablishes heap by moving data in root down to its
correct location in the heap.
   Pre  heap is an array of data
        root is root of heap or subheap
        last is an index to the last element in heap
   Post heap has been restored

*/
void reheapDown   (int* heap, int root, int last)
{
// Local Declarations 

int hold;
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PROGRAM 12-2  Heap Sort (continued)

Program 12-2 Analysis The heap sort implementation follows the pseudocode closely. Using an index, we
walk through the array, calling reheap up to create the heap. Once the heap has been
created, we exchange the element at the top of the heap with the last element in the
heap and adjust the heap size down by 1. We then call reheap down to re-create the
heap by moving the root element down the tree to its correct location. 

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

int leftKey;
int rightKey;
int largeChildKey;
int largeChildIndex;

// Statements 
if ((root * 2 + 1) <= last)
    // There is at least one child 
   {
    leftKey   = heap[root * 2 + 1];
    if ((root * 2 + 2) <= last)
       rightKey  = heap[root * 2 + 2];
    else
       rightKey  = -1;
       
    // Determine which child is larger 
    if (leftKey > rightKey) 
       {
        largeChildKey   = leftKey;
        largeChildIndex = root * 2 + 1;
       } // if leftKey 
    else
       {
        largeChildKey   = rightKey;
        largeChildIndex = root * 2 + 2;
       } // else 
    // Test if root > larger subtree 
    if (heap[root] < heap[largeChildIndex])
        {
         // parent < children 
         hold       = heap[root];
         heap[root] = heap[largeChildIndex];
         heap[largeChildIndex] = hold;
         reheapDown (heap, largeChildIndex, last);
        } // if root < 
} // if root 
return;

} // reheapDown 
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12.3 Insertion Sorts
Insertion sorting is one of the most common sorting techniques used by card
players. As they pick up each card, they insert it into the proper sequence in
their hand.4 The concept extends well into computer sorting. In each pass of
an insertion sort, one or more pieces of data are inserted into their correct
location in an ordered list. In this section we study two insertion sorts: the
straight insertion sort and the shell sort.

Straight Insertion Sort
In the straight insertion sort, the list is divided into two parts: sorted and unsorted.
In each pass the first element of the unsorted sublist is transferred to the
sorted sublist by inserting it at the appropriate place. If we have a list of n ele-
ments, it will take at most n – 1 passes to sort the data. This concept is shown
in Figure 12-7. In this figure we have placed a visual wall between the sorted
and the unsorted portions of the list.

FIGURE 12-7 Insertion Sort Concept

Straight Insertion Sort Example
Figure 12-8 traces the insertion sort through a list of six numbers. Sorting
these data requires five sort passes. Each pass moves the wall one element to
the right as an element is removed from the unsorted sublist and inserted
into the sorted sublist.

Insertion Sort Algorithm
The design of the insertion sort follows the pattern in the example. Each exe-
cution of the outer loop inserts the first element from the unsorted list into
the sorted list. The inner loop steps through the sorted list, starting at the
high end, looking for the correct insertion location. The pseudocode is shown
in Algorithm 12-3.

4. Card sorting is an example of a sort that uses two pieces of data to sort: suit and rank.

Sorted Unsorted

0 k Last

Wall

j
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FIGURE 12-8 Insertion Sort Example

ALGORITHM 12-3 Straight Insertion Sort

Algorithm insertionSort (list, last) 
Sort list array using insertion sort. The array is 
divided into sorted and unsorted lists. With each pass, the   
first element in the unsorted list is inserted into the 
sorted list. 

Pre  list must contain at least one element
     last is an index to last element in the list
Post list has been rearranged

1 set current to 1
2 loop (until last element sorted)

1 move current element to hold 
2 set walker to current - 1
3 loop (walker >= 0 AND hold key < walker key)

1 move walker element right one element
2 decrement walker 

4 end loop
5 move hold to walker + 1 element 
6 increment current 

3 end loop
end insertionSort 

After pass 2

After pass 3

After pass 4

After pass 58 23 32 45 56 78

Sorted

8 23 32 45 78 56

8 23 45 78 32 56

Sorted

23 45 78 8 32 56

UnsortedSorted

23 78 45 8 32 56

23 78 45 8 32 56

Unsorted

Original list

Unsorted

After pass 1

Sorted
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Algorithm 12-3 Analysis Two design concepts need to be explored in this simple algorithm. At some point in
their execution, all sort algorithms must exchange two elements. Each exchange takes
three statements, which can greatly impact the sort efficiency when many elements
need to be exchanged. To improve the efficiency, therefore, split the exchange into dif-
ferent parts of the algorithm. The first step of the loop begins the exchange by moving
to the hold area the data currently being sorted. This typical first move in any
exchange is shown in statement 2.1. The inner loop (statement 2.3) shifts elements to
the right until it finds the correct insertion location. Each of the shifts repeats the second
step in an exchange. Finally, when the correct location is found, the hold area is
moved back to the array (statement 2.5). This is the third step in the exchange logic
and completes the exchange.

Another point you should study is the workings of the inner loop. To make the sort
as efficient as possible, we start with the high end of the sorted list and work toward the
beginning of the sorted area. For the first insertion, this approach requires a maximum
of one element to be shifted. For the last, it requires a minimum of zero and a maximum
of n – 1 elements be shifted. The result is that only a portion of the list may be examined
in each sort pass.

Shell Sort
The shell sort algorithm, named after its creator, Donald L. Shell, is an
improved version of the straight insertion sort. It was one of the first fast sort-
ing algorithms.5

In the shell sort, a list of N elements is divided into K segments, where K is
known as the increment. Each segment contains a minimum of integral N/K; if
N/K is not an integral, some of the segments will contain an extra element.
Figure 12-9 contains a graphic representation of the segments in a shell sort.
Note that the segments are dispersed throughout the list. In Figure 12-9 the
increment is 3; the first, fourth, seventh, and tenth elements make up segment
1; the second, fifth, and eighth elements make up segment 2; and the third,
sixth, and ninth elements make up segment 3. After each pass through the
data, the data in each segment are ordered. Thus, when there are three seg-
ments, as we see in Figure 12-9, there are three different ordered lists. When
there are two segments, there are two ordered lists; when there is only one seg-
ment, the list is sorted.

In a straight insertion sort, the list at any moment is divided into sorted and unsorted sublists. In each
pass the first element of the unsorted sublist is inserted into the sorted sublist.

5. Shell’s algorithm was first published in Communications of the ACM, vol. 2, no. 7 (1959): 30–32.

The shell sort is an improved version of the straight insertion sort in which diminishing partitions are
used to sort the data.
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FIGURE 12-9 Segmented Array

Shell Sort Algorithm
Each pass through the data starts with the first element in the array and
progresses through the array, comparing adjacent elements in each segment.
In Figure 12-9 we begin by comparing elements A[0] and A[3] from the first
segment, then A[1] and A[4] from the second segment, and then A[2] and A[5]
from the third segment. We then compare A[3] and A[6] from the first seg-
ment, A[4] and A[7] from the second segment, and so forth until finally we
compare elements A[6] and A[9]. If the elements are out of sequence, they are
exchanged. Study Figure 12-9 carefully until you see each of these compari-
sons. Be sure to note also that the first segment has four elements, whereas
the other two have only three. The number of elements in the segments varies
because the list size (10) is not evenly divisible by the increment (3).

To compare adjacent keys in a segment, we add the increment to the cur-
rent index, as shown below.

After each pass through the data, the increment is reduced until, in the
final pass, it is 1. Although the only absolute is that the last increment must
be 1, the size of the increments influences the efficiency of the sort. We will
discuss this issue separately later. The diminishing increment6 is shown for
an array of 10 elements and increments of 5, 2, and 1 in Figure 12-10.

list[cur] : list[cur + incre]

6. Knuth gave this sort the name diminishing increment sort, but it is better known simply as the shell sort.

A[0] A[0 + 2 × K ]

A[1 + 2 × K ]

A[2] A[2 + 2 × K ]

A[0] A[1] A[3] A[4] A[5] A[6] A[7] A[8] A[9]A[2]

A[0 + 3 ×  K ]

A[1]

Segment 1

Segment 2

Segment 3

A[0 + 1 x K ]

A[1 + 1 x K ]

A[2 + 1 x K ]
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FIGURE 12-10 Diminishing Increments in Shell Sort

7721 62 14 30 80 25 559 70

7721 62 14 30 80 25 559 70

7721 62 14 30 80 25 559 70

77 2162 14 30 80 25 559 70

Walker Current

7721 62 14 30 80 25 559 70

7721 62 14 30 80 25 559 70

(a) First increment: K = 5

(d) Sorted array
9 5514 21 30 62 70 8025 77

(c) Third increment: K = 1

9 5514 21 30 62 70 7725 80

9 5514 21 30 70 62 7725 80

9 5514 21 30 70 62 7725 80

9 5514 21 30 70 62 7725 80

9 5514 21 30 70 62 7725 80

9 5514 21 30 70 62 7725 80

9 5514 21 30 70 62 7725 80

14 559 21 30 70 62 7725 80

9 5514 21 30 62 70 772525 80

9 5514 21 30 62 70 8025 77

(b) Second increment: K = 2

14 629 21 30 80 77 5525 70

14 779 21 30 80 25 5562 70

14 779 21 30 80 25 5562 70

14 779 21 30 80 25 5562 70

14 779 21 30 80 25 5562 70

21 7762 14 30 80 25 559 70

14 779 21 30 80 25 5562 70

14 629 21 30 55777025 80

14 559 21 30 77627025 80
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After each pass through the data, the elements in each segment are
ordered. To ensure that each segment is ordered at the end of the pass, when-
ever an exchange is made we drop back one increment and test the adjacent
elements. If they are out of sequence, we exchange them and drop back
again. If necessary, we keep exchanging and dropping back until we find two
elements are ordered. We now have all of the elements of the shell sort. Its
pseudocode is shown in Algorithm 12-4.

ALGORITHM 12-4 Shell Sort

Algorithm 12-4 Analysis Let’s look at the shell sort carefully to see how it qualifies as an insertion sort. Recall that
insertion sorts insert the new data into their correct location in the ordered portion of
the list. This concept is found in the shell sort: the ordered portion of the list is a seg-
ment with its members separated by the increment size. To see this more clearly, look at
Figure 12-11. In this figure the segment is shown as the colored elements in an array.
The new element, A[0 + 3 × K ], is being inserted into its correct position in the
ordered portion of the segment.

Algorithm shellSort (list, last)
Data in list array are sorted in 
place. After the sort, their keys will be in order, 
list[0] <= list[1] <= … <= list[last].

Pre  list is an unordered array of records
     last is index to last record in array
Post list is ordered on list[i].key

1 set incre to last / 2
Compare keys “increment” elements apart. 

2 loop (incre not 0)
1 set current to incre
2 loop (until last element sorted)

1 move current element to hold 
2 set walker to current - incre
3 loop (walker >= 0 AND hold key < walker key)

Move larger element up in list. 
1 move walker element one increment right

Fall back one partition. 
2 set walker to walker - incre

4 end loop
Insert hold record in proper relative location. 

5 move hold to walker + incre element
6 increment current 

3 end loop
End of pass--calculate next increment. 

4 set incre to incre / 2 
3 end loop
end shellSort
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FIGURE 12-11 Ordered Segment in a Shell Sort

Furthermore, if you compare the code in Algorithm 12-4 with the code in
Algorithm 12-3, “Straight Insertion Sort,” you see that, other than the increment, the code
is virtually identical. 

One of the most important parts of the shell sort is falling back to ensure that the seg-
ment is ordered. This logic takes place in statement 2.2.3.2. If this logic is not included,
the resulting list is not completely sorted.

Selecting the Increment Size
First, recognize that no increment size is best for all situations. The overrid-
ing considerations in the sort are to complete the sort with the minimum
number of passes (increments) and to minimize the number of elements that
appear in more than one segment. One method to ensure that an element is
not in more than one segment is to use prime numbers. Unfortunately, the
dynamic calculation of prime numbers is a relatively slow process.

Most texts use the simple series we proposed in Algorithm 12-4, setting
the increment to half the list size and dividing by 2 on each pass. Knuth sug-
gests, however, that we should not start with an increment greater than one-
third of the list size.7 Other computer scientists have suggested that the incre-
ments be a power of 2 minus 1 or a Fibonacci series. These variations may
result in a slightly more efficient sort, but they are relatively complex. One
simple variation of the division-by-2 approach is to add 1 whenever the incre-
ment is even. Doing so tends to reduce the number of elements that appear
in multiple segments.

Although we can use more-complex increment-setting algorithms, the
efficiency of a shell sort never approaches that of the quick sort discussed in
the next section. Therefore, if the objective is to obtain the most efficient
sort, the solution is to use the quick sort rather than try to optimize the incre-
ment size in the shell sort. On the other hand, the shell sort is a much sim-
pler sort and at the same time is reasonably efficient.

7. Knuth, Art of Computer Programming, vol. 3, 94.

A[0] A[0 + 2 × K ]A[0 + K ] A[0 + 3 × K ]

Sorted Unsorted
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Insertion Sort Efficiency 
Sort algorithms determine the sort effort for a given sort. Sort effort is
defined as the relative efficiency of a sort. It can be determined in several
ways, but we use the number of loops in the sort. Another common measure
is the number of moves and comparisons needed to sort the list. Of course,
the best measure is the time it takes to actually run the sort. Time, however,
varies by the efficiency of the program implementation and the speed of the
computer being used. For analyzing different sorts, therefore, the first two
measures are more meaningful. Let’s now analyze the straight insertion sort
and the shell sort algorithms to determine their relative efficiency.

Straight Insertion Sort
Referring to Algorithm 12-3, “Straight Insertion Sort,” we find the following
two loops: 

The outer loop executes n – 1 times, from 1 through the last element in
the list. For each outer loop, the inner loop executes from 0 to current
times, depending on the relationship between the hold key and the walker
key. On the average, we can expect the inner loop to process through the data
in half of the sorted list. Because the inner loop depends on the setting for
current, which is controlled by the outer loop, we have a dependent qua-
dratic loop, which is mathematically stated as 

In big-O notation the dependent quadratic loop is O(n2). 

Shell Sort
Now let’s look at Algorithm 12-4, “Shell Sort.” This algorithm contains the
nested loops shown below:

2 loop (until last element sorted)
...
2 set walker to current - 1
3 loop (walker >= 0 AND hold key < walker key)

The straight insertion sort efficiency is O(n2).

2 loop (incre not 0)
...
2 loop (until last element sorted)

...
3 loop (walker >= 0 AND hold key < walker key)

f n( ) n n 1+
2

------------ 
 =



Chapter 12 Sorting 555

Because we are dividing the increment by 2 in each loop, the outer loop
is logarithmic; it is executed log n times. The first inner loop executes n –
increment times for each of the outer loops; the first time it loops through
50% of the array (n – (n / 2)), the second time it loops through 75% of the
array (n – (n / 4)), and so forth until it loops through all of the elements.
The total number of iterations for the outer loop and the first inner loop is
shown below:

The innermost loop is the most difficult to analyze. The first limit keeps
us from falling off the beginning of the array. The second limit determines
whether we have to loop at all: we loop only when the data are out of order.
Sometimes the inner loop is executed zero times; sometimes it is executed
anywhere from one to increment times. If we were able to derive a formula
for the third factor, the total sort effort would be the product of the three
loops. The first two loops have a combined efficiency of O(n log n). However,
we still need to include the third loop. We can see, therefore, that the result
is something greater than O(n log n).

Knuth8 tells us that the sort effort for the shell sort cannot be derived
mathematically. He estimates from his empirical studies that the average sort
effort is 15n1.25. Reducing Knuth’s analysis to a big-O notation, we see that
the shell sort is O(n1 .25).

Summary
Our analysis leads to the conclusion that the heap sort is more efficient than
the other sorts we have discussed. The straight insertion and the straight
selection sorts are both O(n2) sorts, the shell sort is O(n1.25), and the heap sort
is O(n logn). Table 12-2 offers a comparison of the sorts. Note that according
to a strict mathematical interpretation of the big-O notation, heap sort sur-
passes shell sort in efficiency as we approach 2000 elements to be sorted.
Remember two points, however: First, big-O is a rounded approximation; all
coefficients and many of the factors have been removed. Second, big-O is
based on an analytical evaluation of the algorithms, not an evaluation of the
code. Depending on the algorithm’s implementation, the actual run time can
be affected.

8. Knuth, Art of Computer Programming, 382.

The shell sort efficiency is O(n1.25).

nlog n n
2
---– 

  n n
4
---– 

  n n
8
---– 

  . . . 1+ + + +× n nlog=
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TABLE 12-2 Comparison of Insertion and Selection Sorts

Insertion Sort Implementation 
In this section we write C implementations of the straight insertion sort and
the shell sort.

Straight Insertion Sort
The straight insertion sort’s implementation follows the pseudocode in
Algorithm 12-3 very closely. To test the sort, we created an array of random
integers. The code is shown in Program 12-3.

PROGRAM 12-3 Insertion Sort

continued

Number of loops

n
Straight insertion
Straight selection Shell Heap

25 625 55 116

100 10,000 316 664

500 250,000 2364 4482

1000 1,000,000 5623 9965

2000 4,000,000 13,374 10,965

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

/* ================== insertionSort ===================
Sort using Insertion Sort. The list is divided into 
sorted/unsorted list. In each pass, first element 
in unsorted list is inserted into sorted list.
   Pre  list must contain at least one element
        last contains index to last element in list
   Post list has been rearranged 

*/
void insertionSort (int list[], int last) 
{
// Local Definitions 

int hold;
int walker;

// Statements 
for (int current = 1; current <= last; current++)
   {
    hold = list[current];
    for (walker = current - 1; 
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PROGRAM 12-3 Insertion Sort (continued)

Program 12-3 Analysis We implement both loops using a for statement. When we begin the sort, the sorted
list contains the first element. Therefore, we set the loop start to position 1 for the
unsorted list (statement 16). In the inner loop, the limiting condition is the beginning of
the array, as shown in statement 20.

Shell Sort
The shell sort implementation, which also uses an array of integers, is shown
in Program 12-4. Its design is shown in Algorithm 12-4.

PROGRAM 12-4 Shell Sort

continued

20
21
22
23
24
25
26
27

         walker >= 0 && hold < list[walker]; 
         walker--) 
            list[walker + 1] = list[walker];

    list [walker + 1] = hold;
   } // for current 
return;

} // insertionSort 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

/* List[1], list[2], …, list[last] are sorted in place 
so that the keys are ordered, list[1].key <=
list[2].key, <= … <= list[last].key.
   Pre  list is an unordered array of integers 
        last is index to last element in array 
   Post list is ordered 

*/
void shellSort (int list [], int last)
{
// Local Definitions 

int hold;
int incre;
int walker;

// Statements 
incre = last / 2;
while (incre != 0)
   {
    for (int curr = incre; curr <= last; curr++) 
       {
        hold = list [curr];
        walker = curr - incre;
        while (walker >= 0 && hold < list [walker])
           {
            // Move larger element up in list 
            list [walker + incre] = list [walker];
            // Fall back one partition 
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PROGRAM 12-4 Shell Sort (continued)

Program 12-4 Analysis Although more complex than the straight insertion sort, the shell sort is by no means a
difficult algorithm. There are only two additional complexities over the straight insertion
sort. First, rather than a single array, we have an array of partitions. Second, whenever
an exchange is made, we must fall back and verify the order of the partition. 

12.4 Exchange Sorts 
The third category of sorts, exchange sorts, contains the most common sort
taught in computer science—the bubble sort—and the most efficient general-
purpose sort, quick sort. In exchange sorts we exchange elements that are out
of order until the entire list is sorted. Although virtually every sorting method
uses some form of exchange, the sorts in this section use it extensively.

Bubble Sort
In the bubble sort, the list at any moment is divided into two sublists: sorted and
unsorted. The smallest element is bubbled from the unsorted sublist and
moved to the sorted sublist. After moving the smallest to the sorted list, the
wall moves one element to the right, increasing the number of sorted ele-
ments and decreasing the number of unsorted ones (Figure 12-12). Each
time an element moves from the unsorted sublist to the sorted sublist, one
sort pass is completed. Given a list of n elements, the bubble sort requires up
to n – 1 passes to sort the data.

FIGURE 12-12 Bubble Sort Concept

28
29
30
31
32
33
34
35
36
37

            walker = ( walker - incre );
           } //  while 
        // Insert hold in proper position 
        list [walker + incre] = hold;
       } // for walk 
    // End of pass--calculate next increment. 
    incre = incre / 2;
   } // while 
return;

} // shellSort 

Sorted Unsorted

k Last

Wall
Bubble up

0 j
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Figure 12-13 shows how the wall moves one element in each pass. Look-
ing at the first pass, we start with 32 and compare it with 56. Because 32 is
less than 56, we exchange the two and step down one element. We then compare
32 and 8. Because 32 is not less than 8, we do not exchange these elements. We
step down one element and compare 45 and 8. They are out of sequence, so we
exchange them and step down again. Because we moved 8 down, it is now com-
pared with 78, and these two elements are exchanged. Finally, 8 is compared with
23 and exchanged. This series of exchanges places 8 in the first location, and the
wall is moved up one position.

FIGURE 12-13 Bubble Sort Example

Bubble Sort Algorithm
Like the insertion and selection sorts, the bubble sort is quite simple. In each
pass through the data, the smallest element is bubbled to the beginning of
the unsorted segment of the array. In the process, adjacent elements that are
out of order are exchanged, partially ordering the data. When the smallest
element is encountered, it is automatically bubbled to the beginning of the
unsorted list. The sort then continues by making another pass through the
unsorted list. The code for the bubble sort is shown in Algorithm 12-5.

ALGORITHM 12-5 Bubble Sort

continued

Algorithm  bubbleSort (list, last)
Sort an array using bubble sort. Adjacent 
elements are compared and exchanged until list is 
completely ordered.

23 78 458 32 56

Unsorted

After pass 1

23 78458 32 56

UnsortedSorted

After pass 3

After pass 223 78 458 32 56

Unsorted

After pass 4 
Sorted!

23 78458 32 56

Sorted

23 78 45 8 56 Original list

Unsorted

32
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ALGORITHM 12-5 Bubble Sort (continued)

Algorithm 12-5 Analysis If you have studied other bubble sort algorithms, you may have noticed a slight improve-
ment in this version of the sort. If an exchange is not made in a pass (statement 3), we
know that the list is already sorted and the sort can stop. At statement 3.2 we set a Bool-
ean, sorted, to true. If at any time during the pass an exchange is made, sorted is
changed to false, indicating that the list was not sorted when the pass began.

Another difference you may have noticed is that we started from the high end and
bubbled down. As a historical note, the bubble sort was originally written to “bubble up”
the highest element in the list. From an efficiency point of view, it makes no difference
whether the largest element is bubbled down or the smallest element is bubbled up. From
a consistency point of view, however, comparisons between the sorts are easier if all
three of our basic sorts (insertion, selection, and exchange) work in the same manner. For
that reason we have chosen to bubble the lowest key in each pass.

Quick Sort
In the bubble sort, consecutive items are compared and possibly exchanged
on each pass through the list, which means that many exchanges may be
needed to move an element to its correct position. Quick sort is an exchange sort
developed by C. A. R. Hoare in 1962. It is more efficient than the bubble sort
because a typical exchange involves elements that are far apart, so fewer
exchanges are required to correctly position an element.

Each iteration of the quick sort selects an element, known as pivot, and
divides the list into three groups: a partition of elements whose keys are
less than the pivot’s key, the pivot element that is placed in its ultimately
correct location in the list, and a partition of elements greater than or
equal to the pivot’s key. The sorting then continues by quick sorting the left

Pre  list must contain at least one item
     last contains index to last element in the list
Post list has been rearranged in sequence low to high

1 set current to 0
2 set sorted  to false
3 loop (current <= last AND sorted false)

Each iteration is one sort pass.
1 set walker to last
2 set sorted to true
3 loop (walker > current)

1 if (walker data < walker - 1 data)
Any exchange means list is not sorted.

1 set sorted to false
2 exchange (list, walker, walker - 1)

2 end if
3 decrement walker 

4 end loop
5 increment current 

4 end loop
end bubbleSort
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partition followed by quick sorting the right partition. This partitioning is
shown in Figure 12-14.

FIGURE 12-14 Quick Sort Partitions

Hoare’s original algorithm selected the pivot key as the first element in
the list. In 1969, R. C. Singleton improved the sort by selecting the pivot key
as the median value of three elements: left, right, and an element in the mid-
dle of the list. Once the median value is determined, it is exchanged with the
left element. We implement Singleton’s variation of quick sort.

Knuth suggests that when the sort partition becomes small a straight
insertion sort be used to complete the sorting of the partition.9 Although the
mathematics to optimally choose the minimum partition size are quite com-
plex, the partition size should be relatively small; we recommend 16. 

Quick sort is an exchange sort in which a pivot key is placed in its correct position in the array while
rearranging other elements widely dispersed across the list.

9. Knuth, Art of Computer Programming, “Algorithm Q,” 115.

pivotkeys < pivot keys ≥ pivot

After first partitioning

After second partitioning

pivot< pivot ≥ pivot

After sixth partitioning

Sorted

After seventh partitioning

Sorted

pivot< pivot ≥ pivot

After fifth partitioning

Sorted

After fourth partitioning

Sorted

After third partitioning

Sorted
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Quick Sort Algorithm
We are now ready to develop the algorithm. As you may have anticipated from
our discussion, we use a recursive algorithm for the quick sort. In addition to
the basic algorithm, two supporting algorithms are required, one to deter-
mine the pivot element and one for the straight insertion sort. We discuss
these two algorithms first. 

Straight Insertion Module
The straight insertion sort is a minor variation on the algorithm developed
earlier, which always sorted a list beginning at location 0. Because the parti-
tion to be sorted in the quick sort can be found anywhere in the array, we
must be able to sort partitions beginning at locations other than 0. We there-
fore add a parameter that specifies the starting location of the location to be
sorted in addition to its ending location. The modified code is shown in
Algorithm 12-6.

ALGORITHM 12-6 Quick Sort’s Straight Insertion Sort Module

Determine Median of Three
The logic to select the median location requires three tests. First we test the
left and middle elements; if they are out of sequence, we exchange them.
Then we test the left and right elements; if they are out of sequence, we
exchange them. Finally, we test the middle and right elements; if they are out
of sequence, we exchange them. At this point the three elements are in order.

Algorithm quickInsertion (list, first, last) 
Sort array list using insertion sort. The list is 
divided into sorted and unsorted lists. With each pass, the 
first element in the unsorted list is inserted into the 
sorted list. This is a special version of the insertion 
sort modified for use with quick sort.

Pre  list must contain at least one element
     first is an index to first element in the list
     last is an index to last element in the list 
Post list has been rearranged 

1 set current to first + 1
2 loop (until current partition sorted)

1 move current element to hold 
2 set walker to current - 1
3 loop (walker >= first AND hold key < walker key)

1 move walker element one element right 
2 decrement walker 

4 end loop
5 move hold to walker + 1 element
6 increment current 

3 end loop
end quickInsertion
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We see, therefore, that this logic is based on the logical proposition that
if a is less than b, and b is less than c, then a is less than c. Finally, before we
leave the algorithm we exchange the left and middle elements, thus position-
ing the median valued element at the left of the array. The pseudocode is
shown in Algorithm 12-7.

ALGORITHM 12-7 Median Left

Algorithm 12-7 Analysis The logic to determine a median value can become unintelligible very quickly. The
beauty of this algorithm is its simplicity. It approaches the determination of the median
value by performing a very simple sort on the three elements, placing the median in the
middle location. It then exchanges the middle element with the left element.

Quick Sort Algorithm
We now turn our attention to the quick sort algorithm itself. It contains an
interesting program design that you will find useful in other array applica-
tions. To determine the correct position for the pivot element, we work from
the two ends of the array toward the middle. Because we have used the
median value of three elements to determine the pivot element, the pivot may
end up near the middle of the array, although this is not guaranteed. Quick
sort is most efficient when the pivot’s location is the middle of the array. The
technique of working from the ends to the middle is shown in Figure 12-15.

left element <= middle element <= right element

Algorithm medianLeft (sortData, left, right)
Find the median value of an array and place it in the first
(left) location.

Pre   sortData is an array of at least three elements
      left and right are the boundaries of the array
Post  median value located and placed left 
Rearrange sortData so median value is in middle location. 

1 set mid to (left + right) / 2
2 if (left key > mid key)

1 exchange (sortData, left, mid)
3 end if
4 if (left key > right key)

1 exchange (sortData, left, right)
5 end if
6 if (mid key > right key)

1 exchange (sortData, mid, right)
7 end if

Median is in middle location. Exchange with left. 
8 exchange (sortData, left, mid)
end medianLeft
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FIGURE 12-15 Quick Sort Pivot

As you study Figure 12-15, note that before the exchanges start, the
median element is in the middle position and the smallest of the three ele-
ments used to determine the median is in the right location. After calling the
median left algorithm, the median is in the left position and the smallest is in
the middle location. The pivot key is then moved to a hold area to facilitate
the processing. This move is actually the first part of an exchange that puts
the pivot key in its correct location.

To help follow the sort, envision two walls, one on the left just after the
pivot and one on the right (see Figure 12-15). We start at the left wall and
move right while looking for an element that belongs on the right of the pivot.
We locate one at element 97. After finding an element on the left that
belongs on the right, we start at the right wall and move left while looking for
an element that belongs on the left of the pivot. We find one at element 45.
At this point we exchange the two elements, move the walls to the left of ele-
ment 87 and the right of element 76, and repeat the process.

This time, as we move to the right, the first left element, 87, belongs on
the right. When we move down from the right, we find that element 22
belongs on the left. Again, we exchange the left and right elements and move
the wall. At this point we note that the walls have crossed. We have thus
located the correct position for the pivot element. We move the data in the
pivot’s location to the first element of the array and then move the pivot back
to the array, completing the exchange we started when we moved the pivot
key to the hold area. The list has now been rearranged so that the pivot ele-
ment (62) is in its correct location in the array relative to all of the other

Exchange

sortRight

sortRight

sortLeft

7821 14 97 87 857462 76 4522 84

Exchange

2221 14 9787 857462 7645 7884

2221 14 9787 857462 7645 7884

Move

pivot< pivot ≥ pivot
22 21 14 45 9787 8574 76 788462

78 21 14 97 87 857462 76 45 2284

Original data

62 21 14 97 87 857478 76 45 2284

22 21 14 97 87 857478 76 45 6284

22 21 14 97 87 857462 76 45 7884

Determine
pivot

Sort
pivot

sortLeft

sortLeft

sortRight
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elements in the array. The elements on the left of the pivot are all less than
the pivot, and the elements on the right of the pivot are all greater than the
pivot. Any equal data is found on the right of the pivot.

After placing the pivot key in its correct location, we recursively call
quick sort to sort the left partition. When the left partition is completely
sorted, we recursively call quick sort to sort the right partition. When both
the left partition and the right partition have been sorted, the list is com-
pletely sorted. The data in Figure 12-15 are completely sorted using only
quick sort in Figure 12-16.

FIGURE 12-16 Quick Sort Operation

The quick sort pseudocode is shown in Algorithm 12-8.

ALGORITHM 12-8 Quick Sort

continued

Algorithm quickSort (list, left, right)
An array, list, is sorted using recursion.

Pre  list is an array of data to be sorted
     left and right identify the first and last 
     elements of the list, respectively
Post list is sorted

1 if ((right - left) > minSize)
Quick sort 

1 medianLeft (list, left, right)
2 set pivot     to left element
3 set sortLeft  to left + 1
4 set sortRight to right
5 loop (sortLeft    <= sortRight)

Find key on left that belongs on right 

78 21 14 97 87 857462 76 45 2284

85 878497

87

84

8584

85

85

78

74

76

76

76 74

97

97

857487 76 97 7884

45

21

21

14

22

22 21 14 45

62

4514 21
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ALGORITHM 12-8 Quick Sort (continued)

Algorithm 12-8 Analysis In addition to the design that works from both ends to the middle, two aspects of this
algorithm merit further discussion. The loops used to determine the sort left and sort
right elements (statements 1.5.1 and 1.5.3) test only one condition. Most loops that
process an array must also test for the end of the array, but we can omit the test in this
algorithm based on selection of the pivot key. The pivot key is guaranteed to be the
median value of three elements: the first, the last, and the one in the middle. Therefore,
the median key cannot be less than the far-left key nor greater than the far-right key. At
worst it is equal to the far-left or far-right key.

Assume that we have the worst case: all of the elements in a partition have the
same key value. In this case the pivot key is equal to the far-left and the far-right keys.
When we start on the left to move up the list, we stop immediately because the pivot
key is equal to the sortLeft key. When we then start on the right and move down,
we move beyond the beginning of the list when all keys are equal. However, because
the two elements have crossed, we do not exchange elements. Rather, we move to
statement 1.7. In this case we never use the sort right index that has moved off the
beginning of the array.

Hoare’s original algorithm was not recursive. Because he had to maintain a stack,
he incorporated logic to ensure that the stack size was kept to a minimum. Rather than
simply sort the left partition, he determined which partition was larger and put it in the
stack while he sorted the smaller partition. We are not concerned with minimizing the
stack size for two reasons. First, we have chosen the pivot key to be the median value.

1 loop (sortLeft key < pivot key)
1 increment sortLeft

2 end loop
Find key on right that belongs on left 

3 loop (sortRight key >= pivot key)
1 decrement sortRight 

4 end loop
5 if (sortLeft <= sortRight)

1 exchange(list, sortLeft, sortRight)
2 increment sortLeft 
3 decrement sortRight 

6 end if
6 end loop

Prepare for next pass 
7 move sortLeft - 1 element to left element
8 move pivot element to sortLeft - 1 element 
9 if  (left < sortRight)

1 quickSort (list, left, sortRight - 1)
10 end if
11 if (sortLeft < right)

1 quickSort (list, sortLeft, right)
12 end if

2 else
1 insertionSort (list, left, right)

3 end if
end quickSort
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Therefore, the size of the two partitions should be generally the same, thus minimizing the
number of recursive calls. More important, because we are using recursion, we do not
need to determine the size of the stack in advance. We simply call on the system to pro-
vide stack space.

Exchange Sort Efficiency 
In the exchange sorts, we find what Knuth called the best general-purpose
sort: quick sort. Let’s determine their sort efforts to see why.

Bubble Sort
The code for the bubble sort is shown in Algorithm 12-5, “Bubble Sort.” As
we saw with the straight insertion and the straight selection sorts, it uses two
loops to sort the data. The loops are shown below:

 

The outer loop tests two conditions: the current index and a sorted flag.
Assuming that the list is not sorted until the last pass, we loop through the
array n times. The number of loops in the inner loop depends on the current
location in the outer loop. It therefore loops through half the list on the aver-
age. The total number of loops is the product of both loops, making the bub-
ble sort efficiency 

In big-O notation the bubble sort efficiency is O(n2).

Quick Sort
The code for the quick sort is shown in Algorithm 12-8, “Quick Sort.” A
quick look at the algorithm reveals that there are five loops (three iterative
loops and two recursive loops). The algorithm also contains the straight inser-
tion sort as a subroutine. Because it is possible to use the quick sort to com-
pletely sort the data—that is, it is possible to eliminate the insertion sort—we
analyze the quick sort portion as though the insertion sort weren’t used. The
quick sort loops are shown below:

 

continued

3 loop (current <= last AND sorted false)
...
3 loop (walker > current)

The bubble sort efficiency is O(n 2).

 5 loop (sortLeft <= sortRight)
1 loop (sortLeft key < pivot key)

...

n n 1+
2

------------ 
 
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Recall that each pass in the quick sort divides the list into three parts: a
list of elements smaller than the pivot key, the pivot key, and a list of elements
greater than the pivot key. The first loop (statement 5), in conjunction with
the two nested loops (statements 5.1 and 5.3), looks at each element in the
portion of the array being sorted. Statement 5.1 loops through the left por-
tion of the list; statement 5.3 loops through the right portion of the list.
Together, therefore, they loop through the list n times.

Similarly, the two recursive loops process one portion of the array each,
either on the left or the right of the pivot key. The question is how many
times they are called. Recall that we said that quick sort is most efficient
when the pivot key is in the middle of the array. That’s why we used a median
value. Assuming that it is located relatively close to the center, we see that we
have divided the list into two sublists of roughly the same size. Because we
are dividing by 2, the number of loops is logarithmic. The total sort effort is
therefore the product of the first loop times the recursive loops, or n log n.

Algorithmics does not explain why we use the straight insertion sort
when the list is small. The answer lies in the algorithm code and the overhead
of recursion. When the list becomes sufficiently small, it is simply more effi-
cient to use a straight insertion sort.

Summary
Our analysis leads to the conclusion that the quick sort’s efficiency is the
same as that of the heap sort. This is true because big-O notation is only an
approximation of the actual sort efficiency. Although both are on the order of
n log n, if we were to develop more-accurate formulas to reflect their actual
efficiency, we would see that the quick sort is actually more efficient.
Table 12-3 summarizes the six sorts we discuss in this chapter.

2 end loop
3 loop (sortRight key >= pivot key)

...
4 end loop
5 ...

 6 end loop
...

 9 if (left < sortRight)
1 quickSort (list, left, sortRight - 1)

10 end if
11 if (sortLeft < right)

1 quickSort (list, sortLeft, right)
12 if (sortLeft < right)

The quick sort efficiency is O(n log n).
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TABLE 12-3 Sort Comparisons

We recommend that you use the straight insertion sort for small lists and
the quick sort for large lists. Although the shell sort is an interesting sort that
played an important role in the history of sorts, we would not recommend it
in most cases. As you will see when we discuss external sorting, algorithms
such as the heap sort play an important niche role in special situations and
for that reason also belong in your sorting tool kit.

Exchange Sort Implementation
Let’s look at the C code for the bubble sort and the quick sort algorithms.

Bubble Sort Code
The bubble sort code is shown in Program 12-5.

PROGRAM 12-5 Bubble Sort

continued

Number of loops

n

Straight insertion
Straight selection

Bubble sorts Shell

Heap
and

quick

25 625 55 116

100 10,000 316 664

500 250,000 2364 4482

1000 1,000,000 5623 9965

2000 4,000,000 13,374 10,965

1
2
3
4
5
6
7
8
9
10
11
12

/* =================== bubbleSort ==================== 
Sort list using bubble sort. Adjacent elements are 
compared and exchanged until list is ordered.
   Pre  list must contain at least one item
        last contains index to last list element
   Post list has been sorted in ascending sequence 

*/
void bubbleSort (int list [], int last)
{
// Local Definitions 

int temp;
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PROGRAM 12-5 Bubble Sort (continued)

Quick Sort Code
In this section we implement the three quick sort algorithms described ear-
lier. The sort array is once again a simple array of integers. 

The first function is quick sort, shown in Program 12-6. The modified
version of the straight insertion sort is shown in Program 12-7, and the
median function is shown in Program 12-8.

PROGRAM 12-6 Quick Sort

continued

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// Statements 
// Each iteration is one sort pass 
for (int current = 0, sorted = 0; 
         current <= last && !sorted;
         current++)
     for (int walker = last, sorted = 1;
              walker > current;
              walker--)
       if (list[ walker ]  < list[ walker - 1 ])
            // Any exchange means list is not sorted 
            {
             sorted = 0;
             temp             = list[walker];
             list[walker]     = list[walker - 1];
             list[walker - 1] = temp;
            } // if 
return;

} // bubbleSort 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

/* ==================== quickSort =====================
Array, sortData[left..right] sorted using recursion.
   Pre  sortData is an array of data to be sorted
        left identifies first element of sortData 
        right identifies last element of sortData 
   Post sortData array is sorted

*/
void quickSort (int sortData[ ], int left, int right)
{
#define MIN_SIZE 16

// Local Definitions 
int sortLeft;
int sortRight;
int pivot;
int hold;
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PROGRAM 12-6 Quick Sort (continued)

PROGRAM 12-7 Modified Straight Insertion Sort for Quick Sort

continued

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

// Statements 
if ((right - left) > MIN_SIZE)
  {
   medianLeft (sortData, left, right);
   pivot     = sortData [left];
   sortLeft  = left + 1;
   sortRight = right;
   while (sortLeft <= sortRight)
     {
      // Find key on left that belongs on right 
      while (sortData [sortLeft] < pivot) 
         sortLeft = sortLeft + 1;
      // Find key on right that belongs on left 
      while (sortData[sortRight] >= pivot)
         sortRight = sortRight - 1;
      if (sortLeft <= sortRight)
        {
         hold                = sortData[sortLeft];
         sortData[sortLeft]  = sortData[sortRight];
         sortData[sortRight] = hold;
         sortLeft            = sortLeft  + 1;
         sortRight           = sortRight - 1;
        } // if 
     } // while 
   // Prepare for next pass 
   sortData [left]         = sortData [sortLeft - 1];
   sortData [sortLeft - 1] = pivot;
   if (left < sortRight)
       quickSort (sortData, left, sortRight - 1);
   if (sortLeft < right)
       quickSort (sortData, sortLeft, right);
  } // if right 
else
  quickInsertion (sortData, left, right);

    return;
} // quickSort 

1
2
3
4
5
6
7
8

/* ================= quickInsertion =================
Sort data[1…last] using insertion sort. Data is 
divided into sorted and unsorted lists. With each 
pass, the first element in unsorted list is inserted 
into the sorted list. This is a special version of the 
insertion sort modified for use with quick sort.
   Pre  data must contain at least one element
        first is index to first element in data
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PROGRAM 12-7 Modified Straight Insertion Sort for Quick Sort (continued)

PROGRAM 12-8 Median Left for Quick Sort

continued

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

        last is index to last element in data
   Post data has been rearranged

*/
void quickInsertion (int data[], int first, int last)
{
// Local Definitions 

int hold;
int walker;

// Statements 
for (int current = first + 1;
         current <= last; 
         current++)
   {
    hold   = data[current];
    walker = current - 1;
    while (walker >= first 
        && hold < data[walker])
          {
           data[walker + 1] = data[walker];
           walker = walker - 1;
          } // while 
    data[walker + 1] = hold;
   } // for 
return;

} // quickInsertion  

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

/* =================== medianLeft ==================== 
Find the median value of an array, 
sortData[left..right], and place it in the 
location sortData[left].
   Pre  sortData is array of at least three elements
        left and right are boundaries of array
   Post median value placed at sortData[left]

*/
void medianLeft (int sortData[], int left, int right)
{
// Local Definitions 

int mid;
int hold;

// Statements 
// Rearrange sortData so median is middle location 
mid = (left + right) / 2;
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PROGRAM 12-8 Median Left for Quick Sort (continued)

12.5 External Sorts
All of the algorithms we have studied so far have been internal sorts—that is,
sorts that require all of the data to be in primary memory during the sorting
process. We now turn our attention to external sorting—sorts that allow por-
tions of the data to be stored in secondary memory during the sorting process.

The term external sort is somewhat of a misnomer. Most of the work spent
ordering large files is not sorting but actually merging. As we will see, external
sorts begin by sorting blocks of data internally and writing them to files. Once
all of the data have been through the internal sort phase, the building of one
completely sorted file is done through merging files. To understand external
sorting, therefore, we must first understand the merge concept.

Merging Ordered Files
A merge is the process that combines two files sorted on a given key into one
sorted file on the same given key. A simple example is shown in Figure 12-17.

18
19
20
21
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23
24
25
26
27
28
29
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31
32
33
34
35
36
37
38
39
40
41
42
43

if (sortData[left] > sortData[mid])
   {
    hold            = sortData[left];
    sortData[left]  = sortData[mid];
    sortData[mid]   = hold;
   } // if 
if (sortData[left] > sortData[right])
   {
    hold            = sortData[left];
    sortData[left]  = sortData[right];
    sortData[right] = hold;
   } // if 
if (sortData[mid]  > sortData[right])
   {
    hold            = sortData[mid];
    sortData[mid]   = sortData[right];
    sortData[right] = hold;
   } // if 
   
// Median is in middle. Exchange with left 
hold           = sortData[left];
sortData[left] = sortData[mid];
sortData[mid]  = hold;

return;
} // medianLeft 
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FIGURE 12-17 Simple Merge

File 1 and file 2 are to be merged into file 3. To merge the files, we com-
pare the first record in file 1 with the first record in file 2 and write the
smaller one, 1, to file 3. We then compare the second record in file 1 with the
first record in file 2 and write the smaller one, 2, to file 3. The process contin-
ues until all data have been merged in order into file 3. The logic to merge
these two files, which is relatively simple, is shown in Algorithm 12-9.

ALGORITHM 12-9 Merge Files

continued

Algorithm mergeFiles
Merge two sorted files into one file.

Pre    input files are sorted
Post   input files sequentially combined in output file

1 open files
2 read (file1 into record1)
3 read (file2 into record2)
4 loop (not end file1 OR not end file2)

1 if (record1 key <= record2 key)
1 write  (record1 to file3)
2 read   (file1 into record1)
3 if (end of file1)

1 set record1 key to infinity
4 end if

2 else
1 write  (record2 to file3)
2 read   (file2 into record2)
3 if (end of file2)

1 set record2 key to infinity
4 end if

3 end if

1

3

5

File 1

2

4

6

8

10

File 2

1

2

3

4

5

6

8

10

File 3
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ALGORITHM 12-9 Merge Files (continued)

Algorithm 12-9 Analysis Although merge files is a relatively simple algorithm, one point is worth discussing.
When one file reaches the end, there may be more data in the second file. We there-
fore need to keep processing until both files are at the end. We could write separate
blocks of code to handle the end-of-file processing for each file, but there is a simpler
method. When one file hits its end, we simply set its key value to an artificially high
value. In the algorithm this value is identified as infinity (see statements 4.1.3.1 and
4.2.3.1). When we compare the two keys (statement 4.1), the file at the end is forced
high and the other file is processed. The high value is often called a sentinel. The only
limitation to this logic is that the sentinel value cannot be a valid data value.

Merging Unordered Files
In a merge sort, however, we usually have a different situation than that shown
in Algorithm 12-9. Because the files are unsorted, the data runs in sequence,
and then there is a sequence break followed by another series of data in
sequence. This situation is demonstrated in Figure 12-18.

FIGURE 12-18 Merging Files Example

The series of consecutively ordered data in a file is known as a merge run. In
Figure 12-18 all three files have three merge runs. To make them easy to see,
we have spaced and colored the merge runs in each file. A stepdown occurs

5 end loop
6 close files
end mergeFiles
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when the sequential ordering of the records in a merge file is broken. The end
of each merge run is identified by a stepdown. For example, in Figure 12-18
there is a stepdown in file 2 when key 16 in the first merge run is followed by
key 9 in the second merge run. An end of file is also considered a stepdown.

In the merging of a file, the process of copying a consecutive series of
records to the merge output file after a stepdown in the alternate merge input
is known as a rollout. In Figure 12-18, after record 13 has been copied to the
output file and a stepdown occurs, the remaining records (23, 25, and 29) in
the second merge run in file 2 are rolled out to the merge output. 

Now let’s look closely at the merge process in Figure 12-18. When merg-
ing files that are not completely ordered, we merge the corresponding merge
runs from each file into a merge run in the output file. Thus, we see that
merge run 1 in file 1 merges with merge run 1 in file 2 to produce merge run
1 in file 3. Similarly, merge runs 2 and 3 in the input files merge to produce
merge runs 2 and 3 in the output.

When a stepdown is detected in an input merge file, the merge run in the
alternate file must be rolled out to synchronize the two files. Thus, in merge
run 2, when the stepdown between record 13 and record 8 is detected, we
must roll out the remaining three records in file 2 so that we can begin merg-
ing the third merge runs.

Finally, it is important to note that the merge output is not a completely
ordered file. In this particular case, two more merge runs are required. To see
the complete process, we turn to a higher-level example.

The Sorting Process
Assume that a file of 2300 records needs to be sorted. In an external sort, we
begin by sorting as many records as possible and creating two or more merge
files. Assuming that the record size and the memory available for our sort pro-
gram allow a maximum sort array size of 500 records, we begin by reading
and sorting the first 500 records and writing them to a merge output file. As
we sort the first 500 records, we keep the remaining 1800 records in second-
ary storage. After writing out the first merge run, we read the second 500
records, sort them, and write them to an alternate merge output file. We con-
tinue the sort process, writing 500 sorted records (records 1001 to 1500) to
the first merge output file and another 500 sorted records (records 1501 to
2000) to the second merge output file. Finally, we sort the last 300 records
and write them to the first output merge file. At this point we have created
the situation we see in Figure 12-19. This first processing of the data into
merge runs is known as the sort phase.

After completing the sort phase of an external sort, we proceed with the
merge phase. Each complete reading and merging of the input merge files to
one or more output merge files is considered a separate merge phase. Depending
on how many merge runs are created, there are zero or more merge phases. If
all of the data fit into memory at one time, or if the file was sorted to begin
with, there is only one merge run and the data on the first merge output file
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are completely sorted. This situation is the exception, however; several merge
phases are generally required.

FIGURE 12-19 Sort Phase in an External Sort

Computer scientists have developed many different merge concepts over
the years. We present three that are representative: natural merge, balanced
merge, and polyphase merge. 

Natural Merge
A natural merge sorts a constant number of input merge files to one merge out-
put file. Between each merge phase, a distribution phase is required to redistribute
the merge runs to the input files for remerging. Figure 12-20 is a diagram of
our 2300 records as they would be sorted using a natural two-way merge—
that is, a natural merge with two input merge files and one output merge file.
To diagram the process, we use the classic symbol for a stencil file: the tape
symbol. Recognize, however, that the data can be on either a tape file or a
disk file. The only requirement is that it must be a sequential file.

In the natural merge, all merge runs are written to one file. Therefore,
unless the file is completely ordered, the merge runs must be distributed to
two merge files between each merge phase. This processing is very ineffi-
cient, especially because reading and writing records are among the slowest
of all data processing. The question, therefore, is how can we make the merge
process more efficient. The answer is found in the balanced merge.

Balanced Merge
A balanced merge uses a constant number of input merge files and the same
number of output merge files. Any number of merge files can be used,

In the natural merge, each phase merges a constant number of input files into one output file.

Merge 1

Records 1–500 1001–1500 2001–2300

 501–1000 1501–2000

Sort

Merge 2

Input file

2300 records



578 Section 12.5 External Sorts

although more than four is uncommon. Because multiple merge files are cre-
ated in each merge phase, no distribution phase is required. Figure 12-21
sorts our 2300 records using a balanced two-way merge.

FIGURE 12-20 Natural Two-way Merge Sort
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FIGURE 12-21 Balanced Two-way Merge Sort

Four merge files are required in the balanced two-way merge. The first
merge phase merges the first merge run on file 1 with the first merge run on
file 2 and writes it to file 3. It then merges the second merge run on file 1
with the second merge run on file 2 and writes it to file 4. At this point all of
the merge runs on file 2 have been processed, so we roll out the remaining
merge run on file 1 to merge file 3. This rollout of 300 records is wasted
effort. We want to eliminate this step and make the merge processing as effi-
cient as possible. We can if we use the polyphase merge.
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Polyphase Merge
In the polyphase merge, a constant number of input merge files are merged to one
output merge file, and input merge files are immediately reused when their
input has been completely merged. Polyphase merge is the most complex of
the merge sorts we have discussed.

To demonstrate the process, study Figure 12-22 carefully. The process-
ing begins as it does for the natural two-way merge. The first merge run on
file 1 is merged with the first merge run on file 2. Then the second merge run
on file 1 is merged with the second merge run on file 2. At this point merge 2
is empty and the first merge phase is complete. We therefore close merge 2
and open it as output and close merge 3 and open it as input. The third
merge run on file 1 is then merged with the first merge run on file 3, with the
merged data being written to merge 2. Because merge 1 is empty, merge
phase 2 is complete. We therefore close merge 1 and open it as output while
closing merge 2 and opening it as input. Because there is only one merge run
on each of the input files, the sort is complete when these two merge runs
have been merged to merge 1.

Sort Phase Revisited
With the polyphase sort, we have improved the merge phases as much as pos-
sible. We now return to the sort phase and try to improve it. Let’s assume that
we used the fastest possible sort in the sort phase. Even if we were able to
double its internal sort speed, little would be gained. With today’s modern
computers operating in picosecond speeds and file processing operating in
microsecond speeds, little is gained by improving the sort speed. In fact, the
opposite is actually true. If we slow up the sort speed a little using a slower
sort, we can actually improve overall speed. Let’s see how this is done.

One class of sorts, tree sorts, allows us to start writing data to a merge file
before the sort is complete. By using tree sorts, then, we can write longer
merge runs, which reduces the number of merge runs and therefore speeds
up the sorting process. Because we have studied one tree sort, the heap sort,
let’s see how it can be used to write longer merge runs.

The balanced merge eliminates the distribution phase by using the same number of input and output
merge files.

In the polyphase merge, a constant number of input files are merged to one output file. As the data in
each input file are completely merged, it immediately becomes the output file and what was the out-
put file becomes an input file.
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FIGURE 12-22 Polyphase Merge Sort
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Figure 12-23 shows how we can use the heap sort to write long merge
runs. Given a list of 12 elements to be sorted and using a heap of three nodes,
we sort the data into two merge runs. We begin by filling the sort array and
then turning it into a minimum heap. After creating the heap, we write the smallest
element, located at the root, to the first merge file and read the fourth element
(97) into the root node. We again reheap and this time write 21 to the merge
file. After reading 87 and rebuilding the heap, we write 78 to the merge file.

FIGURE 12-23 External Sort Phase Using Heap Sort

After reading 62 we have the heap shown in Figure 12-23(g). At this point
the data we just read (62) is smaller than the last element we wrote to the
merge file (78). Thus it cannot be placed in the current merge run in merge 1.
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we discover that it is less than the largest key in merge 1 (94), so it must also
be eliminated from the heap. After exchanging it with the last element in the
heap, we have the situation shown in Figure 12-23(l).

After writing 97 to merge 1, we read 76. Because 76 is less than the last
element written to the merge file, it also belongs to the next merge run. At
this point all elements in the array belong to the second merge run. The first
merge run is therefore complete, as shown in Figure 12-23(m).

After rebuilding the heap, we write the first element to merge file 2. We
continue reading, reheaping, and writing until we write 84 to the merge file.
At this point we have read all of the data to be sorted, and the input file is at
the end of the file, as shown in Figure 12-23(u). We therefore move the last
element to the heap, subtract 1 from the heap size, and reheap. After writing
85 to the merge run, we move the last element in the heap to the root,
reheap, and write it to the merge file. Because the heap is now empty, the sort
is complete.

If you examine the merge runs created in this example, you will note that
they are both twice as long as the array size. As a rule of thumb, our heuristic
studies have indicated that the average merge run size is twice the size of the
array being used for the sort. These longer merge runs eliminate one merge
pass, which is a significant time saver. 

12.6 Quick Sort Efficiency
Quick sort is considered the best general-purpose sort known today. We
would expect, therefore, that it has a low sort effort. In Section 12.4 we dis-
cussed the efficiency of quick sort using big-O notation and showed that it
was indeed fast. In this section we provide a background for you to analyze
recursive algorithms mathematically. 

To calculate the complexity of quick sort, imagine that the number of
comparisons to sort an array of n elements (index ranges from 0 to n – 1) is
f(n). We observe the following: 

• An array of zero or one element is already sorted. This means f(0) = f(1) = 0. 
• If we choose the pivot to be at index i, we have two subarrays. The left

subarray has (i) elements, and the right subarray has (n – 1 – i) elements.
The number of comparisons to sort the left subarray is f(i), and the num-
ber of comparisons to sort the right subarray is f (n – 1 – i), where i can
be between 0 to n – 1.

• To continuously divide the array into subarrays, we need n comparisons. 

Now we can write the general formula for the number of comparisons:
  

This formula can be used to find the complexity of the quick sort in three sit-
uations: worst case, best case, and average case.

f(n) = 0                                   if n < 2 
f(n) = f(i) + f(n – i – 1) + n    if n ≥ 2
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Worst Case
There is no worst case for the modern quick sort. Singleton’s modification in
1969 effectively eliminated it. In the original sort, however, the worst case
occurred when the data were already sorted. In this case i is always 0, which
means that the array is divided into the pivot cell and the rest of the array.
When the list is sorted, either ascending or descending, the formula can be
simplified to:

  

This is a recursion calculation that defines f(n) in terms of f(n – 1). If we
evaluate all of the factors in the recursion, we observe:

  

If we add all right terms with the left terms, f(n – 1) on the right side of the first
line is canceled by the f(n – 1) on the left side of the second line; f(n – 2) on
the right side of the second line is canceled by the f(n – 2) on the left side of
the third line, and so on. What is left is

  

This is the arithmetic series,10 which evaluates to n(n + 1) / 2. When we elim-
inate the parentheses by multiplying the terms, we have:

  

But this is n2, therefore
  

Best Case
In the best case, the arrays are always divided into two subarrays of equal
sizes. In other words, the pivot key belongs exactly in the middle of the

f(n) = f(i) + f(n – i – 1) + n
f(n) = f(n – 1) + n Because f(i) = f(0) and i = 0

f(n)       = f(n – 1) + n
f(n – 1) = f(n – 2) + n – 1
f(n – 2) = f(n – 3) + n – 2
f(n – 3) = f(n – 4) + n – 3
f(n – 4) = f(n – 5) + n – 4
…
f(1)       = f(0)     + 1 
f(0)       = 0

f(n) = n + (n – 1) + (n – 2) + (n – 3) + … + 1 + 0

10. See Appendix E. 

O(n) = n2 Worst Case

f n( ) n
n 1+( )

2
----------------- n

2

2
-----

n
2
---+= =
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array. For this to happen, the number of elements in the original array must
be a power of two minus one. In other words, the number of elements can
be n = 2k – 1 or, conversely, k = log2 (n – 1). So, given an array that meets
this requirement, i = 22k – 1 – 1 and 

 

To solve this recursive definition, we can replace k with k – 1 repeatedly and
multiply both sides of the equation by a factor of 2. This gives us: 

 

Now we add all of the right side together and all of the left side together; after
cancelling equal terms from different sides, we get 

 

But, f(1) = 0, so 
 

The term (20 + 21 + 22 + … + 2k–1) is a geometric series11 that reduces to 
 

 So we have 
 

If we replace n = 2k – 1 or k = log (n + 1), we get 
 

f(n) =  f(i) + f(n – i – 1) + n  
f(2k – 1) =  f(2k–1 – 1) + f(2k – 1 – (2k–1 – 1) – 1) + 2k – 1
f(2k – 1) = 2f(2k–1 – 1) + 2k – 1

f(2k – 1)      = 21f(2k–1 – 1) + 20(2k – 1)
21f(2k–1 – 1) = 22f(2k–2 – 1) + 21(2k–1 – 1)
22f(2k–2 – 1) = 23f(2k–3 – 1) + 22(2k–2 – 1)
…
2k–2f(22 – 1) = 2k–1f(21 – 1) + 2k–1(21 – 1)

f(2k–1) = 2k–1f(1) + 20(2k – 1) + 21(2k–1 – 1) +  
22(2k–2 – 1) + … + 2k–1(21 – 1)

f(2k – 1) = (2k – 1) + (2k – 21) + (2k – 22) + … + (2k – 2k–1)
f(2k – 1) = (k – 1)2k – (20 + 21 + 22 + … + 2k–1)

11. See Appendix E.

(2k – 1) / (2 – 1) or 2k – 1

f(2k – 1) = (k – 1)2k – (2k – 1)

f(n) =  (log (n + 1) – 1) (n + 1) – (n)
f(n) =  (n + 1) log (n + 1) – n – 1 – n

=  (n + 1) log (n + 1) – 2n – 1
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But, this is n log n, therefore 
 

Average Case
In the average case, i can be anywhere. In each partition it is possible that:
(1) i is at the beginning. With Singleton’s variation this is highly improbable.
It would require that two keys are equal and smaller than or equal to a third
key. (2) i is somewhere in the middle area of the array. This is the most prob-
able. The three values used to select the median value are randomly represen-
tative of the list. And, finally, (3) i is at the end of the array. Again, for the
same reasons as cited in (1), this is highly improbable. We therefore assume
that i is somewhere in the middle portion and take an average. 

Assuming an average, we see that 
 

We can observe that the first two terms are exactly the same (the func-
tions inside the braces are listed in reverse). So we have 

 

To solve this recursion definition, we multiply both sides of equation by n 
 

Now we replace n with n – 1, which gives us the following equation: 
 

Now we subtract the new equation from the previous one, giving us 
 

Simplifying, we get 
 

We divide both sides by n (n + 1), and we get 
 

O(n) = n log n Best Case

f(n) = f(i) + f(n – i – 1) + n 
f(n) = (1 / n){f(0) + f(1) + … + f(n – 1)} + 

 (1 / n){f(n – 1) +  f(n – 2) + … + f(0)} + n

f(n) = (2 / n){f(0) + f(1) + … + f(n – 1)} + n

nf(n) = 2{f(0) + f(1) + … + f(n–1)} + n2 

(n – 1)f(n – 1) = 2 {f(0) + f(1) + … + f(n – 2)} + (n – 1)2 

nf(n) – (n – 1)f(n – 1) = 2f(n – 1) + n2 – (n – 1)2

nf(n) = (n + 1)f(n – 1) + 2n – 1

1

n + 1

1

n(n + 1)

2

n + 1

1

n
f(n)  = f(n - 1)  + -
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Now we substitute n with n – 1, n – 2, …, 2 continuously 
 

Now we add both sides and cancel similar terms 

But, f(1) = 0, so 
 

The expression (2 / (n + 1) + 2 / n – 1) + … + 2 / 3) is a natural logarithm; the
second expression is negligible because it is of order 1 / n and can be ignored
by the rules of big-O notation. Therefore, the result is 

 

or in big-O notation 
 

(1 / (n + 1))f(n) =
    (1 / 2)f(1) + 
    (2 / (n + 1) + 2 / n – 1) + … + 2 / 3) –
    {(1 / n(n + 1) + 1 / (n – 2)(n) + 1 / (n – 2)(n – 1) + … + 1 / 6)}

1 / (n + 1)f(n) =
  (2 / (n + 1) + 2 / n – 1) + … + 2 / 3) –
 {(1 / n(n + 1) + 1 / (n – 2)(n) + 1 / (n – 2)(n – 1) + … + 1 / 6)}
f(n) = 
  (n + 1)(2 / (n + 1) + 2 / n – 1) + … + 2 / 3) – 
 {(n + 1)(1 / n(n + 1) + 1 / (n – 2)(n) + 1 / (n – 2)(n – 1) + … + 1 / 6)}

f(n) = (n + 1) ln n

O(n) = (n log n)
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12.7 Key Terms

12.8 Summary
❏ One of the most common applications in computer science is sorting.

❏ Sorts are generally classified as either internal or external.

■ In an internal sort, all of the data are held in primary storage during the
sorting process.

■ An external sort uses primary storage for the data currently being sorted
and secondary storage for any data that does not fit in primary memory.

❏ Data may be sorted in either ascending or descending order.

❏ Sort stability is an attribute of a sort indicating that data with equal keys
maintain their relative input order in the output.

❏ Sort efficiency is a measure of the relative efficiency of a sort.

❏ Each traversal of the data during the sorting process is referred to as a pass.

❏ Internal sorting can be divided into three broad categories: insertion,
selection, and exchange.

❏ Two methods of insertion sorting were discussed in this chapter: straight
insertion sort and shell sort.

■ In the straight insertion sort, the list at any moment is divided into two
sublists: sorted and unsorted. In each pass the first element of the
unsorted sublist is transferred to the sorted sublist by inserting it at the
appropriate place.

balanced merge
bubble sort
distribution phase
exchange sort
external sort
heap sort
internal sort
merge
merge phase
merge run
merge sort
minimum heap
natural merge
pivot
polyphase merge

quick sort
rollout
selection sort
sentinel
shell sort
sort
sort efficiency
sort order
sort pass
sort phase
sort stability
stepdown
straight insertion sort
straight selection sort
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■ The shell sort algorithm is an improved version of the straight insertion
sort, in which the process uses different increments to sort the list. In
each increment the list is divided into segments, which are sorted inde-
pendent of each other.

❏ Two methods of selection sorting are discussed in this chapter: straight
selection sort and heap sort.

■ In the straight selection sort, the list at any moment is divided into two
sublists: sorted and unsorted. In each pass the process selects the
smallest element from the unsorted sublist and exchanges it with the
element at the beginning of the unsorted sublist.

■ The heap sort is an improved version of the straight selection sort. In
the heap sort, the largest element in the heap is exchanged with the last
element in the unsorted sublist. However, selecting the largest element
is much easier in this sort method because the largest element is the
root of the heap.

❏ Two methods of exchange sorting are discussed in this chapter: bubble sort
and quick sort.

■ In the bubble sort, the list at any moment is divided into two sublists:
sorted and unsorted. In each pass the smallest element is bubbled up
from the unsorted sublist and moved to the sorted sublist.

■ The quick sort is the new version of the exchange sort in which the list is
continuously divided into smaller sublists and exchanging takes place
between elements that are out of order. Each pass of the quick sort
selects a pivot and divides the list into three groups: a partition of ele-
ments whose key is less than the pivot’s key, the pivot element that is
placed in its ultimate correct position, and a partition of elements greater
than or equal to the pivot’s key. The sorting then continues by quick sort-
ing the left partition followed by quick sorting the right partition.

❏ The efficiency of straight insertion, straight selection, and bubble sort
is O(n2).

❏ The efficiency of shell sort is O(n1.25), and the efficiency of heap and quick
sorts is O(n log n).

❏ External sorting allows a portion of the data to be stored in secondary stor-
age during the sorting process.

❏ External sorting consists of two phases: the sort phase and the merge phase.

❏ The merge phase uses one of three methods: natural merge, balanced
merge, and polyphase merge.

■ In natural merge each phase merges a constant number of input files
into one output file. The natural merge requires a distribution process
between each merge phase. 
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■ In the balanced merge, the distribution processes are eliminated by
using the same number of input and output files. 

■ In polyphase merge, a number of input files are merged into one output
file. However, the input file, which is exhausted first, is immediately
used as an output file. The output file in the previous phase becomes
one of the input files in the next phase. 

❏ To improve the efficiency of the sort phase in external sorting, we can use
a tree sort, such as the minimum heap sort. This sort allows us to write to
a merge file before the sorting process is complete, which results in longer
merge runs.

12.9 Practice Sets

Exercises
1. An array contains the elements shown below. The first two elements have

been sorted using a straight insertion sort. What would be the value of
the elements in the array after three more passes of the straight insertion
sort algorithm?

2. An array contains the elements shown below. Show the contents of the
array after it has gone through a one-increment pass of the shell sort. The
increment factor is k = 3.

3. An array contains the elements shown below. The first two elements
have been sorted using a straight selection sort. What would be the
value of the elements in the array after three more passes of the selec-
tion sort algorithm?

4. An array contains the elements shown below. What would be the value of
the elements in the array after three passes of the heap sort algorithm?

3 13 7 26 44 23 98 57

23 3 7 13 89 7 66 2 6 44 18 90 98 57

7 8 26 44 13 23 98 57

44 78 22 7 98 56 34 2 38 35 45
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5. An array contains the elements shown below. The first two elements have
been sorted using a bubble sort. What would be the value of the elements
in the array after three more passes of the bubble sort algorithm? Use the
version of bubble sort that starts from the end and bubbles up the small-
est element.

6. An array contains the elements shown below. Using a quick sort, show the
contents of the array after the first pivot has been placed in its correct
location. Identify the three sublists that exist at that point.

7. After two passes of a sorting algorithm, the following array:

has been rearranged as shown below.

Which sorting algorithm is being used (straight selection, bubble, or
straight insertion)? Defend your answer.

8. After two passes of a sorting algorithm, the following array:

has been rearranged as shown below.

Which sorting algorithm is being used (straight selection, bubble, or
straight insertion)? Defend your answer.

9. After two passes of a sorting algorithm, the following array:

has been rearranged as shown below.

Which sorting algorithm is being used (straight selection, bubble, or
straight insertion)? Defend your answer. 

7 8 26 44 13 23 57 98

44 78 22 7 98 56 34 2 38 35 45

47 3 21 32 56 92

3 21 47 32 56 92

80 72 66 44 21 33

21 33 80 72 66 44

47 3 66 32 56 92

3 47 66 32 56 92
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10. Show the result after each merge phase when merging the following two files:

11. Starting with the following file, show the contents of all of the files cre-
ated using external sorting and the natural merge method (do not include
a sort phase):

12. Rework Exercise 11 using the balanced merge method.

13. Rework Exercise 11 using the polyphase merge method with an array size
of seven and an insertion sort.

Problems
14. Modify Program 12-3, “Insertion Sort,” to count the number of data

moves needed to order an array of 1000 random numbers. A data move is a
movement of an element of data from one position in the array to another,
to a hold area, or from a hold area back to the array. Display the array
before and after the sort. At the end of the program, display the total
moves needed to sort the array.

15. Repeat Problem 14 using the shell sort (see Program 12-4).

16. Repeat Problem 14 using the selection sort (see Program 12-1).

17. Repeat Problem 14 using the heap sort (see Program 12-2).

18. Repeat Problem 14 using the bubble sort (see Program 12-5).

19. Repeat Problem 14 using the quick sort (see Program 12-8).

20. Change the bubble sort algorithm (Program 12-5) as follows: Use two-
directional bubbling in each pass. In the first bubbling, the smallest ele-
ment is bubbled up; in the second bubbling, the largest element is bubbled
down. This sort is known as the shaker sort.

21. Using the techniques discussed in “Sorts and ADTs” at the end of Sec-
tion 12.1, create an ADT using the selection sort (Program 12-1). Then
write a test driver to test it once with an array of integers and once with
an array of floating-point numbers. 

22. Write an algorithm that applies the incremental idea of the shell sort to a
selection sort. The algorithm first applies the straight section sort to items
n / 2 elements apart (first, middle, and last). It then applies it to n / 3 ele-
ments apart, then to elements n / 4 apart, and so on.

6 12 19 23 34 • 8 11 17 20 25 • 9 10 15 25 35

13 21 27 28 29 • 7 30 36 37 39

37 9 23 56 4 5 12 45 78 22 33 44 14 17 57 11 35 46 59
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23. Write a recursive version of the selection sort algorithm (see Program 12-4).

24. Rewrite the insertion sort algorithm (Program 12-3) using a singly linked
list instead of an array.

Projects
25. Merge sorting is an example of a divide-and-conquer paradigm. In our dis-

cussions, we used merge only as an external sorting method. It can also be
used for internal sorting. Let’s see how it works. If we have a list of only
two elements, we can simply divide the list into two halves and then merge
them. In other words, the merge sort is totally dependent on two processes,
distribution and merge. This elementary process is shown in Figure 12-24.

FIGURE 12-24 Split and Merge for Project 25

Given a list longer than two elements, we can sort by repeating the dis-
tribution and merge processes. Because we don’t know how many ele-
ments are in the input list when we begin, we can distribute the list
originally by writing the first element to one output list, the second ele-
ment to a second output list, and then continue writing alternatively to the
first list and then the second list until the input list has been divided into
two output lists. The output lists can then be sorted using a balanced two-
way merge. This process is shown in Figure 12-25. It could be called the
“sortless sort” because it sorts without ever using a sort phase.

Write a C program to sort an array of 500 random numbers, using this
approach. Print the data before and after the sort.

26. Write a program that sorts an array of random numbers, using the shell
sort and the quick sort. Both sorts should use the same data. Each sort
should be executed twice. For the first sort, fill the array with random
numbers between 1 and 999. For the second sort, fill the array with a
nearly ordered list. Construct your nearly ordered list by reversing ele-
ments 19 and 20 in the sorted random-number list. For each sort, count
the number of comparisons and moves necessary to order this list.

2    7

Distribution

Merge

7    2

27
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FIGURE 12-25 Sortless Sort

Run the program three times, once with an array of 100 items, once
with an array of 500 items, and once with an array of 1000 items. For the
first execution only (100 elements), print the unsorted data followed by
the sort data in 10-by-10 matrixes (10 rows of 10 numbers each). For all
runs print the number of comparisons and the number of moves required
to order the data.

To make sure your statistics are as accurate as possible, you must ana-
lyze each loop limit condition test and each selection statement in your
sort algorithms. The following notes should help with this analysis:

a. All loops require a count increment in their body.
b. Pretest loops (while and for) also require a count increment either

before (recommended) or after the loop to count the last test.
c. Remember that C uses the shortcut rule for evaluating Boolean and/or

expressions. The best way to count them is with a comma expression, as
shown below. Use similar code for the selection statements.

Analyze the statistics you generated and write a short report (less than
one page) concerning what you discovered about these two sorts. Include
the data in Table 12-4, one for the random data and one for the nearly
ordered data. Calculate the ratio to one decimal place. 

27. Repeat Project 26 adding heap sort and using your computer’s internal
clock. For each sort algorithm, start the clock as the last statement before
calling the sort and read the clock as the first statement after the sort.
Write a short report comparing the run times with the suggested algorith-
mics in the text. If your results do not agree with the algorithmics, increase
the array size in element increments of 1000 to get a better picture.

while ((count++, a) && (count++, b))

226 21 84 307 19 78

6 8421 22 19 307 78

21 22 84 6 7 78 19 30

21 22 84 6 7 78 19 30

21 7 84 19 22 78 6 30

21 84 22 6 7 19 78 30

6 7 19 21 22 30 78 84

Distribution
phase

Merge
phase
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TABLE 12-4 Sorting Statistics Format for Project 26
28. Radix sorting—also known as digit, pocket, and bucket sorting—is a very

efficient sort for large lists whose keys are relatively short. If fact, if we
consider only its big-O notation, which is O(n), it is one of the best. Radix
sorts were used extensively in the punched-card era to sort cards on elec-
tronic accounting machines (EAMs).

In a radix sort, each pass through the list orders the data one digit at a
time. The first pass orders the data on the units (least significant) digit.
The second pass orders the data on the tens digit. The third pass orders
the data on the hundreds digit, and so forth until the list is completely
sorted by sorting the data on the most significant digit.

In EAM sorts the punched cards were sorted into pockets. In today’s
systems we would sort them into a linked list, with a separate linked list for
each digit. Using a pocket or bucket approach, we sort eight four-digit
numbers in Figure 12-26.12

If you analyze this sort, you will see that there are k sort passes, where k
is the number of digits in the key. For each sort pass, we have n operations,
where n is the number of elements to be sorted. This gives us an efficiency
of kn, which in big-O notation is O(n).

Write a program that uses the radix sort to sort 1000 random digits.
Print the data before and after the sort. Each sort bucket should be a
linked list. At the end of the sort, the data should be in the original array.

29. Modify Project 27 to include the radix sort. Build a table of sort times and
write a short paper explaining the different sort timings and their relation-
ship to their sort efficiency.

List Size Shell Quick
Ratio

(shell/quick)

Compares

100

500

1000

Moves

100

500

1000

12. Note: For efficiency, radix sorts are not recommended for small lists or for keys containing a large
number of digits.
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FIGURE 12-26 Radix Sorting Example for Project 27

30. Using the techniques discussed in “Sorts and ADTs” at the end of Sec-
tion 12.1, create an ADT using the straight insertion sort (Program 12-3).
Then write a test driver to test it once with an array of integers and once
with an array of floating-point numbers.

31. Using the techniques discussed in “Sorts and ADTs” at the end of Sec-
tion 12.1, create an ADT using the bubble sort (Program 12-5). Then
write a test driver to test it once with an array of integers and once with
an array of floating-point numbers.

32. Using the techniques discussed in “Sorts and ADTs” at the end of Sec-
tion 12.1, create an ADT using the shell sort (Program 12-4). Then write
a test driver to test it once with an array of integers and once with an
array of floating-point numbers.

33. Using the techniques discussed in “Sorts and ADTs” at the end of Sec-
tion 12.1, create an ADT using the heap sort (Program 12-2). Then write
a test driver to test it once with an array of integers and once with an
array of floating-point numbers.

34. Using the techniques discussed in “Sorts and ADTs” at the end of Sec-
tion 12.1, create an ADT using the quick sort (Program 12-6). Then write
a test driver to test it once with an array of integers and once with an
array of floating-point numbers.

4132 2176 6456 2130 1466 3212 1455 2119
Unsorted data

All numbers
ending in 6

First pass
(1s digits) 2130

xxx0
4132  3212 1455 2176  6456  1466 2119

xxx2 xxx9xxx6xxx5

3212  2119
xx1x

14662130  4132 1455  6456 2176
xx3x xx7xxx6xxx5x

Second pass
(10s digits)

2119  2130  4132  2176
x1xx

1455  6456  14663212
x4xxx2xx

Third pass
(100s digits)

1455  1466
1xxx

2119  2130  2176 3212 4132 6456
2xxx 6xxx4xxx3xxx

Fourth pass
(1000s digits)

1455 1466 2119 2130 2176 3212 4132 6456

Sorted data
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Chapter 13
Searching

One of the most common and time-consuming operations in computer sci-
ence is searching, the process used to find the location of a target among a list of
objects. In this chapter we study several search algorithms. We begin with list
searching and a discussion of the two basic search algorithms: the sequential
search—including three interesting variations—and the binary search.

After reviewing the concepts of list searches, we discuss hashed list
searching, in which the data key is algorithmically manipulated to calculate
the location of the data in the list. An integral part of virtually all hashed list
algorithms is collision resolution, which we discuss in the last section.

Although we discuss the list search algorithms using an array structure,
the same concepts can be found in linked list searches. The sequential
search, along with the ordered list variation, is most commonly used to locate
data in a list (Chapter 5). The binary search tree (Chapter 7) is actually a
structure built to provide the efficiency of the binary search of a tree struc-
ture. These searches are covered in their respective chapters.

13.1 List Searches
The algorithm used to search a list depends to a large extent on the structure
of the list. In this section we study searches that work with arrays. The two
basic searches for arrays are the sequential search and the binary search. The
sequential search can be used to locate an item in any array. The binary
search, on the other hand, requires an ordered list. The basic search concept
is shown in Figure 13-1.

Sequential Search
The sequential search is used whenever the list is not ordered. Generally, you use this
technique only for small lists or lists that are not searched often. In other cases you
should first sort the list and then search it using the binary search, discussed later.
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FIGURE 13-1 Search Concept

In the sequential search, we start searching for the target at the begin-
ning of the list and continue until we find the target or we are sure that it is
not in the list. This approach gives us two possibilities: either we find it or we
reach the end of the list. In Figure 13-2 we trace the steps to find the value
14. We first check the data at index 0, then 1, and then 2 before finding 14 in
the fourth element (index 3).

FIGURE 13-2 Successful Search of an Unordered List
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But what if the target were not in the list? In that case we would have to
examine each element until we reach the end of the list. Figure 13-3 traces
the search for a target of 72. At the end of the list, we discover that the target
does not exist.

FIGURE 13-3 Unsuccessful Search in Unordered List

Sequential Search Algorithm
The sequential search algorithm needs to tell the calling algorithm two things:
First, did it find the data it was looking for? And, second, if it did, at what
index are the target data found? To answer these questions, the search algo-
rithm requires four parameters: (1) the list we are searching, (2) an index to
the last element in the list,1 (3) the target, and (4) the address where the
found element’s index location is to be stored. To tell the calling algorithm
whether the data were found, we return a Boolean—true if we found it or
false if we didn’t find it. 

Although we could write a sequential search algorithm without passing
the index to the last element, if we did so the search would have to know how

1. As an alternative to the index to the last element, the size of the list may be passed.
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many elements are in the list. To make the function as flexible as possible, we
pass the index of the last data value in the array. Generalizing the algorithm
by passing the index to the last item is also a good structured design tech-
nique. With this information we are now ready to code Algorithm 13-1.

ALGORITHM 13-1 Sequential Search

Algorithm 13-1 Analysis We have only one comment. We could have used the location parameter for the
search rather than create the looker index. However, it is generally not a good idea
to use a parameter as a working variable because doing so destroys any initial value
that may be needed later in the algorithm.

Variations on Sequential Searches
Three useful variations on the sequential search algorithm are: (1) the senti-
nel search, (2) the probability search, and (3) the ordered list search. We look
at each briefly in the following sections. 

Sentinel Search
If you examine the search algorithm carefully, you note that the loop tests two
conditions: the end of the list and the target’s not being found. Knuth states,
“When the inner loop of a program tests two or more conditions, we should
try to reduce the testing to just one condition.”2 If we know that the target
will be found in the list, we can eliminate the test for the end of the list. The

Algorithm seqSearch (list, last, target, locn)
Locate the target in an unordered list of elements.
   Pre    list must contain at least one element
          last is index to last element in the list
          target contains the data to be located
          locn is address of index in calling algorithm
   Post   if found: index stored in locn & found true
          if not found: last stored in locn & found false 
   Return found true or false 
1 set looker to 0
2 loop (looker < last AND target not equal list[looker])

1 increment looker 
3 end loop
4 set locn to looker
5 if (target equal list[looker])

1 set found to true
6 else

1 set found to false
7 end if
8 return found
end seqSearch

2. Donald E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching, Second Edition
(Reading, MA: Addison-Wesley, 1998), 398.
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only way we can ensure that a target is actually in the list is to put it there
ourself. A target is put in the list by adding an extra element (sentinel entry)
at the end of the array and placing the target in the sentinel. We can then
optimize the loop and determine after the loop completes whether we found
actual data or the sentinel.3 The obvious disadvantage is that the rest of the
processing must be careful to never look at the sentinel element at the end of
the list. The pseudocode for the sentinel search is shown in Algorithm 13-2. 

ALGORITHM 13-2 Sentinel Search

Probability Search
One of the more useful variations of the sequential search is known as the
probability search. In the probability search, the data in the array are arranged with
the most probable search elements at the beginning of the array and the least
probable at the end. It is especially useful when relatively few elements are
the targets for most of the searches. To ensure that the probability ordering is
correct over time, in each search we exchange the located element with the
element immediately before it in the array. A typical implementation of the
probability search is shown in Algorithm 13-3.

3. It is not always possible to reduce a loop to only one test. We will see many loops that require two or
more tests to satisfy the logic.

Algorithm SentinelSearch (list, last, target, locn)
Locate the target in an unordered list of elements.

Pre    list must contain element at the end for sentinel
       last is index to last data element in the list
       target contains the data to be located
       locn is address of index in calling algorithm
Post   if found--matching index stored in locn & found 

             set true
       if not found--last stored in locn & found false
Return found true or false

1 set list[last + 1] to target
2 set looker to 0
3 loop (target not equal list[looker])

1 increment looker 
4 end loop
5 if (looker <= last)

1 set found to true
2 set locn  to looker

6 else
1 set found to false
2 set locn  to last

7 end if
8 return found
end SentinelSearch
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ALGORITHM 13-3 Probability Search

Ordered List Search
Although we generally recommend a binary search when searching a list
ordered on the key (target), if the list is small it may be more efficient to use a
sequential search. When searching an ordered list sequentially, however, it is
not necessary to search to the end of the list to determine that the target is
not in the list. We can stop when the target becomes less than or equal to the
current element we are testing. In addition, we can incorporate the sentinel
concept by bypassing the search loop when the target is greater than the last
item. In other words, when the target is less than or equal to the last element,
the last element becomes a sentinel, allowing us to eliminate the test for the
end of the list.

Although it can be used with array implementations, the ordered list
search is more commonly used when searching linked list implementations.
The pseudocode for searching an ordered array is found in Algorithm 13-4.

ALGORITHM 13-4 Ordered List Search

continued

Algorithm ProbabilitySearch (list, last, target, locn)
Locate the target in a list ordered by the probability of each 
element being the target--most probable first, least probable 
last.

Pre    list must contain at least one element
       last is index to last element in the list
       target contains the data to be located
       locn is address of index in calling algorithm
Post   if found--matching index stored in locn, 
          found true, and element moved up in priority.
       if not found--last stored in locn & found false
Return found true or false

1 find target in list
2 if (target in list)

1 set found to true
2 set locn to index of element containing target
3 if (target after first element)

1 move element containing target up one location
4 end if

3 else
1 set found to false

4 end if
5 return found
end ProbabilitySearch

Algorithm OrderedListSearch (list, last, target, locn)
Locate target in a list ordered on target.
Pre    list must contain at least one element

       last is index to last element in the list
       target contains the data to be located
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ALGORITHM 13-4 Ordered List Search (continued)

Binary Search
The sequential search algorithm is very slow. If we have an array of 1000 ele-
ments, we must make 1000 comparisons in the worst case. If the array is not
sorted, the sequential search is the only solution. However, if the array is
sorted, we can use a more efficient algorithm called the binary search. Generally
speaking, we should use a binary search whenever the list starts to become
large. Although the definition of large is vague, we suggest that you consider
binary searches whenever the list contains more than 16 elements.

The binary search starts by testing the data in the element at the middle
of the array to determine if the target is in the first or the second half of the
list. If it is in the first half, we do not need to check the second half. If it is in
the second half, we do not need to test the first half. In other words, we elim-
inate half the list from further consideration with just one comparison. We
repeat this process, eliminating half of the remaining list with each test, until
we find the target or determine that it is not in the list.

To find the middle of the list, we need three variables: one to identify the
beginning of the list, one to identify the middle of the list, and one to identify
the end of the list. We analyze two cases here: the target is in the list and the
target is not in the list.

Target Found
Figure 13-4 traces the binary search for a target of 22 in a sorted array.

       locn is address of index in calling algorithm
Post   if found--matching index stored in locn-found true
       if not found--locn is index of first element > 
          target or locn equal last & found is false
Return found true or false

1 if (target less than last element in list)
1 find first element less than or equal to target 
2 set locn to index of element 

2 else
1 set locn to last

3 end if
4 if (target in list)

1 set found to true
5 else

1 set found to false
6 end if
7 return found
end OrderedListSearch
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FIGURE 13-4 Successful Binary Search Example

We descriptively call our three indexes begin, mid, and end. Given
begin as 0 and end as 11, we can calculate mid as follows:

At index location 5, we discover that the target is greater than the list
value (22 > 21). We can therefore eliminate the array locations 0 through 5.
(Note that mid is automatically eliminated.) To narrow our search, we set mid
+ 1 to begin and repeat the search.

The next loop calculates mid with the new value for begin (6) and deter-
mines that the midpoint is now 8.

mid = (begin + end) / 2 = (0 + 11) / 2 = 5
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When we test the target to the value at mid a second time, we discover
that the target is less than the list value (22 < 62). This time we adjust the
end of the list by setting end to mid - 1 and recalculating mid.

This step effectively eliminates elements 8 through 11 from consider-
ation. We have now arrived at index location 6, whose value matches our tar-
get. To stop the search in the algorithm (see page 607), we force begin to be
greater than end. 

Target Not Found
A more interesting case occurs when the target is not in the list. We must
construct our search algorithm so that it stops when we have checked all pos-
sible locations. We do this in the binary search by testing for the begin and
end indexes crossing; that is, we are done when begin becomes greater than
end. We now see that two conditions terminate the binary search algorithm:
the target is found or it is not found. To terminate the loop when it is found,
we force begin to be greater than end. When the target is not in the list,
begin becomes larger than end automatically. 

Let’s demonstrate the target’s not being found with an example. In
Figure 13-5 we search for a target of 11, which doesn’t exist in the array.

In this example the loop continues to narrow the range as we saw in the
successful search until we are examining the data at index locations 3 and 4.
These settings of begin and end set the mid index to 3.

The test at index location 3 indicates that the target is greater than the
list value, so we set begin to mid + 1, or 4. We now test the data at location 4
and discover that 11 < 14.

At this point we have discovered that the target should be between two
adjacent values; in other words, it is not in the list. We see this algorithmi-
cally because end is set to mid - 1, which makes begin greater than end, the
signal that the value we are looking for is not in the list.

mid = (6 + 11) / 2 = 17 / 2 = 8

mid = (6 + 7) / 2 = 13 / 2 = 6

mid = (3 + 4) / 2 = 7 / 2 = 3

mid = (4 + 4) / 2 = 8 / 2 = 4
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FIGURE 13-5 Unsuccessful Binary Search Example

Binary Search Algorithm
Algorithm 13-5 contains the implementation of the binary search algorithm
we have been describing. It is constructed along the same design we saw for
the sequential search. The first three parameters describe the list and the tar-
get we are looking for, and the last one contains the address into which we
place the located index. One point is worth noting: when we terminate the
loop with a not-found condition, the index returned is unpredictable—it may
indicate that the node is greater than or less than the value in the target.
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ALGORITHM 13-5 Binary Search

Analyzing Search Algorithms
Of the search algorithms discussed, which is the best? An application often
determines which algorithm should be used, but we analyze the algorithms to
determine which is most efficient.

Sequential Search
The basic loop for the sequential search is shown below.

Algorithm binarySearch (list, last, target, locn)
Search an ordered list using Binary Search 

Pre    list is ordered; it must have at least 1 value
       last is index to the largest element in the list
       target is the value of element being sought
       locn is address of index in calling algorithm
Post   FOUND: locn assigned index to target element 
              found set true
       NOT FOUND: locn = element below or above target 
                  found set false
Return found true or false

1 set begin to 0 
2 set end to last 
3 loop (begin <= end)

1 set mid to (begin + end) / 2 
2 if (target > list[mid])

Look in upper half 
1 set begin to (mid + 1) 

3 else if (target < list[mid])
Look in lower half 

1 set end to mid - 1 
4 else

Found: force exit
1 set begin to (end + 1) 

5 end if
4 end loop
5 set locn to mid 
6 if (target equal list [mid])

1 set found to true
7 else

1 set found to false
8 end if
9 return found
end binarySearch

2 loop (looker < last AND target not equal list[looker])
1 increment looker
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This is a classic example of a linear algorithm. In fact, in some of the lit-
erature this search is known as a linear search. Because the algorithm is linear,
its efficiency is O(n).

 

The search efficiency for the sentinel search is basically the same as for
the sequential search. Although the sentinel search saves a few instructions
in the loop, its design is identical. Therefore, it is also an O(n) search. Like-
wise, the efficiency of the ordered list search is also O(n). If we know the
probability of a search’s being successful, we can construct a more accurate
formula for searching an ordered list. This improved accuracy, however, turns
out to be a coefficient in the formula, which, as you recall, is dropped when
using big-O analysis.

It is not possible to generalize the efficiency of the probability search
without knowing the probability of each element in the list. On the other
hand, if the probability of the first few elements of a list totals more than
90%, it can be a very efficient search, even considering the additional over-
head required to maintain the list. In general, however, we recommend the
binary search, especially for large lists.

Binary Search
The binary search locates an item by repeatedly dividing the list in half. Its
loop is:

This loop obviously divides, and it is therefore a logarithmic loop. The effi-
ciency is thus O(log n), which you should recognize as one of the most effi-
cient of all the measures.

 

Comparing the two searches, we see that, disregarding the time required to
order the list, the binary search is obviously more efficient for searching a list of
any significant size (see Table 13-1). For this reason the binary search is recom-
mended for all but the smallest of lists (i.e., lists with  fewer than 16 elements).

The efficiency of the sequential search is O(n).

3 loop (begin <= end)
1  set mid to (begin + end) / 22  if (target > list[mid])
   1  set begin to (mid + 1)
3  else if (target < list[mid])
   1  set end to mid - 1
4  else
   1  set begin to (end + 1)
5  end if

4  end loop

The efficiency of the binary search is O(log n).
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TABLE 13-1 Comparison of Binary and Sequential Searches

13.2 Search Implementations
In this section we develop the C code for the sequential and binary searches.
As we saw with sorts, we can write a generic search algorithm for any type of
data. To allow us to concentrate on the search algorithms, we develop them
using only integer data. 

Sequential Search in C
The sequential search in Program 13-1 parallels the pseudocode implemen-
tation in Algorithm 13-1.

PROGRAM 13-1 Sequential Search

continued

Iterations

List size Binary Sequential

16 4 16

50 6 50

256 8 256

1000 10 1000

10,000 14 10,000

100,000 17 100,000

1,000,000 20 1,000,000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

/* Locate target in an unordered list of size elements.
   Pre  list must contain at least one item
        last is index to last element in list
        target contains the data to be located
        locn is address of index in calling function
   Post FOUND: matching index stored in locn address
               return true (found)
        NOT FOUND: last stored in locn address
                   return false (not found)

*/
bool seqSearch (int list[ ], int  last, 
                int target,  int* locn)
{
// Local Definitions 

int looker;
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PROGRAM 13-1 Sequential Search (continued)

Program 13-1 Analysis Although this program is simple, it merits some discussion. First, why did we use a
while statement rather than a for loop? Even though we know the limits of the array, it
is still an event-controlled loop. We search until we find what we are looking for or
reach the end of the list. Finding something is an event, so we use an event loop.

Next, note that there are two tests in the limit expression of the loop. We have
coded the test for the end of the array first. In this case it doesn’t make any difference
which test is first from an execution standpoint, but in other search loops it might. There-
fore, you should develop the habit of coding the limit test first because it doesn’t use an
indexed value and is therefore safer.

The call-by-address use for locn also merits discussion. Because we need to pass
the found location back to the variable in the calling program, we need to pass its
address to the search.

Notice how succinct this function is. In fact, there are more lines of documentation
than there are lines of code. The entire search is contained in one while statement. With
this short code, you might be tempted to ask, “Why write the function at all? Why not
just put the one line of code wherever it is needed?” The answer lies in the structured pro-
gramming concepts that each function should do only one thing and in the concept of
reusability. By isolating the search process in its own function, we separate it from the
process that needs the search. This is a better approach to structured programming and
also makes the code reusable in other parts of the program and portable to other pro-
grams that require searches. 

Binary Search In C
The C implementation of the binary search algorithm is shown in Program 13-2.

PROGRAM 13-2 Binary Search

continued

16
17
18
19
20
21
22
23
24

// Statements 
looker = 0; 
while (looker < last && target != list[looker])
   looker++; 

*locn = looker;
return ( target == list[looker] );

} // seqSearch

1
2
3
4
5
6
7
8
9

/* Search an ordered list using Binary Search.
  Pre  list must contain at least one element
          last is index to largest element in list
       target is value of element being sought
          locn is address of index in calling function
  Post FOUND: locn = index to target element 
              return true (found)
         NOT FOUND: locn = index below/above target 
                  return false (not found)
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PROGRAM 13-2 Binary Search (continued)

13.3 Hashed List Searches
The search techniques discussed in Section 13.1, “List Searches,” require
several tests before we can find the data. In an ideal search, we would know
exactly where the data are and go directly there. This is the goal of a hashed
search: to find the data with only one test. For our discussion we use an array
of data. The general concept is easily extended to other structures, such as
files stored on a disk. These structures are beyond the scope of this text, how-
ever, and their discussion is left to other books.

Basic Concepts
In a hashed search, the key, through an algorithmic function, determines the loca-
tion of the data. Because we are searching an array, we use a hashing algo-
rithm to transform the key into the index that contains the data we need to
locate. Another way to describe hashing is as a key-to-address transformation
in which the keys map to addresses in a list. This mapping transformation is

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

*/
bool binarySearch   (int list[ ], int  last,
                     int target,  int* locn )
{
// Local Definitions 

int begin;
int mid;
int end;

// Statements 
begin = 0;
end  = last;
while (begin <= end)
   {
    mid = ( begin + end ) / 2;
    if ( target > list[ mid ] )
       // look in upper half 
       begin = mid + 1;
       else if ( target < list[ mid ] )
          // look in lower half 
          end = mid - 1;
    else
          // found: force exit 
          begin = end + 1;
   } // end while 
*locn = mid;
return (target == list [mid]);

} // binarySearch
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shown in Figure 13-6. At the top of the figure is a general representation of
the hashing concept. The rest of the figure shows how three keys might hash
to three different addresses in the list. 

FIGURE 13-6 Hash Concept

Generally, the population of keys for a hashed list is greater than the stor-
age area for the data. For example, if we have an array of 50 students for a
class in which the students are identified by the last four digits of their Social
Security numbers, there are 200 possible keys for each element in the array
(10,000 / 50). Because there are many keys for each index location in the
array, more than one student may hash to the same location in the array. We
call the set of keys that hash to the same location in our list synonyms.

 

If the actual data that we insert into our list contain two or more syn-
onyms, we can have collisions. A collision occurs when a hashing algorithm pro-
duces an address for an insertion key and that address is already occupied.
The address produced by the hashing algorithm is known as the home address.
The memory that contains all of the home addresses is known as the prime area.

Hashing is a key-to-address mapping process.

Hash
functionKey Address

Vu Nguyen

Sarah Trapp

Ray Black

Harry  Lee001

005

007

002

John Adams 100

•••

102002 5

2
100
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[000]
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[004]

[006]
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[008]

[009]
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107095
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Hash
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[002]
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When two keys collide at a home address, we must resolve the collision by
placing one of the keys and its data in another location. The collision resolu-
tion concept is shown in Figure 13-7.

FIGURE 13-7 Collision Resolution Concept

In Figure 13-7 we hash key A and place it at location 8 in the list. At
some later time, we hash key B, which is a synonym of A. Because they are
synonyms, they both hash to the same home address and a collision results.
We resolve the collision by placing key B at location 16. When we hash key C,
its home address is 16. Although B and C are not synonyms, they still collide
at location 16 because we placed key B there when we resolved the earlier
collision. We must therefore find another location for key C, which we place
at location 4. 

It should be obvious that when we need to locate an element in a hashed
list, we must use the same algorithm that we used to insert it into the list.
Consequently, we first hash the key and check the home address to deter-
mine whether it contains the desired element. If it does, the search is com-
plete. If not, we must use the collision resolution algorithm to determine the
next location and continue until we find the element or determine that it is
not in the list. Each calculation of an address and test for success is known
as a probe.

Hashing Methods
We are now ready to study several hashing methods. After we look at the dif-
ferent methods, we create a simple hashing algorithm that incorporates sev-
eral of them. The hashing techniques that we study are shown in Figure 13-8.

Direct Method
In direct hashing the key is the address without any algorithmic manipulation.
The data structure must therefore contain an element for every possible key.
The situations in which you can use direct hashing are limited, but it can be
very powerful because it guarantees that there are no synonyms and therefore
no collisions. Let’s look at two applications.

A

1. hash (A)
2. hash (B)

[0] [8] [16][4]
B

3. hash (C)

C

Collision resolution

B and A
collide at 8 

C and B
collide at 16Collision resolution
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FIGURE 13-8 Basic Hashing Techniques

First consider the problem in which we need to total monthly sales by the
days of the month. For each sale we have the date and the amount of the sale.
In this case we create an array of 31 accumulators. As we read the sales
records for the month, we use the day of the month as the key for the array
and add the sale amount to the corresponding accumulator. The accumula-
tion code is shown in the following example.4 

Now let’s consider a more complex example. Imagine that a small organi-
zation has fewer than 100 employees. Each employee is assigned an
employee number between 1 and 100. In this case, if we create an array of
101 employee records (location 0 is not used), the employee number can be
directly used as the address of any individual record. This concept is shown in
Figure 13-9.

As you study Figure 13-9, note that not every element in the array con-
tains an employee’s record. Although every element was used in our daily
sales example, more often than not there are some empty elements in hashed
lists. In fact, as we will see later, all hashing techniques other than direct
hashing require that some of the elements be empty to reduce the number of
collisions.

As you may have noticed, although this is the ideal method, its application
is very limited. For example, we cannot have the Social Security number as the
key using this method because Social Security numbers are nine digits. In
other words, if we use the Social Security number as the key, we need an array
as large as 1,000,000,000 entries, but we would use fewer than 100 of them. 

We now turn our attention to hashing techniques that map a large pop-
ulation of possible keys into a small address space. 

4. Because C arrays start at location 0, we need to have 32 elements in our array. Element 0 is not used. 

dailySales[sale.day] = dailySales[sale.day] 
                     + sale.amount; 

Pseudorandom
generationSubtraction FoldingDigit

extraction

Hashing
methods

Modulo-
division

Direct Midsquare Rotation
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FIGURE 13-9 Direct Hashing of Employee Numbers

Subtraction Method
Sometimes keys are consecutive but do not start from 1. For example, a com-
pany may have only 100 employees, but the employee numbers start from
1001 and go to 1100. In this case we use subtraction hashing, a very simple
hashing function that subtracts 1000 from the key to determine the address.
The beauty of this example is that it is simple and guarantees that there will
be no collisions. Its limitations are the same as direct hashing: it can be used
only  for small lists in which the keys map to a densely filled list.

  

Modulo-division Method
Also known as division remainder, the modulo-division method divides the key by the
array size and uses the remainder for the address. This method gives us the
simple hashing algorithm shown below in which listSize is the number of
elements in the array:

This algorithm works with any list size, but a list size that is a prime num-
ber produces fewer collisions than other list sizes. We should therefore try,
whenever possible, to make the array size a prime number. 

The direct and subtraction hash functions both guarantee a search effort of one with no collisions. They
are one-to-one hashing methods: only one key hashes to each address.

address = key MODULO listSize 
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As our little company begins to grow, we realize that soon we will have more
than 100 employees. Planning for the future, we create a new employee number-
ing system that can handle employee numbers up to 1,000,000. We also decide
that we want to provide data space for up to 300 employees. The first prime
number greater than 300 is 307. We therefore choose 307 as our list (array) size,
which gives us a list with addresses that range from 0 through 306. Our new
employee list and some of its hashed addresses are shown in Figure 13-10.

FIGURE 13-10 Modulo-division Hashing

To demonstrate, let’s hash Bryan Devaux’s employee number, 121267.

Digit-extraction Method
Using digit extraction selected digits are extracted from the key and used as the
address. For example, using our six-digit employee number to hash to a three-
digit address (000–999), we could select the first, third, and fourth digits
(from the left) and use them as the address. Using the keys from Figure 13-10,
we would hash them to the addresses shown below:

            121267/307 = 395 with remainder of 2

            Therefore: hash(121267) = 2

379452 ➫ 394
121267 ➫ 112
378845 ➫ 388
160252 ➫ 102
045128 ➫ 051

Shouli Feldman

306

Mary Dodd

•••
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[000]
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[305] Tuan Ngo

379452
Hash045128
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[008]
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Midsquare Method
In midsquare hashing the key is squared and the address is selected from the mid-
dle of the squared number. The most obvious limitation of this method is the
size of the key. Given a key of six digits, the product will be 12 digits, which is
beyond the maximum integer size of many computers. Because most personal
computers can handle a nine-digit integer, let’s demonstrate the concept with
keys of four digits. Given a key of 9452, the midsquare address calculation is
shown below using a four-digit address (0000–9999).

As a variation on the midsquare method, we can select a portion of the
key, such as the middle three digits, and then use them rather than the whole
key. Doing so allows the method to be used when the key is too large to
square. For example, for the keys in Figure 13-10, we can select the first
three digits and then use the midsquare method as shown below. (We select
the third, fourth, and fifth digits as the address.)

Note that in the midsquare method the same digits must be selected
from the product. For that reason we consider the product to have sufficient
leading zeros to make it the full six digits.

Folding Methods
Two folding methods are used: fold shift and fold boundary. In fold shift the key
value is divided into parts whose size matches the size of the required
address. Then the left and right parts are shifted and added with the middle
part. For example, imagine that we want to map Social Security numbers into
three-digit addresses. We divide the nine-digit Social Security number into
three three-digit numbers, which are then added. If the resulting sum is
greater than 999, we discard the leading digit. This method is shown
in Figure 13-11(a).

In fold boundary the left and right numbers are folded on a fixed boundary
between them and the center number. The two outside values are thus
reversed, as shown in Figure 13-11(b), where 123 is folded to 321 and 789 is
folded to 987. It is interesting to note that the two folding methods give dif-
ferent hashed addresses.

94522 = 89340304: address is 3403

379452: 3792 = 143641 ➫ 364
121267: 1212 = 014641 ➫ 464
378845: 3782 = 142884 ➫ 288
160252: 1602 = 025600 ➫ 560
045128: 0452 = 002025 ➫ 202



618 Section 13.3 Hashed List Searches

FIGURE 13-11 Hash Fold Examples

Rotation Method
Rotation hashing is generally not used by itself but rather is incorporated in combi-
nation with other hashing methods. It is most useful when keys are assigned
serially, such as we often see in employee numbers and part numbers. A simple
hashing algorithm tends to create synonyms when hashing keys are identical
except for the last character. Rotating the last character to the front of the key
minimizes this effect. For example, consider the case of a six-digit employee
number that might be used in a large company (see Figure 13-12).

FIGURE 13-12 Rotation Hashing

Examine the rotated key carefully. Because all keys now end in 60010,
they would obviously not work well with modulo-division. On the other
hand, if we used a simple fold shift hash on the original key and a two-digit
address, the addresses would be sequential starting with 62. Using a shift
hash on the rotated key results in the series of addresses 26, 36, 46, 56, 66,
which has the desired effect of spreading the data more evenly across the
address space. Rotation is often used in combination with folding and pseu-
dorandom hashing.
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Pseudorandom Hashing
In pseudorandom hashing the key is used as the seed in a pseudorandom-number
generator, and the resulting random number is then scaled into the possible
address range using modulo-division (see “Modulo-division method,” earlier in
this section). Do not confuse pseudorandom numbers with random numbers.
Given a fixed seed, pseudorandom-number generators always generate the
same series of numbers. That is what allows us to use them in hashing. 

A common random-number generator is shown below.

To use the pseudorandom-number generator as a hashing method, we set
x to the key, multiply it by the coefficient a, and then add the constant c. The
result is then divided by the list size, with the remainder being the hashed
address. For maximum efficiency, the factors a and c should be prime num-
bers. Let’s demonstrate the concept with an example from Figure 13-10. To
keep the calculation reasonable, we use 17 and 7 for factors a and c, respec-
tively. Also, the list size in the example is the prime number 307.

We will see this pseudorandom-number generator again when we discuss
collision resolution.

 

One Hashing Algorithm
Before we conclude our discussion of hashing methods, we need to describe
a complete hashing algorithm. Although a hashing method may work well
when we hash a key to an address in an array, hashing to large files is gener-
ally more complex. It often requires extensive analysis of the population of
keys to be hashed to determine the number of synonyms and the length of
the collision series produced by the algorithm. The study of such analysis is
beyond the scope of this text.

In this section we present the algorithm that could be used for a large
file. It is a simplification of an algorithm used to hash keys in an industrial
database system. As you study it, note that it uses three different hashing
methods: fold shift, rotation, and modulo-division.

Assume that we have an alphanumeric key consisting of up to 30 bytes
that we need to hash into a 32-bit address. The first step is to convert the
alphanumeric key into a number by adding the American Standard Code for
Information Interchange (ASCII) value for each character to an accumulator

y = ax + c

y = ((17 * 121267) + 7) modulo 307
y = (2061539 + 7) modulo 307
y = 2061546 modulo 307
y = 41 

All hash functions except direct hashing and subtraction hashing are many-to-one functions: many keys
hash to one address. 
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that will be the address. As each character is added, we rotate the bits in the
address to maximize the distribution of the values. After the characters in the
key have been completely hashed, we take the absolute value of the address
and then map it into the address range for the file. This logic is shown in
Algorithm 13-6.

ALGORITHM 13-6 Hashing Algorithm

Algorithm 13-6 Analysis Two points merit discussion in this algorithm. First, the rotation in statement 3.1.2 can
often be accomplished by an assembly language instruction. If the algorithm is written
in a high-level language, the rotation is accomplished by a series of bitwise opera-
tions. For our purposes it is sufficient that the 12 bits at the end of the address are
shifted to be the 12 bits at the beginning of the address, and the bits at the beginning
are shifted to occupy the bit locations at the right.

Second, this algorithm actually uses three of the hashing methods discussed previ-
ously. We use fold shift when we add the individual characters to the address. We use
rotation when we rotate the address after each addition. Finally, we use modulo-division
when we map the hashed address into the range of available addresses. 

13.4 Collision Resolution
With the exception of the direct and subtraction methods, none of the meth-
ods used for hashing is one-to-one mapping. Thus, when we hash a new key to
an address, we may create a collision. There are several methods for handling

Algorithm hash (key, size, maxAddr, addr)
This algorithm converts an alphanumeric key of size 
characters into an integral address.

Pre   key is a key to be hashed
      size is the number of characters in the key
      maxAddr is maximum possible address for the list
Post  addr contains the hashed address

1 set looper to 0
2 set addr to 0

Hash key
3 for each character in key

1 if (character not space)
1 add character to address
2 rotate addr 12 bits right

2 end if
4 end loop

Test for negative address
5 if (addr < 0)

1 addr = absolute(addr)
6 end if
7 addr = addr modulo maxAddr
end hash
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collisions, each of them independent of the hashing algorithm. That is, each
hashing method can be used with each of the collision resolution methods. In
this section we discuss the collision resolution methods shown in Figure 13-13.

FIGURE 13-13 Collision Resolution Methods

Before we discuss the collision resolution methods, however, we need to
cover three more concepts. Because of the nature of hashing algorithms,
there must be some empty elements in a list at all times. In fact, we define a
full list as a list in which all elements except one contain data. As a rule of
thumb, a hashed list should not be allowed to become more than 75% full.
This guideline leads us to our first concept: load factor. The load factor of a
hashed list is the number of elements in the list divided by the number of
physical elements allocated for the list, expressed as a percentage. Tradition-
ally, load factor is assigned the symbol alpha (α). The formula in which k rep-
resents the number of filled elements in the list and n represents the total
number of elements allocated to the list is 

As data are added to a list and collisions are resolved, some hashing algo-
rithms tend to cause data to group within the list. This tendency of data to
build up unevenly across a hashed list is known as clustering, our second con-
cept. Clustering is a concern because it is usually created by collisions. If the
list contains a high degree of clustering, the number of probes to locate an
element grows and reduces the processing efficiency of the list.

Computer scientists have identified two distinct types of clusters. The
first, primary clustering, occurs when data cluster around a home address. Pri-
mary clustering is easy to identify. Consider, for example, the population
clusters found in the United States. If you have ever flown across the country
on a clear night, you noticed that amid the darkness towns and cities were
identified by their lights. If the whole country were a hashed list, and the
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lights each represented an element of data, we would be looking at primary
clustering—clustering around a home address in our list. 

Secondary clustering occurs when data become grouped along a collision path
throughout a list. This type of clustering is not easy to identify. In secondary
clustering the data are widely distributed across the whole list, so the list
appears to be well distributed. If the data all lie along a well-traveled collision
path, however, the time to locate a requested element of data can increase. 

Figure 13-14 diagrams both types of clustering. In Figure 13-14(a) we see
that K, P, and Y cluster around K’s home address. In this example the collision
resolution is based on the home address. Q, on the other hand, hashes to its
own address remotely located from K’s home address. In Figure 13-14(b) the
same four keys are inserted into the list. The collision resolution in this exam-
ple is not based on the home address. It spreads the collisions across the
entire list. Thus, we see that while K, P, and Y are still synonyms that hash to
the same home address, they are not clustered around K’s home address; they
are spread across the file. Also note that because P was placed in Q’s home
address, a secondary collision was created.

FIGURE 13-14 Clustering

To better understand the effects of secondary clustering, consider an
extreme example: Assume that we have a hashing algorithm that hashes each
key to the same home address. Locating the first element inserted into the list

(a) Primary clustering

(b) Secondary clustering
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takes only one probe. Locating the second element takes two probes. Carrying
the analogy to its conclusion, locating the nth element added to the list takes n
probes, even  if  the data are widely distributed across the addresses in the list. 

From this discussion it should be apparent that we need to design our
hashing algorithms to minimize clustering, both primary and secondary.
However, note that with the exception of the direct and subtraction methods,
we cannot eliminate collisions. 

One of the surprises of hashing methods is how few elements need to be
inserted into a list before a collision occurs. This concept is easier to under-
stand if we recall a common party game used to encourage mingling. The
host prepares a list of topics, and each guest is required to find one or more
guests who satisfy each topic. One topic is often birthdays and requires that
the guests find two people who have the same birthday (the year is not
counted). If there are more than 23 party guests, chances are better than 50%
that two of them have the same birthday.5 Extrapolating this phenomenon to
our hashing algorithms, if we have a list with 365 addresses, we can expect to
get a collision within the first 23 inserts more than 50% of the time.

Our final concept is that the number of elements examined in the
search for a place to store the data must be limited. The traditional limit of
examining all elements of the list presents three difficulties. First, the search
is not sequential, so finding the end of the list doesn’t mean that every ele-
ment has been tested. Second, examining every element would be exces-
sively time-consuming for an algorithm that has as its goal a search effort of
one. Third, some of the collision resolution techniques cannot physically
examine all of the elements in a list. (For an example, see “Quadratic Probe,”
in the next section.)

Computer scientists therefore generally place a collision limit on hashing
algorithms. What happens when the limit is reached depends on the applica-
tion. One simple solution is to abort the program. A more elegant solution is
to store the data in an area separate from the list (see “Linked List Collision
Resolution” later in the chapter). Whatever the solution it is important to use
the same algorithmic limit when searching for data in the list.

We are now ready to look at some collision resolution methods. Gener-
ally, there are two different approaches to resolving collisions: open address-
ing and linked lists. A third concept—buckets—defers collisions but does not
prevent them. 

Open Addressing
The first collision resolution method, open addressing, resolves collisions in the
prime area—that is, the area that contains all of the home addresses. This

5. This mathematical fact was first documented by von Mises in the 1930s and is known as the von
Mises birthday paradox.
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technique is opposed to linked list resolution, in which the collisions are
resolved by placing the data in a separate overflow area.

 When a collision occurs, the prime area addresses are searched for an open
or unoccupied element where the new data can be placed. We discuss four dif-
ferent methods: linear probe, quadratic probe, double hashing, and key offset.

Linear Probe
In a linear probe, which is the simplest, when data cannot be stored in the home
address we resolve the collision by adding 1 to the current address. For exam-
ple, let’s add two more elements to the modulo-division method example in
Figure 13-10. The results are shown in Figure 13-15. When we insert key
070918, we find an empty element and insert it with no collision. When we
try to insert key 166702, however, we have a collision at location 001. We try
to resolve the collision by adding 1 to the address and inserting the new data
at location 002. However, this address is also filled. We therefore add another
1 to the address and this time find an empty location, 003, where we can
place the new data.

FIGURE 13-15 Linear Probe Collision Resolution

As an alternative to a simple linear probe, we can add 1, subtract 2, add 3,
subtract 4, and so forth until we locate an empty element. For example, given
a collision at location 341, we would try 342, 340, 343, 339, and so forth
until we located an empty element. 

In either method the code for the linear probe must ensure that the next
collision resolution address lies within the boundaries of the list. Thus, if a key
hashes to the last location in the list, adding 1 must produce the address of
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the first element in the list. Similarly, if the key hashes to the first element of
the list, subtracting 1 must produce the address of the last element in the list.

Linear probes have two advantages. First, they are quite simple to imple-
ment. Second, data tend to remain near their home address. This tendency can
be important in implementations for which being near the home address is
important, such as when we hash to a disk address. On the other hand, linear
probes tend to produce primary clustering. Additionally, they tend to make the
search algorithm more complex, especially after data have been deleted.

Quadratic Probe
Primary clustering, although not necessarily secondary clustering, can be elimi-
nated by adding a value other than 1 to the current address. One easily imple-
mented method is to use the quadratic probe. In the quadratic probe, the increment
is the collision probe number squared. Thus for the first probe we add 12, for the
second collision probe we add 22, for the third collision probe we add 32, and so
forth until we either find an empty element or we exhaust the possible elements.
To ensure that we don’t run off the end of the address list, we use the modulo of
the quadratic sum for the new address. This sequence is shown in Table 13-2,
which for simplicity assumes a collision at location 1 and a list size of 100.

TABLE 13-2 Quadratic Collision Resolution Increments

A potential disadvantage of the quadratic probe is the time required to
square the probe number. We can eliminate the multiplication factor, how-
ever, by using an increment factor that increases by 2 with each probe. Add-
ing the increment factor to the previous increment gives us the next
increment, which as you can see by the last column in Table 13-2 is the
equivalent of the probe squared.

The quadratic probe has one limitation: it is not possible to generate a new
address for every element in the list. For example, in Table 13-2 only 59 of the
probes can generate unique addresses. The other 41 locations in the list are not
probed. The first duplicate address is found in probe 10. To see more examples

Probe
number

Collision
location

 Probe2 and
increment

New
address

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

 1
 2
 6
15
31
56
92
41
 5
86

  12 =   1
  22 =   4
  32 =   9
  42 =  16
 52 =  25
 62 =  36
 72 =  49
 82 =  64
 92 =  81
102 = 100

 1 +   1 ➫ 02
 2 +   4 ➫ 06
 6 +   9 ➫ 15
15 +  16 ➫ 31
31 +  25 ➫ 56
56 +  36 ➫ 92
92 +  49 ➫ 41
41 +  64 ➫ 05
 5 +  81 ➫ 86
86 + 100 ➫ 86
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of duplicate addresses, extend the table several probes. The solution to this
problem is to use a list size that is a prime number. When the list size is a prime
number, at least half of the list is reachable, which is a reasonable number. 

Pseudorandom Collision Resolution
The last two open addressing methods are collectively known as double hashing. In
each method, rather than use an arithmetic probe function, the address is
rehashed. As will be apparent from the discussion, both methods prevent pri-
mary clustering.

Pseudorandom collision resolution uses a pseudorandom number to resolve the col-
lision. We saw the pseudorandom-number generator as a hashing method in
the “Pseudorandom Hashing” section earlier in the chapter. We now use it as
a collision resolution method. In this case, rather than use the key as a factor
in the random-number calculation, we use the collision address. Consider
the collision we created in Figure 13-15. We now resolve the collision using
the following pseudorandom-number generator, where a is 3 and c is 5: 

In this example we resolve the collision by placing the new data in element
008 (Figure 13-16). We have to keep the coefficients small to fit our example. A
better set of factors would use a large prime number for a, such as 1663.

FIGURE 13-16 Pseudorandom Collision Resolution

y = (ax + c) modulo listSize 
  = (3 × 1 + 5) Modulo 307 
  = 8

First insert:
no collision

Bryan Devaux

Patrick Linn

Mary Dodd

•••

379452

378845

160252

045128

[000]

[001]

[002]

[306]

[003]

[005]

[007]

[305]

[008]

[006]

[004]

Tuan Ngo

166702

Sarah Trapp

Second insert:
collision

070918

121267

Harry Eagle166702

Hash
070918

1

Pseudorandom
y = 3x + 5

Probe 1

Shouli Feldman
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Pseudorandom numbers are a relatively simple solution, but they have
one significant limitation: all keys follow only one collision resolution path
through the list. (This deficiency also occurs in the linear and quadratic
probes.) Because pseudorandom collision resolution can create significant
secondary clustering, we should look for a method that produces different
collision paths for different keys.

Key Offset
Key offset is a double hashing method that produces different collision paths for
different keys. Whereas the pseudorandom-number generator produces a new
address as a function of the previous address, key offset calculates the new
address as a function of the old address and the key. One of the simplest ver-
sions simply adds the quotient of the key divided by the list size to the address to
determine the next collision resolution address, as shown in the formula below. 

For example, when the key is 166702 and the list size is 307, using the
modulo-division hashing method generates an address of 1. As shown in
Figure 13-16, this synonym of 070918 produces a collision at address 1.
Using key offset to calculate the next address, we get 237, as shown below. 

If 237 were also a collision, we would repeat the process to locate the
next address, as shown below. 

To really see the effect of key offset, we need to calculate several different
keys, all hashing to the same home address. In Table 13-3 we calculate the
next two collision probe addresses for three keys that collide at address 001.

TABLE 13-3 Key-offset Examples

offSet = key/listSize 
address = ((offSet + old address) modulo listSize)  

offSet = 166702/307 = 543
address = ((543 + 001) modulo 307) = 237

offSet = 166702/307 = 543
address = ((543 + 237) modulo 307) = 166

Key Home address Key offset Probe 1 Probe 2

166702

572556

067234

1

1

1

 543

1865

 219

237

024

220

166

047

132
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Note that each key resolves its collision at a different address for both the
first and the second probes.

Linked List Collision Resolution
A major disadvantage to open addressing is that each collision resolution
increases the probability of future collisions. This disadvantage is eliminated
in the second approach to collision resolution: linked lists. A linked list is an
ordered collection of data in which each element contains the location of the
next element. For example, in Figure 13-17 array element 001, Sarah Trapp,
contains a pointer to the next element, Harry Eagle, which in turn contains a
pointer to the third element, Chris Walljasper (when the link location is
crossed out, the link is null). We studied the maintenance of linked lists in
Chapter 5.

FIGURE 13-17 Linked List Collision Resolution

Linked list collision resolution uses a separate area to store collisions and chains
all synonyms together in a linked list. It uses two storage areas: the prime
area and the overflow area. Each element in the prime area contains an addi-
tional field—a link head pointer to a linked list of overflow data in the
overflow area. When a collision occurs, one element is stored in the prime
area and chained to its corresponding linked list in the overflow area.
Although the overflow area can be any data structure, it is typically imple-
mented as a linked list in dynamic memory. Figure 13-17 shows the linked
list from Figure 13-16 with the three synonyms for address 001.

The linked list data can be stored in any order, but a last in–first out
(LIFO) sequence or a key sequence is the most common. The LIFO sequence
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is the fastest for inserts because the linked list does not have to be scanned to
insert the data. The element being inserted into overflow is simply placed at the
beginning of the linked list and linked to the node in the prime area. Key-
sequenced lists, with the key in the prime area being the smallest, provide for
faster search retrieval. Which sequence (LIFO or key sequence) is used
depends on the application.

Bucket Hashing
Another approach to handling the collision problems is bucket hashing, in which
keys are hashed to buckets, nodes that accommodate multiple data occurrences.
Because a bucket can hold multiple data, collisions are postponed until the
bucket is full. Assume, for example, that in our Figure 13-17 list each address
is large enough to hold data about three employees. Under this assumption a
collision would not occur until we tried to add a fourth employee to an address.
There are two problems with this concept. First, it uses significantly more
space because many of the buckets are empty or partially empty at any given
time. Second, it does not completely resolve the collision problem. At some
point a collision occurs and needs to be resolved. When it does, a typical
approach is to use a linear probe, assuming that the next element has some
empty space. Figure 13-18 demonstrates the bucket approach.

FIGURE 13-18 Bucket Hashing

Study the second bucket in Figure 13-18. Note that it contains the data
for three entries, all of which hashed to address 1. We do not get a collision
until the fourth key, 572556 in our example, is inserted into the list. When a
collision finally occurs—that is, when the bucket is full—any of the collision
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resolution methods may be used. For example, in Figure 13-18 a collision
occurrs when we insert 572556 because bucket 1 was full. We then use a lin-
ear probe to insert it into location 2. Also note that for efficiency we place the
keys within a bucket in ascending key sequence.

Combination Approaches
There are several approaches to resolving collisions. As we saw with the hash-
ing methods, a complex implementation often uses multiple steps. For exam-
ple, one large database implementation hashes to a bucket. If the bucket is
full, it uses a set number of linear probes, such as three, to resolve the colli-
sion and then uses a linked list overflow area. 

Hashed List Example
To demonstrate hashed searches, let’s create a program that looks up telephone
numbers. Our input is a simple text file that contains names and phone num-
bers. When the program begins, it reads the file and loads the data into an
array. We then use a hash to find phone numbers. We use a variation of
Algorithm 13-6 for the hashing and a linear probe for the collision resolution. 

We use a list size of 53 because it is a prime number. We also include two
sets of names that are synonyms. Julie and Chris both hash to location 38;
Wayn and Wyan both hash to location 52, the last location in our hash list.
We can thus test our collision resolution at the end of the list. Our code is
shown in Program 13-3.

PROGRAM 13-3 Hashed List Search

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

/* The telephone lookup program using hashing.
The input is a file of names and phone numbers.
   Written by: 
   Date:       

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// Global Declarations 
typedef struct 
   {
    char  name [31];
    char  phone[16];
   } LISTING;

const int cMax_Size = 53;

// Prototype Declarations 
void buildList  (LISTING  phoneList[], int* last);
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PROGRAM 13-3 Hashed List Search (continued)

continued

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

void hashSearch (LISTING* phoneList,   int  last);
int hashKey     (char*    key,         int  last);
int collision   (int      last,        int  locn);

                 
int main (void)
{
// Local Definitions 

LISTING  phoneList[cMax_Size];
int      last;

// Statements 
printf("Begin Phone Listing\n");

   last = cMax_Size - 1;
buildList (phoneList, &last);
hashSearch(phoneList,  last);

printf("\nEnd Phone Listing\n");
return 0;

} // main 

/* ==================== buildList ====================
Read phone number file and load into array.
   Pre  phoneList is array to be filled 
        last is index to last element loaded
   Post array filled

*/
void buildList (LISTING phoneList[], int* last)

{
// Local Definitions 

FILE*   fpPhoneNums;
LISTING aListing;
int     locn;
int     cntCol;
int     end;

// Statements 
fpPhoneNums = fopen ("P13-03.TXT", "r");
if (!fpPhoneNums)
   {
    printf("Can't open phone file\a\n");
    exit (100);
   } // if 

// Set keys to null 
for (int i = 0; i <= *last; i++)
    phoneList[i].name[0] = '\0';
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PROGRAM 13-3 Hashed List Search (continued)

continued

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

while (!feof(fpPhoneNums))
 {

    fscanf(fpPhoneNums, " %30[^;]%*c %[^;]%*c", 
           aListing.name, aListing.phone);
    locn = hashKey(aListing.name, *last);
    
    if (phoneList[locn].name[0] != '\0')
       {
        // Collision 
        end     = *last;
        cntCol  =  0;
        while (phoneList[locn].name[0] != '\0' 
            && cntCol++ <= *last)
               locn = collision(*last, locn);
            
        if (phoneList[locn].name[0] != '\0')
           {
            printf("List full. Not all read.\n");
            return;
           } // if full list 
        } // if collision 
    phoneList[locn] = aListing;
   } // while 
return;

} // buildList 

/* ==================== hashKey ==================== 
Given key, hash key to location in list.
   Pre  phoneList is hash array
        last is last index in list
        key is string to be hashed
   Post returns hash location

*/
int hashKey (char* key, int last)
{
// Local Definitions 

int  addr;
int  keyLen;

// Statements 
keyLen = strlen(key);
addr   = 0;

for (int i = 0; i < keyLen; i++)
    if (key[i] != ' ')
       addr += key[i];
return (addr % last + 1);

} // hashKey 
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PROGRAM 13-3 Hashed List Search (continued)

continued

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

/* ==================== collision ==================== 
Have a collision. Resolve.
   Pre  phoneList is hashed list
        last is index of last element in list
        locn is address of collision
   Post returns next address in list

*/
int collision (int  last, int  locn)
{
// Statements 
    return locn < last ? ++locn : 0;
} // collision 

/* ==================== hashSearch ==================== 
Prompt user for name and lookup in array.
   Pre  phoneList has been initialized
   Post User requested quit

*/
void hashSearch (LISTING* phoneList, int last)
{
// Local Definitions 

char  srchName[31];
char  more;
int   locn;
int   maxSrch;
int   cntCol;

// Statements 
do
  {
   printf("Enter name: ");
   scanf ("%s", srchName);

    
   locn = hashKey (srchName, last);
    if (strcmp(srchName, phoneList[locn].name) != 0)
      { 
       // treat as collision 
       maxSrch = last;
       cntCol  = 0;
       while (strcmp (srchName,  
                      phoneList[locn].name) != 0
          &&  cntCol++ <= maxSrch)
            locn = collision(last, locn);
      } // if 

         
   // Test for success 
   if (strcmp (srchName, phoneList[locn].name) == 0)
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PROGRAM 13-3 Hashed List Search (continued)

Program 13-3 Analysis Several points in this program require discussion, although we tried to keep it as simple
as possible. As we load the file, we use a function to hash the key. We use the same
function to search the list. After hashing the key, we test for a collision. If the name in
the hashed location is not a null string, we have a collision. To resolve the collision, we
loop until we find an empty location. We use a separate collision function even though
there is only one statement for two reasons. First, collision resolution is a separate pro-
cess that should be placed in its own function because it is used by multiple functions in
the program. Second, if we later decide to change the collision resolution algorithm to
key offset, for example, we can easily isolate and modify the code.

In the search function, we get the search argument from the user and then call the
hash function to determine its location. If the search argument doesn’t match the name in
the location, we assume a collision. In this case we loop until we find a matching key or
until we have examined every location in the list. 

165
166
167
168
169
170
171
172
173
174
175

       printf("%-32s (%02d) %-15s\n",
               phoneList[locn].name, 
               locn,
               phoneList[locn].phone);
   else
       printf("%s not found\n", srchName);

  
   printf("\nLook up another number <Y/N>? ");
   scanf (" %c", &more);
  } while (more == 'Y' || more == 'y');

} // hashSearch 

Results:
Begin Phone Listing
Enter name: Julie
Julie (38)  (555) 916-1212

Look up another number <Y/N>? y
Enter name: Chris
Chris (39)  (555) 946-2859

Look up another number <Y/N>? y
Enter name: Wyan
Wyan (52)  (555) 866-1234

Look up another number <Y/N>? y
Enter name: Wayn
Wayn (0)  (555) 345-0987

Look up another number <Y/N>? y
Enter name: Bill
Bill not found

Look up another number <Y/N>? n
End Phone Listing
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The major problem with this simple search algorithm is that it must look in all loca-
tions to determine that a key is not in the list. In a productional program with a lot of
data, we would have used a slightly different approach. If we used a flag to determine
that a location had never been occupied, rather than one that was empty but had previ-
ously contained data, we could stop the search when we found an empty location.
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13.5 Key Terms

13.6 Summary
❏ Searching is the process of finding the location of a target among a list

of objects.

❏ There are two basic searching methods for arrays: sequential and
binary search.

❏ The sequential search is normally used when a list is not sorted. It starts at
the beginning of the list and searches until it finds the data or hits the end
of the list.

❏ One of the variations of the sequential search is the sentinel search. With
this method the condition ending the search is reduced to only one by arti-
ficially inserting the target at the end of the list.

❏ The second variation of the sequential search is called the probability
search. With this method the list is ordered with the most probable ele-
ments at the beginning of the list and the least probable at the end.

❏ The sequential search can also be used to search a sorted list. In this case we
can terminate the search when the target is less than the current element.

❏ If an array is sorted, we can use a more efficient algorithm called the
binary search.

❏ The binary search algorithm searches the list by first checking the middle
element. If the target is not in the middle element, the algorithm elimi-
nates the upper half or the lower half of the list, depending on the value of

binary search
bucket
bucket hashing
clustering
collision
collision resolution
digit extraction
direct hashing
division remainder
double hashing
fold boundary
fold shift
hashed search
home address
key offset
linear probe
linear search
linked list collision resolution

load factor
midsquare hashing
modulo-division
open addressing
overflow area
primary clustering
prime area
probability search
probe
pseudorandom collision resolution
pseudorandom hashing
quadratic probe
rotation hashing
searching
secondary clustering
sequential search
synonym
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the middle element. The process continues until the target is found or the
reduced list length becomes zero.

❏ The efficiency of a sequential list is O(n).

❏ The efficiency of a binary search is O(log n).

❏ In a hashed search, the key, through an algorithmic transformation, deter-
mines the location of the data. It is a key-to-address transformation.

❏ There are several hashing functions, including direct, subtraction, modulo-
division, digit extraction, midsquare, folding, rotation, and pseudorandom
generation.

■ In direct hashing the key is the address without any algorithmic
manipulation.

■ In subtraction hashing the key is transformed to an address by subtract-
ing a fixed number from it.

■ In modulo-division hashing the key is divided by the list size (which is
recommended to be a prime number), and the remainder plus 1 is used
as the address.

■ In digit-extraction hashing selected digits are extracted from the key
and used as an address.

■ In midsquare hashing the key is squared and the address is selected
from the middle of the result.

■ In fold shift hashing, the key is divided into parts whose sizes match the size
of the required address. Then the parts are added to obtain the address.

■ In fold boundary hashing, the key is divided into parts whose sizes
match the size of the required address. Then the left and right parts are
reversed and added to the middle part to obtain the address.

■ In rotation hashing the far-right digit of the key is rotated to the left to
determine an address. However, this method is usually used in combi-
nation with other methods.

■ In the pseudorandom generation hashing, the key is used as the seed to
generate a pseudorandom number. The result is then scaled to obtain
the address.

❏ Except in the direct and subtraction methods, collisions are unavoidable in
hashing. Collisions occur when a new key is hashed to an address that is
already occupied.

❏ Clustering is the tendency of data to build up unevenly across a hashed list.

■ Primary clustering occurs when data build up around a home address.

■ Secondary clustering occurs when data build up along a collision path
in the list.

❏ To solve a collision, a collision resolution method is used.

❏ Three general methods are used to resolve collisions: open addressing,
linked lists, and buckets. 
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■ The open addressing method can be subdivided into linear probe, qua-
dratic probe, pseudorandom rehashing, and key-offset rehashing.

● In the linear probe method, when the collision occurs the new data
are stored in the next available address.

● In the quadratic method, the increment is the collision probe num-
ber squared.

● In the pseudorandom rehashing method, a random-number genera-
tor is used to rehash the address.

● In the key-offset rehashing method, an offset is used to rehash the
address.

■ In the linked list technique, separate areas store collisions and chain all
synonyms together in a linked list.

■ In bucket hashing a bucket accommodates multiple data occurrences.

13.7 Practice Sets

Exercises
1. An array contains the elements shown below. Using the binary search algo-

rithm, trace the steps followed to find 88. At each loop iteration, including
the last, show the contents of first, last, and mid.

2. An array contains the elements shown below. Using the binary search algo-
rithm, trace the steps followed to find 20. At each loop iteration, including
the last, show the contents of first, last, and mid. 

3. Using the modulo-division method and linear probing, store the keys
shown below in an array with 19 elements. How many collisions occurred?
What is the density of the list after all keys have been inserted? 

4. Repeat Exercise 3 using a linked list method for collisions. Compare the
results in this exercise with the results you obtained in Exercise 3. 

18 13 17 26 44 56 88 97 

18 13 17 26 44 56 88 97 

224562 137456 214562

140145 214576 162145

144467 199645 234534
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5. Repeat Exercise 3 using the digit-extraction method (first, third, and fifth
digits) and quadratic probing. 

6. Repeat Exercise 5 using a linked list method for collisions. Compare the
results in this exercise with the results you obtained in Exercise 5.

7. Repeat Exercise 3 using the midsquare method, with the center two digits,
for hashing. Use a pseudorandom-number generator for rehashing if a col-
lision occurs. Use a = 3 and c = –1 as the factors. 

8. Repeat Exercise 7 using a key-offset method for collisions. Compare the
results in this exercise with the results you obtained in Exercise 7. 

9. Repeat Exercise 3 using the fold shift method and folding two digits at a
time and then use modulo-division on the folded sum. 

10. Repeat Exercise 9 using the fold boundary method.

11. Repeat Exercise 3 using the rotation method for hashing. First rotate the
far-right digits two to the left and then use digit extraction (first, third, and
fifth digits). Use the linear probe method to resolve collisions. 

12. Repeat Exercise 11 using a key-offset method for collisions. Compare the
results in this exercise with the results you obtained in Exercise 11. 

Problems
13. Write a program that creates an array of 100 random integers in the range

1 to 200 and then, using the sequential search, searches the array 100
times using randomly generated targets in the same range. At the end of
the program, display the following statistics:

a. The number of searches completed
b. The number of successful searches
c. The percentage of successful searches
d. The average number of tests per search

To determine the average number of tests per search, you need to count
the number of tests for each search. 

After you run your program, write a paragraph on the similarities or differ-
ences between the expected efficiency (big-O) and your calculated results. 

14. Repeat Problem 13 using an ordered list search. Rather than use a
pseudorandom-number generator, generate a sequenced array of num-
bers starting with 1 and alternately add 1 and then add 2 to create the
next numbers in the series, as shown below. 

For the search arguments, generate the 100 numbers in the range of 1
to 150. 

15. Repeat Problem 14 using a binary search.

1 3 4 6 7 9 10 12 13 15 6 ... 145 147 148 150
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Projects 
16. Modify Program 13-3 to determine the efficiency of the hashed list search.

Run your program with a list of at least 50 names and at least 10 searches.
Include at least three search arguments that are not in the list. 

17. Run your program from Problem 16 four times. The only differences between
the runs should be the load factor. For the first program, use a 60% load fac-
tor and then increase it by 10% for each of the following runs. Draw a graph
that plots the search efficiency and write a short report about the differences. 

18. Modify Program 13-3 to use pseudorandom-number generation to resolve
collisions. Write a short report on the differences between the two methods. 

19. Write a program that uses a hashing algorithm to create a list of inventory
parts and their quantities sold in the past month. After creating the hashed
list, write a simple menu-driven user interface that allows the user to
select from the following options:

a. Search for an inventory item and report its quantity sold
b. Print the inventory parts and their quantities sold
c. Analyze the efficiency of the hashing algorithm

The parts data are contained in a text file, as shown in Table 13-4. The
key is the three-digit part number. The quantity represents the units sold
during the past month.

TABLE 13-4 Data for Hashing Problem

Part number Quantity

112

130

156

173

197

150

166

113

123

143

167

189

193

117

176

12

30

56

17

19

50

66

13

12

14

16

18

19

11

76
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Three outputs are required from your program.

a. Test the following searches and return appropriate messages. You may
test other part numbers if you desire, but the following tests must be
completed first:

● Search for 112

● Search for 126

● Search for 173
b. When requested, analyze the efficiency of the hashing algorithm for this

set of data. Your printout should follow the report format shown below.

c. The printout of the entire contents of the list should use the follow-
ing format:

20. Create a sequential search ADT. The array to be searched is to be main-
tained by the application program in its own area. The target may be any
type and may be included in a structure. The prototype for the ADT inter-
face is: 

where ary contains the data to be searched, sizeofElem is the size of one
element in the array, numElem is the number of elements in the array, and
compare is the application function to compare two array elements. The
compare function returns –1 if arg1 < arg2, 0 if arg1 = arg2, and +1 if
arg1 > arg2. 

21.  Rewrite Project 20 using a binary search.

Percentage of Prime Area Filled:xx%
Average nodes in linked lists: nn
Longest linked list nn

    Home Addr  Prime Area   Overflow List
       0         130/30 
       1 
       2         112/12
       3         123/12     143/14, 173/17, 193/19 
       .
       .
       .

bool seqSearch (void* ary, 
           int   sizeofElem, 
           int   numElem,
           int  (*compare)(void* arg1, void* arg2));
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Appendix A
ASCII Tables

This appendix contains the American Standard Code for Information Inter-
change (ASCII). Table A-1 indicates the decimal, hexadecimal, octal, and
symbolic codes with an English interpretation, if appropriate. Table A-2 gives
a hexadecimal matrix of all values. 

A.1 ASCII Codes (Long Form)

continued
TABLE A-1 ASCII Codes

Decimal Hexadecimal Octal Symbol Interpretation

0 00 00 NUL NULL value

1 01 01 SOH Start of heading

2 02 02 STX Start of text

3 03 03 ETX End of text

4 04 04 EOT End of transmission

5 05 05 ENQ Enquiry

6 06 06 ACK Acknowledgment

7 07 07 BEL Ring bell

8 08 10 BS Backspace

9 09 11 HT Horizontal tab

10 0A 12 LF Line feed
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continued
TABLE A-1 ASCII Codes (continued)

Decimal Hexadecimal Octal Symbol Interpretation

11 0B 13 VT Vertical tab

12 0C 14 FF Form feed

13 0D 15 CR Carriage return

14 0E 16 SO Shift out

15 0F 17 SI Shift in

16 10 20 DLE Data link escape

17 11 21 DC1 Device control 1

18 12 22 DC2 Device control 2

19 13 23 DC3 Device control 3

20 14 24 DC4 Device control 4

21 15 25 NAK Negative acknowledgment

22 16 26 SYN Synchronous idle

23 17 27 ETB End-of-transmission block

24 18 30 CAN Cancel

25 19 31 EM End of medium

26 1A 32 SUB Substitute

27 1B 33 ESC Escape

28 1C 34 FS File separator

29 1D 35 GS Group separator

30 1E 36 RS Record separator

31 1F 37 US Unit separator

32 20 40 SP Space

33 21 41 !

34 22 42 " Double quote

35 23 43 #

36 24 44 $
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continued
TABLE A-1 ASCII Codes (continued)

Decimal Hexadecimal Octal Symbol Interpretation

37 25 45 %

38 26 46 &

39 27 47 ' Apostrophe

40 28 50 (

41 29 51 )

42 2A 52 *

43 2B 53 +

44 2C 54 , Comma

45 2D 55 – Minus

46 2E 56 .

47 2F 57 /

48 30 60 0

49 31 61 1

50 32 62 2

51 33 63 3

52 34 64 4

53 35 65 5

54 36 66 6

55 37 67 7

56 38 70 8

57 39 71 9

58 3A 72 : Colon

59 3B 73 ; Semicolon

60 3C 74 <

61 3D 75 =

62 3E 76 >

63 3F 77 ?
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continued
TABLE A-1 ASCII Codes (continued)

Decimal Hexadecimal Octal Symbol Interpretation

64 40 100 @

65 41 101 A

66 42 102 B

67 43 103 C

68 44 104 D

69 45 105 E

70 46 106 F

71 47 107 G

72 48 110 H

73 49 111 I

74 4A 112 J

75 4B 113 K

76 4C 114 L

77 4D 115 M

78 4E 116 N

79 4F 117 O

80 50 120 P

81 51 121 Q

82 52 122 R

83 53 123 S

84 54 124 T

85 55 125 U

86 56 126 V

87 57 127 W

88 58 130 X

89 59 131 Y

90 5A 132 Z
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continued
TABLE A-1 ASCII Codes (continued)

Decimal Hexadecimal Octal Symbol Interpretation

91 5B 133 [ Open bracket

92 5C 134 \ Backslash

93 5D 135 ] Close bracket

94 5E 136 ^ Caret

95 5F 137 _ Underscore

96 60 140 ` Grave accent

97 61 141 a

98 62 142 b

99 63 143 c

100 64 144 d

101 65 145 e

102 66 146 f

103 67 147 g

104 68 150 h

105 69 151 i

106 6A 152 j

107 6B 153 k

108 6C 154 l

109 6D 155 m

110 6E 156 n

111 6F 157 o

112 70 160 p

113 71 161 q

114 72 162 r

115 73 163 s

116 74 164 t

117 75 165 u
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TABLE A-1 ASCII Codes (continued)

A.2 ASCII Table (Short Form)

TABLE A-2 Short ASCII Table (Hexadecimal)

Decimal Hexadecimal Octal Symbol Interpretation

118 76 166 v

119 77 167 w

120 78 170 x

121 79 171 y

122 7A 172 z

123 7B 173 { Open brace

124 7C 174 | Bar

125 7D 175 } Close brace

126 7E 176 ~ Tilde

127 7F 177 DEL Delete

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ’ ( ) * + , – . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Right

Left
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Appendix B
Structure Charts

This appendix documents the structure chart concepts and styles used in this
book. It includes the basic symbology for our structure charts and some
guidelines on their use. Obviously, it is not a tutorial on the design process. 

The structure chart is the primary design tool for a program. As a design
tool, it is used before you start writing your program. An analogy can help you
understand the importance of designing before you start coding. 

Assume that you have decided to build a house. You will spend a lot of
time thinking about exactly what you want. How many rooms does it need?
Do you want a family room or a great room? Should the laundry be inside the
house or in the garage? To make sure that everyone understands what you
want, you prepare formal blueprints that describe everything in detail. Even if
you are building something small, such as a doll house for your child or a tool
shed for your backyard, you make some sketches or plans. 

Deciding what you want in your house is comparable to determining the
requirements for a large system. Drawing up a set of blueprints parallels the
structure chart in the design of a program. All require advance planning; only
the level of detail changes.

Professionals use the structure chart for another purpose. When you work in
a project team environment, you must have your design reviewed before you start
writing your program. This review process is called a structured walk-through.
The review team consists of the systems analyst responsible for your area of the
project, a representative of the user community, a system test engineer, and one
or two programmers from the project. 

Your design walk-through serves three purposes. First, it ensures that you
understand how your program fits into the system by communicating your
design to the team. If there are any omissions or communication errors, they
should be detected here. If you invite programmers who must interface with
your program, the walk-through also ensures that the interprogram commu-
nication linkages are correct.
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Second, it validates your design. In creating your design, you will have
considered several alternative approaches to writing your program. The
review team expects to see and understand the different designs you consid-
ered and hear why you chose the design you are proposing. They will chal-
lenge aspects of the design and suggest approaches you may not have
considered. The result of the review is the best possible design.

Third, it gives the test engineer the opportunity to assess the testability of
your program. This step in turn ensures that the final program is robust and
as error free as possible. 

B.1 Structure Chart Symbols
Figure B-1 shows the various symbols used to write a structure chart. We
describe each of these symbols in this section. In addition to discussing the
symbols themselves, we cover how to read a structure chart and several rules
to follow in your structure charts.

FIGURE B-1 Structure Chart Symbols

Modules
Each rectangle in a structure chart (see Figure B-2) represents a module that
you will write. Modules that are a part of the implementation language, such
as read, write, and square root, are not shown in your structure chart. The
name in the rectangle is the name you give to the module. It should be mean-
ingful. The software engineering principle known as intelligent names states
that the names used in a program should be self-documenting; that is, they
should convey their intended usage to the reader. Intelligent names should be
used for both modules and data names within your program.

(c) Conditional

( + )

(g) Exclusive or

(d) Loop (e) Conditional
loop

(f) Recursion

(b) Common
module

(a) Module

(h) Data flow

In Out

(i) Flag

In Out
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FIGURE B-2 Structure Chart

Although all names should be descriptive, we are going to break our own
rule because we want to concentrate on the format of a structure chart rather
than a particular program application. The names you see in Figure B-2 iden-
tify the various symbols for discussion.

At this point it is helpful to discuss an important structure chart rule: no
code is contained in a structure chart. A structure chart shows only the mod-
ule flow through the program. It is not a block diagram or a flowchart. As a
map of your program, the structure chart shows only the logical flow of the
modules. The algorithm design shows exactly how each module does its job.
Another way of looking at it is that a structure chart shows the big picture;
the details are left to algorithm design. 

Reading Structure Charts
Before discussing the rest of the symbols, let’s look at how to read structure
charts. Structure charts are read top-down, left-right. Thus, referring to
Figure B-2, Module A (the first rectangle at the top) consists of three sub-
modules, B1, B2, and B3. According to the left-right rule, the first call in the
program is to B1. After B1 is complete, the program calls B2. When B2 is
complete, the program calls B3. In other words, the modules on the same
level of a structure chart are called in order from the left to the right. 

The concept of top-down is demonstrated by B2. When B2 is called, it
calls C1, C2, and C3 in turn. Module C2 does not start running, however, until
C1 is finished. While C1 is running, it calls D1 or D2. In other words, all mod-
ules in a line from C1 to D2 must be called before Module C2 can start. 

Structure charts show only module flow; they contain no code.

~
(+)

C1
1 1

C1

B1

A

B2

D1

C3C2

D2

B3
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Common Modules
There are 10 modules in Figure B-2. Two of them, however, are the same
module (C1). When a module is used in more than one place in your design,
it is repeated. In other words, if you need to call a common module from sev-
eral different places within a program, each call is represented by a rectangle
in your structure chart. To identify a common module, draw a line in the
lower-right corner of the rectangle; see Figure B-1(b). If multiple modules
are used multiple times, it helps to add a unique number for each module.
We have numbered C1 in Figure B-2, even though it is not necessary in this
example, just to illustrate this technique. 

One final point about common modules: when common modules call
several other modules, their design can become quite large. Rather than
redraw all of the submodules each time a common module is called, you can
simply indicate that modules are called by including a line below the rectan-
gle and a cut (~) symbol. This concept is also shown in Figure B-2. In this
hypothetical design, Module C1 is called by both Module B2 and Module B3.
Rather than repeat the design of C1, however, we simply indicate that it calls
other modules with a cut symbol when we call it from B3. 

Conditional Calls
In Figure B-2, Modules B1, B2, and B3 are always called. Often, however, a mod-
ule is sometimes called and sometimes passed over. We call this a conditional
call. It is shown in Figure B-2 when Module B2 calls Module C3. To identify a
module as conditional, we use a small diamond, the same symbol used in a flow-
chart to indicate a selection statement. The code that implements this design is a
simple if statement, as shown below.

Exclusive Or
Two or more modules are often called exclusively. For example, the design for
our program in Figure B-2 requires that we call either D1 or D2 but not both.
This design can be implemented with the following statements in Module C1:

1 if (condition)
1 call C3

2 end if

1 if (condition)
1 call D1

2 else
2 call D2

3 end if
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It is obvious from the code that either D1 or D2 is called but not both. We
need some way to describe this design in the structure chart. The symbol that
we use to indicate exclusive calls is (+). Note that if several calls are grouped
exclusively, such as in a multiway selection (a switch or nested if statements
in C), we would use the same symbol. 

Loops
Very often a design requires that a module be called in a loop. For example,
assume that in Figure B-2, B2 calls C1, C2, and C3 while processing a file. It
must loop, therefore, until all of the data have been read. The loop symbol is
an oval. We use an arrow on our oval, but it is not required. The implemen-
tation code for our loop would look something similar to the following piece
of code:

Conditional Loops
Sometimes we loop conditionally. For example, consider the following piece
of code in which we test for a null linked list before beginning a search. The
structure chart symbol for this code combines the conditional diamond with
the loop oval, as shown in Figure B-1(e).

Recursion
The last of the module symbols represents a recursive module. It is shown
in Figure B-1(f). To see a use of the recursion symbol and as a final example
of a structure chart, consider the design of the AVL tree insert as shown in
Chapter 8. It is repeated in Figure B-3. This structure chart contains all of
the possible structure chart symbols except for a loop. It also presents some
interesting design points.

1 loop (not end of file)
1 call C1
2 call C2
3 if (condition)

1 call C3
4 end if

2 end loop

1 if (list->first not null)
1 walker = list->first
2 loop (walker not null)

1 ...
2 end if
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FIGURE B-3 Structure Chart Design

Note that there are two recursive calls in the module, both in the second
level. We need two calls because the first one has the left subtree as a param-
eter and the second one has the right subtree as a parameter. We have used
an optional variation of the recursion symbol in this figure, one that doesn’t
come all the way to the bottom of the rectangle. Also, you should note that
the recursion symbol is not generally used on the top rectangle that identifies
the name of the module, although it is not considered wrong to do so. 

In this design we are inserting a node on either the left or the right
branch of the tree. (If you haven’t studied trees yet, you may find it a little dif-
ficult to understand the following discussion.) Because this is an exclusive or
design, we place the (+) between the two vertical lines below AVL insert. 

Looking at the design for inserting on the left, we see that we have a
recursive call and then a conditional call to balance the tree. If the tree is still
in balance after the insert, we don’t need to balance it. To show that these
two calls are grouped together, we connect them with a horizontal line, which
also separates the exclusive or design.

Now look at the design for Left balance. Once again we see an exclusive
or, this time indicating that we have a single rotation to the right or a double
rotation to the left and the right. Again, note the use of the horizontal line to
group the design steps and isolate the exclusive or logic.

Data Flows and Flags
At this point we have covered all of the symbols except for data flows and
flags. As a general rule, we do not use them because they quickly break down
and are often not maintained. We include them here for completeness. 

Data flows and flags represent parameters passed to and from the mod-
ule. Input parameters are shown on the left of the vertical line connecting the
modules, and output parameters are shown on the right of the line. The only

11

Right
balance

AVL
insert 1

Left
balance

Rotate
right

1

2
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insert

AVL
insert

(+)

(+)
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left 333 2 2
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difference between them symbolically is that the data flows have a hollow cir-
cle, whereas the flags have a solid circle. In either case, the names of the data
flows and the flags should be included on the structure chart. 

B.2 Structure Chart Rules
The rules described in this section are summarized below: 

1. Each rectangle in a structure chart represents a module written by the
programmer. Standard modules provided as a part of the language trans-
lator are not included.

2. The name in the rectangle is an intelligent name that communicates the
purpose of the module. It is the name that is used in coding the module.

3. The structure chart contains only module flow. No code is indicated.

4. Common modules are indicated by a crosshatch or shading in the lower-
right corner of the module’s rectangle.

5. Common calls are shown in a structure wherever they are found in the
program. If they contain submodule calls, the complete structure need be
shown only once.

6. Data flows and flags are optional. When used, they should be named.

7. Input flows and flags are shown on the left of the vertical line; output
flows and flags are shown on the right.
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Appendix C
Integer and Float Libraries

This appendix documents two of the more important C libraries. Note that the
values shown here are representative only and change from hardware to hard-
ware. Libraries contain unformatted numbers (no commas), often expressed
in hexadecimal. We use decimally formatted numbers for readability.

C.1 limits.h
Table C-1 contains hardware specific values for the integer types.

continued
TABLE C-1 Partial Contents of Limits Library

Identifier Meaning Minimum Value

CHAR_BIT bits in a char 8

SCHAR_MIN

SCHAR_MAX

UCHAR_MAX

CHAR_MIN

CHAR_MAX

short char minimum

short char maximum

unsigned char maximum

char minimum

char maximum

–127

127

255

See SCHAR_MIN

See SCHAR_MAX

SHRT_MIN

SHRT_MAX

USHRT_MAX

short int minimum

short int maximum

unsigned short maximum

–32,767

32,767

65,535
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TABLE C-1 Partial Contents of Limits Library (continued)

C.2 float.h
Table C-2 contains hardware specific values for the floating point types.

continued
TABLE C-2 Partial Contents of Float Library

Identifier Meaning Minimum Value

INT_MIN

INT_MAX

UINT_MAX

int minimum

int maximum

unsigned int maximum

–32,767

32,767

65,535

LONG_MIN

LONG_MAX

ULONG_MAX

long minimum

long maximum

unsigned long maximum

–2,147,483,647

2,147,483,647

4,294,967,295

LLONG_MIN

LLONG_MAX

ULLONG_MAX

long long int minimum

long long int maximum

unsigned long long maximum

–(263 – 1)

263 – 1

264 – 1

Identifier Meaning Minimum Value

FLT_DIG

DBL_DIG

LDBL_DIG

digits of precision 6

10

10

DECIMAL_DIG decimal digits needed to 
represent floating-point 
value

10

FLT_MANT_DIG

DBL_MANT_DIG

LDBL_MANT_DIG

size of mantissa none

none

none

FLT_MIN_EXP

DBL_MIN_EXP

LDBL_MIN_EXP

largest integer for 
negative exponent (float 
radix)

none

none

none
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TABLE C-2 Partial Contents of Float Library (continued)

Identifier Meaning Minimum Value

FLT_MIN_10_EXP

DBL_MIN_10_EXP

LDBL_MIN_10_EXP

largest integer for 
negative exponent 
(base 10)

–37

–37

–37

FLT_MAX_EXP

DBL_MAX_EXP

LDBL_MAX_EXP

largest integer for 
positive exponent (float 
radix)

37

37

37

FLT_MAX_10_EXP

DBL_MAX_10_EXP

LDBL_MAX_10_EXP

largest integer for 
positive exponent 
(base 10)

37

37

37

FLT_MAX

DBL_MAX

LDBL_MAX

largest possible 
floating–point number

1037

1037

1037

FLT_MIN

DBL_MIN

LDBL_MIN

smallest possible 
floating–point number

10–37

10–37

10–37
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Appendix D
Selected C Libraries

In this appendix we list most of the standard functions found in the C Lan-
guage. We have grouped them by library so that related functions are grouped
together. We have also listed them alphabetically in Section D.1 for your con-
venience. Note that not all functions are covered in the text and that there
are functions in the libraries that are not covered in this appendix.

D.1 Function Index

continued

 Function Page Library Function Page Library Function Page Library

_Exit 671 stdlib fwrite 670 stdio remainderf 667 math

abort 671 stdlib getc 669 stdio remainderl 667 math

abs 671 stdlib getchar 669 stdio remquo 667 math

acos 664 math gets 670 stdio remquof 667 math

aosf 664 math gmtime 674 time remquol 667 math

acosl 664 math ilogb 666 math remove 670 stdio

asctime 674 time ilogbf 666 math rename 670 stdio

asin 664 math ilogbl 666 math rewind 670 stdio

asinf 664 math isalnum 664 ctype rint 667 math

asinl 664 math isalpha 664 ctype rintf 667 math

atan 664 math isascii 664 ctype rintl 667 math

atanf 664 math iscntrl 664 ctype round 667 math
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continued

 Function Page Library Function Page Library Function Page Library

atanl 664 math isdigit 664 ctype roundf 667 math

atan2 665 math isgraph 664 ctype roundl 667 math

atan2f 665 math islower 664 ctype scalebn 667 math

atan2l 665 math isprint 664 ctype scalebnf 667 math

atexit 671 stdlib ispunct 664 ctype scalebnl 667 math

atof 672 stdlib isspace 664 ctype scalebln 667 math

atoi 672 stdlib isupper 664 ctype scaleblnf 667 math

atol 672 stdlib isxdigit 664 ctype scaleblnl 667 math

atoll 672 stdlib labs 671 stdlib scanf 669 stdio

calloc 671 stdlib llabs 671 stdlib sin 668 math

ceil 665 math ldexp 666 math sinf 668 math

ceilf 665 math ldexpf 666 math sinl 668 math

ceill 665 math ldexpl 666 math sinh 668 math

clearerr 668 stdio ldiv 671 stdlib sinhf 668 math

clock 673 time lldiv 671 stdlib sinhl 668 math

cos 665 math lint 666 math sprintf 669 stdio

cosf 665 math lintf 666 math snprintf 669 stdio

cosl 665 math lintl 666 math sqrt 668 math

cosh 665 math lrint 666 math sqrtf 668 math

coshf 665 math lrintf 666 math sqrtl 668 math

coshl 665 math lrintl 666 math srand 671 stdlib

ctime 674 time llrint 666 math sscanf 669 stdio

difftime 673 time llrintf 666 math strcat 673 string

div 671 stdlib llrintl 666 math strchr 673 string

exit 671 stdlib localtime 674 time strcmp 673 string

_Exit 671 stdlib log 666 math strcpy 673 string

exp 665 math logf 666 math strcspn 673 string

expf 665 math logl 666 math strftime 674 time

expl 665 math log2 666 math strlen 673 string

expm1 665 math log2f 666 math strncat 673 string

expm1f 665 math log2l 666 math strncmp 673 string
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 Function Page Library Function Page Library Function Page Library

expm1l 665 math log10 666 math strncpy 673 string

exp2 665 math log10f 666 math strpbrk 673 string

exp2f 665 math log10l 666 math strrchr 673 string

exp2l 665 math lround 666 math strspn 673 string

fabs 665 math lroundf 666 math strstr 673 string

fabsf 665 math lroundl 666 math strtod 672 stdlib

fabsl 665 math llround 666 math strtof 672 stdlib

fclose 668 stdio llroundf 667 math strtok 673 string

feof 668 stdio llroundl 667 math strtol 672 stdlib

ferror 668 stdio malloc 671 stdlib strtold 672 stdlib

fgetc 669 stdio memchr 672 string strtoll 672 stdlib

fgets 670 stdio memcmp 672 string strtoul 672 stdlib

floor 665 math memcpy 673 string system 672 stdlib

floorf 665 math memmove 673 string tan 668 math

floorl 665 math mktime 673 time tanf 668 math

fmod 665 math modf 667 math tanl 668 math

fmodf 665 math modff 667 math tanh 668 math

fmodl 665 math modfl 667 math tanhf 668 math

fopen 669 stdio nearbyint 667 math tanhl 668 math

freopen 669 stdio nearbyintf 667 math time 674 time

fprintf 669 stdio nearbyintl 667 math tmpfile 670 stdio

fputc 669 stdio pow 667 math tmpnam 670 stdio

fputs 670 stdio powf 667 math trunc 668 math

fread 670 stdio powl 667 math truncf 668 math

free 671 stdlib printf 669 stdio truncl 668 math

frexp 666 math putc 669 stdio toint 664 ctype

frexpf 666 math putchar 669 stdio tolower 664 ctype

frexpl 666 math puts 670 stdio toupper 664 ctype

fscanf 669 stdio rand 671 stdlib ungetc 669 stdio

fseek 670 stdio realloc 671 stdlib

ftell 670 stdio remainder 667 math
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D.2 Type Library
The following functions are found in ctype.h.

D.3 Math Library
The following functions are found in math.h.

continued

isalnum int isalnum  (int a_char);

isalpha int isalpha  (int a_char);

isascii int isascii  (int a_char);a

a. Not standard C. Traditional extension included in most implementations.

iscntrl int iscntrl  (int a_char);

isdigit int isdigit  (int a_char);

isgraph int isgraph  (int a_char);

islower int islower  (int a_char);

isprint int isprint  (int a_char);

ispunct int ispunct  (int a_char);

isspace int isspace  (int a_char);

isupper int isupper  (int a_char);

isxdigit int isxdigit (int a_char);

toint int toint    (int a_char);

tolower int tolower  (int a_char);

toupper int toupper  (int a_char);

acos double acos   (double      number);

acosf float acosf  (float       number);

acosl long double acosl  (long double number);

asin double asin   (double      number);

asinf float asinf  (float       number);

asinl long double asinl  (long double number);

atan double atan   (double      number);

atanf float atanf  (float       number);

atanl long double atanl  (long double number);
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continued

atan2 double atan2  (double      number1, double number2);

atan2f float atan2f (float       number1, float  number2);

atan2l long double atan2l (long double number1,
        long double number2);

ceil double ceil   (double      number);

ceilf float ceilf  (float       number);

ceill long double ceill  (long double number);

cos double cos    (double      number);

cosf float cosf   (float       number);

cosl long double cosl   (long double number);

cosh double cosh   (double      number);

coshf float coshf  (float       number);

coshl long double coshl  (long double number);

exp double exp    (double      number);

expf float expf   (float       number);

expl long double expl   (long double number);

expm1 double expm1  (double      number);

expm1f float expm1f (float       number);

expm1l long double expm1l (long double number);

exp2 double exp2   (double      number);

exp2f float exp2f  (float       number);

exp2l long double exp2l  (long double number);

fabs double fabs   (double      number);

fabsf float fabsf  (float       number);

fabsl long double fabsl  (long double number);

floor double floor  (double      number);

floorf float floorf (float       number);

floorl long double floorl (long double number);

fmod double fmod   (double number1, double number2);

fmodf float fmodf  (float  number1, float  number2);

fmodl long double fmodl  (long double number1,
        long double number2);
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continued

frexp double frexp    (double number, int* exponent);

frexpf float frexpf   (float  number, int* exponent);

frexpl long double frexpl   (long double number,
          int*        exponent);

ilogb double ilogb    (double       number);

ilogbf float ilogbf   (float        number);

ilogbl long double ilogbl   (long double  number);

ldexp double ldexp    (double       number, int power);

ldexpf float ldexpf   (float        number, int power);

ldexpl long double ldexpl   (long double  number, int power);

lint double lint     (double       number);

lintf float lintf    (float        number);

lintl long double lintl    (long double  number);

lrint long lrint    (double       number); 

lrintf long lrintf   (float        number);

lrintl long lrintl   (long double  number);

llrint long long llrint   (double       number); 

llrintf long long llrintf  (float        number);

llrintl long long llrintl  (long double  number);

log double log      (double       number); 

logf float logf     (float        number);

logl long double logl     (long double  number);

log2 double log2     (double       number);

log2f float log2f    (float        number);

log2l long double log2l    (long double  number);

log10 double log10    (double       number);

log10f float log10f   (float        number);

log10l long double log10l   (long double  number);

lround long lround   (double       number);

lroundf long lroundf  (float        number);

lroundl long lroundl  (long double  number);

llround long long llround  (double       number);
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continued

llroundf long long llroundf (float        number);

llroundl long long llroundl (long double  number);

modf double modf     (double number, double* integral);

modff float modff    (float  number, float*  integral);

modfl long double modfl    (long double  number,
          long double* integral);

nearbyint double nearbyint  (double      number);

nearbyintf float nearbyintf (float       number);

nearbyintl long double nearbyintl (long double number);

pow double pow  (double      base, double power);

powf float powf (float       base, float  power);

powl long double powl (long double base, long double power);

remainder double remainder  (double number1, double number2);

remainderf float remainderf (float  number1, float  number2);

remainderl long double remainderl (long double number1,
            long double number2);

remquo double remquo     (double number1, double quotient);

remquof float remquof    (float  number1, float  quotient);

remquol long double remquol   (long double number1,
           long double quotient);

rint double rint      (double       number);

rintf float rintf     (float        number);

rintl long double rintl     (long double  number);

round double round     (double      number);

roundf float roundf    (float       number);

roundl long double roundl    (long double number);

scalebn double scalebn   (double      number, int  factor);

scalebnf float scalebnf  (float       number, int  factor);

scalebnl long double scalebnl  (long double number, int  factor);

scalebln double scalebln  (double      number, long factor);

scaleblnf float scalebnlf (float       number, long factor);

scaleblnl long double scalebnll (long double number, long factor);
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D.4 Standard I/O Library
We have divided the system input/output library (stdio.h) by the type of
data being read or written.

General I/O
General input/output contains functions that apply to all files.

continued

sin double sin       (double      number);

sinf float sinf      (float       number);

sinl long double sinl      (long double number);

sinh double sinh      (double      number);

sinhf float sinhf     (float       number);

sinhl long double sinhl     (long double number);

sqrt double sqrt      (double      number);

sqrtf float sqrtf     (float       number);

sqrtl long double sqrtl     (long double number);

tan double tan       (double      number);

tanf float tanf      (float       number);

tanl long double tanl      (long double number);

tanh double tanh      (double      number);

tanhf float tanhf     (float       number);

tanhl long double tanhl     (long double number);

trunc double trunc     (double      number);

truncf float truncf    (float       number);

truncl long double truncl    (long double number);

clearerr void clearerr (FILE* fp); 

fclose int fclose   (FILE* fp); 

feof int feof     (FILE* fp); 

ferror int ferror   (FILE* fp); 
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Formatted I/O
Convert text data to/from internal memory formats.

Character I/O
Read and write one character at a time.

fopen FILE* fopen    (const char* extn_name, 
          const char* file_mode); 

freopen FILE* freopen  (const char* extn_name, 
          const char* file_mode,
                FILE* stream); 

fprintf int fprintf  (      FILE* fileOut, 
          const char* format_string, ...);

printf int printf   (const char* format_string, ...);

sprintf int sprintf  (      char* to_loc, 
          const char* format_string, ...);

snprintf int snprintf (      char* to_loc, size_t n,
          const char* format_string, ...);

fscanf int fscanf   (      FILE* fileIn, 
          const char* format_string, ...);

scanf int scanf    (const char* format_string, ...);

sscanf int sscanf   (const char* from_loc, 
          const char* format_string, ...);

fgetc int fgetc   (FILE* fp);

fputc int fputc   (int   char_out, FILE* fp); 

getc int getc    (FILE* fp); 

getchar int getchar (void);

putc int putc    (int   char_out, FILE* fp); 

putchar int putchar (int   char_out);

ungetc int ungetc  (int   char_out, FILE* fp); 
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File I/O
These functions work with binary files.

String I/O
Read and write strings.

System File Control
System commands that create and delete files on the disk.

fread size_t fread  (void*  in_area, size_t size, 
        size_t count,    FILE* fp); 

fseek int fseek  (FILE* fp, long offset, int from_loc); 

ftell long ftell  (FILE* fp); 

fwrite size_t fwrite (const void*  out_data, size_t  size,
              size_t count,    FILE*   fp); 

rewind void rewind (FILE* fp); 

fgets char* fgets (      char* string, int   size, FILE* fp);

fputs int fputs (const char* string, FILE* fp);

gets char* gets  (      char* string); 

puts int puts  (const char* string); 

remove int remove  (const char* file_name);

rename int rename  (const char* old_name, 
         const char* new_name);

tmpfile FILE* tmpfile (void); 

tmpnam char* tmpnam  (char* file_name); 
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D.5 Standard Library
The following functions are found in stdlib.h.

Math Functions
The following math functions are found in stdlib.

Memory Functions
The following are memory allocation functions.

Program Control
The following functions control the program flow.

abs int abs   (int number); 

div div_t div   (int numerator, int divisor);

labs long labs  (long number); 

llabs long long llabs (long number); 

ldiv ldiv_t ldiv  (long numerator, long divisor);

lldiv lldiv_t lldiv (long long numerator, 
       long long divisor);

rand int rand  (void); 

srand void srand (unsigned seed); 

calloc void* calloc  (size_t num_elements, 
         size_t element_size);

free void free    (void*);

malloc void* malloc  (size_t num_bytes);

realloc void* realloc (void* stge_ptr, size_t element_size);

abort void abort  (void);

atexit int atexit (void (*) function_name (void));

exit void exit   (int exit_code); 

_Exit void _Exit  (int exit_code); 
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System Communication
The following function communicates with the operating system.

Conversion Functions
The following functions convert data from one type to another.

D.6 String Library
The following functions are found in string.h.

Memory Functions
The following functions manipulate block data in memory.

continued

system int system(const char* system_command); 

atof double atof      (const char* string);

atoi int atoi      (const char* string);

atol long atol      (const char* string);

atoll long long atoll     (const char* string);

strtod double strtod    (const char* str, char** next_str);

strtof float strtof    (const char* str, char** next_str);

strtol long strtol    (const char* str, char** next_str, 
                 int   base);

strtold long double strtold   (const char* str, char** next_str);

strtoll long long strtoll   (const char* str, char** next_str, 
                 int   base);

strtoul unsigned 
long

strtoul   (const char* str, char** next_str,
                 int   base); 

strtoull unsigned 
long long

strtoull  (const char* str, char** next_str,
                 int   base); 

memchr void* memchr  (const void*  mem, int a_char, 
               size_t bytes);

memcmp int memcmp  (const void* mem1, const void* mem2, 
               size_t bytes);
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String Functions
The following functions manipulate strings.

D.7 Time Library
The following functions are found in time.h.

continued

memcpy void* memcpy  (void* to_mem, const void* fr_mem, 
               size_t bytes); 

memmove void* memmove (void* to_mem, const void* fr_mem, 
              size_t bytes);

strcat char* strcat  (char* to_str, const char* fr_str);

strchr char* strchr  (const char* str, int a_char);

strcmp int strcmp  (const char* str1, const char* str2);

strcpy char* strcpy   (char* to_str, const char* fr_str);

strlen size_t strlen  (const char* str);

strncat char* strncat (char*  to_str, const char* fr_str,  
         size_t bytes);

strncmp int strncmp (const  char*  str1,  const char* str2,
                size_t bytes);

strncpy char* strncpy (char*  to_str, const char* fr_str,
         size_t bytes);

strpbrk char* strpbrk (const char* str1, const char* str2);

strcspn size_t strcspn (const char* str1, const char* str2);

strrchr char* strrchr (const char* str, int a_char);

strspn size_t strspn  (const char* str1, const char* str2);

strstr char* strstr  (const char* str1, const char* str2);

strtok char* strtok  (      char* str1, const char* str2);

clock clock_t clock     (void);

difftime double difftime  (time_t time_start, 
           time_t time_end);

mktime time_t mktime    (struct tm* cal_time);
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time time_t time      (time_t* num_time);

asctime char* asctime   (const struct tm* cal_time);

ctime char* ctime     (const time_t* num_time);

gmtime struct tm* gmtime    (const time_t* num_time);

localtime struct tm* localtime (const time_t* num_time);

strftime size_t strftime  (      char*      str, size_t maxsize,
           const char*      format,
           const struct tm* timeptr);
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Appendix E
Mathematical Series and

Recursive Relations

To understand how the efficiency of an algorithm is computed, you need to
have a basic understanding of how a mathematical series works. Because so
much of algorithmic design involves recursion, the effect of recursion on a
series must also be understood.

This appendix explores four basic concepts behind mathematical series
and recursive relations: arithmetic series, geometric series, harmonic series,
and recursive relations.

E.1 Arithmetic Series
In mathematics an arithmetic series is defined as shown in Figure E-1.

FIGURE E-1 Arithmetic Series

We present an informal solution to this series by writing it twice, first in its
normal order and then in the reverse order of terms. To get equal terms, we
add them as shown in Figure E-2.

= = Sa ...  +  +  +  + x i . x Σ
i = 1

n

2x nx (n −1)x 
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FIGURE E-2 Arithmetic Series Solution

Example Find the sum of the following series:

This is the arithmetic series with x = 1 and n = 100. Although we could
add all of the numbers, it is much easier to apply the series formula.

Example In this example we use a series where x is not 1.

In this series, we see that each number increases by 5, which means x = 5.
We use the general formula

Example For our final example, we find the sum of a series where x is not 1 and n does
not start with 1. Find the following sum:

To be able to use our formula, we need to write this series as the combi-
nation of two series.

1 + 2 + 3 + 4 + ... + 100

Sa = 100(101) / 2 = 5050

5 + 10 + 15 + 20 + ... + 50

Sa = xn (n + 1) / 2 = 5 (10)(11) / 2 = 275

100 + 105 + 110 + 115 + ... + 200

(5 + 10 + 15 + ... + 200) - (5 + 10 + 15 + ... + 95)

=2Sa ...  +  +  +  + (n + 1)x (n + 1)x (n + 1)x (n + 1)x 

=Sa ...  +  +  +  + nx (n − 1)x x 2x 

=Sa ...  +  +  +  + x 2x nx (n − 1)x 

n  terms 

Result: =Sa
2

n(n + 1)x
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The first series (from 5 to 200) is an arithmetic series with x = 5 and n = 40.
The second series is an arithmetic series with x = 5 and n = 19. Using our for-
mula, we see that

E.2 Geometric Series 
In mathematics a geometric series is defined as shown in Figure E-3.

FIGURE E-3 Geometric Series

Again, we present an informal solution to this series as shown in Figure E-4.

FIGURE E-4 Geometric Series Solution

Example Find the sum of the following series:

Sa = ( 5 (40)(41) / 2) - 5(19)(20) / 2 = 3150

1 + 2 + 4 + 8 + ... + 1024

= = Sg ...  +  +  +  +  + x 1x iΣ
i = 0

n

x2 xnx(n − 1)

1 ...+++ ++x2x xnx(n − 1)=Sg

x ...+++ ++x3x2 x(n + 1)xn=x . Sg

11 ...+++ −+++x2x x3 x(n + 1)xn=x . Sg

Sg

−+ x(n + 1) 1Sg=x . Sg

Sg = x(n + 1) 1−
x 1−

Given

We multiply both sides by x

We add and subtract 1 from right side

After substituting part of the right side with Sg

After reordering and factoring
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We recognize that this is a geometric series in which x is 2 (the series is
powers of 2) and n is 10 (210 is 1024). Using the geometric formula, we get 

Example Find the sum of the following series: 

This is a case of the geometric formula in which x is 1/2. One property
of the geometric series is that it converges if x is less than 1 and n approaches
infinity. In this case xn+1 becomes 0 because a number less than 1 to the
power infinity is 0. This is shown in this example in which x is less than 1 and
n is infinity.

E.3 Harmonic Series
Figure E-5 shows a harmonic series. This series does not converge, which
means that the value of Hn does not get close to 0 when n gets close to infinity.
Although the exact calculation of this series is beyond the scope of this text,
we provide the approximation shown in the figure.

FIGURE E-5 Harmonic Series

Example Find the sum of the following series.

The answer is ln 100 or 4.60. 

Sg = (xn + 1 - 1) / (x - 1) = (211 - 1) / (2 - 1) = 2047

1 + 1/2 + 1/4 + 1/8 + ...

 Sg = (xn + 1 - 1) / (x - 1)
= (-1) / (x - 1)
= 1 / (1 - x)
= 1 / (1 - 1/2) 
= 2

1 + 1/2 + 1/3 + ... + 1/100

=Hn Σ
i = 1

n

= + + + +
i

1

1

1

2

1

3

1

n

1...

=Hn ln nResult:
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E.4 Recursive Relations
To find the complexity of recursive algorithms, we need to solve a recursive
relation. A recursive relation is one in which the value of a function is defined
in terms of itself. For example, 

is a recursive relation because the value of f(n) is defined in terms of f(n - 1).
Although there is not a general formula for solving these types of relations, the
general approach requires that we develop the relations for n, n - 1, n - 2,
n - 3, and so on. In this process we try to eliminate terms that involve f(i)
so that on the right side we have only f(n) and on the left side only constants.
Note that for a relation to be solvable, some initial values of f must be pro-
vided. The most common given is the value of f(0) or f(1). We develop the
concept heuristically through examples.

Example Figure E-6 shows the recursive solution for a recursive relationship.

FIGURE E-6 Solution for First Recursive Relation

Example Figure E-7 shows another recursive relation and its solution.

f(n) = f(n - 1) + 1

f (n)  =   n

n

We substitute n with n − 1 repeatedly

When we add the equations, some terms are canceled

The base case, f(0) = 0, so we have

= f (n)
f (n − 1)  + 1 

0 if  n = 0 

Otherwise

=

=

=

=

=

f (n)

f (n − 1)

f (n − 2)

f (1)

...

f (n)

f (n − 1)

f (n − 2)

f (n − 3)

f (0)

f (0)

+

+

+

+

+

1

1

1

1

1 + 1 ++ 1...
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FIGURE E-7 Solution for Second Recursive Relation

Example Figure E-8 shows a third recursive relation.

FIGURE E-8 Recursive Solution for an n log n Series 

=f (n)
f (n − 1) + n

0 if n = 0

Otherwise

Result: f (n) =
2

 n(n − 1)

We substitute n with n − 1 repeatedly

When we add the equations, some terms are canceled

=

=

=

=

=

f (n)
f (n − 1)

f (n − 2)

f (1)
...

f (n)

f (n −1)

f (n −2)

f (n −3)

f (0)

f (0)

+

+

+

+

+

n
n − 1

n − 2

1

1 + 2 ++ n...
0 Arithmetic series

f (n)
Where n is 2k

= 
f (n / 2) + 1

0 if  n = 1

Otherwise

f (n) =  log2n

We substitute n with 2k and repeatedly replace k by k −1

If we add right sides and left sides, some terms are canceled

 The value of k is log2n

= f (2k −1) + 1f (2k)

= f (2k −2) + 1f (2k − 1)

= f (20) + 1f (21)

...

= k  =  log2nf (n)

k times0

= f (1) + + 1 ++ 11f (2k) ...
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Appendix F
Array Implementations of

Stacks and Queues

In Chapter 3 we developed a stack ADT using dynamic memory and a linked
list implementation. In Chapter 4 we similarly developed a queue ADT. There
are times, however, when we either desire to or need to use an array implemen-
tation. We discuss stack and queue array implementations in this appendix.

F.1 Stack ADT 
If a stack’s maximum size can be calculated before the program is written, an
array implementation of a stack is more efficient than the dynamic imple-
mentation using a linked list. In addition, an array stack is a more easily
understood and natural picture of a stack.

When implementing a stack in an array, the base is found at the first
stack element, index 0 in C. The top then moves up and down the array as
data are inserted and deleted. To push an element into the stack, we add 1 to
top and use it as the array index for the new data. To pop an element from the
stack, we copy the data at index location top and then subtract 1 from top.
One additional metadata element is required: the maximum number of ele-
ments in the stack. The structure for the array implementation with a maxi-
mum size of 5 elements is shown in Figure F-1.

In this section we redesign the eight basic stack algorithms, using an
array rather than a linked list implementation. 



682 Section F.1 Stack ADT

FIGURE F-1 Stack Array Implementation

Array Data Structure
There are three differences in the data structure for an array implementation:
first, the stack top is an index rather than a pointer; second, we need to store
the maximum number of elements allowed in the stack; and, third, we don’t
need next fields. Because the stack is a LIFO structure, each element has a
physical adjacency to its predecessor. 

Although the data structure is significantly different, the array implemen-
tation of a stack requires the same basic algorithms used in the linked list
implementation. The ADT declaration is shown in Program F-1. The algo-
rithms are developed in the sections that follow.

PROGRAM F-1 Stack Array Definition

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// Stack Definitions for Array Implementation 
typedef struct
  {
   void**  stackAry; 
   int     count;
   int     stackMax; 
   int     top; 
  } STACK;

// Prototype Declarations 
STACK* createStack  (int maxSize);
STACK* destroyStack (STACK* queue);

bool  pushStack  (STACK* stack, void* itemPtr);
void* popStack   (STACK* stack);
void* stackTop   (STACK* stack);
int   stackCount (STACK* stack);
bool  emptyStack (STACK* stack);
bool  fullStack  (STACK* stack); 

// End of Stack ADT Definitions

(a) Conceptual

Top

(b) Physical structure

stackAry count
4

top
3

stackMax
5

[4]

[3]

[2]

[1]

[0]
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Create Stack 
The ATD implementation of create stack is shown in Program F-2. The appli-
cation program specifies the stack maximum size when the stack is created.

PROGRAM F-2 Create Stack

Program F-2 Analysis There are two possible errors in the create stack function; both involve memory alloca-
tion. In statement 14 we allocate memory for the stack head structure. If this allocation
fails, we return a null pointer. Then, in statement 22, we use calloc to allocate the
array of void pointers and store its address in the stack head structure. Again, if this
allocation fails, we return a null pointer. Note that the stack array in the head structure
is a pointer to an array of void pointers. This means that when we cast the pointer
type, it must be cast as a pointer to a pointer to void. 

Because the newly created stack is by definition empty, we set the stack top index to
–1. We must use –1 as the value for a null stack because a stack with only one item in it
has a stack top of zero.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

/* ================== createStack =================
This algorithm creates an empty stack by allocating
the head structure and the array from dynamic memory.
   Pre    maxSize is max number of elements
   Post   returns pointer to stack head structure
        -or- NULL if overflow 

*/
STACK* createStack (int maxSize)
{
// Local Definitions 

STACK* stack;

// Statements 
stack = (STACK*) malloc( sizeof (STACK));
if (!stack)
   return NULL;

// Head allocated. Initialize & allocate stack. 
stack->count    =  0;
stack->top      = -1;
stack->stackMax = maxSize;
stack->stackAry =  (void**)calloc(stack->stackMax, 
                           sizeof(void*));
if (!stack->stackAry)
   {
    free (stack);
    return NULL;
   } // if 
return stack;

} // createStack 
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Push Stack 
The logic for the array implementation of push stack is very simple. We first
test for overflow by comparing the count of the elements in the stack with the
maximum stack size. If the stack is full, we return false, indicating that the
push failed. If there is room, we copy the data to the stack, increase the top
index and the stack count, and return true for success. The function code is
shown in Program F-3.

PROGRAM F-3 Push Stack

Pop Stack
The array implementation of pop stack is also quite simple and parallels the
linked list implementation. The code is shown in Program F-4.

PROGRAM F-4 Pop Stack

continued

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

/* ================== pushStack =================
This function pushes an item onto the stack.
   Pre  stack is pointer to stack head structure
        dataInPtr is pointer to be inserted
   Post returns true if success; false if overflow

*/
bool pushStack (STACK* stack, void* dataInPtr)
{
// Statements 

if (stack->count == stack->stackMax)
   return false;

(stack->count)++;
(stack->top)++;
stack->stackAry[stack->top] = dataInPtr; 

return true;
} // pushStack 

1
2
3
4
5
6
7
8
9
10
11

/* =================== popStack ==================
This function pops the item on the top of the stack.
   Pre  stack is pointer to stack head structure
   Post returns pointer to user data if successful
                NULL if underflow

*/
void* popStack (STACK* stack) 
{
// Local Declarations 

void* dataPtrOut;
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PROGRAM F-4 Pop Stack (continued)

Program F-4 Analysis When working with data structures, you should always test what happens when you
delete the only item in the structure. For our array stack, we need to ensure that when
the only item in the stack is deleted, the stack is properly set to a null status. We have
defined a null stack as a stack with a top index of –1. If there is only one element in
the stack, the top is 0. Subtracting 1 from 0 gives us –1, our designated flag for a
null stack.

Stack Top
Stack top is a simple function. We test for data in the stack and return the
data pointer in the top element if the stack is not empty or a null pointer if it
is empty. The code is shown in Program F-5.

PROGRAM F-5 Stack Top
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// Statements 
if (stack->count == 0)
    dataPtrOut = NULL;
else
   {
    dataPtrOut = stack->stackAry[stack->top];
    (stack->count)--;
    (stack->top)--;
   } // else 

return dataPtrOut;
} // popStack 
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/* ==================== stackTop ===================
This function retrieves the data from the top of the 
stack without changing the stack.
   Pre  stack is pointer to the stack
   Post returns data pointer if successful
           -or- null pointer if stack empty

*/
void* stackTop (STACK* stack) 
{
// Statements 

if (stack->count == 0)
   return NULL;
else
   return stack->stackAry[stack->top];

} // stackTop 
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Empty Stack 
Empty stack logic is the same regardless of the implementation structure. It
simply tests the stack count in the head structure and returns true if it is 0 or
false if it is not. The code is shown in Program F-6.

PROGRAM F-6 Empty Stack

Full Stack 
To determine whether the stack is full, we simply compare the count with the
maximum number of elements allocated for the array. If they are equal, the
stack is full; if not, the stack has room for more data. The code is shown in
Program F-7.

PROGRAM F-7 Full Stack

Stack Count 
Like empty stack, the logic for stack count is identical in all implementations.
We simply return the stack count found in the stack head structure. The code
is shown in Program F-8.
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/* ================= emptyStack ================
This function determines if a stack is empty.
   Pre  stack is a pointer to the stack
   Post returns true if empty; false if data in stack

*/
bool emptyStack (STACK* stack) 
{
// Statements 

return (stack->count == 0);
} // emptyStack 
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/* ================= fullStack ================
This function determines if a stack is full.
   Pre  stack is a pointer to a stack head structure 
   Post returns true if full; false if empty elements

*/
bool fullStack (STACK* stack) 
{
// Statements 

return (stack->top == stack->stackMax); 
} // fullStack 
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PROGRAM F-8 Stack Count

Destroy Stack 
To destroy a stack implemented using an array, we must first free the array
structure and then the stack head structure. We then return a null pointer,
which the calling function should store in the application stack pointer. The
code is shown in Program F-9. 

PROGRAM F-9 Destroy Stack

Program F-9 Analysis Our only concern is that the stack pointer may be null. If it is, we do nothing except
return a null pointer. If the stack pointer is not null, we free the array memory first, then
the head structure memory, and return a null pointer. 
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/* =================== stackCount =================
Returns number of elements in stack.
   Pre  stack is a pointer to the stack
   Post count returned 

*/
int stackCount(STACK* stack) 
{
// Statements 

return stack->count;
} // stackCount 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

/* ================== destroyStack =================
This function releases all memory to the heap.
Pre  stack is pointer to stack head structure 
Post returns null pointer 

*/
STACK* destroyStack (STACK* stack) 
{
// Statements 

if (stack)
   {
    // Release data memory
    for (int i = 0; i < stack->count; i++)
        free (stack->stackAry[i]);

    // Release stack array 
    free (stack->stackAry);
  
    // Now release memory for stack head 
    free (stack); 
   } // if stack 
return NULL;

} // destroyStack 
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F.2 Queue ADT
Although the linked list implementation is very popular, it is not the only way
to implement a queue. Queues can also be implemented in arrays and, for
very large queues, in files. Because a file can be thought of as an array stored
on a disk, the array and file implementations have similar solutions. In this
section we rewrite the queue ADT using an array.

An enqueue to an empty queue is placed in the first element of the array,
which becomes both the front and the rear. Subsequent enqueues are placed
at the array location following rear; that is, each enqueue stores the queue
data in the next element after the current queue rear. Thus, if the last ele-
ment in the queue is stored at array location 11, the data for the next
enqueue is placed in element 12. 

Dequeues take place at the front of the queue. As an element is deleted
from the queue, the queue front is advanced to the next location; that is,
queue front becomes queue front plus one. Figure F-2(a) shows a conceptual
queue; Figure F-2(b) shows a physical queue after it has been in operation
for a period of time. At the point shown, the data have migrated from the
front of the array to its center.

FIGURE F-2 Queue Stored in an Array 

When we implement a queue in an array, we use indexes rather than
pointers. Thus, the front of the queue in Figure F-2 is 5 and the rear is 11. 

The definition of a full queue changes when we implement a queue in an
array. A full queue is defined as every element filled. Because arrays have a

(a) Conceptual

(b) Physical structures

count
7

rear
11

front
5

maxSize
17

queueAry

[1] [2] [3] [4] [5][0] [6] [8][7] [15] [16][9] [10] [11] [12] [14][13]
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finite number of elements, we can determine that the queue is full by testing
the queue count against the maximum number of elements.1

When data arrive faster than the queue service time, the queue tends to
advance to the end of the array. This leads to the situation where the last ele-
ment in the array is occupied but the queue is not full because there are empty
elements at the beginning of the array. This situation is shown in Figure F-3.

FIGURE F-3 Array Queue with Last Element Filled

When the data are grouped at the end of the array, we need to find a
place for the new element when we enqueue data. One solution is to shift all
of the elements from the end to the beginning of the array. For example, in
Figure F-3 element 5 is shifted to element 0, element 6 to 1, 7 to 2, and so
forth until element 16 is shifted to 11.

A more efficient alternative is to use a circular array. In a circular array,
the last element is logically followed by the first element. This is done by test-
ing for the last element and, rather than adding one, setting the index to zero.
Given our array queue above, the next element after 16 is 0. A circular queue
is shown in Figure F-4.

With this understanding of a circular queue, we are ready to rewrite the
abstract data type. The only difference in the calling sequence between the
two implementations is the addition of a maximum queue size in the create
queue function.

Array Queues Implementation
Two changes are needed to the data structure for the queue head. We need to
store the address of the queue array, which we allocate from dynamic mem-
ory. We also need to store the maximum number of elements in the array. The
revised data structure is shown in Program F-10. We also include the proto-
type declarations for the queue functions. As you study the data structure,
compare it with the linked list structure in Program 4-1, “Queue ADT Data
Structures.”

1. Even though we are implementing the queue in C, we ignore the possibility of dynamically changing
the array size with realloc.

Queue
rear

Queue
front

[1] [2] [3] [4] [5][0] [6] [8][7] [14] [15] [16][9] [10] [11] [12] [13]
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FIGURE F-4 Circular Queue

PROGRAM F-10 Queue Array Definition
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// Queue ADT Defintions
typedef struct
   {
    void**   queueAry;
    int      maxSize;
    int      count;
    int      front;
    int      rear;
   } QUEUE;

// Prototype Declarations 
QUEUE* createQueue  (int maxSize);
QUEUE* destroyQueue (QUEUE* queue);

bool  enqueue    (QUEUE* queue, void* itemPtr);
void* dequeue    (QUEUE* queue);
void* queueFront (QUEUE* queue);
void* queueRear  (QUEUE* queue);
int   queueCount (QUEUE* queue);
bool  emptyQueue (QUEUE* queue);
bool  fullQueue  (QUEUE* queue); 

// End of Queue ADT Definitions 

Bend ends up to form circular queue

Queue
rear

Queue
front

Last array
element 

Queue
rearQueue

front

First array
element
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Create Queue 
The array implementation of create queue allocates memory for a queue
head structure and the array itself in dynamic memory and returns the
address of the head structure to the caller. If there is not enough memory for
the queue structure, it returns a null pointer. The code for create queue is
shown in Program F-11.

PROGRAM F-11 Create Queue

Program F-11 Analysis The most difficult code in create queue is found in statement 19. We must cast the
array pointer as a pointer to a void pointer. This is because we cannot store the data
directly in the ADT. The calling function must pass a pointer to data in dynamic mem-
ory. We can then store it in the queue array as a void pointer. Because the array is an
array of void pointers, its name is a pointer constant to a void pointer. This means that
the pointer returned by calloc must be a pointer to a void pointer. 

A second point worth noting is that we set the front and rear indexes to –1. We
have chosen –1 as the index for a null queue to make the enqueue logic as simple as
possible. Whenever we insert an element into the queue, we add one to the rear index.
When the queue is null, this automatically sets rear to zero when the queue is null. The
initial value for the front queue could be anything, but we make it –1 for consistency.
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/* =============== createQueue ================
Allocates memory for a queue head node from dynamic 
memory and returns its address to the caller.
   Pre    nothing
   Post   head has been allocated and initialized
   Return head’s address if successful;
          null if overflow 

*/
QUEUE* createQueue (int maxSize)
{
// Local Definitions 

QUEUE* queue;

// Statements 
queue = (QUEUE*) malloc (sizeof (QUEUE));
if (queue)
   {
    // head structure created. Now allocate queue 
    queue->queueAry = 
         (void**)calloc(maxSize, sizeof(void*));
    queue->count   =  0;
    queue->front   = -1;
    queue->rear    = -1;
    queue->maxSize = maxSize;
   } // if 

return queue;
} // createQueue 
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Enqueue
The parameter list for the array implementation of enqueue is identical to the
linked list implementation. The logic, however, differs considerably. First,
there is no memory to be allocated. We simply need to determine in which
array element to store the data pointer. 

The test for a full queue has also been changed. To determine if the
queue is full, we compare the queue count to the maximum queue size. If
they are equal, we have a full queue.

To complete the insert, we add one to the rear index. If rear is at the last
element, we need to wrap around to the first element of the queue. The code
is shown in Program F-12.

PROGRAM F-12 Enqueue

Program F-12 Analysis You need to study two points in this function carefully. First, note how the wraparound
logic in statements 14 to 16 is handled. At this point in the function, we know that the
queue is not full. If the rear index is equal to the maximum queue size, however, we
need to wrap around to the first element. (Remember, C uses zero indexing, so when
the new rear is equal to the count, the last element has been filled.) 
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/* ================= enqueue ================
This algorithm inserts data into a queue.
   Pre    queue has been created 
   Post   data have been inserted 
   Return true if successful; false if overflow 

*/
bool enqueue (QUEUE* queue, void* itemPtr)
{
// Statements 

if (queue->count == queue->maxSize)
   return false;

(queue->rear)++;
if (queue->rear  == queue->maxSize)
    // Queue wraps to element 0 
    queue->rear  =  0;
queue->queueAry[queue->rear] = itemPtr; 

if (queue->count == 0)
   {
    // Inserting into null queue 
    queue->front  = 0;
    queue->count  = 1;
   } // if 
else
   (queue->count)++;
return true;

} // enqueue 
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Second, if we are inserting into a null queue, identified by a count of zero, we must
set the front index to 0. The rear index is set to 0 automatically when we add one to the
null rear pointer, which is set to –1 whenever the queue is empty.

Dequeue
Dequeue deletes data at the front of the queue and returns it to the calling
function. Its code is shown in Program F-13.

PROGRAM F-13 Dequeue

Program F-13 Analysis Take note of two pieces of code in this function. First, once again we must wrap
around from the end of the queue. For dequeue we test for a wrap after we have
deleted the data from the queue. If front was in the last element of the array, we must
set the new front to the first element, 0.

The second point is that we need to reset both front and rear to –1 when we delete
the last item in the queue. This is done in statements 21 to 23. 

Queue Front
The queue front logic parallels dequeue except that the status of the queue is
not changed. Its logic is shown in Program F-14.
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/* ================== dequeue ==================
This algorithm deletes a node from the linked list.
   Pre  queue has been created 
   Post returns pointer to user data if successful
                NULL if underflow

*/
void* dequeue (QUEUE* queue)
{
// Local Declarations 

void* dataPtrOut;

// Statements 
if (!queue->count)
   return NULL;
 
dataPtrOut = queue->queueAry[queue->front];
(queue->front)++;
if (queue->front == queue->maxSize)
   // queue front has wrapped to element 0 
   queue->front =  0;
if (queue->count == 1)
   // Deleted only item in queue 
   queue->rear = queue->front = -1;
(queue->count)--;

return dataPtrOut;
} // dequeue 
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PROGRAM F-14 Queue Front

Queue Rear
Queue rear returns a pointer to the data at the rear of the queue without
changing the contents of the queue. It’s logic is shown in Program F-15. 

PROGRAM F-15 Queue Rear

Full Queue
The full queue logic is much simpler in the array implementation than in the
linked list. We simply test the count to the maximum queue size. If they are
equal, the queue if full. The code is shown in Program F-16.

Empty Queue
The empty queue logic is much simpler in the array implementation than in
the linked list. We simply test the count to the maximum queue size. If they
are equal, the queue is full. The code is shown in Program F-17.
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/* ================== queueFront =================
Retrieve the data at the front of the queue
without changing the queue contents. 
   Pre  queue is a pointer to initialized queue 
   Post returns pointer to user data if successful;
                NULL if underflow

*/
void* queueFront (QUEUE* queue)
{
// Statements 

if (!queue->count) 
    return NULL;
return queue->queueAry[queue->front];

} // queueFront 
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/* ================== queueRear =================
Retrieves the data at the rear of the queue
without changing the queue contents. 
   Pre  queue is pointer to initialized queue 
   Post returns pointer to user data if successful;
                NULL if underflow

*/
void* queueRear (QUEUE* queue)
{
// Statements 

if (!queue->count) 
    return NULL;
return queue->queueAry[queue->rear];

} // queueRear 
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PROGRAM F-16 Full Queue

PROGRAM F-17 Empty Queue

Queue Count
The queue count returns the number of elements in the queue. The code is
shown in Program F-18.

PROGRAM F-18 Queue Count

Destroy Queue
The last function for the array implementation is destroy queue. The queue
count and empty queue functions are identical for the linked list implemen-
tation and the array implementation, so we won’t repeat them.
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/* ================== fullQueue =================
Checks to see if a queue is full. The queue is full 
if the array is full. 
   Pre    queue is pointer to a queue head node
   Return true if full; false if room for more 

*/
bool fullQueue (QUEUE* queue) 
{
// Statements 

return (queue->count == queue->maxSize);
} // fullQueue 
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/* ==================== emptyQueue ===================
Checks to see if a queue is empty. 
   Pre    queue is pointer to a queue head node
   Return true if empty; false if data in queue 

*/
bool emptyQueue (QUEUE* queue) 
{
// Statements 

return (queue->count == 0);
} // emptyQueue 
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/* ==================== queueCount ===================
Returns the number of elements in the queue. 
   Pre    queue is pointer to a queue head node
   Return queue count 

*/
int queueCount (QUEUE* queue) 
{
// Statements 

return queue->count;
} // emptyQueue 
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To destroy the queue, we simply free the array and head structures and
return a null pointer. The code is shown in Program F-19.

PROGRAM F-19 Destroy Queue
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/* ================= destroyQueue ================
This function deletes the queue and array memory.
   Pre    queue is a valid queue 
   Post   all data have been deleted and recycled 
   Return null pointer 

*/
QUEUE* destroyQueue (QUEUE* queue) 
{
// Local Definitions

int locn = queue->front;

// Statements 
if (queue)
   {
    // Free data memory
    while (queue->count != 0)
       {
        free (queue->queueAry[locn++]);
        queue->count--;
        if (locn == queue->maxSize)
            locn = 0;
       } // while
    free (queue->queueAry); 
    free (queue);
   } // if 
return NULL;

} // destroyQueue 



697

Glossary

2-3 tree: a B-tree of order 3.

2-3-4 tree: a B-tree of order 4.

A

abstract data type (ADT): a data declaration 
packaged together with the operations that are 
meaningful on the data type.

adjacency list: a method of representing a graph 
that uses a linked list to store the vertices and a 
two-dimensional, linked list array to store the lines.

adjacency matrix: a method of representing a 
graph that uses a vector for the vertices and a 
matrix (square two-dimensional array) to store 
the lines.

adjacent vertices: two vertices in a graph that 
are connected by a line.

ADT: see abstract data type.

algorithm: the logical steps necessary to solve a 
problem; a module or a part of a module.

algorithmics: the term created by Brassard and 
Bratley that refers to the study of techniques used 
to create efficient algorithms.

ancestor: any node in the path from the current 
node to the root of a tree.

arc: a directed line in a graph; contrast edge.

array: a fixed-size, sequenced collection of ele-
ments of the same data type.

arrival rate: the rate at which customers arrive in 
the queue.

ascending sequence: a list order in which each 
element in the list has a key greater than or equal 
to those of its predecessors.

ascending sort: a sort that orders a list in 
ascending sequence.

ASCII: the American Standard Code for Infor-
mation Interchange. An encoding scheme that 
defines control characters and graphic characters 
for the first 128 values in a byte.

atomic data: data that cannot be 
meaningfully subdivided.

AVL tree: a height-balanced binary search tree 
that uses a balance factor to control the balance.

AVL tree head structure: the node in a AVL tree 
implementation that contains the tree metadata, 
such as the root pointer, the compare function 
pointer, and a node count.

AVL tree node structure: the node in a AVL tree 
implementation that contains the tree application 
data and structural metadata, such as the left 
and right branches, and the balance factor for 
the node.

B

backtracking: an algorithmic process, usually 
implemented with a stack or through recursion, 
that remembers the path through a data structure 
and can retrace the path in reverse order.

balance: a tree node attribute representing the 
difference in height between the node’s subtrees.
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balance factor: in an AVL tree, metadata used to 
maintain the tree’s balance.

balanced binary tree: a binary tree in which the 
height of the subtrees differs by no more than one 
and the subtrees are balanced.

balanced merge: a merge that uses a constant 
number of input merge files and the same number 
of output merge files.

base case: in a recursive function, the statement 
that “solves” the problem.

big-O notation: a measure of the efficiency of 
an algorithm in which only the dominant factor 
is considered.

bill of materials: a tree representation of a prod-
uct showing which components are assembled 
into which parts. A structure chart is an example 
of a bill of materials.

binary search: a search algorithm in which a tar-
get is located by repeatedly dividing the list in half. 

binary search tree (BST): a binary tree in 
which: (1) the keys of the left subtree are all less 
than the root key, (2) the keys of the right subtree 
are greater than or equal to the root key, and 
(3) the subtrees are binary search trees.

binary tree: a tree in which no node can have 
more than two children; a tree with a maximum 
outdegree of 2.

binary tree search: a binary tree with the follow-
ing properties: (1) All items in the left subtree are 
less than the root. (2) All items in the right sub-
tree are greater than or equal to the root. And 
(3) each subtree is itself a binary search tree.

binary tree traversal: a binary tree processing 
sequence that processes each node of the tree 
once and only once in a predetermined sequence. 

bool: the C keyword for the Boolean type.

Boolean: a type whose values can be only true 
or false.

branch: a line in a tree that connects two adja-
cent nodes.

breadth-first traversal: a graph traversal in 
which nodes adjacent to the current (siblings) 
node are processed before their descendents.

BST: see binary search tree.

B*tree: a B-tree in which each node is at least 
two-thirds full.

B+tree: a B-tree in which all data are represented 
at the leaf level, and each leaf node has a pointer 
to the next sequential leaf node in the tree.

B-tree: an m-way tree in which all nodes except 
the root have a minimum number of entries, 
and except for leaves each node entry has a 
nonnull subtree.

B-tree order: the maximum number of subtrees 
from a B-tree node.

bubble sort: a sort algorithm in which each pass 
through the data moves (bubbles) the lowest ele-
ment to the beginning of the unsorted portion of 
the list.

bucket: in a hashing algorithm, a node that can 
accommodate multiple data occurrences.

bucket hashing: a hashing technique in which 
keys are hashed to nodes that accommodate mul-
tiple data occurrences.

C

child: a node in a tree or a graph that has 
a predecessor.

chronological list: a list that is organized by 
time—that is, the data are stored in the order in 
which they were received; see also first-in–first out 
(FIFO) and last in–last out (LIFO).

circularly linked list: a linked list in which the 
last node’s link points to the first node in the list.

clustering: the tendency of data to build up 
unevenly across a hashed list.

collision: an event that occurs when a hashing 
algorithm produces an address for an insertion 
and that address is already occupied.

collision resolution: an algorithmic processing 
that determines an alternative address after 
a collision.

combine: a B-tree underflow balancing tech-
nique that joins the data from an underflowed 
entry, a minimal sibling, and a parent in one node.
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complete tree: a tree with a restricted outdegree 
that has the maximum number of nodes for 
its height.

complete binary tree: a complete tree with a 
outdegree of 2.

composite data: data that are built on other data 
structures; that is, data that can be broken down 
into discrete atomic elements. 

connected graph: a graph is connected if, when 
direction is suppressed, there is a path from any 
vertex to any other vertex.

construct: a basic programming design state-
ment, such as, sequence, selection, or loop.

customer: in a queue, a person or thing need-
ing service. 

cycle: a graph path whose length is greater than 1 
and that starts and ends at the same vertex.

D

data: in a linked list, the part of the structure 
that stores application information.

data compression: any data storage method that 
reduces the number of bits required to store data. 
See Huffman code.

data hiding: the principle of structured program-
ming in which data are available to a function 
only if it needs them to complete its processing; 
data that are not needed are “hidden” from view; 
see also encapsulation. 

data name: an identifier given to data in 
a program.

data node: in a data structure, a node that con-
tains application data or a pointer to application 
data; contrast header node.

data structure: an aggregation of atomic and 
composite data types into a set with defined 
relationships.

data type: a named set of values and operations 
defined to manipulate the values, such as charac-
ter and integer.

data validation: the process of verifying and vali-
dating data read from an external source. 

degree: the number of lines incident to a node in 
a graph.

deletion: in a list, any process that removes data.

dependent quadratic loop: any loop in which 
the number of iterations of the inner loop 
depends on the outer loop.

depth (of tree): see height.

depth-first traversal: a traversal in which all of 
a node’s descendents are processed before any 
adjacent nodes (siblings).

dequeue: delete an element from a queue.

descendent: any node in the path from the cur-
rent node to a leaf.

descending sequence: a list order in which each 
element in a list has a key less than or equal to 
that of its predecessor.

descending sort: a sort that orders a list in 
descending sequence.

digit extraction: a hashing method in which 
selected digits are extracted from the key and used 
as the address.

digraph: a directed graph.

direct hashing: a hashing method in which the 
key is used without modification.

directed graph: a graph in which direction is 
indicated on the lines (arcs).

disjoint graph: a graph that is not connected.

distribution phase: in a natural merge sort, the 
pass through the data that redistributes the merge 
runs to the input files for remerging.

division remainder: a hashing method that 
divides the key by the array size and uses the 
remainder for the address.

double hashing: a hashing collision resolution 
method in which the collision address is hashed to 
determine the next address.

doubly linked list: a linked list structure in 
which each node has a pointer to both its succes-
sor and its predecessor; contrast singly linked list.

dynamic memory: memory whose use can 
change during the execution of the program 
(often referred to as heap).
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E

edge: a line in an undirected graph.

empty list: a list that has been defined but that 
contains no data. Also known as a null list.

encapsulation: the design concept in which 
data, functions, and objects, such as text files or 
linear lists, are maintained separately from the 
application using them; see also data hiding.

enqueue: insert an element into a queue.

exchange sort: the sort algorithm that exchanges 
elements that are out of order until the entire list 
is sorted.

exponential efficiency: a category of program/
module efficiency in which the run time is a func-
tion of the power of the number of elements being 
processed, as in O(n) = cn.

expression tree: a binary tree representation of 
an expression.

external sort: a sort that uses primary memory 
for the data currently being sorted and second-
ary storage for any data that does not fit in 
primary memory.

F

factorial: an arithmetic function whose value 
is the product of the integral values from 1 to 
the number.

factorial efficiency: a measure of the efficiency 
of a module in which the run time is propor-
tional to the number of elements factorial, as 
in O(n) = n!.

Fibonacci numbers: a number series discovered 
by Leonardo Fibonacci in which each number is 
the sum of the previous two numbers.

FIFO: see first in–first out.

FIFO insertion: an insertion method that places 
data in a list such that a subsequent traversal pro-
cesses data in first in–first out sequence.

first-in–first-out (FIFO): a data structure pro-
cessing sequence in which data are processed in 
the order that they are retrieved. A queue.

fold boundary: a hashing algorithm in which the 
left and right folds are reversed before they are 
added to determine the key.

fold shift: a hashing algorithm in which the key 
is divided into parts that are added to determine 
the key.

front: in a list, a reference that identifies the 
first element. In a queue, the next element to 
be removed.

G

general case: in recursion, the case that reduces 
the problem.

general list: a list in which data can be inserted 
and deleted anywhere in the list.

general tree: a tree with an unlimited outdegree.

generic code: a program design that uses one set 
of code that can be used to process any data type.

goezinta: a colloquial term derived from “goes 
into” for a bill of material. 

graph: a non-linear list in which each element 
can have zero, one, or more predecessors and 
zero, one, or more successors.

greatest common divisor (GCD): in mathemat-
ics, the largest integral divisor of two numbers.

H

hashed list: a list in which the location of the 
data is determined by a hashing algorithm.

hashed search: any of the methods used to 
locate data in a hashed list.

hashing: a key-to-address transformation in 
which the key, through an algorithmic transforma-
tion, directly determines the location of the data.

head: in an ADT, a structure that contains the 
ADT’s metadata, such as the address of the first 
node and the count of the number of elements in 
the ADT.

head pointer: a pointer that identifies the first 
element of a linked list.
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header node: see head.

heap: a binary tree in which the root is the larg-
est node in the tree and the subtrees are also 
heaps; See also minimum heap.

heap memory: a pool of memory that can be 
used to dynamically allocate space for data while 
the program is running; see also dynamic memory. 

heap sort: a selection sort algorithm that uses a 
heap to determine the largest element in the 
unsorted area of an array. 

heapify: the heap-processing algorithm that bub-
bles the largest element to the top of the heap.

height: a tree attribute indicating the length of 
the path from the root to the last level; the level of 
the leaf in the longest path from the root plus 1. 

height-balanced tree: a balanced tree in which 
the balance is controlled through the height of its 
subtrees. An AVL tree is a height-balanced tree.

home address: in a hashed list, the first address 
produced by the hashing algorithm.

Huffman code: a compression algorithm that 
assign shorter codes to characters that occur more 
frequently and longer codes to those that occur 
less frequently.

I

indegree: in a tree or graph, the number of lines 
entering a node.

index: the address of an element within an array. 

infix: a binary arithmetic notation in which the 
operator is placed between two operands.

infix traversal: in an expression tree, the tra-
versal that results in the operator being placed 
between two operands. See inorder.

information hiding: a structured programming 
concept in which the user does not know the data 
structure or the implementation of its operations.

inorder: a binary tree traversal in which the root 
is processed after the left subtree and before the 
right subtree; an LNR traversal.

inorder traversal: see inorder.

insert: the addition of an element in a data struc-
ture or a file.

insertion: in a list, any process that adds data.

insertion sort: a sort algorithm in which the first 
element from the unsorted portion of the list is 
inserted into its proper position relative to the 
data in the sorted portion of the list.

intelligent data name: a data or algorithm name 
that describes the meaning of the data or the pur-
pose of the algorithm. 

internal node: any tree node except the root and 
the leaves; a node in the middle of a tree.

internal sort: a sort in which all of the data are 
held in primary storage during the sorting process.

K

key: one or more fields in a data structure that 
are used to identify the data or otherwise control 
its use.

key offset: a hashed list collision resolution 
method in which the next address is a function of 
the current address and the key.

key-sequenced insertion: in a general tree, the 
insertion method that places the new node in key 
sequence among the sibling nodes.

L

last in–first out (LIFO): a data structure pro-
cessing sequence in which data are processed in 
the reverse order that they are retrieved; a stack.

leaf: a graph or tree node with an outdegree of 0.

leaf subtree: in a binary tree, the subtree on the 
left branch from a node.

left high: in an AVL tree, a tree or subtree 
whose left subtree has a height greater than its 
right subtree.

left of left: a temporary state of an unbalanced 
AVL tree in which a left high node has a left 
high subtree.
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left of right: a temporary state of an unbalanced 
AVL tree in which a right high node has a left 
high subtree.

level: in a tree or graph, an attribute of a node, 
indicating its distance from the root.

lexical search tree: a lexicographical search tree 
in which each node contains only one character 
rather than an entire key, and the complete key is 
constructed by following a path through the tree. 

lexicographical: a data order based on the dic-
tionary; see also ascending sequence.

LIFO: see last in–first out.

LIFO insertion: an insertion method that places 
data in a list such that a subsequent traversal pro-
cesses data in last in-first out sequence.

line: a graph element that connects two vertices 
in the graph; see also arc and edge.

linear efficiency: a measure of the efficiency of a 
module in which the run time is proportional to 
the number of elements being processed, as 
in O(n) = n.

linear list: a list structure in which each ele-
ment, except the last, has a unique successor.

linear loop: a loop whose execution is a function 
of the number of elements being processed; see 
also linear efficiency.

linear probe: the collision resolution algorithm 
that determines the next candidate address by 
adding or subtracting 1. 

linear search: any search algorithm used to 
locate data in a linear list.

link: in a list structure, the field that identifies 
the next element in the list.

linked list: a structure in which the ordering of 
the elements is determined by link fields.

linked list collision resolution: a hashed list 
collision resolution method that uses a separate 
area for synonyms, which are maintained in a 
linked list.

list: an ordered set of data contained in 
main memory.

list traversal: the list-processing algorithm that 
processes each element in a list in sequence.

LNR: left, node, right; see inorder.

load factor: in a hashed list, the ratio of the 
number of data nodes in the list to the number 
of physical elements in the list, expressed as 
a percentage.

logarithmic efficiency: a measure of the effi-
ciency of a module in which the run time is pro-
portional to the log of the number of elements 
being processed, as in O(n) = log n.

logarithmic loop: a loop whose efficiency is a 
function of the log of the number of elements 
being processed; see also logarithmic efficiency.

logical data: data whose values can be only true 
or false; see also Boolean.

loop: a statement that iterates a block of code.

LRN: left, right, node; see postorder.

M

m: the order in an m-way tree.

m-way tree: a search tree structure with multiple 
data entries and subtrees per node; the maximum 
number of subtrees is known as the order of the 
m-way tree.

max-heap: see heap.

merge: to combine two or more sequential files 
into one sequential file based on a common key 
and structure format.

merge phase: in an external sort, a pass through 
the data that combines the data from two or 
more files.

merge run: a set of consecutively ordered data in 
a merge file.

merge sort: any sort technique that orders data 
by the repetitive merging of files.

metadata: data about the list or other data struc-
ture stored within the data structure itself.

midsquare hashing: a hashing method in which 
the key is squared and the address is selected 
from the middle of the squared number.
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minimum heap: a binary tree in which the root is 
the smallest node in the tree and the subtrees are 
also min-heaps; contrast heap and max-heap.

minimum spanning tree: a spanning tree in 
which the sum of the weights is the minimum of 
all possible trees contained in the graph.

modular programming: the program design in 
which the program is written in a series of mod-
ules that are linear in their design; contrast 
structured programming.

modulo-division: a hashing method that divides 
the key by the array size and uses the remainder 
for the address.

multilinked list: one physical linked list struc-
ture with two or more logical key sequences.

multiserver queue: a queue design that can pro-
vide service to many customers at a time.

N

natural merge: a merge with a constant number 
of input merge files and one output merge file.

nearly complete tree: a tree with a limited 
outdegree that has the minimum height for its 
nodes and in which the leaf level is being filled 
from the left.

nested loop: a loop whose efficiency is a function 
of the efficiency of a controlling loop.

network: see weighted graph.

NLR: node, left, right; see preorder.

node: in a data structure, an element that con-
tains both data and structural elements used to 
process the list.

non-linear list: a list in which each element can 
have more than one successor.

null tree: a tree with no nodes.

O

object: in object-oriented programming, any 
instantiation of a class, including its members 
and methods.

open addressing: a collision resolution method 
in which the new address is in the home area.

order: in an m-way tree, the maximum number of 
subtrees allowed for a node.

order (sort): see sort order.

ordered list: a list in which the elements are 
arranged so that the key values are placed in 
ascending or descending sequence.

outdegree: the number of lines leaving a node in 
a tree or a graph.

overflow: the condition that results when an 
attempt is made to insert data into a full list.

overflow area: in a hashed list, an area separate 
from the prime area that is used to store syn-
onyms in a linked list.

P

parent: a tree or graph node with an outdegree 
greater than 0; that is, with successors.

parsing: logic that breaks data into indepen-
dent pieces.

path: in a tree or graph, a sequence of nodes in 
which each node is adjacent to the next one. 

pivot: in quicksort, the key value used to arrange 
the data such that all of the data with keys less 
than the pivot are on the left of the pivot in the 
array, and all of the data with keys greater than or 
equal to the pivot are on the right of the pivot.

pointer: a constant or variable that contains the 
address of a location in memory.

pointer to function: a pointer that identifies the 
entry point to a function. It is used to pass a func-
tion’s address as a parameter.

pointer to void: a generic pointer type that can 
store a pointer to any type.

polynomic efficiency: a measure of the effi-
ciency of a module in which the run time is pro-
portional to the number of elements raised to the 
highest factor in a polynomial, as in O(n) = nk.

polyphase merge: a merge in which a constant 
number of input merge files are merged into one 
output merge file and each input merge file is 
immediately reused when its input has been com-
pletely merged.
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pop: the stack delete operation.

postfix: a binary arithmetic notation in which the 
operator is placed after its operands.

postfix traversal: in an expression tree, the tra-
versal that results in the operator being placed 
after its two operands. See postorder.

postorder: a binary tree traversal in which the 
left subtree is processed before the right 
subtree and both are processed before the root; 
an LRN traversal.

postorder traversal: see postorder.

prefix: a binary arithmetic notation in which the 
operator is placed before the operands.

prefix traversal: in an expression tree, the tra-
versal that results in the operator being placed 
before its two operands. See preorder.

preorder: a binary tree traversal in which the 
root is processed before the left subtree and the 
left subtree is processed before the right subtree; 
an NLR traversal.

preorder traversal: see preorder.

primary clustering: the buildup of data around 
the home address in a hashed list; contrast 
secondary clustering.

prime area: in a hashed list, the memory that 
contains the home addresses.

priority queue: a queue in which the elements 
are organized into groups according to priority 
numbers and processed such that the highest-
priority elements are output first. Items with the 
same priority are processed in first in–first out 
(FIFO) order. 

probability search: a search in which the list is 
ordered according to the probability of the list 
data being the target of a search, with the most 
probable targets first.

probe: in a hashing algorithm, the calculation of 
an address and a test for success; in a search algo-
rithm, one iteration of the loop that includes the 
test for the search argument.

prune: in a trie, the process of removing all of the 
branches that are not needed.

pseudocode: English-like statements that follow 
a loosely defined syntax and are used to convey 
the design of an algorithm or a function.

pseudorandom collision resolution: a collision 
resolution method that uses a pseudorandom-
number generator to determine the next address 
after a collision.

pseudorandom hashing: a hashing method 
that uses the key as the variable factor in a 
pseudorandom-number generator to determine 
the address.

pseudorandom numbers: a repeatable number 
series with random properties. 

push: the stack insert operation.

Q

quadratic efficiency: a measure of the efficiency 
of a module in which the run time is proportional 
to the number of elements squared. Quadratic 
efficiency is one of the polynomic factors, as 
in O(n) = n2.

quadratic loop: a nested loop in which each loop 
has a linear efficiency. 

quadratic probe: a collision resolution method in 
which the increment is the collision probe number 
squared, giving the series 12, 22, 32, and so forth.

queue: a linear list in which data can be inserted 
only at one end, called the rear, and deleted from 
the other end, called the front.

queue data node: a node that contains the user 
data and a link field pointing to the next node.

queue data structure: the node in a queue 
structure that contains queue metadata, such as 
the front and rear pointers or a queue count.

queue simulation: a modeling activity used to 
generate statistics about the performance of 
a queue.
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quick sort: the exchange sort developed by 
C. A. R. Hoare that sorts by repetitively dividing 
the list into three groups: a partition of elements 
whose keys are less than the pivot’s key, the pivot ele-
ment that is placed in its ultimately correct location 
in the list, and a partition of elements greater than 
or equal to the pivot’s key. 

R

random list: a list with no ordering of the data.

random number: a number selected from a set in 
which all members have the same probability of 
being selected.

rear: in a linked list, a pointer that identifies the 
last element; in a queue, the most recent element 
inserted into the structure. 

rear pointer: in a list, a pointer that points to the 
last entry in the list.

recursion: a repetitive process in which an algo-
rithm calls itself.

reflow: in a B-tree, the module that corrects an 
underflow either by moving data from one node to 
another or by combining nodes.

reheap down: in heap processing, the logic that 
flows an entry down the heap tree structure until 
it is in its proper location in the heap.

reheap up: in heap processing, the logic that 
flows an entry up the heap tree structure until it is 
in its proper location in the heap.

restricted list: a list in which data can be added 
or deleted only at the ends of the list and pro-
cessing is restricted to operations on the data at 
the ends.

retrieval: the location and return of an element 
in a list.

return condition: in algorithm documentation, 
an explanation of any value returned by 
the algorithm.

right high: in an AVL tree, a tree or subtree 
whose right subtree has a height greater than its 
left subtree. 

right of left: a temporary state of an unbalanced 
AVL tree in which a left high node has a right 
high subtree.

right of right: a temporary state of an unbal-
anced AVL tree in which a right high node has a 
right high subtree.

right subtree: in a binary tree, the subtree on the 
right branch from a node.

rollout: merge processing in which a consecutive 
series of merge input data are copied to the merge 
output after a stepdown in the alternate 
merge input.

root: the first node of a tree.

rotation: a hashing method in which the end por-
tion of a key is copied to the front of the key.

S

search: the process that examines a list to locate 
one or more elements containing a designated 
value known as a search argument.

search argument: the key value being looked for 
in a search.

secondary clustering: the buildup of data along 
a collision path through a hashed list; contrast 
primary clustering.

selection sort: the sort algorithm in which the 
smallest value in the unsorted portion of a list is 
selected and placed at the end of the sorted por-
tion of the list.

selection statement: a statement that evaluates a 
condition and executes zero or more alternatives.

self-referential data structure: a structure that 
contains a reference to itself.

sentinel: a flag that guards the end of a list or a 
file. The sentinel is usually the maximum value for 
a key field and cannot be a valid data value.

sentinel search: a search algorithm in which the 
search argument is placed in an extra element at 
the end of the list.

sequence: in structured programming, one or 
more statements that do not alter the execution 
path within an algorithm.
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sequential file: a file structure in which data 
must be processed serially from the first entry in 
the file.

sequential search: a search technique used with 
a linear list in which the searching begins at the 
first element and continues until the value of an 
element equal to the value being sought is 
located, or until the end of the list is reached. 

service: in a queue, any activity needed to accom-
plish the required result.

service time: in a queue, the average time 
required to complete the processing of a 
customer request.

shell sort: an insertion sort that uses a list 
divided into partitions. Each sort pass orders the 
data in their respective partitions. After each pass, 
the partition size is reduced and the sort repeated 
until the list is completely sorted.

siblings: two or more tree nodes with a com-
mon parent.

single-server queue: a queue that can process 
only one customer at a time. 

singly linked list: a collection of nodes in which 
each element contains data and only one refer-
ence, which is the location of the next element; 
contrast doubly linked list.

sort: the process that orders a list or a file. 

sort efficiency: a measure of sort performance. 

sort order: the arrangement of data in a list or a 
file, either ascending or descending.

sort pass: in a sort, one traversal of the data.

sort phase: the first pass through the data in an 
external sort in which a sort algorithm is used to 
sort data into merge runs for further processing.

sort stability: an attribute of a sort in which 
input data with equal keys retain their relative 
order in the sort output.

spaghetti code: an archaic, unstructured coding 
style in which the logic flow wound through the 
program like spaghetti on a plate.

spanning tree: a tree extracted from a connected 
graph that contains all of the vertices in the graph.

stability: see sort stability.

stack: a restricted data structure in which data 
can be inserted and deleted at only one end, 
called the top.

stackframe: a logical structure used in a function 
call that contains the parameters, the local vari-
able values for the calling function, the return 
statement in the calling function, and the address 
of the variable to receive any return value.

stepdown: an event that occurs when the 
sequential ordering of the data in a merge file is 
broken; the end of a merge run. End of file is also 
considered a stepdown.

straight insertion sort: a sort in which in each 
pass the first element of the unsorted sublist is 
transferred to the sorted sublist by inserting it at 
the appropriate location. 

strongly connected graph: a graph in which 
there is a path from every node to every other 
node; contrast weakly connected graph.

structure chart: a design and documentation 
tool that represents a program as a hierarchical 
flow of algorithms or functions. 

structured programming: the program design 
technique in which a program is decomposed into 
modules that have one entry and one exit. 

subtraction hashing: a hashing method in which 
only a constant value is subtracted from the key to 
determine the address.

subtree: any connected structure below the root 
of the tree.

synonym: in a hashed list, two or more keys that 
hash to the same home address.

T

threaded tree: a tree structure in which null 
(leaf) pointers are replaced with pointers to their 
successor nodes.

token: any syntactical construct that represents 
an operation or a flag, such as the plus sign (+). 

top: in a stack, the next element to be removed.
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traversal: an algorithmic process in which each 
element in a structure is processed once and 
only once.

tree: a non-linear list in which each node has 
only one predecessor.

trie: a lexical search tree in which null subtrees 
are pruned—that is, in which null subtrees 
are deleted.

U

underflow: an event that occurs when an attempt 
is made to delete data from a data structure and it 
is empty.

undirected graph: a graph in which there is no 
indication of direction on the lines.

V

vertex: a node in a graph.

vertex list: in a graph, a list of vertices.

W

weakly connected graph: a graph in which there 
is at least one node with no path to any other 
node; contrast strongly connected graph.

weighted graph: a graph whose lines 
are weighted.
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multilinked list  247
node  202
queue  148
stack  80, 86

deletion  194
dependent quadratic 

efficiency  34
depth  267
depth-first traversal  274, 

485, 496
dequeue  148, 155, 161, 693
descendent  266
design  650
designing recursive algorithms  

48–52
destroy list  212, 227
destroy queue  158, 165, 695
destroy stack  101, 687
difftime  673
digit-extraction hashing  616
digraph  481
Dijkstra, Edsger  8, 10, 519

shortest path algorithm  518
direct hashing  613
directed graph  481
disjoint graph  483
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distribution phase  577
div  671
division remainder hashing  615
double hashing  626
doubly linked list  240

backward pointer  241
deletion  243
forward pointer  241
insertion  241
rear pointer  240

duplicate key  217

E

edge  481
efficiency

see algorithm efficiency
eight queens problem  125
empty list  16, 208, 225
empty queue  157, 694
empty stack  88, 100, 686
encapsulation  13
enqueue  148, 154, 160, 692
Euclidean algorithm  53
exchange sorts  558–573

bubble  558, 567
quick  560, 567–568

exit  671
exp  665
exp2  665
exp2f  665
exp2l  665
expf  665
expl  665
expm1  665
expm1f  665
expm1l  665
exponential efficiency  34
expression  280

expression trees  280–282
infix traversal  280
postfix traversal  281
prefix traversal  282
traversals  280

external sorts  534, 573–583
balanced merge  577
merge  573
minimum heap sort  582
natural merge  577
polyphase merge  580

F

fabs  665
fabsf  665
fabsl  665
factorial  45

case study  45
iterative solution  47
recursive solution  47

factorial efficiency  34
fclose  668
feof  668
ferror  668
fgetc  669
fgets  670
Fibonacci numbers  54, 55, 700
Fibonacci, Leonardo  54, 700
FIFO  77, 147
file

clearerr  668
fclose  668
feof  668
ferror  668
fgetc  669
fgets  670
fopen  669
fprintf  669
fputc  669

fputs  670
fread  670
fscanf  669
fseek  670
ftell  670
fwrite  670
remove  670
rename  670
rewind  670
tmpfile  670
tmpnam  670

find largest node  303
find smallest node  302
flag  654
floor  665
floorf  665
floorl  665
fmod  665
fmodf  665
fmodl  665
fold boundary hashing  617
fold shift hashing  617
fopen  669
forward pointer  240
fprintf  669
fputc  669
fputs  670
fread  670
free  671
frexp  666
frexpf  666
frexpl  666
fscanf  669
fseek  670
ftell  670
full list  208, 225
full queue  157, 164, 694
full stack  89, 100, 686
function as parameter  23
fwrite  670
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G

gcd  52
general case—recursion  49
general list  78
general tree  287–289

bill of materials  268
convert to binary  288
definition  287
deletion  288
FIFO insertion  287
key-sequenced insertion  287
LIFO insertion  287

general tree  268
generic code, for ADTs  17
getc  669
getchar  669
gets  670
goal seeking  122
goezinta  268

see also bill of materials
graph

adjacent vertices  482
arc  481
breadth-first traversal  498
connected  482
create  482
cycle  482
definition  481
degree  483
delete arc  495
delete vertex  493
depth-first traversal  496
digraph  481
directed  481
disjoint  483
edge  481
indegree  483
insert arc  493
insert vertex  492

line  481
loop  482
minimum spanning tree  514
network  513
outdegree  483
path  481
retrieve vertex  496
shortest path  518
spanning tree  514
strongly connected  482
structure  490–491
undirected  481
vertex  481
weakly connected  483
weighted  513

graph algorithms  490–500
breadth-first traversal  498
create  491
delete arc  495
delete vertex  493
depth-first traversal  496
insert arc  493
insert vertex  492
retrieve vertex  496

graph operations  483–488
add edge  484
breadth-first traversal  

487, 498
create  482
delete arc  495
delete edge  485
delete vertex  483, 493
depth-first traversal  485, 496
find vertex  485
insert arc  493
insert vertex  483,492
retrieve vertex  496
traversal  485

graph storage structures  
488–490

adjacency list  489
adjacency matrix  488
vertex list  490

graph structure  490–491
greatest common divisor  52

H

hashed search  611–620
bucket  629
clustering  621
collision  612
definition  611
digit extraction  616
direct  613
division remainder  615
double hashing  626
fold boundary  617
fold shift  617
home address  612
key offset  627
linear probe  624
linked list collision

resolution  628
load factor  621
midsquare  617
modulo-division  615
open addressing  623
primary clustering  621
prime area  612
probe  613
pseudorandom  619
pseudorandom collision

resolution  626
quadratic probe  625
rotation  618
secondary clustering  622
subtraction method  615
synonym  612
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head  83
heap  389

build  421
child location  394
data structure  394, 401
definition  389
delete  400
deleteHeap  405
first leaf  395
heapify  398
insert  398
insertHeap  404
last nonleaf  395
max  390
min  390
parent location  394
reheap down  392, 396
reheap up  391, 396
reheapDown  406
reheapUp  405
right sibling  394
structure  390, 401

heap algorithms  396–407
build heap  397, 421
delete heap  400
insert heap  398
reheap down  396
reheap up  396

heap applications  407–416
priority queue  409
see also heap
selection  408

heap sort  539, 542
minimum  582

heapify  398
height  267
height of binary tree  271
height-balanced tree  342

see also AVL tree
Hollerith, Herman  533

home address  612
Hopper, Grace  265
Huffman code  282

concept  282–283
encoding steps  283
weight assignment  283

I

ilogb  666
ilogbf  666
ilogbl  666
increment size  553
indegree  265, 483
infix  57
infix traversal  280
inorder traversal  277
insert

AVL tree  348, 360
binary search tree  305
doubly linked list  241
list  198
multilinked list  246

insert node  217
insertion  193
insertion sorts  547–558

shell  549, 554
straight insertion  547, 554

integer application  324
intelligent names  8, 650
internal node  266
internal sort  534
isalnum  664
isalpha  664
isascii  664
iscntrl  664
isdigit  664
isgraph  664
islower 664
isprint  664

ispunct  664
isspace  664
isupper  664
isxdigit  664

K

key  196
key offset  627
Kirchhoff, Gustav  265
Knuth, Donald E.  205, 265, 

533, 534, 550, 553, 555, 
561, 567, 600

L

labs  671
Landis, E. M.  341
ldexp  666
ldexpf  666
ldexpl  666
ldiv  671
leaf  266
left subtree  270
level  266
lexical search tree  472–473

prune  473
search  474
structure  474

library
limits.h  657

LIFO  77, 79, 80
data structure  79

limitations of recursion  50
limits library  657
linear efficiency  34
linear list  77

FIFO  77
general list  78
LIFO  79
restricted list  77
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linear list searches  597–609
binary  603, 610
probability  601
sentinel  600
sequential  597, 609

linear list see list
linear logarithmic efficiency  34
linear probe  624
linear search  608
link  15
linked list  15, 628

collision resolution  628
data  15
empty  16
link  15
node  16
pointer  17
print backward  50
self-referential  16

lint  666
lintf  666
lintl  666
list

add node  217
chronological list  193
count  210, 226
create  216
delete  202
delete first node  203
delete general case  204
delete node  202
deletion  194
destroy  227
empty  225
full  225
insert at beginning  199
insert at end  201
insert in middle  199
insert into empty list  198
insert node  198, 217

insertion  193
key  193
metadata  196
overflow  202
random lists  193
remove node  219
retrieval  194
retrieve node  224
search  205, 221
singly linked  239
testing  238
traversal  194
traverse  210, 226

list ADT  213–228
add node  217
create list  216
delete node  202
destroy list  227
empty list  225
full list  225
insert node  176
list count  226
remove node  219
retrieve node  224
search list  221
traverse  226

list algorithms  197–213
create list  197
delete node  202
destroy list  212
empty list  208
full list  208
insert node  198
list count  210
retrieve node  208
search list  205
traverse list  210

llabs  671
lldiv  671
llround  666

llroundf  666
llroundl  666
load factor  621
log  666
log10f  666
log10l  666
log2  666
log2l  666
logarithmic efficiency  34
logf  666
logl  666
loop  8, 482
lroundf  666
Lukasiewicz, Jan  58

M

malloc  671
max-heap  390
McCreight, E.  426
median of three keys  562–563
memchr  672
memcmp  672
memcpy  673
memmove  673
merge  573

balanced  577
distribution phase  577
merge phase  576
minimum heap sort  582
natural  577
polyphase  580
rollout  576
run  575
sentinel  575
sort phase  576
stepdown  575

metadata  83, 196
midsquare hashing  617
min-heap  390
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minimum heap sort  582
minimum spanning tree  514
mktime  673
modff  667
modfl  667
modular programming  10
modulo-division hashing  615
multilinked list  244

delete  247
insert  246

multiserver queue  166
m-way search tree  423–425

order  423
structure  425

N

natural merge  577
nearbyint  667
nearbyintf  667
nearbyintl  667
nearly complete tree  273
nested data structure  11
network  513–522

definition  513
minimum spanning tree  514
shortest path  518
spanning tree  514
weighted graph  513

Newton’s method  73
node  16, 20, 265
null tree  271

O

open addressing  623
order  423
ordered list search  205
outdegree  265, 483

overflow  80
AVL tree  380
B-tree  427
list  202
queue  148
stack  80

overflow area  628

P

palindrome  74
parent  266
parsing  107
path  266, 481
pointer

linked list  17
rear  208
to function  23, 24
to void  18

polynomial efficiency  34
polyphase merge  580
pop  80
pop stack  684
postcondition  7
postfix  57, 58
postfix traversal  281
postorder traversal  278
powf  667
powl  667
precondition documentation  7
prefix  57, 58
prefix traversal  282
preorder traversal  275
primary clustering  621
prime area  612, 623–624, 628
printf  669
priority queue  409
probability search  601
probe  613

program efficiency. See 
algorithmics

programming constructs  8
prune trie  473
pseudocode  5

algorithm header  6
intelligent data names  8
loop  9
postcondition  7
precondition  7
return condition  7
selection statement  9
sequence  8
statement constructs  8
statement numbers  7
variables  8

pseudorandom collision 
resolution  626

pseudorandom hashing  619
push  80
push stack  85, 97, 684
putc  669
putchar  669
puts  670

Q

quadratic efficiency  34
quadratic probe  625
queue

count  158, 165, 695
create  154, 160, 691
data node  153
data structure  152
definition  147
dequeue  148, 155, 161, 693
destroy  158, 165, 695
empty  157, 164, 694
enqueue  148, 154, 160, 692
FIFO structure  147
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front  147, 148, 156, 163
full  157, 164, 694
head  152
priority  409
queue front  149, 693
queue rear  150, 694
rear  147, 150, 164
simulation  13, 175
time  167

queue ADT
create queue  160, 691
data structure  159, 689
dequeue  161, 693
destroy  165, 695
empty queue  164, 694
enqueue  160, 692
full queue  164, 694
queue count  165, 695
queue front  163, 693
queue rear  163, 694

queue ADT implementation  
159–166

create  160
dequeue  161
destroy  165
enqueue  160
full queue  164
queue count  165
queue empty  164
queue front  163

queue algorithms
create queue  154
dequeue  155
destroy queue  158
empty queue  157
enqueue  154
full queue  157
queue count  158
queue front  156

queue applications  168–182
categorizing data  168
queue simulation  175
simulation algorithm  178

queue count  165, 695
queue data structure  159
queue empty  164
queue front  156, 163, 693
queue operations  148–151

dequeue  148
enqueue  148
queue front  148
queue rear  150

queue rear  163, 694
queue simulation  13, 175

algorithm  178
queue time  167

queue—array implementation  
688–696

create queue  691
data structure  689
dequeue  693
destroy queue  695
empty queue  694
enqueue  692
full queue  694
queue count  694
queue front  693
queue rear  694

queuing theory  166–168
arrival rate  167
multiserver queue  166
queue time  167
response time  167
service time  167
single-server queue  166

quick sort  560, 561, 562, 567

R

radix sort  595
rand  671
realloc  671
rear pointer  208, 239, 240
recursion  46

base case  49
defined  46
design questions  50
designing algorithms  48
Fibonacci numbers  54, 700
general case  49
how it works  134
limitations  50
stackframe  135
tail  50, 75
towers of Hanoi  65

recursive relation  679
recycle  203
reheap down  392, 396
reheap up  396
reheapUp  391
remainder  667
remainderf  667
remainderl  667
remove  670
remove node  219
remquo  667
remquof  667
remquol  667
rename  670
response time  167
restricted list  77
restrictive data structure  77

queue  147
stack  77

retrieval  194
retrieve node  208, 224
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return condition  7
rewind  670
right subtree  270
rintf  667
rintl  667
rollout  576
root  266
rotation hashing  618
roundf  667
roundl  667

S

scalar data  10
scalebln  667
scaleblnf  667
scaleblnl  667
scalebn  667
scalebnf  667
scanf  669
search  597

see also hashed search
binary  603, 606, 609
binary search tree  303, 304
efficiency  607–608
linear  608
linked list  205
list  205
ordered  205, 602
probability  601
sentinel  600
sequential  597, 607, 609
secondary clustering  622

selection sorts  537–546
heap  539, 542
straight selection  537, 

541, 542
selection statement  9
self-referential structure  16, 83
sentinel  575
sentinel search  600

sequence  8
sequential search  597, 

607, 609
service time  167
shaker sort  592
shell sort  549, 552, 554
Shell, Donald L.  549
shortest path algorithm  518
sibling  266
sinf  668
single-server queue  166
Singleton, R. C.  561
singly linked list  239
sinhf  668
sinhl  668
sinl  668
sort  533

algorithmics  541, 552, 562
bubble  558, 567
efficiency  535
effort  554
external  534
heap  539, 542
insertion  547, 554
internal  534
merge phase  576
order  534
pass  535
phase  576
quick  560, 567–568
radix  595
selection  537, 541, 542
shaker  592
shell  549, 552, 554
stability  535

spaghetti code  10
spanning tree  514

minimum  514
sprintf  669
sqrtf  668

sqrtl  668
square root

Newton’s method  73
srand  671
sscanf  669
stack  79

array implementation 
681–687

count  89, 101, 686
create  96–97
data node  83
destroy  89, 101
empty  100
full  100
head  83
overflow  80
pop  80, 86, 98
push  80, 84
top  79, 81, 99, 685
underflow  80

stack abstract data type  95–102
create stack  96
data structure  95
destroy stack  101
empty stack  100
full stack  100
implementation  83, 95
pop stack  97
push stack  97
stack count  101
stack top  99

stack algorithms  84–90
create stack  84
destroy stack  89
empty stack  88
full stack  89
pop stack  86
push stack  85
stack count  89
stack top  81, 87
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stack applications  102–134
backtracking  122
convert decimal to binary  106
evaluating postfix

expressions  118
infix to postfix

transformation  110
parsing  107
postponement  110
reverse list  103
reversing data  103

stack data structure  83
ADT structure  95

stack LIFO structure  79
stackframe  135
standard measures of 

efficiency  33
stepdown  575
straight insertion module  562
straight insertion sort  547, 554
straight selection sort  537, 

541, 542
strcat  673
strchr  673
strcmp  673
strcpy  673
strcspn  673
string

I/O—fgets  670
I/O—fputs  670
I/O—gets  670
I/O—puts  670
memchr  672
memcmp  672
memcpy  673
memmove  673
strcat  673
strchr  673
strcmp  673
strcpy  673
strlen  673

strncat  673
strncmp  673
strncpy  673
strpbrk  673
strrchr  673
strspn  673
strstr  673
strtod  672
strtof  672
strtol  672
strtold  672
strtoll  672
strtoul  672

strlen  673
strncat  673
strncmp  673
strncpy  673
strongly connected graph  482
strpbrk  673
strrchr  673
strspn  673
strstr  673
strtod  672
strtof  672
strtol  672
strtold  672
strtoll  672
strtoul  672
structure—self-referential  16
structure chart  649–655

common modules  652
conditional calls  652
conditional loops  653
data flows  654
exclusive or  652
flag  654
loop  653
reading  651
recursion  653
rules  655
symbols  650

structured programming  10
subtree  267
synonym  612
system  670

T

tail recursion  50, 75
tanf  668
tanhf  668
tanhl  668
tanl  668
test driver  191
testing  238
threaded tree  334, 335
time  674
tmpfile  670
tmpnam  670
toint  664
token  280
tolower  664
top  79
toupper  664
Towers of Hanoi  65

algorithm  68
traversal  194
traverse list  266
tree  265, 304

2-3 tree  470
2-3-4 tree  470
ancestor  266
binary  270
binary search tree  299
branch  265
B-tree  425
child  266
definition  265
degree  265
depth  267
descendent  266
find smallest node  302
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general  268
height  267
indegree  265
internal node  266
leaf  266
level  266
node  265
outdegree  265
parent  266
path  266
root  266
sibling  266
subtree  267
threaded  334, 335

trie
search  474
structure  474

trunc  668
truncf  668
truncl  668
2-3-4 tree  470
type  10

U

underflow
B-tree  435
queue  148, 149, 155
stack  80

undirected graph  481
ungetc  669

V

vertex  481
insert  483

vertex list  490
Von Mises birthday 

paradox  623

W

weakly connected graph  483
weighted graph  513
Wirth, Niklaus  10
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