
Manaranjan Pradhan U Dinesh Kumar|
M

anaranjan Pradhan U Dinesh Kum
ar

|

Machine Learning

using
M

achine Learning
 Python

using Python
Wiley India Pvt. Ltd.
Customer Care +91 120 6291100
csupport@wiley.com
www.wileyindia.com
www.wiley.com

ISBN 978-81-265-7990-7

This book is wri�en to provide a strong founda�on in Machine Learning using Python libraries by
providing real-life case studies and examples. It covers topics such as Founda�ons of Machine
Learning, Introduc�on to Python, Descrip�ve Analy�cs and Predic�ve Analy�cs. Advanced
Machine Learning concepts such as decision tree learning, random forest, boos�ng,
recommender systems, and text analy�cs are covered. The book takes a balanced approach
between theore�cal understanding and prac�cal applica�ons. All the topics include real-world
examples and provide step-by-step approach on how to explore, build, evaluate, and op�mize
machine learning models. The book is enriched with more than 15 years of teaching experience
of the authors at various programs at the Indian Ins�tute of Management, Bangalore and various
training programs conducted for leading corporates across industries.

About the Book

l Each topic includes real-world examples with a�en�on to theore�cal aspects for be�er
understanding.

l Provides step-by-step approach to enable prac��oners to prepare, explore datasets, and
build machine learning models.

l Topics covered range from basic sta�s�cs and probability distribu�ons to advanced topics of
machine learning such as regression, classifica�on, clustering, forecas�ng, recommender
systems, and text analy�cs.

Key Features

Visit h�ps://www.wileyindia.com/catalog/product/view/id/6915/s/machine-learning-using-python/

for

l Datasets for readers to prac�ce.

l Codes for all Python examples to provide quick start to the readers and help teachers planning to

teach machine learning.

9 788126 579907

15.5mm

Machine Learning
using Python

Dr. R. Venkatesan
Professor
Department of Computer Science & Engineering
PSG College of Technology, Peelamedu, Coimbatore

Dr. S. Lovelyn Rose
Associate Professor
Department of Computer Science & Engineering
PSG College of Technology, Peelamedu, Coimbatore

Dr. R. Venkatesan
Professor
Department of Computer Science & Engineering
PSG College of Technology, Peelamedu, Coimbatore

Dr. S. Lovelyn Rose
Associate Professor
Department of Computer Science & Engineering
PSG College of Technology, Peelamedu, Coimbatore

Seema Acharya

Subhashini Chellappan

Infosys Limited

Machine Learning
using Python
Manaranjan Pradhan
Consultant
Indian Institute of Management Bangalore

U Dinesh Kumar
Professor
Indian Institute of Management Bangalore

Copyright © 2019 by Wiley India Pvt. Ltd., 4436/7, Ansari Road, Daryaganj, New Delhi-110002.

Cover Image: © Getty Images

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording or scanning without the written permission of the publisher.

Limits of Liability: While the publisher and the author have used their best efforts in preparing this book, Wiley and the
author make no representation or warranties with respect to the accuracy or completeness of the contents of this book,
and specifically disclaim any implied warranties of merchantability or fitness for any particular purpose. There are no
warranties which extend beyond the descriptions contained in this paragraph. No warranty may be created or extended by
sales representatives or written sales materials. The accuracy and completeness of the information provided herein and
the opinions stated herein are not guaranteed or warranted to produce any particular results, and the advice and strategies
contained herein may not be suitable for every individual. Neither Wiley India nor the author shall be liable for any loss of
profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Disclaimer: The contents of this book have been checked for accuracy. Since deviations cannot be precluded entirely,
Wiley or its author cannot guarantee full agreement. As the book is intended for educational purpose, Wiley or its author
shall not be responsible for any errors, omissions or damages arising out of the use of the information contained in the
book. This publication is designed to provide accurate and authoritative information with regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services.

Trademarks: All brand names and product names used in this book are trademarks, registered trademarks, or trade
names of their respective holders. All logos are standard trademarks of the companies. Wiley is not associated with any
product or vendor mentioned in this book.

Other Wiley Editorial Offices:

John Wiley & Sons, Inc. 111 River Street, Hoboken, NJ 07030, USA

Wiley-VCH Verlag GmbH, Pappellaee 3, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 1 Fusionopolis Walk #07-01 Solaris, South Tower, Singapore 138628

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada, M9W 1L1

First Edition: 2019

ISBN: 978-81-265-7990-7

ISBN: 978-81-265-8855-8 (ebk)

www.wileyindia.com

Printed at:

usingMachine Learning Python

To my parents, Janaradan and Nayana Pradhan.
– Manaranjan Pradhan

Haritha Saranga, Prathusha Dinesh and to the one who said:
“Learn from the water: Loud splashes the Brook but the Oceans Depth are Calm.”

– U Dinesh Kumar

Dedication

FM.indd 5 4/24/2019 6:52:32 PM

FM.indd 6 4/24/2019 6:52:32 PM

Artificial Intelligence (AI) has emerged as one of the decisive expertise with applications across vari-
ous industry domains. Machine learning (ML), a subset of AI, is an important set of algorithms used
for solving several business and social problems. The objective of this book is to discuss machine
learning model development using Python. AI and ML are important skills that every graduate in
engineering and management discipline will require to advance in their career. Companies across
different industry sectors such as retail, finance, insurance, manufacturing, healthcare are planning
to build and offer AI-based solutions to stay competitive in the market. Companies across different
domains will need a large pool of experts in these fields to build products and solutions for them. An
estimate by IDC (International Data Corporation) states that spending by organizations on AI and ML
will grow from $12B in 2017 to $57.6B in 2021 (Columbus, 2018)1. Almost 61% of organizations have
reported that Machine Learning and Artificial Intelligence will be among their top data initiatives in
2019. Machine Learning is going to be most in-demand AI skill for data scientists (Zafarino, 2018)2.
An article published in The Economic Times in 2018 states that India’s demand for data scientist grew
by 400%, but in contrast the supply has only increased by 19% (Pramanik, 2018)3.

Python is the leading programming language used by several organizations for creating end-to-end
solutions using ML. Several universities and institutions have started undergraduate and post-gradu-
ate programs in business analytics, and one of the core offerings is skill development in machine learning.
But there is a shortage of quality teaching material that provides insights into application of machine
learning using real-world examples. This book is an attempt to create hands-on content for structured
learning. This is a practitioner’s book that both students and industry professionals can use to under-
stand and master skills in machine learning using Python.

We have been teaching Business Analytics, Artificial Intelligence and Machine Learning at the Indian
Institute of Management, Bangalore, for MBA students and several other leading corporates in India for
many years. This book is a result of learnings on how to make the students understand machine learn-
ing in an efficient manner. For better understanding, we have reproduced many concepts and examples
in this book from the book titled Business Analytics – The Science of Data-Driven Decision, by U Dinesh
Kumar published by Wiley in 2017. We recommend the readers to read this book along with the book by
U Dinesh Kumar (co-author of this book).

We have acknowledged the sources of data used for developing ML models using Python in respec-
tive chapters. We are thankful to the original creators of the dataset.

1 L Columbus, “Roundup of Machine Learning Forecasts and Market Estimates”, Forbes, February 2018.
2 S Zafarino, “The Outlook for Machine Learning in Tech: ML and AI Skills in High Demand”, CIO, July 27, 2018.
3 A Pramanik, “India’s Demand for Data Scientists Grow over 400%: Report”, The Economic Times, July 10 2018.

Preface

FM.indd 7 4/24/2019 6:52:32 PM

viii Preface

ORGANIZATION OF CHAPTERS

The book consists of 10 chapters. The sequence of the chapters is designed to create strong foundation
for the learners. The first few chapters provide the foundations in Python and ML and the later chap-
ters build on the concepts learnt in the previous chapters. We suggest readers to read the chapters in
sequence for a structured learning.

Chapter Number Topic Description

Chapter 1 Introduction
to Machine
Learning using
Python

This chapter discusses concepts such as artificial intelligence, machine learning and deep
learning and a framework for building machine learning models. The chapter also explains
why Python has been chosen as the language for building machine learning models. Also,
provides a quick overview of Python language and how to get started.

Chapter 2 Descriptive
Analytics

Introduces the concept of DataFrame and working with DataFrames such as selecting, filtering,
grouping, joining, etc. Also introduces statistical plots such as histogram, distribution plot,
scatter plot, heatmap and so on and how to derive insights from these plots.

Chapter 3 Probability
Distributions and
Hypothesis Tests

Provides overview of probability distributions such as normal distribution, exponential
distribution, Poisson distribution, and their applications to real-world problems. We also
discuss hypotheses tests such as t-test, paired t-test and ANOVA in this chapter.

Chapter 4 Regression This chapter explains how to build regression models. Provides in-depth understanding of
model evaluation, validation and accuracy measures such as RMSE, R-squared.

Chapter 5 Classification
Problems

This chapter discusses classification problems, formulating classification problems and
applying classification models such as logistic regression and decision trees. Provides
in-depth understanding of evaluating the models using confusion matrix, ROC AUC score,
precision, recall, and finding optimal cut-off for model deployment.

Chapter 6 Advanced
Machine
Learning

Understanding cost function and usage of optimization techniques such as gradient descent
in machine learning algorithms. Deep dive into application of advanced models such as
KNN, Random Forest, Bagging, and Boosting. Also provides insight into hyperparameter
search using grid search techniques.

Chapter 7 Clustering Creating clusters or segments using clustering techniques like K-Means and Hierarchical
Clustering. Introduces the concept of distance measures such as Euclidean distance, cosine
similarity and Jaccard coefficient.

Chapter 8 Forecasting Deep dive into time-series forecasting models such as simple moving average, exponential
moving average and ARIMA models. Discusses the concepts of time-series stationarity and
accuracy measures such as RMSE and MAPE.

Chapter 9 Recommender
Systems

Discusses how a customer’s purchase behaviour can be used to predict or recommend what
he/she is likely to buy next. Provides overview of building recommender systems using
association rules, collaborative filtering, and matrix factorization techniques.

Chapter 10 Text Analytics Discusses steps for preparing text data (natural languages) using techniques like TF and
TF-IDF vectorization, stop word removal, stemming, or lemmatization. Discusses the
concepts through an example of sentiment classification using Naïve–Bayes model.

FM.indd 8 4/24/2019 6:52:32 PM

ixPreface

BOOK RESOURCES

The datasets and codes for the book are available at https://www.wileyindia.com/catalog/product/view/
id/6915/s/machine-learning-using-python/. The learners should practice the examples given in each
chapter, while reading to reinforce the concepts.

Manaranjan Pradhan
U Dinesh Kumar

FM.indd 9 4/24/2019 6:52:32 PM

https://www.wileyindia.com/catalog/product/view/id/6915/s/machine-learning-using-python/
https://www.wileyindia.com/catalog/product/view/id/6915/s/machine-learning-using-python/

FM.indd 10 4/24/2019 6:52:32 PM

It is a great privilege to be part of a reputed institute like the Indian Institute of Management Bangalore
(IIMB). This association has given us opportunity to interact with many great minds and scholars from
Industry and Academia, which helped us shape the structure and content of this book. We would like to
thank IIMB for the opportunities and for the permission to publish this book under IIMB brand.

This textbook could not have been possible without the help of our colleagues. We would like to
extend our thanks to Aayushi Kalra, Bharat Paturi, Dhimant Ganatra, Dinesh Kumar Vaitheeswaran,
Gaurav Kumar, Manupriya Agrawal, Purvi Tiwari, Rahul Kumar, Satyabala Hariharan, Shailaja Grover,
Sharada Sringeswara, and Sunil for their assistance in preparation of this book. Their feedback and
review comments were extremely valuable in improving structure, content, and quality of the book.

We would also like to thank Meenakshi Sehrawat of Wiley for editing and providing several valuable
suggestions to improve the quality of the book.

Manaranjan Pradhan
Dinesh Kumar

On a personal note, I would like to extend my gratitude to Prof. Dinesh Kumar for his vision, guidance,
and persistence in writing this book and choosing me as a co-author. He has been a great teacher and
mentor to me and I hope to continue learning from him in future.

Manaranjan Pradhan

Acknowledgements

FM.indd 11 4/24/2019 6:52:32 PM

FM.indd 12 4/24/2019 6:52:32 PM

1.1 Introduction to Analytics and Machine Learning 1
1.2 Why Machine Learning? 3
1.3 Framework for Developing Machine Learning Models 3
1.4 Why Python? 5
1.5 Python Stack for Data Science 7
1.6 Getting Started with Anaconda Platform 8
1.7 Introduction to Python 12

1.7.1 Declaring Variables 12
1.7.2 Conditional Statements 13
1.7.3 Generating Sequence Numbers 14
1.7.4 Control Flow Statements 15
1.7.5 Functions 16
1.7.6 Working with Collections 17

1.7.6.1 List 17
1.7.6.2 Tuples 19
1.7.6.3 Set 21
1.7.6.4 Dictionary 22

1.7.7 Dealing with Strings 23
1.7.8 Functional Programming 24

1.7.8.1 Example 1: Map 24
1.7.8.2 Example 2: Filter 25

1.7.9 Modules and Packages 25
1.7.10 Other features 26

Further Reading 27
References 27

Table of Contents

1 INTRODUCTION TO MACHINE LEARNING

2 DESCRIPTIVE ANALYTICS

2.1 Working with DataFrames in Python 29
2.1.1 IPL Dataset Description using DataFrame in Python 30
2.1.2 Loading Dataset into Pandas DataFrame 31
2.1.3 Displaying First Few Records of the DataFrame 33

Preface vii
Acknowledgements xi

FM.indd 13 4/24/2019 6:52:33 PM

https://www.statsmodels.org/stable/index.html
https://pandas.pydata.org/
https://matplotlib.org/

Table of Contentsxiv

2.1.4 Finding Summary of the DataFrame 33
2.1.5 Slicing and Indexing of DataFrame 36
2.1.6 Value Counts and Cross Tabulations 38
2.1.7 Sorting DataFrame by Column Values 39
2.1.8 Creating New Columns 40
2.1.9 Grouping and Aggregating 41
2.1.10 Joining DataFrames 42
2.1.11 Re-Naming Columns 43
2.1.12 Applying Operations to Multiple Columns 43
2.1.13 Filtering Records Based on Conditions 44
2.1.14 Removing a Column or a Row from a Dataset 45

2.2 Handling Missing Values 45
2.3 Exploration of Data using Visualization 48

2.3.1 Drawing Plots 49
2.3.2 Bar Chart 49
2.3.3 Histogram 50
2.3.4 Distribution or Density Plot 51
2.3.5 Box Plot 52
2.3.6 Comparing Distributions 54
2.3.7 Scatter Plot 56
2.3.8 Pair Plot 57
2.3.9 Correlation and Heatmap 58

 Conclusion 59
 Exercises 60
 References 61

3.1 Overview 63
3.2 Probability Theory – Terminology 63

3.2.1 Random Experiment 63
3.2.2 Sample Space 64
3.2.3 Event 64

3.3 Random Variables 64
3.4 Binomial Distribution 65

3.4.1 Example of Binomial Distribution 66
3.5 Poisson Distribution 68

3.5.1 Example of Poisson Distribution 68
3.6 Exponential Distribution 69

3.6.1 Example of Exponential Distribution 70
3.7 Normal Distribution 72

3.7.1 Example of Normal Distribution 72
3.7.2 Mean and Variance 77
3.7.3 Confidence Interval 78
3.7.4 Cumulative Probability Distribution 79
3.7.5 Other Important Distributions 80

3 PROBABILITY DISTRIBUTIONS AND HYPOTHESIS TESTS

FM.indd 14 4/24/2019 6:52:33 PM

https://seaborn.pydata.org/
http://scikit-/
https://www.statsmodels.org/stable/index.html
https://archive.ics.uci.edu/ml/datasets/online+retail
https://archive.ics.uci.edu/ml/index.php
https://en.wikipedia.org/wiki/RFM_(customer_value)
https://en.wikipedia.org/wiki/Dendrogram
https://link.springer.com/article/10.1007%2FBF02289263
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://www.themoviedb.org/
https://archive.ics.uci.edu/ml/datasets/online+retail
https://dl.acm.org/citation.cfm?id=672836
http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv
https://grouplens.org/datasets/movielens/
https://archive.ics.uci.edu/ml/datasets/online+retail
https://archive.ics.uci.edu/ml/index.php
https://en.wikipedia.org/wiki/RFM_(customer_value)
https://en.wikipedia.org/wiki/Dendrogram
https://link.springer.com/article/10.1007%2FBF02289263
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://www.themoviedb.org/
https://archive.ics.uci.edu/ml/datasets/online+retail
https://dl.acm.org/citation.cfm?id=672836
http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv

Table of Contents xv

3.8 Central Limit Theorem 80
3.9 Hypothesis Test 81

3.9.1 Z-test 82
3.9.2 One-Sample t-Test 83
3.9.3 Two-Sample t-Test 85
3.9.4 Paired Sample t-Test 88
3.9.5 Chi-Square Goodness of Fit Test 89

3.10 Analysis of Variance (ANOVA) 90
3.10.1 Example of One-Way ANOVA 91

 Conclusion 92
 Exercises 93
 References 94

4.1 Simple Linear Regression 95
4.2 Steps in Building a Regression Model 96
4.3 Building Simple Linear Regression Model 97

4.3.1 Creating Feature Set (X) and Outcome Variable (Y) 101
4.3.2 Splitting the Dataset into Training and Validation Sets 102
4.3.3 Fitting the Model 102

4.3.3.1 Printing Estimated Parameters and Interpreting Them 102
4.3.3.2 Complete Code for Building Regression Model 103

4.4 Model Diagnostics 103
4.4.1 Co-efficient of Determination (R-Squared or R2) 103
4.4.2 Hypothesis Test for the Regression Co-efficient 104
4.4.3 Analysis of Variance (ANOVA) in Regression Analysis 105
4.4.4 Regression Model Summary Using Python 105
4.4.5 Residual Analysis 106

4.4.5.1 Check for Normal Distribution of Residual 106
4.4.5.2 Test of Homoscedasticity 107

4.4.6 Outlier Analysis 108
4.4.6.1 Z-Score 108
4.4.6.2 Cook’s Distance 109
4.4.6.3 Leverage Values 110

4.4.7 Making Prediction and Measuring Accuracy 110
4.4.7.1 Predicting using the Validation Set 111
4.4.7.2 Finding R-Squared and RMSE 111
4.4.7.3 Calculating Prediction Intervals 111

4.5 Multiple Linear Regression 112
4.5.1 Predicting the SOLD PRICE (Auction Price) of Players 113
4.5.2 Developing Multiple Linear Regression Model Using Python 114

4.5.2.1 Loading the Dataset 114
4.5.2.2 Displaying the First Five Records 115

4 LINEAR REGRESSION

FM.indd 15 4/24/2019 6:52:33 PM

https://grouplens.org/datasets/movielens/
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://www.python.org/about/success/
http://www.indeed.com
http://www.indeed.com
http://www.statsmodels.org/
https://www.python.org/doc/
https://docs.python.org/3/tutorial/index.html
http://scikit-/
https://www.statsmodels.org/stable/index.html
https://archive.ics.uci.edu/ml/datasets/online+retail
https://archive.ics.uci.edu/ml/index.php
https://en.wikipedia.org/wiki/RFM_(customer_value)
https://en.wikipedia.org/wiki/Dendrogram
https://link.springer.com/article/10.1007%2FBF02289263
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://www.themoviedb.org/
https://archive.ics.uci.edu/ml/datasets/online+retail
https://dl.acm.org/citation.cfm?id=672836
http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv
https://grouplens.org/datasets/movielens/
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://www.python.org/about/success/
http://www.indeed.com
http://www.indeed.com

Table of Contentsxvi

4.5.3 Categorical Encoding Features 116
4.5.4 Splitting the Dataset into Train and Validation Sets 117
4.5.5 Building the Model on a Training Dataset 118
4.5.6 Multi-Collinearity and Handling Multi-Collinearity 119

4.5.6.1 Variance Inflation Factor (VIF) 120
4.5.6.2 Checking Correlation of Columns with Large VIFs 121
4.5.6.3 Building a New Model after Removing Multi-collinearity 124

4.5.7 Residual Analysis in Multiple Linear Regression 126
4.5.7.1 Test for Normality of Residuals (P-P Plot) 126
4.5.7.2 Residual Plot for Homoscedasticity and Model Specification 127

4.5.8 Detecting Influencers 127
4.5.9 Transforming Response Variable 129
4.5.10 Making Predictions on the Validation Set 130

4.5.10.1 Measuring RMSE 131
4.5.10.2 Measuring R-squared Value 131
4.5.10.3 Auto-correlation Between Error Terms 131

 Conclusion 131
 Exercises 132
 References 134

5.1 Classification Overview 135
5.2 Binary Logistic Regression 136
5.3 Credit Classification 137

5.3.1 Encoding Categorical Features 141
5.3.2 Splitting Dataset into Training and Test Sets 143
5.3.3 Building Logistic Regression Model 143
5.3.4 Printing Model Summary 143
5.3.5 Model Diagnostics 145
5.3.6 Predicting on Test Data 147
5.3.7 Creating a Confusion Matrix 148
5.3.8 Measuring Accuracies 150
5.3.9 Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC) 151
5.3.10 Finding Optimal Classification Cut-off 153

5.3.10.1 Youden’s Index 153
5.3.10.2 Cost-Based Approach 155

5.4 Gain Chart and Lift Chart 156
5.4.1 Loading and Preparing the Dataset 158
5.4.2 Building the Logistic Regression Model 160

5.5 Classification Tree (Decision Tree Learning) 166
5.5.1 Splitting the Dataset 167
5.5.2 Building Decision Tree Classifier using Gini Criteria 168
5.5.3 Measuring Test Accuracy 168
5.5.4 Displaying the Tree 168

5 CLASSIFICATION PROBLEMS

FM.indd 16 4/24/2019 6:52:33 PM

http://www.statsmodels.org/
https://www.python.org/doc/
https://docs.python.org/3/tutorial/index.html
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://archive.ics.uci.edu/ml/datasets/online+retail
https://dl.acm.org/citation.cfm?id=672836
http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv
https://grouplens.org/datasets/movielens/
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://www.python.org/about/success/
http://www.indeed.com
http://www.indeed.com
http://www.statsmodels.org/
https://www.python.org/doc/
https://docs.python.org/3/tutorial/index.html
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Table of Contents xvii

6.1 Overview 179
6.1.1 How Machines Learn? 180

6.2 Gradient Descent Algorithm 180
6.2.1 Developing a Gradient Descent Algorithm for Linear Regression Model 182

6.2.1.1 Loading the Dataset 182
6.2.1.2 Set X and Y Variables 183
6.2.1.3 Standardize X and Y 183
6.2.1.4 Implementing the Gradient Descent Algorithm 183
6.2.1.5 Finding the Optimal Bias and Weights 186
6.2.1.6 Plotting the Cost Function against the Iterations 188

6.3 Scikit-Learn Library for Machine Learning 190
6.3.1 Steps for Building Machine Learning Models 191

6.3.1.1 Splitting Dataset into Train and Test Datasets 191
6.3.1.2 Building Linear Regression Model with Train Dataset 191
6.3.1.3 Making Prediction on Test Set 193
6.3.1.4 Measuring Accuracy 193

6.3.2 Bias-Variance Trade-off 194
6.3.3 K-Fold Cross-Validation 200

6.4 Advanced Regression Models 201
6.4.1 Building Linear Regression Model 201

6.4.1.1 Loading IPL Dataset 201
6.4.1.2 Standardization of X and Y 203
6.4.1.3 Split the Dataset into Train and Test 203
6.4.1.4 Build the Model 204
6.4.1.5 Plotting the Coefficient Values 205
6.4.1.6 Calculate RMSE 206

6.4.2 Applying Regularization 206
6.4.2.1 Ridge Regression 208
6.4.2.2 LASSO Regression 208
6.4.2.3 Elastic Net Regression 209

6.5 Advanced Machine Learning Algorithms 210
6.5.1 Dealing with Imbalanced Datasets 211
6.5.2 Logistic Regression Model 214

6.5.2.1 Building the Model 214
6.5.2.2 Confusion Matrix 214

6 ADVANCED MACHINE LEARNING

5.5.5 Understanding Gini Impurity 169
5.5.6 Building Decision Tree using Entropy Criteria 171
5.5.7 Finding Optimal Criteria and Max Depth 173
5.5.8 Benefits of Decision Tree 174

 Conclusion 175
 Exercises 175
 References 177

FM.indd 17 4/24/2019 6:52:33 PM

http://www.statsmodels.org/
https://www.python.org/doc/
https://docs.python.org/3/tutorial/index.html
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Table of Contentsxviii

6.5.2.3 Classification Report 216
6.5.2.4 Receiver Operating Characteristic Curve (ROC) and Area under ROC (AUC) Score 216

6.5.3 K-Nearest Neighbors (KNN) Algorithm 219
6.5.3.1 KNN Accuracy 221
6.5.3.2 GridSearch for Optimal Parameters 223

6.5.4 Ensemble Methods 225
6.5.5 Random Forest 226

6.5.5.1 Building Random Forest Model 226
6.5.5.2 Grid Search for Optimal Parameters 227
6.5.5.3 Building the Final Model with Optimal Parameter Values 229
6.5.5.4 ROC AUC Score 229
6.5.5.5 Drawing the Confusion Matrix 229
6.5.5.6 Finding Important Features 231

6.5.6 Boosting 233
6.5.6.1 AdaBoost 233
6.5.6.2 Gradient Boosting 234

 Conclusion 239
 Exercises 239
 References 243

7 CLUSTERING

7.1 Overview 245
7.2 How Does Clustering Work? 246

7.2.1 Finding Similarities Using Distances 247
7.2.1.1 Euclidean Distance 247
7.2.1.2 Other Distance Metrics 248

7.3 K-Means Clustering 248
7.3.1 Plotting Customers with Their Segments 249
7.3.2 Normalizing Features 250
7.3.3 Cluster Centers and Interpreting the Clusters 251

7.4 Creating Product Segments Using Clustering 252
7.4.1 Beer Dataset 252
7.4.2 How Many Clusters Exist? 253

7.4.2.1 Using Dendrogram 253
7.4.2.2 Finding Optimal Number of Clusters Using Elbow Curve Method 255
7.4.2.3 Normalizing the Features 256

7.4.3 Creating Clusters 256
7.4.4 Interpreting the Clusters 256

7.5 Hierarchical Clustering 258
7.5.1 Compare the Clusters Created by K-Means and Hierarchical Clustering 258

 Conclusion 259
 Exercises 260
 References 261

FM.indd 18 4/24/2019 6:52:33 PM

http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://www.themoviedb.org/
https://archive.ics.uci.edu/ml/datasets/online+retail
https://dl.acm.org/citation.cfm?id=672836
http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv
https://grouplens.org/datasets/movielens/
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://www.python.org/about/success/
http://www.indeed.com
http://www.indeed.com
http://www.statsmodels.org/
https://www.python.org/doc/
https://docs.python.org/3/tutorial/index.html
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Table of Contents xix

9 RECOMMENDER SYSTEMS

8 FORECASTING

8.1 Forecasting Overview 263
8.2 Components of Time-Series Data 264
8.3 Moving Average 265

8.3.1 Loading and Visualizing the Time-Series Dataset 265
8.3.2 Forecasting Using Moving Average 266
8.3.3 Calculating Forecast Accuracy 268

8.3.3.1 Mean Absolute Percentage Error 268
8.3.3.2 Root Mean Square Error 269

8.3.4 Exponential Smoothing 269
8.4 Decomposing Time Series 271
8.5 Auto-Regressive Integrated Moving Average Models 273

8.5.1 Auto-Regressive (AR) Models 273
8.5.1.1 ACF 273
8.5.1.2 PACF 273
8.5.1.3 Building AR Model 276
8.5.1.4 Forecast and Measure Accuracy 277

8.5.2 Moving Average (MA) Processes 277
8.5.3 ARMA Model 278
8.5.4 ARIMA Model 279

8.5.4.1 What is Stationary Data? 280
8.5.4.2 Dicky−Fuller Test 282
8.5.4.3 Differencing 283
8.5.4.4 Forecast and Measure Accuracy 287

 Conclusion 287
 Exercises 288
 References 289

9.1 Overview 291
9.1.1 Datasets 291

9.2 Association Rules (Association Rule Mining) 292
9.2.1 Metrics 293

9.2.1.1 Support 293
9.2.1.2 Confidence 294
9.2.1.3 Lift 294

9.2.2 Applying Association Rules 294
9.2.2.1 Loading the Dataset 294
9.2.2.2 Encoding the Transactions 295
9.2.2.3 Generating Association Rules 296
9.2.2.4 Top Ten Rules 298
9.2.2.5 Pros and Cons of Association Rule Mining 299

9.3 Collaborative Filtering 299
9.3.1 How to Find Similarity between Users? 299

FM.indd 19 4/24/2019 6:52:34 PM

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://www.python.org/about/success/
http://www.indeed.com
http://www.indeed.com
http://www.statsmodels.org/
https://www.python.org/doc/
https://docs.python.org/3/tutorial/index.html
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://www.python.org/about/success/
http://www.indeed.com
http://www.indeed.com
http://www.statsmodels.org/
https://www.python.org/doc/
https://docs.python.org/3/tutorial/index.html
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Table of Contentsxx

9.3.2 User-Based Similarity 300
9.3.2.1 Loading the Dataset 301
9.3.2.2 Calculating Cosine Similarity between Users 303
9.3.2.3 Filtering Similar Users 304
9.3.2.4 Loading the Movies Dataset 305
9.3.2.5 Finding Common Movies of Similar Users 305
9.3.2.6 Challenges with User-Based Similarity 306

9.3.3 Item-Based Similarity 307
9.3.3.1 Calculating Cosine Similarity between Movies 307
9.3.3.2 Finding Most Similar Movies 308

9.4 Using Surprise Library 309
9.4.1 User-Based Similarity Algorithm 310
9.4.2 Finding the Best Model 311
9.4.3 Making Predictions 312

9.5 Matrix Factorization 313
 Conclusion 314
 Exercises 314
 References 316

10.1 Overview 317
10.2 Sentiment Classification 317

10.2.1 Loading the Dataset 318
10.2.2 Exploring the Dataset 319
10.2.3 Text Pre-processing 320

10.2.3.1 Bag-of-Words (BoW) Model 320
10.2.3.2 Creating Count Vectors for sentiment_train Dataset 322
10.2.3.3 Displaying Document Vectors 324
10.2.3.4 Removing Low-frequency Words 325
10.2.3.5 Removing Stop Words 327
10.2.3.6 Creating Count Vectors 327
10.2.3.7 Distribution of Words Across Different Sentiment 330

10.3 Naïve-Bayes Model for Sentiment Classification 331
10.3.1 Split the Dataset 332
10.3.2 Build Naïve–Bayes Model 333
10.3.3 Make Prediction on Test Case 333
10.3.4 Finding Model Accuracy 333

10.4 Using TF-IDF Vectorizer 334
10.5 Challenges of Text Analytics 335

10.5.1 Using n-Grams 335
10.5.2 Build the Model Using n-Grams 336

 Conclusion 337
 Exercises 337
 References 338

Index 339

10 TEXT ANALYTICS

FM.indd 20 4/24/2019 6:52:34 PM

https://www.python.org/about/success/
http://www.indeed.com
http://www.indeed.com
http://www.statsmodels.org/
https://www.python.org/doc/

1.1 | INTRODUCTION TO ANALYTICS AND MACHINE LEARNING

Analytics is a collection of techniques and tools used for creating value from data. Techniques include
concepts such as artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms.
AI, ML, and DL are defined as follows:

1. Artificial Intelligence: Algorithms and systems that exhibit human-like intelligence.
2. Machine Learning: Subset of AI that can learn to perform a task with extracted data and/or

models.
3. Deep Learning: Subset of machine learning that imitate the functioning of human brain to solve

problems.

The relationship between AI, ML, and DL can be visualized as shown in Figure 1.1
The relationship between AI, ML, and DL shown in Figure 1.1 is not accepted by all. There is another

school of thought that believes that AI and ML are different (ML is not a subset of AI) with some overlap.
The important point is that all of them are algorithms, which are nothing but set of instructions used for
solving business and social problems.

 Machine learning is a set of algorithms that have the capability to learn to perform tasks such as
prediction and classification effectively using data. Learning is achieved using additional data and/or
additional models. An algorithm can be called a learning algorithm when it improves on a performance
metric while performing a task, for example, accuracy of classification such as fraud, customer churn, and
so on. The focus of this book is machine learning algorithms. In the next few sections we discuss various
machine learning algorithms and how to solve a problem using ML algorithms.

LEARNING OBJECTIVES

After completing this chapter, you will be able to
•  Understand how machine learning is used to solve problems in real world.
•  Understand types of machine learning algorithms and framework for building machine learning

models.
•  Learn why Python has been widely adopted as a platform for building machine learning models.
•  Learn what are the key libraries in Python and their purpose.
•  Learn how to get started with setting up the Anaconda platform.
•  Learn the basic features of Python language to get started with machine learning tasks.

CHAPTER

1Introduction to
Machine Learning

Chapter 01_Introduction to Machine Learning.indd 1 4/24/2019 6:53:02 PM

Machine Learning using Python2

Artificial intelligence

Machine learning

Deep learning

FIGURE 1.1 Relationship between artificial intelligence, machine learning, and deep learning.

Machine learning algorithms are classified into four categories as defined below:

1. Supervised Learning Algorithms: These algorithms require the knowledge of both the
outcome variable (dependent variable) and the features (independent variable or input
variables). The algorithm learns (i.e., estimates the values of the model parameters or
feature weights) by defining a loss function which is usually a function of the difference
between the predicted value and actual value of the outcome variable. Algorithms such
as linear regression, logistic regression, discriminant analysis are examples of supervised
learning algorithms. In the case of multiple linear regression, the regression parameters

are estimated by minimizing the sum of squared errors, which is given by ()y yi ii

n
-

=å Ù

1
2 ,

where yi is the actual value of the outcome variable, ()y yi ii

n
-

=å Ù

1
2 is the predicted value of the outcome

variable, and n is the total number of records in the data. Here the predicted value is a linear
or a non-linear function of the features (or independent variables) in the data. The predic-
tion is achieved (by estimating feature weights) with the knowledge of the actual values of
the outcome variables, thus called supervised learning algorithms. That is, the supervision
is achieved using the knowledge of outcome variable values.

2. Unsupervised Learning Algorithms: These algorithms are set of algorithms which do not have
the knowledge of the outcome variable in the dataset. The algorithms must find the possible
values of the outcome variable. Algorithms such as clustering, principal component analysis
are examples of unsupervised learning algorithms. Since the values of outcome variable are
unknown in the training data, supervision using that knowledge is not possible.

3. Reinforcement Learning Algorithms: In many datasets, there could be uncertainty around
both input as well as the output variables. For example, consider the case of spell check
in various text editors. If a person types “buutiful” in Microsoft Word, the spell check in
Microsoft Word will immediately identify this as a spelling mistake and give options such
as “beautiful”, “bountiful”, and “dutiful”. Here the prediction is not one single value, but a
set of values. Another definition is: Reinforcement learning algorithms are algorithms that
have to take sequential actions (decisions) to maximize a cumulative reward. Techniques
such as Markov chain and Markov decision process are examples of reinforcement learning
algorithms.

4. Evolutionary Learning Algorithms: Evolutional algorithms are algorithms that imitate natu-
ral evolution to solve a problem. Techniques such as genetic algorithm and ant colony optimi-
zation fall under the category of evolutionary learning algorithms.

In this book, we will be discussing several supervised and unsupervised learning algorithms.

Chapter 01_Introduction to Machine Learning.indd 2 4/24/2019 6:53:03 PM

Chapter 1 · Introduction to Machine Learning 3

1.2 | WHY MACHINE LEARNING?

Organizations across the world use several performance measures such as return on investment (ROI),
market share, customer retention, sales growth, customer satisfaction, and so on for quantifying, moni-
toring, benchmarking, and improving. Organizations would like to understand the association between
key performance indicators (KPIs) and factors that have a significant impact on the KPIs for effective
management. Knowledge of the relationship between KPIs and factors would provide the decision maker
with appropriate actionable items (U D Kumar, 2017). Machine learning algorithms can be used for
identifying the factors that influence the key performance indicators, which can be further used for deci-
sion making and value creation. Organizations such as Amazon, Apple, Capital One, General Electric,
Google, IBM, Facebook, Procter and Gamble and so on use ML algorithms to create new products and
solutions. ML can create significant value for organizations if used properly. MacKenzie et al. (2013)
reported that Amazon’s recommender systems resulted in a sales increase of 35%.

A typical ML algorithm uses the following steps:

1. Identify the problem or opportunity for value creation.
2. Identify sources of data (primary as well secondary data sources) and create a data lake

(integrated data set from different sources).
3. Pre-process the data for issues such as missing and incorrect data. Generate derived variables

(feature engineering) and transform the data if necessary. Prepare the data for ML model building.
4. Divide the datasets into subsets of training and validation datasets.
5. Build ML models and identify the best model(s) using model performance in validation data.
6. Implement Solution/Decision/Develop Product.

1.3 | FRAMEWORK FOR DEVELOPING MACHINE LEARNING MODELS

The framework for ML algorithm development can be divided into five integrated stages: problem and
opportunity identification, collection of relevant data, data pre-processing, ML model building, and model
deployment. The various activities carried out during these different stages are described in Figure 1.2.
The success of ML projects will depend on how innovatively the data is used by the organization as
compared to the mechanical use of ML tools. Although there are several routine ML projects such as
customer segmentation, clustering, forecasting, and so on, highly successful companies blend innova-
tion with ML algorithms.

The success of ML projects will depend on the following activities:

1. Feature Extraction: Feature extraction is a process of extracting features from different sources.
For a given problem, it is important to identify the features or independent variables that may be
necessary for building the ML algorithm. Organizations store data captured by them in enter-
prise resource planning (ERP) systems, but there is no guarantee that the organization would
have identified all important features while designing the ERP system. It is also possible that the
problem being addressed using the ML algorithm may require data that is not captured by the
organization. For example, consider a company that is interested in predicting the warranty cost
for the vehicle manufactured by them. The number of warranty claims may depend on weather
conditions such as rainfall, humidity, and so on. In many cases, feature extraction itself can be
an iterative process.

Chapter 01_Introduction to Machine Learning.indd 3 4/24/2019 6:53:03 PM

Machine Learning using Python4

• The primary objective of machine learning is to come up with actionable items that
 can be deployed.
• The communication of the ML algorithm output to the top managment and clients
 plays a crucial role. Innovative data visualization techniques may be used in this stage.
• Deployment of the model may involve developing software solutions and products,
 such as recommender engine.

Communication and Deployment of the Data Analysis

Problem or Opportunity Identification

• A good ML project starts with the ability of the organization to define the
 problem clearly. Domain knowledge is very important at this stage of the project.
• Problem definition or opportunity identification will be a major challenge for
 many companies who do not have capabilities to ask right questions.

Feature Extraction − Collection of Relevant Data

• Once the problem is defined clearly, the project team should identify and collect
 the relevant data. This is an iterative process since 'relevant data' may not
 be known in advance in many analytics projects. The existence of ERP systems
 will be very useful at this stage. In addition to the data available within the
 organization, they have to collect data from external sources. The data needs to
 be integrated to create a data lake. Quality of data is a major impediment for
 successful ML model development.

Data Pre-processing

• Anecdotal evidence suggests that data preparation and data processing form a
 significant proportion of any analytics project. This would include data cleaning
 and data imputation and the creation of additional variables (feature engineering)
 such as interaction variables and dummy variables.

Model Building

• ML model building is an iterative process that aims to find the best model. Several
 analytical tools and solution procedures will be used to find the best ML model.
• To avoid overfitting, it is important to create several training and validation datasets.

FIGURE 1.2 Framework of ML model development.

2. Feature Engineering: Once the data is made available (after feature extraction), an important
step in machine learning is feature engineering. The model developer should decide how he/she
would like to use the data that has been captured by deriving new features. For example, if X1 and
X2 are two features that are captured in the original data. We can derive new features by taking
ratio (X1/X2) and product (X1X2). There are many other innovative ways of deriving new features
such as binning continuous variable, centring the data (deviation from the mean), and so on.
The success of the ML model may depend on feature engineering.

3. Model Building and Feature Selection: During model building, the objective is to identify the
model that is more suitable for the given problem context. The selected model may not be always
the most accurate model, as accurate model may take more time to compute and may require
expensive infrastructure. The final model for deployment will be based on multiple criteria such
as accuracy, computing speed, cost of deployment, and so on. As a part of model building, we
will also go through feature selection which identifies important features that have significant
relationship with the outcome variable.

Chapter 01_Introduction to Machine Learning.indd 4 4/24/2019 6:53:04 PM

Chapter 1 · Introduction to Machine Learning 5

4. Model Deployment: Once the final model is chosen, then the organization must decide the
strategy for model deployment. Model deployment can be in the form of simple business rules,
chatbots, real-time actions, robots, and so on.

In the next few sections we will discuss about why Python has become one of most widely adopted lan-
guage for machine learning, what features and libraries are available in Python, and how to get started
with Python language.

1.4 | WHY PYTHON?

Python is an interpreted, high-level, general-purpose programming language (Downey, 2012). One of
the key design philosophy of Python is code readability. Ease of use and high productivity have made
Python very popular. Based on the number of question views on StatckOverflow (Kauflin, 2017), as
shown in Figure 1.3, Python seems to have gained attention and popularity significantly compared to
other languages since 2012.

Growth of major programming languages
Based on Stack Overflow question views in World Bank high-income countries

c++

php

%
 o

f o
ve

ra
ll

qu
es

tio
n

vi
ew

s
ea

ch
 m

on
th

0%

2012 2014 2016
Time

2018

3%

6%

9%

Python
JavaScript
Java

c#

FIGURE 1.3 Overall question views for Python.
Source: https://www.forbes.com/sites/jeffkauflin/2017/05/12/the-five-most-in-demand-coding-languages/# 211777b2b3f5

Python has an amazing ecosystem and is excellent for developing prototypes quickly. It has a comprehen-
sive set of core libraries for data analysis and visualization. Python, unlike R, is not built only for data analy-
sis, it is a general-purpose language. Python can be used to build web applications, enterprise applications,
and is easier to integrate with existing systems in an enterprise for data collection and preparation.

Chapter 01_Introduction to Machine Learning.indd 5 4/24/2019 6:53:04 PM

Machine Learning using Python6

Data science projects need extraction of data from various sources, data cleaning, data imputa-
tion beside model building, validation, and making predictions. Enterprises typically want to build an
End-to-End integrated systems and Python is a powerful platform to build these systems.

Data analysis is mostly an iterative process, where lots of exploration needs to be done in an ad-hoc
manner. Python being an interpreted language provides an interactive interface for accomplishing this.

Python’s strong community continuously evolves its data science libraries and keeps it cutting edge.
It has libraries for linear algebra computations, statistical analysis, machine learning, visualization, opti-
mization, stochastic models, etc. We will discuss the different libraries in the subsequent section in detail.

Python has a shallow learning curve and it is one of the easiest languages to learn to come up to speed.
The following link provides a list of enterprises using Python for various applications ranging from

web programming to complex scalable applications:

https://www.python.org/about/success/

An article published on forbes.com puts Python as top 5 languages with highest demand in the industry
(link to the article is provided below):

https://www.forbes.com/sites/jeffkauflin/2017/05/12/the-five-most-in-demand-coding-languages/#6e2dc575b3f5

A search on number of job posts on various languages such as Python, R, Java, Scala, and Julia with terms
like “data science” or “machine learning” on www.indeed.com site, give the following trend results
(Figure 1.4). It is very clear that Python has become the language with most demand since 2016 and it is
growing very rapidly.

Job Postings

python and (“data science” or “machine learning”) : 0.0359%
R and (“data science” or “machine learning”) : 0.0286%
scala and (“data science” or “machine learning”) : ---
java and (“data science” or “machine learning”) : ---
julia and (“data science” or “machine learning”) : ---

0.040

0.035

0.030

0.025

0.020

0.015

0.005

P
er

ce
nt

ag
e

of
 M

at
ch

in
g

Jo
b

P
os

tin
gs

 (
%

)

0.000
2014

0.010

Jun 16, 2017

2015 2016 2017

FIGURE 1.4 Trend on job postings.
Source: http://makemeanalyst.com/most-popular-languages-for-data-science-and-analytics-2017/

Chapter 01_Introduction to Machine Learning.indd 6 4/24/2019 6:53:05 PM

https://www.python.org/about/success/
http://www.indeed.com

Chapter 1 · Introduction to Machine Learning 7

1.5 | PYTHON STACK FOR DATA SCIENCE

Python community has developed several libraries that cater to specific areas of data science applica-
tions. For example, there are libraries for statistical computations, machine learning, DataFrame opera-
tions, visualization, scientific computation using arrays and matrices, etc.

Efficient storage of arrays and matrices.
Backbone of all scientific calculations

and algorithms.

High-performance, easy-to-use data structures for
data manipulation and analysis. Pandas provide the
features of DataFrame, which is very popular in the area
of analytics for data munging, cleaning, and transformation.

Library for scientific computing.
linear algebra, statistical

computations, optimization algorithm.

StatsModelSM Statistics in Python

IDE or Development
environment for data
analysis in Python.

Machine learning library.
Collection of ML algorithms:

Supervised and Unsupervised.

Plotting and visualization

matplotlib

scikitlearn

SciPyNumPy
seaborn

FIGURE 1.5 Python core libraries for data science applications.

Figure 1.5 shows the important Python libraries that are used for developing data science or machine
learning models. Table 1.1 also provides details of these libraries and the website for referring to docu-
mentations. We will use these throughout the book.

 TABLE 1.1 Core Python Libraries for Data Analysis

Areas of Application Library Description Documentation Website

Statistical
Computations

SciPy SciPy contains modules for optimization and computation.
It provides libraries for several statistical distributions and
statistical tests.

www.scipy.org

Statistical Modelling StatsModels StatsModels is a Python module that provides classes and
functions for various statistical analyses.

www.statsmodels.org/
stable/index.html

Mathematical
Computations

NumPy NumPy is the fundamental package for scientific
computing involving large arrays and matrices. It provides
useful mathematical computation capabilities.

www.numpy.org

Data Structure
Operations
(Dataframes)

Pandas Pandas provides high-performance, easy-to-use data
structures called DataFrame for exploration and analysis.
DataFrames are the key data structures that feed into most of
the statistical and machine learning models.

pandas.pydata.org

Visualization Matplotlib It is a 2D plotting library. matplotlib.org

(Continued)

Chapter 01_Introduction to Machine Learning.indd 7 4/24/2019 6:53:05 PM

http://www.statsmodels.org/

Machine Learning using Python8

 TABLE 1.1 Continued

Areas of Application Library Description Documentation Website

More elegant
Visualization

Seaborn According to seaborn.pydata.org, Seaborn is a Python
visualization library based on matplotlib. It provides a
high-level interface for drawing attractive statistical graphics.

seaborn.pydata.org

Machine Learning
Algorithm

Scikit-learn
(aka sklearn)

Scikit-learn provides a range of supervised and
unsupervised learning algorithms.

scikit-learn.org

IDE (Integrated
Development
Environment)

Jupyter
Notebook

According to jupyter.org, the Jupyter Notebook is an open-
source web application that allows you to create and share
documents that contain live code, equations, visualizations,
and explanatory text.

jupyter.org

1.6 | GETTING STARTED WITH ANACONDA PLATFORM

We recommend using Anaconda platform for data science. The Anaconda distribution simplifies the
installation process by including almost everything we need for working on data science tasks. It con-
tains the core Python language, as well as all the essential libraries including NumPy, Pandas, SciPy,
Matplotlib, sklearn, and Jupyter notebook. It has distributions for all Operating Systems (OS) environ-
ments (e.g. Windows, MAC, and Linux). Again, we recommend using Python 3.5+ environment for
Anaconda. All the codes in the book are written using Anaconda 5.0 for Python 3.5+.

Follow the steps below for installation:

Step 1: Go to Anaconda Site
Go to https://www.anaconda.com/distribution/ using your browser window.

Step 2: Download Anaconda Installer for your Environment
Select your OS environment and choose Python 3.7 version to download the installation files as shown
in Figure 1.6.

Python 3.7 version

64-Bit Graphical Installer (652.7 MB)
64-Bit Command Line Installer (557 MB)

64-Bit Graphical Installer (640.7 MB)
64-Bit Command Line Installer (547 MB)

Python 2.7 version

Download Download

Anaconda 2018.12 for macOS Installer

Windows macOS Linux

FIGURE 1.6 Anaconda distribution site for downloading the installer.
Source: www.anaconda.com

Chapter 01_Introduction to Machine Learning.indd 8 4/24/2019 6:53:06 PM

Chapter 1 · Introduction to Machine Learning 9

Step 3: Install Anaconda
Double click on the downloaded file and follow the on-screen installation instructions, leaving options
as set by default. This will take a while and complete the installation process.

Step 4: Start Jupyter Notebook
Open the command terminal window as per your OS environment and type the following command, as
shown in Figure 1.7.

jupyter notebook -- ip=*

FIGURE 1.7 Screenshot of starting the jupyter notebook.

This should start the Jupyter notebook and open a browser window in your default browser software as
shown in Figure 1.8.

FIGURE 1.8 Screenshot of the file system explorer of Jupyter notebook open in the browser.

The reader can also start browser window using the URL highlighted below. The URL also contains the
password token as shown in Figure 1.9.

Chapter 01_Introduction to Machine Learning.indd 9 4/24/2019 6:53:07 PM

Machine Learning using Python10

FIGURE 1.9 Screenshot of using notebook URL.

Step 5: Create a New Python Program
On the browser window, select “New” for a menu. Clicking on the “Folder” will create a directory in the
current directory.

FIGURE 1.10 Screenshot of creating a new Python program.

To create a Python program, click on “Python 3”. It will open a new window, which will be the program
editor for the new Python program as shown in Figure 1.10.

Step 6: Rename the Program
By default, the program name will be “Untitled”. Click on it to rename the program and name as per your
requirement. For example, we have renamed it to “My First Program” as shown in Figure 1.11.

FIGURE 1.11 Screenshot of renaming the python program file.

Chapter 01_Introduction to Machine Learning.indd 10 4/24/2019 6:53:07 PM

Chapter 1 · Introduction to Machine Learning 11

Step 7: Write and Execute Code
Write Python code in the cell and then press SHIFT+ENTER to execute the cell as shown in
Figure 1.12.

FIGURE 1.12 Screenshots of Python code and execution output.

Step 8: Basic Commands for Working with Jupyter Notebook
Click on “User Interface Tour” for a quick tour of Jupyter notebook features. Or click on “Keyboard
Shortcuts” for basic editor commands as shown in Figure 1.13.

FIGURE 1.13 Screenshot of basic commands in Jupyter notebook.

Chapter 01_Introduction to Machine Learning.indd 11 4/24/2019 6:53:08 PM

Machine Learning using Python12

The above steps should get you started with setting up the environment. Now we are all set to explore
ML using Python applying real-world datasets and data science techniques in the subsequent chapters.

1.7 | INTRODUCTION TO PYTHON

In this section we will provide an overview of the Python programming language and its features.
The focus will be on features that are important from data analysis and machine learning perspective.
Here is a list of features that will be discussed in this section.

1. Declaring variables
2. Conditional Statements
3. Control flow statements
4. Collections
5. Functions
6. Functional Programming
7. Modules and packages

So, let us get started!

1.7.1 | Declaring Variables

In Python, a variable can be declared and then assigned a value without specifying data type. Python
automatically infers the variable type from values assigned to it. Also, the variable need not be assigned
a value of same type during its lifetime. A variable initialized with a value of one type (e.g., integer) can
later be re-assigned as value of a different type (e.g., string). This implicit conversion can increase pro-
ductivity and code reusability.

Python supports the following variable types:

1. int – Integer type.
2. float – Floating point numbers.
3. bool – Booleans are subtypes of integers and assigned value using literals True and False.
4. str – Textual data.

Below is an example of creating a set of variables and assigning values of different data types, that is,
integer, float, Boolean, and string types.

var1 = 2
var2 = 5.0
var3 = True
var4 = “Machine Learning”

We print values of all the variables using print() method. The signature of print method is

print(*objects, sep=‘ ’ end=‘\n’).

Chapter 01_Introduction to Machine Learning.indd 12 4/24/2019 6:53:08 PM

Chapter 1 · Introduction to Machine Learning 13

where

1. objects – object to the printed. It can take variable number of objects, that is, one or more objects
to be printed.

2. sep – objects are separated by sep. Default value: ‘ ’ (space).
3. end – end is printed at last. By default it is new line character.

Now print the variable values along with a string message.

print(“Value of var1 :”, var1)
print(“Value of var2 :”, var2)
print(“Value of var3 :”, var3)
print(“Value of var4 :”, var4)

Value of var1 : 2
Value of var2 : 5.0
Value of var3 : True
Value of var4 : Machine Learning

Check the data type of each variable. Python provides a method type(), which takes a variable as an argu-
ment and prints its data type.

type(var1)

 int

type(var2)

 float

type(var3)

 bool

type(var4)

 str

As we can see, the variables’ data types are appropriately chosen based on the values assigned to them.

1.7.2 | Conditional Statements

Python supports if-elif-else for writing conditional statements.
The condition should be terminated by : (colon) and the code block following that must be indented.

Indentation in Python is not optional. It is a syntax of Python. The conditional statement need not be
enclosed with a bracket.

Chapter 01_Introduction to Machine Learning.indd 13 4/24/2019 6:53:08 PM

Machine Learning using Python14

An example of a simple if condition is shown below.

Checking a condition if the variable value is more than 1
if var1 > 1:

print(“Bigger than 1”)

Bigger than 1

Note: A line starting with hash (#) is a comment line in Python.

The following is an example of a complex if-elif-else statement to check if the variable x is larger than y
or smaller or same.

x = 10
y = 12

if x is greater than y
if x > y:

print (“x > y”)
if x is lesser than y
elif x < y:

print (“x < y”)
else:

print (“x = y”)

x < y

Ternary operators are operators that evaluate something based on a condition being true or false. It
enables to test a condition in a single line instead of the multi-line if-else. For example, assigning True or
False to variable based on condition check as below.

Initialize
x = 5

True if x is more than 10 or assign False using ternary operator
isGreater = True if x > 10 else False

print(isGreater)

False

1.7.3 | Generating Sequence Numbers

Sometimes it may be necessary to create a sequence of numbers. range() function generates a sequence
of numbers. It takes the following three parameters.

1. start: Starting number of the sequence.
2. stop: Generate numbers up to, but not including, this number.
3. step: Difference between each number in the sequence. It is optional and default value is 1.

Chapter 01_Introduction to Machine Learning.indd 14 4/24/2019 6:53:08 PM

Chapter 1 · Introduction to Machine Learning 15

To generate a sequence of numbers from 1 to 5 use the following code:

Initializing the sequence of numbers starting from 1
and ending (not including) with 6
numbers = range(1, 6)

numbers

 range(1, 6)

1.7.4 | Control Flow Statements

A for loop can be used to print the sequence of numbers by iterating through it as follows.

Iterate through the collection
for i in numbers:

print (i)

 1
 2
 3
 4
 5

The for loop automatically advances the iterator through the range after every loop and completes after
the iterator reaches the end. The above loop prints values from 1 to 5 as numbers variable contains range
from 1 to 6 (not including 6).

A while loop is used to keep executing a loop until a condition is false. We can print a list of integer
from 1 to 5 using while loop as follows:

Initialize the value of 1
i = 1

check the value of i to check if the loop will be continued or not
while i < 5:

print(i)
Increment the value of i.
i = i+1

print after the value of i
print(‘Done’)

 1
 2
 3
 4
 Done

Chapter 01_Introduction to Machine Learning.indd 15 4/24/2019 6:53:08 PM

Machine Learning using Python16

In while loop, the state of i has to be managed explicitly. There is a good chance of going into an infinite
loop if the state of i is not incremented.

1.7.5 | Functions

Functions are the most important part of a language.

1. Functions can be created using def keyword.
2. The function signature should contain the function name followed by the input parameters

enclosed in brackets and must end with a colon (:).
3. Parameters are optional if initialized in the definition. The code block inside the method should

be indented.
4. The function ends with a return statement. No return statement implies the function returns

None, which is same as void return type in languages such as C, C++, or Java.

The data types of parameters and return types are inferred at runtime.
The following is an example of a function which takes two parameters and returns the addition of

their values using “+” operator.

def addElements(a, b):
return a + b

Few examples of method invocation are shown below.

Example: Invoking the function with two integer values.

result = addElements(2, 3)

result

 5

Example: Invoking the function with two float values.

result = addElements(2.3, 4.5)

result

 6.8

Example: Invoking the function with two strings.

result = addElements(“python”, “workshop”)

result

 ‘pythonworkshop’

Chapter 01_Introduction to Machine Learning.indd 16 4/24/2019 6:53:08 PM

Chapter 1 · Introduction to Machine Learning 17

It can be observed that the data type of parameters and return types are automatically determined based
on values passed to the function. If two strings are passed, they are concatenated as the + operator is also
overloaded for string concatenation.

The default value for the parameters can be defined in function signatures. This makes the
 parameter optional.

Example: Defining the method addElements() with parameter b initialized to 4.

def addElements(a, b = 4):
return a + b

Example: Invoking the function with only one parameter, that is, a.

addElements(2)

 6

So, the above method assigns 2 to variable a and adds that to the variable b, whose default value is 4.

Example: Invoking the function with both the parameters.

addElements(2, 5)

 7

In the last example, the default value of b is overridden with the value passed. Hence the sum of a
and b is 7.

1.7.6 | Working with Collections

Collections are useful containers or data structures to store and manipulate list of homogeneous or het-
erogeneous elements. We will discuss the following collections in this section:

1. List
2. Tuple
3. Set
4. Dictionary

1.7.6.1 List

Lists are like arrays, but can contain heterogeneous items, that is, a single list can contain items of type
integer, float, string, or objects. It is also not a unique set of items, that is, the values can repeat. Lists are
mutable and generally initialized with a list of values specified inside square brackets or an empty list.

Create an empty list
emptyList = []

Chapter 01_Introduction to Machine Learning.indd 17 4/24/2019 6:53:08 PM

Machine Learning using Python18

As an example let us create a list of batsmen in Indian cricket team in the order of batting.

batsmen = [‘Rohit’, ‘Dhawan’, ‘Kohli’, ‘Rahane’, ‘Rayudu’, ‘Dhoni’]

The list index starts with 0. An item in the list can be accessed using index as follows:

batsmen[0]

 ‘Rohit’

A slice of the list can be obtained using an index range separated by a colon (:). A range [0:2] means start-
ing with index 0 until index 2, but not including 2.

Slicing a list
 batsmen[0:2]

 [‘Rohit’, ‘Dhawan’]

To find the last batsman, an index value of –1 can be used.

Accessing the last element
batsmen[-1]

 ‘Dhoni’

To find out number of elements in the list, the list can be passed to a function called len().

how many elements in the list
len(batsmen)

 6

Two separate lists can be concatenated into one list using + operator.

bowlers = [‘Bumrah’, ‘Shami’, ‘Bhuvi’, ‘Kuldeep’, ‘Chahal’]

all_players = batsmen + bowlers

all_players

[‘Rohit’,
 ‘Dhawan’,
 ‘Kohli’,
 ‘Rahane’,
 ‘Rayudu’,
 ‘Dhoni’,

Chapter 01_Introduction to Machine Learning.indd 18 4/24/2019 6:53:08 PM

Chapter 1 · Introduction to Machine Learning 19

 ‘Bumrah’,
 ‘Shami’,
 ‘Bhuvi’,
 ‘Kuldeep’,
 ‘Chahal’]

Finding if an item exists in a list or not, the in operator can be used. It returns True if exists, else
returns False.

‘Bumrah’ in bowlers

 True

‘Rayudu’ in bowlers

 False

Finding the index of an item in the list.

all_players.index(‘Dhoni’)

 5

The items in a list can be arranged in reverse order by calling reverse() function on the list.

all_players.reverse()

all_players

[‘Chahal’,
 ‘Kuldeep’,
 ‘Bhuvi’,
 ‘Shami’,
 ‘Bumrah’,
 ‘Dhoni’,
 ‘Rayudu’,
 ‘Rahane’,
 ‘Kohli’,
 ‘Dhawan’,
 ‘Rohit’]

1.7.6.2 Tuples

Tuple is also a list, but it is immutable. Once a tuple has been created it cannot be modified. For exam-
ple, create a tuple which can contain the name of a cricketer and the year of his one-day international
(ODI) debut.

Chapter 01_Introduction to Machine Learning.indd 19 4/24/2019 6:53:08 PM

Machine Learning using Python20

odiDebut = (‘Kohli’, 2008)

odiDebut

(‘Kohli’, 2008)

Tuple element’s index also starts with 0.

odiDebut[0]

‘Kohli’

It is not allowed to change the tuple elements. For example, if we try to change the year in the tuple, it
will give an error.

tup1[1] = 2009

The above statement results in an error saying the tuple does not support item assignment, that is, the
tuple variable is immutable.

An existing list can be converted into tuple using tuple type cast. We convert the list all_players into
tuple so that it cannot be modified anymore.

players = tuple(all_players)

players

(‘Chahal’,
 ‘Kuldeep’,
 ‘Bhuvi’,
 ‘Shami’,
 ‘Bumrah’,
 ‘Dhoni’,
 ‘Rayudu’,
 ‘Rahane’,
 ‘Kohli’,
 ‘Dhawan’,
 ‘Rohit’)

Chapter 01_Introduction to Machine Learning.indd 20 4/24/2019 6:53:09 PM

Chapter 1 · Introduction to Machine Learning 21

1.7.6.3 Set

A set is a collection of unique elements, that is, the values cannot repeat. A set can be initialized with a
list of items enclosed with curly brackets.

setOfNumbers = {6,1,1,2,4,5}

The set automatically removes duplicates and contains only unique list of numbers.

setOfNumbers

{1, 2, 4, 5, 6}

The set supports operations such as union, intersection, and difference.
To understand these operations, let us create two sets with list of batsmen who played for India in

2011 and 2015 world cup teams.

wc2011 = { “Dhoni”, “Sehwag”, “Tendulkar”, “Gambhir”,
“Kohli”, “Raina”, “Yuvraj”, “Yusuf”}

wc2015 = { “Dhoni”, “Dhawan”, “Rohit”, “Rahane”,
“Kohli”, “Raina”, “Rayudu”, “Jadeja”}

To find the list of all batsmen who played in either 2011 or 2015 world cup, we can take union of the
above two sets.

wc2011.union(wc2015)

{‘Dhawan’,
 ‘Dhoni’,
 ‘Gambhir’,
 ‘Jadeja’,
 ‘Kohli’,
 ‘Rahane’,
 ‘Raina’,
 ‘Rayudu’,
 ‘Rohit’,
 ‘Sehwag’,
 ‘Tendulkar’,
 ‘Yusuf’,
 ‘Yuvraj’}

To find the list of all batsmen who played for both 2011 and 2015 world cup, we can take intersection of
these two sets wc2011 and wc2015.

Chapter 01_Introduction to Machine Learning.indd 21 4/24/2019 6:53:09 PM

Machine Learning using Python22

wc2011.intersection(wc2015)

{‘Dhoni’, ‘Kohli’, ‘Raina’}

If we need to find the new batsmen who were not part of 2011 world cup and played in 2015 world cup,
we take difference of wc2015 from wc2011.

wc2015.difference( wc2011 )

{‘Dhawan’, ‘Jadeja’, ‘Rahane’, ‘Rayudu’, ‘Rohit’}

1.7.6.4 Dictionary

Dictionary is a list of key and value pairs. All the keys in a dictionary are unique. For example, a diction-
ary that contains the ICC ODI World Cup winner from 1975 till 2011, where the key is year of tourna-
ment and the value is the name of the winning country.

wcWinners = { 1975: “West Indies”,
1979: “West Indies”,
1983: “India”,
1987: “Australia”,
1991: “Pakistan”,
1996: “Sri Lanka”,
1999: “Australia”,
2003: “Australia”,
2007: “Australia”,
2011: “India”}

The value of a specific dictionary element can be accessed by key. For example, to find the winning coun-
try in a specific year.

wcWinners[1983]

‘India’

For a list of all winning countries use the following code:

wcWinners.values()

dict_values([‘Australia’, ‘Australia’, ‘Australia’,
‘Pakistan’, ‘West Indies’, ‘India’, ‘West Indies’,
‘Sri Lanka’, ‘Australia’, ‘Australia’, ‘India’])

The above list had repeated names of certain countries as they have won multiple times. To find unique
list of countries, the above list can be converted to a set.

Chapter 01_Introduction to Machine Learning.indd 22 4/24/2019 6:53:09 PM

Chapter 1 · Introduction to Machine Learning 23

set(wcWinners.values())

{‘Australia’, ‘India’, ‘Pakistan’, ‘Sri Lanka’, ‘West Indies’}

To adding a new key-value pair to the dictionary, use the following code:

wcWinners[2015] = ‘Australia’

wcWinners

{ 1975: ‘West Indies’,
1979: ‘West Indies’,
1983: ‘India’,
1987: ‘Australia’,
1991: ‘Pakistan’,
1996: ‘Sri Lanka’,
1999: ‘Australia’,
2003: ‘Australia’,
2007: ‘Australia’,
2011: ‘India’,
2015: ‘Australia’}

1.7.7 | Dealing with Strings

A string in Python can be initialized with single or double quotes.

string0 = ‘python’
string1 = “machine learning”

If multiline, the string can be initialized with triple quotes as below.

string2 = “““This is a multiline string”””

To convert a string to upper or lower case use the following codes:

Converting to upper case string0.upper()
Similarly string.lower() can be used to convert to lower case.
string0.lower()

‘PYTHON’

Chapter 01_Introduction to Machine Learning.indd 23 4/24/2019 6:53:09 PM

Machine Learning using Python24

For splitting the string into a list of words or tokens separated by space use the following:

tokens = string1.split(‘ ’)
tokens

[‘machine’, ‘learning’]

1.7.8 | Functional Programming

Functional programming supports functions being passed as parameters to another function like vari-
ables. This allows to create higher order functions. One core benefits of functional programming in
data analysis is applying transformations or filters to a set of records or columns more efficiently than
using plain looping.

1.7.8.1 Example 1: Map

Let us say we have a list named intList which contains integers as defined below.

intList = [1,2,3,4,5,6,7,8,9]

We want to create another list named squareList, which contains the squared value of all elements in
intList. Typical approach to accomplish this is to write a for loop as below.

Create an empty list.
 squareList = []

Loop through the intList, square every item and append to result
list squareList.
for x in intList:
 squareList.append(pow(x, 2))

print(squareList)

 [1, 4, 9, 16, 25, 36, 49, 64, 81]

The above code is quite verbose and not efficient. The loop transforms items in sequential fashion and
has no scope of parallel processing. Using functional programming approach, this can be written more
efficiently as described below in steps.

Step 1: Define a function square_me() that takes an integer and returns the square value of it.

def square_me(x):
return x * x

Chapter 01_Introduction to Machine Learning.indd 24 4/24/2019 6:53:09 PM

Chapter 1 · Introduction to Machine Learning 25

Step 2: The function square_me and the list of integers can be passed to a higher order function map().
map() iterates through the list and transforms each element using the function.

squareList = map(square_me, intList)

Now print the result as a list.

list(squareList)

 [1, 4, 9, 16, 25, 36, 49, 64, 81]

The square function square_me() we used is just one line of code and can actually be written as an
anonymous function. Anonymous function is a function without a name and is defined using lambda
keyword.

Write the above map using anonymous function.

squareList = map(lambda x: x*x, intList)
list(squareList)

 [1, 4, 9, 16, 25, 36, 49, 64, 81]

1.7.8.2 Example 2: Filter

Similarly, filters can also be applied using functional programming. For example, in case we want to
select only the even numbers from the numbers in the list intList. It will filter only those numbers which
are divisible by 2 and can be achieved using higher order function filter().

filter() takes a function as an argument, which should act like a filter and return True or False.
If returns False, the element will be filtered out. To verify if an integer is even, we can use filter
x % 2 == 0.

evenInts = filter(lambda x : x % 2 == 0, intList)

list(evenInts)

 [2, 4, 6, 8]

Functional programming is an important aspect of Python programming and will be used extensively
during data analysis. During data analysis, we will deal with mostly a collection of records. So, to accom-
plish tasks like transformations or filters, functional programming can be very handy in the place of
plain looping.

1.7.9 | Modules and Packages

In Python, a module is a file that consists of functions, classes, and variables. A set of modules under
a namespace (mostly a directory) is called a package. The modules and packages can be imported to

Chapter 01_Introduction to Machine Learning.indd 25 4/24/2019 6:53:09 PM

Machine Learning using Python26

another module using import statement. For example, to use mathematical functions, Python’s math
module can be imported.

import math

Taking square root of a value
math.sqrt(16)

 4.0

Using from…import syntax, a specific module or object (e.g., class or function) can be imported from a
package. For example, to import only sample() function from random module the following import style
can be used.

from random import sample

Another example is generating a random set of numbers in a range, that is, range(0, 10). random.sample()
takes the range function and number of random numbers to be generated as parameters. The code below
helps to generate 3 random numbers between 0 and 10.

sample(range(0, 11), 3)

[8, 7, 2]

1.7.10 | Other Features

It may be necessary to return multiple values from a function. This can be achieved by returning a tuple.
This is an important feature we will be using in the subsequent chapters.

For example, define a function that returns the mean and the median of a list of numbers generated
randomly.

import random

randomList = random.sample(range(0, 100), 20)
randomList

[67, 13, 56, 19, 65, 8, 2, 28, 75, 35, 32, 16, 43, 57,
11, 81, 64, 46, 3, 6]

from statistics import mean, median

def getMeanAndMedian(listNum):
return mean(listNum), median(listNum)

Chapter 01_Introduction to Machine Learning.indd 26 4/24/2019 6:53:09 PM

Chapter 1 · Introduction to Machine Learning 27

getMeanAndMedian() returns a tuple with two elements and is stored into two separate variables during
invocation.

mean, median = getMeanAndMedian(randomList)

Print the mean and median values from the list.

print(“Mean:”, mean, “Median:”, median)

Mean: 36.35 Median: 33.5

 FURTHER READING

In this chapter, we have given you a crash course on Python language and its features. This quick overview
is enough to get you started with Machine Learning using Python. For more detailed overview and deep
dive into the programming language and its features, refer to the resources listed below that are dedi-
cated to Python programming.

 1. https://www.python.org/doc/
 2. https://docs.python.org/3/tutorial/index.html

 REFERENCES

 1. Downey A B (2012). Think Python, O’Reilly, California, USA.
 2. Kauflin J (2017). “The Five Most In-Demand Coding Languages”, Forbes, May 12, 2017. Available

at https://www.forbes.com/sites/jeffkauflin/2017/05/12/the-five-most-in-demand-coding-
languages/#54b7ea48b3f5

 3. MacKenzie I, Meyer C, and Noble S (2013), “How Retailers can keep up with Customers”, McKinsey
& Company Insights, October 2013. Available at http://www.mckinsey.com/industries/retail/our-
insights/how-retailers-cankeep-up-with-consumers. Accessed on 20 March 2017.

 4. Robinson D (2017), “The Incredible Growth of Python”, Stack Overflow Bloc. Available at https://
stackoverflow.blog/2017/09/06/incredible-growth-python/

 5. U Dinesh Kumar (2017). Business Analytics: The Science of Data-Driven Decision Making, Wiley India
Pvt. Ltd., India.

Chapter 01_Introduction to Machine Learning.indd 27 4/24/2019 6:53:09 PM

https://www.python.org/doc/
https://docs.python.org/3/tutorial/index.html
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Chapter 01_Introduction to Machine Learning.indd 28 4/24/2019 6:53:09 PM

2.1 | WORKING WITH DATAFRAMES IN PYTHON

Descriptive analytics is a component of analytics and is the science of describing the past data; it thus
 captures “what happened” in a given context. The primary objective of descriptive analytics is compre-
hension of data using data summarization, basic statistical measures and visualization. Data visualization
is an integral component of business intelligence (BI). Visuals are used as part of dashboards that are
generated by companies for understanding the performance of the company using various key perfor-
mance indicators.

Data scientists deal with structured data in most of their data analysis activities and are very familiar
with the concept of structured query language (SQL) table. SQL tables represent data in terms of rows
and columns and make it convenient to explore and apply transformations. The similar structure of
presenting data is supported in Python through DataFrames, which can be imagined as in-memory SQL
tables, that is data in tabular format. DataFrames are widely used and very popular in the world of R and
are inherited into Python by Pandas library.

A DataFrame is very efficient two-dimensional data structure as shown in Figure 2.1. It is flat in
structure and is arranged in rows and columns. Rows and columns can be indexed or named.

Pandas library support methods to explore, analyze, and prepare data. It can be used for perform-
ing activities such as load, filter, sort, group, join datasets and also for dealing with missing data.
To demonstrate usage of DataFrame, we will use IPL dataset (described in the next section) to load data
into DataFrame and perform descriptive analytics.

LEARNING OBJECTIVES

After completing this chapter, you will be able to
•   Understand the concept of descriptive analytics.
•   Learn to load structured data onto DataFrame and perform exploratory data analysis. 
•   Learn data preparation activities such as filtering, grouping, ordering, and joining 

of datasets.
•   Learn to handle data with missing values. 
•   Learn to prepare plots such as bar plot, histogram, distribution plot, box plot, scatter plot, pair 

plot, and heat maps to find insights.

CHAPTER

2Descriptive Analytics

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 29 4/24/2019 6:53:36 PM

Machine Learning using Python30

PLAYER NAME

Row Indexes

Column Header

Column/Feature

Row/Sample/Observation

COUNTRY

SA

IND

IND

IND

BAN

Abdulla, YA

Abdur Razzak1

2

0

3

4

Agarkar, AB

Ashwin, R

Badrinath, S

FIGURE 2.1 Structure of a DataFrame.

2.1.1 | IPL Dataset Description using DataFrame in Python

The Indian Premier League (IPL) is a professional league for Twenty20 (T20) cricket championships that
was started in 2008 in India. It was initiated by the Board of Control for Cricket in India (BCCI) with
eight franchises comprising players from across the world. The first IPL auction was held in 2008 for
ownership of the teams for 10 years, with a base price of USD 50 million. The franchises acquire players 
through an English auction that is conducted every year. However, there are several rules imposed by
the IPL. For example, there is a maximum cap on the money a franchise can spend on buying players.

The performance of the players could be measured through several metrics. Although the
IPL follows the Twenty20 format of the game, it is possible that the performance of the players
in the other formats of the game such as Test and One-Day matches can influence player pricing.
A few players have excellent records in Test matches, but their records in Twenty20 matches are not
very impressive. The dataset consists of the performance of 130 players measured through various
performance metrics such as batting strike rate, economy rate and so on in the year 2013. The list
of features is provided in Table 2.1.

 TABLE 2.1 IPL auction price data description

Data Code Data Type Description

AGE Categorical Age of the player at the time of auction classified into 3 categories. Category 1 (L25) means the
player is less than 25 years old, 2 means that age is between 25 and 35 years (B25–35) and
category 3 means that the age is more than 35 (A35).

RUNS-S Continuous Number of runs scored by a player

RUNS-C Continuous Number of runs conceded by a player

(Continued)

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 30 4/24/2019 6:53:36 PM

Chapter 2 · Descriptive Analytics 31

 TABLE 2.1 (Continued)

Data Code Data Type Description

HS Continuous Highest score by the batsman in IPL

AVE-B Continuous Average runs scored by the batsman in IPL

AVE-BL Continuous Bowling average (Number of runs conceded / number of wickets taken) in IPL

SR-B Continuous Batting strike rate (ratio of the number of runs scored to the number of balls faced) in IPL

SR-BL Continuous Bowling strike rate (ratio of the number of balls bowled to the number of wickets taken) in IPL

SIXERS Continuous Number of six runs scored by a player in IPL

WKTS Continuous Number of wickets taken by a player in IPL

ECON Continuous Economy rate of a bowler (number of runs conceded by the bowler per over) in IPL

CAPTAINCY EXP Categorical Captained either a T20 team or a national team

ODI-SR-B Continuous Batting strike rate in One-Day Internationals

ODI-SR-BL Continuous Bowling strike rate in One-Day Internationals

ODI-RUNS-S Continuous Runs scored in One-Day Internationals

ODI-WKTS Continuous Wickets taken in One-Day Internationals

T-RUNS-S Continuous Runs scored in Test maches

T-WKTS Continuous Wickets taken in Test maches

PLAYER-SKILL Categorical Player’s primary skill (batsman, bowler, or all-rounder)

COUNTRY Categorical Country of origin of the player (AUS: Australia; IND: India; PAK: Pakistan; SA: South Africa; SL: Sri
Lanka; NZ: New Zealand; Wl: West Indies; OTH: Other countries)

YEAR-A Categorical Year of Auction in IPL

IPL TEAM Categorical Team(s) for which the player had played in the IPL (CSK: Chennai Super Kings, DC: Deccan
Chargers, DD: Delhi Daredevils, KXI: Kings XI Punjab, KKR: Kolkata Knight Riders; MI: Mumbai
Indians; PWI: Pune Warriors India; RR: Rajasthan Royals; RCB: Royal Challengers Bangalore).
A + sign was used to indicate that the player had played for more than one team. For example,
CSK+ would mean that the player had played tor CSK as well as for one or more other teams.

2.1.2 | Loading Dataset into Pandas DataFrame

Pandas is an open-source, Berkeley Software Distribution (BSD)-licensed library providing high-perfor-
mance, easy-to-use data structures and data analysis tools for the Python programming language (source:
https://pandas.pydata.org/). Pandas is very popular and most widely used library for data exploration and
preparation. We will be using Pandas DataFrame throughout this book.

To use the Pandas library, we need to import pandas module into the environment using the
import keyword. After importing, required pandas methods can be invoked using the format pandas.
<method name>.

In Python, longer library names can be avoided by assigning an alias name while importing. For
example, in the code below, pandas is imported as alias pd. After the execution of this code, the required
methods can be invoked using pd.<method name>.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 31 4/24/2019 6:53:36 PM

https://www.python.org/
https://pandas.pydata.org/)

Machine Learning using Python32

import pandas as pd

Pandas library has provided different methods for loading datasets with many different formats onto
DataFrames. For example:

1. read_csv to read comma separated values.
2. read_json to read data with json format.
3. read_fwf to read data with fixed width format.
4. read_excel to read excel files.
5. read_table to read database tables.

To find out all available methods, we can type pd.read_ and then press TAB in Jupyter notebook cell. It
will list all available read methods. To find out what parameters a method takes and what data format
it supports, we can type method name followed by a question mark (?) and press SHIFT + ENTER. For
example, the command

pd.read_csv? (Press SHIFT + ENTER)

pops out detailed documentation at the bottom of the Jupyter notebook page as shown in Figure 2.2.

FIGURE 2.2 Sample documentation for Pandas method read_csv.

As per the documentation shown in Figure 2.2 for pd.read_csv

1. read_csv takes the file name as a parameter.
2. read_csv uses comma as separator. If any other separator, parameter sep to be set to appropriate

character.
3. The first line in the dataset is expected to be header. If not, the header parameter needs to be set

to None.

IPL dataset is stored in comma separated values (csv) format, so we will use pd.read_csv method to read
and load it onto a DataFrame. The dataset contains header information in the first line.

ipl_auction_df = pd.read_csv(‘IPL IMB381IPL2013.csv’)

To find out the type of variable ipl_auction_df, we can pass the variable to type() function of python.

type(ipl_auction_df)

pandas.core.frame.DataFrame

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 32 4/24/2019 6:53:37 PM

Chapter 2 · Descriptive Analytics 33

That is, ipl_auction_df is of type DataFrame. Now we can use pandas features such as selecting, filtering,
aggregating, joining, slicing/dicing of data to prepare and explore the dataset.

2.1.3 | Displaying First Few Records of the DataFrame

To display the first few rows from the DataFrame, use function head(n). The parameter n is the number
of records to display.

In this example, we will only print a maximum of 7 columns as the total width exceeds the page
width and the display is distorted. Setting pandas option display.max_columns will limit the number of
columns to be printed/displayed.

pd.set_option(‘display.max_columns’, 7)

ipl_auction_df.head(5)

Sl. NO. Player Name Age ... Auction Year Base Price Sold Price

0 1 Abdulla, YA 2 ... 2009 50000 50000

1 2 Abdur Razzak 2 ... 2008 50000 50000

2 3 Agarkar, AB 2 ... 2008 200000 350000

3 4 Ashwin, R 1 ... 2011 100000 850000

4 5 Badrinath, S 2 ... 2011 100000 800000

The values in the first column − 0 to 4 − are row indexes and the words in first row are the dataset header.

2.1.4 | Finding Summary of the DataFrame

To display all the column names, use columns attribute of the DataFrame ipl_auction_df.

list(ipl_auction_df.columns)

[‘Sl.NO.’,
‘PLAYER NAME’,
‘AGE’,
‘COUNTRY’,
‘TEAM’,
‘PLAYING ROLE’,
‘T-RUNS’,
‘T-WKTS’,
‘ODI-RUNS-S’,
‘ODI-SR-B’,
‘ODI-WKTS’,
‘ODI-SR-BL’,
‘CAPTAINCY EXP’,

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 33 4/24/2019 6:53:37 PM

Machine Learning using Python34

‘RUNS-S’,
‘HS’,
‘AVE’,
‘SR-B’,
‘SIXERS’,
‘RUNS-C’,
‘WKTS’,
‘AVE-BL’,
‘ECON’,
‘SR-BL’,
‘AUCTION YEAR’,
‘BASE PRICE’,
‘SOLD PRICE’]

The other way to print a DataFrame with a large number of columns (features) is to transpose the
DataFrame and display the columns as rows and rows as columns. The row indexes will be shown as
column headers and column names will be shown as row indexes.

ipl_auction_df.head(5).transpose()

0 1 2 3 4

SI. NO. 1 2 3 4 5

PLAYER NAME Abdulla, YA Abdur Razzak Agarkar, AB Ashwin, R Badrinath, S

AGE 2 2 2 1 2

COUNTRY SA BAN IND IND IND

TEAM KXIP RCB KKR CSK CSK

PLAYING ROLE Allrounder Bowler Bowler Bowler Batsman

T-RUNS 0 214 571 284 63

T-WKTS 0 18 58 31 0

ODI-RUNS-S 0 657 1269 241 79

ODI-SR-B 0 71.41 80.62 84.56 45.93

ODI-WKTS 0 185 288 51 0

ODI-SR-BL 0 37.6 32.9 36.8 0

CAPTAINCY EXP 0 0 0 0 0

RUNS-S 0 0 167 58 1317

HS 0 0 39 11 71

AVE 0 0 18.56 5.8 32.93

SR-B 0 0 121.01 76.32 120.71

(Continued)

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 34 4/24/2019 6:53:37 PM

Chapter 2 · Descriptive Analytics 35

0 1 2 3 4

SIXERS 0 0 5 0 28

RUNS-C 307 29 1059 1125 0

WKTS 15 0 29 49 0

AVE-BL 20.47 0 36.52 22.96 0

ECON 8.9 14.5 8.81 6.23 0

SR-BL 13.93 0 24.9 22.14 0

AUCTION YEAR 2009 2008 2008 2011 2011

BASE PRICE 50000 50000 200000 100000 100000

SOLD PRICE 50000 50000 350000 850000 800000

The dimension or size of the DataFrame can be retrieved through the shape attribute of the DataFrame,
which returns a tuple. The first value of the tuple is the number of rows and the second value is the
number of columns.

ipl_auction_df.shape

(130, 26)

In this case, IPL dataset contains 130 records and 26 columns.
More detailed summary about the dataset such as the number of records, columns names, number

of actual populated values in each column, datatypes of columns and total computer memory consumed
by the DataFrame can be retrieved using info() method of the DataFrame.

ipl_auction_df.info()

<class ‘pandas.core.frame.DataFrame’>

RangeIndex: 130 entries, 0 to 129
Data columns (total 26 columns):
Sl.NO. 130 non-null int64
PLAYER NAME 130 non-null object
AGE 130 non-null int64
COUNTRY 130 non-null Object
TEAM 130 non-null Object
PLAYING ROLE 130 non-null Object
T-RUNS 130 non-null int64
T-WKTS 130 non-null int64
ODI-RUNS-S 130 non-null int64
ODI-SR-B	 130	 non-null	 float64
ODI-WKTS 130 non-null int64
ODI-SR-BL	 130	 non-null	 float64
CAPTAINCY EXP 130 non-null int64
RUNS-S 130 non-null int64

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 35 4/24/2019 6:53:37 PM

Machine Learning using Python36

HS 130 non-null int64
AVE	 130	 non-null	 float64
SR-B	 130	 non-null	 float64
SIXERS 130 non-null int64
RUNS-C 130 non-null int64
WKTS 130 non-null int64
AVE-BL	 130	 non-null	 float64
ECON	 130	 non-null	 float64
SR-BL	 130	 non-null	 float64
AUCTION YEAR 130 non-null int64
BASE PRICE 130 non-null int64
SOLD PRICE 130 non-null int64
dtypes:	float64(7),	int64(15),	object(4)	
memory usage: 26.5+ KB

It shows a value of 130 against every column, which indicates none of the columns (features) has
any missing values. Pandas automatically infer the data type of the columns by analyzing the values
of each column. If the type cannot be inferred or contains texts or literals, the column is inferred
as an object. Continuous variables are typically inferred as either int64 or float64, whereas categori-
cal variables (strings or literals) are inferred as objects. (The variable types are discussed in detail
in Chapter 3.)

As shown by the output of info() method, in this dataset pandas found 7 columns to be of float type,
15 columns to be of integer type and remaining 4 columns as object type. The DataFrame consumes a
total of 26.5 KB memory.

2.1.5 | Slicing and Indexing of DataFrame

Sometimes only a subset of rows and columns are analyzed from the complete dataset. To select few rows
and columns, the DataFrame can be accessed or sliced by indexes or names. The row and column indexes
always start with value 0.

Assume that we are interested in displaying the first 5 rows of the DataFrame. The index range takes 
two values separated by a colon. For example, [0:5] means start with row with index 0 and end with row 
with index 5, but not including 5. [0:5] is same as [:5]. By default, the indexing always starts with 0.

ipl_auction_df[0:5]

Sl. NO. Player Name Age ... Auction Year Base Price Sold Price

0 1 Abdulla, YA 2 ... 2009 50000 50000

1 2 Abdur Razzak 2 ... 2008 50000 50000

2 3 Agarkar, AB 2 ... 2008 200000 350000

3 4 Ashwin, R 1 ... 2011 100000 850000

4 5 Badrinath, S 2 ... 2011 100000 800000

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 36 4/24/2019 6:53:37 PM

Chapter 2 · Descriptive Analytics 37

Negative indexing is an excellent feature in Python and can be used to select records from the bottom of
the DataFrame. For example, [−5:] can be used to select the last five records.

ipl_auction_df[-5:]

Sl. NO. Player Name Age ... Auction Year Base Price Sold Price

125 126 Yadav, AS 2 ... 2010 50000 750000

126 127 Younis Khan 2 ... 2008 225000 225000

127 128 Yuvraj Singh 2 ... 2011 400000 1800000

128 129 Zaheer Khan 2 ... 2008 200000 450000

129 130 Zoysa, DNT 2 ... 2008 100000 110000

Specific columns of a DataFrame can also be selected or sliced by column names. For example, to select
only the player names of the first five records, we can use the following code:

ipl_auction_df[‘PLAYER NAME’][0:5]

0 Abdulla, YA
1 Abdur Razzak
2 Agarkar, AB
3 Ashwin, R
4 Badrinath, S
Name: PLAYER NAME, dtype: object

To select two columns, for example, player name and the country name of the first five records, pass a list
of column names to the DataFrame, as shown below:

ipl_auction_df[[‘PLAYER NAME’, ‘COUNTRY’]][0:5]

Player Name Country

0 Abdulla, YA SA

1 Abdur Razzak BAN

2 Agarkar, AB IND

3 Ashwin, R IND

4 Badrinath, S IND

Specific rows and columns can also be selected using row and column indexes. For example, to select
first five records starting from row index 4 and columns ranging from column index 1 (second column)
to column index 4, pass as below. [4:9, 1:4] takes the row index ranges first and column ranges as second 
parameter. It should be passed to iloc method of DataFrame.

ipl_auction_df.iloc[4:9, 1:4]

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 37 4/24/2019 6:53:37 PM

Machine Learning using Python38

Player Name Age Country

4 Badrinath, S 2 IND

5 Bailey, GJ 2 AUS

6 Balaji, L 2 IND

7 Bollinger, DE 2 AUS

8 Botha, J 2 SA

In the subsequent sections, we will discuss many built-in functions of pandas to explore the dataset
further. But rather than exploring each function one by one, to make our learning interesting, we will
seek specific insights from the dataset, and figure out how to accomplish that using pandas.

2.1.6 | Value Counts and Cross Tabulations

value_counts() provides the occurrences of each unique value in a column. For example, we would like to
know how many players from different countries have played in the IPL, then the method value_counts()
can be used. It should primarily be used for categorical variables.

ipl_auction_df.COUNTRY.value_counts()

IND 53
AUS 22
SA 16
SL 12
PAK 9
NZ 7
WI 6
ENG 3
ZIM 1
BAN 1
Name: COUNTRY, dtype: int64

As expected, most players auctioned are from India, followed by Australia and then South Africa.
Passing parameter normalize=True to the value_counts() will calculate the percentage of occur-

rences of each unique value.

ipl_auction_df.COUNTRY.value_counts(normalize=True)*100

IND 40.769231
AUS 16.923077
SA 12.307692
SL 9.230769

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 38 4/24/2019 6:53:37 PM

Chapter 2 · Descriptive Analytics 39

PAK 6.923077
NZ 5.384615
WI 4.615385
ENG 2.307692
ZIM 0.769231
BAN 0.769231
Name:	COUNTRY,	dtype:	float64

Cross-tabulation features will help find occurrences for the combination of values for two columns.
For example, cross tabulation between PLAYING ROLE and AGE will give number of players in each
age category for each playing role. Ages of the players at the time of auction are classified into three
categories. Category 1 means the player is less than 25 years old, category 2 means that the age is between 
25 and 35 years, and category 3 means that the age is more than 35. To find out such occurrences across 
the combination of two categories, we can use crosstab() method as shown below:

pd.crosstab(ipl_auction_df[‘AGE’], ipl_auction_df[‘PLAYING ROLE’])

Playing Role
Age

Allrounder Batsman Bowler W. Keeper

1 4 5 7 0

2 25 21 29 11
3 6 13 8 1

Most of the players auctioned are from the age category 2. In category 1, there are more bowlers than
other playing roles and in category 3, there are more batsman than other playing roles.

2.1.7 | Sorting DataFrame by Column Values

sort_values() takes the column names, based on which the records need to be sorted. By default, sorting
is done in ascending order. The following line of code selects two columns PLAYER NAME and SOLD
PRICE from the DataFrame and then sorts the rows by SOLD PRICE.

ipl_auction_df[[‘PLAYER NAME’, ‘SOLD PRICE’]].sort_values
(‘SOLD PRICE’)[0:5]

Player Name Sold Price

73 Noffke, AA 20000
46 Kamran Khan 24000

0 Abdulla, YA 50000
1 Abdur Razzak 50000

118 Van der Merwe 50000

To sort the DataFrame records in descending order, pass False to ascending parameter.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 39 4/24/2019 6:53:37 PM

Machine Learning using Python40

ipl_auction_df[[‘PLAYER NAME’, ‘SOLD PRICE’]].sort_values(‘SOLD
PRICE’, ascending = False)[0:5]

Player Name Sold Price

93 Sehwag, V 1800000

127 Yuvraj Singh 1800000

50 Kohli, V 1800000

111 Tendulkar, SR 1800000

113 Tiwary, SS 1600000

2.1.8 | Creating New Columns

We can create new columns (new features) by applying basic arithmetic operations on existing columns.
For example, let us say we would like to create a new feature which is the difference between the sold
price and the base price (called by new feature name premium). We will create a new column called pre-
mium and populate by taking difference between the values of columns SOLD PRICE and BASE PRICE.

ipl_auction_df[‘premium’] = ipl_auction_df[‘SOLD PRICE’] -
ipl_auction_df[‘BASE PRICE’]

ipl_auction_df[[‘PLAYER NAME’, ‘BASE PRICE’, ‘SOLD PRICE’,
‘premium’]][0:5]

Player Name Base Price Sold Price Premium

0 Abdulla, YA 50000 50000 0

1 Abdur Razzak 50000 50000 0

2 Agarkar, AB 200000 350000 150000

3 Ashwin, R 100000 850000 750000

4 Badrinath, S 100000 800000 700000

To find which players got the maximum premium offering on their base price, the DataFrame can be
sorted by the values of column premium in descending order. sort_values() method sorts a DataFrame by
a column whose name is passed as a parameter along with order type. The default order type is ascending.
For sorting in descending order, the parameter ascending needs to be set to False.

ipl_auction_df[[‘PLAYER NAME’,
‘BASE PRICE’,
‘ SOLD PRICE’, ‘premium’]].sort_values(‘premium’,
 ascending = False)[0:5]

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 40 4/24/2019 6:53:38 PM

Chapter 2 · Descriptive Analytics 41

Player Name Base Price Sold Price Premium

50 Kohli, V 150000 1800000 1650000
113 Tiwary, SS 100000 1600000 1500000
127 Yuvraj Singh 400000 1800000 1400000
111 Tendulkar, SR 400000 1800000 1400000

93 Sehwag, V 400000 1800000 1400000

The result shows Virat Kohli was auctioned with maximum premium on the base price set.

2.1.9 | Grouping and Aggregating

Sometimes, it may be required to group records based on column values and then apply aggregated
operations such as mean, maximum, minimum, etc. For example, to find average SOLD PRICE for each
age category, group all records by AGE and then apply mean() on SOLD PRICE column.

ipl_auction_df.groupby(‘AGE’)[‘SOLD PRICE’].mean()

AGE
1 720250.000000
2 484534.883721
3 520178.571429
Name:	SOLD	PRICE,	dtype:	float64

The average price is highest for age category 1 and lowest for age category 2.
The above operation returns a pd.Series data structure. To create a DataFrame, we can call reset_

index() as shown below on the returned data structure.

soldprice_by_age = ipl_auction_df.groupby(‘AGE’)[‘SOLD PRICE’].
mean().reset_index()

print(soldprice_by_age)

Age Sold Price

0 1 720250.000000
1 2 484534.883721
2 3 520178.571429

Data can be grouped using multiple columns. For example, to find average SOLD PRICE for players for
each AGE and PLAYING ROLE category, multiple columns can be passed to groupby() method as follows:

soldprice_by_age_role = ipl_auction_df.groupby([‘AGE’, ‘PLAYING
ROLE’])[‘SOLD PRICE’].mean().reset_index()

print(soldprice_by_age_role)

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 41 4/24/2019 6:53:38 PM

Machine Learning using Python42

Age Playing Role Sold Price

0 1 Allrounder 587500.000

1 1 Batsman 1110000.000

2 1 Bowler 517714.286

3 2 Allrounder 449400.000

4 2 Batsman 654761.905

5 2 Bowler 397931.034

6 2 W. Keeper 467727.273

7 3 Allrounder 766666.667

8 3 Batsman 457692.308

9 3 Bowler 414375.000

10 3 W. Keeper 700000.000

2.1.10 | Joining DataFrames

We may need to combine columns from multiple DataFrames into one single DataFrame. In this case both
DataFrames need to have a common column. Then the remaining column values can be retrieved from both
the DataFrames and joined to create a row in the resulting DataFrame. To merge two DataFrames, pandas
method merge() can be called from one of the DataFrames and the other DataFrame can be passed as a
 parameter to it. It also takes a parameter on, which is the common column in both the DataFrames and should
be present in both the DataFrames. DataFrames can be joined based on multiple common columns. The join
type can be of inner, outer, left or right joins and should be specified in the how parameter. For understanding
different joins, please refer to the examples given at https://www.w3schools.com/sql/sql_join.asp

For example, to compare the average SOLD PRICE for different AGE categories with the different age
and PLAYING ROLE categories, we need to merge the DataFrames soldprice_by_age and soldprice_by_
age_role. The common column is AGE and this needs outer join.

We will join the above two DataFrames created and then compare the difference in auction prices.

soldprice_comparison = soldprice_by_age_role.merge (soldprice_by_age,
 on = ‘AGE’,
 how = ‘outer’)

soldprice_comparison

Age Playing Role Sold Price_x Sold Price_y

0 1 Allrounder 587500.000 720250.000

1 1 Batsman 1110000.000 720250.000

2 1 Bowler 517714.286 720250.000

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 42 4/24/2019 6:53:38 PM

Chapter 2 · Descriptive Analytics 43

Age Playing Role Sold Price_x Sold Price_y
3 2 Allrounder 449400.000 484534.884
4 2 Batsman 654761.905 484534.884
5 2 Bowler 397931.034 484534.884
6 2 W. Keeper 467727.273 484534.884
7 3 Allrounder 766666.667 520178.571
8 3 Batsman 457692.308 520178.571
9 3 Bowler 414375.000 520178.571

10 3 W. Keeper 700000.000 520178.571

Because the column name SOLD PRICE is same in both the DataFrames, it automatically renames
them to_x and_y. SOLD PRICE_x comes from the left table (soldprice_by_age_role) and SOLD PRICE_y
comes from the right table (soldprice_by_age).

2.1.11 | Re-Naming Columns

The existing columns of a DataFrame can be renamed using rename() method. For renaming multiple
columns simultaneously, the method can take a dictionary as a parameter, where the keys should be
existing column names and the values should the new names to be assigned.

soldprice_comparison.rename(columns = { ‘SOLD PRICE_x’: ‘SOLD_PRICE_
AGE_ROLE’,‘SOLD PRICE_y’: ‘SOLD_PRICE_AGE’ }, inplace = True)

soldprice_comparison.head(5)

Age Playing Role Sold_price_age_role Sold_price_age

0 1 Allrounder 587500.000 720250.000
1 1 Batsman 1110000.000 720250.000
2 1 Bowler 517714.286 720250.000
3 2 Allrounder 449400.000 484534.884
4 2 Batsman 654761.905 484534.884

2.1.12 | Applying Operations to Multiple Columns

Consider as an example a situation where we would like to find whether players carry a premium if they
belong to a specific AGE and PLAYING ROLE category. The premium (we will call it change) is calcu-
lated in percentage terms and calculated as follows:

Change =

(Average for all player in an and SOLD PRICE AGE PPLAYING ROLE
SOLD PRICE

 category
Average for all player- in an category)

Average for all player in
AGE

SOLD PRICE aan category)

AGE

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 43 4/24/2019 6:53:38 PM

Machine Learning using Python44

To accomplish this, we need to iterate through each row in the DataFrame and then apply the
above calculations to the columns. The resulting value should be added as a new column to the existing
DataFrame. The function apply() can apply a function along any axis of the DataFrame.

soldprice_comparison[‘change’] = soldprice_comparison.apply(lambda
rec:(rec.SOLD_PRICE_AGE_ROLE -
rec.SOLD_PRICE_AGE) / rec.SOLD_
PRICE_AGE, axis = 1)

soldprice_comparison

 Age Playing Role Sold_price_age_role Sold_price_age Change

0 1 Allrounder 587500.000 720250.000 -0.184
1 1 Batsman 1110000.000 720250.000 0.541
2 1 Bowler 517714.286 720250.000 -0.281
3 2 Allrounder 449400.000 484534.884 -0.073
4 2 Batsman 654761.905 484534.884 0.351
5 2 Bowler 397931.034 484534.884 -0.179
6 2 W. Keeper 467727.273 484534.884 -0.035
7 3 Allrounder 766666.667 520178.571 0.474
8 3 Batsman 457692.308 520178.571 -0.120
9 3 Bowler 414375.000 520178.571 -0.203

10 3 W. Keeper 700000.000 520178.571 0.346

2.1.13 | Filtering Records Based on Conditions

Assume that we would like to filter certain records such as the players who have hit more than 80 sixers
in the IPL tournament. DataFrame records can be filtered using a condition as indexing mechanism.
Those records for which the condition returns True are selected to be part of the resulting DataFrame.

ipl_auction_df[ipl_auction_df[‘SIXERS’] > 80][[‘PLAYER NAME’,
‘SIXERS’]]

Player Name Sixers

26 Gayle, CH 129
28 Gilchrist, AC 86
82 Pathan, YK 81
88 Raina, SK 97
97 Sharma, RG 82

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 44 4/24/2019 6:53:38 PM

Chapter 2 · Descriptive Analytics 45

2.1.14 | Removing a Column or a Row from a Dataset

To remove a column or a row, we can use drop() method on the DataFrame. It takes a parameter axis to
specify if a column or a row needs to be dropped.

1. To drop a column, pass the column name and axis as 1.
2. To drop a row, pass the row index and axis as 0.

We will drop the column Sl.NO. in the IPL dataset as we do not need this column for our exploration.
Most of these DataFrame operations always result in creating new DataFrames. But creating new
DataFrame each time can result in over consumption of computer memory. To avoid creating new
DataFrames and make changes to the existing DataFrame, there is another parameter inplace available,
which can be set to True.

ipl_auction_df.drop(‘Sl.NO.’, inplace = True, axis = 1)

ipl_auction_df.columns

Index ([‘PLAYER NAME’, ‘AGE’, ‘COUNTRY’, ‘TEAM’, ‘PLAYING ROLE’,
‘T-RUNS’, ‘T-WKTS’, ‘ODI-RUNS-S’, ‘ODI-SR-B’, ‘ODI-WKTS’,
‘ODI-SR-BL’, ‘CAPTAINCY EXP’, ‘RUNS-S’, ‘HS’, ‘AVE’,
‘SR-B’, ‘SIXERS’, ‘RUNS-C’, ‘WKTS’, ‘AVE-BL’, ‘ECON’, ‘SR-BL’,
‘ AUCTION YEAR’, ‘BASE PRICE’, ‘SOLD PRICE’, ‘premium’],
dtype = ‘object’)

2.2 | HANDLING MISSING VALUES

In real world, the datasets are not clean and may have missing values. We must know how to find and deal
with these missing values. One of the strategies to deal with missing values is to remove them from the
dataset. However, whenever possible, we would like to impute the data, which is a process of filling the
missing values. Data imputation techniques will be discussed in the later chapter. Here we will discuss
how to find missing values and remove them. We will use an example dataset called autos-mpg.data1,
which contains information about different cars and their characteristics such as

1. mpg − miles per gallon
2. cylinders − Number of cylinders (values between 4 and 8)
3. displacement − Engine displacement (cu. inches)
4. horsepower − Engine horsepower
5. weight − Vehicle weight (lbs.)
6. acceleration − Time to accelerate from 0 to 60 mph (sec.)
7. year − Model year (modulo 100)
8. origin − Origin of car (1. American, 2. European, 3. Japanese)
9. name − Vehicle name

1 The dataset can be downloaded from https://archive.ics.uci.edu/ml/datasets/auto+mpg (https://archive.ics.uci.edu/ml/
datasets/auto+mpg).

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 45 4/24/2019 6:53:38 PM

Machine Learning using Python46

The dataset contains SPACE separated values and has no header. To read the dataset onto the DataFrame,

Use pd.read_csv method, Set separator to \s+ and Set header to None

autos = pd.read_csv(‘auto-mpg.data’, sep = ‘\s+’, header = None)
autos.head(5)

0 1 2 ... 6 7 8

0 18.0 8 307.0 ... 70 1 Chevrolet chevelle malibu
1 15.0 8 350.0 ... 70 1 buick skylark 320
2 18.0 8 318.0 ... 70 1 plymouth satellite
3 16.0 8 304.0 ... 70 1 amc rebel sst
4 17.0 8 302.0 ... 70 1 ford torino

5 rows × 9 columns

As the dataset does not have a header, the columns are not named. We can name the columns by assign-
ing a list of names to the DataFrame header. The column names are given in the dataset description page
at the link https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.names

1. mpg: continuous
2. cylinders: multi-valued discrete
3. displacement: continuous
4. horsepower: continuous
5. weight: continuous
6. acceleration: continuous
7. model year: multi-valued discrete
8. origin: multi-valued discrete
9. car name: string (unique for each instance)

We will create a list of the above names and assign to the DataFrame’s columns attribute as follows:

autos.columns = [‘mpg’,‘cylinders’, ‘displacement’,
‘horsepower’, ‘weight’, ‘acceleration’,
‘year’, ‘origin’, ‘name’]

autos.head(5)

mpg cylinders displacement ... year origin name

0 18.0 8 307.0 ... 70 1 chevrolet chevelle malibu
1 15.0 8 350.0 ... 70 1 buick skylark 320
2 18.0 8 318.0 ... 70 1 plymouth satellite
3 16.0 8 304.0 ... 70 1 amc rebel sst
4 17.0 8 302.0 ... 70 1 ford torino

5 rows × 9 columns

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 46 4/24/2019 6:53:38 PM

Chapter 2 · Descriptive Analytics 47

The schema of the DataFrame is as follows:

autos.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
mpg	 398	 non-null	 float64
cylinders 398 non-null int64
displacement	 398	 non-null	 float64	
horsepower 398 non-null object
weight	 398	 non-null	 float64	
acceleration	 398	 non-null	 float64	
year 398 non-null int64
origin 398 non-null int64
name 398 non-null object
dtypes:	float64(4),	int64(3),	object(2)	
memory usage: 28.1+ KB

Here the column horsepower has been inferred as object, whereas it should have been inferred
as float64. This may be because some of the rows contain non-numeric values in the horsepower
column. One option to deal with this is to force convert the horsepower column into numeric, which
should convert the non-numeric values into null values. pd.to_numeric() can be used to convert
any column with non-numeric datatype to a column with numeric datatype. It takes a parame-
ter errors, which specifies how to deal with non-numeric values. The following are the possible
 parameter values (source: pandas.pydata.org):

errors : {‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’

1. If ‘raise’, then invalid parsing will raise an exception.
2. If ‘coerce’, then invalid parsing will be set as NaN.
3. If ‘ignore’, then invalid parsing will return the input.

In our case, we will use errors = ‘coerce’ to convert any non-numeric values to null NaN.

autos[“horsepower”] = pd.to_numeric(autos[“horsepower”],
errors = ‘corece’) autos.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
mpg	 398	 non-null	 float64
cylinders 398 non-null int64
displacement	 398	 non-null	 float64	
horsepower	 392	 non-null	 float64	
weight	 398	 non-null	 float64	
acceleration	 398	 non-null	 float64	

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 47 4/24/2019 6:53:38 PM

Machine Learning using Python48

year 398 non-null int64
origin 398 non-null int64
name 398 non-null object
dtypes:	float64(5),	int64(3),	object(1)	
memory usage: 28.1+ KB

The column horsepower has been converted into float64 type. We can verify if some of the rows contain
null values in horsepower column. This can be done by using isnull() method on the DataFrame column
as shown in the code below.

autos[autos.horsepower.isnull()]

mpg cylinders displacement ... year origin name

32 25.0 4 98.0 ... 71 1 ford pinto
126 21.0 6 200.0 ... 74 1 ford maverick
330 40.9 4 85.0 ... 80 2 renault lecar deluxe
336 23.6 4 140.0 ... 80 1 ford mustang cobra
354 34.5 4 100.0 ... 81 2 renault 18i
374 23.0 4 151.0 ... 82 1 ame concord di

6 rows × 9 columns

There are 6 rows which contain null values. These rows can be dropped from the DataFrame using
dropna() method. Dropna() method removes all rows with NaN values. In this dataset, only one feature
– horse power – contains NaNs. Hence subset argument as dropna() method should be used.

autos = autos.dropna(subset = [‘horsepower’]

We can verify if the rows with null values have been removed by applying the filtering condition again.

autos[autos.horsepower.isnull()]

mpg cylinders displacement ... year origin name

0 rows × 9 columns

Filtering with isnull() shows no rows with null values anymore. Similarly, fillna() can take a default
value to replace the null values in a column. For example, fillna(0) replaces all null values in a column
with value 0.

2.3 | EXPLORATION OF DATA USING VISUALIZATION

Data visualization is useful to gain insights and understand what happened in the past in a given context.
It is also helpful for feature engineering. In this section we will be discussing various plots that we can
draw using Python.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 48 4/24/2019 6:53:39 PM

Chapter 2 · Descriptive Analytics 49

2.3.1 | Drawing Plots

Matplotlib is a Python 2D plotting library and most widely used library for data visualization.
It provides extensive set of plotting APIs to create various plots such as scattered, bar, box, and distri-
bution plots with custom styling and annotation. Detailed documentation for matplotlib can be found
at https://matplotlib.org/. Seaborn is also a Python data visualization library based on matplotlib.
It provides a high-level interface for drawing innovative and informative statistical charts (source:
https:// seaborn.pydata.org/).

Matplotlib is a library for creating 2D plots of arrays in Python. Matplotlib is written in Python and
makes use of NumPy arrays. It is well integrated with pandas to read columns and create plots. Seaborn,
which is built on top of matplotlib, is a library for making elegant charts in Python and is well integrated
with pandas DataFrame.

To create graphs and plots, we need to import matplotlib.pyplot and seaborn modules. To display the
plots on the Jupyter Notebook, we need to provide a directive %matplotlib inline. Only if the directive is
provided, the plots will be displayed on the notebook.

import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline

2.3.2 | Bar Chart

Bar chart is a frequency chart for qualitative variable (or categorical variable). Bar chart can be used to
assess the most-occurring and least-occurring categories within a dataset.

To draw a bar chart, call barplot() of seaborn library. The DataFrame should be passed in the parameter
data. To display the average sold price by each age category, pass SOLD PRICE as y parameter and AGE as x
parameter. Figure 2.3 shows a bar plot created to show the average SOLD PRICE for each age category.

sn.barplot(x = ‘AGE’, y = ‘SOLD PRICE’, data = soldprice_by_age);

m
ea

n
(S

O
LD

 P
R

IC
E

)

500000

400000

300000

200000

100000

1 2 3

Age

700000

600000

0

FIGURE 2.3 Bar plot for average sold price versus age.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 49 4/24/2019 6:53:39 PM

https://matplotlib.org/
https://matplotlib.org/

Machine Learning using Python50

m
ea

n
(S

O
LD

_P
R

IC
E

_A
G

E
_R

O
LE

)

1000000

800000

600000

400000

200000

0
1 2

Age

3

PLAYING ROLE

Allrounder

Batsman

Bowler

W. Keeper

FIGURE 2.4 Bar plot for average sold price versus age by player roles. Here the first bar represents Allrounder, the second Batsman,
the third Bowler, the fourth W. Keeper.

In Figure 2.3, it can be noted that the average sold price is higher for age category 1. We can also
create bar charts, which are grouped by a third variable.

In the following example (Figure 2.4), average sold price is shown for each age category but grouped
by a third variable, that is, playing roles. The parameter hue takes the third variable as parameter. In this
case, we pass PLAYING ROLE as hue parameter.

sn.barplot(x = ‘AGE’, y = ‘SOLD_PRICE_AGE_ROLE’, hue = ‘PLAYING
ROLE’, data = soldprice_comparison);

In Figure 2.4, it can be noted that in the age categories 1 and 2, batsmen are paid maximum, whereas
allrounders are paid maximum in the age category 3. This could be because allrounders establish their
credentials as good allrounders over a period.

2.3.3 | Histogram

A histogram is a plot that shows the frequency distribution of a set of continuous variable. Histogram
gives an insight into the underlying distribution (e.g., normal distribution) of the variable, outliers, skew-
ness, etc. To draw a histogram, invoke hist() method of matplotlib library. The following is an example of
how to draw a histogram for SOLD PRICE and understand its distribution (Figure 2.5).

plt.hist(ipl_auction_df[‘SOLD PRICE’]);

The histogram shows that SOLD PRICE is right skewed. Most players are auctioned at low price
range of  250000  and 500000, whereas  few players  are paid  very highly, more  than 1 million dollars. 

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 50 4/24/2019 6:53:39 PM

Chapter 2 · Descriptive Analytics 51

By default, it creates 10 bins in the histogram. To create more bins, the bins parameter can be set in the
hist() method as follows:

plt.hist(ipl_auction_df[‘SOLD PRICE’], bins = 20);

Histogram for SOLD PRICE with 20 bins is shown in Figure 2.6.

16

14

12

10

8

6

4

2

0
0 250000 500000 750000 1000000 1250000 1500000 1750000

FIGURE 2.6 Histogram for SOLD PRICE with 20 bins.

2.3.4 | Distribution or Density Plot

A distribution or density plot depicts the distribution of data over a continuous interval. Density plot
is like smoothed histogram and visualizes distribution of data over a continuous interval. So, a density
plot also gives insight into what might be the distribution of the population.

0
0

5

10

15

20

25

30

250000 500000 750000 1000000 1250000 1500000 1750000

FIGURE 2.5 Histogram for SOLD PRICE.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 51 4/24/2019 6:53:40 PM

Machine Learning using Python52

To draw the distribution plot, we can use distplot() of seaborn library. Density plot for the outcome
variable “SOLD PRICE” is shown in Figure 2.7.

sn.distplot(ipl_auction_df[‘SOLD PRICE’]);

SOLD PRICE
−500000

0.0000000

0.0000002

0.0000004

0.0000006

0.0000008

0.0000010

0.0000012

0.0000014

500000 1000000 1500000 20000000

FIGURE 2.7 Distribution plot for SOLD PRICE.

2.3.5 | Box Plot

Box plot (aka Box and Whisker plot) is a graphical representation of numerical data that can be used to
understand the variability of the data and the existence of outliers. Box plot is designed by identifying
the following descriptive statistics:

1. Lower quartile (1st quartile), median and upper quartile (3rd quartile).
2. Lowest and highest values.
3. Inter-quartile range (IQR).

Box plot is constructed using IQR, minimum and maximum values. IQR is the distance (difference)
between the 3rd quartile and 1st quartile. The length of the box is equivalent to IQR. It is possible that
the data may contain values beyond Q1 – 1.5IQR and Q3 + 1.5IQR. The whisker of the box plot extends 
till Q1 – 1.5IQR and Q3 + 1.5IQR; observations beyond these two limits are potential outliers.

To draw the box plot, call boxplot() of seaborn library. The box plot for SOLD PRICE is shown in
Figure 2.8 and indicates that there are few outliers in the data.

box = sn.boxplot(ipl_auction_df[‘SOLD PRICE’]);

To obtain min, max, 25 percentile (1st quartile) and 75 percentile (3rd quantile) values in the boxplot, 
boxplot() method of matplotlib can be used. Let us assign the return value of boxplot() to a variable box.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 52 4/24/2019 6:53:40 PM

Chapter 2 · Descriptive Analytics 53

SOLD PRICE
0 250000 500000 750000 1000000 1250000 1500000 1750000

FIGURE 2.8 Box plot for SOLD PRICE.

box = plt.boxplot(ipl_auction_df[‘SOLD PRICE’]);

1750000

1500000

1250000

1000000

750000

500000

250000

0
1

FIGURE 2.9 Box plot for SOLD PRICE with median line.

The above line of code creates a box plot as shown in Figure 2.9 and returns details of box plot in vari-
able box. The caps key in box variable returns the min and max values of the distribution. Here the
minimum auction price offered is 20,000 and maximum price is 13,50,000.

[item.get_ydata()[0] for item in box[‘caps’]]

[20000.0, 1350000.0]

The whiskers key in box variable returns the values of the distribution at 25 and 75 quantiles. Here the 
min value is 225,000 and max is 700,000.

[item.get_ydata()[0] for item in box[‘whiskers’]]

[225000.0, 700000.0]

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 53 4/24/2019 6:53:41 PM

Machine Learning using Python54

So, inter-quartile range (IQR) is 700,000 − 225,000 = 475,000.
The medians key in box variable returns the median value of the distribution. Here the median value

is 437,500.

[item.get_ydata()[0] for item in box[‘medians’]]

[437500.0]

The box plot in Figure 2.8 shows that some of the players are auctioned at SOLD PRICE, which seem to
be outliers. Let us find out the player names.

ipl_auction_df[ipl_auction_df[‘SOLD PRICE’] > 1350000.0][[‘PLAYER
NAME’, ‘PLAYING ROLE’, ‘SOLD PRICE’]]

Player Name Playing Role Sold Price

15 Dhoni, MS W. Keeper 1500000
23 Flintoff, A Allrounder 1550000
50 Kohli, V Batsman 1800000
83 Pietersen, KP Batsman 1550000
93 Sehwag, V Batsman 1800000

111 Tendulkar, SR Batsman 1800000
113 Tiwary, SS Batsman 1600000
127 Yuvraj Singh Batsman 1800000

The SOLD PRICE amount for the above players seems to be outlier considering what is paid to
other players.

2.3.6 | Comparing Distributions

The distribution for different categories can be compared by overlapping the distributions. For example, the
SOLD PRICE of players with and without CAPTAINCY EXP can be compared as below. Distributions
can be compared by drawing distribution for each category and overlapping them in one plot.

sn.distplot (ipl_auction_df[ipl_auction_df[‘CAPTAINCY EXP’] == 1]
[‘SOLD PRICE’],
color = ‘y’,
label = ‘Captaincy Experience’)

sn.distplot (ipl_auction_df[ipl_auction_df[‘CAPTAINCY EXP’] == 0]
[‘SOLD PRICE’],
color = ‘r’,
label = ‘No Captaincy Experience’);

plt.legend();

Comparison plot for SOLD PRICE with and without captaincy experience is shown in Figure 2.10. It can
be observed that players with captaincy experience seem to be paid higher.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 54 4/24/2019 6:53:41 PM

Chapter 2 · Descriptive Analytics 55

0.0000016

0.0000014

0.0000012

0.0000010

0.0000008

0.0000006

0.0000004

0.0000002

0.0000000
−500000 500000 1000000

SOLD PRICE

1500000 2000000 25000000

Captaincy Experience
No Captaincy Experience

FIGURE 2.10 Distribution plots comparing SOLD PRICE with and without captaincy experience.

Similarly, the distributions can be compared using box plots. For example, if we want to visualize
SOLD PRICE for each PLAYING ROLE, then pass PLAYING ROLE as x parameter and SOLD PRICE as
y parameter to boxplot() method of seaborn.

An example of comparing the SOLD PRICE for players with different PLAYING ROLE is shown in
Figure 2.11.

sn.boxplot(x = ‘PLAYING ROLE’, y = ‘SOLD PRICE’,
data = ipl_auction_df);

500000

250000

0

750000

1000000

1250000

1500000

1750000

Bowler Batsman

PLAYING ROLE

S
O

LD
 P

R
IC

E

W. KeeperAllrounder

FIGURE 2.11 Box plot of SOLD PRICE for different playing roles.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 55 4/24/2019 6:53:42 PM

Machine Learning using Python56

Few observations from the plot in Figure 2.11 are as follows:

1. The median SOLD PRICE for allrounders and batsmen are higher than bowlers and wicket keepers.
2.  Allrounders who are paid more than 1,35,0000 USD are not considered outliers. Allrounders 

have relatively high variance.
3.  There are outliers in batsman and wicket keeper category. In Section 2.3.5, we have already found 

that MS DHONI is an outlier in the wicket keeper category.

2.3.7 | Scatter Plot

In a scatter plot, the values of two variables are plotted along two axes and resulting pattern can reveal cor-
relation present between the variables, if any. The relationship could be linear or non-linear. A scatter plot
is also useful for assessing the strength of the relationship and to find if there are any outliers in the data.

Scatter plots are used during regression model building to decide on the initial model, that is whether
to include a variable in a regression model or not.

Since IPL is T20 cricket, it is believed that the number of sixers a player has hit in past would have
influenced his SOLD PRICE. A scatter plot between SOLD PRICE of batsman and number of sixes the
player has hit can establish this correlation. The scatter() method of matplotlib can be used to draw the
scatter plot which takes both the variables. We will draw the scatter plot only for batsman playing role.
Figure 2.12 shows the scatter plot between SIXERS and SOLD PRICE.

ipl_batsman_df = ipl_auction_df[ipl_auction_df[‘PLAYING ROLE’] ==
‘Batsman’]

plt.scatter(x = ipl_batsman_df.SIXERS,
y = ipl_batsman_df[‘SOLD PRICE’]);

500000

250000

0
0 20 40

SIXERS

60 80 100

750000

1000000

1250000

1500000

1750000

S
O

LD
 P

R
IC

E

FIGURE 2.12 Scatter plot for SOLD PRICE versus SIXERS.

To draw the direction of relationship between the variables, regplot() of seaborn can be used (Figure 2.13).

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 56 4/24/2019 6:53:42 PM

Chapter 2 · Descriptive Analytics 57

sn.regplot(x = ‘SIXERS’,
y = ‘SOLD PRICE’,
data = ipl_batsman_df);

1000000

500000

0

1500000

S
O

LD
 P

R
IC

E

2000000

SIXERS
0 20 40 60 80 100

FIGURE 2.13 Scatter plot for SOLD PRICE versus SIXERS with a regression line.

The line in Figure 2.13 shows there is a positive correlation between number of sixes hit by a batsman
and the SOLD PRICE.

2.3.8 | Pair Plot

If there are many variables, it is not convenient to draw scatter plots for each pair of variables to under-
stand the relationships. So, a pair plot can be used to depict the relationships in a single diagram which
can be plotted using pairplot() method.

In this example, we will explore the relationship of four variables, SR-B, AVE, SIXERS, SOLD
PRICE, which we think may be the influential features in determining the SOLD PRICE of batsmen
(Figure 2.14).

influential_features	=	[‘SR-B’,	‘AVE’,	‘SIXERS’,	‘SOLD	PRICE’]

sn.pairplot(ipl_auction_df[influential_features],	size=2)

The plot is drawn like a matrix and each row and column is represented by a variable. Each cell depicts
the relationship between two variables, represented by that row and column variable. For example, the
cell on second row and first column shows the relationship between AVE and SR-B. The diagonal of the
matrix shows the distribution of the variable.

For all the correlations, AVE and SIXERS seem to be highly correlated with SOLD PRICE com-
pared to SR-B.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 57 4/24/2019 6:53:43 PM

Machine Learning using Python58

S
R

-B
A

V
E

S
IX

E
R

S

S
O

LD
 P

R
IC

E

200

100

0

40

20

0

100

50

1500000

1000000

500000

0

0 0100 200 20 40

0

SR-B AVE SIXERS SOLD PRICE
0 0100 1000000

FIGURE 2.14 Pair plot between variables.

2.3.9 | Correlation and Heatmap

Correlation is used for measuring the strength and direction of the linear relationship between two
continuous random variables X and Y. It is a statistical measure that indicates the extent to which two
variables change together. A positive correlation means the variables increase or decrease together; a
negative correlation means if one variable increases, the other decreases.

1. The correlation value lies between −1.0 and 1.0. The sign indicates whether it is positive or nega-
tive correlation.

2. −1.0 indicates a perfect negative correlation, whereas +1.0 indicates perfect positive correlation.

Correlation values can be computed using corr() method of the DataFrame and rendered using a heat-
map (Figure 2.15).

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 58 4/24/2019 6:53:43 PM

Chapter 2 · Descriptive Analytics 59

ipl_auction_df[influential_features].corr()

SR-B AVE Sixers Sold Price

SR-B 1.000000 0.583579 0.425394 0.184278

AVE 0.583579 1.000000 0.705365 0.396519

Sixers 0.425394 0.705365 1.000000 0.450609

Sold Price 0.184278 0.396519 0.450609 1.000000

sn.heatmap(ipl_auction_df[influential_features].corr(),	annot=True);

1

1

1

1

0.58

0.58

0.43 0.45

0.71

0.71

0.4

0.43 0.18 0.90

0.75

0.60

0.45

0.30

SR-B AVE SIXERS SOLD PRICE

0.450.40.18

A
V

E
S

R
-B

S
IX

E
R

S
S

O
LD

 P
R

IC
E

FIGURE 2.15 Heatmap of correlation values.

The color map scale is shown along the heatmap. Setting annot attribute to true prints the correlation
values in each box of the heatmap and improves readability of the heatmap. Here the heatmap shows that
AVE and SIXER show positive correlation, while SOLD PRICE and SR-B are not so strongly correlated.

 CONCLUSION

 1. The objective of descriptive analytics is simple comprehension of data using data summarization,
basic statistical measures and visualization.

 2. DataFrames, which can be visualized as in-memory structured query language (SQL) tables, are
widely used data structures for loading and manipulating structured data.

 3. Pandas library provides excellent support for DataFrame and its operations. Operations like
filtering, grouping, aggregations, sorting, joining and many more are readily available in this library.

 4. Matplotlib and seaborn are two most widely used libraries for creating visualization.
 5. Plots like histogram, distribution plots, box plots, scatter plots, pair plots, heatmap can be created to

find insights during exploratory analysis.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 59 4/24/2019 6:53:44 PM

Machine Learning using Python60

 EXERCISES

Use the Bollywood Dataset to Answer Questions 1 to 12.
The data file bollywood.csv (link to the datasets is provided in the Preface) contains box office collection
and social media promotion information about movies released in 2013−2015 period. Following are the 
columns and their descriptions.

 z SlNo – Release Date
 z MovieName – Name of the movie
 z ReleaseTime – Mentions special time of release. LW (Long weekend), FS (Festive Season), HS

(Holiday Season), N (Normal)
 z Genre – Genre of the film such as Romance, Thriller, Action, Comedy, etc.
 z Budget – Movie creation budget
 z BoxOfficeCollection – Box office collection
 z YoutubeViews – Number of views of the YouTube trailers
 z YoutubeLikes – Number of likes of the YouTube trailers
 z YoutubeDislikes – Number of dislikes of the YouTube trailers

Use Python code to answer the following questions:

 1. How many records are present in the dataset? Print the metadata information of the dataset.
 2. How many movies got released in each genre? Which genre had highest number of releases? Sort

number of releases in each genre in descending order.
 3. How many movies in each genre got released in different release times like long weekend, festive

season, etc. (Note: Do a cross tabulation between Genre and ReleaseTime.)
 4. Which month of the year, maximum number movie releases are seen? (Note: Extract a new column

called month from ReleaseDate column.)
 5. Which month of the year typically sees most releases of high budgeted movies, that is, movies with

budget of 25 crore or more?
 6. Which are the top 10 movies with maximum return on investment (ROI)? Calculate return on

investment (ROI) as (BoxOfficeCollection – Budget) / Budget.
 7. Do the movies have higher ROI if they get released on festive seasons or long weekend? Calculate

the average ROI for different release times.
 8. Draw a histogram and a distribution plot to find out the distribution of movie budgets. Interpret the

plot to conclude if the most movies are high or low budgeted movies.
 9. Compare the distribution of ROIs between movies with comedy genre and drama. Which genre

typically sees higher ROIs?
10. Is there a correlation between box office collection and YouTube likes? Is the correlation positive or

negative?
11. Which genre of movies typically sees more YouTube likes? Draw boxplots for each genre of movies

to compare.
12. Which of the variables among Budget, BoxOfficeCollection, YoutubeView, YoutubeLikes,

YoutubeDislikes are highly correlated? Note: Draw pair plot or heatmap.

Use the SAheart Dataset to Answer Questions 13 to 20.
The dataset SAheart.data is taken from the link below:

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 60 4/24/2019 6:53:44 PM

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data

Chapter 2 · Descriptive Analytics 61

The dataset contains retrospective sample of males in a heart-disease high-risk region of the Western
Cape, South Africa. There are roughly two controls per case of Coronary Heart Disease (CHD). Many of the
CHD-positive men have undergone blood pressure reduction treatment and other programs to reduce their
risk factors after their CHD event. In some cases, the measurements were made after these treatments. These
data are taken from a larger dataset, described in Rousseauw et al. (1983), South African Medical Journal. It is
a tab separated file (csv) and contains the following columns (source: http://www-stat.stanford.edu)

 z sbp – Systolic blood pressure
 z tobacco – Cumulative tobacco (kg)
 z ldl – Low densiity lipoprotein cholesterol
 z adiposity
 z famhist – Family history of heart disease (Present, Absent)
 z typea – Type-A behavior
 z obesity
 z alcohol – Current alcohol consumption
 z age – Age at onset
 z chd – Response, coronary heart disease

13. How many records are present in the dataset? Print the metadata information of the dataset.
14. Draw a bar plot to show the number of persons having CHD or not in comparison to they having

family history of the disease or not.
15. Does age have any correlation with sbp? Choose appropriate plot to show the relationship.
16. Compare the distribution of tobacco consumption for persons having CHD and not having CHD.

Can you interpret the effect of tobacco consumption on having coronary heart disease?
17. How are the parameters sbp, obesity, age and ldl correlated? Choose the right plot to show the

 relationships.
18. Derive a new column called agegroup from age column where persons falling in different age ranges

are categorized as below.
  (0–15): young
  (15–35): adults
  (35–55): mid
  (55–): old
19. Find out the number of CHD cases in different age categories. Do a barplot and sort them in the

order of age groups.
20. Draw a box plot to compare distributions of ldl for different age groups.

 REFERENCES

 1.  U Dinesh Kumar  (2017). Business Analytics: The Science of Data-Driven Decision Making, Wiley
India Pvt. Ltd., India.

 2.  UC Irvine Machine Learning Repository: https://archive.ics.uci.edu/ml/index.php
 3. The Elements of Statistical Learning (Stanford): https://web.stanford.edu/~hastie/ElemStatLearn/
 4. Pandas Library: https://pandas.pydata.org/
 5. Matplotlib Library: https://matplotlib.org/
 6. Seabon Library: https://seaborn.pydata.org/
 7.  Rousseauw J, du Plessis J, Benade A, Jordaan P, Kotze J, and Ferreira J (1983). Coronary Risk Factor 

Screening in Three Rural Communities, South African Medical Journal, 64, pp. 430–436.

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 61 4/24/2019 6:53:44 PM

https://archive.ics.uci.edu/ml/index.php
https://web.stanford.edu/~hastie/ElemStatLearn/
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/

Chapter 02_Descriptive Analytics Exploring and Preparing Datasets.indd 62 4/24/2019 6:53:44 PM

3.1 | OVERVIEW

Analytics applications involve tasks such as prediction of the probability of occurrence of an event,
testing a hypothesis, building models to explain variations in a KPI (key performance indicator) that is
of importance to the business, such as profitability, market share, demand, etc. Many important tasks in
analytics deal with uncertain events and it is essential to understand probability theory that can be used
to measure and predict uncertain events.

In this chapter, we will introduce the concepts of random variables, probability distributions, distri-
bution parameters, and how they can be applied to solve real-world problems. We will also explore the
concepts of various discrete and continuous distributions, probability density functions, probability mass
function, and cumulative distribution function. Finally, we will discuss hypothesis testing and its impor-
tance in analytics, understand the concept of significance (a) value, the probability value (p-value), and
various hypotheses tests such as Z-test, various t-tests, and chi-square goodness of fit tests.

3.2 | PROBABILITY THEORY – TERMINOLOGY

In this section, we will be discussing various terminologies that are used in probability theory.

3.2.1 | Random Experiment

In machine learning, we mostly deal with uncertain events. Random experiment is an experiment in
which the outcome is not known with certainty. That is, the output of a random experiment cannot be
predicted with certainty.

LEARNING OBJECTIVES

After completing this chapter, you will be able to
•   Learn the concept of a random variable and its role in analytics.
•   Understand different probability distributions and their applications in analytics.
•   Learn how to derive insights from statistical measures such as mean, variance, probability 

distribution functions, confidence interval, etc.
•   Learn how to formulate and carry out hypothesis tests such as one-sample Z-test, t-test, two-

sample t-test, paired t-test, chi-square tests, and analysis of variance (ANOVA).

CHAPTER

3Probability Distributions
and Hypothesis Tests

Chapter 03_Probability Distributions and Hypothesis Tests.indd 63 4/24/2019 6:54:08 PM

Machine Learning using Python64

3.2.2 | Sample Space

Sample space is the universal set that consists of all possible outcomes of an experiment. Sample
space is usually represented using the letter “S” and individual outcomes are called the elementary
events. The sample space can be finite or infinite. Few random experiments and their sample spaces
are discussed below:

Experiment: Outcome of a college application
Sample Space = S = {admitted, not admitted}

Experiment: Predicting customer churn at an individual customer level
Sample Space = S = {Churn, No Churn}

Experiment: Television Rating Point (TRP) for a television program
Sample Space = S = {X| X Î R, 0 ≤ X ≤ 100}, that is X is a real number that can take any value between
0 and 100%.

3.2.3 | Event

Event (E) is a subset of a sample space and probability is usually calculated with respect to an event.
Examples of events include:

1. Number of cancellation of orders placed at an E-commerce portal site exceeding 10%.
2. The number of fraudulent credit card transactions exceeding 1%.
3. The life of a capital equipment being less than one year.
4. Number of warranty claims less than 10 for a vehicle manufacturer with a fleet of 2000 vehicles

under warranty.

3.3 | RANDOM VARIABLES

Random variables play an important role in describing, measuring, and analyzing uncertain events such
as customer churn, employee attrition, demand for a product, and so on. A random variable is a function
that maps every outcome in the sample space to a real number. A random variable can be classified as
discrete or continuous depending on the values it can take.

If the random variable X can assume only a finite or countably infinite set of values, then it is called
a discrete random variable. Examples of discrete random variables are as follows:

1.  Credit rating (usually classified into different categories such as low, medium, and high or using 
labels such as AAA, AA, A, BBB, etc.).

2. Number of orders received at an e-commerce retailer which can be countably infinite.
3. Customer churn [the random variables take binary values: (a) Churn and (b) Do not churn].
4. Fraud [the random variables take binary values: (a) Fraudulent transaction and (b) Genuine

transaction].

A random variable X which can take a value from an infinite set of values is called a continuous random
variable. Examples of continuous random variables are as follows:

Chapter 03_Probability Distributions and Hypothesis Tests.indd 64 4/24/2019 6:54:08 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 65

1. Market share of a company (which take any value from an infinite set of values between 0
and 100%).

2. Percentage of attrition of employees of an organization.
3. Time-to-failure of an engineering system.
4. Time taken to complete an order placed at an e-commerce portal.

Discrete random variables are described using probability mass function (PMF) and cumulative distri-
bution function (CDF). PMF is the probability that a random variable X takes a specific value k; for
example, the number of fraudulent transactions at an e-commerce platform is 10, written as P(X = 10).
On the other hand, CDF is the probability that a random variable X takes a value less than or equal to 10,
which is written as P(X ≤ 10).

Continuous random variables are described using probability density function (PDF) and cumulative
distribution function (CDF). PDF is the probability that a continuous random variable takes value in a
small neighborhood of “x” and is given by

 f x P x X x x
x

() = ≤ ≤ +[]
→

Lim
d

d
0

 (3.1)

The CDF of a continuous random variable is the probability that the random variable takes value less
than or equal to a value “a”. Mathematically,

 F a f x dx
a

() ()=
−∞
∫ (3.2)

In the following sections, we will discuss the concepts of various discrete and continuous distributions
and how to apply them to real-world scenarios.

3.4 | BINOMIAL DISTRIBUTION

Binomial distribution is a discrete probability distribution and has several applications in many business
contexts. A random variable X is said to follow a binomial distribution when:

1. The random variable can have only two outcomes − success and failure (also known as Bernoulli
trials).

2. The objective is to find the probability of getting x successes out of n trials.
3. The probability of success is p and thus the probability of failure is (1 − p).
4. The probability p is constant and does not change between trials.

Success and failure are generic terminologies used in binomial distribution, based on the context we
will interpret success and failure. Few examples of business problems with two possible outcomes are as
follows:

1. Customer churn where the outcomes are: (a) Customer churn and (b) No customer churn.
2. Fraudulent insurance claims where the outcomes are: (a) Fraudulent claim and (b) Genuine

claim.
3.  Loan repayment default by a customer where the outcomes are: (a) Default and (b) No default.

The PMF of the binomial distribution (probability that the number of success will be exactly x out of
n trials) is given by

Chapter 03_Probability Distributions and Hypothesis Tests.indd 65 4/24/2019 6:54:09 PM

Machine Learning using Python66

 PMF x P X x
n
x

p px n x() () ()= = =

× × − −1 (3.3)

where

n
x

n
x n x

=
−
!

!()!

The CDF of a binomial distribution (probability that the number of success will be x or less than x out of
n trials) is given by

 CDF x P X x
n
k

p pk n k

k

x

() () ()= ≤ =

× × − −

=
∑ 1

0

 (3.4)

In Python, the scipy.stats.binom class provides methods to work with binomial distribution.

3.4.1 | Example of Binomial Distribution

Fashion Trends Online (FTO) is an e-commerce company that sells women apparel. It is observed that
10% of their customers return the items purchased by them for many reasons (such as size, color, and
material mismatch). On a specific day, 20 customers purchased items from FTO. Calculate:

1. Probability that exactly 5 customers will return the items.
2. Probability that a maximum of 5 customers will return the items.
3. Probability that more than 5 customers will return the items purchased by them.
4. Average number of customers who are likely to return the items and the variance and the

 standard deviation of the number of returns.

We solve each of these as follows:

1. Probability that exactly 5 customers will return the items.
The function stats.binom.pmf() calculates PMF for binomial distribution and takes three parameters:

(a) Expected number of successful trials (5)
(b) Total number of trials (20)
(c) The probability of success (0.1)

Note: The values in the bracket indicate the value of the parameters.

from scipy import stats
stats.binom.pmf(5, 20, 0.1)

The corresponding probability is 0.03192, that is, the probability that exactly 5 customers will return the
items is approximately 3%.

To visualize how the PMF varies with increasing number of successful trials, we will create a list of
all possible number of successes (0 to 20) and corresponding PMF values and draw a bar plot as shown
in Figure 3.1.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 66 4/24/2019 6:54:10 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 67

range(0,21) returns all values from 0 to 20 (excluding 21)
pmf_df = pd.DataFrame({ ‘success’: range(0,21),

‘pmf’: list(stats.binom.pmf(range(0,21),
20, 0.1))})

Creating a bar plot with number of success as x and pmf as y
sn.barplot(x = pmf_df.success, y = pmf_df.pmf)
plt.ylabel(‘pmf’)
plt.xlabel(‘Number of items returned);

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of items returned

0

0.30

0.25

0.20

0.15

pm
f

0.10

0.05

0.00

FIGURE 3.1 Binomial distribution.

2. Probability that a maximum of 5 customers will return the items.
The class stats.binom.cdf() computes the CDF for binomial distribution. In this case the cumulative dis-
tribution function returns the probability that a maximum of 5 customers will return items.

stats.binom.cdf(5, 20, 0.1)

The corresponding probability value is 0.9887.

3. Probability that more than 5 customers will return the items purchased by them.
Total probability of any number of customers returning items (including 0) is always equal to 1.0. So, the
probability that more than 5 customers will return the items can be computed by subtracting the probability
of a maximum of 5 customers will return items from 1.0. In other words, the probability that more than 5
customers will return the items can be obtained by computing CDF of 5 and then subtracting it from 1.0.

1 - stats.binom.cdf(5, 20, 0.1)

The corresponding probability value is 0.0112.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 67 4/24/2019 6:54:10 PM

Machine Learning using Python68

4. Average number of customers who are likely to return the items and the variance and the
standard deviation of the number of returns.

(a) Average of a binomial distribution is given by n * p
(b) Variance of the binomial distribution is given by n * p * (1 − p)

mean, var = stats.binom.stats(20, 0.1)
print(“Average: ”, mean , “ Variance:”, var)

Average: 2.0 Variance: 1.8

3.5 | POISSON DISTRIBUTION

In many situations, we may be interested in calculating the number of events that may occur over a
period of time or space. For example, number of cancellation of orders by customers at an e-commerce
portal, number of customer complaints, number of cash withdrawals at an ATM, number of typographi-
cal errors in a book, number of potholes on Bangalore roads, etc. To find the probability of number of
events, we use Poisson distribution. The PMF of a Poisson distribution is given by

 P X k e
k

k

()
!

= = ×−l l
 (3.5)

where l is the rate of occurrence of the events per unit of measurement (in many situations the unit of
measurement is likely to be time).

3.5.1 | Example of Poisson Distribution

The number of calls arriving at a call center follows a Poisson distribution at 10 calls per hour.

1. Calculate the probability that the number of calls will be maximum 5.
2. Calculate the probability that the number of calls over a 3-hour period will exceed 30.

We solve each of these as follows:

1. Calculate the probability that a maximum of 5 calls will arrive at the call center.
As the number of calls arriving at the center follows Poisson distribution, we can use stats.poisson.cdf to
calculate the probability value. It takes the following two parameters:

(a) First parameter: Number of events (in this case, 5 calls) for which the probability needs to be
calculated.

(b) Second parameter: The average numbers of events (i.e., 10 calls per hour).

stats.poisson.cdf(5, 10)

0.06708

The corresponding probability is 0.067.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 68 4/24/2019 6:54:10 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 69

2. Calculate the probability that the number of calls over a 3-hour period will exceed 30.
Since the average calls per hour is 10 (l = 10), and we are interested in finding the calls over 3 hours, the mean
number of calls over 3 hours is lt = 30. Probability that the number of calls will be more than 30 is given by

1 - stats.poisson.cdf(30, 30)

0.45164

The corresponding probability is 0.451.
To visualize the Poisson distribution for the average calls per hour as 10, we can plot PMF for all

possible number of calls the call center can receive ranging from 0 to 30. We will create a DataFrame
which will contain the number of calls ranging from 0 to 30 in one column named success and the cor-
responding PMFs in another column named pmf. The plotting is done using barplot in seaborn library.

Range(0,30) returns all values from 0 to 30 (excluding 30)
pmf_df = pd.DataFrame({ ‘success’: range(0,30), ‘pmf’: list(stats.

poisson.pmf(range(0,30), 10))})
Creating a barplot with number of calls as x and pmf as y
sn.barplot(x = pmf_df.success, y = pmf_df.pmf);
plt.xlabel(‘Number of Calls Received);

pm
f

0.12

0.10

0.08

0.06

0.04

0.02

0.00
0 1 2 3 4 5 6 7 8 10

Number of calls received

1112 131415161718 19202122 23 2425 26 27 28 299

FIGURE 3.2 Poisson distribution.

The corresponding Poisson distribution plot is shown in Figure 3.2.

3.6 | EXPONENTIAL DISTRIBUTION

Exponential distribution is a single parameter continuous distribution that is traditionally used for
modeling time-to-failure of electronic components. The exponential distribution represents a process in
which events occur continuously and independently at a constant average rate.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 69 4/24/2019 6:54:11 PM

Machine Learning using Python70

The probability density function is given by

f x e xx() ,= ³-l l 0

where

1. The parameter l is the scale parameter and represents the rate of occurrence of the event.
2. Mean of exponential distribution is given by 1/l.

3.6.1 | Example of Exponential Distribution

The time-to-failure of an avionic system follows an exponential distribution with a mean time between
failures (MTBF) of 1000 hours. Calculate

1. The probability that the system will fail before 1000 hours.
2. The probability that it will not fail up to 2000 hours.
3. The time by which 10% of the system will fail (i.e., calculate P10 life).

We solve each of these as follows: Since time-to-failure is 1000 hours, so l is 1/1000.

1. Calculate the probability that the system will fail before 1000 hours.
Cumulative distribution up to value 1000 for the exponential distribution will give the probability that
the system will fail before 1000 hours. stats.expon.cdf() takes the number of hours and mean and scale of
the exponential distribution as parameters to calculate CDF.

stats.expon.cdf(1000,
loc = 1/1000,
scale = 1000)

0.6321

The corresponding probability value is 0.6321.

 2. Calculate the probability that it will not fail up to 2000 hours.
Probability that the system will not fail up to 2000 hours is same as the probability that the system will
fail only beyond 2000 hours. This can be obtained by subtracting the probability that the system will fail
up to 2000 hours from total probability (i.e. 1.0).

1 - stats.expon.cdf(2000,
loc = 1/1000,
scale = 1000)

0.1353

The corresponding probability value 0.1353.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 70 4/24/2019 6:54:11 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 71

3. Calculate the time by which 10% of the system will fail (i.e., calculate P10 life).
This can be calculated by ppf (percent point function) and is an inverse of CDF. stats.expon.ppf takes the
percent point value and the mean and scale of the exponential distribution.

stats.expon.ppf(. 1,
loc = 1/1000,
scale = 1000)

105.3615

That is, by 105.36 hours, 10% of systems will fail.
We can visualize the exponential distribution by plotting the PDF function against different time-

to-failure hours. We will create a list of time-to-failure ranging from 100 to 5000 and then calculate and
plot the PDF against those.

pdf_df = pd.DataFrame({ ‘success’: range(0,5000, 100),
‘pdf’:
list(stats.expon.pdf(range(0, 5000, 100),

loc = 1/1000,
scale = 1000))})

plt.figure(figsize=(10,4))
sn.barplot(x = pdf_df.success, y = pdf_df.pdf)
plt.xticks(rotation=90);
plt.xlabel(‘Time to failure’);

The corresponding exponential distribution is shown in Figure 3.3.

pd
f

0.0008

0.0006

0.0004

0.0002

0.0000

Time to failure

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00
31

00
32

00
33

00
34

00
35

00
36

00
37

00
38

00
39

00
40

00
41

00
42

00
43

00
44

00
45

00
46

00
47

00
48

00
49

00

FIGURE 3.3 Exponential distribution.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 71 4/24/2019 6:54:11 PM

Machine Learning using Python72

3.7 | NORMAL DISTRIBUTION

Normal distribution, also known as Gaussian distribution, is one of the most popular continuous
 distribution in the field of analytics especially due to its use in multiple contexts. Normal distribution
is observed across many naturally occurring measures such as age, salary, sales volume, birth weight,
height, etc. It is also popularly known as bell curve (as it is shaped like a bell).

3.7.1 | Example of Normal Distribution

To understand normal distribution and its application, we will use daily returns of stocks traded in BSE
(Bombay Stock Exchange). Imagine a scenario where an investor wants to understand the risks and
returns associated with various stocks before investing in them. For this analysis, we will evaluate two
stocks: BEML and GLAXO. The daily trading data (open and close price) for each stock is taken for the
period starting from 2010 to 2016 from BSE site (www.bseindia.com).

First, we will load and prepare the data before getting back to the application of normal distribution.

import pandas as pd
import numpy as np
import warnings

beml_df = pd.read_csv(‘BEML.csv’)
beml_df[0:5]

Date Open High Low Last Close Total Trade Quantity Turnover (Lacs)

0 2010-01-04 1121.0 1151.00 1121.00 1134.0 1135.60 101651.0 1157.18
1 2010-01-05 1146.8 1149.00 1128.75 1135.0 1134.60 59504.0 676.47
2 2010-01-06 1140.0 1164.25 1130.05 1137.0 1139.60 128908.0 1482.84
3 2010-01-07 1142.0 1159.40 1119.20 1141.0 1144.15 117871.0 1352.98
4 2010-01-08 1156.0 1172.00 1140.00 1141.2 1144.05 170063.0 1971.42

glaxo_df = pd.read_csv(‘GLAXO.csv’)
glaxo_df[0:5]

Date Open High Low Last Close Total Trade Quantity Turnover (Lacs)

0 2010-01-04 1613.00 1629.10 1602.00 1629.0 1625.65 9365.0 151.74
1 2010-01-05 1639.95 1639.95 1611.05 1620.0 1616.80 38148.0 622.58
2 2010-01-06 1618.00 1644.00 1617.00 1639.0 1638.50 36519.0 595.09
3 2010-01-07 1645.00 1654.00 1636.00 1648.0 1648.70 12809.0 211.00
4 2010-01-08 1650.00 1650.00 1626.55 1640.0 1639.80 28035.0 459.11

The dataset  contains daily Open and Close price  along with daily High and Low prices, Total Trade 
Quantity, and Turnover (Lacs). Our discussion will involve only close price. The daily returns of a stock 
are calculated as the change in close prices with respect to the close price of yesterday.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 72 4/24/2019 6:54:12 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 73

Since our analysis will involve only daily close prices, so we will select Date and Close columns from
the DataFrames.

beml_df = beml_df[[‘Date’, ‘Close’]]
glaxo_df = glaxo_df[[‘Date’, ‘Close’]]

Visualizing the daily close prices will show how stock prices have moved over time. To show the trend
of close price, the rows should be ordered by time. The DataFrames have a date column, so we can
create a DatetimeIndex index from this column Date. It will ensure that the rows are sorted by time in
ascending order.

glaxo_df = glaxo_df.set_index(pd.DatetimeIndex(glaxo_df[‘Date’]))
beml_df = beml_df.set_index(pd.DatetimeIndex(beml_df[‘Date’]))

Let us display the first 5 records after the DataFrame is sorted by time to ensure that it is done correctly.

glaxo_df.head(5)

Date Close

Date

2010-01-04 2010-01-04 1625.65

2010-01-05 2010-01-05 1616.80

2010-01-06 2010-01-06 1638.50

2010-01-07 2010-01-07 1648.70

2010-01-08 2010-01-08 1639.80

Now plot the trend of close prices of GLAXO stock using plot() method of matplotlib, which takes
glaxo_df.Close as a parameter. The trend is shown in Figure 3.4.

import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline

plt.plot(glaxo_df.Close);
plt.xlabel(‘Time’);
plt.ylabel(‘Close Price’);

Now plot BEML stock close price trend. The trend is shown in Figure 3.5.

plt.plot(beml_df.Close);
plt.xlabel(‘Time’);
plt.ylabel(‘Close’);

Chapter 03_Probability Distributions and Hypothesis Tests.indd 73 4/24/2019 6:54:12 PM

Machine Learning using Python74

3500

3000

2500

C
lo

se
 P

ric
e

2000

1500

2010 2011 2012 2013
Time

2014 2015 2016 2017

FIGURE 3.4 Close price trends of GLAXO stock.

1200

1000

1400

1600

600

800

200

400

2010 2011 2012 2013 2014
Time

C
lo

se

2015 2016 2017

FIGURE 3.5 Close price trends of BEML stock.

It can be observed that there is an upward trend in the close price of Glaxo during 2010−2017 period.
However, BEML had a downward trend during 2010−2013, followed by an upward trend since 2014 and 
then again a price correction from mid of 2015 (Figure 3.5).

What if a short-term (intraday) investor is interested in understanding the following characteristics
about these stocks:

1. What is the expected daily rate of return of these stocks?
2. Which stocks have higher risk or volatility as far as daily returns are concerned?
3. What is the expected range of return for 95% confidence interval?

Chapter 03_Probability Distributions and Hypothesis Tests.indd 74 4/24/2019 6:54:12 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 75

4. Which stock has higher probability of making a daily return of 2% or more?
5. Which stock has higher probability of making a loss (risk) of 2% or more?

To answer the above questions, we must find out the behavior of daily returns (we will refer to this as gain
hence forward) on these stocks. The gain can be calculated as a percentage change in close price, from the
previous day’s close price.

gain
ClosePrice ClosePrice

ClosePrice
t t

t

=
− −

−

1

1

The method pct_change() in Pandas will give the percentage change in a column value shifted by a
period, which is passed as a parameter to periods. periods = 1 indicates the value change since last row,
that is, the previous day.

glaxo_df[‘gain’] = glaxo_df.Close.pct_change(periods = 1)
beml_df[‘gain’] = beml_df.Close.pct_change(periods = 1)
glaxo_df.head(5)

Date Close Gain

Date

2010-01-04 2010-01-04 1625.65 NaN

2010-01-05 2010-01-05 1616.80 −0.005444

2010-01-06 2010-01-06 1638.50 0.013422

2010-01-07 2010-01-07 1648.70 0.006225

2010-01-08 2010-01-08 1639.80 −0.005398

The first day gain is shown as NAN, as there is no previous day for it to calculate gain. We can drop this
record using the dropna() method.

glaxo_df = glaxo_df.dropna()
beml_df = beml_df.dropna()

Now, plot gain against time (Figure 3.6).

plt.figure(figsize = (8, 6));
plt.plot(glaxo_df.index, glaxo_df.gain);
plt.xlabel(‘Time’);
plt.ylabel(‘gain’);

The plot in Figure 3.6 shows that the daily gain is highly random and fluctuates around 0.00. The gain
remains mostly between 0.05 and −0.05. However, very high gain close to 0.20 has been observed once
and similarly, high loss of around 0.08 has been observed once. We can draw distribution plot of gain of
both BEML and Glaxo stocks to gain better insight (see Figure 3.7).

Chapter 03_Probability Distributions and Hypothesis Tests.indd 75 4/24/2019 6:54:13 PM

Machine Learning using Python76

2010

-0.05

0.05

0.10

0.15

0.20

0.00

2011 2012 2013 2014 2015 2016 2017
Time

G
ai

n

FIGURE 3.6 Daily gain of BEML stock.

sn.distplot(glaxo_df.gain, label = ‘Glaxo’);
sn.distplot(beml_df.gain, label = ‘BEML’);
plt.xlabel(‘gain’);
plt.ylabel(‘Density’);
plt.legend();

Glaxo
BEML

D
en

si
ty

Gain
-0.15

10

20

30

40

50

0
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20

FIGURE 3.7 Distribution plot of daily gain of BEML and Glaxo stocks.

From the plot shown in Figure 3.7, gain seems to be normally distributed for both the stocks with a mean
around 0.00. BEML seems to have a higher variance than Glaxo.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 76 4/24/2019 6:54:13 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 77

Note: This distribution has a long tail, but we will assume normal distribution for simplicity and discuss
the example.

3.7.2 | Mean and Variance

The normal distribution is parameterized by two parameters: the mean of the distribution m and the vari-
ance s 2. The sample mean of a normal distribution is given by

x
n

xi
i

n

=
=
∑1

1
Variance is given by

s 2 2

1

1
= -

=
ån

x xi
i

n

()

The standard deviation is square root of variance and is denoted by s.
Methods mean() and std() on DataFrame columns return mean and standard deviation, respectively.
Mean and standard deviation for daily returns for Glaxo are:

print(“Daily gain of Glaxo”)
print(“---------------------”)
print(“Mean: ”, round(glaxo_df.gain.mean(), 4))
print(“Standard Deviation: ”, round(glaxo_df.gain.std(), 4))

Daily gain of Glaxo

Mean: 0.0004
Standard Deviation: 0.0134

Mean and standard deviation for daily returns for BEML are:

print(“Daily gain of BEML”)
print(“---------------------”)
print(“Mean: ”, round(beml_df.gain.mean(), 4))
print(“Standard Deviation: ”, round(beml_df.gain.std(), 4))

Daily gain of BEML

Mean: 0.0003
Standard Deviation: 0.0264

The describe() method of DataFrame returns the detailed statistical summary of a variables.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 77 4/24/2019 6:54:14 PM

Machine Learning using Python78

beml_df.gain.describe()

count 1738.000000
mean 0.000271
std 0.026431
min -0.133940
25% -0.013736
50% -0.001541
75% 0.011985
max 0.198329
Name: gain, dtype: float64

The expected daily rate of return (gain) is around 0% for both stocks. Here variance or standard devia-
tion of gain indicates risk. So, BEML stock has a higher risk as standard deviation of BEML is 2.64% 
whereas the standard deviation for Glaxo is 1.33%.

3.7.3 | Confidence Interval

To find out what is the expected range of return for 95% confidence interval, we need to calculate the values
of gain for two standard deviations away from mean on both sides of the distribution, that is, m ± 2s .

For advanced statistical analysis, we can use Python library scipy.stats. The library contains sub-packages
for analyzing different distributions. For example, methods to analyze normal distribution are given by stats.
norm. The interval() method of stats.norm gives the confidence interval for a normal distribution.

stats.norm.interval() takes three parameters:

1. alpha: It is the interval, for example, 0.9 for 90% confidence interval.
2. loc: It is the location parameter of the distribution. It is mean for normal distribution.
3. scale: It is the scale parameter of the distribution. It is standard deviation for normal distribution.

from scipy import stats

glaxo_df_ci = stats.norm.interval(0.95,
loc = glaxo_df.gain.mean(),
scale = glaxo_df.gain.std())

print(“Gain at 95% confidence interval is: ”, np.round(glaxo_df_ci, 4))

Gain at 95% confidence interval is: [-0.0258 0.0266]

The result returned by the method is a tuple. The first value of the tuple is the leftmost value of the inter-
val and second value is the rightmost value of the interval. For 95% confidence interval, gain of Glaxo
remains between −2.58% and 2.66%.

Returns for BEML for 95% confidence interval is given by

beml_df_ci = stats. norm.interval(0.95,
loc=beml_df.gain.mean(),
scale=beml_df.gain.std())

Chapter 03_Probability Distributions and Hypothesis Tests.indd 78 4/24/2019 6:54:14 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 79

print(“Gain at 95% confidence interval is:”, np.round(beml_df_ci, 4))

Gain at 95% confidence interval is: [-0.0515 0.0521]

Hence gain of BEML remains between −5.15% and 5.21% for 95% confidence interval.

3.7.4 | Cumulative Probability Distribution

To calculate the probability of gain higher than 2% or more, we need to find out what is the sum of all
probabilities that gain can take values more than 0.02 (i.e., 2%).

The probability density function, f (xi), is defined as the probability that the value of random vari-
able X lies between an infinitesimally small interval defined by xi and xi + δx. Cumulative distribution
function F(a) is the area under the probability density function up to X = a. The cumulative distribution
function of a continuous random variable is as shown in Figure 3.8.

a

FIGURE 3.8 Cumulative distribution function F(a).

To calculate the probability that the stocks’ gain will be less than −0.02 (i.e., loss), cumulative distribution
function can be used to calculate the area of the distribution from leftmost point up to −0.02. The stats.
norm.cdf() class returns cumulative distribution for a normal distribution.

print(“Probability of making 2% loss or higher in Glaxo: ”)
stats.norm.cdf(-0.02,

loc=glaxo_df.gain.mean(),
scale=glaxo_df.gain.std())

Probability of making 2% loss or higher in Glaxo:
0.0635

print(“Probability of making 2% loss or higher in BEML: ”)
stats.norm.cdf(-0.02,

loc=beml_df.gain.mean(),
scale=beml_df.gain.std())

Probability of making 2% loss or higher in BEML:
0.2215

Chapter 03_Probability Distributions and Hypothesis Tests.indd 79 4/24/2019 6:54:14 PM

Machine Learning using Python80

Cumulative distribution function value indicates that BEML has 22.1% probability, whereas Glaxo has 
only 6.35% probability of making a loss of 2% or higher. Similarly, the probability of making a daily gain
of 2% or higher will be given by the area to the right of 0.02 of the distribution. As stats.norm.cdf() gives
the cumulative area from left, the probability can be computed by subtracting the cumulative distribu-
tion function value from 1.

print(“ Probability of making 2% gain or higher in Glaxo: ”,
1 - stats.norm.cdf(0.02,
loc=glaxo_df.gain.mean(),
scale=glaxo_df.gain.std()))

print(“ Probability of making 2% gain or higher in BEML: ”,
1 - stats.norm.cdf(0.02,
loc=beml_df.gain.mean(),
scale=beml_df.gain.std()))

Probability of making 2% gain or higher in Glaxo: 0.0710
Probability of making 2% gain or higher in BEML: 0.2276

The probability of making a gain of 2% or more for Glaxo is 7.1%, whereas it is 22.76% for BEML.

3.7.5 | Other Important Distributions

Probability distributions are fundamental to statistics, just like data structures are to computer science.
Apart from the distributions discussed till now, following are few other important distributions:

1. Beta Distribution: It is a continuous distribution which can take values between 0 and 1.
2. Gamma Distribution:  It  is used to model waiting times  in different contexts. We can model 

time until the next n events occur using Gamma distribution.
3. Weibull Distribution: It is a very popular distribution in reliability theory. Exponential distri-

bution is a special case of Weibull distribution. In exponential distribution, the rate of occur-
rence of an event is constant, but using Weibull distribution we can model increasing (or
decreasing) rates of occurrence of an event over time.

4. Geometric Distribution: If the binomial distribution is about “How many successes?” then the
geometric distribution is about “How many failures until a success?”.

3.8 | CENTRAL LIMIT THEOREM

Central limit theorem (CLT) is one of the most important theorems in statistics due to its applications in 
the testing of hypothesis. Let S1, S2, …, Sk be samples of size n drawn from an independent and identically
distributed population with mean m and standard deviation σ. Let X1, X2, …, Xk be the sample means
(of the samples S1, S2, …, Sk). According to the CLT, the distribution of X1, X2, …, Xk follows a normal
distribution with mean m and standard deviation of s / n . That is, the sampling distribution of mean
will follow a normal distribution with mean m (same as the mean of the population) and standard devia-
tion s / n . We will understand in the following sections that central limit theorem is key to hypothesis
testing, which primarily deals with sampling distribution.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 80 4/24/2019 6:54:14 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 81

3.9 | HYPOTHESIS TEST

Hypothesis is a claim and the objective of hypothesis testing is to either reject or retain a null hypothesis
(current belief) with the help of data. Hypothesis testing consists of two complementary statements
called null hypothesis and alternative hypothesis. Null hypothesis is an existing belief and alternate hypoth-
esis is what we intend to establish with new evidences (samples).

Hypothesis tests are broadly classified into parametric tests and non-parametric tests. Parametric
tests are about population parameters of a distribution such as mean, proportion, standard deviation,
etc., whereas non-parametric tests are not about parameters, but about other characteristics such as
independence of events or data following certain distributions such as normal distribution.

Few examples of the null hypothesis are as follows:

1. Children who drink the health drink Complan (a health drink produced by the company Heinz
in India) are likely to grow taller.

2. Women use camera phone more than men (Freier, 2016).
3. Vegetarians miss few flights (Siegel, 2016).
4. Smokers are better sales people.

The steps for hypothesis tests are as follows:

1. Define null and alternative hypotheses. Hypothesis is described using a population parameter,
that is, mean, standard deviation, etc. Normally, H0 is used to denote null hypothesis and HA for
alternate hypothesis.

2. Identify the test statistic to be used for testing the validity of the null hypothesis, for example,
Z-test or t-test.

3. Decide the criteria for rejection and retention of null hypothesis. This is called significance value
(a). Typical value used for a is 0.05.

4. Calculate the p-value (probability value), which is the conditional probability of observing the
test statistic value when the null hypothesis is true. We will use the functions provided in scipy.
stats module for calculating the p-value.

5. Take the decision to reject or retain the null hypothesis based on the p-value and the significance
value a.

For a detailed understanding of the hypothesis test, refer to Chapter 6 of the book Business Analytics:
The Science of Data-Driven Decision Making by U Dinesh Kumar (2017), Wiley India.

For all examples, we will use the following notations:

1. m − population mean
2. s − population standard deviation
3. X − sample mean
4. S − sample standard deviation
5. n − sample size

Let us take a few examples and conduct the hypothesis test.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 81 4/24/2019 6:54:14 PM

Machine Learning using Python82

3.9.1 | Z-test

Z-test is used when

1. We need to test the value of population mean, given that population variance is known.
2. The population is a normal distribution and the population variance is known.
3. The sample size is large and the population variance is known. That is, the assumption of normal

distribution can be relaxed for large samples (n > 30).

Z-statistic is calculated as

Z X
n

= − m
s /

A passport office claims that the passport applications are processed within 30 days of
submitting the application form and all necessary documents. The file passport.csv contains
processing time of 40 passport applicants. The population standard deviation of the
processing time is 12.5 days. Conduct a hypothesis test at significance level a = 0.05 to verify
the claim made by the passport office.

In this case, the population mean (claim made by passport office) and standard devia-
tion are known. Population mean is 30 and population standard deviation is 12.5. The data-
set in passport.csv contains observations of actual processing time of 40 passports. We can
calculate the mean of these observations and calculate Z-statistics. If the Z-statistics value is
more than –1.64 (Z-critical value for left-tailed test), then it will be concluded that the pro-
cessing time is not less than 30, but higher. And if the Z-statistic is less than –1.64, then it can
be concluded that the processing time is less than 30 as claimed by passport office.

We now read the data and display first 5 records from passport.csv using the following code:

passport_df = pd.read_csv(‘passport.csv’)

passport_df.head(5)

processing_time

0 16.0

1 16.0

2 30.0

3 37.0

4 25.0

The following is used to print all the records from the dataset.

3.1 EXAMPLE

Chapter 03_Probability Distributions and Hypothesis Tests.indd 82 4/24/2019 6:54:15 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 83

 (Continued)

print(list(passport_df.processing_time))

[16.0, 16.0, 30.0, 37.0, 25.0, 22.0, 19.0, 35.0, 27.0, 32.0,
34.0, 28.0, 24.0, 35.0, 24.0, 21.0, 32.0, 29.0, 24.0, 35.0,
28.0, 29.0, 18.0, 31.0, 28.0, 33.0, 32.0, 24.0, 25.0, 22.0,
21.0, 27.0, 41.0, 23.0, 23.0, 16.0, 24.0, 38.0, 26.0, 28.0]

Let us first define the hypothesis. If m is population mean, that is, mean processing time of
passports then

H0 : m ≥ 30
HA : m < 30

We will conduct a Z-test for this hypothesis test. We will define a method named z_test,
which takes the population mean, population variance and the sample as parameter to cal-
culate and return Z-score and the p-value.

import math

def z_test(pop_mean, pop_std, sample):
z_score = (sample.mean() - pop_mean)/(pop_std/math.
sqrt(len(sample)))
return z_score, stats.norm.cdf(z_score)

z_test(30, 12.5, passport_df.processing_time)

(-1.4925, 0.0677)

The first value of the result is the Z-statistic value or Z-score and second value is the cor-
responding p-value. As the p-value is more than 0.05, the null hypothesis is retained. Also,
Z-statistic value is higher than –1.64.

The p-value provides us significance of sample evidence. In this example, we see that
there is 6.77% probability of observing a random sample at least as extreme as the observed
sample. Since 6.77% is greater than the significance value 5%, there is not enough evidence
to reject null hypothesis. The null hypothesis is retained and it can be concluded that average
 processing time of passports is greater than equal to 30.

3.1 EXAMPLE

3.9.2 | One-Sample t-Test

The t-test is used when the population standard deviation S is unknown (and hence estimated from the
sample) and is estimated from the sample. Mathematically,

t X
S n

-Statistics = ()
/
− m

Chapter 03_Probability Distributions and Hypothesis Tests.indd 83 4/24/2019 6:54:15 PM

Machine Learning using Python84

Aravind Productions (AP) is a newly formed movie production house based out of
Mumbai, India. AP was interested in understanding the production cost required for pro-
ducing a Bollywood movie. The industry believes that the production house will require
INR 500 million (50 crore) on average. It is assumed that the Bollywood movie production
cost follows a normal distribution. The production costs of 40 Bollywood movies in mil-
lions of rupees are given in bollywoodmovies.csv file. Conduct an appropriate hypothesis
test at a = 0.05 to check whether the belief about average production cost is correct.

In this case, the population mean is 500 and the sample set for actual production cost
is available in the file bollywoodmovies.csv. The population standard deviation is also not
known. To compare if the average cost of the samples is equal to the 500 or not, we can con-
duct a one-sample t-test using scipy.stats.ttest_1samp().

Using the following codes, read the data from the file bollywoodmovies.csv and display
the first 5 records.

bollywood_movies_df = pd.read_csv(‘bollywoodmovies.csv’)

bollywood_movies_df.head(5)

production_cost

0 601

1 627

2 330

3 364

4 562

Now we print all the records from the dataset.

print(list(bollywood_movies_df.production_cost))

[601, 627, 330, 364, 562, 353, 583, 254, 528, 470, 125, 60,
101, 110, 60, 252, 281, 227, 484, 402, 408, 601, 593, 729,
402, 530, 708, 599, 439, 762, 292, 636, 444, 286, 636, 667,
252, 335, 457, 632]

3.2 EXAMPLE

The expected value (mean) of a sample of independent observations is equal to the given population
mean.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 84 4/24/2019 6:54:15 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 85

 (Continued)

Null hypothesis is the sample mean equals 500 and alternate hypothesis is the sample mean
does not equal 500.

H0 : m = 500
HA : m ≠ 500

 scipy.stats.ttest_1samp() method can be used for this test. It takes two parameters:

1. a: array_like − sample observation.
2. popmean: float − expected value in null hypothesis.

stats.ttest_1samp(bollywood_movies_df.production_cost, 500)

Ttest_1sampResult(statistic=-2.2845, pvalue=0.02786)

This returns −2.2845 value for t-statistics and 0.0278 for p-value. This implies the sample
mean is less than (to the left of) population mean and has only 2.7% probability of being
part of the distribution with a population mean of 500. As p-value is less than 0.05, we can
conclude that the sample mean rejects that the production cost is equal to 500.

3.2 EXAMPLE

3.9.3 | Two-Sample t-Test

A two-sample t-test  is  required  to  test difference between  two population means where standard 
deviations are unknown. The parameters are estimated from the samples.

A company claims that children (in the age group between 7 and 12) who drink their
(the company’s) health drink will grow taller than the children who do not drink that health
drink. Data in the file healthdrink.xlsx shows average increase in height over one-year period
from two groups: one drinking the health drink and the other not drinking the health drink.
At a = 0.05, test whether the increase in height for the children who drink the health drink
is different than those who do not drink health drink.

Solution: In this case, the population mean and standard deviation are not known. We have
only two samples. One sample has observations of increase in height for the group drinking
health drink and the other sample having observations of increase in height for the group
not drinking health drink. We can read both the samples and conduct two-sample t-test
using scipy.stats.ttest_ind(). If the method returns p-value less than 0.05 (a is given to be
0.05 in the question), then the increase in height can be concluded to be different.

The file healthdrink.xlsx contains two tabs healthdrink_yes and healthdrink_no, which
include the respective samples.

3.3 EXAMPLE

Chapter 03_Probability Distributions and Hypothesis Tests.indd 85 4/24/2019 6:54:15 PM

Machine Learning using Python86

 (Continued)

We first read the data using pd.read_excel(), which takes the filename healthdrink.xlsx and
the tab healthdrink_yes as parameters. Then display first 5 records.

healthdrink_yes_df = pd.read_excel(‘healthdrink.xlsx’,
‘healthdrink_yes’)

healthdrink_yes_df.head(5)

height_increase

0 8.6

1 5.8

2 10.2

3 8.5

4 6.8

healthdrink_yes_df.columns

Index([‘height_increase’], dtype=’object’)

Now read the data from the tab healthdrink_no in healthdrink.xlsx and display first 5 records.

healthdrink_no_df = pd.read_excel(‘healthdrink.xlsx’,
‘healthdrink_no’) healthdrink_no_df.head(5)

height_increase

0 5.3

1 9.0

2 5.7

3 5.5

4 5.4

We use the following code to display the distribution plots of increase in height separately for
drinking health drink and not drinking health drink groups.

3.3 EXAMPLE

Chapter 03_Probability Distributions and Hypothesis Tests.indd 86 4/24/2019 6:54:15 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 87

 (Continued)

sn.distplot(healthdrink_yes_df[‘height_increase’], label
=‘healthdrink_yes’) sn.distplot(healthdrink_no_
df[‘height_increase’], label =’healthdrink_no’)
plt.legend();

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
2

height_increase

4 6 8 10 12

healthdrink_yes

healthdrink_no

FIGURE 3.9 Comparing distributions for health drink and no health drink.

We can observe from Figure 3.9 that the distribution of increase in height for those who have
the health drink has shifted to the right of those who did not have the health drink. But is the
difference, as claimed, statistically significant?

The scipy.stats.ttest_ind() method takes two independent samples and returns the test
statistics.

stats.ttest_ind(healthdrink_yes_df[‘height_increase’],
healthdrink_no_df[‘height_increase’])

Ttest_indResult(statistic=8.1316, pvalue=0.00)

The probability of the samples belonging to the same distribution is almost 0. This means
that the increase in height for those who had health drink is significantly different than those 
who did not.

3.3 EXAMPLE

Chapter 03_Probability Distributions and Hypothesis Tests.indd 87 4/24/2019 6:54:16 PM

Machine Learning using Python88

3.9.4 | Paired Sample t-Test

Sometimes we need to analyze whether an intervention (or treatment) such as an event, a training pro-
gram, marketing promotions, treatment for specific illness, and lifestyle changes may have significantly
changed the population parameter values such as mean before and after the intervention. The objective
in this case is to check whether the difference in the parameter values is statistically significant before 
and after the intervention or between two different types of interventions. This is called a paired sample 
t-test and is used for comparing two different interventions applied on the same sample.

Consider the following example for a paired t-test.

The file breakups.csv contains alcohol consumption before and after breakup. Conduct a
paired t-test to check whether the alcohol consumption is more after the breakup at 95%
confidence (a = 0.05).

Solution: Read the data onto the DataFrame and display first 5 records.

breakups_df = pd.read_csv(‘breakups.csv’)
breakups_df.head(5)

Before_Breakup After_Breakup

0 470 408
1 354 439
2 496 321
3 351 437
4 349 335

Use  the  following  to display  the distribution plots  of  alcohol  consumption  separately  for 
before and after breakups.

sn.distplot(breakups_df[‘Before_Breakup’], label =
‘Before_Breakup’)
sn.distplot(breakups_df[‘After_Breakup’], label =
‘After_Breakup’)
plt.legend();

Figure 3.10 shows that the distribution of drinking habits before and after breakups are very
similar. We can use paired t-test to confirm this. scipy.stats.ttest_rel is used to conduct the
paired sample t-test. It takes both related samples as parameters.

stats.ttest_rel(breakups_df[‘Before_Breakup’], breakups_df
[‘After_Breakup’])

Ttest_relResult(statistic=-0.5375, pvalue=0.5971)

3.4 EXAMPLE

Chapter 03_Probability Distributions and Hypothesis Tests.indd 88 4/24/2019 6:54:16 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 89

 (Continued)

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000
200 300 400

After_Breakup

After_Breakup
Before_Breakup

500 600

FIGURE 3.10 Comparing distributions for drinking habits before and after breakups.

As the p-value is 0.597, which is more than 0.05 value, we conclude that they are part of same
distribution. There is no change in alcohol consumption pattern before and after breakup.

3.4 EXAMPLE

3.9.5 | Chi-Square Goodness of Fit Test

Chi-square goodness of fit test is a non-parametric test used for comparing the observed distribution
of data with the expected distribution of the data to decide whether there is any statistically significant
difference between the observed distribution and a theoretical distribution. Chi-square statistics is given by

c 2
2

1

=
−

=
∑ ()O E

E
i i

ii

n

where Oi is the observed frequency and Ei is the expected frequency of the ith category (interval of data
or bin).

Hanuman Airlines (HA) operated daily flights to several Indian cities. One of the problems
HA faces is the food preferences by the passengers. Captain Cook, the operations manager of
HA, believes that 35% of their passengers prefer vegetarian food, 40% prefer non-vegetarian
food, 20% low calorie food, and 5% request for diabetic food. A sample of 500 passengers
was chosen to analyze the food preferences and the observed frequencies are as follows:

1. Vegetarian: 190
2. Non-vegetarian: 185

3.5 EXAMPLE

Chapter 03_Probability Distributions and Hypothesis Tests.indd 89 4/24/2019 6:54:16 PM

Machine Learning using Python90

 (Continued)

3.  Low calorie: 90
4. Diabetic: 35

Conduct a chi-square test to check whether Captain Cook’s belief is true at a = 0.05.

Solution: The scipy.stats.chisquare method is used for chi-square test. It takes the following
parameters:

1. f_obs : array_like − Observed frequencies in each category.
2. f_exp : array_like − Expected frequencies in each category.

From the data we can create the following arrays:

Observed frequencies
f_obs = [190, 185, 90, 35]
Expected frequencies from the percentages expected
f_exp = [500*0.35, 500*0.4, 500*.2, 500*0.05]
print(f_exp)

[175.0, 200.0, 100.0, 25.0]

stats.chisquare(f_obs, f_exp)

Power_divergenceResult(statistic=7.4107, pvalue=0.0598)

As the p-value is more than 0.05, we retain the null hypothesis (original claim), that is,
Captain Cook’s belief is true.

3.5 EXAMPLE

3.10 | ANALYSIS OF VARIANCE (ANOVA)

Sometimes it may be necessary to conduct a hypothesis test to compare mean values simultaneously for
more than two groups (samples) created using a factor (or factors). For example, a marketer may like to
understand the impact of three different discount values (such as 0%, 10%, and 20% discount) on the 
average sales.

One-way ANOVA can be used to study the impact of a single treatment (also known as factor) at
different levels (thus forming different groups) on a continuous response variable (or outcome variable).

Then the null and alternative hypotheses for one-way ANOVA for comparing 3 groups are given by

H0: m1 = m2 = m3

HA: Not all m values are equal
where m1, m2, m3 are mean values of each group.

Note that the alternative hypothesis, not all m values are equal, implies that some of groups could be equal.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 90 4/24/2019 6:54:16 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 91

3.10.1 | Example of One-Way ANOVA

Ms Rachael Khanna the brand manager of ENZO detergent powder at the “one-stop” retail was inter-
ested in understanding whether the price discounts have any impact on the sales quantity of ENZO. To
test whether the price discounts had any impact, price discounts of 0% (no discount), 10%, and 20% were
given on randomly selected days. The quantity (in kilograms) of ENZO sold in a day under different 
discount levels is shown in Table 3.1. Conduct a one-way ANOVA to check whether discount had any
significant impact on the average sales quantity at a = 0.05.

 TABLE 3.1 Sales for different discount levels

No Discount (0% discount)

39 32 25 25 37 28 26 26 40 29

37 34 28 36 38 38 34 31 39 36

34 25 33 26 33 26 26 27 32 40

10% Discount

34 41 45 39 38 33 35 41 47 34

47 44 46 38 42 33 37 45 38 44

38 35 34 34 37 39 34 34 36 41

20% Discount

42 43 44 46 41 52 43 42 50 41

41 47 55 55 47 48 41 42 45 48

40 50 52 43 47 55 49 46 55 42

In  this  case,  an ANOVA  test  can be  conducted  to  test  if  there  is  any  effect of different discounts on 
the average sales. The observations for No discount, 10% discount and 15% discount is given as three
columns in the file onestop.csv.

Read the records from the file and print the first few records.

onestop_df = pd.read_csv(‘onestop.csv’)
onestop_df.head(5)

discount_0 discount_10 discount_20

0 39 34 42

1 32 41 43

2 25 45 44

3 25 39 46

4 37 38 41

Let us visualize the distribution of group using distribution plot (Figure 3.11).

Chapter 03_Probability Distributions and Hypothesis Tests.indd 91 4/24/2019 6:54:16 PM

Machine Learning using Python92

sn.distplot(onestop_df[‘discount_0’], label = ‘No Discount’)
sn.distplot(onestop_df[‘discount_10’], label = ‘10% Discount’)
sn.distplot(onestop_df[‘discount_20’], label = ‘20% Discount’)
plt.legend();

0.10

0.08

0.06

0.04

0.02

0.00
20 30 40 50 60

discount_20

No Discount
10% Discount
20% Discount

50

FIGURE 3.11 Comparing distributions of sales for different discount levels.

From the plot, it seems the distributions are not same. It may be by chance. Only a one-way ANOVA test
will ensure if they are same or not. The scipy.stats.f_oneway() method conducts one-way ANOVA and
returns F-statistics and p-value. If p-value is less than 0.05, the null hypothesis can be rejected and one
can conclude that the mean of each group is not same.

from scipy.stats import f_oneway

f_oneway(onestop_df[‘discount_0’],
onestop_df[‘discount_10’],
onestop_df[‘discount_20’])

F_onewayResult(statistic=65.8698, pvalue=0.00)

As p-value is less than 0.05, we reject the null hypothesis and conclude that the mean sales quantity
values under different discounts are different.

 CONCLUSION

 1. The chapter introduced the basic concepts of distributions, their parameters and how they can be
applied in the real world to solve problems.

 2. Some of the distributions we explored are normal distribution, exponential distribution,
 binomial, and Poisson distribution and their applications.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 92 4/24/2019 6:54:17 PM

Chapter 3 · Probability Distributions and Hypothesis Tests 93

 3. The objective of hypothesis testing is to either reject or retain an existing claim or belief with the
help of newly collected evidences or samples. The existing belief is called a null hypothesis and a new
claim is called an alternative hypothesis in a hypothesis test.

 4. Z-test can be used to test the value of population mean when sample size is large (n > 30) and popu-
lation variance is known.

 5. The t-test is used when the population standard deviation is unknown and is estimated from the
sample.

 6. Chi-square tests are hypothesis tests that are used for comparing the observed distribution of data
with expected distribution of the data to decide whether there is any statistically significant difference 
between the observed distribution and a theoretical distribution.

 EXERCISES

Answer Questions 1 to 8 by Writing Code in Python.

 1. The number of customer returns in a retail chain per day follows a Poisson distribution at a rate of
25 returns per day. Write Python code to answer the following questions:
(a) Calculate the probability that the number of returns exceeds 30 in a day.
(b) If the chance of fraudulent return is 0.05, calculate the probability that there will be at least 2

fraudulent returns in any given day.
 2.  A student is applying for Masters course in 8 US Universities and believes that she has in each of 

the eight universities a constant and independent 0.42 probability of getting selected. Write code to
answer the following questions:
(a) What is the probability that she will get call from at least 3 universities?
(b) What is the probability that she will get calls from exactly 4 universities?

 3. The time-of-failure of a machine follows exponential distribution with mean time between failures
(MTBF) estimated to be 85 hrs. Write code to answer the following questions:
(a) Calculate the probability that the system will fail before 85 hrs.
(b) Calculate the probability that it will not fail up to 150 hrs.

 4. As per a survey on use of pesticides among 1000 farmers in grape farming for around 10 acres of
grape farmland, it was found that the grape farmers spray 38 liters of pesticides in a week on an aver-
age with the corresponding standard deviation of 5 liters. Assume that the pesticide spray per week
follows a normal distribution. Write code to answer the following questions:
(a) What proportion of the farmers is spraying more than 50 liters of pesticide in a week?
(b) What proportion of farmers is spraying less than 10 liters?
(c) What proportion of farmers is spraying between 30 liters and 60 liters?

 5. A bottle filling machine fills water into 5 liters (5000 cm3) bottles. The company wants to test the null
hypothesis that the average amount of water filled by the machine into the bottle is at least 5000 cm3.
A random sample of 60 bottles coming out of the machine was selected and the exact contents of the
selected bottles are recorded. The sample mean was 4,998.1 cm3. The population standard deviation is
known from the experience to be 1.30 cm3. Assume that the population is normally distributed with
the standard deviation of 1.30 cm3. Write code to test the hypothesis at a of 5%. Explain the results.

 6. A fabric manufacturer would like to understand the proportion of defective fabrics they produce.
His shop floor staff have been stating  that  the percentage of defective  is not more  than 18%. He 
would like to test whether the claim made by his shop floor staff is correct. He picked up a random 
sample of 100 fabrics and found 22 defectives. Use a = 0.05 and write code to test the hypothesis that
the percentage of defective components is less than 18%.

Chapter 03_Probability Distributions and Hypothesis Tests.indd 93 4/24/2019 6:54:17 PM

Machine Learning using Python94

 7. Suppose that the makers of ABC batteries want to demonstrate that their battery lasts an average of
at least 60 min longer than their competitor brand. Two independent random samples of 100 bat-
teries of each kind are selected from both the brands, and the batteries are used continuously. The
sample average life of ABC is found to be 450 min. The average life of competitor batteries is 368 min
with the sample standard deviation of 82 min and 78 min, respectively. Frame a hypothesis and write
the code to test ABC’s claim at 95% significance.

 8.  A training institute would like to check the effectiveness of their training programs and if the scores 
of the people trained improve post the training. A sample of 30 students was taken and their scores
were calculated before and after the training. File trainingscores.csv contains scores of the students
before and after the training. Frame and write the code to test the hypothesis of training effectiveness 
for the training institute.

 REFERENCES

 1. Scikit-learn documentations at http://scikit-learn.org/
 2. Statsmodel documentation at https://www.statsmodels.org/stable/index.html
 3. Scipy documentation at https://docs.scipy.org/doc/scipy/reference/
 4. Freier A (2016). “Women spend more Time using their Smartphones than Men”, Business of Apps,

June 6, 2016, available at http://www.businessofapps.com/women-spend-more-time-using-their-
smartphones-than-men/ (accessed on March 30, 2017).

 5. Siegel E (2016). Predictive Analytics: The Power to Predict who will Click, Buy, Lie or Die, Wiley,
New York.

 6. Historical stock prices from http://www.bseindia.com/

Chapter 03_Probability Distributions and Hypothesis Tests.indd 94 4/24/2019 6:54:17 PM

http://scikit-/
https://www.statsmodels.org/stable/index.html

4.1 | SIMPLE LINEAR REGRESSION

Simple linear regression is a statistical technique used for finding the existence of an association rela-
tionship between a dependent variable (aka response variable or outcome variable) and an independent
variable (aka explanatory variable, predictor variable or feature). We can only establish that change in the
value of the outcome variable (Y) is associated with change in the value of feature X, that is, regression
technique cannot be used for establishing causal relationship between two variables.

Regression is one of the most popular supervised learning algorithms in predictive analytics. A regres-
sion model requires the knowledge of both the outcome and the feature variables in the training dataset.

The following are a few examples of simple and multiple linear regression problems:

1. A hospital may be interested in finding how the total cost of a patient for a treatment varies with
the body weight of the patient.

2. Insurance companies would like to understand the association between healthcare costs and ageing.
3. An organization may be interested in finding the relationship between revenue generated from

a product and features such as the price, money spent on promotion, competitors’ price, and
promotion expenses.

LEARNING OBJECTIVES

After completing this chapter, you will be able to
•    Understand the concept of simple and multiple linear regression and its applications in predictive 

analytics.
•   Learn to build simple linear regression and multiple linear regression models using the Python 

package statsmodel.
•   Learn to perform activities such as 
 (a) splitting the dataset into training and validation data.
 (b)   building  regression  models  using  Python  package  on  training  dataset  and  test  on  the 

validation dataset.
•   Learn how to incorporate categorical (qualitative) variables in a regression model.
•   Learn regression model diagnostics and perform tasks such as residual analysis, identification of 

outliers, and influential observations.

CHAPTER

4Linear Regression

Chapter 04_Linear Regression.indd 95 4/24/2019 6:54:38 PM

Machine Learning using Python96

4. Restaurants would like to know the relationship between the customer waiting time after placing
the order and the revenue.

5. E-commerce companies such as Amazon, BigBasket, and Flipkart would like to understand the
relationship between revenue and features such as
(a) Number of customer visits to their portal.
(b) Number of clicks on products.
(c) Number of items on sale.
(d) Average discount percentage.

6. Banks and other financial institutions would like to understand the impact of variables such as
unemployment rate, marital status, balance in the bank account, rain fall, etc. on the percentage
of non-performing assets (NPA).

4.2 | STEPS IN BUILDING A REGRESSION MODEL

In this section, we will explain the steps used in building a regression model. Building a regression
model is an iterative process and several iterations may be required before finalizing the appropriate
model.

STEP 1: Collect/Extract Data
The first step in building a regression model is to collect or extract data on the dependent (outcome) vari-
able and independent (feature) variables from different data sources. Data collection in many cases can
be time-consuming and expensive, even when the organization has well-designed enterprise resource
planning (ERP) system.

STEP 2: Pre-Process the Data
Before the model is built, it is essential to ensure the quality of the data for issues such as reliability, com-
pleteness, usefulness, accuracy, missing data, and outliers.

1.  Data imputation techniques may be used to deal with missing data. Use of descriptive statistics 
and visualization (such as box plot and scatter plot) may be used to identify the existence of
outliers and variability in the dataset.

2. Many new variables (such as the ratio of variables or product of variables) can be derived (aka
feature engineering) and also used in model building.

3. Categorical data has must be pre-processed using dummy variables (part of feature engineering)
before it is used in the regression model.

STEP 3: Dividing Data into Training and Validation Datasets
In this stage the data is divided into two subsets (sometimes more than two subsets): training dataset
and validation or test dataset. The proportion of training dataset is usually between 70% and 80% of the
data and the remaining data is treated as the validation data. The subsets may be created using random/
stratified sampling procedure. This is an important step to measure the performance of the model using
dataset not used in model building. It is also essential to check for any overfitting of the model. In many
cases, multiple training and multiple test data are used (called cross-validation).

Chapter 04_Linear Regression.indd 96 4/24/2019 6:54:39 PM

Chapter 4 · Linear Regression 97

STEP 4: Perform Descriptive Analytics or Data Exploration
It is always a good practice to perform descriptive analytics before moving to building a predictive ana-
lytics model. Descriptive statistics will help us to understand the variability in the model and visualiza-
tion of the data through, say, a box plot which will show if there are any outliers in the data. Another
visualization technique, the scatter plot, may also reveal if there is any obvious relationship between the
two variables under consideration. Scatter plot is useful to describe the functional relationship between
the dependent or outcome variable and features.

STEP 5: Build the Model
The model is built using the training dataset to estimate the regression parameters. The method of
Ordinary Least Squares (OLS) is used to estimate the regression parameters. 

STEP 6: Perform Model Diagnostics
Regression is often misused since many times the modeler fails to perform necessary diagnostics tests
before applying the model. Before it can be applied, it is necessary that the model created is validated
for all model assumptions including the definition of the function form. If the model assumptions are
violated, then the modeler must use remedial measure.

STEP 7: Validate the Model and Measure Model Accuracy
A major concern in analytics is over-fitting, that is, the model may perform very well on the training
dataset, but may perform badly in validation dataset. It is important to ensure that the model perfor-
mance is consistent on the validation dataset as is in the training dataset. In fact, the model may be cross-
validated using multiple training and test datasets.

STEP 8: Decide on Model Deployment
The final step in the regression model is to develop a deployment strategy in the form of actionable items
and business rules that can be used by the organization.

4.3 | BUILDING SIMPLE LINEAR REGRESSION MODEL

Simple Linear Regression (SLR)  is a  statistical model  in which  there  is only one  independent vari-
able (or feature) and the functional relationship between the outcome variable and the regression
coefficient is linear. Linear regression implies that the mathematical function is linear with respect to 
regression parameters.

One of the functional forms of SLR is as follows: 

 Y = b0 + b1 X + e (4.1)

For a dataset with n observations (Xi, Yi), where i = 1, 2, …, n, the above functional form can be written
as follows:

 Yi = b0 + b1 Xi + ei (4.2)

Chapter 04_Linear Regression.indd 97 4/24/2019 6:54:39 PM

Machine Learning using Python98

where Yi is the value of ith observation of the dependent variable (outcome variable) in the sample, Xi is
the value of ith observation of the independent variable or feature in the sample, ei is the random error
(also known as residuals) in predicting the value of Yi, b0 and b1 are the regression parameters (or regres-
sion coefficients or feature weights).

The regression relationship stated in Eq. (4.2) is a statistical relationship, and so is not exact, unlike
a mathematical relationship, and thus the error terms ei. Equation (4.2) can be written as

 ei = Yi −b0 − b1 Xi (4.3)

The regression parameters b0 and b1 are estimated by minimizing the sum of squared errors (SSE).

 SSE = = − −
= =
∑ ∑e b bi
i

n

i i
i

n

Y X2

1
0 1

1

() (4.4)

The estimated values of regression parameters are given by taking partial derivative of SSE with respect
to b0 and b1 and solving the resulting equations for the regression parameters. The estimated parameter
values are given by

b1 2

1

 =
- -

-=
å

() ()
()

X X Y Y
X X

i i

ii

n (4.5)

 b b0 1
 = -Y X (4.6)

where b b0 1
 and are the estimated values of the regression parameters b0 and b1. The above proce-

dure is known as method of ordinary least square (OLS). The estimate using OLS gives the best linear 
unbiased estimates (BLUE) of regression parameters. 

Assumptions of the Linear Regression Model

1. The errors or residuals ei are assumed to follow a normal distribution with expected value of error
E(ei) = 0.

2. The variance of error, VAR(ei), is constant for various values of independent variable X. This is known
as homoscedasticity. When the variance is not constant, it is called heter oscedasticity.

3. The error and independent variable are uncorrelated.
4. The functional relationship between the outcome variable and feature is correctly defined.

Properties of Simple Linear Regression

1. The mean value of Yi for given Xi, E Y X Xi(|) = +b b0 1
 .

2. Yi follows a normal distribution with mean b b0 1
 + X and variance VAR(ei).

Let us consider an example of predicting MBA Salary  (outcome variable)  from marks  in Grade 10

(feature).

Chapter 04_Linear Regression.indd 98 4/24/2019 6:54:40 PM

Chapter 4 · Linear Regression 99

 Predicting MBA Salary from Grade in 10th Marks

Table 4.1 contains the salary of 50 graduating MBA students of a Business School in 2016
and their corresponding percentage marks in grade 10 (File name: MBA Salary.csv).
Develop an SLR model to understand and predict salary based on the percentage of marks 
in Grade 10. 

 TABLE 4.1 Salary of MBA students versus their grade 10 marks

S. No. Percentage in Grade 10 Salary S. No. Percentage in Grade 10 Salary

1 62.00 270000 26 64.60 250000

2 76.33 200000 27 50.00 180000

3 72.00 240000 28 74.00 218000

4 60.00 250000 29 58.00 360000

5 61.00 180000 30 67.00 150000

6 55.00 300000 31 75.00 250000

7 70.00 260000 32 60.00 200000

8 68.00 235000 33 55.00 300000

9 82.80 425000 34 78.00 330000

10 59.00 240000 35 50.08 265000

11 58.00 250000 36 56.00 340000

12 60.00 180000 37 68.00 177600

13 66.00 428000 38 52.00 236000

14 83.00 450000 39 54.00 265000

15 68.00 300000 40 52.00 200000

16 37.33 240000 41 76.00 393000

17 79.00 252000 42 64.80 360000

18 68.40 280000 43 74.40 300000

19 70.00 231000 44 74.50 250000

20 59.00 224000 45 73.50 360000

21 63.00 120000 46 57.58 180000

22 50.00 260000 47 68.00 180000

(Continued)

4.1 EXAMPLE

Chapter 04_Linear Regression.indd 99 4/24/2019 6:54:40 PM

Machine Learning using Python100

 (Continued)

 TABLE 4.1 (Continued)

S. No. Percentage in Grade 10 Salary S. No. Percentage in Grade 10 Salary

23 69.00 300000 48 69.00 270000
24 52.00 120000 49 66.00 240000
25 49.00 120000 50 60.80 300000

Steps for building a regression model using Python:

1. Import pandas and numpy libraries
2.  Use read_csv to load the dataset into DataFrame.
3. Identify the feature(s) (X) and outcome (Y) variable in the DataFrame for building

the model.
4. Split the dataset into training and validation sets using train_test_split().
5. Import statsmodel library and fit the model using OLS() method.
6.  Print model summary and conduct model diagnostics.

For loading dataset into a DataFrame, we need to import pandas and numpy libraries.

import pandas as pd
import numpy as np
Setting pandas print option to print decimal values upto
4 decimal places
np.set_printoptions(precision=4, linewidth=100)

mba_salary_df = pd.read_csv(‘MBA Salary.csv’)
mba_salary_df.head(10)

S. No. Percentage in Grade 10 Salary

0 1 62.00 270000

1 2 76.33 200000

2 3 72.00 240000

3 4 60.00 250000

4 5 61.00 180000

(Continued)

4.1 EXAMPLE

Chapter 04_Linear Regression.indd 100 4/24/2019 6:54:41 PM

Chapter 4 · Linear Regression 101

 (Continued)

S. No. Percentage in Grade 10 Salary

5 6 55.00 300000
6 7 70.00 260000
7 8 68.00 235000
8 9 82.80 425000
9 10 59.00 240000

We can print more information about the dataset using Info() method.

mba_salary_df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 50 entries, 0 to 49
Data columns (total 3 columns):
S. No. 50 non-null int64
Percentage in Grade 10 50 non-null float64
Salary 50 non-null int64
dtypes: float64(1), int64(2)
memory usage: 1.2 KB

4.1 EXAMPLE

4.3.1 | Creating Feature Set (X) and Outcome Variable (Y)

The statsmodel library is used in Python for building statistical models. OLS API available in statsmodel.api
is used for estimation of parameters for simple linear regression model. The OLS() model takes two param-
eters Y and X. In this example, Percentage in Grade 10 will be X and Salary will be Y. OLS API available in 
statsmodel.api estimates only the coefficient of X parameter [refer to Eq. (4.1)]. To estimate regression coef-
ficient b0, a constant term of 1 needs to be added as a separate column. As the value of the columns remains
same across all samples, the parameter estimated for this feature or column will be the intercept term.

import statsmodels.api as sm
X = sm.add_constant(mba_salary_df[‘Percentage in Grade 10’])
X.head(5)

Const Percentage in Grade 10

0 1.0 62.00
1 1.0 76.33
2 1.0 72.00
3 1.0 60.00
4 1.0 61.00

Y = mba_salary_df[‘Salary’]

Chapter 04_Linear Regression.indd 101 4/24/2019 6:54:41 PM

Machine Learning using Python102

4.3.2 | Splitting the Dataset into Training and Validation Sets

train_test_split() function from skelarn.model_selection module provides the ability to split the dataset
randomly into training and validation datasets. The parameter train_size takes a fraction between 0 and 1
for specifying training set size. The remaining samples in the original set will be test or validation set. The
records that are selected for training and test set are randomly sampled. The method takes a seed value in
parameter named random_state, to fix which samples go to training and which ones go to test set.

train_test_split() The method returns four variables as below.

1. train_X contains X features of the training set.
2. train_y contains the values of response variable for the training set.
3. test_X contains X features of the test set.
4. test_y contains the values of response variable for the test set.

from sklearn.model_selection import train_test_split

train_X, test_X, train_y, test_y = train_test_split(X,
 Y,
 train_size = 0.8,
 random_state = 100)

train_size = 0.8 implies 80% of the data is used for training the model and the remaining 20% is used for
validating the model.

4.3.3 | Fitting the Model

We will fit the model using OLS method and pass train_y and train_X as parameters.

mba_salary_lm = sm.OLS(train_y, train_X).fit()

The fit() method on OLS() estimates the parameters and returns model information to the variable mba_
salary_lm, which contains the model parameters, accuracy measures, and residual values among other details.

4.3.3.1 Printing Estimated Parameters and Interpreting Them

print(mba_salary_lm.params)

Const 30587.285652
Percentage in Grade 10 3560.587383
dtype: float64

The estimated (predicted) model can be written as

MBA Salary = 30587.285 + 3560.587 * (Percentage in Grade 10)

The equation can be interpreted as follows: For every 1% increase in Grade 10, the salary of the MBA 
students will increase by 3560.587.

Chapter 04_Linear Regression.indd 102 4/24/2019 6:54:41 PM

Chapter 4 · Linear Regression 103

4.3.3.2 Complete Code for Building Regression Model

The complete code for building the regression model is as follows:

Importing all required libraries for building the regression model
import pandas as pd import numpy as np
import statsmodels.api as sm
from sklearn.model_selection import train_test_split

Load the dataset into dataframe
mba_salary_df = pd.read_csv(‘MBA Salary.csv’)

Add constant term of 1 to the dataset
X = sm.add_constant(mba_salary_df[‘Percentage in Grade 10’])

Split dataset into train and test set into 80:20 respectively
train_X, test_X, train_y, test_y = train_test_split(X,
 Y,
 train_size = 0.8,
 random_state = 100)

Fit the regression model
mba_salary_lm = sm.OLS(train_y, train_X).fit()

Print the model parameters
print(mba_salary_lm.params)

4.4 | MODEL DIAGNOSTICS

It is important to validate the regression model to ensure its validity and goodness of fit before it
can be used for practical applications. The following measures are used to validate the simple linear
regression models:

1. Co-efficient of determination (R-squared).
2. Hypothesis test for the regression coefficient.
3. Analysis of variance for overall model validity (important for multiple linear regression).
4. Residual analysis to validate the regression model assumptions.
5. Outlier analysis, since the presence of outliers can significantly impact the regression parameters.

4.4.1 | Co-efficient of Determination (R-Squared or R2)

The primary objective of regression is to explain the variation in Y using the knowledge of X. The
 co-efficient of determination (R-squared or R2) measures the percentage of variation in Y explained by
the model (b0 + b1 X). The simple linear regression model can be broken into

1. Variation in outcome variable explained by the model.
2.  Unexplained variation as shown in Eq. (4.7):

Y Xi i

Y YVariation in Variation in explained
 b

� = +b b0 1

yy the model
Variation in not explained

� ���� ���� + e i

Y
 by the model

� (4.7)

Chapter 04_Linear Regression.indd 103 4/24/2019 6:54:41 PM

Machine Learning using Python104

It can be proven mathematically that

 () () (Y Y Y Y Yi
i

i
i

i

n n

SST SSR

- = - +
= =
å å2

1

2

1� ����� �����
�

� ����� �����
--

=
å Yi
i

n

SSE

�
� ����� �����

)2

1

 (4.8)

where Y Xi i
� � �= +b b0 1 is the predicted value of Yi. The hat (() () (Y Y Y Y Yi

i
i

i
i

n n

SST SSR

- = - +
= =
å å2

1

2

1� ����� �����
�

� ����� �����
--

=
å Yi
i

n

SSE

�
� ����� �����

)2

1

) symbol is used for denoting the estimated
value. SST is the sum of squares of total variation, SSR is the sum of squares of explained variation due
to the regression model, and SSE is the sum of squares of unexplained variation (error). The co-efficient
of determination (R-squared) is given by

 R -Squared = = -
SSR
SST

SSE
SST

1 (4.9)

The co-efficient of determination (R-squared) has the following properties:

1. The value of R-squared lies between 0 and 1.
2. Mathematically, R-squared (R2) is square of correlation coefficient (R2 = r2), where r is the

Pearson correlation co-efficient.
3. Higher R-squared indicates better fit; however, one should be careful about the spurious

relationship.

4.4.2 | Hypothesis Test for the Regression Co-eff icient

The regression co-efficient (b1) captures the existence of a linear relationship between the outcome vari-
able and the feature. If b1 = 0, we can conclude that there is no statistically significant linear relationship
between the two variables. It can be proved that the sampling distribution of b1 is a t-distribution (Kutner
et al., 2013; U Dinesh Kumar, 2017). The null and alternative hypotheses are

H0: b1 = 0
HA: b1 ≠ 0

The corresponding test statistic is given by

 t
S

n

e

a
b
b

/ ,
()

2 2
1

1

- =

 (4.10)

The standard error of estimate of the regression co-efficient is given by

 S
S

X X
e

e

i

()
()

b 1 2
 =

-
 (4.11)

where Se is the standard error of the estimated value of Yi (and the residuals) and is given by

 S
Y Y
ne
i i=
-
-

()

2
 (4.12)

Chapter 04_Linear Regression.indd 104 4/24/2019 6:54:42 PM

Chapter 4 · Linear Regression 105

The hypothesis test is a two-tailed test. The test statistic in Eq. (4.10) is a t-distribution with n − 2 degrees
of freedom (two degrees of freedom are lost due to the estimation of two regression parameters b0 and b1).
Se ()b 1
 is the standard error of regression co-efficient b 1

.

4.4.3 | Analysis of Variance (ANOVA) in Regression Analysis

We can check the overall validity of the regression model using ANOVA in the case of multiple linear
regression model with k features. The null and alternative hypotheses are given by

H0: b1 = b2 = … = bk = 0

HA: Not all regression coefficients are zero
The corresponding F-statistic is given by

 F k
n k

= =
- -

MSR
MSE

SSR
SSE

/
/ ()1

 (4.13)

where MSR (= SSR/k) and MSE [= SSE/(n − k − 1)] are mean squared regression and mean squared error,
respectively. F-test is used for checking whether the overall regression model is statistically significant
or not.

4.4.4 | Regression Model Summary Using Python

The function summary2() prints the model summary which contains the information required for diag-
nosing a regression model (Table 4.2).

mba_salary_lm.summary2()

 TABLE 4.2 Model summary: Simple linear regression model

Model: OLS Adj. R-squared: 0.190

Dependent Variable: Salary AIC: 1008.8680

Date: 2018-04-08 07:27 BIC: 1012.2458

No. Observations: 40 Log-Likelihood: −502.43

Df Model: 1 F-statistic: 10.16

Df Residuals: 38 Prob (F-statistic): 0.00287

R-squared: 0.211 Scale: 5.0121e+09

Coef. Std.Err. t P > |t| [0.025 0.975]

const 30587.2857 71869.4497 0.4256 0.6728 −114904.8089 176079.3802

Percentage in Grade 10 3560.5874 1116.9258 3.1878 0.0029 1299.4892 5821.6855

Chapter 04_Linear Regression.indd 105 4/24/2019 6:54:43 PM

Machine Learning using Python106

Omnibus: 2.048 Durbin-Watson: 2.611

Prob(Omnibus): 0.359 Jarque-Bera (JB): 1.724

Skew: 0.369 Prob(JB): 0.422

Kurtosis: 2.300 Condition No.: 413

From the summary output shown in Table 4.2, we can infer the following:
1. The model R-squared value is 0.211, that is, the model explains 21.1% of the variation in salary.
2. The p-value for the t-test is 0.0029 which indicates that there is a statistically significant relation-

ship (at significance value a = 0.05) between the feature, percentage in grade 10, and salary.
Also, the probability value of F-statistic of the model is 0.0029 which indicates that the overall
model is statistically significant. Note that, in a simple linear regression, the p-value for t-test and
F-test will be the same since the null hypothesis is the same. (Also F = t2 in the case of SLR.)

4.4.5 | Residual Analysis

Residuals or errors are the difference between the actual value of the outcome variable and the predicted
value ()Y Yi i- . Residual (error) analysis is important to check whether the assumptions of regression
models have been satisfied. It is performed to check the following:

1. The residuals are normally distributed.
2. Variance of residual is constant (homoscedasticity).
3. The functional form of regression is correctly specified.
4. There are no outliers.

4.4.5.1 Check for Normal Distribution of Residual

The normality of residuals can be checked using the probability−probability plot (P-P plot). P-P plot 
compares the cumulative distribution function of two probability distributions against each other. In
the current context, we use the P-P plot to check whether the distribution of the residuals matches with 
that of a normal distribution. In Python, ProbPlot() method on statsmodel draws the P-P plot as shown 
in Figure 4.1.

import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline

mba_salary_resid = mba_salary_lm.resid
probplot = sm.ProbPlot(mba_salary_resid)
plt.figure(figsize = (8, 6))
probplot.ppplot(line=’45’)
plt.title (“Fig 4.1 - Normal P-P Plot of Regression Standardized

 Residuals”)
plt.show()

Chapter 04_Linear Regression.indd 106 4/24/2019 6:54:43 PM

Chapter 4 · Linear Regression 107

 Theoretical probabilities

S
am

pl
e

pr
ob

ab
ili

tie
s

1.0

0.8

0.6

0.4

0.2

0.2
0.0

0.0 1.00.80.60.4

FIGURE 4.1 Normal P-P plot of regression standardized residuals.

In Figure 4.1, the diagonal line is the cumulative distribution of a normal distribution, whereas the dots
represent the cumulative distribution of the residuals. Since the dots are close to the diagonal line, we can
conclude that the residuals follow an approximate normal distribution (we need only an approximate
normal distribution).

4.4.5.2 Test of Homoscedasticity

An important assumption of the regression model is that the residuals have constant variance
(homoscedasticity) across different values of the predicted value (Y). The homoscedasticity can be
observed by drawing a residual plot, which is a plot between standardized residual value and stan-
dardized predicted value. If there is heteroscedasticity (non-constant variance of residuals), then a
funnel type shape in the residual plot can be expected. A non-constant variance of the residuals is
known as heteroscedasticity.

The following custom method get_standardized_values() creates the standardized values of
a series of values (variable). It subtracts values from mean and divides by standard deviation of
the variable.

def get_standardized_values(vals):
return (vals - vals.mean())/vals.std()

plt.scatter (get_standardized_values(mba_salary_lm.fittedvalues),
get_standardized_values(mba_salary_resid))

plt.title(“Fig 4.2 - Residual Plot: MBA Salary Prediction”);
plt.xlabel(“Standardized predicted values”)
plt.ylabel(“Standardized Residuals”);

Chapter 04_Linear Regression.indd 107 4/24/2019 6:54:44 PM

Machine Learning using Python108

2.5

2.0

−1.5

−2

−1.0

−0.5

0.0
S

ta
nd

ar
di

ze
d

re
si

du
al

s

0.5

1.0

1.5

Standardized predicted values
−1 0 1 2

FIGURE 4.2 Residual plot: MBA salary prediction.

It can be observed in Figure 4.2 that the residuals are random and have no funnel shape, which means
the residuals have constant variance (homoscedasticity).

4.4.6 | Outlier Analysis

Outliers  are  observations whose  values  show  a  large deviation  from  the mean  value.  Presence  of  an 
outlier can have a significant influence on the values of regression coefficients. Thus, it is important to
identify the existence of outliers in the data.

The following distance measures are useful in identifying influential observations:

1. Z-Score
2. Mahalanobis Distance
3. Cook’s Distance
4.  Leverage Values

4.4.6.1 Z-Score

Z-score is the standardized distance of an observation from its mean value. For the predicted value of the
dependent variable Y, the Z-score is given by

 Z
Y Yi

Y

=
-
s

 (4.14)

where Yi is the predicted value of Y for ith observation, Y is the mean or expected value of Y, sY is the
variance of Y.

Any observation with a Z-score of more than 3 may be flagged as an outlier. The Z-score in the data
can be obtained using the following code:

from scipy.stats import zscore

mba_salary_df[‘z_score_salary’] = zscore(mba_salary_df.Salary)

Chapter 04_Linear Regression.indd 108 4/24/2019 6:54:44 PM

Chapter 4 · Linear Regression 109

mba_salary_df[(mba_salary_df.z_score_salary > 3.0) | (mba_salary_
df.z_score_salary < -3.0)]

S. No. Percentage in Grade 10 Salary z_score_salary

So, there are no observations that are outliers as per the Z-score.

4.4.6.2 Cook’s Distance

Cook’s distance measures how much the predicted value of the dependent variable changes for all the
observations in the sample when a particular observation is excluded from the sample for the estimation
of regression parameters.

A Cook’s  distance  value  of more  than  1  indicates  highly  influential  observation.  Python  code  for 
calculating Cook’s distance is provided below. In this get_influence() returns the influence of observations
in the model and cook_distance variable provides Cook’s distance measures. Then the distances can be
plotted against the observation index to find out which observations are influential.

import numpy as np

mba_influence = mba_salary_lm.get_influence()
(c, p) = mba_influence.cooks_distance

plt.stem(np.arange(len(train_X)),
 np.round(c, 3),
 markerfmt=”,”);
plt.title(“Figure 4.3 - Cooks distance for all observations in MBA

Salaray data set”);
plt.xlabel(“Row index”)
plt.ylabel(“Cooks Distance”);

C
oo

k’
s

di
st

an
ce

Row index
0

0.10

0.05

0.15

0.20

0.00

5 10 15 20 25 30 35 40

FIGURE 4.3 Cook’s distance for all observations in MBA salary dataset.

Chapter 04_Linear Regression.indd 109 4/24/2019 6:54:45 PM

Machine Learning using Python110

From Figure 4.3, it can be observed that none of the observations’ Cook’s distance exceed 1 and hence
none of them are outliers.

4.4.6.3 Leverage Values

Leverage value of an observation measures  the  influence of  that observation on  the overall fit of  the 
regression function and is related to the Mahalanobis distance. Leverage value of more than 3(k + 1)/n
is treated as highly influential observation, where k is the number of features in the model and n is the
sample size.

statsmodels.graphics.regressionplots module provides influence_plot() which draws a plot between
standardized residuals and leverage value. Mostly, the observations with high leverage value (as men-
tioned above) and high residuals [more than value 3(k + 1)/n] can be removed from the training dataset.

from statsmodels.graphics.regressionplots import influence_plot

fig, ax = plt.subplots(figsize=(8,6))
influence_plot(mba_salary_lm, ax = ax)
plt.title(“Figure 4.4 - Leverage Value Vs Residuals”)
plt.show();

Influence plot

S
tu

de
nt

iz
ed

 r
es

id
ua

ls

12
13

2

H Leverage

1

0

−1

−2
0.00 0.05 0.10 0.15 0.20 0.25

8
15

FIGURE 4.4 Leverage value versus residuals.

In Figure 4.4, the size of the circle is proportional to the product of residual and leverage value. The
larger the circle, the larger is the residual and hence influence of the observation.

4.4.7 | Making Prediction and Measuring Accuracy

Ideally, the prediction should be made on the validation (or test) data and the accuracy of prediction
should be evaluated.

Chapter 04_Linear Regression.indd 110 4/24/2019 6:54:45 PM

Chapter 4 · Linear Regression 111

4.4.7.1 Predicting using the Validation Set

The model variable has a method predict(), which takes the X parameters and returns the predicted values.

pred_y = mba_salary_lm.predict(test_X)

pred_y variable contains the predicted value. We can compare the predicted values with the actual values
and calculate the accuracy in the next section.

4.4.7.2 Finding R-Squared and RMSE

Several measures can be used for measuring the accuracy of prediction. Mean Square Error (MSE),
Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are some of the fre-
quently used measures. sklearn.metrics has r2_score and mean_squared_error for measuring R-squared
and MSE values. We need to take the square root of the MSE value to get RMSE value. Both the methods
take predicted Y values and actual Y values to calculate the accuracy measures. Numpy module has sqrt
method to calculate the square root of a value.

from sklearn.metrics import r2_score, mean_squared_error

np.abs(r2_score(test_y, pred_y))

0.15664584974230378

So, the model only explains 15.6% of the variance in the validation set.

import numpy

np.sqrt(mean_squared_error(test_y, pred_y))

73458.043483468937

RMSE means the average error the model makes in predicting the outcome. The smaller the value of
RMSE, the better the model is.

4.4.7.3 Calculating Prediction Intervals

The regression equation gives us the point estimate of the outcome variable for a given value of the
independent variable. In many applications, we would be interested in knowing the interval estimate of
Yi for a given value of explanatory variable. wls_prediction_std() returns the prediction interval while
making a prediction. It takes significance value (a) to calculate the interval. An a-value of 0.1 returns
the prediction at confidence interval of 90%. The code for calculating prediction interval is as follows:

from statsmodels.sandbox.regression.predstd import wls_prediction_std

Predict the y values

pred_y = mba_salary_lm.predict(test_X)

Chapter 04_Linear Regression.indd 111 4/24/2019 6:54:45 PM

Machine Learning using Python112

Predict the low and high interval values for y
_, pred_y_low, pred_y_high = wls_prediction_std(mba_salary_lm,
 test_X,
 alpha = 0.1)

Store all the values in a dataframe
pred_y_df = pd.DataFrame({ ‘grade_10_perc’: test_X[‘Percentage in
 Grade 10’],
 ‘pred_y’: pred_y,
 ‘pred_y_left’: pred_y_low,
 ‘pred_y_right’: pred_y_high })

pred_y_df[0:10]

grade_10_perc pred_y pred_y_left pred_y_right

6 70.0 279828.402452 158379.832044 401276.972860
36 68.0 272707.227686 151576.715020 393837.740352
37 52.0 215737.829560 92950.942395 338524.716726
28 58.0 237101.353858 115806.869618 358395.838097
43 74.5 295851.045675 173266.083342 418436.008008
49 60.8 247070.998530 126117.560983 368024.436076
5 55.0 226419.591709 104507.444388 348331.739030

33 78.0 308313.101515 184450.060488 432176.142542
20 63.0 254904.290772 134057.999258 375750.582286
42 74.4 295494.986937 172941.528691 418048.445182

4.5 | MULTIPLE LINEAR REGRESSION

Multiple  linear  regression  (MLR)  is  a  supervised  learning  algorithm  for  finding  the  existence  of  an 
association relationship between a dependent variable (aka response variable or outcome variable) and
 several independent variables (aka explanatory variables or predictor variable or features).

The functional form of MLR is given by

Y X X Xi i i k ki i= + + + + +b b b b e0 1 1 2 2

The regression coefficients b1, b2, … , bk are called partial regression coefficients since the relationship
between an explanatory variable and the response (outcome) variable is calculated after removing (or
controlling) the effect all the other explanatory variables (features) in the model.

The assumptions that are made in multiple linear regression model are as follows:

1. The regression model is linear in regression parameters (b-values).
2. The residuals follow a normal distribution and the expected value (mean) of the residuals is zero.
3. In time series data, residuals are assumed to uncorrelated.

Chapter 04_Linear Regression.indd 112 4/24/2019 6:54:46 PM

Chapter 4 · Linear Regression 113

4. The variance of the residuals is constant for all values of Xi. When the variance of the residuals
is constant for different values of Xi, it is called homoscedasticity. A non-constant variance of
residuals is called heteroscedasticity.

5. There is no high correlation between independent variables in the model (called multi-collinearity).
Multi-collinearity can destabilize the model and can result in an incorrect estimation of the
regression parameters.

The partial regressions coefficients are estimated by minimizing the sum of squared errors (SSE). We will
explain the multiple linear regression model by using the example of auction pricing of players in the
Indian premier league (IPL).

4.5.1 | Predicting the SOLD PRICE (Auction Price) of Players

The Indian Premier League (IPL) is a professional league for Twenty20 (T20) cricket championships that 
was started in 2008 in India. IPL was initiated by the BCCI with eight franchises comprising players from 
across the world. The first IPL auction was held in 2008 for ownership of the teams for 10 years, with 
a base price of USD 50 million. The franchises acquire players through an English auction that is con-
ducted every year. However, there are several rules imposed by the IPL. For example, only international 
players and popular Indian players are auctioned.

The performance of the players could be measured through several metrics. Although the IPL fol-
lows the Twenty20 format of the game, it is possible that the performance of the players in the other
formats of the game such as Test and One-Day matches could influence player pricing. A few players
had excellent records in Test matches, but their records in Twenty20 matches were not very impressive.
The performances of 130 players who played in at least one season of the IPL (2008−2011) measured
through various performance metrics are provided in Table 4.3.

 TABLE 4.3 Metadata of IPL dataset

Data Code Description

AGE Age of the player at the time of auction classified into three categories. Category 1 (L25) means the player is less
than 25 years old, category 2 means that the age is between 25 and 35 years (B25− 35) and category 3 means
that the age is more than 35 (A35).

RUNS-S Number of runs scored by a player.

RUNS-C Number of runs conceded by a player.

HS Highest score by a batsman in IPL.

AVE-B Average runs scored by a batsman in IPL.

AVE-BL Bowling average (number of runs conceded/number of wickets taken) in IPL.

SR-B Batting strike rate (ratio of the number of runs scored to the number of balls faced) in IPL.

SR-BL Bowling strike rate (ratio of the number of balls bowled to the number of wickets taken) in IPL.

SIXERS Number of six runs scored by a player in IPL.

WKTS Number of wickets taken by a player in IPL.

(Continued)

Chapter 04_Linear Regression.indd 113 4/24/2019 6:54:46 PM

Machine Learning using Python114

 TABLE 4.3 (Continued)

Data Code Description

ECON Economy rate of a bowler (number of runs conceded by the bowler per over) in IPL.

CAPTAINCY EXP Captained either a T20 team or a national team.

ODI-SR-B Batting strike rate in One-Day Internationals.

ODI-SR-BL Bowling strike rate in One-Day Internationals.

ODI-RUNS-S Runs scored in One-Day Internationals.

ODI-WKTS Wickets taken in One-Day Internationals.

T-RUNS-S Runs scored in Test matches.

T-WKTS Wickets taken in Test matches.

PLAYER-SKILL Player’s primary skill (batsman, bowler, or allrounder).

COUNTRY Country of origin of the player (AUS: Australia; IND: India; PAK: Pakistan; SA: South Africa; SL: Sri Lanka; NZ: New
Zealand; WI: West Indies; OTH: Other countries).

YEAR-A Year of Auction in IPL.

IPL TEAM Team(s) for which the player had played in the IPL (CSK: Chennai Super Kings; DC: Deccan Chargers; DD: Delhi Dare-
devils; KXI: Kings XI Punjab; KKR: Kolkata Knight Riders; MI: Mumbai Indians; PWI: Pune Warriors India; RR: Rajasthan
Royals; RCB: Royal Challengers Bangalore). A + sign is used to indicate that the player has played for more than one
team. For example, CSK+ would mean that the player has played for CSK as well as for one or more other teams.

4.5.2 | Developing Multiple Linear Regression Model Using Python

In this section, we will be discussing various steps involved in developing a multiple linear regression
model using Python.

4.5.2.1 Loading the Dataset

Loading data from IPL IMB381IPL2013.csv the file and print the meta data.

ipl_auction_df = pd.read_csv(‘IPL IMB381IPL2013.csv’)

ipl_auction_df.info()

<class ꞌpandas.core.frame.DataFrame’>
Rangelndex: 130 entries, 0 to 129
Data columns (total 26 columns):
Sl.NO. 130 non-null int64
PLAYER NAME 130 non-null object
AGE 130 non-null int64
COUNTRY 130 non-null object
TEAM 130 non-null object

Chapter 04_Linear Regression.indd 114 4/24/2019 6:54:46 PM

Chapter 4 · Linear Regression 115

PLAYING ROLE 130 non-null object
T-RUNS 130 non-null int64
T-WKTS 130 non-null int64
ODI-RUNS-S 130 non-null int64
ODI-SR-B 130 non-null float64
ODI-WKTS 130 non-null int64
ODI-SR-BL 130 non-null float64
CAPTAINCY EXP 130 non-null int64
RUNS-S 130 non-null int64
HS 130 non-null int64
AVE 130 non-null float64
SR-B 130 non-null float64
SIXERS 130 non-null int64
RUNS-C 130 non-null int64
WKTS 130 non-null int64
AVE-BL 130 non-null float64
ECON 130 non-null float64
SR-BL 130 non-null float64
AUCTION YEAR 130 non-null int64
BASE PRICE 130 non-null int64
SOLD PRICE 130 non-null int64
dtypes: float64(7), int64(15), object(4)
memory usage: 26.5+ KB

There are 130 observations (records) and 26 columns (features) in the data, and there are no missing
values.

4.5.2.2 Displaying the First Five Records

As the number of columns is very large, we will display the initial 10 columns for the first 5 rows. The
function df.iloc() is used for displaying a subset of the dataset.

ipl_auction_df.iloc[0:5, 0:10]

Sl. NO. PLAYER NAME AGE COUNTRY TEAM PLAYING ROLE T-RUNS T-WKTS ODI-RUNS-S ODI-SR-B

0 1 Abdulla, YA 2 SA KXIP Allrounder 0 0 0 0.00

1 2 Abdur Razzak 2 BAN RCB Bowler 214 18 657 71.41

2 3 Agarkar, AB 2 IND KKR Bowler 571 58 1269 80.62

3 4 Ashwin, R 1 IND CSK Bowler 284 31 241 84.56

4 5 Badrinath, S 2 IND CSK Batsman 63 0 79 45.93

We can build a model to understand what features of players are influencing their SOLD PRICE or
predict the player’s auction prices in future. However, all columns are not features. For example, Sl. NO.

Chapter 04_Linear Regression.indd 115 4/24/2019 6:54:46 PM

Machine Learning using Python116

is just a serial number and cannot be considered a feature of the player. We will build a model using only
player’s statistics. So, BASE PRICE can also be removed. We will create a variable X_feature which will
contain the list of features that we will finally use for building the model and ignore rest of the columns
of the DataFrame. The following function is used for including the features in the model building.

X_features = ipl_auction_df.columns

Most of the features in the dataset are numerical (ratio scale) whereas features such as AGE, COUNTRY,
PLAYING ROLE, CAPTAINCY EXP are categorical and hence need to be encoded before building the
model. Categorical variables cannot be directly included in the regression model, and they must be
encoded using dummy variables before incorporating in the model building.

X_features = [‘AGE’, ‘COUNTRY’, ‘PLAYING ROLE’,
‘T-RUNS’, ‘T-WKTS’, ‘ODI-RUNS-S’, ‘ODI-SR-B’,
‘ODI-WKTS’, ‘ODI-SR-BL’, ‘CAPTAINCY EXP’, ‘RUNS-S’,
‘HS’, ‘AVE’, ‘SR-B’, ‘SIXERS’, ‘RUNS-C’, ‘WKTS’,
‘AVE-BL’, ‘ECON’, ‘SR-BL’]

4.5.3 | Encoding Categorical Features

Qualitative variables or categorical variables need to be encoded using dummy variables before incorporating
them in the regression model. If a categorical variable has n categories (e.g., the player role in the data has four
categories, namely, batsman, bowler, wicket-keeper and allrounder), then we will need n − 1 dummy vari-
ables. So, in the case of PLAYING ROLE, we will need three dummy variables since there are four categories.

Finding unique values of column PLAYING ROLE shows the values: Allrounder, Bowler, Batsman,
W. Keeper. The following Python code is used to encode a categorical or qualitative variable using dummy 
variables:

ipl_auction_df[‘PLAYING ROLE’].unique()

array([‘Allrounder’, ‘Bowler’, ‘Batsman’, ‘W. Keeper’], dtype=object)

The variable can be converted into four dummy variables. Set the variable value to 1 to indicate the role
of the player. This can be done using pd.get_dummies() method. We will create dummy variables for only
PLAYING ROLE to understand and then create dummy variables for the rest of the categorical variables.

pd.get_dummies(ipl_auction_df[‘PLAYING ROLE’])[0:5]

Allrounder Batsman Bowler W. Keeper

0 1.0 0.0 0.0 0.0

1 0.0 0.0 1.0 0.0

(Continued)

Chapter 04_Linear Regression.indd 116 4/24/2019 6:54:46 PM

Chapter 4 · Linear Regression 117

Allrounder Batsman Bowler W. Keeper

2 0.0 0.0 1.0 0.0

3 0.0 0.0 1.0 0.0

4 0.0 1.0 0.0 0.0

As shown in the table above, the pd.get_dummies() method has created four dummy variables and has
already set the variables to 1 as variable value in each sample.

Whenever we have n levels (or categories) for a qualitative variable (categorical variable), we will use
(n − 1) dummy variables, where each dummy variable is a binary variable used for representing whether
an observation belongs to a category or not. The reason why we create only (n − 1) dummy variables
is that inclusion of dummy variables for all categories and the constant in the regression equation will
create perfect multi-collinearity (will be discussed later). To drop one category, the parameter drop_ first
should be set to True.

We must create dummy variables for all categorical (qualitative) variables present in the dataset.

categorical_features = [‘AGE’, ‘COUNTRY’, ‘PLAYING ROLE’,
‘CAPTAINCY EXP’]

ipl_auction_encoded_df = pd.get_dummies(ipl_auction_df[X_features],
columns = categorical_features,
drop_first = True)

ipl_auction_encoded_df.columns

Index([‘T-RUNS’, ‘T-WKTS’, ‘ODI-RUNS-S’, ‘ODI-SR-B’, ‘ODI-WKTS’,
‘ODI-SR-BL’, ‘RUNS-S’, ‘HS’, ‘AVE’, ‘SR-B’, ‘SIXERS’,
‘RUNS-C’, ‘WKTS’, ‘AVE-BL’, ‘ECON’, ‘SR-BL’, ‘AGE_2’,
‘AGE_3’, ‘COUNTRY_BAN’, ‘COUNTRY_ENG’, ‘COUNTRY_IND’,
‘COUNTRY_NZ’, ‘COUNTRY_PAK’, ‘COUNTRY_SA’, ‘COUNTRY_SL’,
‘COUNTRY_WI’, ‘COUNTRY_ZIM’, ‘PLAYING ROLE_Batsman’,
‘PLAYING ROLE_Bowler’, ‘PLAYING ROLE_W. Keeper’,
‘CAPTAINCY EXP_1’], dtype=‘object’)

The dataset contains the new dummy variables that have been created. We can reassign the new features
to the variable X_features, which we created earlier to keep track of all features that will be used to build
the model finally.

X_features = ipl_auction_encoded_df.columns

4.5.4 | Splitting the Dataset into Train and Validation Sets

Before building the model, we will split the dataset into 80:20 ratio. The split function allows using a
parameter random_state, which is a seed function for reproducibility of randomness. This parameter is
not required to be passed. Setting this variable to a fixed number will make sure that the records that go

Chapter 04_Linear Regression.indd 117 4/24/2019 6:54:46 PM

Machine Learning using Python118

into training and test set remain unchanged and hence the results can be reproduced. We will use the
value 42 (it is again selected randomly). You can use the same random seed of 42 for the reproducibility
of results obtained here. Using another random seed may give different training and test data and hence 
different results.

X = sm.add_constant(ipl_auction_encoded_df)
Y = ipl_auction_df[‘SOLD PRICE’]

train_X, test_X, train_y, test_y = train_test_split(X ,
 Y,
 train_size = 0.8,
 random_state = 42)

4.5.5 | Building the Model on the Training Dataset

We will build the MLR model using the training dataset and analyze the model summary. The summary 
provides details of the model accuracy, feature significance, and signs of any multi-collinearity effect,
which is discussed in detail in the next section.

ipl_model_1 = sm.OLS(train_y, train_X).fit()
ipl_model_1.summary2()

 TABLE 4.4 Model summary for ipl_model_1

Model: OLS Adj. R-squared: 0.362
Dependent Variable: SOLD PRICE AIC: 2965.2841
Date: 2018-04-08 07:27 BIC: 3049.9046
No. Observations: 104 Log-Likelihood: −1450.6
Df Model: 31 F-statistic: 2.883
Df Residuals: 72 Prob (F-statistic): 0.000114
R-squared: 0.554 Scale: 1.1034e+11

Coef. Std.Err. t P > |t| [0.025 0.975]

const 375827.1991 228849.9306 1.6422 0.1049 −80376.7996 832031.1978
T-RUNS −53.7890 32.7172 −1.6441 0.1045 −119.0096 11.4316
T-WKTS −132.5967 609.7525 −0.2175 0.8285 −1348.1162 1082.9228
ODI-RUNS-S 57.9600 31.5071 1.8396 0.0700 −4.8482 120.7681
ODI-SR-B −524.1450 1576.6368 −0.3324 0.7405 −3667.1130 2618.8231
ODI-WKTS 815.3944 832.3883 0.9796 0.3306 −843.9413 2474.7301
ODI-SR-BL −773.3092 1536.3334 −0.5033 0.6163 −3835.9338 2289.3154
RUNS-S 114.7205 173.3088 0.6619 0.5101 −230.7643 460.2054
HS −5516.3354 2586.3277 −2.1329 0.0363 −10672.0855 −360.5853
AVE 21560.2760 7774.2419 2.7733 0.0071 6062.6080 37057.9439

(Continued)

Chapter 04_Linear Regression.indd 118 4/24/2019 6:54:46 PM

Chapter 4 · Linear Regression 119

Coef. Std.Err. t P > |t| [0.025 0.975]

SR-B −1324.7218 1373.1303 −0.9647 0.3379 −4062.0071 1412.5635
SIXERS 4264.1001 4089.6000 1.0427 0.3006 −3888.3685 12416.5687
RUNS-C 69.8250 297.6697 0.2346 0.8152 −523.5687 663.2187
WKTS 3075.2422 7262.4452 0.4234 0.6732 −11402.1778 17552.6622
AVE-BL 5182.9335 10230.1581 0.5066 0.6140 −15210.5140 25576.3810
ECON −6820.7781 13109.3693 −0.5203 0.6045 −32953.8282 19312.2721
SR-BL −7658.8094 14041.8735 −0.5454 0.5871 −35650.7726 20333.1539
AGE_2 −230767.6463 114117.2005 −2.0222 0.0469 −458256.1279 −3279.1648
AGE_3 −216827.0808 152246.6232 −1.4242 0.1587 −520325.1772 86671.0155
COUNTRY_BAN −122103.5196 438719.2796 −0.2783 0.7816 −996674.4194 752467.3801
COUNTRY_ENG 672410.7654 238386.2220 2.8207 0.0062 197196.5172 1147625.0135
COUNTRY_IND 155306.4011 126316.3449 1.2295 0.2229 −96500.6302 407113.4325
COUNTRY_NZ 194218.9120 173491.9293 1.1195 0.2667 −151630.9280 540068.7521
COUNTRY_PAK 75921.7670 193463.5545 0.3924 0.6959 −309740.7804 461584.3143
COUNTRY_SA 64283.3894 144587.6773 0.4446 0.6579 −223946.8775 352513.6563
COUNTRY_SL 17360.1530 176333.7497 0.0985 0.9218 −334154.7526 368875.0586
COUNTRY_WI 10607.7792 230686.7892 0.0460 0.9635 −449257.9303 470473.4887
COUNTRY_ZIM −145494.4793 401505.2815 −0.3624 0.7181 −945880.6296 654891.6710
PLAYING ROLE_Batsman 75724.7643 150250.0240 0.5040 0.6158 −223793.1844 375242.7130
PLAYING ROLE_Bowler 15395.8752 126308.1272 0.1219 0.9033 −236394.7744 267186.5249

PLAYING ROLE_W. Keeper −71358.6280 213585.7444 –0.3341 0.7393 −497134.0278 354416.7718
CAPTAINCY EXP_1 164113.3972 123430.6353 1.3296 0.1878 −81941.0772 410167.8716

Omnibus: 0.891 Durbin-Watson: 2.244

Prob(Omnibus): 0.640 Jarque-Bera (JB): 0.638

Skew: 0.190 Prob(JB): 0.727

Kurtosis: 3.059 Condition No.: 84116

MLR model output from Python is provided in Table 4.4. As per the p-value (<0.05), only the features
HS, AGE_2, AVE and COUNTRY_ENG have come out significant. The model says that none of the other
features are influencing SOLD PRICE (at a significance value of 0.05). This is not very intuitive and could
be a result of multi-collinearity effect of variables.

4.5.6 | Multi-Collinearity and Handling Multi-Collinearity

When the dataset has a large number of independent variables (features), it is possible that few of these
independent variables (features) may be highly correlated. The existence of a high correlation between
independent  variables  is  called  multi-collinearity.  Presence  of  multi-collinearity  can  destabilize  the 

Chapter 04_Linear Regression.indd 119 4/24/2019 6:54:46 PM

Machine Learning using Python120

 multiple linear regression model. Thus, it is necessary to identify the presence of multi-collinearity and
take corrective actions.

Multi-collinearity can have the following impact on the model:

1. The standard error of estimate, Se ()b , is inflated.
2. A statistically significant explanatory variable may be labelled as statistically insignificant due to

the large p-value. This is because when the standard error of estimate is inflated, it results in an
underestimation of t-statistic value.

3. The sign of the regression coefficient may be different, that is, instead of negative value for regres-
sion coefficient, we may have a positive regression coefficient and vice versa.

4. Adding/removing a variable or even an observation may result in large variation in regression
coefficient estimates.

4.5.6.1 Variance Inflation Factor (VIF)

Variance Inflation Factor (VIF) is a measure used for identifying the existence of multi-collinearity. For
example, consider two independent variables X1 and X2 and regression between them.

 X1 = a0 + a1 X2 (4.15)

Let R12 be the R-squared value of this model. Then the VIF, which is a measure of multi-collinearity, is
given by

 VIF =
−

1
1 12

2R
 (4.16)

VIF is the value by which the t-statistic value is deflated. VIF value of greater than 4 requires further
investigation to assess the impact of multi-collinearity. One approach to eliminate multi-collinearity is
to remove one of the variables from the model building.

variance_inflation_factor() method available in statsmodels.stats.outliers_influence package can be
used to calculate VIF for the features. The following method is written to calculate VIF and assign the
VIF to the columns and return a DataFrame:

from statsmodels.stats.outliers_influence import variance_inflation_
factor

def get_ vif_factors(X):
X_matrix = X.as_matrix()
vif = [variance_inflation_factor(X_matrix, i) for i in range

(X_matrix.sh ape[1])]

vif_factors = pd.DataFrame()
vif_factors[‘column’] = X.columns
vif_factors[‘VIF’] = vif

return vif_factors

Now, calling the above method with the X features will return the VIF for the corresponding features.

vif_factors = get_vif_factors(X[X_features])
vif_factors

Chapter 04_Linear Regression.indd 120 4/24/2019 6:54:47 PM

Chapter 4 · Linear Regression 121

Column VIF

1 T-WKTS 7.679284
2 ODI-RUNS-S 16.426209
3 ODI-SR-B 13.829376
4 ODI-WKTS 9.951800
5 ODI-SR-BL 4.426818
6 RUNS-S 16.135407
7 HS 22.781017
8 AVE 25.226566
9 SR-B 21.576204

10 SIXERS 9.547268
11 RUNS-C 38.229691
12 WKTS 33.366067
13 AVE-BL 100.198105
14 ECON 7.650140
15 SR-BL 103.723846
16 AGE_2 6.996226
17 AGE_3 3.855003
18 COUNTRY_BAN 1.469017
19 COUNTRY_ENG 1.391524
20 COUNTRY_IND 4.568898
21 COUNTRY_NZ 1.497856
22 COUNTRY_PAK 1.796355
23 COUNTRY_SA 1.886555
24 COUNTRY_SL 1.984902
25 COUNTRY_WI 1.531847
26 COUNTRY_ZIM 1.312168
27 PLAYING ROLE_Batsman 4.843136
28 PLAYING ROLE_Bowler 3.795864
29 PLAYING ROLE_W. Keeper 3.132044
30 CAPTAINCY EXP_1 4.245128

4.5.6.2 Checking Correlation of Columns with Large VIFs

We can generate a correlation heatmap to understand the correlation between the independent variables
which can be used to decide which features to include in the model. We will first select the features that
have VIF value of more than 4.

columns_with_large_vif = vif_factors[vif_factors.vif > 4].column

Chapter 04_Linear Regression.indd 121 4/24/2019 6:54:47 PM

Machine Learning using Python122

Then plot the heatmap for features with VIF more than 4 (see Figure 4.5).

plt.figure(figsize = (12,10))

sn.heatmap(X[columns_with_large_vif].corr(), annot = True);
plt.title(“Figure 4.5 - Heatmap depicting correlation between
 features”);

 FIGURE 4.5 Heatmap depicting the correlation between features.

The following observations are made from the heatmap (Figure 4.5):

1. T-RUNS and ODI-RUNS-S are highly correlated, whereas ODI-WKTS and T-WKTS are highly
correlated.

Chapter 04_Linear Regression.indd 122 4/24/2019 6:54:48 PM

Chapter 4 · Linear Regression 123

2. Batsman features like RUNS-S, HS, AVE, SIXERS are highly correlated, while bowler’s features
like AVE-BL, ECON and SR-BL are highly correlated.

To avoid multi-collinearity, we can keep only one column from each group of highly correlated variables
and remove the others. Now which one to keep and which one to remove depends on the understanding
of the data and the domain.

We have decided to remove the following features. Please note that it may take multiple iterations 
before deciding at a final set of variables, which do not have multi-collinearity. These iterations have been
omitted here for simplicity.

columns_to_be_removed = [‘T-RUNS’, ‘T-WKTS’, ‘RUNS-S’, ‘HS’, ‘AVE’,
‘RUNS-C’, ‘SR-B’, ‘AVE-BL’, ‘ECON’,
‘ODI-SR-B’, ‘ODI-RUNS-S’, ‘AGE_2’, ‘SR-BL’]

X_new_features = list(set(X_features) - set(columns_to_be_removed))

get_vif_factors(X[X_new_features])

Column VIF

0 AGE_3 1.779861
1 ODI-SR-BL 2.822148
2 COUNTRY_IND 3.144668
3 COUNTRY_ENG 1.131869
4 COUNTRY_NZ 1.173418
5 COUNTRY_PAK 1.334773
6 COUNTRY_WI 1.194093
7 COUNTRY_SL 1.519752
8 COUNTRY_ZIM 1.205305
9 CAPTAINCY EXP_1 2.458745

10 PLAYING ROLE_W. Keeper 1.900941
11 PLAYING ROLE_Bowler 3.060168
12 SIXERS 2.397409
13 COUNTRY_BAN 1.094293
14 COUNTRY_SA 1.416657
15 PLAYING ROLE_Batsman 2.680207
16 ODI-WKTS 2.742889
17 WKTS 2.883101

The VIFs on the final set of variables indicate that there is no multi-collinearity present any more
(VIF values are less than 4). We can proceed to build the model with these set of variables now.

Chapter 04_Linear Regression.indd 123 4/24/2019 6:54:48 PM

Machine Learning using Python124

4.5.6.3 Building a New Model after Removing Multi-collinearity

train_X = train_X[X_new_features]

ipl_model_2 = sm.OLS(train_y, train_X).fit()
ipl_model_2.summary2()

 TABLE 4.5 Model summary for ipl_model_2

Model: OLS Adj. R-squared: 0.728

Dependent Variable: SOLD PRICE AIC: 2965.1080

Date: 2018-04-08 07:27 BIC: 3012.7070

No. Observations: 104 Log-Likelihood: −1464.6

Df Model: 18 F-statistic: 16.49

Df Residuals: 86 Prob (F-statistic): 1.13e-20

R-squared: 0.775 Scale: 1.2071e+11

Coef. Std.Err. t P > |t| [0.025 0.975]

COUNTRY_IND 282829.8091 96188.0292 2.9404 0.0042 91614.3356 474045.2827

COUNTRY_BAN −108758.6040 369274.1916 −0.2945 0.7691 −842851.4010 625334.1930

AGE_3 −8950.6659 98041.9325 −0.0913 0.9275 −203851.5772 185950.2453

COUNTRY_PAK 122810.2480 159600.8063 0.7695 0.4437 −194465.6541 440086.1502

COUNTRY_WI −22234.9315 213050.5847 −0.1044 0.9171 −445765.4766 401295.6135

ODI-WKTS 772.4088 470.6354 1.6412 0.1044 −163.1834 1708.0009

COUNTRY_SA 108735.9086 115092.9596 0.9448 0.3474 −120061.3227 337533.1399

COUNTRY_ENG 682934.7166 216150.8279 3.1595 0.0022 253241.0920 1112628.3411

CAPTAINCY EXP_1 208376.6957 98128.0284 2.1235 0.0366 13304.6315 403448.7600

WKTS 2431.8988 2105.3524 1.1551 0.2512 −1753.4033 6617.2008

SIXERS 7862.1259 2086.6101 3.7679 0.0003 3714.0824 12010.1694

PLAYING ROLE_W. Keeper −55121.9240 169922.5271 −0.3244 0.7464 −392916.7280 282672.8801

COUNTRY_ZIM −67977.6781 390859.9289 −0.1739 0.8623 −844981.5006 709026.1444

PLAYING ROLE_Bowler −18315.4968 106035.9664 −0.1727 0.8633 −229108.0215 192477.0279

COUNTRY_SL 55912.3398 142277.1829 0.3930 0.6953 −226925.3388 338750.0184

COUNTRY_NZ 142968.8843 151841.7382 0.9416 0.3491 −158882.5009 444820.2695

PLAYING ROLE_Batsman 121382.0570 106685.0356 1.1378 0.2584 −90700.7746 333464.8886

ODI-SR-BL 909.0021 1267.4969 0.7172 0.4752 −1610.6983 3428.7026

Chapter 04_Linear Regression.indd 124 4/24/2019 6:54:48 PM

Chapter 4 · Linear Regression 125

Omnibus: 8.635 Durbin-Watson: 2.252
Prob(Omnibus): 0.013 Jarque-Bera (JB): 8.345
Skew: 0.623 Prob(JB): 0.015
Kurtosis: 3.609 Condition No.: 1492

In Table 4.5, the p-values of the coefficients estimated show whether the variables are statistically signifi-
cant in influencing response variables or not. If the p-value is less than the significance value (a) then the
feature is statistically significant, otherwise it is not. The value of a is usually selected as 0.05; however, it
may be chosen based on the context of the problem.

Based on the p-values, only the variables COUNTRY_IND, COUNTRY_ENG, SIXERS, CAPTAINCY
EXP_1 have come out statistically significant. So, the features that decide the SOLD PRICE are

1. Whether the players belong to India or England (that is, origin country of the player).
2.  How many sixes has the player hit in previous versions of the IPL? How many wickets have been 

taken by the player in ODIs?
3. Whether the player has any previous captaincy experience or not.

Let us create a new list called significant_vars to store the column names of significant variables and build
a new model (Table 4.6).

significant_vars = [‘COUNTRY_IND’, ‘COUNTRY_ENG’, ‘SIXERS’,
‘CAPTAINCY EXP_1’]

train_X = train_X[significant_vars]

ipl_model_3 = sm.OLS(train_y, train_X).fit()
ipl_model_3.summary2()

 TABLE 4.6 Model summary for ipl_model_3

Model: OLS Adj. R-squared: 0.704

Dependent Variable: SOLD PRICE AIC: 2961.8089
Date: 2018-04-08 07:27 BIC: 2972.3864
No. Observations: 104 Log-Likelihood: −1476.9
Df Model: 4 F-statistic: 62.77
Df Residuals: 100 Prob (F-statistic): 1.97e-26
R-squared: 0.715 Scale: 1.3164e+11

Coef. Std.Err. t P > |t| [0.025 0.975]

COUNTRY_IND 387890.2538 63007.1511 6.1563 0.0000 262885.8606 512894.6471
COUNTRY_ENG 731833.6386 214164.4988 3.4172 0.0009 306937.3727 1156729.9045
SIXERS 8637.8344 1675.1313 5.1565 0.0000 5314.4216 11961.2472
CAPTAINCY EXP_1 359725.2741 74930.3460 4.8008 0.0000 211065.6018 508384.9463

Chapter 04_Linear Regression.indd 125 4/24/2019 6:54:48 PM

Machine Learning using Python126

Omnibus: 1.130 Durbin-Watson: 2.238
Prob(Omnibus): 0.568 Jarque-Bera (JB): 0.874
Skew: 0.223 Prob(JB): 0.646
Kurtosis: 3.046 Condition No.: 165

The following inference can be derived from the latest model ipl_model_3 (Table 4.6)

1. All the variables are statistically significant, as p-value is less than 0.05%.
2. The overall model is significant as the p-value for the F-statistics is also less than 0.05%.
3. The model can explain 71.5% of the variance in SOLD PRICE as the R-squared value is 0.715 and

the adjusted R-squared value is 0.704%. Adjusted R-squared is a measure that is calculated after
normalizing SSE and SST with the corresponding degrees of freedom.

4.5.7 | Residual Analysis in Multiple Linear Regression

4.5.7.1 Test for Normality of Residuals (P-P Plot)

One of the important assumptions of regression is that the residuals should be normally distributed. This
can be verified using P-P plot. We will develop a method called draw_pp_plot() which takes the model
output (residuals) and draws the P-P plot.

def draw_pp_plot(model, title):
probplot = sm.ProbPlot(model.resid);
plt.figure(figsize = (8, 6));
probplot.ppplot(line=‘45’);
plt.title(title);
plt.show();

draw_pp_plot (ipl_model_3,
“Figure 4.6 - Normal P-P Plot of Regression Standardized
Residuals”);

Theoretical probabilities

S
am

pl
e

pr
ob

ab
ili

tie
s

0.0 0.2

0.2

0.4

0.4

0.0
0.6

0.6

1.00.8

1.0

0.8

FIGURE 4.6 Normal P-P plot of regression standardized residuals for ipl_model_3.

Chapter 04_Linear Regression.indd 126 4/24/2019 6:54:48 PM

Chapter 4 · Linear Regression 127

The P-P plot in Figure 4.6 shows that the residuals follow an approximate normal distribution.

4.5.7.2 Residual Plot for Homoscedasticity and Model Specification

As explained in the previous example, the residual plot is a plot between standardized fitted values and
residuals. The residuals should not have any patterns. Residual plot with shape such as a funnel may indi-
cate existence of heteroscedasticity. Any pattern in the residual plot may also indicate the use of incorrect
functional form in the regression model development.

def plot_resid_fitted(fitted, resid, title):
plt.scatter (get_standardized_values(fitted),

 get_standardized_values(resid))
plt.title(title)
plt.xlabel(“Standardized predicted values”)
plt.ylabel(“Standardized residual values”)
plt.show()

plot_resid_fitted(ipl_model_3.fittedvalues,
ipl_model_3.resid,
“Figure 4.7 - Residual Plot”)

−0.5−1.0

−2

−1

0.0
Standardized predicted values

0.5 1.0 1.5 2.0 2.5

S
ta

nd
ar

di
ze

d
re

si
du

al
 v

al
ue

s

0

1

2

FIGURE 4.7 Residual plot.

The residuals in Figure 4.7 do not show any signs of heteroscedasticity (no funnel-like pattern).

4.5.8 | Detecting Influencers

In OLS estimate, we assume that each record  in  the data has equal  influence on the model parameters 
(regression coefficients), which may not be true. We can use the function influence_plot() as explained in

Chapter 04_Linear Regression.indd 127 4/24/2019 6:54:49 PM

Machine Learning using Python128

the previous example to identify highly influential observations. Leverage values of more than 3 (k + 1) / n
are treated as highly influential observations.

k = train_X.shape[1]
n = train_X.shape[0]

print(“Number of variables:”, k, “ and number of observations:”, n)

Number of variables: 4 and number of observations: 104

leverage_cutoff = 3*((k + 1)/n)
print(“Cutoff for leverage value:”, round(leverage_cutoff, 3))

Cutoff for leverage value: 0.144

So, observations with leverage values more than 0.178 are highly influential.

from statsmodels.graphics.regressionplots import influence_plot
fig, ax = plt.subplots(figsize=(8,6))
influence_plot(ipl_model_3, ax = ax)
plt.title(“Figure 4.8 - Leverage Value Vs Residuals”)
plt.show()

0.10.0

−2

−1

0

S
tu

de
nt

iz
ed

 r
es

id
ua

ls

1

0.2 0.3 0.4

58
8882

28

25

108
113

11159

23

83

2

3

H Leverage

Influence plot

FIGURE 4.8 Leverage value versus residuals.

The above diagram shows there are three observations 23, 58, 83 that have comparatively high leverage
with residuals. We can filter out the influential observations.

ipl_auction_df[ipl_auction_df.index.isin([23, 58, 83])]

Chapter 04_Linear Regression.indd 128 4/24/2019 6:54:49 PM

Chapter 4 · Linear Regression 129

SI. NO. PLAYER NAME AGE COUNTRY TEAM PLAYING ROLE T-RUNS T-WKTS ODI-RUNS-S ODI-SR-B ... SR-B SIXERS RUNS-C

23 24 Flintoff, A 2 ENG CSK Allrounder 3845 226 3394 88.82 ... 116.98 2 105

58 59 Mascarenhas, AD 2 ENG RR+ Allrounder 0 0 245 95.33 ... 101.37 1 331

83 84 Pietersen, KP 2 ENG RCB+ Batsman 6654 5 4184 86.76 ... 141.20 30 215

These observations do not have large residuals. So, it may not be necessary to remove these observations.
But if the observations need to be removed, the following method drop() can be used:

train_X_new = train_X.drop([23, 58, 83], axis = 0)
train_y_new = train_y.drop([23, 58, 83], axis = 0)

We will leave the next steps of building a model after removing the important observations, to the reader
to try themselves for practice.

4.5.9 | Transforming Response Variable

Transformation is a process of deriving new dependent and/or independent variables to identify
the correct functional form of the regression model. For example, the dependent variable Y may be
replaced in the model with ln(Y), 1/Y, etc. and similarly, an independent variable X may be replaced
with ln(X), 1/X, etc.

Transformation in MLR is used to address the following issues:

1.  Poor fit (low R-squared value).
2.  Pattern in residual analysis indicating a potential non-linear relationship between the dependent 

and independent variables.
3. Residuals do not follow a normal distribution.
4. Residuals are not homoscedastic.

We will create a new response variable by taking the square root of the existing values. This can be done
by using Numpy’s sqrt() method.

train_y = np.sqrt(train_y)

ipl_model_4 = sm.OLS(train_y, train_X).fit()
ipl_model_4.summary2()

 TABLE 4.7 Model summary for ipl_model_4

Model: OLS Adj. R-squared: 0.741

Dependent Variable: SOLD PRICE AIC: 1527.9999

Date: 2018-04-08 07:30 BIC: 1538.5775

(Continued)

Chapter 04_Linear Regression.indd 129 4/24/2019 6:54:49 PM

Machine Learning using Python130

 TABLE 4.7 (Continued)

No. Observations: 104 Log-Likelihood: −760.00
Df Model: 4 F-statistic: 75.29
Df Residuals: 100 Prob (F-statistic): 2.63e-29
R-squared: 0.751 Scale: 1.3550e+05

Coef. Std.Err. t P > |t| [0.025 0.975]

COUNTRY_IND 490.7089 63.9238 7.6765 0.0000 363.8860 617.5318
COUNTRY_ENG 563.0261 217.2801 2.5912 0.0110 131.9486 994.1036
SIXERS 8.5338 1.6995 5.0213 0.0000 5.1620 11.9055
CAPTAINCY EXP_1 417.7575 76.0204 5.4953 0.0000 266.9352 568.5799

Omnibus: 0.017 Durbin-Watson: 1.879
Prob(Omnibus): 0.992 Jarque-Bera (JB): 0.145
Skew: 0.005 Prob(JB): 0.930
Kurtosis: 2.817 Condition No.: 165

In Table 4.7, the R-squared value of the model has increased to 0.751. The P-P plot in Figure 4.9 also 
shows that the residuals follow a normal distribution.

draw_pp_plot(ipl_model_4,
 “Figure 4.9 - Normal P-P Plot of Regression Standardized

Residuals”);

Theoretical probabilities

S
am

pl
e

pr
ob

ab
ili

tie
s

0.0 0.2

0.2

0.4

0.4

0.0
0.6

0.6

1.00.8

1.0

0.8

FIGURE 4.9 Normal P-P plot of regression standardized residuals.

4.5.10 | Making Predictions on the Validation Set

After the final model is built as per our requirements and the model has passed all diagnostic tests, we
can apply the model on the validation test data to predict the SOLD PRICE. As the model we have built

Chapter 04_Linear Regression.indd 130 4/24/2019 6:54:50 PM

Chapter 4 · Linear Regression 131

predicts square root of the SOLD PRICE, we need to square the predicted values to get the actual SOLD
PRICE of the players.

pred_y = np.power(ipl_model_4.predict(test_X[train_X.columns]),2)

4.5.10.1 Measuring RMSE

Calculating RMSE of the validation set.

from sklearn import metrics
np.sqrt(metrics.mean_squared_error(pred_y, test_y))

496151.18122558104

4.5.10.2 Measuring R-squared Value

Similarly R-squared value is calculated using the code below.

np.round(metrics.r2_score(pred_y, test_y), 2)

0.44

The accuracy (R-squared) value on validation set (0.44) is quite low compared to the accuracy reported
by the model on training dataset (0.751). This could a sign of model over-fitting. We will discuss under-
fitting and over-fitting of models and how to deal with it in a later chapter.

4.5.10.3 Auto-correlation Between Error Terms

One of the assumptions of the regression model is that there should be no correlation between error
terms. If there is an auto-correlation, the standard error estimate of the beta coefficient may be underes-
timated and that will result in over-estimation of the t-statistic value, which, in turn, will result in a low
p-value. Thus, a variable which has no statistically significant relationship with the response variable may
be accepted in the model due to the presence of auto-correlation. The presence of auto-correlation can be
established using the Durbin−Watson test. As a thumb rule, a Durbin−Watson statistic close to 2 would
imply the absence of autocorrelation.

The model summary shows that the Durbin−Watson statistics value is 2.2, which very close to 2;
hence it can be concluded that the error terms are not auto-correlated. Note that auto-correlation is more
relevant in the case of time-series data.

 CONCLUSION

In this chapter, we learnt how to build, diagnose, understand and validate simple and multiple linear
regression model using Python APIs. 

 1.  Multiple  linear  regression  (MLR) model  is  used  to find  the  existence of  association  relationship 
between a dependent variable and more than one independent variables.

Chapter 04_Linear Regression.indd 131 4/24/2019 6:54:50 PM

Machine Learning using Python132

 2.  In MLR,  the  regression  coefficients  are  called  partial  regression  coefficients,  since  they measure 
the change in the value of the dependent variable for every one unit change in the value of the
 independent variable, when all other independent variables in the model are kept constant.

 3.  While  building  the MLR model,  categorical  variables with n categories should be replaced with
(n − 1) dummy (binary) variables to avoid model misspecification.

 4.  Apart from checking for normality, heteroscedasticity, every MLR model should be checked for the 
presence of multi-collinearity, since multi-collinearity can destabilize the MLR model.

 5. Transforming of variables can be done to improve accuracy or remove heteroscedasticity and
improve the model fit.

 EXERCISES

Answer Questions 1 to 4 using the following dataset. Develop Python code to answer the following
questions.

The dataset country.csv contains Corruption  Perception  Index  and  Gini  Index  of  20  countries. 
Corruption Perception Index close to 100 indicates low corruption and close to 0 indicates high cor-
ruption. Gini Index is a measure of income distribution among citizens of a country (high Gini indi-
cates high inequality). Corruption Index is taken from Transparency International, while Gini Index 
is sourced from Wikipedia.

 1. Develop a simple linear regression model (Y = b0 + b1X) between corruption perception index
(Y) and Gini index (X). What is the change in the corruption perception index for every one unit
increase in Gini index? 

 2.  What proportion of the variation in corruption perception index is explained by Gini index? 
 3.  Is there a statistically significant relationship between corruption perception index and Gini index 

at alpha value 0.1? 
 4. Calculate the 95% confidence interval for the regression coefficient b1.

Answer Questions 5 to 18 using the following dataset. Develop Python code to answer the following
questions.

The dataset DAD Hospital contains data about cost of treatment for patients. It also contains information
about patient’s demographics and health parameters. The following are the description of the columns
in the dataset.

Sl_NO Sequence Number

AGE Patients’ age

GENDER M for Male and F for Female

MARITAL_STATUS Patient is married or unmarried

KEY_COMPLAINTS_CODE Code for patients’ complaint. The key health condition for which the patient was treated.

BODY_HEIGHT Body weight

HR_PULSE Heart pulse rate

(Continued)

Chapter 04_Linear Regression.indd 132 4/24/2019 6:54:50 PM

Chapter 4 · Linear Regression 133

Sl_NO Sequence Number

BP_HIGH Systolic blood pressure

BP_LOW Diastolic blood pressure

RR Respiratory Rate

PAST_MEDICAL_HISTORY_CODE Code of patients’ medical history e.g. diabetes, hypertension etc.

HB Haemoglobin Count

UREA Urea Count

CREATININE Creatinine count in blood and urine

MODE_OF_ARRIVAL Mode of arrival e.g. AMBULANCE, WALKED IN

STATE_AT_THE_TIME_OF_ARRIVAL Patients’ state at the time of arrival

TYPE_OF_ADMSN Type of admission ELECTIVE, EMERGENCY

TOTAL_COST_TO_HOSPITAL Actual cost to the hospital

TOTAL_AMOUNT_BILLED_TO_THE_PATIENT Actual amount billed to the patient

CONCESSION Concession given at the time of billing

ACTUAL_RECEIVABLE_AMOUNT Actual amount received by the hospital

TOTAL_LENGTH_OF_STAY Number of days patients was admitted to the hospital

LENGTH_OF_STAY_ICU Number of days patients was admitted in the ICU

LENGTH_OF_STAY_WARD Number of days patients was admitted in the hospital’s ward

IMPLANT_USED_Y_N Any implants used

COST_OF_IMPLANT Cost of implant used

 5. DAD hospital wants to understand what are the key factors influencing the cost to hospital. The hospi-
tal wants to provide treatment packages (fixed price contract) to the patients at the time of the admis-
sion. Can the hospital build a model using the historical data to estimate the cost of treatment?

 6. Build a correlation matrix between all the numeric features in the dataset. Report the features which are
correlated at a cutoff of 0.70. What actions will you take on the features which are highly correlated?

 7. Build a new feature named BMI using body height and body weight. Include this as a part of the
DataFrame created in step 1.

 8.  Past  medical  history  code  has  175  instances  of  missing  value  (NaN).  Impute  ‘None’  as  a  label 
 wherever the value is NaN for this feature.

 9. Select the features that can be used to build a model to estimate the cost to the hospital.
10. Identify which features are numerical and which are categorical. Create a new DataFrame with

the selected numeric features and categorical features. Encode the categorical features and create
dummy features.

11.  Which features have the symptoms of multi-collinearity and need to be removed from the model?
12. Find the outliers in the dataset using Z-score and Cook’s distance. If required, remove the observations

from the dataset.
13.  Split the data into training set and test set. Use 80% of data for model training and 20% for model testing.
14. Build a regression model with statsmodel.api to estimate the total cost to hospital. How do you

 interpret the model outcome? 

Chapter 04_Linear Regression.indd 133 4/24/2019 6:54:50 PM

Machine Learning using Python134

15.  Which features are statistically significant in predicting the total cost to the hospital?
16. Build a linear regression model with significant features and report model performance.
17.  Conduct residual analysis using P-P plot to find out if the model is valid. 
18.  Predict the total cost using the test set and report RMSE of the model.

 REFERENCES

 1.  Kutner M, Nachtsheim CJ, Neter J, and Li W (2013). Applied Linear Statistics Models, 5th edition,
McGraw Hill Education.

 2.  U Dinesh Kumar  (2017). Business Analytics: The Science of Data-Driven Decision Making, Wiley
India, Delhi.

 3. Statsmodel https://www.statsmodels.org/stable/index.html
 4.  Pandas Library: https://pandas.pydata.org/
 5.  Matplotlib Library: https://matplotlib.org/
 6.  Seabon Library: https://seaborn.pydata.org/

Chapter 04_Linear Regression.indd 134 4/24/2019 6:54:50 PM

https://www.statsmodels.org/stable/index.html
https://pandas.pydata.org/
https://matplotlib.org/
https://seaborn.pydata.org/

5.1 | CLASSIFICATION OVERVIEW

Classification problems are an important category of problems in analytics in which the outcome vari-
able or response variable (Y) takes discrete values. Primary objective of a classification model is to pre-
dict the probability of an observation belonging to a class, known as class probability. Few examples of
classification problem are as follows:

1. A bank would like to classify the customers based on risk such as low-risk or high-risk customers.
2. E-commerce providers would like to predict whether a customer is likely to churn or not. It is a

loss of revenue for the company if an existing and valuable customer churns.
3. Health service providers may classify a patient, based on the diagnostic results, as positive (pres-

ence of disease) or negative.
4. The HR department of a firm may want to predict if an applicant would accept an offer or not.
5. Predicting outcome of a sporting event, for example, whether India will win the next world cup

cricket tournament.

LEARNING OBJECTIVES

After completing this chapter, you will be able to

•   Understand the concept of classification problems and their applications across different sectors. 
•   Learn to build logistic regression and decision tree models using the Python package statsmodel

and sklearn APIs.
•   Learn to perform activities such as 
 (a) splitting the dataset into training and validation datasets.
 (b) building model using Python package on training dataset and test on the validation dataset.
•   Learn  to  measure  model  accuracies  using  confusion  matrix,  sensitivity  (recall),  specificity, 

precision, receiver operating characteristic (ROC) curve, and area under ROC curve (AUC).
•   Learn about statistical significance, model diagnostics and finding the optimal cut-off probabilities 

for classification.

CHAPTER

5Classification Problems

Chapter 05_Classification.indd 135 4/24/2019 6:55:09 PM

Machine Learning using Python136

6. Sentiments of customers on a product or service may be classified as positive, negative, neutral,
and sarcastic.

7. Based on the image of a plant, one can predict if the plant is infected with a specific disease or not.

Classification problems may have binary or multiple outcomes or classes. Binary outcomes are called
binary classification and multiple outcomes are called multinomial classification. There are several
techniques used for solving classification problems such as logistic regression, classification trees, dis-
criminant analysis, neural networks, and support vector machines. In this chapter, we will focus on logis-
tic regression and classification tree (aka decision tree learning) for building and evaluating classification
models. Some more models will be discussed in Chapter 6.

5.2 | BINARY LOGISTIC REGRESSION

Logistic regression is a statistical model in which the response variable takes a discrete value and the 
 explanatory variables can either be continuous or discrete. If the outcome variable takes only two values,
then the model is called binary logistic regression model. Assume that the outcomes are called positive
(usually coded as Y = 1) and negative (usually coded as Y = 0). Then the probability that a record belongs
to a positive class, P(Y = 1), using the binary logistic regression model is given by

 P Y e
e

Z

Z()= =
+

1
1

 (5.1)

where
Z = b0 + b1X1 + b2X2 + b3X3 + ¼ + bmXm

Here X1, X2, …, Xm are the independent variables or features. The logistic regression has an S-shaped
curve, and gives the class probability of an observation belonging to class labelled as 1, that is,
P(Y = 1).

Equation (5.1) can be re-written as

 ln ()
()

P Y
P Y

Z X Xm m
=

- =
æ
èç

ö
ø÷
= = + + +

1
1 1 0 1 1b b b� (5.2)

The left-hand side of Eq. (5.2) is a log natural of odds and is known as logit function; the right-had side
is a linear function. Such models are called generalized linear models (GLM). In GLM, the errors may 
not follow normal distribution and there exists a transformation function of the outcome variable that
takes a linear functional form.

The logistic function in Eq. (5.1) has an S-shaped curve (thus also known as Sigmoid function).
Consider an example of classifying a person with heart disease and without heart disease. That is, we
are interested in finding the probability of a person suffering from heart disease as a function of age.
The outcome variable is either someone suffers from heart disease or not and the independent variable
(feature) is age. Then a logistic or sigmoid function can be fit to explain the probability of suffering from
heart disease with respect to age as shown in Figure 5.1.

The corresponding logistic function is given as

P e
e

Age

Age()Heart Disease = =
+

+

+1
1

0 1

0 1

b b

b b

Chapter 05_Classification.indd 136 4/24/2019 6:55:10 PM

Chapter 5 · Classification Problems 137

Age
0 20

1.0

0.8

0.6

0.4

0.2

0.0
40 60 80 100 120P

ro
ba

bi
lit

y
of

 S
uf

fe
rin

g
fr

om
 H

ea
rt

 D
is

ea
se

Age
0 20

1.0

0.8

0.6

0.4

0.2

0.0
40 60 80 100 120P

ro
ba

bi
lit

y
of

 S
uf

fe
rin

g
fr

om
 H

ea
rt

 D
is

ea
se

FIGURE 5.1 Logistic regression model for predicting probability of suffering from Heart Disease.

5.3 | CREDIT CLASSIFICATION

In  this chapter, we will use  the German credit  rating dataset available at  the University of California 
Irvine (UCI) machine  learning  laboratory  to predict whether a credit  is a good or bad credit. Credit 
classification is one of the popular classification problems encountered by financial institutions. For
example, when a customer applies for a loan, financial institutions such as banks would like to predict
the probability of default. In this section, we will be using the German credit rating dataset provided by
Prof. Hofmann (available at UCI machine learning data repository1). The data contains several attributes
(Table 5.1) of the persons who availed the credit.

 TABLE 5.1 Data description for German credit rating dataset

Variable Variable Type Description Categories

checkin_acc categorical Status of existing checking account

� A11 : … < 0 DM
� A12 : 0 <= … < 200 DM
� A13 : … >= 200 DM / salary assignments for

at least 1 year
� A14 : no checking account

duration numerical Duration of the credit given in months

credit_history categorical Credit History

� A30 : no credits taken/all credits paid back duly
� A31 : all credits at this bank paid back duly
� A32 : existing credits paid back duly till now
� A33 : delay in paying off in the past
� A34 : critical account/other credits existing (not

at this bank)
(Continued)

1 Source: https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29.

Chapter 05_Classification.indd 137 4/24/2019 6:55:11 PM

Machine Learning using Python138

 TABLE 5.1 (Continued)

Variable Variable Type Description Categories

amount numerical Amount of credit/loan

savings_acc categorical Balance in savings account

� A61 : … <100 DM
� A62 : 100 <= … <500 DM
� A63 : 500 <= … < 1000 DM
� A64 : .. >=1000 DM
� A65 : unknown/no savings account

present_emp_
since

categorical Employment in years

� A71 : unemployed
� A72 : … < 1 year
� A73 : 1 <=…< 4 years
� A74 : 4 <=…< 7 years
� A75 : .. >= 7 years

inst_rate numerical Installment rate

personal_status categorical Marital status

� A91 : male : divorced/separated
� A92 : female : divorced/separated/married
� A93: male : single
� A94 : male : married/widowed
� A95 : female : single

residing_since numerical Residing since in years

age numerical Age in years

inst_plans categorical
Other installment plans of the
applicant

� A141 : bank
� A142 : stores
� A143 : none

checkin_acc categorical Balance in checking account

� A11 : … < 0 DM
� A12 : 0 <= … < 200 DM
� A13 : … >= 200 DM/salary assignments for

at least 1 year
� A14 : no checking account

job categorical Job

� A171 : unemployed/unskilled - non-resident
� A172 : unskilled - resident
� A173 : skilled employee/official
� A174 : management/self-employed/highly

qualified employee/officer

status categorical Credit status
� 0: Good Credit
� 1: Bad Credit

The dataset contains records with comma separated values (csv) and can be read using pandas’ read_csv()
method.

Chapter 05_Classification.indd 138 4/24/2019 6:55:11 PM

Chapter 5 · Classification Problems 139

Reading and displaying few records from the dataset is shown below:

import pandas as pd
import numpy as np

credit_df = pd.read_csv(“German Credit Data.csv”)
credit_df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 14 columns):
checkin_acc 1000 non-null object
duration 1000 non-null int64
credit_history 1000 non-null object
amount 1000 non-null int64
savings_acc 1000 non-null object
present_emp_since 1000 non-null object
inst_rate 1000 non-null int64
personal_status 1000 non-null object
residing_since 1000 non-null int64
age 1000 non-null int64
inst_plans 1000 non-null object
num_credits 1000 non-null int64
job 1000 non-null object
status 1000 non-null int64
dtypes: int64(7), object(7)
memory usage: 109.5+ KB

The dataset contains 1000 records and 14 columns. Printing all the columns together will exceed the
page width, so we will print the first 7 columns, that is, [1:7] and then print the remaining ones. The first
column is a serial number and hence not selected for printing.

credit_df.iloc[0:5,1:7]

duration credit_history Amount savings_acc present_emp_since inst_rate

0 6 A34 1169 A65 A75 4

1 48 A32 5951 A61 A73 2

2 12 A34 2096 A61 A74 2

3 42 A32 7882 A61 A74 2

4 24 A33 4870 A61 A73 3

Chapter 05_Classification.indd 139 4/24/2019 6:55:11 PM

Machine Learning using Python140

Now, let us print the remaining 7 columns.

credit_df.iloc[0:5,7:]

personal_status residing_since age inst_plans num_credits job status

0 A93 4 67 A143 2 A173 0
1 A92 2 22 A143 1 A173 1
2 A93 3 49 A143 1 A172 0
3 A93 4 45 A143 1 A173 0
4 A93 4 53 A143 2 A173 1

There are few columns which are categorical and have been inferred as objects. For example, checkin_acc
has following categories:

1.  A11 : ... < 0 DM
2.  A12 : 0 <= ... < 200 DM
3.  A13 : ... >= 200 DM/salary assignments for at least 1 year 
4. A14 : no checking account

To find the number of observations in the dataset for good credit and for bad credit, a simple value_
count() on the status column will provide the information.

credit_df.status.value_counts()

0 700
1 300
Name: status, dtype: int64

The output displays that there are 700 observations of good credit and 300 observations of bad credit.
For building a classification model, the status column will be used as the dependent variable, while

the remaining columns will be independent variables or features. We will create a list named X_features
and store the names of all independent variables for future use.

X_features = list(credit_df.columns)
X_features.remove(‘status’)
X_features

[‘checkin_acc’,
‘duration’,
‘credit_history’,
‘amount’,
‘savings_acc’,
‘present_emp_since’,
‘inst_rate’,
‘personal_status’,
‘residing_since’,

Chapter 05_Classification.indd 140 4/24/2019 6:55:11 PM

Chapter 5 · Classification Problems 141

‘age’,
‘inst_plans’,
‘num_credits’,
‘job’]

5.3.1 | Encoding Categorical Features

There are several categorical features in the data which need to be binary encoded (using dummy variables),
also known as one hot encoding (OHE). Details of encoding a categorical feature is already explained in
Section 4.5.3, Chapter 4. Pandas method pd.get_dummies() is used to encode the categorical features and
create dummy variables. If the feature has n categories, then either n or (n – 1) dummy variables can be
created [the model will have only (n – 1) dummy variables]. If (n – 1) categories are created, then the
omitted category serves as base category. pd.get_dummies() takes a parameter drop_first, which drops the
first category if set to True.

encoded_credit_df = pd.get_dummies(credit_df[X_features],
drop_first = True)

We can list the new dummy features that have been created along with other continuous features.

list(encoded_credit_df.columns)

[‘duration’,
‘amount’,
‘inst_rate’,
‘residing_since’,
‘age’,
‘num_credits’,
‘checkin_acc_A12’,
‘checkin_acc_A13’,
‘checkin_acc_A14’,
‘credit_history_A31’,
‘credit_history_A32’,
‘credit_history_A33’,
‘credit_history_A34’,
‘savings_acc_A62’,
‘savings_acc_A63’,
‘savings_acc_A64’,
‘savings_acc_A65’,
‘present_emp_since_A72’,
‘present_emp_since_A73’,
‘present_emp_since_A74’,
‘present_emp_since_A75’,
‘personal_status_A92’,
‘personal_status_A93’,
‘personal_status_A94’,

Chapter 05_Classification.indd 141 4/24/2019 6:55:11 PM

Machine Learning using Python142

‘inst_plans_A142’,
‘inst_plans_A143’,
‘job_A172’,
‘job_A173’,
‘job_A174’]

For example, checkin_acc variable is encoded into the following three dummy variables and the base
category.

checkin_acc_A11 is dropped. If all the following three variables’ values are set to 0, it indicates the
account type is checkin_acc_A11.

1. checkin_acc_A12
2. checkin_acc_A13
3. checkin_acc_A14

Displaying the dummy features to verify how they are encoded.

encoded_credit_df[[‘checkin_acc_A12’,
‘checkin_acc_A13’,
‘checkin_acc_A14’]].head(5)

checkin_acc_A12 checkin_acc_A13 checkin_acc_A14

0 0 0 0

1 1 0 0

2 0 0 1

3 0 0 0

4 0 0 0

The first record has all the dummy variable values set to 0, indicating it is checkin account type checkin_
acc_A11, which is the base category. The account type in second observation is checkin_acc_A12, so on.

As the variables, have been prepared, we can set X (features) and Y (outcome) variables before
proceeding to build the model. Similar to OLS() method to build a linear regression model
(as explained in Chapter 4), statsmodel api provides Logit() method for building logistic regression
model. We need to add a new column and set its value to 1, for the model to estimate the intercept.
In logistic regression, the regression parameters (feature weights) are estimated using maximum
likelihood estimation.

import statsmodels.api as sm

Y = credit_df.status
X = sm.add_constant(encoded_credit_df)

Chapter 05_Classification.indd 142 4/24/2019 6:55:11 PM

Chapter 5 · Classification Problems 143

5.3.2 | Splitting Dataset into Training and Test Sets

Before building the model, split the dataset into 70:30 (or 80:20) ratio for creating training and validation
datasets. The model will be built using the training set and tested using test set.

from sklearn.model_selection import
X_train, X_test,y_train,y_test = train_test_split(X,

Y,
test_size = 0.3,
random_state = 42)

X_train and y_train contain the independent variables and response variable values for the training
dataset respectively. Similarly, X_test and y_test contain the independent variables and response variable
values for the test dataset, respectively.

5.3.3 | Building Logistic Regression Model

We will fit the model using Logit and pass training sets y_train and X_train as parameters. Invoking
fit() method available in statismodel.api module helps to estimate the parameters for the logistic
 regression model.

import statsmodels.api as sm

logit = sm.Logit(y_train, X_train)
logit_model = logit.fit()

Optimization terminated successfully.
Current function value: 0.488938
Iterations 6

The method fit() on Logit() estimates the parameters and returns model details in the variable
logit_model, which contains the model parameters, accuracy measures, residual values among
other details.

5.3.4 | Printing Model Summary

The model object logit_model has summary2() method, which provides details of the model, its param-
eters and results of all necessary statistical tests. The model summary contains important information to
validate the model.

logit_model.summary2()

Model: Logit Pseudo R-squared: 0.198

Dependent Variable: status AIC: 744.5132

Date: 2018-05-06 18:46 BIC: 881.0456

No. Observations: 700 Log-Likelihood: -342.26

(Continued)

Chapter 05_Classification.indd 143 4/24/2019 6:55:11 PM

Machine Learning using Python144

Df Model: 29 LL-Null: -426.75

Df Residuals: 670 LLR p-value: 1.0630e-21

Converged: 1.0000 Scale: 1.0000

No. Iterations: 6.0000

Coef. Std.Err. z P > |z| [0.025 0.975]

const -0.1511 1.1349 -0.1331 0.8941 -2.3754 2.0733
duration 0.0206 0.0104 1.9927 0.0463 0.0003 0.0409
amount 0.0001 0.0000 2.3765 0.0175 0.0000 0.0002
inst_rate 0.3064 0.0986 3.1083 0.0019 0.1132 0.4996
residing_since 0.0967 0.0920 1.0511 0.2932 -0.0836 0.2771
age -0.0227 0.0103 -2.2131 0.0269 -0.0428 -0.0026
num_credits 0.2854 0.2139 1.3342 0.1821 -0.1338 0.7045
checkin_acc_A12 -0.4126 0.2391 -1.7260 0.0843 -0.8812 0.0559
checkin_acc_A13 -0.9053 0.4338 -2.0868 0.0369 -1.7556 -0.0550
checkin_acc_A14 -1.6052 0.2586 -6.2073 0.0000 -2.1120 -1.0983
credit_history_A31 0.1532 0.5795 0.2643 0.7916 -0.9827 1.2890
credit_history_A32 -0.4960 0.4411 -1.1245 0.2608 -1.3604 0.3685
credit_history_A33 -0.8881 0.5022 -1.7683 0.0770 -1.8724 0.0962
credit_history_A34 -1.4124 0.4528 -3.1190 0.0018 -2.2999 -0.5249
savings_acc_A62 -0.0496 0.3208 -0.1545 0.8772 -0.6782 0.5791
savings_acc_A63 -0.6640 0.4818 -1.3779 0.1682 -1.6084 0.2804
savings_acc_A64 -1.1099 0.6019 -1.8439 0.0652 -2.2896 0.0699
savings_acc_A65 -0.6061 0.2745 -2.2080 0.0272 -1.1441 -0.0681
present_emp_since_A72 0.0855 0.4722 0.1810 0.8564 -0.8401 1.0110
present_emp_since_A73 -0.0339 0.4492 -0.0754 0.9399 -0.9142 0.8465
present_emp_since_A74 -0.3789 0.4790 -0.7910 0.4289 -1.3178 0.5600
present_emp_since_A75 -0.2605 0.4554 -0.5721 0.5673 -1.1532 0.6321
personal_status_A92 -0.0069 0.4841 -0.0142 0.9887 -0.9557 0.9419
personal_status_A93 -0.4426 0.4764 -0.9291 0.3528 -1.3762 0.4911
personal_status_A94 -0.3080 0.5554 -0.5546 0.5792 -1.3967 0.7806
inst_plans_A142 -0.2976 0.5157 -0.5772 0.5638 -1.3084 0.7131
inst_plans_A143 -0.4458 0.2771 -1.6086 0.1077 -0.9889 0.0974
job_A172 -0.0955 0.7681 -0.1243 0.9011 -1.6009 1.4100
job_A173 -0.0198 0.7378 -0.0269 0.9786 -1.4658 1.4262
job_A174 -0.0428 0.7371 -0.0581 0.9537 -1.4876 1.4019

Chapter 05_Classification.indd 144 4/24/2019 6:55:12 PM

Chapter 5 · Classification Problems 145

5.3.5 | Model Diagnostics

It is important to validate the logistic regression model to ensure its validity and goodness of fit before it can
be used for practical applications. The following measures are used to validate a logistic regression model:

1. Wald’s test (a Chi-square test) for checking the statistical significance of individual predictor
(feature) variables. This is equivalent to t-test in the MLR (Multiple Linear Regression) model.

2.  Likelihood ratio test for checking the statistical significance of the overall model (LLR p-value is
reported in the output). Likelihood ratio test is also used for variable (feature) selection.

3. Pseudo R2: It is a measure of goodness of the model. It is called pseudo R2 because it does not
have the same interpretation of R2 as in the MLR model.

The model summary suggests that as per Wald’s test, only 8 features are statistically significant at a sig-
nificant value of a = 0.05, as p-values are less than 0.05. p-value for likelihood ratio test (almost 0.00)
indicates that the overall model is statistically significant.

Defining a method get_significant_vars() that takes the model object as an input and returns the list
of significant variables after filtering out the variable with corresponding p-value less than 0.05.

def get_significant_vars(lm):
#Store the p-values and corresponding column names in a dataframe
var_p_vals_df = pd.DataFrame(lm.pvalues)
var_p_vals_df[‘vars’] = var_p_vals_df.index
var_p_vals_df.columns = [‘pvals’, ‘vars’]
Filter the column names where p-value is less than 0.05
return list(var_p_vals_df[var_p_vals_df.pvals <= 0.05][‘vars’])

Invoking the above method get_significant_vars() and passing the logit_model, we can get the list of
 significant variables.

significant_vars = get_significant_vars(logit_model)

significant_vars

[‘duration’,
‘amount’,
‘inst_rate’,
‘age’,
‘checkin_acc_A13’,
‘checkin_acc_A14’,
‘credit_history_A34’,
‘savings_acc_A65’]

Only the features ‘duration’, ‘amount’, ‘inst_rate’, ‘age’, ‘checkin_acc_A13’, ‘checkin_acc_A14’, ‘credit_
history_A34’, ‘savings_acc_A65’ have come out as significant variables. Now, we can build a logistic
regression using only the significant variables.

Chapter 05_Classification.indd 145 4/24/2019 6:55:12 PM

Machine Learning using Python146

final_logit = sm.Logit(y_train,
sm.add_constant(X_train [significant_vars])).fit()

Optimization terminated successfully.
 Current function value: 0.511350
 Iterations 6

final_logit.summary2()

Model: Logit Pseudo R-squared: 0.161

Dependent Variable: status AIC: 733.8898

Date: 2018-05-06 18:50 BIC: 774.8495

No. Observations: 700 Log-Likelihood: -357.94

Df Model: 8 LL-Null: -426.75

Df Residuals: 691 LLR p-value: 7.4185e-26

Converged: 1.0000 Scale: 1.0000

No. Iterations: 6.0000

Coef. Std.Err. z P > |z| [0.025 0.975]

const -0.8969 0.4364 -2.0551 0.0399 -1.7523 -0.0415

duration 0.0197 0.0098 2.0033 0.0451 0.0004 0.0390

amount 0.0001 0.0000 2.3205 0.0203 0.0000 0.0002

inst_rate 0.2811 0.0929 3.0264 0.0025 0.0991 0.4632

age -0.0216 0.0089 -2.4207 0.0155 -0.0392 -0.0041

checkin_acc_A13 -0.8038 0.4081 -1.9697 0.0489 -1.6037 -0.0040

checkin_acc_A14 -1.5452 0.2187 -7.0649 0.0000 -1.9738 -1.1165

credit_history_A34 -0.8781 0.2319 -3.7858 0.0002 -1.3327 -0.4235

savings_acc_A65 -0.5448 0.2581 -2.1108 0.0348 -1.0507 -0.0389

The negative sign in coefficient value indicates that as the value of this variable increases, the probability
of being a bad credit decreases, that is, P(Yi = 1) decreases. A positive sign means that the probability of
being a bad credit increases as the corresponding value of the variable increases. Some observations from
the model output are:

1. The log of odds ratio or probability of being a bad credit increases as duration, amount, inst_rate
increases. For example, one unit change in duration results in 0.019723 unit change in log of
odds ratio [refer to UD Kumar (2017) for detailed discussion]. 

2. The probability of being a bad credit decreases as age increases. This means that older people
tend to pay back their credits ontime compared to younger people.

Chapter 05_Classification.indd 146 4/24/2019 6:55:12 PM

Chapter 5 · Classification Problems 147

5.3.6 | Predicting on Test Data

We will use the final_logit model and the significant features to predict the class probability. The
predict() method will return the predicted probabilities for each observation in the test dataset. We
will store the actual predicted class and predicted probabilities in a dataframe to compare and cal-
culate various accuracy measures.

y_pred_df = pd.DataFrame({ “actual”: y_test,
 “predicted_prob”: final_logit.predict(
 sm.add_constant(X_test[significant_vars]))})

We can print the predictions of few test samples randomly using the sample method of DataFrame.

y_pred_df.sample(10, random_state = 42)

actual predicted_prob

557 1 0.080493

798 0 0.076653

977 0 0.345979

136 0 0.249919

575 0 0.062264

544 0 0.040768

332 1 0.833093

917 1 0.370667

678 0 0.388392

363 0 0.088952

To understand how many observations the model has classified correctly and how many it has not, a
cut-off probability needs to be assumed. Assume that the cut-off probability is 0.5; then all observations
with predicted probability of more than 0.5 will be predicted as bad credits and rest all as good credits.
We will explore techniques on how to find the optimal cut-off probability later in Section 5.3.10: Finding
Optimal Classification Cut-off. For now, let us assume it to be 0.5.

Now iterate through predicted probability of each observation using map() and tag the observation
as bad credit (1) if probability value is more than 0.5 or as good credit (0) otherwise.

y_pred_df[‘predicted’] = y_pred_df.predicted_prob.map(
lambda x: 1 if x > 0.5 else 0)

y_pred_df.sample(10, random_state = 42)

Chapter 05_Classification.indd 147 4/24/2019 6:55:12 PM

Machine Learning using Python148

actual predicted_prob predicted

557 1 0.080493 0
798 0 0.076653 0
977 0 0.345979 0
136 0 0.249919 0
575 0 0.062264 0
544 0 0.040768 0
332 1 0.833093 1
917 1 0.370667 0
678 0 0.388392 0
363 0 0.088952 0

The actual column in the DataFrame depicts the actual label of the credit in the test set, while
predicted column depicts what the model has predicted by taking 0.5 as cut-off probability value. For
observation 557, the model predicts very low probability (0.08) of being a bad credit whereas it is actually
a bad credit. The model has wrongly classified this one. But the model predicts high probability (0.833)
of being a bad credit for observation 332, which is actually a bad credit. The model correctly predicted
the class in this case.

It can be noticed from actual and predicted columns that some classifications are correct and some are
wrong. For better understanding of this confusion, we can build a confusion matrix, which is discussed next.

5.3.7 | Creating a Confusion Matrix

Confusion matrix (also known as error matrix or classification table) is a matrix formed by checking
the actual values and predicted values of observations in the dataset. To create a confusion matrix, first
import matplotlib.pyplot and seaborn libraries to render all plots and charts.

import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline

sklearn.metric module provides a method to build a confusion matrix if actual and predicted values are
passed as inputs parameters. For better understanding, this matrix can be plotted as a heatmap. seaborn’s
heatmap function can render the confusion matrix for easier interpretation. Define a method draw_cm()
that takes actual and predicted values, creates the confusion matrix, and draws the heatmap.

from sklearn import metrics
def draw_cm(actual, predicted):

Cret
cm = metrics.confusion_matrix(actual, predicted, [1,0])
sn.heatmap(cm, annot=True, fmt=’.2f’,

xticklabels = [“Bad credit”, “Good Credit”],
yticklabels = [“Bad credit”, “Good Credit”])

Chapter 05_Classification.indd 148 4/24/2019 6:55:12 PM

Chapter 5 · Classification Problems 149

plt.ylabel(‘True label’)
plt.xlabel(‘Predicted label’)
plt.show()

Invoke the method draw_cm() to plot the results of our model predictions.

draw_cm(y_pred_df.actual,
y_pred_df.predicted)

Predicted label
Bad credit Good credit

21.00

G
oo

d
cr

ed
it

Tr
ue

 la
be

l

188.00

30.00 61.00

180

150

120

90

60

30

B
ad

 c
re

di
t

FIGURE 5.2 Confusion matrix with cut-off probability of 0.5.

In the confusion matrix in Figure 5.2, the columns represent the predicted label (class), while the rows
represent the actual label (class). For example, out of 91 (i.e., 30 + 61) bad credits, only 30 have been
classified correctly as bad credits and rest 61 have been classified as good credits when the cut-off
probability is 0.5.

Each row represents the actual bad credit and good credit observations present in the test dataset
and each column represents predicted values of outcome variable. We can note the following:

1.  Left-top quadrant represents actual bad credit and is correctly classified as bad credit. This is 
called True Positives (TP).

2.  Left-down quadrant represents actual good credit and is incorrectly classified as bad credit. This 
is called False Positives (FP).

3. Right-top quadrant represents actual bad credit and is incorrectly classified as good credit. This
is called False Negatives (FN).

4. Right-down quadrant represents actual good credit and is correctly classified as good credit.
This is called True Negatives (TN).

Chapter 05_Classification.indd 149 4/24/2019 6:55:12 PM

Machine Learning using Python150

5.3.8 | Measuring Accuracies

In classification, the model performance is often measured using concepts such as sensitivity, specific-
ity, precision, and F-score. The ability of the model to correctly classify positives and negatives is called
sensitivity (also known as recall or true positive rate) and specificity (also known as true negative rate),
respectively. The terminologies sensitivity and specificity originated in medical diagnostics.

Sensitivity or Recall (True Positive Rate)

Sensitivity is the conditional probability that the predicted class is positive given that the actual class is
positive. Mathematically, sensitivity is given by

 Sensitivity =
TP

TP FN+
 (5.3)

Specificity (True Negative Rate)

Specificity is the conditional probability that the predicted class is negative given that the actual class is
negative. Mathematically, specificity is given by

 Specificity =
TN

TN FP+
 (5.4)

Precision

Precision is the conditional probability that the actual value is positive given that the prediction by the
model is positive. Mathematically, precision is given by

 Precision =
TP

TP FP+
 (5.5)

F-Score

F-Score is a measure that combines precision and recall (harmonic mean between precision and recall).
Mathematically, F-Score is given by

 F-Score =
2 × ×

+
Recall Precision

Recall Precision
 (5.6)

classification_report() method in skearn.metrics gives a detailed report of precision, recall, and F-score
for each class.

print (metrics.classification_report(y_pred_df.actual,
y_pred_df.predicted))

precision recall f1-score support
0 0.76 0.90 0.82 209
1 0.59 0.33 0.42 91

avg/total 0.70 0.73 0.70 300

Chapter 05_Classification.indd 150 4/24/2019 6:55:13 PM

Chapter 5 · Classification Problems 151

The model is very good at identifying the good credits (Y = 0), but not very good at identifying bad
 credits. This is the result for cut-off probability of 0.5%. This can be improved by choosing the right
cut-off probability.

We can plot the distributions of predicted probability values for good and bad credits to understand
how well the model can distinguish bad credits from good credits.

plt.figure(figsize = (8,6))
Plotting distribution of predicted probability values for bad credits
sn.distplot(y_pred_df[y_pred_df.actual == 1][“predicted_prob”],

kde=False, color = ‘b’,
label = ‘Bad Credit’)

Plotting distribution of predicted probability values for good credits
sn.distplot(y_pred_df[y_pred_df.actual == 0][“predicted_prob”],

kde=False, color = ‘g’,
label = ‘Good Credit’)

plt.legend()
plt.show()

We can use a chart to understand how the distributions of predicted probabilities for bad credit and
good credit look like (Figure 5.3). Larger the overlap between predicted probabilities for different classes, 
higher will be the misclassifications.

Bad Credit
Good Credit

60

50

40

30

20

10

0
0.0 0.2 0.4

predicted_prob
0.6 0.8

FIGURE 5.3 Distribution of predicted probability values by the model for both good and bad credits.

5.3.9 | Receiver Operating Characteristic (ROC) and Area Under the Curve (AUC)

Receiver operating characteristic (ROC) curve can be used to understand the overall performance
(worth) of a logistic regression model (and, in general, of classification models) and used for model

Chapter 05_Classification.indd 151 4/24/2019 6:55:13 PM

Machine Learning using Python152

selection. The term has its origin in electrical engineering when electrical signals were used for pre-
dicting enemy objects (such as submarines and aircraft) during World War II. Given a random pair
of positive and negative class records, ROC gives the proportions of such pairs that will be correctly
classified.

ROC curve is a plot between sensitivity (true positive rate) on the vertical axis and 1 – specificity
(false positive rate) on the horizontal axis. We will write a method draw_roc() which takes the actual
classes and predicted probability values and then draws the ROC curve (Figure 5.4).

metrics.roc_curve() returns different threshold (cut-off) values and their corresponding false posi-
tive and true positive rates. Then these values can be taken and plotted to create the ROC curve. metrics.
roc_auc_score() returns the area under the curve (AUC).

def draw_roc(actual, probs):
Obtain fpr, tpr, thresholds
fpr,
tpr,
thresholds = metrics.roc_curve(actual,

probs,
drop_intermediate = False)

auc_score = metrics.roc_auc_score(actual, probs)
plt.figure(figsize=(8, 6))
Plot the fpr and tpr values for different threshold values
plt.plot(fpr, tpr, label=‘ROC curve (area = %0.2f)’ % auc_score)
draw a diagonal line connecting the origin and top right most point
plt.plot([0, 1], [0, 1], ‘k--’)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
Setting x and y labels
plt.xlabel(‘False Positive Rate or [1 - True Negative Rate]’)
plt.ylabel(‘True Positive Rate’)
plt.legend(loc=”lower right”)
plt.show()

return fpr, tpr, thresholds

fpr, tpr, thresholds = draw_roc(y_pred_df.actual,
y_pred_df.predicted_prob)

The diagonal line in Figure 5.4 represents the case of not using a model (no discrimination between
positive and negative); the area below the diagonal line is equal to 0.5 (it is a right-angle triangle, area
of right-angle triangle is 0.5ab, where a and b are the lengths of the sides which is equal to 1 in this
case). Sensitivity and/or specificity are  likely to change when the cut-off probability  is changed. The 
line above the diagonal line in Figure 5.4 captures how sensitivity and (1 – specificity) change when
the cut-off probability is changed. Model with higher AUC is preferred and AUC is frequently used for 
model selection.

Chapter 05_Classification.indd 152 4/24/2019 6:55:13 PM

Chapter 5 · Classification Problems 153

ROC curve (area = 0.78)

False Positive Rate or [1 – True Negative Rate]

Tr
ue

 P
os

iti
ve

 R
at

e

0.0
0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

1.0

0.8 1.0

FIGURE 5.4 ROC curve.

As a thumb rule, AUC of at least 0.7 is required for practical application of the model. AUC greater than 0.9 
implies an outstanding model. Caution should be exercised while selecting models based on AUC, especially 
when the data is imbalanced (i.e., dataset which has less than 10% positives). In case of imbalanced datasets,
the AUC may be very high (greater than 0.9); however, either sensitivity or specificity values may be poor.

For this example,  the AUC is 0.78, which implies the model  is  fairly good. The AUC can also be 
obtained by calling roc_auc_score from sklearn.metrics.

auc_score = metrics.roc_auc_score(y_pred_df.actual,
y_pred_df.predicted_prob)

round(float(auc_score), 2)

0.78

5.3.10 | Finding Optimal Classification Cut-off

While using logistic regression model, one of the decisions that a data scientist has to make is to choose
the right classification cut-off probability (Pc). The overall accuracy, sensitivity, and specificity will
depend on the chosen cut-off probability. The following two methods are used for selecting the cut-off
probability:

1. Youden’s index
2. Cost-based approach

5.3.10.1 Youden’s Index

Sensitivity and specificity change when we change the cut-off probability. Youden’s index (Youden,
1950) is a classification cut-off probability for which the following function is maximized (also known
as J-statistic):

 Youden’s Index = J-Statistic =
p

Max [Sensitivity (p) + Specificity (p) – 1] (5.7)

Chapter 05_Classification.indd 153 4/24/2019 6:55:15 PM

Machine Learning using Python154

We already know that sensitivity is also known as True Positive Rate (TPR) and specificity is known as
True Negative Rate (TNR). That is, select the cut-off probability for which (TPR + TNR – 1) is maximum.

draw_roc() has returned tpr and fpr values, which we have stored in variables tpr, fpr, respectively.
The variable thresholds captures the corresponding cut-off probabilities. We can take difference of tpr
and fpr and then sort the values in descending order. The thresholds value, for which Eq. (5.7) is maxi-
mum, should be the optimal cut-off.

tpr_fpr = pd.DataFrame({ ‘tpr’: tpr,
‘fpr’: fpr,
‘thresholds’: thresholds })

tpr_fpr[‘diff’] = tpr_fpr.tpr - tpr_fpr.fpr
tpr_fpr.sort_values(‘diff’, ascending = False)[0:5]

fpr thresholds tpr diff

159 0.397129 0.221534 0.846154 0.449025

160 0.401914 0.216531 0.846154 0.444240

161 0.406699 0.215591 0.846154 0.439455

158 0.397129 0.223980 0.835165 0.438036

165 0.421053 0.207107 0.857143 0.436090

From the above result, the optimal cut-off is 0.22. We can now classify all the observations beyond 0.22
predicted probability as bad credits and others as good credits. We will capture these new classes in
predicted_new variable and then draw a new confusion matrix (Figure 5.5).

y_pred_df[‘predicted_new’] = y_pred_df.predicted_prob.map(
lambda x: 1 if x > 0.22 else 0)

draw_cm(y_pred_df.actual,
y_pred_df.predicted_new)

Now print the report with cut-off probability of 0.22.

print(metrics.classification_report(y_pred_df.actual,
y_pred_df.predicted_new))

precision recall f1-score support
0 0.90 0.60 0.72 209
1 0.48 0.85 0.61 91

avg/total 0.77 0.68 0.69 300

Chapter 05_Classification.indd 154 4/24/2019 6:55:15 PM

Chapter 5 · Classification Problems 155

77.00

126.00

120

100

80

60

40

20

Bad credit

B
ad

 c
re

di
t

Tr
ue

 la
be

l

Good credit

G
oo

d
cr

ed
it

Predicted label

14.00

83.00

FIGURE 5.5 Confusion matrix with optimal cut-off using Yoden’s index.

With cut-off probability of 0.22, the model is able to classify the bad credits better and the F1-score for
bad credits (Y = 1) has also improved to 0.61.

5.3.10.2 Cost-Based Approach

As the cost of false negatives and false positives is not same, the optimal classification cut-off probability
can also be determined using cost-based approach, which finds the cut-off where the total cost is mini-
mum. In the cost-based approach, we assign penalty cost for misclassification of positives and negatives
and find the total cost for a cut-off probability.

Assuming cost of a false positive is C1 and that of a false negative is C2, total cost will be

Total cost = FN × C1 + FP × C2

The optimal cut-off probability is the one which minimizes the total penalty cost. We will write a method
get_total_cost() to return the penalty cost for a specific cut-off probability. The method also takes the
relative cost of false negatives and false positives. The function will take actual and predicted values, find
the number of false positives (FPs) and false negatives (FNs), and return the total cost.

def get_total_cost(actual, predicted, cost_FPs, cost_FNs):
Get the confusion matrix and calculate cost
cm = metrics.confusion_matrix(actual, predicted, [1,0])
cm_mat = np.array(cm)
return cm_mat[0,1] * cost_FNs + cm_mat[1,0] * cost_FPs

Create a DataFrame which will capture the cost against different cut-off probability values.

cost_df = pd.DataFrame(columns = [‘prob’, ‘cost’])

Let us assume that  false negatives (predicting a bad credit  to be a good credit) are five times costlier 
than false positives (predicting a good credit to be a bad credit). Deciding the costs will require domain
knowledge.

Chapter 05_Classification.indd 155 4/24/2019 6:55:15 PM

Machine Learning using Python156

We can calculate the penalty cost for each cut-off probability values between 0.1 and 0.5 with incre-
mental values of 0.01 and sort the costs in ascending order to find the cut-off probability at which the
penalty cost is minimum.

idx = 0

Iterate cut-off probability values between 0.1 and 0.5
for each_prob in range(10, 50):

cost = get_total_cost(y_pred_df.actual,
y_pred_df.predicted_prob.map(

lambda x: 1 if x > (each_prob/100) else 0), 1, 5)
cost_df.loc[idx] = [(each_prob/100), cost]
idx += 1

cost_df.sort_values(‘cost’, ascending = True)[0:5]

Prob Cost

4 0.14 150.0

12 0.22 153.0

2 0.12 154.0

10 0.20 154.0

9 0.19 156.0

The lowest cost is achieved at cut-off probability of 0.14 if false negatives are assumed to be five times
costlier than false positives. So, let us predict everything beyond 0.14 as bad credit and below 0.14 as
good credit.

y_ pred_df[‘predicted_using_cost’] = y_pred_df.predicted_prob.map(
lambda x: 1 if x > 0.14 else 0)

draw_cm(y_pred_df.actual,
y_pred_df.predicted_using_cost)

As shown in Figure 5.6, the model has reduced the false negatives to only 6. This is because of high cost
false negatives (5 times) compared to false positives. The number of false positives have increased to 120.

5.4 | GAIN CHART AND LIFT CHART

Gain chart and lift chart are two measures that are used for measuring the benefits of using the logistic
regression model (in general, analytical model) and are used in business contexts such as target market-
ing. In target marketing or marketing campaigns, customers’ responses to campaign are usually very
low (in many cases the customers who respond to marketing campaigns are less than 1%). Another
example of such low conversion is response to advertisement on the Internet (such as Google Adwords

Chapter 05_Classification.indd 156 4/24/2019 6:55:15 PM

Chapter 5 · Classification Problems 157

and mobile advertisements). The organization incurs cost for each customer contact and hence would
like to minimize the cost of marketing campaign and at the same time achieve the desired response level
from the customers. The gain and lift charts are obtained using the following steps:

1. Predict the probability Y = 1 (positive) using the logistic regression (LR) model and arrange the 
observation in the decreasing order of predicted probability [i.e., P(Y = 1)].

2. Divide the datasets into deciles. Calculate the number of positives (Y = 1) in each decile and
cumulative number of positives up to a decile.

3. Gain is the ratio between cumulative number of the positive observations up to a decile to total
number of positive observations in the data. Gain chart is a chart drawn between gain on the
vertical axis and decile on the horizontal axis.

4.  Lift  is  the ratio of  the number of positive observations up  to decile  i using  the LR model  to  the 
expected number of positives up to that decile i based on a random model (not using a model). Lift 
chart is the chart between lift on the vertical axis and the corresponding decile on the horizontal axis.

Gain Cumulative number of positive observations upto dec = iile
Total number of positive observations in the data

i

Lift =

Cumulative number of positive observations upto deciile using LR model
Cumulative number of positive observa

i
ttions upto decile based on random modeli

To illustrate the gain and lift charts, we will be using the bank marketing dataset available at the University 
of California, Irvine (UCI) machine learning repository2. The data describes a problem in which a bank
is interested in predicting which customers may respond to their direct marketing campaign to open a
term deposit with the bank. The response variable Y = 1 implies that the customer opens a term deposit
after the campaign and Y = 0 otherwise. The marketing campaign is based on the phone calls.

We will use the smaller dataset bank.csv. The description of the features is provided in Table 5.2.

2 The dataset is taken from https://archive.ics.uci.edu/ml/datasets/bank+marketing (https://archive.ics.uci.edu/ml/
datasets/bank+marketing). The description of all the variables are also available at the same location.

Predicted label
Bad credit Good credit

120.00

G
oo

d
cr

ed
it

Tr
ue

 la
be

l

89.00

85.00 6.00

120

100

80

60

40

20

B
ad

 c
re

di
t

FIGURE 5.6 Confusion matrix with cost-based optimal cut-off.

Chapter 05_Classification.indd 157 4/24/2019 6:55:16 PM

Machine Learning using Python158

 TABLE 5.2 Data description for bank marketing dataset

Variable Variable Type Description

age numeric Age of the client who is the targe of this marketing exercise
job categorical type of job (categories: ‘admin.‘, ‘blue-collar‘, ‘entrepreneur‘, ‘housemaid‘,

‘management‘, ‘retired‘, ‘self- employed‘, ‘services‘, ‘student‘, ‘technician‘,
‘unemployed‘, ‘unknown‘)

marital categorical marital status (categories: “married”, “divorced”, “single”; note: “divorced” means
divorced or widowed)

education categorical education qualification (categories: “unknown”, “secondary”, “primary”, “tertiary”)
default categorical customer has credit in default? (categories: ‘no‘, ‘yes‘)
balance numerical average yearly balance, in euros
housing-loan categorical has housing loan? (categories: ‘no‘, ‘yes‘)
personal-loan categorical has personal loan? (categories: ‘no‘, ‘yes‘)
previous-campaign numerical number of contacts performed before this campaign and for this client
subscribed categorical has the client subscribed a term deposit? (binary: “yes”, “no”)

5.4.1 | Loading and Preparing the Dataset

The dataset bank.csv contains records with comma separated values and can be read using pandas’ read_
csv() method.

Using the following code, we can read and display the first 5 records.

import pandas as pd
bank_df = pd.read_csv(‘bank.csv’)
bank_df.head(5)

age job marital education default balance
housing-

loan
personal-

loan
current-

campaign
previous-
campaign

subscribed

0 30 unemployed married primary no 1787 no no 1 0 no
1 33 services married secondary no 4789 yes yes 1 4 no
2 35 management single tertiary no 1350 yes no 1 1 no
3 30 management married tertiary no 1476 yes yes 4 0 no
4 59 blue-collar married secondary no 0 yes no 1 0 no

bank_df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 4521 entries, 0 to 4520
Data columns (total 11 columns):

Age 4521 non-null int64
Job 4521 non-null object

Chapter 05_Classification.indd 158 4/24/2019 6:55:16 PM

Chapter 5 · Classification Problems 159

Marital 4521 non-null object
Education 4521 non-null object
Default 4521 non-null object
Balance 4521 non-null int64
housing-loan 4521 non-null object
personal-loan 4521 non-null object
current-campaign 4521 non-null int64
previous-campaign 4521 non-null int64
Subscribed 4521 non-null object
dtypes: int64(4), object(7)
memory usage: 388.6+ KB

The dataset has a total of 4521 observations, out of which 521 customers subscribed the term deposit
(approximately 11.5%) and the remaining 4000 did not subscribe the term deposit. Except age, balance,
current-campaign, and previous-campaign, rest all are (object) categorical features.

Let us capture the independent variables into the list X_features.

X_features = list(bank_df.columns)
X_features.remove(‘subscribed’)
X_features

[‘age’,
‘job’,
‘marital’,
‘education’,
‘default’,
‘balance’,
‘housing-loan’,
‘personal-loan’,
‘current-campaign’,
‘previous-campaign’]

Encode the categorical features into dummy variables using the following code:

encoded_bank_df = pd.get_dummies(bank_df[X_features],
drop_first = True)

The outcome variable subscribed is set to yes or no. This needs to be encoded as 1 (yes) and 0 (no).

Y = bank_df.subscribed.map(lambda x: int(x == ‘yes’))
X = encoded_bank_df

Here the dataset is not split into training and test datasets for simplicity as our objective is primarily to
understand gain and lift chart.

Chapter 05_Classification.indd 159 4/24/2019 6:55:16 PM

Machine Learning using Python160

5.4.2 | Building the Logistic Regression Model

We wil start with building a logistics regression model to predict probability of customer subscribing to
term deposits using the features available in X.

logit_model = sm.Logit(Y, sm.add_constant(X)).fit()

Optimization terminated successfully.
Current function value: 0.335572
Iterations 7

logit_model.summary2()

Model: Logit Pseudo R-squared: 0.061

Dependent Variable: subscribed AIC: 3082.2384

Date: 2018-02-26 21:42 BIC: 3236.2341

No. Observations: 4521 Log-Likelihood: -1517.1

Df Model: 23 LL-Null: -1615.5

Df Residuals: 4497 LLR p-value: 1.4866e-29

Converged: 1.0000 Scale: 1.0000

No. Iterations: 7.0000

Coef. Std.Err. z P > |z| [0.025 0.975]

const -1.7573 0.3799 -4.6251 0.0000 -2.5019 -1.0126

age 0.0078 0.0058 1.3395 0.1804 -0.0036 0.0191

balance -0.0000 0.0000 -0.2236 0.8231 -0.0000 0.0000

current-campaign -0.0905 0.0238 -3.8042 0.0001 -0.1371 -0.0439

previous-campaign 0.1414 0.0212 6.6569 0.0000 0.0998 0.1830

job_blue-collar -0.3412 0.2000 -1.7060 0.0880 -0.7331 0.0508

job_entrepreneur -0.2900 0.3161 -0.9175 0.3589 -0.9096 0.3295

job_housemaid -0.0166 0.3339 -0.0497 0.9603 -0.6711 0.6379

job_management -0.0487 0.1984 -0.2455 0.8061 -0.4375 0.3401

job_retired 0.5454 0.2503 2.1794 0.0293 0.0549 1.0360

job_self-employed -0.2234 0.2895 -0.7715 0.4404 -0.7909 0.3441

job_services -0.2248 0.2245 -1.0012 0.3167 -0.6648 0.2152

job_student 0.3888 0.3181 1.2223 0.2216 -0.2346 1.0122

(Continued)

Chapter 05_Classification.indd 160 4/24/2019 6:55:16 PM

Chapter 5 · Classification Problems 161

Coef. Std.Err. z P > |z| [0.025 0.975]

job_technician -0.2101 0.1874 -1.1213 0.2622 -0.5773 0.1571

job_unemployed -0.3723 0.3336 -1.1162 0.2643 -1.0261 0.2815

job_unknown 0.3193 0.4620 0.6913 0.4894 -0.5861 1.2248

marital_married -0.4012 0.1440 -2.7857 0.0053 -0.6835 -0.1189

marital_single -0.0463 0.1676 -0.2763 0.7823 -0.3749 0.2822

education_secondary 0.2128 0.1680 1.2670 0.2052 -0.1164 0.5420

education_tertiary 0.3891 0.1935 2.0103 0.0444 0.0098 0.7684

education_unknown -0.1956 0.2927 -0.6682 0.5040 -0.7693 0.3781

default_yes 0.2286 0.3670 0.6228 0.5334 -0.4908 0.9479

housing-loan_yes -0.5355 0.1024 -5.2273 0.0000 -0.7362 -0.3347

personal-loan_yes -0.7139 0.1689 -4.2268 0.0000 -1.0449 -0.3829

Find out which are significant variables using the method get_significant_vars() defined in Section 5.3.5:
Model Diagnostics and build a model with only the significant variables.

significant_vars = get_significant_vars(logit_model)

significant_vars

[‘const’,
‘current-campaign’,
‘previous-campaign’,
‘job_retired’,
‘marital_married’,
‘education_tertiary’,
‘housing-loan_yes’,
‘personal-loan_yes’]

Setting X_features to only significant variables and building a logistic regression model with the signifi-
cant features.

X_features = [‘current-campaign’,
‘previous-campaign’,
‘job_retired’,
‘marital_married’,
‘education_tertiary’,
‘housing-loan_yes’,
‘personal-loan_yes’]

logit_model_2 = sm.Logit(Y, sm.add_constant(X[X_features])).fit()

Chapter 05_Classification.indd 161 4/24/2019 6:55:16 PM

Machine Learning using Python162

Optimization terminated successfully.
Current function value: 0.337228
Iterations 7

Printing the model summary.

logit_model_2.summary2()

Model: Logit Pseudo R-squared: 0.056
Dependent Variable: subscribed AIC: 3065.2182
Date: 2018-02-26 21:42 BIC: 3116.5501
No. Observations: 4521 Log-Likelihood: -1524.6
Df Model: 7 LL-Null: -1615.5
Df Residuals: 4513 LLR p-value: 8.1892e-36
Converged: 1.0000 Scale: 1.0000
No. Iterations: 7.0000

Coef. Std.Err. z P > |z| [0.025 0.975]

const -1.4754 0.1133 -13.0260 0.0000 -1.6974 -1.2534

current-campaign -0.0893 0.0236 -3.7925 0.0001 -0.1355 -0.0432

previous-campaign 0.1419 0.0211 6.7097 0.0000 0.1004 0.1833

job_retired 0.8246 0.1731 4.7628 0.0000 0.4853 1.1639

marital_married -0.3767 0.0969 -3.8878 0.0001 -0.5667 -0.1868

education_tertiary 0.2991 0.1014 2.9500 0.0032 0.1004 0.4978

housing-loan_yes -0.5834 0.0986 -5.9179 0.0000 -0.7767 -0.3902

personal-loan_yes -0.7025 0.1672 -4.2012 0.0000 -1.0302 -0.3748

p_value for LLR (Likelihood Ratio test) shows (less than 0.05) that the overall model is significant. We 
will predict the probabilities of the same observations as we have not split the dataset. But if readers have
split, then they can use the test dataset for predicting the probabilities.

y_pred_df = pd.DataFrame({ ‘actual’: Y,
‘predicted_prob’: logit_model_2.predict(
sm.add_constant(X[X_features])) })

Now sort the observations by their predicted probabilities in the descending order.

sorted_predict_df = y_pred_df[[‘predicted_prob’,
‘actual’]].sort_values(‘predicted_prob’,
ascending = False)

Chapter 05_Classification.indd 162 4/24/2019 6:55:17 PM

Chapter 5 · Classification Problems 163

After sorting, we will segment all the observations into deciles. First we will find the number of observa-
tions in each decile by dividing the total number of observations by 10.

num_per_decile = int(len(sorted_predict_df) / 10)
print(“Number of observations per decile:”, num_per_decile)

Number of observations per decile: 452

The function get_deciles() takes a DataFrame and segments the observations into deciles and marks each
observation with the decile number it belongs to. The DataFrame with sorted probabilities should be
passed to this function.

def get_deciles(df):
Set first decile
df[‘decile’] = 1

idx = 0
Iterate through all 10 deciles
for each_d in range(0, 10):

Setting each 452 observations to one decile in sequence
df.iloc[idx:idx+num_per_decile, df.columns.get_
 loc(‘decile’)] = each_d
idx += num_per_decile

df[‘decile’] = df[‘decile’] + 1

return df

Now invoke the above method with sorted_predict_df as a parameter.

deciles_predict_df = get_deciles(sorted_predict_df)

The following code displays the first 10 observations in the DataFrame sorted_predict_df.

deciles_predict_df[0:10]

predicted_prob actual decile

3682 0.864769 0 1

97 0.828031 0 1

3426 0.706809 0 1
1312 0.642337 1 1
3930 0.631032 1 1
4397 0.619146 0 1

Chapter 05_Classification.indd 163 4/24/2019 6:55:17 PM

Machine Learning using Python164

predicted_prob actual decile

2070 0.609129 0 1

3023 0.573199 0 1

4080 0.572364 0 1

804 0.559350 0 1

Calculating Gain

To calculate the gain, we need to find how many subscriptions (how many 1’s) are available in each
decile. For this, the actual column value can be summed for each decile.

gain_ lift_df = pd.DataFrame(
deciles_ predict_df.groupby(

‘decile’)[‘actual’].sum()).reset_index()
gain_lift_df.columns = [‘decile’, ‘gain’]

And then the cumulative sum for each subsequent decile divided by the total number of 1’s available will
give the gain percentage.

gain_lift_df[‘gain_percentage’] = (100 * gain_lift_df.gain.
cumsum()/gain_lift_df.gain.sum())

gain_lift_df

decile gain gain_percentage

0 1 125 23.992322

1 2 83 39.923225

2 3 73 53.934741

3 4 53 64.107486

4 5 31 70.057582

5 6 46 78.886756

6 7 37 85.988484

7 8 28 91.362764

8 9 25 96.161228

9 10 20 100.000000

Chapter 05_Classification.indd 164 4/24/2019 6:55:17 PM

Chapter 5 · Classification Problems 165

So, if we target only the first 50% of the customers, we have almost 70% subscriptions. The change in gain
percentage can be plotted for better understanding (see Figure 5.7).

import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline

plt.figure(figsize = (8,4))
plt.plot(gain_lift_df[‘decile’],

gain_lift_df[‘gain_percentage’], ‘-’)

plt.show()

100

90

80

70

60

50

40

30

2 4 6 8 10
20

FIGURE 5.7 Gain chart.

The chart in Figure 5.7 shows the increase in gain against deciles. It can be observed that the marginal
increase in gain reduces significantly as deciles progress.

Calculating Lift

Lift can be calculated by dividing gain percentage by the decile number.

gain_lift_df[‘lift’] = (gain_lift_df.gain_percentage
/ (gain_lift_df.decile * 10))

gain_lift_df

decile gain gain_percentage lift

0 1 125 23.992322 2.399232
1 2 83 39.923225 1.996161

(Continued)

Chapter 05_Classification.indd 165 4/24/2019 6:55:17 PM

Machine Learning using Python166

decile gain gain_percentage lift

2 3 73 53.934741 1.797825
3 4 53 64.107486 1.602687
4 5 31 70.057582 1.401152
5 6 46 78.886756 1.314779
6 7 37 85.988484 1.228407
7 8 28 91.362764 1.142035
8 9 25 96.161228 1.068458
9 10 20 100.000000 1.000000

The gain_lift_df depicts the lift value against decile numbers.

plt.figure(figsize = (8,4))
plt.plot(gain_lift_df[‘decile’], gain_lift_df[‘lift’], ‘-’)
plt.show()

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

2 4 6 8 10

FIGURE 5.8 Lift chart.

As show in Figure 5.8 per the lift values, targeting customers using the model can capture 2.39 times
the number of subscribers compared to a random model in decile 1, 1.99 times up to decile 2, and so
on and so forth.

5.5 | CLASSIFICATION TREE (DECISION TREE LEARNING)

Decision Tree Learning or Classification Trees are a collection of divide and conquer problem-solving 
strategies that use tree-like (inverted tree in which the root is at the top) structure to predict the value
of an outcome variable. The tree starts with the root node consisting of the complete data and thereafter

Chapter 05_Classification.indd 166 4/24/2019 6:55:18 PM

Chapter 5 · Classification Problems 167

uses intelligent strategies to split the nodes (parent node) into multiple branches (thus, creating children
nodes). The original data is divided into subsets in this process. This is done to create more homogenous
groups at the children nodes. It is one of the most powerful predictive analytics techniques used for
generating business rules.

Classification and Regression Tree (CART) is one of the classification tree techniques. CART is an
umbrella term; we will call it a classification tree if the outcome variable value is discrete and a regression
tree if the outcome variable value is continuous.

Classification tree uses various impurity measures such as the Gini Impurity Index and Entropy to
split the nodes. Regression tree, on the other hand, splits the node that minimizes the Sum of Squared
Errors (SSE).

The following steps are used to generate classification and regression trees:

1. Start with the complete training data in the root node.
2. Decide on the measure of impurity, that is, either Gini Impurity Index or Entropy. Search for a

predictor variable that minimizes the impurity when the parent node is split into children nodes.
This happens when the original data is divided into two subsets using a predictor variable such
that it results in the maximum reduction in the impurity in the case of a discrete dependent vari-
able or maximum reduction in SSE in the case of a continuous dependent variable.

3. Repeat step 2 for each subset of the data (for each internal node) using the independent variables until

(a) All the dependent variables are exhausted.
(b) The stopping criteria are met. Few stopping criteria used are number of levels of tree from

the root node, minimum number of observations  in parent/child node (e.g., 10% of  the 
training data), and minimum reduction in impurity index.

4. Generate business rules for the leaf (terminal) nodes of the tree.

sklearn.tree.DecisionTreeClassifier provides decision tree algorithm to create the decision tree. It takes the
following key parameters:

1. criterion: string – The function to measure the quality of a split. Supported criteria are “gini” for
the Gini impurity and “entropy” for the information gain. Default is gini.

2. max_depth: int – The maximum depth of the tree.
3. min_samples_split: int or float – The minimum number of samples required to split an internal

node. If int, then number of samples or if float, percentage of total number of samples. Default is 2.
4. in_samples_leaf: int or float – The minimum number of samples required to be at a leaf node.

Detailed documentation is available at http://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html

Let us build the model on the credit rating dataset. 

5.5.1 | Splitting the Dataset

Set encoded_credit_df as X and the column status as Y and split the data into train and test sets using
70:30 splitting criteria.

Y = credit_df.status
X = encoded_credit_df

Chapter 05_Classification.indd 167 4/24/2019 6:55:18 PM

http://scikit-/

Machine Learning using Python168

from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X, Y,

test_size = 0.3,
random_state = 42)

5.5.2 | Building Decision Tree Classifier using Gini Criteria

We have already read the dataset using credit_df variable. We will set criterion to gini, max_depth to 3,
and keep default values for other parameters. In Section 5.5.6: Finding Optimal Criteria and max_depth,
we will explore the most optimal criteria and max_depth.

from sklearn.tree import DecisionTreeClassifier
clf_tree = DecisionTreeClassifier(criterion = ‘gini’,

max_depth = 3)

clf_tree.fit(X_train, y_train)

DecisionTreeClassifier(class_weight=None, criterion=‘gini’, max_
depth=3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=l, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter=‘best’)

5.5.3 | Measuring Test Accuracy

Using the model to predict the probability of a bad credit on the test set and obtain ROC AUC score.

tree_predict = clf_tree.predict(X_test)
metrics.roc_auc_score(y_test, tree_predict)

0.58

5.5.4 | Displaying the Tree

To visualize the tree, use graphviz software. For this the following software need to be installed on your
machine.

1. GraphViz (as per the OS and version you are using)
2. pip install pydotplus

Then export the tree model to a file using export_graphviz() function.

Chapter 05_Classification.indd 168 4/24/2019 6:55:18 PM

Chapter 5 · Classification Problems 169

from sklearn.tree import export_graphviz
import pydotplus as pdot
from IPython.display import Image

Export the tree into odt file
export_graphviz(clf_tree,

out_file = “chd_tree.odt”,
feature_names = X_train.columns,
filled = True)

Read the create the image file
chd_tree_graph = pdot.graphviz.graph_from_dot_file(‘chd_tree.odt’)
chd_tree_graph.write_jpg(‘chd_tree.png’)
Render the png file
Image(filename=’chd_tree.png’)

From the decision tree diagram in Figure 5.9, it can be interpreted that

1. At the top node, there are 700 observations of which 491 are good credits and 209 are bad credits.
The corresponding Gini index is 0.419. Later in the section, the Gini impurity index is explained.

2. checkin_account_A14 is the most important feature for splitting good and bad credits in the
dataset when compared to other features and hence, chosen as the top splitting criteria.

3. The first rule (checkin_account_A14 < 0.5) means if the customer has checkin_account_A14
account or not.

4. This rule has split the dataset into two subsets represented by the second level nodes. On the left
node, there are 425 samples (i.e., not having checkin_account_A14) and on the right node, there
are 275 samples (i.e. having checkin_account_A14).

5. The nodes represented by dark shades depict good credits, while the nodes represented by light
shades are bad credits.

6. One of the rules can be interpreted as: If the customer does not have checkin_account_A14 and
credit duration is less than 33 and does not have saving_acc_A65, then there is high probability
of being a bad credit. There are 70 records in the dataset that satisfy these conditions and 48 of
them have bad credit.

7. Another rule: If the customer has checkin_account_A14 and Inst_plans_A143 and age is more
than 23.5, then there is a high probability of being good credit.

5.5.5 | Understanding Gini Impurity

Gini measurement is the probability of a random sample being classified correctly if we randomly pick
a label according to the distribution in a branch. Gini impurity can be computed by summing the prob-
ability pi of an item with label i being chosen times the probability 1 − pi of a mistake in categorizing
that item over all classes. It reaches its minimum (zero) when all cases in the node belong to a specific
category. The Gini impurity index for a classification problem with C classes is given by

 Gini k p k p ki i
i

C

() ()(())= -
=
å 1

1

 (5.8)

Chapter 05_Classification.indd 169 4/24/2019 6:55:18 PM

Machine Learning using Python170

ch
ec

ki
n_

ac
c_

A
14

 <
=

 0
.5

gi
ni

 =
 0

.4
19

sa
m

pl
es

 =
 7

00
va

lu
e

=
 [4

91
, 2

09
]

du
ra

tio
n

<=
 3

3.
0

gi
ni

 =
 0

.4
84

sa
m

pl
es

 =
 4

25
va

lu
e

=
 [2

51
, 1

74
]

Tr
ue

Fa
ls

e

in
st

_p
la

ns
_A

14
3

<=
 0

.5
gi

ni
 =

 0
.2

22
sa

m
pl

es
 =

 2
75

va
lu

e
=

 [2
40

, 3
5]

sa
vi

ng
s_

ac
c_

A
65

 <
=

 0
.5

gi
ni

 =
 0

.4
64

sa
m

pl
es

 =
 8

2
va

lu
e

=
 [3

0,
 5

2]

re
si

di
ng

_s
in

ce
 <

=
 2

.5
gi

ni
 =

 0
.4

23
sa

m
pl

es
 =

 4
6

va
lu

e
=

 [3
2,

 1
4]

ag
e

<=
 2

3.
5

gi
ni

 =
 0

.1
67

sa
m

pl
es

 =
 2

29
va

lu
e

=
 [2

08
, 2

1]

gi
ni

 =
 0

.0
sa

m
pl

es
 =

 6
va

lu
e

=
 [0

, 6
]

gi
ni

 =
 0

.4
31

sa
m

pl
es

 =
 7

0
va

lu
e

=
 [2

2,
 4

8]

gi
ni

 =
 0

.4
44

sa
m

pl
es

 =
 1

2
va

lu
e

=
 [8

, 4
]

gi
ni

 =
 0

.4
91

sa
m

pl
es

 =
 2

3
va

lu
e

=
 [1

3,
 1

0]

gi
ni

 =
 0

.2
87

sa
m

pl
es

 =
 2

3
va

lu
e

=
 [1

9,
 4

]

gi
ni

 =
 0

.4
8

sa
m

pl
es

 =
 1

5
va

lu
e

=
 [9

, 6
]

gi
ni

 =
 0

.1
3

sa
m

pl
es

 =
 2

14
va

lu
e

=
 [1

99
, 1

5]

am
ou

nt
 <

=
 1

09
75

.5
gi

ni
 =

 0
.4

58
sa

m
pl

es
 =

 3
43

va
lu

e
=

 [2
21

, 1
22

]

gi
ni

 =
 0

.4
51

sa
m

pl
es

 =
 3

37
va

lu
e

=
 [2

21
, 1

16
]

FI
GU

RE
 5

.9
 D

ec
isi

on
 tr

ee
 gr

ap
h c

re
at

ed
 us

ing
 G

ini
 im

pu
rit

y s
pli

tti
ng

 cr
ite

ria
.

Chapter 05_Classification.indd 170 4/24/2019 6:55:18 PM

Chapter 5 · Classification Problems 171

So, in the top node the probability of finding good credit is 491/700 and finding bad credit is 209/700. 
Gini impurity for the top node in the above decision tree will be

gini_node_1 = 1 - pow(491/700, 2) - pow (209/700, 2)
print(round(gini_node_1, 4))

0.419

The Gini index is 0.419 as shown in Figure 5.9.

5.5.6 | Building Decision Tree using Entropy Criteria

Entropy is another popular measure of impurity that is used in classification trees to split a node. Assume
that there are J classes labelled 1, 2, …, J. The entropy at node k is given by

 Entropy() (|) log (|)k p j k j k
j

J

= -
=

∑ 2
1

 (5.9)

The value of entropy lies between 0 and 1, with a higher entropy indicating a higher impurity at the
node. The following codes show how to build a classification tree using entropy splitting criteria and
then displaying the tree classifier using Graphviz.

clf_tree_entropy = DecisionTreeClassifier(criterion = ‘entropy’,
max_depth = 3)

clf_tree_entropy.fit(X_train, y_train)

Export the tree into odt file
export_graphviz(clf_tree_entropy,

out_file = “chd_tree_entropy.odt”,
feature_names = X_train.columns)

Read the create the image file
chd_tree_graph = pdot.graphviz.graph_from_dot_file(‘chd_tree_
entropy.odt’)
chd_tree_graph.write_jpg (‘chd_tree_entropy.png’)
Render the png file
Image(filename=’chd_tree_entropy.png’)

From the decision tree diagram in Figure 5.10, it can be interpreted that

1. The nodes represented by dark shades depict majority good credits, while the nodes represented
by light shades are majority bad credits.

2. The rules generated at the top two level nodes are same as rules generated by decision tree built
using Gini index. The rules at the third level nodes are different.

3. One of the rules can be interpreted as: If the customer has checkin_account_A14, Inst_plans code
is A143 and credit history code is A34, then there is a high probability of being good credit.
There are 96 customers who satisfy these criteria and 94 of them have good credit.

Chapter 05_Classification.indd 171 4/24/2019 6:55:19 PM

Machine Learning using Python172

ch
ec

ki
n_

ac
c_

A
14

 <
=

 0
.5

en
tr

op
y

=
 0

.8
8

sa
m

pl
es

 =
 7

00
va

lu
e

=
 [4

91
, 2

09
]

du
ra

tio
n

<=
 3

3.
0

en
tr

op
y

=
 0

.9
76

sa
m

pl
es

 =
 4

25
va

lu
e

=
 [2

51
, 1

74
]

am
ou

nt
 <

=
 1

09
75

.5
en

tr
op

y
=

 0
.9

39
sa

m
pl

es
 =

 3
43

va
lu

e
=

 [2
21

, 1
22

]

en
tr

op
y

=
 0

.0
sa

m
pl

es
 =

 6
va

lu
e

=
 [0

, 6
]

en
tr

op
y

=
 0

.9
29

sa
m

pl
es

 =
 3

37
va

lu
e

=
 [2

21
, 1

16
]

Tr
ue

Fa
ls

e

in
st

_p
la

ns
_A

14
3

<=
 0

.5
en

tr
op

y
=

 0
.5

5
sa

m
pl

es
 =

 2
75

va
lu

e
=

 [2
40

, 3
5]

pr
es

en
t_

em
p_

si
nc

e_
A

75
 <

=
 0

.5
en

tr
op

y
=

 0
.9

47
sa

m
pl

es
 =

 8
2

va
lu

e
=

 [3
0,

 5
2]

re
si

di
ng

_s
in

ce
 <

=
 2

.5
en

tr
op

y
=

 0
.8

87
sa

m
pl

es
 =

 4
6

va
lu

e
=

 [3
2,

 1
4]

cr
ed

it_
hi

st
or

y_
A

34
 <

=
 0

.5
en

tr
op

y
=

 0
.4

42
sa

m
pl

es
 =

 2
29

va
lu

e
=

 [2
08

, 2
1]

en
tr

op
y

=
 0

.9
83

sa
m

pl
es

 =
 6

6
va

lu
e

=
 [2

8,
 3

8]

en
tr

op
y

=
 0

.5
44

sa
m

pl
es

 =
 1

6
va

lu
e

=
 [2

, 1
4]

en
tr

op
y

=
 0

.9
88

sa
m

pl
es

 =
 2

3
va

lu
e

=
 [1

3,
 1

0]

en
tr

op
y

=
 0

.6
67

sa
m

pl
es

 =
 2

3
va

lu
e

=
 [1

9,
 4

]

en
tr

op
y

=
 0

.5
92

sa
m

pl
es

 =
 1

33
va

lu
e

=
 [1

14
, 1

9]

en
tr

op
y

=
 0

.1
46

sa
m

pl
es

 =
 9

6
va

lu
e

=
 [9

4,
 2

]

FI
GU

RE
 5

.1
0

De
cis

ion
 tr

ee
 gr

ap
h c

re
at

ed
 us

ing
 en

tro
py

 sp
lit

tin
g c

rit
er

ia.

Chapter 05_Classification.indd 172 4/24/2019 6:55:19 PM

Chapter 5 · Classification Problems 173

Calculating Entropy

As show in Figure 5.10, at the top node there are 700 observations of which 491 are good credits and 209
are bad credits. At the top of the node, the probability of finding good credit is 491 and not finding bad
credit is 209. So, entropy at the node is given by [as per Eq. (5.9)]

import math

entropy_node_1 = - (491/700)*math.log2(491/700) - (209/700)*math.
log2(209/700)

print(round(entropy_node_1, 2))

0.88

The entropy at the top node is 0.88, as shown in the Figure 5.10.

Measuring Test Accuracy using AUC

tree_predict = clf_tree_entropy.predict(X_test)
metrics.roc_auc_score(y_test, tree_predict)

0.5763

5.5.7 | Finding Optimal Criteria and Max Depth

We need to search through various combinations of criteria and tree depths to find optimal criteria and
depth where the tree gives highest accuracy.

sklearn.model_selection provides a feature called GridSearchCV which searches through a set of pos-
sible hyperparameter values and reports the most optimal one. GridSearchCV needs to be provided with
the accuracy measure to be used for searching for the optimal value. For classification models, roc_auc
values are mostly used. It uses k-fold cross validation to measure and validate the accuracy.

GridSearchCV can be used for any machine learning model and can search through multiple hyper-
parameters of the model. It takes the following arguments:

1. estimator – A scikit-learn model which implements the estimator interface.
2. param_grid – A dictionary with parameter names (string) as keys and lists of parameter settings

to try as values.
3. scoring – Is a string; is the accuracy measure, i.e. roc_auc.
4. cv – Is an integer; gives the number of folds in k-fold. (More on k-fold cross-validation in Chapter 6:

Advanced Machine Learning.)

Configuring the grid search to search for optimal parameters

1. Splitting criteria: gini or entropy.
2.  Maximum depth of decision tree ranging from 2 to 10.

The searching of optimal parameter will be validated using 10-fold cross validation and the most optimal
parameter will be chosen based on ROC AUC score.

Chapter 05_Classification.indd 173 4/24/2019 6:55:19 PM

Machine Learning using Python174

from sklearn.model_selection import GridSearchCV

tuned_parameters = [{ ‘criterion’: [‘gini’,’entropy’],
‘max_depth’: range(2,10)}]

clf_tree = DecisionTreeClassifier()
clf = GridSearchCV(clf_tree,

tuned_parameters,
cv=10,
scoring=’roc_auc’)

clf.fit(X_train, y_train)

GridSea rchCV(cv=10, error_score=‘raise’,
esti mator=DecisionTreeClassifier(class_weight=None,

criterion=‘gini’, max_depth=None,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,presort=False,random_state=None,
splitter=‘best’),

fit_params=None, iid=True, n_jobs=l,
param_grid=[{‘max_depth’: range(2, 10), ‘criterion’: [‘gini’,
‘entropy’]}],
pre_dispatch=‘2*n_jobs’, refit=True, return_train_score=‘warn’,
scoring=‘roc_auc’, verbose=0)

Grid search returns bestscore and corresponding bestparams after searching through all combinations.

clf.best_score_

0.68242993197278912

clf.best_params_

{‘criterion’: ‘gini’, ‘max_depth’: 2}

The tree with gini criteria and max_depth = 2 is the best model. Finally, we can build a model with
these parameters and measure the accuracy of the test. This is left to the readers for trying out. Refer to
Section 5.5.2: Building Decision Tree Classifier using Gini Criteria.

5.5.8 | Benefits of Decision Tree

The benefits of building a decision tree classifier are as follows:

1. Rules generated are simple and interpretable. Trees can be visualized.
2. Work well with both numerical and categorical data. Do not require data to be normalized or

creation of dummy variables.
3. Rules can help create business strategies.

Chapter 05_Classification.indd 174 4/24/2019 6:55:19 PM

Chapter 5 · Classification Problems 175

 CONCLUSION

 1. In classification problem, the dependent variable Y takes finite discrete values. Logistic regression is 
one of the most popular techniques used for solving classification problems.

 2.  Logistic regression provides the probability of occurrence of the event; final class is usually predicted 
using a classification cut-off probability.

 3. Decision trees generate rules that can be interpreted and business can create strategies around it.
 4.  The accuracy of an LR model is measured using metrics such as sensitivity, specificity, F-score, 

precision, and area under the ROC curve. Final model selection may be done using any of
these metrics.

 5. The optimal classification cut-off probability is usually calculated using Youden’s Index or cost-
based approach.

 6. Gain and lift charts are two approaches used while solving classification problems with imbalanced
datasets.

 EXERCISES

Answer Questions 1 to 10 using the SAheart Dataset.

The dataset SAheart.data is taken from the link below

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data

The dataset contains records of males in a heart-disease high-risk region of the Western Cape, South
Africa. There are roughly two controls per case of CHD. Many of the CHD positive men have undergone 
blood pressure reduction treatment and other programs to reduce their risk factors after their CHD
event. In some cases, the measurements were made after these treatments. These data are taken from a
larger dataset, described in Rousseauw et al. (1983), South African Medical Journal. It is a tab separated
file (.csv) and contains the following columns:

 � sbp – Systolic blood pressure
 � tobacco – Cumulative tobacco (kg)
 � ldl – Low densiity lipoprotein cholesterol
 � adiposity
 � famhist – Family history of heart disease (Present, Absent)
 � typea – type-A behavior
 � obesity
 � alcohol – Current alcohol consumption
 � age – Age at onset
 � chd – Response, coronary heart disease

 1. Build a logistic regression model to predict the probability of getting chd (Coronary Heart Disease),
that is, P(chd = 1). Use all other columns except chd as features to build the model.

 2. Find out which features are statistically significant in the logistic regression model built in Question
1. Build a new logistic regression model using only the significant features.

 3. From the logistic regression model parameters, determine which parameters affect the probability of
chd positively and negatively.

Chapter 05_Classification.indd 175 4/24/2019 6:55:19 PM

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data

Machine Learning using Python176

 4. Calculate Youden’s index for all possible cut-off probabilities ranging from 0.1 to 0.5 with an interval of
0.01. Find the optimal cut-off where Youden’s index is maximum.

 5. Build a confusion matrix based on the cut-off probability found in Question 4 and report the
 precision and recall of the model for chd cases (i.e., chd = 1).

 6. Find optimal cut-off probability using cost-based approach using the cost of FPs and FNs as defined
below.

 � Cost of predicting “chd” as “No chd” (FNs) cases is 5 times more than predicting “No chd” as
“chd” (FPs).

 � Then find the precision and recall of the model for chd = 1.
 7. Build a decision tree classifier model to predict the probability of using Gini index and max depth as 4.
 8. Compare the decision tree classifier and logistic regression model performance. Explain which

accuracy score can be used to find out which model is better in classifying chd from no chd cases.
 9. Plot the decision tree and find out the most important splitting criteria at the top node. Explain how

the Gini index is derived at the top node of the decision tree classifier.
10. Find the optimal max_depth for decision tree classifier if Gini index is used as splitting criteria.

Search possible depths ranging from 3 to 10 and use ROC and AUC as scoring to find the optimal 
max_depth.

Answer Questions 11 to 15 using the HR Dataset.

The dataset hr_data.csv contains samples of candidates that were part of a recruitment process of a par-
ticular client of ScaleneWorks. ScaleneWorks supports several information technology (IT) companies
in India with their talent acquisition. One of the challenge they face is about 30% of the candidates who
accept the jobs offer, do not join the company. This leads to huge loss of revenue and time as the compa-
nies initiate the recruitment process again to fill the workforce demand. ScaleneWorks wants to find out
if a model can be built to predict the likelihood of a candidate joining the company. If the likelihood is
high, then the company can go ahead and offer the jobs to the candidates.

The dataset contains several attributes about candidates along with a column (or variable) that indi-
cates if the candidate finally joined the company or not.

Here is the description of candidate’s attributes:

 � Candidate – Reference number; it is a unique number to identify the candidate
 � DOJ extended – Binary variable identifying whether candidate asked for date of joining exten-

sion (Yes/No) 
 � Duration to accept the offer – Number of days taken by the candidate to accept the offer (Scale

variable)
 � Notice period – Notice period to be served in the parting company before candidate can join this

company (Scale variable)
 � Offered band – Band offered to the candidate based on experience, performance in interview

rounds (C0/C1/C2/C3/C4/C5/C6) 
 � Percentage hike expected – Percentage hike expected by the candidate (Scale variable)
 � Percentage hike offered – Percentage hike offered by the company (Scale variable)
 � Joining bonus – Binary variable indicating if joining bonus was given or not (Yes/no) 
 � Gender – Gender of the candidate (Male/Female) 
 � Candidate source – Source from which resume of the candidate was obtained (Employee refer-

ral/Agency/ Direct) 

Chapter 05_Classification.indd 176 4/24/2019 6:55:20 PM

Chapter 5 · Classification Problems 177

 � REX (in Yrs.) – Relevant years of experience of the candidate for the position offered (Scale
variable)

 � LOB – Line of business for which offer was rolled out (Categorical variable) 
 � Date of Birth – Date of birth of the candidate
 � Joining location – Company location for which the offer was rolled out for the candidate to join

(Categorical variable)
 � Candidate relocation status – Binary variable indicating whether the candidate has to relocate

from one city to another city for joining (Yes/No) 
 � HR Status – Final joining status of the candidate (Joined/Not Joined)

11. Build a logistic regression model to predict the probability of a candidate joining the company.
Assume “Not Joined” as positive cases and “Joined” as negative cases.

12. Find the significant features from the above model and build another logistic regression model with
only the significant features.

13. Assume the following costs to find optimal cut-off probability to determine if a candidate will join
or not.

 � Cost of predicting “Not Joining” as “Joining” (FPs) cases is 3 times more than predicting
“Joining” as “Not Joining” (FNs).

14. Build a confusion matrix based on the cut-off probability found in Question 13 and report the precision
and recall of the model for joining cases.

15. HR wants to understand the key parameters effecting the joining of candidates. So, build a decision
tree with optimal parameters and provide some rules to HR for building strategies to ensure candi-
dates offered job most likely will join the company in future.

 REFERENCES

 1.  U Dinesh Kumar  (2017). Business Analytics: The Science of Data-Driven Decision Making, Wiley
India, India.

 2.  UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/
 3. Youden W J (1950). Index for Rating Diagnostic Tests, Cancer, Vol. 3, No. 1, pp. 32–35.
 4. Scikit-learn documentation: http://scikit- learn.org/
 5.  Statsmodel: https://www.statsmodels.org/stable/index.html
 6.  Pandas Library: https://pandas.pydata.org/
 7.  Matplotlib Library: https://matplotlib.org/
 8.  Seabon Library: https://seaborn.pydata.org/
 9.  Rousseauw J, du Plessis J, Benade A, Jordaan P, Kotze J, and Ferreira J (1983). Coronary Risk Factor 

Screening in Three Rural Communities, South African Medical Journal, Vol. 64, pp. 430–436.

Chapter 05_Classification.indd 177 4/24/2019 6:55:20 PM

http://scikit-/

Chapter 05_Classification.indd 178 4/24/2019 6:55:20 PM

6.1 | OVERVIEW

Machine learning algorithms are a subset of artificial intelligence (AI) that imitates the human learning
process. Humans learn through multiple experiences how to perform a task. Similarly, machine learning
algorithms develop multiple models (usually using multiple datasets) and each model is analogous to
an experience. For example, consider someone trying to learn tennis. Getting the service right requires
a lot of practice, and more so to learn to serve an ace (serve such that the opponent player is unable to
reach the ball). To master the service in tennis (especially ace), a player must probably practice several
hundred times; each practice session is a learning. In machine learning algorithms, we develop several
models which can run into several hundred and each data and model is treated as learning opportunity.
Mitchell (2006) defined machine learning as follows:

 Machine learns with respect to a particular task T, performance metric P following experience E, if the
system reliably improves its performance P at task T following experience E.

Let the task T be a classification problem. To be more specific, consider a customer’s propensity to buy
a product. The performance P can be measured through several metrics such as overall accuracy, sen-
sitivity, specificity, and area under the receive operating characteristic curve (AUC). The experience E
is analogous to different classifiers generated in machine learning algorithms such as random forest
(in random forest several trees are generated, and each tree is used for classification of a new case).

LEARNING OBJECTIVES

After completing this chapter, you will be able to

•  Understand the foundations of machine learning algorithms.
•  Learn the difference between supervised and unsupervised learning algorithms.
•  Understand and develop the gradient descent optimization algorithm.
•  Apply machine learning algorithms available in Scikit-learn (sklearn) to regression and classification

problems.
•  Understand the problems of underfitting and overfitting and use of regularization to control

overfitting.
•  Understanding how to apply ensemble techniques such as Random Forest, Bagging and Boosting.

Know what is a hyperparameter and how to search for optimal hyperparameters.
•  Learn feature selection using machine learning models.

CHAPTER

6Advanced
Machine Learning

Chapter 06_Advanced Machine Learning.indd 179 4/24/2019 6:55:43 PM

Machine Learning using Python180

The major difference between statistical learning and machine learning is that statistical learning
depends heavily on validation of model assumptions and hypothesis testing, whereas the objective of
machine learning is to improve prediction accuracy. For example, while developing a regression model,
we check for assumptions such as normality of residuals, significance of regression parameters and so on.
However, in the case of the random forest using classification trees, the most important objective is the
accuracy/performance of the model.

In this chapter, we will discuss the following two ML algorithms:

1. Supervised Learning: In supervised learning, the datasets have the values of input variables
(feature values) and the corresponding outcome variable. The algorithms learn from the training
dataset and predict the outcome variable for a new record with values of input variables. Linear
regression and logistic regression are examples of supervised learning algorithms.

2. Unsupervised Learning: In this case, the datasets will have only input variable values, but not
the output. The algorithm learns the structure in the inputs. Clustering and factor analysis are
examples of unsupervised learning and will be discussed in Chapter 7.

6.1.1 | How Machines Learn?

In supervised learning, the algorithm learns using a function called loss function, cost function or error
function, which is a function of predicted output and the desired output. If h(Xi) is the predicted output
and yi is the desired output, then the loss function is

 L
n

h X yi i
i

n

= -
=
å1 2

1

[()] (6.1)

where n is the total number of records for which the predictions are made. The function defined in
Eq. (6.1) is a sum of squared error (SSE). SSE is the loss function for a regression model. The objective is
to learn the values of parameters (aka feature weights) that minimize the cost function. Machine learn-
ing uses optimization algorithms which can be used for minimizing the loss function. Most widely used
optimization technique is called the Gradient Descent.

In the next section, we will discuss a regression problem and understand how gradient descent algo-
rithm minimizes the loss function and learn the model parameters.

6.2 | GRADIENT DESCENT ALGORITHM

In this section, we will discuss how gradient descent (GD) algorithm can be used for estimating the
values of regression parameters, given a dataset with inputs and outputs.

The functional form of a simple linear regression model is given by

 Yi = b 0 + b 1 Xi + ei (6.2)

where b 0 is called bias or intercept, b 1 is the feature weight or regression coefficient, ei is the error in
prediction.

The predicted value of Yi is written as Yi
 and it is given by

 Y Xi i
� � �= +b b0 1 (6.3)

where b b0 1
 and are the estimated values of b0 and b1. The error is given by

Chapter 06_Advanced Machine Learning.indd 180 4/24/2019 6:55:44 PM

Chapter 6 · Advanced Machine Learning 181

 e b bi i i i iY Y Y X= - = - -� � �()0 1 (6.4)

The cost function for the linear regression model is the total error (mean squared error) across all
N records and is given by

 MSE mse= = - -
=
åe b b1

0 1
1

2

N
Y Xi i

i

N

() (6.5)

The error is a function of b 0 and b 1. It is pure convex function and has a global minimum as shown in
Figure 6.1. The gradient descent algorithm starts at a random starting value (for b 0 and b 1) and moves
towards the optimal solution as shown in Figure 6.1.

Gradient

Minimum Error

îemse

emse

îb1

b1

Initial weight
(random guess)

Error or Loss
Function

FIGURE 6.1 Cost function for linear regression model.

Gradient descent finds the optimal values of b 0 and b 1 that minimize the loss function using the
following steps:

1. Randomly guess the initial values of b 0 (bias or intercept) and b 1 (feature weight).
2. Calculate the estimated value of the outcome variable Yi

 for initialized values of bias and weights.
3. Calculate the mean square error function (MSE).
4. Adjust the b 0 and b 1 values by calculating the gradients of the error function.

 b b a
e
b0 0

0

= - ×
∂
∂

mse (6.6)

 b b a
e
b1 1

1

= - ×
∂
∂

mse (6.7)

where a is the learning rate (a hyperparameter). The value of a is chosen based on the magnitude
of update needed to be applied to the bias and weights at each iteration.

Chapter 06_Advanced Machine Learning.indd 181 4/24/2019 6:55:45 PM

Machine Learning using Python182

The partial derivatives of MSE with respect to b0 and b1 are given by

¶
¶

= - - - = - -
= =
å åe

b
b bmse

0
0 1

1 1

2 2
N

Y X
N

Y Yi i
i

N

i i
i

N

() () (6.8)

¶
¶

= - - - = - - ´
= =
å åe

b
b bmse

1
0 1

1 1

2 2
N

Y X
N

Y Y Xi i
i

N

i i i
i

N

() () (6.9)

5. Repeat steps 1 to 4 for several iterations until the error stops reducing further or the change in
cost is infinitesimally small.

The values of b 0 and b 1 at the minimum cost points are best estimates of the model parameters.

6.2.1 | Developing a Gradient Descent Algorithm for Linear Regression Model

For better understanding the GD algorithm, we will implement the GD algorithm using the dataset
Advertising.csv. The dataset contains the examples of advertisement spends across multiple chan-
nels such as Radio, TV, and Newspaper, and the corresponding sales revenue generated at differ-
ent time periods. The dataset is taken from a chapter in the book titled “Introduction to Statistical
Learning” by James et al. (2013). The dataset has the following elements:

1. TV – Spend on TV advertisements
2. Radio – Spend on radio advertisements
3. Newspaper – Spend on newspaper advertisements
4. Sales – Sales revenue generated

For predicting future sales using spends on different advertisement channels, we can build a regression
model.

6.2.1.1 Loading the Dataset

Load the dataset using Pandas’ library.

import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings(‘ignore’)

sales_df = pd.read_csv(‘Advertising.csv’)
Printing first few records
sales_df.head()

Chapter 06_Advanced Machine Learning.indd 182 4/24/2019 6:55:45 PM

Chapter 6 · Advanced Machine Learning 183

Unnamed: 0 TV Radio Newspaper Sales

0 1 230.1 37.8 69.2 22.1

1 2 44.5 39.3 45.1 10.4

2 3 17.2 45.9 69.3 9.3

3 4 151.5 41.3 58.5 18.5

4 5 180.8 10.8 58.4 12.9

6.2.1.2 Set X and Y Variables

For building a regression model, the inputs TV, Radio, and Newspaper are taken as X features and Sales
Y is taken as the outcome variable.

X = sales_df[[‘TV’, ‘Radio’, ‘Newspaper’]]
Y = sales_df[‘Sales’]

6.2.1.3 Standardize X and Y

It is important to convert all variables into one scale. This can be done by subtracting mean from each
value of the variable and dividing by the corresponding standard deviation of the variable.

Y = np.array((Y - Y.mean()) / Y.std())
X = X.apply(lambda rec: (rec - rec.mean()) / rec.std(),

axis = 0)

6.2.1.4 Implementing the Gradient Descent Algorithm

To implement the steps explained in Section 6.2, Gradient Descent, a set of following utility methods
need to be implemented:

1. Method 1: Method to randomly initialize the bias and weights.
2. Method 2: Method to calculate the predicted value of Y, that is, Y given the bias and weights.
3. Method 3: Method to calculate the cost function from predicted and actual values of Y.
4. Method 4: Method to calculate the gradients and adjust the bias and weights.

Method 1: Random Initialization of the Bias and Weights

The method randomly initializes the bias and weights. It takes the number of weights that need to be
initialized as a parameter.

Chapter 06_Advanced Machine Learning.indd 183 4/24/2019 6:55:46 PM

Machine Learning using Python184

import random

#dim - is the number of weights to be initialized besides the bias
def initialize(dim):

For reproducible results, the seed it set to 42.
Reader can comment the following two lines
and try other initialiazation values.
np.random.seed(seed=42)
random.seed(42)
#Initialize the bias.
b = random.random()
#Initialize the weights.
w = np.random.rand(dim)

return b, w

To initialize the bias and 3 weights, as we have three input variables TV, Radio and Newspaper, we can
invoke the initialize() method as follows:

b, w = initialize(3)
print(“Bias: ”, b, “ Weights: ”, w)

Bias: 0.6394267984 Weights: [0.37454012 0.95071431 0.73199394]

Method 2: Predict Y Values from the Bias and Weights

Calculate the Y values for all the inputs, given the bias and weights. We will use matrix multiplication of
weights with input variable values. matmul() method in numpy library can be used for matrix multiplica-
tion. Each row of X can be multiplied with the weights column to produce the predicted outcome variable.

Inputs:
b - bias
w - weights
X - the input matrix

def predict_Y(b, w, X):
return b + np.matmul(X, w)

Now calculate the predicted values after initializing bias and weights.

b, w = initialize(3)
Y_hat = predict_Y(b, w, X)
Y_hat[0:10]

array([3.23149557, 1.70784873, 2.82476076, 2.75309026, 0.92448558,
3.17136498, 0.62234399, -0.34935444, -2.313095, -0.76802983])

Chapter 06_Advanced Machine Learning.indd 184 4/24/2019 6:55:46 PM

Chapter 6 · Advanced Machine Learning 185

Method 3: Calculate the Cost Function — MSE

Compute mean squared error (MSE) by

1. Calculating differences between the estimated Y and actual Y.
2. Calculating the square of the above residuals, and sum over all records.
3. Dividing it with the number of observations.

import math

Inputs
Y - Actual values of y
Y_hat - predicted value of y
def get_cost(Y, Y_hat):

Calculating the residuals - difference between actual and
predicted values
 Y_resid = Y - Y_hat
Matrix multiplication with self will give the square values
Then take the sum and divide by number of examples to
calculate mean
return np.sum(np.matmul(Y_resid.T, Y_resid)) / len(Y_resid)

Invoking get_cost() after initializing the bias and weights and calculating predicted values for outcome
variable.

b, w = initialize(3)
Y_hat = predict_Y(b, w, X)
get_cost(Y, Y_hat)

1.5303100198505895

Method 4: Update the Bias and Weights

This is the most important method, where the bias and weights are adjusted based on the gradient of
the cost function. The bias and weights will be updated in a method update_beta() using the following
gradients [Eqs. (6.6) and (6.7)]:

b b a
e
b0 0

0

= - ×
∂
∂

mse

b b a
e
b1 1

1

= - ×
∂
∂

mse

where a is the learning parameter that decides the magnitude of the update to be done to the bias
and weights.

Chapter 06_Advanced Machine Learning.indd 185 4/24/2019 6:55:46 PM

Machine Learning using Python186

The parameters passed to the function are:

1. x, y: the input and output variables
2. y_hat: predicted value with current bias and weights
3. b_0, w_0: current bias and weights
4. learning rate: learning rate to adjust the update step

def update_beta(x, y, y_hat, b_0, w_0, learning_rate):

#gradient of bias
db = (np.sum(y_hat - y) * 2) / len(y)
#gradient of weights
dw = (np.dot((y_hat - y), x) * 2) / len(y)
#update bias
b_1 = b_0 - learning_rate * db
#update beta
w_1 = w_0 - learning_rate * dw

#return the new bias and beta values
return b_1, w_1

The following is an example of updating bias and weights once after initializing. The learning parameter
used is 0.01.

b, w = initialize(3)
print(“After Initialization - Bias: ”, b, “ Weights: ”, w)
Y_hat = predict_Y(b, w, X)
b, w = update_beta(X, Y, Y_hat, b, w, 0.01)
print(“After first update - Bias: ”, b, “ Weights: ”, w)

After initialization - Bias: 0.6394267984578837 Weights: [0.37454
012 0.95071431 0.73199394]
After first update - Bias: 0.6266382624887261 Weights: [0.3807909
3 0.9376953 0.71484883]

6.2.1.5 Finding the Optimal Bias and Weights

The updates to the bias and weights need to be done iteratively, until the cost is minimum. It can take
several iterations and is time-consuming. There are two approaches to stop the iterations:

1. Run a fixed number of iterations and use the bias and weights as optimal values at the end these
iterations.

2. Run iterations until the change in cost is small, that is, less than a predefined value (e.g., 0.001).

We will define a method run_gradient_descent(), which takes alpha and num_iterations as parameters
and invokes methods like initialize(), predict_Y(), get_cost(), and update_beta().

Chapter 06_Advanced Machine Learning.indd 186 4/24/2019 6:55:46 PM

Chapter 6 · Advanced Machine Learning 187

Also, inside the method,

1. variable gd_iterations_df keeps track of the cost every 10 iterations.
2. default value of 0.01 for the learning parameter and 100 for number of iterations will be used.

def run_gradient_descent(X,
Y,
alpha = 0.01,
num_iterations = 100):

Initialize the bias and weights
b, w = initialize(X.shape[1])

iter_num = 0
gd_iterations_df keeps track of the cost every 10 iterations
gd_iterations_df = pd.DataFrame(columns = [‘iteration’, ‘cost’])
result_idx = 0

Run the iterations in loop
for each_iter in range(num_iterations):

Calculate predicted value of y
Y_hat = predict_Y(b, w, X)
Calculate the cost
this_cost = get_cost(Y, Y_hat)
Save the previous bias and weights
prev_b = b
prev_w = w
Update and calculate the new values of bias and weights
b, w = update_beta(X, Y, Y_hat, prev_b, prev_w, alpha)

 # For every 10 iterations, store the cost i.e. MSE
 if(iter_num % 10 == 0):

gd_iterations_df.loc[result_idx] = [iter_num, this_cost]
result_idx = result_idx + 1

 iter_num += 1

print(“Final estimate of b and w: ”, b, w)
#return the final bias, weights and the cost at the end
return gd_iterations_df, b, w

gd_iterations_df, b, w = run_gradient_descent(X, Y, alpha =
0.001, num_iterations = 200)

Final estimate of b and w: 0.42844895817391493 [0.48270238 0.752659
69 0.46109174]

Let us print the cost per every 10 iterations.

Chapter 06_Advanced Machine Learning.indd 187 4/24/2019 6:55:46 PM

Machine Learning using Python188

gd_iterations_df[0:10]

iteration cost

0 0.0 1.530310

1 10.0 1.465201

2 20.0 1.403145

3 30.0 1.343996

4 40.0 1.287615

5 50.0 1.233868

6 60.0 1.182630

7 70.0 1.133780

8 80.0 1.087203

9 90.0 1.042793

It can be noted that the cost is reducing at the end of each iteration.

6.2.1.6 Plotting the Cost Function against the Iterations

The value of the cost function at the end of each iteration can be visualized by plotting cost at every
10 iterations using the following commands:

import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline

plt.plot(gd_iterations_df[‘iteration’], gd_iterations_df[‘cost’]);
plt.xlabel(“Number of iterations”)
plt.xlabel(“Cost or MSE”)

Text(0.5, 0,‘Cost or MSE’)

print(“Final estimates of b and w: ”, b, w)

Final estimates of b and w: 0.42844895817391493 [0.48270238 0.75265
969 0.46109174]

The weights are standardized values as we have used standardized values of Y and X. This means that for
one standard deviation change in TV spend, the sales revenue changes by 1.55599903 standard devia-
tions and so on.

Chapter 06_Advanced Machine Learning.indd 188 4/24/2019 6:55:46 PM

Chapter 6 · Advanced Machine Learning 189

Cost or MSE

0 25 50 75 100 125

1.4

1.2

1.0

0.8

150 175

FIGURE 6.2 Cost or MSE at the end of iterations.

From Figure 6.2, it can be noticed that the cost is still reducing and has not reached the minimum point.
We can run more iterations and verify if the cost is reaching a minimum point or not.

alpha_df_1, b, w = run_gradient_descent(X, Y, alpha = 0.01,
 num_iterations = 2000)

Final estimate of b and w: 2.7728016698178713e-16
 [0.75306591 0.5 3648155 -0.00433069]

What happens if we change the learning parameter and use smaller value (e.g., 0.001)?

alpha_df_2, b, w = run_gradient_descent(X, Y, alpha = 0.001,
 num_iterations = 2000)

Final estimate of b and w: 0.011664695556930518 [0.74315125 0.52779
 959 0.01171703]

Now we plot the cost after every iteration for different learning rate parameters (alpha values).

plt.plot(alpha_df_1[‘iteration’], alpha_df_1[‘cost’], label =
 “alpha = 0.01”);
plt.plot(alpha_df_2[‘iteration’], alpha_df_2[‘cost’], label =
 “alpha = 0.001”);

Chapter 06_Advanced Machine Learning.indd 189 4/24/2019 6:55:47 PM

Machine Learning using Python190

plt.legend()
plt.ylabel(‘Cost’);
plt.xlabel(‘Number of Iterations’);
plt.title(‘Cost Vs. Iterations for different alpha values’);

alpha = 0.01
alpha = 0.001

Cost Vs. Iterations for different alpha values

C
os

t

0.2

0 250 500 750 1000

Number of Iterations

1250 1500 1750 2000

0.4

0.6

0.8

1.0

1.2

1.4

1.6

FIGURE 6.3 Cost or MSE at the end of iterations for different alpha values.

The plot in Figure 6.3 shows that the learning is faster for alpha value 0.01 compared to 0.001. For smaller
values, the learning could be slower whereas higher learning rate could lead to skipping the minima of
cost function. It is imperative to search for the optimal learning parameter.

6.3 | SCIKIT-LEARN LIBRARY FOR MACHINE LEARNING

The implementation of gradient descent algorithm in the previous section using numpy library is only
for our understanding of how it works. But in practice, we will use the scikit-learn library in Python,
which is primarily an open-source Python library for building machine learning models. scikit-learn
provides a comprehensive set of algorithms for the following kind of problems:

1. Regression
2. Classification
3. Clustering

scikit-learn also provides an extensive set of methods for data pre-processing and feature selection. We
will discuss many algorithms in this chapter that are available within scikit-learn. scikit-learn will be
referred as sklearn going forward.

Chapter 06_Advanced Machine Learning.indd 190 4/24/2019 6:55:47 PM

Chapter 6 · Advanced Machine Learning 191

6.3.1 | Steps for Building Machine Learning Models

The steps to be followed for building, validating a machine learning model and measuring its accuracy
are as follows:

1. Identify the features and outcome variable in the dataset.
2. Split the dataset into training and test sets.
3. Build the model using training set.
4. Predict outcome variable using a test set.
5. Compare the predicted and actual values of the outcome variable in the test set and measure

accuracy using measures such as mean absolute percentage error (MAPE) or root mean square
error (RMSE).

6.3.1.1 Splitting Dataset into Train and Test Datasets

The following commands can be used for splitting the dataset using 70:30 ratio. That is, 70% for training
and 30% for the test set. Usually, data scientists use a range of 60% to 80% for training and the rest for
testing the model.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
sales_df[[“TV”, “Radio”,
“Newspaper”]],
sales_df.Sales, test_size=0.3,
random_state = 42)

The following commands can be used for finding the number of records sampled into training
and test sets.

len(X_train)

140

len(X_test)

60

6.3.1.2 Building Linear Regression Model with Train Dataset

Linear models are included in sklearn.linear_model module. We will use LinearRegression method for
building the model and compare with the results we obtained through our own implementation of gradi-
ent descent algorithm.

Chapter 06_Advanced Machine Learning.indd 191 4/24/2019 6:55:47 PM

Machine Learning using Python192

from sklearn.linear_model import LinearRegression

Steps for building a model in sklearn are

1. Initialize the model.
2. Invoke fit() method on the model and pass the input (X) and output(Y) values.
3. fit() will run the algorithm and return the final estimated model parameters.

Initializing the model
linreg = LinearRegression()
Fitting training data to the model
linreg.fit(X_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,
normalize=False)

After the model is built, the model parameters such as intercept (bias) and coefficients (weights) can be
obtained using the following commands:

linreg.intercept_

2.708949092515912

linreg.coef_

array([0.04405928, 0.1992875, 0.00688245])

To associate the coefficient values with the variable names, we can use zip() in Python. zip() returns a
dictionary with variable names mapped to coefficient values.

list(zip([“TV”, “Radio”, “Newspaper”], list(linreg.coef_)))

[(‘TV’, 0.04405928),
 (‘Radio’, 0.1992874968989395),
 (‘Newspaper’, 0.0068824522222754)]

The estimated model is

Sales = 2.708 + 0.044 ∗ TV + 0.199 ∗ Radio + 0.006 ∗ Newspaper

The weights are different than what we estimated earlier. This is because we have not standardized the
values in this model. The model indicates that for every unit change in TV spending, there is an increase
of 0.044 units in sales revenue.

Chapter 06_Advanced Machine Learning.indd 192 4/24/2019 6:55:47 PM

Chapter 6 · Advanced Machine Learning 193

6.3.1.3 Making Prediction on Test Set

sklearn provides predict() method for all ML models, which takes the X values and predicts the outcome
variable Y as shown in the following code:

Predicting the y value from the test set
y_pred = linreg.predict(X_test)

To compare the actual and predicted values of the outcome variable and the residuals, we will create and
store these values in a DataFrame. The residual here refers to the difference between the actual and the
predicted values.

Creating DataFrame with 3 columns named: actual, predicted and residuals
to store the respective values
test_pred_df = pd.DataFrame({ ‘actual’: y_test,

‘predicted’: np.round(y_pred, 2),
‘residuals’: y_test - y_pred })

Randomly showing the 10 observations from the DataFrame
test_pred_df.sample(10)

actual predicted residuals

126 6.6 11.15 -4.553147

170 8.4 7.35 1.049715

95 16.9 16.57 0.334604

195 7.6 5.22 2.375645

115 12.6 13.36 -0.755569

38 10.1 10.17 -0.070454

56 5.5 8.92 -3.415494

165 11.9 14.30 -2.402060

173 11.7 11.63 0.068431

9 10.6 12.18 -1.576049

6.3.1.4 Measuring Accuracy

Root Mean Square Error (RMSE) and R-squared are two key accuracy measures for Linear Regression
Models as explained in Chapter 4.

sklearn.metrics package provides methods to measure various metrics. For regression models,
mean_squared_error and r2_score can be used to calculate MSE and R-squared values, respectively.

Chapter 06_Advanced Machine Learning.indd 193 4/24/2019 6:55:47 PM

Machine Learning using Python194

Importing metrics from sklearn
from sklearn import metrics

R-Squared Value

The R-squared value is calculated on the training data, which is the amount of variance in Y that can
be explained by the model. metrics.r2_score() takes the actual and the predicted values of Y to compute
R-squared value. The following command can be used for calculating R-squared value:

y_train contains the actual value and the predicted value is
returned from predict() method after passing the X values of the
training data.
r2 = metrics.r2_score(y_train, linreg.predict(X_train))
print(“R Squared: ”, r2)

R Squared: 0.9055159502227753

The model explains 90% of the variance in Y.

RMSE Calculation

metrics.mean_squared_error() takes actual and predicted values and returns MSE.

y_pred contains predicted value of test data
mse = metrics.mean_squared_error(y_test, y_pred)

RMSE value can be calculated by the square root of mse using the following command:

Taking square root of MSE and then round off to two decimal values
rmse = round(np.sqrt(mse), 2)
print(“RMSE: ”, rmse)

RMSE: 1.95

The RMSE value indicates the model prediction has a standard deviation of 1.95.
To understand the model error in detail, we need to understand the components of the error term

and how to deal with those components for improving model performance. In the next section, we will
discuss these components in detail.

6.3.2 | Bias-Variance Trade-off

Model errors can be decomposed into two components: bias and variance. Understanding these two
components is key to diagnosing model accuracies and avoiding model overfitting or underfitting.
High bias can lead to building underfitting model, whereas high variance can lead to overfitting models.

Chapter 06_Advanced Machine Learning.indd 194 4/24/2019 6:55:47 PM

Chapter 6 · Advanced Machine Learning 195

Let us take an example to understand bias and variance in detail. The dataset curve.csv has records with
two variables x and y, where y depends on x.

Reading the file curve.csv and printing first few examples
curve = pd.read_csv(“curve.csv”)
curve.head()

x y

0 2 -1.999618

1 2 -1.999618

2 8 -3.978312

3 9 -1.969175

4 10 -0.957770

As there are only two variables, we can observe the relationship by plotting them using scatter plot
(Figure 6.4).

plt.scatter(curve.x, curve.y);
plt.xlabel(“x values”)
plt.ylabel(“y values”)

Text(0,0.5,’y values’)

y
va

lu
es

20

20 40 60
x values

80 100

30

40

10

0

0

FIGURE 6.4 Scatter plot between x and y.

It can be observed from Figure 6.4 that the relation between y and x is not linear and looks like some
polynomial. But we are not sure of the degree of the polynomial form. We need to try various polynomial
forms of x and verify which model fits the data best.

Chapter 06_Advanced Machine Learning.indd 195 4/24/2019 6:55:48 PM

Machine Learning using Python196

To explore various polynomial forms, polyfit() from numpy library can be used. polyfit() takes X and
Y values, and the degree of x features to be used to fit a model. Degree 1 means only value of x is used to
predict y, whereas degree 2 means x and x2 are used to predict y.

The following commands can be used for implementing a generic method fit_poly(), which takes
degree as a parameter and builds a model with all required polynomial terms.

Input
degree - polynomial terms to be used in the model
def fit_poly(degree):

calling numpy method polyfit
p = np.polyfit(curve.x, curve.y, deg = degree)
curve[‘fit’] = np.polyval(p, curve.x)
draw the regression line after fitting the model
sn.regplot(curve.x, curve.y, fit_reg = False)
Plot the actual x and y values
return plt.plot(curve.x, curve.fit, label=’fit’)

Fitting a mode with degree = 1.
y = b 1 x1 + e

fit_poly(1);
Plotting the model form and the data
plt.xlabel(“x values”)
plt.ylabel(“y values”);

40

30

20

10

0

0 20 40 60
x values

y
va

lu
es

80 100

−10

FIGURE 6.5 Linear regression model between x and y.

Linear model (y = b0 + b1x1) is shown in Figure 6.5. It is evident from the figure that the regression
model does not seem to fit the data well. It is not able to learn from data as a simplistic form of model is
assumed. This is a case of underfitting or bias.

Chapter 06_Advanced Machine Learning.indd 196 4/24/2019 6:55:48 PM

Chapter 6 · Advanced Machine Learning 197

Let us fit a regression model with a polynomial term, that is, square of x.

y x x i= + +b b e1 1 2 1
2

fit_poly(2);
plt.xlabel(“x values”)
plt.ylabel(“y values”);

40

30

20

10

0

0 20 40 60
x values

y
va

lu
es

80 100

FIGURE 6.6 Linear regression model between y and polynomial terms of x of degrees 1 and 2.

Figure 6.6 shows the fitted model which includes x x1 and 1
2. The regression line seems to fit data better

than the previous model. But we are not sure if this is the best model. We can try building a model with
all polynomial terms up to degrees ranging from 1 to 10 as shown below:

y x x x x x x x x x x= + + + + + + + + +b b b b b b b b b b1 1 2 1
2

2 1
3

2 1
4

2 1
5

2 1
6

2 1
7

2 1
8

2 1
9

2 11
10 + e i

fit_poly(10);
plt.xlabel(“x values”)
plt.ylabel(“y values”);

It can be observed from Figure 6.7 that as we build models with more and more polynomial terms,
the model starts to fit every data point in the training set. This is the case of overfitting. The model
with polynomial terms up to degree 10 will be sensitive to any changes in training examples. Any
addition and removal of a single observation from the dataset can alter the model parameters
significantly.

An underfitting model has a large error because of high bias, and an overfitting model has a large
error because of high variance. An optimal model will be somewhere between an underfitting and an
overfitting model, and will have low bias and low variance. This can be observed by comparing RMSE in
training and test sets.

Chapter 06_Advanced Machine Learning.indd 197 4/24/2019 6:55:49 PM

Machine Learning using Python198

40

30

20

10

0

0 20 40 60
x values

y
va

lu
es

80 100

FIGURE 6.7 Linear regression model between y and polynomial terms of x of degree ranging from 1 to 10.

We use the following code to build models with degrees ranging from 1 to 15 and storing the degree and
error details in different columns of a DataFrame named rmse_df.

1. degree: Degree of the model (number of polynomial terms).
2. rmse_train: RMSE error on train set.
3. rmse_test: RMSE error on test set.

Split the dataset into 60:40 into training and test set
train_X, test_X, train_y, test_y = train_test_split(curve.x,

curve.y,
test_size = 0.40,
random_
state = 100)

Define the dataframe store degree and rmse for training and test set
rmse_df = pd.DataFrame(columns = [“degree”, “rmse_train”,
 “rmse_test”])

Define a method to return the rmse given actual and predicted values.

def get_rmse(y, y_fit):
return np.sqrt(metrics.mean_squared_error(y, y_fit))

Iterate from degree 1 to 15
for i in range(1, 15):

fitting model
p = np.polyfit(train_X, train_y, deg = i)
storing model degree and rmse on train and test set
rmse_df.loc[i-1] = [i,

get_rmse(train_y, np.polyval(p, train_X)),
get_rmse(test_y, np.polyval(p, test_X))]

Chapter 06_Advanced Machine Learning.indd 198 4/24/2019 6:55:49 PM

Chapter 6 · Advanced Machine Learning 199

Print the rmse_df records using the following code:

rmse_df

degree rmse_train rmse_test

0 1.0 5.226638 5.779652

1 2.0 2.394509 2.755286

2 3.0 2.233547 2.560184

3 4.0 2.231998 2.549205

4 5.0 2.197528 2.428728

5 6.0 2.062201 2.703880

6 7.0 2.039408 2.909237

7 8.0 1.995852 3.270892

8 9.0 1.979322 3.120420

9 10.0 1.976326 3.115875

10 11.0 1.964484 3.218203

11 12.0 1.657948 4.457668

12 13.0 1.656719 4.358014

13 14.0 1.642308 4.659503

Now we can plot the train and test errors against the degree of the models for better understanding.

Plotting the rmse for training set in red color
plt.plot(rmse_df.degree,

rmse_df.rmse_train,
label=‘RMSE on Training Set’,
color = ‘r’)

Plotting the rmse for test set in green color
plt.plot(rmse_df.degree,

rmse_df.rmse_test,
label=‘RMSE on Test Set’,
color = ‘g’)

Mention the legend
plt.legend(bbox_to_anchor=(1.05, 1),

loc=2,
borderaxespad=0.);

plt.xlabel(“Model Degrees”)
plt.ylabel(“RMSE”);

Chapter 06_Advanced Machine Learning.indd 199 4/24/2019 6:55:49 PM

Machine Learning using Python200

5

4

3

2

2 4 6 8 10
Model Degrees

R
M

S
E

12 14

RMSE on Training Set
RMSE on Test Set

FIGURE 6.8 Model accuracy on training and test sets against the model complexity.

Three key observations from Figure 6.8 are as follows:

1. Error on the test set are high for the model with complexity of degree 1 and degree 15.
2. Error on the test set reduces initially, however increases after a specific level of complexity.
3. Error on the training set decreases continuously.

The degree can also be associated with complexity. It can be observed that as complexity (number of
polynomial terms in the model) increases, the model starts to fit to train and test data well. But beyond
a specific level of complexity (i.e., complexity level 5), the training error continues to reduce, but the test
error starts to increase again. This is a point where the model starts to overfit the training set and stops
generalizing. So, the optimal model complexity is 5, which has low bias and low variance.

6.3.3 | K-Fold Cross-Validation

K-fold cross-validation is a robust validation approach that can be adopted to verify if the model is
overfitting. The model, which generalizes well and does not overfit, should not be very sensitive to any
change in underlying training samples. K-fold cross-validation can do this by building and validating
multiple models by resampling multiple training and validation sets from the original dataset.

The following steps are used in K-fold cross-validation:

1. Split the training data set into K subsets of equal size. Each subset will be called a fold. Let the
folds be labelled as f1, f2, … , fK. Generally, the value of K is taken to be 5 or 10.

2. For i = 1 to K
(a) Fold fi is used as validation set and all the remaining K – 1 folds as training set.
(b) Train the model using the training set and calculate the accuracy of the model in fold fi.

Calculate the final accuracy by averaging the accuracies in the test data across all K models. The average
accuracy value shows how the model will behave in the real world. The variance of these accuracies is an
indication of the robustness of the model.

Chapter 06_Advanced Machine Learning.indd 200 4/24/2019 6:55:50 PM

Chapter 6 · Advanced Machine Learning 201

Fold 1

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Fold 2 Fold 3 Fold 4

test

test

Fold 5

test

test

test

train

train

train

train train

train

train

train train

train

train

train train

train

train train

train

train

train

train

FIGURE 6.9 K-fold cross-validation.

Figure 6.9 depicts the process of K-fold cross-validation with 5 folds.

6.4 | ADVANCED REGRESSION MODELS

We will be using the IPL dataset (used in Chapter 4) to discuss advanced regression models. First, we will
build a linear regression model to understand the shortcomings and then proceed to advanced regres-
sion models.

6.4.1 | Building Linear Regression Model

The model will predict SOLD PRICE of a player based on past performance measures of the players.

6.4.1.1 Loading IPL Dataset

Load the dataset and display information about the dataset using the following commands:

ipl_auction_df = pd.read_csv(‘IPL IMB381IPL2013.csv’)
ipl_auction_df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 130 entries, 0 to 129
Data columns (total 26 columns):

Sl.NO. 130 non-null int64
PLAYER NAME 130 non-null object
AGE 130 non-null int64
COUNTRY 130 non-null object
TEAM 130 non-null object
PLAYING ROLE 130 non-null object
T-RUNS 130 non-null int64
T-WKTS 130 non-null int64
ODI-RUNS-S 130 non-null int64
ODI-SR-B 130 non-null float64

Chapter 06_Advanced Machine Learning.indd 201 4/24/2019 6:55:50 PM

Machine Learning using Python202

ODI-WKTS 130 non-null int64
ODI-SR-BL 130 non-null float64
CAPTAINCY EXP 130 non-null int64
RUNS-S 130 non-null int64
HS 130 non-null int64
AVE 130 non-null float64
SR-B 130 non-null float64
SIXERS 130 non-null int64
RUNS-C 130 non-null int64
WKTS 130 non-null int64
AVE-BL 130 non-null float64
ECON 130 non-null float64
SR-BL 130 non-null float64
AUCTION YEAR 130 non-null int64
BASE PRICE 130 non-null int64
SOLD PRICE 130 non-null int64
dtypes: float64(7), int64(15), object(4)
memory usage: 26.5+ KB

We will use only a subset of features for building the model. The list X_features is initialized with the
name of the features to be used as described below.

X_features = [‘AGE’, ‘COUNTRY’, ‘PLAYING ROLE’,‘T-RUNS’, ‘T-WKTS’,
‘ODI-RUNS-S’, ‘ODI-SR-B’,‘ODI-WKTS’, ‘ODI-SR-BL’,
‘CAPTAINCY EXP’, ‘RUNS-S’,‘HS’, ‘AVE’, ‘SR-B’, ‘SIX-
ERS’, ‘RUNS-C’, ‘WKTS’, ‘AVE-BL’, ‘ECON’, ‘SR-BL’]

Out of these, there are four categorical features that need to be encoded into dummy features using
OHE (One Hot Encoding). The details of encoding categorical features are already discussed in
Chapter 4.

Initialize a list with the categorical feature names.
categorical_features = [‘AGE’, ‘COUNTRY’, ‘PLAYING ROLE’,
 ‘CAPTAINCY EXP’]
#get_dummies() is invoked to return the dummy features.
ipl_auction_encoded_df = pd.get_dummies(ipl_auction_df[X_features],

columns = categorical_
features,
drop_first = True)

To display all feature names along with the new dummy features we use the following code:

ipl_auction_encoded_df.columns

Chapter 06_Advanced Machine Learning.indd 202 4/24/2019 6:55:50 PM

Chapter 6 · Advanced Machine Learning 203

Index([‘T-RUNS’, ‘T-WKTS’, ‘ODI-RUNS-S’, ‘ODI-SR-B’, ‘ODI-WKTS’,
‘ODI-SR-BL’,‘RUNS-S’, ‘HS’, ‘AVE’, ‘SR-B’, ‘SIXERS’, ‘RUNS-
C, ‘WKTS’, ‘AVE-BL’,‘ECON’, ‘SR-BL’, ‘AGE_2’, ‘AGE_3’,
‘COUNTRY_BAN’, ‘COUNTRY_ ENG’,‘COUNTRY_IND’, ‘COUNTRY_NZ’,
‘COUNTRY_PAK’, ‘COUNTRY_SA’, ‘COUNTRY_SL’,‘COUNTRY_WI’,
‘COUNTRY_ZIM’, ‘PLAYING ROLE_Batsman’,‘PLAYING ROLE_Bowler’,
‘PLAYING ROLE_W. Keeper’, ‘CAPTAINCY EXP_1’],

 dtype=’object’)

We will create two variables X and Y for building models. So, initialize X to values from all the above
features and Y to SOLD PRICE, the outcome variable.

X = ipl_auction_encoded_df
Y = ipl_auction_df[‘SOLD PRICE’]

6.4.1.2 Standardization of X and Y

Standardization is the process of bringing all features or variables into one single scale (normalized
scale). This can be done by subtracting mean from the values and dividing by the standard devia-
tion of the feature or variable. Standardizing helps to manage difference in scales of measure-
ments of different variables. StandardScaler available in sklearn.preprocessing package provides
this functionality.

from sklearn.preprocessing import StandardScaler

Initializing the StandardScaler
X_scaler = StandardScaler()
Standardize all the feature columns
X_scaled = X_scaler.fit_transform(X)

Standardizing Y explictly by subtracting mean and
dividing by standard deviation
Y = (Y - Y.mean()) / Y.std()

6.4.1.3 Split the Dataset into Train and Test

Split the dataset into train and test with 80:20 split. random_state (seed value) is set to 42 for reproduc-
ibility of exact results.

from sklearn.model_selection import train_test_split

Chapter 06_Advanced Machine Learning.indd 203 4/24/2019 6:55:50 PM

Machine Learning using Python204

X_train, X_test, y_train, y_test = train_ test_split(
X_scaled,
Y,
test_size=0.2,
random_state = 42)

6.4.1.4 Build the Model

SGDRegressor in sklearn.linear_model is a variation of gradient descent algorithm for building linear regres-
sion model. Gradient descent algorithm uses all the training examples to learn to minimize the cost function,
whereas SGDRegressor (Stochastic Gradient Descent) uses a subset of examples in each iteration for learning.

sklearn.linear_model also provides LinearRegression to build a linear regression model. We can ini-
tialize the LinearRegression class and then call fit() and pass X_train and y_train to build the model.

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()
linreg.fit(X_train, y_train)

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1,
normalize=False)

Let us print the coefficient using the following code:

linreg.coef_

array([-0.43539611, -0.04632556, 0.50840867, -0.03323988, 0.2220377,

-0.05065703, 0.17282657, -0.49173336, 0.58571405, -0.11654753,
0.24880095, 0.09546057, 0.16428731, 0.26400753, -0.08253341,

-0.28643889, -0.26842214, -0.21910913, -0.02622351, 0.24817898,
0.18760332, 0.10776084, 0.04737488, 0.05191335, 0.01235245,
0.00547115, -0.03124706, 0.08530192, 0.01790803, -0.05077454,
0.18745577])

The sign of the coefficients indicates positive or negative effect on a player’s SOLD PRICE. We will store
the beta coefficients and respective column names in a DataFrame and then sort the coefficient values in
descending order to observe the effects.

The dataframe has two columns to store feature name and the
corresponding coefficient values
columns_coef_df = pd.DataFrame({ ‘columns’: ipl_auction_encoded_

 df.columns,
‘coef’: linreg.coef_ })

Chapter 06_Advanced Machine Learning.indd 204 4/24/2019 6:55:50 PM

Chapter 6 · Advanced Machine Learning 205

Sorting the features by coefficient values in descending order
sorted_coef_vals = columns_coef_df.sort_values(‘coef’,
 ascending=False)

6.4.1.5 Plotting the Coefficient Values

The feature names and the coefficients are plotted using a bar plot to observe the effect (Figure 6.10).
The vertical axis is the feature name and the horizontal axis is the coefficient value. As the features are
standardized, the magnitude of the values also indicates the effect on outcome i.e. SOLD PRICE. The fol-
lowing commands are used to plot the coefficients of values:

plt.figure(figsize = (8, 6)) ## Creating a bar plot
sn.barplot(x=“coef”, y=“columns”, data=sorted_coef_vals);
plt.xlabel(“Coefficients from Linear Regression”)
plt.ylabel(“Features”)

AVE
ODI-RUNS-S

SIXERS
COUNTRY_ENG

ODI-WKTS
CAPTAINCY EXP 1

COUNTRY_IND
RUNS-S

WKTS
RUNS-C

COUNTRY_NZ
AVE-BL

PLAYING ROLE_Batsman
COUNTRY_PAK
COUNTRY_SA

PLAYING ROLE Bowler
COUNTRY_SL
COUNTRY_WI

ODI-SR-B
COUNTRY_ZIM

COUNTRY_BAN
ODI-SR-BL

PLAYING ROLE_W. Keeper
T-WKTS

ECON
SR-BL

SR-B
AGE_3
AGE_2

T-RUNS
HS

−0.4 −0.2 0.0

F
ea

tu
re

s

Coefficients from Linear Regression

0.2 0.4

FIGURE 6.10 Bar plot depicting coefficient values of features in the model, sorted in descending order.

Few observations from Figure 6.10 are as follows:

1. AVE, ODI-RUNS-S, SIXERS are top three highly influential features which determine the
player’s SOLD PRICE.

Chapter 06_Advanced Machine Learning.indd 205 4/24/2019 6:55:51 PM

Machine Learning using Python206

2. Higher ECON, SR-B and AGE have negative effect on SOLD PRICE.
3. Interestingly, higher test runs (T-Runs) and highest score (HS) have negative effect on the SOLD

PRICE. Note that few of these counter-intuitive sign for coefficients could be due to multi-
collinearity. For example, we expect SR-B (batting strike rate) to have a positive effect on the
SOLD PRICE.

6.4.1.6 Calculate RMSE

We can calculate the RMSE on training and test sets to understand the model’s ability to predict SOLD
PRICE. We will develop an utility method get_train_test_rmse() to calculate and print the RMSE of train
and test sets for comparison. It will take the model as a parameter. This will be used in all the models that
we will be discussing in this chapter.

from sklearn import metrics

Takes a model as a parameter
Prints the RMSE on train and test set
def get_train_test_rmse(model):

Predicting on training dataset
y_train_pred = model.predict(X_train)
Compare the actual y with predicted y in the training dataset
rmse_train = round(np.sqrt(metrics.mean_squared_error(y_train,

y_train_
pred)),3)

Predicting on test dataset
y_test_pred = model.predict(X_test)
Compare the actual y with predicted y in the test dataset
rmse_test = round(np.sqrt(metrics.mean_squared_error(y_test,

y_test_
pred)),3)

print(“train: ”, rmse_train, “ test:”, rmse_test)

Invoke the method get_train_test_rmse() with the model linreg as a parameter to get train and test
accuracy.

get_train_test_rmse(linreg)

train: 0.679 test: 0.749

RMSE on the training set is 0.679, while it is 0.749 on the test set. A good model that generalizes well
needs to have a very similar error on training and test sets. Large difference indicates that the model
may be overfitting to the training set. Most widely used approach to deal with model overfitting is called
Regularization, which will be discussed in the next section.

6.4.2 | Applying Regularization

One way to deal with overfitting is regularization. It is observed that overfitting is typically caused by
inflation of the coefficients. To avoid overfitting, the coefficients should be regulated by penalizing

Chapter 06_Advanced Machine Learning.indd 206 4/24/2019 6:55:51 PM

Chapter 6 · Advanced Machine Learning 207

potential inflation of coefficients. Regularization applies penalties on parameters if they inflate to large
values and keeps them from being weighted too heavily.

The coefficients are penalized by adding the coefficient terms to the cost function. If the coefficients
become large, the cost increases significantly. So, the optimizer controls the coefficient values to mini-
mize the cost function. Following are the two approaches that can be used for adding a penalty to the
cost function:

1. L1 Norm: Summation of the absolute value of the coefficients. This is also called Least Absolute
Shrinkage and Selection Operator (LASSO Term) (Tibshirani, 1996). The corresponding
cost function is given by

 e b b b a bmse = - + + + +
= =
∑ ∑1

0 1 1
2

1 0N
Y X s Xi n n

i

N

i
i

n

(()) (6.10)

where a is the multiplier.

2. L2 Norm: Summation of the squared value of the coefficients. This is called Ridge Term (Hoerl
A E and Kennard Kennard, 1970). The cost function is given by

 e b b b a bmse = - + + + +
= =
∑ ∑1

0 1 1
2

1

2

1N
Y X Xi n n

i

N

i
i

n

(()) (6.11)

Ridge term distributes (smoothens) the coefficient values across all the features, whereas LASSO seems
to reduce some of the coefficients to zero. Features with coefficients value as zero can be treated as fea-
tures with no contribution to the model. So, LASSO can also be used for feature selection, that is, remove
features with zero coefficients, thereby reducing the number of features.

Figure 6.11 depicts the LASSO and Ridge constraint applied to the cost function (James et al., 2013).

LASSO Ridge

Ridge Constraint
Region

LASSO
Constraint

Region

FIGURE 6.11 Effect of LASSO and Ridge terms on the cost function.

Chapter 06_Advanced Machine Learning.indd 207 4/24/2019 6:55:52 PM

Machine Learning using Python208

6.4.2.1 Ridge Regression

sklearn.linear_model provides Ridge regression for building linear models by applying L2 penalty.
Ridge regression takes the following parameters:

1. alpha (a) – float – is the regularization strength; regularization strength must be a positive float.
Regularization improves the estimation of the parameters and reduces the variance of the esti-
mates. Larger values of alpha imply stronger regularization.

2. max_iter – int (integer) – is the maximum number of iterations for the gradient solver.

Importing Ridge Regression
from sklearn.linear_model import Ridge

Applying alpha = 1 and running the algorithms for maximum of 500
iterations
ridge = Ridge(alpha = 1, max_iter = 500)
ridge.fit(X_train, y_train)

Ridge(alpha=1, copy_X=True, fit_intercept=True, max_iter=500,
normalize=False, random_state=None, solver=‘auto’, tol=0.001)

get_train_test_rmse(ridge)

train: 0.68 test: 0.724

The difference in RMSE on train and test has reduced because of penalty effect. The difference can be
reduced by applying a stronger penalty. For example, apply a value as 2.0.

ridge = Ridge(alpha = 2.0, max_iter = 1000)
ridge.fit(X_train, y_train)
get_train_test_rmse(ridge)

train: 0.682 test: 0.706

The difference in model accuracy on training and test has reduced. We need to calculate the optimal
value for a. This can be achieved in many ways. Multiple values of a can be tested before arriving at the
optimal value. The parameters which can be tuned are called hyperparameters in machine learning. Here
a is a hyperparameter.

sklearn.model_selection.GridSearchCV can help search for the optimal value and will be discussed
later in the chapter. For now, let us assume the optimal value for a is 2.0.

6.4.2.2 LASSO Regression

sklearn.linear_model provides LASSO regression for building linear models by applying L1 penalty. Two
key parameters for LASSO regression are:

1. alpha – float – multiplies the L1 term. Default value is set to 1.0.
2. max_iter – int – Maximum number of iterations for gradient solver.

Chapter 06_Advanced Machine Learning.indd 208 4/24/2019 6:55:52 PM

Chapter 6 · Advanced Machine Learning 209

Importing LASSO Regression
from sklearn.linear_model import Lasso

Applying alpha = 1 and running the algorithms for maximum of 500
iterations
lasso = Lasso(alpha = 0.01, max_iter = 500)
lasso.fit(X_train, y_train)

Lasso(alpha=0.01, copy_X=True, fit_intercept=True, max_iter=500,
normalize=False, positive=False, precompute=False, random_
state=None, selection=‘cyclic’, tol=0.0001, warm_start=False)

get_train_test_rmse(lasso)

train: 0.688 test: 0.698

It can be noticed that the model is not overfitting and the difference between train RMSE and test RMSE
is very small. LASSO reduces some of the coefficient values to 0, which indicates that these features are
not necessary for explaining the variance in the outcome variable.

We will store the feature names, coefficient values in a DataFrame and then filter the features with
zero coefficients.

Storing the feature names and coefficient values in the DataFrame
lasso_coef_df = pd.DataFrame({ ‘columns’: ipl_auction_encoded_

df.columns,
‘coef’: lasso.coef_ })

Filtering out coefficients with zeros
lasso_coef_df[lasso_coef_df.coef == 0]

coef columns

1 0.0 T-WKTS

3 0.0 ODI-SR-B

13 0.0 AVE-BL

28 0.0 PLAYING ROLE_Bowler

The LASSO regression indicates that the features listed under “columns” are not influencing factors for
predicting the SOLD PRICE as the respective coefficients are 0.0.

6.4.2.3 Elastic Net Regression

ElasticNet regression combines both L1 and L2 regularizations to build a regression model. The corre-
sponding cost function is given by

Chapter 06_Advanced Machine Learning.indd 209 4/24/2019 6:55:52 PM

Machine Learning using Python210

 e b b b g b s bmse = - + + + + +
= = =
å å å1

0 1 1
2

1 0

2

1N
Y X Xi n n

i

N

i
i

n

i
i

n

(()) (6.12)

While building ElasticNet regression model, both hyperparameters s (L2) and g (L1) need to be set.
ElasticNet takes the following two parameters:

1. alpha – Constant that multiplies the penalty terms. Default value is set to 1.0. (alpha = s + g)
2. l1_ratio – The ElasticNet mixing parameter, with 0 <= l1_ratio <= 1.

l ratio1_ =
+
g
s g

where
l1_ratio = 0 implies that the penalty is an L2 penalty.
l1_ratio = 1 implies that it is an L1 penalty.
0 < l1_ratio < 1 implies that the penalty is a combination of L1 and L2.

In the example below, penalties applied are g = 0.01 and s = 1.0. So

alpha l= + = =
+

=s g g
s g

1 01 1 0 0099. _ . and ratio

from sklearn.linear_model import ElasticNet

enet = ElasticNet(alpha = 1.01, l1_ratio = 0.001, max_iter = 500)
enet.fit(X_train, y_train)
get_train_test_rmse(enet)

train: 0.789 test: 0.665

As we can see, applying both the regularizations did not improve the model performance. It has become
worse. In this case, we can choose to apply only L1 (LASSO) regularization, which seems to deal with the
overfitting problem efficiently.

6.5 | ADVANCED MACHINE LEARNING ALGORITHMS

In this section, we will take a binary classification problem and explore it through machine learning
algorithms such as K-Nearest Neighbors (KNN), Random Forest, and Boosting. Bank marketing data-
set available at the University of California, Irvine machine learning repository (https://archive.ics.uci.edu/ml/
datasets/Bank+Marketing) is used in this section for the demonstration of various techniques. The
dataset is based on a telemarketing campaign carried out by a Portuguese bank for subscription of a term
deposit. The data has several features related to the potential customers and whether they subscribed the
term deposit or not (outcome). The objective, in this case, is to predict which customers may respond to
their marketing campaign to open a term deposit with the bank. The response variable Y = 1 implies that
the customer subscribed a term deposit after the campaign and 0 otherwise. The marketing campaign is
based on phone calls. We have already explored this dataset in Chapter 5.

We can use the following commands for reading the dataset and printing a few records.

bank_df = pd.read_csv(‘bank.csv’)
bank_df.head(5)

Chapter 06_Advanced Machine Learning.indd 210 4/24/2019 6:55:53 PM

http://https://archive.ics.uci.edu/ml/datasets/
http://https://archive.ics.uci.edu/ml/datasets/

Chapter 6 · Advanced Machine Learning 211

age job marital education default balance
housing-
loan

personal-
loan

current-
campaign

previous-
campaign

subscribed

0 30 unemployed married primary no 1787 no no 1 0 no

1 33 services married secondary no 4789 yes yes 1 4 no

2 35 management single tertiary no 1350 yes no 1 1 no

3 30 management married tertiary no 1476 yes yes 4 0 no

4 59 blue-collar married secondary no 0 yes no 1 0 no

The following commands can be used for displaying information about the dataset.

bank_df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 4521 entries, 0 to 4520
Data columns (total 11 columns):

Age 4521 non-null int64
Job 4521 non-null object
Marital 4521 non-null object
Education 4521 non-null object
Default 4521 non-null object
Balance 4521 non-null int64
housing-loan 4521 non-null object
personal-loan 4521 non-null object
current-campaign 4521 non-null int64
previous-campaign 4521 non-null int64
Subscribed 4521 non-null object
dtypes: int64(4), object(7)
memory usage: 388.6+ KB

The dataset has 4521 observations and 10 features excluding the subscribed column (outcome variable).
The details of the columns are given in Chapter 5, Classification.

6.5.1 | Dealing with Imbalanced Datasets

One of the major problems in machine learning is imbalanced (or unbalanced) dataset. A dataset is
imbalanced when there is no equal representation of all classes in the data. For example, in the bank
marketing dataset the proportion of customers who responded to the telemarketing is approximately
11.5% and the remaining 88.5% did not respond. Thus, the representation of two classes (responded, did
not respond) in the dataset is not equal. In the data, the subscribed column indicates whether or not the
customer has opened (subscribed) a term deposit account with the bank after the marketing campaign.

1. yes – the customer has opened the account
2. no – the customer has not opened the account

Chapter 06_Advanced Machine Learning.indd 211 4/24/2019 6:55:53 PM

Machine Learning using Python212

We have to check the number of records in each class to understand the imbalance. A simple value_
counts() on the column values will provide the answer. The following command can be used for counting
the number of records in each class:

bank_df.subscribed.value_counts()

no 4000
yes 521
Name: subscribed, dtype: int64

The dataset is quite imbalanced. Both the classes are not equally represented. There are only 521 (11.5%)
observations in which customers have subscribed as opposed to 4000 observations where customers
have not subscribed. In such cases, the model may not be able to learn and may be biased towards the
class that is over-represented.

Even if the model predicts that no customer will subscribe (all negatives), it will have an accuracy of
more than 88%. This is called Accuracy Paradox. But the objective of building a model here is to identify
the customers who will subscribe to the term deposit (i.e., increase the number of True Positives).

One approach to deal with imbalanced dataset is bootstrapping. It involves resampling techniques
such as upsampling and downsampling.

1. Upsampling: Increase the instances of under-represented minority class by replicating the exist-
ing observations in the dataset. Sampling with replacement is used for this purpose and is also
called Oversampling.

2. Downsampling: Reduce the instances of over-represented majority class by removing the exist-
ing observations from the dataset and is also called Undersampling.

sklearn.utils has resample method to help with upsampling. It takes three parameters:

1. The original sample set
2. replace: Implements resampling with replacement. If false, all resampled examples will be unique.
3. n_samples: Number of samples to generate.

In this case, the number of examples of yes cases will be increased to 2000.

Importing resample from *sklearn.utils* package.
from sklearn.utils import resample

Separate the case of yes-subscribes and no-subscribes
bank_subscribed_no = bank_df[bank_df.subscribed == ‘no’]
bank_subscribed_yes = bank_df[bank_df.subscribed == ‘yes’]

##Upsample the yes-subscribed cases.
df_minority_upsampled = resample(bank_subscribed_yes,

replace=True,
n_samples=2000)

Chapter 06_Advanced Machine Learning.indd 212 4/24/2019 6:55:53 PM

Chapter 6 · Advanced Machine Learning 213

Combine majority class with upsampled minority class
new_bank_df = pd.concat([bank_subscribed_no, df_minority_upsampled])

After upsampling, the new_bank_df contains 4000 cases of subscribed = no and 2000 cases of subscribed =
yes in the ratio of 67:33. Before using the dataset, the examples can be shuffled to make sure they are not
in a particular order. sklearn.utils has a method shuffle(), which does the shuffling.

from sklearn.utils import
shuffle new_bank_df = shuffle(new_bank_df)

We now assign all the features column names to X_features variable.

Assigning list of all column names in the DataFrame
X_features = list(new_bank_df.columns)
Remove the response variable from the list
X_features.remove(‘subscribed’)
X_features

[‘age’,
‘job’,
‘marital’,
‘education’,
‘default’,
‘balance’,
‘housing-loan’,
‘personal-loan’,
‘current-campaign’,
‘previous-campaign’]

The following command can be used to encode all the categorical features into dummy features and
assign to X.

get_dummies() will convert all the columns with data type as
objects
encoded_bank_df = pd.get_dummies(new_bank_df[X_features],
 drop_first = True)
X = encoded_bank_df

The subscribed column values are string literals and need to be encoded as follows:

1. yes to 1
2. no to 0

Encoding the subscribed column and assigning to Y
Y = new_bank_df.subscribed.map(lambda x: int(x == ‘yes’))

Now split the dataset into train and test sets in 70:30 ratio, respectively.

Chapter 06_Advanced Machine Learning.indd 213 4/24/2019 6:55:53 PM

Machine Learning using Python214

from sklearn.model_selection import train_test_split

train_X, test_X, train_y, test_y = train_test_split(X,
Y,
test_size = 0.3,
random_state = 42)

6.5.2 | Logistic Regression Model

6.5.2.1 Building the Model

Logistic regression is discussed in detail in Chapter 5, Classification. Cost function for logistic regression
is called log loss (log likelihood) or binary cross-entropy function and is given by

 - + - -
=
å1 1 1

1N
y p y pi i i i

i

N

(ln() () ln()) (6.13)

where pi is the probability that Y belongs to class 1. It is given by

p P y e
ei i

Z

Z= = =
+

()1
1

Z X X Xm m= + + + +b b b b0 1 1 2 2

where X1, X2,…, Xm are features.
LogisticRegression is imported from sklearn.linear_model package and is fitted with the training data.

from sklearn.linear_model import LogisticRegression

Initializing the model
logit = LogisticRegression()
Fitting the model with X and Y values of the dataset
logit.fit(train_X, train_y)

Now we use the model to predict on the test set. pred_y will be assigned to the predicted classes. Note
that we are not predicting class directly, which in turn predicts probabilities and determines the class by
using 0.5 as a cut-off probability (or an optimal cut-off).

pred_y = logit.predict(test_X)

6.5.2.2 Confusion Matrix

We develop a custom method draw_cm() to draw the confusion matrix. This method will be used to
draw the confusion matrix from the models we discuss in the subsequent sections of the chapter. It takes
the actual and predicted class labels to draw the confusion matrix. Usage and interpretation of a confu-
sion matrix is already explained in detail in Chapter 5.

Chapter 06_Advanced Machine Learning.indd 214 4/24/2019 6:55:54 PM

Chapter 6 · Advanced Machine Learning 215

Importing the metrics
from sklearn import metrics

Defining the matrix to draw the confusion matrix from actual and
predicted class labels
def draw_cm(actual, predicted):

Invoking confusion_matrix from metric package. The matrix
will be oriented as [1,0] i.e. the classes with label 1 will be
represented by the first row and 0 as second row
cm = metrics.confusion_matrix(actual, predicted, [1,0])
Confusion will be plotted as heatmap for better visualization
The labels are configured to better interpretation from the plot
sn.heatmap(cm, annot=True, fmt=’.2f’,

xticklabels = [“Subscribed”, “Not Subscribed”],
yticklabels = [“Subscribed”, “Not Subscribed”])

plt.ylabel(‘True label’)
plt.xlabel(‘Predicted label’)
plt.show()

Plot the confusion matrix using the following command:

cm = draw_cm(test_y, pred_y)

Predicted label

141.00

1138.00

Tr
ue

 la
be

l

S
ub

sc
rib

ed

SubscribedN
ot

 S
ub

sc
rib

ed

Not Subscribed

434.00

87.00

1000

800

600

400

200

FIGURE 6.12 Confusion matrix of logistic regression model.

Figure 6.12 shows that the model has very few true positives and a large number of false negatives. In
this business context, the objective is to build a model that will have a high percentage of true positives.

Chapter 06_Advanced Machine Learning.indd 215 4/24/2019 6:55:54 PM

Machine Learning using Python216

6.5.2.3 Classification Report

The classification_report() function in skearn.metrics gives a detailed report of precision, recall and
F1-score for each class. The report is shown in Table 6.1.

print(metrics.classification_report(test_y, pred_y))

 TABLE 6.1 Model performance metrics

precision recall f1-score Support

0 0.72 0.93 0.81 1225

1 0.62 0.25 0.35 575

avg/total 0.69 0.71 0.67 1800

From Table 6.1, we learn that recall for positive cases is only 0.25. Most of the cases have been predicted
as negative.

6.5.2.4 Receiver Operating Characteristic Curve (ROC) and Area under ROC (AUC) Score

ROC and AUC are two important measures of model performance for classification problems. The
model’s predict_proba() method gives the predicted probabilities for the test examples and can be
passed to roc_auc_score() along with actual class labels to obtain AUC score. AUC score is explained
in detail in Chapter 5.

Predicting the probability values for test cases
predict_proba_df = pd.DataFrame(logit.predict_proba(test_X))
predict_proba_df.head()

0 1

0 0.505497 0.494503

1 0.799272 0.200728

2 0.646329 0.353671

3 0.882212 0.117788

4 0.458005 0.541995

As shown in the result printed above, the second column in the DataFrame predict_proba_df has the
probability for class label 1.

Now we create a DataFrame test_results_df to store the actual labels and predicted probabilities for
class label 1.

Chapter 06_Advanced Machine Learning.indd 216 4/24/2019 6:55:54 PM

Chapter 6 · Advanced Machine Learning 217

Initializing the DataFrame with actual class labels
test_results_df = pd.DataFrame({ ‘actual’: test_y })
test_results_df = test_results_df.reset_index()
Assigning the probability values for class label 1
test_results_df[‘chd_1’] = predict_proba_df.iloc[:,1:2]

Let us print the first 5 records.

test_results_df.head(5)

index actual chd_1

0 2022 0 0.494503

1 4428 0 0.200728

2 251 0 0.353671

3 2414 0 0.117788

4 4300 1 0.541995

The DataFrame test_results_df contains the test example index, the actual class label and predicted
 probabilities for class 1 in columns index, actual and chd_1, respectively.

The ROC AUC score can be obtained using metrics.roc_auc_score().

Passing actual class labels and predicted probability values
to compute ROC AUC score.

auc_score = metrics.roc_auc_score(test_results_df.actual,
test_results_df.chd_1)

round(float(auc_score), 2)

0.7

That is, AUC score is 0.7.

Plotting ROC Curve

To visualize the ROC curve, an utility method draw_roc_curve() is implemented, which takes the
mode, test set and actual labels of test set to draw the ROC curve. It returns the auc_score, false
positive rate (FPR), true positive rate (TPR) values for different threshold (cut-off probabilities)
ranging from 0.0 to 1.0. This method will be used for all future ML models that we will be discussing
in subsequent sections. ROC AUC curve is discussed in detail in Section 5.2.10 (ROC and AUC),
Chapter 5.

The following custom method is created for plotting ROC curve and calculating the area under the
ROC curve.

Chapter 06_Advanced Machine Learning.indd 217 4/24/2019 6:55:54 PM

Machine Learning using Python218

The method takes the following three parameters
model: the classification model
test_X: X features of the test set
test_y: actual labels of the test set
Returns
- ROC Auc Score
- FPR and TPRs for different threshold values
def draw_roc_curve(model, test_X, test_y):

Creating and initializing a results DataFrame with actual
labels
test_results_df = pd.DataFrame({ ‘actual’: test_y })
test_results_df = test_results_df.reset_index()

 # predict the probabilities on the test set
predict_proba_df = pd.DataFrame(model.predict_proba(test_X))

selecting the probabilities that the test example belongs
to class 1
test_results_df[‘chd_1’] = predict_proba_df.iloc[:,1:2]

Invoke roc_curve() to return fpr, tpr and threshold values.
Threshold values contain values from 0.0 to 1.0
fpr, tpr, thresholds = metrics.roc_curve(test_results_

df.actual,
test_results_
df.chd_1,
drop_intermediate =
False)

Getting roc auc score by invoking metrics.roc_auc_score method
auc_score = metrics.roc_auc_score(test_results_df.actual,

test_results_df.c hd_1)

Setting the size of the plot
plt.figure(figsize=(8, 6))
Plotting the actual fpr and tpr values
plt.plot(fpr, tpr, label = ‘ROC curve (area = %0.2f)’ % auc_score)
Plotting th diagnoal line from (0,1)
plt.plot([0, 1], [0, 1], ‘k--’)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
Setting labels and titles
plt.xlabel(‘False Positive Rate or [1 - True Negative Rate]’)

Chapter 06_Advanced Machine Learning.indd 218 4/24/2019 6:55:54 PM

Chapter 6 · Advanced Machine Learning 219

plt.ylabel(‘True Positive Rate’)
plt.title(‘Receiver operating characteristic example’)
plt.legend(loc=“lower right”)
plt.show()

return auc_score, fpr, tpr, thresholds

The plot of ROC curve is shown in Figure 6.13. The corresponding AUC value is 0.70.

Invoking draw_roc_curve with the logistic regression model
_, _, _, _ = draw_roc_curve(logit, test_X, test_y)

0.20.0
0.0

0.4 0.6 0.8

ROC curve (area = 0.70)

Receiver operating characteristic example

1.0

0.8

0.6

0.4

0.2

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate or [1 − True Negative Rate]
1.0

FIGURE 6.13 ROC AUC curve of logistic regression model.

6.5.3 | K-Nearest Neighbors (KNN) Algorithm

K-Nearest Neighbors (KNN) algorithm is a non-parametric, lazy learning algorithm used for regression and
classification problems. Machine learning algorithms are of two types: parametric and non-parametric.

1. Parametric models estimate a fixed number of parameters from the data and strong assump-
tions of the data. The data is assumed to be following a specific probability distribution. Logistic
regression is an example of a parametric model.

2. Non-parametric models do not make any assumptions on the underlying data distribution (such
as normal distribution). KNN memorizes the data and classifies new observations by comparing
the training data.

Chapter 06_Advanced Machine Learning.indd 219 4/24/2019 6:55:54 PM

Machine Learning using Python220

KNN algorithm finds observations in the training set, which are similar to the new observation. These
observations are called neighbors. For better accuracy, a set of neighbors (K) can be considered for
classifying a new observation. The class for the new observation can be predicted to be same class that
majority of the neighbors belong to.

In Figure 6.14, observations belong to two classes represented by triangle and circle shapes. To find
the class for a new observation, a set of neighbors, marked by the circle, are examined. As a majority of
the neighbors belong to class B, the new observation is classified as class B.

x2

Class A

Class B

x1

Distance

New Observation
Neighbors

FIGURE 6.14 KNN algorithm.

The neighbors are found by computing distance between observations. Euclidean distance is one of the
most widely used distance metrics. It is given by

 D O O X X X X(,) () ()1 2 11 21
2

12 22
2 = - + - (6.14)

where O1 and O2 are two observations in the data. X11, X21 are the values of feature X1 for records 1 and 2,
respectively, and X12 and X22 are the values of feature X2 for records 1 and 2, respectively. Few more
distance metrics such as Minkowski distance, Jaccard Coefficient and Gower’s distance are used. For
better understanding of these distances, refer to Chapter 14: Clustering of Business Analytics: The Science
of Data-Driven Decision Making by U Dinesh Kumar (2017).

sklearn.neighbors provides KNeighborsClassifier algorithm for classification problems.
KNeighborsClassifier takes the following parameters:

1. n_neighbors: int – Number of neighbors to use by default. Default is 5.
2. metric: string – The distance metrics. Default ‘Minkowski’. Available distance metrics in sklearn

are discussed at the Scikit-learn site (see Reference section).
3. weights : str – Default is uniform where all points in each neighborhood are weighted equally.

Else the distance which weighs points by the inverse of their distance.

Chapter 06_Advanced Machine Learning.indd 220 4/24/2019 6:55:55 PM

Chapter 6 · Advanced Machine Learning 221

Illustration of applying KNN algorithms to the bank marketing dataset is described below. The following
default values are used to run the algorithm.

1. n_neighbors = 5
2. metric = ‘minkowski’

Importing the KNN classifier algorithm
from sklearn.neighbors import KNeighborsClassifier

Initializing the classifier
knn_clf = KNeighborsClassifier()
Fitting the model with the training set
knn_clf.fit(train_X, train_y)

KNeighborsClassifier(algorithm=‘auto’, leaf_size=30,
metric=‘minkowski’,metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights=‘uniform’)

6.5.3.1 KNN Accuracy

We find ROC AUC score and draw the ROC curve (Figure 6.15).

Invoking draw_roc_curve with the KNN model
_, _, _, _ = draw_roc_curve(knn_clf, test_X, test_y)

0.20.0
0.0

0.4 0.6 0.8

ROC curve (area = 0.84)

Receiver operating characteristic example

1.0

0.8

0.6

0.4

0.2

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate or [1 − True Negative Rate]
1.0

FIGURE 6.15 ROC AUC curve of KNN model.

Chapter 06_Advanced Machine Learning.indd 221 4/24/2019 6:55:56 PM

Machine Learning using Python222

As shown in Figure 6.15, KNN has AUC score of 0.84 and is better than the Logistic Regression Model.
The confusion matrix can be created using the following commands:

Predicting on test set
pred_y = knn_clf.predict(test_X)
Drawing the confusion matrix for KNN model
draw_cm(test_y, pred_y)

900

750

600

450

300

150

Predicted label

433.00

929.00

Tr
ue

 la
be

l

S
ub

sc
rib

ed

SubscribedN
ot

 S
ub

sc
rib

ed

Not Subscribed

142.00

296.00

FIGURE 6.16 Confusion matrix of KNN model.

Let us print the classification report for the KNN model.

print(metrics.classification_report(test_y, pred_y))

 TABLE 6.2 Classification report for the KNN model

precision recall f1-score support

0 0.87 0.76 0.81 1225
1 0.59 0.75 0.66 575

avg/total 0.78 0.76 0.76 1800

As shown in Table 6.2, the recall of positive cases has improved from 0.25 (logistic regression model)
to 0.75 in the KNN model. The above model accuracy is obtained by considering the default number of
neighbors (i.e., k = 5). Can the accuracy of the model be improved by increasing or reducing the number
of neighbors? In other words, what is the most optimal number of neighbors (K) to be considered for
classification in this case? K in KNN is called hyperparameter and the process of finding optimal value for
a hyperparameter is called hyperparameter tuning.

Chapter 06_Advanced Machine Learning.indd 222 4/24/2019 6:55:56 PM

Chapter 6 · Advanced Machine Learning 223

sklearn has a GridSearch mechanism in which one or multiple hyperparameters can be searched
through for the most optimal values, where the model gives the highest accuracy. The search mechanism
is a brute force approach, that is, evaluate all the possible values and find the most optimal ones.

6.5.3.2 GridSearch for Optimal Parameters

One of the problems in machine learning is the selection of optimal hyperparameters. sklearn.model_
selection provides a feature called GridSearchCV, which searches through a set of given hyperparameter
values and reports the most optimal one. GridSearchCV does k-fold cross-validation for each value of
hyperparameter to measure accuracy and avoid overfitting.

GridSearchCV can be used for any machine learning algorithm to search for optimal values for its
hyperparameters. GridSearchCV searches among a list of possible hyperparameter values and reports the
best value based on accuracy measures. GridSearchCV takes the following parameters:

1. estimator – scikit-learn model, which implements estimator interface. This is the ML algorithm.
2. param_grid – A dictionary with parameter names (string) as keys and lists of parameter values

to search for.
3. scoring – string – the accuracy measure. For example, ‘r2’ for regression models and ‘f1’,

‘precision’, ‘recall’ or roc_auc’ for classification models.
4. cv – integer – the number of folds in K-fold.

In our example, the hyperparameters and corresponding set of values to search for are as follows:

1. n_neighbhors – All values from 5 to 10.
2. metric (for distance calculation) – ‘canberra’, ‘euclidean’, ‘minkowski’.

All possible combination of hyperparameters will be evaluated by GridSearchCV. Also, to measure the
robustness of the model, each set of value will be evaluated by K-fold cross-validation. The accuracy
measure reported will be the average accuracy across all the folds from K-fold cross-validation.

Importing GridSearchCV
from sklearn.model_selection import GridSearchCV

Creating a dictionary with hyperparameters and possible values
for searching
tuned_parameters = [{ ‘n_neighbors’: range(5,10),

‘metric’: [‘canberra’, ‘euclidean’,
‘minkowski’]}]

Configuring grid search
clf = GridSearchCV(KNeighborsClassifier(),

tuned_parameters,
cv=10,
scoring=‘roc_auc’)

fit the search with training set
clf.fit(train_X, train_y)

Chapter 06_Advanced Machine Learning.indd 223 4/24/2019 6:55:56 PM

Machine Learning using Python224

GridSea rchCV(cv=10, error_score=‘raise’,
esti mator=KNeighborsClassifier(algorithm=‘auto’, leaf_size=30,

metric=‘minkowski’,
metric_params=None, n_jobs=l, n_neighbors=5, p=2,
weights=‘uniform’),

fit_params=None, iid=True, n_jobs=l,
param_grid=[{‘n_neighbors’: range(5, 10), ‘metric’:
 [‘Canberra’, ‘euclidean’, ‘minkowski’]}],
pre_dispatch=‘2*n_jobs’, refit=True, return_train_score=‘warn’,
scoring=‘roc_auc’, verbose=0)

Once the search is over, the best score and params (parameters) can be printed as follows.

clf.best_score_

0.8293

clf.best_params_

{‘metric’: ‘canberra’, ‘n_neighbors’: 5}

GridSearch suggests that the best combination of parameters is n_neighbhors = 5 and canberra distance
and the corresponding roc_auc score is 0.826, which is slightly higher than minkowski distance. Grid
search also reports the accuracy metrics for all combinations of hyperparameters it has searched through.

clf.grid_scores_

[mean : 0.82933, std: 0.01422, params: {‘metric’ : ‘Canberra’,
 ‘n_neighbors’ : 5},
mean : 0.81182, std: 0.01771, params: {‘metric’ : ‘Canberra’,
 ‘n_neighbors’ : 6},
mean : 0.80038, std: 0.01953, params: {‘metric’ : ‘Canberra’,
 ‘n_neighbors’ : 7},
mean : 0.79129, std: 0.01894, params: {‘metric’ : ‘Canberra’,
 ‘n_neighbors’ : 8},
mean : 0.78268, std: 0.01838, params: {‘metric’ : ’Canberra’,
 ‘n_neighbors’ : 9},
mean : 0.79774, std: 0.01029, params: {‘metric’ : ‘euclidean’,
 ‘n_neighbors’ : 5},
mean : 0.77504, std: 0.01127, params: {‘metric’ : ‘euclidean’,
 ‘n_neighbors’ : 6},
mean : 0.75184, std: 0.01258, params: {‘metric’ : ‘euclidean’,
 ‘n_neighbors’ : 7},
mean : 0.73387, std: 0.01330, params: {‘metric’ : ‘euclidean’,
 ‘n_neighbors’ : 8},
mean : 0.71950, std: 0.01310, params: {‘metric’ : ‘euclidean’,
 ‘n_neighbors’ : 9},

Chapter 06_Advanced Machine Learning.indd 224 4/24/2019 6:55:56 PM

Chapter 6 · Advanced Machine Learning 225

mean : 0.79774, std: 0.01029, params: {‘metric’ : ‘minkowski’,
 ‘n_neighbors’ : 5},
mean : 0.77504, std: 0.01127, params: {‘metric’ : ‘minkowski’,
 ‘n_neighbors’ : 6},
mean : 0.75184, std: 0.01258, params: {‘metric’ : ‘minkowski’,
 ‘n_neighbors’ : 7},
mean : 0.73387, std: 0.01330, params: {‘metric’ : ‘minkowski’,
 ‘n_neighbors’ : 8},
mean : 0.71950, std: 0.01310, params: {‘metric’ : ‘minkowski’,
 ‘n_neighbors’ : 9}]

It also reports the mean and standard deviation of accuracy scores from the cross-validation. Higher
standard deviation could indicate overfitting models.

6.5.4 | Ensemble Methods

All the models discussed in this chapter so far predict the value of the outcome variable based on a single
model. Ensemble methods, on the other hand, are learning algorithms that take a set of estimators or
classifiers (models) and classify new data points using strategy such as majority vote. The majority voting
could be based on counting simply the vote from each class or it could be weighted based on their indi-
vidual accuracy measures. Ensemble methods are also used for regression problems, where the predic-
tion of new data is simple average or weighted average of all the predictions from the set of regression
models as shown in Figure 6.17.

Multiple datasets are needed for building multiple classifiers. However, in practice there is always
one training set available. So instead of using the same training set across all classifiers, strategy such as
bootstrapped samples (random samples with replacement) are drawn from the initial training set and
given to each classifier. Sometimes bootstrapping involves sampling features (using a subset of features)
along with sampling observations. Each resampled set contains a subset of features available in the origi-
nal set. Sampling features help to find important features, which is discussed in the subsequent sections
in detail. Records that are not part of a specific sample are used for testing the model accuracy. Such
records are called Out-of-Bag (OOB) records.

Sampled
set

k << K

n << N

N

K

Original
Dataset

Sampled
set

Sampled
set

Sampled
set

Model 1

Aggregating Results

- Taking a simple or
 weighted average
 for Regression

- Majority Voting
 for Classification

Model 2

Model 3

Model m

FIGURE 6.17 Ensemble technique.

Chapter 06_Advanced Machine Learning.indd 225 4/24/2019 6:55:57 PM

Machine Learning using Python226

In Figure 6.17, K and N, respectively, are number of features and records in the original set, while k and
n, respectively, are the number of features and records in the sampled set (bootstrapped samples). The
process of bootstrapping samples from original set to build multiple models and aggregating their results
for final prediction is called Bagging. The term “bagging” comes from bootstrapping plus aggregating.
One of the most widely used bagging technique is Random Forest.

6.5.5 | Random Forest

Random forest is one of the most popular ensemble techniques used in the industry due to its performance
and scalability. A random forest is an ensemble of decision trees (classification and regression tree), where
each decision tree is built from bootstrap samples (sampling with replacement) and randomly selected
subset of features without replacement. The decision trees are normally grown deep (without pruning).

The number of estimators or models to be used in Random Forest can be tuned to increase the
model accuracy. The hyperparameters in a Random Forest model are

1. Number of decision trees.
2. Number of records and features to be sampled.
3. Depth and search criteria (Gini impurity index or entropy).

RandomForestClassifier is available in sklearn.ensemble and takes the following parameters:

1. n_estimators: integer – The number of trees in the forest.
2. criterion: string – The function to measure the quality of a split, Gini or entropy. Default criteria

used is Gini.
3. max_feature: int, float – The number of features to be used for each tree.

 If int, then consider max_features for each tree.
 If float, then max_features is a percentage and int(max_features * n_features) features are

considered for each tree.
 If “auto”, then max_features = sqrt(n_features).
 If “sqrt”, then max_features = sqrt(n_features) (same as “auto”).
 If “log2”, then max_features = log2(n_features).

4. max_depth: integer – The maximum depth of the tree.

6.5.5.1 Building Random Forest Model

Random forest model can be developed using the following commands. In this case, max_depth is 10
and n_estimators is 10.

Importing Random Forest Classifier from the sklearn.ensemble
from sklearn.ensemble import RandomForestClassifier

Initializing the Random Forest Classifier with max_dept and
n_estimators
radm_clf = RandomForestClassifier(max_depth=10, n_estimators=10)
radm_clf.fit(train_X, train_y)

Chapter 06_Advanced Machine Learning.indd 226 4/24/2019 6:55:57 PM

Chapter 6 · Advanced Machine Learning 227

RandomForest Classifier(bootstrap=True, class_weight=None,
criterion=‘gini’,
max_depth=15, max_features=‘auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=l, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=l,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

Now we find the ROC AUC score and draw the ROC curve using utility method draw_roc_curve()
(Figure 6.18).

_, _, _, _ = draw_roc_curve(radm_clf, test_X, test_y);

0.20.0
0.0

0.4 0.6 0.8

ROC curve (area = 0.86)

Receiver operating characteristic example

1.0

0.8

0.6

0.4

0.2

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate or [1 − True Negative Rate]
1.0

FIGURE 6.18 ROC AUC curve of random forest model with 10 decision trees.

AUC for the random forest model is 0.86 (Figure 6.18) and better compared to the KNN model. But we
can still improve the accuracy by using grid search by fine-tuning the hyperparameters.

6.5.5.2 Grid Search for Optimal Parameters

We are not sure whether the hyperparameter used in the previous section for developing the random
forest is optimal. We can use grid computing to find the best values for hyperparameters; one disad-
vantage of grid search is that it can be time-consuming. We will tune only the parameters max_depth,
n_estimators and max_features and use a small set of values for search.

Chapter 06_Advanced Machine Learning.indd 227 4/24/2019 6:55:57 PM

Machine Learning using Python228

The commands for grid computing are provided below:

1. max_depth: 10 or 15
2. n_estimators: 10 or 20
3. max_features: sqrt or 0.2

Configuring parameters and values for searched
tuned_parameters = [{ ‘max_depth’: [10, 15],

‘n_estimators’: [10,20],
‘max_features’: [‘sqrt’, 0.2]}]

Initializing the RF classifier
radm_clf = RandomForestClassifier()

Configuring search with the tunable parameters
clf = GridSearchCV(radm_clf,

tuned_parameters,
cv=5,
scoring=‘roc_auc’)

Fitting the training set
clf.fit(train_X, train_y)

GridSea rchCV(cv=5, error_score=‘raise’,
esti mator=RandomForestClassifier(bootstrap=True, class_

weight=None, criterion=‘gini’,
max_depth=None, max_features=‘auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=l,
oob_score=False, random_state=None, verbose=0,
warm_start=False),

fit_params=None, iid=True, n_jobs=l,
param_grid=[{‘n_estimators’: [10, 20], ‘max_features: [‘sqrt’,
‘auto’], ‘max_depth’: [10, 15]}],
pre_dispatch=‘2*n_jobs, refit=True, return_train_score= ‘warn’,
scorings=‘roc_auc’, verbose=0)

Printing the best score and best parameters.

clf.best_score_

0.9413

AUC score has reached 0.94 with the following optimal values for the hyperparameters. This may change
slightly for the readers because the folds are created randomly by the cross-validation strategy.

Chapter 06_Advanced Machine Learning.indd 228 4/24/2019 6:55:57 PM

Chapter 6 · Advanced Machine Learning 229

clf.best_params_

{‘max_depth’: 15, ‘max_features’: ‘auto’, ‘n_estimators’: 20}

The best accuracy of 0.9413 AUC score is given by a random forest model with 20 decision trees (estima-
tors), a maximum number of features as auto (square root of number of total features) and max depth as 15.

6.5.5.3 Building the Final Model with Optimal Parameter Values

Following commands can be used for developing a new random forest model with optimal param-
eter values.

Initializing the Random Forest Model with the optimal values
radm_clf = RandomForestClassifier(max_depth=15,

n_estimators=20,
max_features = ‘auto’)

Fitting the model with the training set
radm_clf.fit(train_X, train_y)

RandomForest Classifier(bootstrap=True, class_weight=None,
criterion=‘gini’,
max_depth=15, max_features= ‘auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=l,
oob_score=False, random_state=None, verbose=0,
warm_start=False)

6.5.5.4 ROC AUC Score

Following commands can be used for finding ROC AUC score and drawing the ROC curve using our
utility method draw_roc_curve (Figure 6.19).

_, _, _, _ = draw_roc_curve(clf, test_X, test_y)

As show in the figure, the AUC value for this random forest is 0.94.

6.5.5.5 Drawing the Confusion Matrix

Use the following commands to drawing the confusion matrix using the utility method draw_cm()
(Figure 6.20).

pred_y = radm_clf.predict(test_X)
draw_cm(test_y, pred_y)

Chapter 06_Advanced Machine Learning.indd 229 4/24/2019 6:55:57 PM

Machine Learning using Python230

0.20.0
0.0

0.4 0.6 0.8

ROC curve (area = 0.94)

Receiver operating characteristic example

1.0

0.8

0.6

0.4

0.2

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate or [1 − True Negative Rate]
1.0

FIGURE 6.19 ROC AUC curve of random forest model with 10 decision trees.

Predicted label

464.00

1150.00

Tr
ue

 la
be

l

S
ub

sc
rib

ed

Subscribed

N
ot

 S
ub

sc
rib

ed

Not Subscribed

111.00

75.00

1000

800

600

400

200

FIGURE 6.20 Confusion matrix of random forest model.

The model can detect 464 out of 575 subscribed cases and there are only 75 false positives cases. There
could be slight variation in these values since the trees are developed using random sampling with
replacement.

Chapter 06_Advanced Machine Learning.indd 230 4/24/2019 6:55:58 PM

Chapter 6 · Advanced Machine Learning 231

Let us print the classification report as shown in Table 6.3.

print(metrics.classification_report(test_y, pred_y))

 TABLE 6.3 Classification report

Precision recall f1-score support

0 0.91 0.94 0.93 1225

1 0.86 0.81 0.83 575

avg/total 0.90 0.90 0.90 1800

As shown in Table 6.3, the precision and recall for positive cases are 0.86 and 0.81, respectively, which are
far better than what we obtained using logistic regression (Section 6.5.2) and KNN model (Section 6.5.3).

6.5.5.6 Finding Important Features

Random forest algorithm reports feature importance by considering feature usage over all the trees in
the forest. This gives good insight into which features have important information with respect to the
outcome variable. It uses “Gini impurity reduction” or “mean decrease impurity” for calculating the
importance.

Feature importance is calculated for a feature by multiplying error reduction at any node by the
feature with the proportion of samples reaching that node. Then the values are averaged over all the trees
to find final feature importance.

In sklearn, the classifiers return a parameter called featureimportances, which holds the feature
importance values. We can store these values along with the column names in a DataFrame and plot
them in descending order of importance for better visualization and interpretation (Figure 6.21).

import numpy as np

Create a dataframe to store the features and their corresponding
importances
feature_rank = pd.DataFrame({ ‘feature’: train_X.columns,

‘importance’: radm_clf.feature_
importances_ })

Sorting the features based on their importances with most
important feature at top.
feature_rank = feature_rank.sort_values(‘importance’, ascending =
 False)

plt.figure(figsize=(8, 6))
plot the values
sn.barplot(y = ‘feature’, x = ‘importance’, data = feature_rank);

Chapter 06_Advanced Machine Learning.indd 231 4/24/2019 6:55:58 PM

Machine Learning using Python232

balance
age

previous-campaign
current-campaign
housing-loan_yes

education_secondary
marital_married

personal-loan_yes
job_blue-collar
marital_single

education_tertiary
job_management

job_technician
job_retired

education_unknown
job_self-employed

job_services
job_entrepreneur

job_housemaid
default_yes

job_unemployed
job_student

job_unknown

Importance
0.00 0.05 0.10 0.15 0.20 0.25

F
ea

tu
re

FIGURE 6.21 Features sorted by their importance values in the random forest model.

The top 5 features (Figure 6.21) are balance, age, previous-campaign, current-campaign and house-loan_
yes. The importance score is normalized and shows the relative importance of features. The cumulative
sum of features importance can show the amount of variance explained by the top five features.

Pandas’ cumsum() method can be used to compute the cumulative sum, which is shown in Table 6.4.

feature_rank[‘cumsum’] = feature_rank.importance.cumsum() * 100
feature_rank.head(10)

 TABLE 6.4 Feature importance from random forest model

feature importance cumsum

1 balance 0.256938 25.693789

0 age 0.214292 47.122946

3 previous-campaign 0.115596 58.682579

2 current-campaign 0.109440 69.626538

21 housing-loan_yes 0.045655 74.192006

17 education_secondary 0.026044 76.796379

15 marital_married 0.025683 79.364678

Chapter 06_Advanced Machine Learning.indd 232 4/24/2019 6:55:58 PM

Chapter 6 · Advanced Machine Learning 233

 TABLE 6.4 Continued

feature importance cumsum

22 personal-loan_yes 0.024546 81.819316

4 job_blue-collar 0.021823 84.001666

16 marital_single 0.019638 85.965419

The top five features provide 75% of the information in the data with respect to the outcome variable.
This technique can also be used for feature selection. Random forest being a black box model, cannot be
interpreted. But it can be used to select a subset of features using feature importance criteria and build
simpler models for interpretation.

6.5.6 | Boosting

Boosting is another popular ensemble technique which combines multiple weak classifiers into a single
strong classifier. A weak classifier is one which is slightly better than random guessing. That is, the error is
less than 50%. Any classification algorithm can be used for boosting and is called base classifier. Boosting
builds multiple classifiers in a sequential manner as opposed to bagging, which can build classifiers in
parallel. Boosting builds initial classifier by giving equal weights to each sample and then focuses on
correctly classifying misclassified examples in subsequent classifiers. Two most widely used boosting
algorithms are AdaBoost and Gradient Boosting.

6.5.6.1 AdaBoost

AdaBoost assigns weight to each record in a training set, which determines the probability that a spe-
cific record is selected for training a classifier. For first classifier, the weights of all examples will be
equal (random sampling), but after training the first classifier, AdaBoost increases the weight for the
misclassified records so that these records will have a higher probability of selection in the training set in
anticipation that the next classifier will learn to classify them correctly.

After each classifier (usually a decision tree) is trained, the classifier’s weight is computed based
on its accuracy. More accurate classifiers are given more weight. The final prediction is based on the
weighted sum of all classifiers and given by the following formula (Schapire, 1999):

 F X f Xi k k i
k

K

() ()=

=

∑Sign a
1

 (6.15)

where K is the total number of classifiers, fk(xi) is the output of weak classifier k for input feature set Xi,
ak is the weight applied to classifier k and is given by

 a
e
ek

k

k

=
-

1
2

1
ln (6.16)

Here ak is based on the classifier’s error rate ek, which is the number of misclassified records over the
training set divided by the total number of records of the training set. The final output F(Xi) is just a
linear combination of all of the weak classifiers, and final decision depends on the sign of this sum.

Chapter 06_Advanced Machine Learning.indd 233 4/24/2019 6:55:59 PM

Machine Learning using Python234

sklearn.ensemble.AdaBoostClassifier takes the following parameters to build an AdaBoost model:

1. base_estimator: object – The base estimator from which the boosted ensemble is built. The esti-
mator should have the capability to utilize differential weights for samples (for example, decision
tree or logistic regression).

2. n_estimators: integer – The maximum number of estimators at which boosting algorithm is
terminated. In the case of perfect fit, the learning procedure is stopped early. Default is 50.

3. learning_rate: float – Learning rate shrinks the contribution of each classifier specified
by learning_rate. There is a trade-off between learning_rate and n_estimators. Default value for
learning_rate is 1.

The commands for building an AdaBoost model using Logistic Regression as base classifier and using
50 classifiers are as follows:

Importing AdaBoost classifier
from sklearn.ensemble import AdaBoostClassifier

Initializing logistic regression to use as base classifier
logreg_clf = LogisticRegression()

Initializing AdaBoost classifier with 50 classifers
ada_clf = AdaBoostClassifier(logreg_clf, n_estimators=50)

Fitting AdaBoost model to training set
ada_clf.fit(train_X, train_y)

AdaBoostCl assifier(algorithm= ‘SAMME.R’,
base_estimator=LogisticRegression(C=1.0, class_
weight=None, dual=False, fit_intercept=True,
intercept_scaling=l, max_iter=100, multi_class=‘ovr’,
n_jobs=l,
penalty=‘12’, random_state=None, solver=‘liblinear’,
tol=0.0001,
verbose=0, warm_start=False),
learning_rate=l.0, n_estimators=50, random_state=None)

Use the following command to find ROC AUC score. We then draw the ROC curve for the AdaBoost
classifier using our custom method draw_roc_curve() (Figure 6.22).

_, _, _, _ = draw_roc_curve(ada_clf, test_X, test_y)

As shown in Figure 6.22, the AUC for the AdaBoost is 0.71.

6.5.6.2 Gradient Boosting

AdaBoost focusses on the misclassified examples in subsequent classifiers, whereas Gradient Boosting
focusses on residuals from previous classifiers and fits a model to the residuals. Gradient boosting algo-
rithm repetitively leverages the patterns in residuals and strengthens the model with weak predictions
and makes it better. Once it reaches a stage in which residuals do not have any pattern that could be mod-
eled, it stops modeling residuals. It uses gradient descent algorithm in each stage to minimize the error.
Gradient boosting typically uses decision tree as base classifier.

Chapter 06_Advanced Machine Learning.indd 234 4/24/2019 6:55:59 PM

Chapter 6 · Advanced Machine Learning 235

0.20.0
0.0

0.4 0.6 0.8

ROC curve (area = 0.71)

Receiver operating characteristic example

1.0

0.8

0.6

0.4

0.2

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate or [1 − True Negative Rate]
1.0

FIGURE 6.22 ROC AUC curve of AdaBoost model with 50 logistic regressions.

The following steps are used in gradient boosting:

1. Fit the first model to the data Y = F1(x).
2. Fit the next model to the residuals e1 = Y – F1(x) = F2(x).
3. The above steps are repeated until the residuals do not change significantly.
4. The final model is used to make the final predictions.

F X F Xi k k i
k

K

() ()=

=

∑a
1

where ak is the learning rate or accuracy of model k.

sklearn.ensemble.GradientBoostingClassifier classifier takes the following key parameters:

1. n_estimators: int – The number of boosting stages to perform. Default value is 100. Gradient
boosting is fairly robust to overfitting, so usually a large number of estimators result in better
performance.

2. max_depth: integer – Maximum depth of the individual regression estimators. The maximum
depth limits the number of levels from the root node in the tree.

3. max_features: int, float, string – The number of features to consider when looking for the best
split. The applicable values are given in random forest section.

We will build a model with 500 estimators and max_depth value as 100.

Importing Gradient Boosting classifier
from sklearn.ensemble import GradientBoostingClassifier

Initializing Gradient Boosting with 500 estimators and max
depth as 10.

Chapter 06_Advanced Machine Learning.indd 235 4/24/2019 6:55:59 PM

Machine Learning using Python236

gboost_clf = GradientBoostingClassifier(n_estimators=500,
 max_depth=10)

Fitting gradient boosting model to training set
gboost_clf.fit(train_X, train_y)

GradientBoos tingClassifier(criterion=‘friedman_mse’, init=None,
learning_rate=0.1, loss= ‘deviance’, max_depth=10,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=500,
presort=’auto’, random_state=None, subsample=1.0,
verbose=0,warm_start=False)

Now we find ROC AUC score and draw the ROC curve for the gradient boosting classifier using our
utility method draw_roc_curve() (Figure 6.23).

_, _, _, _ = draw_roc_curve(gboost_clf, test_X, test_y)

0.20.0
0.0

0.4 0.6 0.8

ROC curve (area = 0.98)

Receiver operating characteristic example

1.0

0.8

0.6

0.4

0.2

Tr
ue

 P
os

iti
ve

 R
at

e

False Positive Rate or [1 − True Negative Rate]

1.0

FIGURE 6.23 ROC AUC curve of gradient boosting model with 500 estimators.

The ROC curve of gradient boosting is shown in Figure 6.23. The corresponding AUC is 0.98.
The model has a 98% AUC score. It seems to be the best among all models we have built so far. But

is it overfitting? We will run a 10-fold cross-validation to check the model’s accuracy.

Chapter 06_Advanced Machine Learning.indd 236 4/24/2019 6:56:00 PM

Chapter 6 · Advanced Machine Learning 237

from sklearn.model_selection import cross_val_score

gboost_clf = GradientBoostingClassifier(n_estimators=500,
max_depth=10)

cv_scores = cross_val_score(gboost_clf, train_X, train_y,
cv = 10, scoring = ‘r oc_auc’)

print(cv_scores)
print(“Mean Accuracy: ”, np.mean(cv_scores), “ with standard
 deviation of:”, np.std(cv_scores))

[0.96983951 0.96098506 0.9630729 0.95004276 0.98561151 0.97185641
0.97050897 0.97493263 0.97573346 0.96186505]

Mean Accuracy: 0.9684448270398314 with standard deviation of: 0.0
093498165767254

The model accuracy is consistent with a mean accuracy of 96.8% and a standard deviation of only 1%.
This is a robust model. Now use the following commands to plot the confusion matrix and print the
classification report.

gboost_clf.fit(train_X, train_y)
pred_y = gboost_clf.predict(test_X)
draw_cm(test_y, pred_y)

Predicted label

542.00

1157.00

Tr
ue

 la
be

l

S
ub

sc
rib

ed

Subscribed

N
ot

 S
ub

sc
rib

ed

Not Subscribed

33.00

68.00

1000

800

600

400

200

FIGURE 6.24 Confusion matrix of gradient boosting model.

Chapter 06_Advanced Machine Learning.indd 237 4/24/2019 6:56:00 PM

Machine Learning using Python238

As shown in Figure 6.24, the false negatives are only 33 and false positives are 68.
Now, let us print the classification report (shown in Table 6.5).

print(metrics.classification_report(test_y, pred_y))

 TABLE 6.5 Classification report

precision recall f1-score support

0 0.97 0.94 0.96 1225

1 0.89 0.94 0.91 575

avg/total 0.95 0.94 0.94 1800

The model detects 542 out of 575 subscribed cases with recall reaching 94%. The readers can try
GridSearchCV for finding optimal parameters and verify if the model can still be improved.

Like random forest algorithm, the boosting algorithm also provides feature importance based on
how each feature has contributed to the accuracy of the model. Use the following commands to create
a DataFrame to store feature names and feature importance from gradients boosting classifier and then
sorting them by their importance values.

import numpy as np

Create a dataframe to store the features and their corresponding
importances
feature_rank = pd.DataFrame({ ‘feature’: train_X.columns,

‘importance’: gboost_clf.feature_
importances_ })

Sorting the features based on their importances with most
important feature at top.
feature_rank = feature_rank.sort_values(‘importance’, ascending =
 False)

plt.figure(figsize=(8, 6))
plot the values
sn.barplot(y = ‘feature’, x = ‘importance’, data = feature_rank);

Gradient boosting also selected the features balance, age, and current_campaign as top features
(Figure 6.25) which have maximum information about whether a customer will subscribe or not sub-
scribe to the term deposits.

Chapter 06_Advanced Machine Learning.indd 238 4/24/2019 6:56:00 PM

Chapter 6 · Advanced Machine Learning 239

balance
age

current-campaign
housing-loan_yes
job_management

marital_married
marital_single

previous-campaign
job_blue-collar

education_tertiary
job_technician

education_secondary
personal-loan_yes

job_services
job_unemployed
job_housemaid

job_entrepreneur
education_unknown

job_retired
job_self-employed

job_unknown
default_yes
job_student

0.0 0.1 0.2
importance

fe
at

ur
e

0.3 0.4

FIGURE 6.25 Feature sorted by their importance values in the gradient boosting model.

 CONCLUSION

 1. In this chapter, we learnt about how machines learn and the difference between supervised and
unsupervised learning.

 2. A model is built by defining a cost function and using an optimization algorithm to minimize the
cost function.

 3. Implementing a gradient descent algorithms to learn a regression model.
 4. Building a machine learning model using Python’s sklearn library.
 5. Bias and variance trade-off and how to avoid model overfitting using regularization.
 6. Advanced regression models such as LASSO, ridge, and elastic net models.
 7. KNN model and finding optimal k values using grid search mechanism.
 8. Ensemble techniques such as Random Forest and Boosting techniques: AdaBoost and Gradient

Boosting.
 9. Finding features importance using ensemble techniques.

 EXERCISES

Answer Questions 1 to 8 using the SAheart Dataset.

The dataset SAheart.data is taken from the link below:
http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data

The dataset contains records of males in a heart-disease high-risk region of the Western Cape, South
Africa. There are roughly two controls per case of CHD. Many of the CHD positive men have undergone

Chapter 06_Advanced Machine Learning.indd 239 4/24/2019 6:56:01 PM

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.data

Machine Learning using Python240

blood pressure reduction treatment and other programs to reduce their risk factors after their CHD
event. In some cases the measurements were made after these treatments. These data are taken from a
larger dataset, described in Rousseauw et al. (1983), South African Medical Journal. It is a tab separated
file (csv) and contains the following columns

 sbp – Systolic blood pressure
 tobacco – Cumulative tobacco (kg)
 ldl – Low density lipoprotein cholesterol
 adiposity
 famhist – Family history of heart disease (Present, Absent)
 typea – type-A behavior
 obesity
 alcohol – Current alcohol consumption
 age – Age at onset
 chd – Response, coronary heart disease

The chd = 1 and chd = 0 will be referred as chd and no chd cases, respectively.

 1. Find out the number cases available in the dataset for chd and no chd. Is it an imbalanced data-
set for classification modelling? Plot the findings using a bar plot, where x is chd or no chd and
y gives the count of samples in each group.

 2. To create a balanced dataset, do upsampling of chd cases to be same as number of no chd cases. For
upsampling, use resampling with replacement technique.

 3. Maintain two datasets – imbalanced dataset (original one) and balanced dataset – using the upsam-
pling approach. Split each of the datasets into 80:20 splits for creating training and test sets.

 4. Build a logistic regression model using both the imbalanced and balanced datasets and com-
pare results. Use K-fold cross-validation (k = 5) and ROC AUC score for comparing the model
performance.

 5. Build a Random Forest model using balanced dataset. Use grid search mechanism to find the most
optimal values of the following parameters:

 n_estimators = [50, 100, 200, 500]
 max_depth = [3, 5, 7, 9]
 max_features = [0.1, 0.2, 0.3, 0.5]

Find the best model based on ROC_AUC score.

 6. Find features importance from the model built in Question 6 and report the top features which
explain 95% of information or variance in the dataset.

 7. Build a decision tree model using the features selected above and the following parameters:

 max_depth = 4
 Criterion = “entropy”

Interpret the rules generated by the decision tree. Explain how these rules can be used in the real
world.

Chapter 06_Advanced Machine Learning.indd 240 4/24/2019 6:56:01 PM

Chapter 6 · Advanced Machine Learning 241

Answer Questions 8 to 15 using the Earnings Manipulation Dataset.

MCA Technology Solutions Private Limited was established in 2015 in Bangalore with an objective to
integrate analytics and technology with business. MCA Technology Solutions helped its clients in areas
such as customer intelligence, forecasting, optimization, risk assessment, web analytics, and text mining,
and cloud solutions. Risk assessment vertical at MCA technology solutions focuses on problems such
as fraud detection and credit scoring. Sachin Kumar, Director at MCA Technology Solutions, Bangalore
was approached by one of his clients, a commercial bank, to assist them in detecting earning manipula-
tors among the bank’s customers. The bank provided business loans to small and medium enterprises
and the value of loan ranged from INR 10 million to 500 million ($1 = INR 66.82, August 16, 2016). The
bank suspected that their customers may be involved in earnings’ manipulations to increase their chance
of securing a loan.

Saurabh Rishi, the Chief Data Scientist at MCA Technologies, was assigned the task of develop-
ing a use case for predicting earning manipulations. He was aware of models such as Beneish model
that was used for predicting earning manipulations; however, he was not sure of its performance,
especially in the Indian context. Saurabh decided to develop his own model for predicting earn-
ing manipulations using data downloaded from the Prowess database maintained by the Centre of
Monitoring Indian Economy (CMIE). Daniel received information related to earning manipulators
from Securities Exchange Board of India (SEBI) and the Lexis Nexis database. Data on 220 compa-
nies was collected to develop the model.

The data is available in the file “Earnings Manipulation 220.csv”.

Description of the columns is given in Table 6.6. In this table
 netPPE is net Property, Plant, and Equipment. Property Plant and Equipment is the value of

all buildings, land, furniture, and other physical capital that a business has purchased to run a
business.

 Subscript (t) means value in the current year financial statement and subscript (t – 1) means the
value in the previous year financial statement.

 TABLE 6.6 Columns and their descriptions in the dataset

Column Description

Company Name It is a serial number.

Year Ending The year to which the financial statement belongs to.

Days Sales to Receivables Index (DSRI)

DSRI =

Receivable

Sales
Receivable

Sales

(t)

(t)

(t-1)

(t-1)

Gross Margin Index (GMI)

GMI =

Sales Cost of Goods old

Sales
Sales Cost

(t 1) (t 1)

(t 1)

(t)

- -

-

-

-

S

oof Goods old

Sales
(t)

(t)

S

(Continued)

Chapter 06_Advanced Machine Learning.indd 241 4/24/2019 6:56:01 PM

Machine Learning using Python242

 TABLE 6.6 Continued

Column Description

Asset Quality Index (AQI)

AQI =

1 (Current Assest netPPE)

Total Assests
1 (Curren

+(t) (t)

(t)

-

- tt Assest netPPE)

Total Assests

+(t 1) (t 1)

(t 1)

- -

-

Sales Growth Index (SGI)
SGI =

Sales

Sales
(t)

(t 1)-

Depreciation Index (DEPI)

DEPI =

Depreciation Expense

(Depreciation Expense net+
(t 1)

(t 1)

-

- PPPE)
Depreciation Expense

(Depreciation Expense ne+

(t 1)

(t)

(t)

-

ttPPE)(t)

Sales and General Administrative (SGAI)

SGAI =

SGAIExpense

Sales
SGAIExpense

Sales

(t)

(t)

(t 1)

(t 1)

-

-

Accruals to Asset Ratio (ACCR)
ACCR

Profit after Tax Cash from Operations

Total Assests
=

-(t) (t)

(t))

Leverage Index (LEVI)

LEVI =

(LTD + Current Liabilities)

Total Assests
(LTD

t (t)

(t)

(t 1

()

-)) (t 1)

(t 1)

+ Current Liabilities)

Total Assests
-

-

MANIPULATOR 1 – Company has manipulated the financial statement (Manipulator)
0 – Company has not manipulated the financial statement (Non-Manipulator)

 8. How many cases of manipulators versus non-manipulators are there in the dataset? Draw a bar plot
to depict.

 9. Create a 80:20 partition, and find how many positives are present in the test data.
10. The number of cases of manipulators are very less compared to non-manipulators. Use upsampling

technique to create a balance dataset.
11. Build the following models using balanced dataset and compare the accuracies. Use ROC AUC score

for accuracy.

 Random Forest
 AdaBoost with Logistic Regression as base estimator
 Gradient Boosting

Chapter 06_Advanced Machine Learning.indd 242 4/24/2019 6:56:02 PM

Chapter 6 · Advanced Machine Learning 243

12. The number of cases of manipulators are very less compared to non-manipulators. Use downsam-
pling technique to create a balance dataset.

13. Compare the results of using both upsampling and downsampling techniques. Report the best
model of all the models.

14. Report the features importance of the best model and explain how many features explain 95% of all
the variance in the data.

15. Use Youden’s index to find most optimal cutoff probability value for the best model chosen in 13.
Report the precision and recall for manipulator and non-manipulator cases.

 REFERENCES

 1. James G, Witten D, Hastie T, and Tibshirani R (2013). Introduction to Statistical Learning, Springer,
New York. (http://www-bcf.usc.edu/~gareth/ISL/)

 2. Tibshirani R (1996). “Regression Shrinkage and Selection via the LASSO”, Journal of the Royal
Statistical Society, Series B (methodological).

 3. Hoerl A E and Kennard Kennard (1970). “Ridge Regression: Biased Estimation for Nonorthogonal
Problems”. Technometrics, Vol. 12, pp. 55–67.

 4. University of California, Irvine machine learning repository available at: https://archive.ics.uci.edu/
ml/datasets/Bank+Marketing

 5. Distance Metrics: http://scikit- learn.org/stable/modules/generated/sklearn.neighbors.Distance
Metric.html

 6. Schapire R E (1999). “A Brief Introduction to Boosting”, Proceedings of the Sixth International
Conference on Artificial Intelligence, Stockholm, Sweden. Available at http://rob.schapire.net/papers/
Schapire99c.pdf.

 7. U Dinesh Kumar (2017). Business Analytics: The Science of Data-Driven Decision Making, Wiley
India Pvt. Ltd.

 8. Rousseauw J, du Plessis J, Benade A, Jordaan P, Kotze J, and Ferreira J (1983). Coronary Risk Factor
Screening in Three Rural Communities, South African Medical Journal, Vol. 64, pp. 430–436.

Chapter 06_Advanced Machine Learning.indd 243 4/24/2019 6:56:02 PM

http://rob.schapire.net/papers/Schapire99c.pdf
http://rob.schapire.net/papers/Schapire99c.pdf

Chapter 06_Advanced Machine Learning.indd 244 4/24/2019 6:56:02 PM

7.1 | OVERVIEW

Clustering is one of the most frequently used analytics applications. It helps data scientists to create a
homogeneous group of customers/entities for better management of customers/entities. In many analyt-
ics projects, once the data preparation is complete, clustering is usually carried out before applying other
analytical models. Clustering is a divide-and-conquer strategy which divides the dataset into homog-
enous groups which can be further used to prescribe the right strategy for different groups. In clustering,
the objective is to ensure that the variation within a cluster is minimized while the variation between
clusters is maximized.

Clustering algorithms are unsupervised learning algorithms (classes are not known a priori)
whereas classification problems are supervised learning algorithms (where classes are known a priori
in the training data). Another important difference between clustering and classification is that
clustering is descriptive analytics whereas classification is usually a predictive analytics algorithm. The
main objective of clustering is to create heterogeneous subsets (clusters) from the original dataset such
that records within a cluster are homogeneous and identify the characteristics that differentiate the
subsets. For example, if a company wants to increase its brand awareness to appeal to all its existing or
possible future customers, it must design a campaign. The company can design a single campaign to
address all its customers. But what if its customers have different characteristics such as varied income,
age, preferences, profession, gender? The same campaign may not appeal to all of them. The company
can think of running multiple campaigns targeting different customer segments. But to know how
many such campaigns need to be designed, we need an understanding of how many customer segments

LEARNING OBJECTIVES

After completing this chapter, you will be able to
•   Understand the role of clusters and their importance in analytics. 
•   Learn different types of clustering techniques.
•   Understand the use of distance measures such as Euclidean distance in clustering. 
•   Understand how to find an optimal number of clusters in the data.
•   Learn to build clusters using sklearn library in Python.

CHAPTER

7Clustering

Chapter 07_Clustering.indd 245 4/24/2019 6:56:26 PM

Machine Learning using Python246

exist and which customers fall under which segment. Clustering as a technique can be used to answer
these questions.

7.2 | HOW DOES CLUSTERING WORK?

Clustering algorithms use different distance or similarity or dissimilarity measures to derive different
clusters. The type of distance/similarity measure used plays a crucial role in the final cluster formation.
Larger distance would imply that observations are far away from one another, whereas higher similarity 
would indicate that the observations are similar.

To understand the existence of different clusters in a dataset, we will use a small dataset of customers
containing their age and income information (File Name: Income Data.csv). We can analyze and under-
stand the customer segments that might exist and identify the key attributes of each segment.

First, we will plot these attributes using a scatter plot and visualize how the segments look like. This
is possible because we are dealing with only two features: age and income. It may not be possible to visu-
alize the clusters if we are dealing with many features. We will explore other techniques later in Section
7.4 to find the number of segments in high-dimensional datasets.

import pandas as pd
customers_df = pd.read_csv(“Income Data.CSV”)

Use the following code to print the first few records from the dataset.

customers_df.head(5)

Income Age

0 41100.0 48.75

1 54100.0 28.10

2 47800.0 46.75

3 19100.0 40.25

4 18200.0 35.80

To visualize the relationship between age and income of customers, we will draw a scatter plot
(Figure 7.1).

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline

sn.lmplot(“age”, “income”, data=customers_df, fit_reg = False,
 size = 4);

Chapter 07_Clustering.indd 246 4/24/2019 6:56:27 PM

Chapter 7 · Clustering 247

60000

50000

40000

30000

In
co

m
e

20000

10000

30 35 40 45 50
Age

FIGURE 7.1 Income–age scatter plot of customers.

From Figure 7.1, it can be observed that there are three customer segments, which can be described as
below:

1. One on the top-left side of the graph, depicting low-age–high-income group.
2. One on the top-right side of the graph, depicting high-age–medium-income group.
3. One on the bottom of the graph, depicting a low-income group, which has an age spread from

low to high.

7.2.1 | Finding Similarities Using Distances

Clustering techniques assume that there are subsets in the data that are similar or homogeneous. One
approach for measuring similarity is through distances measured using different metrics. Few distance
measures used in clustering are discussed in the following sections.

7.2.1.1 Euclidean Distance

Euclidean distance is the radial distance between two observations or records. If there are many attri-
butes (features), then the distance across all attributes is calculated to find out the distance. Euclidean 
distance between two observations X1 and X2 with n features can be calculated as

D X X X Xi i(,) ()1 2 1 2
2= ∑ −

where Xi1 is the value of the ith feature for first observation and Xi2 is the value of ith feature for second
observation. For example, the distance between two customers, customer1 and customer2, is calculated
as follows:

() ()age age income income1 2
2

1 2
2− + −

Chapter 07_Clustering.indd 247 4/24/2019 6:56:28 PM

Machine Learning using Python248

7.2.1.2 Other Distance Metrics

Some of the other widely used distances are as follows:

1. Minkowski Distance: It is the generalized distance measure between two observations.
2. Jaccard Similarity Coefficient: It is a measure used when the data is qualitative, especially when

attributes can be represented in binary form.
3. Cosine Similarity: In this, X1 and X2 are two n-dimensional vectors. It measures the angle

between two vectors (thus called as vector space model).
4. Gower’s Similarity Coefficient: The distance and similarity measures that we have discussed so

far are valid either for quantitative data or qualitative data. Gower’s similarity coefficient can be
used when both quantitative and qualitative features are present.

7.3 | K-MEANS CLUSTERING

K-means clustering is one of the frequently used clustering algorithms. It is a non-hierarchical cluster-
ing method in which the number of clusters (K) is decided a priori. The observations in the sample are
assigned to one of the clusters (say C1, C2, …, CK) based on the distance between the observation and the
centroid of the clusters.

The following steps are used in K-means clustering algorithm:

1. Decide the value of K (which can be fine-tuned later).
2. Choose K observations from the data that are likely to be in different clusters. There are many

ways of choosing these initial K values; the easiest approach is to choose observations that are
farthest (in one of the parameters of the data).

3. The K observations selected in step 2 are the centroids of those clusters.
4. For remaining observations, find the cluster closest to the centroid. Add the new observation (say

observation j) to the cluster with the closest centroid. Adjust the centroid after adding a new obser-
vation to the cluster. The closest centroid is chosen based upon an appropriate distance measure.

5. Repeat step 4 until all observations are assigned to a cluster.

For the data described in Section 7.2 (Income Data.csv), we can create three clusters, as we know there
are three segments from Figure 7.1.

sklearn library has KMeans algorithm. Initialize KMeans with the number of clusters (k) as an argument
and call fit() method with the DataFrame, which contains entities and their features that need to be clustered.

from sklearn.cluster import KMeans
clusters = KMeans(3)
clusters.fit(customers_df)

KMeans (algorithm=‘auto’, copy_x=True, init=‘k-means++’, max_iter=300,
n_clusters=3, n_init=10, n_jobs=l, precompute_distances=‘auto’,
random_state=None, tol=0.0001, verbose=0)

The output variable clusters.labels_ contains labels that identify the cluster to which an observation
belongs. We can concatenate it with the customers’ data and verify.

customers_df[“clusterid”] = clusters.labels_

Chapter 07_Clustering.indd 248 4/24/2019 6:56:28 PM

Chapter 7 · Clustering 249

Let us print first five customers with their cluster centers.

customers_df[0:5]

Income Age Clusterid

0 41100.0 48.75 1
1 54100.0 28.10 2
2 47800.0 46.75 1
3 19100.0 40.25 0
4 18200.0 35.80 0

The three segments are numbered as 0, 1, and 2. The first customer belongs to cluster 1 whereas the
second customer belongs to cluster 2 and so on.

7.3.1 | Plotting Customers with Their Segments

We will plot and depict each customer segment with different markings (see Figure 7.2). Plotting the
age and income of customers from different segments with different markers. The markers [+, ^, .] will
depict the clusters differently.

markers = [‘+’,‘^’,‘.’]
sn.lmplot(“ age”, “income”,

data = customers_df,
hue = “clusterid”,
fit_reg = False,
markers = markers,
size = 4);

60000

50000

40000

30000

20000

In
co

m
e

10000

30 35 40 45 50
Age

Clusterid
0
1
2

FIGURE 7.2 Three customer segments created by clustering.

Chapter 07_Clustering.indd 249 4/24/2019 6:56:28 PM

Machine Learning using Python250

The above clusters are mostly segmented based on income. This is because the salary is on a larger scale
compared to the age. The scale of age is 0 to 60, while salary ranges from 0 to 50000. For example, differ-
ence in age between two customers, with age 20 and 70, is significant, but numerical difference is only
50. Similarly, difference in income between two customers, with income of 10000 and 11000, is not sig-
nificant; the numerical difference is 1000. So, the distance will always be determined by the difference in
salary and not in age. Hence before creating clusters, all features need to be normalized and brought to
normalized scale. StandardScaler in skleardn.preprocessing normalizes all values by subtracting all values
from its mean and dividing by standard deviation. Hence

X
X X

normalized
i

X

=
−
s

where X is the mean of X and sX is the corresponding standard deviation of X feature.

7.3.2 | Normalizing Features

StandardScaler is available under sklearn.preprocessing module. Import and initialize the StandardScaler
and pass DataFrame to fit() method to transform the column values.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaled_customers_df = scaler.fit_transform(customers_df[[“age”,

“income”]])
scaled_customers_df[0:5]

array([[1.3701637, 0.09718548],
[-1.3791283, 0.90602749],
[1.10388844, 0.51405021],
[0.23849387, -1.27162408],
[-0.35396857, -1.32762083]])

We can create the clusters again using normalized feature set.

from sklearn.cluster import KMeans
clusters_new = KMeans(3, random_state=42)
clusters_new.fit(scaled_customers_df)
customers_df[“clusterid_new”] = clusters_new.labels_

The new segments created can be plotted using the scatter plot and marking each segment differently
(Figure 7.3).

markers = [‘+’,‘^’,‘.’]

sn.lmplot(“ age”, “income”,
 data = customers_df,
 hue = “clusterid_new”,
 fit_reg = False,
 markers = markers,
 size = 4);

Chapter 07_Clustering.indd 250 4/24/2019 6:56:29 PM

Chapter 7 · Clustering 251

60000

50000

40000

30000

20000

10000

0

Clusterid_new

Age

In
co

m
e

0
1
2

30 35 40 45 50

FIGURE 7.3 Three customer segments created by clustering after normalizing features.

Now the clusters seem to have been created properly. The cluster centers are given by clusters.cluster_centers_.

clusters.cluster_centers_

array([[0.5361335, 0.96264295, 0.51632566, -0.61618888],
 [-0.92065895, -0.6352664, -0.86290041, -0.33288365],
 [0.7690509, -0.6547531, 0.69314951, 1.89814505]])

But these are standardized values. Hence, we can calculate the cluster centers from the original DataFrame
using the information “which customers have been allocated to which segment”.

7.3.3 | Cluster Centers and Interpreting the Clusters

Each cluster is defined by its cluster center. The cluster center explains the characteristic of the cluster 
and helps us to interpret the cluster. For example, in this example of customer segmentation, the cluster
center provides the average age and average income of each cluster. Of course, the customer’s age and
income will vary from the cluster centers and is called the cluster variance.

customers_df.groupby(‘clusterid’)[‘age’,
 ‘income’].agg([“mean”,
 ‘std’]).reset_index()

Clusterid
Age Income

Mean Std Mean Std

0 31.700435 6.122122 54675.652174 2362.224320

1 39.174479 3.626068 18144.791667 6745.241906

2 46.419101 2.289620 43053.932584 3613.769632

Chapter 07_Clustering.indd 251 4/24/2019 6:56:29 PM

Machine Learning using Python252

The clusters can be interpreted as follows:

1. cluster0: Customers with mean age of 31 and income of 54k. Low age and high income.
2. cluster1: Customers with mean age of 39 and income of 18K. Mid age and low income.
3. cluster2: Customers with mean age of 46 and income of 43k. High age and medium income.

7.4 | CREATING PRODUCT SEGMENTS USING CLUSTERING

One more example of clustering is product segmentation. We will discuss a case in this section, where
a company would like to enter the market with a new beer brand. Before, it decides the kind of beer it
will launch, it must understand what kinds of products already exist in the market and what kinds of
segments the products address. To understand the segments, the company collects specification of few
samples of beer brands. In this section, we will use the dataset beer.csv (Feinberg et al., 2012) of beer
brands and their corresponding features such as calories, sodium, alcohol, and cost.

Disclaimer: The data here is indicative only and may not represent the actual specification of the products.

7.4.1 | Beer Dataset

The Beer dataset contains about 20 records. First, we will load and print the records.

beer_df = pd.read_csv(‘beer.csv’)
beer_df

Name Calories Sodium Alcohol Cost

0 Budweiser 144 15 4.7 0.43

1 Schlitz 151 19 4.9 0.43

2 Lowenbrau 157 15 0.9 0.48

3 Kronenbourg 170 7 5.2 0.73

4 Heineken 152 11 5.0 0.77

5 Old_Milwaukee 145 23 4.6 0.28

6 Augsberger 175 24 5.5 0.40

7 Srohs_Bohemian_Style 149 27 4.7 0.42

8 Miller_Lite 99 10 4.3 0.43

9 Budweiser_Light 113 8 3.7 0.40

10 Coors 140 18 4.6 0.44

11 Coors_Light 102 15 4.1 0.46

12 Michelob_Light 135 11 4.2 0.50

13 Becks 150 19 4.7 0.76

(Continued)

Chapter 07_Clustering.indd 252 4/24/2019 6:56:29 PM

Chapter 7 · Clustering 253

Name Calories Sodium Alcohol Cost

14 Kirin 149 6 5.0 0.79

15 Pabst_Extra_Light 68 15 2.3 0.38

16 Hamms 139 19 4.4 0.43

17 Heilemans_Old_Style 144 24 4.9 0.43

18 Olympia_Goled_Light 72 6 2.9 0.46

19 Schlitz_Light 97 7 4.2 0.47

Each observation belongs to a beer brand and it contains information about the calories, alcohol and 
sodium content, and the cost.

Before clustering the brands in segments, the features need to be normalized as these are on different
scales. So, the first step in creating clusters is to normalize the features in beer dataset.

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaled_beer_df = scaler.fit_transform(beer_df[[‘calories’,

 ‘sodium’,
 ‘alcohol’,
 ‘cost’]])

7.4.2 | How Many Clusters Exist?

As there are four features, it is not possible to plot and visualize them to understand how many clusters
may exist. For high-dimensional data, the following techniques can be used for discovering the possible
number of clusters:

1. Dendrogram
2.  Elbow method

7.4.2.1 Using Dendrogram

A dendrogram is a cluster tree diagram which groups those entities together that are nearer to each
other. A dendrogram can be drawn using the clustermap() method in seaborn.

cmap = sn.cubehelix_palette(as_cmap=True, rot=-.3, light=1)
sn.clustermap(scaled_beer_df, cmap=cmap, linewidths=.2,

figsize = (8,8));

As shown in Figure 7.4, dendrogram reorders the observations based on how close they are to each other
using distances (Euclidean). The tree on the left of the dendrogram depicts the relative distance between 
nodes. For example, the distance between beer brand 10 and 16 is least. They seem to be very similar to
each other.

Chapter 07_Clustering.indd 253 4/24/2019 6:56:29 PM

Machine Learning using Python254

3.0
1.5

1 0 2

2
13

3
4

14
12

0
1

10
16

6
5

7
17

11
9

8
19

15
18

3

0.0
−1.5
−3.0

FIGURE 7.4 Dendrogram of beer dataset.

beer_df.ix[[10,16]]

Name Calories Sodium Alcohol Cost

10 Coors 140 18 4.6 0.44

16 Hamms 139 19 4.4 0.43

It can be observed that both the beer brands Coors and Hamms are very similar across all features.
Similarly, brands 2 and 18 seem to be most different as the distance is highest. They are represented on
two extremes of the dendrogram.

beer_df.ix[[2,18]]

Name Calories Sodium Alcohol Cost

2 Lowenbrau 157 15 0.9 0.48

18 Olympia_Goled_Light 72 6 2.9 0.46

Chapter 07_Clustering.indd 254 4/24/2019 6:56:30 PM

Chapter 7 · Clustering 255

Brand Lowenbrau seems to have very low alcohol content. This can be an outlier or maybe a data error.
Thus, it can be dropped from the dataset.

The tree structure on the left of the dendrogram indicates that there may be four or five clusters in
the dataset. This is only a guideline or indication about the number of clusters, but the actual number of
clusters can be determined only after creating the clusters and interpreting them. Creating more number
of clusters may give rise to the complexity of defining and managing them. It is always advisable to have
a less and reasonable number of clusters that make business sense. We will create four clusters and verify
if the clusters explain the product segments clearly and well.

7.4.2.2 Finding Optimal Number of Clusters Using Elbow Curve Method

If we assume all the products belong to only one segment, then the variance of the cluster will be highest.
As we increase the number of clusters, the total variance of all clusters will start reducing. But the total
variance will be zero if we assume each product is a cluster by itself. So, Elbow curve method consid-
ers the percentage of variance explained as a function of the number of clusters. The optimal number
of clusters is chosen in such a way that adding another cluster does not change the variance explained
significantly.

For a set of records (X1, X2, …, Xn), where each observation is a d-dimensional real vector, K-means
clustering algorithm segments the observations into k (≤ n) sets S = {S1, S2, …, Sk} to minimize the
within-cluster sum of squares (WCSS). WCSS is the sum of distances of each point in the cluster to the
center of cluster across k clusters. It is given by the following equation:

WCSS = arg min
k

i i
X SS

k

X
i ii

−∑∑
=

m 2

1 ∈

where mi is the centroid of cluster Si. If the percentage of variance explained by the clusters is plotted against
the number of clusters, the initial increase in the number of clusters will add much information (and explain
a lot of variances), but at some point, the marginal gain in explained variance will drop, giving an angle to
the graph (similar to elbow). The number of clusters indicated at this angle can be chosen to be the most
appropriate number of clusters; choosing the number of clusters in this approach is called “elbow criterion”.

Let us create several cluster combinations ranging from one to ten and observe the WCSS in each 
cluster and how marginal gain in explained variance starts to diminish gradually.

The interia_ parameter in KMeans cluster algorithms provides the total variance for a particular
number of clusters.

The following code iterates and creates clusters ranging from 1 to 10 and captures the total variance
in the variable cluster_errors.

cluster_range = range(1, 10)
cluster_errors = []

for num_clusters in cluster_range:
clusters = KMeans(num_clusters)
clusters.fit(scaled_beer_df)
cluster_errors.append(clusters.inertia_)

plt.figure(figsize=(6,4))
plt.plot(cluster_range, cluster_errors, marker = “o”);

Chapter 07_Clustering.indd 255 4/24/2019 6:56:30 PM

Machine Learning using Python256

Then the cluster_errors is plotted against the number of clusters (Figure 7.5).

80

70

60

50

40

30

20

10

1 2 3 4 5 6 7 8 9

S
um

 o
f S

qu
ar

es
 o

f E
rr

or

Number of Clusters

FIGURE 7.5 Elbow diagram.

The plot in Figure 7.5 indicates that the elbow point is at 3, which in turn indicates there might be three clusters
existing in the dataset. As mentioned earlier, these techniques provide only a guideline of how many clusters
may exist. Here we will discuss three clusters, but the readers can create four clusters and try to interpret them.

7.4.2.3 Normalizing the Features

Before creating the clusters, standardize the features using StandardScaler.

scaler = StandardScaler()

scaled_beer_df = scaler.fit_transform (beer_df[[‘calories’,
 ‘sodium’,
 ‘alcohol’,
 ‘cost’]])

7.4.3 | Creating Clusters

We will set k to 3 for running KMeans algorithm and create a new column clusterid in beer_df to capture
the cluster number it is assigned to.

k = 3

clusters = KMeans(k, random_state = 42)
clusters.fit(scaled_beer_df)
beer_df[“clusterid”] = clusters.labels_

7.4.4 | Interpreting the Clusters

The three clusters are created and numbered as cluster 0, 1, and 2. We will print each cluster independently
and interpret the characteristic of each cluster. We can print each cluster group by filtering the records by
clusterids.

Chapter 07_Clustering.indd 256 4/24/2019 6:56:30 PM

Chapter 7 · Clustering 257

Cluster 0:

beer_df[beer_df.clusterid == 0]

Name Calories Sodium Alcohol Cost Clusterid

0 Budweiser 144 15 4.7 0.43 0

1 Schlitz 151 19 4.9 0.43 0

5 Old_Milwaukee 145 23 4.6 0.28 0

6 Augsberger 175 24 5.5 0.40 0

7 Srohs_Bohemian_Style 149 27 4.7 0.42 0

10 Coors 140 18 4.6 0.44 0

16 Hamms 139 19 4.4 0.43 0

17 Heilemans_Old_Style 144 24 4.9 0.43 0

In cluster 0, beers with medium alcohol content and medium cost are grouped together. This is the larg-
est segment and may be targeting the largest segment of customers.

Cluster 1:

beer_df[beer_df.clusterid == 1]

Name Calories Sodium Alcohol Cost Clusterid

2 Lowenbrau 157 15 0.9 0.48 1

8 Miller_Lite 99 10 4.3 0.43 1

9 Budweiser_Light 113 8 3.7 0.40 1

11 Coors_Light 102 15 4.1 0.46 1

12 Michelob_Light 135 11 4.2 0.50 1

15 Pabst_Extra_Light 68 15 2.3 0.38 1

18 Olympia_Goled_Light 72 6 2.9 0.46 1

19 Schlitz_Light 97 7 4.2 0.47 1

In cluster 1, all the light beers with low calories and sodium content are clustered into one group. This
must be addressing the customer segment who wants to drink but are also calorie conscious.

Cluster 2:

beer_df[beer_df.clusterid == 2]

Chapter 07_Clustering.indd 257 4/24/2019 6:56:30 PM

Machine Learning using Python258

Name Calories Sodium Alcohol Cost Clusterid

3 Kronenbaurg 170 7 5.2 0.73 2

4 Heineken 152 11 5.0 0.77 2

13 Becks 150 19 4.7 0.76 2

14 Kirin 149 6 5.0 0.79 2

These are expensive beers with relatively high alcohol content. Also, the sodium content is low. The costs
are high because the target customers could be brand sensitive and the brands are promoted as premium
brands.

7.5 | HIERARCHICAL CLUSTERING

Hierarchical clustering is a clustering algorithm which uses the following steps to develop clusters:

1. Start with each data point in a single cluster.
2. Find the data points with the shortest distance (using an appropriate distance measure) and

merge them to form a cluster.
3. Repeat step 2 until all data points are merged together to form a single cluster.

The above procedure is called an agglomerative hierarchical cluster. AgglomerativeClustering in sklearn.
cluster provides an algorithm for hierarchical clustering and also takes the number of clusters to be cre-
ated as an argument.

The agglomerative hierarchical clustering can be represented and understood by using dendrogram,
which we had created earlier.

from sklearn.cluster import AgglomerativeClustering

We will create clusters using AgglomerativeClustering and store the new cluster labels in h_clusterid
variable.

h_clusters = AgglomerativeClustering(3)
h_clusters.fit(scaled_beer_df)
beer_df[“h_clusterid”] = h_clusters.labels_

7.5.1 | Compare the Clusters Created by K-Means and Hierarchical Clustering

We will print each cluster independently and interpret the characteristic of each cluster.

beer_df[beer_df.h_clusterid == 0]

Chapter 07_Clustering.indd 258 4/24/2019 6:56:31 PM

Chapter 7 · Clustering 259

Name Calories Sodium Alcohol Cost Clusterid h_clusterid

2 Lowenbrau 157 15 0.9 0.48 1 0
8 Miller_Lite 99 10 4.3 0.43 1 0
9 Budweiser_Light 113 8 3.7 0.40 1 0

11 Coors_Light 102 15 4.1 0.46 1 0
12 Michelob_Light 135 11 4.2 0.50 1 0
15 Pabst_Extra_Light 68 15 2.3 0.38 1 0
18 Olympia_Goled_Light 72 6 2.9 0.46 1 0
19 Schlitz_Light 97 7 4.2 0.47 1 0

beer_df[beer_df.h_clusterid == 1]

Name Calories Sodium Alcohol Cost Clusterid h_clusterid

0 Budweiser 144 15 4.7 0.43 0 1
1 Schlitz 151 19 4.9 0.43 0 1
5 Old_Milwaukee 145 23 4.6 0.28 0 1
6 Augsberger 175 24 5.5 0.40 0 1
7 Srohs_Bohemian_Style 149 27 4.7 0.42 0 1

10 Coors 140 18 4.6 0.44 0 1
16 Hamms 139 19 4.4 0.43 0 1
17 Heilemans_Old_Style 144 24 4.9 0.43 0 1

beer_df[beer_df.h_clusterid == 2]

Name Calories Sodium Alcohol Cost Clusterid h_clusterid

3 Kronenbourg 170 7 5.2 0.73 2 2
4 Heineken 152 11 5.0 0.77 2 2

13 Becks 150 19 4.7 0.76 2 2
14 Kirin 149 6 5.0 0.79 2 2

Both the clustering algorithms have created similar clusters. Only cluster ids have changed.

 CONCLUSION

 1. Clustering is an unsupervised learning algorithm that divides the dataset into mutually exclusive
and exhaustive subsets (in non-overlapping clusters) that are homogeneous within the group and
 heterogeneous between the groups.

Chapter 07_Clustering.indd 259 4/24/2019 6:56:31 PM

Machine Learning using Python260

 2.  Several distance and similarity measures such as Euclidian distance, Cosine similarity are used in 
clustering algorithms. Similarity coefficients such as Jaccard coefficient are used for qualitative data,
whereas Gower’s similarity is used for mixed data i.e. numerical and categorical data.

 3. K-means clustering and hierarchical clustering are two popular techniques used for clustering.
 4.  One of the decisions to be taken during clustering is to decide on the number of clusters. Usually, 

this is carried out using elbow curve. The cluster number at which the elbow (bend) occurs in the
elbow curve is the optimal number of clusters.

 EXERCISES

Answer Questions 1 to 5 using the customerspends.csv Dataset

An online grocery store has captured amount spent per annum (in Indian rupees) by 20 customers on
apparel and beauty and healthcare products and given in the file customerspends.csv. It contains the fol-
lowing records.

� Customer − Customer ID
� Apparel − Amount spent in apparel products
� Beauty and Healthcare − Amount spent in beauty and healthcare products

 1. Create a scatter plot to depict the customer spends on apparel and beauty and healthcare products.
Identify number of clusters existing in the dataset.

 2. Normalize the features using StandardScaler and plot them in the scatter plot again.
 3.  Use dendrogram and elbow method to verify if the number of clusters suggested is same as clusters 

visible in the scatter plot in Question 1.
 4. Create the number of clusters as suggested by the elbow method using K-means algorithm.
 5.  Print the records of customers in each cluster and the cluster center of each cluster separately. Explain 

the clusters intuitively.

Answer Questions 6 to 10 using the Online Retail.xlsx Dataset

The dataset Online Retail.xlsx and the description of the data is taken from https://archive.ics.uci.edu/ml/
datasets/online+retail.

Online Retail.xlsx contains records of transactions occurring between 01/12/2010 and 09/12/2011
for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion 
gifts. Many customers of the company are wholesalers.

The attributes in the dataset are:

 � InvoiceN − Invoice number. Nominal, a 6-digit integral number uniquely assigned to each trans-
action. If this code starts with letter “c”, it indicates a cancellation.

 � StockCode − Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each
distinct product.

 � Description − Product (item) name. Nominal.
 � Quantity − The quantities of each product (item) per transaction. Numeric.
 � InvoiceDate − Invoice Date and time. Numeric, the day and time when each transaction was

 generated.

Chapter 07_Clustering.indd 260 4/24/2019 6:56:31 PM

https://archive.ics.uci.edu/ml/datasets/online+retail
https://archive.ics.uci.edu/ml/datasets/online+retail

Chapter 7 · Clustering 261

 � UnitPrice − Unit price. Numeric, Product price per unit in sterling. 
 � CustomerID − Customer number. Nominal, a 5-digit integral number uniquely assigned to each

customer.
 � Country − Country name. Nominal, the name of the country where each customer resides.

 6. Select only the transactions that have occurred in the year 06/01/11 and 11/30/11 and create a new
subset of data. For answering questions from 7 to 10, use this subset of data.

 7. Calculate the RFM values for each customer (by customer id). RFM represents

 � R (Recency) − Recency should be calculated as the number of months before he or she has made
a purchase from the online store. If he/she made a purchase in the month of November 2011,
then the Recency should be 0. If purchase is made in October 2011 then Recency should be 1
and so on and so forth.

 � F (Frequency) − Number of invoices by the customer from 06/01/11 to 11/30/11.
 � M (Monetary Value) − Total spend by the customer from 06/01/11 to 11/30/11.

 8.  Use dendrogram and elbow method to identify how many customer segments exist, using the RFM 
values for each customer created in Question 7.

 9. Create the customer segments with K-means algorithm by using number of clusters is suggested by
elbow method.

10. Print the cluster centers of each customer segment and explain them intuitively.

 REFERENCES

 1.  Daqing Chen,  Sai  Liang  Sain,  and Kun Guo  (2012). Data mining  for  the  online  retail  industry: 
A case study of RFM model-based customer segmentation using data mining, Journal of Database
Marketing and Customer Strategy Management, Vol. 19, No. 3, pp. 192 to 208, 2012 (Published online
before print: 27 August 2012. doi: 10.1057/dbm.2012.17).

 2.  UC Irvine Machine Learning Repository at https://archive.ics.uci.edu/ml/index.php
 3. RFM (customer value) https://en.wikipedia.org/wiki/RFM_(customer_value)
 4. Dendrogram https://en.wikipedia.org/wiki/Dendrogram
 5.  Robert L. Thorndike (December 1953). “Who Belongs in the Family?”. Psychometrika. https://link.

springer.com/article/10.1007%2FBF02289263
 6. Sklearn k-means clustering: https://scikit-learn.org/stable/modules/clustering.html#k-means
 7. Sklearn standard scaler https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html
 8. Feinberg FM, Kinnear TC, and Taylor JR (2012). Modern Marketing Research: Concepts, Methods

and Cases, Cengage. Data can be downloaded from http://webuser.bus.umich.edu/feinf/modern
marketingresearch.

Chapter 07_Clustering.indd 261 4/24/2019 6:56:31 PM

https://archive.ics.uci.edu/ml/index.php
https://en.wikipedia.org/wiki/RFM_(customer_value)
https://en.wikipedia.org/wiki/Dendrogram
https://link.springer.com/article/10.1007%2FBF02289263
https://link.springer.com/article/10.1007%2FBF02289263
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Chapter 07_Clustering.indd 262 4/24/2019 6:56:31 PM

8.1 | FORECASTING OVERVIEW

Forecasting is by far the most important and frequently used application of predictive analytics because
it has significant impact on both the top line and the bottom line of an organization. Every organization
prepares long-range and short-range planning and forecasting demand for product and service is an
important input for both long-range and short-range planning. Different capacity planning problems
such as manpower planning, machine capacity, warehouse capacity, materials requirements planning
(MRP) will depend on the forecasted demand for the product/service. Budget allocation for marketing
promotions and advertisements are usually made based on forecasted demand for the product.

Following are few examples of challenging forecasting problems:

1. Demand for products and service is not the only application of forecasting, even manpower
planning requires the use of sophisticated models. Indian information technology (IT) compa-
nies struggle to manage the right level of manpower for each skill required to manage their busi-
ness. This would involve forecasting business opportunities, skills required to manage current
and future projects, and so on.

2. Boeing 747-400 has more than 6 million parts and several thousand unique parts (Hill, 2011).
Forecasting demand for spare parts is important since non-availability of mission-critical parts
can result in aircraft on ground (AOG) which can be very expensive for airlines.

3. Walmart sells more than 142,000 products through their supercenters (source: Walmart web-
site; see Reference section). Being a brick-and-mortar retail store, Walmart does not have the

LEARNING OBJECTIVES

After completing this chapter, you will be able to
•  Understand the importance of time-series data, forecasting techniques, and their impact on

business.
•  Learn various components of time-series data such as trend, seasonality, cyclical component,

and random component.
•  Learn Auto-Regressive (AR), Moving Average (MA), and Auto-Regressive Integrated Moving

Average (ARIMA) models
•  Learn how to build forecasting models using statsmodel API in Python.

CHAPTER

8Forecasting

Chapter 08_Forecasting.indd 263 4/24/2019 6:56:57 PM

Machine Learning using Python264

 advantages of Amazon.com (being also a market place, Amazon does not have to predict demand
for all the products sold through their portal). Walmart must maintain stock for each and every
product sold and predict demand for the products as accurately as possible.

8.2 | COMPONENTS OF TIME-SERIES DATA

The time-series data Yt is a random variable, usually collected at regular time intervals and in chrono-
logical order. If the time-series data contains observations of just a single variable (such as demand of a
product at time t), then it is termed as univariate time-series data. If the data consists of more than one
variable, for example, demand for a product at time t, price at time t, amount of money spent by the
company on promotion at time t, competitors’ price at time t, etc., then it is called multivariate time-
series data.

A time-series data can be broken into the four following components:

1. Trend Component (Tt): Trend is the consistent long-term upward or downward movement of
the data.

2. Seasonal Component (St): Seasonal component (measured using seasonality index) is the
repetitive upward or downward movement (or fluctuations) from the trend that occurs within
a calendar year at fixed intervals (i.e., time between seasons is fixed) such as seasons, quar-
ters, months, days of the week, etc. The upward or downward fluctuation may be caused due to
festivals, customs within a society, school holidays, business practices within the market such as
“end of season sale”, and so on.

3. Cyclical Component (Ct): Cyclical component is fluctuation around the trend line at random
interval (i.e., the time between cycles is random) that happens due to macro-economic changes
such as recession, unemployment, etc. Cyclical fluctuations have repetitive patterns with time
between repetitions of more than a year. Whereas in the case of seasonality, the fluctuations are
observed within a calendar year and are driven by factors such as festivals and customs that exist
in a society. A major difference between seasonal fluctuation and cyclical fluctuation is that sea-
sonal fluctuation occurs at fixed period within a calendar year, whereas cyclical fluctuations have
random time between fluctuations. That is, the periodicity of seasonal fluctuations is constant,
whereas the periodicity of cyclical fluctuations is not constant.

4. Irregular Component (It): Irregular component is the white noise or random uncorrelated
changes that follow a normal distribution with mean value of 0 and constant variance.

There are several forecasting techniques such as moving average, exponential smoothing, and Auto-
Regressive Integrated Moving Average (ARIMA) that are used across various industries. Moving average
and exponential smoothing predict the future value of a time-series data as a function of past observa-
tions. The regression-based models such as auto-regressive (AR), moving average (MA), auto-regressive
and moving average (ARMA), auto-regressive integrated moving average (ARIMA) use more sophis-
ticated regression models. It is important to note that using complex mathematical models does not
guarantee a more accurate forecast. Simple moving average technique may outperform complex ARIMA
models in many cases.

We will discuss all the three techniques, namely, moving average, exponential smoothing, and
ARIMA in this chapter.

Chapter 08_Forecasting.indd 264 4/24/2019 6:56:58 PM

Chapter 8 · Forecasting 265

8.3 | MOVING AVERAGE

To illustrate the moving average technique, we will use the demand dataset for Kesh, a shampoo brand
which is sold in 100 ml bottles by We Sell Beauty (WSB), a manufacturer and distributor of health and
beauty products. The dataset is provided in file wsb.csv.

8.3.1 | Loading and Visualizing the Time-Series Dataset

We load the data from file wsb.csv onto the DataFrame using pd.read_csv().

import pandas as pd

wsb_df = pd.read_csv(‘wsb.csv’)
wsb_df.head(10)

Now we print the first 10 records.

Month Sale Quantity Promotion Expenses Competition Promotion

0 1 3002666 105 1

1 2 4401553 145 0

2 3 3205279 118 1

3 4 4245349 130 0

4 5 3001940 98 1

5 6 4377766 156 0

6 7 2798343 98 1

7 8 4303668 144 0

8 9 2958185 112 1

9 10 3623386 120 0

To visualize Sale Quantity over Month using plot() method from Matplotlib use the following code:

import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline

plt.figure(figsize=(10,4))
plt.xlabel(“Months”)
plt.ylabel(“Quantity”)
plt.plot(wsb_df[‘Sale Quantity’]);

Chapter 08_Forecasting.indd 265 4/24/2019 6:56:58 PM

Machine Learning using Python266

In Figure 8.1, the sales quantity (vertical axis) shows a lot of fluctuations over the months. But there
seems to be an increasing trend as well.

We now print the summary of the dataset using the info() method of the DataFrame.

wsb_df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 48 entries, 0 to 47
Data columns (total 4 columns):
Month 48 non-null int64
Sale Quantity 48 non-null int64
Promotion Expenses 48 non-null int64
Competition Promotion 48 non-null int64
dtypes: int64(4)
memory usage: 1.6 KB

The dataset contains quantity of 100 ml bottles sold during each month for a period of 48 months, pro-
motion expenses incurred by the company, and whether the competition was on promotion (value of 1
implies that the competition was on promotion and 0 otherwise).

8.3.2 | Forecasting Using Moving Average

Moving average is one of the simplest forecasting techniques which forecasts the future value of a time-
series data using average (or weighted average) of the past N observations. Forecasted value for time
t +1 using the simple moving average is given by

 F
N

Yt k
k t N

t

+
= + -

= ∑1
1

1 (8.1)

FIGURE 8.1 Sales quantity over 48 months.

3000000

0

3500000

4000000

4500000

5000000

5500000

10 20
Months

30 40

Q
ua

nt
ity

Chapter 08_Forecasting.indd 266 4/24/2019 6:56:58 PM

Chapter 8 · Forecasting 267

Pandas has a function rolling() which can be used with an aggregate function like mean() for calculat-
ing moving average for a time window. For example, to calculate 12 month’s moving average using last
12 months’ data starting from last month (previous period), rolling() will take a parameter window,
which is set to 12 to indicate moving average of 12-months data, and then use Pandas’ shift() function,
which takes parameter 1 to specify that the 12-months data should start from last month. shift(1) means
calculating moving average for the specified window period starting from previous observation (in this
case last month).

wsb_df[‘mavg_12’] = wsb_df[‘Sale Quantity’].rolling(window = 12).
mean().shift(1)

To display values up to 2 decimal points, we can use pd.set_option and floating format %.2f.

pd.set_option(‘display.float_format’, lambda x: ‘%.2f’ % x)
wsb_df[[‘Sale Quantity’, ‘mavg_12’]][36:]

Now print the forecasted value from the month 37 onwards.

Sale Quantity mavg_12

36 3216483 3928410.33

37 3453239 3810280.00

38 5431651 3783643.33

39 4241851 3970688.42

40 3909887 4066369.08

41 3216438 4012412.75

42 4222005 3962369.58

43 3621034 3946629.42

44 5162201 3940489.50

45 4627177 4052117.17

46 4623945 4130274.75

47 4599368 4204882.33

We use the following code to plot actual versus the predicted values from moving average forecasting:

plt.figure(figsize=(10,4))
plt.xlabel(“Months”)
plt.ylabel(“Quantity”)
plt.plot(wsb_df[‘Sale Quantity’][12:]);
plt.plot(wsb_df[‘mavg_12’][12:], ‘.’);
plt.legend();

Chapter 08_Forecasting.indd 267 4/24/2019 6:56:58 PM

Machine Learning using Python268

As observed in Figure 8.2, there is an increasing trend in sales quantity over the months.

8.3.3 | Calculating Forecast Accuracy

Root mean square error (RMSE) and mean absolute percentage error (MAPE) are the two most popular
accuracy measures of forecasting. We will be discussing these measures in this section.

8.3.3.1 Mean Absolute Percentage Error

Mean absolute percentage error (MAPE) is the average of absolute percentage error. Assume that the
validation data has n observations and forecasting is carried out on these n observations. The mean
absolute percentage error is given by

MAPE =

-

=
∑1 100

1n
Y F

Y
t t

tt

n

× %

(8.2)

MAPE is one of the popular forecasting accuracy measures used by practitioners since it expresses the
average error in percentage terms and is easy to interpret. Since MAPE is dimensionless, it can be used
for comparing different models with varying scales.

The following custom method get_mape() takes the series of actual values and foretasted values, and
returns the MAPE.

import numpy as np

def get_mape(actual, predicted):
y_true, y_pred = np.array(actual), np.array(predicted)
return np.round(np.mean(np.abs((actual - predicted) / actual))
* 100, 2)

Sale Quantity
mavg_12

3000000
15

3500000

4000000

4500000

Q
ua

nt
ity

5000000

5500000

Months
20 25 30 35 4540

FIGURE 8.2 Actual versus forecasted sales quantity using moving average.

Chapter 08_Forecasting.indd 268 4/24/2019 6:56:59 PM

Chapter 8 · Forecasting 269

We invoke the above method using column values of wbd_df DataFrame. “Sale Quantity” is passed as actual
and mavg_12 is passed as predicted values. Records from the 37th month are used to calculate MAPE.

get_mape(wsb_df[‘Sale Quantity’][36:].values,
wsb_df[‘mavg_12’][36:].values)

The MAPE in this case is 14.04. So, forecasting using moving average gives us a MAPE of 14.04%.

8.3.3.2 Root Mean Square Error

Root mean square error (RMSE) is the square root of average of squared error calculated over the valida-
tion dataset, and is the standard deviation of the errors for unbiased estimator. RMSE is given by

 RMSE = -
=
∑1 2

1n
Y Ft t

t

n

() (8.3)

Lower RMSE implies better prediction. However, it depends on the scale of the time-series data. MSE
(Mean Squared Error) can be calculated using mean_squared_error() method in sklearn.metrics. We can
pass MSE value to np.sqrt() to calculate RMSE.

from sklearn.metrics import mean_squared_error

np.sqrt(mean_squared_error(wsb_df[‘Sale Quantity’][36:].values,
 wsb_df[‘mavg_12’][36:].values))

The RMSE in this case is 734725.83. So, the RMSE of the moving average model indicates that the
prediction by the models has a standard deviation of 734725.83.

8.3.4 | Exponential Smoothing

One of the drawbacks of the simple moving average technique is that it gives equal weight to all the pre-
vious observations used in forecasting the future value. Exponential smoothing technique (also known
as simple exponential smoothing; SES) assigns differential weights to past observations.

 F Y Ft t t+ = + -1 1a a() (8.4)

where α is called the smoothing constant, and its value lies between 0 and 1. Ft+1 is the forecasted value
at time t + 1 using actual value Yt at time t and forecasted values Ft of time t. But the model applies dif-
ferential weights to both the inputs using smoothing constant α.

The ewm() method in Pandas provides the features for computing the exponential moving average
taking alpha as a parameter.

wsb_df[‘ewm’] = wsb_df[‘Sale Quantity’].ewm(alpha = 0.2).mean()

Chapter 08_Forecasting.indd 269 4/24/2019 6:56:59 PM

Machine Learning using Python270

Set the floating point formatting up to 2 decimal points.

pd.options.display.float_format = ‘{:.2f}’.format

Use the following code to display the records from the 37th month.

wsb_df[36:]

Month Sale Quantity Promotion Expenses Competition Promotion mavg_12 Ewm

36 37 3216483 121 1 3928410.33 3828234.64

37 38 3453239 128 0 3810280.00 3753219.93

38 39 5431651 170 0 3783643.33 4088961.93

39 40 4241851 160 0 3970688.42 4119543.81

40 41 3909887 151 1 4066369.08 4077607.99

41 42 3216438 120 1 4012412.75 3905359.34

42 43 4222005 152 0 3962369.58 3968692.78

43 44 3621034 125 0 3946629.42 3899157.24

44 45 5162201 170 0 3940489.50 4151776.99

45 46 4627177 160 0 4052117.17 4246860.31

46 47 4623945 168 0 4130274.75 4322279.35

47 48 4599368 166 0 4204882.33 4377698.31

Now calculate MAPE of the model using records from 37th month.

get_mape(wsb_df[[‘Sale Quantity’]][36:].values,
 wsb_df[[‘ewm’]][36:].values)

The MAPE of the model is 11.15.

So, forecasting using exponential smoothing has about 11.15% error (MAPE) from the actual values. It
is an improvement compared to the simple moving average model. Let us plot the output to view the dif-
ference between the forecasted and actual sales quantity using exponential moving average.

plt.figure(figsize=(10,4))
plt.xlabel(“Months”)
plt.ylabel(“Quantity”)
plt.plot(wsb_df[‘Sale Quantity’][12:]);
plt.plot(wsb_df[‘ewm’][12:], ‘.’);
plt.legend();

Chapter 08_Forecasting.indd 270 4/24/2019 6:57:00 PM

Chapter 8 · Forecasting 271

Sale Quantity
ewm

15
Months

20 25 30 35 4540
3000000

3500000

4000000

4500000

Q
ua

nt
ity

5000000

5500000

FIGURE 8.3 Forecasted versus actual sales quantity using exponential moving average.

In Figure 8.3, prediction by exponential moving average is shown by the dotted line and shows an
increasing trend over the months. Moving average and simple exponential smoothing (SES) assume a
fairly steady time-series data with no significant trend, seasonal or cyclical components, that is, the data
is stationary. However, many dataset will have trend and seasonality.

8.4 | DECOMPOSING TIME SERIES

The time-series data can be modelled as addition or product of trend, seasonality, cyclical, and irregular
components. The additive time-series model is given by

Yt = Tt + St + Ct + It

The additive models assume that the seasonal and cyclical components are independent of the trend
component. Additive models are not very common, since in many cases the seasonal component may
not be independent of the trend.

The multiplicative time-series model is given by

Yt = Tt × St × Ct × It

Multiplicative models are more common and are a better fit for many datasets. For example, the season-
ality effect on sales during festival times like Diwali does not result in constant increase in sales over the
years. For example, the increase in sales of cars during festival season is not just 100 units every year. The
seasonality effect has a multiplicative effect on sales based on the trend over the years like 10% additional
units based on the trend in the current year. So, in many cases the seasonality effect is multiplied with
the trend and not just added as in additive model.

In many cases, while building a forecasting model, only trend and seasonality components are
used. To estimate the cyclical component, we will need a large dataset. For example, typical period of
business cycles is about 58 months as per Investopedia (Anon, 2018). So, to understand the effect of
cyclic component we will need observations spanning more than 10 years. Most of the times, data for
such a long duration is not available.

Chapter 08_Forecasting.indd 271 4/24/2019 6:57:00 PM

Machine Learning using Python272

For decomposing a time-series data, we can leverage the following libraries:

1. statsmodel.tsa provides various features for time-series analysis.
2. seasonal_decompose() in statsmodel.tsa.seasonal decomposes a time series into trend, seasonal,

and residuals. It takes frequency parameters; for example, the frequency is 12 for monthly data.

The plot() function will render the trend, seasonal, and residuals, as shown in the following code:

from statsmodels.tsa.seasonal import seasonal_decompose

ts_decompse = seasonal_decompose(np.array(wsb_df[‘Sale Quantity’]),
model=’multiplicative’,
freq = 12)

Plotting the deocomposed time series components
ts_plot = ts_decompose.plot()

To capture the seasonal and trend components after time-series decomposition we use the following
code. The information can be read from two variables seasonal and trend in ts_decompose.

wsb_df[‘seasonal’] = ts_decompse.seasonal
wsb_df[‘trend’] = ts_decompse.trend

Sales quantity in wsb-df has trend, which is increasing over a period. Also it has seasonality and
 seasonality index varies from 0.9 to 1.1 over the trend (Figure 8.4).

3000000

3750000

4000000

4000000

5000000

1.1

S
ea

so
na

l
R

es
id

ua
l

1.0

0 10 20

Time

30

1.25

1.00

0.75

Tr
en

d
O

bs
er

ve
d

40

FIGURE 8.4 Plots of decomposed time-series components

Chapter 08_Forecasting.indd 272 4/24/2019 6:57:01 PM

Chapter 8 · Forecasting 273

8.5 | AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE MODELS

Auto-regressive (AR) and moving average (MA) models are popular models that are frequently used for
forecasting. AR and MA models are combined to create models such as auto-regressive moving aver-
age (ARMA) and auto-regressive integrated moving average (ARIMA) models. The initial ARMA and
ARIMA models were developed by Box and Jenkins in 1970 (Box and Jenkins, 1970). ARMA models are
basically regression models; auto-regression simply means regression of a variable on itself measured at
different time periods. We will discuss each component in the subsequent sections.

8.5.1 | Auto-Regressive (AR) Models

Auto-regression is a regression of a variable on itself measured at different time points. Auto-regressive
model with lag 1, AR (1), is given by

 Yt+1 = m + b Yt + et+1 (8.5)

Equation (8.5) can be generalized to include p lags on the right-hand side and is called a AR (p) model.
Equation (8.5) can be re-written as

 Yt+1 − m = b (Yt − m) + et+1 (8.6)

where et+1 is a sequence of uncorrelated residuals assumed to follow the normal distribution with zero
mean and constant standard deviation. (Yt − m) can be interpreted as a deviation from mean value m ;
it is known as mean centered series.

One of the important tasks in using the AR model in forecasting is model identification,
which is, identifying the value of p (the number of lags). One of the standard approaches used for model
identification is using auto-correlation function (ACF) and partial auto-correlation function (PACF).

8.5.1.1 ACF

Auto-correlation of lag k is the correlation between Yt and Yt–k measured at different k values (e.g., Yt
and Yt−1 or Yt and Yt−2). A plot of auto-correlation for different values of k is called an auto-correlation
function (ACF) or correlogram.

statsmodels.graphics.tsaplots.plot_acf plots the autocorrelation plot.

8.5.1.2 PACF

Partial auto-correlation of lag k is the correlation between Yt and Yt−k when the influence of all inter-
mediate values (Yt−1, Yt−2, …, Yt−k+1) is removed (partial out) from both Yt and Yt−k. A plot of partial
auto-correlation for different values of k is called partial auto-correlation function (PACF).

statsmodels.graphics.tsaplots.plot_pacf plots the partial auto-correlation plot.
For applying the AR model, we will use another dataset described in the following example.

Chapter 08_Forecasting.indd 273 4/24/2019 6:57:01 PM

Machine Learning using Python274

Aircraft Spare Parts
Monthly demand for avionic system spares used in Vimana 007 aircraft is provided in
vimana.csv. Build an ARMA model based on the first 30 months of data and forecast the
demand for spares for months 31 to 37. Comment on the accuracy of the forecast.

Solution:
We first read the dataset from viman.csv onto a DataFrame and print the first 5 records.

vimana_df = pd.read_csv(‘vimana.csv’)

vimana_df.head(5)

Month Demand

0 1 457

1 2 439

2 3 404

3 4 392

4 5 403

Now print the metadata from viman.csv.

vimana_df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 37 entries, 0 to 36
Data columns (total 2 columns):
Month 37 non-null int64
demand 37 non-null int64
dtypes: int64(2)
memory usage: 672.0 bytes

8.1 EXAMPLE

Draw the ACF plot to show auto-correlation upto lag of 20 using the following code:

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

Show autocorrelation upto lag 20
acf_plot = plot_acf(vimana_df.demand,

lags=20)

Chapter 08_Forecasting.indd 274 4/24/2019 6:57:01 PM

Chapter 8 · Forecasting 275

0.4

0.2

0.0

−0.2

−0.4

−0.6
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.6

0.8

Auto-correlation
1.0

FIGURE 8.5 ACF plot for aircraft spare parts.

In Figure 8.5, the shaded area represents the upper and lower bounds for critical values, where the null
hypothesis cannot be rejected (auto-correlation value is 0). So, as can be seen from Figure 8.5, null
hypothesis is rejected only for lag = 1 (i e., auto-correlation is statistically significant for lag 1).

We draw the PACF plot with lag up to 20.

pacf_plot = plot_pacf(vimana_df.demand,
lags=20)

−1

0

Partial Auto-correlation

1

0.0

2

3

4

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

FIGURE 8.6 PACF plot for aircraft spare parts.

In Figure 8.6, the shaded area represents the upper and lower bounds for critical values, where the null
hypothesis cannot be rejected. So, for lag = 1 the partial auto-correlation is significant.

To select the appropriate p in the AR model, the following thumb rule can be used:

1. The partial auto-correlation is significant for first p-values (first p lags) and cuts off to zero.
2. The ACF decreases exponentially. (Signs of stationarity)

In the above case, based on ACF and PACF plots, AR with lag 1, AR(1), can be used.

Chapter 08_Forecasting.indd 275 4/24/2019 6:57:01 PM

Machine Learning using Python276

8.5.1.3 Building AR Model

The statsmodels.tsa.arima_model.ARIMA can be used to build AR model. It takes the following two
parameters:

1. endog: list of values – It is the endogenous variable of the time series.
2. order: The (p, d, q) – ARIMA model parameters. Order of AR is given by the value p, the order

of integration is d, and the order of MA is given by q.

We will set d and q to 0 and use p = 1 for AR(1) model, and we will use only 30 months of data for building
the model and forecast the next six months for measuring accuracy.

Building the model and printing the accuracy.

from statsmodels.tsa.arima_model import ARIMA

arima = ARIMA(vimana_df.demand[0:30].astype(np.float64).as_matrix(),
 order = (1,0,0))

ar_model = arima.fit()

Printing the model summary.

ar_model.summary2()

Model: ARMA BIC: 375.7336

Dependent Variable: y Log-Likelihood: -182.77

Date: 2019-03-01 13:40 Scale: 1.0000

No. Observations: 30 Method: css-mle

Df Model: 2 Sample: 0

Df Residuals: 28 0

Converged: 1.0000 S.D. of innovations: 106.593

No. Iterations: 14.0000 HQIC: 372.875

AIC: 371.5300

Coef. Std.Err. t P > |t| [0.025 0.975]

const 513.4433 35.9147 14.2962 0.0000 443.0519 583.8348

ar.L1 .y 0.4726 0.1576 2.9995 0.0056 0.1638 0.7814

Real Imaginary Modulus Frequency

AR.1 2.1161 0.0000 2.1161 0.0000

Chapter 08_Forecasting.indd 276 4/24/2019 6:57:01 PM

Chapter 8 · Forecasting 277

The model summary indicates the AR with lag 1 is significant variables in the model. The corresponding
p-value is less than 0.05 (0.0056).

8.5.1.4 Forecast and Measure Accuracy

Forecast the demand for the months 31 to 37. The index will be (month index – 1).

forecast_31_37 = ar_model.predict(30, 36)

forecast_31_37

array([480.15343682, 497.71129378, 506.00873185, 509.92990963,
 511.78296777, 512.65868028, 513.07252181])

get_mape(vimana_df.demand[30:],
forecast_31_37)

The MAPE of the AR model with lag 1 is 19.12.

8.5.2 | Moving Average (MA) Processes

MA processes are regression models in which the past residuals are used for forecasting future values of
the time-series data.

A moving average process of lag 1 can be written as

 Yt t t+ += +1 1 1a e e (8.7)

The model in Eq. (8.7) can be generalized to q lags. The value of q (number of lags) in a moving average
process can be identified using the following rules (Yaffee and McGee, 2000):

1. Auto-correlation value is significant for first q lags and cuts off to zero.
2. The PACF decreases exponentially.

We can build an MA model with q value as 1 and print the model summary.

arima = ARIMA(vimana_df.demand[0:30].astype(np.float64).as_matrix(),
 order = (0,0,1))
ma_model = arima.fit()
ma_model.summary2()

Model: ARMA BIC: 378.7982

Dependent Variable: y Log-Likelihood: -184.30

Date: 2019-03-01 13:40 Scale: 1.0000

(Continued)

Chapter 08_Forecasting.indd 277 4/24/2019 6:57:02 PM

Machine Learning using Python278

No. Observations: 30 Method: css-mle

Df Model: 2 Sample: 0

Df Residuals: 28 0

Converged: 1.0000 S.D. of innovations: 112.453

No. Iterations: 15.0000 HQIC: 375.939

AIC: 374.5946

Coef. Std.Err. t P > |t| [0.025 0.975]

const 516.5440 26.8307 19.2520 0.0000 463.9569 569.1312

ma.L1.y 0.3173 0.1421 2.2327 0.0337 0.0388 0.5958

Real Imaginary Modulus Frequency

MA.1 -3.1518 0.0000 3.1518 0.5000

As per the model summary, moving average with lag 1 is statistically significant as the corresponding
p-value is less than 0.05. Use the following code to measure the accuracy with the forecasted values of
six periods.

forecast_31_37 = ma_model.predict(30, 36)
get_mape(vimana_df.demand[30:],

forecast_31_37)

17.8

The MAPE of the MA model with lag 1 is 17.8.

8.5.3 | ARMA Model

Auto-regressive moving average (ARMA) is a combination auto-regressive and moving average process.
ARMA(p, q) process combines AR(p) and MA(q) processes.

The values of p and q in an ARMA process can be identified using the following thumb rules:

1. Auto-correlation values are significant for first q values (first q lags) and cuts off to zero.
2. Partial auto-correlation values are significant for first p values and cuts off to zero.

Based on the ACF and PACF plots in the previous section, we will develop ARMA(1, 1) model using the
following codes:

arima = ARIMA(vimana_df.demand[0:30].astype(np.float64).as_
matrix(), order = (1,0,1))

arma_model = arima.fit()
arma_model.summary2()

Chapter 08_Forecasting.indd 278 4/24/2019 6:57:02 PM

Chapter 8 · Forecasting 279

Model: ARMA BIC: 377.2964
Dependent Variable: y Log-Likelihood: -181.85
Date: 2019-03-01 13:41 Scale: 1.0000
No. Observations: 30 Method: css-mle
Df Model: 3 Sample: 0
Df Residuals: 27 0
Converged: 1.0000 S.D. of innovations: 103.223
No. Iterations: 21.0000 HQIC: 373.485
AIC: 371.6916

Coef. Std.Err. t P > |t| [0.025 0.975]

const 508.3995 45.3279 11.2160 0.0000 419.5585 597.2405

ar.L1.y 0.7421 0.1681 4.4158 0.0001 0.4127 1.0715

MA.L1.y –0.3394 0.2070 –1.6401 0.1126 –0.7451 0.0662

Real Imaginary Modulus Frequency

AR.1 1.3475 0.0000 1.3475 0.0000

MA.1 2.9461 0.0000 2.9461 0.0000

The model summary indicates that moving average with lag 1 is not significant (p-value is more than
0.05), when both auto regressive with lag1 is also used in the model.

forecast_31_37 = arma_model.predict(30, 36)
get_mape(vimana_df.demand[30:],
 forecast_31_37)

20.27

The MAPE of the MA model with lag 1 is 20.27. Since MA lag is not significant, we will use AR(1) model
[or MA(1) model].

8.5.4 | ARIMA Model

ARMA models can be used only when the time-series data is stationary. ARIMA models are used when
the time-series data is non-stationary. Time-series data is called stationary if the mean, variance, and
covariance are constant over time. ARIMA model was proposed by Box and Jenkins (1970) and thus
is also known as Box−Jenkins methodology. ARIMA has the following three components and is repre-
sented as ARIMA (p, d, q):

1. AR component with p lags AR(p).
2. Integration component (d).
3. MA with q lags, MA(q).

Chapter 08_Forecasting.indd 279 4/24/2019 6:57:02 PM

Machine Learning using Python280

The main objective of the integration component is to convert a non-stationary time-series process to a
stationary process so that the AR and MA processes can be used for forecasting. When the data is non-
stationary, the ACF will not cut-off to zero quickly; rather ACF may show a very slow decline.

8.5.4.1 What is Stationary Data?

Time-series data should satisfy the following conditions to be stationary:

1. The mean values of Yt at different values of t are constant.
2. The variances of Yt at different time periods are constant (Homoscedasticity).
3. The covariance of Yt and Yt−k for different lags depend only on k and not on time t.

We will use dataset provided in store.xls (described in Example 8.2) for performing the stationary test
and developing ARIMA model.

Daily demand for a product in a store for the past 115 days is provided in store.xls. Develop
an appropriate ARIMA model that can be used for forecasting demand for Omelette.

Solution: The data is available in excel file and read into DataFrame using read_excel api.

store_df = pd.read_excel(‘store.xls’)

store_df.head(5)

Date Demand

0 2014-10-01 15

1 2014-10-02 7

2 2014-10-03 8

3 2014-10-04 10

4 2014-10-05 13

Now print the metadata of the DataFrame.

store_df.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 115 entries, 0 to 114
Data columns (total 2 columns):
Date 115 non-null datetime64[ns]
demand 115 non-null int64

8.2 EXAMPLE

Chapter 08_Forecasting.indd 280 4/24/2019 6:57:02 PM

Chapter 8 · Forecasting 281

 (Continued)

dtypes: datetime64[ns](1), int64(1)
memory usage: 1.9 KB

The dataset contains 115 days of demand per day data. We can convert the column into
DateTime index, which is a default input to time-series models. Creating a DataTime index
will make sure that the data is ordered by date or time.

store_df.set_index(pd.to_datetime(store_df.Date),inplace=True)
store_df.drop(‘Date’, axis = 1, inplace = True)
store_df[-5:]

Now we print the last 5 records to make sure that index is created correctly and is sorted by date.

Date Demand
2015-01-19 18
2015-01-20 22
2015-01-21 22
2015-01-22 21
2015-01-23 17

Finally, plot the demand against the date using plot() method in matplotlib.

plt.figure(figsize=(10,4))
plt.xlabel(“Date”)
plt.ylabel(“Demand”)
plt.plot(store_df.demand);

22.5

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2014-10-08 2014-10-22 2014-11-05

Date

D
em

an
d

2014-11-19 2014-12-03 2014-12-17 2014-12-31 2015-01-14 2015-01-28

FIGURE 8.7 Daily store demand.

8.2 EXAMPLE

Chapter 08_Forecasting.indd 281 4/24/2019 6:57:02 PM

Machine Learning using Python282

8.5.4.2 Dicky−Fuller Test

To find out if a time series is stationary, Dickey−Fuller (Dickey and Fuller, 1979) test can also be con-
ducted. Dickey–Fuller test checks whether the b in Eq. (8.5) is equal to 1 or less than equal to 1. It is a
hypothesis test in which the null hypothesis and alternative hypothesis are given by

H0: b = 1 (the time series is non-stationary)
 HA: b < 1 (the time series is stationary)

statsmodels.tsa.stattools.adfuller is a Dicky−Fuller test and returns test statistics and p-value for the test
of the null hypothesis. If the p-value is less than 0.05, the time series is stationary.

from statsmodels.tsa.stattools import adfuller

 (Continued)

Figure 8.7 indicates the trend of demand for omelette over dates. It is not very apparent from
the trend if the series is stationary or not.

Now we will draw the ACF plot to verify stationarity of the time series.

acf_plot = plot_acf(store_df.demand,
lags=20)

0.4

0.2

0.0

−0.2

−0.4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.6

0.8

Auto-correlation

1.0

FIGURE 8.8 ACF plot for store demand.

In Figure 8.8, the slow decline of auto-correlations for different lags indicates that the series
is not stationary.

8.2 EXAMPLE

Chapter 08_Forecasting.indd 282 4/24/2019 6:57:03 PM

Chapter 8 · Forecasting 283

def adfuller_test(ts):
adfuller_result = adfuller(ts, autolag=None)
adfuller_out = pd.Series(adfuller_result[0:4],

index=[‘Test Statistic’,
‘p-value’,
‘Lags Used’,
‘Number of Observations Used’])

print(adfuller_out)
adfuller_text(stone_df.demand)

Test Statistic -1.65
p-value 0.46
Lags Used 13.00
Number of Observations Used 101.00
dtype: float64

The p-value (>0.05) indicates that we cannot reject the null hypothesis and hence, the series is not
stationary.

Differencing the original time series is an usual approach for converting the non-stationary process
into a stationary process (called difference stationarity). For example, the first difference (d = 1) is the
difference between consecutive values of the time series (Yt). That is, the first difference is given by

 D = - -Y Y Yt t t 1 (8.8)

8.5.4.3 Differencing

First difference between consecutive Yt values can be computed by subtracting the previous day’s demand
from that day’s demand. We can use shift() function in Pandas to shift the values before subtracting.

store_df[‘demand_diff’] = store_df.demand - store_df.demand.shift(1)

store_df.head(5)

demand demand_diff

Date

2014-10-01 15 nan

2014-10-02 7 -8.00

2014-10-03 8 1.00

2014-10-04 10 2.00

2014-10-05 13 3.00

Chapter 08_Forecasting.indd 283 4/24/2019 6:57:03 PM

Machine Learning using Python284

The differencing for the first day is nan as we do not have previous days’ demand. We can drop this value
from the observation before verifying stationarity.

store_diff_df = store_df.dropna()

Let us plot the first-order difference values.

plt.figure(figsize=(10,4))
plt.xlabel(“Date”)
plt.ylabel(“First Order Differences”)
plt.plot(store_diff_df.demand_diff);

2014-09-27 2014-10-11 2014-10-25 2014-11-08 2014-11-22
Date

2014-12-06 2014-12-20 2015-01-03 2015-01-17

−10

−5

−15

0

5

10

F
irs

t-
or

de
r

D
iff

er
en

ce
s

FIGURE 8.9 First-order differences for daily store demand over date.

Figure 8.9 indicates the trend of first-order of differences for demand over dates. Again, it is not very
apparent from the trend if the series is stationary or not. We will need to plot the ACF plot to verify
(Figure 8.10).

pacf_plot = plot_acf(store_df.demand_diff.dropna(),
lags=10)

The ACF plot in Figure 8.10 shows no sign of slow reduction in autocorrelation over lags. It immediately
cuts off to zero. We can build the model with first 100 observations as training set and subsequent obser-
vations as test set.

store_train = store_df[0:100]
store_test = store_df[100:]

Chapter 08_Forecasting.indd 284 4/24/2019 6:57:03 PM

Chapter 8 · Forecasting 285

−0.2

Auto-correlation

0

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10

FIGURE 8.10 ACF plot after first-order differencing.

arima = ARIMA(store_train.demand.astype(np.float64).as_matrix(),
order = (1,1,1))

arima_model = arima.fit()
arima_model.summary2()

Model: ARIMA BIC: 532.1510
Dependent Variable: D.y Log-Likelihood: -256.89

Date: 2019-03-01 13:42 Scale: 1.0000
No. Observations: 99 Method: css-mle
Df Model: 3 Sample: 1
Df Residuals: 96 0
Converged: 1.0000 S.D. of innovations: 3.237
No. Iterations: 10.0000 HQIC: 525.971
AIC: 521.7706

Coef. Std.Err. t P > |t| [0.025 0.975]

const 0.0357 0.1599 0.2232 0.8238 -0.2776 0.3490
ar.L1.D.y 0.4058 0.2294 1.7695 0.0800 -0.0437 0.8554
ma.L1.D.y -0.7155 0.1790 -3.9972 0.0001 -1.0663 -0.3647

Real Imaginary Modulus Frequency

AR.1 2.4641 0.0000 2.4641 0.0000
MA.1 1.3977 0.0000 1.3977 0.0000

Chapter 08_Forecasting.indd 285 4/24/2019 6:57:04 PM

Machine Learning using Python286

ARIMA model is a regression model and thus has to satisfy all the assumptions of regression. The residuals
should be white noise and not correlated. This can be observed by using ACF and PACF plots of the
residuals. The model residuals are given by arima_model.resid variable.

acf_plot = plot_acf(arima_model.resid,
lags = 20)

Auto-correlation

−0.2

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.2

0.4

0.6

0.8

1.0

FIGURE 8.11 ACF plot of the residuals.

pacf_plot = plot_pacf(arima_model.resid,
lags = 20)

Partial Auto-correlation

−0.2

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.2

0.4

0.6

0.8

1.0

FIGURE 8.12 PACF plot of the residuals.

The plots in Figures 8.11 and 8.12 do not show any auto-correlation of residuals. So, the model can be
assumed to be valid.

Chapter 08_Forecasting.indd 286 4/24/2019 6:57:05 PM

Chapter 8 · Forecasting 287

8.5.4.4 Forecast and Measure Accuracy

The forecast() method takes the number of future periods (steps) for predicting values and returns the
predicted values along with standard error and confidence interval of the predictions.

store_predict, stderr, ci = arima_model.forecast(steps = 15)

store_predict

array([17.32364962, 16.2586981, 15.84770837, 15.70211912,
15.66423863, 15.67007012, 15.69364144, 15.7244122,
15.75810475, 15.79298307, 15.8283426, 15.86389744,
15.89953153, 15.93519779, 15.9708771])

get_mape(store_df.demand[100:],
store_predict)

24.17

The ARIMA model with first-order differencing gives forecast accuracy of 24.17%.

 CONCLUSION

 1. Forecasting is carried out on a time-series data in which the dependent variable Yt is observed at
different time periods t.

 2. Several techniques such as moving average, exponential smoothing, and auto-regressive models are
used for forecasting future value of Yt.

 3. The forecasting models are validated using accuracy measures such as RMSE and MAPE.
 4. Auto-regressive (AR) models are regression-based models in which dependent variable is Yt and the

independent variables are Yt−1, Yt−2, etc.
 5. AR models can be used only when the data is stationary.
 6. Moving average (MA) models are regression models in which the independent variables are past

error values.
 7. Auto-regressive integrated moving average (ARIMA) has three components:

a. Auto-regressive component with p lags − AR(p)
b. Moving average component with q lags − MA(q)
c. Integration which is differencing the original data to make it stationary (denoted by d).

 8. One of the necessary conditions of acceptance of ARIMA model is that the residuals should follow
white noise.

 9. In ARIMA, the model identification, that is, identifying the value of p in AR and q in MA, is achieved
through auto-correlation function (ACF) and partial auto-correlation function (PACF).

10. The stationarity of time-series data can be checked using the Dickey−Fuller test.

Chapter 08_Forecasting.indd 287 4/24/2019 6:57:05 PM

Machine Learning using Python288

 EXERCISES

Dataset for All the Exercises is given in the File forecast.xls.
Answer Questions 1 to 4 using the Data Available in the Tab “Quarterly Demand”.

The dataset contains quarterly demand for a product of a company. The fields are:

year: 2012 to 2014
quarter number: Q1 to Q4
demand: Number of products

 1. Plot the trend of demand against the year and quarter.
 2. Build a simple moving average model to forecast demand for next quarter.

a. Plot the moving average forecast against the actual demand.
b. Use forecasted values of all four quarters of 2015 to calculate RMSE and MAPE.

 3. Build an exponential moving average model to forecast demand for next quarter.
a. Plot the forecasted values against the actual demand.
b. Use forecasted values of all four quarters of 2015 to calculate RMSE and MAPE.

 4. Build an ARMA model to forecast demand for next quarter.
a. Draw ACF and PACF plots to find out p and q values.
b. Build an ARMA model using p and q values obtained from ACF and PACF plots.
c. Plot the forecasted demand against the actual demand.
d. Use forecasted values of all four quarters of 2015 to calculate RMSE and MAPE.

Answer Questions 5 to 8 using the Data Available in the Tab “TRP”.

The dataset contains TRP (Television Rating Points) of a television program over 30 episodes. And the
fields are:

episode number: 1 to 30
TRP: Actual TRP number

 5. Plot the trend of demand against the year and quarter.
 6. Build an exponential moving average model to forecast demand for next quarter.

a. Plot the forecasted values against the actual TRP of all episodes.
b. Use forecasted values of last six episodes to calculate RMSE and MAPE.
c. Find the best smoothing constant, which gives the best MAPE.

 7. Decompose the time series data (TRP) and interpret if there is trend and seasonality in the data.
 8. Build an ARMA model to forecast TRP.

a. Draw ACF and PACF plots to find out p and q values.
b. Build an ARMA model using p and q values obtained from ACF and PACF plots.
c. Plot the forecasted values against the actual TRP of all episodes.
d. Use forecasted values of last six episodes to calculate RMSE and MAPE.
e. Find if the data is stationary using Dicky−Fuller Test.

(i) If not stationary, use first order differencing to build an ARIMA model.
(ii) Use forecasted values of last six episodes to calculate RMSE and MAPE.
(iii) Compare the results of ARMA and ARIMA models.

Chapter 08_Forecasting.indd 288 4/24/2019 6:57:05 PM

Chapter 8 · Forecasting 289

 REFERENCES

 1. Hill K (2011). Extreme Engineering: The Boeing 747, Science Based Life – Add Little Reason to Your
Day, 25 July 2011. Available at https://sciencebasedlife. wordpress.com/2011/07/25/extreme-engi-
neering-the-boeing-747/ (accessed on 10 May 2017).

 2. http://corporate. walmart. com/_news_/news-archive/2005/01/07/our-retail-divisions
 3. Anon (2018). What’s an Average Length of Boom and Bust Cycle, INVESTOPEDIA. Available at

https://www.investopedia.com/ask/answers/071315/what-average-length-boom-and-bust-cycle-
us-economy.asp

 4. Box G E P and Jenkins G M (1970). Time Series Analysis, Forecasting and Control, Holden Day, San
Francisco.

 5. Yaffee R A and McGee M (2000). An Introduction to Time Series Analysis and Forecasting: With
Applications of SAS and SPSS, Academic Press, New York.

 6. Dickey D A and Fuller W A (1979). “Distribution of Estimation of Auto-Regressive Time Series with
a Unit Root”, Journal of the American Statistical Association, 74, 427−431.

 7. U Dinesh Kumar (2017). Business Analytics: The Science of Data-Driven Decision Making, Wiley
India, India.

Chapter 08_Forecasting.indd 289 4/24/2019 6:57:05 PM

Chapter 08_Forecasting.indd 290 4/24/2019 6:57:05 PM

9.1 | OVERVIEW

Marketing is about connecting the best products or services to the right customers. In today’s digital
world, personalization is essential for meeting customer’s needs more effectively, thereby increasing cus-
tomer satisfaction and the likelihood of repeat purchases. Recommendation systems are a set of algo-
rithms which recommend most relevant items to users based on their preferences predicted using the
algorithms. It acts on behavioral data, such as customer’s previous purchase, ratings or reviews to predict
their likelihood of buying a new product or service.

Amazon’s “Customers who buy this item also bought”, Netflix’s “shows and movies you may want
to watch” are examples of recommendation systems. Recommender systems are very popular for rec-
ommending products such as movies, music, news, books, articles, groceries and act as a backbone for
cross-selling across industries.

In this chapter, we will be discussing the following three algorithms that are widely used for building
recommendation systems:

1. Association Rules
2. Collaborative Filtering
3. Matrix Factorization

9.1.1 | Datasets

For exploring the algorithms specified in the previous section, we will be using the following two pub-
licly available datasets and build recommendations.

LEARNING OBJECTIVES

After completing this chapter, you will be able to

•  Understand recommender systems and their business applications.
•  Learn about the datasets and algorithm required for building recommendation systems.
•   Learn recommender system development techniques such as association rules and collaborative 

filtering.
•  Learn how to build and evaluate recommendation systems using Python libraries.

CHAPTER

9Recommender Systems

Chapter 09_Recommender Systems.indd 291 4/24/2019 6:57:19 PM

Machine Learning using Python292

1. groceries.csv: This dataset contains transactions of a grocery store and can be downloaded from
http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/ml13/groceries.csv.

2. Movie Lens: This dataset contains 20000263 ratings and 465564 tag applications across 27278
movies. As per the source of data, these data were created by 138493 users between January 09,
1995 and March 31, 2015. This dataset was generated on October 17, 2016. Users were selected 
and included randomly. All selected users had rated at least 20 movies. The dataset can be down-
loaded from the link https://grouplens.org/datasets/movielens/.

9.2 | ASSOCIATION RULES (ASSOCIATION RULE MINING)

Association  rule finds  combinations of  items  that  frequently occur  together  in orders or baskets 
(in a retail context). The items that frequently occur together are called itemsets. Itemsets help to
discover relationships between items that people buy together and use that as a basis for creating
strategies like combining products as combo offer or place products next to each other in retail
shelves to attract customer attention. An application of association rule mining is in Market Basket
Analysis (MBA). MBA is a  technique used mostly by retailers  to  find associations between items 
purchased by customers.

To illustrate the association rule mining concept, let us consider a set of baskets and the items in
those baskets purchased by customers as depicted in Figure 9.1.

Items purchased in different baskets are:

1. Basket 1: egg, beer, sugar, bread, diaper
2. Basket 2: egg, beer, cereal, bread, diaper
3. Basket 3: milk, beer, bread
4. Basket 4: cereal, diaper, bread

Previous Baskets

egg, beer, sugar,
bread, diaper

egg, beer, cereal,
bread, diaper

cereal, diaper,
bread beer, X?

New Basket

milk, beer, bread

FIGURE 9.1 Baskets and the items in the baskets.

The primary objective of a recommender system is to predict items that a customer may purchase in the
future based on his/her purchases so far. In future, if a customer buys beer, can we predict what he/she is
most likely to buy along with beer? To predict this, we need to find out which items have shown a strong
association with beer in previously purchased baskets. We can use association rule mining technique to 
find this out.

Chapter 09_Recommender Systems.indd 292 4/24/2019 6:57:19 PM

Chapter 9 · Recommender Systems 293

Association rule considers all possible combination of items in the previous baskets and computes
various measures such as support, confidence, and lift to identify rules with stronger associations. One of
the challenges in association rule mining is the number of combination of items that need to be consid-
ered; as the number of unique items sold by the seller increases, the number of associations can increase 
exponentially. And in today’s world, retailers sell millions of items. Thus, association rule mining may
require huge computational power to go through all possible combinations.

One solution to this problem is to eliminate items that possibly cannot be part of any itemsets.
One such algorithm the association rules use apriori algorithm. The apriori algorithm was proposed by
Agrawal and Srikant (1994). The rules generated are represented as

{diapers} ® {beer}

which means that customers who purchased diapers also purchased beer in the same basket. {diaper,
beer} together is called itemset. {diaper} is called the antecedent and the {beer} is called the consequent. 
Both antecedents and consequents can have multiple items, e.g. {diaper, milk} ® {beer, bread} is also a
valid rule. Each rule is measured with a set of metrics, which are explained in the next section.

9.2.1 | Metrics

Concepts such as support, confidence, and lift are used to generate association rules. These concepts are
explained below.

9.2.1.1 Support

Support indicates the frequencies of items appearing together in baskets with respect to all possible 
baskets being considered (or in a sample). For example, the support for (beer, diaper) will be 2/4 (based
on the data shown in Figure 9.1), that is, 50% as it appears together in 2 baskets out of 4 baskets.

Assume that X and Y are items being considered. Let

1. N be the total number of baskets.
2. NXY represent the number of baskets in which X and Y appear together.
3. NX represent the number of baskets in which X appears.
4. NY represent the number of baskets in which Y appears.

Then the support between X and Y, Support(X, Y), is given by

 Support (,)X Y
N
N

XY= (9.1)

To filter out stronger associations, we can set a minimum support (for example, minimum support of 0.01).
This means the itemset must be present in at least 1% of baskets. Apriori algorithm uses minimum sup-
port criteria to reduce the number of possible itemset combinations, which in turn reduces computa-
tional requirements.

If minimum support is set at 0.01, an association between X and Y will be considered if and only if
both X and Y have minimum support of 0.01. Hence, apriori algorithm computes support for each item
independently and eliminates items with support less than minimum support. The support of each indi-
vidual item can be calculated using Eq. (9.1). 

Chapter 09_Recommender Systems.indd 293 4/24/2019 6:57:20 PM

Machine Learning using Python294

9.2.1.2 Confidence

Confidence measures the proportion of the transactions that contain X, which also contain Y. X is called
antecedent and Y is called consequent. Confidence can be calculated using the following formula:

 Confidence() (|)X Y P Y X
N
N

XY

X

→ = = (9.2)

where P(Y|X) is the conditional probability of Y given X.

9.2.1.3 Lift

Lift is calculated using the following formula: 

 Lift Support
Support Support

=
×

=(,)
() ()

X Y
X Y

N
N N

XY

X Y
 (9.3)

Lift can be interpreted as the degree of association between two items. Lift value 1 indicates that the 
items are independent (no association), lift value of less than 1 implies that the products are substitution
(purchase one product will decrease the probability of purchase of the other product) and lift value of
greater than 1 indicates purchase of Product X will increase the probability of purchase of Product Y.
Lift value of greater than 1 is a necessary condition of generating association rules. 

9.2.2 | Applying Association Rules

We will create association rules using the transactions data available in the groceries.csv dataset. Each line
in the dataset is an order and contains a variable number of items. Each item in each order is separated
by a comma in the dataset.

9.2.2.1 Loading the Dataset

Python’s open() method can be used to open the file and readlines() to read each line. The following code
block can be used for loading and reading the data:

all_txns = []

#open the file
with open(‘groceries.csv’) as f:

#read each line
content = f.readlines()
#Remove white space from the beginning and end of the line
txns = [x.strip() for x in content]
Iterate through each line and create a list of transactions
for each_txn in txns:

#Each transaction will contain a list of item in the
transaction
all_txns.append(each_txn.split(‘,’))

Chapter 09_Recommender Systems.indd 294 4/24/2019 6:57:20 PM

Chapter 9 · Recommender Systems 295

The steps in this code block are explained as follows:

1. The code opens the file groceries.csv.
2. Reads all the lines from the file.
3. Removes leading or trailing white spaces from each line.
4. Splits each line by a comma to extract items.
5. Stores the items in each line in a list.

In the end, the variable all_txns will contain a list of orders and list of items in each order. An order is
also called a transaction.

To print the first five transactions, we can use the following code:

all_txns[0:5]

The output is shown below:

[[‘citrus fruit’, ‘semi-finished bread’, ‘margarine’, ‘ready soups’],
[‘tropical fruit’, ‘yogurt’, ’coffee’],
[‘whole milk’],
[‘pip fruit’, ‘yogurt’, ‘cream cheese’, ‘meat spreads’],
[‘other vegetables’,
‘whole milk’,
‘condensed milk’,
‘long life bakery product’]]

9.2.2.2 Encoding the Transactions

Python library mlxtend provides methods to generate association rules from a list of transactions. But
these methods require the data to be fed in specific format. The transactions and items need to be con-
verted into a tabular or matrix format. Each row represents a transaction and each column represents an
item. So, the matrix size will be of M × N, where M represents the total number of transactions and N
represents all unique items available across all transactions (or the number of items sold by the seller). 
The items available in each transaction will be represented in one-hot-encoded format, that is, the item
is encoded 1 if it exists in the transaction or 0 otherwise. The mlxtend library has a feature pre-processing
implementation class called OnehotTransactions that will take all_txns as an input and convert the trans-
actions and items into one-hot-encoded format. The code for converting the transactional data using
one-hot encoding is as follows:

Import all required libraries
import pandas as pd
import numpy as np
from mlxtend.preprocessing import OnehotTransactions
from mlxtend.frequent_patterns import apriori, association_rules

The print method can be used for printing the first five transactions and items, indexed from 10 to 20.
The results are shown in Table 9.1.

Chapter 09_Recommender Systems.indd 295 4/24/2019 6:57:20 PM

Machine Learning using Python296

Initialize OnehotTransactions
one_hot_encoding = OnehotTransactions()
Transform the data into one-hot-encoding format
one_hot_txns = one_hot_encoding.fit(all_txns).transform(all_txns)
Convert the matrix into the dataframe.
one_hot_txns_df = pd.DataFrame(one_hot_txns,

columns=one_hot_encoding.columns_)

one_hot_txns_df.iloc[5:10, 10:20]

 TABLE 9.1 One-hot-encoded transactions data

Berries Beverages Bottled beer Bottled water Brandy Brown bread Butter Butter milk Cake bar Candles

5 0 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

It can be noticed from Table 9.1 that transaction with index 5 contains an item called butter (item pur-
chased by the customer) and transaction with index 7 contains an item bottled beer. All other entries in
Table 9.1 are 0, which implies that these items were not purchased. The transactional matrices are likely to
be sparse since each customer is likely to buy very few items in comparison to the total number of items
sold by the seller. The following code can be used for finding the size (shape or dimension) of the matrix.

one_hot_txns_df.shape

(9835, 171)

The sparse matrix has a dimension of 9835 × 171. So, a total of 9835 transactions and 171 items are
available. This matrix can be fed to generate rules, which will be discussed in the next sub-section.

9.2.2.3 Generating Association Rules

We will use apriori algorithms to generate itemset. The total number of itemset will depend on the
number of items that exist across all transactions. The number of items in the data can be obtained using
the following code:

len(one_hot_txns_df.columns)

171

The code gives us an output of 171, that is, as mentioned in the previous section, there are 171 items. For
itemset containing 2 items in each set, the total number of itemsets will be 171C2, that is, the number of
itemset will be 14535. It is a very large number and computationally intensive. To limit the number of

Chapter 09_Recommender Systems.indd 296 4/24/2019 6:57:21 PM

Chapter 9 · Recommender Systems 297

generated rules, we will apply minimum support value. All items that do not have the minimum support
will be removed from the possible itemset combinations.

Apriori algorithm takes the following parameters:

1. df: pandas − DataFrame in a one-hot-encoded format.
2. min_support: float − A float between 0 and 1 for minimum support of the itemsets returned.

Default is 0.5.
3. use_colnames: boolean − If true, uses the DataFrames’ column names in the returned DataFrame

instead of column indices.

We will be using a minimum support of 0.02, that is, the itemset is available in at least 2% of all transac-
tions. The following commands can be used for setting minimum support.

frequent_itemsets = apriori(one_hot_txns_df,
min_support=0.02,
use_colnames=True)

The following command can be used for printing 10 randomly sampled itemsets and their correspond-
ing support. The itemsets are shown in Table 9.2.

frequent_itemsets.sample(10, random_state = 90)

 TABLE 9.2 Itemsets with a minimum support value of 0.02

Support Itemsets

60 0.020437 [bottled beer, whole milk]

52 0.033859 [sugar]
89 0.035892 [other vegetables, tropical fruit]

105 0.021047 [root vegetables, tropical fruit]
88 0.032740 [other vegetables, soda]
16 0.058058 [coffee]

111 0.024504 [shopping bags, whole milk]
36 0.079817 [newspapers]

119 0.056024 [whole milk, yogurt]
55 0.071683 [whipped/sour cream]

The apriori algorithm filters out  frequent  itemsets which have minimum support of greater  than 2%. 
From Table 9.2, we can infer that whole milk and yogurt appear together in about 5.6% of the baskets.
These itemsets can be passed to association_rules for generating rules and corresponding metrics. The
following commands are used. The corresponding association rules are shown in Table 9.3

1. df : pandas − DataFrame of frequent itemsets with columns [‘support’, ‘itemsets’].
2. metric − In this use ‘confidence’ and ‘lift’ to evaluate if a rule is of interest. Default is ‘confidence’.
3. min_threshold − Minimal threshold for the evaluation metric to decide whether a candidate

rule is of interest.

Chapter 09_Recommender Systems.indd 297 4/24/2019 6:57:21 PM

Machine Learning using Python298

rules = association_rules(frequent_itemsets, # itemsets
metric=”lift”, # lift
min_threshold=1)

rules.sample(5)

 TABLE 9.3 Association rules

Antecedants Consequents Support Confidence Lift

7 (soda) (rolls/buns) 0.174377 0.219825 1.195124

55 (yogurt) (bottled water) 0.139502 0.164723 1.490387

74 (soda) (yogurt) 0.174377 0.156851 1.124368

89 (root vegetables) (whole milk) 0.108998 0.448694 1.756031

59 (citrus fruit) (yogurt) 0.082766 0.261671 1.875752

9.2.2.4 Top Ten Rules

Let us look at the top 10 association rules sorted by confidence. The rules stored in the variable rules are
sorted by confidence in descending order. They are printed as seen in Table 9.4.

rules.sort_values(‘confidence’,
ascending = False)[0:10]

 TABLE 9.4 Top 10 association rules based on confidence sorted from highest to lowest

Antecedants Consequents Support Confidence Lift

42 (yogurt, other vegetables) (whole milk) 0.043416 0.512881 2.007235

48 (butter) (whole milk) 0.055414 0.497248 1.946053

120 (curd) (whole milk) 0.053279 0.490458 1.919481

80 (other vegetables, root vegetables) (whole milk) 0.047382 0.489270 1.914833

78 (root vegetables, whole milk) (other vegetables) 0.048907 0.474012 2.449770

27 (domestic eggs) (whole milk) 0.063447 0.472756 1.850203

0 (whipped/sour cream) (whole milk) 0.071683 0.449645 1.759754

89 (root vegetables) (whole milk) 0.108998 0.448694 1.756031

92 (root vegetables) (other vegetables) 0.108998 0.434701 2.246605

24 (frozen vegetables) (whole milk) 0.048094 0.424947 1.663094

From Table 9.4, we can infer that the probability that a customer buys (whole milk), given he/she has
bought (yogurt, other vegetables), is 0.51. Now, these rules can be used to create strategies like keeping
the items together in store shelves or cross-selling.

Chapter 09_Recommender Systems.indd 298 4/24/2019 6:57:21 PM

Chapter 9 · Recommender Systems 299

9.2.2.5 Pros and Cons of Association Rule Mining

The following are advantages of using association rules:

1. Transactions data, which is used for generating rules, is always available and mostly clean.
2. The rules generated are simple and can be interpreted.

However, association rules do not take the preference or ratings given by customers into account, which
is an important information pertaining for generating rules. If customers have bought two items but
disliked one of them, then the association should not be considered. Collaborative filtering takes both,
what customers bought and how they liked (rating) the items, into consideration before recommending.

Association rules mining is used across several use cases including product recommendations, fraud
detection from transaction sequences, medical diagnosis, weather prediction, etc.

9.3 | COLLABORATIVE FILTERING

Collaborative filtering is based on the notion of similarity (or distance). For example, if two users A and
B have purchased the same products and have rated them similarly on a common rating scale, then
A and B can be considered similar in their buying and preference behavior. Hence, if A buys a new prod-
uct and rates high, then that product can be recommended to B. Alternatively, the products that A has
already bought and rated high can be recommended to B, if not already bought by B.

9.3.1 | How to Find Similarity between Users?

Similarity or the distance between users can be computed using the rating the users have given to the common
items purchased. If the users are similar, then the similarity measures such as Jaccard coefficient and cosine
similarity will have a value closer to 1 and distance measures such as Euclidian distance will have low value.
Calculating similarity and distance have already been discussed in Chapter 7. Most widely used distances or
similarities are Euclidean distance, Jaccard coefficient, cosine similarity, and Pearson correlation.

We will be discussing collaborative filtering technique using the example described below. The picture 
in Figure 9.2 depicts three users Rahul, Purvi, and Gaurav and the books they have bought and rated.

Gaurav

RahulPurvi

4 3 4
3

3

2

4

2

FIGURE 9.2 Users, their purchases and ratings.

Chapter 09_Recommender Systems.indd 299 4/24/2019 6:57:21 PM

Machine Learning using Python300

The users are represented using their rating on the Euclidean space in Figure 9.3. Here the dimensions
are represented by the two books Into Thin Air and Missoula, which are the two books commonly bought
by Rahul, Purvi, and Gaurav.

Gaurav

Rahul

Purvi

• Euclidean Distance

(x1, y1)

(x2, y2)

- -d = x x +(y yij i j i j
2 2())

FIGURE 9.3 Euclidean distance based on user’s ratings.

Figure 9.3 shows that Rahul’s preferences are similar to Purvi’s rather than to Gaurav’s. So, the other book,
Into the Wild, which Rahul has bought and rated high, can now be recommended to Purvi.

Collaborative filtering comes in two variations:

1. User-Based Similarity: Finds K similar users based on common items they have bought.
2. Item-Based Similarity: Finds K similar items based on common users who have bought those items.

Both algorithms are similar to K-Nearest Neighbors (KNN), which was discussed in Chapter 6.

9.3.2 | User-Based Similarity

We will use MovieLens dataset (see https://grouplens.org/datasets/movielens/) for finding similar users
based on common movies the users have watched and how they have rated those movies. The file ratings.
csv in the dataset contains ratings given by users. Each line in this file represents a rating given by a user
to a movie. The ratings are on the scale of 1 to 5. The dataset has the following features:

1. userId
2. movieId
3. rating
4. timestamp

Chapter 09_Recommender Systems.indd 300 4/24/2019 6:57:22 PM

Chapter 9 · Recommender Systems 301

9.3.2.1 Loading the Dataset

The following loads the file onto a DataFrame using pandas’ read_csv() method.

rating_df = pd.read_csv(“ml-latest-small/ratings.csv”)

Let us print the first five records.

rating_df.head(5)

The output is shown in Table 9.5.

 TABLE 9.5 Movie ID and rating

userId movieId rating timestamp

0 1 31 2.5 1260759144

1 1 1029 3.0 1260759179

2 1 1061 3.0 1260759182

3 1 1129 2.0 1260759185

4 1 1172 4.0 1260759205

The timestamp column will not be used in this example, so it can be dropped from the dataframe.

rating_df.drop(‘timestamp’, axis = 1, inplace = True)

The number of unique users in the dataset can be found using method unique() on userId column.

len(rating_df.userId.unique())

671

Similarly, the number of unique movies in the dataset is

len(rating_df.movieId.unique())

9066

Before proceeding further, we need to create a pivot table or matrix and represent users as rows and
movies as columns. The values of the matrix will be the ratings the users have given to those movies. As
there are 671 users and 9066 movies, we will have a matrix of size 671 × 9066. The matrix will be very
sparse as very few cells will be filled with the ratings using only those movies that users have watched.

Chapter 09_Recommender Systems.indd 301 4/24/2019 6:57:22 PM

Machine Learning using Python302

Those  movies  that  the  users  have  not  watched  and  rated  yet,  will  be  represented  as  NaN.  Pandas 
DataFrame has pivot method which takes the following three parameters:

1. index: Column value to be used as DataFrame’s index. So, it will be userId column of rating_df.
2. columns: Column values to be used as DataFrame’s columns. So, it will be movieId column of

rating_df.
3. values: Column to use for populating DataFrame’s values. So, it will be rating column of

rating_df.

user_movies_df = rating_df.pivot(index=‘userId’,
columns=‘movieId’,
values = “rating”

).reset_index(drop=True)
user_movies_df.index = rating_df.userId.unique()

Let us print the first 5 rows and first 15 columns. The result is shown in Table 9.6.

user_movies_df.iloc[0:5, 0:15]

 TABLE 9.6 First few records

movieId 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

2 NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.0 NaN NaN NaN NaN NaN

3 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

4 NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.0 NaN NaN NaN NaN NaN

5 NaN NaN 4.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

The DataFrame contains NaN for those entries where users have seen a movie and not rated. We can
impute those NaNs with 0 values using the following codes. The results are shown in Table 9.7.

user_movies_df.fillna(0, inplace = True
) user_movies_df.iloc[0:5, 0:10]

 TABLE 9.7 NaN entries replaced with 0.0

movieId 1 2 3 4 5 6 7 8 9 10

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0

5 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Chapter 09_Recommender Systems.indd 302 4/24/2019 6:57:22 PM

Chapter 9 · Recommender Systems 303

9.3.2.2 Calculating Cosine Similarity between Users

Each row in user_movies_df represents a user. If we compute the similarity between rows, it will represent
the similarity between those users. sklearn.metrics.pairwise_distances can be used to compute distance
between all pairs of users. pairwise_distances() takes a metric parameter for what distance measure to
use. We will be using cosine similarity for finding similarity.

Cosine similarity closer to 1 means users are very similar and closer to 0 means users are very
dissimilar. The following code can be used for calculating the similarity.

from sklearn.metrics import pairwise_distances
from scipy.spatial.distance import cosine, correlation

user_sim = 1 - pairwise_distances(user_movies_df.values,
 metric=”cosine”)
#Store the results in a dataframe
user_sim_df = pd.DataFrame(user_sim)
#Set the index and column names to user ids (0 to 671)
user_sim_df.index = rating_df.userId.unique()
user_sim_df.columns = rating_df.userId.unique()

We can print the similarity between first 5 users by using the following code. The result is shown in
Table 9.8.

user_sim_df.iloc[0:5, 0:5]

 TABLE 9.8 Cosine similarity values

1 2 3 4 5

1 1.000000 0.000000 0.000000 0.074482 0.016818

2 0.000000 1.000000 0.124295 0.118821 0.103646

3 0.000000 0.124295 1.000000 0.081640 0.151531

4 0.074482 0.118821 0.081640 1.000000 0.130649

5 0.016818 0.103646 0.151531 0.130649 1.000000

The total dimension of the matrix is available in the shape variable of user_sim_df matrix.

user_sim_df.shape

(671, 671)

user_sim_df matrix shape shows that it contains the cosine similarity between all possible pairs of users.
And each cell represents the cosine similarity between two specific users. For example, the similarity
between userid 1 and userid 5 is 0.016818.

Chapter 09_Recommender Systems.indd 303 4/24/2019 6:57:22 PM

Machine Learning using Python304

The diagonal of the matrix shows the similarity of an user with itself (i.e., 1.0). This is true as each user
is most similar to himself or herself. But we need the algorithm to find other users who are similar to a
specific user. So, we will set the diagonal values as 0.0 . The result is shown in Table 9.9.

np.fill_diagonal(user_sim, 0)
user_sim_df.iloc[0:5, 0:5]

 TABLE 9.9 Diagonal similarity value set to 0

1 2 3 4 5

1 0.000000 0.000000 0.000000 0.074482 0.016818

2 0.000000 0.000000 0.124295 0.118821 0.103646

3 0.000000 0.124295 0.000000 0.081640 0.151531

4 0.074482 0.118821 0.081640 0.000000 0.130649

5 0.016818 0.103646 0.151531 0.130649 0.000000

All diagonal values are set to 0, which helps to avoid selecting self as the most similar user.

9.3.2.3 Filtering Similar Users

To find most similar users, the maximum values of each column can be filtered. For example, the most
similar user to first 5 users with userid 1 to 5 can be obtained using the following code:

user_sim_df.idxmax(axis=1)[0:5]

1 325
2 338
3 379
4 518
5 313
dtype: int64

The above result shows user 325 is most similar to user 1, user 338 is most similar to user 2, and so on.
To dive a little deeper to understand the similarity, let us print the similarity values between user 2

and users ranging from 331 to 340.

user_sim_df.iloc[1:2, 330:340]

Output

331 332 333 334 335 336 337 338 339 340

2 0.030344 0.002368 0.052731 0.047094 0.0 0.053044 0.05287 0.581528 0.093863 0.081814

Chapter 09_Recommender Systems.indd 304 4/24/2019 6:57:22 PM

Chapter 9 · Recommender Systems 305

The output shows that the cosine similarity between userid 2 and userid 338 is 0.581528 and highest.
But why is user 338 most similar to user 2? This can be explained intuitively if we can verify that the two
users have watched several movies in common and rated very similarly. For this, we need to read movies
dataset, which contains the movie id along with the movie name.

9.3.2.4 Loading the Movies Dataset

Movie information is contained in the file movies.csv. Each line of this file contains the movieid, the
movie name, and the movie genre.

Movie titles are entered manually or imported from https://www.themoviedb.org/ and include the
year of release in parentheses. Errors and inconsistencies may exist in these titles. The movie can be
loaded using the following codes:

movies_df = pd.read_csv(“ml-latest-small/movies.csv”)

We will print the first 5 movie details using the following code. The result is shown in Table 9.10.

movies_df[0:5]

 TABLE 9.10 Movie details

movieid title genres

0 1 Toy Story (1995) Adventure | Animation | Children | Comedy | Fantasy
1 2 Jumanji (1995) Adventure | Children | Fantasy
2 3 Grumpier Old Men (1995) Comedy | Romance
3 4 Waiting to Exhale (1995) Comedy | Drama | Romance
4 5 Father of the Bride Part II (1995) Comedy

The genres column is dropped from the DataFrame, as it is not going to be used in this analysis.

movies_df.drop(‘genres’, axis = 1, inplace = True)

9.3.2.5 Finding Common Movies of Similar Users

The following method takes userids of two users and returns the common movies they have watched and
their ratings.

def get_user_similar_movies(user1, user2):
Inner join between movies watched between two users will give
the common movies watched.
common _movies = rating_df[rating_df.userId == user1].merge(

rating_df[rating_df.userId == user2],
on = “movieId”,
how = “inner”)

Chapter 09_Recommender Systems.indd 305 4/24/2019 6:57:22 PM

Machine Learning using Python306

join the above result set with movies details
return common_movies.merge(movies_df, on = ‘movieId’)

To find out the movies, user 2 and user 338 have watched in common and how they have rated each one
of them, we will filter out movies that both have rated at least 4 to limit the number of movies to print.
The movies are shown in Table 9.11.

common_movies = get_user_similar_movies(2, 338)

common_movies[(common_movies.rating_x >= 4.0) &
((common_movies.rating_y >= 4.0))]

 TABLE 9.11 Common movies between user 2 and user 338 with least rating of 4.0

userId_x movieId rating_x userId_y rating_y title

0 2 17 5.0 338 4.0 Sense and Sensibility (1995)

2 2 47 4.0 338 4.0 Seven (a.k.a. Se7en) (1995)

5 2 150 5.0 338 4.0 Apollo 13 (1995)

28 2 508 4.0 338 4.0 Philadelphia (1993)

29 2 509 4.0 338 4.0 Piano, The (1993)

31 2 527 4.0 338 5.0 Schindler's List (1993)

34 2 589 5.0 338 5.0 Terminator 2: Judgment Day (1991)

From the table we can see that users 2 and 338 have watched 7 movies in common and have rated almost
on the same scale. Their preferences seem to be very similar.

How about users with dissimilar behavior? Let us check users 2 and 332, whose cosine similarity 
is 0.002368.

common_movies = get_user_similar_movies(2, 332)
common_movies

userId_x movieId rating_x userId_y rating_y title

0 2 552 3.0 332 0.5 Three Musketeers, The (1993)

Users 2 and 332 have only one movie in common and have rated very differently. They indeed are very 
dissimilar.

9.3.2.6 Challenges with User-Based Similarity

Finding user similarity does not work for new users. We need to wait until the new user buys a few items
and rates them. Only then users with similar preferences can be found and recommendations can be made
based on that. This is called cold start problem in recommender systems. This can be overcome by using
item-based similarity. Item-based similarity is based on the notion that if two items have been bought by

Chapter 09_Recommender Systems.indd 306 4/24/2019 6:57:23 PM

Chapter 9 · Recommender Systems 307

many users and rated similarly, then there must be some inherent relationship between these two items. In
other terms, in future, if a user buys one of those two items, he or she will most likely buy the other one.

9.3.3 | Item-Based Similarity

If two movies, movie A and movie B, have been watched by several users and rated very similarly, then
movie A and movie B can be similar in taste. In other words, if a user watches movie A, then he or she is
very likely to watch B and vice versa.

9.3.3.1 Calculating Cosine Similarity between Movies

In this approach, we need to create a pivot table, where the rows represent movies, columns represent
users, and the cells in the matrix represent ratings the users have given to the movies. So, the pivot()
method will be called with movieId as index and userId as columns as described below:

rating_mat = rating_df.pivot(index=’movieId’,
columns=’userId’,

values = “rating”).reset_index(drop = True)
Fill all NaNs with 0
rating_mat.fillna(0, inplace = True)
Find the correlation between movies
movie_sim = 1 - pairwise_distances(rating_mat.values,

metric=”correlation”)
Fill the diagonal with 0, as it repreresents the auto-correlation
of movies
movie_sim_df = pd.DataFrame(movie_sim)

Now, the following code is used to print similarity between the first 5 movies. The results are shown in
Table 9.12.

movie_sim_df.iloc[0:5, 0:5]

 TABLE 9.12 Movie similarity

0 1 2 3 4

0 1.000000 0.223742 0.183266 0.071055 0.105076
1 0.223742 1.000000 0.123790 0.125014 0.193144
2 0.183266 0.123790 1.000000 0.147771 0.317911
3 0.071055 0.125014 0.147771 1.000000 0.150562
4 0.105076 0.193144 0.317911 0.150562 1.000000

The shape of the above similarity matrix is

movie_sim_df.shape

(9066, 9066)

Chapter 09_Recommender Systems.indd 307 4/24/2019 6:57:23 PM

Machine Learning using Python308

There are 9066 movies and the dimension of the matrix (9066, 9066) shows that the similarity is calcu-
lated for all pairs of 9066 movies.

9.3.3.2 Finding Most Similar Movies

In the following code, we write a method get_similar_movies() which takes a movieid as a parameter and
returns the similar movies based on cosine similarity. Note that movieid and index of the movie record in
the movies_df are not same. We need to find the index of the movie record from the movieid and use that
to find similarities in the movie_sim_df. It takes another parameter topN to specify how many similar
movies will be returned.

def get_similar_movies(movieid, topN = 5):
Get the index of the movie record in movies_df
movieidx = movies_df[movies_df.movieId == movieid].index[0]
movies_df[‘similarity’] = movie_sim_df.iloc[movieidx]
top_n = movies_df.sort_values([“similarity”], ascending =
 False)[0:topN]
return top_n

The above method get_similar_movies() takes movie id as an argument and returns other movies which
are similar to it. Let us find out how the similarities play out by finding out movies which are similar to 
the movie Godfather. And if it makes sense at all! The movie id for the movie Godfather is 858.

movies_df[movies_df.movieId == 858]

movieId title similarity

695 858 Godfather, The (1972) 1.0

get_similar_movies(858)

Table 9.13 shows the movies that are similar to Godfather.

 TABLE 9.13 Movies similar to Godfather

movieId title similarity

695 858 Godfather, The (1972) 1.000000

977 1221 Godfather: Part II, The (1974) 0.709246

969 1213 Goodfellas (1990) 0.509372

951 1193 One Flew Over the Cuckoo's Nest (1975) 0.430101

1744 2194 Untouchables, The (1987) 0.418966

It can be observed from Table 9.13 that users who watched ‘Godfather, The’, also watched ‘Godfather:
Part II’ the most. This makes absolute sense! It also indicates that the users have watched Goodfellas
(1990), One Flew Over the Cuckoo’s Nest (1975), and Untouchables, The (1987).

Chapter 09_Recommender Systems.indd 308 4/24/2019 6:57:23 PM

Chapter 9 · Recommender Systems 309

So, in future, if any user watches ‘Godfather, The’, the other movies can be recommended to them.
Let us find out which movies are similar to the movie Dumb and Dumber. 

movies_df[movies_df.movieId == 231]

movieId title similarity

203 231 Dumb & Dumber (Dumb and Dumber) (1994) 0.054116

get_similar_movies(231)

Table 9.14 shows the movies that are similar to Dumb and Dumber

 TABLE 9.14 Movies similar to Dumb and Dumber

movield title similarity

203 231 Dumb & Dumber (Dumb and Dumber) (1994) 1.000000

309 344 Ace Ventura: Pet Detective (1994) 0.635735

18 19 Ace Ventura: When Nature Calls (1995) 0.509839

447 500 Mrs. Doubtfire (1993) 0.485764

331 367 Mask, The (1994) 0.461103

We can see from the table, most of the movies are of comedy genre and belong to the actor Jim Carrey.

9.4 | USING SURPRISE LIBRARY

For real-world implementations, we need a more extensive library which hides all the implementation
details and provides abstract Application Programming Interfaces  (APIs)  to build recommender sys-
tems. Surprise is a Python library for accomplishing this. It provides the following features:

1. Various ready-to-use prediction algorithms like neighborhood methods (user similarity and
item similarity), and matrix factorization-based. It also has built-in similarity measures such as
cosine, mean square distance (MSD), Pearson correlation coefficient, etc.

2. Tools to evaluate, analyze, and compare the performance of the algorithms. It also provides
methods to recommend.

We import the required modules or classes from surprise library. All modules or classes and their pur-
pose are discussed in the subsequent sections.

from surprise import Dataset, Reader, KNNBasic, evaluate, accuracy

The surprise.Dataset is used to load the datasets and has a method load_from_df to convert DataFrames
to Dataset. Reader class can be used to provide the range of rating scales that is being used.

Chapter 09_Recommender Systems.indd 309 4/24/2019 6:57:23 PM

Machine Learning using Python310

reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(rating_df [[‘userId’,

‘movieId’,
‘rating’]], reader=reader)

9.4.1 | User-Based Similarity Algorithm

The surprise.prediction_algorithms.knns.KNNBasic provides the collaborative filtering algorithm and
takes the following parameters:

1. K: The (max) number of neighbors to take into account for aggregation.
2. min_k: The minimum number of neighbors to take into account for aggregation, if there are not

enough neighbors.
3. sim_options - (dict): A dictionary of options for the similarity measure.

(a) name: Name of the similarity to be used, e.g., cosine, msd or pearson.
(b) user_based: True for user-based similarity and False for item-based similarity.

The following code implements movies recommendation based on Pearson correlation and 20 nearest
similar users.

Set coefficient and similarity parameters for building model
item_based_cosine_sim = { ‘name’: ‘pearson’,

‘user_based’: True}

knn = KNNBasic(k= 20,
 min_k = 5,
 sim_options = item_based_cosine_sim)

The surprise.model_selection provides cross_validate method to split the dataset into multiple folds, runs
the algorithm, and reports the accuracy measures. It takes the following parameters:

1. algo: The algorithm to evaluate.
2. data (Dataset): The dataset on which to evaluate the algorithm.
3. Measures: The performance measures to compute. Allowed names are function names as

defined in the accuracy module. Default is [‘rmse’, ‘mae’].
4. cv: The number of folds for K-Fold cross validation strategy.

We can do 5-fold cross-validation to measure RMSE score to find out how the algorithm performs on
the dataset.

from surprise.model_selection import cross_validate

cv_results = cross_validate(knn,
data,
measures=[‘RMSE’],
cv=5,
verbose=False)

Chapter 09_Recommender Systems.indd 310 4/24/2019 6:57:23 PM

Chapter 9 · Recommender Systems 311

It reports test accuracy for each fold along with the time it takes to build and test the models. Let us take 
the average accuracy across all the folds.

np.mean(cv_results.get(‘test_rmse’))

0.9909387452695102

This model can predict with root mean square error (RMSE) of 0.99. But can we do better?

9.4.2 | Finding the Best Model

Similar to finding the most optimal hyper-parameters using GridSearchCV in sklearn as discussed in
Chapter  6: Advanced Machine  Learning, Surprise provides GridSearchCV to search through various
models and similarity indexes to find the model that gives the highest accuracy.

The surprise.model_selection.search.GridSearchCV takes the following parameters:

1. algo_class: The class of the algorithm to evaluate (e.g., KNNBasic).
2. param_grid: Dictionary with hyper parameters as keys and list of corresponding possible values

that will be used to search optimal parameter values. All combinations will be evaluated with
desired algorithm.

3. measures: The performance measures to compute (i.e., [‘rmse’, ‘mae’]). 
4. cv: The number of folds for K-Fold cross validation strategy.
5. refit: If True, refit the algorithm on the whole dataset using the set of parameters that gave the

best average performance. If False, it does not refit on the whole dataset.

The GridSearchCV method returns the best model and its parameters. The possible values for the param-
eters that will be searched to find the most optimal parameters are as below:

1. Number of neighbors [10, 20]. 
2. Similarity indexes [‘cosine’, ‘pearson’] .
3.  User-based or item-based similarity.

from surprise.model_selection.search import GridSearchCV

param_grid = { ‘k’: [10, 20],
 ‘sim_options’: { ‘name’: [‘cosine’, ‘pearson’],

‘user_based’: [True, False]
 }

grid_cv = GridSearchCV(KNNBasic,
param_grid,
measures=[‘rmse’],
cv=5,
refit=True)

grid_cv.fit(data)

Let us print the score and parameters of the best model.

Chapter 09_Recommender Systems.indd 311 4/24/2019 6:57:23 PM

Machine Learning using Python312

Best RMSE score

print(grid_cv.best_score[‘rmse’])

Combination of parameters that gave the best RMSE score
print(grid_cv.best_params[‘rmse’])

0.9963783863084851
{‘sim_options’: {‘name’: ‘cosine’, ‘user_based’: True}, ‘k’: 20}

The best model is user-based collaborative filtering with cosine similarity and 20 similar users. Details of
the grid search are captured in the variable cv_results. We can convert it to a DataFrame and print a few
columns like param_sim_options and mean_test_rmse.

results_df = pd.DataFrame.from_dict(grid_cv.cv_results)
results_df[[‘param_k’, ‘param_sim_options’, ‘mean_test_rmse’,

‘rank_test_rmse’]]

 TABLE 9.15 Best model

param_k param_sim_options mean_test_rmse rank_test_rmse

0 10 {'name’: 'cosine', 'user_based': True} 1.009724 4
1 20 {'name': 'cosine', 'user_based': True} 0.996378 1
2 10 {'name': 'cosine', 'user_based': False} 1.048802 8
3 20 {'name': 'cosine', 'user_based': False} 1.015225 6
4 10 {'name': 'pearson', 'user_based': True} 1.012283 5
5 20 {'name': 'pearson', 'user_based': True} 1.000766 2
6 10 {'name': 'pearson', 'user_based': False} 1.030900 7
7 20 {'name': 'pearson', 'user_based': False} 1.004205 3

The detailed output of grid search is shown in Table 9.15. Each record represents the parameters used to
build the model and the corresponding RMSE of the model. The last column rank_test_rmse shows the
rank of the model as per the RMSE on test data (mean_test_rmse) among all the models.

9.4.3 | Making Predictions

To make predictions, the weighted ratings are calculated using the ratings of K nearest users, and the
movies with highest weighted ratings are recommended. For example, if ri is the rating of nearest user
(or neighbor) ui and there are K nearest neighbors, si is the similarity between the user and the neigh-
bor, then predicted rating for the movie would be

 r
r s

r

i i
i

K

i
i

K= =

=

∑

∑
1

1

 (9.4)

Chapter 09_Recommender Systems.indd 312 4/24/2019 6:57:23 PM

Chapter 9 · Recommender Systems 313

All models in surprise library provide a method called predict(), which takes user id and movie id and
predicts its ratings. It returns a Prediction class, which has a variable est (stands for estimated value) that
gives the predicted rating.

grid_cv.predict(1, 2)

Prediction(uid=1, iid=2, r_ui=None, est=2.5532967054839784,
details= {‘was_impossible’: False, ‘actual_k’: 20})

9.5 | MATRIX FACTORIZATION

Matrix  factorization  is  a matrix  decomposition  technique. Matrix  decomposition  is  an  approach  for 
reducing a matrix into its constituent parts. Matrix factorization algorithms decompose the user-item
matrix into the product of two lower dimensional rectangular matrices.

In Figure 9.4, the original matrix contains users as rows, movies as columns, and rating as values.
The matrix can be decomposed into two lower dimensional rectangular matrices.

Users-Movies Rating Matrix

Users-Factors Matrix

Users

Users

U1
F1

F1
M1 M2 M3 M4 M5

F2
F3

F2
Factors

Factors
3.22
1.57

1.47
0.6
0.42

1
1.01

2.73 1.73
1.27 0.31

1.39
0

0

0

0.390.95

0.73
0

0

F3
0

2.53
1.441.62

U2
U3

Movies
M3 M4 M5M1

U1
U2 2

3

3
4 4
4 2

2
2 2

1
1

5

5

3U3

M2

Factors-Movies Matrix
Movies

FIGURE 9.4 Matrix factorization.

The Users–Movies matrix contains the ratings of 3 users (U1, U2, U3) for 5 movies (M1 through M5). 
This Users–Movies matrix is factorized into a (3, 3) Users–Factors matrix and (3, 5) Factors–Movies
matrix. Multiplying  the Users–Factors  and  Factors–Movies matrix  will  result  in  the  original Users–
Movies matrix.

The idea behind matrix factorization is that there are latent factors that determine why a user rates a
movie, and the way he/she rates. The factors could be the story or actors or any other specific attributes
of the movies. But we may never know what these factors actually represent. That is why they are called
latent factors. A matrix with size (n, m), where n is the number of users and m is the number of movies,
can be factorized into (n, k) and (k, m) matrices, where k is the number of factors.

The Users–Factors matrix represents that there are three factors and how each user has preferences
towards these factors. Factors–Movies matrix represents the attributes the movies possess.

In the above example, U1 has the highest preference for factor F2, whereas U2 has the highest prefer-
ence for factor F3. Similarly, the F2 factor is high in movies M2 and M4. Probably this is the reason why 
U1 has given high ratings to movies M2 (4) and M4 (5).

Chapter 09_Recommender Systems.indd 313 4/24/2019 6:57:24 PM

Machine Learning using Python314

One of the popular techniques for matrix factorization is Singular Vector Decomposition (SVD). 
Surprise library provides SVD algorithm, which takes the number of factors (n_factors) as a parameter.
We will use 5 latent factors for our example.

from surprise import SVD

Use 10 factors for building the model
svd = SVD(n_factors = 5)

Let us use five-fold cross-validation for testing model’s performance.

cv_results = cross_validate(svd,
data,
measures=[‘RMSE’],
cv=5,
verbose=True)

Evaluating RMSE of algorithm SVD on 5 split(s).
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std

RMSE (testset) 0.8904 0.8917 0.8983 0.8799 0.8926 0.8906 0.0060
Fit time 1.91 1.99 1.96 1.87 1.84 1.91 0.06
Test time 0.21 0.18 0.18 0.17 0.18 0.18 0.01

Mean RMSE for SVD is about 0.8906, which is better than earlier algorithms.

 CONCLUSION

 1. In this chapter, we learnt how customer’s purchase history and feedback information can be used to
understand their buying behavior and make personalized recommendations.

 2.  Different recommendation techniques that are used in real world are association rules, collaborative 
filtering, and matrix factorization.

 3. In association rules, metrics such as support, confidence, and lift are used to validate and filter out
good recommendation rules for deployment.

 4. Collaborative filtering based recommendations are based on user-based and item-based similarity
indexes, which use distance metrics such as Euclidean, Cosine, or Pearson correlations.

 5.  Python library surprise can be used to build recommendation systems. It supports grid search mech-
anism to search for optimal modes from a set of possible model parameters.

 EXERCISES

Answer Questions 1 to 5 using the Dataset Online Retail.xlsx.

The dataset Online Retail.xlsx and the description of the data is taken from https://archive.ics.uci.edu/ml/
datasets/online+retail

Online Retail.xlsx contains records of transactions that occurred between 01/12/2010 and 09/12/2011
for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion 
gifts. Many customers of the company are wholesalers. The attributes in the dataset are:

 z InvoiceNo −  Invoice  number.  Nominal,  a  6-digit  integral  number  uniquely  assigned  to  each 
transaction. If this code starts with letter ‘c’, it indicates a cancellation.

Chapter 09_Recommender Systems.indd 314 4/24/2019 6:57:24 PM

Chapter 9 · Recommender Systems 315

 z StockCode − Product (item) code. Nominal, a 5-digit integral number uniquely assigned to each 
distinct product.

 z Description − Product (item) name. Nominal. 
 z Quantity − The quantities of each product (item) per transaction. Numeric. 
 z InvoiceDate − Invoice Date and time. Numeric, the day and time when each transaction was gener-

ated.
 z UnitPrice − Unit price. Numeric, Product price per unit in sterling. 
 z CustomerID − Customer number. Nominal, a 5-digit integral number uniquely assigned to each 

customer.
 z Country − Country name. Nominal, the name of the country where each customer resides.

1. Select only the transactions that have occurred during the period 09/01/11 and 11/30/11 and create
a new subset of data. For answering Questions 2 to 5, use this subset of data.

2. Transform the above dataset in Question 1 into another dataset where each record represents an
invoice. The record will have an InvoiceNo as column and StockCodes of the corresponding items
bought in the invoice. The number of StockCodes in an invoice can be variable.

3.  Prepare the data and generate the association rules from the above dataset in Question 2. Filter out 
all the rules by minimum support of 0.01 and lift of more than 1.0.

4. Find the top 10 rules from the above association rule set, sorted by confidence in descending order.
5. Repeat the complete exercise from Question 1 to Question 4 for all invoices of country France only

for the period between 01/12/2010 and 09/12/2011. Find the top 10 rules from the above association
rule set, sorted by confidence in descending order.

Answer Questions 6 to 8 using the datasets ratings.csv and movies.csv, which are already used in the
chapter.

6. Filter out the ratings records for the movies that belong to only “Action” genre. Calculate item simi-
larity indexes between the movies based on movies the users have bought in “Action” genre and how
they have rated them. Use Pearson correlation coefficient to find similarities. Then recommend top 5 
similar movies to the following movies:
a. Heat
b. Eraser

7. Filter out the ratings records for the movies that belong to either “Animation” or “Children” genre.
And Calculate item similarity indexes between the movies based on movies the users have bought in
either “Animation” or “Children” genre and how they have rated them. Use cosine similarity index to 
find similarities. Then recommend top 5 similar movies to the following movies:
a.  Lion King
b. The Incredibles

8.  Use surprise library and grid search mechanism to find the best model to make recommendations for
movies in “Action” genre only. Use the following possible parameters to search for best model:
a.  Number of neighbors [5, 10, 20].
b.  Similarity indexes [‘Cosine’, ‘Pearson’, ‘Euclidean’].
c.  User-based or item-based similarity.

Chapter 09_Recommender Systems.indd 315 4/24/2019 6:57:24 PM

Machine Learning using Python316

 REFERENCES

 1. Agrawal R and Srikant R (1994). Fast Algorithms for Mining Association Rules in Large Databases,
Proceeding VLDB’94, Proceedings of the 20th International Conference on Very Large Databases, 
pp. 487−499, September 12−15, 1994, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. 
(See https://dl.acm.org/citation.cfm?id=672836)

 2. Groceries dataset from  http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/Presentations/
ml13/groceries.csv

 3. Movielens dataset from https://grouplens.org/datasets/movielens/
 4. Movies information https://www.themoviedb.org/

Chapter 09_Recommender Systems.indd 316 4/24/2019 6:57:24 PM

http://https://www.themoviedb.org/

10.1 | OVERVIEW

In today’s world, one of the biggest sources of information is text data, which is unstructured in nature.
Finding customer sentiments from product reviews or feedbacks, extracting opinions from social media
data are a few examples of text analytics. Finding insights from text data is not as straight forward as struc-
tured data and it needs extensive data pre-processing. All the techniques that we have learnt so far require
data to be available in a structured format (matrix form). Algorithms that we have explored so far, such as
regression, classification, or clustering, can be applied to text data only when the data is cleaned and pre-
pared. For example, predicting stock price movements from news articles is an example of regression in
which the features are positive and negative sentiments about a company. Classifying customer sentiment
from his or her review comments as positive and negative is an example of classification using text data.

In this chapter, we will use a dataset that is available at https://www.kaggle.com/c/si650winter11/ data
(the original data was contributed by the University of Michigan) for building a classification model to
classify sentiment. The data consists of sentiments expressed by users on various movies. Here each com-
ment is a record, which is either classified as positive or negative.

10.2 | SENTIMENT CLASSIFICATION

In the dataset described in the previous paragraph, sentiment_train dataset contains review comments
on several movies. Comments in the dataset are already labeled as either positive or negative. The dataset
contains the following two fields separated by a tab character:

1. text: Actual review comment on the movie.
2. sentiment: Positive sentiments are labelled as 1 and negative sentiments are labelled as 0.

LEARNING OBJECTIVES

After completing this chapter, you will be able to
•  Understand the challenges associated with the handling of text data.
•  Learn various pre-processing steps to prepare text data for modelling.
•  Learn Naïve–Bayes classification algorithm.
•  Learn to develop model for sentiment classification.

CHAPTER

10Text Analytics

Chapter 10_Text Analytics.indd 317 4/24/2019 6:57:42 PM

Machine Learning using Python318

10.2.1 | Loading the Dataset

Loading the data using pandas’ read_csv() method is done as follows:

import pandas as pd
import numpy as np

import warnings
warnings.filterwarnings(‘ignore’)

train_ds = pd.read_csv(“sentiment_train”, delimiter=“\t”)
train_ds.head(5)

First five records of loaded data are shown in Table 10.1.

 TABLE 10.1 First five records of loaded data

Sentiment Text

0 1 The Da Vinci Code book is just awesome.

1 1 this was the first clive cussler i’ve ever read, but even books like Relic, and Da Vinci code were
more plausible than this.

2 1 i liked the Da Vinci Code a lot.

3 1 i liked the Da Vinci Code a lot.

4 1 I liked the Da Vinci Code but it ultimatly didn’t seem to hold it’s own.

In Table 10.1, few of the texts may have been truncated while printing as the default column width is
limited. This can be changed by setting max_colwidth parameter to increase the width size.

Each record or example in the column text is called a document. Use the following code to print the
first five positive sentiment documents.

pd.set_option(‘max_colwidth’, 800)
train_ds[train_ds.sentiment == 1][0:5]

Table 10.2 summarizes the first five positive sentiments. Sentiment value of 1 denotes positive sentiment.

 TABLE 10.2 First five positive sentiments

Sentiment Text

0 1 The Da Vinci Code book is just awesome.
1 1 this was the first clive cussler i’ve ever read, but even books like Relic, and Da Vinci code were more plausible

than this.
2 1 i liked the Da Vinci Code a lot.
3 1 i liked the Da Vinci Code a lot.
4 1 I liked the Da Vinci Code but it ultimatly didn’t seem to hold it’s own.

Chapter 10_Text Analytics.indd 318 4/24/2019 6:57:43 PM

Chapter 10 · Text Analytics 319

To print first five negative sentiment documents use

train_ds[train_ds.sentiment == 0][0:5]

Table 10.3 summarizes the first five negative sentiments. Sentiment value of 0 denotes negative
sentiment.

 TABLE 10.3 List of negative comments

Sentiment Text

3943 0 da vinci code was a terrible movie.

3944 0 Then again, the Da Vinci code is super shitty movie, and it made like 700 million.

3945 0 The Da Vinci Code comes out tomorrow, which sucks.

3946 0 i thought the da vinci code movie was really boring.

3947 0 God, Yahoo Games has this truly-awful looking Da Vinci Code-themed skin on it’s
chessboard right now.

In the next section, we will be discussing exploratory data analysis on text data.

10.2.2 | Exploring the Dataset

Exploratory data analysis can be carried out by counting the number of comments, positive comments,
negative comments, etc. For example, we can check how many reviews are available in the dataset? Are
the positive and negative sentiment reviews well represented in the dataset? Printing metadata of the
DataFrame using info() method.

train_ds.info()

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 6918 entries, 0 to 6917
Data columns (total 2 columns):
sentiment 6918 non-null int64
text 6918 non-null object
dtypes: int64(1), object(1)
memory usage: 108.2+ KB

From the output we can infer that there are 6918 records available in the dataset. We create a count
plot (Figure 10.1) to compare the number of positive and negative sentiments.

import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline

plt.figure(figsize=(6,5))
Create count plot

Chapter 10_Text Analytics.indd 319 4/24/2019 6:57:43 PM

Machine Learning using Python320

ax = sn.countplot(x=‘sentiment’, data=train_ds)
Annotate
for p in ax.patches:

ax.annotate(p.get_height(), (p.get_x()+0.1,
p.get_height()+50))

4000

3500

3000
2975

3943

2500

2000

1500

1000

sentiment

co
un

t

0 1

500

0

FIGURE 10.1 Number of records of positive and negative sentiments.

From Figure 10.1, we can infer that there are total 6918 records (feedback on movies) in the dataset.
Out of 6918 records, 2975 records belong to negative sentiments, while 3943 records belong to positive
sentiments. Thus, positive and negative sentiment documents have fairly equal representation in the
dataset.

Before building the model, text data needs pre-processing for feature extraction. The following sec-
tion explains step by step text pre-processing techniques.

10.2.3 | Text Pre-processing

Unlike structured data, features (independent variables) are not explicitly available in text data. Thus,
we need to use a process to extract features from the text data. One way is to consider each word as
a feature and find a measure to capture whether a word exists or does not exist in a sentence. This is
called the bag-of-words (BoW) model. That is, each sentence (comment on a movie or a product) is
treated as a bag of words. Each sentence (record) is called a document and collection of all documents
is called corpus.

10.2.3.1 Bag-of-Words (BoW) Model

The first step in creating a BoW model is to create a dictionary of all the words used in the corpus. At
this stage, we will not worry about grammar and only occurrence of the word is captured. Then we will

Chapter 10_Text Analytics.indd 320 4/24/2019 6:57:43 PM

Chapter 10 · Text Analytics 321

convert each document to a vector that represents words available in the document. There are three ways
to identify the importance of words in a BoW model:

1. Count Vector Model
2. Term Frequency Vector Model
3. Term Frequency-Inverse Document Frequency (TF-IDF) Model

We will discuss these vector models in the following subsections.

Count Vector Model

Consider the following two documents:

1. Document 1 (positive sentiment): I really really like IPL.
2. Document 2 (negative sentiment): I never like IPL.

Note: IPL stands for Indian Premier League.

The complete vocabulary set (aka dictionary) for the above two documents will have words such as I,
really, never, like, IPL. These words can be considered as features (x1 through x5). For creating count
vectors, we count the occurrence of each word in the document as shown in Table 10.4. The y-column in
Table 10.4 indicates the sentiment of the statement: 1 for positive and 0 for negative sentiment.

 TABLE 10.4 Count vector for document 1 and document 2

Documents x1 x2 x3 x4 x5 y

I really never like ipl

I really really like ipl 1 2 0 1 1 1

I never like ipl 1 0 1 1 1 0

Term Frequency Vector Model

Term frequency (TF) vector is calculated for each document in the corpus and is the frequency of each
term in the document. It is given by,

 Term Frequency (Number of occurrences of word in thTF i
i) = ee document

Total number of words in the document
 (10.1)

where TFi is the term frequency for word (aka token). TF representation for the two documents is shown
in Table 10.5.

 TABLE 10.5 TF vector

x1 x2 x3 x4 x5 y

I really never like ipl

I really really like ipl 0.2 0.4 0 0.2 0.2 1

I never like ipl 0.25 0 0.25 0.25 0.25 0

Chapter 10_Text Analytics.indd 321 4/24/2019 6:57:44 PM

Machine Learning using Python322

Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF measures how important a word is to a document in the corpus. The importance of a word (or
token) increases proportionally to the number of times a word appears in the document but is reduced
by the frequency of the word present in the corpus. TF-IDF for a word i in the document is given by

 TF IDF TF N
Ni i

i

- = ´ +
æ

è
ç

ö

ø
÷ln 1 (10.2)

where N is the total number of documents in the corpus, Ni is the number of documents that contain
word i.

The IDF value for each word for the above two documents is given in Table 10.6.

 TABLE 10.6 IDF values

x1 x2 x3 x4 x5

IDF Values 0.693 1.098 1.098 0.693 0.693

The TF-IDF values for the two documents are shown in Table 10.7

 TABLE 10.7 TF-IDF values

x1 x2 x3 x4 x5 y

1 really never like ipl

I really really like ipl 0.1386 0.4394 0.0 0.1386 0.1386 1

I never like ipl 0.1732 0.0 0.2746 0.1732 0.1732 0

10.2.3.2 Creating Count Vectors for sentiment_train Dataset

Each document in the dataset needs to be transformed into TF or TF-IDF vectors. sklearn.feature_
extraction.text module provides classes for creating both TF and TF-IDF vectors from text data. We will
use CountVectorizer to create count vectors. In CountVectorizer, the documents will be represented by
the number of times each word appears in the document.

We use the following code to process and create a dictionary of all words present across all the docu-
ments. The dictionary will contain all unique words across the corpus. And each word in the dictionary
will be treated as feature.

from sklearn.feature_extraction.text import CountVectorizer

Initialize the CountVectorizer
count_vectorizer = CountVectorizer()
Create the dictionary from the corpus
feature_vector = count_vectorizer.fit(train_ds.text)
Get the feature names
features = feature_vector.get_feature_names()
print(“Total number of features: ”, len(features))

Chapter 10_Text Analytics.indd 322 4/24/2019 6:57:44 PM

Chapter 10 · Text Analytics 323

Total number of features: 2132

Total number of features or unique words in the corpus are 2132. The random sample of features can be
obtained by using the following random.sample() method.

import random

random.sample(features, 10)

Let us look at some of the words randomly:

[‘surprised’,
‘apart’,
‘rosie’,
‘dating’,
‘dan’,
‘outta’,
‘local’,
‘eating’,
‘aka’,
‘learn’]

Using the above dictionary, we can convert all the documents in the dataset to count vectors using trans-
form() method of count vectorizer:

train_ds_features = count_vectorizer.transform(train_ds.text)
type(train_ds_features)

The dimension of the DataFrame train_ds_features, that contains the count vectors of all the documents,
is given by shape variable of the DataFrame.

train_ds_features.shape

(6918, 2132)

After converting the document into a vector, we will have a sparse matrix with 2132 features or dimen-
sions. Each document is represented by a count vector of 2132 dimensions and if a specific word exists
in a document, the corresponding dimension of the vector will be set to the count of that word in the
document. But most of the documents have only few words in them, hence most of the dimensions in
the vectors will have value set to 0. That is a lot of 0’s in the matrix! So, the matrix is stored as a sparse
matrix. Sparse matrix representation stores only the non-zero values and their index in the vector. This
optimizes storage as well as computational needs. To know how many actual non-zero values are present
in the matrix, we can use getnnz() method on the DataFrame.

train_ds_features.getnnz()

Chapter 10_Text Analytics.indd 323 4/24/2019 6:57:44 PM

Machine Learning using Python324

65398

Computing proportion of non-zero values with respect to zero values in the matrix can be obtained by
dividing the number of non-zero values (i.e., 65398) by the dimension of the matrix (i.e., 6918 × 2132),
that is, 65398/(6918 × 2132).

print(“Density of the matrix: ”,
 train_ds_features.getnnz() * 100 /
 (train_ds_features.shape[0] * train_ds_features.shape[1]))

Density of the matrix: 0.4434010415225908

The matrix has less than 1% non-zero values, that is, more than 99% values are zero values. This is a very
sparse representation.

10.2.3.3 Displaying Document Vectors

To visualize the count vectors, we will convert this matrix into a DataFrame and set the column names to
the actual feature names. The following commands are used for displaying the count vector:

Converting the matrix to a dataframe
train_ds_df = pd.DataFrame(train_ds_features.todense())
Setting the column names to the features i.e. words
train_ds_df.columns = features

Now, let us print the first record.

train_ds[0:1]

Sentiment Text

0 1 The Da Vinci Code book is just awesome.

We cannot print the complete vector as it has 2132 dimensions. Let us print the dimensions (words)
from index 150 to 157. This index range contains the word awesome, which actually should have been
encoded into 1.

train_ds_df.iloc[0:1, 150:157]

Away awesome awesomely awesomeness awesomest awful awkward

0 0 1 0 0 0 0 0

Chapter 10_Text Analytics.indd 324 4/24/2019 6:57:44 PM

Chapter 10 · Text Analytics 325

The feature awesome is set to 1, while the other features are set to 0. Now select all the columns as per the
words in the sentence and print below.

train_ds_df[[‘the’, ‘da’, “vinci”, “code”, “book”, ‘is’, ‘just’,
‘awesome’]][0:1]

the da vinci code book is Just awesome

0 1 1 1 1 1 1 1 1

Yes, the features in the count vector are appropriately set to 1. The vector represents the sentence “The
Da Vinci Code book is just awesome”.

10.2.3.4 Removing Low-frequency Words

One of the challenges of dealing with text is the number of words or features available in the corpus
is too large. The number of features could easily go over tens of thousands. Some words would be
common words and be present across most of the documents, while some words would be rare and
present only in very few documents.

Frequency of each feature or word can be analyzed using histogram. To calculate the total occur-
rence of each feature or word, we will use np.sum() method.

Summing up the occurrences of features column wise
features_counts = np.sum(train_ds_features.toarray(), axis = 0)
feature_counts_df = pd.DataFrame(dict(features = features,

counts = features_counts))

The histogram in Figure 10.2 shows that a large number of features have very rare occurrences.

plt.figure(figsize=(12,5))
plt.hist(feature_counts_df.counts, bins=50, range = (0, 2000));
plt.xlabel(‘Frequency of words’)
plt.ylabel(‘Density’);

1750

1500

1250

1000

750

750

D
en

si
ty

Frequency of words
1000 1250

500

500

250

250
0

0 17501500 2000

FIGURE 10.2 Histogram of frequently used words across the documents.

Chapter 10_Text Analytics.indd 325 4/24/2019 6:57:45 PM

Machine Learning using Python326

To find rare words in the dictionary, for example words that are present in any one of the document, we
can filter the features by count equal to 1:

len(feature_counts_df[feature_counts_df.counts == 1])

1228

There are 1228 words which are present only once across all documents in the corpus. These words can
be ignored. We can restrict the number of features by setting max_features parameters to 1000 while
creating the count vectors.

Initialize the CountVectorizer
count_vectorizer = CountVectorizer(max_features=1000)
Create the dictionary from the corpus
feature_vector = count_vectorizer.fit(train_ds.text)
Get the feature names
features = feature_vector.get_feature_names()
Transform the document into vectors
train_ds_features = count_vectorizer.transform(train_ds.text)
Count the frequency of the features
features_counts = np.sum(train_ds_features.toarray(), axis = 0)
feature_counts = pd.DataFrame(dict(features = features,

counts = features_counts))

feature_counts.sort_values(‘counts’,
ascending = False)[0:15]

Now print first 15 words and their count in descending order.

Counts Features

866 3306 The
37 2154 And

358 2093 Harry
675 2093 potter
138 2002 Code
934 2001 Vinci
178 2001 Da
528 2000 mountain
104 2000 brokeback
488 1624 Love
423 1520 Is

Chapter 10_Text Analytics.indd 326 4/24/2019 6:57:45 PM

Chapter 10 · Text Analytics 327

Counts Features

941 1176 Was
60 1127 awesome

521 1094 mission
413 1093 impossible

It can be noticed that the selected list of features contains words like the, is, was, and, etc. These words
are irrelevant in determining the sentiment of the document. These words are called stop words and can
be removed from the dictionary. This will reduce the number of features further.

10.2.3.5 Removing Stop Words

sklearn.feature_extraction.text provides a list of pre-defined stop words in English, which can be used as
a reference to remove the stop words from the dictionary, that is, feature set.

from sklearn.feature_extraction import
text my_stop_words = text.ENGLISH_STOP_WORDS

#Printing first few stop words
print(“Few stop words: ”, list(my_stop_words)[0:10])

Few stop words: [‘mill’, ‘another’, ‘every’, ‘whereafter’,
‘during’, ‘themselves’, ‘back’, ‘five’, ‘if’, ‘not’]

Also, additional stop words can be added to this list for removal. For example, the movie names and the
word “movie” itself can be a stop word in this case. These words can be added to the existing list of stop
words for removal. For example,

Adding custom words to the list of stop words
my_stop_words = text.ENGLISH_STOP_WORDS.union([‘harry’, ‘potter’,
‘code’, ‘vinci’, ‘da’,’harry’, ‘mountain’, ‘movie’, ‘movies’])

10.2.3.6 Creating Count Vectors

All vectorizer classes take a list of stop words as a parameter and remove the stop words while building
the dictionary or feature set. And these words will not appear in the count vectors representing the docu-
ments. We will create new count vectors by passing the my_stop_words as stop words list.

Setting stop words list
count_vectorizer = CountVectorizer(stop_words = my_stop_words,
 max_features = 1000)
feature_vector = count_vectorizer.fit(train_ds.text)

Chapter 10_Text Analytics.indd 327 4/24/2019 6:57:45 PM

Machine Learning using Python328

train_ds_features = count_vectorizer.transform(train_ds.text)
features = feature_vector.get_feature_names()
features_counts = np.sum(train_ds_features.toarray(), axis = 0)
feature_counts = pd.DataFrame(dict(features = features,

counts = features_counts))

feature_counts.sort_values(“counts”, ascending = False)[0:15]

Print the first 15 words and their count in descending order.

Counts Features

73 2000 brokeback

408 1624 love

39 1127 awesome

436 1094 mission

341 1093 impossible

390 974 like

745 602 sucks

743 600 sucked

297 578 hate

652 374 really

741 365 stupid

362 287 just

374 276 know

742 276 suck

409 256 loved

It can be noted that the stop words have been removed. But we also notice another problem. Many words
appear in multiple forms. For example, love and loved. The vectorizer treats the two words as two sepa-
rate words and hence creates two separate features. But, if a word has similar meaning in all its form, we
can use only the root word as a feature. Stemming and Lemmatization are two popular techniques that
are used to convert the words into root words.

1. Stemming: This removes the differences between inflected forms of a word to reduce each word
to its root form. This is done by mostly chopping off the end of words (suffix). For instance,
love or loved will be reduced to the root word love. The root form of a word may not even be a
real word. For example, awesome and awesomeness will be stemmed to awesom. One problem
with stemming is that chopping of words may result in words that are not part of vocabulary

Chapter 10_Text Analytics.indd 328 4/24/2019 6:57:45 PM

Chapter 10 · Text Analytics 329

(e.g., awesom). PorterStemmer and LancasterStemmer are two popular algorithms for stem-
ming, which have rules on how to chop off a word.

2. Lemmatization: This takes the morphological analysis of the words into consideration. It uses a
language dictionary (i.e., English dictionary) to convert the words to the root word. For example,
stemming would fail to differentiate between man and men, while lemmatization can bring these
words to its original form man.

Natural Language Toolkit (NLTK) is a very popular library in Python that has an extensive set of features
for natural language processing. NLTK supports PorterStemmer, EnglishStemmer, and LancasterStemmer
for stemming, while WordNetLemmatizer for lemmatization.

These features can be used in CountVectorizer, while creating count vectors. We need to create a
 utility method, which takes documents, tokenizes it to create words, stems the words and remove the
stop words before returning the final set of words for creating vectors.

from nltk.stem.snowball import PorterStemmer

stemmer = PorterStemmer()
analyzer = CountVectorizer().build_analyzer()

#Custom function for stemming and stop word removal

def stemmed_words(doc):

Stemming of words
stemmed_words = [stemmer.stem(w) for w in analyzer(doc)]
Remove the words in stop words list
non_stop_words = [word for word in stemmed_words if not in my_

stop_words]
return non_stop_words

CountVectorizer takes a custom analyzer for stemming and stop word removal, before creating count
vectors. So, the custom function stemmed_words() is passed as an analyzer.

count_vectorizer = CountVectorizer(analyzer=stemmed_words,
 max_features = 1000)
feature_vector = count_vectorizer.fit(train_ds.text)
train_ds_features = count_vectorizer.transform(train_ds.text)
features = feature_vector.get_feature_names()
features_counts = np.sum(train_ds_features.toarray(), axis = 0)
feature_counts = pd.DataFrame(dict(features = features,
 counts = features_counts))
feature_counts.sort_values(“counts”, ascending = False)[0:15]

Chapter 10_Text Analytics.indd 329 4/24/2019 6:57:45 PM

Machine Learning using Python330

Print the first 15 words and their count in descending order.

Counts Features
80 1930 brokeback

297 1916 harri
407 1837 love
803 1378 suck
922 1142 wa

43 1116 awesom
345 1090 imposs
433 1090 mission

439 1052 movi
393 823 like
299 636 hate

54 524 becaus
604 370 realli
796 364 stupid
379 354 know

It can be noted that words love, loved, awesome have all been stemmed to the root words.

10.2.3.7 Distribution of Words Across Different Sentiment

The words which have positive or negative meaning occur across documents of different sentiments.
This could give an initial idea of how these words can be good features for predicting the sentiment of
documents. For example, let us consider the word awesome.

Convert the document vector matrix into dataframe
train_ds_df = pd.DataFrame(train_ds_features.todense())
Assign the features names to the column
train_ds_df.columns = features
Assign the sentiment labels to the train_ds
train_ds_df[‘sentiment’] = train_ds.sentiment

sn.barplot(x = ‘sentiment’, y = ‘awesom’, data = train_ds_df,
estimator=sum);

As show in Figure 10.3, the word awesom (stemmed word for awesome) appears mostly in positive
sentiment documents. How about a neutral word like realli?

sn.barplot(x = ‘sentiment’, y = ‘realli’, data = train_ds_df,
estimator=sum);

Chapter 10_Text Analytics.indd 330 4/24/2019 6:57:45 PM

Chapter 10 · Text Analytics 331

800

1000

1200

200

400

600

0

sentiment
0 1

aw
es

om

FIGURE 10.3 Frequency of word awesom in documents with positive versus negative sentiments.

200

175

150

125

100re
al

li

75

50

25

0
0

sentiment
1

FIGURE 10.4 Frequency of word realli in documents with positive versus negative sentiments.

As shown in Figure 10.4, the word realli (stemmed word for really) occurs almost equally across positive
and negative sentiments. How about the word hate?

sn.barplot(x = ‘sentiment’, y = ‘hate’, data = train_ds_df,
estimator=sum);

As shown in Figure 10.5, the word hate occurs mostly in negative sentiments than positive sentiments.
This absolutely makes sense.

This gives us an initial idea that the words awesom and hate could be good features in determining
sentiments of the document.

10.3 | NAÏVE–BAYES MODEL FOR SENTIMENT CLASSIFICATION

We will build a Naïve–Bayes model to classify sentiments. Naïve–Bayes classifier is widely used in Natural
Language Processing and proved to give better results. It works on the concept of Bayes’ theorem.

Chapter 10_Text Analytics.indd 331 4/24/2019 6:57:46 PM

Machine Learning using Python332

Assume that we would like to predict whether the probability of a document is positive (or negative)
given that the document contains a word awesome. This can be computed if the probability of the word
awesome appearing in a document given that it is a positive (or negative) sentiment multiplied by the
probability of the document being positive (or negative).

P(doc = +ve | word = awesome) µ P(word = awesome | doc = +ve) * P(doc = +ve)

The posterior probability of the sentiment is computed from the prior probabilities of all the words it
contains. The assumption is that the occurrences of the words in a document are considered indepen-
dent and they do not influence each other. So, if the document contains N words and words are repre-
sented as W1, W2, …., WN, then

P(doc = +ve | word = W1, W2, … WN) µ ÕN
i = 1 Pi (word = Wi | doc = +ve) * P(doc = +ve)

sklearn.naive_bayes provides a class BernoulliNB which is a Naïve–Bayes classifier for multivariate
Bernoulli models. BernoulliNB is designed for Binary/Boolean features (feature is either present or
absent), which is the case here.

The steps involved in using Naïve–Bayes Model for sentiment classification are as follows:

1. Split dataset into train and validation sets.
2. Build the Naïve–Bayes model.
3. Find model accuracy.

We will discuss these in the following subsections.

10.3.1 | Split the Dataset

Split the dataset into 70:30 ratio for creating training and test datasets using the following code.

from sklearn.model_selection import train_test_split

0
0

100

200

300

400

ha
te

500

600

700

1
sentiment

FIGURE 10.5 Frequency of word hate in documents with positive versus negative sentiments.

Chapter 10_Text Analytics.indd 332 4/24/2019 6:57:46 PM

Chapter 10 · Text Analytics 333

train_X, test_X, train_y, test_y = train_test_split(train_ds_ features,
train_ds.sentiment,
test_size = 0.3,
random_state = 42)

10.3.2 | Build Naïve–Bayes Model

Build Naïve–Bayes model using the training set.

from sklearn.naive_bayes import BernoulliNB

nb_clf = BernoulliNB()
nb_clf.fit(train_X.toarray(), train_y)

BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None,
fit_prior=True)

10.3.3 | Make Prediction on Test Case

Predicted class will be the one which has the higher probability based on the Naïve–Bayes’ probability
calculation. Predict the sentiments of the test dataset using predict() method.

test_ds_predicted = nb_clf.predict(test_X.toarray())

10.3.4 | Finding Model Accuracy

Let us print the classification report.

from sklearn import metrics

print(metrics.classification_report(test_y, test_ds_predicted))

Precision recall f1-score support
0 0.98 0.97 0.98 873
1 0.98 0.99 0.98 1203

avg / total 0.98 0.98 0.98 2076

The model is classifying with very high accuracy. Both average precision and recall is about 98% for
identifying positive and negative sentiment documents. Let us draw the confusion matrix (Figure 10.6).

from sklearn import metrics

cm = metrics.confusion_matrix(test_y, test_ds_predicted)
sn.heatmap(cm, annot=True, fmt=’.2f’);

Chapter 10_Text Analytics.indd 333 4/24/2019 6:57:46 PM

Machine Learning using Python334

845.00

1189.00

0 1

1000

800

600

400

200

1
0 28.00

14.00

FIGURE 10.6 Confusion matrix of sentiment classification model.

In the confusion matrix, the rows represent the actual number positive and negative documents in the
test set, whereas the columns represent what the model has predicted. Label 1 means positive sentiment
and label 0 means negative sentiment. Figure 10.6 shows, as per the model prediction, that there are only
14 positive sentiment documents classified wrongly as negative sentiment documents (False Negatives)
and there are only 28 negative sentiment documents classified wrongly as positive sentiment documents
(False Positives). Rest all have been classified correctly.

10.4 | USING TF-IDF VECTORIZER

TfidfVectorizer is used to create both TF Vectorizer and TF-IDF Vectorizer. It takes a parameter use_idf
(default True) to create TF-IDF vectors. If use_idf set to False, it will create only TF vectors and if it is set
to True, it will create TF-IDF vectors.

from sklearn.feature_extraction.text import TfidfVectorizer

tfidf_vectorizer = TfidfVectorizer(analyzer=stemmed_words,
 max_features = 1000)
feature_vector = tfidf_vectorizer.fit(train_ds.text)
train_ds_features = tfidf_vectorizer.transform(train_ds.text)
features = feature_vector.get_feature_names()

TF-IDF are continuous values and these continuous values associated with each class can be assumed to be
distributed according to Gaussian distribution. So, Gaussian Naïve–Bayes can be used to classify these doc-
uments. We will use GaussianNB, which implements the Gaussian Naïve–Bayes algorithm for classification.

from sklearn.naive_bayes import GaussianNB

train_X, test_X, train_y, test_y = train_test_split(train_ds_features,
train_ds.sentiment,
test_size = 0.3,
random_state = 42)

Chapter 10_Text Analytics.indd 334 4/24/2019 6:57:46 PM

Chapter 10 · Text Analytics 335

nb_clf = GaussianNB()
nb_clf.fit(train_X.toarray(), train_y)

GaussianNB(priors=None)

test_ds_predicted = nb_clf.predict(test_X.toarray())
print(metrics.classification_report(test_y, test_ds_predicted))

Precision Recall f1-score support
0 0.96 0.96 0.96 873
1 0.97 0.97 0.97 1203

avg/total 0.97 0.97 0.97 2076

The precision and recall seem to be pretty much same. The accuracy is very high in this example as the
dataset is clean and carefully curated. But it may not be the case in the real world.

10.5 | CHALLENGES OF TEXT ANALYTICS

The text could be highly context-specific. The language people use to describe movies may not be the same
for other products, say apparels. So, the training data needs to come from similar context (distribution)
for building the model. The language may be highly informal. The language people use on social media
may be a mix of languages or emoticons. The training data also needs to contain similar examples for
learning. Bag-of-words model completely ignores the structure of the sentence or sequence of words in
the sentence. This can be overcome to a certain extent by using n-grams.

10.5.1 | Using n-Grams

The models we built in this chapter, created features out of each token or word. But the meaning of
some of the words might be dependent on the words it precedes or succeeds, for example not happy. It
should be considered as one feature and not as two different features. n-gram is a contiguous sequence
of n words. When two consecutive words are treated as one feature, it is called bigram; three consecutive
words is called trigram and so on.

We will write a new custom analyzer get_stemmed_tokens(), which splits the sentences and stems the
words from them before creating n-grams. The following code block removes non-alphabetic characters
and then applies stemming.

from nltk.stem import PorterStemmer
Library for regular expressions
import re

stemmer = PorterStemmer()

def get_stemmed_tokens(doc):
Tokenize the documents to words
all_tokens = [word for word in nltk.word_tokenize(doc)]
clean_tokens = []

Chapter 10_Text Analytics.indd 335 4/24/2019 6:57:47 PM

Machine Learning using Python336

Remove all characters other than alphabets. It takes a
regex for matching.
for each_token in all_tokens:

if re.search(‘[a-zA-Z]’, each_token):
clean_tokens.append(each_token)

Stem the words
stemmed_tokens = [stemmer.stem(t) for t in clean_tokens]
return stemmed_tokens

Now TfidfVectorizer takes the above method as a custom tokenizer. It also takes ngram_range param-
eter, which is a tuple value, for creating n-grams. A value (1, 2) means create features with one word
and two consecutive words as features.

tfidf_vectorizer = TfidfVectorizer(max_features=500,
stop_words=’english’,
tokenizer=get_stemmed_okens,
ngram_range=(1,2))

feature_vector = tfidf_vectorizer.fit(train_ds.text)
train_ds_features = tfidf_vectorizer.transform(train_ds.text)
features = feature_vector.get_feature_names()

10.5.2 | Build the Model Using n-Grams

Split the dataset to 70:30 ratio for creating training and test datasets and then apply BernoulliNB for
classification. We will apply the model to predict the test set and then print the classification report.

train_X, test_X, train_y, test_y = train_test_split(train_ds_features,
train_ds.sentiment,
test_size = 0.3,
random_state = 42)

nb_clf = BernoulliNB()
nb_clf.fit(train_X.toarray(), train_y)
test_ds_predicted = nb_clf.predict(test_X.toarray())
print(metrics.classification_report(test_y, test_ds_predicted))

precision recall f1-score support
0 1.00 0.94 0.97 873
1 0.96 1.00 0.98 1203

avg/total 0.97 0.97 0.97 2076

The recall for identifying positive sentiment documents (with label 1) have increased to almost 1.0.

Chapter 10_Text Analytics.indd 336 4/24/2019 6:57:47 PM

Chapter 10 · Text Analytics 337

 CONCLUSION

 1. Text data is unstructured data and needs extensive pre-processing before applying models.
 2. Documents or sentences can be tokenized into unigrams or n-grams for building features.
 3. The documents can be represented as vectors with words or n-grams as features. The vectors can be

created using simple counts, TF (Term Frequency) or TF-IDF values.
 4. A robust set of features can be created by removing stop words and applying stemming or lemmati-

zation. Number of features can also be limited by selecting only features with higher frequencies.
 5. Naïve–Bayes classification models (BernoulliNB) are the most widely used algorithms for classifying

texts.

 EXERCISES

Use the dataset “Sentiment Labelled Sentences Data Set” from Universtity of California Irvine Machine
learing Database to answer the following questions.

The dataset can be downloaded from https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

Answer Questions 1 to 10 using the data file yelp_labelled.txt. The file has two columns. The first column
is the text sentence and the second column is Score. Score is either 1 (for positive) or 0 (for negative).

 1. Load the dataset and find out how many positive and how many negative sentiment documents are
available in the dataset. Draw a bar plot to depict the number documents in each sentiment category.
Print few samples of positive sentiment and few samples of negative sentiment documents.

 2. Create count vectors of all the documents.
a. Find out how many total words or features exist in the corpus.
b. Which are the 10 words with highest frequency or total count?
c. How many words or features exist with total frequency less than 3 in the whole corpus?

 3. Create the count vectors by using using max_df = 0.8 and min_df = 3.
a. Find out how many total words or features exist.
b. Are there any stop words in the feature set?

 4. Create the count vectors by removing stop words and using using max_df = 0.8 and min_df = 3.
a. Find out how many total words or features exist.
b. Which are the 10 words with highest frequency or total count?

 5. Split the documents into 80:20 ratio. 80% documents being in training set and 20% documents in test set.
 6. Build a classification model using Logistic Regression to predict the probability of s documents

being positive.
a. Find the top 10 words that have highest positive coefficient value.
b. Find the top 10 words that have highest negative coefficient value.
c. Explain why the words have positive and negative coefficients.

 7. From the model built above, find the optimal cutoff value using Youden’s index. Then classify the
documents in the test set using the optimal cutoff value.
a. Create the confusion matrix.
b. Find out the precision and recall for positive sentiment cases.

Chapter 10_Text Analytics.indd 337 4/24/2019 6:57:47 PM

https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences

Machine Learning using Python338

 8. Built a classification model using Random Forest model.
a. Use grid search mechanism to find the most optimal values for parameters

(i) n_estimators
(ii) max_depth
(iii) max_features

b. Obtain the best model using “roc_auc” score.
c. Obtain the feature importance from the model and find out how many words can explain 95%

information in the corpus.
d. Create the confusion matrix.
e. Find out the precision and recall for positive sentiment cases.

 9. Create TF-IDF vectors with the following parameters.
a. max_df = 0.7 and min_df = 3
b. Use bigrams for creating vectors

10. Build a classification model using the TF-IDF vectors.
a. Create the confusion matrix.
b. Find out the precision and recall for positive sentiment cases and compare it with the model

built in Question 8.

 REFERENCES

 1. U Dinesh Kumar (2017). Business Analytics: The Science of Data-Driven Decision Making, Wiley
India.

 2. Data source: University of Michigan (2011) UMICH SI650—Sentiment Classification. https://www.
kaggle.com/c/si650winter11/data

 3. Scikit-learn documentations at http://scikit- learn.org/
 4. Pandas Library: https://pandas.pydata.org/
 5. Matplotlib Library: https://matplotlib.org/
 6. Seaborn Library: https://seaborn.pydata.org/
 7. From Group to Individual Labels using Deep Features, Kotzias et al., KDD 2015.

Chapter 10_Text Analytics.indd 338 4/24/2019 6:57:47 PM

A
AdaBoost, 233–234
alternative hypothesis, 81
Anaconda platform, 8–12
analysis of variance (ANOVA), 90–92

in regression analysis, 105
apply() function, 44
apriori algorithm, 245, 296–297
artificial intelligence (AI), 1, 179

relationship between DL, ML, and, 1
association rules (association rule mining), 292–299
auto-correlation, 131
auto-correlation function (ACF), 273
auto-regressive and moving average (ARMA), 264,

278–279
auto- regressive integrated moving average (ARIMA),

264, 273–287
autos-mpg.data, 45

B
Bag-of-Words (BoW) Model, 320–321
bar chart, 49–50
base classifier, 233
base_estimator, 234
Berkeley Software Distribution (BSD)-licensed

library, 31
beta distribution, 80
bias-variance trade-off, 194–200
binary classification, 136
binary logistic regression model, 136
binomial distribution, 65

CDF of, 66
PMF of, 65

Boosting, 210, 233

Box–Jenkins methodology, 279
box plot, 52–54

C
central limit theorem (CLT), 80
chi-square goodness of fit test, 63, 89
Classification and Regression Tree (CART), 167
classification problem, 135–136
classification_report() method, 150
class probability, 135
clustering

definition, 245
interpreting clusters, 256–258
product segments using, 252–258

co-efficient of determination (R-squared),
103–104

collaborative filtering, 299–309
confusion matrix, 148–149, 229–231, 237
continuous random variables, 64–65
Cook’s distance, 109–110
correlation values, 58–59
cosine similarity, 248
cost-based approach, 155–156
cost function, 180
credit classification, 137–156

area under the curve (AUC), 151–153
building logistic regression model, 143
classification cut-off probability, 153–156
creating confusion matrix, 148–149
encoding categorical features, 141–142
measuring accuracies, 150–151
model diagnostics, 145–146
predicting test data, 147–148
printing model summary, 143–144

Index

Index.indd 339 4/24/2019 6:59:10 PM

Index340

receiver operating characteristic (ROC) curve,
151–153

splitting dataset, 143
cross-validation, 96
cumulative distribution function (CDF), 65

of binomial distribution, 66
cumulative probability distribution, 79–80
cyclical component, 264

D
DataFrames in Python, 29

applying operations to multiple columns, 43–44
creating new columns, 40–41
data visualization, 48–59
display of first few records, 33
filtering of records, 44
findings, 33–36
grouping and aggregating, 41–42
handling of missing values, 45–48
IPL dataset description using, 30–31
joining, 42–43
loading of dataset into, 31–33
removing columns or rows, 45
renaming columns, 43
slicing and indexing of, 36–38
sorting of column values, 39–40
value counts and cross tabulations, 38–39

datasets and build recommendations, 291–292
data visualization, 48–59

bar chart, 49–50
box plot, 52–54
comparing distributions, 54–56
correlation, 58–59
distribution or density plot, 51–52
drawing plots, 49
heatmap, 58–59
histogram, 50–51
pair plot, 57–58
scatter plot, 56–57

decision tree learning or classification trees,
166–174
benefits of, 174
displaying tree, 168–169
measuring test accuracy, 168
optimal criteria and max_depth, 173–174
splitting dataset, 167–168
using entropy criteria, 171–173

using Gini criteria, 168
using Gini impurity index, 169–171

deep learning (DL), 1
relationship between AI, ML, and, 1

dendrogram, 253–255
describe() method, 77
Dickey-Fuller test, 282–283
dictionary, 22–23
discrete random variables, 64
discriminant analysis, 2
display.max_columns, 33
distribution or density plot, 51–52
draw_pp_plot() method, 126
draw_roc_curve() method, 234, 236
drop() method, 45
dropna() method, 48, 75
Durbin–Watson test, 131

E
ElasticNet regression, 209–210
Elbow curve method, 255–256
ensemble methods, 225–226
error function, 180
error matrix, 148
Euclidean distance, 247
evolutionary learning algorithms, 2
exponential distribution, 69–71

example of, 70–71
PDF of, 70

exponential smoothing technique, 269–271

F
feature engineering, 4
feature extraction, 3
featureimportances, 231–233
filter(), 25
fit() method, 102
forecasting, 263–264

calculating accuracy, 268–269
using moving average, 266–268

for loop, 15
F-Score, 150
F-statistic, 105
functional programming, 24–25

G
Gain chart, 156–159
Gamma distribution, 80

Index.indd 340 4/24/2019 6:59:10 PM

Index 341

Gaussian distribution, 72
generalized linear models (GLM), 136
geometric distribution, 80
German credit rating dataset, 137–138
get_deciles() function, 163
Gini impurity index, 169–171
Gower’s similarity coefficient, 248
gradient boosting, 234–239
gradient descent, 180
gradient descent (GD) algorithm, 180–190

bias and weights, 186–188
cost function, 188–190
for linear regression model, 182–190

GridSearchCV, 173, 223–225
grid search for optimal parameters, 227–229

H
heatmap, 58–59
hierarchical clustering, 258–259
hist() method, 50–51
histogram, 50–51
hypothesis tests, 81–90

I
imbalanced (or unbalanced) dataset, 211–214
Indian Premier League (IPL) dataset, 30–31
influence_plot(), 110
info() method, 35–6
interval() method, 78
irregular component, 264
isnull() method, 48
item-based similarity, 307–309

J
Jaccard similarity coefficient, 248
Jupyter notebook, 8–9, 11

K
key performance indicators (KPIs), 3
K-fold cross-validation, 200–201
K-means clustering algorithm, 248–252
K-Nearest Neighbors (KNN), 210
K-Nearest Neighbors (KNN) algorithm, 219–223

L
LASSO regression, 208–209
learning algorithm, 1
learning_rate, 234
leverage value, 110

lift chart, 156–159
linear regression, 2

building model, 201–206, 214–219
cost function for, 181

lists, 17–19
logistic regression, 2

building model, 143, 160–166
loss function, 180

M
machine learning (ML), 1

framework for ML algorithm development, 3–5
need for, 3
relationship between AI, DL, and, 1
uses of, 3

machine learning models, 191–194
Markov chain, 2
Markov decision process, 2
Matplotlib, 8, 49
matrix factorization, 313–314
max_depth, 235
max_features, 235
MBA salary, predicting, 99–101
mean absolute percentage error (MAPE), 111,

268–269
mean centered series, 273
mean square error (MSE), 111
merge() method, 42
Minkowski distance, 248
model building and feature selection, 4
model deployment, 5
model diagnostics

analysis of variance (ANOVA) in regression
analysis, 105

co-efficient of determination (R-squared), 103–104
hypothesis test for regression co-efficient, 104–105
making prediction and measuring accuracy,

110–112
outlier analysis, 108–110
residual (error) analysis, 106–108
using Python, 105–106

moving average, 265–271
multi-collinearity, 119–120
multinomial classification, 136
multiple linear regression, 2
multiple linear regression (MLR), 112–126

detecting influencers, 127–129

Index.indd 341 4/24/2019 6:59:10 PM

Index342

developing using Python, 114–116
encoding categorical features, 116–117
making predictions on validation set, 130–131
multi-collinearity, 119–120, 123–125
predicting auction price of players, 113–114
residual analysis, 126–127
split function, 117–118
transformation in, 129–130
using training dataset, 118–119
variance inflation factor (VIF), 120–121

multivariate time-series data, 264

N
n_estimators, 234–235
n-grams, 335–336
normal distribution, 72–80

confidence interval, 78–79
mean of, 77
standard deviation of, 77
variance of, 77

null hypothesis, 81
NumPy, 8

O
one hot encoding (OHE), 141
OnehotTransactions, 295
one-sample t-test, 83–84
one-way ANOVA, 90–92
ordinary least square (OLS), 98
outlier analysis, 108–110
Out-of-Bag (OOB) records, 225

P
paired sample t-test, 88
pair plot, 57–58
pairplot() method, 57
Pandas, 8

cumsum() method, 232
Pandas library, 29, 31–2
partial auto-correlation function (PACF), 273
pct_change() method, 75
pd.get_dummies() method, 141
pd.read_csv method, 32
pd.to_numeric(), 47
Poisson distribution, 68

example of, 68–69
PMF of, 68

precision, 150

predict() method, 111, 147
probability density function (PDF), 65

definition, 79
of exponential distribution, 70

probability mass function (PMF), 65
of binomial distribution, 65–66
of Poisson distribution, 68

probability value (p-value), 63
p-value, 92
Python, 5–6

applications, 5–6
code and execution output, 11
conditional statements, 13–14
control flow statements, 15–16
creating a program, 10
data science applications, 7
declaring variables, 12–13
functional programming, 24–25
functions, 16–17
generating sequence of numbers, 14–15
libraries, 7–8
mean and median values, 26–27
modules and packages, 25–26
renaming a program, 10
strings, 23–24
working with collections, 17–23

R
random experiment, 63
Random Forest, 210
random forest model, 226–227

with optimal parameter values, 229
random variables, 64–65
regularization, 206–207
reinforcement learning algorithms, 2
rename() method, 43
reset_ index(), 41
residual (error) analysis, 106–108
residual plot, 127
residuals, 98
Ridge regression, 208
root mean square error (RMSE), 111, 131, 194, 269
R-squared value, 103–104, 131, 194

S
sample space, 64
scatter plot, 56–57
scikit-learn library, 190–201

Index.indd 342 4/24/2019 6:59:10 PM

Index 343

SciPy, 8
Seaborn, 49
seasonal component, 264
sensitivity, 150
sentiment classification, 317–331

creating count vectors, 322–324, 327–330
displaying document vectors, 324–325
distribution of words across different sentiment,

330–331
exploring dataset, 319–320
loading dataset, 318–319
Naïve-Bayes model, 331–334
removing low-frequency words, 325–327
removing stop words, 327
text pre-preprocessing, 320–331

set, 21–22
Sigmoid function, 136
significance (a) value, 63
significant_vars, 125
simple linear regression, 95

assumptions of, 98
collection or extraction of data, 96
complete code for building, 103
deployment strategy, 97
descriptive analytics, 97
diagnostics tests, 97
examples of, 95–96
feature set (X) and outcome variable (Y), 101
fitting of model, 102–103
functional forms of, 97
model accuracy, 97
pre-processing of data, 96
properties of, 98
regression parameters, 98
splitting of training and validation datasets, 102
steps in building a regression model, 96–97

sklearn, 8
sklearn.metrics package, 193
smoothing constant, 269
sort_values() method, 39–40
specificity, 150
square_me(), 24–25
standard error of estimate of regression co-efficient,

104
statistical learning, 180
stats. norm.cdf(), 79
stats.binom.cdf(), 67
stats.binom.pmf(), 66

statsmodel library, 101
stats.norm.cdf(), 79–80
stats.norm.interval(), 78
stock exchange, daily returns at, 72–76
strings, 23–24
summary2() function, 105
sum of squared errors (SSE), 180
supervised learning, 180
supervised learning algorithms, 2
Surprise library, 309–313

T
t-distribution, 104
term frequency-inverse document frequency

(TF-IDF), 322
vectorizer, 334–335

term frequency (TF) vector, 321
test for normality of residuals (P-P plot),

126–127
test statistic, 105
time-series data, 264

decomposing, 271–272
time-to-failure of an avionic system, 70–71
train_test_split() function, 102
t-tests, 63
tuple, 19–20
two-sample t-test, 85

U
univariate time-series data, 264
University of California Irvine (UCI) machine

learning laboratory, 137
unsupervised learning, 180
user-based similarity, 300–307

V
value_counts() method, 38
variance inflation factor (VIF), 120–121
vector space model, 248

W
Weibull distribution, 80
while loop, 15–16

Y
Youden’s index, 153–155

Z
Z-score, 108–109
Z-test, 63, 82

Index.indd 343 4/24/2019 6:59:10 PM

Index.indd 344 4/24/2019 6:59:10 PM

Manaranjan Pradhan U Dinesh Kumar|

M
anaranjan Pradhan U Dinesh Kum

ar
|

Machine Learning

using
M

achine Learning
 Python

using Python
Wiley India Pvt. Ltd.
Customer Care +91 120 6291100
csupport@wiley.com
www.wileyindia.com
www.wiley.com

ISBN 978-81-265-7990-7

This book is wri�en to provide a strong founda�on in Machine Learning using Python libraries by
providing real-life case studies and examples. It covers topics such as Founda�ons of Machine
Learning, Introduc�on to Python, Descrip�ve Analy�cs and Predic�ve Analy�cs. Advanced
Machine Learning concepts such as decision tree learning, random forest, boos�ng,
recommender systems, and text analy�cs are covered. The book takes a balanced approach
between theore�cal understanding and prac�cal applica�ons. All the topics include real-world
examples and provide step-by-step approach on how to explore, build, evaluate, and op�mize
machine learning models. The book is enriched with more than 15 years of teaching experience
of the authors at various programs at the Indian Ins�tute of Management, Bangalore and various
training programs conducted for leading corporates across industries.

About the Book

l Each topic includes real-world examples with a�en�on to theore�cal aspects for be�er
understanding.

l Provides step-by-step approach to enable prac��oners to prepare, explore datasets, and
build machine learning models.

l Topics covered range from basic sta�s�cs and probability distribu�ons to advanced topics of
machine learning such as regression, classifica�on, clustering, forecas�ng, recommender
systems, and text analy�cs.

Key Features

Visit h�ps://www.wileyindia.com/catalog/product/view/id/6915/s/machine-learning-using-python/

for

l Datasets for readers to prac�ce.

l Codes for all Python examples to provide quick start to the readers and help teachers planning to

teach machine learning.

9 788126 579907

15.5mm

	FC
	Page 1

	9788126579907 Machine Learning Using Python PRELIMS
	Page 1
	Page 2
	Page 3
	Page 4

	FM
	Chapter 01_Introduction to Machine Learning
	Chapter 02_Descriptive Analytics Exploring and Preparing Datasets
	Chapter 03_Probability Distributions and Hypothesis Tests
	Chapter 04_Linear Regression
	Chapter 05_Classification
	Chapter 06_Advanced Machine Learning
	Chapter 07_Clustering
	Chapter 08_Forecasting
	Chapter 09_Recommender Systems
	Chapter 10_Text Analytics
	Index
	BC
	Page 1

		2019-05-07T12:32:46+0000
	Preflight Ticket Signature

