
Symbol Table

Symbol Table

The data structure that is created and

maintained by the compilers for information

storing regarding the occurrence of various

entities like names of variables, functions,

objects, classes

Symbol table is used by both the analysis

and the synthesis parts of a compiler

Symbol Table

A symbol table may serve the following

purposes depending upon the language in

hand:

To store the names of all entities in a structured

form at one place

To verify if a variable has been declared

To implement type checking, by verifying

assignments and expressions in the source code

are semantically correct

To determine the scope of a name (scope

resolution)

Information Stored in Symbol

Table

The following possible information about

identifiers are stored in symbol table

The name (as a string)

Attribute: Reserved word, Variable name, Type

name, Procedure name, Constant name

The data type

The block level

Its scope (global, local, or parameter)

Its offset from the base pointer (for local variables

and parameters only)

Implementation

Symbol table can be implemented as

Unordered List

Linear (sorted or unsorted) list

Binary Search Tree

Hash table

Among all, symbol tables are mostly

implemented as hash tables, where the

source code symbol itself is treated as a key

for the hash function and the return value is

the information about the symbol.

Entry Format

A symbol table maintains an entry for each

name in the following format:

<symbol name, type, attribute>

For example, if a symbol table has to store

information about the following variable

declaration:

static int interest;

then it should store the entry such as:

<interest, int, static>

Operations

A symbol table, either linear or hash, should

provide the following operations.

insert()

This operation is more frequently used by analysis

phase where tokens are identified and names are

stored in the table.

This operation is used to add information in the

symbol table about unique names occurring in the

source code.

The format or structure in which the names are stored

depends upon the compiler in hand.

Operations

An attribute for a symbol in the source code is the

information associated with that symbol.

This information contains the value, state, scope, and type

about the symbol.

The insert() function takes the symbol and its

attributes as arguments and stores the information in

the symbol table.

For example:

int a;

should be processed by the compiler as:

insert(a, int);

Operations

lookup()

lookup() operation is used to search a name in the

symbol table to determine:

if the symbol exists in the table.

if it is declared before it is being used.

if the name is used in the scope.

if the symbol is initialized.

if the symbol declared multiple times.

The basic format should match the following:

lookup(symbol)

Operations

This method returns 0 (zero) if the symbol does not

exist in the symbol table. If the symbol exists in the

symbol table, it returns its attributes stored in the

table.

Scope Management

A compiler maintains multiple block levels of

symbol tables:

Level 0: A null hash table at level 0

Level 1: Keyword in the hash table at level 1

Level 2: Global symbol table which can be

accessed by all the procedures

Level 4: Scope symbol tables that are created

for each scope in the program

Scope Management

Symbol tables are arranged

in hierarchical structure as

shown in the example below:

Structure of the Symbol Table

We will implement the symbol table as a

linked list of hash tables, one hash table for

each block level.

Level 3 Level 1Level 2

Hash table

of

Locals

Hash table

of

Globals

Hash table

of

Keywords

Level 0

null

Structure of the Symbol Table

Initially, we create a null hash table at level 0.

Level 0

null

Structure of the Symbol Table

Then we increase the block level and install

the keywords in the symbol table at level 1.

Level 1

Hash table

of

Keywords

Level 0

null

Structure of the Symbol Table

Then we increase the block level and install

the globals at level 2.

Level 1Level 2

Hash table

of

Globals

Hash table

of

Keywords

Level 0

null

Structure of the Symbol Table

When we enter a function, we create a level 3

hash table and store parameters and local

variables there.

Level 3 Level 1Level 2

Hash table

of

Locals

Hash table

of

Globals

Hash table

of

Keywords

Level 0

null

Structure of the Symbol Table

When we leave the function, the hash table of

local variables is deleted from the list.

Level 1Level 2

Hash table

of

Globals

Hash table

of

Keywords

Level 0

null

Locating a Symbol

If we enter another function, a new level 3

hash table is created.

Level 3 Level 1Level 2

Hash table

of

Locals

Hash table

of

Globals

Hash table

of

Keywords

Level 0

null

Locating a Symbol

When we look up an identifier, we begin the

search at the head of the list.

Level 3 Level 1Level 2

Hash table

of

Locals

Hash table

of

Globals

Hash table

of

Keywords

Level 0

null

Locating a Symbol

If it is not found there, then the search

continues at the lower levels.

Level 3 Level 1Level 2

Hash table

of

Locals

Hash table

of

Globals

Hash table

of

Keywords

Level 0

null

Locating a Symbol

Keywords are found in the level 1 hash table.

Level 3 Level 1Level 2

Hash table

of

Locals

Hash table

of

Globals

Hash table

of

Keywords

Level 0

null

class Foo {

int value;

int test() {

int b = 3;

return value + b;

}

void setValue(int c) {

value = c;

{ int d = c;

c = c + d;

value = c;

}

}

scope of value

scope of b

Symbol table example

23

}

class Bar {

int value;

void setValue(int c) {

value = c;

}

}

scope of c

scope of c scope of value

scope of dblock1

Symbol Kind Type Properties

value field int …

test method -> int

setValue method int -> void

(Foo)

…

Symbol table example cont.

24

Symbol Kind Type Properties

b var int …

Symbol Kind Type Properties

c var int …

Symbol Kind Type Properties

d var int …

(Test) (setValue)

(block1)

Checking scope rules

Symbol Kind Type Properties

value field int …

test method -> int

setValue method int -> void

(Foo)

25

Symbol Kind Type Properties

b var int …

Symbol Kind Type Properties

c var int …

Symbol Kind Type Properties

d var int …

(Test) (setValue)

(block1)

void setValue(int c) {

value = c;

{ int d = c;

c = c + d;

value = c;

}

}

lookup(value)

Symbol Kind Type Properties

value field int …

test method -> int

setValue method int -> void

(Foo)

(Test) (setValue)

Error !
Catching semantic errors

26

Symbol Kind Type Properties

b var int …

Symbol Kind Type Properties

c var int …

Symbol Kind Type Properties

d var int …

(block1)

void setValue(int c) {

value = c;

{ int d = c;

c = c + d;

myValue = c;

}

}

lookup(myValue)

Hash Tables

A hash table is a list in which each member is
accessed through a key.

The key is used to determine where to store
the value in the table.

The function that produces a location from
the key is called the hash function.

For example, if it were a hash table of strings,
the hash function might compute the sum of
the ASCII values of the first 5 characters of
the string, modulo the size of the table.

Hash Tables

The numerical value of the hashed key gives
the location of the member.

Thus, there is no need to search for the
member; the hashed key tells where it is
located.

For example, if the string were "return",
then the key would be (114 + 101 + 116 +
117 + 114) % 100 = 62.

Thus, "return"would be located in position

62 of the hash table.

Clashes and Buckets

Clearly, there is the possibility of a clash: two
members have the same hashed key.

In that case, the hash table creates a list,
called a “bucket,” of those values in the table
with that same location.

When that location comes up, the list is
searched.

However, it is generally a very short list,
especially if the table size has been chosen
well.

Hash Table Efficiency

The two parameters that determine how

efficiently the hash table performs are

The capacity of the table, i.e., the total amount of

memory allocated.

The number of buckets, or equivalently, the size

of a bucket.

Clearly, the size of a bucket times the

number of buckets equals the capacity of the

table.

Hash Table Efficiency

For a given hash table capacity,

If there are too many buckets, then many buckets

will not be used, leading to space inefficiency.

If there are too few buckets, then there will be

many clashes, causing the searches to

degenerate into predominately sequential

searches, leading to time inefficiency.

End of Chapter # 13

