Syntax Directed Translation



Character stream

v

Token stream

Syntax tree

©
c
(D)
)
-
@)
| -
LL

Syntax tree

Intermediate representation

Intermediate representation

Target machine code

Target machine code

Backend




Role of SDT

To associate actions with productions
0 associate attributes with non-terminals

. Tocreate implicit or explicit syntax tree To
. perform semantic analysis

- ... essentially, to add life to the skeleton.



E—-E+T

E-E+T

Productions

Example

$$.code = “;
strcat($$.code, $1.code);
strcat($$.code, $3.code); o
strcat($$.code, “+");

\Attributes
{ printf(“+"); } -

SDTs may be viewed as
implementations of SDDs
and are important from
efficiency perspective.

Actions



Syntax Directed Definition

- An SDD is a CFG with attributes and rules.

— Attributes are associated with grammar symbols.
- Rules are associated with productions.

- An SDD specifies the semantics of productions.

— It does not enforce a specific way of achieving the
semantics.



Syntax Directed Translation

- An SDT Is done by attaching rules or program
fragments to productions.

- The order induced by the syntax analysis
produces a translation of the input program.



Attributes

- Inherited

— In terms of the attributes of the
node, its parent and siblings.

- e.g.,Intx,y,z;or
Ishu's nested scoping

+ Synthesized

-~ In terms of the attributes of the
node and its children.

- eg,a+b*cor
most of the constructs from your
assignments




~N OO O A WODN .

SDD for Calculator

Parse Tree
Input string Y
3*5+4% j;L
o @
3 &
SDD Annotated Parse Tree
Production Semantic Rules E .va&
E.val =19 $
E'—-ES$ E'.val = E.val /N
E—-E +T E.val=E,.val+T.val Eval = 15 + Tval = 4
E—-T ‘ ‘
T—>T1*F T% Fval =4
T—>F — * — Tell ‘ =
Tval =3 Fval=5 digit.lexval =4
F — (E) | |
F —digit  F.val = digit.lexval Fval =3 digit.lexval = 5

digit.lexval = 3



Order of Evaluation

- |f there are only synthesized
attributes in the SDD, there
exists an evaluation order.

» Any bottom-up order would do;
for instance, post-order.

- Helpful for LR parsing.

- How about when the attributes
are both synthesized as well as
Inherited?

- How about when the attributes
are only inherited?

Inherited

Synthesized



Order of Evaluation

Production Semantic Rule
A—B A.s =B.i;
B.i=As +1;

- This SDD uses a combination of synthesized
and inherited attributes.

- A.s (head) is defined in terms of B.i (body non-
terminal). Hence, it Is synthesized.

* B.1 (body non-terminal) is defined in terms of A.s
(head). Hence, it is inherited.

* There exists a circular dependency between
their evaluations.

* In practice, subclasses of SDDs required for our
purpose do have an order.

Inherited

Synthesized



Classwork

- Write semantic rules for the following grammatr.

- It computes terms like 3*5and 3*5 * 7.
— Is * left or right-associative? Can you make It left?

- Now write the annotated parse tree for 3 * 5.

Sr. No. Production Semantic Rules
1 T—>FT T'.inh = F.val
T.val = T'.syn
2 T >*FT T'.inh = T'.inh * F.val

1

1
T'.syn =T'.syn
1

T —>¢€ T'.syn =T"inh
4 F — digit F.val = digit.lexval



Classwork

T.val =15
" Tih-3
Fval =3 T'.syn =15
digit.lexval = 3 * Fval=5 Tll.lnh =15
T'l.syn =15

digit.lexval =5 €

Sr. No. Production Semantic Rules
1 T—>FT T'.inh = F.val
T.val = T'.syn
2 T—>*FT T .inh = T".inh * F.val

1

1
T.syn=T".syn
1

T >€ T'.syn = T'.inh
4 F — digit F.val = digit.lexval



Classwork

T.val = 15 <

_ /\ T .|nh =3
Fval = 3> T'.syn =15 /
\ -

digitlexval =3« Fval=5’ T,MN=152
‘\ T -Syn = 15"

digit.lexval = 5 €

What is the order in which rules are evaluated?

Sr. No. Production Semantic Rules
1 T—>FT T'.inh = F.val
T.val = T'.syn
2 T - *F T'1 T'.inh = T".inh * F.val

1
T.syn=T".syn
1

T >¢€ T'.syn = T'.inh
4 F — digit F.val = digit.lexval



Dependency Graph

T.val = 15 <

/\ T'.inh =3

Fval = > T.syn =15 /
\ -
digitlexval =3 & Fval=s’ T,MM=152
\ T -Syn = 15

digit.lexval = 5 €

- A dependency graph depicts the flow of information amongst attributes.
- An edge attrl — attr2 means that the value of attrl is needed to
compute attr2.
* Thus, allowable evaluation orders are those sequences of rules
N1, N2, ..., Nk such that if Ni — Nj, then i <.

. What are such allowable orders?

- Topological sort

- What about cycles?



« How about when the attributes

Order of Evaluation

. . Inherited
- If there are only synthesized Csatibutes @

attributes in the SDD, there

exists an evaluation order. ol Yo
» Any bottom-up order would do; ¢ o
for instance, post-order. O

« Helpful for LR parsing.

are both synthesized as well as 1 X
inherited? O Q

- How about when the attributes S.th -
ynthesize

are only inherited?



Sr.
No.

~N o 00 A WODN P

Input string
3*5+4%

SDD -

Production

E'—>ES$
E—-E +T
E—-T
T->T,*F
T—->F
F—(E)
F — digit

SDD for Calculator

Parse Tree

v

o
4
@Q@

Annotated Parse Tree

S-attributed

Semantic Rules E'val = 1A9
|
E.val =19 $
E'.val = E.val %//“\
E.val = E,.val + T.val E.val = 15 + Tval =2
- A
T.val = 1755 Fval = 4'7
T.val = ?1 + Fval= 5‘r digit.lexval =4

o RN

F.val = digit.lexval Fval = v digitlexval =5 .

digit.lexval = 3



S-attributed SDD

+ Every attribute Is synthesized.
. A topological evaluation order is well-defined.

. Any bottom-up order of the parse tree nodes.
. In practice, preorder is used.

preorder(N) {

for (each child C of N, from the left) preorder(C)
evaluate attributes of N

}

Can we allow more orderings?

17



Issues with S-attributed SDD

- |t IS too strict!

- There exist reasonable non-cyclic orders that it
disallows.

- If a non-terminal uses attributes of its parent only
(no sibling attributes)

- If a non-terminal uses attributes of its left-siblings
only (and not of right siblings).

» The rules may use information “from above”
and “from left”.

’/ L-attributed ‘

18



L-attributed SDD

- Each attribute must be either

- synthesized, or

— Inherited, but with restriction. For production A — X1
X2 ... Xn with inherited attributed Xi.a computed by an
action; then the rule may use only

- Inherited attributes of A.
- either inherited or synthesized attributes of X1, X2, ..., Xi-1.

- Inherited or synthesized attributes of Xi with no cyclic
dependence.

+ L Is for left-to-right.

Have you seen any such SDD? 19



Example of L-attributed SDD

Sr. No. Production Semantic Rules
1 T—>FT T'.inh = F.val
T.val =T'.syn
2 T >*FT T .inh = T'.inh * F.val

1

1
T.syn=T".syn
1

T—>e& T.syn = T"inh
4 F — digit F.val = digit.lexval

T.val = 15 <
_ /\‘T'.inh =3
Fval =3 T'.syn =15

. > . /
\ o
digitlexval =3« Fval=s’ T/M=152

‘\ T -Syn = 15"

digit.lexval =5 €

20



Example of non-L-attributed SDD

Production Semantic rule

A—BC A.s = B.b;
B.i=C.c +A.s

First rule uses synthesized attributes.
Second rule has inherited attributes.
However, B's attribute is dependent on C's attribute, which

IS on the right.

Hence, it is not L-attributed SDD.

/
SL.LIL
L>LB|B
B0l

S

Classwork:

- What does this grammar generate?

- Design L-attributed SDD to compute S.val, the decimal
value of an input string.

- Forinstance, 101.101 should output 5.625.

- Idea: Use an inherited attribute L.side that tells which side
(left or right) of the decimal point a bit is on.

21



SDT Applications

+ Creating an explicit syntax tree.

—e.0.,ad —-4 + C Qﬁl@
e P1 =new Leaf(id,); é &
e P2 = new Leaf(num,);
® p3 = new Op(pl, -, p2);
e p4 = new Leaf(id );
@ p5 =new Op(p3, '+', p4);

Production Semantic Rules
E—-E+T $$.node = new Op($1.node, '+', $3.node)
E—-E-T $$.node = new Op($1.node, '-', $3.node)
E-T $3$.node = $1.node
T—(E) $$.node = $2.node
T—id $$.node = new Leaf($1)

T — num $$.node = new Leaf($1)

22



SDT Applications

+ Creating an explicit syntax tree. \

-e.g.,a—-4+c

- Classwork:

- Generate syntax tree using the following grammatr.

Production
E—-TE'

E'—>+TE,
E'—-TE,

E'— €
T—-(E)
T—id
T — num

L]
i

Semantic Rules

$3$.node = $2.syn
$2.inh = $1.node

$3.inh = new Op($%$.inh, '+', $2.node)
$3$.syn = $3.syn

$3.inh = new Op($%$.inh, '-', $2.node)
$$.syn = $3.syn

$$.syn = $$.inh

$3$.node = $2.node

$$.node = new Leaf($1)

$$.node = new Leaf($1)

23



SDT Applications

+ FInding type expressions
— Int a]2][3] is array of 2 arrays of 3 integers.
— In functional style: array(2, array(3, int))

) ) Production Semantic Rules
~aray | T—BidC Tt=Cit
B —int B.t =int
2 array
’j Q\ B — float B.t = float
) C—[num]C, C.t=array(num, C,.t)
int T
C.1=Cl
C—e¢ C.t=C.i

Classwork: Write productions and semantic rules for creating
type expressions from array declarations. 24




SDD for Calculator

E'—>E$ E'.val = E.val
E—-E +T E.val=E,.val+T.val
E-T

T—>T,*F

T—>F

F— (E)

F — digit F.val = digit.lexval

~N o O A WDN P

25



SDT for Calculator

E'>ES$ print(E.val)

E—-E +T E.val=E,.val +T.val
E-T

T—->T,*F

T—->F

F— (E)

F — digit F.val = digit.lexval

~N o OO A WODN P

26



SDT for Calculator

E'SES$ { print(E.val); }

E>E +T {E.val = E,.val + T.val; }
E—-T

T T, *F

T—>F

F—(E)

F — digit { Fval = digit.lexval; }

Postfix SDT ’

- SDTs with all the actions at the right ends of the production bodies are
called postfix SDTs.

- Only synthesized attributes are useful here.

- Can be implemented during LR parsing by executing actions when
reductions occur.

- The attribute values can be put on a stack and can be retrieved.

27



Parsing Stack

A—XYZ

Y Z

Yy Z.z

Production
E'—-E$
E—-E +T
E—->T
T—->T,*F
T—>F
F—(E)

F — digit

Actions

?stack top |

State / grammar symbol
Synthesizedﬁattribute

Compare with $1, $2, ... in Yacc.

{ print(stack[top — 1].val); --top; }

{ stack[top — 2].val += stack[top].val; top -= 2; }

{ stack[top].val = stack[top].val; }

{ stack[top — 2].val *= stack[top].val; top -= 2; }

{ stack[top].val = stack[top].val, }

{ stack[top — 2].val = stack[top — 1].val; top -= 2; }

{ stack[top].val = stack[top].val; } 28



Actions within Productions

- Actions may be placed at any position within production
body. Considered as empty non-terminals called markers.

- For production B — X {action} Y, action is performed

- as soon as X appears on top of the parsing stack in
bottom-up parsing.

— Just before expanding Y in top-down parsing if Y Is a non-
terminal.

— Just before we check for Y on the input in top-down parsing
If Y Is aterminal.

- SDTs that can be implemented during parsing are
— Postfix SDTs (S-attributed definitions)
- SDTs implementing L-attributed definitions

Classwork: Write SDT for infix-to-prefix translation. 29




Infix-to-Prefix

- What is the issue with this SDT?

- The SDT has shift-reduce conflicts.

* Recall that each marker is an empty non-terminal.
Thus, the parser doesn't know whether to shift or shift
or reduce on seeing a digit.

E'>ES$
E—{print'+;}EL+T
E—->T

T—{print'™;} T1*F

T—>F

F— (E)

F — digit { print digit.lexval; }

Classwork: Write SDT for infix-to-prefix translation.

30



Code Generation for

- We VOQ’H Itlc?generate code for while-construct
-S — while (C)S,

. We assume that code for S, and C are available.

- We also (for now) generate a single code string.
- Classwork: What all do we require to generate

this code?

- This would give us an idea of what attributes we

need and their types.
label L1:

C = . C.code \

if true jump L2 else L3 g
label L2: [

S, = S,.code

jump L1

label L3:= S.next | 31




Code Generation for
while

- Assume we have the following mechanism.

newlLabel() returns a new label name.
You may have used a similar one for temporaries.

Each statement has an attribute next, that points to
the next statement to be executed.

Each conditional has two branches true and false.
Each non-terminal has an attribute code.

32



SDD for

S — while (C) L1 = newLabel();
S L2 = newLabel();
1 S,.next =L1,;
C.false = S.next;
C.true =12;
S.code ="label” + L1 +
C.code +
"label” + L2 +
S .code;
SDT
S — while ({L1=newLabel(); L2 = newLabel(); C. false = S.next; C.true = L2; }
C) {S,.next=12;}
S, { S.code = “label” + L1 + C.code + “label” + L2 + S,.code; }

What is the type of this SDD? 33




SDD for

while
S — while (C) L1 = newLabel();
S L2 = newLabel();
1 S,.next =L1,
C.false =S.next;
C.true =1L2;
S.code ="‘label” + L1 +
C.code +
"label” + L2 +
S .code;

SDT

S — while ( {L1=newLabel(); L2 = newLabel(); C. false = S.next; C true = L2
print(“label”, L1); }

C) {S,.next = L2; print(label’, L2);} On-the-fly
code
Sl generation

What is the type of this SDD? 34




Homework

- Exercises 5.5.5 from ALSU book.

35



