
Syntax Directed Translation

2

Semantic Analyzer

Syntax Analyzer

Lexical Analyzer

Intermediate
Code Generator

Character stream

Token stream

Syntax tree

Syntax tree

Intermediate representation

Machine-Independent
Code Optimizer

Code Generator

Target machine code

Intermediate representation

Machine-Dependent
Code Optimizer

Target machine code

Symbol
Table

F
 r

 o
 n

 t
 e

 n
d

B
 a

 c
 k

 e
 n

d

3

Role of SDT

● To associate actions with productions

To associate attributes with non-terminals

To create implicit or explicit syntax tree To

perform semantic analysis

●

●

●

● … essentially, to add life to the skeleton.

4

Example

E → E + T $$.code = “”;

strcat($$.code, $1.code);

strcat($$.code, $3.code);

strcat($$.code, “+”);

Attributes

{ printf(“+”); }E → E + T

ActionsProductions

SDD

SDT

SDTs may be viewed as
implementations of SDDs
and are important from
efficiency perspective.

5

Syntax Directed Definition

● An SDD is a CFG with attributes and rules.

– Attributes are associated with grammar symbols.

– Rules are associated with productions.

An SDD specifies the semantics of productions.

– It does not enforce a specific way of achieving the
semantics.

●

6

Syntax Directed Translation

● An SDT is done by attaching rules or program
fragments to productions.

The order induced by the syntax analysis
produces a translation of the input program.

●

7

Attributes

● Inherited

– In terms of the attributes of the
node, its parent and siblings.

– e.g., int x, y, z; or
Ishu's nested scoping

● Synthesized

– In terms of the attributes of the
node and its children.

– e.g., a + b * c or

most of the constructs from your
assignments

8

SDD for Calculator

Sr.
No.

Production Semantic Rules

1 E' → E $ E'.val = E.val

2 E → E1 +T E.val = E1.val + T.val

3 E → T ...

4 T → T1 * F ...

5 T → F ...

6 F → (E) ...

7 F → digit F.val = digit.lexval

Input string

3 * 5 + 4 $
+

* 4

3 5

Annotated Parse Tree

E'.val = 19

E.val = 19 $

E.val = 15 T.val = 4+

T.val = 15 F.val = 4

* F.val = 5 digit.lexval = 4

digit.lexval = 5

T.val = 3

F.val = 3

digit.lexval = 3

Parse Tree

SDD

Order of Evaluation

● If there are only synthesized
attributes in the SDD, there
exists an evaluation order.

Any bottom-up order would do;
for instance, post-order.

Helpful for LR parsing.

How about when the attributes
are both synthesized as well as
inherited?

How about when the attributes
are only inherited?

●

●

●

●

Inherited

Synthesized

Order of Evaluation
Inherited

Synthesized

Production Semantic Rule

A → B A.s = B.i;
B.i = A.s + 1;

● This SDD uses a combination of synthesized
and inherited attributes.
A.s (head) is defined in terms of B.i (body non-
terminal). Hence, it is synthesized.

B.i (body non-terminal) is defined in terms of A.s
(head). Hence, it is inherited.
There exists a circular dependency between
their evaluations.
In practice, subclasses of SDDs required for our
purpose do have an order.

●

●

●

●

A A.s

B B.i

Classwork

● Write semantic rules for the following grammar.

– It computes terms like 3 * 5 and 3 * 5 * 7.

– Is * left or right-associative? Can you make it left?

Now write the annotated parse tree for 3 * 5.●

Sr. No. Production Semantic Rules

1 T → F T' T'.inh = F.val
T.val = T'.syn

2 T' → * F T' T' .inh = T'.inh * F.val
1 1

T'.syn = T' .syn
1

3 T' → ε T'.syn = T'.inh

4 F → digit F.val = digit.lexval

Classwork

Sr. No. Production Semantic Rules

1 T → F T' T'.inh = F.val
T.val = T'.syn

2 T' → * F T' T' .inh = T'.inh * F.val
1 1

T'.syn = T' .syn
1

3 T' → ε T'.syn = T'.inh

4 F → digit F.val = digit.lexval

T.val = 15

F.val = 3

digit.lexval = 3 F.val = 5*
T' .inh = 15

1

1
T' .syn = 15

digit.lexval = 5 ε

T'.inh = 3
T'.syn = 15

Classwork

Sr. No. Production Semantic Rules

1 T → F T' T'.inh = F.val
T.val = T'.syn

2 T' → * F T' T' .inh = T'.inh * F.val
1 1

T'.syn = T' .syn
1

3 T' → ε T'.syn = T'.inh

4 F → digit F.val = digit.lexval

T.val = 15

F.val = 3

digit.lexval = 3 F.val = 5*
T' .inh = 15

1

1
T' .syn = 15

T'.inh = 3
T'.syn = 15

digit.lexval = 5 ε

What is the order in which rules are evaluated?

Dependency Graph
T.val = 15

F.val = 3

digit.lexval = 3 F.val = 5*
T' .inh = 15

1

1
T' .syn = 15

digit.lexval = 5 ε

T'.inh = 3
T'.syn = 15

● A dependency graph depicts the flow of information amongst attributes.
An edge attr1 → attr2 means that the value of attr1 is needed to
compute attr2.
Thus, allowable evaluation orders are those sequences of rules
N1, N2, …, Nk such that if Ni → Nj, then i < j.

●

●

●

●

● What are such allowable orders?
Topological sort
What about cycles?

Order of Evaluation

● If there are only synthesized
attributes in the SDD, there
exists an evaluation order.

Any bottom-up order would do;
for instance, post-order.

Helpful for LR parsing.

How about when the attributes
are both synthesized as well as
inherited?

How about when the attributes
are only inherited?

●

●

●

●

Inherited

Synthesized

S-attributed

16

SDD for Calculator

Sr.
No.

Production Semantic Rules

1 E' → E $ E'.val = E.val

2 E → E1 +T E.val = E1.val + T.val

3 E → T ...

4 T → T1 * F ...

5 T → F ...

6 F → (E) ...

7 F → digit F.val = digit.lexval

Input string

3 * 5 + 4 $
+

* 4

3 5

Annotated Parse Tree

E'.val = 19

E.val = 19 $

E.val = 15 T.val = 4+

T.val = 15 F.val = 4

+ F.val = 5 digit.lexval = 4T.val = 3

F.val = 3 digit.lexval = 5

digit.lexval = 3

Parse Tree

SDD

S-attributed

17

S-attributed SDD

● Every attribute is synthesized.

A topological evaluation order is well-defined.

Any bottom-up order of the parse tree nodes.

In practice, preorder is used.

●

●

●

preorder(N) {

for (each child C of N, from the left) preorder(C)
evaluate attributes of N

}

Can we allow more orderings?

18

Issues with S-attributed SDD

●

●

●

It is too strict!

There exist reasonable non-cyclic orders that it
disallows.

– If a non-terminal uses attributes of its parent only
(no sibling attributes)

– If a non-terminal uses attributes of its left-siblings
only (and not of right siblings).

The rules may use information “from above”
and “from left”.

L-attributed

19

L-attributed SDD

● Each attribute must be either

– synthesized, or

– inherited, but with restriction. For production A → X1
X2 … Xn with inherited attributed Xi.a computed by an
action; then the rule may use only

● inherited attributes of A.

either inherited or synthesized attributes of X1, X2, …, Xi-1.

inherited or synthesized attributes of Xi with no cyclic
dependence.

●

●

● L is for left-to-right.

Have you seen any such SDD?

20

Example of L-attributed SDD

Sr. No. Production Semantic Rules

1 T → F T' T'.inh = F.val
T.val = T'.syn

2 T' → * F T' T' .inh = T'.inh * F.val
1 1

T'.syn = T' .syn
1

3 T' → ε T'.syn = T'.inh

4 F → digit F.val = digit.lexval

T.val = 15

F.val = 3

digit.lexval = 3 F.val = 5*
T' .inh = 15

1

1
T' .syn = 15

digit.lexval = 5 ε

T'.inh = 3
T'.syn = 15

21

Example of non-L-attributed SDD

Production Semantic rule

A → B C A.s = B.b;
B.i = C.c +A.s

● First rule uses synthesized attributes.
Second rule has inherited attributes.
However, B's attribute is dependent on C's attribute, which
is on the right.
Hence, it is not L-attributed SDD.

●

●

●

S → L . L |L
L → L B |B
B → 0 | 1

Classwork:
● What does this grammar generate?

Design L-attributed SDD to compute S.val, the decimal
value of an input string.
For instance, 101.101 should output 5.625.
Idea: Use an inherited attribute L.side that tells which side
(left or right) of the decimal point a bit is on.

●

●

●

22

SDT Applications
● Creating an explicit syntax tree.

– e.g., a – 4 + c

p1 = new Leaf(id
a
);

p2 = new Leaf(num
4
);

p3 = new Op(p1, '-', p2);
p4 = new Leaf(id

c
);

p5 = new Op(p3, '+', p4);

+

- c

a 4

Production Semantic Rules

E → E + T $$.node = new Op($1.node, '+', $3.node)

E → E - T $$.node = new Op($1.node, '-', $3.node)

E → T $$.node = $1.node

T → (E) $$.node = $2.node

T → id $$.node = new Leaf($1)

T → num $$.node = new Leaf($1)

23

SDT Applications
● Creating an explicit syntax tree.

– e.g., a – 4 + c

● Classwork:

– Generate syntax tree using the followinggrammar.

+

- c

a 4

Production Semantic Rules

E → T E' $$.node = $2.syn
$2.inh = $1.node

E' → + T E'1 $3.inh = new Op($$.inh, '+', $2.node)
$$.syn = $3.syn

E' → - T E'1 $3.inh = new Op($$.inh, '-', $2.node)
$$.syn = $3.syn

E' → ε $$.syn = $$.inh

T → (E) $$.node = $2.node

T → id $$.node = new Leaf($1)

T → num $$.node = new Leaf($1)

24

SDT Applications

● Finding type expressions

– int a[2][3] is array of 2 arrays of 3 integers.

– in functional style: array(2, array(3, int))

array

array

int3

2

Classwork: Write productions and semantic rules for creating
type expressions from array declarations.

Production Semantic Rules

T → B id C T.t = C.t
C.i = B.t

B → int B.t = int

B → float B.t = float

C → [num] C1
C.t = array(num, C1.t)

C1.i = C.i

C → ε C.t = C.i

25

SDD for Calculator

Sr.
No.

Production Semantic Rules

1 E' → E $ E'.val = E.val

2 E → E1 +T E.val = E1.val + T.val

3 E → T ...

4 T → T1 *F ...

5 T → F ...

6 F → (E) ...

7 F → digit F.val = digit.lexval

26

SDT for Calculator

Sr.
No.

Production Semantic Rules

1 E' → E $ print(E.val)

2 E → E1 +T E.val = E1.val + T.val

3 E → T ...

4 T → T1 *F ...

5 T → F ...

6 F → (E) ...

7 F → digit F.val = digit.lexval

27

SDT for Calculator

E' → E $ { print(E.val); }

{ E.val = E1.val + T.val; }

...

...

...

...

{ F.val = digit.lexval; }

E → E1 +T

E → T

T → T1 *F

T → F

F → (E)

F → digit

Postfix SDT

● SDTs with all the actions at the right ends of the production bodies are
called postfix SDTs.
Only synthesized attributes are useful here.
Can be implemented during LR parsing by executing actions when
reductions occur.
The attribute values can be put on a stack and can be retrieved.

●

●

●

28

Production

E' → E $

E → E1 +T

E → T

T → T1 *F

T → F

F → (E)

F → digit

Actions

{ print(stack[top – 1].val); --top; }

{ stack[top – 2].val += stack[top].val; top -= 2; }

{ stack[top].val = stack[top].val; }

{ stack[top – 2].val *= stack[top].val; top -= 2; }

{ stack[top].val = stack[top].val; }

{ stack[top – 2].val = stack[top – 1].val; top -= 2; }

{ stack[top].val = stack[top].val; }

Parsing Stack

A → X YZ

X Y Z

X.x Y.y Z.z

State / grammar symbol

Synthesized attribute

stack top
Compare with $1, $2, … in Yacc.

29

Actions within Productions
● Actions may be placed at any position within production

body. Considered as empty non-terminals called markers.

For production B → X {action} Y, action is performed●

–

–

– as soon as X appears on top of the parsing stack in
bottom-up parsing.

just before expanding Y in top-down parsing if Y is a non-
terminal.

just before we check for Y on the input in top-down parsing
if Y is a terminal.

● SDTs that can be implemented during parsing are

–

–

Postfix SDTs (S-attributed definitions)

SDTs implementing L-attributed definitions

Classwork: Write SDT for infix-to-prefix translation.

30

Infix-to-Prefix

E' → E $

E → { print '+'; } E1 + T

E → T

T → { print '*'; } T1 * F

T → F

F → (E)

F → digit { print digit.lexval; }

Classwork: Write SDT for infix-to-prefix translation.

● What is the issue with this SDT?
The SDT has shift-reduce conflicts.
Recall that each marker is an empty non-terminal.
Thus, the parser doesn't know whether to shift or shift
or reduce on seeing a digit.

●

●

31

Code Generation for

while
● We want to generate code for while-construct

– S → while (C) S1

We assume that code for S
1
and C are available.

We also (for now) generate a single code string.
Classwork: What all do we require to generate
this code?
– This would give us an idea of what attributes we

need and their types.

●

●

●

if true jump L2 else L3
label L2:

S1

jump L1
label L3:

S

label L1:
C C.code

S.next

S1.code

32

Code Generation for

while
● Assume we have the following mechanism.

– newLabel() returns a new label name.

You may have used a similar one for temporaries.

– Each statement has an attribute next, that points to

the next statement to be executed.

– Each conditional has two branches true and false.

– Each non-terminal has an attribute code.

33

SDD for

while
S → while (C)

S1

L1 = newLabel();
L2 = newLabel();
S1.next = L1;

C.false = S.next;
C.true = L2;
S.code = “label” + L1 +

C.code +
”label” + L2 +
S1.code;

What is the type of this SDD?

SDT
S → while (

C)

S1

{ L1 = newLabel(); L2 = newLabel(); C. false = S.next; C.true = L2; }

{ S1.next = L2; }

{ S.code = “label” + L1 + C.code + “label” + L2 + S1.code; }

34

SDD for

while
S → while (C)

S1

L1 = newLabel();
L2 = newLabel();
S1.next = L1;

C.false = S.next;
C.true = L2;
S.code = “label” + L1 +

C.code +
”label” + L2 +
S1.code;

What is the type of this SDD?

SDT
S → while (

C)

S
1

{ S1.next = L2; print(“label”, L2); }

{ L1 = newLabel(); L2 = newLabel(); C. false = S.next; C.true = L2;
print(“label”, L1); }

On-the-fly

code
generation

35

Homework

● Exercises 5.5.5 from ALSU book.

