

CLR Parsing

After discussing the SLR parsing and the problems associated with the SLR parsers, this module

will discuss the powerful LR parser – Canonical LR parser. In this module, we will learn to

construct LR(1) items which is necessary for constructing the CALR parsing table and using this

table parse a given string using the CALR parser.

1. Need for CALR parsers

In the SLR parser, there is a problem of shift / reduce conflict even if the grammar is

unambiguous. This is due to the fact that the SLR parsers uses the FOLLOW() information to

perform a reduce action by matching the stack information with input symbol. However the

FOLLOW() information alone is not sufficient to decide when to reduce. Hence, powerful parser

is required.

The issues associated with considering the FOLLOW() information is discussed as follows:

• In SLR, if there is a production of the form A α▪ , then a reduce action takes place

based on FOLLOW(A).

• However, there would be situations, where, when state ‘I’ appears on the top of the stack,

the viable prefix βα on the stack is such that βA cannot be followed by terminal ‘a’ in a

right sentential form. Hence, the reduction A α would be invalid on input ‘a’

This results in the shift/reduce conflict. To resolve this conflict, we will consider and check

whether it is possible to perform more in the states that allow us to rule out some of the invalid

reduction. This is done by introducing more set of items thus resulting in more states in the CALR

parsing table. Thus we would be introducing exactly which input symbols to follow a particular

non-terminal.

2. CALR Parser

The steps involved in the CALR parser are as follows:

• Construct LR(1) items – This is in contrast with the LR(0) items that is constructed for

the SLR parser. This also uses Closure() and goto(), but the algorithm for these two

functions are different.

• LR(1) items are used to construct the CALR parsing table involving action, goto.- The

parsing table resembles SLR parsing table but has more states and there is little variation

in the construction procedure.

• Use this table, along with input string and a stack is used to parse the string – The parsing

action is same as the SLR parser’s algorithm.

The CALR parser uses the LR(1) items. The LR(1) items are constructed and this results in

increased number of states. The states are increased by accommodating an extra symbol in the

items to include a terminal symbol as a second component. Thus A[α .β, a] will be the item in

the LR(1) items collection, if Aαβ is a production and ‘a’ is a terminal or the right end marker.

If there is no terminal available then the right end marker is $.

1. LR(1) item construction

LR(1) items are constructed that has a right end marker in addition to the format of the LR(0)

items. The ‘1’ refers to the length of the second component which is the look-ahead of the item.

This look-ahead has no effect in A[α .β , a] where β is not ε, but will ensure that a conflict does

not arise if A[α . , a] calls for a reduction A α if the next input symbol is ‘a’. This terminal

‘a’ will be subset of FOLLOW(A). A [α .β , a] is a valid item for a viable prefix γ if there is a

derivation S => δAw => δαβw where γ = δα and either ‘a’ is the first symbol of ‘w’ or ‘w’ is ε

and ‘a’ is $.

LR(1) items construction requires computation of closure() and goto(). The computation of

Closure(I) is given in algorithm 17.1. This algorithm is similar to the LR(0)’s closure in

considering the augmented grammar to start this, but will accommodate the look-ahead

component.

Algorithm 17.1

Closure(I, Augment grammar G’)

{

repeat

a. for each item [A α▪Bβ, a] in I,

each production B γ in G’and each terminal b inFIRST(βa)

such that [B .γ , b] is not in I do
1. add [B .γ , b]

until no more items can be added to I

}

Step ‘a’ of the algorithm 17.1 initially starts by adding the initial production of the augmented

grammar as an item with the look-ahead as $. After that it considers the non-terminal that

appears after the dot. This item is added and its look-ahead is computed by computing the

FIRST() of the remaining symbols after this non-terminal including the current look-ahead. So, if

β is ε, even than as ‘a’ is ‘$’ to start with, the look-ahead will be FIRST($). We keep adding till no

more items can be added. Thus the difference between LR(1) and LR(0) is that in considering

FIRST(βa) and adding ‘a’ as a look-ahead. It is interesting to observe that a single item-set may

contain the same items with different look-aheads.

The next algorithm is to compute the goto(I, X) where X is a grammar symbol. This is given in

Algorithm 17.2. This algorithm is the same as LR(0)’s goto() but this incorporates the look- ahead

symbol.

Algorithm 17.2

goto(I,X)

{

a. Let J be the set of items [AαX.β , a] such that

[Aα.Xβ , a] is in I;
Return closure(J)

}

Step ‘a’ of algorithm 17.2, shifts the dot by one position to the right of an item, retaining the

look-ahead of the original item. Then after shifting, we compute closure of the shifted item and

add that to the set of items. So, if β is a non-terminal, we add more items to the current item set

with different / same look-ahead and if it is a terminal we do not have any more new items to the

current item set.

After computing the closure() and goto(), we use these two functions to compute LR(1) items and

is given in algorithm 17.3

Algorithm 17.3

ITEMS(Grammar G’)

{ C:= closure ({S’ .S, $});

repeat
for each set of items I in C and each grammar symbol X such that goto(I,X) is not empty

and not inC

add goto(I, X) to C

until no more set of items can be added to C
}

This algorithm is same as the LR(0) items construction algorithm, but it considers the items with

look-ahead.

Example 17.1 Consider the following grammar and construct the LR(1) items

S CC

C cC

C d

We form the Augmented grammar by introducing the new start symbol S’ and form the set of

items and is given in table 17.1

S’ S

S CC

C cC

C d

Table 17.1 Set of LR(1) items

Item Set of Items Goto(I, X) Comments

I0 S’ .S, $ This is the initial item. We have a non-terminal S

after the dot. So we add the productions of S, with

look-ahead as FIRST($) since β is ε. Now again we

have non-terminal C after the dot and here β is ‘C”

and ‘a’ is $. So, we add the productions of C with

lookahead as FIRST(C$). FIRST(C) = {c, d} from

the two productions of C. Thus we add two items

for each of the productions of C one with ‘c’ and

other with ‘d’ as look-ahead. However, we could

represent it in a combined fashion as given in this

items set.

S .CC, $

C .cC, c/d

C .d, c/d

I1 S’ S., $ (I0 , S) Shifting the dot results in a kernel item, the look-

ahead remains the same.
I2 S C.C, $ (I0 , C) The dot is shifted by one position to the right. Now

we have C after the dot. β is ε and we add the items

of C with FIRST($) as look-ahead.

C .cC, $

C .d, $

I3 C c.C, c/d (I0 , c),

(I3 , c),

Shifting the dot byone position and keeping the

initial look ahead as it is results in the first item.

Now we have a C after the dot. β is ε and we add

the items of C with FIRST(c/d) as look-ahead.

C .cC, c/d

C .d, c/d

I4 C d., c/d (I0 , d),

(I3, d)

Kernel item with the look-ahead being the same

I5 S CC., $ (I2 , C) Kernel item

I6 C c.C, $ (I2 , c)

(I6 ,c)

The dot is shifted by one position to the right. Now

we have C after the dot. β is ε and we add the items

of C with FIRST($) as look-ahead.

C .cC, $

C .d, $

I7 C d., $ (I2 ,d)

(I6 ,d)
Kernel item

I8 C cC., c/d (I3 ,C) Kernel item

I9 C cC., $ (I6 ,C) Kernel item and no more new items are necessary to

be added.

The LR(1) items can also be represented as a DFA similar to the LR(0) items where the states

correspond to the nodes and edges correspond to the grammar symbols.

2. CALR Parsing Table

If we could recollect the SLR parsing table requires the knowledge of the FOLLOW() of the

non-terminals. This FOLLOW() set is used to populate the SLR parsing table for the reduce

action. This is however not required here as the look-ahead which is conveyed by the FOLLOW()

in the SLR parsing table, is available along with the item itself in the LR(1) items. The CALR

parsing table also has two divisions: action and goto. The action() fields are constituted by the

terminals and it has the shift, reduce, accept and error actions. The goto() fields are constituted by

the non-terminals and it contains the state numbers which is the result of the goto(). The

procedure for the CALR parsing table construction is given in Algorithm 17.4.

Algorithm 17.4

CALR_ParsingTable (Augmented Grammar G’)

{

1. Construct C = {I0 ,I1 ,I2 … In } the collection of LR(1) items for G’

2. State ‘i' of the parser is from Ii

i. if [A α.aβ, b] is in Ii and goto(Ii, a) = Ij set action [i, a] = shift j, where a is a

terminal
ii. if [A α . , a] is in Ii and A ≠ S’, then set action[i, a] = reduce by A α

a. //a conflict here implies the grammar is not CALR grammar

iii. if [S’ .S, $] implies anaccept action at action[i,$] = accept

iv. all other entries areerror

3. If goto(Ii , A) = Ij then goto (i, A) = j

4. All other entries are error

}

Step 1 of the algorithm 17.4 calls for the construction of the LR(1) items. Step 2 has four actions

which are used to construct the action field of the CALR parsing table. The first one is a shift

action which is the same as the SLR table’s shift action. If goto(Ii, a) = Ij then at the intersection of

[i, a] we set the action as “sj” to indicate “shift j”. Step 2 (ii) of the algorithm is for reduce action

where the kernel items are considered. At the table entry of kernel item number and the look-

ahead symbol we add the action reduce by the production indicated by the kernel item. The item

number that has the initial kernel item is used to indicate the accept action as in the SLR parsing

table. All other entries are considered as error in the action field of the CALR parsing table. The

goto() field is the same as the SLR table’s goto field. If goto(Ii , A) = Ij then goto (i, A)

= j is added to the CALR parsing table.

Example 17.2

For the grammar discussed in example 17.1, let us construct the CALR parsing table based on the

set of items discussed in Table 17.1. The CALR parsing table is given in Table 17.2

Table 17.2 CALR parsing table

17.2.3 CALR parsing

CALR parsing action is exactly same as the SLR parsing action but this is done with the help of

CALR parsing table. The stack is initialized with the state 0. The stack contains alternately state

number and the grammar symbol with the state number on the stack. The input is appended with

$. The stack symbol and the input are compared in the table and the stack is manipulated

accordingly. The CALR parsing table is given in Algorithm 17.5

Algortihm 17.5

CALR Parsing Table (Table T, Input w$)

{

State Action Goto Comments

c d $ S C

0 s3 s4 1 2 Goto(I0 ,c) = I3 , => [0,c] = s3

Goto(I0 ,d) = I4=> [0,d] = s4

Goto(I0 ,S) = I1 => [0,S] = 1

Goto(I0 ,C) = I2 => [0,C] = 2

1 accept I1 has [S’ S., $] so at [1, $] we have accept

action
2 s6 s7 5 Goto(I2 ,c) = I6 , => [2,c] = s6

Goto(I2 ,d) = I7=> [2,d] =s7

Goto(I2 ,C) = I5 => [2,C] = 5
3 s3 s4 8 Goto(I3 ,c) = I3 , => [3,c] = s3

Goto(I3 ,d) = I4=> [3,d] =s4

Goto(I3 ,C) = I8 => [3,C] = 8
4 r3 r3 C d., c/d, so at the intersection of [4, c] and

[4,d] we set reduce by C d
5 r1 S CC., $, at the intersection of [5, $] weset

reduce by S CC

6 s6 s7 9 Goto(I6 ,c) = I6 , => [6,c] = s6

Goto(I6 ,d) = I7=> [6,d] =s7

Goto(I6 ,C) = I9 => [6,C] = 9
7 r3 C d., $, we set at the intersection of [7, $]

we set reduce by C d
8 r2 r2 C cC., c/d at the intersection of [8,c] and

[8,d] we set reduce by C cC
9 r2 C cC., $ at the intersection of [9,$] we set

reduce by C cC

• Set input to point to the first symbol of w$

• Repeat forever

– Let s be the state on the top of the stack

– Let a be the symbol pointed to by ip

– If action [s, a]= shift s’ then

• Push a then s’ on top of the stack

• Move input to the next input symbol

– Else if action [s, a] = reduce A β then

• Pop 2 * | β | symbols off thestack

– Let s’ be the state now on the top of the stack

• Push A then goto [s’, A] on top ofthe stack

• Output the production A β

– Else if action[s, a] = accept then return;

– Else error()

}

Example 17.3

Table 17.2 could be used to parse the string “ccdd” and is explained in table 17.3

Table 17.3 CALR parser’s action on the input “ccdd$”

Stack Input Comments

0 ccdd$ [0, c] – shift 3 , push c, 3 onto the stack

0 c 3 c d d $ [3, c] – shift 3 , push c, 3 onto the stack

0 c 3 c 3 d d $ [3, d] – shift 4 , push d , 4 onto the stack
0 c 3 c 3 d

4
d $ [4, d] – reduce 3, pop 2 symbols from stack, as it corresponds to

the production C d, push C and goto(3, C) = 8

0 c 3 c 3 C

8

d $ [8, d] – reduce 2, pop 4 symbols from the stack as it corresponds

to the production C cC, push C and goto(3, C) = 8
0 c 3 C 8 d $ [8, d] – reduce 2, pop 4 symbols from the stack as it corresponds

to C cC, push C and goto(0, C) = 2

0 C 2 d $ [2, d] – shift 7, push d, 7 onto the stack

0 C 2 d 7 $ [7, $] – reduce 3, pop 2 symbols from the stack for the

production C d, and push C, goto(2, C) = 5
0 C 2 C 5 $ [5, $] – reduce 1, pop 4 symbols off the stack corresponding to

the production S CC, and push S, goto(0, S) = 1

0 S 1 $ [1, $] – accept – successful parsing

Any other combination would result in the error combination and the CALR parser has to recover

from errors to accommodate an incorrect input.

Example 17.3

We considered the pointer variable declaration grammar having the shift / reduce conflict in the

SLR parsing table. Let us construct the CALR parsing table and verify whether it is a CALR

grammar.

• S’ S

• S L = R

• S R

• L * R

• L id

• R L

The LR(1) items is given in Table 17.4 and the parsing table is given in Table 17.5

Table 17.4 Set of Items for the pointer grammar

Item Set of Items Goto(I, X) Comments

I0 S’ .S, $ Initial item. Then all the items need to be added

with ‘$’ as look ahead for S, R. But for L we have

two look-ahead ‘$’ and ‘=’one from S .L=R and

other from R .L.

S •L=R, $

S •R,$

L •*R,=/$

L •id,=/$

R •L,$

I1 S’ •S,$ (I0,S) Kernel item to result in accept action

I2 S L•=R,$ (I0,L) After the dot we have a terminal and hence no

additional items need to be added

R L•, $ Kernel item

I3 S R•, $ (I0,R) Kernel item

I4 L *•R,=/$ (I0,*)

(I4,*)
Items of R to be added with the same look-ahead

which results in addition of the items corresponding

to R and in –turn L
R •L,=/$

L •*R,=/$

L •id, =/$

I5 L id•,=/$ (I0,id)

(I4,id)

Kernel item

I6 S L=•R,$ (I2,=) Items of R to be added with same look ahead and

in-turn items of L are added.R •L, $

L •*R, $

L •id, $

I7 L *R•,=/$ (I4,R) Kernel item

I8 R L•,=/$ (I4,L) Kernel item

I9 S L=R•,$ (I6,R) Kernel item

I10 R L•,$] (I6,L),

(I11,L)

Kernel item

I11 L *•R,$ (I6,*)

(I11,*)
This is a new item and is different from I4 because

they have a different look-aheadR •L,$

L •*R,$

L •id, $

I12 L id•,$] (I6,id)

(I11,id)

Kernel item

I13 L *R•, $ (I11,id) Kernel item

Table 17.5 CALR Parsing Table

State Action Goto

id * = $ S L R

0 s5 s4 1 2 3

1 acc

2 s6 r5

3 r2

4 s5 s4 8 7

5 r4 r4

6 s12 s11 10 9

7 r3 r3

8 r5 r5

9 r1

10 r5

11 s12 s11 10 13

12 r4

13 r3

As can be seen from the Table 17.5, the table does not have any conflict but the number of set of

items is 14 as compared to 10 in the SLR parsing table.

Summary:

In this module we discussed the CALR parser which is the most powerful parser. This parser

constructs the parsing table by constructing the LR(1) items. This parser has many items as

compared to the LR(0) items. The increased number of items is compensated with reduction in

shift/reduce conflicts.

