OPERATOR
PRECEDENCE
PARSING

1
Parsing Techniques (Bottom-Up Parsing)

Operator-Precedence Parsing (OPP)
The operator-precedence parser is a shift —reduce parser that can be easily

constructed by hand. Operator precedence parser can be constructed from a small
class of grammars which is called operator grammar. These grammars have the

property (among other essential requirements)

- That no production right side is €

- And no production right side has two adjacent nonterminal.

Example: The following grammar for expressions
E——EAE/(E)/-E/id
A—+/[-/*[+]7
Is not an operator grammar, because the right side EAE has two (in fact three)

consecutive nonterminals. However, if we substitute for A each of its alternatives,

we obtain the following operator grammar:

E— SE+E/E-E/E*E/E+E/E{E/(E)/-E/id

We now describe an easy-to-implement parsing technique called operator-

precedence parsing.

operator-precedence relation:
In operator-precedence parsing, there are three disjoint precedence relations

namely:
<e - less than =e -equal to o> - greater than

The relations give the following meanings:

RELATION MEANING
a<eb a "yields precedence to" b
a=b a "has the same precedence as" b
ae>h a "takes precedence over" b

2
Parsing Techniques (Bottom-Up Parsing)

How to Create Operator-Precedence Relations:

» We use associativity and precedence relations among operators.

1. If operator 01 has higher precedence than operator 62, then make 61. > 062 and 62

<.01
2.1f operators 61 and 02, are of equal precedence, then make 61. > 62 and 62. > 01

if operators are left associative 01 <. 62 and 62 <. 01 if right associative
3. Make the following for all operators 6:
0<.id,id.>0
0<.(,(<.0
).>0,0.>)
0.>5,$<.0
4.Also make
(=) ,(<.C ,).>) , (<.id , id.>) ,$<.id , id.>$,
$<.(,).>%

These rules ensure that both id and (E) will be reduced to E. Also, $ serves as both
the left and right endmarker, causing handles to be found between $’s wherever

possible
Note:
¢ |d has higher precedence than any other symbol

e $ has lowest precedence.
o if two operators have equal precedence, then we check the Associativity of that

particular operator.

3
Parsing Techniques (Bottom-Up Parsing)

Example:

Operator-precedence relations for the grammar

E— E+E|E-E|E*E|E/E|ETE|(E)|-E|id, is given in the following table
assuming

1. M is of highest precedence and right-associative

2. * and / are of next higher precedence and left-associative, and

3. + and - are of lowest precedence and left-associative

Note that the X in the table denote error entries

>~ %
Vv
Vv
Y
v
/\
\
v
/\
v

HB o~
Y
Y,
Y,
Y,
Vv
x
Y,
s
Y,

4
Parsing Techniques (Bottom-Up Parsing)

Operator-precedence parsing algorithm:

Input: an input string w & table of precedence relations (holds precedence relations
between certain terminals).

Output: if w is well formed, a skeletal parse tree, with a placeholder non-terminal
E labeling all interior nodes; otherwise, an error indication.

Method: initially the stack contains $ and the input buffer the string w$.to parse,
we execute the following program:

Algorithm:
set p to point to the first symbol of w$;
repeat forever

if ($is on top of the stack and p points to $) then return
else {

_let a be the topmost terminal symbol on the stack and let b be the symbol
pointed to by p;

if (a<bora=-b)then{ [* SHIFT */
push b onto the stack;
advance p to the next input symbol;

¥
elseif (a >b) then /* REDUCE */
repeat pop stack

until (the top of stack terminal is related by < to the terminal most
recently popped);

else error();

¥

Stack implementation of operator precedence parser:

operator precedence parsing uses a stack and precedence relation table for its
implementation of above algorithm. It is a shift-reduce parsing containing all four
actions shift, reduce, accept and error (like shift-reduce technique but in the other
manner).

The initial configuration of an operator precedence parsing is

Stack Input
$ W$
Where W is the input string to be parsed

5
Parsing Techniques (Bottom-Up Parsing)

the precedence and associativity of the rule on the top of stack, and the current token
are used to determine whether to shift or reduce. this is done as follow:

When the relation between the top of stack and the leftmost of input word is .> this
IS mean perform reduce action, otherwise (when the relation < or =) the action is
Shift .example 1 explain how use the Operator precedence for parse the an

expression

Ex:-1
Use Stack implementation of operator precedence parser to check this sentence
id +id Dby this grammar: E— E+E | E*E | id

Sol:
Stack Input
$ < 1d + 1d$
$ <id +1d$
$<1d> +1d$
$<E+ +1d$
$<E+ < 1d$
$<E+<ad $
$<E+<i1d= S
$<E+E> A
$E $
accept

6

Parsing Techniques (Bottom-Up Parsing)
Ex2: Consider the following grammar
E > EOE | -E| (E)| id

0> -1+*N 1

Using Operator precedence for parse the expression

Sol:

E-> E+E | E-E|E*E | E/E | E*E| (E) | -E | id

id1*(id2+id3) 1 id

Stack input Action

$ < id1*(id2+id3) 1 id $ shift

$id1 > *(id2+id3) 1id$ | Reduce E~>id
$E > *(id2+id3) 1 id $ shift

$E* > (id2+id3) 1 id $ shift

$ E*(< id2+id3) 1 id $ shift

$ E*(id2 > +id3) 1 id $ Reduce E=>id
$ E*(E +id3) 1id $ shift

$ E*(E+ < id3) 11d $ shift

$ E*(E+id3 >)1id $ Reduce E->id
$ E*(E+E >)1id $ Reduce E>E+E
$ EX(E =)1id $ Shift
$E*(E) > 7 id$ Reduce E2>(E)
$SE*E < 1id$ shift
$E*E1 < id$ shift
$E*E1 id > $ Reduce E - id
$E*Et E > $ Reduce E > E 1

E

$E*E > $ Reduce E>E*E
$E $ Accept
H.W

Tryinput id*(id 1 id)-id/id) using the same grammar in EX2

