BOTTOM-UP PARSING

Bottom-Up Parsing

o Bottom-Up Parser : Constructs a parse tree for an input string
beginning at the leaves(the bottom) and working up towards the
root(the top)

o We can think of this process as one of “reducing” a string w to the start
symbol of a grammar

o Bottom-up parsing is also known as shift-reduce parsing because its
two main actions are shift and reduce.

0 At each shift action, the current symbol in the input string is pushed to
a stack.
LAt each reduction step, the symbols at the top of the stack (this symbol

sequence is the right side of a production) will replaced by the non-

terminal at the left side of that production.

Shift-Reduce Parsing

o A shift-reduce parser tries to reduce the given input string into the
starting symbol.

a string =» the starting symbol
reduced to
o At each reduction step, a substring of the input matching to the right

side of a production rule is replaced by the non-terminal at the left side
of that production rule.

o If the substring is chosen correctly, the right most derivation of that
string is created in the reverse order.

Rightmost Derivation: S— o
Shift-Reduce Parser finds: w<..<S

Shift-Reduce Parsing-Example

o Consider the grammar Input string : abbcde
S — aABe aAbcde
A—> Abc|b aAde U reduction
B—d aABe
S

We can scan abbcede looking for a substring that matches the right side of some
production.The substrings b and d qualify.Let us choose left most b and replace it by
A,the left side of the production A->b;we thus obtain the string aAbcde.Now the
substrings Abc,b and d match the right side of some production.Although b is the
leftmost substring that matches the right side of the some production,we choose to
replace the substring Abc by A,the left side of the production A->Abc.We obtain
aAde.Then replacing d by B,and then replacing the entire string by S.Thus,by a

sequence of four reductions we are able to reduce abbcde to S

Shift-Reduce Parsing-Example

o These reductions infact trace out the following right-most derivation in
reverse

S = aABe => aAde = aAbcde = abbcde

Right Sentential Forms

o How do we know which substring to be replaced at each reduction step?

Handle

o Informally, a “handle” of a string is a substring that matches the right side
of the production,and whose reduction to nonterminal on the left side of the
production represents one step along the reverse of a rightmost derivation

But not every substring matches the right side of a production rule is handle.

o Formally, a “handle” of a right sentential form y (= afw) is a production
rule A — B and a position of y where the string f may be found and replaced
by A to produce the previous right-sentential form in a rightmost
derivation of y.

S — 0Ao 7= afo
then A—> [in the position following a is a handle of afw

o The string o to the right of the handle contains only terminal symbols.

Example

o Consider the example discussed in the beginning,abbcede is a right
sentential form whose handle is A>b at position 2.Likewise,aAbcde is a
right sentential form whose handle is A->Abc at position 2.

o Sometimes we say “the substring 3 is a handle of afw” if the

position of f and the production A>3 we have in mind are clear.

Handle Pruning

o A rightmost derivation in reverse can be obtained by “handle pruning”.That
is,we start with a string of terminals w that we wish to parse.If is a

sentence of grammar at hand,then w = y,where v, is the nth right-sentential

form of some as yet unknown rightmost derivation

S=Yo2 ViV o D Va1 Yn= @

N\

Input string

Handle Pruning

S=Y VPV s 2 V1> 0= O

rm

o Start from vy,, find a handle A, —>p,in v,
and replace B, in by A to gety, ..

o Then find a handle A, —B,,invy, |,
and replace B, in by A to gety,_,.

o Repeat this, until we reach S.

A Shift-Reduce Parser

E—>E+T |T Right-Most Derivation of id+id*id
T—>T*F | F E = E+T = E+T*F = E+T*id = E+F*id
F—>(E) | id = E+id*id = T+id*id = F+id*id = id+id*id

Right-Most Sentential form HANDLE Reducing Production

id+id*id id F—id

F+id*id F T—>F

T+id*id T E—T

E+id*id id F—id

E+F*id F T—>F

E+T*id Id F—>1d

E+T*F T*F T>T*F

E+T E+T E—>FE+T

E

A Stack Implementation of a Shift-Reduce Parser

o There are four possible actions of a shift-parser action:
1.Shift : The next input symbol is shifted onto the top of the stack.
2 Reduce: Replace the handle on the top of the stack by the non-terminal.
3.Accept: Successful completion of parsing.

4.Error: Parser discovers a syntax error, and calls an error recovery routine.

o Initial stack just contains only the end-marker $.
o The end of the input string is marked by the end-marker $.

A Stack Implementation of A Shift-Reduce Parser

Stack Input Action
$ id+id*id $shift
$id +1d*1d$ Reduce by F—id
$F +1d*1d$ Reduce by T>F
$T +1d*1d$ Reduce by E>T
$E +id*id$ Shift
$E+ Id*id$ Shift
$E+id *1d$ Reduce by F—id
$E+F *1d$ Reduce by T—>F
$E+T *1d$ Shift
$E+T* id$ Shift
$E+T*id | $ Reduce by F—id
$SE+T*F | $ Reduce by T>T*F
$E+T $ Reduce by E ->E+T
SE $ Accept

Parse Tree

ES8
C

N

T2 T5 Fo

| \

F! F4 id

o

id id

