
BOTTOM-UP PARSING

Bottom-Up Parsing

o Bottom-Up Parser : Constructs a parse tree for an input string

beginning at the leaves(the bottom) and working up towards the

root(the top)

o We can think of this process as one of “reducing” a string w to the start

symbol of a grammar

o Bottom-up parsing is also known as shift-reduce parsing because its

two main actions are shift and reduce.

At each shift action, the current symbol in the input string is pushed to

a stack.

At each reduction step, the symbols at the top of the stack (this symbol

sequence is the right side of a production) will replaced by the non-

terminal at the left side of that production.

Shift-Reduce Parsing

o A shift-reduce parser tries to reduce the given input string into the
starting symbol.

a string  the starting symbol

reduced to

o At each reduction step, a substring of the input matching to the right
side of a production rule is replaced by the non-terminal at the left side
of that production rule.

o If the substring is chosen correctly, the right most derivation of that
string is created in the reverse order.

Rightmost Derivation: S  

Shift-Reduce Parser finds:  ...  S

rm

rmrm

*

Shift–Reduce Parsing-Example

o Consider the grammar Input string : abbcde

S aABe aAbcde

A Abc | b aAde  reduction

B d aABe

S

We can scan abbcde looking for a substring that matches the right side of some

production.The substrings b and d qualify.Let us choose left most b and replace it by

A,the left side of the production Ab;we thus obtain the string aAbcde.Now the

substrings Abc,b and d match the right side of some production.Although b is the

leftmost substring that matches the right side of the some production,we choose to

replace the substring Abc by A,the left side of the production AAbc.We obtain

aAde.Then replacing d by B,and then replacing the entire string by S.Thus,by a

sequence of four reductions we are able to reduce abbcde to S

Shift–Reduce Parsing-Example

o These reductions infact trace out the following right-most derivation in
reverse

S  aABe  aAde  aAbcde  abbcde

o How do we know which substring to be replaced at each reduction step?

rm rm rm rm

Right Sentential Forms

Handle

rm rm
*

o Informally, a “handle” of a string is a substring that matches the right side
of the production,and whose reduction to nonterminal on the left side of the
production represents one step along the reverse of a rightmost derivation

▫ But not every substring matches the right side of a production rule is handle.

o Formally , a “handle” of a right sentential form γ ( ) is a production
rule A   and a position of  where the string  may be found and replaced
by A to produce the previous right-sentential form in a rightmost
derivation of .

S A 

then Aβ in the position following α is a handle of αβω

o The string  to the right of the handle contains only terminal symbols.

Example

o Consider the example discussed in the beginning,abbcde is a right

sentential form whose handle is Ab at position 2.Likewise,aAbcde is a

right sentential form whose handle is AAbc at position 2.

o Sometimes we say “the substring β is a handle of αβω” if the

position of β and the production Aβ we have in mind are clear.

Handle Pruning

o A rightmost derivation in reverse can be obtained by “handle pruning”.That

is,we start with a string of terminals w that we wish to parse.If ω is a

sentence of grammar at hand,then ω = γ,where γn is the nth right-sentential

form of some as yet unknown rightmost derivation

S = 0  1  2  ...  n-1  n=

Input string

rm rm rm rm rm

Handle Pruning

S = 0  1  2  ...  n-1  n=

o Start from n, find a handle Ann in n,

and replace n in by An to get n-1.

o Then find a handle An-1n-1 in n-1,

and replace n-1 in by An-1 to get n-2.

o Repeat this, until we reach S.

rm rm rm rmrm

A Shift-Reduce Parser

E  E+T | T Right-Most Derivation of id+id*id

T  T*F | F E  E+T  E+T*F  E+T*id  E+F*id

F  (E) | id  E+id*id  T+id*id  F+id*id  id+id*id

Right-Most Sentential form HANDLE Reducing Production

id+id*id

F+id*id

T+id*id

E+id*id

E+F*id

E+T*id

E+T*F

E+T

E

id

F

T

id

F

Id

T*F

E+T

Fid

TF

ET

Fid

TF

Fid

TT*F

EE+T

A Stack Implementation of a Shift-Reduce Parser

o There are four possible actions of a shift-parser action:

1.Shift : The next input symbol is shifted onto the top of the stack.

2.Reduce: Replace the handle on the top of the stack by the non-terminal.

3.Accept: Successful completion of parsing.

4.Error: Parser discovers a syntax error, and calls an error recovery routine.

o Initial stack just contains only the end-marker $.

o The end of the input string is marked by the end-marker $.

A Stack Implementation of A Shift-Reduce Parser

Stack Input Action

$
$id
$F
$T
$E
$E+
$E+id
$E+F
$E+T
$E+T*
$E+T*id
$E+T*F
$E+T
$E

id+id*id$shift
+id*id$
+id*id$
+id*id$
+id*id$
Id*id$
*id$
*id$
*id$
id$
$
$
$
$

Reduce by Fid
Reduce by TF
Reduce by ET
Shift
Shift
Reduce by Fid
Reduce by TF
Shift
Shift
Reduce by Fid
Reduce by TT*F
Reduce by E E+T
Accept

Parse Tree

E 8

E 3 T 7
+

T 5 F 6
*

F 4F 1

T 2

id id

id

