
TYPES OF PARSING 

TECHNIQUES



Building Parsers

• In theory classes, you might have learned about general 
mechanisms for parsing all CFGs
• algorithms for parsing all CFGs are expensive

• actually, with computers getting faster and bigger year over year, 
researchers are beginning to dispute this claim.

• for 1/10/100 million-line applications, compilers must be fast.  

• even for 20 thousand-line apps, speed is nice

• sometimes 1/3 of compilation time is spent in parsing 

• compiler writers have developed specialized algorithms 
for parsing the kinds of CFGs that you need to build 
effective programming languages
• LL(k), LR(k) grammars can be parsed.



Recursive Descent Parsing

• Recursive Descent Parsing (Appel Chap 3.2):
• aka: predictive parsing; top-down parsing

• simple, efficient

• can be coded by hand in ML quickly 

• parses many, but not all CFGs

• parses LL(1) grammars

• Left-to-right parse; Leftmost-derivation; 1 symbol lookahead

• key ideas:

• one recursive function for each non terminal

• each production becomes one clause in the function



1.  S ::= IF E THEN S ELSE S

2.         | BEGIN S L

3.         | PRINT E 

4.  L ::= END

5.        | ; S L

6.  E ::= NUM = NUM 

non-terminals: S, E, L

terminals: NUM, IF, THEN, ELSE, BEGIN, END, PRINT, ;, =

rules:



1.  S ::= IF E THEN S ELSE S

2.         | BEGIN S L

3.         | PRINT E 

4.  L ::= END

5.        | ; S L

6.  E ::= NUM = NUM 

non-terminals: S, E, L

terminals: NUM, IF, THEN, ELSE, BEGIN, END, PRINT, ;, =

rules:

datatype token = NUM | IF | THEN | ELSE | BEGIN | END 

| PRINT | SEMI | EQ

Step 1: Represent the tokens

Step 2: build infrastructure for reading tokens from lexing stream

val tok = ref (getToken ())

fun advance () = tok := getToken ()

fun eat t = if (! tok = t) then advance () else error ()

function supplied by lexer



1.  S ::= IF E THEN S ELSE S

2.         | BEGIN S L

3.         | PRINT E 

4.  L ::= END

5.        | ; S L

6.  E ::= NUM = NUM 

non-terminals: S, E, L

terminals: NUM, IF, THEN, ELSE, BEGIN, END, PRINT, ;, =

rules:

fun S () = case !tok of

IF         =>   eat IF; E (); eat THEN; S (); eat ELSE; S ()

| BEGIN =>   eat BEGIN; S (); L ()

| PRINT =>   eat PRINT; E ()

and L () = case !tok of

END    =>   eat END

| SEMI    =>   eat SEMI; S (); L ()

and E () = eat NUM; eat EQ; eat NUM

Step 3: write parser => one function per non-terminal; one clause per rule

val tok = ref (getToken ())

fun advance () = tok := getToken ()

fun eat t = if (! tok = t) then advance () else error ()

datatype token = NUM | IF

| THEN | ELSE | BEGIN | END 

| PRINT | SEMI | EQ



1. S ::= A EOF

2. A ::= ID := E

3.         | PRINT ( L ) 

4. E ::= ID

5.        | NUM 

6. L ::= E

7.        | L , E

non-terminals: S, A, E, L

rules:

fun S () = A (); eat EOF

and A () = case !tok of

ID         =>   eat ID; eat ASSIGN; E ()

| PRINT =>   eat PRINT; eat LPAREN; L (); eat RPAREN

and E () = case !tok of

ID         =>   eat ID

| NUM    =>   eat NUM

and L () = case !tok of

ID         =>   ???

| NUM    =>   ???



problem

• predictive parsing only works for grammars where the first 

terminal symbol in the input provides enough information 

to choose which production to use

• LL(1)

• when parsing L, if !tok = ID, the parser cannot determine 

which production to use:

6. L ::= E                (E could be ID)

7.        | L , E          (L could be E could be ID)



solution

• eliminate left-recursion

• rewrite the grammar so it parses the same language but the 

rules are different:

L ::= E

| L , E

S ::= A EOF

A ::= ID := E

| PRINT ( L )

E ::= ID

| NUM 

S ::= A EOF

A ::= ID := E

| PRINT ( L )

E ::= ID

| NUM 



solution

• eliminate left-recursion

• rewrite the grammar so it parses the same language but the 

rules are different:

L ::= E

| L , E

L ::= E M

M ::= , E M

|  

S ::= A EOF

A ::= ID := E

| PRINT ( L )

E ::= ID

| NUM 

S ::= A EOF

A ::= ID := E

| PRINT ( L )

E ::= ID

| NUM 



eliminating single left-recursion

• Original grammar form:

• Transformed grammar:

X ::= base

|  X repeat

X ::= base Xnew

Xnew ::= repeat Xnew

|  

Strings:  base repeat repeat ...

Strings:  base repeat repeat ...

Think about: what if you have mutually left-recursive variables X,Y,Z?

What’s the most general pattern of left recursion?  How to eliminate it?



Recursive Descent Parsing

• Unfortunately, can’t always eliminate left recursion 

• Questions:

• how do we know when we can parse grammars using recursive 

descent?

• Is there an algorithm for generating such parsers automatically?



Constructing RD Parsers

• To construct an RD parser, we need to know what 

rule to apply when

• we are trying to parse a non terminal X

• we see the next terminal a in input

• We apply rule  X ::= s when

• a is the first symbol that can be generated by string s, 

OR

• s reduces to the empty string (is nullable) and a is the 

first symbol in any string that can follow X



Constructing RD Parsers

• To construct an RD parser, we need to know what 

rule to apply when

• we are trying to parse a non terminal X

• we see the next terminal a in input

• We apply rule  X ::= s when

• a is the first symbol that can be generated by string s, 

OR

• s reduces to the empty string (is nullable) and a is the 

first symbol in any string that can follow X



Constructing Predictive Parsers

X c

X b

X d

1. Y ::=

2.      | bb
3.  X ::= c

4.        | Y Z

5.  Z ::= d

non-terminal

seen

next

terminal rule



Constructing Predictive Parsers

X c 3

X b

X d

1. Y ::=

2.      | bb
3.  X ::= c

4.        | Y Z

5.  Z ::= d

non-terminal

seen

next

terminal rule



Constructing Predictive Parsers

X c 3

X b 4

X d

1. Y ::=

2.      | bb
3.  X ::= c

4.        | Y Z

5.  Z ::= d

non-terminal

seen

next

terminal rule



Constructing Predictive Parsers

X c 3

X b 4

X d 4

1. Y ::=

2.      | bb
3.  X ::= c

4.        | Y Z

5.  Z ::= d

non-terminal

seen

next

terminal rule



Constricting Predictive Parsers

• in general, must compute:
• for each production X ::= s, must determine if s can derive the 

empty string.

• if yes, X  Nullable

• for each production X := s, must determine the set of all first 
terminals Q derivable from s

• Q  First(X)

• for each non terminal X, determine all terminals symbols Q that 
immediately follow X

• Q  Follow(X)



Iterative Analysis
• Many compilers algorithms are iterative techniques.

• Iterative analysis applies when:

• must compute a set of objects with some property P

• P is defined inductively. ie, there are:

• base cases: objects o1, o2 “obviously” have property P

• inductive cases:  if certain objects (o3, o4) have property P, this implies other 

objects (f o3; f o4) have property P

• The number of objects in the set is finite

• or we can represent infinite collections using some finite notation & we can find 

effective termination conditions



Iterative Analysis
• general form:

• initialize set S with base cases

• applied inductive rules over and over until you reach a fixed 

point

• a fixed point is a set that does not change when you 

apply an inductive rule (function)

• Nullable, First and Follow sets can be determined through 

iteration

• many program analyses & optimizations use iteration

• worst-case complexity is bad

• average-case complexity can be good:  iteration “usually” 

terminates in a couple of rounds



Iterative Analysis

Base Cases

“obviously”

have the property



Iterative Analysis

apply function

(rule) to things

that have the

property to

produce new things

that have the property

f

f

f

f



Iterative Analysis

Base Cases

+ things you get

by applying rule

to base cases

have the property



Iterative Analysis

Apply rules again



Iterative Analysis

Apply rules again



Iterative Analysis

Finally, you reach

a fixed point



Iterative Analysis

Example:

• axioms are “obviously true”/taken for granted

• rules of logic take basic axioms and prove new

things are true

“Dave teaches cos 320”

“Dave teaches cos 441”

“Dave is a great teacher”

rule r: X is a great teacher /\ X teaches Y => Y is a great class

axioms:



Iterative Analysis

Example:

• axioms are “obviously true”/taken for granted

• rules of logic take basic axioms and prove new

things are true

“Dave teaches cos 320”

“Dave teaches cos 441”

“Dave is a great teacher”

rule r: X is a great teacher /\ X teaches Y => Y is a great class

axioms:

r

“cos 320 is a great class”

r

“cos 441 is a great class”



Iterative Analysis

Example:

• axioms are “obviously true”/taken for granted

• rules of logic take basic axioms and prove new

things are true

“Dave teaches cos 320”

“Dave teaches cos 441”

“Dave is a great teacher”

rule r: X is a great teacher /\ X teaches Y => Y is a great class

axioms:

r

“cos 320 is a great class”

r

“cos 441 is a great class”

Fixed Point Reached!



Nullable Sets

• Non-terminal X is Nullable only if the following constraints 

are satisfied 

• base case:

• if (X :=  )  then X is Nullable

• inductive case:

• if (X := ABC...) and A, B, C, ... are all Nullable then X is Nullable      



Computing Nullable Sets

• Compute X is Nullable by iteration: 

• Initialization:

• Nullable := { }

• if (X :=  )  then Nullable := Nullable U {X}

• While Nullable different from last iteration do:

• for all X, 

• if (X := ABC...) and A, B, C, ... are all Nullable then Nullable := Nullable U {X}      



First Sets

• First(X) is specified like this:

• base case:

• if T is a terminal symbol then First (T) = {T}

• inductive case:

• if X is a non-terminal and (X:= ABC...) then

• First (X) = First (ABC...)

where First(ABC...) = F1 U F2 U F3 U ... and

• F1 = First (A)

• F2 = First (B), if A is Nullable; emptyset otherwise

• F3 = First (C), if A is Nullable & B is Nullable; emp...

• ...



Computing First Sets

• Compute First(X):
• initialize:

• if T is a terminal symbol then First (T) = {T}

• if T is non-terminal then First(T) = { }

• while First(X) changes (for any X) do

• for all X and all rules (X:= ABC...) do

• First (X) := First(X) U First (ABC...)

where First(ABC...) := F1 U F2 U F3 U ... and

• F1 := First (A)

• F2 := First (B), if A is Nullable; emptyset otherwise

• F3 := First (C), if A is Nullable & B is Nullable; emp...

• ...



Computing Follow Sets

• Follow(X) is computed iteratively

• base case:

• initially, we assume nothing in particular follows X

• (when computing, Follow (X) is initially { })

• inductive case:

• if (Y := s1 X s2) for any strings s1, s2 then

• Follow (X) = First (s2)

• if (Y := s1 X s2) for any strings s1, s2 then

• Follow (X) = Follow(Y),  if s2 is Nullable



building a predictive parser

nullable first follow

Z

Y

X

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e



building a predictive parser

nullable first follow

Z no

Y yes

X no

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

base case



building a predictive parser

nullable first follow

Z no

Y yes

X no

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

after one round of induction, we realize we have reached a fixed point



building a predictive parser

nullable first follow

Z no { }

Y yes { }

X no { }

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

base case



building a predictive parser

nullable first follow

Z no d

Y yes c

X no a,b

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

round 1



building a predictive parser

nullable first follow

Z no d,a,b

Y yes c

X no a,b

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

round 2



building a predictive parser

nullable first follow

Z no d,a,b

Y yes c

X no a,b

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

after three rounds of iteration, no more changes ==> fixed point



building a predictive parser

nullable first follow

Z no d,a,b { }

Y yes c { }

X no a,b { }

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

base case



building a predictive parser

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

after one round of induction, no fixed point



building a predictive parser

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

Z ::= X Y Z

Z ::= d

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

after two rounds of induction, fixed point 

(but notice, computing Follow(X) before Follow (Y) would have required 3rd round)



Z ::= X Y Z

Z ::= d
Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z

Y

X

Grammar: Computed Sets:

Build parsing table where row X, col T

tells parser which clause to execute in

function X with next-token T:

• if T  First(s) then

enter (X ::= s) in row X, col T

• if s is Nullable and T  Follow(X)

enter (X ::= s) in row X, col T



Z ::= X Y Z

Z ::= d
Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z Z ::= XYZ Z ::= XYZ

Y

X

Grammar: Computed Sets:

Build parsing table where row X, col T

tells parser which clause to execute in

function X with next-token T:

• if T  First(s) then

enter (X ::= s) in row X, col T

• if s is Nullable and T  Follow(X)

enter (X ::= s) in row X, col T



Z ::= X Y Z

Z ::= d
Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z Z ::= XYZ Z ::= XYZ Z ::= d

Y

X

Grammar: Computed Sets:

Build parsing table where row X, col T

tells parser which clause to execute in

function X with next-token T:

• if T  First(s) then

enter (X ::= s) in row X, col T

• if s is Nullable and T  Follow(X)

enter (X ::= s) in row X, col T



Z ::= X Y Z

Z ::= d
Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z Z ::= XYZ Z ::= XYZ Z ::= d

Y Y ::= c

X

Grammar: Computed Sets:

Build parsing table where row X, col T

tells parser which clause to execute in

function X with next-token T:

• if T  First(s) then

enter (X ::= s) in row X, col T

• if s is Nullable and T  Follow(X)

enter (X ::= s) in row X, col T



Z ::= X Y Z

Z ::= d
Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z Z ::= XYZ Z ::= XYZ Z ::= d

Y Y ::= Y ::= Y ::= c Y ::= Y ::=

X

Grammar: Computed Sets:

Build parsing table where row X, col T

tells parser which clause to execute in

function X with next-token T:

• if T  First(s) then

enter (X ::= s) in row X, col T

• if s is Nullable and T  Follow(X)

enter (X ::= s) in row X, col T



Z ::= X Y Z

Z ::= d
Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z Z ::= XYZ Z ::= XYZ Z ::= d

Y Y ::= Y ::= Y ::= c Y ::= Y ::=

X X ::= a X ::= b Y e

Grammar: Computed Sets:

Build parsing table where row X, col T

tells parser which clause to execute in

function X with next-token T:

• if T  First(s) then

enter (X ::= s) in row X, col T

• if s is Nullable and T  Follow(X)

enter (X ::= s) in row X, col T



Z ::= X Y Z

Z ::= d
Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z Z ::= XYZ Z ::= XYZ Z ::= d

Y Y ::= Y ::= Y ::= c Y ::= Y ::=

X X ::= a X ::= b Y e

Grammar: Computed Sets:

What are the blanks?



Z ::= X Y Z

Z ::= d
Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z Z ::= XYZ Z ::= XYZ Z ::= d

Y Y ::= Y ::= Y ::= c Y ::= Y ::=

X X ::= a X ::= b Y e

Grammar: Computed Sets:

What are the blanks?  --> syntax errors



Z ::= X Y Z

Z ::= d
Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z Z ::= XYZ Z ::= XYZ Z ::= d

Y Y ::= Y ::= Y ::= c Y ::= Y ::=

X X ::= a X ::= b Y e

Grammar: Computed Sets:

Is it possible to put 2 grammar rules in the same box?



Z ::= X Y Z

Z ::= d

Z ::= d e

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

nullable first follow

Z no d,a,b { }

Y yes c e,d,a,b

X no a,b c,e,d,a,b

a b c d e

Z Z ::= XYZ Z ::= XYZ Z ::= d

Z ::= d e

Y Y ::= Y ::= Y ::= c Y ::= Y ::=

X X ::= a X ::= b Y e

Grammar: Computed Sets:

Is it possible to put 2 grammar rules in the same box?



predictive parsing tables

• if a predictive parsing table constructed this way 

contains no duplicate entries, the grammar is 

called LL(1)

• Left-to-right parse, Left-most derivation, 1 symbol 

lookahead

• if not, of the grammar is not LL(1)

• in LL(k) parsing table, columns include every k-

length sequence of terminals:

aa ab ba bb ac ca ...



another trick

• Previously, we saw that grammars with left-recursion were 

problematic, but could be transformed into LL(1) in some 

cases

• the example non-LL(1) grammar we just saw:

• how do we fix it?
Z ::= X Y Z

Z ::= d

Z ::= d e

Y ::= c

Y ::= 

X ::= a

X ::= b Y e



another trick

• Previously, we saw that grammars with left-recursion were 

problematic, but could be transformed into LL(1) in some 

cases

• the example non-LL(1) grammar we just saw:

• solution here is left-factoring:
Z ::= X Y Z

Z ::= d

Z ::= d e

Y ::= c

Y ::= 

X ::= a

X ::= b Y e

Z ::= X Y Z

Z ::= d W Y ::= c

Y ::= 

X ::= a

X ::= b Y e

W ::= 

W ::= e



summary

• CFGs are good at specifying programming language structure

• parsing general CFGs is expensive so we define parsers for 
simple classes of CFG
• LL(k), LR(k)

• we can build a recursive descent parser for LL(k) grammars by:
• computing nullable, first and follow sets

• constructing a parse table from the sets

• checking for duplicate entries, which indicates failure

• creating an ML program from the parse table

• if parser construction fails we can
• rewrite the grammar (left factoring, eliminating left recursion) and try again

• try to build a parser using some other method


