TYPES OF PARSING TECHNIQUES

Building Parsers

- In theory classes, you might have learned about general mechanisms for parsing all CFGs
 - algorithms for parsing all CFGs are expensive
 - actually, with computers getting faster and bigger year over year, researchers are beginning to dispute this claim.
 - for 1/10/100 million-line applications, compilers must be fast.
 - even for 20 thousand-line apps, speed is nice
 - sometimes 1/3 of compilation time is spent in parsing
- compiler writers have developed specialized algorithms for parsing the kinds of CFGs that you need to build effective programming languages
 - LL(k), LR(k) grammars can be parsed.

Recursive Descent Parsing

- Recursive Descent Parsing (Appel Chap 3.2):
 - aka: predictive parsing; top-down parsing
 - simple, efficient
 - can be coded by hand in ML quickly
 - parses many, but not all CFGs
 - parses LL(1) grammars
 - Left-to-right parse; Leftmost-derivation; 1 symbol lookahead
 - key ideas:
 - one recursive function for each non terminal
 - each production becomes one clause in the function

non-terminals: S, E, L terminals: NUM, IF, THEN, ELSE, BEGIN, END, PRINT, ;, = rules:

3. | PRINT E

4. L ::= END 5. |; S L

non-terminals: S, E, L terminals: NUM, IF, THEN, ELSE, BEGIN, END, PRINT, ;, = rules: 1. S ::= IF E THEN S ELSE S 4. L ::= END | BEGIN S L 2. 5. |; S L

| PRINT E 3.

6. E ::= NUM = NUM

Step 1: Represent the tokens

```
datatype token = NUM | IF | THEN | ELSE | BEGIN | END
              | PRINT | SEMI | EQ
```

Step 2: build infrastructure for reading tokens from lexing stream

function supplied by lexer val tok = ref (getToken ())

```
fun advance () = tok := getToken ()
```

```
fun eat t = if (! tok = t) then advance () else error ()
```

non-terminals: terminals: rules:	S, E, L NUM, IF, THEN, ELSE, I	BEGIN, END, PRINT, ;, =
1.S:: 2. 3.	= IF E THEN S ELSE S BEGIN S L PRINT E	4. L ::= END 5. ; S L 6. E ::= NUM = NUM
datatype token = NU	IM IF val tok = r	ef (getToken ())

| THEN | ELSE | BEGIN | ENDfun advance () = tok := getToken ()| PRINT | SEMI | EQfun eat t = if (! tok = t) then advance () else error ()

Step 3: write parser => one function per non-terminal; one clause per rule

```
fun S () = case !tok of

IF => eat IF; E (); eat THEN; S (); eat ELSE; S ()

| BEGIN => eat BEGIN; S (); L ()

| PRINT => eat PRINT; E ()

and L () = case !tok of

END => eat END

| SEMI => eat SEMI; S (); L ()
```

and E () = eat NUM; eat EQ; eat NUM

non-terminals: S, A, E, L rules:

```
fun S () = A (); eat EOF
and A () = case !tok of
          ID => eat ID; eat ASSIGN; E ()
         | PRINT => eat PRINT; eat LPAREN; L (); eat RPAREN
and E () = case !tok of
          ID => eat ID
         | NUM => eat NUM
and L() = case !tok of
          ID => ???
         | NUM => ???
```

problem

- predictive parsing only works for grammars where the first terminal symbol in the input provides enough information to choose which production to use
 - LL(1)
- when parsing L, if !tok = ID, the parser cannot determine which production to use:

6. L ::= E (E could be ID)
7. | L , E (L could be E could be ID)

solution

eliminate left-recursion

|L,E|

 rewrite the grammar so it parses the same language but the rules are different:

```
S ::= A EOF

A ::= ID := E

| PRINT(L)

E ::= ID

| NUM

L ::= E
```

solution

- eliminate left-recursion
- rewrite the grammar so it parses the same language but the rules are different:

```
      S ::= A EOF
      S ::= A EOF

      A ::= ID := E
      | PRINT (L)

      E ::= ID
      | PRINT (L)

      E ::= ID
      | NUM

      L ::= E
      | L , E

      IL , E
      M ::= , E M
```

eliminating single left-recursion

• Original grammar form:

X ::= base
 Transformed grammar:

Strings: base repeat repeat ...

X ::= base Xnew

Xnew ::= repeat Xnew

Strings: base repeat repeat ...

Think about: what if you have mutually left-recursive variables X,Y,Z? What's the most general pattern of left recursion? How to eliminate it?

Recursive Descent Parsing

- Unfortunately, can't always eliminate left recursion
- Questions:
 - how do we know when we can parse grammars using recursive descent?
 - Is there an algorithm for generating such parsers automatically?

Constructing RD Parsers

- To construct an RD parser, we need to know what rule to apply when
 - we are trying to parse a non terminal X
 - we see the next terminal a in input

Constructing RD Parsers

- To construct an RD parser, we need to know what rule to apply when
 - we are trying to parse a non terminal X
 - we see the next terminal a in input
- We apply rule X ::= s when
 - a is the first symbol that can be generated by string s, OR
 - s reduces to the empty string (is nullable) and a is the first symbol in any string that can follow X

Х	С	
Х	b	
Х	d	

Х	С	3
Х	b	
Х	d	

Х	С	3
Х	b	4
Х	d	

Х	С	3
Х	b	4
Х	d	4

- in general, must compute:
 - for each production X ::= s, must determine if s can derive the empty string.
 - if yes, $X \in Nullable$
 - for each production X := s, must determine the set of all first terminals Q derivable from s
 - $Q \subseteq First(X)$
 - for each non terminal X, determine all terminals symbols Q that immediately follow X
 - $Q \subseteq Follow(X)$

- Many compilers algorithms are iterative techniques.
- Iterative analysis applies when:
 - must compute a set of objects with some property P
 - P is defined inductively. ie, there are:
 - base cases: objects o1, o2 "obviously" have property P
 - inductive cases: if certain objects (o3, o4) have property P, this implies other objects (f o3; f o4) have property P
 - The number of objects in the set is finite
 - or we can represent infinite collections using some finite notation & we can find effective termination conditions

- general form:
 - initialize set S with base cases
 - applied inductive rules over and over until you reach a fixed point
- a fixed point is a set that does not change when you apply an inductive rule (function)
 - Nullable, First and Follow sets can be determined through iteration
 - many program analyses & optimizations use iteration
 - worst-case complexity is bad
 - average-case complexity can be good: iteration "usually" terminates in a couple of rounds

Base Cases "obviously" have the property

apply function (rule) to things that have the property to produce new things that have the property

Base Cases + things you get by applying rule to base cases have the property

 \bigcirc

Apply rules again

Example:

• axioms are "obviously true"/taken for granted

• rules of logic take basic axioms and prove new things are true

axioms:

"Dave teaches cos 441"

"Dave teaches cos 320"

"Dave is a great teacher"

rule r: X is a great teacher \land X teaches Y => Y is a great class

Example:

• axioms are "obviously true"/taken for granted

• rules of logic take basic axioms and prove new things are true

rule r: X is a great teacher \land X teaches Y => Y is a great class

Example:

• axioms are "obviously true"/taken for granted

• rules of logic take basic axioms and prove new things are true

Fixed Point Reached!

rule r: X is a great teacher \land X teaches Y => Y is a great class

Nullable Sets

- Non-terminal X is Nullable only if the following constraints are satisfied
 - base case:
 - if (X :=) then X is Nullable
 - inductive case:
 - if (X := ABC...) and A, B, C, ... are all Nullable then X is Nullable

Computing Nullable Sets

- Compute X is Nullable by iteration:
 - Initialization:
 - Nullable := { }
 - if (X :=) then Nullable := Nullable U {X}
 - While Nullable different from last iteration do:
 - for all X,
 - if (X := ABC...) and A, B, C, ... are all Nullable then Nullable := Nullable U {X}

First Sets

- First(X) is specified like this:
 - base case:
 - if T is a terminal symbol then First $(T) = \{T\}$
 - inductive case:
 - if X is a non-terminal and (X:= ABC...) then
 - First (X) = First (ABC...)
 where First(ABC...) = F1 U F2 U F3 U ... and
 - F1 = First (A)
 - F2 = First (B), if A is Nullable; emptyset otherwise
 - F3 = First (C), if A is Nullable & B is Nullable; emp...
 - ...

Computing First Sets

- Compute First(X):
 - initialize:
 - if T is a terminal symbol then First (T) = {T}
 - if T is non-terminal then First(T) = { }
 - while First(X) changes (for any X) do
 - for all X and all rules (X:= ABC...) do
 - First (X) := First(X) U First (ABC...)
 where First(ABC...) := F1 U F2 U F3 U ... and
 - F1 := First (A)
 - F2 := First (B), if A is Nullable; emptyset otherwise
 - F3 := First (C), if A is Nullable & B is Nullable; emp...
 - ...

Computing Follow Sets

- Follow(X) is computed iteratively
 - base case:
 - initially, we assume nothing in particular follows X
 - (when computing, Follow (X) is initially { })
 - inductive case:
 - if (Y := s1 X s2) for any strings s1, s2 then
 - Follow (X) = First (s2)
 - if (Y := s1 X s2) for any strings s1, s2 then
 - Follow (X) = Follow(Y), if s2 is Nullable

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ::= b Y e

	nullable	first	follow
Z			
Y			
Х			

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ::= b Y e

	nullable	first	follow
Z	no		
Y	yes		
Х	no		

base case

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ∷= b Y e

	nullable	first	follow
Z	no		
Y	yes		
Х	no		

after one round of induction, we realize we have reached a fixed point

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ::= b Y e

	nullable	first	follow
Z	no	{ }	
Y	yes	{ }	
Х	no	{ }	

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ::= b Y e

	nullable	first	follow
Z	no	d	
Y	yes	С	
Х	no	a,b	

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ::= b Y e

	nullable	first	follow
Z	no	d,a,b	
Y	yes	С	
Х	no	a,b	

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ::= b Y e

	nullable	first	follow
Z	no	d,a,b	
Y	yes	С	
Х	no	a,b	

after three rounds of iteration, no more changes ==> fixed point

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ::= b Y e

	nullable	first	follow
Z	no	d,a,b	{ }
Y	yes	С	{ }
Х	no	a,b	{ }

base case

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ∷= b Y e

	nullable	first	follow
Z	no	d,a,b	{ }
Y	yes	С	e,d,a,b
Х	no	a,b	c,e,d,a,b
			4

after one round of induction, no fixed point

Z ::= X Y Z	Y ::= c	X ::= a
Z ::= d	Y ::=	X ::= b Y e

	nullable	first	follow
Z	no	d,a,b	{ }
Y	yes	С	e,d,a,b
Х	no	a,b	c,e,d,a,b

after two rounds of induction, fixed point

(but notice, computing Follow(X) before Follow (Y) would have required 3rd round)

Computed Sets:

	nullable	first	follow
Z	no	d,a,b	{ }
Y	yes	С	e,d,a,b
Х	no	a,b	c,e,d,a,b

- if T ∈ First(s) then enter (X ::= s) in row X, col T
- if s is Nullable and T ∈ Follow(X) enter (X ::= s) in row X, col T

	а	b	С	d	е
Z					
Y					
Х					

Computed Sets:

	nullable	first	follow
Z	no	d,a,b	{ }
Y	yes	С	e,d,a,b
Х	no	a,b	c,e,d,a,b

- if T ∈ First(s) then enter (X ::= s) in row X, col T
- if s is Nullable and $T \in Follow(X)$ enter (X ::= s) in row X, col T

	а	b	С	d	е
Z	Z ::= XYZ	Z ::= XYZ			
Y					
Х					

Computed Sets:

	nullable	first	follow
Z	no	d,a,b	{ }
Y	yes	С	e,d,a,b
Х	no	a,b	c,e,d,a,b

- if T ∈ First(s) then enter (X ::= s) in row X, col T
- if s is Nullable and $T \in Follow(X)$ enter (X ::= s) in row X, col T

	а	b	С	d	е
Z	Z ::= XYZ	Z ::= XYZ		Z ::= d	
Y					
Х					

Computed Sets:

	nullable	first	follow
Z	no	d,a,b	{ }
Y	yes	С	e,d,a,b
X	no	a,b	c,e,d,a,b

- if T ∈ First(s) then enter (X ::= s) in row X, col T
- if s is Nullable and $T \in Follow(X)$ enter (X ::= s) in row X, col T

	а	b	С	d	е
Z	Z ::= XYZ	Z ::= XYZ		Z ::= d	
Y			Y ::= c		
Х					

Computed Sets:

	nullable	first	follow
Z	no	d,a,b	{ }
Y	yes	С	e,d,a,b
Х	no	a,b	c,e,d,a,b

- if T ∈ First(s) then enter (X ::= s) in row X, col T
- if s is Nullable and $T \in Follow(X)$ enter (X ::= s) in row X, col T

	а	b	С	d	е
Z	Z ::= XYZ	Z ::= XYZ		Z ::= d	
Y	Y ::=	Y ::=	Y ::= c	Y ::=	Y ::=
Х					

Computed Sets:

	nullable	first	follow
Z	no	d,a,b	{ }
Y	yes	С	e,d,a,b
Х	no	a,b	c,e,d,a,b

- if T ∈ First(s) then enter (X ::= s) in row X, col T
- if s is Nullable and $T \in Follow(X)$ enter (X ::= s) in row X, col T

	а	b	С	d	е
Z	Z ::= XYZ	Z ::= XYZ		Z ::= d	
Y	Y ::=	Y ::=	Y ::= c	Y ::=	Y ::=
Х	X ::= a	X ::= b Y e			

Grammar:		(Computed Sets:						
Z ::= X Y Z Y ::= c X ::= a Z ::= d Y ::= X ::= b Y e	Y ::= c	X ::= a			nullable	first	follow		
	Х ::= b Ү е		Ζ	no	d,a,b	{ }			
				Y	yes	С	e,d,a,b		
				Х	no	a,b	c,e,d,a,b		

What are the blanks?

	а	b	С	d	е
Z	Z ::= XYZ	Z ::= XYZ		Z ::= d	
Y	Y ::=	Y ::=	Y ::= c	Y ::=	Y ::=
Х	X ::= a	X ::= b Y e			

Grammar:		Computed Sets:					
Z ::= X Y Z Y	∕ ::= c	X ::= a			nullable	first	follow
Z ::= d Y ::= X ::= b Y e		Z	no	d,a,b	{ }		
				Y	yes	С	e,d,a,b
				Х	no	a,b	c,e,d,a,b

What are the blanks? --> syntax errors

	а	b	С	d	е
Z	Z ::= XYZ	Z ::= XYZ		Z ::= d	
Y	Y ::=	Y ::=	Y ::= c	Y ::=	Y ::=
Х	X ::= a	X ::= b Y e			

Grammar:		Computed Sets:					
Z ::= X Y Z Y ::= c X ::= a Z ::= d Y ::= X ::= b Y e	Y ::= c	X ::= a			nullable	first	follow
		Z	no	d,a,b	{ }		
				Y	yes	С	e,d,a,b
				Х	no	a,b	c,e,d,a,b

Is it possible to put 2 grammar rules in the same box?

	а	b	С	d	е
Z	Z ::= XYZ	Z ::= XYZ		Z ::= d	
Y	Y ::=	Y ::=	Y ::= c	Y ::=	Y ::=
Х	X ::= a	X ::= b Y e			

Grammar:		Computed Sets:					
Z ::= X Y Z Y ::=	Y ::= c	X ::= a			nullable	first	follow
Z ::= d Z ::= d e	Z ::= d Y ::= X ::= b Y e Z ::= d e		Z	no	d,a,b	{ }	
				Y	yes	С	e,d,a,b
				Х	no	a,b	c,e,d,a,b

Is it possible to put 2 grammar rules in the same box?

	а	b	С	d	е
Z	Z ::= XYZ	Z ::= XYZ		Z ::= d	
				Z ::= d e	
Y	Y ::=	Y ::=	Y ::= c	Y ::=	Y ::=
Х	X ::= a	X ::= b Y e			

predictive parsing tables

- if a predictive parsing table constructed this way contains no duplicate entries, the grammar is called LL(1)
 - Left-to-right parse, Left-most derivation, 1 symbol lookahead
- if not, of the grammar is not LL(1)
- in LL(k) parsing table, columns include every klength sequence of terminals:

аа	ab	ba	bb	ac	са	

another trick

- Previously, we saw that grammars with left-recursion were problematic, but could be transformed into LL(1) in some cases
- the example non-LL(1) grammar we just saw:
- how do we fix it?

 Z ::= X Y Z
 Z ::= d
 Y ::= c
 X ::= a
 Y ::= X Y Z
 X ::= b Y e

another trick

- Previously, we saw that grammars with left-recursion were problematic, but could be transformed into LL(1) in some cases
- the example non-LL(1) grammar we just saw:
- solution here is left-factoring:
 Z ::= X Y Z Z ::= d Y ::= c X ::= a
 - Y ::= X ::= b Y e Z ::= d e

summary

- CFGs are good at specifying programming language structure
- parsing general CFGs is expensive so we define parsers for simple classes of CFG
 - LL(k), LR(k)
- we can build a recursive descent parser for LL(k) grammars by:
 - computing nullable, first and follow sets
 - constructing a parse table from the sets
 - checking for duplicate entries, which indicates failure
 - creating an ML program from the parse table
- if parser construction fails we can
 - rewrite the grammar (left factoring, eliminating left recursion) and try again
 - try to build a parser using some other method