
Introduction to Syntax Analysis



Syntax Analysis

Syntax Analysis

The parser (syntax analyzer) receives the source code in  

the form of tokens from the lexical analyzer and performs  

syntax analysis, which create a tree-like intermediate  

representation that depicts the grammatical structure of the  

token stream.

Syntax analysis is also called parsing.

A typical representation is a abstract syntax tree in  
which

each interior node represents an operation

the children of the node represent the arguments of the  

operation



Position of Syntax Analyzer



Role of Parser

Parser

Checks the stream of words and their parts of speech  

(produced by the scanner) for grammatical correctness

Determines if the input is syntactically well formed

Guides checking at deeper levels than syntax (static  

semantics checking)

Builds an IR representation of the code



Study of Parsing

Parser

The parser

Needs the syntax of programming language constructs, which can be  

specified by context-free grammars or BNF (Backus-Naur Form)

Need an algorithm for testing membership in the language of the grammar.

Roadmap

The roadmap for study of parsing

Context-free grammars and derivations

Top-down parsing

Recursive descent (predictive parsing)

LL (Left-to-right, Leftmost derivation) methods

Bottom-up parsing

Operator precedence parsing

LR (Left-to-right, Rightmost derivation) methods  

SLR, canonical LR, LALR



Expressive Power of Different Parsing  

Techniques



Benefits Offered by Grammar

Grammars offer significant benefits for both language  

designers and compiler writers:

A grammar gives a precise, yet easy-to-understand  

syntactic specification to a programming language.

Parsers can automatically be constructed for certain  
classes of grammars.

The parser-construction process can reveal syntactic  

ambiguities and trouble spots.

A grammar imparts structure to a language.

The structure is useful for translating source programs  

into correct object code and for detecting errors.

A grammar allows a language to be evolved.

New constructs can be integrated more easily into an  

implementation that follows the grammatical structure of  

the language.



Why Not Use RE/DFA?

Advantages of RE/DFA

Simple & powerful notation for specifying patterns  

Automatic construction of fast recognizers

Many kinds of syntax can be specified with REs

Limits of RE/DFA

Finite automata cannot count, which means a finite automaton cannot

accept a language like {anbn|n ≥ 1} that would require it to keep count of

the number of a’s before it sees the b’s.

Therefore, RE cannot check the balance of parenthesis, brackets, begin-end  

pairs.



CFG vs. RE

Grammars are a more powerful notation than regular  
expressions.

Every construct that can be described by a regular  

expression can be described by a grammar, but not  

vice-versa.

Every regular language is a context-free language, but  

not vice-versa.



Context-Free Grammar

Definition

A context-free grammar (CFG) has four components:

A set of terminal symbols, sometimes referred to as "tokens."

A set of nonterminal symbols. sometimes called "syntactic variables."  

One nonterminal is distinguished as the start symbol.

A set of productions in the form: LHS →  RHS

whereLHS (called head, or left side) is a single nonterminal symbol  

RHS (called body, or right side) consists of zero or more terminals  

and nonterminals.

The terminals are the elementary symbols of the language defined by the  

grammar.

Nonterminals impose a hierarchical structure on the language that is key to  

syntax analysis and translation.

Conventionally, the productions for the start symbol are listed first.

The productions specify the manner in which the terminals and  

nonterminals can be combined to form strings.



CFG Example

A CFG Grammar

1Expr → Expr Op 

Expr  2Expr →  

number  3Expr → id

4Op → +

5Op → -

6Op → *

7Op → /

where

Expr and Op are nonterminals  

number, id, +, -, *, and / are terminals  

Expr is the start symbol



CFG Example

Productions with the same head can be grouped. Therefore,  

the previous CFG grammar is equivalent to the one below.

Equivalent CFG Grammar

1 Expr → Expr Op Expr | number | id

2 Op → + | - | * | /



Another CFG Example

Grammar for simple arithmetic expressions

1 expr → expr + term | expr - term | term

2 term → term * factor | term / factor | factor

3 factor → ( expr ) | id

where

expr, term, and factor are nonterminals  

id, +, -, *, /, (, and ) are terminals

expr is the start symbol



Notational Conventions

To avoid confusion between terminals and nonterminals, the following notational  

conventions for grammar will be used.

terminal symbols

lowercase letters like a, b, c.

digits, operator and punctuation symbols, such as +, *, (, ), 0, 1, ..., 9.

Boldface strings such as id, or if. Each of which represents a single  

terminal symbol.

nonterminal symbols

uppercase letters early in the alphabet like A, B, C.  

lowercase italic names such as expr, or stmt.

Specific symbols begin with a uppercase letter such as Expr, Stmt.

Unless stated otherwise, the head of the first production is the start symbol.



Notational Conventions (cont)

To avoid confusion between terminals and nonterminals, the following notational  

conventions for grammar will be used.

Grammar symbols (i.e. either terminal or nonterminal)

uppercase letters late in the alphabet, such as X, Y, Z.

lowercase Greek letters, α, β, γ for example, represent strings of grammar  

symbols. Thus, a production can be written as: A → α.



Derivations

Derivations

A grammar derives strings by beginning with the start symbol and repeatedly

replacing a nonterminal by the body of a production for that nonterminal. This

sequence of replacements is called derivation.

Derivation Example

Given the grammar:

1 exp →  exp op exp | ( exp ) | number

2 op →  + | - | *

The following is a derivation for an expression. At each step the grammar rule  

choice used for the replacement is given on the right.



Context-Free Language

New Notations: ⇒
∗ +

= and =⇒
∗

1 n 1 nα ⇒=α means α derives α in zero or more steps.
+

α1 =⇒αn means α1 derives αn in one or more steps.

Definition

If S =⇒∗ α, where S is the start symbol of grammar G, then α is called a

sentential form of G. A sentential form may contain both terminals and

nonterminals.

A sentence of G is a sentential form with no nonterminals.

The language generated by a grammar G is its set of sentences, denoted  

as L(G).

A language that can be generated by a context-free grammar is said to be a

context-free language.

If two grammars generate the same language, the grammars are said to be

equivalent.

Process of discovering a derivation is called parsing.



Leftmost and Rightmost Derivations

The point of parsing is to construct a derivation.

At each step, we choose a nonterminal to replace.  

Different choices can lead to different derivations

Two derivations are of interest

Leftmost derivation - replace leftmost nonterminal at  

each step, denoted as:
⇒

lm.

Rightmost derivation - replace rightmost nonterminal at  

each step, denoted as: ⇒rm.

Leftmost and rightmost are the two systematic  

derivations. We don’t care about randomly-ordered  

derivations!



Leftmost and Rightmost Derivations

Leftmost Derivation of (number - number)*number

Rightmost Derivation of (number - number)*number



Parse Trees

Definition

A parse Tree is a labeled tree representation of a derivation  

that filters out the order in which productions are applied to  

replace nonterminals.

The interior nodes are labeled by nonterminals

The leaf nodes are labeled by terminals

The children of each internal node A are labeled, from  

left to right, by the symbols in the body of the production  

by which this A was replaced during the derivation.

Since a parse tree ignores variations in the order in which symbols in  

sentential forms are replaced, there is a many-to-one relationship between  

derivations and parse tree.



Leftmost and Rightmost Derivations

The following is a parse tree for these two derivations  

discussedhere.



Ambiguous Grammars

Definition

A grammar that produces more than one parse tree for  

some sentence is said to be ambiguous. Such a grammar is  

called ambiguous grammar.

Put another way,

If a grammar has more than one leftmost derivation for  

a single sentential form, the grammar is ambiguous.

If a grammar has more than one rightmost derivation  

for a single sentential form, the grammar is ambiguous



Ambiguous Grammars

The grammar:

1 exp →  exp op exp | id | id

2 op →  + | - | * | /

are ambiguous because there are two different parse trees for sentence: id -

number*id



Solving Ambiguity

There are two basic methods to deal with ambiguities.

Approach 1: Disambiguating Rule

State a rule that specifies in each ambiguous case which of  

the parse trees is the correct one. Such a rule is called a  

disambiguating rule.

Advantage: No need to change the grammar itself

Disadvantage: the syntactic structure of the language is  

no longer given by the grammar alone.

Approach 2: Rewriting Grammar

Change the grammar into a form that forces the construction  

of the correct parse tree, thus removing the ambiguity.



Precedence and Associativity

Ambiguous Grammar

1 exp →  exp op exp | id | id

2 op →  + | - | * | /

To use Approach 1 to remove ambiguity from the above ambiguous grammar, the  

following disambiguating rules are defined:

all operators (+, -, *, /) are left associative.

+ and - have the same precedence

* and / have the same precedence

* and / have higher precedence than + and -.

Based on these rules, which parse tree inthis slideis correct?



Precedence and Associativity

Ambiguous Grammar

1 exp →  exp op exp | id | id

2 op →  + | - | * | /

We can add precedence to the above ambiguous grammar to remove ambiguity.  

To add precedence:

Group Operators into Precedence Levels

Create a nonterminal for each level of precedence

Make operators left, right, or none associative. Position of the recursion  

relative to the operator dictates the associativity

Left (right) recursion → left (right) associativity

None: Don’t be recursive, simply reference next higher precedence  

non-terminal on both sides of operator

Isolate the corresponding levels of the grammar

Force the parser to recognize high precedence subexpressions first



Precedence and Associativity

The figure below demonstrates how to add precedence to a  

grammar.



Dangling Else Problem

Dangling Else Grammar

stmt →
|

if expr thenstmt
if expr then stmt else stmt

| other

The above grammar is ambiguous since the string

if E1 then if E2 then S1 else S2 has the two parse trees shown below.



Dangling Else Problem

Two ways to solve the dangling else problem  

Approach 1:Create the following disambiguating rule

Match each else with the closest unmatched

then.

Approach 2:Rewriting the grammar so that the  

disambiguating rule can be incorporated  

directly into the grammar.



Dangling Else Problem

The following explain the idea to rewrite the dangling-else grammar to remove the  

ambiguity.

A statement appearing between a then and an else must be ”matched”; that  

is, the interior statement must not end with an unmatched or open then.

A matched statement is either an if-then-else statement containing no open  

statements or it is any other kind of unconditional statement.

Rewritten Grammar without Ambiguity

stmt

matched_stmt if expr then matched_stmt else matched_stmt

other

open_stmt

→
|

matched_stmt  

open_stmt

→
|

→
|

if expr thenstmt

if expr then matched_stmt else open_stmt



Dangling Else Problem

With regarding to the dangling else problem

Rewrite the grammar is usually not taken. Instead, the  
disambiguating rule is preferred.

The principal reason is that parsing methods are easy  

to configure in such a way that the most closely nested  

rule is obeyed.

Another reason is the added complexity of the new  

grammar.



Class Problem

Ambiguous Grammar

S →
|

S + S

S - S
| S * S

| S / S

| (S)

| -S

| S ^S

| number

Precedence (high to low)

(), unary -

^
*, /
+, -

Associativity

ˆ is right-associative  

rest are left-associative




