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Course Overview

Time-Series Representation of Signals
Typically think of a signal as a “time series”, or a sequence of values
in time

t

f(t)

Useful for saying what is happening at a particular time
Not so useful for capturing the overall characteristics of the signal.
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Idea 1: Frequency Domain Representation of Signals

Represent signal as a combination of sinusoids
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f (t) = 0.1sin(ω1t)+0.7sin(ω2t)+0.2sin(ω3t)

0.1sin(ω1t)

0.7sin(ω2t)

0.2sin(ω3t)
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This example is mostly a sinusoid at frequency ω2, with small
contributions from sinusoids at frequencies ω1 and ω3.

I Very simple representation (for this case).
I Not immediately obvious what the value is at any particular time.

Why use frequency domain representation?
I Simpler for many types of signals (AM radio signal, for example)
I Many systems are easier to analyze from this perspective (Linear

Systems).
I Reveals the fundamental characteristics of a system.

Rapidly becomes an alternate way of thinking about the world.
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Demonstration: Piano Chord

You are already a high sophisticated system for performing spectral
analysis!

Listen to the piano chord. You hear several notes being struck, and
fading away. This is waveform is plotted below:
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The time series plot shows the time the chord starts, and its decay,
but it is difficult tell what the notes are from the waveform.

If we represent the waveform as a sum of sinusoids at different
frequencies, and plot the amplitude at each frequency, the plot is
much simpler to understand.
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Idea 2: Linear Systems are Easy to Analyze for Sinusoids

Example: We want to predict what will happen when we drive a car over a
curb. The curb can be modelled as a “step” input. The dynamics of the
car are governed by a set of differential equations, which are hard to solve
for an arbitrary input (this is a linear system).

Differential 
Equations

Input: Curb Car Dynamics Output

?

Hard to Solve Directly
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After transforming the input and the differential equations into the
frequency domain,

Frequency 
Domain 

Input

Transfer 
Function

Frequency 
Domain 
Output

Differential 
Equations

Input: Curb Car Dynamics Output

Easy to Solve,
Multiplication Frequency

Domain

Solving for the frequency domain output is easy. The time domain output
is found by the inverse transform. We can predict what happens to the
system.

Cuff (Lecture 1) ELE 301: Signals and Systems Fall 2011-12 8 / 45



Idea 3: Frequency Domain Lets You Control Linear
Systems

Often we want a system to do something in particular automatically
I Airplane to fly level
I Car to go at constant speed
I Room to remain at a constant temperature

This is not as trivial as you might think!
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Example: Controlling a car’s speed. Applying more gas causes the car to
speed up

Car
gas speed

Normally you “close the loop”

Car
gas speed

You

How can you do this automatically?
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Use feedback by comparing the measured speed to the requested speed:

Car
gas speed

requested
speed ++ -

error
k

This can easily do something you don’t want or expect, and oscillate out
of control.

Frequency domain analysis explains why, and tells you how to design the
system to do what you want.
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Course Outline

It is useful to represent signals as sums of sinusoids (the frequency
domain)

This is the “correct” domain to analyze linear time-invariant systems

Linear feedback control, sampling, modulation, etc.

What sort of signals and systems are we talking about?
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Signals

Typical think of signals in terms of communication and information
I radio signal
I broadcast or cable TV
I audio
I electric voltage or current in a circuit

More generally, any physical or abstract quantity that can be
measured, or influences one that can be measured, can be thought of
as a signal.

I tension on bike brake cable
I roll rate of a spacecraft
I concentration of an enzyme in a cell
I the price of dollars in euros
I the federal deficit

Very general concept.
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Systems

Typical systems take a signal and convert it into another signal,
I radio receiver
I audio amplifier
I modem
I microphone
I cell telephone
I cellular metabolism
I national and global economies

Internally, a system may contain many different types of signals.

The systems perspective allows you to consider all of these together.

In general, a system transforms input signals into output signals.
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Continuous and Discrete Time Signals
Most of the signals we will talk about are functions of time.

There are many ways to classify signals. This class is organized
according to whether the signals are continuous in time, or discrete.

A continuous-time signal has values for all points in time in some
(possibly infinite) interval.

A discrete time signal has values for only discrete points in time.

t

f(t)

n

f [n]

2 4-2-4 0

Signals can also be a function of space (images) or of space and time
(video), and may be continuous or discrete in each dimension.
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Types of Systems

Systems are classified according to the types of input and output signals

Continuous-time system has continuous-time inputs and outputs.
I AM or FM radio
I Conventional (all mechanical) car

Discrete-time system has discrete-time inputs and outputs.
I PC computer game
I Matlab
I Your mortgage

Hybrid systems are also very important (A/D, D/A converters).
I You playing a game on a PC
I Modern cars with ECU (electronic control units)
I Most commercial and military aircraft
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Continuous Time Signals

Function of a time variable, something like t, τ , t1.

The entire signal is denoted as v , v(.), or v(t), where t is a dummy
variable.

The value of the signal at a particular time is v(1.2), or v(t), t = 2.

t, us

p(t), Pa1

-1

0
1 2 3

Ultrasound Pulse
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Discrete Time Signals
Fundamentally, a discrete-time signal is sequence of samples, written

x [n]

where n is an integer over some (possibly infinite) interval.

Often, at least conceptually, samples of a continuous time signal

x [n] = x(nT )

where n is an integer, and T is the sampling period.

n2 4-2-4 0

x[n]

Discrete time signals may not represent uniform time samples (NYSE
closes, for example)

There may not be an underlying continuous time signal (NYSE closes,
again)

There may not be any underlying physical reality (PC computer game)
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Summary

A signal is a collection of data

Systems act on signals (inputs and outputs)

Mathematically, they are similar. A signal can be represented by a
function. A system can be represented by a function (the domain is
the space of input signals).

We focus on 1-dimensional signals.

Our systems are not random.
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Signal Characteristics and Models

Operations on the time dependence of a signal
I Time scaling
I Time reversal
I Time shift
I Combinations

Signal characteristics

Periodic signals

Complex signals

Signals sizes

Signal Energy and Power
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Amplitude Scaling

The scaled signal ax(t) is x(t) multiplied by the constant a
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x(t)
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2

2x(t)

t

The scaled signal ax [n] is x [n] multiplied by the constant a

-2 -1 0 1 2

1

2 x[n]

n -2 -1 0 1 2

1

2 2x[n]

n
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Time Scaling, Continuous Time

A signal x(t) is scaled in time by multiplying the time variable by a
positive constant b, to produce x(bt). A positive factor of b either
expands (0 < b < 1) or compresses (b > 1) the signal in time.
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b= 1/2
x(t/2)
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Time Scaling, Discrete Time

The discrete-time sequence x [n] is compressed in time by multiplying the
index n by an integer k , to produce the time-scaled sequence x [nk].

This extracts every kth sample of x [n].

Intermediate samples are lost.

The sequence is shorter.

2 4-2-4 0 1 3-1-3

x[n]

n

y[n] = x[2n]

2-2 0 1-1 n

Called downsampling, or decimation.
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The discrete-time sequence x [n] is expanded in time by dividing the index
n by an integer m, to produce the time-scaled sequence x [n/m].

This specifies every mth sample.

The intermediate samples must be synthesized (set to zero, or
interpolated).

The sequence is longer.

2-2 0 1-1 n

x[n]

2 4-2-4 0 1 3-1-3 n

y[n] = x[n/2]

Called upsampling, or interpolation.
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Time Reversal

Continuous time: replace t with −t, time reversed signal is x(−t)

t

x(t)

t

x(−t)

Discrete time: replace n with −n, time reversed signal is x [−n].

t2 4-2-4 0

x[n]

t

x[−n]

2 4-2-4 0

Same as time scaling, but with b = −1.

Cuff (Lecture 1) ELE 301: Signals and Systems Fall 2011-12 25 / 45



Time Shift

For a continuous-time signal x(t), and a time t1 > 0,

Replacing t with t − t1 gives a delayed signal x(t − t1)

Replacing t with t + t1 gives an advanced signal x(t + t1)

-2 -1 0 1 2

1

2

t

x(t+1)

-2 -1 0 1 2

1

2

t

x(t)

-2 -1 0 1 2

1

2

t

x(t−1)

May seem counterintuitive. Think about where t − t1 is zero.
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For a discrete time signal x [n], and an integer n1 > 0

x [n − n1] is a delayed signal.

x [n + n1] is an advanced signal.

The delay or advance is an integer number of sample times.

-2 -1 0 1 2

1

2

t-4 -3 3 4

x[n+1]

-2 -1 0 1 2

1

2

t-4 -3 3 4

x[n]

-2 -1 0 1 2

1

2

t-4 -3 3 4

x[n−1]

Again, where is n − n1 zero?
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Combinations of Operations

Time scaling, shifting, and reversal can all be combined.

Operation can be performed in any order, but care is required.

This will cause confusion.

Example: x(2(t − 1))

Scale first, then shift
Compress by 2, shift by 1
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t

x(t)

-2 -1 0 1 2

1

2

t

x(2t)

-2 -1 0 1 2

1

2

t

x(2(t−1))
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Example x(2(t − 1)), continued
Shift first, then scale
Shift by 1, compress by 2 Incorrect
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x(t)
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t

x(t−1)

-2 -1 0 1 2

1

2

t

x(2(t−1))

Shift first, then scale
Rewrite x(2(t − 1)) = x(2t − 2)
Shift by 2, scale by 2 Correct
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t

x(t)

-2 -1 0 1 2
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t3

x(t−2)

-2 -1 0 1 2

1

2

t

x(2t−2)

Where is 2(t − 1) equal to zero?
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Try these yourselves ....

t-4 -2 0 2 4

1x(t)

-4 -2 0 2 4

1

t

x(−t/2)

-4 -2 0 2 4

1

t

x(2(t+2))

-4 -2 0 2 4

1

t

x(−t+1)
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Even and Odd Symmetry

An even signal is symmetric about the origin

x(t) = x(−t)

An odd signal is antisymmetric about the origin

x(t) = −x(−t)
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t

Even
x(t) = x(−t)
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t

Oddx(t) =−x(−t)
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Any signal can be decomposed into even and odd components

xe(t) =
1

2
[x(t) + x(−t)]

xo(t) =
1

2
[x(t)− x(−t)] .

Check that

xe(t) = xe(−t),

xo(t) = −xo(−t),

and that
xe(t) + xo(t) = x(t).
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Example

-1 0 1
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2

t -1 0 1

1
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t

-1 0 1

1
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t -1 0 1

1

2

t

x(t) x(−t)

xe(t) =
1
2 [x(t)+ x(−t)] xo(t) =

1
2 [x(t)− x(−t)]

Same type of decomposition applies for discrete-time signals.
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The decomposition into even and odd components depends on the
location of the origin. Shifting the signal changes the decomposition.

Plot the even and odd components of the previous example, after shifting
x(t) by 1/2 to the right.
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xe(t) =
1
2 [x(t)+ x(−t)] xo(t) =

1
2 [x(t)− x(−t)]
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Discrete Amplitude Signals

Discrete amplitude signals take on only a countable set of values.

Example: Quantized signal (binary, fixed point, floating point).

A digital signal is a quantized discrete-time signal.

Requires treatment as random process, not part of this course.

-2 -1 0 1 2

2

4

t

x(t)

-2
-2 -1 0 1 2

2

4

t
-2

x[n]
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Periodic Signals

Very important in this class.

Continuous time signal is periodic if and only if there exists a T0 > 0
such that

x(t + T0) = x(t) for all t

T0 is the period of x(t) in time.

A discrete-time signal is periodic if and only if there exists an integer
N0 > 0 such that

x [n + N0] = x [n] for all n

N0 is the period of x [n] in sample spacings.

The smallest T0 or N0 is the fundamental period of the periodic
signal.
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Example:

-2 -1 0 1 2

1

2

t

x(t)

-2 -1 0 1 2

1

2

t

x(t−1)

Shifting x(t) by 1 time unit results in the same signal.

Common periodic signals are sines and cosines

x(t) = A cos(2πt/T0 − θ)

x [n] = A cos(2πn/N0 − θ)

An aperiodic signal is a signal that is not periodic.

Seems like a simple concept, but there are some interesting cases
I Is

x [n] = A cos(2πna− θ)

periodic for any a?
I Is the sum of periodic discrete-time signals periodic?
I Is the sum of periodic continuous-time signals periodic?
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Periodic Extension

Periodic signals can be generated by periodic extension by any
segment of length one period T0 (or a multiple of the period).

-2 -1 0 1 2

1

2

t

-2 -1 0 1 2

1

2

t

x(t)

x1(t)One Period

Periodic Extension

We will often take a signal that is defined only over an interval T0

and use periodic extension to make a periodic signal.
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Causal Signals
Causal signals are non-zero only for t ≥ 0 (starts at t = 0, or later)

-2 -1 0 1 2

1

2

t

Causal

Noncausal signals are non-zero for some t < 0 (starts before t = 0)

-2 -1 0 1 2

1

t

Noncausal

Anticausal signals are non-zero only for t ≤ 0 (goes backward in time
from t = 0)

-2 -1 0 1 2

1

2

t

Anticausal
Cuff (Lecture 1) ELE 301: Signals and Systems Fall 2011-12 39 / 45



Complex Signals

So far, we have only considered real (or integer) valued signals.

Signals can also be complex

z(t) = x(t) + jy(t)

where x(t) and y(t) are each real valued signals, and j =
√
−1.

Arises naturally in many problems
I Convenient representation for sinusoids
I Communications
I Radar, sonar, ultrasound
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Review of Complex Numbers

Complex number in Cartesian form: z = x + jy

x = <z , the real part of z

y = =z , the imaginary part of z

x and y are also often called the in-phase and quadrature components
of z .

j =
√
−1 (engineering notation)

i =
√
−1 (physics, chemistry, mathematics)
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Complex number in polar form: z = re jφ

r is the modulus or magnitude of z

φ is the angle or phase of z

exp(jφ) = cosφ+ j sinφ

Im

Re

z= x+ jy

r

φ

Im

Re

z= re jφ

complex exponential of z = x + jy :

ez = ex+jy = exe jy = ex(cos y + j sin y)

Know how to add, multiply, and divide complex numbers, and be able to
go between representations easily.
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Signal Energy and Power
If i(t) is the current through a resistor, then the energy dissipated in the
resistor is

ER = lim
T→∞

∫ T

−T
i2(t) R dt

This is energy in Joules.

The signal energy for i(t) is defined as the energy dissipated in a 1 Ω
resistor

Ei = lim
T→∞

∫ T

−T
i2(t)dt

The signal energy for a (possibly complex) signal x(t) is

Ex = lim
T→∞

∫ T

−T
|x(t)|2dt.

In most applications, this is not an actual energy (most signals aren’t
actually applied to 1Ω resistor).

The average of the signal energy over time is the signal power

Px = lim
T→∞

1

2T

∫ T

−T
|x(t)|2dt.

Again, in most applications this is not an actual power.

Signals are classified by whether they have finite energy or power,

An energy signal x(t) has energy 0 < Ex <∞

A power signal x(t) has power 0 < Px <∞

These two types of signals will require much different treatment later.
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Properties of Energy and Power Signals

An energy signal x(t) has zero power

Px = lim
T→∞

1

2T

∫ T

−T
|x(t)|2 dt︸ ︷︷ ︸
→Ex<∞

= 0

A power signal has infinite energy

Ex = lim
T→∞

∫ T

−T
|x(t)|2 dt

= lim
T→∞

2T
1

2T

∫ T

−T
|x(t)|2 dt︸ ︷︷ ︸

→Px>0

=∞.
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Classify these signals as power or energy signals

-2 -1 0 1 2

1

2

t

e−t
1

tt1 2−1 0−2

1

tt1 2−1 0−2

2 t

T 2T-2T -T 0

cos(2π f t)

t t

e−t sin(2π f t)

A bounded periodic signal.
A bounded finite duration signal.
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