ADVANCED DATA-STRUCTURES
&
ALGORITHM ANALYSIS

Dr. Sukhamay Kundu

Computer Science Dept, Louisiana state University
Baton Rouge, LA 70803

kundu@sc. | su. edu

Spring 2011
(copyright@2010 , @2011)

1.2

ROLE OF DATA-STRUCTURES
IN COMPUTATION

M akes Computations Faster:

o Faster is better. (Another way to make computations faster is to
use parallel or distributed computation.)

Three Basic Computation Steps.

Computation = Sequence of Computation Steps

(1) Locate/Access data-values (inputs to a step)
(2) Compute a value (output of a step)
(3) Store the new value

External
Output

External
Input

Program: Algorithm + DataStructure + Implementation.
o Algorithm
— The basic method; it determines the data-items computed.
— Also, the order in which those data-items are computed (and
hence the order of read/write data-access operations).
 Data structures
— Supports efficient read/write of data-items used/computed.

Total Time = Time to access/store data + Time to compute data.

Efficient Algorithm = Good method + Good data-structures
(+ Good Implementation)

Question:
*? What is an efficient program?
*? What determines the speed of an Algorithm?

*? A program must also solve a "problem”. Which of the three parts
algorithm, data-structure, and implementation embodies this?

13

ALGORITHM OR METHOD
vs. DATA STRUCTURE

Problem: Compute the average of three numbers.

TwoMethods: (1) aver=(x+y+ 2)/3.
(2) aver=(x/3) + (y/3) + (z3).

 Method (1) superior to Method (2); two less div-operations.
» They accessdatain the same order: [X, v, z, averl]

 Any improvement due to data-structure applies equally well to
both methods.

Data structures:
(@) Threevariablesx, vy, z
(b) Anarray numg0..2].

— Thisisinferior to (a) because accessing an array-item takes
more time than accessing a simple variable. (To access
numg[i], the executable code has to compute its address
addr(numg]i]) = addr(numg[0]) + i*sizeof(int), which
involves 1 addition and 1 multiplication.)

— When there are large number of data-items, naming indi-
vidual data-itemsis not practical.

— Useof individually named data-items is not suitable when a
varying number of data-items are involved (in particular, if
they are used as parameters to afunction).

A Poor Implementation of (1): Using 3 additions and 1 division.
a =Xx +y; //luses 2 additional assignnents
b =a + z;
aver = b/ 3;

14

LIMITS OF EFFICIENCY

Hardware limit:

Physical limits of time (speed of electrons) and space (layout of
circuits). Thislimit is computation problem independent.

From 5 mips (millions of instructions per sec) to 10 mips is an
improvement by the factor of 2.

One nano-second = 107° (one billionth of a second); 10 mips =
100 ng/instruction.

Software limit:

Limitless in a way, except for the inherent nature of the problem.
That is, the limit is problem dependent.

Sorting Algorithm Al: O(n.log n) time
Sorting Algorithm A2: O(n?) time
(n = number of items sorted)

Al isanimprovement over A2 by the factor

n2 N

n.log n - log n

= ->00dSN —» o,

O(n.log n) isthe effi ciency-limit for sorting Algorithms.

15

MEASURING PERFORMANCE

Analytic M ethod:
» Theoretical analysis of the Algorithm’s time complexity.

Empirical Methods:

e Count the number of times specifi c operations are performed by
executing an instrumented version of the program.

» Measure directly the actual program-execution timein arun.

Example of I nstrumentation:

Original code: if (x <y) small = x;
el se small = vy;

Instrumentd code: count Conpari sons++; //initialized el sewhere

If (x <y) small = x;
el se small = vy;
Question:
«? What iswrong with the following instrumentation:
If (x <vy) { countConparisons++; small = x; }
el se small = vy;

*? Instrument the code below for readCount and writeCount of x:
If (x <3) y =x + 5

o? S#O\IN the new code when updates to loopCount is moved outside
the loop:

for (i=); i<max; i++) {
| oopCount ++;
I f (x[i] < 0) break;

16

EXERCISE

1. Instrument the code below to count the number of Exchanges
(numExchanges) and number of comparisons (numComparisons)
of the array data-items. Show the values of numExchanges and
numComparisons after each iteration of the outer for-loop for the
input itemg[] =[3, 2, 4, 5, 2, 0].

void crazySort(int *itens, int numtens)
{ int i, j, smll,
for (i=0; i<numtens; i++) //put ith smallest itemin itens[i]
for (j=i+1l; j<numtens; j++)

if (items[i] > itens[j]) { //exchange
small = itens[j]; itens[j] = itens[i];
itens[i] = small;

}

(@ If weuse"i < numltems— 1" in place of "i < numltems"
in the outer for-loop, do we still get the same fi nal result?
Will it affect the execution time?

(b) Isthe agorithm in the code more closely related to inser-
tion-sort or to selection-sort? In what way does it differ
from that?

2. For numltems = 6, find an input for which crazySort will give
maximum numExchanges. When will numExchanges be mini-
mum?

3. Give a pseudocode for deciding whether three given line seg-
ments of lengths X, y, and z can form atriangle, and if so whether
it is a right-angled, obtuse-angled, or an acute-angled triangle.
Make sure that you minimize the total number operations (arith-
metic and comparisons of data-items)?

4. Given an array lengthg[1..n] of the lengths of n line segments,
fi nd amethod for testing if they can form a polygon (quadrilateral
for n = 4, pentagon for n =5, etc).

1.7

SOLUTION TO SELECTED EXERCISES:

1. wvoid crazySort(int *itens,
{int i, j, small,
numComparisons=0, //for two elenments in itens[]

int numtens)

numExchanges=0; //of elenments in itens[]
for (i=0; i<numtens; i++) {//put ith smallest itemin itens[i]
for (j=i+1;, j<numtens; j++) {

numComparisonst++; I/ keep it here
if (items[i] > itens[j]) { //exchange
numExchanges++;
small = itens[j];
items[i] = small;
}
}
printf(" numComparisons = %d, numExchanges = %d\n",
numComparisons, numExchanges);

itens[j] = itens[i];

}
}

After the comparison and exchanges (if any) for input itemg[] =[3, 2, 4, 5, 2, 0].

=0, j=4, items[]: 2 3 45 2 0
1 =0, | =2, 1tens|[]: 23 4520

1=0, | =3, itens|[]: 234520

1 =0, |=4, itens[]: 234520

1 =0, J=5, 1tens[]: 03 45 2 2
nunConpari sons = 5, nunExchanges = 2
=1, |=2, itens[]: 0 3 45 2

=1, |=3, itens[]: 03 45 2 2

1=1, | =4, 1tens|[]: 02 4 5 3 2

=1,]=5, itens[]: 0245 3 2
nunConpari sons = 9, nunExchanges
1=2, |=3, 1tens[]: 02 4 5 3

1=2, |=4, itens|[]: 02 35 4 2

1=2, | =5, 1tens[]: 02 2 543
nunConpari sons = 12, nunExchanges =
1=3, | =4, itens[]: 02 2 45 3

1=3, J]=5, 1tens[]: 02 2 35 4
nunConpari sons = 14, nunExchanges

I =4, =5, itens[]: 02 2 3 45
nunConpari sons = 15, nunExchanges 8
=5, j=6, itens[]: 02 2 345

nunmConpari sons = 15, nunExchanges = 8

This is more closely related to selection-sort, which involves at most one
exchange for each itération of outer-loop. #(Comparisons) is till C;.

2. Triangle classifi cation pseudocode; assumethat 0< x<y< z

18

it (z <x +vy){
zSquare = z*z; XxySquareSum = X*X + y*y;
I f (zSquare == xySquar eSum
ri ght-angled triangl e;
else if (zSquare > xySquareSum
obt use-angl ed tri angl e;
el se acute-angl ed triangl e;

el se not a triangle;

3. Condition for polygon:
» Thelargest length isless than the sum of the other lengths.

 Thelengths[2, 4, 5, 20] will not make a quadrilateral because
204 2+4+5=11, but thelengths[2, 4, 5, 10] will.

1.9

ANALYZING NUMBER OF EXCHANGES
IN CRAZY-SORT

Pseudocode #1.
1. Create all possible permutations p of {0, 1, 2, [IJin — 1} .
2. For each p, apply crazySort and determine numExchanges.

3. Collect these data to determine numPermutationg]i] = #(permuta
tions which has numExchanges =) for i = 0, 2, IJIC;.

4. Plot numPermutations[i] against i to visualize the behavior of
numExchanges.

Pseudocode #2: //No need to store all n! permutations.

1. For (i=0; i<C3; i++), initialize numPermutationg[i] = 0.

2. While (there is a nextPermutation(n) = p) do the following:
(@) Apply crazySort to p and determine numExchagnes.
(b) Add 1 to numPermutation[numExchanges]|.

3. Plot numPermutationg]i] against i.

Note: We can use thisideato analyze other sorting algorithms,

Question:

«? If pisapermutation of S={0, 1, 2, [I[In -1}, then how to deter-
mine the nextPermutation(p) in the lexicographic order? Shown
below are permutations for n = 4 in lexicographic order.

0123 0312 1203 2013 2301 3102
| 0132 | 0321 | 1230 | 2031 | 2310 | 3120
0213 1023 1302 2103 3012 3201
0231 1032 1320 2130 3021 3210

1.10

PSEUDOCODE vs. CODE

Characteristics of Good Pseudocode:

+ Shows the key concepts and the key computation steps of the
Algorithm, avoiding too much details.

+ Avoids dependency on any specifi ¢ prog. language.
+ Allows determining the correctness of the Algorithm.

+ Allows choosing a suitable data-structures for an effi cient imple-
mentation and complexity analysis.

Example. Compute the number of positive and negative items in
numgl 0. . n — 1]; assume each numg[i] # O.

(A) Pseudocode: 1. Initialize positiveCount = negativeCount = 0.
2. Use each numg[i] to increment one of the counts by one.

Code: 1.1 positiveCount = neg
2.1 for (i=0; i<n; i++)
2.2 if (0O < nuns[i]
2.3 el se negati veCo

ativeCount = 0;

[l each nuns[i] # O
) positiveCount ++;
unt ++;

(B) Pseudocode: 1. Initialize positiveCount = 0.
2. Use each numg[i] > 0 to increment positiveCount by one.
3. Let negativeCount = n — positiveCount.

Code: 1. positiveCount = O;

2. for (i=0; i<n; i++) //each nuns[i] # O
3. If (0O < nuns[i]) positiveCount ++;
4. negativeCount = n - positiveCount;

Question:

«? Why is (B) dightly more €ffi cient than (A)?

Writing a pseudocode requires skills to express
an Algorithm in a concise and yet clear fashion.

111

PSEUDOCODE FOR SELECTION-SORT

Idea: Successively fi nd the ith smallest item, 1 =0, 1, [II
Algorithm Selection-Sort:

| nput: Array itemg[] and its size numltems.
Output: Array itemg[] sorted in increasing order.

1. Foreachiin{ O, 1, IIlnumltems-1}, in some order, do (a)-(b):
(@ Findtheith smallestiteminitemq[].
(b) Placeit at positioni initemg[].

Finding ith smallest item in itemg]]:

* Finding ith smallest item directly is diffi cult, but it is easy if we
know all the kth smallest itemsfor k =0, 1, 2, IJI(i — 1).

* Itisthe smallest item among the remaining items.

e If we assume that itemgk], O < k < (i — 1), are the kth smallest
items, then smallest item in itemg[i..numltems — 1] = ith smallest
item. This gives the pseudocode:

(al) smallestitemindex =i;

(@a2) for(j=i+1; j<numltems; j++)

(a3) iIf (itemg] j] < itemgsmallestitemindex])
(ad) then smallestitemindex = j;

Question: In what way (a.1)-(a.4) is better than step (a)?
Placing ith smallest item at position i in itemg]].

(b.1) if (smallestltemindex > i) // why not smallestitemindex # |
(b.2) then exchangeitemg]i] and itemg smallestlitemlindex];

"What" comes before "how".

112

EXERCISE

1. Which of "put the items in right places' and "fi |l the places by
right items" best describes the selection-sort Algorithm? Shown
below are the steps in the two methods for input [3, 5, 0, 2, 4, 1].

Put theitemsin Fill the places
right places with right items
1. | [2,50,3,4,1] [0, 5,3, 2,4,1]

3movedtoright place 1st placeisfilled by O

2. | [0,5,2, 3,4, 1] [0,1,3,2,4,5]
2 moved toright place 2nd placeisfilled by 1

3. | [0,5,23,4,1] [0, 1,2, 3, 4,5]
Odready inright place 3rd placeisfi lled by 2

4. 1 [0,1,2,3,4,5] [0, 1, 2,3,4,5]
5moved toright place all placesfi lled properly

5 110,12 3,45
al itemsinright places

Note that once an item is put in right place, you must not change
Its position while putting other items in proper places. It is for
this reason, we make an exchange (and not an insertion) when we
move an item in the right place. The insertion after removing 3
from its current position in [3, 5, 0, 2, 4, 1] would have given [5,
0,2,3,4,1] butnot [2, 5, 0, 3, 4, 1] as we showed above.

2. Which input array for the set numbers {0, 1, 2, 3, 4, 5} requires
maximum number of exchanges in the fi rst approach?

3. Give apseudocode for the fi rst approach.

113

ANOTHER EXAMPLE OF PSEUDOCODE

Problem: Find the position of rightmost "00" in binString[0..(n-1)].

1. Search for O right to left upto position 1 (initially, start at position
n-1).

2. If (Oisfound and theitem to itsleft is 1), then go back to step (1)
to start the search for O from the left of the current position.

Three Implementations. Only the fi rst one fi ts the pseudocode.

(D i =n; //=1ength of binString
do { for (i=i-1; i>0; i--)
If (0O == binString[i]) break;
} while (1 == binString[--i]); //has a bug; find it

2 for (i=n-1; i>0; i--)
If (0O == binString[i]) &k (0 == binString[i-1])
break: //inefficient but works

(3) for (i=n-1; i>0; i--) //bad for-1oop; body updates i
If (0O == binString[i]) & (0 == binString[--i])
break; // works and efficient

Question:

«? Show how these implementations work differently using the bin-
String: [M000111010101. Extend each implementation to return
the position of the left O of the rightmost "00".

«? Instrument each code for readCount of the itemsin binString[].
«? Which of (1)-(3) isthe least effi cient in terms readCount?

«? Give a pseudocode to fi nd rightmost "00" without checking all
bits from right till "00" is found.

It is not necessary to sacrifi ce clarity
for the sake of effi ciency.

114

EXERCISE

1. BinStrings(n, m) = {Xx: x is a binary string of length n and m
ones}, 0 < m< n. The stringsin BinStrings(4, 2) in lexicographic
order are:

0011, 0101, 0110, 1001, 1010, 1100.

Which of the pseudocodes below for generating the strings in
BinStrings(n, m) in lexicographic order is more effi cient?

(@) 1. Generate and save all binary strings of length nin
lexicographic order.
2. Throw away the strings which have numOnes # m.

(b) 1. Generate the first binary string 0""™1™ O Bin-
Strings(n, m).
2. Successively create the next string in Bin-
Strings(n, m) until the last string 1M0"™™.

Which of the three characteristics of a good pseudocode hold for
each of these pseudocodes?

2. Give the pseudocode of a recursive Algorithm for generating the
binary strings in BinStrings(n, m) in lexicographic order.

3. Give an effi cient pseudocode for fi nding the position of rightmost
"01" in an arbitrary string x 0 BinStrings(n, m). (The underlined
portion in 10110011100 shows the rightmost "01".) Give enough
details so that one can determine the number of times various
items X[i] in the array x are looked at.

4. Given a string x 0 BinStrings(n, m), give a pseudocode for gen-
erating the next string in BinStrings(n, m), if any.

115

ALWAYSTEST YOUR METHOD
AND YOUR ALGORITHM

 Create a few general examples of input and the corresponding
outputs.

— Select some input-output pairs based on your understanding
of the problem and before you design the Algorithm.

— Select some other input-output pairs after you design the
Algorithm, including afew cases that involve special handling
of the input or outpuit.

» Use these input-output pairs for testing (but not proving) the cor-
rectness of your Algorithm.

» Illlustrate the use of data-structures by showing the "state" of the
data-structures (lists, trees, etc.) at various stages in the Algo-
rithm’s execution for some of the example inputs.

Always use one or more carefully selected
example to illustrate the critical steps
In your method/algorithm.

1.16

EFFICIENCY OF NESTED IF-THEN-ELSE

» Let E = average #(condition evaluations). We count 1 for evalua-
tion of both x and its negation (- x).

Example 1. For the code below, E = 3[5.

I f (x and y) z = O;
else if ((not x) and y) z

else if (x and (not y)) z
else z = 3;

Valueof z #(condition evaluations)

0 2 (x=Tandy=T)
1 3 (x=F,=-x=T,andy=T)
2 5 x=T,y=F,~-x=F, x=T,and-y=T)
3 4 (x=F,~-x=T,y=F,x=F)
Question:

«? Show #(condition evaluations) for each z for the code and also the
average E:

I (x)
1t (y) z =0;
else z = 2;
elseif (y) z = 1,
el se z = 3;

«? Give a code to compute z without using the keyword "else" (or
"case") and show #(condition evaluations) for each value of z.

«? Show the improved form of the two code-segments bel ow.
@. if (nuns[i] >= max) max = nuns[i];

(b). if (x >0) z = 1;
if ((x >0) & (y > 0)) z = 2;

117

BRIEF REVIEW OF SORTING

Questions:

 What is Sorting? Explain with an example.
 Why do we want to sort data?

* What are some well-known sorting Algorithms?
» Which sorting Algorithm uses the following idea:

Successively, fi nd the smallest item, the second small-
est item, the third smallest items, etc.

 Can we sort a set of pairs of numbers like {(1,7), (2,7), (54),
(3,6)} ? What is the result after sorting?

« Can we sort non-numerical objects like the ones shown below?

Strings: abb, ba, baca, cab.

Binary trees on 3 nodes (convert them to strings to sort):

RELSLA AN

Flowcharts with 2 nodes (convert them to trees or strings to sort):

R

1.18

EXERCISE

1. Give a more detailed pseudocode (not code) for sorting using the
Idea "put the items in the right places'. Determine the number of
comparisons of involving data from itemg[0..numltems-1] based
on the pseudocode. Explain the Algorithm in detail for the input
itemg]] =[3, 2,4, 5, 1, 0].

2. Write a pseudocode for insertion-sort. Determine the number of
comparisons of involving data from itemg0..numitems-1] based
on the pseudocode; aso determine the number of data
movements (i.e., movements of items from the items-array) based
on the pseudocode. Explain the Algorithm in detail for the input
itemd[] =[3, 2,4, 5, 1, Q].

3. For each of the sorting Algorithms insertion-sort, selection-sort,
bubble-sort, and merge-sort, show the array after each successive
exchange operation starting the initia array [3, 2, 4, 5, 1, 0].

4. Some critical thinking questions on selection-sort. Assume that
theinput is a permutation of {1, 2, II{In}.

(@ Give an example input for which the number of data-
movements is maximum (resp., minimum).

(b) Inwhat sense, selection-sort minimizes data-movements?

(c) Suppose we have exchanges of the form e;: itemg[il] and
itemd[i2], e,: itemd[i2] and itemd[i3], ..., e_;: itemd[i(k-1)]
and itemg[ik]. Then argue that the indices {i1, i2, ..., ik}
form a cycle in the permutation. Note that the exchange
operations e may be interleaved with other exchanges.

5. Is it true that in bubble-sort if an item moves up, then it never
moves down? Explain with theinput itemg[] =[3, 2, 4, 5, 1, 0].

1.19

AVERAGE # COMPARISONS) TO
LOCATE A DATA-ITEM IN A SORTED-ARRAY

Binary Search: Assume N = numitems=15=2* - 1.

A[0] < Al1] < A[2] < [k A[14]
#(Nodesat #(Compar.
this level per node)

1 1 A[7]\A
2 2 A[3]/ [11]

3 Al1] A[5] AL9] A[13]
/N /N /SN N
8 4 AI0] A[2] A[4] Al6] A[8] A[10] A[12] A[14]

* Number of comparisons for an item X:

If x were A[6], then we would make 4 comparisons:
X < A[7], x> A[3], x> A[5], and x = A[6].

Total #(Comparisons) = 1x1 + 2x2 + 3x4 + 4x8 = 49;
Average =49/15 = 3[3.

e Generd case (N =2"-1): Total #(Comparisons) =
-1
nZ #(compar. per node at level 1)x#(nodes at level 1)
i=0
= 1x1 + 2x2 + 3x4 + [+ nx2" 1 =1 + (n - 1)2"
=1+ [log(N+1)-1].(N+1)=0O(N.log N)

Average #(Comp.) = O(log N)

A simpler argument:
o« Max(#Comp) = n and hence average< n = O(log N).

1.20

HEAP DATA-STRUCTURE

Heap: A specia kind of binary-tree, which gives an effi cient
O(N.log N) implementation of selection-sort.

« Shape constraints. Nodes are added |eft to right, level by level.
— A node has arightchild only if it has aleftchild.
— If thereisanode at level m, then there are no missing nodes at
level m— 1.

* Node-Value constraint: For each node x and its children y, val(x)
> val(y), val(x) = the value associated with node x.

Example: The shape of heaps with upto 7 nodes.

REAVAP AN OO

Questions: Which of the following is true?

(1) Each node has exactly one parent, except the root.

(2) Each node has O or 2 children, except perhaps one.

(3) Theleftchild node with no brother has the maximum height.
(4) The properties (1)-(3) defi ne a heap.

Example. Heaps with upto 4 nodes and small node-values.

e

ARRAY-IMPLEMENTATION OF HEAP

Array-structurefor Heap of 12 nodes:

: 0]\
Al 11/ Al2]
A[B/ \A[4] N?\%]

A7 A8l A9 A[10] A[1]]

. A[3] = A[7], Al8] e A1 = A[3], Al4]
. A[4] = A[9], A[10] . A[2] = A[5], Al6]
« A[5] = A[11] . A[0] 2 A[1], A[2]

A[O] = max{ A[O], A[1], (T1A[11]}
A[1] = max{ A[2], A[3], A[5], A[6], A[11]}
[0

Parent-Child relationsin the Array:

* Not dependent on values at the nodes and does not use pointers.

|eftchild of Ali] = A[2i +1]
rightchild of Afi] = A[2i + 2]

EXERCISE

1. Show al possible heaps with 5 nodes and the node values {1,

3,4, 5}.

121

2,

HEAP-SORTING METHOD

Two Partsin Heap-Sort: Let N = numltems.

Make the input-array into a heap.
Use the heap to sort as follows:
— Exchange the max-item at root A[O] with A[N —1].

122

— Make A[O.. N - 2] into a max-heap: each child-value < par-

ent-value.

— Exchange the next max-item (again) at A[O] with A[N —2].

— Make A[0.. N — 3] into a heap and so on, each time working

with asmaller initial part of the input-array.

Example. Part of the heap-sorting process.

Exch(9, 0); Exch(0, 8)

/ \A[O] 9, A[9] = O/ \ to make heap /8\
g \ !/ \ g \ !/ \ g \ / \g
4/ \5 O/ / \ @ / \ @
Exch(0, 3) Exch(8, 5); Exch(5, 7) v
to make heap / \A[O] 8, A[8] =5 / \ to make heap / \
g \ / % g \ / % g \ / %
/ \ / / / /
9 41® @ 41® @
Exch(5, 6) Exch(7, 4); Exch(4, 6)
to make heap / \A[O] 7, A[7] =4 / \ to make heap / \
e \ !/ \ e \ !/ \ / \

Mo Ach @5@@5

1.23

HEAP-SORTING ALGORITHM

MakeHeap, using therecursive AddToHeap: n = numitems.
e numg(n-1)..(n—-1)] isan heap.

e Fori=n-2,n-3, 1, 0, make the tail part numg[i..n — 1] into
an heap by adding numg]i] to the heap numgi + 1..n - 1].

AddToHeap(i, numltems): //call for i=numltems-1, numitems-2, ..., 0
1. If (numg[i] have no children) stop. //2i+1 > numitems-1
2. Otherwise, do the following:
(@) Find index | of the largest child-items of numg]i].
(b) If (numg[j] > numg]i]) then exchange(humg]i], numg]j])
and call AddToHeap(j, numltems).

MakeHeap(numltems): //make numg0..(numitems-1)] into a heap
1. If (numltems=1) stop.
//numg]i] has no children if i > numitems/2 - 1.
2. Else, for (i=numsltems/2 - 1; i=0; i--) AddToHeap(i, numitems).

HeapSort, using recursion and AddToHeap:
* Implements Selection-Sort.

o Uses Heap-structture to successively fi nd the max, the next max,
the next next max and so on, filling the places numg[n —1],
numg[n — 2], TJnumsg[0] in that order with the right item.

HeapSort(numltems): //sort numg[0..(numltems-1)] by heap-sort
1. If (numltems=1) stop.
2. Otherwise, do the following:
(@) If (thisisthetop-level call) then MakeHeap(numltems)
(b) Exchange(numg[0], numg numlitems-1]),
AddToHeap(0, numltems-1), and HeapSort(numltems-1).

1.24

UNDERSTANDING MakeHeap(numltems)

Input: numg] =[3, 2, 4, 5, 1, 0] isnot a heap; n = numitems = 6.

a[0]=3 5
a[l]zz/ a[2¥4 Maketieap(6), 3/ N,
SN, SN

=a[3] =a[4] =a[9]
a[i] for numg[i], in short.

MakeHeap(6): Makes 3 callsto AddToHeap as shown below:

(1) AddToHeap(2,6): max-childindex | = 5;
numg[5] = 0 # 4 = numg 2], do nothing

(2) AddToHeap(1,6): max-childindex | = 3;
numg 3] = 5> 2 = numg[1], exchange(2, 5);
calls AddToHeap(3,6); //does nothing

3
5/ \4
VAN,

(3) AddToHeap(0,6): max-childindex j =1
numg 1] = 5> 3 = numg 0], exchange(3, 5);
calls AddToHeap(3, 6); //does nothing
we get the fi nal heap as shown on top.

Question: How can you modify AddToHeap(i, numitems) to elimi-
nate some unnecesary callsto AddToHeap?

1.25

UNDERSTANDING HeapSort(numltems)

Shown below are the recursive calls to HeapSort, calls to Make-
Heap and AddToHeap, and the exchange-action, for sorting input
[3,2,4,5,1,0].

Each node shows the input-array to its action, which is a function-
call or the exchange operations.

We only show the initial part of the array of interest at each point.
An item is shown as marked by overstrike (such as % for 5 in 3rd
child of root-node) before it is hidden away in remaining nodes.

Calls to AddToHeap resulting from MakeHeap(6) are not shown.

[3,2,4,5,1,0]
HeapSort(6)

.

[3,2,4,5,1,0]
MakeHeap(6)

[5,3,4,2,1,0] [0,3,4,2,1,5] [4,3,0,2,1,-]
exchg(a[0],a[5]) AddToHeap(0,5) HeapSort(5)

. |

[4,3,0,2,1,-] [1,3,0,2,4,-] [3,2,0,1,—,—
exchg(a[0],a[4]) AddToHeap(0,4) HeapSort(4)

. |

[3,2,0,1,—,— [1,2,0,3,—,— [2,1,0,—,—,—
exchg(a[0],a[3]) AddToHeap(0,3) HeapSort(3)

. |

[2,1,0,—,—,— [0,1,2,—,—,-] [1,0,—,—,—,—,—]
exchg(a[0],a[2]) AddToHeap(0,2) HeapSort(2)

. |

[1101_!_1_1_] [0111_!_1_1_] [O ____________]
exchg(a[0],a[1]) AddToHeap(0,1) HeapSort(1)

1.26

PROGRAMMING EXERCISE

1.

Implement the following functions; you can keep
numg 0..(numltems-1)] as aglobal variable.

void AddToHeap(int itemNum, int numltems)
void MakeHeap(int numltems)
void HeapSort(int numltems)

Keep aconstant NUM _ITEMS = 10.

(@ First run MakeHeap-function for the input numg[0..9] = [0,
1, ..., 9], and show each pair of numbers (parent, child)
exchanged, one pair per line (as shown below), during the
initial heap-formation. These outputs will be generated by
AddToHeap-function.

(parent, child) exchanged: numg4]=5, numg[9]=10
[T

(b) Then, after commenting out this detailed level output-state-
ments, run HeapSort-function. This time you show succes-
sively the array after forming the heap and after exchange
with the root-item (which puts the current max in the right
place). Thefi rst few lines of the output may look like:

Successive heap array and after exchange with root-item:
[9,8,6,7,4,5,2,0,3,1]

[1,8,6,7,4,5,2,0,3, 9]
[8,7,6,3,4,5, 2,0, 1]
[1,7,6,3,4,5, 2,0, 8]
[0

(c) Repeat (b) alsofortheinput[1,0, 3,2, ..., 9, §].

1.27

COMPLEXITY OF INITIAL HEAP
FORMATION FOR nITEMS

Cost of Adding a Node x:

* It may cause at most changes to the nodes along the path from x
to aterminal node.

adding this node
X to the heap

termina node

The particular shape of an n-node heap means;

The shape of aheap
on n = 6 nodes

— Atleast [ih/2[Inodes are terminal nodes (no work for these).
— The number of nodes on a path from root to aterminal nodeis
at most [log,(n + 1)
» Each change takes at most a constant time c¢ (fi nding largest child
and exchanging the node with that child).
« Total cost of adding anode < c.[og,(n + 1)[4+1] = O(log n).
« Total for all nodes< n.O(log n) = O(n.log n).

A better bound O(n) for Total Cost: Assume 2™t < n< 2™

« Total cost < 1.(m=-1) + 2(m-2) + 4(m-23) + [+ 2M21 =
O(n).

1.28

COMPLEXITY OF HEAP-SORTING

Computing max, next max, next next max, [

« Each takes one exchange and one re-heap operation of adding
numg[0] to the heap (of size less than the previous one).

— ThisisO(log n).
« Total of this phase for all nodes: n. O(log n) = O(n. log n).

Total for Heap-Sort:

* Initial heap formation: O(n).

* Rest of heap-sort: O(n.log n).

e Total =0O(n) + O(n.log n) =O(n.log n).

1.29

APPLICATIONS OF SORTING

Car-Repair Scheduling:

You have a fleet of N cars waiting for repair, with the estimated
repair times r for the car C;, 1 < k < N. What is the best repair-
schedule (order of repairs) to minimize the total lost time for
being out-of-service.

Example. LetN=3,andr;=7,r,=2,andr; =6. There are 3! =
6 possible repair-schedules.

Repair Repair Total lost
Schedule completion times service-time

[C,, C,, C5[1 7 7+2=9 7+2+6=15 31

[C,, C;, C,[0 7 7+6=13 7+6+2=15 35

[C,, Cq, C501 2 2+7=9 2+7+6=15 26

[C,, C;, Ci[I 2 2+6=8 2+6+7=15 25

[C,;, Cq, Cy00 6 6+7=13 6+7+2=15 34

[C,;, C,, Ci[I 6 6+2=8 6+2+7=15 29

Best schedule: [C,, C;, Cy[]

lost service-time = 2 + (2+6) + (2+6+7) = 25
Worst schedule: [C4, C;, C,L)

lost service-time = 7 + (7+6) + (7+6+2) = 35.

Question:

? Show that the total service-time loss for the repair-order [C;, C,,
DIDCNDiS N r]_ + (N - 1) I’2 + (N _2) I‘3 + DID"‘ 1.I’N.

? What does this say about the optimal repair-order?

? If [Cq, C,, JJCyis an optimal repair-order for all cars, is [C;,
C,, MIC,,[an optimal repair-order for C;, 1 <i < m< N?

1.30

PSEUDOCODE FOR
OPTIMAL CAR REPAIR-SCHEDULE

Algorithm Optimal Schedule;

| nput: Repair timesr; forcar C;, 1 <i < N.

Output: Optimal repair schedule [C; , C; , [IIC; O

1. Sort the carsin non-decreasing repair-timesr; <r; <[Er; .

2. Optimal repair schedule [C; , C;,, [IIC; LJwith tota lost-time =
N. ril + (N - 1).ri2 + (N —2) riS + [T 1.riN.

EXERCISE

1. Give #(additions and multiplications) needed to compute r; +
(ry+ry)+(ry+ry+rg) + Mk (rqy +r, + 0 ry). (You may want
to simplify the expressions fi rst.)

2. How much computation is needed to fi nd the lost service-times
for all schedules?

3. What isthe optimal car-repair order for the situation below, where
alink (x, y) means car x must be repaired before car y?

The number next to each
car isitsrepair time.

131

ANOTHER APPLICATION: FINDING
A CLOSEST PAIR OF POINTSON A LINE

Problem: Given a set of points P;, 1 <i < N (= 2) on the x-axis,
find P; and P; such that [P; = P;[is minimum.

L L {P,, Pg} is the

P, P, P, P P: P, closest pair.

Application:
If P;’s represent national parks along a freeway, then a closest
pair {P;, P;} means it might be easier to find a camp-site in
one of them.

Brute-force approach: Complexity O(N?).
1. For(each1<i < j < N), compute d; = distance(P;, P;).
2. Find the pair (i, j) which gives the smallest d;.

Implementation (combines steps (1)-(2) to avoid storing d;;’s):

besti = 0; bestj = 1; mnD st = Dist(points[0], points[1]);
for (i=0; i<nunPoints; i++) ////nunPoints > 1
for (j=i+1; j<nunPoints; |++)
if ((currDist = Dist(points[i], points[j])) < mnDist)

{ besti =1i; bestj =j; mnD st = currDst; }
Question:
? Give a slightly different algorithm (a variant of the above) and its
implementation to avoid the repeated assignment "besti = i" in the

nested for-loop; it should have fewer computations. Explain the
new algorithm using a suitable test-data.

? Restate the pseudocode to reflect the implementation.

132

A BETTER ALGORITHM FOR
CLOSEST PAIR OF POINTSON A LINE

o | {P Pgisthe
Ij1 PZ Ij4 p6 P5 P3 closest palr

The New Method:

» The point nearest to P; isto itsimmediate | eft or right.

 Finding immediate neighbors of each P; requires sorting the
points P;.

Algorithm NearestPair Of Points (on aline):

Input: Anarray nums[1: N] of N numbers.
Output: A pair of items nums[i] and numg[j] which are nearest
to each other.

1. Sort nums[1.. N] inincreasing order.
2. Find1< j < N suchthat nums[j + 1] — numg[j] isminimum.
3. Output numg[j] and numg[j + 1].

Complexity:
« Sorting takes O(Nlog N) time; other computations take O(N)
time.

o Total = O(Nlog N).

A geometric view sometimes |eads
to a better Algorithm.

133

A MATCHING PROBLEM
Problem:

e Scores X; < X, < [k xy for N male students M; in atest, and
scores y, < Y, < [[IIK yy for N female students F;.

 Match mae and female students M; - F;» in an 1-1 fashion that
minimizes E = 3(x; — y;i')* (1 <i < N), the squared sum of differ-
ences in scores for the matched-pairs.

Y1 Yo X1 X2
[] []
| |
Y1 X|1 Y2 Xlz
. —* |
X|1 Y1 Y2 X|2
[] []

The possible relative positions of x;’sand y;’s
except for interchanging x;’swith y,;’s.

Brute-force method:

1. For each permutation (yy, Yo, [lyy) Of y;’s, compute E for the
matching-pairs x; - V.

2. Find the permutation that gives minimum E.

Question: How many ways the students can be matched?

Complexity: O(N. N!).

o Computing N! permutations takes at least N(N!) time.

e Computing E for a permutation: O(N); total = O(N. N!).
* Finding minimum takes O(N!).

134

ABETTER METHOD FOR
THE MATCHING PROBLEM

Observation:

(1) Thematching{x; - VY1, X» < VY,} givesthe smalest E for N =
2 in each of the three cases.

(2) The same holds for all N > 2: matching ith smallest x with ith
smallest y gives the minimum E.

Question:
«? How can you prove (1)?

«? Consider N =3, and y; < Y, < X1 < Y3 < X, < X3. Argue that the
matching X; - y; give minimum E. (Your argument should be in
aform that generalizesto al N and to all distributions of x;’s and

yi'S.)

Pseudocode (exploits output-properties):
1. Sort x;’sand y;’s (if they are not sorted).
2. Match M; with F;. if x; and y; have the same rank.

Complexity: O(Nlog N) + O(N) = O(Nlog N).
EXERCISE

1. Is it possible to solve the problem by recursion (reducing the
problem to a smaller size) or by divide-and-conquer?

Every effi cient Algorithm exploits some properties
of input, output, or input-output relationship.

1.35

2-3 TREE: A GENERALIZATION OF
SEARCH-TREE

2-3 Tree:

* An ordered rooted tree, whose nodes are labeled by items from a
linear ordered set (like numbers) with the following shape con-
straints (S.1)-(S.2) and value constraints (V.1)-(V.3).

(S.1) Each node has exactly one parent, except the root, and
each non-terminal node has 2 or 3 children.

(S.2) The treeis height-balanced (all terminal nodes are at the
same level).

(L.1) A node x with 2 children has one label, label 1(x), with the
following property, where T, (X) and Tr(X) are the left
and right subtree at x.

labelS(T, (X)) < label 1(x) < label(Tr(X))

(L.2) A node x with 3 children has two labels, label{(x) <
label ,(x), with the following property, where T, (X) is the
middle subtree at x.

label (T (x)) < label ;(X) < label(T (X))
< label ,(x) < labelS(TR(X))

(L.3) A termina node may have 1 or 2 labels.

Example. Some small 2-3 trees.

OE (%) : :
min number nuer 0 e

min number max number
of labels= 3 of labels=5 of labels=5 of labels= 8

1.36

SEARCHING A 2-3TREE

ki <ks <kz <kg <ks<kg<ks<kg<kg<kip<ky <kg

Searching for avalue kg < X < kyg:
o Compare x and the values at the root: ks < x; branch right

« Compare x and the values at the right child: kg < x < ky1; branch
middle

e Compare x and the values at the middle child: kg < X < kyg; If X =
Kg Or X = Ky, the value isfound, else x is not there.

Role of Balancedness Property of 2-3 trees:
» Ensures optimum search effi ciency.

B-tree and B*-tree:

 These are more general form of 2-3 trees, which are the main
data-structures used in databases to optimize search effi ciency for
very large data-sets. (We talk about them later.)

1.37

BUILDING 2-3 TREES

Shapes of 2-3 Trees (with different M = #(termina nodes)):

G Py B R

Adding 1 to an empty tree:

@

Adding 2: Find the place for 2, and add if there is space.

O ==

Adding 3: Find place for 3, split if no space adding a parent node.

@ add3 - spllt

Adding 4. Find the place for 4 and add if there is space.

ERSREE

1.38

CONTD.

Adding 5: Find place for 5, split if no space adding a parent, and
adjust by merging.

Fo ol m B
Ol RO E N ONONOEJORORO

Adding 6: Find placefor 6, and add it if there is space.

OJOROEJONORI

Adding 7: Find placefor 7, split if no space adding a parent, adjust
by merging, and if no space, then split by adding parent
again.

-
OJORTES OO ELJOJORORO

e lmerge
5o
OJORONORNONORORO

Question: Show the results after adding 1.1, 2.3, and 1.2.

1.39

EXERCISE

1. How many ways the 2-3 tree on the left can arise as we build the
2-3 tree by inputting { 1, 2, 3, 4} in different order. What were the
2-3 trees before the 4th item were added? Show that the two 2-3
trees on the right arise respectively from 48 and 72 (total = 120 =
51 permutations of {1, 2, 5} .

2. Show the minimum and the maximum number data-items that can
be stored in 2-3 trees with 5 and 6 termina nodes. Show the
labels in the nodes (using the numbers 1, 2, 3,)i for both cases.

3. What information we can store at the nodes of a 2-3 tree to
quickly fi nd the key-value of the ith smallest item? Explain the
use of thisinformation to fi nd the 9th item in the 2-3 tree bel ow.

1.40

TOPOLOGICAL SORTING OR ORDERING
NODES OF A DIGRAPH

Topo. Sorting (ordering):
» Listthedigraph’s nodes so that each link goes from left to right.
» Thiscan be doneif and only if there are no cycles in the digraph.

' h. ings:
digraph. g orderings. 'B) T, A BO

@ G * Any linear arrangement of the nodes will
A digraph have at least link going from right to left.
with acycle.

@ » No topological ordering.

« Thetopological orderings = The schedules for the tasks at nodes.

Questions:

«? Show all possible topological orderings of the digraph below with
4 nodes{ A, B, C, D} and two links { (A, B), (C, D)}. If we add
thelink (A, D), how many of these top. ordering are eliminated?

«? Is it true that each acyclic digraph has at |east one source-node
and at least one sink-node? |s the converse also true? For each
"no" answer, give an examplesto illustrate your answer.

«? What is the maximum number of links in an acyclic digraph with
N nodes? What isthe number if we allow cycles?

«? Show all possible acyclic digraphs on 3 nodes (do not label
nodes).

141

PSEUDOCODE FOR
TOPOLOGICAL ORDERING

Pseudocode:

1. Choose anode x which is currently a source-node, i.e., al its pre-
ceding nodes (if any) have been output,

2. Repeat step (1) until all nodes are output.

Example. Shown below are possible choice of nodes x and a par-
ticular choice of x at each iteration of step (1).

{A B} {B,C} {C,D,E} {D,E} {E} {F} {G}
A B C D E F G

Relevant Data Structures:
» A stack to keep track of current source-nodes.
— A node x enters the stack when it becomes a source-node.
— When we remove x from the stack, we delete the links from
It, add new source-nodes to the stack (if any), and output it.

o Keep track of inDegree(x) = #(links to x) to determine when it
becomes a source-node.

1.42

USE OF STACK DATA-STRUCTURE FOR
TOPOLOGICAL-SORTING

inDegree(y) = number of links (X, y) to y
outDegree(y) = number of links (y, z) fromy
source-nodes = { x: inDegree(x) is 0}

sink-nodes = { z: outDegree(z) is 0}
adjList(x) = adjacency-list of node x

Source nodes = { A, B}, adiList(D) = [F, GO
Sink nodes = {C, G}. adiList(G) = empty-list

Stack = nodes with current inDegree(x) = 0 and not yet outpui.

Stack (top | Node x

on right) Selected Nodes and their initial or reduced inDegrees

A:0 B:0O C1 D2 E1 FE2 G2
[A, BO B - 1 1 0 2 2
(A, EO E - 1 1 - 1 2
[AL] A - - 0 0 - 1 2
[C, DO D - = = - 0 1
[C, FOI F - - - - - 0
[C, GO G - - - - - -
[CO C - - - - - - -
EXERCISE

1. Show the processing in the Topo-Sorting algorithm after adding
the link (G, A), which creates one or more cycles in the digraph.
(Remember the algorithm stops when the stack become empty.)

2. Show in atable form the processing of the digraph above using a
queue instead of a stack in the topological-sorting Algorithm.
Use the notation LA, B, Clifor a queue with C as the head and A
as the tall. If we add D, the queue becomes [D, A, B, CLJif we
now remove an item, the queue becomes [D, A, BL]

1.43

ADJACENCY-LIST REPRESENTATION
OF A DIGRAPH

Array Node Adjacency-list of node
Index name & indices;
outDegree array-size = outDegree(x)
0 A2 = [2 73
1 B;2 —— [3,4]
2 C;:0 — null
3 D;3 ——= [56,7]
4 E;1 —— [5]
5 F;:1 —— [6]
6 G;0 —— null
7 H;0 —— null

t ypedef struct {
char nodeNanme[MAX LENGTH] ;
| nt out Degr ee,
*adj List; //array size = outDegree
[1*l'inkCosts; array size = outDegree
} st _graphNode;

Adjacency Matrix Representation:
e Thisisnot suitable for some of our algorithms.
ABCDEFGH

AT001100007
B|00011000
C|00000000
D|00000111
E|[00000100
F|00000010
G|00000000
H| 00000000

TOPOLOGICAL SORTING ALGORITHM

Computation of inDegrees:

1. For (each nodei) initialize inDegree(i) = 0;
2. For (each nodei and for each j inadjList(i)
add 1 to inDegree());

Initialization of stack: (stack = array of size numNodes)
1. [Initialize stack with nodes of indegree zero;
Selection of a node to process.

1. Select top(stack) and delete it from the stack;
Processing nodeii:

|. Add nodei to output;

2. For (each node j inadjList(i)) do the following:
() reduceinDegree(j) by one;
(b) if (inDegree(j) = 0) add | to stack;

Algorithm TopSort():
Input: Anacyclic digraph, with adjLists representation.
Output: A topological ordering of its nodes.

1. Compute indegrees of all nodes.
2. Initialize the stack.
3. While (stack is not empty) do the following:

1.44

(@) Let I = top(stack), delete it from stack, and add it to

topOrder-array;
(b) Processnodei;

1.45

COMPLEXITY ANALY SIS OF
TOPOLOGICAL-SORT ALGORITHM

Observations:
 Eachlink (x, y) of the digraph is processed exactly twice.
— All links are looked at once in computing the indegrees.

— All links are looked at the second time in course of the stack
updates; specifi cally, when we remove x from the stack, we
look at all links (%, y) from x the second time.

 Welook at also each node x exactly 2*inDegree(x) + 2 times.
— Firsttime, in initializing inDegree(x) = 0.

— Then, exactly inDegree(x) many times as it is successively
updated by adding 1 till it reaches the value inDegree(x).

— Then, another inDegree(x) many times as it is successively
updated by subtracting 1 till it becomes 0.

— Finaly, when it is taken out of the stack.

Fact: > inDegree(x) = > outDegree(x) = #(linksin the digraph).

all x all x

Example. For the digraph on page 1.43, the two sums are
0O+0+1+2+1+1+2+2=9and2+2+0+3+1+1+0=09.

Complexity:

» Since each of the operations listed above takes a constant time,
total computation time is O(#(nodes) + #(links)).

1.46

PROGRAMMING EXERCISE

1. Implement a function topologicalSort() based on the algorithm
TopSort. It should produce one line of output as shown below.

stack=[0 1], node selected = 1, topOrder-array = [1]
stack=[0 4], node selected = 4, topOrder-array = [1 4]

Use a function readDigraph() to read an input fi le digraph.dat
and build the adjacency-list representation of the digraph.
File digraph.dat for the digraph on page 1.43 is shown below.

8 //InumNodes; next lines give: node (outdegree) adjacent-nodes
0223

1(2)34

2 (0)

3(3)567

4(1)5

5(1) 6

6 (0)

7(0)

In topological Sort(), use a dynamically allocated local array
iInDegree] 0..numNodes-1]. Compute inDegrees by

for (1=0; i<numNodes; i++) {
out Degree = nodes[i]. out degree;
adj Li st = nodes[i].adjList;
for (j=0; j<outdegree; j++)
| nDegrees[adj List[j]]++;
}
or
for (i=0; i<numNodes; i ++)
for (j=0; j<nodes[i].outDegree; |++)
| nDegrees[nodes[i].adjList[j]]++;

1.47

EXERCISE

1. Given an ordering of the nodes of an acyclic digraph, how will
you check if it is a topo. ordering? Give a pseudocode and
explain your algorithm using the acyclic digraph on page 1.43.

2. How can you compute a topo. ordering without using inDegrees?
(Hint: If outDegree(x) = 0, can we place x in atopo. ordering?)

3. Modify topological-sorting algorithm to compute for all nodes v,
numPathsTo(y) = #(paths to y starting at some source-node).
State clearly the key ideas. Shown below are numPathsTo(y) and

also the paths for the digraph G on page 1.42.

num-
PathsTo(x) | Teins
[CAL/trivial path from Ato A, with no links.
B0

(A, CO

[A, DLIB, DO

B, EO

(A D, FLB, D, FUIB, E, FLJ

(A, D, GLI[A, D, F, GLIIIIB, E, F, GL)

OTMMmMmOUOO m@> X
OWEFRENRERPPR

Hints;

(@ If (x,y) is alink, what is the relation between numPath-
sTo(x) and numPathsTo(y). What does it suggest about
which of them should be computed fi rst?

(b) How will you compute numPathsTo(y) in terms of all
numPathsTo(x) for { x: (X, y) isalink to y}?

4. Modify your agorithm to compute numPathsFromTo(Xx, y) =
#(paths to node y from node x) for al nodes y to which thereis =
1 path from x (which may not be a source-node). Explain the
algorithm for x = A and y = F using the digraph shown earlier.

1.48

TOPOLOGICAL ORDERING AND
TASK SCHEDULING

Precedence Constraint on Repairs:
 Eachlink (X, y) meanscar x must be repaired before car y.

The number next to each
car isitsrepair time.

Possible Repair Schedules:
» These are exactly al the topological orderings.
« Two repair-schedules and their lost service-times:

(A,B,C,D,E,F, G0 3.7+46+[1#6.1=96
B,AC,DEFGH 47+36+I#6.1=95

Question:
«? What is the optimal schedule?
«? What isthe agorithm for creating optimal schedule?

1.49

ALL POSSIBLE SCHEDULES

An Acyclic Digraph of Task Precedence Constraints:

5
B

The Acyclic Digraph for Representing Schedules:
» Each node represents the tasks compl eted.

« Each path from the source-node I to the sink-node ABCDEFG
gives a schedule.

ABCDEF)—G>¢ABCDEFG

 The number of these paths gives #(schedules) = #(topologica
orderings).

21 21
ABCDEF ’—»‘ABCDEFG

1.50

SOME OTHER APPLICATIONS OF
STACK DATA-STRUCTURE

Expression-Tree: It is an ordered tree (not a binary tree).

X(B+2—- VxZ+9=((Xx(B)+2) - VX?+9

« Each non-terminal node gives an operator; also, associated with
each node is the expression corresponding to the subtree at it.

« The children of a non-terminal node give the operands of the
operator at the node.

« The terminal nodes are the basic operands.

Evaluation Method:

« The children of a non-terminal node are evaluated before evaluat-
Ing the expression at a node.

« This requires the post-order traversal of the tree:
Visit the children from left to right, and then the node.

Post-fix form (corresponds to post-order traversal):
X302+x2729+/ -

151

POST-FI X EXPRESSION EVALUATION
USING A STACK

Processing Method: Stack isinitially empty.
* Processing an operand: add its value to stack.

* Processing an operator: remove the operands of the operator from
the stack, apply the operator to those values, and add the new
value to stack.

* The fi nal value of the expression is the only item in the stack at
the end of processing.

Example. If x =4,then x 302+ x 279 +V - equals 9.
Top of stack isthe right in the notation (1]

After item After item
Stack processed Stack processed
[A0 X 14,4,20 2
(4,30 3 14, 161 ~
20 O 14, 16,90 9
12,20 2 14, 2501 +
40 + 14,50
4, 40 X o0 -
EXERCISE

1. Show an infi X expression that give rise to the post-fi X expression
"x 23 x 00O+ 2/ 15 +"; make sure that you use proper parenthe-
ses as needed, but no unnecessary ones. Show the stacks in eval-
uating this post-fi X expression for x = 5.

2. Show the stacks in converting your infi X expression in Problem
#1 to the post-fi x form (using the method on next page).

152

CONVERTING ARITHMETIC EXPRESSIONS
TO POST-FIX FORM

| nput: XIB+2-sgrt(x*2+9) ('* = exponentiation)
Output: x3 02+ x2"9+ 9t -

Stack has only operators, including function-symbolsand (.
Operator priority: {+, -} €] /} €< function-names.

Conversion Method: Initialy, stack isempty.

Processing an operand: Output it.
Processing ' (' or afunction-symbol: add it to stack.

Processing ’)’: remove everything from stack upto the first '(’
and a function-symbol below it, if any; ’(’ is not added to outpui.

Processing an operator 'op’:

— While ((stack #) and (top(stack) = 'op’)), remove top(stack)
and output it. (See next page.)

— Thenadd ' 'op’ to stack.

If end of input, output every thing in stack.

Stack [tem [tem

OrOC. Output Stack oroc. Output
[X X 4, sort, (O (
[o 4, sort, (O X X
[3 3 [+, sort, (I A
HO0 + [] [+, sort, (, 1 2 2
+0 2 2 [+, sort, (, +00 + A
F0 - + [+, sort, (, +0 9 9
[+, sgrtl] sgrt 40) +, sgrt
D:D —

153

RIGHT-ASSOCIATIVE OPERATIONS
AND ITS IMPACT ON POST-FIX CONVERSION

Left Association:

e X—y—-zmeans(x—-Yy)—zbutnotx-(y- 2.

o Post-fix formof x—-y—-zisxy—-z-.
Post-fi x formof x —(y—2)isxyz—--.

Right Association:

e xUOyOzmeans x [I(y Jz) and not (x LJy) Iz, where"[T" isthe
exponentiation operation.

The post-fi x form of x 0y O z is therefore xyz[l instead of
xyz[l.

e X=y=3meansx=(y=3),i.e,{y=3; x=YV;} instead of {x =
y, y=3}.
Likewise, X += y +=3 means X += (y += 3), i.e,, {y += 3; X +=
y;} instead of { X +=y; y +=3;}. Here, '+=" isthe operator.

e Post-fixformof x=y=3: xy3==

Processing Right Associative Operator ’op’:

» For conversion to post-fi x form, we replace the test (top(stack) =
'op’) by (top(stack) >"op’).

Processing Assignment Operator "'="" in Post-fix Form:

* In processing the post-fi x form "y 3 =", we do not put the value of
y in stack (asin the case of processing "y 3 +").

o Other specia indicators (called 'lvalue’ are added).

1.54

TREE OF A STRUCTURE-DEFINITION
AND THE ADDRESS ASSIGNMENT PROBLEM

t ypedef struct {
int id;
char flag, nane[14];
doubl e val;
} | dNane;
t ypedef struct ListNodeDummy ({
| dName i1 dNane;
struct ListNodeDumy *next, *prev;
} Li st Node;
Li st Node x;

Number of Bytesfor Basic Types:
size(int) = 4, size(char) =1, size(double) = 8.

size(x) =40,not4+1+14+8+4+4 =35,

flag 5 bytes
l wasted

id name[0..13]] val next | prev

An actual address allocation of the components of x:

X = 268439696

X. 1 dNanme = 268439696

X. 1 dNane.id = 268439696

X. 1 dNane. flag = 268439700

X. 1 dNanme. nane = 268439701

X. 1 dNanme. nane[0] = 268439701
X. 1 dNanme. nane| 1| = 268439702
X. 1 dNanme. nane[13] = 268439714
Xx. 1 dNanme. val = 268439720

X. next = 268439728

X.prev = 268439732

Start-address(x) is a multiple of 8; because displacement(val) =
24 within x, start-address(val) is a multiple of 8.

It makes start-adrress of id, next, and prev multiples of 4.

CONTD.

t ypedef struct {

I nt id;
char fl
doubl e

} | dNane;
t ypedef struct ListNodeDummy {

ag,
val ;

name[14] ;

155

| dNanme i dNane;
struct ListNodeDummy *next, *prev,
} Li st Node;
Li st Node x;
ListNode
start=0, end=39
numBytes=40
IdName next prev
start=0, end=31 | [start=32, end=35| |start=36, end=39
numBytes=32 numBytes=4 numBytes=4
id flag name val
start=0, end=3 start=4, end=4 start=5, end=18 | |start=24, end=31
numBytes=4 numBytes=1 numBytes=14 numBytes=8
0] 1] [13]
start=5, end=5 start=6, end=6 | [II|start=18, end=18
numBytes=1 numBytes=1 numBytes=1
EXERCISE

1. Give a pseudocode for determining start-address, end-address,
and numBytes for all nodes of an arbitrary structure-tree.
Assume you know the type of each termina node and you have
the structure-tree. (Hint: Your pseudocode must indicate: (1) the
order in which the start, end, and numBytes at each node of the
structure-tree are computed. and (2) how each of these is com-
puted based on values of various quantities at some other nodes.)

1.56

L ONGEST-PATHS
IN AN ACYCLIC DIGRAPH

Paths from A to E and their lengths
(1) A, C, ECllength=2+3=5

(2) A, C, D, Efllength=2+1+1=4
(3)[A C,G, Elllength=2+5-1=6

* W(X, V) = length (cost or weight) of link (%, y); it can be negative.
» Length of apath = sum of the lengths of its links,
« LongestPathFromTo(A, E): [A, C, G, E[llength = 6.

Application:

» Critical-path/critical-task analysis in project scheduling.

* Assume unlimited resources for work on tasksin parallel.

» Thenew acyclic digraph for critical-path analysis:
— Add anew "end"-node and connect each sink node to it.
— Thelength of each link (X, y) = time to complete task x.

The number next to each The digraph for critical-path analysis.
car isitsrepair time. The longest-path: [B, E, F, G, "end"L]

1.57

TREE OF LONGEST-PATHS

Tree of Longest Paths From startNode = A:

» First, we can reduce the digraph so that the only source-node is
the startNode.

» The tree contains one longest path from startNode to each node x

which can be reached from startNode. (It is not a binary tree or
an ordered tree.)

« To obtain the reduced digraph (which is a must for the algorithm

given later to work properly) we can successively delete source-
nodes x # startNode and links from those x.

Question:

«? Show the reduced digraph to compute longest paths from node B;
also show atree of longest paths from node B.

158

DIGRAPH REDUCTION

 We actually don’t delete any nodes/links or modify adjaceny-lists.
 We pretend deletion of alink (X, y) by reducing inDegree of .

Reductions for statrtNode = A:
* inDegreg(D)=2-1=1
e inDegree(E) =5-2=3
o inDegreg(F)=2-1=1

Algorithm ReduceAcyclicDigraph(startNode):

Input: Anacyclic digraph in adjacency-list form
Output: Reduced indegrees.

1. Compute indegrees of all nodes.
2. While (thereisanode x # startNode and inDegree(x) = 0) do:
if (X isnot processed)
then for each y [adjList(x) deduce inDegree(y) by 1.
Notes:

» Use a stack to hold the nodes x with inDegree(x) = 0 and which
have not been processed yet. Initialize stack with all x # startN-
ode and inDegree(x) = 0.

« We do not modify the adjList(x) of any node, and thus the
digraph is actually not changed.

» Thelongest-path agorithm works with the reduced indegrees.

1.59

L ONGEST-PATH COMPUTATION

Array Data-Structures Used:

d(x) = current longest path to x from startNode.
parent(x) = the node previous to x on the current longest

path to x; parent(startNode) = startNode.

iInDegree(x) = number of linksto X yet to be looked at.

Stack Data-structure Used:
o Stack holds all nodes to which the longest-path is known, but
links from which have not been processed yet.

Algorithm L ongestPathsFrom(startNode):

Input: Anacyclic digraph in adjacency-list form and startNode.
Output: A tree of longest paths to each x reachable from startNode.

1. Apply ReduceAcyclicDigraph(startNode).

2. Initialize a stack with startNode, let d(x) = —c and parent(x) = -1
for each node x with indegreg(x) > 0, and fi nally let d(startNode)
= 0 and parent(startNode) = startNode.

3. While (stack # empty) do the following:
(@) Let x =top(stack); remove x from stack.
(b) For (each y OadjList(x)) do:
() 1 (d(x) + w(x, y) > d(y)), then let d(y) = d(x) +
w(X, y) and parent(y) = X.
(i) ReduceinDegree(y) by 1 and if it equals O then add y
to stack and print the longest-path to y from startNode
(using the successive parent-links) and d(y).

ILLUSTRATION OF
LONGEST-PATH COMPUTATION

StartNode = A.

1.60

Stack

For each node y, inDegree(y) and (d(y), parent(y))

H;?2
(=, ?)

AL

[Ccd

(DU

(el

F, HO

(O

7—4> -0
(3, G)
2.1

6+2>3
(8, E)
1-0

* We can use minusthe sum of all positive link-weights as —oo.

161

EXERCISE

1. Show the complete executions of RreduceAcyclicDigraph(B) and
L ongestPathsFrom(B) in the suitable table forms.

2. How many timesalink (X, y) is processed during the longest-path
computation and when?

3. What can change as we process alink (x, y) and how long does it
take to al those computations?

4. Why is it that the longest-path to a node y cannot be computed
untill all remaining links to y (after the digraph reduction) have
been processed? (For example, we must look at the links (C, E),
(D, E), and (G, E) before we can compute the longest-path to
C?)

1.62

PROGRAMMING EXERCISE

1. Develop a function void longestPathsFrom(int startNode). (Use
=> [w(X, y)|, summed over al links (X, y), instead of —c.) Show
the following outputs for startNode B using the example digraph
discussed.

(@

(b)

(©)

Print the input digraph, with node name, nodelndex, node's
outDegee in parenthesis, adjacency-list (with weight of the
link in parenthesis) in the form:

C, 2 (3): 3(2), 4(3), 6(5)

Put the information for each node on a separate line. There
should be an appropriate header-line (like "Acyclic digraph:
node name, nodelndex, outdegree, and adjList with link-
costs").

Show the successive stacks (one per line) every time it is
changed during the digraph reduction process. As usual give
an appropriate heading before printing the stacks. Use the
node names when you print the stack.

Next, when the longest-paths are computed, for each link
(X,y) processed, show the link (X, y); also, if there is a
change in d(y) then shown the new d(y) and parent(y), and
when inDegree(y) becomes 0 show the fi nal values of d(y)
and parent(y). For example, for startNode = A, the process-
ing of the links (C, E), (G, E), and (D, E) should generate
output lines

link (C, E): d(E) =5, parent(E) =C

link (G, E): d(E) =6, parent(E) = G
link (D, E): d(E) =6, parent(E) = G, final value

1.63

CALL-RETURN TREE
OF FUNCTION-CALLS

Example.

int factorial(int n) //n >=0
{ 1f ((n==20)[|] (n==1))
return(l);
el se return(n*factorial (n-1));

}

EXERCISE

1. Show the call-return tree for the initial call Fibonacci(4), given
the defi nition below; also show the return values from each call.
|s the resulting tree a binary tree? If not, what kind of treeisit?

i nt Fi bonacci(int n) //n >=20
{it ((n==20)1[] (n==1))
return(l);
el se return(Fi bonacci (n-2) + Fibonacci(n-1));

}

1.64

A PROBLEM IN WIRELESSNETWORK

Problem: Given the coordinates (x;, y;) of thenodesv;, 1 <i < N,
fi nd the minimum transmission-power that will suffi ce to
form a connected graph on the nodes.

A node with transmission power P can communicate with all
nodes within distancer = c. VP from it (c > 0 is a constant).

* Leét ry, be the minimum r for which the links E(r) = {(v;, v;):
d(v;, vj) <r} form aconnected graph on the nodes. Then, Py, =
(rin/C)? gives the minimum transmission power to be used by
each node.

Ve

Vs Vs v7
v L)—2)—@31 5.9

Vs V4 Vg
Thelinks E(1) corresponding to P = 1/c?

Question:

1? What isr,, for the set of nodes above? Give an example to show
that r;, Z max {distance of anode nearest to v;: 1 <i < N}. (If
I min Were aways equal to the maximum , then what would be an
Algorithm to determiner ;,?)

1.65

GROUPING NUMERICAL SCORES
INTO CLASSES

Problem: Find the best grade-assignment A, B, C, etc to the stu-
dent-scores x;, 1 <i < N, onatest. That is, fi nd the best
grouping of the scoresinto classes A, B, [II

| nterval-property of a group:

o If X; < X, are two scores in the same group, then all in-between
Scores X; (X < X; < Xy) are in the same goup.

» Thus, we only need to fi nd the group boundaries.

Example. Scores of 23 studentsin atest (one’ x’ per student).

X X

§XX
7llIIII716IIII811IIII816IIIIlIIII6
A bad 3-grouping
The best 3-grouping

C(78.9) ~ B(E75) A(92.9)
C(76.2) B(83.4) A(92.9)

Closest-Neighbor Property (CNP) for Optimal Grouping:

» Each x; isclosest to the average of the particular group containing
it compared to the average of other groups.

Question:
1? Give an application of such grouping for weather-data, say.

27 Find the best 2-grouping using CNP for each data-set below. Do
these groupings match your intuition?

TWO EXAMPLES OF BAD ALGORITHMS

Main Library
A D
B Quadrangle E
C F
Administration

Algorithm#1 FindBuildingA:
1. Goto Main Library.
2. When you come out of the library, it ison your right.

Algorithm#2 FindBuildingA:
1. Go to the north-west corner of Quadrangle.

Questions:

1? Which Algorithm has more clarity?
27? Which oneis better (more effi cient)?
3? What would be a better Algorithm?

1.66

1.67

WHAT ISWRONG IN THISALGORITHM

Algorithm GenerateRandomTree(n): //nodes = {1, 2, IIlIn}

I nput: n = #(nodes); n = 2.
Output: Theedges(i, j), i < j, of arandom tree.

1. For (each j = 2, 3, Ilin}, choose arandom i {1, 2, IJJj — 1)
and output the edge (i, |).

Successive Edges Produced for n = 3;

e | =2 theonly possiblei =1 andthe edgeis (1, 2).

-2 G

e j=3;icanbelor?2, givingtheedge (1, 3) or (2, 3).
Cannot generatethetree: @

Always test your Algorithm.

Question:

1? Does the above Algorithm always generate a tree (i.e., a con-
nected acyclic graph)? Show all graphs generated for n = 4.

2?7 How do you modify GenerateRandomTree(n) so that all trees
with n nodes can be generated (i.e., no oneis excluded)?

3? Why would we want to generate the trees (randomly or all of
them in some order) - what would be an application?

1.68

TREES GENERATED BY GenerateRandomTree(4)

fi e odge D@0 @
ey OB OO OR0
e e

Only 6 different trees are generated, each with degree(4) = 1.

Question:
1? Does the following Algorithm generate all trees on n nodes?
What is the main ineffi ciency in this Algorithm?
1. Let E=[0 (empty set).
2. For(k=1, 2, [IIn-1), dothefollowing:
(@ Chooserandomiand j,1<i<j<nand(i, j) OE.

(b) If {(i, j)}UE does not contain a cycle (how do you test
it?), then add (i, j) to E; else goto step (a).

27 Give arecursive Algorithm for generating random trees on nodes
{1, 2, IIIn}. Doesit generating each of n"2 trees with the same
probability?

3? Do we get a random tree (each tree with the same probability) by
applying a random permutation to the nodes of a tree obtained by
GenerateRandomTree(4)?

4? Give a pseudocode for generating a random permutation of {1, 2,
[n}. Create a program and show the output for n = 3 for 10
runs and the time for 10 runs for n = 100,000.

1.69

PSEUDOCODESARE
SERIOUSTHINGS

Pseudocodeisa High-Level Algorithm Description:

* It must be unambiguous (clear) and concise, with suffi cient details
to allow

— correctness proof and.
— performance effi ciency estimation

* Itisnot a"work-in-progress' or a"rough" description.

Describing Algorithms in pseudocode forms
requires substantial skill and practice.

1.70

TYPES OF ALGORITHMS

Problem: (1) Input (= given)
(2) Output (= to fi nd)

Algorithm Design

Pseudocode: (1) Key steps in the solution method
(2) Key data-structures

* Choose a proper solution method fi rst and then select a data-struc-
ture to fi t the solution method.

Exploit Input/Output Properties:

— Exploit properties/structures among the different parts of the
problem-input.

— Exploit properties/structures of the solution-outputs, which indi-
rectly involves properties of input-output relationship.

Method of Extension (problem size N to size N + 1, recursion)
Successive Approximation (numerical Algorithms)

Greedy Method (a special kind of search)

Dynamic Programming (a specia kind of search)

Depth-first and other search methods

Programming tricks alone are not
suffi cient for effi cient solutions.

171

USE OF OUTPUT-STRUCTURE

Problem: Given an array of N numbers numg[l.. N], compute
partialSumg|i] = numg[1] + nums[2] + [I# numg[i] for 1
<i<N.

Example. nums[l..5]: 2, -1, 5, 3, 3
partialSums[1..5]: 2, 1, 6, 9, 12

« Thereisno input-structure to exploit here.
Two Solutions. Both can be considered method of extension.
(1) A brute-force method.
partialSums[1] = numg[1];
for (i=2to N) do the following:
partialSumg|i] = numg[1];
for (j=2toi) add numg[j] to partial Sumg[i];
#(additions involving nums[.]) = 0 + 1 + M+ (N-1) =
N(N - 1)/2 = O(N?).

(2) Use the property "partialSumg[i +1] = partialSumg[i] +
nums[i + 1]" among output items.

partialSums[1] = numg[1];
for (i=2to N)
partialSumg|i] = partialSums|i — 1] + numg[i];

#(additionsinvolving nums[.]) = N —1 = O(N).

« The O(N) Algorithm is optimal because we must look at each
numgli] at least once.

172

ANOTHER EXAMPLE OF
THE USE OF OUTPUT-STRUCTURE

Problem: Given a binary-matrix vals[1.. M, 1..N] of O'sand 1's,
obtain counts(i, j) = #(1L'sinvalg[.,.] intherange 1 < i’
<iandl<j'<j)foradliandj.

Example.
1 0 0 10 11120
— [] — []
vals %) 10 1D counts E{ 2 2 4D
111 1 347

« Sincevalgli, j]'s can be arbitrary, there is no relevant input prop-
erty/structure.

« The outputs counts(i, j) have many properties as shown below;
the fi rst one does not help in computing counts(i,).

Lbounts(i, j + 1)
counts(i +1,)
counts(l, j +1) = counts(l, j) + valg[1, | + 1]
counts(i +1, 1) = counts(i, 1) + vals[i + 1, 1]
counts(i +1, j +1) = counts(i +1, j) + counts(i, | +1)
—counts(i, j) +vals[i +1, j +1]

counts(i, |) <

Not all input/output properties may be
equally exploitable in a given computation.

1.73

Algorithm:

1. Let counts(l, 1) = vals[1, 1]; compute the remainder of fi rst row
counts(l, j), 2 < j < N, using counts(1, j +1) = counts(1, j) +
vals[l, | +1].

2. Compute the fi rst column counts(i, 1), 1 <i < M, similarly.

3. Compute the remainder of each row (i + 1 =2, 3, IIIM), from left
to right, using the formulafor counts(i + 1, j + 1) above.

Exploiting the output-properties includes choosing
a proper order of computing different parts of output.

Complexity Analysis:

We look a the number of additions/subtractions involving
counts(i, j) and valgi’, j'].

Stepl: N -1=0(N)

Step2: M -1=0(M)

Step3: 3(M -1)(N-1)=0O(MN)

Total: O(MN); this is optimal since we must look at each
item valg[i, j] at least once.

Brute-force method::

1. Foreachl<i<Mandl1l<j< N, start with counts(i, j) =0 and
addtoital valgi’, j']forl<i'<iand1l< ' <.

M N M N
Complexity: #(additiong) =3 5 ij = (3 i)(T j) = O(M2N?)

i=1 j=1 i=1 j=1

174

MAXIMIZING THE SUM OF
CONSECUTIVEITEMSIN A LIST

Problem: Given an array of numbers nums[1.. N], fi nd the maxi-
mum M of all §; =2 numsglk] fori <k < j.

Example: For theinput numg[l..15] =
[-2,7,3,-1,-4,3,-4,9,-5, 3,1, -20, 11, -3, 1],
themaximumis7+3-1-4+3-4+9=13.

Brute-Force M ethod:

e For(j =1to N), compute §;, 1 <1 < |, using the method of par-
tia-sumsand let M(j) =max {S;: 1<i < j}.

e M=max{M(j):1<]<N}.

Question: What is the complexity?

Observations (assume that at least one numg|i] > 0):

« Eliminate items equal to O.

e Theinitial (terminal) —ve items are not used in a solution.

« If asolution §; uses a +ve item, then S; also uses the immediate
+ve neighbors of it. This means we can replace each group of
consecutive +ve items by their sum.

« If asolution §; uses a-ve item, then S; uses the whole group of
consecutive —ve items containing it and also the group of +ve
items on immediate left and right sides. This means we can
replace consecutive —ve items by their sum.

Simplify Input: Itisanarray of aternate +ve and —ve items.
numg[1..9] =[10, -5, 3, -4, 9, -5, 4, 20, 11].

175

ADDITIONAL OBSERVATIONS

Another Observation: There are three possibilities:

(1) M =numg[l].

(2) nums[l] is combined with others to form M. Then we can
replace numsl[1. . 3] by nums[1]+nums[2]+nums[3].

(3) numg[1] is not part of an optimal solution. Then we can throw
away numg[1.. 2].

A similar consideration appliesto nums[N].
Search For a Solution for nums|[] = [10, -5, 3, -4, 9, -5, 4, —20, 11]:

€)) 10 or solution from [8, -4, 9, -5, 4, -20, 11]
or solution from [3, -4, 9, -5, 4, —20, 11],
I.e., 10 or solution from [8, -4, 9, -5, 4, -20, 11].
(b) 10 or 8 or solution from [13, -5, 4, —20, 11]
or solution from [9, -5, 4, —20, 11],
I.e., 10 or solution from [13, -5, 4, —-20, 11].
(@) 10 or 13 or solution from [12, —20, 11]
or solution from [4, —20, 11],
I.e., 13 or solution from [12, —20, 11].
(d) 13 or 12 or solution from [3] or solution from [11].
(e) Find solution: M =13=8-4+9=10-5 +3-4+09.

Question:

«? Isthisamethod of extension (explain)?

«? Can we formulate a solution method by starting at the middle +ve
item (divide and conquer method)?

1.76

A RECURSIVE ALGORITHM

Algorithm MAX_CONSECUTIVE_SUM: //initia version

Input: An array nums[1.. N] of alternative +ve/-ve num-
bers, with nums[1] and nums[N] > 0.
Output: Maximum sum M for a set of consecutive items.

1. Let My =numg[l].
2. If (N >=3) then do the following:

(@ Let nums[3] = nums[1] + nums[2] + nums[3] and let M, be
the solution obtained by applying the Algorithm to numg[i],
3<i<N.

(b) Let M3 be the solution obtained by applying the Algorithm
to numg[i], 3<i < N. (M3 isthe best solution when none of
nums| 1] and nums[2] are used.)

elselet M2: M3: Ml'
3. Let M =max {My, My, M3}.

Question:
«? Characterize the solution M, (in away similar to that of M5).
«? How does this show that the Algorithm is correct?

«? How do you show that we make 2(N*Y"2 — 1 recursive-calls for an
input nums[1.. N]?

177

AN EXAMPLE OF THE CALL-TREE
IN THE RECURSION

[10, -5, 3, -4, 9, -5, 4, 20, 11]
solution=M =max {10, 13, 11} =13

T

[8,-4,9,-5,4,-20,11] [3,-4,9, -5, 4, -20, 11]

solution= M, =13 solution= M3 =11
/I\
([T
M. =8 [13, -5, 4, —20, 11] [9, -5, 4, —20, 11]
1= M, =13 M;=11
/I\ /I\
([T ([T
Question:

«? Complete the above call-tree, examine it carefully, identify the
redundant computations, and then restate the simplified and
improved form of MAX CONSECUTIVE SUM. How many
recursive-calls are made in the simplified Algorithm for
nums[1.. N]?

«? Let T(N) = #(additions involving numg[i] in the new Algorithm
for an input array of size N). Show that T(N) =T(N —2) + 2 and
T(1) =0. (ThisgivesT(N) =N -1=0(N).)

«? Let T(N) = #(comparisons involving numg[i] in the new Algo-
rithm for an input array of size N), Show the relationship between
T(N)and T(N - 1).

1.78

A DYNAMIC PROGRAMMING SOLUTION
Let M(J) =max {S;: 1< < j}; here, bothi, j U{1, 3, TIN}.
Example. For numg[] =[10, -5, 3, -4, 9, -5, 4, 20, 11],

j=1 j=3] =95 j=7 | =9
Su=10 S;3=8 S5=13 Sy=12 9=3
S3=3 S555=8 Sy =7 S =-
S5 =9 >7=8 S0 = —
Sp=4 Sp=-
599:11
M(j) | 10 8 13 12 11

Observations:

M(1) = nums[1].
M(j+2) =max {M(j)+numg[j + 1]+nums[] + 2], numg[j + 2]}.
M =max{M(]):] =1, 3, [IIIN}.
Pseudocode (it does not "extend a solution™ - why?):
1. M =M(1)=numgs[1].
2. For (] = 3,5 MJIN)Ilet M(j) = max {numg[j], M(]j -2) +
nums[j — 1] + numg[j]} and fi nally M = max { M, M(])}.
Complexity: O(N).
#(additionsinvolving nums[]) = N -1
#(comparisons in computing M(j)’'s) = (N —1)/2
#(comparisonsin computing M) = (N —1)/2

1.79

ANOTHER O(N) METHOD

Observation:
e Forl<si<jsN,§;=S5 ;-5 here S p=0fori =1
e |f Sj =M, then Sl,(i—l) = min{S]_’(i'_l): " <]}

MO; .
N |
med A /j\ W
i 1 3 5 7v¢v11v13v15
my
my

Solution Method: There are three steps.
1. Find (i — 1)’swhich can possibly give maximum S;.

- Find the successive decreasing items my > m; > m, > [II»> m,
among S;—1, | =1, 3, IN. (That is, my is the fi rst partial-
sum < my_, to theright of my_;; my =0=S;.)

- For each my, let iy be corresponding i, i.e., My = Sy j, —1).
2. Foreachi =i, findtheassociated | = j,.

- Let Mk—l = maX{Sl’J ik_]_S J < Ik} = S_ij forl<kc< n, |et
My=max{S;;:] =in}.

3. LeaM=max{M,—-m.:0<k<n}.

(CONTD.)

A Slightly Larger Example.

numgli]: 10 -5 3 -4 9 -5 4 -20 11 -6 10 -17 14
I j: 1 3 5 7 9 11 13
Spi-1: 0 5 4 8 -8 -3 -10
M Mo m, m,
e 1 9 13
S i 10 8 13 12 3 7 4
M: My=13 M,=7 M,=5
Jk: 5 11 13

|1 = 1, 9, i3 = 13

i2:
j1=5, J2=7, j3=13
M=max{13-0,7-(-8),4-(-10)} =15= Sﬁz,jz = S911.

Question:
«? Why can’'t we call this method a "method of extension"?

1.80

181

PSEUDOCODE vs. CODE

Characteristics of Pseudocode:

+ Shows key concepts and computation steps of the Algorithm,
avoiding details as much as possible.

— Avoids dependency on any specifi ¢ programming language.
+ Allows determining correctness of the Algorithm.

+ Allows choice of proper data-structures for effi cient implementa-
tion and complexity analysis.

Example. The pseudocodes below for computing the number of
positive and negative items in nums[1.. N], where each
nums|i] # 0, do not use the array-bounds. The pseu-
docode in (B) is dlightly more €effi cient than the one in

(A).
(A) 1. positiveCount = negativeCount = O;
. for (i=0; i<n; i++) //each nuns[i] > 0 or <O
if (O < nuns[i]) positiveCount ++;
el se negati veCount ++;

. Initialize positiveCount = negativeCount = 0.
. Use each numg[i] to increment one of the counts by one.

. for (i=0; i<n; i++) //each nuns[i] > 0 or <O
If (0O < nuns[i]) positiveCount ++;
negati veCount = n - positiveCount;

. Initialize positiveCount = 0.
. Use each numg[i] > 0 to increment positiveCount by one.

1
2
3
4
1
2
(B) 1. positiveCount = O;
2
3
4
1
2
3. Let negativeCount = numltems — positiveCount.

Writing a pseudocode requires skills to express
an Algorithm in a concise and yet clear fasnion.

1.82

ANOTHER EXAMPLE OF PSEUDOCODE

Problem. Compute the size of the largest block of non-zero items
in nums[1.. NJ.

Pseudocode:

1. Initialize maxNonZeroBlockSize = 0.
2. while (there are more array-itemsto look at) do:
(@) skip zero's. //keep this
(b) fi nd the size of next non-zero block
and update maxNonZeroBlockSize.

Code:

I = 1: maxNonZeroBl ockSi ze = 0;
while (i <= N) {

for (; (i<=N) && (nuns[i]==0); i++); //skip O's

for (blockStart=i; (i<=N) && (nuns[i]!=0); i++);

if (i - blockStart > naxNonZer oBl ockSi ze)
maxNonZer oBl ockSi ze = 1 - blockStart;

}

Question:

«? |f there are m non-zero blocks, then what is the maximum and
minimum number of tests involving the items numg]i]?

«? Rewrite the code to reduce the number of such comparisons.
What is reduction achieved?

«? Generalize the code and the pseudocode to compute the largest
Size same-sign block of items.

(@)

(b)
()

1.83

ALWAYSTEST YOUR METHOD
AND YOUR ALGORITHM

Create a few general examples of input and the corresponding
outputs.

— Select some input-output pairs based on your understanding
of the problem and before you design the Algorithm.

— Select some other input-output pairs based on your Algo-
rithm.

Include a few cases of input that require special handling in
terms of specifi ¢ stepsin the Algorithm.

Use these input-output pairs for testing (but not proving) correct-
ness of your Algorithm.

Illustrate the use of data-structures by showing the "state" of the
data-structures (lists, trees, etc.) at various stages in the Algo-
rithm’s execution for some of the example inputs.

Always use one or more carefully selected
example to illustrate the critical steps
in your method/Algorithm.

1.84

A DATA-STRUCTURE DESIGN PROBLEM

Problem:

 Wehave N switcheg[1..N]; initially, they are all "on".

e They areturned "off" and "on" in arandom fashion, one at a time
and based on the last-off-fi rst-on policy: if switcheg[i] changed
from "on" to "off" before switcheq[j], then switcheq j] is turned
"on" before switcheqi].

» Design adata-structure to support following operations.

Print: print the "on"-switches (in the order 1, 2, ..., N) in time
proportional to M = #(switches that are "on").

Off(k): turn switcheg[k] from "on" to "off"; if switchegk] is
already "off", nothing happens. It should take a con-
stant time (independent of M and N).

On:; turn "on" the most recent switch that was turned "off":
If all switches are currently "on", then nothing happens.
It should take a constant time.

Example: Shown below are some on/off-operations (1 = onand 0 =

off).
Switcheg[1..9]: 1 2 3 4 5 6 7 8 9
0 1 1 0 1 0 1 1 1
off3:[0 | L | O] 0] T]0] 1] 1] 1
offs:[0 | L | 0] 0] 0] 0 1] 1] 1
On:| O 1 0 0 1 0 1 1 1

1.85

AVERAGE-TIME ANALYSIS
FORALL SWITCHESTO BECOME OFF

Assume: If #(on-switches) = m and 0 < m < N, then there are
m+1 switches that can change their on-off status. One of
them is arbitrarily chosen with equal probability to
change its on-off status.

State-diagram for N = 4. state = #(on-switches).

off: 1 off: 3/4 off: 2/3 off: 1/2

At state m = 2:
Prob(a switch going from "on" to "off") = 2/(1+2) = 2/3.
Prob(a switch going from "off" to "on") = 1/(1+2) = 1/3.

Analysis: Let E, = Expected time to reach state O from state k.
« Thefollowing equations follow from the state-diagram:

(1) Es=1+E;

(2) E3=(1+E».34+(1+E,).14=1+3.E,/4+ (1tEx)/4
i.e., E3 =1+2/3+ E2

(3) E2:(1+ E1)2/3+(1+ E3)1/3: 1+ 2. E1/3+ E3/3
e, Eo=1+2/2+2/(23) + E;

(4 E;=1+2/1+2/(1.2)+2/(1.2.3) + E,
e, E;=1+2/1+2/(1.2) + 2/(1.2.3) because E; =0

1
+ Thus, By =1+ (L+2/3) + (1+2/2+2/6) + (1+2/1+2/2+2/6) = 9.

1.86

OPTIMUM PAGE-INDEX SET FOR
A KEYWORD IN A DOCUMENT

A Covering-Problem: D isadocument with N pages.

 DIJi] =1 means page i of the document contains one or more
occurrences of a keyword; we say page i is non-empty. Other-
wise D[i] = 0 and we say pagei isempty.

 m= Maximum number of references allowed in the index for the
keyword. Each reference is an interval of consecutive pages,; the
interval [k, k] is equivalent to the single page k.

« We want to fi nd an optimal set of reference page-intervals Pl =
{11, 15, @M1}, k < m, where |;’s are disioint, [J 1, 1< j <k,
covers all non-empty pages, and |D ;] is minimum.

Example. The solid dots below correspond to non-empty pages.
For m = 3, the optimal Pl = {2-6, 12-12, 15-20}. There
are two optimal solutions for m = 4 (what are they?) and
onefor m=5.

2 6 12 12 15 20
o—o—e—o—o—o—%&e—o—o N=20

Solution by Greedy Elimination:

Scan D[1.. N] to determine all 0-blocks.

If (D[1] = 0), throw away the 0-block containing D[1].
If (D[N] = 0), throw away the 0-block containing D[N].

Successively throw away the largest size O-blocks until we are
left with < m blocks.

> WP

1.87

A VARIATION OF
PAGE-INDEX SET PROBLEM

« [j heed not cover all non-empty pages.

« Maximize Va(Pl) = #(non-empty pages covered by [] | i) -
#(empty pages covered by [11;) = |L] || — 2.#(empty pages cov-

Example. Let D[1..20] be as before.

o-ec-e-e-eocooooceocceeecee N=20

« For m=1,theoptimal Pl ={15-20}, withvalue6 - 2.1 =4. (For
the original problem and m=1, optimal Pl = {2-20}.)

e For m= 2, there are two optimal solutions: Pl = {2-6, 15-20} or
Pl ={4-6, 15-20}, both with value 3+4 = 7.
Algorithm?

 Finding an optimal Pl is now considerably more diffi cult and
requires a substantially different approach. (This problem can be
reduced to a shortest-path problem in adigraph.)

A dlight variation in the problem-statement may
require avery different solution method.

Question:

«? What is the connection between this modifi ed keyword-index
problem and the consecutive-sum problem when m = 17?

«? What are some possible approaches to modify the solution
method for m = 1 for the case of m = 2?7

1.88

AN EXAMPLE OF THE
USE OF INPUT-STRUCTURE

Problem: Find minimum and maximum items in an array
nums[1..N] of distinct numbers where the numbers are
initially increasing and then decreasing. (For nums[] =
[10, 9, 3, 2], theincreasing part isjust 10.)

Example. For nums[] =[1, 6, 18, 15, 10, 9, 3, 2], minimum = 1 and
maximum = 18.

Algorithm:

1. minimum = min {nums[1], nums[N]}.

2. 1f (nums[N — 1] < nums[N]) then maximum = nums[N].

3. Otherwise, starting with the initial range 1.. N and position 1, do

a binary search. In each step, we move to the mid-point i of the
current range and then select the right-half of the range if the

numbers are increasing (nums[i] < numsli +1]) at i and otherwise
select the left-half, until numg]i] islarger than its each neighbor.

4. Maximum = numg[i].

Complexity: #(comparisons involving nums[]) = O(1) for minimum
and O(log N) for maximum.

o Thisisbetter than O(N), if we do not use the input structure.

Question: How will you use the input structure to sort the numbers
nums[1.. N]? How long will it take?

1.89

ILLUSTRATION OF BINARY SEARCH

choose
max

iteration #5, decreasing, go —

iteration #6,
Increasing, go —

iteration #2, decreasing, go —
iteration #3,
Increasing, go —

iterati on

Test for "increasing” at i: nums[i] < nums|i + 1]

Strictly speaking, this is not a successive approximations because
at (i + 1)th iteration we may be further away from the maximum
than at kth (though we are closer to the maximum at (k + 2)th
iteration than at kth iteration).

To compute maximum by the principle of extending the solution
fromthecase N to N + 1, we would proceed as.

(1) If (numg[N + 1] > nums[N]) then max = nums[N + 1].
(2) Otherwise, apply the same method to nums[1.. N]J.
Thiscantake N —1 = O(N) comparisons for nums[1.. N].

1.90

BALANCED be-STRINGS

Balanced be-string: b=beginor’'(" ande=endor’)’.

The unique matching of each b to
an e on its right without crossing

= =1 =
X=bbebbeeebebe
| = L=+4J — = A matching with crossing

 For each initia part (prefi x) x' of x, #b, x') = #(e, x'), with
equality for X' = x. In particular, x starts with b and ends with e.

This means every b has a matching e to its right, and conversely
every e hasamatching b to itsleft. (Why?)

Two basic structural properties:
(1) Nesting:
If x isbalanced, then bxe (with the additional starting b and end-
ing e) is balanced.
(2) Sequencing:
If both x and y are balanced, then xy is balanced.
All balanced be-strings are obtained in this way starting from A
(empty string of length 0).

Question: If x; and X, are balanced be-strings, X = X;X,, and n(x)
= #(matchings with or without crossing for x), then how
do you show that n(Xx; X5) = n(x;)N(X,)?

191

ORDERED ROOTED TREES

» Thechildren of each node are ordered from left to right.

Two different ordered rooted trees; as unordered
rooted trees, they are considered the same.

The ordered rooted trees have the same two structural characteris-
tics of nesting and sequencing as the balanced be-strings:

— The subtrees correspond to nesting, and
— The left to right ordering of children of a node (or, equiv-

aently, the subtrees at the child nodes) corresponds to
sequencing.

1.92

MAPPING ORDERED ROOTED TREES
TO BALANCED be-STRINGS

O basString(T) = 4

T bal String(T) = bx.le. bx,e. [bx,e
T, T, T, where x; = balString(T;)

Example. Build the string balSring(T) bottom-up.

bbeebebe = bbeebﬂebﬂe

be=Db. 1. ei/
Question:

«? What would be wrong if for the one-node tree we take
beString(T) = be (instead of 1)?

«? How will you show that bal String(T,) # balString(T,) for T, # T»,
and that bal String(T) is always balanced?

«? How will you show that for every balanced be-string x thereisa
tree T with balString(T) = x?

#(ordered rooted trees with (n + 1) nodes)

1 -) 2
= #(balanced be-strings of length 2n) = 3%;‘) (n+1)

#(balanced be-strings)

— O — .
#(all be-strings) B =@

o For length = 2n,

1.93

MAPPING BINARY TREES
TO BALANCED be-STRINGS

e e
(i1) After adding achild "e" for each
null-pointer (or missing child) and
labeling each original node as"b".

(i) A binary treeT.

beString(T): Delete the rightmost e of the pre-order listing of the

|abels b and e in the extended tree.

For the above T, the pre-order listing gives bbeebbe-
beee and beString(T) = bbeebbebee.

Question:

2
?
?

2

2

If n=#(nodesin T), then how many news nodes are added?
What is the specia property of the new binary tree?

In what sense the pre-order listing bbeebbebeee is almost bal-
anced? How will you prove it?

How is beString(T) related to beString(T,) and beString(T,),
where T, and T, are the left and right subtrees of T?

How is the notion of nesting and sequencing accounted in
beString(T)?

194

GENERATING BALANCED be-STRINGS

Problem: Compute all balanced be-strings of length N = 2k > 2.
Example: Input: N = 4; Output: { bbee, bebe} .

bbby bbbe bibéd bbee

beblh bebe bédh béee

eoblh ebbe Ebéld ébée
eehh edhé eedlh eéde

Only 2 out of 2N = 16 strings of {b, e} are balanced.
ldea: Generate al 2N be-strings of length N and eliminate the
unbalanced ones.
Algorithm BRUTE-FORCE:

Input: N = 2 and even.
Output: All balanced be-strings of length N.

1. Generateall stringsof {b, e} of length N.
2. Eliminate the be-strings that are not balanced.

Complexity:

« O(N.2V) for step ().

* O(N) to verify balancedness of each be-string in step (2).
« Total = O(N.2N).

1.95

ABETTER METHOD BY
USING THE OUTPUT-STRUCTURE

| dea: Generate only the balanced be-strings using their structure.
(1) Structure within a balanced be-string
(2) Structure among balanced be-strings of agiven length N.

Ordered-Tree of Balanced be-strings. For N = 6.

b....e
bb...e be...e
bbb. . e bbe..e beb..e

bbbe. e bbeb. e bbee. e bebb. e bebe. e

bbbeee bbebee bbeebe bebbee bebebe

This structure is suitable to compute all balanced be-strings of a given length
by recursion, where the recursive call-tree follows the above tree-structure.

 The string at a non-terminal node is the part common to all bal-
anced be-strings below it.

« The children of a non-terminal node correspond to fi lling the | eft-
most empty position by b or e.

* A node has asingle child = b if number of b’s and €'s to the |eft
of the position are equal; a node has a single child = e if al b’s
are used up.

» Otherwiseg, it hastwo children (one for b and one for e).

« Terminal nodes are balanced be-strings in the lexicographic (dic-
tionary) order from left to right.

1.96

DEVELOPING THE PSEUDOCODE

General Idea:

(1) Recursive Algorithm; each call generates a subtree of the bal-
anced be-strings and prints those at its terminal nodes.

(2) Theinitial call starts with the be-string having its fi rst position =
'’ and the last position="¢".

Data-structure: beString[l.. N]
Initial Parameters: beSring

Initial Pseudocode for GenBal Strings(beString):

1. If (no child exigt, i.e., no blanks in beString), then print beString
and stop.

2. Otherwise, create each childString of beString and call GenBal-
Strings(childString).

Additional Parameters: fi rstBlankPosn (= 2 ininitial call)

First refinement for GenBal Strings(beString, fi rstBlankPosn):

1. I (fi rstBlankPosn = N), then print beString and stop.

2.1. Let numPrevBs = #(b’s before fi rstBlankPosn) and numPrevEs =
#(e's before fi rstBlankPosn).

2.2. If (numPrevBs < N/2), then beString| firstBlankPosn] ='b’ and
call GenBal Strings(beString, fi rstBlankPosn+1).

2.3. If (numPrevBs > numPrevEs), then beSring| firstBlankPosn] =
‘e’ and call GenBal Strings(beString, fi rstBlankPosn+1).

197

FURTHER REFINEMENT

Additional Parameters: numPrevBs
Second refinement:
GenBal Strings(beString, fi rstBlankPosn, numPrevBs):

1.
2.1.
2.2.

2.3.

If (fi rstBlankPosn = N), then print beString and stop.
Let numPrevEs = #(e's before fi rstBlankPosn).

If (2*numPrevBs < N) then beSring[firstBlankPosn] = 'b’
and cal GenBalStrings(beString, fi rstBlankPosn+1, numPre-
vBs+l).

If (numPrevBs > numPrevEs), then beString| firstBlankPosn] =
'e and cal GenBaStrings(beString, fi rstBlankPosn+1,
numPrevBSs).

Implementation Notes:

Make beSring a static-variable in the function instead of passing
as a parameter.

Eliminate the parameters fi rstBlankPosn and numPrevB by mak-
ing them static variable in the function, and use the single param-
eter length.

Eliminate the variable numPrevEs (how?).

Update fi rstBlankPosn and numPrevBs before and after each
recursive call as needed. Initialize the array beString when fi rst-
BlankPosn = 1 and free the memory for beString before returning
from thefi rst call.

1.98

c genBal BeStrings.c (contact kundu@sc. | su.edu for
onment s/ questi ons)

hi s program generates all bal anced be-strings of a given
ength using recursion. One can inprove it slightly to
limnate the recursive calls when "length == 2*nunPrevBs".

~————
~————
O ——0O O

01. #include <stdio. h>

02. void CGenBal BeStrings(int length) //length > 0 and even
03. { static char *beString;

04. static int firstBl ankPosn, nunPrevBs;

05. I f (NULL == beString)

06. beString = (char *)malloc(l ength+l, sizeof(char));

07. beString[0] = 'b’"; beString[length-1] = "e’;
beString[length] = '\0"; //helps printing

08. firstBl ankPosn = nunPrevBs = 1;

09

-}
10. I f (length-1 == firstBlankPosn)
printf("beString = %\ n", beString);
11. else { if (2*nunPrevBs < length) {

12. beString[firstBl ankPosn++] = "'b’;
nunPr evBs++;

13. GenBal BeStri ngs(1 ength);

14. firstBl ankPosn--; nunPrevBs--;

15. }

16. I f (2*nunPrevBs > firstBl ankPosn) {

17. beString[firstBl ankPosn++] = "e’;

18. GenBal BeStri ngs(1 ength);

19. firstBl ankPosn- -;

20. }

21. }

22. I f (1 == firstBl ankPosn)

{ free(beString); beString = NULL; }

24. int main()
25. { int n;
26. printf("Type the length n (even and positive) ");
printf("of balanced be-strings: ");
27. scanf (" %", &n);
28. if ((n >0 && (0 == nR))
{ GenBal BeStrings(n); GenBal BeStrings(n+2); }

1.99

FINDING A BEST RECTANGULAR
APPROXIMATION TO A BINARY IMAGE

Example. Black pixels belong to objects; others belong to back-
ground. Let B = Set of black pixels.

(i) Animage I. (ii) An approximation R.

 Rcovers|R - B| =18 white pixels (shown in grey).
« Rfalstocover |B — R| =29 black pixels.
« Val(R) =29+18 =47.

R = The rectangular approximation.
BAR = (B - R) U (R- B), the symmetric-difference.
Val(R) =|(BAR)|, Valueof R.
Val(O) =|B|=65; Val(l) = #(white pixels) = 115

Question: Isthere abetter R (with smaller Val (R))?

EXERCISE

1. Suppose we fi x the top-row r; and the bottom-row r, = r, of
R. How do you convert the problem of fi nding an optimal R
to a maximum consecutive-sum problem?

1.100

FINDING THE BINARY IMAGE OF A CIRCLE

Problem: Find the pixels in the fi rst quadrant belonging to the
circular arc of radius N centered at (O, 0).

Example. Shown below are the binary imagesfor N = 6 to 8.

N=506 N=7 N=8

Each circular arc is entirely contained
In the pixels representing the circle.

Some Properties of Output:

(1) Thelower and upper halves of the quadrant are symmetric.

(2) Thelower-half has at most 2 pixelsin arow (why?).

(3) For radius N, there are at most (2N — 1) pixels in the fi rst
guadrant.

Notes on Designing An Algorithm:

* Exploit the output-properties (1)-(2) to fi nd the required pix-
els; we need to use only integer operations.

« Some pixelsthat are not in the fi nal set will be examined.
Complexity: O(N);
Brute-Force M ethod: Complexity O(N?).

1.101

THE O-NOTATION FOR
ASYMPTOTIC UPPER BOUND

Meaning of O(n):
« The class of al functions g(n) which are asymptotically
bounded above by f(n) =n, i.e,

O(n) ={g(n): g(n) < c. nfor some constant ¢ and all large n}

— ¢ may depend on g(n); ¢ > 0.
— "dl large n" means "al n > N for some N > 0"; N may
depend on both ¢ and g(n).
Example. We show g(n) =7 + 3n L O(n).
We fi nd appropriate ¢ and N, which are not unique.
(1) Forc=4,7+3n<4.nholdsforn=7=N.
(2) Forc=10,7+3n<10.nor7<7nholdsforn=1=N.

A smaller c typically requireslarger N;
If cistoo small, there may not exist asuitable N.

(3) Forc=2,7+3n< 2 nholdsonly for n< -7, i.e, there
iIsno N. Thisdoesnot say 7 + 3n L1O(n).

Each linear function g(n) = A+ Bn 0 O(n).

Example. We show g(n) = A. n? JO(n).

For any ¢ >0, A.n* < c.nisfalsefor al n> c/A and hence
thereisno N.

1.102

MEANING OF O(n?)

« The class of al functions g(n) which are asymptotically
bounded above by f(n) =n?,i.e,

O(n?) ={g(n): g(n) < c. n? for some constant ¢ and all large n}

— As before, ¢ may depend on g(n) and N may depend on
both ¢ and g(n).
Example. We show g(n) = 7 + 3n 0O(n).
We fi nd appropriate ¢ and N; again, they are not unique.
(1) Forc=1,7+3n<n%ie,n°-3n-7=0holdsfor n=

(3+V9+28)/20rforn=5=N.
(2) Inthiscase, thereisan N for each ¢ > 0.

Example. We show g(n) = 7 + 3n + 5n? 0 O(n?).
We fi nd appropriate ¢ and N.

(1) Forc=6,7+3n+5n°<6.n% ie, n°-3n-720
holdsfor n>5= N.

(2) Forc=4,7+3n+5n*<4.n% ie,-n°-3n-720
does not hold for any n = 1. This does not say
7 + 3n + 5n° O O(n%).

Each quadratic function g(n) = A + Bn + Cn? 0 O(n?);
g(n) = n®> OO(n%).

(O1)
(O2)

(O3)

(O4)

(O5)

1.103

SOME GENERAL RULESFOR O()
The constant function g(n) = C 00O(n°) = O(1).
If g(n) O O(nP) and c is a constant, then c. g(n) 0 O(nP).

If g(n) 0O(nP) and p < g, then g(n) O O(n%).

The pair (c, N) that works for g(n) and nP also works for
g(n) and n%.

If 91(n), g2(n) DO(nP), then g;(n) + gz(n) D O(nP).

This can be proved as follows. Suppose that g;(n) <
c;.nPforal n> N; and g,(n) < c,.nP foral n> N,.

Then, g;(n) + g-(n) < (¢c; +¢,). NP for al n = max { Ny,
N,}. So, wetakec =cq +c, and N = max{ N, N,}.

A similar argument proves the following.

If g1(n) 0 O(nP) and gy(n) O O(n"), then g;(n)gx(n) O
O(nP*).

Also, max { g;(n), g,(n)} 0O(nY) assuming p < g.

Question: If g;(n) < g»(n) and g,(n) O O(nP), then is it true

91(n) DO(nP)?

1.104

MEANING OF g(n) 0 O(f(n))

O(f(n)) ={g(n): g(n) < cf (n) for some constant ¢ and all large n}

- g(n)
={g(n): limsup——— =U < oo},
{a(n) m Sp-r }
All other @ areon left — | - Only fi nitely many—?(”)
(n) are on right (n)
|

U c=U+g >0

* We sometimes write g(n) is O(f(n)) or g(n) = O(f(n)), by
abuse of notation.

Examples:
(1)) 7+ 3n=0(n)sincelimsup @ = lim sup 7+n3n = 3 < oo,
(2) If g(n) < 7+3log,n, then g(n) = O(log,n) since lim sup
[] []
) < lim sup ! + 3[F 3< o,
log,n 0N
(3) If g(n) = 7 +3n+5n?, then g(n) = O(n?) since lim sup %
. 7 3 [
:Ilmsupd[?+—+5525<oo.
N0

(4) g(n)=2"00(nP)forany p=1, 2, [l

1.105

ASYMPTOTIC LOWER BOUND Q(f(n))

« Wesay g(n) JQ(f(n))if

Iinrrligf% =L >0 (L maybe +c)
g(n)

.6, m >L-eorg(n)>(L—-¢)f(n)foralllargen

I.e, g(n) = cf (n) for some constant ¢ > O for all large n.
 Wealso writein that case

g(n) isQ(f(n)) or g(n)=Q(f(n)).

Examples.

(1) g(n)=7+3n0Q(N) n Q(1), but g(n) 0 Q(n?).

(2) g(n) = 7+3n+5n% O Q(n%) n Q(n) n Q(1), but g(n) O
Q(nd).

(3) g(n) =log,n 0Q(1) but g(n) LIQ(n).

Question:

«? 1If g(n) O O(f(n)), then which of the following istrue: f(n) [
O(g(n)), f(n) L<Q(g(n)), and g(n) L Q(f(n))?

2 If g(n) OQ(f(n)), canwesay f(n) LJO(g(n))?

«? State appropriate rules (Q1)-(Q5) similar to (O1)-(05).

1.106

ASYMPTOTIC EXACT ORDER O(f(n))
« Wesay g(n) DO(f(n)if g(n) DO(f(n)) n Q(f(n))
Question: Why does g(n) JO(f(n)) imply f(n) LOG(g(n))?

Example.
(1) g(n) =7+3n+5n* 0O(n?%), but not in ©(n) or O(n>).
(2) Iflogy(1+n)<g(n)<1+log,n,then g(n)=0(log,n).

Question: If gi(n) = ©(nP), g,(n) = B(nY), and p < q, then
what can you say for g;(n) + g»>(n) and g;(n)g,(n)?

1.107

COMPARISON OF VARIOUS
ASYMPTOTIC CLASSES

O(n?)
Q(n) O(n)
*log, n
3n+7 .
«n?| en+log,n 9.(n)
[n3
« 2" o(n)
* g2(Nn) « g3(n)

Log, n, for n even

92(n) = Epz, for n odd

Log, n, for n even

91(n) = Ep for n odd

Hog, n, for n even

9s(n) = 513, for n odd

Question:
«? Place the boxes for Q(n?) and ©(n?) in the diagram above.

Ch'® for n even

? N lace the functi =
ow, place the function g,(n) EPZ'S’ for 1 odd

Always give the best possible bound using O or Q
notation as appropriate, or give the exact order using ©.

(CONTD.)

ond)!

o(n?)!
O(n)'
O(1)

(1)

©(n) o(n’) o(n’)

=H
=H
=H

o(1)

EEE

Q1)

' Q(n)

|§2(n2)

|§2(n3)

1.108

 There are infi nitely many O(f(n)) between ©(1) and O(n)

above; for example, we can have
f(n)=nP,0<p<1
f(n)=(logn)P,0<p
f(n) =log™(n), m=1, 2, [

« For each ©(f(n)) between ©(1) and ©(n), O(n*. f(n)) is

between O(n¥) and ©(n**!) and vice-versa.

» O(f(m)=_ LI O(g(n)

g(n) T O(f(n))

» Q(f(m)=_ 11 ©(g(n))

g(n) dQ(f(n))

Question: Why don’t we talk of O(1/n)?

1.109

ALGORITHM DESIGN vs. ANALY SIS

Input X Output f(X)

Algorithm A

Four (3+1) Basic Questionson an Algorithm:
(1) What does A do — inputs, outputs, and their relationship?
(2) How does A do it — the method for computing f (x).

(3) Any speciad data-structures used in implementing the
method?

(4) What isits performance?

 Time T(n) required for an input of size n (measured in
some way).

If different inputs of size n require different computation
times, then we can consider:

Tw(n): theworst case (maximum) time
Tp(n): the best case (Minimum) time
T,(n): the average casetime

* Similar questions on the use of memory-space.

Since the amount of memory in use during the time T(n)
may vary, one can also talk about the maximum (and
similarly, the minimum and the average) memory over
the period T(n).

1.110

Show the fi rst quadrant for N = 9.

IS it true that the circles obtained in this way for various N >
1 have no pixelsin common?

Isit true that they fi ll-up all the pixels?

Give an effi cient Algorithm in a pseudocode form using the
properties/structures identifi ed above to determine the pixels
on the circle of radius N. It should use, in particular, only
Integer arithmetic. How many pixels do you test (not all of
which may be part of your answer) in determining the fi rst
guadrant of the circle?

Show that the number of pixels on the perimeter of the circle
In the fi rst quadrant is 2N — 1. (Hint: if there are many pix-
els in a column as is the case on the right side of the fi rst
guadrant, then there are many columns with few pixels asis
the case on the left of the fi rst quadrant. Note that if we bent
the line i +] = N dlightly, then it takes 2N — 1 pixels to
cover it.)

How will you create the three dimensional image of the sur-
face of the sphere of radius N in asimilar way? (Each pixel
Isnow asmall cube.)

1111

IMPROVE THE LOGIC/EFFICIENCY
IN THE FOLLOWING CODE SEGMENTS

|gnore language-specifi ¢ issues (such as"and" vs. "&&").
1. if (nunms[i] >= max) max = nuns[i];

2. if (x and y) z = 0;

else if ((not x) and y) z = 1;
else if (x and (not y)) z = 2;
else z = 3;
3. if (x >0) z = 1;
if ((x >0) & (y >0)) z = 2
4. for (i=1; |<n | ++)
It (i j) sum = sum+ nuns[i]; //sum+= nuns[i]
5 for (i=0; i<n; i++)
if (i ==7]) itens[i] = O;
else itens[i] = 1;

6. for (i=1; i<n; i++)
for (j=1; j<n; j++) {
diff = nuns[i] - nuns[j];
If (i #j) sunCOf Squares += diff*diff;
}

7. for (i=1; i<n; i++)
for (j=1; j<n; j+
if (i ==17j) A = -1;
' ' Millil) Alilli] = 1;

8. for (i=0; |<3*Iength | ++)
prlntf(")

9. for (i=0; i<10; i++) {
char stringO Bl anks[3*10+1] = ""
for (j=0; j<i; j++)
strcat (stringO Bl anks, ")
if (...) printf("%: %l\n", stringOBlanks, i);
else printf("%: ...", strlngCTBIanks U I

1.112

TOPICSTO BE COVERED

Introductory Material:

* (1) Solution method before Algorithm - necessary & sufficient
condition in rectangle inclusion

Sorting:
* (1) Review and close look at some sorting Algorithms.

* (1) Sorting non-numerical things (strings, trees, flowcharts,
digraphs)

* (1) Some non-trivial application of sorting.

* (2) Heap-data structure for efficient implementation of selec-
tion-sort.

(1) 2-3 trees: a generalization of heap.
Application of Stack: Topological Sorting:

* (1) Sorting nodes of an acyclic digraph. and finding all topo-
logical sorting.

* (1) Counting the number of topological sorting.

* (1) Converting an infix-expression to a postfix-expression using
a stack and evaluating a postfix-expression using stack.

* (1) Finding longest paths

* (1) Longest increasing subsequence
* (2) Depth first search and depth first tree

1.113

Minimum Weight Spanning Tree:
e (2) Finding minimum weight spanning tree
Shortest and Longest Paths:

(1) Find al acyclic paths and cycles from a node (undirected
graph)

e (2) Finding shortest paths - Dijkstra; connection between short-
est and longest paths

* (2) Finding shortest paths - Floyd
String M atching:

e (2) String matching

Huffman tree:

* (1) Prefi x free coding and Huffman tree

1114

DATA-STRUCTURE AND ALGORITHM ANALYSIS:
APPLICATION DRIVEN

Jan 12

e | am Kundu. | want this course to be arewarding and enjoyable
experience for you so that you have a renewed sense of confi -
dence in and love for computer science. This also means that |
expect you to put alot of effort, afull 120%.

* One of your goals for being here, | believe, is that by the end of
the semester you want to become a good/expert programmer in
terms of using proper data-structures and Algorithms, and you
are ready to compete with other CS graduates from any other
University in US or elsewhere.

» (Good programmers write good (effi cient and clear, not just pro-
grams that somehow produce the right output) programs, but
what goesinto a good program?

GOOD GOOD GOOD GOOD GOOD
Problem Solution Method Algorithm Data Structure Implementation

GOOD
Program

Good | mplementation:

» (Good choice of names for variables, functions, parameters, and
fi les.

» (Good choice of local and global variables.
» Good choice of conditions for branch-point and loops.

1.115

To do al these good selections, you need to know some
example of good Algorithms and their implementations. (We
indeed learn from experience.) In this course, we are going
to: (1) learn a number of interesting Algorithms and (2) prac-
tice solving some new problems using those Algorithms and
their variations.

Difference between a good program/software and a good product:
solves a useful problem and good interface.

Give some example problems that the students will be able to
solve by the end of semester

— Take them from MUM-lectures; minimum energy nodes
to form a connected sensor network

Let r;, be the minimum r where the links E(r) =
{(vi, vj): d(v;, vj) < r} form a connected graph on the
nodes.

43

Ve
V2R (W 5,2V V
AN " Thelinks E(1).
vi}23-81v, Vg

— Question: What isr;, for the set of nodes above? Give
an example where r i, # max { distance of a node nearest
tovi: 1<i < N}, (If ryy, dways equals the maximum,
then what would be an Algorithm to determiner ,;,?)

— Find the largest number of points P; = (X, V;) that can be
roped in with arope of length L.

1.116

Some Critical-Thinking Questions On Selection Sort:

For the questions below, it suffi ces to consider the input to be a
permutation of {1, 2, [IJlnumltems}.

«? Is it true that the number of upward data-movements are
aways the same as the number of downward data-
movements?

«? |If we know that n of the data-items are out of order, what is
the maximum and minimum number of data-movements?
Show the example inputs in which this maximum and mini-
mum are achieved.

*? In what sense the Selection Sort minimizes data-movement?

«? How many data-comparisons are made in fi nding the ith
smallest item? What is the total number of data-compar-
Isons? Does it depend on the input?

«? Suppose a series of related exchanges are of the form
itemg[il] and itemd[i2], itemgi2] and itemdi3], ... ,
itemg]i(k-1)] and itemg]ik]. Then argue that the indices{i1,
12, ..., Ik} form a cycle in the permutation. Note that the
exchange operations in the different cycles may be inter-
leaved.

An Example of Creative Thinking Related to Selection Sort:

«? If we view Selection Sort as a way of "fi lling the places by the
right items", then give a high level pseudocode of an Algorithm
that fi ts the description "fi nding and putting each item in the
right place".

«? Can you think of another variant of selection-sort?

In bubble sort isit true that if a data-item moved up, then it is never
moved down? How abot if we interchange "up" and "down" in the

1117

above sentence?

1.118

Concept of Sorting

- Anexample: [7, 2, 6, 1[lbecomes [1, 2, 6, 7[after sorting

in increasing order. Lexicographic ordering of {bat, but,
cap, happy, life}.
Sort names in a printed voter/airline-passenger list to
quickly locate if a given name is in the list. (For elec-
tronic copy, it is not necessary to sort it; a binary search
list is more suitable.)) The words in a dictionary are
sorted as are index-words at the end of a book.

— How do you defi ne the sorting problem?

Given aset of nthingst;, 1<] < n [MIwhich are
mutually comparable in some way (i.e., thereis a
linear order among them), fi nd the arrangement
asin: ty <t, <[k t,,i.e, fi nd the smallest item,
the second smallest item, and so on.

— Strings have linear ordering among them (the lexico-
graphic ordering), they can be sorted: but < cat < cup <
heavy < life.

— What kinds of things cannot be sorted? If there is no lin-
ear ordering as in the case of subsets of aset. For S; =
{a,b} and S, ={b, c},wehaveboth S, and S, 1 S={a,
b,c}butS;1S,andS, I1'S;. Thus, {S;, S;} cannot be
sorted under the subset-relation. (Indeed, we can simply
declare that S; < S, is the sorting, but others need not
accept this)

— What is an application (distinction between "use" and
“application™).

Jan 14:

1.119

e How do we compute the partiadl sums d;, (d;+d,),
(d; +d, +dg), Ijl(d, + d, + ¥ d,,) most effi ciently?
 How would we modify the code below to count the num-

ber of time the condition C is evaluated and likewise read

and write counts of x and y (use variables xReadCount,
xWriteCount, etc)?

= 0; 1f (x < 3)
1; y = X + 35

e Discussion on the program below for generating succes-
sive binary string and its variations with numOnes (see
the other fi le binString-prog.t).

— The successive calls to NextBinString(3) produces
000, 001, 010, 011, 100, 101, 110, 111, and NULL.

— Thenext binary string of 0110001011 is 0110001100,
and its next is0110001101.

— Pseudocode:

1. Find the rightmost O (fi nding from right is faster since most change take
2. If (Oisfound) then makethat Oto 1 and all 1'stoitsright O.
3. Otherwise stop.

— The two key issues needed to develop the Algorithm
are (this is true for this case, and the case where the
number of 1'sis fi xed and also in the case generating
next permutation):

(1) where do we start making the change, and
(2) what isthe change

This abstraction ties together all three next-item gen-
eration Algorithms.

1.120

— NextBinString program

/luse this function with sane length repeatedly to generate all binary strings of that |ength
/luntil the return value is NULL; only then use a different length, if desired, or use the sane
//1ength to repeat the cycle.
char *NextBinString(int length) //length >0
{ static char *binString=NULL; //arraySize=length+l; 1 for end-of-string to help print binString
int i;
if (!'binString) {
binString = (char *)nmalloc((length+l) * sizeof(char));
for (i=0; i<length; i++)
binString[i] ="'0";
binString[length] ="'\0";
}
else { for (i=length-1; i>=0; i--) //find position of rightnost O
if (70 == binString[i]) break;
if (i >>0) { //update binString
binString[i] = '1";
for (i=i+l1; i<length; i++) binString[i] ="'0";
el se binString = NULL; //reset for next call of NextBeString
}
if (binString)
printf("binString: %\n", binString);
return(binString);

- Pseudocode for fi nding the next binary string of given length and number of ones.

1. Find the rightmost 01 (fi nding from right is faster since most change take place on the rightside).
2. If (found) then make that 01 to 10 and all move 1'sto itsright to rightmost places.
3. Otherwise stop.

. Show a pseudocode and a piece of C/Java-code for fi nding the rightmost "00" in a binaryS-
tring[O..(length-1)]. Keep things as clean and effi cient as possible.

1. Findrightmost O.
2. If (the previousitem is 1), then go back to step (1) and start the search from the left of the current position.

The implementation below, is cleaner than the one following it in terms of logic and is equally effi -
cient.

i = length;
do { for (i=i-1; i>0; i--)
if (0 ==binString[i]) break;
} while (1 == binString[--i]);
for (i=length-1; i>0; i--) //warning: body of for-loop updates i
if (0 ==binString[i]) & (0 == binString][--i]) break;

1. Bonus: Let R(W, H), where W = H > 0, denote a rectangle with width W and height H. How will you
determine if arectangle R;(W;, H4) can be placed completely inside another rectangle R,(W,, H>), and if
so how can you fi nd at least one an actual placement (there can be more than one ways to place R; inside
R,). (Note that the problems of placing a circle inside arectangle and of placing arectangle inside acircle
are easy.) First, show that if D; = D,, where D; is the length of the diagonal of R, then the only way R;
canbeplacedinside R, isR; = R, i.e., W; =W, (and hence H; = H)).

2. Homework: Consider again the car-repair problem, where now we have two repair-men. Suppose we
have four cars C;, C,, C3, and C, with the repair-times 7, 2, 6, and 1 respectively. Show all possible
repair-schedules (who repairs which cars and in what order) which has the minimum total lost-service
time; the person who repairs C4, call him A and call the other person B.

— What do you think (guess) isthe general rule for creating the best repair-schedule?

— If there are 2n cars and two repair men, what is the number of optimal repair-schedul es?

3. Homework: How to compute the successive permutations of {1, 2, [Iin} in the lexicographic order?

Given two permutations p = (py, p., [p,) and q = (91, 9y, [M1q,), Wwe say p < q if for the leftmost posi-
tioni where p; # q;, we have p; < ;. Thelexicographic ordering of the permutationsfor n = 3is

(1,2,3)<(1,3,2<(213<231<(@312<(321)

For n = 9, what is the fi rst permutation p that starts with (4, 3, 1, 9, 6,) and what is the one next to it,
and the one next to that? Also, what is the one previous to p? Show the pseudocode for computing the
permutation which is next to a given permutation (py, p,, I p,).

Jan 21

Discuss homework problems for NextPermutation(numltems), two-person car repair scheduling, rectangle
placement, and programming of NextBinString(length, numOnes).

The Algorithms for NextBinString(length), NextBinString(length, numOnes), and NextPermuta
tion(numltems) have the following common form athough they differ in the details of each of the three
steps.

1. Find the rightmost place where a change occurs.
2. Make the change at that place
3. Make the change to itsright.

Problem random generation of a binary string of length n:

1. Saveadll thestringsin afile.
2. Create arandom number 0 < k < numStrings.
3. Select kth string.

Problem too much time to compute all of them and too much storage to save. Better approach

Compute successive bits of the string with suitable probability.

Algorithm for random permutation;

1. For (each 0 <i < numitems) choose randomly an item from {0, 1, 2, [IIn — 1}
which is different from previousitems.

An implementation (very ineffi cient):

1. permutation[0] = random() %um tens;
2. for (i=1; i<numtens; i++) {
do { item = randon() %unlt ens;
for (j=0; j<i; j++)
if (permutation[j] == item break;
} while (j <i);
permutation[i] = item

N O

Better idea: keep track of remaining items and choose one at random from the remaining items.

Homewor k+Program: Find a better way and compare the average number of times random() is called for
generating 10° cases of random permutations for numitems = 50. Also, show the details for numltems = 4
and 5 different runs of RandomPermutation(4), show the sequence of random items generated by the brute-
force method as each new permutation[i] is determined, the fi nal permutation, and the counts of random()
in each case.

A variation of car-repair problem that can be solved in the same way: we have customers lined up in a shop
to get some service, and we want to serve them in away that reduce their total weight time.

Now we can introduce some probability that a customer may leave at any time based on an (say) exponen-
tial distribution, i.e., a customer leaves within a time period t with probability 1 - x* and the probability x'
that he does not leave (where x = e* for some 2> 0, i.e., 0 < x < 1). Then what is the best order-of-ser-
vice to maximize the profi t, i.e., the amount of service that can be provided.

- If we have just two customers with d; = 2 and d, = 6, then the processing order [C,, C,Lis optimal
with the expected extrareturn [8x® + 6. (1 - x°)] - [8x?>+2.(1- x?)] = Oforal 0<x=€e™* < 1.

If you have two repair-men, then what is the optimal distribution of the work between them for the d;-val-

ues{2,6,7,11,13}?

A generalization to the case of a precedence constraints among the tasks.

Suppose | have 6 pieces of tools { A, B, MIF} in my machine shops which need repair. Also, some of the
tools themselves are needed to repair some of the other tools as shown below; here, tool A is needed to
repair both the tools C and D (as indicated by the links (A, C) and (A, D) respectively). The number next
to each node is the time needed to repair that tool.

~9 63
€y 03 &
3

Here two of the many possible repair-sequence are: [A, B, C, D, E, Fand [B, A, C, D, E, F[I
Here, the best repair-sequenceis. (A, C, B, D, E, FI

You always repair the tool which has no precedence constraint (i.e., is not waiting for some other tool to be
repaired) and which has the smallest repair time.

Set of toolsready for repair | A:3,B:4 | B:4,C:2 | B:4 | D:1,E:7 | E:7 | F:5
Best choice | A C B D E F

Homework: Find 5 different repair-sequences and the associated total lost-time for each of them. How
many repair-sequences are there?

— How do you compute the number of possible repair-sequences for a general precedence digraph;
2

VV

e

— We can use a shortest-path computation on the digraph below to get the best repair-sequence. The link
(S, Sj) connecting node S to S; corresponds to the repair job for tool T, O S; - S, and the cost of the
link is dy.(N —S;[), which is the total contribution to the delay for repair of the remaining N - |S;|
tools.

21

:

Below each node we show the shortest-path length from the node 1.

What is the basic assumption in sorting: there isalinear order among the items to be sorted.

— We have seen linear ordering og numbers, strings, and permutations.

— Can we use the linear order of binary strings of length 3 to provide a linear order on subsets of {a, b,
c}? What happens if we associate a with the leftmost bit, b with middle bit, and ¢ with rightmost bit
and map 010 - {b}, 101 - {a, c}, and so on giving

{c} <{b} <{a} <{b,c} <{a,c} <{a b} <{a, b, c}.
Following is a pseudocode for Insertion-sort Algorithm, where we have used recursion; here, numltems =

#(items to be sorted) = size(input array). Here, you know nothing of the fi nal result until the very end.

1. If (numltems = 1) then stop.
2. Otherwise, sort the fi rst (numlitems-1) items from the input and insert the last item.

For theinitial input array [7, 2, 6, 1], the recursion proceeds as follows:

[7,2,6,1] - insert1lin[2,6,7]:[2,6,7,1] - [2,6,1,7] - [21,6,7] - [1,2,6,7]

|t

[7,2, 6] - insert6in[2,7]:[2,7,6] - [2,6,7]

| e

[7,2] - insert2in[7]:[7,2] - [2,7]

yo

[7]

Lots of data-movements: [7,2,6,1] - [2,7,6,1] - [2,6,7,1] - [2,6,1,7] - [2,1,6,7] - [1,2,6,7].
n(n-1)

Worst case: 1 +2+ 3+ [* (n—-1) = , arising for input [7, 6, 2, 1]; same for the number of com-
parisons. Best case: #(data movements) = 0 and #(comparisons) = n — 1.

Indeed, you can use afor loop:

1. For (i = 1 to numltems—1)
insert nunms[i] anmong nuns[O0..i-1] so that nuns[0..i] are sorted.

Insertion: pseudocode and implementation (where steps (1)-(2) are combined):

Pseudocode: 1. Findtheposition0< j <i for numgi].
2. If (j <i)thenmoveitemsinnumg .. (i — 1)] one position right (save numg[i] before this)
and place numg[i] in position j.

Implementation: 1. for (j=i-1; j>=0; j--)
2. if (nuns[j+1] > nuns[j]) break; //>=
3. el se i nterchange nuns[j+1] and nuns[j];

» Selection Sort: Here, you do know part of the fi nal output at the intermediate phases (unlike insertion-sort).
This is iterative from the output point of view while insertion-sort iterative from an approximation view-
point). The recursive form below applies recursion after some preliminary computation (cf. insertion-sort)

1. If (numitems = 1) do nothing.
2. Otherwise, Find the largest item and interchange it with the itemg[numlitems-1], if necessary,
and then apply the method recursively to itemg[0..numltems-2].

For input array [2, 7, 1, 6], the recursion proceeds as shown below.

- max-item = numg[1] =7

[2,7,6,1] - after interchange[2, 1, 6, 7]

-[1,2,6,7]

| =

- max-item = numg[2] =6
[2. 1. 6] - (nointerchange) [2, 1, 6]

'

Few data-movements here: maximum of 1 per each recursion’s own direct computation. Worst case: n — 1.
. . n(n-1
The number of comparisonsisalways(n—1)+ (n—-2) + F3=2+1= (5) .

e Merge sort:

1. If (numitems == 1) do nothing.

2. Otherwise divide input into two equal (or close to equal) halves (fi rst half size < second half size).
and sort each part.

3. Mergethetwo sorted part.

Show with an example of 8 items that merging may take longer if we divide into 2/3 and 1/3 parts instead
of into 1/2 and 1/2.

An extreme case of thisdivision into fi rst n — 1 and the last item gives insertion sort.

* Homework. For the input nums[0..3] =[7, 2, 6, 1], show the sequence of successive value-pairs compared
in the insertion-sort Algorithm (instead of writing the pair as (numg[0], nums[1]), write (7,2) and not (2,
7)). Also, show the whole nums-array every time some data-movement takes place in the array. In what
input situation, we have the maximum number of data-movements (give an example for an array of 5
items)? In what input situation, we have the maximum number of comparisons (give example)?

« Homework. Give a recursion-based pseudocode (not C-code) for insertion-sort. Imagine that you are
doing this to develop a program later for the function InsertionSort(int *nums, int numltems). Show the
successive calls that will be made for the initial input nums[0..3] = [7, 2, 6, 1].

* ONUS. Use the above piece of code to create a function GenRandomPermutation(int numitems), which
prints all the successive random items generated and putting a’*’ next to an item when it becomes part of
the permutation (you can put al the values of item in aline). It should also count the total number of

random numbers generated in creating a random permutation. Show the detailed output for 5 calls to the
function for numitems = 4. Finally, show the average value of count for 5 calls to the function for
numlitems = 100000 (don’t show the details of random items generated for these permutations).

* Homework: Show a similar pseudocode for a recursive form of Selection-sort Algorithm and show its
call-return tree and the computations for the input [7, 2, 6, 1].

Feb 09

« 2-3tree: An ordered rooted tree, whose nodes are labeled by items from alinear ordered set (like numbers)
with the following properties (T.1()-(T.3) and (L.1)-(L.3). Shown below are few small 2-3 trees.

Tl dle o b e

min number max number min number max number
of labels=3 of labels=5 of labels=5 of labels=8

(T.1) Each node has exactly one parent, except the root
(T.2) Itisheight balanced: all terminal nodes are at the same distance from the root.
(T.3) Each non-terminal node has either 2 children or 3 children.

(L.2) A node x with 2 children has one label, label 1(x), with the properties:

labels(T (X)) < label(x) where T (x) isleft-subtree at x,
label 1(x) < labels(Tr(x)) where Tr(X) isright-subtree at x

(L.2) A node x with 3 children has two labels, label ;(x) < label ,(x), with the properties:
labels(T (X)) < label1(x) where T (x) isleft-subtree at X,

label 1 (x) < labels(Ty (X)) < label,(x) where Ty (X) is middle-subtree at x
label,(x) < labels(Tr(X)) where Tr(X) isright-subtree at x

(L.3) A terminal node may have one label or two labels.

* Example of 2-3 trees with different number of terminal nodes:

#(termmal nodes) / \ Q/i\@
#(terminal-nodes) #(termmal nodes)
=2

#(terminal-nodes)
=4

KR B AT AR

#(terminal-nodes) #(terminal-nodes) #(terminal-nodes) #(terminal-nodes)
=5 =5 =6 =6

Feb 11

How many ways can the 2-3 tree on left can arise? There are 12 ways, i.e., 12 possible input sequences
(permutations of {1, 2, 3, 4}) that gives this 2-3 tree. The only other 2-3 tree with the labels {1, 2, 3, 4} is
also obtained in 12 ways, covering 12 + 12 = 24 = 4! permutations of {1, 2, 3, 4}.

(3)
2 ©

It came from a 3 node 2-3 tree (of the same shape) — why? The 3-node 2-3tree can be only one of the fol-
lowing, and by adding 2 to the fi rst tree and 1 to the second tree we get the above tree.

add 2 add 1
EE—
How many ways we get the fi rst 2-3 tree above? there are 6 ways, i.e, from 6 different permutations of {1,
3, 4} and they all come from 3 different one-node 2-3 tree.

Homework: Show all possible structure of 2-3 tree with 5 terminal nodes and 6 terminal nodes. Also,
label the nodes of each with the numbers 1, 2, 3, [Ifor the case of minimum number of data itemsin the
nodes and also for the case of maximum number of dataitems in the nodes.

Homework. Show that the following 2-3 trees arise from 48 and 72 (total = 120 = 5!) permutations of {1,
2, [M5}. In each case, they come from a 3-node 2-3 tree.

Homework. What additional information we could at each node of 2-3 tree if we want to quickly fi nd the
key-value of the ith smallest item? Show how you will use that to determine the Sth item in the following

2-3tree (k; < ko < [

How to choose the probability for successive bitsin the binary string of length n and numOnes m?

Probability Problem

=

Prob(0) = 1/2 for each position All binary strings of a given length

2. Prob(0) depends on position n" = remainingLength, Binary strings of a given length and numOnes
and m' = remainingNumOnes (prob(0) = C1,Y/CT))

3. Dependson position n' = #(remaining symbols) Permutations

prob(s) = 1/n’ for each remaining symbols

The case of length n = 4, numOnes m = 2, and numStrings N = 6;

string: 000 prob=1
(n=2, m=2, N=1)
prob="1/2

string: 0011

string: 0 [T

(n=3, m=2, N=3)
12 prob< 2/3
string: [T string: 01 [/D]]]

(n=4, m=2, N=6) (=2, m=1,N=2) —__ mm
prob< 1/2 [
string: 100 —

(n=3, m=2, N=3) ~_

HE BE

Feb 18 CA: circle at (0,0) CB: circle at CA+(x,0); line -> from CA to CB chop CC: circle at CA+(x/2,-y); line
-> from CA to CC chop # CA: circle at CA+(x2,0) CB: circle at CA+(x,0); line -> from CA to CB chop CC:
circle at CA+(x/2,-y); line -> from CC to CA chop "(i) The three acyclic digraphs on" "n = 3 nodes and 2
links." at CC.s-(0,2) # CA: circle at CA+(x2,0) CB: circle at CA+(x,0); line -> from CB to CA chop CC: circle
at CA+(x/2,-y); line -> from CC to CA chop # CA: circle at CA+(x2+x,0) CB: circle at CA+(x,0); line -> from
CA to CB chop CC: circle at CA+(x/2,-y); line -> from CA to CC chop; line -> from CB to CC chop "(ii) The
acyclic digraphs on" "n = 3 nodes and maximum number links 3." at CC.s-(0,2)

» Given an acyclic digraph, fi nding #(paths from x to y).
Method #1: Assume that we have computed indegree of each node.

D Initialize the stack by adding each source-node to it.
2 For each node z, initialize p(z) = #(paths from source-nodesto z) = 0. Also, initidlize p(x) = 1.
(3) Do the following until indegree(y) = O:

@ Let z = top(stack); remove z from stack.

(b) For each node w in adjList(z), reduce indegree(w) by 1 and if indegree(w) = 0 then

add it to stack. Also, add p(z) to p(w).

« Homework. Show in the table form how the topological sorting would proceed on the same digraph with
the nodes { A, B, ..., G} (which we looked at before Mardi Gras holidays) when we use a queue instead of
a stack to keep the current nodes of indegree 0 that have not been processed yet. (This might give a differ-
ent topological sorting/ordering than the one using a stack.)

Suppose we write a queue in the form <A, B, C>, where C is the head of the queue and A isthetail. Then
adding D to the queue would give <D, A, B, C>, D being the new tail. If we want to take an item of the
gueue out, then we have to take the head-item C out and this would make the new queue <D, A, B>.

Your table should show the queue (with head on right and tail on l€eft), the node selected, the updated inde-

grees, and the new topological ordering. Thisis similar to the table we made using the stack for topologi-
cal ordering.

Depth-First Search

Depth-fi rst search of agraph and its applications:

(1) finding an xy-path,

(2) finding if the graph is connected,
(3) finding acut-vertex,

(4) fi nding a bicomponent, etc.

Given any spanning tree of a connected graph and having chosen any node as the root, the non-tree edges
can be classifi ed as back-edges and cross-edges.

— If there are no cross-edges then we can think of the tree as a depth-fi rst tree.

— If there are no back-edges then we can think of the tree as a breadth-fi rst tree. (Thisis also the tree of
shortest paths from the root, with 0/1 weights for the edges;, some of the cross edges may represent
alternative shortest paths.)

- If we disregard the ordering of the children of a node, then there is just one df-tree and one bf-tree for
each choice of root node.

— Thus, al but n + n spanning trees are neither df-trees and nor bf-trees.

- A df-treeisabf-treeif and only if the graph has no cycles.

Connected graph: thereis apath between any pair of nodes x and y (y # X).

N e e

O——_CO—~™~6® ©O——©
(i) A connected graph (if) A disconnected graph
on nodes{ A, B, IIE}. on nodes{ A, B, [IIF}.

Homework. Is it true that "if there is path from some node z to every other node, then there is a path
between every pair of nodes'? Why isthisresult important (in determining connectivity of a graph)?

Cut-vertex x:

removal of x and its adjacent edges destroys all paths (one or more) between some pair of
nodes y and z; we say x separates'y and z.

In this case every path from y to z has to go through x, and thus #(acyclic path from y to z) = #(acyclic
paths from y to x) x #(acyclic paths from x to z).

B and C are the only cut-verticesin thefi rst graph; the other graph has no cut-vertex.

Homework. What is the minimum edges that need to be added to the fi rst graph so that it has no cut-ver-
tex.

Depth fi rst search of a connected graph:

(1) Depends on the start-vertex and the ordering of nodes in the adjacency-list of nodes.

(2) Produces an ordered rooted tree, with root = start-vertex; it is called the depth fi rst tree.
The children of anode are ordered from left to right in the order they are visited.

(3) Each non-tree edge creates a cycle in the graph.

(4) Eachedge (X, y) of the graph isvisited twice:
oncein the direction x to y and once in the direction y to x.

Stack (top Current df Edge back/tree and
on right) node label processed visit#

CAC A 1 (A, B) tree, visit #1
CA, BO 2 B (B, C) tree, visit #1

Cross-edge and back-edge:
There are no cross-edges in the df-tree; each edge joins a a node with a parent or with an ancestor.
(x, y) isaback edgeif dfLabel(x) > dfLabel(y) and y # parent(x)

The start-vertex is a cut-vertex if and only if it has more than one child.

Homework. Show in a similar table form the result of depth fi rst processing when each adjacency-list is
ordered in the reverse of alphabetical-list.

Homework. For the graph below, show all possible depth-fi rst trees that may arise if we change the stat-
vertex and order the adjacency list in different ways.

BONUS Consider the depth-fi rst tree shown above. Show the maximum possible number of back edges.
Isthere any cut-verticesif all those edges are present in the graph?

Mar 09

Algorithm DepthFirstTraverse:

Use the following local data structures and variables in the function. (You could add parent-information to
the structure GraphNode if the depth-fi rst tree isto be used later for some other purpose.)

lastDfLabel: Oinitially; it isincremented by one before assigning to a node.
dfLabel§0..numNodes-1]: each dfLabelg[i] = Oinitially.
nextToVisit[0..numNodes-1]: each nextToVisit[i] = O initially; nextToVisit[i] gives the posi-
tion of theitem in adjList of node i that is to be visited next
from node i, i.e, the next link to visit from node i is link (i,
i), where j = nodeq[i].adjList[nextToVisit[i]].

stack[0..numNodes-1]: initialized with the startNode; recall that this gives the path in

the depth-fi rst tree from the root to the current node.

parent§0..numNodes-1]: parentd[i] isthe parent of nodei.

Pseudocode: //it has alittle bug; fi nd this out as you create the program and test it, and then fi x the bug.

1. Initialize lastDfLabel, dfLabels-array, parents-array, nextToVisit-array, the stack; aso, let parent[cur-
rentNode] = currentNode (or -1).

2. While (stack # empty) do the following:
(a) Let currentNode = top(stack); update lastDfLabel and let dfLabelg[currentNode] = lastDfL abel.

(b) If (nextToVisit[currentNode] = degreg[currentNode]) then backtrack by throwing away top of
stack and go back to step (2).

(c) Otherwise, let nextNode = the node in position nextToVisit[currentNode] in adjList of currentN-
ode, and update nextToVisit[currentNode].

(c) [Classify the type of the link (currentNode, nextNode) as follows

(1) tree-edge: if dfLabelgnextNode] = 0; in this case, let parent[nextNode] = currentNode and
add nextNode to stack.

(2) back-edge: if (dfLabelgnextNode] < dfLabelg[currentNode]) and (nextNode # parentscur-
rentNode])

(3) second visit: otherwise.

e Program. Create the function DepthFirstTraverse(int startNode) and show the output for the graph con-
sidered in the class with startNode 0 = A and startNode 1 = B. Create your datafi le using the format we
used for digraph, except that now node j will appear in the adjacency list of i if i appears in the adjacency
list of j; keep the adjacency lists sorted in increasing order. For a graph, inDegree(i) = outDegree(i) =
degree(i) for each nodei. The function DepthFirstTraverse should produce one line of output for each link
processed, and a separate line from backtracking and every time stack is modifi ed. A possible output may
look like:

stack =[0], node O, dfLabel = 1
link = (0, 1), tree-edge

stack =[0 1], node = 1, dfLabel =2
link = (1, 0), 2nd-visit

link = (1, 2), tree-edge

stack =[0 1 2], node = 2, dfLabel =3
link = (2, 0), back-edge

link = (2, 1),'2nd-visit

backtrack from 2 to parent(2) = 1
stack = [0 1]

[

Mar 11
e 3rd quiz
< Breadth fi rst traversal of a connected graph

Breadth first | Depth fi rst
breadth-fi rst spanning tree (BFT) | depth-fi rst spanning tree (DFT)
rooted ordered tree | rooted ordered tree
tree-edges and cross-edges | tree-edges and back-edges
cross-edges limited to levels differing by < 1 | back-edges between levels differing by = 2
no backtracking | backtracking
whole tree need to be maintained | backtracked nodes can be deleted from the tree
BFT treetendsto be "wide" | DFT tendsto be"tall"
each edge visited twice | each edge visited twice
O(IED | O(E]

Mar 16

e Computing al pathsin a graph from a start-node (reset dfLabel(x) = 0 when you backtrack from x # start-
node and reset the nextltemSeenFromAdjListToProcess(x) at the beginning of adjList(x)).

(1) For x # start-node, #(occurrences of x in the new df Tree) = #(acyclic paths from start-node to x).

o o 1 1 1 1 0
(20 P=#pahfromitojinK,)=(n-2)!Id+—~+—+ =+ ———F=e(n-2).
o v 2 3 (-2

(3) #(occurrences of anodei inthe new df Tree(1)) = P, except for i = 1 = root.

(4) #(treeedgesinthenew df Tree(1)) =T(nN)=(n-1)P=(n-1)T(n-1) + (n-1),withT() =0and T(2) = 1.
Thisgives, T(n)=(n—-1)! + n(n-1)/2=0((n-1)!) forn= 2.

e Check if there is a hamiltonian cycle by depth fi rst search

» Compute the number of topological sorting.

e Minimum spanning tree by Prim’s Algorithm.

Mar 18
e Minimum weight spanning tree of aweighted graph.

— Number of trees on n nodes is "2, too large to create them, fi nd their weights, and choose the mini-
mum.

— Need amore direct way.
+ Start with a spanning tree and keep modifying it when its weight cannot be reduced any more.

+ Build a spanning tree slowly by adding a edge to an existing tree so that it ends up with aMST.

e Thefi rst approach:
1. Buildaspanningtree T (start at any node and do a depth-fi rst traversal).
2. Sort the edgesin increasing (non-decreasing) link weights: e, e,, [ley,.
3. For each edge e, &,, o the following:

@ If & isnot in the current spanning tree T and its weight is the not least weight in the cycle C
inT + e, then add ¢ and remove the maximum weight link in C.

Problem: takes too much computation for detecting the cycles for various g (although each time we can
detect thecycleinT +e).
« Homework. If g =(X;, y;) where will you begin depth-fi rst search of T + ¢ to detect the cycle?
* Pseudocode for second approach: Prim'’s Algorithm.
1. Choose astart-node X, and let T consists of just this node.
2. Repeat thefollowing n — 1 times:

@ Add anew node x; (i =1, 2, MIn—1) and connect it to T viaan edge (X;, y;), wherey; OT
such that thisisthe least cost edge connecting T to the outside.

Selecting x; and (X;, V;):
1. Foreach x; OT, fi nd the best link (X;, y;) connecting x; to T.
2. Find the link with minimum weight among al (x;, y;). Thisgivesboth x; and (X;, ;).

Mar 23
« Homeworks.

1. Show in atable form (as indicated below) the steps and the treesin Prim’s Algorithm; here, the second
column shows the starting node. Note that once a node is added to T the column for that node for the
remainder of the table will not have any entry (indicated by '— below). Use the following input graph.

]

’ GAQ

7

Node | Best link connecting current T to nodesnot in T and weight of that link
added

toT A=startNode B C D E m

A _

DID —

DID —_

|I|I| _

DID —

2. What effects do we have on an MST (minimum weight spanning tree) when we reduce each link-
weight by some constant ¢ (which might make some link-weights < 0)?
e Program:

1. Write a function PrimMinimumSpanningTree(startNode) to construct an MST for a weighted graph.
The output should show the following, with #(output lines) = #(nodes in the connected input graph).

@ The start-node.

(b) For each successive ling, alist of the triplets of the form (x;, y;, w(X;, y;)) for each node x;
not in the current tree T, where (X;, ;) isthe current best link connecting x; to T.

Follow this by the node selected for adding to T.

Pseudocode for processing the links from the node x added to T:

1 For each y in adjList(x) do the following:
€) If yisnotin T, then update bestLinkFrom(y) = x if w(y, bestLinkFrom(y)) >
w(y, X).
Notes:
@ Use an array bestLinkFrom[0..(n — 1)], where n = #(nodes), and initialize each bestLink-

From[i] = -1 to indicate that the best link is not known. For the start-node, let bestLink-
From[startNode] = startNode.

Thisisthe array that is returned by the function.

(b) Use another array inTreg[0..(n — 1)], with inTreg[i] = 1 meaning that i isin T and = 0 other-
wise.
(©) The input-fi le graph.dat now should give the link weights as indicated below, where each

item in the adjacency-list is followed by the link-weight in parentheses.

0 (3): 1(1) 2(4) 4(1) /for node A = 0 in the graph shown above

e Questions on Prim’s Algorithm:
- When do we processalink (x, y)?
— What does the processing of (X, y) involve?
— What isthe complexity of processing (X, y)?
— What isthe complexity of Prim’s Algorithm?
- What isthe main data structures needed for implementing Prim’s Algorithm?

» Shortest paths in aweighted digraph, with w(x, y) = 0 for Dijkstra’'s Algorithm.

Apr 01
e Longest path in aacyclic weighted digraph (weights can be —ve):
— Comparison with Dijkstra's shortest-path algo.

+ Unlike Dijkstra's algo, we need to look at all incoming links to y before we can fi nd a longest-path
toy.

+ It processalink (x, y) only after it fi nds alongest path to x
+ Subpath of alongest-path is also alongest-path between its end points.

- It has complexity O(|E|), similar to topological sorting Algorithm.

— Itisin many ways similar (with some variation) to topologica sorting.

Pseudocode for longestPath(startNode).

It use following array data-structures:
d(x) = current longest path to x from startNode

parent(x) = the node previousto x on the current longest path to x; parent(startNode) = startNode
indegree(x) = number of linksto x not yet looked at; it changes during the Algorithm

1. Preprocess the input digraph to make the startNode the only source-node:
@ Compute indegree(x) for each node x.

(b) Initialize a stack with all source-nodes, if any, which are different from startNode (which
may or may not be a source-node).

(© While (stack # empty) do the following:
Q) Let x = top(stack); remove x from stack.

(i) For (each y O adjList(x)) reduce indegree(y) by 1 and if it equals 0 then add y to
stack.

2. Initialize a stack with startNode, let d(x) = —c0 and parent(x) = -1 for each node x with indegree(x) >
0, and fi naly let d(startNode) = 0 and parent(startNode) = startNode. (You can take — to be a num-
ber which is minus of the sum of absolute values of all link-costs.)

3. While (stack # empty) do the following:

@ Let x = top(stack); remove x from stack.
(b) For (each y O adjList(x)) do:
() If (d(X) + w(X, y) > d(y)), thenlet d(y) = d(x) + w(X, y) and parent(y) = X.
(i) Reduce indegree(y) by 1 and if it equals O then add y to stack and also print the

longest-path to y from startNode using the successive parent-links and print the
cost of this path.

Program. Develop a function LongestPath(int startNode) and test it with the digraph below. Show the
output in a reasonable form (you have seen enough examples of proper outputs) for startNode = A. In par-
ticular, every time d(y) for some node y is updated, print a separate line of the form "d(3) = 2, parent(2) =
0" to show the new d(y) and its parent. (You can start with your topological sorting program and modify it
appropriately.)

Homework. Show the details (in the table form) the computations in Prim’s Algorithm to construct an
MST for the graph on the nodes shown below (given next to each node v; areits x and y coordinates in the
plane), where the link (v;, v;) has cost equal to the Euclidean distance between v; and v;. Assume the
start-nodeis v;. (Most of you did not do this problem right in the Quiz.)

@3)v,
w() @ (v

V3

u(ll) (21 (v (.1)ve

» Find asuitable acyclic weighted digraph so that if we compute the longest between some pairs of nodes of
this digraph then we will get the longest increasing subsequence (LIS) for the input sequence <4, 1, 3, 8, 5,
7, 13, 6>. Your method for constructing the digraph must be general enough that it will can be used for
any input sequence for fi nding an LIS. Show your digraph, the longest path in your digraph, and the asso-
ciated longest increasing subsequence.

Apr 15

» Huffman tree/Huffman code: assigning prefi x-free codes to a set of symbols with given probabilities.

Alphabet = = anon-empty fi nite set of symbols; word is afi nite non-empty string of symbolsin Z.
Code(x) = code of symbol x 00X = abinary string; code(x,x,[K,) = code(x,).code(x,)MBode(x,,).
Example. LetZ={A, B,C, D, E}.

A B C D E Prefi x-property
000 001 o010 o011 100 code(AAB) = 000000001, yes
easy to decode
0 01 001 0001 00001 | code(C) = code(AB) = 001; no
not always possible to uniquely decode
1 01 001 0001 00001 yes
1 10 100 1000 10000 no

— Some regquirements:

1. Eachbinary string has at most one possible decoding.
2. It should be possible to do the decoding from the left, i.e. as the symbols are received.

— A suffi cient condition for both (1)-(2) the that the codes satisfy prefix property:

No code(x) isthe prefi x of another code(y) for x andy O 2.
In particular, code(x) # code(y).

- A code with prefi x-property can be represented as the terminal nodes of abinary tree with 0 = label (Ieft
branch) and 1 = label(right branch).

« Homework. Consider the codes shows below.

A B C D E
000 001 011 10 110

(8 Arrangethe codesin abinary tree form, with O = label (Ieftbranch) and 1 = label (rightbranch).
(b Isit true that the codes has the prefi x-property? How do you decode the string 101100010007

(c) Modify the above code (keeping the prefi x property) so that the new code will have less average
length no matter what the probabilities of the symbols are. Show the binary tree for the new code.

(d) What are the two key properties of the new binary tree (hint: compare with your answer for part (a))?

(e) Give a suitable probability for the symbols such that prob(A) < prob(B) < prob(C) < prob(D) <
prob(E) and the new codein part (c) isoptima (minimum aver. length) for those probabilities.

Apr 20
» Foyd's Algorithm for shortest-path computation for all (x;, X;) node pairs.
— Thedigraph may have -ve link costs; in that case, Dijkstra’s Algorithm cannot be used.
If thereis acycle with -ve cost, then shortest-paths between nodes in the cycle are not defi ned.

- Total complexity is O(N?) for al node-pairs, which is comparable to O(N?) for shortest-path from a
fi xed start-point to all other nodesin Dijkstra's Algorithm.

- Number of path-lengths computed = O(N®), one corresponding to the computation of
FK(, k) + FXY(k, j) foreach1<i, jsNand0< k< N.

Per node pair (i, j), we compute O(N) = N + 1 path lengths including the path [X;, X;[]
This means most of the loop-free e(N - 2) x; x;-paths are not looked at.
« FX(, j) = the shortest x; X;-path length where only intermediate nodes are { X;, Xp, T X} .
(D) FG, j) =c(x, x;)

(2 F(,) =min{F (G, j), F“UA, k) + F<UK,)}
(3) FN(i, j) =thefi nal shortest x; X;-path length.

How will you create a sorted list of the key in a 2-3 tree? Preorder traversal where at a node with
one label you do

list-left-subtree, list-node-label, list-right-subtree
and for a node with two labels do

list-left-subtree, list-fi rst-node-label, list-middle-tree, list-second-node-1abel, list-right-subtree

What is the connection between variance and the sum (a; — aj)z, summed over all 1<i, j <nfora
given collection of numbers g;?

Find the next binary string of a given length n.

Homework Find the smallest pair of numbers from numg[1..n] whose averageis closest to 0.
Homework Find three numbers from numg[1..n] whose standard deviation is minimum.
Syntactic and semantic organization of data and operations.

data organization
(syntactic/semantic)

/\

homogeneous non-homogeneous
linear ; structure
(array, linked-list) nor-linear (record)
stack queue tree g&?gpagﬂd
binary ordered
tree tree
binar hesp 2-3tree B-tree
searc (priority (search (search
tree gueue) tree) tree)

— Listsand arrays are of homogeneous data-units, where that data-unit can be any thing (homoge-
neous or not).

This covers the case of lists of pointers to different classes in a common hierarchy in C++
because all those pointers are in a sense considered of the same type, namely, a pointer for the
top record in the hierarchy.

operation organization
(within a function)

T

syntactic i
et semantic
N divide & dynamic
lterative conquer S€A°N programming

recursion greedy

« What doe the following equal to
2478017125 — 247801x7025

« How do you represent an arithmetic expression like a—b* 3 and (a—-b) * 3, how do you build the tree,
and how do you systematically simplify (bottom-up) it for given values of the variables a and b?

(2) ()
@ & OGN,
® © @ ©

« What do you call a tree of the type shown below?

(5)
OWO,

OO
®

« Why do we call it binary? What is a non-binary tree — have we seen any yet? Why do we call it a search-
tree?

+ So how would you define a binary search tree?
« What is the main use of such a tree?

« Can you label the nodes of the binary tree below with the numbers 1, 2, IJ18 to make it a binary search-
tree? Is the labeling unique?

Show two different inputs that can give rise to this tree? How many inputs are there?

What are the most basic elements that we compute?
numbers, strings, images (colors and positions of dots), other displays (strings and images).

Each of them may have different meanings; number = age, weight, salary, temperature, height of a binary
tree, length of a string.

What is an Algorithm?
A finite sequence of basic computation-steps and three other operations:
inputs, outputs, and control-flow.

What are the steps in computing the average of three input numbers a, b, and c.
Avre there different ways (Algorithms, methods) of the computing average?

In how many ways can one method be better than the other?
time-wise, memory-wise, simplicity-wise.

Algorithm Design: organizing computations for maximum efficiency and the best solution.
In-Class: Give an Algorithm for new International Students to go to Allen Hall from Student Union.
Since computation needs data, organization of data for efficient access becomes important.

Consider a program P using the data-organization on the left below. If we replace the data-organization by
the one on the right, do we have to make any change in P? Is there then any reason to prefer one to the
other? (Yes, the left one takes 4 + 3*8 = 28 and right one takes 3*(4+8) = 36) Why?

typedef struct { t ypedef struct {
char grade, grade2, grade3; char grade;
doubl e score, score2, scores3; doubl e score;

} First; char grade2;

doubl e score?;

char grades3;

doubl e score3;
} Second;

How many different structure definitions are there involving three chars and three doubles that would give
different memory mappings? How many of them give total size 36 bytes (note that every structure address
begins at a multiple of 4 bytes and is of size a multiple of 4 bytes)?

This course will emphasize data-structure concepts and their applications in efficient program develop-
ment.

— Data Structure for better efficiency (linked lists of different kinds, trees) and better organization of data
for visibility and naming (struct-construction).

— Want clear program, with pseudocodes; main-functions is to primarily call other functions and set val-
ues of global variables.

— Use for-loop when the control variable is updated in a regular fashion.

Write the code for firstPositiveltemlIndex(int *items, int numltems); if there are no positive items then it
returns -1.

1. look at itens[0], itens[1l], ... and stop as soon as
a positive itemis found.

2. if found then return index of the item
el se return -1.

for (i=0; i<numtens; i++)
if (itens[i] > 0) break
if (i <numtens) return(i);

el se return(-1);

What is an alternate way of writing the if-then-else statement? (replace "break" by "return(i)")

» Madify it so that each call will fi nd the successive positive item’s index, and call the new function nextPos-
itiveltemindex; if we call it after it returns -1, then it should again restart the cycle by fi nding the fi rst posi-
tive item’s index. Note that if there is any change in items or numitems, then the search will start with
itemg[0]. Should we fi nd all the positive items and save it in a separate array?

— The complexity of computing partial sums of itemg[.] and itemd[.][.].

. Measuring effi ciency viainstrumentation of InsertionSort.
— Need to generate random permutation or all permutations. How to do it?
1. Find the term to be increased, fi nd the new value, and adjust valuesto itsright.
2. Repeat the abovetill the sequenceis [, n—1, (I3, 2, 10

— Moeasure average number of comparisons and data-movements

. Finding a subset of m < n items from a list of n (distinct) items which are most closely packed, i.e., have
smallest variance.

Jan 14

» Acyclic digraphs, source-nodes, sink-nodes, and topological sorting, pseudocode.

Homeworks: how many ways can you top-sort; tree of all possibilities (not a binary tree); draw the tree with al ter-
minal nodes placed on aline with equal spacing between them.

— each node of the tree shows the nodes that can be laid off (including the the most recent child to be created).

— each link of the tree shows what is being laid off.

Oy
(b)y—{c)—=({e)—=(1)
« Input fi le design.

» Program: Write a program to obtain topological sort.

Jan 19

» Comparison of tree and digraph (digraph instead of graph because direction of links being a common feature between
them).

Rooted Tree T Digraph G
1. | Made of nodes and directed links Made of nodes and directed links
2. | For nnodes, #(links) =n-1 For n nodes, 0 < #(links) < n(n—1)
3. | Children C(x) of node x Nodes N*(x) that are adjacent from x
-C(X)nC(y)=0forxzy — this need not hold
— Termina node x has C(x) =0 — Sink node x has N*(x) = 0
4. | Unique parent par (x), except for root [N~(x)| can be arbitrary
— Root-node x has no-parent — Source nodes x has N™(x) =
5. | Hasnocycle For acyclic digraph, #(links) < n(n —1)/2
- Unique path from root to all nodes — #(paths between two nodes) < e(n — 2)! for acyclic digraphs

— Minimum connectivity from root to all nodes

6. | Subtree T(x) at anode x Subdigraph G(x) of nodes reachable from x
7. | S(x) ={x}, strong component of x Strong component S(x) of x can be aslarge as G
— Merging each S(x) into a node gives an acyclic digraph
8. | Already transitively reduced Need not be already transitively reduced.
Jan 21
Jan 26

» Iterative solution: When the solution has many parts, and we compute each part in the same way on a dightly differ-
ent part of the original input-data, part of which might be modifi ed in the computation of previous parts.

— Sorting by iteration:

1. Findith smallest itemsamong S —{1st, 2nd, [I(i — 1)th smallest element}
2. Repeat (1) for n— 1 times, where |[S=n.

Bubble-sort is an iterative method, which fi nds successive largest number, where on completion of the ith itera-
tion, morethan i items might have properly placed.

It is arefi ned implementation of the above pseudocode in some sense, but it may perform too many exchanges for
some inputs.

Insertion-sort can be thought of as an iterative (but more appropriately as a recursion) based on the size of the
input-data:

1. Successively sortfirstiitems, 1<i<n.

Iterative-approximation is a techniqgue common numerical analysis (such as fi nding roots), where iterations are per-
formed until some error limit is obtained.

* Recursion is different in that the computation of ith call may not be over before starting the (i + 1)th call, and each
call might compute more than one part of the fi nal solution.

* Indepth-fi rst, shortest-path, and longest-path, the basic unit of processing isalink (x, y).

Depth-fi rst: (%, y) isprocess after processing all (x, y') wherey' <y in adj-list(x).

Shortest-path: ~ Same as above, with the additional restriction that process all links at
x before processing links at another x.

Longest-path: ~ Same as above, but the selection of successive x is different.

» Consider static and dynamic features for comparing Algorithms, unlike comparing concepts (using only static fea-
tures).

Static features. (1) Concepts used, basic computations performed in different iterations (recursions).
(2) Conditions for selecting a unit input element for processing
(3) Complexity
(4) Structure of outputs produced: tree, lists, paths, etc.
(5) Structure of and constraints on input (Floyd vs. Dijkstra).
(6) Presence of pre-processing (simplifying input to a standard form, asin longest path)
Dynamic features. (1) Iterative vs. recursive.
(2) Inwhich order, certain elements are processed.
(3) Finite-state model and their comparisons

. Computing Science is part of Computer Sc, the latter could include both software and hardware. Data-struc-
tureis part of Algorithms, which is part of Software and the latter includes also programming skills.

Programming

Language "~ Software
Computing Algorithmand . - (program)
Computer Science Data Structure
Science
Theory of
Hardware Computation

Each student introduces him/her-self by stating the name, year, major, where are you from?

In-Class. Describein (< 10) lines a program that you had written and are proud (were excited) about it.

— Didyou state what the input is? How about the output?

— A namefor your program? How long is the program?

— What language was used?

Homework: Give a short description (< 5 lines) of a programming problem that you would like to be able to

solve by the end of this semester? Maybe you have seen something in action and you wondered how to do that
sort of things?

ANOTHER EXAMPLE OF PSEUDOCODE
Problem. Compute the size of the largest block of non-zero itemsin nums[O. . n — 1].

Example. The underlined part is the largest block.

[2,0,-1,3,1,0,0,5].

Pseudocode:
1. Initialize maxNonZeroBlockSize = 0.
2. while (there are more array-items to look at) do:
(@) skipzero's. //keep this
(b) fi nd the size of next non-zero block and update maxNonZeroBlockSize.
Code:

I = maxNonZer oBl ockSi ze = 0;
while (i < n) {
for (; (i<n) && (nuns[i]==0); i++); //skip O's
for (blockStart=i; (i<n) && (nuns[i]!=0); i++);
If (i - blockStart > naxNonZer oBl ockSi ze)
maxNonZer oBl ockSi ze =i - blockStart;

}
Question:

«? If there are m non-zero blocks, then what is the maximum and
minimum number of tests involving the items numg]i]?

«? Rewrite the code to reduce the number of such comparisons.
How much reduction is achieved?

«? Generalize the code and the pseudocode to compute the largest
Size same-sign block of items.

1.144

A GEOMETRIC COMPUTATION PROBLEM

Problem: If C; and C, are two circles of radii r; and r,, then
when can we place C; inside C,?

C,:

If C, can be placed inside C,, then can we place it so
that the centers of C, and C, coincide?

Question:

? If S, and S, are two squares with sides of length r; and r,, then
when can we place S, inside S,?

'

S,:

«? If S; can be placed inside S,, then can we place it so that the
centersof S; and S, coincide?

«? If we have a square and a circle, then when can we place one
inside the other? (Can we make their centers coincide in that
case?)

1.145

PLACING ONE RECTANGLE
INSIDE ANOTHER

e LetR;=(W Hy)and R, =(W,, H,) be two rectangles, where
W, = width(R;) = height(R;) = H;. When can we place R;
inside R,, and if so then how can we fi nd an actual placement?

R,(1.6, 1.0)
R.(1.4,0.7)
R3(2.0, 0.3)
(i) Two of the infi nitely many ways (ii) R5 cannot be
of placing R, inside R,. placed inside R,.
Question:

1? What is an application of the rectangle-placement problem?
27 What isanecessary condition for placing R, inside R,?

3? What isasufficient condition for placing R inside R,?

4? Do these conditions lead to a placement-Algorithm (how)?

Generalization of Rectangle-Placement Problem:
* Find aplacement that maximizes R;n R-.

Placing atriangle A; inside another triangle A:

 Triangles are more complex objects than rectangles (why?).
This makes the triangle-placement problem more diffi cult.

 What are some special classes of triangles for which the place-
ment problem is easy? Find the placement condition and a par-
ticular way of placing.

1.146

NECESSARY vs. SUFFICIENT
CONDITION

o |If aproperty P implies aproperty Q, then
— Qisanecessary condition for P, and
— P isasufficient condition for Q.

Example. Let P ="Theinteger n isdivisible by 4",
* Consider the two conditions below, where n;n, I, = n:
Q. "Thelastdigit n, of nisO, 2, 4, 6, or 8".

Q,: "Theinteger n' = n_yn, comprising the last two digits of
nisdivisibleby 4". (Thus, n' =nif n <100.)

e Clearly, P impliesQ; and P implies Q,; so, each of Q; and Q-
IS anecessary condition for P.

 However, only Q, implies P; Q; does not imply P (for exam-
ple, let n = 6 = n,, which makes Q4 true and P false).

Thus, only Q. isasuffi cient condition for P.

If Q is both necessary and suffi cient for P
then P is both necessary and suffi cient for Q.
(P and Q are equivalent.)

Question: Are Q; and Q, above equivalent?

1.147

AN EXTREME CASE OF
RECTANGLE PLACEMENT PROBLEM

For the case on right, the dashed rectangle R; can be dightly
rotated and still kept inside the solid rectangle R..

Question:

1? Which of the dashed rectangles has the larger area? Can one of
them be placed inside the other? Justify your answer.

2?7 Derive the necessary and suffi cient condition for placing R;
inside R, for the following cases:

(d) R; canbeplacedinside R, without tilting.

(b) R; must betilted to placeinside R,.

(c) R; can be placed inside R, in essentialy only one way as
in the lefthand case in the fi gure (a special case of (a)-(b)).

4? If Ry can be placed inside R,, is it true that we can make the
placement so that their centers coincide? Explain your answer.

HINT FOR SOLVING THE CASE (c)

rotated and still kept inside the solid rectangle R..

From similarity of triangles, we get

X Hy-y

W- —
and - = -2

X

Hy

Wy

H,

Wi

By comparing the length of the diagonals, we get
W2 + HZ < W5 + H3.

We also have HZ = x° + .

EXERCISE

1. Show that the largest square inside R,(W, H) is R;(H, H).

1.148

2. If weknow that D, = D,, where D; isthe length of the diagonal
of R;, then what is a necessary and suffi cient condition hat R;

can be placed inside R».

3. Give an example of R; and R, such that D; < D, and still Ry
cannot be placed inside R,

1.149

A STRING PROBLEM

Substring: Given a string x = a;a,[1A,, each X' = g a, 1A
wherei, <i, <[k i, isak-substring of x.
For x = abbacd, x' = bed is a 3-substring but x' = dc
IS not a 2-substring.

ik’

Question:

«? How many ways can we form k-substrings of a;a,[la,? When
does all k-substrings (0 < k < n) become the same?

«? When do we get the maximum number of distinct substrings?

Projection: If we keep all occurrences of some k-subset of the
symbols in x (in the order they appear in x), then the
resulting substring is a k-projection of x.

Example. For x = aabcacbbadd, which is made of four symbols
{a, b, c, d}, weget 6 = C(4, 2) many 2-projections as
shown below. Notethat X,p = Xpas Xac = Xca, ELC.

Xy = aababba, X, = bcchb,

Xac = @acaca, Xpg = bbbdd,
X5q = aaaadd, X4 = Ccdd.

Question:

«? Give the string y made of the symbols {b, ¢, d} which has the
same 2-projection as X above, i.€., Yo = Xpes Yod = Xbd, @Nd Yeq
= Xcgd-

«? Give an Algorithm to determine the string x from its 2-projec-
tions. Explain the Algorithm using x = aabcacbbadd.

1.150

GENERATING (n, m)-BINARY STRINGS

Problem: Generate al (n, m)-binary strings, with n—m zeros
and mones. Thereare six (4, 2)-binary strings:

Binary strings: 0011 0101 0110 1001 1010 1100
Associated integers. 3 5 6 9 10 12

An Algorithm AllBinaryStrings(n, m): //n=length, m = numOnes
1. For (i=0, 1,2, 2" - 1) do the following:

(@ Converti toitsbinary-string form s(i) of length n.

(b) Print s(i) if it has exactly m ones.

Problemswith AllBinaryStrings(n, m):

o Itisvery ineffi cient when m=n/2. For n=4and m= 2, it gen-
erates 16 strings and throws away 16-6 = 10 of them.

* It does not work for n > 32 (= word-size in most computers).

Question:

1?7 What are some diffi culties with the following approach (0 < m
< n) and how can you get around them:

Start with the string 1™, then add one 0 in all possible ways,
then for each of those strings add one O in all possible ways,
and so on until each string has n — m zeroes. until all zero’s are
added (e.g., 11 - {011, 101, 110}).

1151

NEXT (n, m)-BINARY-STRING GENERATION

Examples of Successive (10,5)-Binary Strings:

A (10,5)-binary string: 0100111100

Next (10,5)-binary string: 0101000111

Next (10,5)-binary string: 0101001011

Next (10,5)-binary string: 0101001101
[0 [

Thelast (10,5)-binary string: 1111100000

A necessary-and-sufficient condition for string y = next(x):

(1) Therightmost "01" in x ischanged to "10" in .

(2) All I'sto theright of that "01" in x are moved to the extreme
rightiny.

Algorithm for Generating next(x) from x:

(1) Locatetherightmost "01" in x and changeit to "10".

(2) Moveal 1'sto theright of that "10" to the extreme right.

Moving 1’s To Right: 0111111000 - [MO000011111
* numOnesToMove = min(numEndingZeros, NumPrevOnes — 1)

Questions:
1? What happens when thereisno "01"?

27? How will you generate a random (n, m)-binary string, i.e, with
what probabilities will you successively determine the bits x; of
a random binary-string x; X,[I¥,? Give the probabilities for
successive bitsin 01101 (n =5 and m = 3).

1.152

FINDING THE RIGHTMOST " 01"
IN A BINARY STRING

Pseudocode:

1. Scan the binary string from right-to-left to fi nd the rightmost
"1,

2. Continue right-to-left scan till you fi nd thefirst’0’.

Question:

1? Why is right-to-left scan is better than left-to-right scan to
locate the rightmost "01" (for our application)?

2?7 Doesthe following code fi nd the rightmost "01"?

for (i=length-1; i>=1; i--)
If ((1 == binString[i]) &&
(O == binString[i-1]))
br eak;

Explain with an example binary string how the above code
wastes unnecessary comparisons of the items in binString[].
Describe the situation that makes the performance of the second
code worst.

3? Give a piece of code corresponding to the pseudocode above
and which does not have the ineffi ciencies of the code above.

1.153

PROGRAMMING EXERCISE

1. Write a function nextBinString(int length, int numOnes) that can be called again
and again to create all binary strings in the lexicographic order with the given
length and number of ones. Choose a suitable return value to indicate when the last
binary string is created. Use an array binString for the binary-string, and use
dynamic memory allocation.

Your main-function should call nextBinString-function again and again. It should
run for large values of length (= 100, say) and all 0 < numOnes < length.

First, test your program for length = 6 and numOnes = 2 and 3.

Now modify nextBinString-function to count #(reads) from and #(writes) into the
binString-array as you generate each binary string. Call these counts numReads
and numWrites. The output should look like the following; show the average num-
Reads and average numWrites upto 2 digits after the decimal point.

bi nString nunmReads numites
ooo111 o &
001011

111000
averNunReads = ... averNumWites = ...

Submit the paper copy of your code and the outputs for length = 6 and numOnes =
2and 3..

1.154

A RECURSIVE APPROACH FOR
GENERATING ALL (n, m)-BINARY STRINGS

(4,2-)-b} r;Strs
0--- 1---
(3,2)-binStrs (3,1)-binStrs
/\
00 - - 01-- 10- - 11- -
(2,2)-binStrs (2,1)-binStrs (2,1)-binStrs (2,0)-binStrs

0011 010 - 011 - 100 - 101 - 1100
(1,1)-binStrs (1,0)-binStrs (1,1)-binStrs (1,0)-binStrs

0101 0110 1001 1010

Pseudocode for RecAllBinStrings(n, m):

1. If top-level call, then create the array binString[0..n — 1] and let
strLength = n.

2. If (n=m) or (m=0), then fi ll the last n positions in binString
with 1'sor O'sresp., print binString, and return;
otherwise, do the following:
(@) Let binString[strLength — n]
BinStrings(n — 1, m).

(b) Let binString[strLength — n] = '1" and call RecAll-
BinStrings(n —1, m—1).

'O’ and cal RecAll-

Question:

1? Let W(n, m) = #(total write-operations into binString[]) for
generating al (n, m)-binary strings. Give the equation connect-
ing W(n,m, W(h-1,m), and W(n-1, m-1). Show
W(n, m) for 1< n<6and0< m< ninPascal-triangle form.

